An excliling hobby for kneryone everyday electronios

1

Provides automatic, gradual speed change for stopping or starting, together with a manual facility to provide realistic speed control.

Build yourselfaTRAMSSTOR RADIO
 WITH AFTER SALES SERVICE

ROAMER 10 WITH VHF INCLUDING AIRCRAFT

10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MW1, MW2, LW, SW1, SW2, SW3, TRAWLER BAND. VHF AND LOCAL STATIONS ALSO AIRCRAFT BAND Bult in Ferrite Rod Aerial for MW/LW. Retractable, chrome plated 7 section Teleacopl Aerial, can be angled and rotated for peak short wave and VHF listening. Push Pull output Dioden. Fine tone moring coll apeaker. Gatiged Tuning Condenser with Yif aection. Separate coil for Alrcraft Band. Volurne on/onl. Ware Cliange and tone Control Attractlye Ceat in black with allver blocking. Bize $9^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}$. Eany to follow tnetructions and diagrams. Parta price list and plans 30 p (FREE with parts).

Total building cost £9•35
P. P. \& Ins. 82D

7 Tunable Wavebanda: MWI, MW2, LW, sWl, 8W'2 8W3 and Trawler Band. Bullit in Ferrlte Mod Aerle for MW and LW. Retractable chrome plated Tele. acoplo aerial for Short Waren. Pubh pull ontput uaing 600 m W tranimintors. Car aerial and Tape record sockete. Belectrity switch. 8 tranoiators plus 3 doden. Fine tone moving coll speaker. Alr apaced ganged tuning con-
denser. Volume on off, tunlng. weve change and tone controls. Attractive case In rich chestnut shad with gold blocking. Size $9 \times 7 \times 41 \mathrm{n}$. approx. Easy to foilow Instructions and dlagrams. Parta price liat and plant R5p (FREE with parts).

POCKET FIVE

- Tunable Waveband MW, LW, Trawler Band band for easier tunin. of Luxembourg, etc
7 stages- 5 traneintore and 2 dlodes,
upermenaitive ferrite rod aerial ane
tone moving cola apeaker. Attractive black and gold came. Size if $\times 1 \mathrm{f} \times 31 \mathrm{in}$. Plans and parts price lint 15p (FREE with parta)
Total building costs
(Oversean P. \& P. 65p)

ROAMER SIX

Turable Ware bands: MW, LW BW1, 8W2, 8W3 Trawler, band plue on exira Medlum easler tunlag tc. Sensitive fero rlte rod aerlal and telescopic merial for Short Wavea.
3 in. Epeaker.
tagee - 6 tranalators and 2 alodee. Attractive black cave with red grille, dis) and black knobe with polished rerte incice list ofo (FBEE in. spproz. Plan and parte price list 200 (FREE with parto).

attrectye con, tuning and wev anze $\times 7 \times 3$ in. appror. Eany to follo: Inatruction and diagrams. Parts price list and plana 25p (FREE

Total building costs
(Orerseas P. \& P. $£ 1.05$)

TRANSONA FIVE

5 TRANSISTORS AND 2 DIODES

Tunable Warebands: MW, LW and Trawler Band 7 stage-5 transistorn and 2 diodes, ferrito rod aerial. tuning condenser volume control, ane tone grille. Bize $61 \times$ it $\times 1$ if. Plane and parti price list $15 p$ (FREE with perta).

 bends: MW, LW, and Truwler Band.
gensitive ferrite roi aerial for M.W. and L.W. Telescopic serial for Short Waves. 3 in . Speaker. 8 Improfed type transletors plus 3 dioden. Atractive case in black with red grilie, dislend blark knobs with pollahed metal inserts, size $9 \times 8: \times 2 i \mathrm{in}$. approx. Puab pull
output. Battery economiser switch for eztended battery output. Battery economiser switch for extended battery
Ife. Amplo power to drive a larger epeaker. Parta The. Ample powter to drire a larger speaker. Parts

RADIO EXCHANGE CO

"EDU-KIT"

BUILD RADIOS, AMPLIFIERS, ETC., FROM EASY STAGE OIAGRAMS FIVE CONSTRUCT.
Tuning Condenser: 2 Volume Controls: 2 slider Switches: Fine Tone Moving Coll 8peaker: Terminal Strlp: Ferrite Rod Aerial: 2 Plugs and socketa: Battery Clips: 4 Tag Boards: Balanced Armature Copactlors: Three ${ }^{4}$ Nindes: Resintors: Capactiors: Three ${ }^{\text {T }}$ K nobs. Unite once Unlt, enabling them to be stored for tuture use. Ideal for Schools, Educational Authoritien and all those interested in radio construction.
Parts price list and plens 25 p (FREE with parta).
All parts including $28: 05$
Case and Plans P. P. *
Ins. 33 p
| 61a HIGH ST., BEDFORD, MK40 1SA. Tel. 023452367 | 1 Res. no. 788372
| enclose \& ROAMER TEN
please send items marked. \square ROAMER SEVEN ROAMER EIGHT \square TRANS EIGHT TRANSONA FIVE ROAMER SIX POCKET FIVEEDU-KIT

Parts price list and plans for

I Name

Address

The Catalogue you MUST have!

10 IN ONE MINI LAB 10 Instruments in one. Including
AC \& OC Voltmeter, Ohm Meter,
$£ 11.95$ vation ing

SIGNAL TRACER/ INJECTOR Designed to receive audio frequency, built in amplifier with high galn of 60 dB .

£11•55

including
VAT \& P.P.

(3) गु Associates Ltd.

SIG MITTER
Powerful trouble shooting signal injector. Model SE260. $\frac{2}{2} 2-20$
including VAT \& P.P.

DC POWER SUPPLIES
Regulated power supply variable up to 15V 0.5A. Model SE800 ... ideal for development work.

दी $=00$
 including
 VAT \& P.P.

NEW
HIGHLY SENSITIVE MULTITESTERS
Model M650 with mirror scale.
\&7:70 $\begin{gathered}\text { including } \\ V A T ~ \& ~ P . P . ~\end{gathered}$

Cricketfield Lane, Bishops Stortford, Herts. Tel. 027956347

A DEXTER MWUWAWIITH ALLOWS COMPLETE

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit of "simple to assemble" kit. Two models are avalable controlling up to 300 W or 600 W of all lights except fluorescents, at mains 200.250 V .50 Hz . All DEXTER DIMMASWITCH models have built-in radıo interference suppression $\quad 600$ wati $£ 3.52$ Kit form $£ 2.97$ 300 watt $£ 2.97$ Kit form $\mathbf{£ 2 . 4 2}$
All plus 12 p post and packing
Prices include VAT. Please send c.w.o. 10
DEステER A OOMPAMY 5 ULVER HOUSE 19 KING STREET CHESTER CH1 2AH Tel: 0244-25883

 SEARPMEMIS HOSRIIIS tocal authon

INSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR a AMPLIFIER. OPERATES FROM 9v BATTERY (not suppliad). ALL COMPONENTS AND PRINTED CIRCUIT BOARO WITH FULL INSTRUCTIONS KIT PRICE: E2.s6 post paid.

CREATE "PHASE" EFFECT ON YOUR RECORDS. TAPES ETC., UNIQUE CIRCUITAY enables you to create phase EFFECT AT THE TURN OF A KNOB. OPERATES FROM ov BATTERY (not supplled) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULLINSTRUC. TIONS. KIT PRICE: $\mathbf{E 2} \cdot 86$ post pald

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES

DABAR ELECTRONIC PRODUCTS

Ha, LICHFIELO STREET. WALSALL, STAFFS. WSI IUZ
EX COMPUTER PC PANELS
2×4 in. packed with semiconductors and top quality resistors. capacicors, diodes, ecc. Guaranceed min. 35 transiscors plus data. 10 boards $50 p$ (9p)
SPECIAL BARGAIN PACK
25 boards $f 1$ (25p).
Panels with 4 power transistors sim. OC28

ELECTROLYTICS

$68,000 \mu 16 \mathrm{v} .4 \frac{1}{\frac{1}{2}} \times 2 \mathrm{in}$. dia., $25,000 \mu 25 \mathrm{v}$ $20,000 \mu 30 \mathrm{v}, 5,000 \mu 90 \mathrm{v}, 35,000 \mu \mathrm{~s}$ (5v. $8.000 \mu 55 \mathrm{v}$, $4 \frac{1}{2} \times 3 \mathrm{in}$. dia., 50 p (12 p) $15,000 \mu 15 v, 10,000 \mu 35 v, 5,000 \mu 75 v$. 41 x 2 in . dia., 30 p (10 p). $2,000 \mu 25 \mathrm{v}$ wire ends $15 p(5 p)$, 12 for 11.50 ($15 p$)

KEYTRONICS
 (Mail Order only)
 44 EARLS COURT ROAD LONDON W8. 01-478 8499

(IP)
 IL.P. (ebeterenes Le

THE HY41

The HY41 supersedes the populan HY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distontion liypically 0.05% at 1 KHz into 8 ohms!) and is electronically and mechanically comoatible with the HY40.

With this important improvement the HY4 1^{1} ' retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sulficiently versatile to provide power not merely for Hi.Fi bat atso for public address systems and industry

The free manual gives a full circuit diagram of the HY41 and its varlous applications including a complete stereo ampliffer.

Like its predecessor the HY41 is based on conventional and proven circuit techniques developed over recent vears.
OUTPUT POWER: British Rating so WATTS PEAK, 20 wats
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz .
VOLTAGE GAIN: 30 db at 1 KHz
TDTAL HARMONIC DISTORTION: tess than 0.15% (iypical 0.05%) at 1 KHz
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz} \& 1 \mathrm{db}$
SUPPLY VOLTAGE: +22.5 volts D.C.
SUPPLY CURRENT: 0.8 amps maximum.
PliICE: inc. comprehensive manual, P.C. board, five extra companents and P. \& P.:MONO: $£ 4.90$

STEREO: $£ 9.80$

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an Integrated preamolifier circuit.

Supplied with the HY5 are two stabilizing capactions and by the addition of volume, treble and bass potentiometers it is ready for use

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection.

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing if to be run off any unregulated power supply from 16-25 Volis and a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo preamplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.

INPUTS

Magnetic Pick-up (within $\ddagger 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Replay lexternal components to suit head). $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up (equalized and compen
satable) $20-2000 \mathrm{mV}$. variable.
Tuner (flat) 250 mV . $100 \mathrm{~K} \Omega$ Auxiliary $1250 \mathrm{mV} .47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

OUTPUTS
Main Pre-amp output 500 mV Direct tape output 120 mV .
ACTIVE TIDNE CONTROLS (Bexendall)
Treble $\pm 12 \mathrm{db}$
Bass + ${ }^{12 d \mathrm{do}}$.
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VOLTAGE
16-25 volts
PRICE
MONO: £3.60
STEREO: $£ 7.20$

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply your HY41's 4 HY5's in stereo or mono format.

Specification
Input: 200-240 Volts.
Output: ± 22.5 Volis at 2 amps.
Overall Dimensions: L. $7^{\prime \prime}$; D. $3.8^{\circ \prime} ;$ H. 3.1°
PRICE: £4.50 inc. P. \& P

CROSSLAND HOUSE • NACKINGTON-CANTERBURY•KENT

CANTERBURY 63218
Please note we réserve the right to substitute at our discretion updated vefsions of adventised designs where applicable.

MAINS OPERATED CONTACTOR 220/240v. 50 cyela solenold with laminated cort co very alrouthe each rated at 10 ampe Ercuita each reled at 10 ampe. German Electrical Compans Orerall aize $21 \times 2 \times 2 \mathrm{in}$ 11 -8 esch.
 NEED A SPECIAL SWITCH Double Las! Contact. Very elight prearure clowes等 both contacte. $8 p$ each 10 for 60 . Platic puhhrod cultabla for operating. ip esch. 10 for $64 p$.

AUTO-ELECTRIC CAR

AERIAL

with dabbboard control switch-fully ertendable to 40 in or fully retractable. Buitable for 12 V poaltive or negative earth. Bupplied complete with fitting instructions and ready 25 p pont and insurance.
MAINS TRANSISTOR POWER Dealoned to pACK

Dealgned to operste transistor weta and amplifiera. Adjurtable output 6v.. 9 v.. 12 volta for up to 500 mA (clans B working). Takes the place of any of the following batteries: PP1, PPS, PP4, PP8 PP7. PP9 and others. Klt comprinea: matas trantormer rectiter, amoothigg atd load redistor,
condenmera and inatructions. Real onip at only 1010, plus 20p portege.

MINIATURE

WAFER SWITCHES 3 pole, 2 way-4 pole, 3^{2} way3 pole. 3 way-4 pole, 3 way- 2
pole 4 way- 3 pole, 4 way 2 pole
8 way-1 pole, 12 way. All at 28 p each.

DRY FILM LUBRICANT

 Dry Film Labricant. In aerosol can for easy application and for putting mal oil can cennot reach. Home "and UBRNM everyday usea. We have purchaed alarge quantity of these from the Lalquidator and are able to ofler them to you for wbout half of the original list price. lubricant jo i.C.I. fuon L169.MULTI-SPEED MOTOR Siz upeed are vallable 500,880 and $1,100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and $8.000,12,000$ dameter and approrimately 1 in . long. $250 / 240 \mathrm{v}$. It apeed inay be further controlled with the use of our Thryrinter controller. Very poweriul and useful motor alze approx. $2 \mathrm{in}. \mathrm{dia}$.$\times i in. long.$
Price 97 plus 23 p pontage and Price 970
insurance.

MAINS MOTOR Precialon made-as used in record decks and tape recortan, blower, heatern, etc. New and perfect. Bntp at 65p. pontage 20p for arst one th 1 " ntackmotor 94p.
 tackmotor 81.10

15A ELECTRICAL PROGRAMMER Learn in your aleep: Gave radio plaging and
kettle boiling as you awake-awitch on Hot to mard ofl intruders-have warm house to coms home to. All theve and many other thinge you can do if you invest in an electrical programmer Clock by famous maker with 15 amp. on/ot awitch. Bwitch-on time can be set anywhere to atay on up to 6 hours. Independent 80 mipute $20 \mathrm{p} p$ \& or with glans front chrome bezel 89 p ertra.

I CHIP RADIO

Ferrantid latent device ZNist-givea resulta better then auperhet. Bupplied complete with Hi-Q TUNER COMPONENTS
For experimenting with the 2N4l4.
XIT MO. 1. Pleswey Miniature Tuning Condenser With built in LW awitch and $3^{* N}$ ferrit alah and KIT 110.2. AIr apaced tuning condenter 6° ferrit roll litz wound $M W$ and $L W$ collh and wave change switch. 94p.
EIT MO, S. Alr spaced TC with elow nootion drive 8° ferrit rod, whith litz wound LW and MW colls and wave change ewitch, sl-10.
KIT 110. 4. Permeabulty tuner with fant and alow motion drive and LW loading coilm and wave change awlith. BOp
HOUR MINUTE TIMER Made by Amiths. Complete With conirol wnob and call office, dark-room, tto. Bargain at E5j.
 asea of this timer are Machinery control, Boiler fring, Dlopenaing and Vending
machines, Display Mighing animated and algne, Bifnalling, otc. Price from machines, Dlaplay lighting animated and algne, Blfaalling, itc. Price from makers probably over $\ell 10$ each. Spectal andp price 36.88 plan 20 p poat and nsurance. Don't mien this territic bergain.

MIGHTY MIDGET

Probably the tiniest ponathle radio, as described in Practical Wireleas January 73. All electronica parta 航. 20 poat pald. 2

DISTRIBUTION PANELS

Juat what you need for work beach or lab.
standard 13 amp fured pluga and onfott awl
complete with 6 feet of dez eable. Wired up reet wheon warning light. Bupplled

HORSTMANN "TIME \& SET" SWITCH (ASO Amp Bwich.) Juth the thing if you want to come home to a warm house without it conting gon a fortuna. You can delay the switch on time of your electric fres, to. up to 14 hours from setting time or you can une the awlich to give - boost on Deriod of up to 3 hours. Equally saitsble to

MULLARD UNILEX

Thil D.I.Y. Btereo Amplifer ia still avallable completo at $\mathbf{1 7}-06$ for be four Mullard Modules, or Modules can ba bought separately a ollowa: -4 watt amplliker module (2 required) Mollard Rei. No Pre anp module Mulle
Power module-Mullard Ref. No. E.P. 9001 - 1.98 each.
in addition and made to Mullard Speciaciation we offer:-
Btandard Control Unit with eacutcheon and knobs- $88-80$ Knobs-Set of 4-60p
EPECJAL ODFRR the complete Unilex with control $\mathcal{E} / 0$ paid
panel at PRE VAT PRICE.

RADIO STETHOSCOPE

tandont way to thult fud-traces aignal from eetial to epenker-when algnal atope you've found the tauk. Ute It on Radio, TV plete kit comprisestan - com. transitiory and all parti inclu. ding probe tube and cryatal earplece. 28 . 80 - tw in atetho-extra-poat and ins. 20p.

24hr. REPEATING TIME SWITCH
Made by Smithe these are A.C. malns operated. NOT CLOCK WORK. Idesl for mounting on rack or ahelf or can be built Into bor with 13A socket. 2 completely wdjusteble witch circuit on or oft during these period 92.75 poet will ing, 28p. Additional time contecta 559 palt

TWENTYLITE

40 tacent lightiag unita with polyostar choke and Antohed white ename tonembled ready to inntall, te-80. poat 40p.

HONEYWELL THERMOSTAT

Made by Honeywell for normal air temperatures $40^{\circ}-80^{\circ} \mathrm{F}$ $\left(5-25^{\circ} \mathrm{C}\right)$. This is a precision instrument with a diferential which can be adjuated to better than $1.5^{\circ} \mathrm{F}$. A mercury witch breaks on temp. rise-the awitch is operated by a colled b-metal element and adjuatable heater is incorporated for heat antic! pation. Elegantly atyied and encaved in an ivory plactic case ncale below-slze approx. $3^{\prime} 8^{*}$ I $3 \cdot 2^{*}$ x $1 \cdot 4^{*}$ deep-can be mounted on condult bor or directly on wall. Price $\mathbf{\$ 1}$-37 each or ten for $\mathbf{\$ 1 2 - 5 8}$.

KETTLE ELEMENTS

Male by the famous A.E.I. Co. Complete with washerm and combined firing ring and plug throud. Normal 2 round pla whd flat pin earth conpection and overiond react push button. 2 Models- 1 in (appror.) sultable for Swan and other aimilar models-1!in (approx.) suitable for G.E.C., Hotpoint,
etc. All quick boil 2 k w elenenta at 200 V . Price $21-88$.

ATTERY CONDITION TESTER

Made by Mallory bat outable for all batteries made by Rver Ready and others, most of which are zine earbon and alkaine batteries manganese-nicad-aiver oxide dummy load on the battery and the meter acale indicate the condition depending apon which eection the pointer resta. The section reads "replace"*"weat"o or "good". The tenter is complete in its case, size $38^{\circ} \mathrm{x} 65^{\circ} 3^{\prime \prime} \mathrm{x}$ with lead and prods. Price 88.50 plue 20 p postage.

E 12 WAYSUE

 MULTI-CONE CABLE 7.0076 copper cores each core P.V.C. ingulated and of diterent colour. $3 / 16 \mathrm{in}$. thick. Price 28 p per yard.
SNAP ACTION SLIDE

 SWITCHReted Ba. 240v. Made by Arrow. Type thted in the handles of electric drills. 10 for 64p.

EXTRACTOR FAN Clasat the air at the rate o 10,000 cuble ft. per hour. 3ulabe for roles ens, rooms, fectorlas, changio. hardly be heard. Complice, E_{1} cening with 5° inn blades. Kit comprise molor, ita blades, wheet ateel ceains, pall wrlech. maine connector, and arjog brackets. $88 \cdot 75+20 \mathrm{p}$
F. \& P.

DRILL

CONTROLLER NEW IKW MODEL Electronjeally change apeed from approx mately 10 reve. to maximum. F'ull power at all peeds by anger-tip control. it inclades all parts.
 insurance. Made up model aleo avallable. te. 50 plue 13 p poet ap

TELEPHONES

Complate as Illuatrated. Bave jour legs, time and temper smply by putting in sotm telephones. Ex. G.P O. not now- but graranteed in good conditlon and aervicesble. Bupplied with diagram and Instructlonn abowing how to connect. 3 types avallable na 1 each. Ditto with bell but less dial 11.25 each As illustrated with dita and bell $\$ 1.50$ each. Post etc. 50 p each.

SPIT MOTOR

200.250 V Induction motor. driving a Carter Eearboz With a lí" output drive abaft running at $\$$ reve D.m. Intended or ronating chickens, also for driving ed diec lishting effects. etc. 82.05 plas 20p post and ins.

SOLDER GUN
A must for every busy man, fives almost inatant hert aleo illumi-
nated job. 100 watt 8 g 47 plus poot and 10s. 20p.

TELESCOPIC AERIAL
for portable, ear radio or
tranmitter, Chrome platedolx sectlons, extends from 71 2 47in. Hole in bottom for 6BA ecrew.
KNUCKLED MODEL FOR F.M. S5; 48. ISNUCKLED MODEL FOR F.M. S5
8 F

TREASURE TRACER

 Complete Kit (except wooden battens) to make tbe metal detector an the circrit in Practical Wirelena, Auguat isarue. $\mathbf{8} \mathbf{8} .20$ plue 20 p poot and InsuranceIMMERSION HEATERS BY
REMPLOY
Btandard atting for
domestle water
tanks, made by the
famous Remploy
With seaning washers sultuble for 200-240 volte
A.C. Depth into tank 11^{*}. 2 kw or 3 kw E2. 8.6 plus 20 p each post and Ineurance.

MAINS OPERATED SOLENOIDS ful $1^{\text {tr }}$ pull-approx. powe

 plue 20 p poot and inaurance.

RESETTAALE FUSE

How long doen it tak gou to renew fuse: Time yourself when next ona blows. Then reckoning your time at 41 per hoar see how qualclily our remotiable fum (auto circuit breaker) or 112 per dozen, epecify $\mathrm{B}, 10$ or 15 amp -simply of in place nf arfiel.

RECORD PLAYBACK HEADS （TRUVOX）
adividual prices of thene are：－ 2 track record playback heade 50 p eich． $\$$ track record playback hesde $78 p$ etach．
Frase heade are alao availabla neparately－ 3 track $88 \mathrm{p}-4$ track 55 p
Mu－metal mounting ahields 89p esch．
2 track record，playback and eraso headn aiready

I R．P．H．MOTOR

Mede by the famoun Smithe Company． 240 v elock mechaniema．Price 21.10 each or 10 for 210 ．

ROCKER SWITCH
13 anip self－ixing into an ohlong hole． Bise appro
10 for $8 \mathrm{E} p$ ．

SLIDE SWITCHES

slide 8witch．2－pole changeover panel mounting by two 6B．A．screws．Size op each． 10 for $84 \mathrm{~g}, 100$ for $85 \cdot 10,500$ for tea．Ditto an above but for printed 8ub lilnistare 8lide 8wlich，DP1）T 19 mm in approz．）between fixing centrea．18p each or 10 for $\mathbf{1 1}$－08．SP Change over spring return 250v 1 amp． 10 p ．
HIGH ACCURACY THERMOSTAT Unen difterential comparator 1．C．With thermbeter so probe．Denjger claims temperature control to pack $86 \cdot 10$ ．

RELAYS BY KEYSWITCH

Makere Ref．KMKs Our number Rel．As．Open type maine operated coll－ 3 pairm changeoover Contactar rated at 6 ampa each．Mounted by Ditto but 12 V ．Our Ref．Rel A4．Price 55 p esich．

WATERPROOF HEATIMG

 ELEMEMT26 garde length 70W．Self－regulating
temperature control． $86 p$ post free．

AMPLIFIER IN CASE WITH

SPEAKER

Marketed by Britten Relay under the name Lurintor．This io in a very neat looking cablaet and In ideal around the home or in the workabop for trouble ahooting or for testing out a quick lash up．Size approx． $9 y^{\circ}$ I 67° I $3 y^{\circ}$ dmep．Input and amplliter may be powered by an tuternal $9 v$ and ampliner ingy be powered by on internsi 97 R－A eliptical 6° I $3 \frac{y}{*}^{\circ} 10,000$ gatian，The minplitier

EDUCATIONAL KITS－all with pictorial instructions

TH18 BALANCB KIT FREE Esegle educat fonal made these are excelient value lor money．We
do mot expect o be tble reat the ofier once notock expect with s kits or more we give FREE an accurate 11 plecn balance kit．Price of kite 44 p each post paid．Apecial price for all 7 kits 歓． 00 with iree belance klt．
EAR Laus Elf．Ploven parin，including candle one concave lena，one conver lena，stage and all reme，etc．watch light reys bead an they pae through difterent lensect．
EA\＆Wiatar Pump Eit．Thirteen parta．Top of pomp is tramparent so that operating parta may be obmersed．Bmall parts are brightly coloured to be seen enally while working．Three typen of pump may be maife：Lift pump．Force Pimp and
EA4 Bustor Eit．Fieven partn．Tranaparent coveri and the operation of buzzer to be neen．Illuntratee automatic awitch reanita in an operating burxer． EA7 Bectro－Magast Elt．Fifteen parts，inoivodes compan．Makee two electro－magnet $\mathrm{a}_{\text {，}}$ onf with one laver of wire and one with meveral layera of wire．Pirks np tarkn，nalls and any amall papta abowlaf how magnetism works．
EAS Curront ard Roalitance Eit．Twenty－nine partn，including hench and Jight bulh，Conduct interating and educational projecta to learn the application of＂OHMS LAW＂and wee the difter－ once in current and resistasce with diferent gpea and lengths of wire．
EAS Bell Itit．Eight parta，including bell and puah button switch．Biald a romplete electric bell and bell ring．
EA10 Kora Eay buzzer and hell hit． 25 part kit eany to conatruet，aimple to operate．

TERDI ：－ 10% dimcount if ten of an Itern orlered，eand postege where quoted－other Items，poot free If order for these ovet $\mathbf{4 6} 00$ otberwlee add 20p．

TAPE PLAYBACK UNITS
Valint operated．Made by Reditune the famons＂music ill，background people＂．These are complete unite ridy to work．Have a superior motor driven flywheel （＂）control the tape through the capstan and also an －ven equally useful valve amplifier with ELS4 output． In a atcel case with carrying handle．Two modela offered．good as new 10.30 and somewhat used at $28 \cdot 60$ ，
75 ；cerriage up to 200 miles then 50 p per 100 mlles 75 p carriage up to 200 miles then 50 p per 100 miles

THYRISTOR LIGHT DIMMER

Domentic model for any lamp up to 250 watt．Mounted on wilch plate to at in place of standard switch．Virtualir oo radio interferences．Price 22．95．Induttrial model 5 anp module with control knob 88.80 ．

PSYCHEDELIC LIGHTING can be gours with cur manar thotor driven carn swich．a carns drive 8 awltches alots in cans make and breat 10 anp contacte as they rotite．Hundreds of combinations poasible to give all of lighting． 83.85 each plue 20 p poit and insurance．

I．C．RADIO AQUARIUM THERMOSTAT CONTROLLER

To recefve parin for thene and other projects featured in thls lanue mend quoted approximate aruount any caah dijust ment can be made later．

WINDSCREEN WIPER

 CONTROLVary mpeed of your wiper to mult conditions All parts and lontrucilos to make．fill 48

HORSTMANN 24－HOUR TIME SWITCH With 6 position programmer．When fitted to hot water ngatemn thas could programme to tolloza：－

Programme	Hot Water	Central Feating
0	Off	
1	Twice Daily	Of
2	All Day	Ot
3	Twice Datly	Twlce Datly
${ }_{5}$	Continuously	Continuo

Suitahle，of courae．to rropramme other than central heating and hot water，for instance，programme upatalra and down－ and radio．In fect there is no ilmit to the veratilits of this Programmer Mains operated Bize 3 in．$\times 3$ in．$\times 2$ in deep Price 89．85 as Hllustrated but leas case．

STANDARD WAFER SWITCHES

standard alis 11° wafer－ailver－plated s－amp content standard 8° splorlle 2^{-}loos－with locking wabar and nat．

No．of Polea	2 way	5 way	4 way	5 way	6 way	\％${ }^{7}$	9 way	0way	12\％＊5
1 pole	44p	440	44p	44p	44^{1}	44p	$4{ }^{4} \mathrm{D}$	44	44
2 polen	448	440	440	440	440	445	440	77.	77
3 poles	40．	440	44	44	779	770	770	11.04	11.04
4 pole	44p	440	440	770	779	770	779	31.8	81－58
5 polea	440	44p	77 p	77 p	18.04	11.04	81．04	1.00	11－60
6 polea	440	770	770	77 p	81.04	81．04	E1．04	11．87	E1．${ }^{5}$
7 poles	770	770	770	11.04	11－82	21．88	81.29	ce． 15	$2 \cdot 15$
8 poles	770	779	770	81.04	－1－82	81．88	E1－82	58．48	22－48
9 polen	778	77	81.04	31.04	81.60	$31-60$	81－60	鯥．70	18－70
10 prolen	77 p	770	81.04	21．82	\＄1－60	$11-60$	\＄1－60	33．00	88．00
11 poles	770	51.04	81.04	11.2	11.87	11.87	－11．87	43 ${ }^{\text {d }}$	4．25
12 pole	77	11.04	11.04		11.87	E1．87	11－87	新•㒾	

BURGLAR

ALARM KIT

Protect your home a family by frightening away the Intruder．With our circuit，a mining door beil rings directiy the door or window in opened．Kit comprises 10 reed
owitches， 10 pingnets，relag，tmaing trandormer and bell owitches， 10 magnefs，relag，maina tranolormer and bell －lith clrcuit．Price shes．

INTEGRATED CIRCUIT BARGAIN

A paroel of integrated eireuita tnade by the famous Pleaey Compeny．A once in－a－lifethme offer of Micro－electronic devices well below coat of manufeturs． The parcel contains 5 ICe all new and perfect，Arri－grade device，definftely not oub－alandard or aeconda． 4 of the ICe are atagle ellicon chip GP amplifiers． The Sth ia a monollthie NPN matched palr．Regular price of parcel well oser A5． Full circuit detaila of the ICe are included and is wdition you will receive a list of many difierect ICe avallable at bargain pricea esp upwarde with curcuita and technical data of each．Complete parcel on
DON＇T MISS THIS TERRJFIC BARGAIN．

GOOD COMPANION

We can now ofler them again in i．c．Feraion using Ferrant ZN414 and Mullard AP Modulea 1172．Excellent tons \times win deep．Complete approx．INin wide \times in．hig 25 p poot and th．

J．BULL（ELECTRICAL）LTD．
（Dept．E．E．）， 7 Park Street，Croydon CRO IYD Callors to：182／3 Tamworth Rood，CnovDON．

Miniature sealed relay
 American made．Our Ref．No REL A1．Measures only $t^{\prime \prime}$ wide
x thick and $t^{\prime \prime}$ high and it＇n double change over，we don＇t know the contact rating The coll resiatance if 600 ohmas The coil resiatance in 600 ohma
and $9-12$ volt will clone it．Ideal for models and miniaturtsed equipment．It＇s a plug in relay but we supply complete with bese． Price 880 lacluding bame．

METAL CHASSIS
14 zauge sheet steel－ mize approx． $7{ }^{\prime \prime} \times 3 y^{\circ} \times$
1 3is deep．Cadmium plated punched in the centre to Lake 3 P．O．
sooo type relayn．There ta aloo semoveabie cover
 over this section mearur． ing $41^{\prime \prime}$ long $\left.\times\left. 3\right|^{\prime \prime} \times 2\right\}^{\prime \prime}$ ． The chandin alao has a few holes and could take a amall tranaformer and／or valve holders alno monse $3 / 8^{2}$ hules for controlk，pote etc．This be an idea chased for making up a relay unit or similar Thene are ex－equlpment but in excellent condi－ thoo and may have a few reaintora etc．atill
attuched．Price 40 D each．

CLOCKWORK TIME SWITCH

For delasing the awitching on for up to 12 hours． Betog clock work thin in independent of the mains and to therefore maeful for remote operation or for battery appliance．The front dial which in calibrated in houra is turned throagh the required repoiut ion then after preaet thme double pole
15 a switch operates．Made by Smitha．Price it－ 56.

MAINS TRANSFORMER

OL Ref．MTJI．Drop through chamio－open coustruction．240v Primary－9v 1A Becondary． Price 77p each．

MAINS TRANSFORMER

Our Rel．MTJ2．Parmeko Neptune merlea．Thle If a totsily enclosed＇C＇core comatruction，upritht Ifatotily enclosed core conntruction，apriov Sec． $25-0-25 v$ at 50 mA ．Ideal for mounting on metal chaealm mentioned above．Ex－equipment but unused．77p each．

3 POST OFFICE TYPE 3000 RELAYS By－equipment but fuaranteed perfect－any not sz－equipment but gry
so would be changei．
1．－Ref．REL JI．Han ere of change－over contect and 2000 ohm coll．55p each．
2．－Ref．REL J2． 2 paira that close when relay
energized and $2000+1000$ ohm coil．Price 44 ．
3．energized and $2000+1000$ ohm coil．Price 44 p ．
and 6.4 ．K ohm cols． 44 p ．

I REV．PER MINUTE MOTOR

WITH GEAR－BOX

Mede by the famous Chamberlain a Hoolthem Lid．These could be made to drive clock or
sfmilar．Really robuat rellable unit．Price gop each

110 REV．PER MINUTE MOTOR

WITH GEAR BOX

Good Amertean make．Operates from malns and Will drive simitch mechanlam or other medium device．Bise approx．
diameter drive uhafl．Price e 2.80 ．

12V CAR BLOWETS
L＇rite made by Deleo． 6 bleded 5° dis，tan inalde heavy duty cylinder．These have really popertul heriea duty cylmier．These have reaily poimertul caltable for ventilating or heatiog a car，boat． caravan etc．Price 8.80 plun 40 p poat and inmarance．（Note these are intended for 12 V D．C． but can be run from A．C．up to 30V．The higher the voltage the more the alr flow．）

13 AMP SWITCHED SOCKETS

By G．E．C．Standard type for fosed plaga．Brown bakelite． 17 p esch or 81.50 for 10 ．

SPECIAL SUMMER OFFER

Mallard Unliex at Pre V．A．T．price．You want a good stereo syatem－well here＇s an offer you should maker＇s guarantee． 87 the lot．Control mnit with oame plate and f apan almminjum faced control knobe et Total 10 poot and VAT patd．
z Goodman＇s Epeakers $\mathbf{4 . 0 0}$ ．

V．H．F．AMPLIFIENS

With builit in mains power pack，these are valve omplifers，are intiol cased and co－ax inputs and outputs．Optimam smplification st J．V．fre－ quency．Useful also for re－building into another unit
量 75.

3 CORE MAROON COTTON

COVERED FLEX

 $70 / 36 \times 50 \mathrm{Jd}$ ．coll 82.95 plus 50 p poat． Tits of parts available for most provious EE projecte send gat for list．

ALL PRICES ARE INCLUSIVE OF V.A.T.

FANTASTIC OFFER GARRARD SP25 Mk II

Goldring G800. Teak finish, plinth and tinted cover with mains lead and DIN plug and screened lead. All fully wired.
Please add El 75
£14.75

TURNTABLES

Please add 95p P. \& P, \& Ins BSR MP60
Garrard SP25 Mk III
Garrard SL65B
Garrard Ap76
Garrard Zero 100 sgle. Garrard Zero 100 auto. Goldring G185/P\&C
Goldring GiolP P\&
Goldring GL72
Goldring GL72/P
Goldring GL75
Goldring GL75 Lid
Leak Deltal
Pioneer PLI20
Thorens TDI 25
Thorens TOI 25 AB
Thorens TDI 60 ABs
Wharledale Linton wir

TUNERS

Please add 93p P. A. P. \& Ine
Alpha Higheate FT 150 P. 633.30 Amstrad Multiplex $3000 \quad 624.90$ Leak Delta FM (Cased) 647.95 Leak Delta AM/FM
Metrosound FMS 20 Mk II 655.90
633 Rogers R/brook FET4 (Cha.) 632.95 Rogers R/brook FET4 (Cased)
Rogers R/bourne FET4 636 s0 Sinclair PRO60 Mod.
Sinclair Cased eunar
644.95
614.90 26.15

TUNER/AMPLIFIERS
Pleaze add $\mathrm{El} \cdot 10$ P. \& P. \& Ins.
Aloha F R 3000 $\begin{array}{ll}\text { Alpha } \\ \text { Goodmans Module } 80 \quad & 659.90\end{array}$ Goodmans Mod 80 Com 1107.75 $\begin{array}{lr}\text { Goodmans Mod } 90 & 674.65 \\ \text { Goodmans One-Ten } & 686.65\end{array}$ Leak Delta 75 -Ten
Leak Delta 75
Rogers R/brook cha.
Rotel 150 A
Rotel 150A
Rotel 200A
107.75
662.30
 C49. 40

AMPLIFIERS

Please add 95p P. \& P. \& Ins. $\begin{array}{ll}\text { Amstrad } 8000 \\ \text { Amstrad } & \text { C2000 } \\ \text { E28.15 }\end{array}$
Amstrad Integra 4000
Alpha Highgate FA400
Global $10+10$
Global $20+20$
623.45
639.05
619.75
625.20
 203
$C 32.50$ 655.50 641.15 642.25
654.25 654.25
654
65 654.95
624.00
63.50 630.50
621.45 25.25
6.95 4.95
67.35 7.35
62.20
63.85 6.85
64.50
4.20 6.20
66.15
64.95

SPEAKERS

A1. 65 for P. \& P. (per pair) Amstrad Acoustra 2500 Apollo 138
B\&W DM.S
Celestion Ditton 15
Gelestion Ditton 44
Goodmans D/Maxim
Goodmans Havant
Keletron LS 100
Leak 150
Sinclair
Sinclair 030
Wharíedale Denton 11

SPEAKER UNITS

Whariedale Unit 3 E16.30 $\begin{array}{ll}\text { Wharfedale Unir } & 4 \\ \text { Goodmans Din } 20 \text { Kit } & 629.70 \\ 614.75\end{array}$

PLINTH \&
COVERS

3025 TC B
MP60 \&j-08 P \& P. 71 D For AP76. SL72B, SL95B, et
E4. $51 .+7 I_{p} P . \&$.

CARTRIDGES

Please add ilp P. \& P. \& Ins. Goldring Gas0 Goldring G800 Goldring G800E Shure M3D
Shure M44E Shure M44E
Shure MSSE Type 2
Shure 7 SED
Shure V15
Shure M75E Type 2

627.95
631.95
614.05
641.65
646.05
674.90
639.70
649.70
634.45
618.95
632.75
610.95
630.60
627.45
5
616.30
629.70
614.75

DEADUNTHILEDUSES
Dept. (EE9), 174 Pentonville Road, London N.I. Tel. 01-278 1769 Or 4 High View Parade, Redbridge Lane East, Woodford Avenue Ilford, Essex. Tel. 01-550 1086

=B-FRE-FAK AUDIO BARGAINS - 8 TRACK ONLY £11
 incl. P. \& P. and VAT

The latest B.S.R. 8 Track cartridge Replay Deck. Ready to install in your Hi-Fi Stereo System. This unit comes complete with Hi Gain Stereo Pre.Ampllfier, 4-Programme Indicator Lamps, Track Selector Switch, all. leads and plugs, etc. for 230 volt A.C. mains operation.

5W \& 10W AMPS $5 W_{\text {onur }}$ 1.98 10W only $£ 2.49$

incl. P. \& P. and V.A.T.

Specification:-
Nominal Volts
Into 3 Ohms
Into 8 Ohms
Into 15 Ohms
Typlcal Distortion
Frea. responte at 3dB
Sensitivily (Typlcally)
Full power contumpllon (30 Ohme)
Slze
The 5W matchbox sized amplifier will run satisfactorily from a 12 V car battery. Can also be used for portable voice reinforcement such as public functions where mains supply is not accessible. A small mains unit kit is available.
Two amplifiers are ideal for Stereo. Complete connection details and treble, bass, volume and balance control circuit diagrams are supplied with each unit.
Discounts are available for quantity orders.

Cheapest in the U.K. Built and tested

STEREO DECODER

 incl. P. \& P. and VAT

A ready built unit, teady for connection to the I.F. stages of your existing FM Radio or Tuner. A tell tale light can be connected to show the presence of a Stereo transmission and correct operatlon.
The Unit is in the form of a small printed circuit, and no further alignment is necessary, as all preset adjustments have already been carried out at the factory.
It is recommended that a L.E.D. Is used as the indicating light and a suitable device is available from us at $36 \$ p$. Supplied with all necessary instructions.
I enclose $£$
for
Amps I 10W Ampsif insert quantities and deiete those not applicable.)
Name

Address

BI-PREPAK
Co. Regn No. 820919

Dept. E, 222/224, West Road
Westclifi-on-Sea, Essex SSO 9DF Tel: Southend (0702) 46344

LARGE STOCKS ATTRACTIVE DISCOUNTS DEPENDABLE SERVICE
 ELEGTROVALUE Electronic Component Specialists

2 way Ls－socket 10p；plug 12p． 3 way wer，mocket 10 D ：

TRANSISTOR ACCESSORIES

SWITCHES

 toggle 20 p ：
409 DPDT iogile
89 p ．（These are clirome plated $2 \cdot 5 \mathrm{~A}$ rating） 7201 Sub－minlature DPDT 2 bOV a．c／2A 48． ROTARY SWITCHES Rhatt 48 Wafere，MBB．2PSW，1P1IW：RBM－1P12W，2P6W 3P4W，4P3W，fr²W，each．6p

WAVECHANGE SWITCHES 1PI』W，2P6W，3P4W 4 P3W，each 24 TOGGLE SWITCHES
Chrome plated．2．5A 1011 C \＆PST 10D；9 DPDT 28p． Bub－miniature DPDT 250 V anc． 2 A A 48 p ．

F .13 （20mni）pack of 288 P
 F． $13(26 \mathrm{~mm})$ pack of 238 D
F． $12(33 \mathrm{~mm})$ pack of 240 D
F． $19(20 \mathrm{~mm}$ pack of 288 D F． 19 （20mm）pack of 282 p
F． 18 （26mm）pack of 238 p 17.4 （ 20 mm ）pack of 440

BAXANDALL SPEAKER KIT

Dealgned by P．J．Baxandall．of tone control clrcuit tame，and as demcribed origlnally in Wirelexs World，thlk
brilliantly designed economy speaker is mimple to ansenble and provides genuine hi－fl reproluction Handlen 10 watt R M8． 15 ohma input．Complete klt including pack flat cabinet $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime} £ 14.90$ ，plus 60p part cost of 59RM109 $£ 2.45$ ．Cabinet（to Baxandall denlgn） $\mathbf{2 1 0 . 4 5}$

POTENTIOMETERS

Rotary carbod track，double single pol $1 \mathrm{ln} 100 \Omega$ to 2.2 M

 2D．P20 $\log 4.7 \mathrm{~K} \Omega$ to＇2－2 rueg．12p JP20 Log， $4.7 \mathrm{~K} \Omega$ ．to $2.23 \Omega 12 \mathrm{p}$ ． Dual gang in $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{~m} \Omega$ ． 42p：Dual tog， $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 n!\Omega$ $47 \mathrm{~K}, 1 \mathrm{M} \Omega$ only 42 p ；Dual anti． og， 10 K only．42p．Any of above ypeswith 2A D．P．mainan witcb Onls decades of 10 22 \＆ 47 eval able in range quoted．DUAL CONCENTRIC DP20 in any comblation of P 20 valuen． 60 p Ith 部ltch，78p．
SLIDER
in or log． 10 K to 1 meg in all popular valuen，eath 280. Emcutcheonn－White，grey，black． Control knobs：blk／unite／red／yelf r．／blue／dk．kreg／lt．krey，eseb 8 p ． CARBON SKELETON PRE－SETS Bmall high quallty，PR lla： 100Ω $22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}$ 。 $2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$ ．Vertical or Silder horizontal nounting，Spesch
（Dept．E．E．9） 28 ST．JUDES ROAD．，ENGLEFIELD GREEN，EGHAM，SURREY，TW20 OHB Hours：9－5．30：Sat． 1 p．m．

Tel．：Egham 3603
Telex 264475
ENG．REO．NO．1047768．R．O． 28 ST．JUOES ROAD，ENGLEFIELD GREEN，EGHAM，SURREY．TW80 OET

The largest selection

NEW LOW PRICED TESTED S.C.R.'s PIV 1A 3A BA BA 7A 10A 16A 30A

 $\begin{array}{llllllllll}400 & 0.48 & 0.52 & 0.62 & 0.62 & 0.74 & 0.83 & 1.03 & 1.93\end{array}$ $\begin{array}{lllllllllllll} \\ 600 & 0.89 & 0.63 & 0.75 & 0.75 & 0.85 & 1.07 & 1.38 & 1.93\end{array}$ $\begin{array}{llllllllll}600 & 0.89 & 0.63 & 0.76 & 0.75 & 0.85 & 1.07 & 1.38 & - \\ 800 & 0.70 & 0.77 & 0.88 & 0.88 & 0.99 & 1.32 & 1.65 & 4.40\end{array}$

SIL. RECTS. TESTED

PIV 300mA	750 mA	1 A	1-8A	3 A	10A	30 A
50004	0.06	0.06	$0 \cdot 08$	0. 16	$0 \cdot 23$	0.68
1000.04	0.07	$0 \cdot 06$	0.15	$0 \cdot 18$	0.26	0.83
2000.08	0.10	0.07	0.18	0.22	$0 \cdot 27$	1-10
4000.07	0.15	0.08	$0 \cdot 22$	$0 \cdot 30$	0.41	1-38
6000.08	0.18	0.11	0.28	$0 \cdot 38$	$0 \cdot 50$	2.05
$6000 \cdot 11$	0. 19	$0 \cdot 12$	0.28	$0-41$	0.61	2. 20
10000.12	0.28	0.16	0. 33	0.51	0. 70	2-75
1200	0.37		0.4 ?	$0 \cdot 63$	0.83	

FRR1AC8
BR100 (D32) 410 each
FREE
One 60p Pak of your own cholce
orders valued 44 or over.

BRAMD NEW TEEAS OERM. TRANSISTORS Coded and Guaranteed Palk No.

T1	8	273713

8101216 0c3in
8 203alT
203R2T
20344 B OCA $82 \mathrm{G345B}$ OC45
 $\begin{array}{llll}\text { T9 } & 8 & 2 \cap 399 A & 2 \mathrm{M} 1302 \\ \text { T10 } & \mathrm{B} & 2 \mathrm{G} 417 & \text { AF117 }\end{array}$ A11 B5D eacb pak

D1809 NPN SILICON

 DUAL TRANSISTOR (8imliar to 2 N 2060)$\begin{array}{lll}0.28 & 0.26 & 0.23\end{array}$
D 120 NIXIE DRIVER SRANSISTOR Bultable replacement for BSX 20 veb .
 Equt. ZTX 300 B 1 D each.
Any Qty

GP 100 TO3 METAL

 CASE GERMANIUM 30 W , hfe $=30-170$. Replaces the majorlty of Germanium power tran intors in the OC, AD and NKT range. $\begin{array}{lll}0.48 & 0.44 & 100+ \\ 0.40\end{array}$
ap 300 TOS METAL CASE SILICON
Vebo $=100 \mathrm{~V} . \quad$ पceo $=60 \mathrm{~V}$
l.C. $=15$ amps. Plot $=$
$115 \mathrm{~W}^{\prime}$. hfe $=20.1001 \mathrm{~T}$. $=$
1 MHz . Sultable IMAz. 8ultable replace-
ment for 2 N 3055, ment for 2 N
BDY 11 or BDY 20 . $\begin{array}{lll}1 & 25 & 100+ \\ 0.55 & 0.53 & 0.51\end{array}$
pull pange of ZENER DIODES RAMGE VOLTAGE RANGE
$2-33 V .400 \mathrm{mV}$ (DO.7 Case) 15 p ea. 11 W (Top Hatud) 33 p ea

In amo POTTED
BRIDGE RECTIFIER BRIDGE RECTIFIE
on heat sink. 100PIV.99p each

2 Amp. BRIDGE RECTS.
 400 v RMA size 16 mm

TT 46 TINIJUNCTION TRANSISTORS
Direct replacement for
T18 4.3rand REN 3000 aleo flectrleally lent to 2 N 24. 4
$\begin{array}{lll}0.30 & 0.28 & 0.22\end{array}$

CADMIUM CELLS

ORP12 48 D ORPGO, ORP6 44 p each

GFMERAL PURPOSE NPN SITICON SWITCHITG TRANS. TO-18 97/2s/08A. All BATHdeticen no omen or short crenle. AIAO AVAIT,
ART, in PNP 2N2906. BCY 70 . When oriterlng pleane ntate
preference NPN or TNP a_{11} IVM(Min.) 1001 1-65 Sinh-Min. $\quad 000$ ह. 80 Fril Tented lamo Ifal Organ Bullera

R 2400 TO. NPK SILICON HIGH VOLTAGE 100V. I.C. $=6$ Vempa Ptat $=30 \mathrm{WW}$. hfe $=\mathbf{t y p} .20$
$\mathrm{~T}=5 \mathrm{MHz}$. $\mathbf{I T}=5 \mathrm{MHz}_{1}$.

0.35	0.50	0.44

2 N3055

115 WATT SIL POWER NPN

KING OF THE PAKS Unequalled Value and Quality SIJPER PAKS NEW BI-PAK UNTESTED

Money back rofond it not satheled

		ral Purpose Germanlum D	${ }_{0.55}^{50}$
	60	Hixed Germanium Transintors AF/RF	
U 3	75	Germantum Gold Bonded 8ub. Wh luk	
U 4	40	mm Trannjators llke OC81. ACl28	
U 8	60	200 mA 8 sub -3tin. Bilicon	
U 6	30	PN	0.55
U 7	16	ectifler	
118	50	8il. Pianar Dioden DO-7 Glane 250 mA Alke OA200/202	
		Mlzed Voltagen. I Watt Zener Dloriea	
		AY50 charge stora	
U11		FP811. Plan	
2		Bllicon Reclltera Epory 800 mA up to 800 PIV	
3	30	P'NP-NPN Bll. Tranalators 0C200 \& 28104	
4		Mized Eillinon and Germanium Dioden	
		NPN Bll. Planar Trane. TO-	
U16		3 Amp silicon Rectifters Btud Type up to 1000PIV	
U17		Giermanlum PNP AF Tranalatorn TO-5 Jjke ACy 17-22	
		A Amp Sllicon Rectifers BYZ.13 Trpe up to 600 FIV	
19		Bilicon NPN Tranamators like BC108	
U20		15 Amp Sillcon Rectlfers Top Hit up 101000 PIV	
1		AF. Germmilum Allos Transintors 201300 Serles \& OC71	
		MAnT* like MHz Serles PNT Trensietors	
		Germanlum 1 Amp Rectiflern GSM Serlen up to 300 PIV	
		300 MHz NPN (iltcon Tranmiators $2 \mathrm{~S} 70 \mathrm{~A}, \mathrm{B8} \mathrm{~V}^{\circ} 27$	
	30	Past Ewitching gitleon Dioden like IN914 Micro-3iln.	55
7		NPN Germanlum AF Tranilatorn TO-1 flke AC127	0.55
		1 A moselen TO-5 cmn, vo to 600 PlV CRE1/26.60n	0
		Plantle 8illcon Planar Trans. NPN 2N292n	
1		Sllicon Planer Plantic NTN Trann. Jonw Nolee Amp	
US2		Zener Diorten 400 mW W DO. 7 came $3-18$ rolin inlued	
U33		Plantic Cane 1 Amp Slicon Rectifera 1N 4000 Seriea	5
U34		8ilicon PNP Alloy Trann. TO-6 RCY26 $28302 / 4$	
U35		Slilicon Planar Transletors PNP TO-18 2N2006	
¢		Allicon Planar NPN Tranalatorn TO-6 BPY80/61/62	
U37		8ilicon Alloy Transistors 80-2 PNP OC200, 28322	
1138		Fant Ewltching gilicon Trank. NPN 400 MHz	0.88
U39		RF. Germ. PNP Tranmiators $2 \mathrm{~N} 1303 / 6$ T0-5	S
U40		Duai Tranmintorn 6 lend TO-5 2 N 2060	0.8
U +1		RFFGermantun Tranaint ore TO-1, OC45, NKT72	0.55
U42		VIf Gernanium PNP Tranoletors TO-1 NKT667, Arll7	0.85
U43		Bil. Trann. Plantic TO-18 A.F. BC113/114	0.55
U44		811. Trann. Plastle TO-5 BC115/116	0.85
U45		A 8CR. TO86 up to 600PIV	1.20
Code No'n, mentsoned abore are given an a guide to the type of device in the pak. The devices themelves are normally unmarked.			

U23 30 MAnT" llke MHz Serles PNT Trensletors

U27 12 NPN Germinlum AF Transintorn TO-1 like AC127

$$
\text { U31 } 20 \text { Sulicon Planar Plastic NPN Trann. Jonw Nolee Amp 2N3707 }
$$

$$
\text { Us } 25 \text { Zener Dionten } 400 \mathrm{~mW} \text { WO. } 9 \text { came } 3-18 \text { rolin inlied }
$$

U33 15 Plantic Cane 1 Amp Blicon Rectifera 1N 000 Series

-

QUALITY TESTED SEMICONDUCTOR
Pak M
Q1

90 Red spot tranalatore PNE
4216 White npot R. F. Ifanglatora PN 43 OC 77 type transhators 6 OC 77 type tranatators atched tranalstors OC44/45/81/8in 0.55
$0 C 75$ B OC 72 transintor
AC 128 trannintora PNP high gala AC 126 trathistors PNP
OC 81 type transintors
AC $127 / 128$ Complementary palr 3 AF 116 type translatorn
3 AF 117 type transintors
3 OC $171 \mathrm{H.F}$. type transintor

$$
\begin{aligned}
& \text { OC } 171 \text { Hiv. type transintors } \\
& \text { 2N2926 sil. Epory tran } \\
& \text { mixed colours }
\end{aligned}
$$Q23 10 OA 202 gillcon dlocles sub- coded Q23 10 OA 202 gillicon dlodes sub-min.0.55 500 MHI (code P397) NPN tranalntors 4×2 N3703. 2N3702

ELECTRONIC SLIDE-RULE

$$
2 \text { GETB80 }
$$

$$
\begin{aligned}
& \text { GET880 low nolae Germanlum } \\
& \text { transistorn }
\end{aligned}
$$

tranaistornQ19 3 MADT'S $2 \times$ MAT 101 \& $1 \times$ MATQ20 OC 4t Germanum irahalntors A.F.
Q21 4 AC 127 NP (iermaniumQ21 20 AC 127 NPS (iermanium tramalatora Q25 15 IN914 8llicon dloden 78 Piv $78 \mathrm{~mA}{ }^{\circ}$ Q26 0 0a9s Germanlum diodes aub-min Q27 2 10A PIV sllicon rectitiers 18425 R . $\begin{array}{llll}282 & 2 & \text { sillcon power rectillern BYZ } 13 & \ldots \\ 0.65 \\ 029 & 0.65\end{array}$ Q29 4 Allicon tranaistora $2 \times 2 \mathrm{~N} 696$, Q30 7 Allicon bifteh translators 2N708 0.85 Q31 6 alllcon auftch transiators 2 N 子o Q32 3 NPN Billent transistors 2×2 Nili

Q33 $\times 2 \mathrm{~N} 1132$ Q34 7 8illcon NPN transialors $2 \mathbb{N} 2369$

Q35 3 sllicon PNP TO.B \& 2 N2904 \& 0.55

 0373 2N3053 NPN Sillicon tranaletors $\quad 0.65$

The NK Blide Rule, desleged to simplify Elec tronic calculations features the following scales:Conversion of Prequency and Wavelength. Reactance and Belf Inductance. Area of Cliscles. Volume of Cylladers. Resietsnce of Condurtors. Weight of Condurtors. Decibel Culculations. Anple Functions. Natural Loge and 'e' Functions. Multiplication and Divislon. Squaring, Cubling and Bquare Roofs. Convepalon of k w and itp. A must for every electronle engloeer and enthuil. ant. Size: $22 \mathrm{~cm} \times$ tem. Complete with case and
inatruction.
Price each: $23 \cdot 60$

SILICOR PHOTO TRANSISTOR. TO 18 Lens eni NPN Bim. to $\operatorname{MRAND} \times 25$ And P2l arailable. Fulty guaranteed. Otr. $1-2428.99100 \mathrm{up}$
Price each 49p 4ip 38 p

F.E.T.'S

2N 3819 2 N 3820 2 N 3820 2 N 3821 2 N 3821 2 N 3823

 81p 2NE4B8INTEGRATED CIRCUIT PAKS
Manufacturera "Fall Outa" which Include Frunctional and Part-Functlonal Tnite. Thene are claned an 'out-of-gpec' from the maker's very rigid apecifloations, but are Idea! for learnina about I.C's and experimiental work

Palifo. Contenty Prics $\mathrm{UICOO}=12 \times 7400 \quad 0.65$ $\begin{array}{ll}\text { UIC01 }=12 \times 7401 & 0.65 \\ \text { U1C02 }=12 \times 7402 & 0.65\end{array}$ $\begin{array}{ll}U 1 C 02=12 \times 7402 & 0.65 \\ U 1 C 03=12 \times 7403 & 0.85\end{array}$ UICO4 $=12 \times 7404$ UICOS $=12 \times 7404$ | UlCOB | 8×7408 |
| :--- | :--- |
| UICO7 | 0.85 |
| U | 0.85 | $\begin{array}{ll}\text { UIC07 }=8 \times 7407 & 0.85 \\ \text { UIC10 }=12 \times 7410 & 0.85\end{array}$ $\begin{array}{ll}\text { UIC13 } & 8 \times 7413 \\ \text { UIC20 } & 0.85 \\ & 0.8520 \\ 0.85\end{array}$ UIC20 $=12 \times 7420$ $\mathrm{UIC} 30=12 \times 7430$

$\mathrm{UIC} 40=12 \times 7440$ U1C4 $=5 \times 7441$ UIC42 $=5 \times 744$

 | $\mathrm{UIC4B}$ | $=5 \times 7445$ | 0.55 |
| :--- | :--- | :--- | U1C89 $5 \times 7483-55$

BI-PAKS NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT COMPETITIVE PRICESI8 BALDOCK STREET (AIO), WARE, HERTS.
TEL. (STD 0920) 61593.
OPEN MON.-SAT. 9.15 a.m. to 6 p.m., FRIDAY UNTIL 8 p.m
Please add 10p postage and packing per order. Cosh with order please. Orders to BJ-PAK SEMICONDUCTORS, P.O. BOX 6, WARE, HERTS.

- the lowest prices!

74 Series T.T.L. I.C's

BI-PAK gTILL LOWEST IN PRICE. PULL BPECIFICATION GUARANTEED. ALL FAMOUS MANUPACTURERS $\begin{array}{llllll}\text { AN7400 } & 0^{1} .17 & 0.18 & 100+1 & 0.18 \text { SN7450 } & 0^{1} \\ 0.17 & 0.16\end{array}$ $\begin{array}{llllll}\text { SN7401 } & 0.17 & 0.16 & 0.138 N 7450 & 0.17 & 0.16\end{array}$ BN7404 BN7405
SN7406 BN7408
GN7407 BN7408
BN7409 BN7410 QN741 BN74 SN74 BN74
BNT4 QNT4t
QN74? BN7425
BN742 BN742 SN742 BN7430 $\begin{array}{ll}\text { BN77322 } & 0.50 \\ \text { GN7733 } & 0.80\end{array}$ BN743 BN7438 BN744 8 N 744 8N7442 0.74 BN744 BN7444 BN7445 21. 8N7446 \&1 07 BN7447
GN7448
81.10

 $\begin{array}{llllll}17 & 0.16 & 0.138 N 7460 & 0.17 & 0.16 & 0.1 \\ .17 & 0.16 & 0.13 & \text { RN7470 } & 0.32 & 0.29 \\ 39 & 0.34 & 0.31 & 0.2 \\ 39 & 0.34 & 0.31 & \text { SN7473 } & 0.32 & 0.28 \\ 0.41 & 0.3 & 0.3\end{array}$ $\begin{array}{lllllll}39 & 0.34 & 0.31 & \text { HN7473 } & 0.41 & 0.39 & 0.3 \\ 0.18 & 0.18 & \text { RN7474 } & 0.41 & 0.39 & 0.3 \\ 0.18 & 0.18\end{array}$ $\begin{array}{lll}0 & 0.18 & \\ 0 & 0.19 & 0 \\ 0.18 & 0\end{array}$ | 16 | 0 |
| :--- | :--- |
| 0.1 | |
| 0. | | 0.18

0.18
0.28
0.31 $\begin{array}{lll}.32 & 0.29 & 0.2 \\ .88 & 0.44 & 0.4 \\ .8 & 0.44 & 0.4\end{array}$ $\begin{array}{lll}7 & 0.18 & 0 \\ 5 & 0.53 & 0\end{array}$

ROCK BOTTOM PRICES LOGIC DTL 930 Series I.C's

LINEAR I.C's-FULL SPEC.

Type No. $\quad 1-24 \quad \begin{gathered}\text { Price } \\ 25-94 \\ 100 \mathrm{up}\end{gathered}$ BP 201C-8L201C 70p $590 \quad 500$ $\begin{array}{llll}\text { BP701C-8L701C } & 70 \text { D } & 35 \mathrm{D} & 50 \mathrm{D}\end{array}$ BP 702C-8L702C 70D 65p 800 $\begin{array}{llll}\mathrm{BP} 702-72702 & 50 \mathrm{D} & 30 \mathrm{D} & 44 \mathrm{D}\end{array}$ $\begin{array}{llll}\text { BP709-72709 } & \text { 40p } & 38 \mathrm{p} & 33 \mathrm{D}\end{array}$ $\begin{array}{llll}\text { BP 709P- }-1709 C & 40 \mathrm{D} & 38 \mathrm{p} & 33 \mathrm{D} \\ \text { BP 710-72710 }\end{array}$ $\begin{array}{llll}\text { BP 710-72710 } & 50 \mathrm{p} & 48 \mathrm{p} & 44 \mathrm{p} \\ \text { BP 711- } 44711 & 50 \mathrm{p} & 48 \mathrm{p} & 440\end{array}$ TA703C 263
TAA 350 E1.87p 83p 77 p B.G.8. EA1000 22.90D

No.
BP930 BP932 BP933
BP935 BP935
BP938 BP938
BP944 $\mathrm{BP}^{4} 44$
$\mathrm{BP945}$ BP945
BP948 BP948
BP948 BP948
BP951 BP9812
BP9093 BP962
BP9093 BP9094 BP9097
BP9099 BP9099
 quantity price. Larger quantiky price
on application. (DTL 930 Beries onlf). on applicatlon. (DTL 930 Eeries obls).

\section*{NUMERICAL INDICATOR TUBES

 | MODEL | Cder | OR116 | 3018 F mintion |
| :---: | :---: | :---: | :---: |
| Anode voltage (Vdc) | 170 min | 175 min | 5 |
| Cathode Current (mA) | $2 \cdot 3$ | 14 | 8 |
| Numerical Height (mm) | 16 | 13 | 9 |
| Tube Helsht (mm) | 47 | 32 | 22 |
| Tube Diameter (mm) | 19 | 13 | 12 wide |
| I.C. Driver Rec. | ${ }_{141}$ | $\begin{gathered} \text { BP41 or } \\ 141 \end{gathered}$ | BP47 |
| PRICE EACH | 21.87 | 41.70 | 21.60 |

RTL MICROLOGIC CLRCUITS
Price esch
Eposy TO-5 case 1-24 25-99 100 up uL900 Buffer 38D 36p 290 $\underset{\text { gate }}{\text { ul914 Dual21/D 38p } 38 \mathrm{p}} 29 \mathrm{p}$ $\begin{array}{cccc}\text { Gate } & \text { 38p } & \text { 36p } & \text { 29p } \\ \text { UL023J-K fip-top } & 55 \mathrm{~g} & \text { 51p } & \text { 49p }\end{array}$ Date and Circuits Booklet for IC's Price 8p.
DUAL-IN-LINE SOCKETS. 14 \& 16 Lead Sockets for nse पltb PROFESSIONAL ANEW LOW COST PROF. TYPE No. 1-24 25-99 100up. $\begin{array}{lllll}\text { T80 } 14 \text { pintype } & 330 & 300 & 28 \mathrm{D} \\ \text { T80 } 16 \text {, } & 39 \mathrm{D} & 350 & 33 \mathrm{p}\end{array}$
LOW COST No.
BPS 14
BPS 16
$\begin{array}{lll}170 & 130 & 180 \\ 180 & 130 & 180\end{array}$

BI-PAK DO IT AGAIN! 50W pk 25w (RMS)

0.1% DISTORTION

 HI-FI AUDIO AMPLIFIER
THE AL50

\star Frequency Response 15 Hz to $100,000-1 \mathrm{~dB}$.

* Load-3, 4, 8 or 16 ohms.

ONLY
£3.58p oach
\star Distortion-better than 1% at 1 KHz .

* Signal to noise ratio 80 dB .
* Supply voltage 10-35 Volts.
* Overall size 63 mm $105 \mathrm{~mm} \times 13 \mathrm{~mm}$.

Tailor made to the mont atringent epecifications uaing top quality componeate and Incorporatiag the latest solid mitate circuitry and ALSO was concelved to du the need for all your A.F. mplifcation needs.
FULLY BUILT-TEATED-OUARANTEED.

 STABILISED POWER MODULE SPM80

AP80 is especially designed to power 2 of the ALs0 Amplliters, up to is watt (r.m.s.) per chanael simul. taneously. This module emborifes the latest component and circuit techalquen incorporating complete short former MT80, the unit will provide outputs of up to 1.5 amps ht 35 voits. Size: $33 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$. These onits enable zou to build Audios sytems of the highe quality at a blitherto unobtalnable prlce. Also Ideal for many other appiications including:- Diaco 8ratemas, Public Addrena,
ntercom Enalts, etc. Handbook available, 10D PRICE £3.25

TRANSFORMER BMT80 £2. 15 p. \& p. 28p.

STEREO PRE-AMPLIFIER TYPE PA100

Bullt to apecifcation and NOT a price, and yet still the greatest value on the market, the PA100 stereo pre-amplifer has been concelved from the latest clrcuit techniques. no leas than eight blicon planar transiatora, teo of thene are apecialiy pelected low nolee NPN devices for use in the input stagen.
Three sritched atereo inputs, and rumble and scratch altere are features of the PA100. which siso has gTEREO/MONO swltch, volume, balance and continuously variable bess and treble coatrols.

SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMT80 \& 1 PA100 ONLY £25•30 FREE p. \& p.

Compatible device M3' 7 segment LED display

Also from Monsanto this display is ideal for use with D.V.M. chip -0.125" characters
Displays all numbers plus nine letters Full specification included Application notes for this unit are included in the specification on the D.V.M. chip - they are ava! able spparately, however, price: 25 p.

- Automatic Polarity Detection
- Overrange Indication
- Chopper Output Provided
- Up to 50 readings per second
- 16 lead DIL package
- Full G.I. Microelectronics warranty
a superb 7 segment LED display for just
$£ 2.70$ $\stackrel{+}{\text { VAT }}$

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. Iicence
Ifree!
Brochure, withour obligation 10

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL P.O. Box 156, JERSEY

Announcing our improved range of constructor modules

FOR DOMESTIC \& COMMERCIAL USE
New Verslons using 3A 'Plastic Power' Driver Transistors Now Avaliable To meet demand, we have
Included a more powerful module in our wellestablished and proven range. These power range. Thers are carefully assembled, tested and guaranteed. They offer superb value for rellability

SA35

A NEW ADDITION IS THE SA50 at £5.65

Carr. paid. A rugged, well built unit, capable of 50 watts R.M.S. out, with all the advantages of Saxon Amplifier design and quality. Ready now.

SA100
 real olutton lor work Reliable, tough and compacl. 11 transistors, 6 diodes. Carr. pald BRIEF SPEC. FOR ALL THREE MODULES All modules incorporate OPEN AND SHORT CIRCUIT PRO. TECTION, plus proot against over-disslpation and taulty inductive loads in the SA. 100.
Freq. response $\quad \mathbf{1 5 - 4 0 , 0 0 0 ~ M z} \pm 1 d \mathrm{~B}$
Distortion $\quad 0 \cdot 2 \%$ at 1 kHz
Loads $\quad 41016 \mathrm{ohms}$
15 mA
Qulescent current 15 mA
Nolter than -75 dB
Supply voltage
SA35 $25-45$ volts
Supply voltage \quad SA35 $25-45$ volts
Size
4 " $^{*} \times 4^{\circ} \times 1^{\prime \prime}($ (SA 100$)$
$4^{\circ} \times 3^{\circ} \times 1^{\circ}($ SA $35 / S A 50)$
Circults, connecting Instruction and application data are supplied
Circults, connecting in
free with all modules.

POWER SUPPLIES FOR

THE SA25/35 \& SA100 AUDIO MODULES
PU45 Unstablized supply for 2 SA25/35 C4. 90
PS45 Stabllized module lor 2 SA25's or two SA35's
ransformer for above, heavy duty 53.50 carr. free
Transformer for unstablilzed supply complete with
rectifier diodes mounted $£ 3.50$ carr. 20p
PS70 Stabllized supdy module for one or two $\$ 4100$ s
MT70 Transtormer for PS70 £4.90 carr. 40p

ALL MODULES ARE BUILT ON GLASS FIBRE P.C. BOARD AND SUPPLIED FULLY TESTED

TWO NEW PA/MIXER CONTROL UNITS

Using grouped pairs of inputs and outputs (high Z and low Z inputs) with individual bass, treble and volume controls on each pair, plus master control. These low-noise units will feed all makes of amplifiers, making them ideal for clubs, discos etc. Standard jack sockets. Compact design. In strong metal cases. All units guaranteed for 3 years.

- M. 4 H

4 high $Z, 4$ low Z inputs, 4 sets of controls. £18.50 v.at.

- M. 6 HL Case $18^{\circ} \times 8^{\circ} \times 2 t^{\circ}$

12 Inputs (6 high Z. 6 low Z). Carr. pd.

$£ 27 \cdot 50$ vait

- Chanmel section modules,
for building your own mixer. Gain-16 x (24dB).
Tone controls-18dB swing.

SAXON CONTROL UNITS
Mono (as shown)

catr $20.86 \cdot 50$
 £15.80

Two decks, and tull headphone monitoring. The upit is mairs operated and measures $17 \mathrm{i}^{*} \times 3 \times 4$ deep and lefinlshed with a smart white on black iacia. The contrcle are: Lett/Right deck iader, volume, bass. reble. Headphone Selector and volume. Microphona volume, bass, treble, malns on/oft COMPARABLE TO UNITS AT OVER TWICE THE PRICE. (N.B. - Gtereo only hae mic input.)

160 watt version $£ 27.90$ (1) (Carr $_{50 \mathrm{p} \text {) }}$ (4) 4

120 WATT HEAVY DUTY MODULE

3 CHANNEL UNIT
Includes bass. middle and treble as well as master controle 2 amplifier sockets elliminale need for

COMPLETE AMPLIFIERS

CSE 100. £34-90 carr. free
This veratile unll is now avallable In a blach vynide case and so represente even oetter value than over dellvering speech and mustc powert of up to 100 watts RMS and conisnuous signal oufputs of 70 watts. Two individually controlled inputs with wide range bass and treble contruls.

SOUND AND LIGHT UNITS

Our populap 3 channel model handles up to 3 KW (3000 watts) of Nghting and incorporates versatile sound control arrangement to enable professional standards to be achieved. Both units are excellent exsmples of Saxon quallity and value.

SAXON 100 £48. 50 carr. tree

LOUDSPEAKERS British made bargains !!

SINGLE CHANNEL ONTH Operates from 5 to 100 watt amplifiers. Supplied
for bass note opeiation. is easily adapted for reole or mid-range at a cost ol about 5 p .
carr. od $28=90$

With an RMS output of 120 watts speech and muislc. 100 watt continuous power. lour individually controlled FET Input stages and wide range bass itselt as a unit offering quallyy and rellabillity at low cost.

000 Walt 3 colour Ligh
Boxes Smart Rexine finish ais carr tree.
12" 25 watt $8 / 15$ ohme $\mathbf{6 5} \cdot \mathbf{5 5}$ carr. 30 p. 15" 50 watt $8 / 15$ ohm $£ 14 \cdot 50$ carr, 50 p.
\qquad
A.K.G. MICROPHONES

Di1 DHL IDEAL DISCO MIKE ONLY \&9-45 (rrp E E19-00)
Prices quoted do NOT include V.A.T. 10% must be added on to total value of order for V.A.T.
S.A.E. for special price list.

Orders and personal shoppers to:
SAXON ENTERTAFNMENTS LTD., 327 Whitehorse Rd., W. Croydon, Surrey. CRO 2HS.

Telephone 0r:684 6385
Hours 9.30 a.m. -5.30 p.m.
TRADE \& EXPORT ENQUIR̂IES INVITED

> TERMS OF BUSINESS
> Cash with order (C.W.O.) For C.O.D. please add 35p
> exira. cash by regd. lecter. please

The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit-£29.95! ${ }_{\text {mex }}$

The Cambridge - new from Sinclair
The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further £14!
Truly pocket-sized
With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime} \times \frac{11^{\prime \prime}}{16}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16 batteries which give weeks of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

The cost ? Just f29.95!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer - you can't get it anywhere else. Ready assembled, it costs $£ 43.95$ - so you're saving $£ 14$! Of course we'll be happy to supply you with one ready. assembled if you prefer - it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge

* Uniquely handy package. $4 \frac{1}{2}$ " $\times 2$ " $\times \frac{11}{16}$ ", weight $3 \frac{1}{2}$ oz. * Standard keyboard. All you need forcomplex calculations.
* Clear-last-entry feature.
*Fully-floating decimal point.
*Algebraic logic.
*Four operators ($+,-, x, \div$), with constant on all four.
* Constant acts as last entry in a calculation.
*Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than £ $\mathbf{3 0}$.
* Calculates to 8
significant digits, with exponent range from 10^{-20} to 10^{79}.
*Clear, bright 8 -digit display.
*Operates for weeks on four U16 batteries. (Replacement set costs about 15p.)

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping. conversions, percentages, accounting. tallying, and so on - then you'll get more than your money's worth.

But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like :

Sinclair Radionics Ltd, London Road,
Stives, Huntingdonshire
Reg. no: 699483 England
VAT Reg. no. 213817088

Why only Sinclair can make you this offer
The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the nakers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price inkit form: $\mathbf{£ 2 7 . 2 3 + £ 2 . 7 2 ~ V A T . ~ (T o t a l : ~} \mathbf{£ 2 9 . 9 5)}$
Price fully built : £39.95 + £4.00VAT. (Total: £43.95)

INTEGRATED CIRCUIFS

There is a remarkable and noteworthy contradiction in present day electronics. While circuit designs are tending to increase in complexity and in variety of functions offered, in terms of actual hardware electronic equipments are tending to become less complicated and consequently simpler to build.

The explanation to this apparent paradox is to be found in the integrated circuit. This is a small component hardly larger than a conventional transistor, but containing a complete circuit arrangement incorporating a number of semiconductor devices as well as other circuit elements. As constructors, we don't really have to concern ourselves with the internal details of these remarkable devices. It is sufficient for many purposes to consider the integrated circuit (i.c.) as just another component, or as a "black box".

Integrated circuits have been around for many years, but Everyday Electronics has so far concentrated upon discrete semiconductor devices. This makes sense, because it is our belief that a true understanding of electronics can only stem from an awareness of the discrete transistor and familiarity with its function as gained through practical constructional and experimental work.

But to ensure that our readers reap all possible advantages from modern developments, we shall make increasing use of integrated circuits in future designs. For a start, this month we include two quite dissimilar projects that

Our October issue will be published on Friday, September 21
are based upon different examples of these miniature marvels of current technology.

DON'T MISS THE BUS!

Great news for all those wishing to learn the basics of electronics from scratch. Here is their BIG OPPORTUNITY. An entirely new series Teach-In '74 will be launched next month in Everyday Electionics. This series has been carefully and expertly planned to meet the need of the ordinary person, man or woman, boy or girl, who wishes to acquire an understanding of electronic circuit principles without delving deeply into mathematics.

No previous experience or knowledge is required! Easy to follow text will be accompanied by easy to perform practical exercises requiring the very minimum of tools and components.

Regrettably it is our duty once again to advise readers that the supply of back numbers of Everyday Electronics is not possible. So all budding enthusiasts please do take heed of this advance notice and friendly word of advice. Opportunities for the layman to learn the fundamentals in such an enjoyable and painless way in his own home as we have planned are all too rare, and of necessity come at infrequent intervals.

EDITOR F. E. Bennett - ASSISTANT EDITOR M. Kenward - B. W. Terrell B.Sc.

ART EDITOR J. D. Pountney - P. A. Loates ADVERTISEMENT MANAGER D. W. B. Tilleard

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. 2 NO. 9

CONSTRUCTIONAL PROJECTS

PERSONAL RECEIVER Medium wave receiver to suit the pocket by F. R. Heath 464
AQUARIUM THERMOSTAT For accurate temperature control of liquids by Mike Kenward 474
TRAIN CONTROLLER For electric model trains, feoturing outomotic control by A. J. Dunn 483
GENERAL FEATURES
EDITORIAL 462
RADAR FOR SMALL BOATS by G. A. G. Erooke 468
WHAT DO YOU KNOW? Inductors 472
please take note 477
SEMICONDUCTORS Four-The Transistor by J. B. Dance 478
RUMINATIONS by Sensor 488
DEMO CIRCUITS 10 The Unijunction Oscillator by Mike Haghes 489
SHOP TALK Component buying problems solved by Mike Kenward 493
HELP! Answers to some of your problems 494
DOWN TO EARTH The fierce volume control by George Hylton 497
READERS LETTERS Your news and views 498
BRIGHT IDEAS Reader's constructional hints 498 Address to Everyday Electronics, Subscription Department, Carlton House, Great Queen Street, London, WC2E 9PR. Binders for volumes 1 and 2 (state which) and indexes for volume 1 available for $97 p$ and $11 p$ respectively, including postage, from Binding Department, at the above address.

We are unable to supply back copies of Everyday Electronics or reprints of articles and cannot undertake to answer readers' letters requesting designs, modlfications or information on commercial equipment or subjects not published by us. Ans.a.e.should be enclosed forapersonal reply. Letters concerning published articles should be addressed to: The Editor, those concerning advertisements to: The Advertisement Manager, both at the address shown opposite.

Everyday Electronics, September 1973

Although it is very difficult to define what fascinates so many people about a miniature radio receiver, the fact remains that a great many people enjoy "messing about" with radio on this scale, and derive many hours of enjoyment (and learn a great deal of physics) from constructing these devices.

CRYSTAL SETS

The crystal set is the most basic receiver possible, Fig. 1 shows a typical simple crystal set using a tuned circuit, and a diode to detect the modulation-the audio part of the waveform which drives the earpiece. A long aerial wire and an earth are essential if any volume is to be expected, and unless very high impedance headphones are used the programmes will all merge into one. This is because a low impedance across the tuned circuit will damp it and increase the bandwidth or range of frequencies received.

If one perseveres with the crystal set shown, one will notice that it possesses one or two fine

Fig. 1. A typical, simple crystal set.

qualities. These are:

1. The sound quality is very good (if a good ear piece is used).
2. The background noise is very low.

These are the basic requirements for a quality radio receiver. Unfortunately, the receiver has some bad qualities too. These are:

1. The volume is very low.
2. The large aerial necessary is somewhat cumbersome for a portable receiver.

THE I.C.

Now, if we could add between the tuned circuit and the earpiece a circuit which possessed r.f. gain, low distortion and high input impedance, we would maintain the good qualities above and eliminate the bad qualities.

Using modern semiconductor processes it is now possible to achieve just this and the Ferranti ZN414 offers us complete radio tuner in a 3 pin "transistor" package. If the circuit of Fig. 1 is re-drawn using ZN414 we have an earpiece radio which has real advantages over existing types (Fig. 2). The very high input resistance (greater than 4 megohms) of the ZN414 ensures that the tuned circuit is virtually undamped by the device. Thus very high selectivity, low bandwidth operation is possible. The output of the ZN414 can now drive a lower impedance earphone.

If this circuit is built remember that although layout is not too important leads should be kept as short as possible. When the unit is operating the effects of varying Ll (unwinding turns) and Cl can be noted. Also, if one deliberately damps the tuned circuit by adding a resistor (say 10

Fig. 2. The basic set using the ZN414.
kilohms) across it, it can be shown that the selectivity is reduced.

It does not need much imagination to realise that the radio shown in Fig. 2 could fit into a very small case. In practise, the size is limited by the ferrite rod which should not be reduced below about one inch in length.

A diagram of the connections to the ZN414 is shown in Fig. 2. Fig. 3 shows the internal circuitry of the ZN414 and is included for reference.

The basic receiver shown in Fig. 2, whilst capable of good results, lacks certain refinements which are desirable if optimum performance is to be achieved under all conditions. For this reason a further receiver circuit has been developed. This can have the refinement of volume control (or preset) volume control and a sensitivity control if wanted, and can be used to drive an amplifier (of input impedance greater than 20 kilohms) if necessary.

The circuit is shown in Fig. 4, the layout for printed circuit board in Fig. 5 and the wiring for the p.c. board in Fig. 6. One advantage of the crystal earpiece used is that two can be "paralleled" up to make a headphone. It is a lot less tiring to listen with both ears than one, and crystal earpieces are much cheaper than other

Components

```
Resistors
    R1 100k\Omega
    R2 3.3kS
    R3 250\Omega
    R4 560\Omega
    R5 100\Omega
    All }
```

Capacitors
C1 100 pF to 200 pF miniature variable
C2 $0.01 \mu \mathrm{~F}$ miniature ceramic
C3 0.1 or $0 \cdot 22 \mu \mathrm{~F}$ miniature ceramic
C4 $0.05 \mu \mathrm{~F}$ miniature ceramic
Semiconductors
IC1 ZN414 integrated circuit
TR1 ZTX300 silicon npn
$\left.\begin{array}{l}\text { D1 ZS120 } \\ \text { D2 ZS120 }\end{array}\right\}$ or any small signal silicon diode
Miscellaneous
L1 Ferrite rod $2 \frac{1}{2} \times \frac{1}{\ddagger}$ inch diameter and
length of $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper
wire
TL1 Crystal earpiece
B1 3-6V battery (comprised of four RM
675's)
Jack socket to suit TL1 incorporating an
on/of switch (S1), 6BA fixings and stand-off
pillars, plastic case approx. $3 \times 1 \frac{3}{4} \times \frac{3}{4}$ inches.
types. The quality of reproduction from two crystal earpieces using this circuit is astonishingly good.

The circuit now includes certain desirable features such as much higher volume (with optional control) and sensitivity control if required. This latter feature is vital for an experimenter, as it enables a much wider range of ferrite rod sizes and/or earphones to be used without making the receiver difficult to operate.

The prototype receiver used miniature "button" batteries which, although expensive, give extensive life and enable a fairly small receiver to be constructed. The voltage is not critical, the higher ranges will give higher volume without distortion.

Fig. 4 (left). The complete circuit diagram of the Personal Receiver.

Fig. 5 (below). The printed circuit layout for the receiver shown full size.

A magnetic earpiece may be used in place of the crystal one, by substituting it for the 560 ohm resistor R 4 soldered between the collector of TR1 and the positive supply rail; its impedance should be similar (about 500s).

If during experimentation one finds earpiece listening tiring (continual removal and replacement of an earphone can be very irritating) the earphone can be replaced by a connecting lead to an amplifier, which has a high input impedance. Most transistor amplifiers are suitable, and no damage will be incurred if the circuit in Fig. " ${ }^{\prime \prime}$ is used.

CASE CONSTRUCTION

The constructional details given are not for a micro-miniature set. They are intended for an easily built receiver. The set is small and yet avoids very "fiddly" working. The complete unit is housed in a transparent Perspex box size 3 inches $x 1^{3_{4}}$ inches $x^{3_{4}}$ inches shown in Fig. 8. Perspex is glued internally with polystyrene cement to provide a battery compartment, and a clamp for the ferrite rod.

The bottom of the box slides out for battery replacement. The batteries are held together by a small spring, laterally they are held by a piece of neoprene tubing slit across to allow the batteries to be inserted easily. The earpiece is connected by means of a jack socket and this also carries an on/off switch. Thus the set is turned on when the earpiece is plugged in.

Care is needed in drilling Perspex; if too much pressure is put on the drill it will crack the Perspex. Slow steady drilling is best.

VARIATIONS

A volume control can be added by inserting a 250 ohm potentiometer (a preset type could be used) in series with the emitter of TR1 e.g.
between the junction of R5/C4 and the emitter. This control will only reduce the output power from the circuit as shown and was not found to be essential in the prototype. Resistor R5 should not be omitted or have its value reduced.

Diodes D1 and D2 are used to form a voltage stabiliser for the supply to the ZN414. These diodes can be any small signal silicon types, for these the forward voltage drop is about 600 mV to 700 mV each, giving a supply of about 1.4 V .

The sensitivity control, if required, can be obtained by adding a 1 kilohm preset in place of DI.

The acrial coil should be wound using 30 s.w.g. enamelled copper wire. Start winding at about 3_{8} inch from one end of the rod and wind on 85 turns. The turns should be touching each other and not crossed or overlapping, insulation tape can be used to secure each end.

Any small (physically) tuning capacitor of value 100 pF to 200 pF may be used. A few more turns will be needed on the coil if lower values (less than 100 pF) of capacitance are used. The internal layout of the prototype receiver is shown in Fig. 8.

Fig. 7. Additional components and connections for use with an external amplifier.

Everyday Electronics, September 1973

Fig. 6. Wiring of the printed circuit board.

UP to the last two or three years many keen yachtsmen and small workboat owners such as inshore fishermen with 40 foot boats were heard to complain of the lack of a suitable "mini" radar. After all, big ship radar had been with us since the early days of the last war, the world's leading manufacturer was about to clock up his 40,000 th order, and radar for small craft, as opposed to "very" small boats, had been available since 1963 (in one case a small boat radar had first appeared in 1966, but the smallest boat which could use this is about 40 feet).

Suddenly there was a proliferation of sets suitable for "very" small craft but this was followed immediately by the failure, or at least lack of obvious success, of some of them. What is there to mini radars generally and why do the manufacturers appear to find this particular market so difficult? In answering these questions, it is hoped that old radar hands will forgive a description of basic principles.

BASIC OPERATION

Radar is easily understood, once comparisons are made with sound waves, and the echoes which return from them. We know that sound travels through the air at the rate of about 1100 feet per second. Until radar was developed skippers of boats working near cliffs or up rivers used sound waves to determine distance away from bluffs, buildings and so on. A short blast on the whistle would be sounded, and the seconds counted until the echo was heard. If it took five seconds for the echo to return it meant that the sound waves had travelled a total distance out and back of approximately 5,500 feet; therefore the target was a little over half a mile away.

Now it happens that if you send out radio waves at a suitable frequency (the standard
" X " band is 9380 to 9440 MHz) with sufficient energy, they actually bounce back to you from hard objects in exactly the same way. As the speed of both the emission and the returning echo is similarly constant, all you have to do to measure the distance of the hard object is to record the time taken for the entire operation. A marine radar incorporates many refinements to this principle but basically that is all there is to it.

Taking things a stage further: a radar set consists essentially of the following elements; the transmitter to generate short bursts of radio-frequency energy; a rotating scanner to radiate the radio waves in a narrow beam around the horizon and pick up the returning echoes; a receiver to detect and amplify these echoes; and a display tube to visually present them, with facilities for measuring range and bearing. The transmitter and the receiver are combined in one unit, which for convenience is called the transceiver, and there is an extra unit -making a total of four-for the power supply (all radars work off standard voltages from 12 V upwards, but this has to be changed into a form acceptable to the radar, usually by a static inverter).

BASIC SYSTEM

Coming from the general to the particular, these four elements still exist but in recent years have been telescoped into three units, and lately into only two. This naturally simplifies and cheapens installation and there is a useful saving in wheelhouse space, particularly important in workboats which may already have much other instrumentation. The compression from four to three units came about by installing the transceiver immediately under the scanner in a form of a streamlined pod. With the transceiver below-where it still has to be in the case

Everyday Electronics, September 1973

The "exposed" scanner of the Decca 101 radar.
of larger big ship sets-it is joined to the scanner by an expensive and energy losing waveguide of rectangular copper tubing. The obviation of this, not only simplifies installation but allows a smaller power output for the same radar performance. This again results in a smaller power requirement from the boat's supply, usually a matter of great significance.

Further miniaturisation through the adoption of solid-state techniques (an ill-defined phrase but here taken to mean the latest micro-circuit and other solid-state devices) has enabled the power supply to be incorporated in either the scanner/transceiver assembly or in the display, or shared between the two. This results in a total of only two units, and is standard with mini-radars. With so much of the electronics of the system built into a scanner assembly which may be several feet up in the air, it is important that the different elements are designed on a modular plug-in principle as far as possible, for easy removal below.

TRANSCEIVER

The transmitter and receiver are in appearance almost a unity as the name transceiver implies, but in reality have, of course. very distinct functions. The transmitter and receiver circuits are provided with a means of isolating one from the other, so that when transmitting, none of the energy goes into the receiver; and only when the transmitter has stopped its emission is the receiver on and enabled to receive the reflected echoes. To measure the time lag between emission of a radio wave and its reflected echo obviously requires electronic switching on and off of the transmitted radio waves at a rate so rapid that it nearly defies comprehension.

The bursts of power, or pulses, are timed in two ways. First, the lengths of time measured in fractions of a microsecond that the transmitter is on. This is termed pulse length. Second, the number of times per second that the pulses are repeated. This is termed pulse repetition frequency.

There are short and long pulse lengths automatically controlled by the range to which the radar is set. Usually shorter pulse lengths are used on short ranges for optimum range discrimination between objects; longer pulse lengths for longer ranges because of the need for a greater amount of power to create an echo. These pulse lengths typically vary between 0.05 and 1.5 microseconds.

SCANNER

It is logical to consider the scanner next. As many readers may have noticed, in a large vessel, it consists of a horizontal bar from 4 feet to 9 feet long and about 6 inches deep. This is mounted on a pillar or other support and made to revolve at about 30 r.p.m. by a small motor mounted beneath. In mini-radars this assembly is invariably cased in a glass-fibre "radome", resulting in a mushroom appearance. The predominant reason is reduction in cost. The radome itself is not expensive and permits the scanner inside to be lighter, easier to rotate-since wind resistance is removed-not weatherproofed, and so cheaper and requiring less electrical power. As we have seen the radome houses the transceiver, and in one design the power stipply as well.

Design of the scanner itself is always important but particularly in very small boats. Obviously, the smaller it can be the lighter and cheaper, but there is a limit below which performance in the form of discrimination (the ability to separate adjacent echoes) and freedom from side lobes, suffers unduly (it is impossible to direct all the energy into the desired beam and a small amount will be radiated to

Scanner unit of the Decca 050 radar showing the transmitter and turning assembly.

The two points of the Electronic Laboratories Seascan small boat radar.
either side, this is known as sidelobes and, if excessive, will create highly undesirable false echoes on the display).
The minimum size of scanner would appear to be 30 inches. The actual design of the aerial itself is another important point. Up to the late fifties the cheese type aerial was standard, where the end of the waveguide is positioned at the focal point of a parabolic reflector; the width of the latter has to be large in comparison with the wavelength so that transmission can be made in the form of a narrow beam. It is bulkier and not so efficient as the slotted waveguide scanner now universal in commercial and most other radars.

In the slotted waveguide type a bar aerial has slots cut in the vertical face through which pulses can be transmitted and echoes received. The disadvantage is that the slots have to be cut extremely accurately according to a mathematical formula and a slotted waveguide aerial is considerably more expensive than a cheese type.

DISPLAY

The echoes are handled in the receiver portion of the transceiver. Obviously they vary greatly in strength; a nearby ship produces an extremely strong echo, while a buoy some distance away produces only a faint one. All are very greatly amplified to bring the weak ones to a level that can be seen on the display. The echoes are then levelled to a common value, so that the echo created by a nearby ship will bear a reasonable relationship in size to that created by a buoy. All this is done electronically and may answer some queries as to why radars are not as cheap as washing machines!

To understand the working of the display,

The Decca Super 101, this is a three unit system suitable for boats down to about 40 feet.
simple comparison with a searchlight may be made. Imagine yourself directly above the boat's searchlight which is being rotated 360 degrees. As it revolves the beam of light crosses boats close by and you see each of these objects momentarily. Consider now the radar's cathode ray tube, the circular extremity of which forms your radar display. As with the searchlight, your position is in the centre of the circle and the display shows all "radar conspicuous" objects within the range set at the time.

There is a difference, however, in that the inside of the tube is treated with a special material that continues to glow for a considerable period after the echo has been passed; in addition, each time the scanner directs the radio waves to cross a target (which it does about every two seconds) the echo is re-illuminated. In this way the entire radar scene is permanently visible, though the targets currently being swept show up more brightly than the remainder.

By courtesy of certain elements in both the receiver and the display any one boat mentioned above will be shown on the display as a bright spot at a range and bearing from the centre (which represents own ship) exactly corresponding to its true position. Radars have several range scales whereby, at the turn of a knob, the radius of the display can be taken to represent different distances from, say, half a mile to 18 miles. Concentric illuminated rings on the display represent increasing distances from the centre; as the range scale is changed the previous rings disappear, to be replaced by new rings in different positions, and it is always easy to gauge the range of an echo by its position relative to the nearest ring.

The display unit of the Decca 050 radar mounted in front of the "helmsman".

The relative bearing of an echo is read off the circumference of the display, with the aid of a revolving transparent disc. Modern big ship sets have more sophisticated facilities whereby, as controls manipulate a variable ring for range, and a radial line for bearing, the two readings come up simultaneously on digital readouts.

QUALITY, PERFORMANCE, PRICE

So much for the general principle of marine radar. At the outset of this article-which concentrates on mini-radars as being of interest to the widest circle of boat-owners-it was stated that, judging by results, many manufacturers find this is a very difficult market; not so much in selling the finished product but in getting its original design right. Why is this?

The basic reason is that the three-sided equation between quality, performance and price is a very awkward one. The price ceiling simply must be low, bearing in mind the likely pocket of the prospective owner and the danger of being undercut by a competitor. The manufacturer's outlets, usually agents in the case of pleasure craft and his own depots in the case of work-boats will have no chance (particularly with cost-conscious fishermen who form a very large section of the market) if the price is too high.

Performance in the form of maximum range, minimum range, definition (sharp, clear-looking echoes) discrimination, power required and so on must be adequate in view of competition. Last, but by no means least, there is quality; quality of electronic design, mechanical design and materials used; these are the basis of reliability. Contrary to general belief, the smaller the radar, the more hostile an environment it will be in. For example, a 30 foot family cruiser which is shipping a lot of water and spray and vibrating from the action of its engine is probably providing rougher treatment than that experienced by the radar of a large merchant ship on a sturdy bridge high above the
waves and which is being operated by professional mariners.

The manufacturer has an agonising balancing act to perform between performance, extra ruggedness plus highly reliable material leading to high cost on the one hand and the necessity to keep the price down on the other. Some have failed to solve this equation first time, one large company having to dispose of its mini-radar altogether, and at least one other bringing out a second mark with major modifications.

CHOOSING

When choosing a radar it cannot be stressed too highly that reliability is the first thing to look for. As this is not assessable for any particular set in advance the best thing to do is enquire of existing owners. Performance is naturally important-but is of no account if the set won't work-and in the context of a very small boat it should be realised that theoretically long range may be unattainable in practice. This is because radar sees almost directly like the human eye (the radar horizon exceeds the optical horizon by 6 per cent).

There is little point in buying a 20 mile range radar if you are only going to mount it 18 feet above the water, because its "horizon" at that height will be only five miles. To be fair it will pick up high land at a greater range, but somewhat disappointing since the distance at which a feature will be on the horizon of a radar is found by adding the aerial's horizon to that of the feature. The following aerial heights (in feet) are followed by the corresponding radar horizon (in nautical miles) in brackets: 10 (4), $15\left(4{ }^{1}{ }_{2}\right), 18(5), 24(6), 32(7)$, so that land at 32 feet will begin to appear above the horizon of an aerial at 10 feet, at $7+4=11$ miles.

Another aspect that prospective owners should look into most carefully is the service organisation of the manufacturer. In spite of what the brochures claim (so often "a new concept in radar reliability") radars do break down, and the proximity of a manufacturer's service depot or trained agent-there are few aboutcan make or mar a sailing holiday in certain circumstances. This is actually a factor in the price of the radar, since widespread service organisations are not maintained for nothing, and charges must be realistic.

USE

A brief look at what radar will do for you. Collision avoidance was its original object and still holds pride of place in the minds of most people. On a dark night or in fog, the possession of radar confers peace of mind, in that it should be impossible for anything bigger than a football, providing it is projecting far enough, to come dangerously close undetected. And if you want to see whether another vessel will hit you
if both stand on, it is only necessary to take successive bearings of her when your own boat is dead on course. If they do not alter considerably she will at least pass close. This check is more easily performed than with a compass.

However, study of an article that appeared some time ago in the yachting press on the uses for which radar was put throughout a seven port cruise, showed that collision avoidance came up only once in half a dozen times. Why do virtually all Scottish motor fishing vessels fit a radar when the instance of fog on the North East coast of Scotland is in fact slight? They use it for a multitude of small tasks from locating the small dan buoy which marks the end of their net, to fixing their position. Most radars are efficient, in calm conditions, down to about 20 yards and this can be a great help in locating your moorings or picking your way into harbour among lines of moored yachts.

Coastal navigation is a subject in itself, but basically, everything that the navigator does to fix his craft by cross bearings can be emulated and more quickly, with radar. In addition, a range facility is added, enabling 'range and bearing' fixes to be obtained as well. Is important of course that the point you are taking on the display is exactly identifiable on the chart; this is not difficult with experience but it is advisable to practice in good conditions when checking is easy.

CONCLUSION

In conclusion, a quote from an american enthusiast, which is being proved by more and
more British owners: "Since the fitting of radar we have cruised thousands of miles more safely and without the anxiety that is ever present when compelled to operate in thick weather, or to enter a strange harbour at night."

What doyouknow?

1 You want a transformer to supply 24 volts at 1 amp . You have a 24 volt 500 mA , a $12-0-12 \mathrm{~V} 2 \mathrm{~A}$ and 30 V 1 A which one would you use, and how would you connect it.
2 A coil and a capacitor are used to form a tuned circuit in a project you are building. The coil you have is slightly higher in inductance than that required, you cannot alter its value so what could you do to get the correct resonant frequency.
3 What does the following circuit symbol represent:

4 The impedance of a coil is stated as being

400 ohm, when you measure its resistance on a multimeter it is only 100 ohm. Say if you think this is correct and why.

ANSWERS

II!M pue kouanbol! dejno!qed e fe peanseaw
$\forall 1$ әчł Kiddns uej damsofsueł әчł pue бu!ped

Bothered by
 Basics?

 Confused by

 Confused by
 Current?

 Troubled by

 Troubled by

 Transistors ?

 Transistors ?}

THEN DON'T MISS THE START OF A NEW SERIES FOR BEGINNERS

TEACH-III 74

ELECTRONICS STARTS HERE NEXT MONTH

ALSO FREE INSIDE

To help you on the way, a double sided blueprint containing basic information, colour codes, component identification etc., to use in conjunction with the series

DON'T MISS THE OPENING ARTICLE

PLUS

THESE EASY TO BUILD PROJECTS and all the regular features \star SOLID STATE LAMP DIMMER

* AUDIO MILLIVOLTMETER
* STEREO HEADPHONE ADAPTOR

Aquarium TH ERMOSTAT

 BY MIKE KENWARD
A unit for accurate temperature control of liquids.

roprietary thermostats for fish tanks and other heat control and monitoring applications are available and many of them are simple and cheap. However it has long been the requirement of many tropical fish keepers and others to have a more reliable, more accurate thermostat that can be set to the required temperature and that will maintain the temperature of a liquid to within ${ }^{1}$ degree centigrade.

The thermostat to be described in this article was designed for this purpose and was found in practice to be extremely accurate, once set, and able to keep the temperature to within less than ${ }^{1} 2$ degree should this be required.

CIRCUIT

The circuit diagram of the thermostat is shown in Fig. 1. Transistor TR1 is operating in the emitter follower mode, the output of which is determined by the setting of VR1 and VR2, and by the resistance of thermistor RTH1 which is determined by its temperature. The output from TRI emitter is fed, via a current limiting resistor R2, to a Schmitt trigger formed by TR2 and TR3. The use of TR1 prevents undue loading of the Schmitt by the thermistor.

The thermistor RTHl is located in the liquid, the temperature of which is to be controlled. With a fall in temperature the resistance value of RTH1 rises and causes TR1 to pass less current through its collector emitter junction. Thus the voltage at TR2 base falls and TR2 begins to turn off, at a certain level (set by R3, R4 and R6, TR3 turns on and forces TR2 to
turn completely off (Schmitt action). This switching of states happens very quickly and TR3 switches from off to fully on with only a slight change in the value of RTH1.

Transistor TR3 operates a relay which is used to switch the mains supply to a tank heater. Thus when TR3 turns on the heater is turned on and the liquid begins to warm up. When the required temperature is reached the fall in the resistance of RTH1 causes TR1 current to rise and the Schmitt to revert to its original state (TR2 on TR3 off) thus turning off the heater via RLA1.

HYSTERESIS

Although the above action is straightforward one problem is encountered-the hysteresis present in the Schmitt trigger circuit. This means that the unit would only switch with a

Fig. 1. The complete diagram of the Aquarium Thermostat.
rise and fall in temperature of about 3 degrees centigrade which is greater than the required temperature control.
To overcome this VR3 has been incorporated in the Schmitt circuit and this resistor is used to "balance" the two transistors and thus reduce the amount of hysteresis. Thus this potentiometer can be used to vary the sensitivity of the thermostat and can be set to keep the temperature to within about plus or minus 5 degrees centigrade down to less than plus or minus ${ }^{{ }^{1}} 2$ degree centigrade. In actual fact the prototype was able to maintain the temperature to a very high degree of accuracy-higher than is practically useful in an aquarium and higher than we were able to measure by conventional means.

SUPPLY

Power for the circuit is derived from the mains via the bell transformer T1, the rectifier D2 and smoothing capacitor C1. This very basic half wave supply was found to be quite adequate in practice. Diode D1 is incorporated to prevent the back e.m.f., caused by RLA1 switching off, from damaging TR3.

CONSTRUCTION

Commence construction by cutting and drilling the circuit board as shown in Fig. 2. Mount all the components-soldering in the transistors and diodes after the other components and flying leads.

Next mount all the components in a suitable metal or plastic case as shown in Fig. 3 and wire up the complete unit. Note that if a metal case is used a three core mains lead should be provided and the box should be earthed by means of a tag bolted to the inside.

The themistor must be isolated from the water and can be mounted in any convenient way. The prototype used a thermistor mounted on the end of a short length of plastic tube (ball pen case) and covered in Araldite to insulate and protect it. Take care not to use too much Araldite on the thermistor as this may prevent it from reacting quickly to temperature changes.

Fig. 2. Layout and wiring of the components mounted on the Veroboard.

Aquarium TH:ZMOSAT

Fig. 3. Layout and wiring of the componenfs mounted in the case.

Components....
 Resistors

R1	$56 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$
R4	$1 \mathrm{k} \Omega$
R5	22Ω
R6	$10 \mathrm{k} \Omega$

SEHOD
 TALK

Capacitor
C1 $100 \mu \mathrm{~F}$ elect. 15 V
Variable Resistors
VR1 $2 \mathrm{k} \Omega$ carbon linear
VR3 25082 carbon linear
VR3 500S2 carbon linear
Semiconductors
D1 Any small signal silicon diode
D2 IN4148 or any 50 V 200 mA silicon diode
TR1 2N2926 (any colour) silicon npn
TR2 2N2926 (green) silicon non
TR3 2N2926 (green) silicon non
Miscellaneous
RTH1 VA 1005 thermistor
RLA 2000 s2 P.O. type 3000 relay with one set of normally open contacts
T1 Friedland bell transformer $(200-250 \mathrm{~V}$ primary, 8 V secondary)
LP1 Neon indicator lamp with built in resistor Veroboard $2 \frac{1}{2} \times 1 \frac{1}{8} \times 0.15$ inch matrix, small aluminium bracket for RLA, mains lead, materials for mounting RTH1 (see text), plastic case approx. $7 \times 4 \times 3$ inches, $4 B A$ fixings, mains plug, knobs as required.

TESTING

Connect the unit to the heater and mains and with RTH1 in free air and VR3 fully clockwise switch on. Turn VRI (coarse temperature) through the range and check that RLAl clicks in and out as you do this, LPl is incorporated to show when the relay is operating (ie. heater on). Next set VR2 (fine temperature) fully clockwise and VR1 so that RLAl has just operatedswitched on the heater-now turn down VR2 and check that as it nears its minimum value RLAl drops out-turn up VR2 until RLA.l just operates.

By breathing on the thermistor it should now be possible to cause RLAl to drop out and switch off the heater. Now test the function of VR5 (sensitivity) by turning it fully anticlockwise and resetting the unit as above. It should now take a greater rise in temperature to make RLAl operate.

If all is well place RTH1 in the tank and turn VR1 up, when the required temperature of the liquid is reached back off VR1 and adjust both VR1 and VR2 until RLA1 just drops out. Leave the unit set and observe the rise and fall in the
temperature.
By adjustment of VR3 and the two temperature controls the correct temperature and controlled level (rise and fall) can be set. This may take a little time but once set will remain constant. Any latter alteration of VR3 (sensitivity) may also mean slight adjustment of VR2 and possibly VR1 to maintain the correct temperature.

The thermostat can be used to maintain the temperature of other liquids-such as used in colour photographic work-but for accurate control the thermistor should be mounted away from the heater and some means of "stirring" the liquid introduced.

Photograph of the conpleted Veroboard with the components mounted on it.

The connections to VR1 and B1 positive on the Waa Waa Veroboard layout (page 439, August '73) should each be moved one place to the left to position A9 and A8 respectively. The wiring diagram of Fig. 6 with reference to these connections is correct. The connection from A2 to SK1 should be omitted and the screen from C2 should be connected to SK1 auxiliary tag.

In the Electronic Dcorbell article (August '73) transistor TR5 was incorrectly shown as an AC 126. This should have been an AC 176.

Under What Do You Know it was stated that the AC 127 could not be used in place of the BC 109 because it is a pnp device. It is an non device but it would not be as likely to work as the 2N2926 because it has a much lower gain.

We apologise for any confusion caused by these mistakes.

$W^{\text {e }}$continue this month with further properties and theory of the transistor and introduce some transistor types which will be completed in Part 5.

COMMON EMITTER CURRENT GAIN

The a.c. current gain of a transistor in the common emitter circuit is usually designated $\beta, \gamma^{\prime}, h_{21}$ or $h_{\text {f.. }}$ It is given by the equation:

$$
\beta=\frac{\text { change in collector current }}{\text { change in base current }}
$$

The current gain of typical transistors in the common emitter circuit varies from about 5 to 1,000 . It varies from one type of transistor to another, but even amongst transistors of the same code number there are variations in the current gain of between about two times to five times (depending on type). The current gain is temperature dependent.

The common emitter current gain usually rises at first with increasing collector current until it reaches a maximum, after which it falls again (see Fig. 4.1).

Fig. 4.1. Variation of current gain with collector current in a typical transistor.

Some transistors (such as the 2 N 2484) are designed so that they provide a high current gain even at very low collector currents (perhaps 0.01 mA), whilst other transistors provide a high gain in the medium current range (typically 1 mA to 100 mA) and yet others in the high current range (perhaps 5A to 10 A).
The common emitter circuit not only provides a current gain of over unity, but it also provides a voltage and a power gain when used in a suitable circuit. The power gain provided is normally greater than that obtainable using the same type of transistor in either of the other basic circuits.

LEAKAGE CURRENT

In Fig. 4.2a, a transistor is biased in the normal way with the collector positive with respect to the base, but the emitter is left unconnected so that the emitter current is zero.

Although the collector/base junction is reverse biased, a small current will pass, since both of the materials contain limited numbers of minority carriers which are attracted across the junction (as in the reverse biased diode). This small current is known as the leakage current.

(a)

(b)

Fig. 4.2. Measurement of leakage current.
The leakage current in the common base connection is designated $I_{\text {cbo }}$ (or sometimes $I_{\text {co }}$). The subscrip "cb" indicates that the current flows between the collector and base, whilst the third subscript, "o", shows that the current passing to the third electrode is zero.
The leakage current in Fig. 4.2a is that of the collector/base diode and is therefore much smaller in the case of silicon transistors than in germanium devices.

The common emitter leakage current is measured with the base open circuited as shown in Fig. 4.2b. It is normally given the symbol $I_{\text {ceo }}$, but is sometimes designated $I_{c o}$.
The value of the common emitter leakage current is much larger than that of the common base leakage current. The leakage current of the collector/base diode acts as the base current and is therefore amplified by the current gain of the transistor concerned.
In a germanium transistor $I_{\text {ceo }}$ may be some hundreds of microamperes, increasing slightly with applied voltage over the working range of the transistor.

The leakage current of any transistor increases rapidly with temperature for the same
reason that the leakage current of a diode increases with temperature.

PNP TRANSISTORS

The principles of operation of $p n p$ transistors are exactly similar to those of $n p n$ transistors, but the polarities of the applied voltages are reversed and the charge carriers are of the opposite polarity.
As shown in Fig. 4.3, the base is forward biased with respect to the emitter, so in this type of transistor the base must receive a negative bias (as opposed to the positive base bias of the npn type). Similarly, a negative voltage is applied to the collector so that the collector/ base junction is reverse biased.

The n-type base is lightly doped, so the emitter/base current consists mainly of holes moving from the emitter to the base with only a few electrons moving in the opposite direction.

Most of the holes passing from the emitter into the base reach the depletion region of the collector/base junction and they are then swept into the collector to form the collector current in the external circuit.

Fig. 4.3. Flow of charge carriers in the $p n p$ transistor.

SYMBOLS

The normal symbol for an $n p n$ transistor is shown in Fig. 4.4a. Sometimes the circle is omitted for simplicity, since it is only used to indicate that the device is sealed in a suitable encapsulation.

The direction of the arrow shows the direction in which conventional current flows in the emitter circuit. (Conventional current flows from the positive to the negative terminal of a
battery in the opposite direction to the flow of electrons.)

Fig. 4.4b shows the symbol used for a $p n p$ transistor. It is similar to that of the $n p n$ transistor, except that the direction of the arrow is changed.

Alternative symbols for the $n p n$ and $p n p$ transistors are shown in Figs. 4.4c and 4.4d respectively.

Fig. 4.4. Symbols for $n p n$ and $p n p$ transistors.

baSE VOLTAGES

The forward bias applied to the base of a silicon $n p n$ transistor results in this electrode being about 0.5 to 0.6 V positive with respect to the emitter.

This follows from the fact that a forward biased silicon diode does not pass very much current until this forward voltage is reached, but the current then increases very rapidly with forward voltage (refer to Fig. 2.8 in Semiconductors Part 2).

Similarly, the base of a germanium $n p n$ transistor operates at about 0.15 V positive with respect to the emitter.

The base operating voltages of silicon and germanium pnp transistors are about -0.5 to -0.6 V and about -0.15 V respectively relative to the emitter.

COLLECTOR VOLTAGES

If the collector of a transistor is operated from too low a supply voltage, the maximum outpu: voltage swing will be limited and the gain may be reduced. Generally, supply voltages below about 3 V are seldom used. The upper limit depends on the type of transistor used for the reasons discussed below.

Some silicon transistors are designed to operate with collector voltages well above 100 volts, but most types are only capable of satisfactory operation at lower voltages.

Germanium pnp transistors are seldom
designed to operate with their collector voltages more than 80 V negative with respect to their emitter voltage.
If the collector/base voltage is made greater than the maximum permissible value quoted in the manufacturer's data sheet, avalanche breakdown of the collector/base junction may occur. (The doping level in transistors is usually greater than that at which true Zener breakdown takes place.)

A maximum permissible value of the collector/base reverse voltage, $V_{\text {cbo }}$ (or, sometimes, $V_{c b}$), is therefore quoted in the data sheet. This is the collector/base maximum voltage when the emitter current is zero.

The maximum permissible collector/emitter voltage with the base open circuited (that is, with zero base current) is designated $V_{\text {ceo }}$ and is often lower than $V_{\text {cbo }}$, since the collector/base leakage current is multiplied by the current gain of the transistor.

In addition to normal avalanche breakdown, an effect known as second breakdown can occur in which some parts of the junction become hotter than others. If any part tends to become hot, conduction in that part may become more like conduction in a metal, so that the current concentrates there and makes it hotter still.

A voltage applied between the collector and emitter (but not between the collector and base) can lead to an effect known as punch-through.

In this case the collector/base depletion region becomes so deep that it encompasses the whole of the base region and enters the emitter. When this occurs, a large current can flow between the collector and emitter.

The punch-through voltage depends mainly on the base width and resistivity; in many transistors the punch-through voltage is arranged to be of the same order as the avalanche breakdown voltage of the collector/ base junction.

Although avalanche breakdown and punch through do not in themselves destroy the transistor, in most circuits they would cause such a high current to flow that the power dissipation in the device would be great enough to destroy it. The manufacturer's limiting values of $V_{\text {ebo }}$ and $V_{\text {cbo }}$ should therefore be strictly observed.

FREQUENCY LIMITS

The amplification given by a transistor falls off at high frequencies, the symbol f_{T} is used as a meaure of this fall in modern transistors; it is the gain-bandwidth product or, more precisely, the common emitter current gain multiplied by the bandwidth measured in the frequency region where the gain is falling fairly rapidly.
It must be stressed, however, that the high frequency performance is dependent on the circuit in which the transistor is used as well as on the properties of the transistor itself.

It is not always wise to use a transistor with a good high frequency performance in a circuit where this property is not really needed, since oscillation at a very high frequency may occur. The latter may not be easy to detect.
It should be remembered that the value of f_{T} quoted by most manufacturers is the minimum value and many specimens of their transistors of a specified type number may have a far higher value of f_{r}.

TRANSISTOR TYPES

The number of transistor types on the market is extremely large. It is obviously necessary to have many different types available for various purposes but the profusion of type numbers now available tends to confuse not only the beginner, but also the somewhat more experienced designer.
This series will give some information on the ways in which some types of transistor provide the characteristics required by the circuit designer, but it is obvious that this account cannot be a comprehensive review or even cover the majority of the types in normal use. In general only the more common types will be considered and no attempt will be made to include details of transistors suitable for operation at $\mathrm{GHz}(1,000$ million Hz) frequencies or of any radio frequency power transistors.

Photograph showing some of the various transistors available:
(a) AD149 (b) BC107 (c) OC72 (d) AC128 (e) AD161
(f) BD201 (g) BC147-Lockfit.
(Mullard)

TOLERANCES

Manufacturers can produce cheap transistors only if they can sell huge quantities of each type and if they do not have to carry out long testing procedures or guarantee that their products have very close tolerances.

The most expensive devices have tended to be used in the military and space research fields where human lives may depend on the satisfactory operation of a large number of devices over a long period.

Somewhat cheaper transistors have been used for general industrial purposes and in instrument manufacture, whilst the cheapest devices are used in the domestic entertainment field where wide tolerances are of no great disadvantage if one allows for them in the circuit design.

REPLACEMENT TYPES

Although this article may help readers to choose a suitable replacement type for a defective transistor, it cannot be stressed too strongly that the manufacturer's data sheet should always be examined in detail before any transistor is used to replace another type or is used in a new circuit.

In many cases modern epoxy encapsulated silicon transistors can be used as a cheap (but perfectly satisfactory) replacement for some of the types supplied in metal cans. Epoxy encapsulation is a kind of plastic material and can be used for silicon (but not normally germanium) device manufacture.

Germanium devices were developed before the more modern silicon types and will therefore be covered first.

PNP ALLOY JUNCTION GERMANIUM TYPES

Some of the earliest transistors were produced by the alloy junction process. If a $p n p$ ger-
manium transistor is to be made, pellets of the p-type additive are placed on each side of a wafer of lightly doped n-type material.

In the case of the 0C71 transistor, for example, the size of the n-type wafer is $4 \times 2 \times$ 0.12 mm .

After suitable heat treatment, the p-type additive diffuses into the wafer to form a pnp device with a lightly doped base. The cross section of such a transistor is shown in Fig. 4.5.

Fig. 4.5. The structure of an alloy junction transistor.

Transistors manufactured by this technique are suitable for use only at audio and low radio frequencies. For example, the $p n p$ audio frequency transistor type OC7l has a typical common emitter cut off frequency of 11 kHz (minimum 5 kHz) and a common base cut off frequency of 600 kHz .

The pnp OC45 has a thinner base and can be used as a 475 kHz intermediate frequency amplifier in radio receivers, since the thinner base raises its common base cut off frequency to about 6 MHz .

The pnp OC44 has about the optimum high frequency performance possible with transistors manufactured by the alloy junction technique; it has a common base cut off frequency of typically 15 MHz (minimum $7 \cdot 5 \mathrm{MHz}$) and is often used as a self oscillating mixer in radio receivers for the medium and long wavebands. Various other types, such as the OC42, are similar to the OC44.

Table 4.1: Germanium Alloy Junction Transistors

Device	$V_{\text {cbo }}$ (V)	$\begin{aligned} & V_{\text {ceo }} \\ & (V) \end{aligned}$	$\begin{aligned} & I_{c_{\text {max }}} \\ & \left(\mathrm{mAA}^{2}\right. \end{aligned}$	$\begin{aligned} & \mathbf{P}_{1} \max \\ & \left(\mathbf{M W}^{2}\right) \end{aligned}$	$\mathrm{h}_{\text {fe }}$	$\begin{gathered} \mathbf{f}_{\mathrm{T}} \\ (\mathrm{MHz}) \end{gathered}$	Application
pnp							
OC71	-30	-20	10	75	50	0.6	Medium gain general purpose
OC75	-20	-20	10	75	90	$0 \cdot 6$	High gain general purpose
OC45	-10	-10	$5 \cdot 0$	43	50	$6 \cdot 0$	I.F. amplifier in medium frequency receivers
OC44	-10	-10	$5 \cdot 0$	43	100	15	Mixer/oscillator in medium łrequency receivers
OC72	-16	-16	125	75	70	>0.35	Low power output transistor
OC77	-60	-60	125	75	>45	>0.35	High woltage low power switch
2N1309	-30	-15	200	150	60-120	15	General purpose
npn							
OC139	20	15	250	145	20-84	$3 \cdot 5$	
OC140	20	15	400	145	20-150	$4 \cdot 5$	Medium current transistors
OC141	20	15	400	145	80-200	$9 \cdot 0$	
2N1308	25	15	200	150	80-300	15	General purpose

Returning to audio transistors, the 0C71 has a common emitter current gain of 30 to 75 at a collector current of 3 mA . The OC75 is a high gain version with a current gain $h_{\text {fr }}$ or β of 60 to 130 at a collector current of 3 mA .

The 0C71 has a collector voltage rating of 20 V , but the thinner base of the OC44 and OC45 involves a reduction of the collector rating to 10 V .

All of the above types except the OC42 are encapsulated in a small, black painted, glass tube with the three leads emerging from the one end, as shown in Fig. 4.6.

Fig. 4.6. The OC71 type transistor showing stages of production.
(Mullard)

Fig. 4.7. The OC72 type transistor.
The $0 C 71$ is rated at a maximum average collector current of 10 mA . The $0 C 72$ has a maximum average collector current rating of 125 mA and has been much used in the past in the output stages of small radio receivers. It is encapsulated in a metal tube, as shown in Fig. 4.7, so that the heat will be conducted away if it is placed in a small heat sink.

The 0C77 is essentially a high voltage version of the OC72.

Low noise types, such as the ACl 07 , are available, but one can obtain a better low noise performance with a modern silicon planar type.

PNP ALLOY DIFFUSED GERMANIUM

The pnp alloy diffused germanium transistors have been widely used in the radio and inter-
mediate frequency sections of radio receivers.
A cross section of such a transistor is shown in Fig. 4.8.

The manufacturing technique employed enables a base width of a few thousandths of a millimetre to be obtained. A drift field is developed by adding both n - and p-type impurities to the emitter pellet and allowing the n-type material to penetrate more deeply into the crystal than the p-type at a high temperature so that a graded base layer is formed.

Such transistors have a high gain at a low collector current and a low collector base feedback capacitance.

Fig. 4.8. The structure of an alloy diffused germanium transistor.

The 0 Cl 170 and OCl 17 are two well known types manufactured by this technique. They have an $h_{\text {f. }}$ value of about 100 (minimum 20) and a cut off frequency of around 70 MHz .

In current radio receivers these transistors have been repiaced by the AF114 to AF117 series. The AF114 is a v.h.f. amplifier for f.m. receivers, the AF115 a mixer/oscillator for a.m./f.m. and short wave receivers, the AF116 an i.f. amplifier for f.m. receivers and the AF117 a mixer/ oscillator and i.f. amplifier for the long, medium and short wave bands.

Another use for alloy diffused transistors is as video amplifiers in television receivers and the AF118 has been designed especially for this purpose.

All of the alloy diffused transistors mentioned above have the type of construction shown in Fig. 4.9. The shield electrode is connected to the metal case and should be earthed.

Alloy diffused $n p n$ germanium transistors do not appear to be available.

Fig. 4.9. The OC170 and OC171 types of transistor.
Next month: Moie types, manufacture of planar devices and testing.

T he initial purchase of model train equipment is often in the form of a "set" with train, track and a plastic battery box fitted with an on-off-reverse switch only.

The absence of any form of speed control and the expense of frequent battery replacement soon leads to the acquisition of some form of resistive controller and, either a proprietary mains transformer/rectifier unit, or a battery charger.

Those with a little know-how elect to construct their own mains supply unit using a heavy duty variable resistance of $100-200$ ohm as the controller. Only a little experience is needed to show that a variable resistance controller is not really satisfactory and to counter the effects of uneven running, indeterminate starting, etc., the enthusiast begins to consider the purchase of an electronic control unit.

This article details the construction of an electronic speed control incorporating short circuit protection and a facility for automatically giving a gradual and realistic speed change to stop and start at signals and stations.

POWER SUPPLY
The unit operates fromi an approximate 12 V reasonably smooth d.c. supply. If such a supply is not readily available the novice is strongly advised to purchase a proprietary unit or to obtain expert help in building a mains transformer/rectifier unit since it is vital that safety requirements are met and that children cannot gain access to high voltages.

The transformer rating should be approximately 14 V a.c. at 2 amps , though it is well to consider the advantage of a slightly more expensive one rated at 4 amps preferably with two sets of windings to provide tivo independent

BY A. J. DUNN

Gives realistic performance to your electric model train
d.c. supplies and ample unrectified a.c. for electric point operation, lamps, etc.

A smoothed supply is essential.
Many proprietary units have no smoothing since the action of the train's motor is to average out the waveform. If such a supply unit is available it may be used if an electrolytic capacitor of approximately $2000 \mu \mathrm{~F}$ is connected across its terminals.

The working voltage of such a capacitor should be at least 20 V since it will charge up to the peak value when not connected to a load; when on load the voltage will fall to a lower voltage with a waveform as in Fig. 1.

Fig. 1. Shows the voltage increase for no load condition.

Such a smoothing capacitor will take a momentary large charging current, possibly in excess of a fitted current trip. In such a case the trip should be wired after the supply has been smoothed. Should it be intended to use an unprotected d.c. supply other than for the short circuit protected circuit to be described, it would be necessary to provide a means of short time constant overload protection such as a quick acting magnetic cut out. Similarly, any a.c. output could be protected by a thermal cut out.

DESIGN REQUIREMENT

The starting performance of a loco is a common source of dissatisfaction; unless the resistive controller is well advanced it is often found that the loco will not move at all and then it suddenly speeds up, requiring immediate controller adjustment to avoid excess speed at points, curves, etc.

This effect is comparable to attempting to start off and drive a car in top gear; obviously the equivalent of a gear box is required, or a means to change the torque/speed characteristic.

In this design, this effect is achieved by switching the supply on and off at a fast rate; the ratio of the time it is switched on to the time it is switched off (the mark-space ratio) is varied by a control so that the extreme ends of the control range corresponds to the supply being virtually fully on or off.

In the condition of starting from rest, the supply is switched on for brief periods only (Fig. 2a), each period being long enough to develop the maximum torque from the motor but not long enough to allow for much movement so the loco moves in a series of almost undetect-

Fig. 2. Shows that the average value is proportional to the mark-space ratio.
able jerks, slowly increasing speed.
In the half-way position, the controller creates an equal mark-space ratio or on for half the time (Fig. 2b) and the inertia of the motor integrates this and runs as if powered by half the supply volts.

In the fast position the controller switches the supply on for most of the time (see Fig. 2c) and the loco rail voltage is therefore the supply voltage ($12-14 \mathrm{~V}$ d.c.) less a $0 \cdot 7 \mathrm{~V}$ drop across TR 1 and less the small voltage drop across R6 dependent upon the current taken.

TRAIN MOTOR

Consider the loco motor as shown in Fig. 3 here the resistance of the motor windings is shown as R_{m} in series with a generator-this being the back e.m.f. generator with an output proportional to speed.

At rest, when the supply is connected, the current that flows is the supply voltage V_{n} divided by R_{m} plus the control resistance R_{c} (including the supply resistances). The torque caused by the current causes the motor to revolve and overcome initial or static friction whereupon the motor runs faster and the back e.m.f. increases..

The current taken is now

$$
\frac{V_{\mathrm{s}}-V_{\mathrm{g}}}{R_{\mathrm{c}}+R_{\mathrm{m}}}
$$

Fig. 3. The equivalent circuit of the loco motor in circuit.
and the torque is reduced accordingly. It is obvious that if V_{s} and R_{c} are both made very large and constant (normal constant current circuit) the motor speed will vary as a function of the load and, in cases of indeterminate frictional effects, will vary wildly.

From this consideration, the series resistance should be reduced as far as possible and the motor speed controlled by either a variable voltage low impedance source or by a fixed voltage and switched time division.

CIRCUIT

The complete circuit diagram of the train controller is shown in Fig. 4. Transistors TRA and TRB (inside the integrated circuit) form a multivibrator whose period is determined by the values of the capacitors C1, C2, R1 and (R2+ VR1). The mark-space ratio is approximately $1: 1$ with the wiper of VR1 in the central position, and the collector of TRB (pin 5) is alternately at the supply voltage or approximately +0.2 V when TRB is turned on hard or saturated. This square wave signal is applied via R4 to TRC which is switched on or off.

For the moment leaving aside transistor TRD, the collector of TRC is connected to the base of TRE which forms, with TR1, a compound emitter follower giving a large current low impedance square wave output.

Diode D2 is wired in the circuit, reverse
biased, to protect TRl from transient reverse voltage produced by the inductance of the motor winding and commutator switching.

SHORT CIRCUIT PROTECTION

Short circuit protection is provided by the use of R6 (approximately 0.5 ohm), the connections to TRD being so arranged that if a current in excess of 1.5 amps flows through R6, the voltage across it will turn on TRD.

The base current of TRD is limited by R7, but it will saturate and the collector of TRD will fall to approximately +0.2 V pulling down the base of TRE and virtually turning off TR1.

Accidental short circuits are thereby limited to approximately 1.5 mpss though this figure may be readily changed by changing R6 such that,
(short circuit current in amps) $\times($ R6 in ohms $)$

$$
\bumpeq 0.7 \mathrm{~V} .
$$

AUTOMATIC CONTROL

Automatic control is achieved by replacing R7 with D1, C3 and R8 as shown in Fig. 4.

Consider first that S2 is open: if a short circuit is applied to the output, the voltage across R6 will be applied via D1 to the base of TRD. The voltage that must be produced across R6 to saturate TRD is now approximately 1.4 V made up of 0.7 V to turn on D1, and 0.7 V the voltage dropped across the base/emitter junction of TR1.

Fig. 4. The complete circuit diagram of the Train Controller.

TRAN CONTROLLER

Fig. 8 (below). Details of the heatsink bracket for securing TR1. Mica washer and insulating bushes must be used.

Fig. 7 (above). The layout of the components on the top side of the printed circuit board. Note the polarity of the diodes and the integrated circuit.

The value of R6 should be selected accordingly.
Assume that the control VRl is adjusted centrally to give a $1: 1$ mark-space ratio and that a train is running to a signal set at stop.
If S 2 is closed, C3 will charge slowly via R8. The time constant of C3, R8 is given by t (secs) $=(\mathrm{R} 8$ in ohms $) \times(\mathrm{C} 3$ in farads $)$
With R8 at 100 kilohm this gives $\mathrm{t}=10$ secs.
However, this corresponds to approximately 60 per cent of the charge voltage, or 7 V from a 12 V supply and only approimately 1 V is necessary to operate TRD. The relationship between time and charge is approximately linear so IV will be obtained in one-seventh of the time for 7 V or $10 / 7 \operatorname{secs} \bumpeq 1^{1}{ }_{2}$ secs.
As C3 charges, TRD will gradually pass more current, limiting the pulses from TR1 and after $1^{1}{ }_{2}$ seconds TR1 will be cut off and the train stopped.

Consider now that the signal aspect is changed and that by the use of a parallel switch or a relay, S2 is opened. The charge on C3 cannot pass via DI (reverse biased) and so must dissipate by providing the base current to TRD. As the charge on C3 falls, so the current taken by TRD falls and output pulses from TR1 increase and start the train. After a short period C 3 is virtually discharged and the train runs as in the original condition.

PRINTED CIRCUIT BOARD

The unit is to be constructed on a piece of printed circuit board the full-size drawing of which is shown in Fig. 5. The component layout on the top side of the board is shown in Fig. 6. the only critical positioning being the holes for VR1 and the integrated circuit, ICI via its holder.

Note that R7 is shown (dotted) for initial testing; automatic control is obtained (if desired) by replacing R7 after testing with D1 and C3 wired as shown.

Fig. 5. The full-size master of the printed circuit.

CONSTRUCTION

The printed circuit board should be produced as described in the article Making Printed Circuit Boards, E.E. June 1973.

When the board is ready, drill all the holes with a No. $62-68$ drill bit and then enlarge the holes to take the potentiometer VR1 with a larger drill or small file so that a snug fit is
obtained.
Next solder VR1, the i.c. holder, the resistors and capacitors in position as indicated in Fig. 6. If the automatic control is to be installed leave the leads of R7 long for easy removal later. When this has been done plug in 1 Cl ensuring that it is the correct way round; this is done with reference to the notch at one end of the integrated circuit.

Next make the aluminium heatsink bracket as shown in Fig. 8 for the power transistor TR1 and fix the latter to the bracket via a mica washer and insulating bushes.

Secure the solder tag to the case of TRI via one of its fixing bolts; this is the connection to the collector of TR1 since the casing is internally connected to the collector.

Put some heatsink compound on the bracket where it is to be in contact with the diecast case and tightly bolt the bracket in position.

Fix the other components to the case and wire up as shown in Fig. 9.

Components....

Printed circuit board, size $58 \times 32 \mathrm{~mm}$; etchant -ferric chloride; diecast aluminium case or similar metal case; knob; 16 s.w.g. aluminium; mica washer and bushes for TR1; 14 pin dual-in-line socket.

TESTING

The board should be carefully examined to ensure that the components have been wired up correctly paying particular attention to the polarity of D2 and the wiring to TR1.

Check for short circuits, solder bridges, etc., and that the polarity of the supply is correct.
falls towards zero-and this encourages more current to flow in from the emitter which again makes $R_{\mathrm{b} 1}$ reduce in value. We have, in effect, a sort of positive feedback reaction. The current flowing into the emitter flows out of Cl and the potential at B falls rapidly towards zero. When it reaches almost zero the inflow of current reduces and the resistance of R_{bl} rises back to its original level; the diode again becomes reverse biased and Cl is free to charge up again.

OUTPUTS

The nice thing about a unijunction oscillator is that we have two possible waveforms at our disposal; one approaching a sawtooth at point B

Fig. 10.3. Practical circuit used to demonstrate the operation of the unijunction oscillator. Alteration of C1 varies the frequency, as does VR4 or PCC1, whichever is in circuit. Potentiometer VR1 will also alter the frequency but this will affect the amplitude of the output.

Fig. 10.4. The circuit of Fig. 10.3 wired up on the Demo Deck.

look electronics really mastered

no previous knowledge no unnecessary theory no "maths'

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT

OVER
40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit. computer circuit, basic radio receiver, electronic switch. simple transmitter, a.c experiments. d.c. experiments, simple counter, time delay circuit. servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory--no previous knowledge required. It will also enable anyone to understand how to test. service and maintain all types of electronic equipment, radio and TV receivers, etc.

I.C. Socke			
NEW LISTS LOUDSPEAKERS COILS AND iNDUCTORS TRANSFORMERS (pontags 5p)			
			$\begin{aligned} & 130 \\ & \substack{120 p} \\ & \hline \end{aligned}$
	Transistors \& Integrated Circuits		
Aluminium Boxes			

EXPERIMENTAL CIRCUIT

The experiment-shown in Fig. 10.3 will operate very slowly (several seconds per cycle) if Cl is made to be $50 \mu \mathrm{~F}$ and thus it is possible to monitor the exponential waveform at the emitter on the 1 mA meter movement of the Demo Deck. Alternatively insert a lower value capacitor (two alternative values are suggested) and listen to the sound on Demo Deck's loudspeaker. Fig. 10.4 shows the experimental circuit with audible and visual monitoring wired up on the Demo Deck.

Potentiometer VR1 is included to alter the quiescent potential at the point originally called A. Start with VR1 set with the wiper nearest the positive supply rail and then reduce this voltage by turning the potentiometer down; the
frequency of the oscillator will increase because the level to which the capacitor has to charge is being reduced-the amplitude of the signal will, however, reduce. Adjustment of VR4 will modify the frequency over a very wide range without altering the amplitude.

Substitute PCCl for VR4 and it is possible to make a light controiled oscillator-the basis for an interesting musical instrument if you shade the cell with your hands! An interesting feature of the unijunction is that bl can be interchanged for b2 and the device will still work, but this will be turning the intrinsic stand off ratio on its head and the amplitude of signal will be nothing like as great-try it and see!

Next part: The Hartley Oscillator

B
ecause the electronic component industry is booming private constructors are having difficulty in obtaining some components. It sounds stupid but it's true, the manufacturers have trouble in keeping up with the demands of industry and very often cannot supply the smaller customer. At the present time a number of capacitors are difficult to get and we know some firms have been quoted delivery times months away.

Unfortunately there is nothing that either we or the retailer can do about this situation other than be aware of it and try to help you overcome the problems by finding alternative components. So don't always blame the shop-
keeper-remember that in this business he is at the bottom of a very long list when it comes to supply deliveries from the big companies.

Personal Receiver

The Personal Receiver is likely to fall foul of the problems mentioned above-two of the capacitors may be difficult to get (C3 $0 \cdot 1 \mu \mathrm{~F}$ and $\mathrm{C} 40.05 \mu \mathrm{~F}$, miniature) to overcome these problems we have given an alternative for $\mathrm{C} 3(0.22 \mu \mathrm{~F})$ and we suggest that you use the receiver without C4 until this can be purchased. This will result in some loss of volume as the audio signal will have to pass through R5 instead of being decoupled by C4 but the receiver will work quite well like this.

A marked and drilled printed circuit board for the receiver is available from Valance Electronics, 2A Canel St., Droglesden, Manchester. We believe this firm may also be able to supply the plastic case used.

Finally, remember that this project is fairly small and all the components used should be miniature or very small types as listed in the components box.

Train Controller

It seems strange that this issue contains two projects which use integrated circuits, perhaps it's a sign of the times--no doubt these devices will be feazured more and more in our projects as
the months go by. We suggest that you use a socket for mounting the ic. in the Train Controller so that this can be soldered in without fear of damage to the i.c.

The electrolytic capacitor used should be a printed circuit type and the right size component is available from Electrovalue, 28 St . Judes Fioad, Englefield Green, Egham, Surrey.

It is mentioned in the text that a metal case should be used as this forms a heat sink for the power transistor. Diecast boxes of the appropriate size are available and should make excellent cases for this project. If you pa.nt the case remember that darker colours dissipate the heat better.

Aquarium Thermostat

We had better not praise the Aquarium Thermostat too much, someone might notice who wrote the article! In fact, it is difficult to say much about it since most of the components are generally available. The transformer should be available from most electrical shops or Woolworths. The thermistor can be obtained from most of the larger suppliers, while the relay is available from G. W. Smith should other sources fail.

The heater used with the prototype was a standard one sold for aquarium use. Incidentally, too large a neater (wattage size that is) will result in a poor constant temperature.

Bulb Resistance

I measured the resistance of a $6 \mathrm{~V}, 0.04 \mathrm{~A}$ bulb and was surprised to see it was much lower than expected. To pass 40 mA with 6 V applied, it should have a resistance of $\frac{6}{0.04}=150 \mathrm{ohm}$ but mine was round about 80 ohm. Is this a "rogue" lamp?

No. The tungsten filament in the bulb has what is called a "positive temperature coefficient of resistance". This means that when it is cold it has a lower resistance than when hot. The current stated for the bulb is that which it draws when it has got up to its working temperature-well over 1,000 degrees Centigrade.

Screening

Could you explain-in simple terms-how a screened lead pre. vents hum pick up?

Hum pick up is often caused by capacitive coupling between a wire and mains wiring in the same area. If you surround the wire in question with a shield (the screen) capacitive coupling will be between the mains lead and this screen. If the latter is connected to ground the potential of the screen remains constant and the capacitively induced current runs straight to ground. According to Faraday (his ice pail experiment) no charge can be induced on a totally enclosed body and as the conductor wire
is now totally enclosed by the screen it will pick up no hum.

Output Stage

In the days of valves we had to drive loudspeakers with trans. formers but it seems as though this is not necessary with transistors. Why is this so?

Valves operated by controlling quite high voltages at small currents while loudspeakers - because of their low coil resistances need high current at quite low voltages. If you assume that there is conservation of power between input and output of a transformer it is an excellent device for converting from high voltage swings at low current to low voltage swings at high current. This is why they are used in valve circuits.

On the other hand transistors are basically current controllers and consequently are able to handle low voltages at reasonable currents directly and there is no need to use transformers in most cases. It is, of course, highly desirable to remove transformers from circuits because they are bulky and are never perfectly efficient: they also introduce a degree of distortion that had to be overcome with quite complicated circuitry in the old valve days.

Smoothing

In the old days I used to use chokes for smoothing but never see these in modern equipment. Are they not as good as the modern approach-which seems to use a resistor?

The resistor between the two capacitors in a smoothing circuit is not as good as the "old fashioned" choke because it is inefficient (wastes power) and the smoothing effect is not so good.
However, these days when we use transistors in most equipment the current that is drawn from the power supply tends to be very high (compared with that taken by equivalent valve circuitry) and to prevent the core of the choke becoming "saturated" it would be necessary to have a large amount of iron. Not only this but the windings would have to be of stouter wire to carry the higher current. Consequently chokes would be very expensive and far too cumbersome in modern systems. One
of the sacrifices in quality we have to make for the convenience of modern living?

Wiring Layout

Why is it that some of your articles say "layout" is important? Surely a wire is a wire and provided it goes to the right placeirrespective of position-then all is correct.

Layout is not always important but in some cases it is. More particularly when the circuit is dealing with high frequencies. All connecting wire-even if it is straight-has a small amount of inductance. This can modify the tuning of radios and introduce reactance where it is not wanted.

There is always a degree of capacitance between a wire and neighbouring components-it may only be small but at very high frequencies this small capacitance can transmit small a.c. currents. These currents might cause positive feedback-making the circuit oscillate-or negative feedback which reduces the gain of the system. You can also get inductive coupling.

In a.c. circuits it is good practice to keep wire lengths as short as possible and to separate input circuits from output circuits. Sometimes neat "loomed" wiring makes matters worse because the bundling together of the wires makes the inter-wire capacitive coupling greater. Generally speaking there are no problems with simple d.c. and logic circuits unless they are operating at very high speeds.

"But dad, the article in here says it's so simple to strip down that even a child could do it."

BIPPREPAK

SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

COMPLETE TELEPHONES

MAKE A REV COUNTER FOR YOUR CAR

 cor with

EX G.P. NORMAL
HOUSEHOLO TYPE ONLY E1.05 post \& packing tsp each TELEPHONE DIALS
 ONLY 27 ${ }_{2}^{\prime} \mathrm{P}$

1,000,000

TRANSISTORS IN STOCK
We hold a very large range of fully marked tested and fuaranteed eransistors, powe
eransistors. ciodes and rectifiers at very eransistors, ciodes and rectifiers at very
competitive prices. Please send for free competitive prices. Please send for fre
catalogue.
600,000
Silicon planar plastic eransis tors. Unmarked. uncested tampling showed these to be of remarkably
high qualicy.
Audio PNP. sımilar to ZTX500, 2N3702/3 BCY70 elc.
Audio NPN, similar to ZTX300, 2 N3708/9.
BCIO7/8/9, BCI68/9 erc.
Please state Audio NPN or Audio PNP when
ordering.
ALL AT 500 for $\mathbf{6 3}$.30, 1.000 for $\mathbf{6 5} 50,10,000$
OUR VERY POPULAR 4p TRANSISTORS
TYPE "A" PNP siticon alloy, TO.S can.
TYPE "E". PNP silicon, plastic encadsulation
TYPE "E" PNP Germanoum AF or RF.
TYPE "F" NPN Silicon plastic encapsulation.
TYPE "G" NPN silicon similar ZTX 300 fan.
TYPE "H" PNP sificon similar ZTX SOO range

Our famous PI Pak is still leading in value for money
 cuarance at least 30 ecally high qualit
lactory marked Transistors PNP \& NPN and a host of Diodes \& Rectifiers moun ed on Printed Circust Panels. Idensifica tion Chart supplied to give some
information on the Transistors Please ask for Pak P.I. Only 55p. Please ask for Pak P.l
IIpP\& P on this gak

A MUST for Colour T.V. Alignment.

electronic transistorignition

Now in bit lerm, we ofler this "up to the min,
ute" eligclicnic ignition system. Simple Io make, till mstructions supplied with these Transistor and conting
Transistor and conventional switchablity. hegative an+1 posifive compalability. This proiect is a "slas" feature in the Seplenteet edilion of Eleclionics Today International" magatine available from Aug. 10 m . Our $4 i l$ is recommended by the ETI magazine.
Complele stl including p\& p 5792
Complefe klt including ps p $£ 792$

100,000

NOW IN TWO RANGES
These are 10 W and 90 W sticon Platik Power
Transistors of the very latest desich. avalable in
PPPN or PNP at the moss shatteringly low prikes of PNP or PNP at ehe moss thatteringly low prizes - Hersity so all parts of the world and we are proud so - Her shem under our Tested and Guaranterd termo kance 1. Vee Min 15. HFE Min 15.120 $\begin{array}{cccc}\bullet 0 \text { Wati } & 1-12 & 13-25 & 26-50 \\ 90 \text { Watt } & 12 p & 30 p & 18 p \\ & 2610 & 2410 & 220\end{array}$

 llp exera per palr. Pleaso stace NPN of PNP on

Wo nock a largegranted ciacuits prices (from Ilp each). These are vell tivend in our FREE Catalosue, seo coudon below
METRICATION CHARTS now available This fantaskically decailed conversion saleulator Iungh, area volume, liquid measure, weichtis el
Pocket Sias isp. \quad Wall Chart IBp.

SOCKETS
If pin eype as 1610 each is Now new low profile pin eype as 18p each\} 'rype
W. have a larse BOOKS Technical diooks in stock.
These are inst ewo of our popular lines
E,P,I Transistor Equivalents and
This includes; many thousands of British U.S.A., European and C.V. equivalents

The lliffe Radio Valve \& Transistor
Cata Booh 9th Edition: p. \& p. 231p. Characeeristics of 3.000 valves and eubes.
4.500 Transistors. Diodes. Rectifiers and 4.500 Transistors. Diodes. Rectiffers and Integrated tifcuits.

YATES ELECTRONICS
 (FLITWICK) LTD
 DEPT. E.E., ELSTOW STORAGE DEPT. KEMPSTON HARDWICK, BEDFORD.

C.W.O. PLEASE. POST AND PACKING PLEASE ADD IOP TO ORDERS UNDER Q

Catalozue which consains data sheats for most of the components listed will be sent fres on requess Op stamp appreciated
OPEN ALL DAY SATURDAYS
Please add 10\% VAT

RESISTORS

+W lakra high stability carbon film-veryl ow noise-capless construction. WW Mullard CR25 carbon film-very amall bodysize $7 \cdot 5 \times 2 \cdot 5 \mathrm{~mm}$. $\mathrm{FW} 2 \%$ Electrosil TR5.

Power wates	Tolerance	Range	Values available	$\underset{1-99}{\text { Price }}$	$100+$
t	5\%	4.7S-2.2M	E24	$1.0 p$	$0 \cdot 8$
\%	10\%	$3.3 \mathrm{M} \Omega-10 \mathrm{M} \Omega$	E12	1.00	0.8
t	2\%	10ת-1M	E24	3.5p	$3.0 p$
t	10\%	$1 \Omega-3.90$	E12	1.0p	$0 \cdot 8$
t	5\%	4.7R-1M	E12	1-0p	0.8
4	10\%	18-10n	El2	6^{6}	5.5p

Quantizy price applies for any selection. Ignore fractions on zotal order.
DEVELOPMENT PACK

POTENTIOMETERS
Carbon track $5 \mathrm{k} \Omega$ zo $2 \mathrm{M} \Omega$, log or linear ($\log t \mathrm{~W}$, lin $\dagger \mathrm{W}$).
Single, 12p. Dual gang (stereo), 40p. Single D.P. switch 24p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades $s 05 M \Omega$. Horizontal or versical P.C. mounting (0.1 matrix).

TRANSISTORS

BRUSHED ALUMINIUM PANELS
$12 i n \times \sin =25 p ; \quad 12 i n \times 2$ tin $=10 p$; 9 in $\times 2 i n-7 p$.

SLIDER POTENTIOMETERS
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of erack 59 mm .
SINGLE 10K, $25 \mathrm{~K}, 100 \mathrm{~K}$ log or lin. 40p.
DUAL GANG, $10 \mathrm{~K}+10 \mathrm{~K}$ etc. log. or lin. 60 p .
KNOB FOR ABOVE 12 p .
18 Gauge panel $12^{\circ} \times 4^{\circ}$ with slozs cut for use with slider poss. Grey or mats black finish complete with fixings for 4 pots.

THERMISTORS

VA1055S VA10885

VAl0665
VA1077
VA10
R53
41.35

THYRISTORS 2 N5060 50V 0.8A 30p. 2N5064 200V $0.8 A$
400 V 1A $25 \mathrm{p}, \mathrm{CRSI} / 40$

106 F $\begin{array}{lll}400 \mathrm{~V} & \text { IA } & \text { 25p. } \\ 50 \mathrm{~V} & 106 F \\ 40 \mathrm{~A} & \text { 40p. } & 106 \mathrm{D}\end{array}$ | 50 V 4 A 40p. |
| :--- |
| 400 V 4 S |
| 1 p |

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{FF}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033_{\mu} \mathrm{F}, 0.0047 \mu \mathrm{~F}, 2+\mathrm{p} .0 .006 \mathrm{H}_{\mu} \mathrm{F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F} .3$ p. $0.047 \mu \mathrm{~F}, 0.068 \mu$ F, $0.1 \mu \mathrm{~F}, 4$ p. $0.15 \mu \mathrm{~F}, 6 \mathrm{p} .0 \cdot 22 \mu \mathrm{~F}$, 7tp $0.33 \mu \mathrm{~F}, 11 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{FF}, 0.022 \mu \mathrm{~F} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F}$ 3+p. $0.15 \mu \mathrm{~F}$

MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P. C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{P} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$
 $1-5 \mu F, 20 p .2 \cdot 2 \mu F, 24 p$.
MYLAR FILM CAPACITORS IOOV | CERAMICDISCCAPACITORS

100 pF to $10,000 \mathrm{pF}$. 2p each
ELECTROLYTIC CAPACITORS-MULLARD OI5/6/7 RANGE
REPLACES C426, C487 RANGES
 $\begin{array}{lllll}15 / 63, & 22 / 10,22 / 25,22 / 63,33 / 6,3,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,47 / 63,68 / 6 \cdot 3 \\ 68 / 16,100 / 4,100 / 10,100 / 25,100 / 40,150 / 6 \cdot 3,150 / 16,150,25,220 / 4,220 / 1, ~\end{array}$ 68/16, $100 / 4,100 / 10,100 / 25,100 / 40$, $150 / 6$. 3, $150 / 16$, $150 / 25,220 / 4,220 / 10,220 / 16$
 $470 / 40$ p. $680251000 / 161500 / 10$ 2200 25, 680/. $220 / 63$ $4200 / 10,3300 / 6 \cdot 3,4700 / 4$. 18p. $2200 / 6 \cdot 3,15 p .330 / 63,680 / 40,1000 / 25,1500 / 16,1$

SOLID TANTALUM BEAD CAPACITORS

$0.1 \mu F$	$35 V$
$0.22 \mu F$	$35 V$
$0.47 \mu F$	$35 V$
$1.0 \mu F$	$35 V$

| $2.2 \mu F$ | $35 V$ |
| :--- | :--- | :--- |
| $4.7 \mu F$ | $35 V$ |
| $6.8 \mu F$ | $25 V$ |
| $10 \mu \mathrm{~F}$ | $25 V$ |

$22 \mu \mathrm{~F}$	$16 V$
$33 \mu \mathrm{~F}$	10 V
$47 \mu \mathrm{~F}$	$6.3 V$
$100 \mu \mathrm{~F}$	$3 V$

VEROBOARD
2
2
21×31
21
3
31
$17 \times$
$17 \times$

JACK FLUGS AND SOCKETS			
Standard screened	18p	2.5 mm insulated	p
Standard insulated	12p	3.5 mm insulated	p
Stereo screened	35p	3. 5 mm screened	$13 p$
Standard socket	15p	2.5 mm socker	-p
Stereo socket	18p	3.5 mm socket	\%p
D.I.N. PLUGS AND SOCKETS 2 pin, 3 pin, 5 pin 180°, 5 pin $240^{\circ}, 6$ pin PluE 12p. Socket हैp. 4 way screened cable 15 p/metre			
BATTERY ELIMINATOR 4.150 9 V mains power supply. Samo size as PP9 battery			

17×3
17×5 (plai
17×3 (plain)
17×31 (plain)
$17 \times 2+$ (plain)
$17 \times 2+$ (plain)
$2+\times 5$ (plain)
2in insertion tool
52p
$\begin{array}{lll}\text { Spot face cutter } & \text { 42p } & \text { 52p } \\ \text { Pke } 50 \text { pins } & \text { 42p } & \text { BATTERY ELIMINATOR }\end{array}$

- 50
ery

LARGE (CAN) ELECTROLYTICS

L600 15 F $2500 \mu \mathrm{~F}$
$2500 \mu \mathrm{~F}$ $2500 \mu F$
$2500 \mu F$ $2800 \mu \mathrm{FF}$
$100 \mathrm{~V} \quad 42.60$
$3200 \mu F$
$4500 \mu F$
$4500 \mu F$
$4500 \mu F$
$4500 \mu F$
$5000 \mu F$

16 V	$30 p$
16 V	50 p
25 V	41.68
50 V	41.10

POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \mathrm{t} \%$
IOpF to $1,000 \mathrm{pF}$ E12 Serles Values
10pF to $1,000 \mathrm{pF}$ E12 Serles Values 4p each.
SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is zhe World's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases ies electrical resistance when meshane, propane, alcohol. North Sea gas, as well as cerbon-duse containing air or smoke. This decrease is usually large enough to be utilized without amplification Full details and circuits are supplied wish each detector.
Detector GDI. ©2. Kit of parts for detectors including GDI and P.C. board bu excluding case. Mains operated detector $55 \cdot 20.12$ or 24V battery operated audible alarm 67.30. As above for PP9 batrery, 6640.
PRINTEDBOARD MARKER
Draw the planned circuit onto a copper laminate board with the P.C. Pen, allow to dry, and immerse the board in the etchant. On removal the circuit remains in high relief.

PARKERS SHEET
 METAL FOLDING MACHINES heavy vice MODELS

With Bevelled Former Bori

No. 1. Capaciry 18 gauge mild steel A $36 i n$, wide
(1) 00 carr. 50p No. 2. Capaciey 18 gauge mild seeel $24 i \mathrm{in}$. wide
612.00 carr. 38p No. 3. Capacity 16 gauge mild steel $\times 18$ in. wide 612.00 carr. 38p Also new bench models. Capacities 36 in . $x 18$ gauge $\mathbf{~} 35.0024 \mathrm{in}$. $x 16$ gauge ©32.00. Carriage 75 p . Add 10% VAT to total price of machine 8 carriage.
End folding aetachments for radio chassis. Trey and Box making for 36 in model. 27 tp per fe. Other models i7t p. The ewo smaller models will form flanges. As supplied to Government Departments. Universicies, Hospitals.
One year's guarantee. Money refunded if not sotisfied. Send for detoils.
A. B. Panken, Folding Machine Works,

Upper George St., Meckmondwike, Yorks. Meckmondwike 397

Abstract

"In published circuits a volume control is sometimes connected as in Fig. la, with the input to the slider, and sometimes as in Fig. lb, with the output from the slider. Which method of connection is correct?"

The short answer is: when the output from the volume control is connected to a low impedance load, use Fig. la. For high impedance load, use Fig. lb.

The essential point is that a volume control doesn't exist in isolation. The way it works in a practical circuit depends on what comes before it and what goes after it. Disregard this simple fact and you may end up with a control which has no effect as it is turned until the slider is very nearly at the end of the track, whereupon the volume suddenly changes from minimum to maximum. What's known to the trade as a "fierce" control.

ENDS AND MEANS

The circuit of Fig. 2a is a case in point. With the slider at the start (s) of the track, the signal (here 1 volt from a source of 100 ohms) is shorted, so the output is zero-the output in this case being the voltage which appears across the 1 megohm load resistance. With the slider at the finish (f) of the track, the signal source is connected to the total resistance of the track (100 kilohms) in parallel with the load ($1<$ megohm), i.e. about 90 kilohms.

When current flows, only a small amount of the 1 volt signal is lost in the signal-source's own internal impedance of 100 ohms (it might be a 100 ohm micro.

Fig. 1. Two common ways of connecting a volume control.
phone, for instance) and practically the whole 1 volt appears across the load R_{L}. In a word, volume is maximum.
So the volume is zero with the slider at s and maximum with the slider at f. This is alright if you only want to operate your equipment at maximum volume, but not for intermediate settings.

CALCULATE

First, calculate, or at any rate get a rough idea of the current through the load when tne slider is at f. As we saw, the voltage across the load is almost 1 volt, so 1 micramp flows. Now move the slider back to the bottom (s) of the track and then adjust it so that there's just 1 kilohm between slider and earth. What current flows?
Well. obviously the current from the source divides at the slider, part flowing up and through the load and part down to earth. But since there's nearly 1100 kilohm in the upper path (1 megohm plus 100 kilohm) and only 1 K in the lower, we can safely say that the lower path has the controlling effect and forget about the upper.

For practical purposes, the signal "sees" a load of its own 100 ohms plus the 1 kilohm between slider and earth: in other words, the total resistance is 1100 ohms, which with 1 volt gives a current of 0.9 milliamps

Fig. 2. Fierce (a and c) and gentle (b and d) volume controls.

REiviember TO USE THE POSTCOLE Readers Letters

Simplified

Would it be possible to give me a brief description of the Demo Deck as I unfortunately missed that particular issue. I am now taking EE regularly, and I find it more suitable at my age (I am 75 yrs old), having started back in the old cat whisker days. 1 find the other publications a bit too complicated but interesting, what with all this hifi etc.. which is a vast improvement on the old methods of valves and corner wall baffles etc. The explanations in EE are also much plainer, this must suit the younger people
also, making it easier to grasp. The gadgets for the home are a great attraction for experimenting with, and your simple circuits require less time to make. Hoping you will carry on providing even more simplified versions.
E. Skidmore

Birmingham.
The Demo Deck will no longer feature in our pages. It has been used since December '71 and can still be used by readers for experimenting. The new beginners series Teach-In '74 will not be based on the Demo Deck.

Radio Amateurs

I write to ask that a brief item be inserted in Everyday Elec. tronics re. the amateur radio course run by the Northumberland County Education Dept., at Gosforth, very near to Newcastle upon Tyne.
The course to prepare students for the R.A.E. (Radio Amateurs Examination) in May/June 1974 will be run at the Grammar School, Gosforth, Northumberland, commencing in September 1973.

Held on Tuesday/Wednesday of each week from 7 pm to 9 pm . candidates may sit the R.A.E. at the School.

Enquiries should be addressed to the Principle. Gosforth Grammar School, Northumberland, who will forward a prospectus. Or further information can be had by telephoning Gosforth 851000 .
I take the class and your cooperation in this matter would be appreciated.
D. R. Loveday.

Newcastle upon Tyne.

1 find etching p.c. (printed circuit) boards takes a long time, to speed up the process all that is needed are two match sticks. Make up the etchant in the usual way, but before putting the p.c. board in the etchant dish, put the two match sticks in, parallel but some distance apart. The board rests on the match sticks keeping it away from the bottom of the dish.
The dish can now and again be rocked gently to and fro, all the dissolved particles of copper fall to the bottom of the dish and fresh etchent can start to dissolve the rest of the copper away.

> J. Majchrowski.
> Ayr.

Having made nu nerous projects I always find that the front panel or fascia presents a problem with respect to labelling. Engraving and "silk screen printing" being very expensive for the home builder and Dymo labels not giving a suitable appearance. I think the method I have adopted might be of interest to many other readers.

The process is as follows:

1. Drill all holes and slots in the required positions.
2. Spray the panel the desired colour using an aerosol spray.
3. Add the lettering using Letraset or Magic Letters, these need no more than placing on the panel and rubbing with a ball point pen to transfer each letter to the panel. A sheet of graph paper suitably placed and tacked in position lightly with sellotape, helps in keeping letters in alignment.
4. When satisfied that all is correct, a sheet of clear self adhesive film (available at W. H. Smiths) is rolled onto the panel starting at one end and making sure no air bubbles are left. If, accidentally an air pocket is made do not attempt to pull the film of but carefully pierce the bubble with a pin and roll again from the edges of the bubble towards the pin hole. The edges of the film should be left large enough so that they can be turned over and stuck to the reverse side of the panel so that with use the edges will not curl.
The finished panel viewed from a foot or so cannot easily be distinguished from a panel which has been silk screen printed. The surface is easily cleaned with a damp cloth and gives projects the professional finish.

> A. Evans,
> Portsmouth.

ALL PRICES SHOWN INCLUDE V.A.T.

SWITCHES

Standard roegle awitches: $5 W 20$
5.P.S.T. 20 : $5 W 21$-DPD. 2540 . Miniature tosgle witcher: SW18Sliderawitches: SW3-D.P.D.T., Istp. Miniature puah butzon: SWI-5.P. 14 $\ddagger \mathrm{p}$.
Foot operated ewitch: SWI2-
S.P.S.T., 469.
Door awitch: SWI 4 5. P. Press for on. 20 p .
Wafer awlechon (rotary)-264p each.
SW4-1 pole. 12 war.
SWS-2 pole, 8 way.
SW6-3 pole. 4 way.
SW7-4 pole, 2 way
SW8-4 pole. 3 war

GROOV-KLEEN

de luxe model 42. 41.83.

Abstract

MICROPHONE A very neat, sen- sitive microphone for hand or table use. Complete with lead and 3 mm plut 41.00 .

DYNAMIC MICROPHONE UD 130HL
This sensitive, qualizy microphone unidirectional and is complere wish mure switeh and 20 feer of cable and
plus. $100-12.000 \mathrm{~Hz}$. Dusi impedance 600 n and 50 kn
66.60, plus 24p P. \& P.
 MINIATURE
SPEAKERS
2 tin. $8 \Omega \quad$ All
$2 \operatorname{lin} 8 \Omega \quad 71 p$ each
$2 \operatorname{lin} 80 \Omega$

MAINS ISOLATING TRANSFORMERS In your bench safel Brand new. Hinchley. 200W, Pully shrouded. Pri. 240V: Sec. tapped $210-243 \mathrm{~V}$. At a 43 50 plus 72 p p. R p .

LAMP FLASHERS

 240 VConnect in series with lamp supply 80 flash approx. once per second

EA 1000 BARGAIN
This popular 3W amplifier complete with comprehen. sive data book showing ircuits for mono.. stereo sone conirols. power supply. only 62.35 , plus 13p P. \& P.
 Input: modula inpue: 3 mm inzo
lokg for low $40-16,000 \mathrm{~Hz}$. Output: 3-8-18 1 Power Supply 12 V 44.70 plus $24 p$

PANEL NEON INDICATORS 240 V
N1-Round, 9 mm diameser, 33 p . N3-Round, 18 mm diameter, $28+\mathrm{p}$

CASSETTE ACCESSORIES

 Head$34 p$.
34p.
Cassette rack with teak ends, holds 10 cassetres in library cases. 72p, plus 12p

CONNECTING WIRE PACK

Contains 30 feet of stranded wire. colours per pack. I 1 p

RESISTORS

Carbon film
AW 5\%. high-seability, El2 values. Wire-wound
5W, 11p; 10W. 13p.

CONSOLE CASES

In plain aluminium, ideal for mixers.

CAR-CASSETTE VOLTAGE STABILISERS
PUI2 for Philips and similar cassetce recorders. Gives $7!\mathrm{V}$ stabilised output when connected car circuit. Ficted wish 5 pin. 240° plue. 43.55 plus $16 p$ P. A P. Puil26, as above, but for 6 V record. coaxial power connecror. 83.55,
plus $16 p$ P. p

MAINS POWER SUPPLY

 PP75 for Philips andsimilar cossette recorders. similar cossette recorders.
Input 240 V a.c.; output $7+V$ dic. Fizzed with
5 pin. 240 plus. 42.15, 5 pin. 240 plu
plus 16 p P. P .

ALUMINIUM BOXES

plastic BOXES

for constructiona wrojects. White. BPI 4 ins x 3ins ? 1tins-37p. 8p2 6ins
2 tins- $37 p$. 2tins-37p.

CATALOGUE
 15p
 POST FREE

SCREENED CABLES

Single for mics, audio leads, ere. Sto yo
Stereo, two cores, individually screened 11 p yd
Four core with common screen 23 p yd
Four core, individually streened 30p yd.
Coiled screened loads, 20 feet long \&l.os each.

PLUGS

Car aerial
Co-axial
D.I.N. 2 pin (speaker)
D.I.N. 4 pin

DIIN. 5 pin. 180°
DIIN 5 pin,
erases a whole reel of
lape in seconds. 240 V
C2.20, Flus instructions.

Jack, $2 \not \mathrm{~mm}^{6}$
Jack, $2 \not 2 \mathrm{~mm}$ unscreened
Jack, 3 mm screened
Jack, 34 mm unscreened
Jack, 3fmm screened
Jack, tin unscreene

SOCKETS
Jack, sereo. unsereened
Jack, stereo, screened
Phono, plastic top
Phono, plazed metal
Warider, red or black
LINE SOCKETS
Car aerial
Co-axial
D.i.N. 2 pin (apeaker)
D.I.N. $\frac{2}{3}$ pin
DI.N. 5 pin, 180
D.i.N. 5 pin, 240
lack, tin screened
Jack, stereo, screened
Phono. plated mezal

IT'S SO SIMPLE WITH
 THE P.E. AUDIO

I.C. IDENTICHART

Containing details of over 80 currently used audio integrated circuits, the FREE chart gives suggestions ranging from low level preamplifiers to hybrid power amplifiers rated up to 50 watts. Remember, using i.c.s. in mixers, tape recorders, record players is easy and saves cost as well.

HAVING TROUBLE
 WITH
 SEMICONDUCTORS?

Why not build a SEMICONDUCTOR TESTER? It will enable you to select-compare-match and measure your transistors, diodes, thyristors and unijunctions.

WHAT DO YOU KNOW ABOUT

PHASE LOCKED LOOPS?
Next month P.E. starts a new series of articles explaining all the mysteries behind the latest broadcast reception techniques.

Would you spend anhour aday to earn more money in Electronics-Television-Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.

And if you're already in, we can help you get on!
With our know-how and our wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success. Once you've got the qualifications you need, you'll be in a good position to take full advantage of the opportunities which exist today in all fields of electronics - in television (colour and black/white) and in radio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve receiver, transistor portable and high grade test instruments).

With ICS you study at home - at your own pace, when you choose, in the time you've got available. Your ICS tutors will give you all the help and encouragement you need to pass any exams you want to take.

Don't waste another day. Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

- your key to the door of opportunity

. Accredited by the Council for the Accreditation of Correspondence Colleges

Sinclair Project 60

New performance standards

 ...new safety
margins

Such are the results of using a PZB Mk. 3 to drive iwo $Z .50 \mathrm{Mk} .2$ power amplifiers. Developed from the original 250 . the Mk 2 has improved thermal stability, better regulated D.C. limiting to ensure more symmetrical output voltage swing with sill less distortion at lower outputs and automatic transient overload protection. The PZ.8 Mk. 3 is the most advanced power supply unit ever to be made at a reasonable price. It cannot be damaged by direct shorting. nor witl it fall through overloading. because of an ingenious re-entrant current limiting principle used usually only in expensive laboratory equipment. Because output voltage is variable, the PZ8 Mk. 3 makes a worthwhile alternative where PZ 5 and PZ.6 are recommended for Project 60 applications. particularly since this most powerful of all Sinclair supply units can be operated from a smaller mains transformer. Together, the Z 50 Mk 2 and PZ8 Mk 3 provide new standards of performance and reliability and these modules are compatible with earlier types in the Project 60 range.
Z.50 Mk. 2 SPECIFICATIONS

Input impedance $100 \mathrm{~K} \Omega$
Input (for 30 w into 8 亿) 400 mV
Signal to noise ratio, referred to fult o/p at $30 v \mathrm{HT} 80 \mathrm{~dB}$ or better
Distortion 0.02% up to 20 W af 8 . .
See published curve
Frequency response 10 Hz to more than 200 KHzt 1 dB
Max. Supply voltage $45 v$ (4Ω to 8Ω speakers) (50 V 15 n speakers only)

Min. supply voltage 9 v
Load impedance - minimum: 4Ω at $45 v \mathrm{HT}$
Load impedance - maximum: safe on open circuit

C5.48- V.A
PZ.8 Mk. 3 SPECIFICATIONS
Nominal working output 45 V . Adjustable between 20 \& 50 V

Mains Transformer E5.98 + VA T. 59p

Other power supplies

In addition to the remarkable Sinclair PZ.8 Mk.III as described. there are two other power units avaitable. which should be chosen according 10 their types in order 10 buy to best advantage. All are for operation from A C. mains 240 V .
PZ. 530 volt, unstabilised
£4.98
PZ. 635 volt. stabilised (Not suitable for Super IC.12). . £7.98

+ VAT 790

Guarantee

11. within 3 months of purchasing any product direct from Sinclair Radionics Lid, you se disatithed with it. your money will be refunded at ance. Many Sinclair appointed Siockists also offer this same guarantee in co-operstion with Sinclair Radionics Lid

Each Project 60 module is tes ted betore leaving our faction and quaranteed to work perfectly. Should any defect arise in normal use. we wili service it at once and without any charge domage arises through miss-use No chasge is made for postage by surface mail Aur Mail charged at coit.

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record plaver	2.50	Crystal P.U.. 12 V battery volume control, etc.	$\begin{aligned} & \mathbf{£ 5 . 4 8} \\ & - \text { VAT } 540 \end{aligned}$
Mains powered record player	2.50, PZ.6	Crystal or ceramic P.U. volume control.eic.	$\begin{aligned} & £ 10.46 \\ & + \text { VATE104 } \end{aligned}$
12W. RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times 2.50, \text { Stereo } \\ & 60: P \mathbf{Z . 5} \end{aligned}$	Crystal, ceramic or mag. P.U., F.M. Tuner, etc.	$\begin{aligned} & £ 25.92 \\ & \text { VA } 59 \end{aligned}$
25W. RMS continuous sine wave stereo amp using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.50 . \text { Stareo } \\ & \text { 60;PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U. F.M Tuner, Tape Deck, etc	$\begin{aligned} & £ 28.92 \\ & \vee A T \\ & £ 289 \end{aligned}$
BOW. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	$2 \times 2.60 \mathrm{Mk} .2$. Stereo 60; PZ. 8 Mk. 3 transformer	As above	$\begin{aligned} & £ 34.90 \\ & £ \vee A T \\ & £ 349 \end{aligned}$
Indoor P.A.	Z.50 Mk.2. PZ. 8 Mk. 3 transformer	Mic., guitar, speakers. etc., controls	$\begin{aligned} & \text { £19.44 } \\ & +\quad \text { VAT. } £ 1.94 \end{aligned}$

[^1]SINCLAIR RADIONICS LTD., LONDON RD., ST. IVES, HUNTINGDONSHIRE PE17 4HJ Telephone: St. Ives (0480) 64311 Telex: 32250 Reg No, 699483 England

the world's most advanced high fidelity modules

Q. 16 high fidelity loudspeaker

The 016 employs original and by now well proven acoustic principles in which a spectal diver assembly is meticulously matched to a uniquely designed cabinet. In performance it comfortably stands comparison with very much more expensive loudspeakers. A solid teak surround is used with a special all-over cellular black foam front chosen both for its appearance and ability to pass all audio frequencies without masking.

Specifications

Construction: A sealed seamless sound or pressure chamber is used with internal baffle, and special high flux driver
Loading: Up 1014 watts RMS. into 8 ohms Frequency response: From 601016.000 Hz
Size and styling: 248 mm square $\times 120 \mathrm{~mm}$ deep
($91^{\prime \prime} \times 42^{\circ}$) with neat pedestal base.

$£ 7.70 \stackrel{\substack{\text { v.a.T. } \\ \text { V/p }}}{ }$

Stereo 60 pre-amp/control unit

> Designed specifically for Project 60 systems, the Stereo 60 is equally suitable with any high quality power amplifier Silicon epitaxial planar transistors used throughout ensure high signal. to-noise ratio and excellent tracking between channels. Input selection is by press buttons, with accurate equalisatıon on all input channels. The unit is easy to mount

AFU filter unit

$£ 5.98$

+ V.A.T. 59p

Super IC. 12 megerata atroum
high fidelity amplifier
contaned wittun a 16 lead DIL package, and the

Having introduced Integrated Circuits to hi-fi constructors with the IC. 10 . which was the first time an IC had ever been made avaitable for such purposes. We followed it with an even more purposes. We ion owed 11 with an even more
efficient version, the Super IC.12. This needs efficient version. the Super IC.12. This needs
very few external resistors and capacitors to very few external resistors and capacitors to
make an exceedingly efficient hugh fidelity amplifier for pick-up. F.M. radio or small P.A set up etc. The frbe 40 page manual supplied detaits many other applicatoons which this remarkable IC make possible. The Super IC. 12 is the equivalent of a 22 transisio
inned heat sinix is sulficient for all likely require ments. The Supet IC. 12 is also compatible with hose Project 60 madules which would be used with the 2.50 and $Z .30$ amplifiers. Complete with tree manual and printed circult board

SPECIFICATIONS

Output power: 6 watts RMS continuous (92 Watts peak) into 6-8 \cap Frequency Response 5 Hz to $10 \mathrm{CKHz}=1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1\% (Typical 0.1\%) as al output powers and frequencies in the audio hand (28V). Load Impedance: 3 10 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain: 90dB (1.000,000,000 trmes) after feed back. Supply Voltage: 6 to 28 V . Quiescen current: 8 mA at 28 V Size: $22.45 \times 28 \mathrm{~mm}$ ncluding pins and heat sank.
Manual avallable separately 15 p posifree

> With FREE printed circult board and 40 page mannul. $\mathbf{E 2 . 9 8}$ V.A.T 29p

Project 605

For the many audio enthusiasis anxious to build to high standards without too many involve merts. there could be nothing better or simple than Project 605. It offers the advantages o Project 60 and is absolutely complete down 10 the last piece of wire cut to length. Whilst nat as powerful as assemblies using 2.50 power amplifiers we know from expentence that there are many for whom the specifications of Project 605 are ideal. particularly in relation 10 the environment in which it is required to be used In Project 6C5 you have everying necessary 10 bulld a versatile Project 60 thirty watt high fideloty ampl fier system suitable for all domestic requirement: The convenient pack includes iwo Z.30 power amplifiers, a Stereo 60 pre-amp con trol unit and the special Masterlink unit to and from which all input and output connections are made. For power a PZ. 5 is provided. Bulding is partocularly easy since all necessary leads are supplied colsur coded. cut to length and termin atec by contact clips which connect firmly to the modules. There is absolutely no soldering to be done. Complete with comprehensive. easy 10 follow instructions manual

£29.95

Send coupon for leaflet

Please send leaflet and name and address of my nearest Sinclair stockist

Name

Adcress

SINCIAIR RADIONICS LTD.. LONDON ROAD ST. IVES. HUNTINGDON PE1 7 4H」
ST.

CRESCENT Reno to
 COMPONENTS AND HI FI
 FOR THE HOME CONSTRUCTOR OUR SHOPS ARE OPEN ALL DAY FROM 9 A.M. TO 6 P.M. 6.30 P,M. ON FRIDAY 1.3 SOUTH MALL, EDMONTON, N•9 803.1685

OUDSPEAKER speaker fdeal where mall olze ls important. Manulactured
by E.M.I. for a well. known hi-a wellknown hi-A net
naker. Slze: 7 ma . x 4n. Impedance: 8 ohms. FJux 38,000 . Maz. Free range: 90 Hz to
12 kHz . Power hatdiling: 5 w , Unbestable. Price: $\mathbf{1 1} \cdot \mathbf{8 0}$. Free ADD LUXURY TO YOUR CAR WITH A MOTOR DRIVEH car aerial
b Section Extended Length 100 cm Cangth under Fender complete wit Bracket and
Control Euitch 6.75 STEREO / MONO HEADPEO VOLUME CONTROL BOX Plug stereo phones Into thin control bo and you then imcorporate a right and
left hand volume control and a etereo mono wiltch. Complete with stereo Jack plug and 2 m cable.

LOW VOLTAGE AM

 BIFIER Fargaln at 6spplus bpP's with volume aminol hiete for 9 V d.c. and nec. supplies. output.With bigh IMP input this ampitier will work an an record ples.
 IFIER Few onls at
plus $13 p \mathrm{P} . \& \mathrm{P}$.
fl. 75

LOUDSPEAKER BARGAIMS E.M.I. 450 wet 3. 8, 15 ohtn 28-75 plus 38p. P. \& P. E.M.I. 350 set 8 ohm. $\mathbf{5 7 . 0 0}$ plue 38p. 1'. \& P.

tri-volt battery eliminator Enables you to work your transistor radio, amplifier, or cessette, etc. from A.C. malns through thla compact eliminator. Just by moving a plug or 9 volta. This mesns all your transistor power pack applicationa can be handled by thla one usit.
Approx. nize: $22^{*} \times 2 t^{\circ} \times 3 t^{\circ}$. OUR PRICE e2.7bp + 10p. P. \& \mathbf{P}. Seme model sultably wired
"CRESCENT" BUBBL LIGHT SHOW PROJECTOR
150 watt.
At 30 ft the projected imagt

Motor

One Rev per Two Min
LIQUID WHEEL
The Diameter Multicolour
The motor is litted to the purchmard an a singie unlt. The Llguid wheel however In our standard very poptitar
model and may be purchased model and may be purchased
A BARGA
Prolector Fith Hotor, rearly tor inatant use 6" Llquid Whe
215.00
£20.00
$200 / 250 \mathrm{~V}$ MAINS RELAY
Heary duty contacts. 2,500 Ω masins relays 50 p + V.A.T.Carr. quat. quanthly prlee
V.A.T.

TRI-VOLT CAR CONVERTER Enablea you to work sour Transhator Redlo, Amplifier or Cassette etc. from the 12 volt ear aupply positive or neg. earth. This converter supplies 6,71 or 9 voltes and is tranalator regulated. Approx, size $\left.2 \ddagger^{\circ} \times 3\right\}^{\circ} \times 2^{-}$ Very ensy to fit and a real money naving device for $22 \cdot 50+10 \mathrm{p}$. P. \& P.

WAFER SWITCHES 1 pole 12 way 2 pole 3 way 2 pole 4 way 3 pole 6 way 6 4 poie 3 way \qquad $18 p$ each. Please fic.

5 P . \& P. Up to 3 | SP P. |
| :--- |
| and |

From Int April, 1973, will you
please Include on your Total please include on your Tots]
(Gooda plus Pontage and Packing) ralue Added Tax at the
 connected to the output when sound source from 1 to 100 of a produces a paychedelic Jight Complete whth a sensitipe level control tbe unitt to fused and can not harm your amplifier. A. Bargaln at $\mathbf{E 7} 50$ plus 10 p

MAINS TRANSFORMER

 Fusel Primary 240V. Secondary This transforiner made to a very high mandard and is : muall slze: 2 in x24 in x 2yin. $63 p$ $2 \ln \times 2 \mathrm{ym} .63$
POTENTIOMETERS gINOLES and DUAL 6K Log or 8K ${ }_{25 \mathrm{~K}}^{10 \mathrm{~K}}$ Lin Less ${ }_{20 \mathrm{~K}}^{10 \mathrm{~K}}$ Less 50K 12 pea, 500 K switch 250K Double 250 K 40 p . 500 K Pouble 300 K each

2 M Switch 2 M
$24 \mathrm{pea}, \quad 2$

$$
\begin{aligned}
& \text { Up to } 4 \text { Pots. Please udd } \\
& \text { Sp. P. \& }
\end{aligned}
$$

DABAR MN3 MIXER KIT

introducing the new dabar mini three channel MIXER KIT WITH THE FOLLOWING FEATURES

Three Inpuis easily adjusiable to sult users Input requirements, e.p.
Uses advanced design with five Inlegrated circulls

* Slider fader volume controls mount directly on P.C. hoard
* Full range bass and Ireble controls
* Guaranteed top grade components wilh fibreglass printed circull board
ready-drilled and (inned
* Baltery operated (2 n PP3) not supplied wilt hit.
* Easy to follaw assembly instructions (available separately 25p)
- Aftractive ready punched lacia plate, avallable at extra cosi. gives that
ofotesslonal finish to the unit
Size: $9 \cdot 5^{\prime \prime} \times 4 \cdot 8^{\prime \prime} \times 2^{\prime \prime}$
PRICE: KIT ONLY E11.00
MANUAL AND ASSEMBLYINSTRUCTIONS 250
AVAILABLE READY BUILT WITH FACIA E1S.00
ALL PRICES INCLUDE V.A.T. \& POSTAGE IN U.K.
S.A.E. ALL ENOUIRIES.

DABAR ELECTRONLC PRODUCTS
98, LICHFIELD STREET, WALSALL, STAFFS, WSI IUZ.

B.H. COMPONENT FACTORS LIMITED

SPECIAL RESISTOR KITS (IW 5% or ${ }^{1} W$ W CARBON FILM) 10E12 Kit: 10 of each El2 value, 10 ohms- 1 M , a sotal of 610 , KB .10 net 25E12 Kit: 25 of each E12 value, 10 ohms-IM. a coral of 1,525, 67.20 net POLYESTER CAPACITORS MULLARD C280 250 V
 MULLARD POLYESTER CAPACITORS C296 SERIES

400V: (μ F) $0.001,0.0015,0.0022,0.0033,0.01,2 \frac{1}{2} p ; 0.015,0.033,3 \frac{1}{2} p$
MINIATURE ELECTROLYTIC MULLARD C426 SERIES (6p each) (μ FIV) $1 / 63,4 / 40,8 / 40,10 / 40,10 / 64,16 / 40,20 / 64,25 / 25,32 / 10,40 / 16,64 / 10$ MULLARD C437: $(\mu \mathrm{F} / \mathrm{V})$ 64/64, 10p: $160 / 25$, $10 p ; 160 / 40,12 p ; 640 / 6 \cdot 4$ MOp; 1600/6.4, 16p.

ELECTROLYTIC CAPACITORS. Tubular and large can ($4 F / V$) $2.5 / 50,3 p, 4 / 10,10 / 25,16 / 15,20 / 25,25 / 15,25 / 25,40 / 6,64 / 10,200 / 6$,
$250 / 10,5 p: 10 / 6,10 / 50,25 / 50,32 / 50,50 / 10,64 / 25,100 / 25,6 p ; 50 / 50,64 / 40$, $250 / 10,5 p ; 1 / 6$. $10 / 50,25 / 50,32 / 50,50 / 10,64 / 25,100 / 25,6 p ; 50 / 50,64 / 40$, 500/25, 11p: 500/50, 14p; 1,000/12. 11p; 1,000/25, 2.000/12, 2,500/12. $17 p$ $1.000 / 50,39 p ; 2,000 / 25,27 p ; 2,50025,31 p ; 2,500 / 50,62 p_{i}, 3,000 / 50,72 p$ $5,000 / 50,94 p ; 1,000 / 100,66 p ; 8 / 350,14 p ; 16 / 350,19 p: 32 / 350,25 p$.
50 V : (pF) $22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390$ 470, 560, 680, 820, IK, IK5, 2K2, 3K3, 4K7, 6K8. (μF) $0.01,0.015,0.022$. $0.033,0 \cdot 047,2 \frac{1}{2} ; 0.1,30 \mathrm{~V} .4 \frac{4}{2} \mathrm{p}: 0.1 .100 \mathrm{~V}$, $5 \frac{1}{2} \mathrm{p}$.
CAREON FILM RESTSTORS $\ddagger W 5 \% 10 \mathrm{ohms}-2 \cdot 2 M .+W 5 \% 10 \mathrm{hms}-$ IM. In each or 100 for $62 p$: 1,000 for 64.50.
METAL FILM RESISTORS IW $5 \% 10$ ohms-IOM. Ito each or 100 for K1-10. 55 EI2 KIT (15 each value 10 ohms-IOM) EB .

Veroboard	0.1	0.15	IN4001						
$2+\times 5 \mathrm{Sin}$	28p	28p	IN4002		5PEC		JLK		
21×3 in	26p	19p	1N4003		ARE		AIL		
$3 \pm \times 5$ in	32p	33p	IN4004			A	ON FO		GE
$3{ }^{3} \times 3$ in	28p	28p	IN914	$7 p$	PROIE		AND		
21 \times lin	7p	7p	46914	35p					
$2 \mathrm{~F} \times \sin$ (plain)	-	$14 p$	OC71	13 p			S.C.R.		
$2 \mathrm{t} \times 31 \mathrm{in}$ (plain)		12 p	$0 C 75$	17p	100 V		29p	3 3A	31p
$5 \times 3 \tan$ (plain) Insertion sool		22p		20p	400 V		50p	3 3A	40p 80
	4.p	44p							
Pins. pkt. 25	10p	10p	Twin sc		wire				
pin DIN Plug.	12	Skt.,	Stereo Connec	c. W	re, m.				
$10 p .3$ pin DIN	Plug	13p:	onnec	1 c	wir		rs,		
Sket. 10p. 5 pin	DIN	Plug,	Preset	eler	n pors	IK	M.		
tor Equiv.					CES	CLU	DE		
rbon	2 M			V.	\& P.	OD	on ord		(5.
, single 16	,	gle			(10				
with swirch 26p.	du	46p.	Expore	roe	enaui	S	elcom		e)
Dept. E	E.		DINGT	ON	$\begin{aligned} & \text { ROA } \\ & \text { BED } \end{aligned}$	\boldsymbol{P}			
			(029						
Inquiries		$. \mathrm{Ca}$			ers				

More of everything at the right price. All your electronic requirements within 200 yards - call and see for yourself.

INTEGRATED CIRCUITS

Why buy aleornativer when you can buy the genuine article Irom uat at CHILD

Trpe

 0.200 .180 .18 $0.80 \quad 0.18 \quad 0.16$ EN7404 EN7405 EN7408BN7406 BN7407 BN7409 QN7410
RN7411 BN7412
BN7413 BN7418 BN7420 BN7422
BN7423 ON7428
BN7427 BN7428 BN7430
BN7432
BN7439 BN7433
BN7437 GN7438 BN7441AN $\begin{array}{lllll} \\ \text { BN7442 } & 0.75 & 0.77 & 0.70 \\ \text { BN7443 } & 1.00 & 0.75 & 0.70\end{array}$ $\begin{array}{llll} \\ \text { EN7445 } & 1.00 & 0.95 & 0.00 \\ \text { EN7 } & 2.00 & 1.75 & 1.00\end{array}$ $\begin{array}{llll}\text { EN7446 } & 2.00 & 1.75 & 1.60 \\ \text { BN7447 } & 1.75 & 1.60 & 1.45\end{array}$ $\begin{array}{lllll}\text { BN74 } & 1.75 & 1.60 & 1.45 \\ \text { BN74 } & 1.75 & 1.60 & 1.45\end{array}$
PRICES OF 7400 SERIES ARE CALCULATED ON THE TOTAL NUMBER LARGER QUANTITY PRICES PHONE (01) 4024891 HIGH POWER SN 74 HOO $\begin{aligned} & \text { How in stock-send } \\ & \text { LOW POWER SM } 74 \text { LOO }\end{aligned}$ for list No. 36

A SELECTION OF SEMI-CONDUCTORS FROM STOCK

AAY 30	10p	BC147	120	BU105	2.25	OC4	16p	TI843	45	2N3055	55p
AAY42	160	BC169C	12p	BY100	150	OCAS	150	V408A	250	2N3440	750
AA213	10D	BC182	100	BY126	15p	OCs 7	80 p	ZTX108	12p	2 N 342	1.25
ACl07	850	BC2ls	160	HY127	150	0 Cl	160	2TX 300	12D	2N3825	750
ACl26	250	BCY 32	750	BY213	35p	$0 \mathrm{C72}$	25p	2TX301	15p	2N3814	59p
AC127	250	BCY 34	850	C106D	65D	$0 \mathrm{C77}$	46D	ZTX 302	18p	2N3615	75p
$\mathrm{ACl2a}^{\text {a }}$	26 D	BCY 39	1.00	QET111	85.	0 Cs 1	25p	ZTX 341	20p	2N3702	10)
ACl°	280	BCY 42	800	OET115	85p	0 Cas	250	ZTX 500	150	2N3704	10p
AC187	250	BCY43	25p	OET880	48p	OC140	56p	ZTX 503	17p	2N3705	10p
ACl88	25p	BCYS	$2 \cdot 60$	LM309K		OCl 70	260	$2 \mathrm{C301}$	${ }^{30}$	2N3714	1.80
ACY17	80p	BCY70	180	(T03)	1-87	0 Cl 71	80p	2N404	20\%	2N3771	1.75
ACY20	200	BCY71	200	MAT121	25p	$\mathrm{OC}_{2} 00$	480	2NS27	35p	2N3773	8.00
ACY21	20p	BCY72	150	MJE340	80p	0 C 201	75p	2N696	15p	2N3790	2.25
ACY 39	650	BCY87	2.98	MJ E370	70p	OC202	80p	2N697	15p	2N3819	35 p
AD140	60p	BC21I	50p	MJE520	780	0 C 203	80 p	2N706	20\%	2N3820	50p
ADI 49	80p	BD124	807	MJE298		OCP71	1.25	2N930	20p	2N3866	85p
AD181	35 p	BD131	750		$1 \cdot 10$	ORP12	60D	2N987	450	3N3903	15p
AD162	35p	BD132	80.	MJESOS		ORPB0	40p	2 N 1131	25p	2N3906	12p
AF117	20p	BF115	25p		750	P346A	200	2N1132	25p	2N4061	120
AF118	60p	BF167	250	MPP105	400	RA8310	AF	2N1302	18p	2N4062	12p
AF124	25p	BF173	25p	NKT214	480		450	2N1304	220	2N4126	250
AF139	80p	BF179	30p	NKT216	40p	RA8508	AF	2N1305	220	2N4871	859
AF186	400	BFI80	80p	NKT217	40p		65p	2N1307	260	2N5457	200
A F'239	400	BP194	15p	NKT403	700	TAA263	750	2N1308	${ }^{25}$	2N5737	550
ABY27	800	BF195	15p	NKT404	80\%	TIL209	890	2N1613	20%	28001	1.00
ABY28	25p	HP861	25p	OAS	80]	T1P29A	${ }^{\text {SOD }}$	2N1671	1.00	28012	10-00
BA102	80 D	BF898	25p	OA10	850	T1P30A	${ }^{60}$	2 N 214	750	2 S 018	6.25
BAlls	70	BFX 13	250	OA81	100	TIP31A	80.	2N2160	590	28028	8.90
BA145	16p	BFX 34	75	OA91	70	TIP32A	70D	2N2217	250	28301	${ }^{800}$
BAX 13	5_{0}	RPX 37	30p	OA200	70	TIP3AA		2N2221	200	28303	680
BAXI6	70	Br゙ ${ }^{88}$	20p	OA202	100		1.00	2N2222A		28324	950
BC107	10 p	BFY50	20.	OC16	75p	TIP34A			25 p	40250	50p
BC108	100	BFY81	20 p	0020	95p		1.50	2N2369A		40360	400
HC109	100	BPY52	$200^{\text {p }}$	$\mathrm{OCO}^{\mathrm{O} 23}$	850	TIP35A			15 p	40381	400
BC109C	12.	BFY'64	${ }^{50 p}$	$0 \mathrm{OC25}$	40p		2.50	2N2906	20D	40362	600
BC113	150	BPY90	${ }^{69 p}$	OC28	85p	TIP36A		2N2926		40408	500
BC117	20p	BLY38 B8X20	8.00 $16 p$	OC35 OC36	50p 60	TIP4A	8.00 $75 p$	$\stackrel{\text { cols) }}{2 \mathrm{~N} 3053}$	10 D 20 p	40486 40836	780 1.10
BC143	350	B8Y27	150	0 Cl 2	400	TIP42A	880	2N3054	500	40430	1.00

VAT Prices DO NOT include

 lst April. 197310% muse be From and shown separately to your total order (incl. carr/packing). Help us to help you receive your order without delay. E.\& O.E.
QUANTITY DISCOUNTS

$10 \% 12+: 15 \% 25+$ ANYONE $20 \% 100+: 26 \% 250+\quad$ TYPE From sbove mections except Integrated Counts and special oner where dh Yinimur orladed
Minimum order value 21 please.

CIIF- तus

 10 amp. Resistance

MODEL 500

U4312 MULTIMETER

KAMODEN 12.200

$0 / 12 \mathrm{~A}$. A.C. $18 \mathrm{~dB} .0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{meg} /$
00 meg ohma. 216.85. Poat 30 p .
TMK LAB TESTER.
100,000 O.P.V. 61 in .

 Hecilels: -10 to +49 db . Plastic Case
with Carrying Handle. Size: itin. $68 \mathrm{in} . \times$ -ith Carryin
3 fin .828 .95.

Model S-I00TR MULTIMETER: TRANSISTOR TESTER

[^2]

RP2I4 REGULATED POWER SUPPLY Solld state．Variable output 0－！4V DC OD
to 1 amp．Dua！geale meter to monltor

 Input 220／240V AC， | Nae $185 \times 85 \times$ |
| :--- |
| 105 mmi. |
| 88 | PS． 200 REGULATED P．S．U．

 Bolld atate．Varishle outpot
 Independent metera to
monitor volleage and cur－

＂YAMABISHI＂YARIABLE VOLTAGE seellent quality at low cont．All model．－ Input $230 \mathrm{~V}, 50 / 60 \mathrm{c} / \mathrm{s}$ ．Veriable output －260V

MODEL S－260 GENERAL PURPOSE BENCH MOUNTING $\begin{array}{rlrr}28 \mathrm{Amp} & \ldots & 88.00 \\ 6 \mathrm{Amp} & \ldots & 811.75 \\ 6 \mathrm{Amp} & \ldots & 818.00\end{array}$ 10 Amp ．． 182.50 $\begin{array}{lll}12 \mathrm{Amp} & . . & 123 \\ 20 & \mathrm{Amp} & \ldots \\ 24.00\end{array}$ 25 Amp ．． 458.00 40 Aimp ．．sis． 50

MODEL S－260B
Panel Mounting．

1.5 Amp	87.00

Carriate and
Packing Extra

POWER RHEOSTATS

High quality ceranic con－ bedded in vitreour enamel Heavy duty brush wiper Continuoun rating．Wide range avatiable ex－stock
gingle hole Axing，tin．dia shafta．Bulk quantities avail

25 WATT． $10 / 25 / 50 / 100 / 250 / 600 / 1000$ ohme． 05．P．a P．10p．
50 تATY． $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or $\$ 000$ ohms．$\$ 1 \cdot 85$ ．P．\＆P． 10 p
100 FATT． $1 / 5 / 10 / 25 / 60 / 100 / 250 / 500 / 1000$ of 2500 ohma． 81 ． 5 ．P．P．16p．

SEW CLEAR PLASTIC PANEL METERS
USED EXTENSIVELY BY INDUSTRY，GOVT．DEPTS．，EDUCATIONAL AUTHORITIES，ETC．
Over 200 ranges in stock－other rante to order．Quantity discounts available． Send for fully illustrated brochure．

pe SW． $100100 \times 80 \mathrm{~mm}$	Typa MR．esp． 4 isin．x tiln．fronts		Tyoe MR．38P．I 21／32in．square fronts		
${ }^{80-0-60 \mu A ~}$		100 mA A $\cdots \cdots$.		300ma	
${ }_{1000-0-100 \mu \mathrm{~A}}^{100}$				500mA ．．．．48．45	
$800 \mu \mathrm{~A}$ ．．．${ }^{3}$					
		18 map．．．．．			
		20V．D．C．${ }^{\text {ate }}$		10 amp．．．．．． 40.4	
	sopa			10V．D．C．．．29．4	
		18 V A．C．．．${ }^{\text {a }}$			
Type SD．830 $82.5 \mathrm{~mm} \times 110 \mathrm{~mm}$ Fronts		200v．A．C．．．As．\％	100－0－100 1 A	60V．D．c．．．${ }^{\text {a }}$	
	200	8 Metar 1 mA Es．e0	$200 \mu \mathrm{~A}$ ．．．．erers	100V．D．C． 40.4	
50 mA ．．．． 88.10		VU Metor．$\because 4.68$		150 V ．D．C． 4.85	
$\underline{1000 \mathrm{~mA}}$			800－0－600 1 Al A		
${ }^{5000 m A}$	$1-0-1 \mathrm{~mA} . .588$	10 mmp ．A．C．	$\operatorname{lma}_{10-1 \mathrm{ma}} \times$ ．．．	${ }_{750 \mathrm{~V} \text { ．D．C．}}$	
5 emp．．．．．．．．\％${ }^{5} 10$			2 ma ．．．．．． 8 ．25	16V．A．C．．． 43.20	
10 mpp．．．．．限10		80 mmp A．C．${ }^{\text {a }}$ at． 0		50V．A．C．．－ 4 － 80	
8v．D．C．．．23．10			$10 \mathrm{~mA} \mathrm{...}. \mathrm{28.2}$.	160V．A．C．．．48－30	
	Trde MR．52P． 21 in ．square fronts			300 V ．A．C．．－ 28.30	
100 A A ．．．． 29.25 20V．D．C．．．			50 mA ．．．．	${ }^{500 V}$ V．A．C．． 23.80	
	$\begin{aligned} & 60 \mu \mathrm{~A} \\ & 80-0-00 \mu \mathrm{i} \end{aligned}$				
				VU Moter ．．2seds	
1 ma ．．．．．． 43.10 300V．A．c．．． 81.20	100－0－100 $\mu \mathrm{A}$ 迷	300 V ．D．C． 88.50			
5 mA ．．．．．83－10 VU meter ．． 88.50		$18 \text { V.AC. . A }$	Type MR．45P．2in．square fronts		
			A ．．．．．．，能	6 amp．．．．．．．es．40	
Type $50.64063 .5 \mathrm{~mm} \times 85 \mathrm{~mm}$ Fronts	10 mA …．			10V．D．C．．． 5 － 40	
	80ma … ater	1 amp．A．C．－ 43.50		20V，D．C．．． 240	
${ }^{5000}{ }_{50-0-50 \ldots}$	100ma …	5 mmp A．C． AL 50	100－0－100 A A 8 E6		
	600ma … 5 Eso				
		20 mmp ．A．C．${ }^{2}$ He 50			
$200 \mu \mathrm{~A}$ ．．．． 1800 bV．D．C．．．		$80 \mathrm{mmp}. \mathrm{A.C}. \mathrm{-}{ }^{\text {a }}$－ 50	lma ……	－Meter lma	
$500 \mathrm{\mu A}$ ．．．． 20.96 20V．D．C．．．			3 ma ．．．．． 8.		
	Trpe MR．65P． $34 \mathrm{in} . x^{3} \mathbf{3 i n}$ ．frents		10mA $\ldots . . .8 .40$	1 mmp A．C．－${ }^{\text {a }}$－ 40	
				5 mmp. A．C．－ate 40	
		20V．D．C．．． 88.50	$\begin{array}{llll}100 \mathrm{ma} & \cdots . & 88.40 \\ & 100 \mathrm{ma}\end{array}$	10 ninp．A．C．： 88	
				20 amp A．C．$=18.40$	
$100 \mathrm{~mA} . .$. ． 8.60 VU Meter $\quad 3.15$	100－0－100 A A	150V．D．C．$\quad 3.60$			
Trpe SD． $460 \mathbf{4 6 m m} \times 59.5 \mathrm{~mm}$ Fronts			＂SEW＂BAKELITE		
	800－0－800\％i				
	1ma \cdot ．．．．	160 V. A．C．．． 48.40	PANEL METERS Type MR．65．Jfin．square fronts		
50－0－50нA		300 V. A．C．． 88.0			
	10ma.. .9 ． 8.60	$600 \mathrm{~V}, \mathrm{A.C}$. 43．00			
	80 ma A ．．．．${ }^{\text {a }}$	－Metar lma mate	Type MR．65．Jfin．square fronts		
	100ta A ．．．． 88.60	VU Metar ．． 88.70		6 amp．．．．．．．${ }^{\text {a }}$－ 0	
		50 ma A．C．－ 48.80		15 amp．．．．．${ }^{\text {ate }} 60$	
	1 map．．．．．．．	100 max A．C．		30 amp．．．．． 2.40	
OmA ．．．．．se．60 300v．D．C． 88.60	$8 \mathrm{mmp}1$ ar	200 mA A．C．			
	10 amp．．．．．	600mA A．C．－ 3.0		bV．D．C．．．A8＊0	
	20 amp．．．．．，				
				Sov．D．C．$\because .$.	
			$25 \mu \mathrm{~A}$ ．．．．．． 84.60		
	＂EEW＂EDUCATIONAL METERS				
			50		
			800，		
		rall 100 mm	500－0－500		
		，		mp．A．C．－ 60	
		befiv ranite of		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	
		traments moving	10		
＂SEW＂EDGWISE METERS					
Troe PE．70． $\begin{gathered}\text { 3 } \\ \text { 2tin．deep } \\ \text { 2 }\end{gathered}$		net and othe	100 mA 500 mA $\cdots .$. 8.80 88 80	－	
				VU Meter ．．as．es	
	metor movemant in enolly acosmalble to demonatrate		Type S－80 80 mm ．square fronts		
	demonatrate internal worting．Available In the following rangea：				
48．40 VU Meter ．．eres		20	$200 \mu \mathrm{~A}$ … 5.40		
			100－0－100 4 A 880		
－MOVING IRON－	b0				
	1－0－1ma es．		20V．D．C．． 2000		
ALL OTHERS MOVING COIL		500 mAl A d．e 87.00	S0V．D．C．． 4800		
Please add postage		$5 \mathrm{~V} / 50 \mathrm{~V}$ d．c． 87.00	300V．D．C． 4.00		
	10 V d．c．．．．． 85 \＄5		1 map．D．C． $4 . \infty$	U Meter ．． 83.70	

HAND HELD 2－WAY WALKIE

 TALKIESBattery operation．Volume and aquelch controla．Call bution and prese to talk button．Telescople serial．Complete carrying cases．

3 channel 571.25 Pair．
Licence required for operation in U．E．

240° Wide Angle ImA Meters
MW 1.6 gomm aquare 83.7
84.97 P．Pertr

230 VOLT A．C． 50 CYCLES RELAYS

Brand now．＊neto ohangorver contacts at P． 1 am．rating． 100 （ 100 beach． P．A．P． 10 p （ 100 hote 140） quatition arallable．

SEND SAE FOR NEW E PAGE LIST SEMI CONDUCTORS \＆VALVES

IIT- त.

UNR 30 RECEIVER

4 Bands covering $850 \mathrm{kc} / \mathrm{b} \cdot 30 \mathrm{mc} /$ B.P.O. Built-in 8peaker $220 / 240$ v. Our 15.75 Carr. price $215 \cdot 75$

UR-IA RECEIVER

4 Bande covering 850 he/r- $50 \mathrm{mc} / \mathrm{s}$ FET, S Meter. Variable BFO for 88B. Built-in 8peaker, Bendepres. ©ensilvic 12
 instructions. Pur $£ \mathbf{2 5} .00$ Carr.

SKYWOOD CX203 RECEIVER

Solid atate, 5 bands covering 200 . 420 KHz and .58 to 30 MHz . Illuminated alble rule dial. BandANL, "A"' meter, AM/CW/Bs B. Integrated spenker and phone
socket. $220 / 240 \mathrm{~F}$. A.C. or 12 . D.C. Slze $325 \times 266 \times 150 \mathrm{~mm}$. Complete with Inatructions and
$\underset{\text { Price }}{\substack{\text { chewt } \\ \text { Price }}} £ 32.50{ }_{c}^{\text {carr. }}$

General coverage $150-400 \mathrm{kc} / \mathrm{m}, 550$ tc/a. $30 \mathrm{mc} / \mathrm{s}$, FET front end. 2 variable B.F.O., nolee limlter, B Meter Bandapread. RP Galn.
 Brand new with instructions. Our
Price
SOO
50 Carr
500 TRIO 9R59DS RECEIVER

- bands coveriae $550 \mathrm{kc} / \mathrm{s}$ to 30 mc / s continuous and electrical bandapresd on 10, 15, 20, 40 and 80 metres. 8 valve plus 7 diode eircuit. 4/8 ohm output and phone BFO. g meter, Bep . bendspread dial. If frequency $445 \mathrm{ke} / \mathrm{s}$, mudio output $1 \cdot 5 \mathrm{w}$. Varlable RF and AF Esin controis 118/250 v. A.C. Size: 7 in . $\times 18 \mathrm{in} \times 10 \mathrm{in}$. with matruction manval.
Pur 549.50 Carr. FULL RANGE OP TRIO STOCKED

EMI LOUDSPEAKERS Model 360, $17^{\prime \prime} \times 8^{\circ}$ with aingle tweeter/
cromeover. $20-20,000$ Hz. 18 watt RMS. Avallable 8 or 15 obma. 97.98 each.
 Wodel twin tweeter/ With twin tweeter/
croseover. $85-18,000$
Hz. 8 . $\begin{array}{cc}\text { Hz. } 8 \\ \text { Avallable } & 8 \\ 8 & \text { or } 16\end{array}$ ohms. ster each. P. P. 28p.

SPECIAL OFFER

 STEREO SPEAKERS Matched pair of stereo bookDeluxe teak vencered anjuh. Size 14$\}^{\prime \prime} \times 9^{\prime \prime}$$\times 7{ }^{\prime \prime} .8$ ohm. \times Watt RMB. 16 watt peak. Complete with DIN lead. Our
Price 12.95 Carr. MA-10 STEREO HEADPHONE AMPLIFIER
 All silicon amplifier operstes from magnetic, tuaer laputs with twin atereo headphone outpute and separate
volume controle for each channel. volume controls for each channei. BMU/100MU. Output s0MW.
$\underset{\text { Price }}{\text { Our }}$ E6.97 P. ${ }_{15 \text { Pp }}^{\text {Pp }}$
1021 Stereo listeming
 STATION For bal: and gesin eelection
of loud. - pitheaker plth eddi. faclity for atereo hesdphone witchlyg. 2 galn controls, speaker phone sockete. $6^{\prime \prime} \times 44^{\prime \prime} \times 2 t^{\prime \prime}$.

Our
Price
52.25
P. A P.
Price 15p
MP7 MIXER PREAMPLIFIER

5 micro.
phone ingute phone inpute each with
Individusi
galn con.
trole enabl ing complete mixing facilities. Battery operated. $92^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$
Inputh Mcs: $3 \times 3 \mathrm{mv} 80 \mathrm{~K}: 2 \times$ 8 mV . 600 ohm. Phono meg . 4 mV .
80 K . Phono cerarnle 100 mV 1 me . 50 K . Phono cerarnic 100 mV 1 mes.
Output 250 mV 100 K .
Our Price
$£ 8.97$ P. $\& P$
$20 p$
ea. 41 reverberation AMPLIFIER Belf contained, θ
tranaletorised,
battery operated. Simply plug in microphone.
gultar, etc., and output into your ompliter. Volume oontrol, depth of reverberation control. Beautiful walnut cabinet. $72 \times 3 \times 4 \frac{1}{2}$ in
Price 57.50 P.\& P

adiv ii lin तin in III il Cy EOLIPMENT
Aodotronic Frodmets are mandictured arclasively for the Audiotronic

 t e valon lor mones pricel

Deck

A bemutifully
atyled 4 track stereo
deck with an outatanding apeciAcatlon ofered at a remarkably low price. Incorporte a hoet of features including awitchable nolee filter normal/chrome timpe selector, WIn VU meter, slider record/ playback level controla, front panel cator lamp, phonofDin line indicator lamp, phono/Din line japut etc. etc. Frequency responge $100-8 \mathrm{KHz} \quad\left(100-12 \mathrm{KHz}^{2} \mathrm{Gr02}\right)$ 8/N-45dB. Crosetalk 45d B. Separa: tion -36 d B . Noive Itmiter- 6 dB Bit 10 KHz . Complete with phono connecting leads. OUR 239.50 Carr. * AHP-8D 8 Track Stereo Tape Deck
Can be uaed
With most hi
Push bution
track illumins.

ted track

indicatora. Attractive cabinet whh black and allver trim. Output level 50 mv . AC $220 / 240 \mathrm{~V}$.
OUR
PRICE 11.95 P. \& P. 50p.
AHP-8A 8 Track Stereo Tape Player

Incorporstes buill in ampluer giving $24+21$ withe rms output. Husinated track irack eelector, controls for volume, balance and tone. Attractive cabinet with black and allver trim. Output impedance 8 ohme. AC 220/240\%. OUR E17.25 P. \& P. 80 p .

Stereo Headphones L8R. 20 Individual stereo mono switch. 8 oh 19.000 Hz .

LAEE. 80 Open back
type. Individua) tone and volume controls. 8 obma. $30-20,000 \mathrm{~Hz}$. 55.50 P © P 30 p LSH. 40 Two way apeaker ayatem.
Individual volume controle. 8 olami 20-20,000 Hz. 480 0 P a P 30p LSER. $60 \mathrm{~S}^{\prime \prime}$ epeaker
unith. 8 ohms. $20-$ units. 8 ohms. $20-$
$20,000 \mathrm{~Hz}$, Com. $20,000 \mathrm{~Hz}$, Com
piete with sipped plete Fith ilpp
carrylug case. 6-50 P. \& P. sop LQH. 4004 -channe dynamic headphones. Each ear plece has 4 drive
unite. 4.82 ohms. $30-20,000 \mathrm{~Hz}$. 89-96 P \& P. 30 p LSE,60 Eleetropowered energicer powered energiper
and control unit with headplonel speaker selector. $4-32$ ohme. 20 $24,000 \mathrm{Hg}$.

SUPER AKAI HIFI BARGAINS
CS35 STEREO CASSETTE RECORDER

Carriage and Packing 50p B.8.R. McDONald
${ }_{C 1}{ }^{\text {C1 }} 149$ Minl
${ }^{\text {Clis }} 137$ Mon
$810 / T \mathrm{TDD} 1$
610
$610 / \mathrm{TPD}$
710
810
31 P60
MPro/GROO
MP60/TPD1
MP60/TPD 2
MP60/
HTVO
HTZ0/GROO
HT70/TPD
CONMOISSEUR
BDI Chasel
23.95
85
80
$\begin{array}{r}8530 \\ 87.00 \\ \hline\end{array}$

2630
58
25

$\begin{array}{r}1825 \\ 510.90 \\ \hline\end{array}$
\qquad £ 13.20
E 11.25
E 1160

BDI Chansels BD2/SAU2/Chasw/a

OARRARD

2025 T/C stereo

$8 P^{2}-25$
$8 P^{2} 25$
111
8P"2511118e00

AP76
8Lfish
8LLish
8 Lig B
BL95B
TERO 100
ZERO 1008
GOLDRING
O101P/C
CL72
CL72/P
GL75
GL75P
CL78P/C
CL8s P/C
THORENS
TD125/AB/11
TD160c
TD160c
TD15S

anpeed autochanger unle fitted | Our | |
| :--- | :--- |
| Price | $\mathbf{4}$ |
| $\mathbf{C a r r}$ | |
| 50 p | |

SP25 MK.II. apeed nlugle record
player filled wlth Acos GP104
stereo cerante cartindge.
Our $\quad \mathbf{C a r r}$.
Price $\quad \$ 0.50$

230 stereo 50/P/25 E15.95. 230/8iereo 60/PZ6 £18-00. 250/\&tereo 60/PZ8 \&20.25.
 Actlve Filter Unht $\mathbf{2 4 . 4 5}$. Palr of Q16 Speakern $£ 10.70$ Project 60 FM Tuner $£ 14.95$ Sinclait Project 605 820.97.

2000 Amplifier 228.95
2000 Amplifler 228.96
3000 Amplifier 298.95
os30 Speakera 89.98
Q830 Speakern 229.88 pair

GECORD DEGK PACKAGES

Carriake and Packink 75p.
Complete unith with stereo cart. garbard
2025 TC/9TAHCD
SP25 $111 / \mathrm{M} 4 \mathrm{E}$
SPe 25 I11M44
8P25 $111 / \mathrm{M} 34 \mathrm{E}$
8P25 111 Moduc/Mis-
AP76 G800E
AP76/M4EE
AP76, M55E
AP7R/MI3ED
A P76 Module MiJ-b
zERO 1008 Module/MO3F: B.S.R McDonald

210/8C7M

MP60:G800
MP60 TPDI/G800
GTFOTTPI/GBOV
goldring
GL.72/GR00
GL75/G800E
ooommans
TDIOO/GROO Teak
TDIOD/G800 White
EAK
PHILIPS
BA 103/GPP200
OAlbo/GP200 Te
0a30.3 (leng cartridge) pion
PL12D (Less cartridge)
PLise (Leas cartrldge) PLAID (Lesse cartridge)
PLLSO (Lens cartridge)
PL61 \{Len cartridge) PLA35 (Lers cartridge)
thorens
TD160C/Ortoton M15ES TD125 AB/11/Ortofon
D) $65 /$ Ortolon M1SE:

Buper
WHARFEDALE
Linton/M44-7 Teak
Lintoos/M44-7 White

instructions.
2 Bration $\mathbf{2 x} \cdot \mathbf{8 7}, \mathrm{P} . \& \mathrm{P}$. 15 p 3 fiation 85.25, P. \& P. 15p.

SH628 STEREO HEADPHONES

Outstaraling
ralue. Boft
ear-padm.
headband.
$20 \cdot 20.000$
112.
ntereu phag

LHO2S STEREO HEADPMONES
Llghtwright
healphones
with padded
earplecea.
4.arplecee.
4.16 chnis.
$20.20,000$
erouson 3408 stereo
UNER AMPLIFIER
Covern F'bl Bs-108 Milz. Fjve punh rins. Inputs for steren ceramis cartrdge and lape etc. Separate
baw treble, balauce and volunge Our
Price $\mathbf{3} \cdot 50$ P. \& P.

TAPE DECK track. 7n, 31. 1t I.p.R. Stereo/
mono recorifplis. ${ }^{4}$ " reeln. Inputs for dynanite mikes, radio, grani.

SEND LARGE S.A.E. FOR FJLLHI-FI DISCOUNT LIST
\square
all mail ofiders tc
UNIT 4. THE HYDE INDUSTRIAL ESIATE, THE HYDE, LONDON NW9 GuJ
TELEPHONE $01-2053735$
PERSONAL CALLEZS WELCOME AT ANY OF JUR RETAIL BRANCHES

70
7
7
7

801:01-5800670
di: 00.0372732

Tol: 01-262 0307 T01:01.7234194 | Tol:01-353 2833 |
| :--- |
| Tol:01-203 | Tol:01-280 9530 1:01.580 3739 ESSEX

 Tol:01-891 3027
Toi:01-5467845 Tol:01-546 7845
Tol:01-940141 ALL BRANCHES JPEN 9 a.m.-6 p.m. MONDAY TO SATURDAY

ALL EQUIPNENT IS BRANO NEH, FULLY GUARANTE ¿O ANO DFFERED WHTHFUL. AFTER SALES SERVICE

All items and prices afe correct
20-7.73
change withoo
notice \& \& 0 E

Everyday Electronics Classified Advertisements

RECEIVERS and COMPONENTS
TUNBRIDGE WELLS components from Teleservice, 108 Camden Road, Tunbridge Wells, Kent. Telephone 31803. S.A.E. or call in for list. Special offers, limited quantity: Matched AD161/2 $68 \mathrm{p}, \quad 10$ transistors similar 2N3702/3 unmarked 32p, 12 1N914/6 20p unmarked, air spaced twin gang receiver tuning capacitors, unused 50 p , thin grey connecting flex lp yard. Minimum order 40 p post free, but add 10% VAT.

Express
 Components
 E.E. PROJECTS!

General Purpose Amp $£ 4.50$ 20W Shaver Inverter $£ \mathbf{£ 4} \mathbf{0 0}$ Beta Component Board
(Kit only) $£ 1 \cdot 30$
Beta Transformer M218 £1.85

WAA-WAA

SEND AMOUNT SHOWN IN COST BOX TO RECEIVE KIT.

FREE POSTAGE (U.K. only)

17 Albert Sq. London,EI5IHJ

COMPONENTS GALORE. Pack of 500 mixed components manufacturers surplus plus once used. Pack Includes Resistors, carbon and W.W., capacitors various, transistors, diodes, trimtors various, transistors, diodes, trimp. and p. c.w.o. to CALEDONIAN COMPONENTS, Strathore Road, Thornton, Fife.

> Computer Panele, 5-8cio8, Diodet, $4-55 \rho$ (10p) Wire Ended Neons-10-50p (8p), Sllicon
pins 11pp. Similiar 12 way 13pp. Lyt Pof Cores
Now Boxed step.
71b Assorted components E1-00pp.
2lb Abeorted computer panels efi
J.W.E. RADIO
Postace In brackets. Road, salford bancs
cloned holldays Sept. 1st-16th

FOR SALE

TIMBER Plywood cut to your requirements. GENERAL WOODWORK SUP. PLIES, $76-80$, Stoke Newington High Street, N16 5BR.

HUNDREDS of INTERESTING ITEMS. Electrical and mechanical. Catalogue 5p, GRIMSBY ELECTRONICS, 64 Tennyson Road, Cleethorpes, Lincs. (Mail nyson Road,
Order Only).

SINCLAIR PRODUCTS. Lowest prices in country! Send S.A.E. for list. Mail order or callers. Econisales, 9 Sherborne Road, Peterborough (0733-60238).

FOR SALE Marconi Sig. Gen 85 KHz to 25 KHz in 8 ranges output 1 micro volt to 1 volt Internal or External or $£ 25$ for both. Carriage to be paid by Purchaser. Seabourne Electronics Ltd., 33 Camperdown Tce, Exmouth.

MISCELLANEOUS

RADIO \& TELEVISION AERIAL BOOSTERS $£ 2 \cdot 95$ p, five television valves $45 p$. 50p bargain transistor packs, bargain £1 resistor and capacitor packs. UHFVHF televisions $£ 7.50$, carr. $£ 1.50$ p. V.A.E. for 3 leaflets. ELECTRONIC S.A.E. for
MAIL ORDE
OR (BURY) Street, Ramsbottom, Bury, Lancs.

AT LAST YOU CAN TRANSMIT
AND FORGET ABOUT LICENCE EXAMINATIONS
because this Ministry Approved transmitcer/ receiver kit does not use R.F. Your transmissions will be virtually SECRET since they won't be heard by convensional means. Actually ic's TWO KITS IN ONE because you got the printed-circuit boards and components for both the transmite AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZ. extremely fexible design with quite an AMAZ*
ING RANGE—has obvious applicasions for ING RANGE-has obvious applicasions for
SCHOOL PROJECTS, LANGUAGE, LABORA SCHOOL PROJECTS, LANGUA
TORIES, SCOUT CAMPS, etc.
GET YOURSI SEND $15 \cdot 80$ (inc. VAT) NOW S.A.E. for details

TO: BOFFIN PROIECTS, DEPT, KEE. 4 CUNLIFFE ROAD, STONELEIGH, EWELL. SURREY.

MAIL ORDER ONLY

BATTERY ELIMINATOR KITS. Our well-known Mini Mains Pack Kits now complete with drilled insulated base complete with drilled insulated base
$32 \times 55 \mathrm{~mm}$. Fits into space of most $32 \times 55 m m$, Fits into space of most
large transistor batteries. Easy wiring large transistor batteries. Easy wiring
instructions. Safe, silent mains trans former, silicon rects, smoothing capacitor, all top grade. For any 0 NE of these voltages (state which): 3 V , 300 mA max.; $6 \mathrm{~V}, 180 \mathrm{~mA}$; $9 \mathrm{~V}, 120 \mathrm{~mA}$: $18 \mathrm{~V}, 60 \mathrm{~mA}$. $£ 1.50$ VAT included. By mail only, UK post 5p. Amatronix Ltd., 396 Selsdon Rd., South Croydon, Surrey CR2 0DE.

COMPUTER PANELS

Type A: 4 Mullard OC35 4 GET103 etc. 509 (6p). Type D: 4 Mullard OC36 8 GrT103 etc. 60p (6p). Type E: 4 OC29 4 ACY19 8 other transistors. 35 diodes, 60 $\mathrm{R}^{\prime} \mathrm{s}$ \& C's. \& 1 (10 p).
12 high quality paneis all at least 24 to ins., logded with transistors, diodes. etc. Including trimpots and IC's $£ 2$ (25p). 71 b of lower quality panels. some brozen
\&2 (40p). Boards from 5D for callers.
71b BARGAIN PARCELS Many hundreds of resistors. capacitors, pots, crystals, switches, etc. all new components, also computer panels and loads of odds and ends. Still only $£ 1.65$ (35p).

CASED AMPLIFIERS

4-valve amplifter with tone and vol. controls giving about 3 ratts output into $7 \times 4^{\prime \prime} 3 \Omega$ speaker. Oak-faced cabinet $14 \times 13 \times 9^{\prime \prime}$ also contains non-standard tepe decis. Mains operated. Tested, with circuit. $£ 3$ ($£ 1$ up to 200 miles, $£ 1 \cdot 20$ over). Sultable cassettes \&1 (25p). Spare heads 40 p .
PRICES EXCLUDE VAT. CARRIAGE IN BRACKETS, BAE LIST

GREENWELD (EE5)
24 Goodhart Way, West Wlekham, Kent. Shop at 21 Deptiord Bromdwity, \&E8.
Callers welcome
Tel: 01-692 2009.

PSYCHEDELIC

 MINI-STROBE
A very POWERFUL, POCKET-SIZED

 STROBE-LIGHT that IE SELF-CONTAINED and you can take anywhere. Go to partiog and roally BRAIN-FREEZE them wIth DAZZLINGPSYCHEDELIC EFFECTS and STOP-MOTION FLASHES. Boffin' new MINI-STORE kit conatitutes a fully solid-atate dectronic dovice which is refloctor unlt, printod-circult-board, elocttronics, and sourct-lamp-ithe only extra is a batiery which you can buy tocally. The whole thing can be elasly bult in a fow hours. A veritable FLICKERING FAS CINATORI AdJuetable flaen-rato. GET ONE (OR two NOW and 日EGIN STEALING THE THUNDER at DISCOS And PARTIES wlth your own POCKET. LIGNING!SEND E2.10 (Inc. VAT) for YOUR
MINI-STROBE.
To: Boffin Prolecte, ${ }^{\text {a }}$ Cuncliffe Road, Stonelaigh, Ewell, Surrey.
MAIL ORDER ONI

THERMOCOUPLES

Acramet and Acrespeed thermocouples, from IC are:-

Extremely accurate for fluid, gas or metal temperature measurement.

Individually calibrated and carry a certificate plus a one year guarantee.

Available with immersion or contact, non-earthed, multiples, boss or plug.

Details available on request.
International Combustion Limited. Superheater Works, Ashburton Rd., Trafford Park, Manchester.
Tel. 061-872 2581.

EDUCATIONAL

TECHNICAL TRAINING in Radio, TV \& Electronics thro' world-famous ICS. For details of proven home-study courses write ICS (Dept. 731T), Intertext House, London SW8.
DIGITAL. COMPUTER Logic and Electronics. Four volume self-instructional course. $£ 2.95$ incluting p. and p. Money back assurance. CAMBRIDGE LEARNING (EE) 8a, Rose Crescent Cambridge.

FREE

TO ENGINEERS Whatever your age or experience you must read New Opportunities. It des
 cribes the easiest way to pass A.M.S.E. A.M.I.M.I., (ity \& Guilds (all branches), Gen. Cert., etc., and gives details of courses in all branches of engineering Mechanics. Electrical. Civil, Auto, Aero, Radin, TV, Building, etc. You must read this book.

Send for your copy today-FREE:
B.I.E.T. BEE 08, (C.X), Aldermaston Court, Reading, RG7 4PF
Accredured by the Council for the
Accreditation of Correspondence Colleges

BRIIISH INSIITUIE OF ENGINEERING TFCHNOIOGY

VALENCE ELECTRONICS

Specialists in FERRANTI SEMICONDUCTORS - DIODES - TRANSISTORS I.C.'S - FLASH TUBES - OPTO ELECTRONICS

PERSONAL RECEIVER

(As in this issue)

Send SAE for full parts list.
2N 414 Radio I.C.
41/32p
Red Light Emitting Diode, panel mounting with free clip

ALL PRICES FULLY INCLUSIVE
Post, etc. 10D FREE over $£ 2 ; \infty$
All enquiries and mail order ta:

VALENCE ELECTRONICS

$2 A$ CANAL ST., DROYLSDEN LANCS Callers welcome at P.G. Electronics
Penny Meadow, Ashron-u-Lyne, Lancs.

[^3]
SERVICE SHEETS

SERVICE SHEETS for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., from $5 p$ with free Fault-Finding Guide, S.A.E. orders/ enquiries. Catalogue 15p. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex Telephone Hastings 29066.

ZIGGY'S 2001 ELECTRONICS Co. Ltd.

SPECS MULTIMETER U4384. cenalithy 20,00 GP -sually bigh current ranges 400 V d.c. 0.6 to 1200 V . Renintance 300 ohms-20-200-2,000k Ω. Trans hisation level -10 to +181 B . Thi bigh quality instrument has uhorle rotection. Complete with tes eads, batterles, etc.
PRICE 88 plus 25 p post, etc
MULTMETER 4318. Similar to above bu: spech leat ures include 3 amp current range and instrument Is hodred in meta cane with carrying hasidle (Hustrated read. plus 25p P. A. P
SANWA JP-5D. Diode protected. D.C. and A.C volte $0-500$ V. D.C. current $0-500 \mathrm{~mA}$. Res. $0-1 \mathrm{M} \Omega$

EAGEE LT800 TRAIS., LT44 TRAKS, Our Price 3.
F. D. HEAD EERELLS ATD SLIDES

GARRARD C2 (8P25 Mk III. etc.) 45p. M7 (8P25 Mk II and earlier models) si.
BSR McDonuld ($310.510,610$. MP60) 45p. Postage APE 10 T
ARE TOU HUMBLE ABOUT TOUR ROMBLEP 8peds drive wheels, 65p plus 5p P. \& P. MP60 irive Wheele, 65p plus sp P. a P. gUBMiNATURE TogGLE SWITCEES-very useful, very wriall. S/P sp, DP/B, asp, Poatage each, over 10, post free SUBMIMIATURE MAINS TRAN8PORMERS. Eaple $12-0-12,50 \mathrm{M} / \mathrm{A} 80 \mathrm{p}$, postage 10 p .
MIIIATURE TTPE MAINS TRANSFORMERS Eagle Trpe MT280, 6-0-6 280 M/A, 21.20ンMT150. 12-0-12, $15 \mathrm{MM} / \mathrm{A}, \mathbf{2 1} \cdot 20, \mathrm{MT} 100,24-0-24,100 \mathrm{~m} / \mathrm{A}$ 51.20. R/8 types, $13 \mathrm{~V}, 0.5 \mathrm{amp}$, C. Topped, $\$ 1.06$, $16.3 \mathrm{~V}, 0.3 \mathrm{mmp}, \mathrm{C} . \mathrm{T} .$, , 1.06 . Post 15 p on ain. sixe. DIAMOND STTLI POR 8OHOTONE 9TABC. LPITB, 65 p plus 5f P. \& P. LP/LP. 95p plus 5 p . P. \& \mathbf{P}, Iateat Mullard Dats Book 1973/74 only 80p +5 p poet-No VAT.
POR SPEEDY DKLIVERY OP THEE MIMT COLDITIOS COMPONETTS PLEASE SEND C.W.N. to ZTGAT'8 8001 ELECTRONICS CO. LTD., DEPT. E,E. 1 S MABLET GTREET, LOMDOM, E,
N.B.-Please add 10% for VAT-Surry.

Project 60 FM Tuner 2 230/Sterno 60/P25		90 (e.1	
		- 75 (¢2	.05)
$\mathbf{2} \mathbf{Z 3 0} /$ Sterm0 60/P26 ¢		. 5 ($£ 2$	25)
2 250/Stermo 60/PZ8/Trant E23		- 20 (22	
$230 ¢ 3 \cdot 50$ (550)	Stereo 60	¢7.00	(98p)
250 £ 4-30 (65p)	Trans for PZ8	2.2 .85	(50p)
PZ5 E3. 87 (50p)	2000 A mp	524.50	($52 \cdot 65$)
PZ6 25.30 (83p)	3000 Amp	¢ 31.51	(f 3.35)
AFU E4.54 (65p)	2000 Tuner	¢27.te	(£2.90)
PZ8 [5.40 (84p)	3000 Tuner	¢27 00	(£2-90)
016 \&5. 50 (79p)	Prolect 605	¢20.95	($£ 2 \cdot 40$)

PROJECT 60 KIT E2.50 (36p) Our exiremely populat kit contains the extre capacitors. din plugs and sockets, cable and fuseholder needed to complete Project 60.

SINCLAIR SUPER IC12

ONLY
£2 0e (31p)

Max. supply volts 28. Power 6 Watts ims. Com lete with free printed clicull board and 44 page bintruction book

SWANLEY IC TOMORROW C.2.00 (31p) The World's most powerful IC amplifier. Similas to the above but operates at 35 volts max. supply us by s ies Watis ras with our instructions and a 6 month guarantee bui no printed circult.

NIT \& FOR IC12 ANDIC TOMORROW Excepl for the power kits and speakers. all Items suit both Integrated circults.
OELUXE KIT
includes all parts for the printed circult and wolume, bass and ireble controls needed to complete the mono vertion $\varepsilon 1.45$ (25p).
IC12 POWER KIT
A ser of components to construct a 28 V 0 Amp power supply $£ 2 \cdot 27$ (45p).
IC TOMORAOW POWER KIT a sel of components to
LOUDSPEAKERS FOR THE ICI2
5° ह ohm $£ 1 \cdot 0$ (28p). $5^{\circ} \times 8^{\circ} 8^{\circ} \mathrm{ohm} £ 1$ 45 (31p) $10^{\circ} \times 6^{\circ} 15$ ohm $£ 2 \cdot 20$ (44p)
PREAMPLIFIER KITS
Type 1 for magnetic pickups, mics and tuners. \& $1.30(24 \mathrm{p})$. ceramic or crystal pickups. Mono iop (17p) Stereo \&: 20 (23p).
SEND SAE FOR FREE LEAFLET ON KITS
SINCLAIR EXECUTIVE CALCULATOR

NOW ONLY 545-00 (54 70).

SWANLEY ELECTRONICS

32 Goldsel Rd., Swanley, Kent Pieuse add the sum shown in brackets alter the price to cover the cost of post and VAT. Officlal credit ordars from schoots etc. Welcome. Send SAE for free leaflet on klis, IC Tomorrow and TBA 651. Mall order only. No callers, please.

TRANNIES
 I DOCKYARD，STATION ROAD，OLD HARLOW，ESSEX Phone Harlow 37739
 P／P 10p．Price list S．A．E．（Saturday callers welcome）

OUR NEW AUTUMN CATALOGUE IS NOW AVAILABLE 10p．

74 Series TTL

1	25		1	25
10p	150	8N74：3	550	50p
18p	15 p	BN7425	550	50 p
16p	180	SN7427	490	48p
16p	150	8N7428	77 D	727
16D	150	8N7430	16p	15p
18p	15 p	8N7432	490	46D
38 D	35 p	8A7433	94p	82 p
38 p	35 p	8N7437	72D	60p
20p	180	8N7438	720	69p
20p	18p	8N7440	180	150
170	150	8N7441	74p	70 p
97p	25 p	BN7442	740	70D
38D	35 D	8N7443	1.43 D	1．37p
32p	29 p	8N744	1．43p	1．37D
470	43p	8N7445	2．000	1－92p
470	43p	8N7446	1．0．0	$1.02 p$
16p	15p	BN7447	$1 \cdot 100$	1．03p
55p	80p	8NT448	1．10p	1．03p

－Devices may be mixèd to qualify for Price Breaks
－ 100 Plus less 10% off 25 plus break Breaks

Linear Integrated Circuits

$01 L$
1099
DIL
8 P1N
8P1N DIL
DIL
A TLL
$\begin{array}{lll}301 \text { A } & \text { TO99 } \\ 301 A & 8 \text { PIN DII } \\ 307 & \text { DIL }\end{array}$
DIL
TO99
8PIN DIL.
TO99
$\begin{array}{ll}308 & \text { TO99 } \\ 308 \text { A } & \text { T099 }\end{array}$
$\begin{array}{ll}308 \mathrm{~A} & \text { TO99 } \\ 709 \mathrm{C} & \text { DLL }\end{array}$
TO99

Electrolytic Capacitors

4 VOLT	
$47 \mu \mathrm{~F}$	61p
$100 \mu \mathrm{~F}$	$6 \frac{1}{1} \mathrm{P}$
220， F	$6 \frac{1}{1 p}$
$330 \mu \mathrm{~F}$	$61 p$
$1000 \mu \mathrm{~F}$	13 p
$4700 \mu \mathrm{~F}$	29p
6.3 VOLT	
$33 \mu \mathrm{~F}$	61p
$68 \mu \mathrm{~F}$	610
$150 \mu \mathrm{~F}$	$61 p$
470 $\mu \mathrm{F}$	$11 p$
$680 \mu \mathrm{~F}$	13p
$1500 \mu \mathrm{~F}$	18p
$2200 \mu \mathrm{~F}$	18p
$3300 \mu \mathrm{~F}$	26p

Transistors

 | AC187 | 13 D | BC149 | 8D | BFX87 88 p | OC84 28 p | 1N4007 22 D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 ACY17 94D

ACY19	25 p	BCL67	13
ACY20	22 D	BC168	11

 AD140 40p BC182L OD C450 17

AD149	38p	HC186	$38 p$	MP8113	$35 p$	$2 N 706$	13 D
AD150	60p	BC212L	11p	MP8121	33 p	2 N 930	83p
AAZ17							

AF＇139	39 p	BC303	$\mathbf{5 0 p}$	NKT275 25p	2 N 2926	10 p	BAY31	9 p
AF＇239	41p	BC304	40 p	NKT403 71p	2 N 3053	26 p	BY 100	29 p

BC116	$18 p$	Br 173	$29 p$	OC23	33 p	$2 N 3710$	日p	OAB1
BC125	$16 p$	BF177	$28 p$	OC25	$28 p$	$2 N 3711$	$9 p$	$0 A 85$

BC134	$16 p$	BFIP4	$15 p$	OC35	$38 p$	40361	50 p
BCl	OA91						

$\underset{\substack{\text { crocodile clip } \\ \text { bro can }}}{ }$

MULLARD POLYESTER＇S

MULLARD POLYESTER CAPACITORS C280 SERIES
 MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.4047 \mu \mathrm{~F}, 21 \mathrm{D}, 0.0068 \mu \mathrm{~F}, 0-01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$ $0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \downarrow \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 01 \mu \mathrm{~F}, 41 \mathrm{p}, 0.15 \mu \mathrm{~F}, 61 \mathrm{D} .022 \mu \mathrm{~F}, 84 \mathrm{p}, 0.33 \mu \mathrm{~F}$ ． $12 \mathrm{p} .0 .47 \mu \mathrm{~F}, 14 \mathrm{p}$ ．
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015$

VOLUME CONTROLS		
Potentiometers		
Carbon track bc0 Ω to 2．2M Ω		
Log or Linear		
Bingle 13p．Duai gang（otereo） 44 p Single type win D．P．awitch 13D extra		
SLIDE POTENTIOMETERS		
58 mm ，TRACK		
SINGLE GANGED．LOG or LIN IK to IM		
45p each TWIN GANGED，LOG or LIN Ik to sook．		
ARBON SKELETON PRESETS		
Small bigh quality type（ilnear only）．		
All valves 100.5 sneg olims．		
－1 watt		
－2．5 watt Bi		
VEROBOARD	Matrix	Matrix
$21 \ln \times 3 \frac{1}{6}$	19p	28p
$2 \mathrm{in} \times \sin$	28p	28 D
3 l in $\times 3 \mathrm{in}$	28 p	280
$31 \mathrm{~m} \times \sin$	330	32p
Sin $\times 17 \mathrm{in}$（plain）	94］	

RECTIFIERS

P．I．F．	1 AMP	1.5 AMP
54	1N4001 4ip	PLA001 8p
10 m	1 N 40024 p	PL4002 ${ }^{\text {D }}$
200	1N40035 5 P	PL4003 10p
40＊	1N4004610	PLA004 10p
60＊	1S4005 80	PL．4005 13p
800	1N400690	PL4006 15p
100＊	［N4007 10p	PL4007 20］

BRIDGE RECTIFIERS
P．I．Y．1AMP 2AMP 5 AMP 10 AMP

50	33p	53p	11．76p	22．20p
100	35p	57p		
200	37 p	80 D	21．98p	28．310
400	40p	640	42．15p	12．420
600	44p	${ }^{66} \mathrm{p}$	28．420	22.750

T

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not du the thing that really interests you? Without losing a day's pay, you conld quietly turn yourself into something of an expert. Complete the coupen (or write if you prefer not to cut the page). Noobligation aud nobody will call on you. . . hat it could be the lest thing you ever dit.

Others have done it, so can you

"Yesterday I received a letter from the lastitution informing that my
 say that this has been the best value for money I have exp- obtained - a view echerd by two colleagues who recently cinnmened the conrese". Student D).I.13., Yorks.
"('Hupleting your course, meant going from a job I dete-ted to a joh that I lowe with unlimited prospers".-Student J.A.() Dublin.
"My training with B,I,E,T. (puicklv changed my earning capacity and, in the next fow years, my earning increacod fourfold"-student (.C.P., Bucks.

FINO OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers secek. There's now surer way of getting ahead or of opening up new opportunitios for yourself. It will cost you a stamp to find out how we can help pmi. Write to B.I.E.T. Dept. beE20, Aldermaston Court, Reading RG7 4PF.

YOUR COMPLETE AUDIO-ELECTRONIC STORES
 More of everything at the right price. All your electronic requirements within 200 yards - call and see for yourself.

THE BULDAA

\star FREE TEAK CABINET with com.

20 + 20 WATT INTEGRATED I.C. STEREO AMPLIFIER

FEATURES. New slim desien with 6 - IC's, IC Sockets, 10 silicon eransistors, 4 rectifiers, 2 zeners. Special Gardeners
Fibre slass PC field slim line transformer Fibre glass PC panel. Complete chassis work. HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES -DEVELOPED BY TEXAS ENGINEERS FOR PERFORMANCE, reliability and ease of construction.
FACILITIES. On/off switch indicator, headphone socket, separate treble, bass, volume and balance controls, scratch and rumble filters, mono/stereo switch, Input selector; Mag. P.U Radio Tuner, Aux. Can be alkered for Mic., Tape, Tape-head, ese (Parts list Ref. 20 on request)

P \& P 45p
COMPLETE WITH FREE TEAK CABINET
Designer apdroved kits distributed by Henrys!

ELECTRONIC KITS Henry"s introduce new huge range of audio and electronic upplied, tremendous value Derailed list Ref. No. 14 on request.
IC RECEIVER 2NCuir Radso integrazed Wireless lanuary 1973 Aricle Reprint Raf No. 10p. Price \& 1:20.

BATTERY TARE DECK Garrard 9 vols Tape Deek with heads, etc. As previounly advertised. Limited quantity 69.50, post 30p

LEARNA LANGUAGE Recorded Cassettes with step by step phrase books Italian. ct 36 per course $\$ 5-00$ per see of four.

DISCO SPOTBANK 3 channel Disco Spotbant for use with any psychedelic fipting display.

MIFFI EQUIPMENT Warehouse prices with Big DISCOUNTS plue demonstrations (for call ers) and GUARANTEES Frochure (Ref No. int You can seo the saving:

MIGM GUALITY The best UK low noise tape but at a special price. Living Sound cassettes mee the highest internationa standard (IEC 94A). Fantasti price savings

$$
\begin{array}{c|c|c}
3 & 5 & 10 \\
\text { for } & \text { for } & \text { for }
\end{array}
$$

C60	1.001-802.80
90	1.312-574.20
C120	1.623.155

Full guarantee. Poat paid MadebyEMI eapecially for Henry's.

ULTRASONIC

perate ait $40 \mathrm{ke} / \mathrm{s}$ up to 100 Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100
rde. Ideal remote swithing andesignalling. Complete with ndsignalling. Complote with £5.90 per pair. Post 10p.

MARRIOT TAPE MEADS 4 TRACK MONO or 2 TRACK STEREO '17' High Impedance
'I
IS' Med. Impedance
\&2.00 $\begin{array}{lll}\text { 'I } 19 \text { ' Med. Impedance } & \quad \$ 2.00 \\ : 36 " \text { Med.-Low Imp. } & \$ 3.50\end{array}$:36" Med.-Low Imp.
Erase Heads for above 750 Erase Heads for abo
Hilmp. mono- 11.75 -43' Erase Head for above 75 p

7 SEG \& NIXIE TUBES (Post ISp per I to 6) XN3, XNI3, GN6 $0-9$ side vlew with data, 85 p . GNP-7, GNP-B 0-9,ide view with decimal points and data, 95p. 3015 F 7 reg 42 each. 47 per 4 with data. Ref Nour clock circuit

Miniature Amplifier 5 translszor, 300 mW ofp. control, 9 volt operated. C). 75 each P/P 15 p.

Quality Slider Controle 60 mm stroke singles and ganged. Complete withknobs. 5K, 10K, 25K, $100 \mathrm{~K}, 250 \mathrm{~K}$, 500 K .1 meg , Log and Lin. 40 p 250k, log and lin 250 K , Log and Lin ganged.
60 p each.

Ail prices are exclusive of 10% VAT which must be added to all orders ins. carr/packing. (Note: Catalogue is not subject to VAT).

See earlier page of this magazine for transistors, I.C.'s and Semi Conductor prices-latest list Ref. no. 36 on request. E. \& O.E.

TEST EQUIPMENT Just a selectiont SE250B Pooker Pencil Signal Injecror 41.90 SE500 Pocket Pencit Signal Tracer © 1.50 TEIS Grid Dip Meter $440 \mathrm{KHz}-280 \mathrm{mHz}\{13.45$ With leather case \& 10.50
200 H 20KIV Multimeter $\mathrm{C4} .20$. With case 64.95 AFI05 SOK/VMultimeser 18.50 . With case $\mathbf{C 9} .50$ with steel TE20D RF Generator $120 \mathrm{KHz}-500 \mathrm{MHz}$ \& 16.50 . Carr. 350
 TE65 Valve Volsmeter 28 ranets $\mathbb{C l} 17.50$. Carr. 40 P ALL NOMBREX MODELS IN STOCK

PA-Disco-Lighting
 UK's Largest Range-Wrize demonstrations on request.

${ }^{60} 800_{6}^{\circ}$

DJ30L 3 Channel sound to tighe unit, 3 KW . 229.50

DISCOAMP Watt Disco a mp/mixer. 149.75
Djioss 30 watt Disco amp/mixer, f $32-25$
Anti-Feet back Quality Mic, $111 \cdot 50$
D1500 50 watt PA Amplifier 643.95
$011000 \quad 100$ watt 152.75
GROUP 300150 watt rms "Group" Valve Amplifier 886.00 FIBRE OPTICS LIGHTING. - MICS. EFFECTS. PROJECTORS SPOTS. DIMMERS - STANDS. MIXERS. SPEAKERS. Everything for PA - Oisco- h

- PORTABLE DISCOS - DETAILS ON REQUEST

BUILD THIS VHF FM TUNER 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND. FIDELITY AEPRODUCTION. MONO AND STEREO
A popular VHF FM Tuner for quality And reception of mono and stereo. gives the REAL sound. All parts sold
 eparately. Free Leaflet No. 3 \& 7.
TOTAL E6.97, D.p. 20p. Mk. I Decoder Kit E5.97 Mains unit lor Tuner andior Decoder PS 12 . 75

SINCLAIR PROJECT 60 MODULES

 -SAVE POUNDSI $\begin{array}{llll}230 & 03.57 ; & 250 & 44.37\end{array}$ STEREO 60 PZ5 63.97 PZ6 c6.37;Transformer for PZ8 $\quad \mathbf{2} .95$
Active Filter Unit 64.45
5tereo FM Tuner $£ 16.95$
C12 51.80 ; Q16's 615 pr

PACKAGE DEALS
$2 \times Z 30$, Stereo 60 PZ5 Pose 215.95 $2 \times Z 30$, Stereo 60. PZ6 $118 \cdot 00$ 2×250, Stereo 60 , PZ9 $£ 20-25$ Transformer for PZ8 82.95
404. 406 Electronic Components and Equipment 01-4028381|Open:-9 am=6 pn 354-356 High Ftoclity and Tape Equipment 0i-402 5854/4736

Gdoys a week 309 PA-Disca-Lighâng High Power Sound 01-723 6963 303 Special offers and brosins store
EDGWARE ROAD, W2

[^0]: (C) IPC Magazines Limited 1973. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however; guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial O1-634-4452; Advertisements 01-634-4202.

[^1]: A.F.U. ($\mathbf{£ 5 . 9 8 + \text { V.A.T. } 6 9 p \text {) mav be added as required. }}$

[^2]: 506

[^3]: If you have difficulty in obtaining
 EvEPYDAY Electronilcs
 Please place a regular order with your newsagent or send 1 year's subscription (£2.35) to:-

 Subscription Department,
 Everyday Electronics,
 Tower House,
 Southampton Street,
 London, WC2E 9QX

