An exciting hololoy.... for everyone

everyda electronics
 OCT. 72
 15 p
 。

-

ELECTRONIC MOUSETRAP

ABMADLA meet the precision THMTA I Ei' SOLDERING

Precision instruments supplied with standard detachable copper chisel face bits. Standard temp. $360^{\circ} \mathrm{C}$ at $19 / 23 / 27$ watts. Special temps. from $250^{\circ} \mathrm{C} / 410^{\circ} \mathrm{C}$.

For perfection in soldering

L1076

BIT SIZE $1 / 4$ 6.34 mm Dia. 27 watts. £2. 18

L646

BIT SIZE $3 / 16^{\prime \prime}$ 4.75 mm Dia 23 watts £2•12

L706

BIT SIZE 1/8
3.2 mm Dia 19 watts £1•96

Are you alright for Jacks?

Ask for Rendat Jack plugs and sockets at your local stockist. They come in a wide variety of configurations and in cases of difficulty can be ordered DIRECT from the Rendar factory
Standard, mini and sub-miniature sizes ...plugs in both
 screened and unscreened versions... socket bodies in high melting point thermoplastic ... several unique features (some protected by UK and US Patents) .. Post Office and NATO specifications If you want to study all the facts and figures, all the ingenious con struction details, send for the Rendar Electronic Components Catalogue of technical data sheets covering their entire range of products.
The cost of the catalogue is $25 p$, including $P \& P$, and it's money very well spent!

RENDAR

Rendar Instruments Lid., Victoria Road Burgess Hill, Sussex. Tel, Burgess Hill 2642-4 Cables: Rendar, Burgess Hill

Summer was so late arriving this year that it nearly slipped by without our noticing it! Already we are tucking the lawn mower in for its winter hibernation, and once again "the nights are drawing in". HOORAYI-that means we can really get cracking on those electronic projects that have been buzzing around at the back of our minds.
The first step is to get the components lined up. And the best way to do that? Simple-get a copy of the Home Radio Components Catalogue. Then we can quickly and clearly see what we need and how much it costs. We'll know too that either by sending an order or by calling in at the Mitcham shop, we can get just what we want "off the shelf". The catalogue costs 70p, including post and packing, or 50p over the counter. Every copy contains 10 vouchers, totalling a value of 50 p when used as instructedso you can soon get back the cost of the catalogue. Over 8,000 items are listed, over 1,500 of them illustrated, and free supplements are supplied regularly to keep you up-to-date.
Post the coupon today, or call at our shop S.A.P. We're open 9 to 5.30 Monday to Saturday, except Wednesday 9 to 1 .

It would help us considerably if we knew whether this was your first Home Radio Components Catalogue. If it is, please place a tick in the box.

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

Our CREDIT ACCOUNT SERVICE makes it so simple to purchase

Our customers find this service a very simple and convenient way of purchasing all their radio and electronic components. We supply pre-paid envelopes and order forms, and no matter how many orders you send us you make only one payment per month. There

INGENIOUS ELECTRONIC SLEEP INDUCER
 WAKE UP
IN THE NIGHT AND CANT GET OPF TO BLEEP. ABAIN ? WOULD YOU LIKE TO BE GENTLY BOOTHFNIGHT TO 8ATIBFYING 8LEEP EVERY NIGHT? Then build this ingenious electronic aleep
Inducer. If evem slops by itarl/ so you don't Inducer. If evew whe to worry abow is being on all night! The loudnpeaker produces soothing audiofrequency mounds, continuousjy repentedbut as thme goes on the mound gradusly becomes leas and lea-until they eventually cease altogether, the sflect if has on people is amazingly wery aimilar to Ayprosis. A con trol is provided for mdjusting the length of times, etc., all transiotor. can in about two hours. No ynowledse of electronics or redio needed. Estremely simple, easy-to-follow. step-by-ntep, fully thlustrated instructions inciuded. No solderimg mecessasy. Works of atandard batteriea, extremely economical Size only $3^{\prime \prime} \times 41^{\prime} \times 11^{\prime \prime}-t a k e$ it angwhere. K it includes case, nulh, Wire, acrewe, elc.
 eparately)
BUILD S RADIO AND ELECTRONIC PROJECTS
oulf $£ 2 \cdot 45$

Amazing Radio Construction net! Become a radio expert for 28-45. A complete Home Redio Course. No experlence needed. Partb Including ample instructions for each deaign. Llluscrated atep-by-step plans,
all transistore, loudspeaker,
etc. permonal you need. Presentation box 45p axtra as illua. (if required) (parts availabla meparately) Bo soldering necessary. sond es. $\mathrm{B}+20 \mathrm{p}$ p. a p .

Eavesdrop on the exciting world SMORTNANE
of Atrcraft Communications V,H)F. AIRCRAFT BAND OILZ CONVERTOR fy. $\%$ Liatem in so AIRLIMRS PRIVATE PLATES, axelilimp cross lalk betweem pillots, orownd approach control, aifport tower, Heay for yourself the discighimed tosces hiding tentenest on talk dowons.
With them When they have to Likf nerve ripping decisions in emergencies-Tune into the arreratt irequency band including ERATH 0% GATWICK, LUTON, BIIGWAY, PRESTWICK, FTC. ETC. CLEAR AS A BeLL. This fantantic fully transintorised inatrument can be buill by anyone over wiwe in under fro howrs. No moldering necesemery. Fulls illustrated aimple instructionn take you atl you do is extend rod aerias, place close Al you do is extend rod actia, place close tiny portablea). HO COIITECTIOWB WEATEVER IEEDED. BEND ONLY ER•85 + 20 p p. de p. for kit includlag came, nuts, ecrews. wire, etc. etc. (parts avaliable meparately).
FIND BURIED TREASURE?
Transistorised Treasure Locator

CONCORD ELECTRONICS LTD. (EE10U) 8,

TRANSISTOR RADIO f $2 \cdot 75$

Anyone from 9 year up cha foliow tbe atep-by-step, eany a ABC tully illurtroted in 6 atoutroctions. No eordering nucemary 66 acations loferd on rod sertal in 30 mina. Rusahn, Alrice, USA. Ewitsorland, ote. Experience thrilis of world wide newn, sport muaic, etc. Eivemdrop on unusua broed x 11° Only $28.75+20 \mathrm{p}$ p. \& p . KHL include rabinet creve, instructions, ete (Parta avaliable meparately).

OOTHE YOUR NERVE
 RELAX WITH THIS AMARING
 RELAXATRON

CUTS OUT NOIRE POL LUTION-SOOTHES YOUR NERVEB! Don't undereatimate the ures of this fantatic new dealgu-the RELAXATRON nolec generator. Besides pink nolee generator. Besides extraneous untwanted cound it hay other very interesting properties. For listance. many people find a ralnatorm mynteriousy relaring, alarge part of this feeling of well-belse can be directly traced to the sound of falling ratn-droptl- well known type of pink nolee IF YOU WORK IN NOIBY OR DISTRACTING BURROUNDINGS, IF YOU HAVE TROUBLE CONCENTRATING, IF YOU FAEL TENGED. UNABLE TO RE-LAX-then build this fanteatic Belaritron. Once used you will never want to oe without It-TAKE IT ANYWHERE. Ueea stendand PPS batteries (corrent uped ao amall that battery life is almoat sbelf-ife). CA. BEARS OF AGE uing our unfque, step-bystep. fully illustrated plans. Nw woldering neceeary. Afl parts theluding cese, a psit of cryutal phones. Componeata, nuts, screwe, wire, etc. no soldering

ELECTRONIC ORGAN
 Pully tranelatorised. Fen corranlinid LOUDAPRESE Fiftem erpersta krys epan Taces", pley "Bllent Night", play"A whid Lave Byne" efe. atc. Fou have the thrill and excitement of bullding it together with the pleagure of playing a real, live. portable electronlc organ. DO PREVIOUS EHOWLEDGE OF HLEOTROMCS MEEDED. No coldering necemary, Blople as ABC to make. Anyont owr nine yellers can bwild th casily in
 +20 p . p . for kit, including case, nuts. acrewe, imple inctractiona, etc. Unes atandard battery (parts arailable separately). Have aff the pleature of making it yournell. Aniah with an exciting gift for comeone.
Find buried tressure with this
READY BUILT \& TESTED TREASURE LOCATOR MODULE orre $£ 4.95$ PTLEXB. To

TOR MODULS. Ready bwill ophones and it': plus in arking. Put it in a cape, merew a bandle on and YOU HAVE A PORTABLS TREAORE LOCATOE EAELI WORTH ABOUT 5201 Extremely menitive -penetrates through earth, mand. rock, water, ete.-EABILY LOCATES COINE, GOLD, BILVER, JEWELLRRY, HIETORICAL RELICS, BURIED PIPRS, ETC. Blgmals eract location by "beep" plith
macresing en you near burled metallic objects. so ambition ti will lesect certoje objects owried EDVRAL FEAT BLLOW GROUMD 1 GIVES CLEAR BIGNAL ON ONE COIN $84 . \%+30 \mathrm{p}$ cart. etc. (Hish quality Danleh Stethoncope headphones se PATIT ATEOHR FOL 7 DATE. YOUR
 DEIGETMB.

Callers Welcome

Vary the strength of your lighting with a OTMMASMILH

The DIMMASWITCH is an ateractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $\mathbf{2 0 0 - 2 5 0} \mathbf{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression

600 Watt $\mathbf{6 3 - 2 0}$. Kit Form $\mathbf{6 2} 70$
300 Watt $\mathbf{6 2} \mathbf{7 0}$. Kit Form $\mathbf{6 2} \mathbf{2 0}$ All plus 10 p post and packing. Please send C.W.O. so

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883, As supplied to M.M. Government Departments.

INSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM 9v BATTERY (not supplled). ALL COMPONENTS ANO PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: $\mathbf{\text { e. } 2 \cdot 6 \text { post paid. }}$

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM gV BATTERY (not supplied) COMPLETE KIT OF COMPONENTS WITH PRINTEO CIRCUIT BOARD \& FULLINSTRUC-

MAIL ORDER ONLY.
S.A.E. ALL ENOUIRIES.

DABAR ELECTRONIC PRODUCTS

sa, LICHFIELD STREET.
WALSALL, STAFFS. WSI IUZ
EI COIP UTER PRIITED CTRCUIT PAMELS $2 \ln \times 4$ in pecked with semil-conductort and top quallty reslutord. capacitors. diodes. eic. minimunn of 35 transistora. Dats on transistors included.
P. \& P. 18 p . With a guaranteed mininum of 85 translatorn. Data on tranaiazorn included.

PAERELS with 2 power tranaiators almilar to OC2 0 , bach boerd-componenta 2 board ($4 \times 0 \mathrm{OC2} 8$) 50p, P. \& P. 6p

9 OAS. 3 OA10, 3 Pot Cores, 28 Resistors ${ }^{14}$ All long leaded on panels $13 \mathrm{in} \times 4 \mathrm{in}$. 1 for sl . P. P. 25 p .

700C OPERATIOMAL AMPLIFIER TOS
8 lead I.C. 1 ofl 50 p . 50 onl 35 p . 100 off 80 p .
250 MIXED RESISTORS 62p 1 and 4 witt.

150 MIXED HI STABS 62p
4. \& and 1 watt 5% and better

QUARTZ HALOGEN BULBS
With long leads. 12 V 55W for car spot lightn. projectora, etc. 50 esch. P. \& P. 8 p .

GPO EETETSIOI TELEPHOMES
with dial but without bell. e5p emch, P. \& P. 30p. $\mathbf{8 1} 76$ for 2. P. $\&$ P. 50p.

BARGAIN RELAY OFFER

single pole change over milver contacts 25 V to $50 \mathrm{~V} .2 .51 \mathrm{~s} \Omega$ coil. 8 for 50p. P. \& P. 5 p .

KEYTRONICS mail order only

44 EARLS COURT ROAD

LONDON, W. 8
$01-4788499$

PREMIER HI-FI STEREO SYSTEMS

 SYSTEM " 800 "Consinta of the Premier 800 Mk II all transletor stereo amp iner (deacribed left) Marrard autofmanual record plajer unlt fitled stereofnono cartridge With diamiond stylus and mounted in teak inlah plinth with cover and two plug in and play. The soo Mt II anmplifer ham an output mepplied ready to of 6 watt per channel with lnputs for ceramic and magnetle pick-up, tape and tuner also tape ontput mocket and heaiphone socket. Controls: Bane, Treble. Volume, Balance, Belector. Mono/Etereo nwitch Headphoge rocket. Power on/ off. Teak finish cabinet with aluminlum front patiel. Slize $12 \ln \times 6\|\ln \times 2\| \ln$
£35.00

SYSTEM "TWO"
as zoove but with hotted front teak iniah loudrpeakers. Garrard 8P25 Mk. III $£ 45.00$ Carr. \&1.75

SYSTEM "THREE"
Thin conmint of KLINQLR KCYOS ntereo enuplifier giving 6 Watti rins per channel Fith Bana. Treole, Volume and Banace Cootrols. Inpota for Magoetic and Ceramic plck-up. 8P2s Mk. III In teak finlah plinth with cover and titted Sonotone 9TARCD diamond meteo cartridge a pair of

PREMIER HI-FI OFFERS

Rogers Ravensbrook II Stereo Amplifier teak Rogere Ravensbourne Stereo Amplifier teak Metrosound ST20E Stereo Amplifier teak Goldrint GL72 less cartridge
Garrard SP25 III with Goldring G800 cartridse

Garrard AP16 with
Genotrad wirdios £29.50
cover

that prevente perifct recordinge. Simply
£38.50 £49.00 £25.50 £22:00 $£ 15 \cdot 00$
leaves bead iree of miagnetintn. Cleany any tape head in meconde.
£1-72

E.M.I. $13 \times 8 \mathrm{in}$ HI-FI SPEAKERS Fitted two 24 In treetertand and crosonver net work. Imped ance
8 or 15 ohm. Handiliog capa-

METER BARGAIN MODEL GT-800 MULTIMETER A precinon made pocket alzed teas meter, ideally sulted for testing elec tronic circuits or electronic appliancea supplied complete with test lead and batteries. RANGES-DC Voltage: 10 age: $10,50,250,1,000 \mathrm{~V}$. $1,000 \mathrm{DV}$ age: $10,50,250,1,000 \mathrm{~V}(1,000 \mathrm{pV})$
DC Current: $1 \mathrm{~mA}, 100 \mathrm{~mA}$. Resistance $0 \cdot 160 \mathrm{~K}$ ohms. Declbel: -10 to +22 d (at AC 10 V range) $28 \cdot 47, P$. \& $P .25 \mathrm{p}$.
TODEL CT880 qanges-D.C. vollagen: 0-3.16
 t.C. voltazes: $0-6$ - $30-120$ - 600 D.C. Current : 0 - 0.03 Remintance: $0 \cdot 16 \mathrm{~m}$ ohme Declbels: $: 20$ to +63 dB
7.00. P. 2 P. 25 p .

Carriage and Insurance 60pextra any item.

CARTRIDGE BARGAINS:
Goldring G800H 25.00; G800 45.50; G800E C9.50; P. 8 P. 10 P

HI-FT STEREO HEADPHONES

Dealgned to the bliphent posnible atandard. Fitted 2din. apeaker ualto with soft padded ear muffe. Adjuatable hesdband. plete with bitt lead and otereo jack plug. $£ 2.477_{25 p_{p} .}{ }^{\text {P }}$

VERITAS V-I 49 MIXER Battery operated 4.channel andio miser providing four eeparate inputs. size $6 \times 3 \times 2 \mathrm{in}$ iullable for cryatal fricrophone low irnpedance micro-
phone. with tranaformer. Dhone,
ridio, tape, ete. Mas. input ridio, tape, ete. Mar. Input
l-bv. Mas, output $2 \cdot \Delta \mathrm{v}$. Gain $16 t$. Mas. output $2 \cdot 5 \mathrm{~F}$. Gain
6 dB . Standard jack plug coniet lapute, phonoplug ouspot. Attractive teak wood grain tainh can MONO ES STEREO
MODEL 3 MODEL
C

"VERITONE" RECORDING TAPE
SPECIALLY MANUPACTURED IM U.SA. TROM EXTRA sTROMG PRE-STRETCHED MATERIAL. THE QUALITY IS UNEQUALLED. TENBILIBED to ensure the most pertisnent base. Highly renistant to brakk. age, molature, beat, cold or humldity. High polished aplice free finlsh. Smooth T3 $3^{\circ} 150^{\circ}$ POLYESTER $37 p$ DT6 51° 1800 0° POLIESTER $21 \cdot 12$ $\begin{array}{llllllll}\text { TT3 } & 3^{\circ} & 450^{\circ} & \text { POLYESTER } & \text { 37p } & \text { DT6 } & 51^{\circ} & 1800^{\circ} \\ \text { DT3 } & 31^{\circ} & 800^{\circ} & \text { POLIESTER } 21 \cdot 12 \\ \text { POLYESTER } & \text { 57D } & \text { TTG } & 55^{\circ} & 2400^{\circ} & \text { POLYESTERE1.87 }\end{array}$
 $\begin{array}{lllllllll}\text { LPF } & 5^{\prime \prime} & 900^{\circ} & \text { ACETATE } & 60 \% & \text { LP7 } & 7^{\circ} & 1800^{\prime} & \text { ACETATE } \\ \text { DT5 } & 5^{*} & 1200^{\circ} & \text { POLYESTER } & 76 \mathrm{p} & \text { DT7 } & 7^{\circ} & 2400^{\circ} & \text { POLYESTER } 21.20\end{array}$
 TAPE SPOOLS $3^{\circ} 8 p, 5^{\circ}$, st* $7^{\circ} 9 p$.
GENUINE
EMI-TAPE

COMPACT

 CASSETTES LOW NOISE BEAND NEW IN LIBRARY CASESC60 (List 719) 53p C120(Lint \&1-48) 90 P. \& P. 10 p

VERITONE CASSETTES In iforary casen-fully guaranteed

FOR RAPID SERVICE

 GARLAWD BROS. LTD DEPTFORD AROADWAY, LONDON, SE8 GGN
TRANSFORMERS

all with o-2
$4 \mathrm{M6} 6 \mathrm{~V}, 500 \mathrm{~mA}+6 \mathrm{~V}, 500 \mathrm{~mA}$ MM1212V. $250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~mA}$ MM20 $20 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}, 150 \mathrm{~m}$
L.T. TI $6.3 V$, $1.5 A-75 p$ plus $18 p p$ p. \& p LT26.3V, $3 \mathrm{AA}-80 \mathrm{p}$ plus 26 p p. \& p .
LT3 $12 \mathrm{~V}, \mathrm{I} .5 \mathrm{~A}-80 \mathrm{p}$ plus 26 p . LT4 12 V , 3A- $\mathbf{1 1 . 3 2}$ plus 30 p LT5 9-0-9V, 0.5A-75p plus 21p. LT6 $12-0-12 \mathrm{~V}$, $1 \mathrm{~A}-95 \mathrm{p}$ plus 26 D LT7 30-0-30V. IA- 81.87 plus 30 p

Multi-eapped
MT30/2 $0-12-15-20-24-30 \mathrm{~V}, 2 \mathrm{~A}$
 MT60/2 O-S-20-90-40 30 p P. \& P.
 Chareer 1 clus 20p o. 8 p . CT/02 2A- 11.25 plus 30 p p. \& p
CT 103 4A- 11.50 plus 30 p Secondaries $-0-5-1$
Auto-eransformers AT75 75 W - <1.85 plus 30 p p. \& p ATI50 $150 \mathrm{~W}-62.55$ plus 34 DD . \& D AT $300300 \mathrm{~W}-E 4.75$ plus 42 pp \& AT $10001000 \mathrm{~W}-68.90$ plus 62 p
All shrouded with terminal blocks AT30 $0-110-240 \mathrm{~V}$.
$110-200-220-240 \mathrm{~V}$
Spaaker isolating transformer $13 p$ p. 8 p
Speaker matching eransformer Tapped 3, $B_{\text {, }} 16{ }^{12}$. Will match isw max. -90 p plus 20 p p. \& p.

ALUMINIUM BOXES

EQUIPMENT CASES

 plain aluminium.
Stove- enamelled
silver-grey ham-
silver-grey ham-
mer finished, $20 p$
CONSOLECASES
in plain aluminium, ideal for mixers.
 $\begin{array}{ccccccc} & \text { in } & \text { in } & \text { in in } & \text { in } & & \\ G B 20 & 8 & 9 & 3+2 & 3 & 11.42 & 30 p \\ G B 21 & 10 & 9 & 3+2 & 3 & 61.58 & 30 p\end{array}$ $\begin{array}{llllllll}\text { GB21 } & 10 & 9 & 3 & 2 & 3 & 61.58 & 30 p \\ \text { GB22 } & 12 & 9 & 3 & 2 & 3 & 61.72 & 30 \mathrm{p}\end{array}$

VEROBOARD

ELECTROLYTICS

ELECTROLYTICS					
$1 \mu F$	$450 V$	$19 p$	$1,000 \mu F$	$25 V$	$27 p$
$2 \mu F$	$500 V$	$20 p$	$1,000 \mu F$	$50 V$	$39 p$
$4 \mu F$	$350 V$	$14 p$	$2,000 \mu F$	$25 V$	$30 p$
$8 \mu F$	$450 V$	$16 p$	$2,000 \mu F$	$50 V$	$53 p$
$16 \mu F$	$450 V$	$17 p$	$2,500 \mu F$	$25 V$	$45 p$
$25 \mu F$	$25 V$	$7 p$	$2,500 \mu F$	$50 V$	$60 p$
$25 \mu F$	$50 V$	$8 p$	$3.000 \mu F$	$25 V$	$48 p$
$32 \mu F$	$450 V$	$24 p$	$5,000 \mu F$	$25 V$	$55 p$
$50 \mu F$	$50 V$	$10 p$	$5,000 \mu F$	$50 V$	$98 p$
$100 \mu F$	$2 S V$	$10 p$	$8-8 \mu F$	$450 V$	$18 p$
$100 \mu F$	$50 V$	$10 p$	$8-16 \mu F$	$450 V$	$20 p$
$250 \mu F$	$25 V$	$12 p$	$16-16 \mu F$	$450 V$	$27 p$
$250 \mu F$	$50 V$	$17 p$	$16-33 \mu F$	$450 V$	$63 p$
$500 \mu F$	$25 V$	$18 p$	$32-32 \mu F$	$450 V$	$49 p$
$500 \mu F$	$50 V$	$25 p$	$50-50 \mu F$	$350 V$	$38 p$

MINIATURE ELECTROLYTICS

$1 \mu \mathrm{~F}$					
$1 \mu \mathrm{~F}$	$63 V$	$6 p$	$10 \mu \mathrm{~F}$	64 V	$7 p$
$2 \cdot 2 \mu \mathrm{~F}$	$63 V$	$6 p$	$16 \mu \mathrm{~F}$	40 V	$7 p$
$4 \mu \mathrm{~F}$	40 V	$7 p$	$30 \mu \mathrm{~F}$	15 V	$7 p$
$4.7 \mu \mathrm{~F}$	$63 V$	$6 p$	$47 \mu \mathrm{~F}$	16 V	$7 p$
$8 \mu \mathrm{~F}$	15 V	$7 p$	$47 \mu \mathrm{~F}$	25 V	$6 p$
$8 \mu \mathrm{~F}$	40 V	$7 p$	$68 \mu \mathrm{~F}$	16 V	$6 p$
$10 \mu \mathrm{~F}$	$25 V$	$6 p$	$100 \mu \mathrm{~F}$	10 V	$6 p$

ENTIRE MULLARD 015016/017 RANGE

CASSETTE OWNERS:

PU12 Power unis for connection to
$2 V+$ or $-\mathbf{E}$ car electrical
ystems, giving $7 \$ V$, stabilised $\mathbf{\$ 3 . 2 5}$ PUIf Ast above bur switched for $\mathbf{5 1} 10$ PP75 Mains power supply, outpue $\mathbf{\&} 1.95$ All units are complese with cable and plug
 9, 12 volts d.e. at 500 mA

BATTERY ELIMINATORS cuprent equipmens PPo Input 240 V a.c.
PP9 inpur 240 al . Oupput $9 \mathrm{~V} \mathrm{d.c}$

NEW
 ILLUSTRATED 1972-73 CATALOGUE
 Post Free

CONTROLS, Log or Lin.
single, $\begin{aligned} & \text { ess switch, } 5 p \\ & \text { Single. D.p swisch. } 240\end{aligned}$
Tandem, less swirch, ${ }^{40} \mathrm{p}$, $100 \mathrm{k} \Omega$. $250 \mathrm{k} \Omega$

SLIDER CONTROLS, 87 mm
sinplere with knobs. 35p. 10k in, 25k a 50kn.

RESISTORS

All 5%, high-stabilicy, E12 values. IW, Ip: W, lip; iw. 4p; $2 W$, $6 p$
wire.wound

LOUDSPEAKERS

7 in $\times 4$ in, $30-61.12,812-61.12$
Bin $\times \sin .30$

PLUGS
 Car aerial

 0.1 0 0 0 0 O.I.N. 5 pin, 2 Jack, 2 pin Jack, $2 \neq \mathrm{mm}$ unscreened Jack, 2 mm screened Jack. Jfmm screened Jack, tin unsereene Jack, sin screened Phono, plastic top Phono, plated metal Phono, ficted 4 fi lead Wander. red or blac LINE SOCKETS
 \qquad D.I.N. 3 pin (s D.IN. 5 pin, 180 D.I.N. 5 pin, 240 D.I.N. 5 pin. Jack, 3 fmm
 Jack, $\frac{1}{6}$ in sereened
 Phono, plated metal

CAPACITORS				$\begin{aligned} & 0.0027 \mu \mathrm{~F} \\ & 0.003 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$	s/m	$\begin{array}{r} \text { 15p } \\ 5 p \end{array}$
2.2pF	500 V	5/M	$71 p$	$0.0033 \mu \mathrm{~F}$	125 V	P. 5.	6p
$3.3 p \mathrm{~F}$	500V	S/M	$71 p$	$00033 \mu \mathrm{~F}$	500V	Poly.	6 p
${ }_{5 p}$	500 V	S/M	710	$00033 \mu \mathrm{~F}$	1,000V	MDC	6 p
10pF	$125 V$	P. 5.	5p	$00036 \mu \mathrm{~F}$	500 V	S/M	$15 p$
10 pF	500 V	S/M	710	$0.0047 / 4 \mathrm{~F}$	125 V	P.S.	9
ISpF	$125 V$	P. 5.	5p	0.0047 LaF	500 V	Poly	$6{ }^{60}$
15 pF	500 V	Cer.	4p	$0.0047 \mu \mathrm{~F}$	S00V	5/M	20p
18 pF	500 V	S/M	7 1p	0.0047 LF	1,000V	MOC	$6 p$
22pF	125 V	P. 5.	Sp	$0.005 \mu F$	100 V	Mylar	1 p
22pF	soov	S/M	$71 p$	$0.005 \mu \mathrm{~F}$	500 V	Cer.	5p
25 pF	soov	5/M	71 p	$0.0068 \mu \mathrm{~F}$	125 V	P. 5	101 p
27 pF	500 V	Cer.	4 4	$0.0068 \mu \mathrm{~F}$	500V	S/M	30 p
33 pF	125 V	P. 5.	5p	$0.0068 \mu \mathrm{~F}$	Soov	Poly.	6p
33pF	s00V	S/M	$71 p$	$0.0082 \mu \mathrm{~F}$	125 V	P.S.	$101 p$
39pF	500 V	S/M	7 \%	$0.0082 \mu \mathrm{~F}$	500 V	S/M	30p
470 F	125 V	P.S.	$5 p$	$0.01 / 4 \mathrm{~F}$	18 V	Dise	4p
47 pF	500 V	Cer.	$4 p$	0.01 HF	125 V	P.S.	10 1p
S0pF	soov	$5 / \mathrm{M}$	7 ip	0-01HF	160 V	Poly.	4 p
56 pF	500 V	$5 / \mathrm{M}$	710	001 HF	250 V	M.F.	3 p
68pF	125 V	P. 5.	$5 p$	0.0114 F	400 V	Poly.	3 p
68 pF	soov	S/M	7 p	0.01 hF	s00V	Cer.	5 p
75 pF	300V	S/M	710	$001 \mu \mathrm{~F}$	S00V	5/M	30 p
92pF	Soov	5/M	710	$001 \mu \mathrm{~F}$	600 V	MDC	$7{ }^{\circ}$
1000p	125 V	P. 5.	\$p	$001 \mu \mathrm{~F}$	1.000 V	MDC	$9{ }^{9}$
100 pF	soov	5/M	7 p	$0.015 \mu \mathrm{~F}$	160 V	Poly	
100pF	soov	Cer	5p	$0015 \mu \mathrm{~F}$	400 V	Poly.	3 l
120pF	500 V	$5 / \mathrm{M}$	719	$002 \mu \mathrm{~F}$	100V	Mylar	${ }_{5}{ }^{\text {p }}$
150 pF	125 V	P. S.	5p	$0.022 \mu \mathrm{~F}$	18 V	Disc	5 p
150 pF	sooV	5/M	7 ; ${ }^{\text {P }}$	$0.022 \mu \mathrm{~F}$	250 V	M.F.	$3 p$
150 pF	500 V	Cer.	5p	$0.022 \mu \mathrm{~F}$	400V	Poly.	$3 p$
180pF	s00V	5/M	7 ip	0.022 \% F	600 V	MDC	710
200pF	500 V	5/M	7 p	$0.022 \mu \mathrm{~F}$	1.000 V	MDC	${ }^{\text {p }}$
220pF	125 V	P.S.	50	0.033 HF	250 V	M.F.	$4 p$
220pF	500 V	Cer.	50	$0.031 \mu \mathrm{~F}$	400 V	Poly.	4 p
250pF	soov	S/M	${ }^{8} \mathrm{p}$	$0.047 / 15$	12 V	Dise	${ }^{6 p}$
270pF	s00V	Cer	${ }_{5 p}$	$0047 \mu \mathrm{~F}$	160 V	Poly	$3 p$
300 pF	soov	S/M	${ }_{50}{ }^{\circ}$	$0.047 / 1 \mathrm{~F}$	250 V	M.F.	$3 p$
330 pF	125 V	P. 5 .	5 p	$0.047,1 \mathrm{~F}$	400 V	Poly.	4 p
330 pF	soov	5/M	${ }^{8 p}$	$0.047 /{ }^{1} \mathrm{~F}$	600 V	MDC	8
390 pF	500 V	S / M	${ }^{8 p}$	$0.047 \mu \mathrm{~F}$	1.000 V	MOC	10p
470 DF	125 V	P.S.	${ }^{5 p}$	0.14 F	30 V	Dise	P
470 pF	750 V	Dise	5 p	$0.11 / \mathrm{F}$	250 V	M.F.	4 p
S00 of	500 V	S/M	8 p	$01 \mu \mathrm{~F}$	400V	Poly.	5 p
S60pF	soov	S/M	$8 p$	$01 / 4 \mathrm{~F}$	600 V	MDC	10 p
680 pF	125 V	P. 5.	${ }^{69}$	$01 \mu \mathrm{~F}$	1.000 V	MDC	13 p
680pF	soov	$5 / \mathrm{M}$	8 p	$015 \mu \mathrm{~F}$	250 V	M.F.	5p
820pF	soov	5/M	8 p	$022 \mu \mathrm{~F}$	160 V	Poly.	68
$0001 / 1 \mathrm{~F}$	100 V	Mylar	$3 p$	$0 \cdot 22 \mu F$	250 V	M.F.	5p
$0001 \mu \mathrm{~F}$	125 V	P.S.	6p	$0.22 \mu \mathrm{~F}$	400V	Foil	$10 p$ 150
$0.001 \mu \mathrm{~F}$	400 V	Poly.	3 p	$0.22 \mu \mathrm{~F}$	1,000V	MDC	15p
$0.001 \mu \mathrm{~F}$	500 V	S/M	10 p	$0.33 \mu \mathrm{~F}$	250 V 250 V	Moil	${ }^{\text {ep }}$
$0.001 \mu \mathrm{~F}$	S00V	Cer.	5p	$0 \cdot 47 \mathrm{HF}$	250 V 400 V	Foil	15 p
$0001 \mu \mathrm{~F}$	1.000 V	MDC	$6 p$	$0.47 \mu \mathrm{~F}$ $0.47 \mu \mathrm{~F}$	1.000V	MOC	15p
$0.0015 \mu \mathrm{~F}$	400V	Poly.	10 p	$0.47,14 \mathrm{~F}$ $1.0,1 \mathrm{~F}$	1.000 V 250 V	M.F.	$15 p$ 150
$0.0015 \mu \mathrm{~F}$	500V	S/M	10 p	10,1F	250 V	M.F.	150
$0.0015 \mu \mathrm{~F}$	s00V	Cer.	5p				
$0.0018 \mu \mathrm{~F}$	soov	5/M	10 p	Note:			
$0.002 \mu \mathrm{~F}$	loov	Mrlar	3 s	S/M =	silver mic	${ }^{\text {ca }} 1 \%$	
$0.002 \mu \mathrm{~F}$	500 V	Cer	5 p	MOC	olystyre	ine $=300$	${ }^{\circ}$
$0.0022 \mu \mathrm{~F}$	125 V	P.S.	6 p	MOF	Mullard	min foil	
$0.0022 \mu \mathrm{~F}$	S00V	5/M	10p	M.F.	Mullard	min. Toil	
$0.0022 \mu \mathrm{~F}$	1.000 V	MDC	6 p	Cer.	ceramic.		

MAIL OnDEns: Some itomi have : port and pacting

Bin round, 3 n -62.10. 8 n-E2.50
Adasera"Hi-Ten", 10in, $10 \mathrm{~W}, 8$ or $15 \mathrm{n}-13-40$
Please add 20pp. ©. to all spakers
BONDED ACRYLIC FIBRE
B.A.F. waddine, IBin wide, lin thick. The
 €2. 80 p. \& p.
Diamond Seylus $\mathbf{1 1} 25$ extra Power output: 4 wates per channel into 8 ohms input: 120 mV (for ceramic cartridge). Stereo Head. phones with adapter 44

UNISOUND MODULES ONLY-£6. 95 IYou prefer, you can buy the three modules-
pre-amplifier, power supply/dual power amplifier pre-amplifier, power supply/dual power amplifiter.
and concrol panel-by shemslues and conerol panel-by themselves for only $\mathrm{E6}$. 95 .
P. \& P. 50 p extra. Their overall specification is the same as shown for the complete Unisound console using the highly efficient I.C. monolithic power ch very low distortion at all power levels correcr opera to ensure ambient cemperatures, full power over the audio spectrum
See below for oddress.
phes with adapter 4

THE TOURIST PB PUSH BUTTON CAR RADIO KIT

Apart from the output stage, which is an integrated circuit, the only other electronic components that need soldering are some capacitors, resistors, etc. The kit includes a prebuilt RF tuner unit, and fully modulised IF stages which are pre-aligned before despatch. As well as electronic components, this kit also contains 2 diamond-spun aluminium knobs, elegant matching front panel, dial, washers, screws and wire.

Fully retractable, lockable car aerial $\$ 1-25$ post paid

Mail Orders to Acton.
Terms C.W.O.
All enquiries S. A.E. Goods not despatched outside U.K.

 Incredible 2-In.l Radiol Firat claas makers-
because of our crasy price contract stipulates we must NOT mention
name 1 Beavifully made name 1 Beautifully made
$9^{\prime \prime} \times 5^{\prime \prime} \times 22^{\prime}$, overall approx. Every up-to-date tech. nolosical improvement! 1 , RECPTION TORSEMI-CONDUC. \quad Transistors, 5 HONR ORN Diodes and Seabiliser
FOUR WAVE BANDS Yei, VHF model with Nevebandsl Gers sta tione around world inct Short Wave, sho local and new stations not ye rite aerial plus 26 Inch On / off / volume and tation Selector Dial! Wareband aelector Equally wonderful in CAR ING Diale for flat or uo- DOR, POAT tTC. 45p. for right use as illustrated. RUNS OFF 12 VOLT AATTERY! (AS A PORT. ABLE It runs on standard batteries). PLUG IN 12 VOLT ADAPTOR Car battery only! Miraculousi Span oceanal Hundreds of tranemis slons day and night including short wave-ven in carl BUT WAIT simply remove radio from car. "snap on" optional carry handle ANO YOU HAYEA DE-LUXE PORTABLE withadditional upright tuning disk, WRITTEN G*TEE, Only 19.95 , post 45p. Sprune of metal mitching detachablecarry hand 7 days-refund if not delighted. SHOPERTUNUTIES LTD. Dapt. EE/I2, 164 Sherd's Bush Green). LONDON, WI2 BAQ (Thura l. Fri. 7). Also: ''s High Holborn.

Itsemlluls

 $60 \%=$
C wivismin use carn handif er natteries!

IT AM/FM
LONG
SHORT
WAVEBATDS
FANTAGTIC PRICE

SPECIAL
 OFFER

Garrard SP25 Mk. II!
Goldrine G800
leads supplied.
lease add if 25 for P. a P
TURNTABLE
Plemse add 750 for P. E.
Garrard SP25 Mk. III Garrard AP76 Garrard SL65 Garrard 401 Garrard Zero 100 (Auto) garrard Z. 100 (Sinsle) Garrard SL75 Garrard SL95B BSR MP60
Goldring GL72
Goldring GL72
Goldring GL72/P
Goldring GL75
Goldring GL7S/P
Goldring 101 PC
Wharfedale Linton \& cart
Thariedale Lint
Thorens TDi25AB
Thorens TO125AB. II
Thorens TO 150 Mk . 11
Thorens TDi50A Mk.

610.25 617.75

AMPLIFIERS

Ploave add 75 p F. P
Ametrad 8000 M
Amstrad Integra 40000
Armstrong 521 (teak cased)
Alpha Highsate 212
Alpha Highgate FA 300
Alpha Highgare FA 400
Leak Delta 30
Leak Delta 70
Metrosound ST20E
Mevrosound ST60
Merrosound ST60
Ploneer SA600
Pioneer SA700
Pioneer SA700
Pioneer $\$ A 800$
Pionear SA900
Pioneer \$A1000
Rogers R/brook (Chassit)
Rogers R/brook (Cased)
Rogers R/bourne (Chassis)
Rogers R/bourne (Cased)
Sinclair PRO60 $2 \times 230 / P \mathbf{Z 5}$
Sinclair PRO60 $2 \times \mathbf{Z 3 0 / P Z 6}$
Sinclair PRO60 $2 \times$
Sinclalr PRO60 $\times 2 \times$
Z50/P Z $8 / T$ rane
Sinclair 605
Surcelair 2000 Mk . It
Sinclair 3000 Mk .
Wharfedsle Lincon
Goodmans Max Amp
Teleton SAO206B
Teleron SAQ307
Rotel RA210
Rotel RA 310

Al prices correct ot :ime of oress

TUNERS
Plase add 75p P. © P_{0} Amserad Multiplex 3000
Armstrons 523 Armstrong 523
Rogera Ravensbrook FETA
(Chassia)
Rogers Ravensbrook FET4
(Cased)
(Chassis)
627.95
639.50
639.50
630.95
330.05
41.00

Rogers Ravensbourne FETA
(Cased)
Sinclair PRO60 (Module)
Sinclair 2000/3000 Tuner
Philips RH690
Leak Delta FM (Cased)
Leak Delca AM/FM (Cased)
Leak Delte AM/FM (Cased)
TUNER/AMPLIF
Plesso idd 75p for P. $\frac{1}{\text { P. P. }}$
Alpha Hishgate 150
Armstrong 525 (Teak cased) 467.95
Armstrong 526 AM/FM
(Teak cased)

(Teak cased)	17
Leak Delua 75	6124.75
Philips RH781	$150 \cdot 00$
Philips RH702	C82.50
Teleton 2100	629.95
Goodmans One Ten	699-50
Rogers R/brook (Teak)	E78.50
Rogers R/brook (Chassis)	\$72.75
Alphe FR 3000	160.00

SPEAKERS

Plus 35p P. \& p.
Finished in teak veneer with tinted Gust cover fully assembled. For GT60 2000 25, 3000 , 1025. 5165 , 2500 , 3500, S100 McDonald MP60 and others. SL95B; \&4. 20 olus: 55 SLP R i SL95B, fis 20 plus 55p P. \& P. Japanese equipment-at no extra CARTRIDGES
Flenes add 10 p for P. 4 P.
Goldring G850
Goldring G800
Goldring G800E
Goldring G800 Super E
Shure M3D
Shure MS5
Shure M75E Type 2
63.25
65.75
68.50
614.35
63.85
65.65
65.85
610.35
61.75

TIIII
DEEOULT WhitiOUSES
DepteE11) 174 Pentenville Road, London, M1. Telephone 01-2781789 Or: 4 High Vlew Parade, Redbridge Lane East, Woodford Avenue, llferd, Essex. Tel: 01-550 1086.
Open Monday to Saturday 9.30 a.m. 60
 Moy Callens. Please note that crie

2 minutes trom KING'S CROSS EUSTON \& ST PANCRAS
on main toad leading to the East and West Country

220-240 Volts or 100-120 Volts

Model X25
The leakage current of the NEW $\times 25$
is only a few microamps and cannot harm the most delicate equipment even when soldered "live" Tested at $1500 v$. A.C. This 25 watt iron with it's truly remarkable heat-capacity will easily "out-solder" any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages. Fitted long-life iron-coated bit $1 / 8^{\prime \prime}$ 2 other bits available $3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$.

Totally enclosed element in ceramic and steel shaft Bits do not "freeze" and can easily be removed

PRICE: £1.75 (rec. retail) Suitable for production work and as a general purpose iron

Model CCN

220 volts or 240 volts
The 15 watt miniature model CCN. also has negligible leakage. Test voltage 4000 v . A.C. Totally enclosed element in ceramic shaft. Fitted long-life iron-coated bit $3 / 32^{\circ}$ 4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime} 1 / 4^{\prime \prime}$ and $1 / 16^{\prime \prime}$ PRICE: $£ 1.80$ (rec. retall) OR Fitted with triple-coated, (iron, nickel and Chromium) bit 1/8"
PRICE: $£ 1.95$ (rec. retail)

A SELECTION OF OTHER SOLDERING EQUIPMENT.

MODEL CN

Miniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ ironcoated bit. Many other bits available from $1 / 16^{\prime \prime}$ to $3 / 16^{\prime \prime}$. Voltages $240,220,110,50$ or 24 PRICE: $£ 1.70$ (rec. retail)

MODEL CN2
Miniature 15 watt soldering iron fitted with nickel plated bit $3 / 32^{\prime \prime}$. Voltages 240 or 220. PRICE. $£ 1.70$ (rec. retail)

MODEL G

18 Watt miniature iron, fitted with long life ironcoated bit $3 / 32^{\prime \prime}$. Voltages 240,220 or 110 PRICE. £1.83 (rec. retail)
contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder. stand and "How to Solder" booklet.

PRICE £2.75

(Rec, retail)
MODEL SK. 2 KIT
contains 15 Watt miniature iron fitted witi $3 / 16^{\prime \prime}$ bit. 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$
 heal sink solder and booklet"How to Solder

MODEL for connection to car battery. Packed in strong plastic wallet with booklet "How to Solder." PRICE $£ 1.95$

MES.KIT Battery-operated 12v. 25 watt iron fitted with 15° lead and 2 heavy clips (Rec, retail)

lenclose cheque/P.O./Cash (Giro Na. 2581000)
\qquad
NAME \qquad in case of difficulty direct from ANTEX LTD. FREEPOST

From radio or electrical dealers, car accessory shops or,

Please send the ANTEX colour catalogue.
Please send the following
 \square
\qquad
ADDRESS
\qquad

MAINS MOTOR Prection mado-ren ond in reoond decke and tape reowr. ders--dieal leo for extracter fan, blowtr, hoabers, ola. Naw Poatage 20ρ for flent oee then 10 p for wach one ordared.

MINIATURE

WAFER BWITCHE

2 pole, 2 way-4 pole, ${ }^{2}$ maypole, 3 way 4 pols, way-3 pon, m-1 pole, 12 way. All as polt emeh 31.60 for ten, your amortment.

SPARTAN Portable (1) RadIO 1.90 Oaby. Biz tranelotor upeaker radlo. Lead and wht good tone wll make wonderfal Chriotmat present. Buy whilestocka
last. Pull money beck cuapantee
RENITONE med. Weve 7 transletore 51 -8
ELECTRIC CLOCK WITH 20AMP. SWITCH
Theee unite are an fitted to many top quality oven. The clock is matio driven and frequency ocotrolled to it to ex. tremely accarate. The two amall dialn emahle
 Wwitch on and of timei to be accorntely at-aleo on the left is another time or alarm-this mat be eet in minutea ip to 1 hour. At the end of the period selliar price- . 60 , lou than the value of of che resk stope-pott and inc. 1 sp .

WATLEPROOV HEATE
 26 yards length 70 W . Selt-regulation

解

RESETTABLE FUSE

How long does it take you to renew a taoof Thme yourvelf when Dert one blowa. Then rockoaing your thm at
41 per hour moe how quiclely our 31 per hour see how quicisy our will pay for jteple, Prioe onily al each or Ell per dozen, apecify

FLUORESCENT CONTROL KIT Each kit comprisee aeven itemb-Choke, 2 tube ands, tiarter, bolder and 2 tube cllpa, Fith tubes or the new "Grolax" tubee for noh tank and indoor planke, Chokea are saper-adlent, montly

 6in. 9 in. and $12 i n$. miniature tuben 18 . Eit Mar
 Kite A and B 23p for one or two hith then 2sp tor anch two kite ordersd. Kit Cit orderd. Eit F ssp then 23p for each lit ordered. Kit MP1 18p on firtt lit then 18p on each two kite ordered.

DOOR INT電REOM Know who tu calling and rpeak to them wilhout bavias bed. microphoen with call peath britton, consectorn and meter ateroom. Stmply plage toBether. Originaly sold at cie. 3 pecial salp
$20 p$ poetage.

SOLDER GUN

A must for every bary man, sived imont instant heat aro illumimalo ob. 100 watt 4.75 ples poet and lme. 40p.

MAINS TRANSISTOR POWER PACK
Dealgad to operale transintor meta and mmplitiert. Adjuatable output 6 v ., $9 \mathrm{vv}_{\text {- }} 12$ volth for up to s00mA (clase B worklag). Takee tha plops of any of the following batterien: PP1, PPR, PP4, PF4 PP7. PP9 and othern. Kto comprione: rialy tranalormar recticer, amoothiog and loed rudetor. eandeasers and instruction $20 p$ postage.

MULLARD AUDIO AMPLIFIER All in module form, ceck racir bait comorive Fith beet elnher and plled.
1iodel 1158800 m watt power output 74
 Model E Fwo00 in watt powar outpat

MULLARD $4+4$ STEREO AMPLIFIER
 atwaye anale repulte: it really is a cracking amplifier, Oaly Mullard with thelr know how sould have made it poenlie at thil ow price. APBC:- Maine operated, Whation mave or opeoch per chanael. Noable wird power opply oilminetee erow tal. Farmonie distortion hem than 2%. Freque.k. guarantw. Only

COMPUTER TAPE

3.400N of the Beet Magnetic Tape money can buy-nuers claim good revalte whin Video and cound. 1in. Fide s1.00 plue 38 p poot asd invaranoe, with eamette, if wide 11.00 plua 30 p port and amarane with oamette. in. Wide 85 plus 20 p poat and tnatrance
 ach plam 20p poot and tavarase.

TANGENTIAL HEATER UNIT

 Thie beater onit is the rery latest type, moat and blower heatern conthy 615 and more. We har - few only. Comprise motor, impelier, 2t alement and 1Ew element ailowing ewitchlag 1 2 and 3 WW and with thermal asiety cut-out. Gan be fitted into any metal line case or eabinct. Onjy aeed control swita. W, Wh't mite ehis Contwo

HONEYWELL PROGRAMMER This la a drum tFpe thmint device, the dram being calllibrated in equal diviaion lor ewiteh orttiag parponed Fith ripe Ther are also errenced to allow 2 operatioas per ewiteh per rotation. There are 18 changeover mikro eritches each of 10 amp type operated by the tripe thos 18 eircuite may bo changed per revolution. Drive motor it
 matin operthed 5 reve per min. Bome of the many
uave of thim thmer are Machinery control. Boiler Artag, Diapenaing and Vending meohinee, Dipley ilfiting animated ana afgns, Birnalling, etc. Price trom makerp probably over 510 each. Spectst andp price 65.75 plow 25 p poat and ingurance. Dos'í milas this territie bergain

THIS MONTH'S SNP

 connectlon to the matna. Clock ewituben 2 oplofes per 24 hours Operaten a 16 mmp switch. All netily made op in an lvory movilded cape with outher socket. The only siag is outlet mocker is continental trpe. Pluge available in this country or put acon nector atrip in place or outpherect. $2 \ddagger+8$ and the clock han a clear perap
renovable for reprogramming.

THYRISTOR LIGHT DIMMER
For any lamp op to 1kw. Mounted on sitich plete to at For any lamp ap to likw. Mountod on switch platiotonce. is plaee of etandard switecs,

DIGITAL COUNTER TIMER Very atable and reliable crymal controlJed ctrcuit. Capable of wort in exceas of 15 MHz . Conitruction slampliger by une
 and price list 80 s.

MULLARD, AUDIO AMPLIFIER MODULE Ueen 4 trangiators, and hasen output of 750 mW nto 8 ohme apeakers. Input ecitibble for crystal mic. or plein-ap

3 STAGE PERMEARILITY TUNER
Mede orlginally for Radiomobile car radios. Thle is a medtiom Mede orlsinally for kadiomobite car radios. Thie is a modion
 $2 f+2+1$. Can be used with our 1 F module and AF module and a few inter oonnection componente to make oomplate oompact recelver. Circalt mupplided. Price ef. leat 10% for 10 .

IMMERBION HEATERS EY REMPLOY

stander itatis for domestic water tanka,
mode by the famores Remploy Cnmpany.
Cornplate with meln wabers ruiteble

TAPE POWER BUPPLY • ELECTRONIC MOUSE

 TRAP REACTOMATICTo receive componente for these projecta aend the guoted approz. prise. Any ceah diffrence will be made up.

13 AMP TWIN GANG SOCKETS Offered at leas than wholesald price your opportunity to replece thow dangurous edaptora-brown bekelite auh mountme atapdard attias. Una ately arltched 80 each. se parately arillehed 10% and or more $+20 p$ poutage if order under

POCKET CIRCUIT TESTER
Test continvity of any low redetance circuit, borae piring, car electrion. Teate polarity of diodea and reetittern. Aleo ideal sive for (olreuit rapplied). 30 or 2 for sop poot pald.

AMPLIFIER IN CASE WITH

SPEAKER

Marketed by Britiah Relay under the mame Laxistor. This is in s verg noet looklay cabinet and Is Ideal sround the home or in the wortribop for troulhle shooting or for terting out a auck laph Epp. stre approx. $9 y^{\circ} \times 6 f^{\circ} \times 31^{\circ}$ deep. Input is via amblehing tranatormer and volume onatrol and battery or an external 110 v sorurce. Bpeaker is an B-A eliptical $\left.6^{\circ} \times 3\right\}^{\prime \prime} 10,000$ gavie. The ampliter proper in Newmarket model res. P.C.4. Priee proper in Neach, 10 for thl-60. Pont and insurence 20 p .

BAKELITE INSTRUMENT

CASE

sise approz. $67^{\circ} \times 8 z^{-1} \times 2^{0}$ doep Filh bram inserta in lour corners and hakelite pabel. Thle house instrumente and special rige, etc. Price 45 p each.

TELEPHONES
complote as alamerated. Aave your loga, thre and temper, almply by putting in come telepbones. Ex. G.P.O. not now-but guaranteed in rood
condition ald carviceabla. condition ald carvicesbia. Bupplied with diagram and
lagtructiona abowing how to connect. Prioe 755 esch +80 p 100 avallable meparately, diale and bundeote $60 \mathrm{each}+20 \mathrm{p}$ post.
ROCKER SWITCH
is smp self-intme into an obloas bole. ize approximataly $1^{\circ} \times 5^{\circ}$ Op each. 10 for 849.

SLIDE SWITCHES

Cr
moun witith. 2 -pole chaogeover panal approz. 11 n I in rated 250 V lamp. for sp4. Ditio as above bat for printed cir ilt 6 each 10 for 45 , 100 for at. Int Winlatore slite fritech. DPDT 19 mm (1) in approz.) between Arias centres. 18 s . esch or amp. 10\%. EDUCATIONAL KITS-all with pictorisl instructiont THIB BALANCE
 Faytie educational kite. Japanoer made these art excellent value for money. We
do not expeot do not expeof to be able to repeat thle oller ooce stoctia are cold Brief demcriplion of each Ele PREE an accurate 11 piece balance kitt. Price of kite 40 esech poet pald. Apecial price for all 8 kite fel with free balance tit.
EAP Loas EM. Flever parth, incloding candle one concsue lems, one conver lens, stage and all trame, etc. Watch light rays bend as they pan through dilicreat jenaes.
EAB Tater Pumy Fit. Thirteen parta. Top of pump is eranmparent to thet operating parta may be obeerved. Small parts are brighty coloured to be acen eadly Fhile working. Three typea of pump may be made: Lift pump, Force Pump and FAA Benar Ett Bleres parto Trenepa KA4 Buespr Itit. Ble veD parti. Trangparent covere allow the operativa of busser to be seen. Illuatrate and teaches bow elootromacnetind with an EAE-s-P01 Elotot Elt, Twenty-foor parts including eamel wire, armatom and pole plooe. etc. Motor operaties from if volk battery. Illus traten and teacher bow electro-magnetlem operate a motor.
Ka7 Eleoteo- Iegnet Elt. Pifteen partin, inclodea compaen. Maliee two electro-megnetit, one Fith one layer of wire and one with several leyera of wire. Pinke up iacks, natis and any etnall parts
showing bow magnetiam works. KAs Carreat sad Eentance Eit. Twenty-ntie parts. Including heach and Jieht buib, Conduct interenting and educational project wo the diter. eppice in current and realitance fith difterent epges and jengtha of wire.
Las tall Tit. Right parto, incladiag bell and puah button swlteh. Build a complete electrio bell and nee how the hammer is trlegered to make the bell ring.
EA10 Morm Eay bease and tell lit. 25 part lis easy to conatruct, aimple to operate.

Where pootage in top utaced theas orders over es are post tren. Below as add Bor, Semscoedeotory add 5) poet. Overs 81 port tree. B.A.E. with enquirion plesse.

COMPLETE TELEPHONES

ex. g.p.o. normal household type ONLY 95p
POST \& PACKING 35D EACH TELEPHONE DIALS
 ONLY 50p
post a packing isp

18	4		50p
879	4	INaty Sill Rec, diodes.	50p
0.1	10	Reod Swirchest mixed cypes	50p
BM	200		50p
M4	250	Mixed Recintorb Approx Qunn ity councod by wirhe	50p
H1	40	Wirewound hatistors. Mixed typer and values.	50p
H8	4		50p
H8	2	Ocprit Lizhe Sonjitive Photo Transistor	50p
	50	NKT155/259 Germ. diodes. brand now stock cleafance	50p
	20	OC20011213 PNP sllicon uncoded TO. 5 can	50p
	20	Weil Zoner Diodes	50p
		Mixed Diodes. Germ. Gold Unmarked.	50p
His	30	Short lead Transistors. NPN sificon Planar types.	50p
UNMARKED UNTESTED PACKS			
Bos	150	Germanium Diodes Min. glase type	50p
BE3	200	Trand manulecturars' roiects Gerro.	50p
B64	100		50p
Es6	50	Sill Diodet abby min	50p
B68	50	Sil. Trans. NPN. PNP 2NOOAR, BSY95A, etc.	50p
\square	50		50p
M6	40	${ }^{250 m W}$ Zoner Diodes	50p
H11	20		50p
H/3	30	Toop hax silicon Rectifierb. 750 mA . Mized voles	50p
H16	8	rupplied	50p
	20	PY126/7 Typo Silicon Rectinert 1 amp plastic. Mixed voles.	50p
W34 15		Pouer Trankikor, PNP.Germ. NMN Silicon To. Can.	50p

OUR VERY POPULAR 3p TRANSISTORS
TYPE "A." PNP Silicon alloy, TO. 5 can.

TYPE "F" NPN Silican plassic encapsulation.
FULLY TESTED AND MARKED SEMICONDUCTORS

	$¢_{0}$		4 p
ACl07	0.15	OC139	0.11
AClis	0.13	OC140	0.15
ACl^{27}	0.17	-C170	0.21
ACI28	0.15	OC171	0.21
ACI76.	0.20	-C200	- 28
Acrir	0.20	OC201	0.25
AF239	- 30	2NI302-3	0.15
AFI 186	0.20	$2 \mathrm{NiJO4} 5$	0.17
AFI39	0.30	2N1306-7	0.20
8 Cl 54	0.20	2N1300-9	- 22
BC107	0.10	2N38I9FET	0.40
BCIos	0.10	2N4416FET	0.35
BC109	0.10	Power	
BCI48	0.10	Trensistors	
BC169	0.12	OC20	0.40
BF194	0.15	OC23	0.25
85274	0.20	OC25	0.25
BFYSO	0.15	OC26	0.25
BSY2S	0.13	OC28	0.30
BSY26	0.13	OC35	0.25
B5Y27	0.13	OC36	0.37
BSY20	0.13	ADI49	0.35
B5Y29	0.13	Aurio	1.75
ESY95A	0. 10	25034	0.25
$0 \mathrm{C41}$	0.15	2N3055	0.40
OC44	0.11	Dlades	
OC45	0.10	AAY42	0.10
OC71	0.10	OA95	0.08
$0 \mathrm{C7} 2$	0.10	OA79	0.07
$0 \mathrm{CO1}$	0.13	oabl	0.07
ocelc	0.13	OA95	0.07
0 CB	0.18	IN914	0.04

F.E.T. PRICE BREAKTHROUGH I!

This field effect transistor is the 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N3819. Data sheet supplied with device. $1-10$ 30p each, $10-5025$ p each. $50+20 \mathrm{p}$ each.

A CROSS HATCH GENERATOR FOR $£ 3.50$! ! !

YES, a complete kit of parts including Printed Circuir Boapd. A four position switch gives X-hatch, Oots, Vertical or Horizontal lines. Integrated Circuit desian for easy construction and reliabllity. This is a project in the September edition of Practical Television.
This complete kit of parts costs 43.50, post pald.

A MUST for Colour T.V. Alignment.
Our famous PI Pak is still leading in value for money. Full of Snort Lead Semiconductors \& Electronic
Components, approx. 170 . We guarantee at least 30 really hith quality factory mapked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on 'Prineed Circuis Panels. Identification Chart supplied to sive some information on the Transistors

Please ask for Pak P.I. Oniy 50p.
100 P \& P on this Pak

FREE ${ }_{\text {far }}^{\text {catague }}$

tRANSISTORS,

 RECTIFIERS, DIODES, integrated CIRCUITS, FULL PRE-PAK LISTSBOOKS
Tecthical books in selection
These are just two of oup popular lines:
E.P. 1 Translator Equivalents and Subatitutes:
This includes many thousands of British 40p U.S.A., European and C.V. equivalents. The lliffe Radio Valve Data Book 9th Edition: Transistor Oate Book 9th Edition
Charactoristics of 3,000 valvas and tubes 4.50C Transistors. Diodes, Rectifiers and integrated Cireults.
Send for lists of these English oublicotions.

MAKE A REY COUNTER FOR YOUR CAR The 'TACHO BLOCK'. This encapsulated block will tupn any
0.1 mA meter into a linear and accurate fev. councer for any accurate rev. counter for zay
car whith normal coil igntion system.

£1 each

MR MAIL ORDER DEPT,
 Mo. II
 LONDON
 II \& 40 MAYES ROAD. LONOON NR2 GTL 8 \&as 3206
 LONDON

 weight Headphone.
Iscorporate ceramic plezo electric iraneducera.
Apecification:
Frequency-20-17,500 CPB. Impedance - Predominanty capacitive, at 001MFD per earpiece Weight- $3.50 z$. (98 grams).
A Bargain at £2.50p escm set
Please include 10 p per eel P.P.

 24 Hour Dive DLrital Clock git We Supply:
t a complete set of coniponenta * A complete eet of easy to follow instiructions * Printed clrcuita made to make construction as slinple an pronible

* A cablnet and tront panel to give a professioun! Aninh. All tor the price of the com
ponents. $82.50 .+50$ p. $P . \& P$. Please send 8.A.E. for more information.
MINIATURE RELAY
6 volt 70 ohm .
Single Pole Changeover.
40p
HIGH QUALITY IMPORTED HEADPHONES 1,000 Ω pet phone .. 95p 2.000Ω per phone 105 p Plue 10p P. K P. per pal LOW VOLTAGE AMPLIFIER Fex only at s transistor amplifier comolete With volume control. Is suliable for 9 V d.c. and a.c. supplies. Will aive about 1 W at 8 ohm output. Whth bigh 1MP laput this amplifier witl work an a record plager
Der.
plus $13 p$ P. \& P.
fl. 75

TRI-VOLT BATTERT ELDMIATOR
Rnables you to worl your transintor
radio, amplitier, or cassette, etc. from A.C. mains ehrough this compsct ellminator. Just by moving a pluy you can welect the voltage you require- $6 \mathrm{v}, 7 \mathrm{7} 7$ or pack rolta. This means all your transions can be handied by thia one unit Approx. vize: $2 \xi^{\circ} \times 2 t^{\circ} \times 34^{\circ}$, OUR PRICE e2.75p +10 p . P. \& P. Bame model sultably wired for the Philipe Cassette - $88.00+10 \mathrm{p}$. P. \& P.

Made from 18 gauge aluminium

Made from 18 gauge alunintum aided chasain with corner brackets. All are 21° depth.
$6 \times 3-4$

depth.		
$6 \times 3-41 p$	$12 \times 3-53 p$	$14 \times 9-94 p$
$6 \times 4-45 p$	$12 \times 5-61 p$	$16 \times 8-86 p$
$8 \times 6-58 p$	$12 \times 8-83 p$	$16 \times 10-1.08 p$

$14 \times 3-60 p$ $16 \times 10-86 \mathrm{p}$ Please aend $10 p$ per chassio P. \& P.

$$
\begin{aligned}
& \text { 20K } \\
& \text { 25K Lin Less } \\
& \text { 20K } \\
& \text { 20K }
\end{aligned}
$$

$$
\begin{array}{lll}
25 \mathrm{~K} & \text { Switch } & 25 \mathrm{~K} \\
\text { Less } \\
60 \mathrm{~K} & \\
\text { Switc }
\end{array}
$$

POPULAR POWER
 TRANBIGTOR

Now at our Low Price
Please foclude 5

CIRCUTT I

Everything for
ppoducing you producing you own print
clrcuita. 21.40 p pl 11.40 p plue
10p. P. A

TRI-FOLT CAR CORVERTER Enables you to work Ampliger or Caseette etc from the 12 volt car supply positive or neg. earth.
This converter supplies 6, 7i or 9 volts and is tranaithor regulated. Appron, mize $2 y^{\times} \times 31 \times 2$ real money kaving device for $£ 2 \cdot 50+10 \mathrm{p}$. \mathbf{P}. \& \boldsymbol{P}

WAFER SWITCRE 1 pole 12 way 2 pole 2 way 2 pole 3 way 2 pole 4 way 3 pole 8 way 3 pole
4 pole 3 way

18p each. Pleave ine Sp_{p} P. \& P. Up to 3 -whiches.

POTENTIOMETERS All types 1° and lees dismeter. BINGLES DUAL

$$
\begin{aligned}
& 5 \mathrm{~K} \text { Lor or } \\
& \text { 10K } \\
& \text { 10K } \\
& \hline 0
\end{aligned}
$$ 100K 12pea, 100K Switch 250 K Double 250 K 40p. 600 K Pole book each

$\begin{array}{ll}1 \mathrm{M} \\ 2 \mathrm{M} & \text { 1Mitch } \\ 24 & \text { 2M }\end{array}$ PRINTXD CIRCUT BOARD $\begin{array}{ll}8 \times 6-10 \mathrm{p} & 10 \times 8-15 \mathrm{p} \\ 9 \times 5-10 \mathrm{p} & 12 \times 12-80 \mathrm{p}\end{array}$ $9 \times 5-10 \mathrm{p} \quad 12 \times 12-80 \mathrm{p}$
Plemetine. 3 p . per board P. \&

EAI000 3 WATT AUDIO AMPLIFIER
An Audlo Amplifler denigned around the An Audlo Amplifler
TAA621 Linear I.C.:-

TAA 621 Linear
Bupply Voltage Supply Voltag
Speater Imp. Speaker Imp Freqnency
Overail gize Ideal Amplifie -tereo units, etc Full technical data and diagrams with each $\mathbf{2 0 . 6 3}$
module. All guaranteed and a bargain at
$9-24 \mathrm{~V}$
$8-16 \mathrm{ohm}$
${ }^{8-16}$ ohm
$60 \mathrm{n} 2-25 \mathrm{EHz} \mathrm{Hz}$
$2 \tan \times 3 \mathrm{in} \times 1$ in

 BriLish made Relaye. Bize $11^{\circ} \times 1^{\circ} \times 1^{\prime}$ ALD two changeover with untabis contects and Yeroboard atting on llm Verobourd.
Type Volte Current Obms. $\begin{array}{llll}27 / A & 12 \mathrm{v} & 17 \mathrm{M} / \mathrm{A} & 700 \Omega \\ 21 / \mathrm{A} & 12 \mathrm{v} & 28 \mathrm{M} / \mathrm{A} & 430 \Omega\end{array}$ $\begin{array}{llll}21 / \mathrm{A} & 12 \mathrm{~V} & 28 \mathrm{M} / \mathrm{A} & 430 \Omega \\ 12 / \mathrm{A} & 6 \mathrm{~V} & 33 \mathrm{M} / \mathrm{A} & 188 \Omega\end{array}$ 800 each. Pleane tac.
3 Reiaye.

introducing

an associate Company of LST ELECTRONIC COMPONENTS LTD.

'Service the way it ought to be'

When it comes toretail disterbution we re he ad and shoulders above the rest!
We're a new Company but our experlence and abilty in electronic components goes back a long way
Here at Arrow Electronics \{ast, reliable service is lawt
We ofler a rapid. same day turn round on all mail received up to 3 rm on any given weekday.
What's more, when we promise to clear att orders on receipt. we really mean itl

Our no fuss, no bother ordering system is a joy to behold. We'll give youl all the larms and envelopes you could possibly need. Combine them with our simple Catalogue Coding and hey presto. you can order and order, time and time again without the slightest error or mistake
You'll always be up to date with us-we're continually adding to our high quality stock range and we're alwatys ap-dating our caralogue.
Get to know us and youll soon ratso your hat to,our customer discount-it's tops with a rotal order value discount of 10\% on orders exceeding $£ 4.00$
Now's your chance 10 get in know us befier. Our brand new Catalogue is now awaiting you, hot from the presses.

NEW PRODUCTS

Products featured in the Arrow Electronics Mall Order Catalogue include the following

Extended ranges of Bridge Reclifiers, and Capacipors including Vartable Capactors. Low cost Inregrated Circuit Mounting Pins, Instrument Knobs
Light Emitting Diodes.
Magneto Resistors
Opitcally Coupled Isolators.
Extended Range of Potentiometers.
Medium current and High current Rectifiers Temperature controlled Soldering irons.
Extended Range of Thyristors
Many new types of Passive Components Hardware and Accessories inicluding tools. Chassis.
Aluminium Boxes.
An extended range of Opto Electronic Devices
A very wide range of new Semiconduciors. Test Metels.
and many otheritems of great interest io the home constructor

Arrow Electronics Limited

Dept, EE 1
7 Coptfold Road
Brentwood Essex
Tel: Breniwood 219435

NEW PRODUCT

The unique test instrument illustrated gives an instantly visible display of the Lugic State of CIL integrated circuits. The device automatically selacts its power supply ficm the terminats of the IC's being inspected Each Logic Chercker is suppled complete with a set of ctip-on Logic plates. For fuller details see the new Arrow catalogue.

NEW PRODUCT
Arrow are the first to olfer the new double wound ring core chokes designed for RF interference suppression in B_{1}-Polar SCR and TRIAC circuits. The chokes are supplied as a hir including a Delta Capactor. For details see the new catalogue.

everyday

THE GOAL

As a hobby, electronics offers the ordinary person opportunity for involvement at different levels. The mathematically-inclined applying themselves to the resolution of intricate points of circuit design from first principles, the expertmenters seeking the same end but depending largely upon cut and try methods, and the constructors pure and simple relying entirely upon published designs-all of these derive enjoyment and satisfaction from their labours.

The initial approach to the subject may differ, but the final goal for all is the completion of some item of electronic equipment which will be a rewarding achievement in itself. as well as being a device of practical worth.

CONSTRUCTORS

Everyday Electronics is chiefly concerned with the "constructors" (who should take no offence from the "pure and simple" definition given above!) and especially with those having little or no previous knowledge of electronics.

It is abundantly clear that there are thousands who have been fascinated by what they have read or heard concerning this all powerful, all embracing technology, and who have eagerly seized the opportunity provided by Everyday Electronics to use their hands and develop some skill in this branch of light engineering, so admirably suited to table top operators.

NOT DESIGNS, ALONE

We referred to three classes of enthusiasts in
our opening paragraph. This division is of course a broad generalisation, but is substantially true Our concern for the constructors does not end with the publication of designs with every detail clearly laid out. We appreciate the need for simple yet authoritative explanations of circuit theory. A sound knowledge of at least elementary theory is desirable, even for those whose chief interest is in the practical assembly work.

The Teach-In series which concludes with this month's article has been widely acclaimed in our post bag. This series has undoubtedly opened the door of electronics to thousands of novices. The awareness of what is happening in a circuit gives extra interest to the subject, and often will provide the urge to learn more. And that's not a bad thing

PERSONAL CHOICE

We do always remember however that a hobby is first and foremost an activity indulged in for pleasure and recreation. How much time one is able or prepared to devote to it and how seriously one takes it, are all matters for each individual to decide for himself

It is this freedom of choice, and the absence of rules and constraints governing one's activity which sets a hobby apart from a routine job of work.

Our November issue will be published on Friday, October 15

EDITOR F. E. BENNETT - M. KENWARD - B. W. TERRELL B.Sc.
ART EDITOR J. D. POUNTNEY - PA. LOATES - S. W. R. LLOYD

ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. I NO. 12
CONSTRUCTIONAL PROJECTSOCTOBER 1972
CASSETTE TAPE POWER SUPPLIES Two supplies to power a cossette recorder by Mike Hughes 638
REACTOMATIC Reoction testing gome by D. Smith 650
ELECTRONIC MOUSE TRAP Humane trap to catch mice alive by F. C. judd 662
GENERAL FEATURES
EDITORIAL 636
SHOP TALK Component buying ond new products by Mike Kenward 643
ELECTRONICS IN MEASUREMENT by Jon H. Talbot 644
BRIGHT IDEAS A reoder's ideo 649
TEACH-IN Port I2—Amplificotion by Mike Hughes 654
RUMINATIONS by Sensor 660
THEY MADE THEIR MARK No 6-Foroday (Port I) by J. E. Gregory 669
TEACH-IN END OF TERM TEST Test your knowledge 670
READERS' LETTERS Controversial comment and news from you 673
Due to pressure on space Guide To Circuit Symbols Part 5 is held over to next month

THE thousands of users of cassette tape recorders will know how useful it is to have a battery operated unit but will also be aware of the cost and comparatively short life of the internal battery supply. The recorder manufacturers have gone a long way to relieving the situation with clever design to keep current consumption to a minimum; nevertheless ten hours of intermittent operation seems to be a typical endurance.

This article describes two forms of auxiliary supply which are both simple to make and give excellent results; the first is a straightforward mains powered "battery eliminator" and the second provides a stabilised supply from a 12 V car electrical system (operating from positive and negative earthed systems).

OUTPUT

Both units are designed to give a nominal output of $7 \cdot 5 \mathrm{~V}$ at currents up to about 200 mA . This is the typical supply requirement of the Philips range of small cassette recorders. It is quite likely that the units could power other makes of equipment but the reader should read the manufacturers literature carefully to double check the voltage and current required.

The unit that interfaces with the car electrical system has the ability of providing a range of output voltages (from 7 V to 9 V at 200 mA) hence is comparatively versatile and will probably drive most forms of transistorised radio, tape recorder or record player.

Fig. 1. Complete circuit diagram of the mains powered Cassette Tape Power Supply.

MAINS UNIT

The circuit for the mains unit is shown in Fig. 1 and is a simple unstabilised "sagging" supply. We call it sagging because the output voltage is to some extent dependent on the amount of current being drawn. Up to 200 mA no noticeable effect on reproduction quality should be experienced.

Transformer Tl is a small 6.3 V heater transformer the output of which is full-wave rectified by the diode bridge D1, 2, 3 and 4. Theoretically the output voltage of the bridge (when smoothed by capacitor Cl) will equal the
peak voltage ($6.3 \times 1.4=8.8 \mathrm{~V}$); this is in excess of that required. However we are using silicon rectifiers for the bridge and these will introduce a forward voltage drop bringing the output voltage down to between 7.5 and 8.0 V . By the time a load is applied the output will fall to a nominal value of about $7 \cdot 5 \mathrm{~V}$.

With the cassette recorder operating on its own internal speaker no hum is noticed even though the smoothing capacitor Cl is only $1,000 \mu \mathrm{~F}$. If, however, the audio output is to be amplified through a higher quality amplifier it would be worth considering increasing the value of Cl to about $5,300 \mu \mathrm{~F}$.

Fig. 2. Construction of the mains unit. Both the case and the negative supply rail are earthed via the earth wire in the mains lead.

CONSTRUCTION

Construction is shown in Fig. 2. The prototype case is a commercial design but could easily be fabricated out of $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium. Make absolutely sure that the terminations of the transformer do not touch the inside of the lid and ensure that an earth lead is provided. The negative side of the output should also be connected back to the chassis-and hence earthfor safety reasons. No on/off switch or indicator light was fitted on the prototype but these could be installed on the mains side of the transformer (a mains neon indicator may be used for the lamp) if required.

The output voltage is made available at a polarised output socket (i.e., one which will accept a plug one way round only) the type used in the prototype is a simple extension loudspeaker socket-the large contact being taken as positive.

Cassette tape POWER SUPPLIES

ARALDTE USED TO SEAL

Fig. 5 (above). Dimensions and details of the prototype case used for housing the car unit. A sultable material is 20 s.w.g. aluminium.

Components

 StMains Supply
Diodes
\(\left.\begin{array}{ll}D1 \& 1N4001

D2 \& 1N4001

D3 \& 1N4001

D4 \& 1N4001\end{array}\right\}\) or any 1A, 50 p.i.v. silicon | rectifier diodes |
| ---: |

Transforiner
T1 240 V primary, $6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ secondary (small heater transformer)

Capacitor
C1 $1,000 \mu \mathrm{~F}$ elect. 12 V (see text)
Miscellaneous
SK1 polarised panel mounting socket (loudspeaker type) Aluminium case (approx. $4 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}$-depending on transformer size), tag strip with 4 insulated and 2 grounded tags, 書in grommet, mains lead and three pin plug fused at 2A, connecting wire, 4BA fixings.
Components Common To Both Projects Polarised loudspeaker plug (to suit SK1), 5 pin, 240 degree, DIN plug (for connection to recorder), two core connecting wire (length as required).

The construction of the mains unit.

CAR UNIT

The problem with running anything from a car's electrical system is that the voltage level (nominally 12 V) varies quite considerably depending on the state of charge of the accumulator and the rate of charge from the generator or alternator.

Sometimes it might rise to as high as 15 V . Thus we have to introduce some form of stabilisation as well as drop the level to that required by our equipment. We will use the circuit shown in Fig. 3. On the face of it, it may look extravagant using two transistors as well as a Zener diode but all the components are relatively
cheap and using a second transistor enables us to use a preset variable potentiometer (VR1) to set any output voltage we require between zero and 9 V .

Fig. 3. Complete circuit diagram of car Cassette Tape Power Supply.

OPERATION

The Zener diode that supplies the reference voltage should have a value of approximately 10 V . Certainly its value should not be greater than 10.5 V and if less than 10 V it will not be possible to get output voltages as high as 9 V . Preset potentiometer VR1 provides a well defined reference voltage that can be set between zero and the full Zener level. This provides a small drive current into the base of TRl the emitter current of which provides a much greater drive into the base of TR2 which is operating as a series stabiliser.

The combination of TR1 and TR2 in this configuration is sometimes called a Darlington pair. We need the intermediary action of TR1 because the current available from the Zener diode cir-cuit-in particular when VR1 is set at a low voltage level-is small and the current gain of TR2 in isolation would not be sufficient if we wished to draw up to the 200 mA specified.

No smoothing is required in this circuit because we are already operating from d.c. but if the stabiliser is to be used for powering a radio it might be worth incorporating a small capacitor (say $10 \mu \mathrm{~F}$) to prevent any breakthrough of car ignition interference. This should be connected acros.s the power output leads of the unit. When the unit was used with a Philips cassette recorder no interference could be detected at all and the stabiliser even coped with the dramatic voltage drop of the car's electrical system while the starter was being operated

CONSTRUCTION

All the components are mounted on Veroboard (Fig. 4); VR1 should be a flat mounting type so that it can be adjusted after the board has been installed in the box. Make sure that the Zener diode is connected the correct way round-the banded end should be connected to R1. A finned type of heatsink should be slipped
on to the can of TR2 (the can size is T0-5). Keep the leads of the components above the board as short as possible to prevent any mechanical vibration but at the same time do not overheat the components when soldering.

The box used in the prototype is formed from 20 s.w.g. aluminium the base being in the form of a flange (Fig. 5) which is used for fitting the unit to the bulkhead on the car. The Veroboard is bolted inside the lid on insulated spacers. Power input leads are taken out through a grommeted hole for permanent wiring to the car and the output connections terminated at a polarised socket identical to that described earlier-make sure that you keep to the same polarity convention!

Note that no electrical connections are made to the metal of the box; this enables the unit to work from either positive or negative earth cars. Before connecting up make sure you know your car's polarity otherwise you may permanently damage the transistors.

SETTING UP

Before connecting up to the tape recorder set VR1 to give the output voltage required by measuring the output with a voltmeter. If you cannot get the full 9 V output it means that the Zener diode has a lower breakdown than that specified; check this by measuring the potential difference across the Zener. The output voltage will always be approximately IV less than the reference voltage set by VR1 because of the forward voltage drops of the base/emitter circuits of TR1 and TR2.

Because of the maximum dissipation of TR2 the output voltages are limited to the range 7 to 9 V at up to 200 mA . However, if lower voltages are required, these can be obtained by setting VR1 accordingly but the current output will not be so high. For example 100 mA at 2 V would be permissable and approximately 150 mA at 5 V .

For Philips recorders it is not necessary to incorporate any switching in the recorder itself. Inserting the DIN plug automatically cuts out the internal batteries. This may or may not be the case with other equipment.

It is worth repeating the manufacturer's instructions that if you do not intend to use the batteries within the recorder for some period of time they should be removed to prevent any possible leakage and corrosion.

SUPPLY CONNECTION

To connect the supply to the recorder an accessory lead is made up using a polarised plug (to mate with the socket just described) and a 5 -pin (240 degree) DIN plug that is accepted by the accessory input of the recorder. Make absolutely certain that you connect up to the correct pins as shown in Fig. 6.

This wiring is correct for the Philips equip-
ment and should apply to other manufacturers but you are advised to make absolutely sure by referring to the manufacturer's own leaflet or service sheet. Once this lead has been made up it can be used with either the mains or the car unit.

Components see

Car Battery Supply
Resistor
R1 $1 \cdot 2 \mathrm{k} \Omega \mathrm{\ddagger W} \pm 10 \%$ carbon \perp.
Variable Resistor
VR1 $10 \mathrm{k} \Omega$ skeleton preset (flat mounting type)

Semiconductors

TR1 BC108
TR2 BSY81, or BFY51,
D1 10 V 400 mW Zener diode
Miscelianeous
SK1 polarised panel mounting socket (loudspeaker type) Veroboard 2 in $\times 1 \frac{1}{2}$ in x 0.1 in matrix, TO5 type heat sink (finned push on type), 咅in grommet, material for case (see text), connecting wire, 6BA fixings

Components Common To Both Projects Polarised loudspeaker plug (to suit SK1), 5 pin 240 degree DIN plug (for connection to recorder), two core connecting wire (length as required).

AUDIO FAIR

EVERYDAY ELECTRONICS and PRACT!CAL ELECTRONICS will be exhibiting at this year's International Audio Festival and Fair, Olympia London, October 23-28.

See us on Stand 19, Ground Floor.
Sound Synthesis For The Amateur is the title of a lecture/demonstration to be given by D. Shaw, contributor to PRACTICAL ELECTRONICS, on Tuesday, Oct 24 and Saturday, Oct 28 at $2 \mathrm{p} . \mathrm{m}$.

0NCE again this month we have a couple of new products well worthy of mention so we will deal immediately with buying problems and then take a look at the products.

Just a couple of points concerning the Weather Station (August issue); first G. W. Smith have now informed us that they do not supply the case for the monitor unit and unfortunately we have been unable to find a supplier. However Garland Bros. Ltd., who advertise in our pages can supply a slope fronted case in plain aluminium. The second point is that the GL23 thermistor is available from Henry's Radio, who also take space in our issues.

SHOP TALK By Mike Kenward

Mouse Trap

A very unusual project-the Mouse Trap-but surprisingly enough one that has been in demand amongst our staff ever since the prototype was given to us by Fred Judd. Even those people who did not think they had mice (like me) have found that the Mouse Trap will catch any that are around; perhaps they are attracted by the light inside!

As far as we can see there should be no buying problems for this project. The Perspex should be available locally at a good hardware shop or from a small firm that uses it e.g. sign makers. Incidentally the door retaining wire can be made from one of the EE binder retaining wires (what a good sales gimmick!)
Easi-Binders to hold 12 issues of Everyday Electronics are available from Binding Dept., IPC

Magazines Ltd., Carlton House, 68 Great Queen Street, London W.C.2. These binders are well worth having even if you are not building the Mouse Trap, they are finished in orange de luxe Balacron (similar to p.v.c. in appearance) and cost 88p including postage and packing.

Reactomatic

Few buying problems should be encountered when getting parts for the Reactomatic. Two things to note are that the control knob should not have any markings on it and that the lamps used are easily visible in daylight when illuminated. Those shown on the prototype proved rather difficult to see and larger types with enclosed bulbs and bigger lenses may well be better. None of the other components should be difficult to get, any type of push-tomake push button can be used.

Cassette Tape Power Supplies

The two Cassette Tape Power Supplies described are likely to be among the most popular designs we have yet publishedjudging by the correspondence we receive requesting such devices. They have been kept very simple in design and all the parts are easy to obtain.
The case shown for the mains unit is a "Norman case" which was purchased from Radio Component Specialists who advertise in our pages. The car unit could be put in a similar case although this is larger (4in $\times 2^{1}{ }_{2}$ in $\times 2 \mathrm{in}$) than that shown in the article.
If you have any difficulty getting the polarised plugs and sockets, most car accessory shops can supply them.

New Products

A new "Cassette Re-Record Kit" has recently been introduced by Bib who already make a vast range of audio accessories. The kit is designed to enable prerecorded cassettes to be used to record on when the original material becomes outdated.

The kit contains 20 plastic inserts to press into the holes at the back of the cassette, 27 labels to stick over the existing title labels, and a tab removing tool to remove the plastic inserts on existing recorded cassettes, or the inserts in the kit, so that the

cassette can be preserved withour the risk of accidental erasure after it has been recorded or rerecorded (if you can follow that).

The kit is available from most hi-fi and audio shops. The recommended retail price is $44 p$ and full instructions for using the kit are priated on the back of the header card.

Another new product from West Hyde Developments-whose cases were mentioned last month -is what they term as a "throw away" multimeter. Primarily intended to be issued to engineers, the meter may well appeal to constructors as a cheap portable meter. The ranges are 15, 150 , 1000 V a.c., $15,150,1000 \mathrm{~V}$ d.c., $1,150 \mathrm{~mA}$ d.c. current, and a resistance range capable of reading values from 100Ω to about $30 \mathrm{k} \Omega$, sensitivity is $1,000 \Omega / \mathrm{V}$ and the meter costs $£ 2$.
The beauty of the meter is its compact size-about $3{ }^{1}{ }_{2} \times 2^{1}{ }_{4} \times 1$ inch, it is made in Japan and is sold with test leads and a brief, quaintly translated, instruction sheet. The photograph below gives a good sdea of the size of the meter.
The meter is available from West Hyde Developments Ltd., Ryfield Crescent, Northwood Hills, Northwocd, Middlesex, HA6 INN.

Measurement is the key to new developments in all branches of science and industry. Neither a new type of jet engine nor an improved strain of barley can be derived without experiments being undertaken. In the course of these experiments measurements are made, the results are evaluated and the future line of investigation is decided. Only rarely can the researcher see his goal clearly when commencing work; he reaches his destination not by dead reckoning but by seeking out and interpreting landmarks along the way.

When the measurements are few in number and uncritical in nature, they present no problems; an inexperienced man with his pencil and notebook can do the job. However, it is often necessary to obtain hundreds or even thousands of data in order to arrive at a simple yes/no decision.

When measurements are required to a high degree of accuracy, and to be repeated at regular intervals and are materially affected by outside influences such as temperature variation, humidity of contamination, then the whole
undertaking may become too protracted, too uncertain and too expensive.

Moreover, the man who is content to carry out such a tedious and repetitive task will probably lack the experience and perception to do the job accurately, while the technically competent researcher may obtain no more satisfactory results because he will be overtaken by boredom! It is hardly surprising that much effort has been put into perfecting means of automating tasks of this type.

INDUSTRIAL USE

Electronic methods of measurement began to be used in industry in the mid 1930's but made -little real impact until after World War II, when the electronic industry was truly founded. Since that date more and more characteristics of more and more materials and processes have become measurable in electrical terms.

Many of these electrical signals have been obtained by simple adaptation of mechanical or hydraulic instruments whose origins may be very old. For example, a common method of

measuring the pressure of a liquid in a pipe is to take a tapping via a small bore tube terminated in a seamless metal bellows. As the pressure rises the bellows becomes distended and moves the pointer of an indicator.

Fig. 1. Schematic diagram of a Differential Transformer (displacement measurement). The cone movement direction is determined by the amplifier by comparing the phase of the received signal with that from the oscillator.

To make this simple pressure gauge generate an electrical signal we can make use of a differential transformer. An iron core is attached to the rod which formerly drove the pointer and this core is located centrally inside a cylindrical coil. The coil is energised by an a.c. signal and is in close proximity to two other coils which are located at either end. As the core rises and falls with increasing and decreasing pressure it causes a larger voltage to be induced in one secondary coil and a smaller voltage in the other (Fig. 1). The magnitudes of these induced signals are a measure of the displacement of the bellows.

ANALOGUE TRANSDUCER

The pressure gauge described above is an analogue transducer: a device producing a signal which varies steadily with the parameter being measured (in this case, pressure) and, in theory at least, it has infinite resolution i.e. an infinitely small change in pressure results in an infinitely small change in electrical output. In practice, of course, the mechanical characteristics of the
moving parts will result in the output changing in tiny jerks so the resolution, while fine, is not infinite.

NEW ELEMENTS

Some of the early measuring instruments did not lend themselves readily to such adaptations and entirely new primary elements had to be devised. These new instruments were often designed and developed throughout by electronic firms and as a result were more readily incorporated into complete electronic systems.

Fig. 2. A cross-sectional diagram of a vibrating cylinder density transducer.

The physical linkages between the medium being measured and the electrical circuit were simpler and more direct, eliminating some of the sources of inaccuracy. An example is the vibrating cylinder density transducer (Fig. 2). An amplifier drives a coil which sets up vibrations in a tube through which a gas or liquid is flowing. When the density of the fluid increases it raises the mechanical loading on the tube and reduces the resonant frequency of what is really a mechanical tuned circuit (rather like a tuning fork). The vibration is detected by a pick-up coil and the frequency of the energising signal is

Assembling and testing transducers for gas density measurement.
(Solar Electronic Group Ltd)

changed in sympathy. This means that the natural frequency of oscillation of the electromechanical circuit is a measure of the fluid density.

This density transducer is, for obvious reasons, described as a frequency-domain device.

DIGITAL TRANSDUCER

There is a third type of transducer which is more limited in application but possesses the advantage that it needs no calibration as such, while the desired resolution is defined when the instrument is made. This is the digital transducer, of which by far the commonest example is the encoding disc.

In appearance it is similar to a series of stroboscope rings such as those used to check the speed of a gramophone turntable. The centre ring has a small number of segments while the other rings have progressively more segments as their circumference increases.

If the disc is fixed onto a shaft, then the angular position of the shaft at any instant, whether it is moving or stationary, can be detected by examining the position of the segments by photo-electric or mechanical means. An example of such a disc is shown on the front cover and the pattern is also used in the heading of this article.

Checking the finish of a lens with the Talyrond 73 roundness measuring system. This system which can detect surface irregularities of the order of one millionth of an inch, uses a special purpose computer to correct for inaccuracies in work positioning etc. Defects of the work piece are recorded on a rotating chart. (Rank Precision Industries Ltd.)

The disc is often made in the form of a printed circuit board so that its position can be ascertained by picking up an electrical ouput from stationary brushes.

There is a great need for better transducers. This has been highlighted by the increasing importance of detecting pollutants in air and
water, yet it is still only possible to isolate certain poisonous substances by carrying out a chemical analysis manually.

DATA LOGGING

The process of automatically collecting and recording information from a number of transducers is called data logging. In its simplest form, a data logger comprises a scanner, an analogue-to-digital converter and an output device (Fig. 3).

The scanner is a series of relays which are operated sequentially such that the ouput from a number of analogue transducers is connected to the converter in turn. The converter samples each signal and feeds the result of its measurement in digital form (binary or binary-coded decimal) to the output driver.

Fig. 3. Block diagram of a typical data logging system.

The output machine may be a strip printer, which prints the results on a tear-off strip for the convenience of the plant operator; it may be an electric typewriter which produces a record in tabular form suitable for binding into a \log book, or it may be a punch, which produces perforated paper tape for subsequent computer analysis.

A more elaborate logger will include a digital clock, which enables the readings to be repeated at accurately determined time intervals, and an alarm detector that flashes a light and rings a bell if a reading is taken that is outside prescribed limits.

APPLICATIONS

The applications of data logging are not restricted to research alone. Frequently the information which has been obtained by a data logger is used to set the controls in a process plant. An obvious development is to use signals from the logger to operate relays, valves and motors controlling the plant, thus avoiding the need for intervention by the plant operator.

In the case of a small electric furnace, where close temperature control may not be needed,
this can be achieved easily. If the logger detects that the temperature is too low then the alarm detector energises a relay that switches on the heating elements. When the logger returns to that measuring point (or channel) and finds that the temperature is now too high, then the relay is relaxed and power is removed from the furnace.

If the temperature is to be maintained within close limits a much more refined control system will be needed. A complicated industrial operation may involve a hundred or more variables, not only temperatures but pressures, flows, densities and levels as well.

Many variables are closely interrelated with others and are subject to disturbances of a random nature, so the only means of running the plant is to entrust the whole operation to a digital computer.

However, the largest and fastest computer, controlled by comprehensive programmes, is ultimately dependant upon the information it is given. The plant may produce nothing but waste output if the transducers are badly sited or the scanning system is poorly conceived.

VOLUME MEASUREMENT

There are many fields of measurement which are more complex than they at irst appear.

When a petrol tanker discharges at a filling station the driver sometimes checks the level of liquid by means of a dipstick-a convenient and simple tool. At the oil refinery the level of liquid in the huge storage tanks is often checked in a similar manner: a float moves a cable or tape, made of low-expansion alloy, and this drives a remote indicator. The depth of liquid can be measured accurately, but petrol and oil are sold by the gallon-by volume. The relationship between the two types of measurement is not simple.

Oil storage tanks are made of steel and concrete, but they are not as rigid as they appear. When an empty tank is filled, the effect is not unlike that of filling a plastic bucket; the bottom becomes concave and the sides become slightly barrel-shaped, so that each additional

Fig. 4. A schematic diagram of a thermocoupleused for temperature measurement. The thermocouple utilises the principle that if two dissimilar metal wires are joined at their ends, and each function subjected to a different temperature then a current flows, its magnitude being proportional to temperature difference of junctions.
foot of depth represents a different quantity of oil.

The volume of oil is also affected greatly by temperature and barometric pressure; the value of the contents of the largest size of tank is over $£ 1000$ more on a hot, sunny day than on a cold, overcast day (there are some anxious moments when the Inland Revenue inspector calls to determine the duty payable!)

Fig. 5 (top). Appearance of a typical strain gauge element. (Bottom) Shows the insertion of the element into a Wheatstone bridge. Utilises change of resistance with element geometry.

Table 1: Transducers used for measurement in industry

Parameter	Transducers and associated equipment
Temperature	Resistance thermometer Thermocouple Thermistor (temperature- sensitive resistor)
Light	Photo-electric cell Photo-multiplier tube
Acidlty	pHelectrode (measures hydro- gen ion concentration)
Properties ofInfra-red source and Detector Colorimetric Analyser (measure-	
Gasesment of transmission of light of various fraquencies)	
HardnessDiamond pyramid tester and differential transformer	
Magnetic fieldHall-effect element	
MechanicalResistance strain gauge strain Proximity Load Cell	
Capacitance proximity detector	
CisplacementUltrasonic source and detector	

The only way of obtaining a direct reading of the contents, which is corrected to normal temperature and pressure, is to use what is in effect a special-purpose computer that is connected to temperature and pressure sensors and to a depth transducer. This machine combines their outputs by correcting the depth reading according to ambient conditions and to a preset programme which corrects for mechanical distortion of the tank.

Instruments of this type have been made experimentally and will undoubtedly come into common use, but at present they are too expensive to compete with existing equipment.

Many of the potential benefits of electronics in measurement have not been realised in the past because electronics men have concerned themselves more with "pure" rather than applied electronics, while established industries have been slow to adopt new techniques. The alchemists and luddites have their counterparts in modern times!

MACHINE TOOLS

One of the slowest industries to adopt electronic methods was that of machine tools, yet precision machining of metals lends itself well to digital measurement techniques. A problem here was that the tools had to be designed around the transducers; it was not enough to add electronic appendages to existing machines.

Nowadays all types of machine-shop work, from the finishing of rough castings to the repetitive milling of complex mechanical structures from the solid, is carried out under the control of signals from magnetic or punched paper tape.

The machine work-table is fed upwards, sideways and forwards, tools are changed and feed rates are monitored and adjusted under electronic control. Here the measurement devices are "closing the loop"-they confirm that a certain operation is being carried out exactly as required by the directions on the tape, and correct for factors such as tool wear that cannot be assessed in advance.

The Talysurf 4 system which counts the irregularities in a machined surface and enables the texture of the finish to be evaluated quantitively. (Rank Precision Industries Ltd.)

DYNAMICS

There is increasing interest in measurement that is dynamic rather than static, for time delays are important in many processes. For example, the spring rate of a valve spring for the engine of a motor car can be determined by loading it with a weight and measuring the amount of compression with a rule. This, however, offers very little data on what happens when it is compressed 4000 times a minute in a working engine.

It is more instructive to compress the spring, release it in $1 / 4000$ th. of a minute, and then measure how long it takes to come to rest.
It is the transfer function, the relationship between stimulation and response that matters, and this has led to the spawning of a whole new generation of dynamic analysis instruments. These can either simulate an operation electrically on the bench or be coupled temporarily into a working system to cause known perturbations which can be analysed automatically.

Using a Transfer Function Analyser to determine the relationship between respiration and work done by humans. (Solartron Electronic Group Ltd)

A new dimension has been added to the science of measurement and provides a fresh view of concepts that had been developed as far as our previous static assessment would allow.

I have found a way of making test probes for equipment that are cheap, insulated and rugged.

The parts needed are the red and black bodies of two "Scripto" or "Venus Gem Writer" type of felt tip pens that have been used up, a piece of stiff wire such as that used to make coat hangers and two lengths of red and black connecting wire.

To make the probe, remove the ink felt and fibre tip by pulling of the white end and the tip cap. Cut a length of stiff wire-about 6 inches long and file one end to fit into the plastic tip. Cut a small hole in the white cap, pass a connecting wire through the cap, solder it to the stiff wire, and reassemble the pen. The photograph shows the construction and the finished probe.
E. R. Wall,

Chalton, S.E.7.
A readers' Bright Idea; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

\qquad

A reaction testing game that can also be converted to a quiz answering indicator.

By D. Smith

Approximate cost of components £ 3.00 plus case

Fig. 1. Complete circuit diagram of the Reactomatic.

The reactomatic is a game of fun and skill for young and old alike. Being portable, it is ideal to take to parties or clubs. The basic sequence indicator can also be used, with a number of push-buttons, for quiz game answering.

At home it will keep two people amused for hours, testing their skill against each other and, being a silent game (using only bulbs), will not distract the other members of the family.

Since the unit uses batteries there is no risk of shock, it is light in weight, portable and is cheap to build.

CIRCUIT DESCRIPTION

The circuit (Fig. 1) can be broken down into two main parts; the timer circuit, consisting of TR1, TR2, TR3, and their associated components, and the sequence circuit.

If we take the timer circuit first, it will be seen that TR1 and TR2 form a bistable and TR3 is an electronic switch. When the unit is switched on by S3, the bistable flips into "mode one". (TR1 off, TR2 on). A negative charge is then allowed to build up on the base of TR1, via R6, VR1 and C2.

When a certain amourit of voltage has built up across C1, it will switch on TR1 which will then, via R8 and C3, switch off TR2. Therefore the voltage at the collector will go negative.
This negative voltage is passed to the base of TR3 via R12. Hence TR3 is switched on and allows voltage to flow through it to light LP3. The time for this to happen is determined by the value of C2, R6 and VR4.

The values shown in the circuit will give a delay of between approximately 5 seconds and

30 seconds. The latter time is ideal to build up tension in the players as they wait for the light to come on.

It should be noted that the knob fitted to VR4 should not be marked in anyway to show the time that has been set. A plain knob should be used, the loser of the previous game, re-setting it to a different time delay.

A 33 ohm resistor has been inserted in series with each of the three bulbs shown in Fig. 1. This is because the supply vcltage is 9 V and the bulbs are 6 V , the resistors reduce the voltage to approximately 6 V .

SEQUENCE CIRCUIT

The second part of the circuit containing the controlled silicon rectifiers (thyristors) works as follows. The idea is, that as soon as LP3 lights up each player pushes his button (S1 or S2) and the first one to do so turns his light on (LP1 or LP2 respectively).

Once one light is on the other cannot operate, therefore it is obvious which player pressed first.

When S3 is operated, Cl is charged up via R3. Now when LP3 lights, S1-for example-is pressed first and the pcsitive charge stored in C 1 is fed via R2 to CSRI. As only a small pulse of current is needed to switch CSR1 on, LP1 will light and remain lit as the current flowing through CSR1 is more than its holding current.

Once CSR1 turns on, Cl is discharged through D1 and CSR1, hence there is no voltage left in Cl to turn on CSR2.

If S 2 is operated first, the reverse will happen, Cl will switch CSR2, via R 4 , and Cl will be discharged through Dź and CSR2, thus leaving no positive charge to operate CSR1.

All this happens very quickly, but the first person to press his push button will light the respective light. There is no need to keep the

Photograph of the completed, unit read y for use.
Fig. 2 (above). The layout of the components on the top side of the Veroboard and the

button pressed as the loser cannot possibly light his light, due to Cl being kept discharged all the time a light is on. Resistors R2 and R4 limit the current which switch CSR1 and CSR2 on.

Once the winner has been shown-by his light - S 3 is turned off and then on again to restart the game. This allows C2 to discharge and CSR1 or CSR2 to turn off.

EXTRA PUSH BUTTONS

The sequence circuit can be increased in stages so that it may be used to indicate which of a number of players was first to press the button. To add on each additional lamp, simply repeat the push button, CSR, gate current limiting resistance (R 2), lamp, lamp current limiting resistance (Rl) and the bypass diode (Dl). Components Cl and R3 need not be repeated.

The timing circuit does not need to be included if not required but an on/off switch must be used to reset the circuit. It will not be necessary to increase the battery capacity since only one light in the sequence circuit can be on.

CONSTRUCTION

The prototype unit was housed in a small plastic case, but any suitable box will do; layout is not critical. The three lamps, two push button leads and timer control are all attached to the front panel. On the side of the case is the on/off switch, and the circuit board, on which most of the components are situated, is mounted together with the battery inside the case. The circuit board is fixed to the panel by a single screw and an insulated spacer.
In the prototype the push buttons were mounted in two pieces of plastic tubing such as that used for holding mains wire. Plastic Padding or a similar filler is used to block up the ends of the tube to prevent the wires being pulled out.

If alternative types of push button are used they can be mounted on small blocks of wood. The push button leads should be quite flexible as they have to take a lot of bending; electric razor lead was found to be ideal for this purpose.

The Veroboard should be cut and the components mounted as shown in Fig. 2. Care should
be taken not to let heat from the soldering iron travel up the wires of the transistors, thyristors or diodes. A suitable heat shunt should be used when soldering in these components. Once the circuit board has been wired up it can be mounted in the case together with the remaining components and the complete unit wired up as shown in Fig. 3.

PLAYING

To play the game each player holds a push button and one player switches the unit on. When LP3 operates, the first player to press his push button wins (indicated by the corresponding light). The looser is then allowed to vary VR1 to reset the time. If a player pushes before LP3 lights the other player is declared the winner. The battery will last a long time provided the game is switched off as soon as possible.

Components

Capacitors

C1 $0.1 \mu \mathrm{~F}$
C2 $1,000 \mu \mathrm{~F}$ elect. 12 V
C3 390 pF
Semiconductors
CSR1 Any 50 p.i.v. 1A thyristor (controlled silicon rectifier)
CSR2 Any 50 p.i.v. 1 A thyristor
D1 OA200
D2 OA200
TR1 AC128 germanium pnp
TR2 AC128 germanium pnp
TR3 AC128 germanium pnp
Miscellaneous
LF1, 2, $3 \quad 6 \mathrm{~V} 0.2 \mathrm{~A}$ bulbs and panel mounting lamp holders
S1, S2 S.p.s.t. push to make push buttons
S3 S.p.s.t. toggle switch
VR1 $100 \mathrm{k} \Omega$ lin. carbon potentiometer B1 9V PP9 battery
Case (approx 7 in $\times 4$ in $\times 3$ in, any material) plain unmarked knob for VR1, connecting wire, material for mounting S1 and S2 (see text), Veroboard 3 zin $\times 1 \mathrm{z}$ in $\times 0.15 \mathrm{in}$ matrix, battery connectors, 6BA fixing and spacer.

LAST month some experimenters might have been a little disappointed with the output of the little microphone amplifier we made. This is very understandable, but one must bear in mind that only two transistors were used, one for voltage amplification and the other to provide a low output impedance. This month we shall put matters right and develop a low power amplifier that will produce about 0.5 W output -perfectly adequate for a baby alarm etc. But first we must carry out some improvements to our voltage amplifier.
Last month's circuit suffered from the problem that we had to set the bias manually to match the gain of the transistor-a good example for demonstration purposes-but not very practicable.
There are two very commonly used circuits that we can use for biasing that are not so sensitive to variations in h_{FE}; the first is simple, and if used carefully is very adequate, but the second we shall describe is more generally favoured and uses a few more components.

FEEDBACK BIASING

The first option is shown in Fig. 1(a) and is called a feedback bias circuit. As before we must decide the output quiescent voltage which we shall fix at mid-rail potential $(+4.5 \mathrm{~V})$ and at the same time decide the quiescent collector current, say 0.5 mA .

This immediately fixes the value of $R 1$ as $4 \cdot 5 / 0 \cdot 5 \mathrm{kilohm}(9,000 \mathrm{ohm})$; say 10 kilohm.

Fig. 1(a). Feedback biasing circuit. For experimental purposes make R1 and R2 equal to 10 kilohm and 1.5 megohm respectively. Check that the output voltage is approximately "midrail'.

We shall use the potential at point " A " as the source of our base current-you'll see why in a moment-and we'll assume the gain of the transistor to be 200 .

The base current for biasing should ideally be

$$
\frac{I_{\mathrm{E}}}{h_{\mathrm{FE}}}=\frac{0.5}{200}=0.0025 \mathrm{~mA}
$$

Assuming that the potential at point " A " is 4.5 V we can therefore calculate the required value for $R 2$. It will be

$$
\frac{4.5-0.6}{0.0025} \text { kilohm }=1.56 \text { megohm }
$$

The nearest preferred value is 1.5 megohm. Make this circuit up on Demo Deck and verify that the quiescent voltage at " A " is approximately $4 \cdot 5 \mathrm{~V}$. Try substituting different BCl08's and you should find no appreciable change.

This circuit is self compensating as far as bias is concerned. Imagine you had a transistor with a low gain; initially the base current available from point " A " (assuming it was 4.5 V) would not be sufficient to turn the transistor on hard enough to make point " A " fall to 4.5 V so therefore " A " could not have been 4.5 V -it would have been higher in potential.

If it had been at a higher potential then the base current would have increased thus bringing about a reduction in the voltage at "A."
In effect the circuit around the transistor settles itself out so that the potential at " A " is just enough to supply sufficient base current to keep the potential at "A" stable.

If you think we are talking in circles you are quite correct because what we have described is a negative feedback loop. If we have carried out our calculations correctly a very small increase in potential at " A " is all that is needed to provide that extra base current to compensate for a low gain transistor. This small increase will not present any major problems and will hardly be noticeable under normal circumstances. The same argument applies to a transistor with higher gain only the output potential will settle to a slightly lower than mid-rail voltage.

MODIFICATION

Modify your circuit slightly as shown in Fig. 1 (b) and add the emitter follower output stage that we originated last month. Notice that instead of R2 we are using two resistors in series (470 kilohm and 1 megohm) and have introduced a variable resistor and capacitor.

Fig. 1(b). A two-stage microphone amplifier, using a feedback biased stage followed by an emitter follower.

Initially set VR4 to maximum resistance, connect up the microphone, and you should find that the circuit works, but the output is not as great as last month's.
The reason for this is that the signal from the microphone is now appearing amplified at the collector of TR1, but because of the inverting property of the transistor, a certain proportion is being fed back through R2 and R3, 180 degrees out of phase (i.e. in a way that will
negate our input signal). Fortunately we can "catch" this fed back signal with C1.
Because the audio voltage is alternating it sees a low impedance in Cl and will be shorted out to the common rail-that is if VR4 is reduced to zero ohms. Try reducing the value of VR4 and you should find an appreciable increase in output from the loudspeaker.

POTENTIAL DIVIDE BIASING

The basic circuit of the second type of biasing system we shall cover is shown in Fig. 2(a). This can best be described as a potential divide type of circuit because the bias is dependent on the potential divide effect of resistors R2 and R3.

Fig. 2(a). Potential divide bias circuit. See text for the experimental resistor values.

Lets assume a mid-rail quiescent output at a collector current of 0.5 mA ; this makes R1 10 kilohm. Notice we have introduced a resistor (R4) into the emitter circuit. If current is flowing between collector and emitter (as it must) then the quiescent current of 0.5 mA plus any base current, will flow through R4 giving rise to a voltage drop across it. In this article we can ignore the contribution of the base current as it is bound to be small compared with I_{c}.
The potential at point " B " must not be too high otherwise we will be unable to obtain wide voltage swings at the collector and it is usual to set this emitter voltage at 1 V . This means that R4 will be approximately

$$
\frac{1}{I_{c}}=2,000 \mathrm{ohms}
$$

Let's say $2 \cdot 2$ kilohm as the nearest.
For base current to flow the base must be made 0.6 V more positive than the emitter (for a silicon $n p n$ device); this means that the potential at point C will be $+1 \cdot 6 \mathrm{~V}$.

STABILITY

The base current we require (still assuming an $h_{\text {PE }}$ of 200) will again be 0.0025 mA and this will have to be provided through R2. The values of R2 and R3 are arranged so that they form a potential divide that maintains the base potential at the 1.6 V we require. For stability reasons it is usual to have a standing current through

R2 and R3 that is 4 or 5 times the base current. Let's say we will make 4 times the base current flow through R3 and at the same time maintain 1.6 V drop across the resistor; the value for R 3 will be

$$
\frac{1.6}{4 \times 0.0025} \text { kilohm }=-160 \text { kilohm }
$$

The current for R3 has to pass through R2, but R2 also has to provide the base current; therefore the total current flowing through R2 will be five times I_{b}. The drop across the resistor will be $(9-1 \cdot 6) \mathrm{V}=7 \cdot 4 \mathrm{~V}$, so the value for $\cdot \mathrm{R} 2$ is

$$
\frac{7.4}{5 \times 0.0025} \text { kilohm }=590 \text { kilohm }
$$

The nearest readily available values for $\dot{\mathrm{R}} 2$ and R3 will be 560 kilohm and 150 kilohm respectively. Make up the circuit and measure the potentials at points " A " " B " and "C." Again the substitution of different BCl 108 s should not cause the output voltage to vary significantly.

TRANSISTOR GAIN VARIATION

If a transistor of low gain was used, I_{c} would not be the anticipated 0.5 mA initially, therefore the potential at point " B " will fall below the assumed 1V. This provides a more attractive set of circumstances for base current to be drawn through R2 so the current through R2 will increase, the potential at " C " will decrease and the current through R3 will decrease. The extra current flowing through R2 passes into the base of the transistor thus increasing the base current and this helps bring the quiescent collector

Fig. 2(b). The circuit diagram of a two-stage microphone amplifier using potential divide biasing.

DRIVING THE LOUDSPEAKER

To complete the experiment make-up the com-
plete circuit of Fig. 2(b) and see that we can drive the loudspeaker. Notice the introduction of VR2 and C1. Initially set VR2 to maximum resistance; the output will be very poor indeed.
The reason is that TRl is acting in part as an emitter follower. Any "overpotential" we apply at the base in the way of signal will appear at the emitter; thus we will not be producing much in the way of potential difference between base and emitter and hence not cause as much increase in base current as we might have expected. Ideally we want any current from the microphone to add to the base current in its entirity; this we can arrange by again using the fact that our signal will be alternating.

Connecting a large value capacitor between the emitter of TR1 and ground will present a low impedance path for the signal current to flow through without affecting the d.c. bias conditions. You can introduce Cl gradually by reducing the value of VR2 and will notice a dramatic improvement in output signal. We call Cl an emitter decoupling-or by-pass-capacitor; the maximum value of it is unimportantbut it must always be "greater than" a certain value.

Try replacing it with a $0.1 \mu \mathrm{~F}$ capacitor; the circuit will work but with less output and any bass response which might have been there originally will be lost because the low value capacitor will only effectively decouple at high
frequencies. frequencies.

A problem with this circuit in our application is that the introduction of two resistors of comparatively low values (R2 and R3) in the bias circuit effectively reduces the input impedance of our voltage amplifier, hence, a lot of microphone signal will be shunted out to the power rails. Do not, therefore, expect quite as high an output as for the previous feedback biasing circuit.

We make no apologies for the comparatively low output powera of all these experimental amplifiers so far. 'It is easier to understand things if you concentrate on only one point at a time; therefore we deliberately made the power output stage as simple as possible so that we could concentrate on the important aspect of voltage amplification.

We hope that, from the two examples this month and the one last month, you appreciate there are several ways of producing the same effect; this happens all the way through electronics and is not limited solely to amplification. Follow other articles in Everyday Electronics and you will soon see that different designers have different personal opinions and ideas as to what is the best circuit for the job and they may all be equally correct.
Some designs can be cheap but adequate, others expensive and full of special features that aid the quality of the design without altering the fundamental workings.

COMPLIMENTARY CLASS B BASICS

As promised we'll now show you how to get more power from the microphone amplifier and at the same time improve its quality. Firstly let's look at the fundamental circuit of what is called a class B complimentary symmetry output stage. This is shown in Fig. 3(a).

Fig. 3(a). The basics of a class B complimentary symmetry output stage; both an npn and a pnp transistor are used.

We are introducing a $p n p$ transistor for the first time, TR3, but there is no need to worry too much about this except to remember it works just like an $n p n$ device with opposite polarity of supply voltage.

As shown in the circuit its collector goes to the common or negative rail and to make it turn on we must make its base go negative with respect to the emitter: -

Both TR2 and TR3 are working as grounded , collector or emitter followers. Assume nothing is connected to the bases of these transistors; no base current will flow in either and hence no current can flow from the collector of TR2 out of its emitter, into the emitter of TR3 and down to ground through its collector (this is the flow path for conventional current). These transistors are to all intents and purposes "open circuit" and we can consider the point " A " as being isolated from either the positive or negative rails.

If we also assume that Cl was charged so that its positive .plate was at, say, $+4 \cdot 5 \mathrm{~V}$, the capacitor will maintain its charge because there is nowhere it can leak away to.

If we were able to make the base of TR2 more positive than $+5 \cdot 1 \mathrm{~V}_{\dot{\beta}}(0.6 \mathrm{~F}$ more positive than its emitter) current will flow through the collector/emitter circuit of TR2 and charge up the capacitor until the potential at " A " rises to a new level that is 0.6 V below the base voltage. This charge current must also pass th. ough the coil of the loudspeaker. .
Now consider what happens if we leave TR2's base open circuit and make the base of TR3 less than $3.9 \mathrm{~V}(0.6 \mathrm{~V}$ negative with respect to its emitter). Transistor TR3 will now act as an emitter follower and the capacitor will discharge through the emitter and collector of TR3 until the voltage at " A " is just 0.6 V more positive than the base. You might challenge the assumption that point " A "" could have been at +4.5 V
in the first place-this is a fair comment but we assume that no transistors are perfect (there is always a small amount of leakage) and the leakage current through TR2 and TR3 will be about the same and hence we get a sort of potential divide effect at minute currents giving us a "starting" potential at point "A."

DISTORTION

Move on to Fig. $3(b)$ where we have connected the bases of TR2 and TR3 together and then back to the collector of a feedback biased stage -the quiescent output potential of which is $+4 \cdot 5 \mathrm{~V}$. This voltage is not 0.6 V more positive with respect to TR2's emitter nor more negative with respect to TR3's emitter, therefore neither transistor will conduct (apart from leakage) and the positive plate of Cl will stay at about +4.5 V -unfortunately you cannot measure this without an extremely high resistance voltmeter.

Fig. 3(b). A class B complimentary symmetry output stage preceded by a feedback biased stage.

If we whistled a perfect sine wave note into the microphone we know that the collector of TR1 would follow suit alternating by about 1V above and below $+4 \cdot 5 \mathrm{~V}$. As soon as we exceed $+5 \cdot 1 \mathrm{~V}$ TR2 will start to conduct and charge current will flow through the loudspeaker; when we fall below $5 \cdot 1 \mathrm{~V}$, TR2 will shut off and when we fall below $+3 \cdot 0 \mathrm{~V}$, TR3 will start to conduct

Fig. 4. These waveforms refer to Fig. 3(b) and show "crossover distortion."

and discharge current flows through the loudspeaker in the opposite direction.

The only problem, so far, is that we are losing part of our signal. The current through the loudspeaker follows the voltage swings at TRI's collector only when we exceed certain limits; in between these limits it stops and we get a - distorted current sine wave as shown in Fig. 4. This distortion is most undesirable and is called crossover distortion and is a classic problem with class B stages. Nevertheless it can be avoided as we shall see.

First of all take note of the important point that in the absence of any microphone signal no current at all is flowing through the output tran-sistors-the transistors are dissipating no power.

This is a tremendous advantage over the simple emitter follower stage described last month which had a quiescent current almost as high as the amount of signal current fed to the loudspeaker which is wasteful on power and means that we have a static dissipation in the transistor which is serving no useful purpose (acoustically speaking) and limits the amount of power we can use as signal. This is a problem associated with the type of output stage known as class A.

CROSSOVER ELIMINATION

To overcome crossover distortion we have to arrange that the quiescent voltages at the bases of TR2 and TR3 are just on the threshold of taking the transistors into conduction. This is done by introducing an extra stage in our power amplifier called a driver. This is shown as TR1 in Fig. 5(a).

Fig. 5(a). By introducing a "driver" stage, TR1, crossover distortion can be eliminated.

Resistor R2 works like the feedback resistor in our voltage amplifier and by careful calculation we can ensure that the potential at " B " is just enough to start TR3 conducting; VR2 and R1 form the collector load of TR1, but VR2 also ensures that there is always twice $0.6 \mathrm{~V}(1.2 \mathrm{~V})$ difference in potential between points " B " and
"C." Both TR2 and TR3 will be conducting slightly and point " A " will settle (aided by negative feedback from R2) to about $+4 \cdot 5 \mathrm{~V}$. Any negative going signal at the input capacitor will make TR2 go more into conduction, and vice versa for TR3.

This time we will have no crossover distortion provided VR2 is of a high enough value to maintain the quiescent voltage differential between points " B " and " C ."

In Fig. 5(b) you will notice that in the practical circuit we are using a silicon diode (D1) in forward biased mode to help maintain the $1 \cdot 2 \mathrm{~V}$ difference-it also helps combat variations in temperature that affect the emitter/base forward voltage drops of the output transistors.

MATCHING

A final couple of points before describing Fig. $5(\mathrm{~b})$; in a good quality piece of equipment the $h_{\text {Fe }}$ of the complimentary output pair of transistors (TR2 and TR3) should be accurately matched so that the current through the loudspeaker is symmetrical on the "charge" and "discharge" parts of the cycle. With the low price transistors we have specified this is not possible, but we can tolerate a reasonable amount of distortions at low powers.

Because the voltage across either of the output transistors-when they are conductingnever exceeds 4.5 V , and in the quiescent condition no current is flowing, we now have the full current and power rating of each transistor at our disposal. We could, theoretically, charge over 4.5 V with a peak current of 100 mA which gives a peak power of 0.45 W and discharge through TR3 at the same rate giving an overall power output of nearly 1 watt. This, of course, is an absolute maximum and actually exceeds the individual r.m.s. power ratings of the transistors; however this can be tolerated provided the power overload is only temporary.

When dealing with commercial power amplifiers you will find the power ratings quoted as r.m.s and peak-sometimes peak power is des"ribed as "music rating" and r.m.s power as "continuous rating."

MICROPHONE AMPLIFIER

Fig. 5(b) is our grand finale for the Teach-In series and rep:esents a reasonable 0.5 W r.m.s microphone amplifier that embodies many of the points we have covered in the latter part of the series.

Transistor TR1 is a potential divide biased voltage amplifier, TR2 the output driver and TR3 with TR4 gives us a class B complimentary output stage. The driver serves two purposes; it enables us to bias the output transistors but also, as a by-product, gives us a further stage of voltage amplification. This ensures that we can drive the output pair to "saturation" from

Fig. 5(b) (above). The circuit diagram of a 0.5 watt microphone amplifier using a potential divide biased first stage followed by a driver and class B complimentary symmetry output stage with several refinements.

Fig. 5(c) (right). The circuit of Fig. 5(b) shown wired up on the Demo Deck.

the microphone input should we so wish. In fact there is plenty of unrequired gain in hand. We can make use of this to add in a couple of refinements.

VOLUME CONTROL AND SELECTIVE FEEDBACK

The simplest is a volume control-shown as VR3 (of the Demo Deck) in parallel with a 22 kilohm collector load for TR1-that enables us to "tap off" lower proportions of variations in TRI's collector potential. As this would affect the bias of TR2 we have to decouple the d.c. link between the wiper of VR3 and TR2's base; this is done with capacitor C4 (we have introduced a.c. coupling).

There is still some gain in hand so we can introduce some frequency selective negative feedback between the collector and base of TRI (with the aid of C2 and VR4). When VR4 is set to a high resistance value, very little feedback occurs and our signal strength will be high; by reducing the value of this potentiometer some feedback will take place but only at high frequencies (C 2 still acts as à very high resistance to low frequencies). The more you decrease the value of VR4, the more you will suppress high frequencies and hence counter the rather poor frequency response we had previously-speech will become more "bassy" and appear to have more "body." It may be necessary to increase the volume control to get the best effect.

DECOUPLING

The resistor/capacitor combination, R5 and Cl , form what is called a decoupler; this prevents any variations in power line voltage caused by high currents being drawn througl the output transistors affecting the first amplifer stage. Without these components the whole system could be subject to positive feedback, become unstable and oscillate-take them out and see!

SETTING UP THE AMPLIFIER

When setting up the amplifier, start with VR2 at minimum value and slowly increase it while speaking quietly into the microphone. You should initially hear the effect of cross over distortion (it is better heard than described) but stop increasing its value as soon as the distortion disappears. In normal circuits VR2 would be a preset component and VR4 would be of a fixed value determined by the designer.

The little loudspeaker in Demo Deck does not really do justice to this circuit and is of rather too high an impedance to get maximum power. If you have a larger 8 ohm loudspeaker try this in its place-you'll probably be very surprised with the difference. There is no reason why you should not replace the microphone with a crystal pick-up and make a record player amplifier.

LAST WORDS

We've come a long way since the "plumbing" in Part 2 and we hope you have been able to follow us. The subject is only a hobby but it can be great fun if you know some of the inside stories rather than "construct-in-the-dark."

You will find many more articles in months to come which will help fill some of the gaps and also venture on new territory. Ultimately the only way to become proficient at electronics is to make things, have successes and have failures but if you have a failure do not give up in disgust, try and find out what went wrong. Why not round off with the "End of Term Test" on page 670).

Ruminations By Sensor

Having A Nose For It

I once knew a man (I'll call him John) who had an uncanny knack for fault diagnosis. He was not highly trained in electronics but had grown up with the science and accumulated a vast store, a practical experience which enabled him to find faults very quickly with a minimum of testing. When I first met John, he was working on Radar equipment but he had previously worked on domestic radio servicing; he transferred apparently without any difficulty to television fault diagnosis.
Although his theoretical knowledge was limited, his talent for quick diagnosis was admired and respected by all-even the most senior engineers. It must be remembered that he was dealing with new equipment straight from the production lines-receivers that had never worked before;
wiring faults and components of the wrong type and value made the business more complicated than normal servicing work.

Every engineer acquires this "instinct" for fault diagnosis, to a greater or lesser degree. It is an amalgam of keen observation, knowledge of components and their behaviour, the "stock" faults of various models-and a good memory. These factors do not compensate for lack of a sound knowledge of basic theory, which properly applied, will enable one to diagnose any fault, though probably not as quickly as John would have found it. A good beginners series can help those who already have some "instinct" to develop their theory whilst those without either theoretical knowledge or "instinct" can quickly learn sufficient theory to enable them to begin to acquire an "instinct."

One-Upmanship

I once gained some kudos myself by using my required "in. stinct." I was watching a computer engineer who was looking for a fault. He had isolated the
trouble to one particular circuit board and had removed this board from the computer. While he collected together his tools, testmeter circuit diagram and wiring diagram of the particular board in preparation for detailed investigation, I picked up the board and idly glanced over it.

One resistor looked just a shade brighter in colour than the rest, I looked more closely and saw that the thin wax coating, that used to be applied to resistors in those days, was just beginning to soften. "Is that resistor the correct value?" I asked. We looked on the circuit diagram and found that the resistor ought to have been 470 kilohm; it was in fact 47 kilohm and was correctly colour coded. The computer engineer was most impressed!

Somewhere along the line the colour coding had been misinterpreted (orange and yellow can be quite close together in shade) and although there was not much current flowing in the circuit concerned, a change in resistor value of 10 times was suffcient to produce very slight overheating in the resistor and give me a clue to the trouble.

The Electronic Mouse Trap described herein does not kill or injure a captured mouse. It catches the mouse alive so that it may be released in the local park or a field. This satisfies the R.S.P.C.A. and wildlife preservationists and all others opposed to "blood sports". Only the cats will be unhappy at the risk of being made redundant.

The trap has been well proven in use and has caught six mice during a few weeks of operation. Certain modifications have been made to the prototype due to the annoying habit of the mice to chew the connecting wires inside the trap.

PRINCIPLE OF OPERATION

The principle of operation is quite simple, although the trap may look a little complicated mechanically. The "electronics" consist of a
photo-conductive cell which operates a simple d.c. amplifier (Fig. 1), this in turn energising a solenoid (L1).

When the solenoid is energised it releases the door retaining spring. The door then promptly closes and at the same time switches off the supply via SI. The sequence is set off by the mouse which, on entering the trap to gain access to the "bait", carefully placed inside at the far end, has to pass through a beam of light shining on the photocell PCCl from LPI. When the light beam is interrupted the photocell resistance increases and actuates the d.c. amplifier and solenoid.

There are only two ways, well three really, in which a mouse can evade being captured. One, if the mains supply fails or is switched off, two, it could jump over the beam of light or three, just not enter the trap anyway.

A proven design for a humane mouse trap. By F. C. Judd

Fig. 1. Complete circuit diagram of the Electronic Mouse Trap.

CONSTRUCTION

The box can be made from hardboard or thin plywood with sides and top etc., held together with half-inch by half-inch battens pinned or glued. Details for the box are given in Fig. 2. Note that a hole is drilled each side of the box about ${ }^{3}$ in up from the bottom. These holes allow the light from the external $6 \cdot 3 \mathrm{~V}$ lamp (LP1) to shine through and across the box to the photocell opposite.

The trap door can be made from Perspex thich enables one to see if a mouse has been caught. It could otherwise be made from hardboard but drill some holes in the door otherwise a caught mouse could die of suffocation!

It has been found that in an effort to escape the mice chew the wooden batten around the door so it is best to make these of the half-inch batten specified. The mice do not seem to want to chew the plywood sides.

The d.c. amplifier and power supply components are mounted on the aluminium panel that forms the rear end of the box and are separated from the captured mouse by an inner dividing wall. Without this wall a mouse could get to the mains supply and possibly electrocute itself.

The amplifier circuit is shown in Fig 1 and consists simply of a d.c. coupled pair of transistors but note that TR2 passes a large current when the light beam is interrupted It is for this reason and because no heatsink is provided for TR2, that a contact (S1), operated by the door, opens and cuts off the secondary voltage of the transformer Tl when the door is closed. This also switches off the light, thus saving current when the trap has done its job.

SOLENOID

The solenoid is fairly easy to make and really amounts to a coil of wire with a steel bolt as the electromagnet. Details are given in Fig. 3.
The coil cheeks could be any insulating material, even stiff cardboard and the coil itself consists of enough 32 swg enamelled wire to
build up a winding of about 3_{4} in diameter between the cheeks that are fixed one inch apart on a 1_{4} in steel bolt. The d.c. resistance of the winding will be in the region of 20 to 30 ohms.
To make the solenoid cut out two discs 1 inch diameter for the end cheeks and drill two holes in one as shown in Fig. 3. Slide these cheeks onto the bolt-the undrilled one first-and screw on a nut so that the two discs are one inch apart.

Using 32 s.w.g. enamelled copper wire, pass one end out through the inner hole, cover the outer end with sleeving and with the uncovered wire wind on the turns evenly along the length

Fig. 2 (above). Details and dimensions of the wooden box as used for the prototype mousetrap showing the electronics compartment at the rear of the unit.

(a)

SOLDERED ON PIN APPROX $1 / 8$ LONG

(b)

BEND ROUND TO
FORM LOOP

Fig. 3 (above) (a) A plan view of the solenoid arrangement on top of the unit. (b) Shows the dimensions of the cardboard cheeks of the solenoid. (c) Details of the operating arm.

Fig. 4 (left) Shows details of the Perspex door, door fittings and S1.

Fig. 5. The mounting and wiring of the lamp and photocell.
of the solenoid, layer upon layer until the winding is approximately ${ }^{3}$ in in diameter. Pass the other end of the wire through the outer hole, sleeve the wire and secure the winding with insulation tape.

The operating arm, which releases the door retaining wire must be made from tinplate or thin mild steel. A piece cut from an empty tin box will do. A vertical loop is formed at one end as shown in Fig. 3, just large enough to slide over a 6BA screw which will form a bearing for the arm. The position of the arm relative to the solenoid is shown in Fig. 3.

TRAP DOOR

The door is hinged as shown in Fig. 4 and held closed by a light tension coil spring or an elastic band. The tension must not be too great but sufficient to bring the door down smartly from a near horizontal position so that it latches.

Attached to the middle of the door is a piece of springy steel wire long enough to reach back so that the end can be hooked under the pin on the solenoid arm (see Fig. 3). When the solenoid is energized the arm moves in and the door retaining wire is released.
When the door comes down it must break the contact which forms S1, this disconnects one side of the transformer secondary winding from the rectifier and the lamp. Details for the contact are given in Fig. 4 and the position of its operating bar is also shown.

The door fittings can be made from light gauge aluminium but the door contact must be springy i.e., made from tinplate or thin brass. When the door is open the contact must make with the 6BA bolt on the side of the box as in Fig. 4.

Two wires, one from the contact and one from the bolt are taken along the outside of the box to the transformer and circuit board at the rear. The wires should not pass inside the trap as they will soon be chewed away by the captive mice. The door is also fitted with a simple latch to prevent the mouse from pushing it open and escaping.

LAMP AND PHOTOCELL

The photocell is a type ORP60 which has its
sensitive element near the top end so this end must be in the light beam as in Fig. 5. The lamp housing consists simply of a small three sided box just large enough to take an MES lampholder (Fig. 5). This is bolted onto the side of the box so that the lamp is in line with the hole and adjusted so that maximum light will shine across onto the photocell.
The photocell can be mounted on a small piece of plain circuit board so that the light sensitive end "looks into the box" through the hole. This small assembly is attached to the outside of the box.
It is important that the holes in the box are not too large as the mice may tend to chew the surrcunding wood.

AMPLIFIER

The two transistors and remaining comFig. 6. Layout and wiring of the components mounted on the circuit board.

ponents, including the bridge rectifier, are mounted and wired on a piece of plain circuit board as shown in Fig. 6. Mount all the components on the circuit board after it has been cut to size and the mounting holes drilled. Solder the connections, using a heat shunt on the transistor leads and connect up the flying leads.

Leads are taken to the door switch (S1), lamp, photocell and to the solenoid as shown in Fig. 6. Note that the transformer Tl is a 6.3 V 1 amp heater type. This transformer is mounted directly on the rear panel together with the circuit board and the mains switch as shown in Fig. 7. It is important that the aluminium panel is earthed via the mains lead.

Fig. 7. Wiring of the components on the panel.

OPERATION

The trap door is set by releasing the catch, lifting it to a horizontal position and retaining it by hooking the long stiff wire under the pin on the solenoid arm. Check that it will release by pushing the arm in towards the face of the solenoid. Only slight pressure should be required.

Now switch on the amplifier, re-set the door, and check that the lamp lights when the door

Comporients....

is in the retained position. Providing the photocell is fully illuminated the arm will not move, indicating that TR2 is cut off. Try rolling a cotton reel into the box to interrupt the light beam. This should cause the solenoid arm to move, release the retaining wire and allow the door to instantly close. At the same time the door contact Sl will open and cut off the supply voltage to the amplifier and lamp.
With the door closed the lamp must go out. Should the door contact fail to break the circuit do not leave the amplifier operating as TR2 will be passing a large current and may destroy itself. Make sure that the light always goes out when the trap door closes.

BRAND NEW

 GUARANTEED

Prices subject to alteration without prior notice．

8N7400	TTL．LOGIC I．C．NEW PRICES							
	1－11	1－24		1－11	18－24		1－11	2－34
		${ }_{0}{ }^{3} 18$	8 N 7433	3．80	${ }_{0} 8$	EN7472	${ }^{2} 8$	020
8N7401	080	9.18	BN7437	04	0.08	BN7473	0.48	0.41
BN7402	020	0.18	8N7438	04	0.60	8N7474	0.48	C4
BN7403	0－20	0.18	EN7440	0.28	0.81	BN7475	0.45	0.4
BN7403	0.20	0.18	8N7441AN	0.87	0.88	8N7476	0.45	0.4
EN7406	0.80	0.75	857442	0.65	0.81	EN7480	0.70	0.45
8N7407	$0 \cdot 80$	0.75	BN7449	2.86	2.70	8N7481	1.40	1.8
8N7408	0.20	0.18	857444	2.86	2.70		$0 \cdot 87$	0.8
8N7409	$0 \cdot 20$	0.18	8N7445	2.50	8.40	8N7483	$0 \cdot 7$	0.8
8N7410	0.20	0.18	887446	1.00	0.95	8N7484	200	1.45
BN7411	0.28	021	8N7447	1.00	0.95	QN7485	3.4	3.40
8N7412	$0 \cdot 48$	0.48	B8：748	1.00	0.95	8N7486	0.29	0.80
BN7413	0.40	9．88	8Ni 7449	1.00	0.95	8N7490	0.87	0.94
8N7420	0.20	9.18	858450	0.20	0.18	8N7491AN	1.21	1.10
8N7428	0.51	3．47	88：7451	0.20	0.18	8N7492	0.87	$0 \cdot 8$
8N7427	0.48	0.45	8N：7453	0.20	0.18	BN7498	0.87	$0 \cdot 6$
$8 \mathrm{S7428}$	0.80	3．75	8N7454	0.20	0.18	8N7494	0.87	0.84
8N7430		0.15	8N7460	0.20	0.18	8×7485	0.37	$0 \cdot 8$
8N7432	0.48	0.48	8N7470	0.40	0.38	887498	0.87	0.4
SUB－MIN ELECTROLYTIC								

 $6.4 / 6-4 ; 64 / 25 ; 10116: 10 / 64 ; 16 / 40 ; 20 / 16$ ；20／64；25／6－4；25／25； $32 / 10$ ： $32 / 40 ; 32 / 64 ; 40 / 16 ; 50 / 6-4: 50 / 25 ; 50 / 40 ; 64 / 10 ;$ ． $0 / 16 ; 80 / 25 ; 100 / 6 \cdot 4$ ： 125／10；125／15：320／6．4．

SILICON RECTIFIERS

PIV	80	100	200	400	600	800	1000	1200
1 A	8 p	9	10．	11.	12.	159	80	－
3A	159	179	800	20，	25\％	87	10	85
6 A			明	200	2215	85		
10A	200	350	40p	47.	88 D	68	759	－
15A	860	45p	480	65	65	750	78	－
35 A	200	800	909	81－00	81.40	\＄1－70	48．75	
1 amp and	3 an	are p	le	prula				

IN34A	10\％
IN814	70
1N016	70
IN4007	20%
1844	7
18113	15p
18120	188
18121	14.
18130	8
18131	10
18132	18
18820	7
18922	8
18923	18）
18940	5

DIODES \＆RECTIFIERS

＂SCOAPIO＂CAP
DISCHARGE IGMITIOW
SYSTEM
（As printed In P．E．Nav．
－71）．Complett kit \＆10．00
P．\＆P．50p．

[^1]| | MULLARD C200 M／FOIL |
| :---: | :---: |
| | |
| | 0．01，0．022，0．033，0．047 |
| | 0.088 .0 .10 ． |
| | －1 |
| | |
| | |
| | 1－6， P |
| VEROBOARD | $2 \cdot 2 \mu \mathrm{~F}$ |
| 0．15 ef | |
| $21 \times 32 \mathrm{in}{ }^{2170}$ Eatrix | WOU1D P EESTORA |
| 21×315 | $2.5 \mathrm{watt} 8 \%$（up to 270 ohms only）．7t |
| | onitic |
| | －watt 5\％（up to 25k Ω oaly） |
| Vero Ptos（Ran of 36） 201 | 10p |
| Pin Insertion Toole（ -1 and $\cdot 15$ | POTENTIOMETERS |
| | |
| | Carbon：
 Loe．and Lin．，less awiteh， 10 p． Log，and Lin．，with owitch，献p． Wire－wound Pole（3W），285． Twin Ganged Starto Fota，Los． and Lin．， 40 g ． |
| | |
| gEMITROM 3015F EEVR | |
| | |
| TII 200 LIOET EIMTT | RESETS（CARBON） |
| 900 PEOTORESATOR | |
| | Watt 6 vertic |
| RESISTO | ${ }_{0.3}^{0.2}$ Watt 7b HORLZ |
| | |
| | THERMISTORS |
| | RS3（ETC）A1．20 VA3705 |
| | K151（1）18）VA107 |
| 1 Fati 10% 2p． | Malland Therraito |
| $2 \mathrm{watt} 10 \%$ 6．E12 seriee | atock．Pleace maquire． |

A．PIV			PIV	
1100	87.	4	80	30
1.4140	57	4	100	
260	209	8	800	
2200	410	6	200	
2400	495	6	400	12.10
MULLARD C200 M／FOIL				
CAPACITORS				
0．01，0．022，0．033， 0.047 ts anoh				
$0 \cdot 088$.				mech
$0.15,0.29,0.83 \ldots$ ．．Etomh				
0.47 ．．．．．．年				
$0 \cdot 68$ ．．．．．．115				
$1 \mu \mathrm{~F}$ ．${ }^{\text {P }}$				
$\underline{1-6 \mu \mathrm{~F}} \quad \cdots \quad . . \quad \cdots \quad 818$				
$2 \cdot 2 \mu \mathrm{~F}$	，	，	＇＇	3

BRIDGE RECTIFIERS

BAX 16	124	FET3／4	2919
BAY15	1740	OAS	17．
BAY31	7．	OA10	90\％
BAYs8	2\％	OAP	10．
BY100	15p	OA47	5
BY103	88	OA70	7
BY122	476	0A73	109
BY124	15\％	0A79	7
BY128	159	OAB1	8
BY127	17．	OABE	10.
BY164	67	OA90	7
BYX 10	28	OA91	7
BYZ10	86	OA95	7
BYZ11	820	OA200	7.
BYZ12	30\％	0A802	10.
BYZ13	85p	TIVs07	

AA119	71
AA129	18
AAZ13	12\％
AA716	18）
AAZ17	10p
BA100	151
BA102	280
BA110	25］
BA114	15\％
BAlls	7
BA141	170
BA142	17．
BA144	12\％
BA146	17．
BA154	120
BAX13	5 g
CAP IGNITIOM EM in P．E．Mav． 2 kit $£ 10.00$ 50p．	

WIEE－WOUND REIETOR 2.5 watt 5%（up to 270 ohme 8 watte 5%（up to $8-2 /{ }^{2} \Omega$ oaly）．Ip POTENTIOMETERS

Log．and Lin．，with owich，媳 Wire－mound Pote（8 W），28f．
Twin Ganged Bterno Fote，Loe．
PRESETS（CARBON）
0.1 Wath 6－VEBTICAI 0.3 Watt 7ip HORIEONTAL

THERMISTORS
K151（11 18 vish valot the atoch．Plesen entuire．

Telex 21492
28 CRICKLEWOOD BROADWAY，LONDON，N．W． 2

CALLERS WELCOME

9
 spk

quite simply-the best

B.H. COMPONENT FACTORS LTD.

DEPT. E.E., P.O. BOX I8, LUTON, BEDS. LUI ISU
POLYESTER CAPACITORS MULLARD C280, 250 volts, $0.01 \mu F$ F. $015,0.047,3 \mathrm{P} .0 \cdot 068,0 \cdot 1.0 \cdot 15,4 \mathrm{p} \cdot 0 \cdot 22,5 \mathrm{p}, 0 \cdot 68$, 10 p . I $5 \mu \mathrm{~F} 20 \mathrm{p}$. MINF/40V $8 / 40$ EL $10140-25125$ 10016. 1210426
$8025,0.64 / 64,10 / 64,20 / 64,32 / 64,5 p . ; 437,640 / 6: 4,1600 / 6.4 \mathrm{~V}, 40 / 16$ $160 / 40,9 \mathrm{p}$.

	Electrolytic		Capacitors			IN4001 IN 4002 iN4003		$\begin{aligned} & 6 p p \\ & 7 p \\ & 8 p \end{aligned}$	$\begin{aligned} & p F \\ & 0.01 \\ & 0.022 \end{aligned}$	$\begin{gathered} V \\ 350 \end{gathered}$	
mF	\checkmark			-							
0.64	50	2 p	640	10	8 p					30	2p
1	6	2 Pp	1000	3	6p			Tes	$\begin{aligned} & 0.047 \\ & 0.1 \end{aligned}$	30 25	3 l
2	15	2 P	1000	6	8 p	Dise	c_{V}			25	
2.5	50	3 p	1000	12	10p						
4	10	3p	1000	25	15p		750	2 p		ter	
6.4	50	${ }^{3 p}$	1000	50	$35 p$	10	50	2 p			
10	40	4p	2000	12	10p	25	75	2	0.01	160	2 P
10	50	4 p	2000	25	$15 p$	40	750	2p	0.015	180	2 p
16	15	${ }^{3} \mathrm{p}$	2500	12	10p	75	750	2 p	0.022	160	2 p
16	25	3p	2500	25	30p	100	750	2 p	0.22	160	4 p
20	25	3 p				120	750	2p	0.33	160	4 p
25	15	3p	Zener	Di		220	750	2 p	0.47	160	$4 p$
25	25	3 p	BZY8	typ		1000	50	21p	0.68	160	$4 p$
32	50	$4 p$	tested	and		4700	30	2p	1	160	6p
40	6	3 p	polar	y m	ked	0.01	30	3 p	10	0	40p
50	10	3 p	all	lue	13			GA	PA	KS	
50	50	$7 p$	5 p ea			1410	076	w	$5 \times$	0 yds	30p
64	10	4p				$7 / 007$	7 PV	wire	5×10	yds	30p
64	25	4 p				Smal	1 Mul	able	4 way	10 rds	50p
64	40	5p	2N70		$10 p$	Gen.	purp	e sw	ching		
100	6	3 p	2N70		13 p	80 V	Neon	ire		5 fo	20p
100	50	8 p	2 NI 3		17p	Mini	ature	shbu	ton	2 fo	20p
250	6	4p	2 N 38		$80 p$	Tran	sform	$32-0$	32 at	150 m	50p
250	10	4 p	2N30		60p	Red	Pane	eon			15p
250	15	6p	BCY3		22p		NIA	JRE	R.F.	HO	ES
250	25	$8 p$	BFY5		20p	0.22	HH_{H}				$2 \mu \mathrm{H}$,
400	10	5p	85×2		16p						ach
500	10	5p	OC35		40p			esi	5	e	
500	12	8 p			43	100	Mix	10			
500	25	10p	74001	$1 / 10$					QU	ALE	
500	50	12p			15p			800			40 p

TERMS: Cash wich order. P. \& P, please add IOp for orders below $\mathbb{E} 5$. Overseas excra. Discount: $110-10 \%$. All goods carry our money back guarancee if not satisfied. We have many componencs not listed, enquiries welcome. List 5p stamp. Trade enquiries welcome.

C. HAOLEY
 24, WOODHILL, HARLOW, ESSEX
 Add 5p. P. \& P. Price list S.A.E. No callers please

All our stocks are brand new with money back guarantee

AC107	150	BC108	8 p	BFY51	12p	0772	12p	2N2846	170
ACl28	13p	Re109	8 p	BEY98A	15p	OCB1	13p	2N2926	100
AC127	13p	3C154	20p	M E0402	18p	OC8ID	13p	2N3053	200
AC128	13p	HC168	10p	M CO 404	14p	OC83	20p	2N3055	481
AC176	259	BC169	11p	ME4101	10 p	0C170	24p	2N3702	110
AC141K	$20 p$	RC182L.	8p	ME4102	12p	OC200	25 p	2N3704	130
$\mathrm{ACLH2K}$	20p	BC183L	8p	3 CdO 2 L	14D	OC201	25p	2N3703	110
AD149	40p	BC184L	8 p	M Fibiol	14p	0 CL 2	25p	40836	850
AD150	44D	BC212L	8 p	31 E6102	159	OC28	309	1N4001	4 p
AD161	\%	BC214L	8 p	MPR111	32 D	0 O 29	38p	1N4002	40
AD162	p	BDII6	79p	MPRS 11	34.	OC35	25 p	1N4003	68
AF'l1	15p	3D121	80p	MP8 ${ }^{\text {d }} 13$	45p	OC36	38 p	OC202	78
AFlis	15p	BD130	46p	0 C 41	13p	$2 \mathrm{N697}$	18p	OA90	60
AFIL6	15p	BD131	59p	OC44	13p	2N1171	24 D	OA91	8 D
AF117	150	BF194	15p	0 OC 5	13p	2N1304	25p	IN4148	40
BCl07	8D	BFY 50	15p	OC71	129	2N1306	25 p	W02	320

MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 8 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$,

MULLARD POLYESTER CAPACITORS C288 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{D}, 0.006 \mathrm{M}, \mathrm{F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}^{\circ}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{D}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p}, 0 \mathrm{~s} 2 \mu \mathrm{~F}, 71 \mathrm{p}$. $160 \mathrm{~N}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F},{ }^{0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 8 \mathrm{p}, 0.1 \mu \mathrm{~F}, 31 \mathrm{D}, ~}$ $0.15 \mu \mathrm{~F}, 4 \mathrm{id} .0 .22 \mu \mathrm{~F}, 5 \mathrm{D}, 0.33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 72 \mathrm{p} .0 .69 \mu \mathrm{~F}, 11 \mathrm{D} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$. ELECTROLYTIC CAPACITORS-MULIARD CAD6 EERIE8 G5/4 125/4 each $(\mu \mathrm{F} / V) 10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 25,320 / 2 \cdot 6,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$.
$400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6.4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 4 \cdot 4,4 / 10,16 / 10,32 / 10,6410 /$.
 $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0 \cdot 64 / 64,2 \cdot 6 / 64,5 / 64,10 / 64$ 20/64, 32/64.

KULLARD C437 SERIES
$100 / 40,160 / 25,250 / 16,400 / 10,840 / 6 \cdot 4,800 / 4,1000 / 2 \cdot 5,8 p .100 / \mathrm{fi}, 160 / 40,250 / 25$, $400 / 16,640 / 10,1250 / 4,1000 / 6 \cdot 4,1600 / 2 \cdot 5,120.160 / 44+250 / 40,400 / 2 \cdot 5,640 / 16$. $2000 / 4,1000 / 10,1500 / 4 \cdot 4,2500 / 2 \cdot 5,15 \mathrm{p} .230 / 64,400 / 40,640 / 25,3200 / 4,1000 / 16$ 1600/10. 2500/6.4, 4000/2.5, 18p

RESISTORS

Watt
5
wat
wat

Parige 10% carbon lo each ratige $2 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega$ type TR5 triple rated $1-\frac{1}{2}-$. tin orlde $\times 2 \%$
ange 10Ω to $1 \mathrm{M} \Omega$.

FOLUME CONTROLS Potentiometert 5 (rarbon $2 \mathrm{M} \Omega$
Loz or Linear
Any trpe with D.pang (itereo) 40D

IFN this, the first half of a twopart article, we meet the man once described as "the Columbus of electricity"-Michael Faraday -who discovered how to make electricity by mechanical means, and gave his name to the unit of electric capacitance (see Table 1).

Michael Faraday was born at Newington, Surrey, on September 22, 1791, the third son of a Yorkshire blacksmith who had migrated to London. At the age of fourteen Michael was apprenticed to one Riebeau, a bookbinder, who gave young Michael time to study the many learned books they were binding. Michael was a good worker, with an aptitude for learning and as a reward Mr. Riebeau took him to a series of lectures, on chemistry given by Sir Humphrey Davy of miner's safety lamp fame.

GREATEST DISCOVERY

The young Faraday was spellbound not only by Davy but by the content of the lectures, so much so that he made notes, bound and illustrated them, and sent them to Davy requesting an interview as an assistant, although impressed Davy wrote to Faraday saying that he should stick to his trade of bookbinding, "Science is too precarious for a young man".

Then fate took a hand, Davy's assistant was dismissed and Faraday was offered a job, and Davy made what he later described as "My greatest discovery". The man who in later years was to succeed him as Director of the Royal Institute.

NOG Faraday

(Part 1)

By J. E. Gregory

Table I: FARAD (F)
The farad is the unit of electric capacitance. A capacitor has a capacitance of one farad when a charge of ane coulomb raises the potential between its plates to one volt, hence farads $=\frac{\text { coulombs }}{\text { volts }}$

For everyday use the farad is too large a unit, and smaller units called microfarads (symbol $\mu \mathrm{F}=10-6 \mathrm{~F}$), nanotarads (symbol $\mathrm{nF}=10^{-9} \mathrm{~F}$) and picofarads (sometimes calied "puffs"-symbol pF $=10^{-12} \mathrm{~F}$) are used. .
The unit was first suggested in 1867 by Latimer Clark, the English engineer and electrician, who besides inventing the Clark standard cell took a leading part in the movement for the systemisation of electrical standards. The farad was adopted as the unit of electric capacitance, at the first meeting of the International Electrotechnical conference in 1881.

ROYAL INSTITUTE

Faraday started work at the Royal Institute on March 1. 1813, in a humble capacity assisting lecturers and keeping the apparatus polished, soon he became Davy's experimental assistant, and together from October 1813 to April 1815, they toured Europe lecturing.

On June 12, 1821, Faraday married Sarah Barnard and they moved to apartments at the Royal Institute where he had been promoted to superintendent.

Taking up original work in chemistry Faraday made a number of discoveries among them benzol, and two new chlorides of carbon, he was also much in demand as a lecturer.

Gradually lis work in chemistry was eclipsed by his electrical discoveries.

Faraday proved that a conductor carrying a current also induced currents in neighbouring conductors. On a wooden core he wound two coils of insulated wire, and sent electricity through one, while the other was connected to a meter which measured the current. He noticed that while the battery current flowed steadily through the coil, the meter did not move, but when the current was started or stopped, the needle jerked back and forth.

Picking up where Ampère left off he concluded that since electricity produced magnetism, so magnetism might produce electricity. He discovered that if a magnet is thrust into a coil of wire an electric current is "generated" in the coil, when the magnet is withdrawn the current direction is reversed proving that movement can produce electricity. This great discovery-that electricity could be produced by magnetism-was dated in Faraday's rotebook as August 29, 1831.

He rade a small dynamo in which a current was produced by rotating a loop of wire between the two poles of a magnet. At each half turn of the wire loop the direction of the current was reversed so that it flowed back and forth (a.c.). Faraday eventually fitted a commutator to turn the a.c. into d.c. He demonstrated his dynamo and reported his two discoveries of electrodynamic induction and magnetoelectric induction to the Royal Society in November 24, 1831.

This is generally regarded as the birth of the modern dynamo and transformer, and led to the development of the electric motor.

But Faraday had not finished yet as we shall be seeing in Part 2 , next month.

To wind up the Teach-In series we have devised the following questionaire which should help emphasise some of the more important points covered. We shall be publishing detailed answers next month so please do not send your answers in to us.
(1) To make a silicon npn transistor conduct between collector and emitter must we make the base: (a) 300 mV positive, (b) 300 mV negative, (c) 600 mV positive or (d) 600 mV negative with respect to the emitter.
(2) Generally speaking, and assuming all important parameters such as h_{FE}, breakdown voltages, junction capacitance, current and power ratings and manufacturing materials are the same, do you think you could substitute pnp for npn transistors in a circuit and simply reverse the polarity of the power supply?
(3) Calculate the quiescent power dissipation of TR1 in Fig. 1. Assume TR1 is a silicon transistor and its $h_{\text {FE }}$ is exactly 200; the resistors are precise values and the base/emitter voltage drop is exactly 600 mV .
(4) (a) How long will it take C 1 to charge up to +4 V when S1 in Fig. 2 is opened?
(b) If C1 was a "leaky" capacitor, would it take more or less time to charge to the same potential?
(c) Alternatively, if 18 V was applied to the circuit, would the charging time be greater or less than in (a) above?
(5) Why is it sometimes necessary to put a diode in series with the base of each transistor in an astable multivibrator?
(6) A square wave has a mark/space ratio of $10: 1$. The off time is 50 mS and represents the "mark". How long is the on time and what are the period and frequency of the waveform?
(7) What are the absolute values of positive and negative peaks of a sine wave having an amplitude of 4 V r.m.s. about a d.c. level of +2 V ?
(8) Would you prefer to use a silicon or germanium diode as a hali-wave meter rectifier when the meter has a full scale reading of 5 V ? There is a good reason for not using one type! What is the reason?

(9) Fig. 3 shows three ways in which a transformer could be drawn in a simple circuit. In two cases the output voltage is in phase with the input. In one case it is out of phase. Which is the latter?
(10) If you are going to buy a transformer to make a simple battery eliminator power supply with a d.c. output in the range 8 V to 9 V , would you select one with an r.m.s. secondary of: (a) 6.3 V , (b) 9 V , or (c) 12 V ?
(11) What would you expect the r.m.s. output voltage from Fig. 4 to be for input frequencies of $50 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 200 Hz having equal amplitudes of 10 V r.m.s.?
(12) To obtain best power efficiency with least drain on batteries, would you use a class A or class B output stage in a transistor radio?
(13) Why do you think that many hi-fi purists prefer a class A output?
(14) If you connect a crystal microphone to the low input impedance sockets of an amplifier, would you have: (a) uniform frequency response, (b) loss of bass frequencies, or (c) loss of high frequencies?
(15) You have a new amplifier that needs a loudspeaker having 7 ohms impedance. You have two loudspeakers having impedances of 3 ohms and 15 ohms respectively and you desperately want to try out the amplifier. Which loudspeaker could you use without fear of damaging the amplifier?
(16) Fig. 5 is the basic circuit of a simple four note electronic organ-no component values are given and there are 5 deliberate mistakes in the fundamental circuitryassume the battery polarity is correct as shown. See how many of the mistakes you can find and then try and work out the values of all the components to make the circuit work. (Frequencies should be in the range of 300 to

700 Hz).

(a)

(b)

(c)
$R 1$

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now tor those who prefer not 10 solder, there is an alternative - Project 605
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads. cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 3C watt stereo amplifier together with a clear well illustrated Instruction Book, All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.
Buarantee 11 wihin 3 month ol purchesing Project 605 directir trom us you ate disssaisisiad with it. we will setund your
 Serice it at once send without any coss to you whassoever provided that it is retumed to us within 2 reers of the Durchase date. There will be a small chacgo for service therester. No charge lor postrge oy surface mail, Air-mail charged at cost.

Sinclair Radionics Lid., London Road., St. Ives. Huntingdonshire PE17 4 HJ. Telephone : St. Ives (04806) 4311

Specifications
Output - 30 watts music power (10 watts per channel R.M.S. into 3Ω).
Inputs-Mag. P.U. - 3 mV correct to R.I A. A. curve 20-25.000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up-50mV. Radio - 50 to 150 mV . |Aux. adjustable between 3 mV . and 3 V .
Signal to noise ratio - Betrer than 70 dB .
Distortion - better than 0.2% under all conditions.
Controls - Press buttons for on-off. P.U., radio and aux. Treble +15 to -15 dB at 10 kHz Bass +15 to -15 dB at 100 Hz . Volume. Stereo Balance.
Channel matching within 1 dB .
Front panel-brushed aluminium with black knobs. Proiect 605 comprises Stereo 60 pre-amp/control unit. two Z-30 power amplifiris. PZ-5 power supply unit. the unique new Masterlink. leads and instruc-
f29.95
To SINCLAIR RADIONICS LTD. St. IVES, hUNTENGODNSHIRE PEITAHJ Please send Project 605 post free \square Oetails and list of stockists \square

Name
Address
for which I anclose $£ 29.95$ cheque/money order/cash.

Deriless wen faymy LOUDSPEAKERS

Acclaimed by the Experts
Chassis Units (Dual Cone, Coaxial, Woofers, Tweeters, etc.) plus Multi-unit systems in Kit Form from Scandin avia's largest manufacturer P. F. A. R. Helme Lid. (Dept. EEt0) Summerbrldge: Harrogate HG3 40R Yorks Tel: Darley 279 (STO 0423.72)

Matcling Cabinet Kits also available.

AERIAL BOOSTERS

We make four rypes orAerlal Boisters, LL5665 UHF L12 VHF 405, Lil VHF Radio L10 M/W \& S/W. Price L45, L12 \& L11 E2-95. L10

VALVE BARGAINS

Any 5-45p. 10-70p: 8 EC85, EF183, EF184, EBF89, EB91, EY86, PCC84, PCCB9, PC97, PCF80. PCFB6, PCL82, PCL83, PCL84, PCL85, PL'36, PY33, PY82, PY800, PY801, 30L15, 30C15, 6-30L2

19* UHF/VHF TV 27.50

THORN 850 SERIES

Untested but with complete eet of spare valves. Price £7.50. Carriage $£ 1 \cdot 50$ 100 MIXED RESISTORS 60p
From i watt to 2 watt and from 10 -ohme to 10 m-ohms our cholce. Price 60 p 100 MXED CAPACITORS E1
From 220PF 10200 MFO and from $1 \mathrm{Zv} / \mathrm{w}$ to $500 \mathrm{~V} / \mathrm{w}$-our choice $£ 1$.
PDST \& PACKING under £1/5p. Over $£ 1 \cdot \mathbf{1 0 p}$. S.A.E. for leaflets on all Items. Money back guarantee if not completely eatisfied.

VELCO ELECTRONICS

62A Bridge Street, Ramsbottom, Bury, Lancs.

That Convention

Ref. your reply to Mr. Robinsons comment (July issue) on conventional and electron current, may I point out the following.
(a) Conventional current is no longer in common usage; all secondary schools, at least in Scotland, teach the basics of electricity and magnetism with reference to electron flow.
(b) All the basic laws of electricity and magnetism are not in terms of conventional current, electron current is now used and has been for some time.
To sum up, electron current has now become conventional, and the basic rules of electricity and magnetism not only remain as they always were, but they are now much more realistic. Readers still using conventional current may be brought up to date as far as electro-magnetics is concerned if they simply use electron current and interchange Flemings right and left hand rules.

In closing, may I congratulate you and your colleagues for an excellently produced magazine; I am sure that you have given much pleasure to the professional as well as the beginner in electronics.

Michael F. I. McVoy
Port Glasgow

Our Teach-In author, Mike Hughes, replies:

Thank you for Mr. McVoy's letter which is very interesting. Here is my reply which you might like to publish as I think his com. ments are quite controversial.

Mr. McVoy's comments are very interesting but I think that a unilateral decision to drop conventional current teaching could be very dangerous. Certainly in most parts of England the policy of teaching is to stay with conventional current-this is the accepted requirement for the London University Schools' Examination Board when they come to mark GCE papers.

Of course, all established physics and electronics books are written in terms of conventional current and the more recent ones in my possession still maintain this standard. Provided the student is aware of the definition

I do not think there is any great harm in maintaining the situation. I cannot agree with Mr. McVoy's statement regarding Flemings "left" and "right" hand rules. Flemings rules were devised assuming current flow from positive to negative; if you change the convention they can no longer be called "Fleming's" rules, but worse still; I have great difficulty remembering which hand applies to what at the moment; introduce a reversal in sense of flow and I bet-as with a pair of swing doors -I will get the right set of circumstances on the last attempt!

What happens to the "Corkscrew" rule (left hand thread screws?) and those nice twirly N 's and S's to tell me which end of a solendoid is the north pole? All transistor and diode symbols have a built in "arrow" which depicts the direction of conventional flow; if we changed the convention sooner or later someone would come along and say the symbols should be changed round. Anyone then referring back to old copies of E.E. would no doubt be reading npn for pnp types!

I have every sympathy with the beginner who may be mesmerised by the apparent nonsense of the convention, but I think it is simpler to stick with it than change it lightly.

Mike Hughes

Clubbed!

I have been interested in electronics for some years but until your magazine came out I had not done anything practical. Now I have built a couple of your projects, due to your magazine
making it simple and basic, and my interest has increased.

I would like to join a radio or electronics club to further my interest, but I'm a bit hesitant as being a near beginner I'm not certain if I'd be eligible. If you could suggest a suitable club in my area I woald be very grateful.
H. Wagg Cheshire
We do not know of a club in your area, but there may. be a course at a local technical college or an evening course at a school. Otherwise see the following letter.

Thanks to your advice in reply to Mr. Milligan's letter (July issue) I have since joined the British An:ateur Electronics Club and found that it fulfils all my requirements. As for a national exhibition this year's has already taken place at Penarth, Glamorgan on July 22 to 29. Amongst the exhibits was a random letter generator, designed by some of our more experienced members, and constructed by any members who were willing to help.

Although our projects sound rather ambitious (the next being a small computer) all attempts are made to help newcomers to the electronics field. Nearly half the quarterly newsletter is devoted to comment and articles to help the beginner, and give that beginner the knowledge he needs to become proficient in pursuance of his hobby, so, if anyone is interested, I am sure Mr. Margetts will send you details. (No, I don't get commission!)

Andrew Cash
Bristol

Weather Coupling

"E.E. Constructionairs" may find this tip useful for the wind generator spindle coupling in the Weather Station (August issue). By cutting away the plastic surround of a 2 amp plastic terminal block, the metal inserts make a suitable spindle coupling for a smali model makers motors.
R. A. Lygo

Oxford

If you write to us for advice, and wish to have a personal reply you must Include a s.a.e. Unfortunately, we cannot prepare special designs, circults or wiring diagrams, to meet individual requirements nor can we supply back issues or answer queries concerning commercial equipment, or subjects or designs not published by us.
For all technical and editorial matters, write to: The Editor, Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone 01-634 4452.
For all enquiries concerning advertisements or advertisers write to: The Adverisement Manaoer, Everyday Electronics, at the above address. Phone 01-634 4202.

E.M.I. WOOFER AND

£5.75 Post 85D

Comprialnt tine rample of a Wooler Marnet. 440s, Gaurn 13,000 lines. Aluminjum Cone centre to imprave middle and top response. Also the E.M.I. Tweeter 3kin, souare has a special lightWeirht paper cone and marnet flux Impadance Standard Mapedance Standard Urelul Responce Base Resonance 35 to 18,000 wate $\cdots 45 \mathrm{cDs}$ MODERN TEAE DESIG

WEYRAD PSO-TRANSISTOR COILS

RA2W Ferrite Aerla

Osc. P50/1AC

I.F. P50/PCC 470

PS I.F. P50/3C
PS1/1 or
Mallard
 Weyrsd
OPTI 00 . $6 \times 1 \mathrm{in} .80 \mathrm{p}$.
VOLUME CONTROLS Lone apindles. Midzet Sire GK. ohmi to 2 Meg. LOG or LIS. L/S $15 p$ D.P. 25p.
8TEREO L/8 5 p. D.P. 75p. Edge 6X. 8.P.Transistor 25p

80 mm Coax 4 BRITISH AERIALITE AERAXIAL-AIR 8PACED AERAEIAL-AIR SPAC I deal tes and colour. 10 pyd .

8 in ELAC

HI-FI SPEAKERS
Dual cone plasticised roll arronnd Larre ceramic maynet. $80-10$
Bars resonance Bnis resonance 5 cDs .8 ohm

E.M.I. 13 $\frac{1}{2} \times 8$ in. SPEAKER SALE! With twin tweeters
and crossover, 10 watt
state 8 or 8 or 15 ohm. $\quad 44.25$ (As illustrated) \qquad Pont 25p Witb llared tweeter cone and ceramic mesnot, 10 watt. Bass rea. $45-60 \mathrm{cDi}$ 8 tete 8 or $\$$ or 15 . £2.25 Pois 25p

 BLANE ALUSIMIUY CRASSIS $18 \mathrm{sim} \times 2 \mathrm{in}$. diden $7 \times 4 \mathrm{in}$. $95 p ; 15 \times 14 \mathrm{n}$. $99 \mathrm{p} ; 11 \times 3 \mathrm{ln} .50 \mathrm{p} ; 16 \times 10 \mathrm{in} .11$. $14 \times 8 i n .16 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 18 \times 6 \mathrm{hn} .20 \mathrm{p} ; 18 \times 81 \mathrm{n} .28 \mathrm{p} ;$ HI-FI STOCKISTS RETURN OF POST DESPATCH
R.C.S. STABILISED POWER PACK KITS All parta and fastractions with Zener Diode, Printed circuit, Bridge Rectiliers and Donble Wound Maing Transformer 12 or 15 or 18 or 20 v . DC at 100 mA or lest PLEASE STATE VOLTAGE REQOIRED PLEASE STATE VOLTAGE REQUIRE
Detaile 8 .A.E. Sise $3 i \times 11 \times 11 \mathrm{in}$.
$\mathbf{1 2} \underset{\text { PRRER }}{\text { POBT }}$
GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal lor Mike, Tape. P. O., Gaitar. Can be used with
Battery -12v, or H.T. lige $200-300$ D Size $11^{\circ} \times 1 f^{*} \times \mathbf{y}^{-}$. Response 25 c.p.s. to $25 \mathrm{Kc} / \mathrm{s}$. 28db gain For ase with valive or trangistor equipment.
Foil instractions supplied. Dotail. S.A.E. Poat HEW TUBULAR ELECTROLYTICS CAN TYPES

 $8 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$
$32 / 480 \mathrm{~V}$
$25 / 25 \mathrm{~V}$
$25 / 25 \mathrm{~V}$
$80 / 50 \mathrm{~V}$
$80 / 50 \mathrm{~V}$
$100 / 8 \mathrm{~b}$
$14 p 100 / 28 V$

$15 p$	$100 / 80 V$
80 p	
$8+8 / 450 \mathrm{~V}$	

20 p	$88+8 / 450 \mathrm{~V}$	48 p
$82+32 / 480 \mathrm{~V}$		
$350+30 / 325 \%$		

 $10 \mathrm{p} \mid 89+18 / 450 \mathrm{~V} 25 \mathrm{D} \quad 100+50+50 / 450 \mathrm{~V} 48 \mathrm{D}$ LOW VOLTAOE $82+32 / 350 \mathrm{~V}$ 25D
$1.2 .4,5,8,16,25.30,30.100,200 \mathrm{mF} .15 \mathrm{~V}$. 10 p $800 \mathrm{mF} .12 \mathrm{~V} .15 \mathrm{p} ; 95 \mathrm{~V} .20 \mathrm{p} ; 50 \mathrm{~V} .30 \mathrm{p}$.
$1000 \mathrm{mF} .12 \mathrm{~V} .17 \mathrm{p} ; 25 \mathrm{~V} .35 \mathrm{p} ; 80 \mathrm{~V} .47 \mathrm{p} ; 100 \mathrm{~V}$. 9000 mF .6 V 2
 5000 mP .8 V . $25 \mathrm{D} ; 12 \mathrm{~V}$. 42_{D}; 25V. 75D; 35V. $85 \mathrm{D} ; 50 \mathrm{~V} .95 \mathrm{D}$ CERAMIC 1pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. silver Mien 2 to 5000 pF . 4p. PAPER 350V-0.1 4p, 0.8 13p; 1mP 15p; 2 mF 150 F 15 p . 500V-0.001 to $0.054 \mathrm{p} ; 0.18 \mathrm{p} ; 0.25 \mathrm{8p} ; 0.47$ 25p.
SILVER MICA. Close toleradce 1% 2.e-500pF 8p; $500-2 \cdot 200$ pF 10p; 2,700-5,600pF 20p; 6.800pF-0 01. mid 30s; each. TWIR GANG. "0-0" $208 \mathrm{DF}+176 \mathrm{pF}$, 88D; Slow motimn drive $385+366$ with $25+85 \mathrm{pF}, 50 \mathrm{p} ; 500 \mathrm{pF}$ slow motion, Elendard
45 p ; Emall 3-g. nk 500 pF 21.60. SHORT WAVE. SIKGLE. 10DF
SHORT WAVE. SIMGLE. 10pF 30p; 25pF 55p: 50nF 55p NEOR PAREL INDICATORS 250V AC/DC Red or Amber 20p.
RESISTORS, RESISTORS, 1 ... 1 w., 20% 1p; $2 \mathrm{w}, 5 \mathrm{D} 10 \mathrm{ohm}$ to 10 meg
 Ditto 6% Prelerred values 10 ohmis to 10 mez., ip.

GARRARD DECCADEC SP25 MKII RECORD PLAYER

$\underset{\text { PRICE }}{\text { SPECIAL }} \mathbf{£ 1 8 - 5 0}$
 Pont 250

METAL PLINTH \& PLASTIC COVER $\left.\begin{array}{l}\text { Cut out for most Garrard or } \\ \text { B.S.R. Wlit play whth cover in }\end{array}\right\}$ position. in Latest desion. s Antlmagnetlc. 12t x 14 $\ddagger \times 7$ tin

ALSO AVAILABLE IN SOLID NATURAL MAHOSANY

Wax Poilshe finish ti same palce

MAINS TRANSFORMERS

$250-0-25080 \mathrm{~mA} .8 \cdot 8 \mathrm{v}$. 4 mm

$250-0-25080 \mathrm{~m}$ $850=0-35080$

 300-0-800\%. $120 \mathrm{~mA} . \mathrm{B}^{8 \cdot 87}$. As. C.T.; 6.3v. 2a MIDATURE $200 \mathrm{v} .200 \mathrm{~mA}, 8 \cdot 3 \mathrm{v}$. 1a. $21 \times 21 \times 2 \mathrm{n}$
 HEATER TRANS.

$$
\begin{aligned}
& \text { GENERAL PORPOSE LOW VOLTAGE. Tapped Outputs } \\
& \text { at } 2 \text { mmp. } 8,5,8,8,1,10,12,15,18,84 \text { And } 80 \text {. } 82 \cdot 25
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } 2 \text { amp. } 8,4,5,6,8,8,10,12,15,18,24 \text { and } 80 \text {. } 28 \cdot 25 \\
& 1 \text { amp., } 8,8,10,18.18,18,20,24,30,86,40,48.60 \\
& 0
\end{aligned}
$$

$$
\text { lor } \text { or } 12 v .14 \text { itmp. } 11.50 ; 2 \text { amp } 8180 ; 4 \text { imp. } 12.50 \text {. }
$$

FOL, WAVE BRIDGE CHARGER RECTIFIERS:

MAIN
MAINS IROLATING TRAMSFORMER
Primary $0-110-240 \%$
Primary 0-110-240V. Secondary $0-240 V .3$ amps.
720 watts. Insulated terminale. Yarnieh 780 watts. Insulated terminaly. Varniah impregnated. FARGAIF OFFER fio, Carriage 50 D .
$1 \frac{\text { Inch DIAMETER WAVE-CEANGE } 8 \text { WITCFES } 250}{}$

"the instant" bulk tape ERASER \& HEAD DEMAGNETISER

MINIMUM POST AND PACKING 15p

ALL MODELS "BAEER SPEAKERS" In STOCK
Hi-Fi Enclosnre Mannal containing 20 pians, croscover
dete and enble tebles. 48p Pont Free.
BAKER $12 i n$. MAJOR $£ 9$
 $30-14.500$ c.p.s., 22in
donble cone, wooler and tweeter cone toratber with a BAEER cersmio marnet asiembly having ranas density of 14.000 $145,000 \mathrm{Marwelh}$. Bess elonance 40 c.p.s. Reted 20 watts. Voice coils 3 or 8 or 15 obms. Post Fre Module kit, 30-17,000 c.p.s with twe natructione.
fll. 50

KER "BIG-800ND" SPEAKERS		
12 inch 88	18 lnch 69	
25 watt	35 watt	50 watt
3 or 8 or 15 ohm	3 or 8 or 15 ohm	8 or 15 ohm

GOODMANS $6 \frac{1}{2}$ in. HI-FI WOOFER 8 ohm, 8 mitl. Large coramic marnet. 8pecial Csmbria cone surround. Prequeney
responge $30-12,000 \mathrm{cps}$. Ideal P.A. Colnmns. Hi-Fi Enclonures Syitems, etc.
$\ell 4$

ELAC CONE TWEETER
The moving coil disphragm dives a rood radiation pittern to the higher ireguencled end amooth extension of total reaponce
 or 1s ohm models. ≤ 1.90

Post 10p
SPEAKER COVERIMG MATERIALS. Samples Large 8.A.E.

 8 PECIAL OFFERI 80 ORS OHE

 3 ohm. yilin. 3 in. 5×3 in.
LOUDSPEAKERS P.M. 3 OHMS. $7 \times 1 \mathrm{in} .21 \cdot 25 ; 81 \ln .21-50$; $8 \times$ Bin. $21 \cdot 60 ; 8 \times 2$ in. 90 p 8 in. $21.76 ; 10 \times 6$ in. 1180 . RICEARD ALLAN TWIN CONE LOUDSPEAKERS. sin. dite. watt; 10in. dia. 5 watt: 1kin. die. 6 watt 3 or 8 or 15 obm modele $2 x .00$ each. Pont 160 . VALVE OOTPUT TRANS. 25p; MIKE TRANS. $80: 125 \mathrm{p}$. 8 WATT MULTI-RATIO, 3, 8 and 18 obma 80 p .

BAKER 100 WATT ALL PURPOSE TRANSISTOR
AMPLIFIER
4 Inputa speech and
mumic. Mixing facilities.

all loudspenkers. A.C. $200 / 250 V$. Guaranteed Details Basi Controle.

RARGAIN AB TUEER. Mediam Wavo.
£4.50
BARGAIN 4 CHAEREL TRAM8ISTOR MONO MIER Add monical hikhlights and mound effects to recordingi. Will mix Microphone, records, tape and taner
with maparate controls into singie output. ovolt. STEREO VERSION OF ABOVE E4-50
BARGAIK FM TUKER 88-108 Mc/a 8iz Transiator. 9 volt Printed Circnit. Callbratad ilide dial tanlug.
Walnut Cabinet. Sine $7 \times 5 \times \frac{12}{2} 50$ BAROAIM FY TUNER as above lesa cabinet 68.85

BARGAIM 3 WATT AMPLIFIER, 4 Trsnatitor $E 3.50$

COAEIAL PLUG 6D. PAMEL SOCXEFS 6D. LIAE 18P OUTLET BOXES, SURFACE OR PLOSH 95D. BALAKCED TWIK FEEDERS SD Fard. sit obmg. JACE BOCEET 8td. open-circait 14p, closed circuit 88p; ThCE PLOGS Std. Chrome 15p; 3.5mpo Chrome 14p. DII ACE PLUGS 8td. Chrome 15p; 3smm Chrome 14p. DI S-pin 18p; 5-pin 25p. DIM PLDGS 8-pin 18p; 5-pin 25 p. VALVE BOLDERS, 5d; CERAMIC 8p; CAKB bp.
E.M.I. TAPE MOTONS Pont 15 p.

 BALFOUR GRAM MOTORS 120 v . or 240 v . A.C. 1.200 r.b.m. 4 pole

CALLERS WELCOME
RADIO COMPONENT SPECIALISTS
CUSTOMERS FREE CAR PARK O.0en9-6 p.m. (Wednesdays -1 p.m., Saturdiays ${ }^{-1} 5$ p.m.

GEM
 PANEL MWIERS

USED EXTENSIVELY EY IMDUSTMY，GOVENNMENT DEPARTMENTE． DUCATIONAL AUTHONTEE，ETC．
Low cost
QUICK DELIVERY OVEN OME

＂SEW＂CLEAR PLASTIC METERS

Trye Tesar．8itm equare tronts．	
$50 \mu \mathrm{~A}$ ．．．．．．ss． 10	10V．D．C．．．起．00
10－0－80رA A－	20V．D．C．．．
$100 \mu \mathrm{~A}$ ．．．．	60 V. D．C．．． 800
100－0－100 14 A 撸－50	800 V ．D．C． 88.00
800 1 A ．．．	15V．A．C．．．
$1 \mathrm{~mA}$. ．	\＄00V．A．C．\％e8．10
ma ．．．．．．8000	8 Metar 1mA 18.10
	VU Meter ．${ }^{\text {des }}$
moma ．．．．ete 00	1 amp．A．C．${ }^{\text {a }}$ 8．00
100mA ．．．．	5 amp．A．C． 38.00
500 mA ．．． 88.00	10 amp A．C．${ }^{\text {atede0 }}$
1 amp．．．．． 800	20 mmp A．C．－ 98.00
1 amp．．．．． 0.00	30 mmp A．C．＊${ }^{\text {a }}$－ 000
$50 \mu \mathrm{~A}$ ．．．． 8 8． 87	10V．D．C．．．告－90
	20V．D．C．．．A8－20
$100 \mu \mathrm{~A}$ … 新75	50V．D．C．．．腹80
100－11－100 1 A 496	1s0V．D．C．．．se．s0
$800 \mu \mathrm{~A}$ ．．．． 28.65	300 V ．D．C．As－90
$500 \mu \mathrm{~A}$ … 等 40	15V．A．C．．．98－20
	60V．A．C．．．然 90
1ma ．．．．．．．${ }_{\text {ass }}^{\text {co }}$	160V．A．C．8． 80
$8 \mathrm{~mA} . . .$.	500V．A．C．As．80
10 mA ．．．．${ }^{\text {ase }}$	
50 ma ．．．．	8 Meter lmA sest
	VU Meter．． 88.87
$800 \mathrm{ma} . .$. ． 8 880	$50 \mathrm{~mA} \mathrm{A.C}. \mathrm{-}{ }_{\text {cte }}$
	$100 \mathrm{~mA} \mathrm{A.C}.{ }^{\text {ate }}$ 20
5 amp．．．．ser	
10 amp．．．．．A．s． 20	$600 \mathrm{~mA} \mathrm{A.C}$.
$15 \mathrm{smp} . .$.	1 mmp A．C．${ }^{\text {s }}$ s． 90
$30 \mathrm{mmp} . .$.	
20 amp．．． 18.80	10 arap．A．C．${ }^{\text {cte }}$ \％ 20
s0 amp．． 8.80	20 mpp．A．c．eq8 20
BV．D．C．．．As．80	

＊MOVING IRON－ ALLOTHERS MOVING COIL

 Please add postage
SEW EDUCATIONAL

 METERS Type ED．107，Sise ovarall 100 mm A new range of hith A new rage of hith thatromeatn Ideal for mohool experi－ menta and other bench applications．
3 mirtor
acale．The 5 mirtor ccale．The meter movement in eanly wccenibla demonitrate interna

$50 \mu 4$	85．00	20 V d．c．．．．． 44.40
$100 \mu \mathrm{~A}$		50 V d．c．．．．${ }^{\text {si }} 4$
1 mA	40	300 V d．c．．．．stit
00－0．50m		
$1-0.1 \mathrm{~mA}$ ．	4.40	Dand rance
1Ad．c．	40	$500 \mathrm{ma} / 5 \mathrm{~d}$ d．c． $14 \cdot 6$
sad．e．	84.40	5v／50V d．c．．．edecter
107		

1 mA

$0-0.50 \mu \mathrm{M}$
1Ad．e．
ore．

$600 \mu \mathrm{~A}$
$\operatorname{lm}_{1-0-1 m A} A$
5 mA ．
10 mA
50 mA

EDGWISE METERS
Tve FE．70． $17 / 8 \mathrm{Ba}$ ．$\times 1$ 15／8els．

MULTIMETERS for GVERY purpose？

B10：I IODEL 7 20，000 O．P．V． Or erlaed protwetion． $10 / 30 / 250 / 1000$ VAC． bo vA／250 mA． $20 \mathrm{~K} / 2 \mathrm{mes}$

MODEL PLAS $201 \mathrm{~L} /$ Volt D．C． 8 k ／Volt A．C． Mirnor scale． 6／8／12／50／120／000́v D．C． $8 / 50 / 120 / 600 \mathrm{~V}$ A．C． $50 / 600 \mathrm{ma} / 60 /$ $600 \mathrm{~mA} 10 / 100 \mathrm{I} /$ | $600 \mathrm{~mA} .10 / 100 \mathrm{~K} /$ |
| :--- |
| $1 \mathrm{Meg} / 10$ Mes |

 $-2010+4616.48 .971$ P $=121 \mathrm{D}$

MODTL S0es 57 Rangen， YODIL
Giant 5ib．Meter，Polarity Reverse 8 witch． $8 \mathrm{~K} / \mathrm{Volt}$ A $-125,25,1 \cdot 25, ~ 5,10,25$.
$50,125,250$,
$500,1,000 \mathrm{~V}$. A．C．Volta： $1-5,3,5,10,25$ ， $60,125,250.800,1,000 \mathrm{~V}$ D．C．Current：25，661A，25， $5,25,60,250$ 500 mA ．${ }^{5}, 10 \mathrm{amp}$ ．Realatence：2R．10K， +86 dB ． $18: 50$ ．P ．\＆P ．171D

ROUND SCALE TYPE PENCIL TESTER
coropletely portable，almple use pocket sired tenter Rangea $0 / 8 / 20 / 800 \mathrm{~V}$ AC
and DC at 2，000 o．p．7． Remetane ot $0,20 \mathrm{~K}$ ohma． ONLY $81 \cdot 97$ P．$\&$ P．13p

TEE YODEL 117 FET．THeceroint
．ET．FincyROMTO Batiory opersted， Battery operated，
11 mes
input． 26

 DC VOLTS 0 s 1200 V ．AC VOLT ROOV P－P，DCCUR Kealstance up to 2000M ohni．Dealbel -20 to +51 db Complete

Model S－IOOTR MULTIMETER

 TRANSISTOR TESTER 100,000 o．p．V．MIRROR SCALE OVERLOAD PROTECTION$0 / \cdot 12-6 / 3 / 12 / 30 / 120 / 600$ V DC． $0 / 8 / 80 / 120 / 600$ V．AC 0／12／600xA／12／300MA／12 Amp．DC． $0 / 10 K / 2 \mathrm{MEC/}$
100 BEC.
-20 to +50 db. 0.01 － 2 mid．Tranalator teater mearures Alpha， Bete and Ico．Complete with hattertes，inatruction and leade．E18．50．P／P 28 p

TE－20RF SIGNAL GENERATOR

 Aocurate wide range airnal generalor cover－ ing 120 ke／s－200 He／a on 6 bade．Directly callbrated Directly callbrated
variable R．P．at－ varinble R．P．at tenuator．Oper Brand bew with in P．\＆P． 87 ip ． 8．A．8．for detaile．

MODEL LT． 1011000 O．P．V 0／10／50／250／1000 V．D．C． 0／10／50／240／1000 V．A．C． A1．37．P．M．P． 15 p ．

TE TODEL MO． 180 Mrror acale．201／Volt D．C．
10k a Volt A．C． $30 / 60 / 300 /$ $600 / 3,000$ V．C．D．C． $6 / 120 /$ 1.200 V, A．C． Current 0－b0un／0－12／0 $300 \mathrm{~mA}, 0-60 \mathrm{R} / 0-6$ Meg Ω ． -20 to +68 dB ．NA．et？ P．\＆P． 15 p ．

LODEL 500 50，000 O．P． with overlaad protaction mirror seake 0／．5／8．5／10／25 100／250／500／1，000 V．D．C． $0 / 2 \cdot 5 / 10 / 25 / 100 / 250 / 500 /$ 1.000 V ．A．C． $0 / 50 \mathrm{u} / 5 / 50 /$
 e／60／X／6 Mes．Poot pald．

THE LAE TEXER 100,000 O．P．V． 61 ln ．
Beaje Buazer ghort Clr． cult Check．解asiltivity： 100，000 O．P．V．D．C．5K $\cdot 5,2 \cdot 5,10,80,260,1,000$ $50,250,500,1,000 \mathrm{~V}$ ． D．C．Current： $10,100 \mu \mathrm{~A}$,
$10.100,500 \mathrm{~mA}, 2.5,10$ anp．Resistance： $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{MEG}$ ． $1 \mathbf{1 0} 0 \mathrm{MEO} \Omega$ ．Decibels；-10 to +49 db ．Plet

RUSSIAN 22 RAMGE MULTIMETER

 Model U437 10,000 o．p．v otriment manufactured in U．B．B．R．to the highent rtandards．Ranges： $2 \cdot 5 / 10 /$ $50 / 250 / 600 / 1000 \mathrm{v}$ D．C． $2 \cdot 5 /$ 10／50／250／500／1000 DC Current $100=A / 1 / 10 /$ $100 \mathrm{~mA} / 1 \mathrm{~A}$ ，Resintance 300 ohmi／s／80／s00K／3M Ω Complete with batteries， sturds steel carrying cea OUR PRICE $15 \cdot 07$ P，\＆ F

TO． 3 PORTABLE OSCILLOSCOPE 3th．tube．Y mop．Senaitiv．
 x amp．enativity 0.6 y ． P－p／CY．Bandwidth 1.6 epe －8004CHz．Input imp． 2 nrea $\Omega 20 \mathrm{pF}$ ．Tlme bses．
5 ranges $10 \mathrm{cpe}-800 \mathrm{KHz}$. 8ynchroalzation． 10 cp KHz． ternal．Illuminated moale $140 \times 216 \times 880$ m． braad new wh handbook． 540 00．Carr．50p

BOIETWEL

VOLTM DTER
YT． 100
Can be panel or
Basic meter mea．

surea 1 Folt D．C． but can be uned to maseurt and poll，carrent and ohme with optional plog in cards．Specificestion：Acou－ Number of dicita： 3 plos fourth overrange dight．Overrenge： 100%（up to $1-999$ ）．Inpel Impedince： 1000 Meg ohm．Mearuring cycle： 1 per econd．Adjutment：Artomalic sere Ing，full acade siffortment againat an foternal reference vollare．Overioad： 20 100v．D．C． Inpat：Fully toating（8 poley）．Ioput powar：
 BRAND NBW AND FULLY GUARAT： TBED AT APPROX．HALY PRICE． 410 ${ }^{2} 7$ t．Carr． 50 p ．

G．W．SMITH
a CO（RADIO）LTD．
Also see next two pages

micon RECTITIERE
IIATURA WIRE TIDED PLABTIC
azRES yartes

100PIV	8 A	104	$\begin{gathered} 17.8 \mathrm{~A} \\ 500 \end{gathered}$	$35 \mathrm{~A}$
200 PIV	28	600	56	11-48
400 Pl V	80	65p	62	81.77
600 PIV	80p	600	72p	-18
800PIV	, 26p	700	870	4947
1000PIV	400	85	* 10	*
$50+$ leas	5\%	+ 1	20\%	

$5 \cdot 3.33 \mathrm{~V}$	$2.4-200$	$50-100 \mathrm{~V}$
100 each	250 each	400 each

$$
\text { Ansigmon Discourts:- } 22+10 \%
$$

TANBIEmon DIScoUnTs:- $22+10 \%$
$25+16 \%: 100+20 \%$ any one type. Pont.
$25+16 \%: 100+20 \%$ sny one type.
sfe on all Bemt Conductore 7p extre.

YALYES

012
0.22

RECORD DECKS

 BRCABNO 4.97 C120† ．．．．tise MP60． 810.
810.
810. 10．．． 0．00 1 P60 TPD1 12.19 MP60／TPDI／ 1860 TPD2 810 TPD1 18.40 10 TPD1 218.20 10 Pactage es 85 ET 70 ． ET70／
0800° HT 70 Pacis $\quad \mathbf{8 1 7 . 2 5}$

GAEBARD

3028 T／C
$40 \mathrm{~B}^{\circ}$
BP2s III
SL6BB．．． 10. AP78 \ldots ．．．． 18.85 8LOBB …

$$
\uparrow \text { Mono - Btereo Cartridg }
$$

All other models lem Cartipide Certiage sop extre any model．

emeozd deck pactagrs

 Docit supplied Fithartridge resdy
wired in tesk ven－
Gover． $2025 T \mathrm{C} / 9 \mathrm{TAECD}$
Cerrard 8P25 III／9TAHCD Garrard 8 P25 $111 / G 80$ Gerrard 8P25 III／M700 Gartard EP25 III／M44－7 AP25 111／O800（PLA on PaC） Garrard AP76／G800 Gerrard AP76／M75－6 Garraru AP76／M65E Garrard AP76／175EJ
R8R McDonald MP60／G800 B8R McDoneld MPBOM80 B8R MoDonald MPGO／M44．E Goldring GL72／G800 Goldring GL75／0800 Coldring GL7b／G800E Carriag 80 p any item．

TRANSISTORISED L．C．R．A．C

112.05

118.95 18.60 19.60 8． 10.75
10.76 ㄷ․․

为蕅 | 180.75 |
| :--- |
| 120.25 |
| 15 |

4.25

$0 \cdot 75$ In

18.95

80.65
$\mathbf{4} 1.50$

$41 . \%$

MEASURING BRIDGE

 A new portable bridge oftering ez： cellent range and comb．Ranges：R． conk．Ranges：R． 6 Ranges $\pm 1 \%$ ENRY8 6 Rangenz $-\%$ C． $10 \mathrm{pF} \pm 1110 \mathrm{mFd}$ ． Eapres $\pm 2 \%$ ．TURNS RATIO $1: 1 / 1000-$ $1: 11100$ ． 6 Ranges $\pm 1 \%$ ．Bridge voltage at 1,000 epa．Operated trom 9 volta， $100 \mu \mathrm{~A}$ ．

LATEST CATALOGUE

 Our 7th edition givee full detalia of comprehenaive range of H1－FI EQUIP． MENT．COMPONENTE，TEBT EQUIP－ MENT．FREE DIECOUNT COUPONR value bop 320 paree，
fully illus－ trated and detailing bhounsind of SEND NOW
ONLY 40 p
P\＆P
10p

EXTWOOD czeor comuunication RECHIVER

Solld state．Coverage on 5 bands 200－420 $\mathbf{K E s}$ and 65 to 30 MEs．Illuminated allde rule dial．Bandspread Aerial tuning．BFO． AVC．ANL．＇S＇meter．$A M / C W / B S$ B．Inte．
 $220 / 240 \mathrm{FAC}$ or 12 v DC． 81 se 825 268 又 160 mm ．Complete with matroctions and circuit．
s88．60．Cart． 80 p

Probebly the mont popular budeet Tuner Probsbly the woit popular budaet Twner／
Amp．and now ofiered at aldiculous low price． 5 watte r ．m．s．per channal．Tape／Cer phono inputs．APC／Built－in MPX．Liet 651 ．

FM TUNER TRANBIBTOR
HIGF QUALTTY
TUNEB BIZE TUNER BIZE
ONLY $8 \times 4 \times 210$. ONLY $6 \times 4 \times 2$ it． Double tuned dia． erimanetor．Ample outpars to toed moat amplifiern．Operates on 9 V battery．Coverage thite veloe for moner 8tereo maltiplez adaptors i4．07t．

AMPLIFIE共， Exceptiotal
budgat price oudther，price silt－ con tranojetor． nut case．B Witch－ ed input relector，
enparate balance，volume，treble，beas con．

WHARTEDALE Tm－ RAMOE EI－FI DIITE As need in Forld famous －ytiem． 5° dit．Impedance $4 / 8$ ohms．Hith gux cern－ mic inagnet． 20 wathe rme． ICA． 20 AUYOMATIC VOLTAGF
Inpot 88－125 VAC or 178． govac．Outpit l20VAC or 240 VAC ． 200 VA rating． 11－87．Carr．E0p．

SINCLAIR EQUIPMENT

Prolect Preckage

2×230 ampllber，steneo 60 preemp．PZ5 power mupply．t15－05 Carr．37tp．Or whb PZ6 power supply 18 ，00 Cerr． $871 \mathrm{p}, 2$ I 250
amplifer，itereo 60 pre－amp，PZ8 power
 Add to any of the sbeve 84.45 for active fliter unit and s18－80 for pair of Q16 speakers． Project 60 F：Tuner 13575 ．Carr．371p． 2000 Amp inl 55 Carr． 37 p ．； 8000 298．60 Carr， 87 p. ：Neoteric Amp A48－0 Car． 37 tp $\mathrm{ICl} 2 \mathrm{at}-80$ Poat 10 p HEW PROJFCT 605 － $800 \cdot 97$ ，Cart． $97 p$

20V／ichov BlMTH：AYMCEROMOU客 GRARED yoT0Rs

Bullt in gearboz．All brand

 new．and boxed． 60 EPM CW－ 30 RPM CW；2R；HR ACW；2R／ER CW；／BRDAYCW； 10 RPM $1 \mathrm{CW}:$ 20R／ER ACW 60．anch Pont 12p．

EDH 87 HI－FI PEOME9

 Inpot 8－16 Ω Frequencs $20-18,000 \mathrm{~Hz}$ itereo cr mono switch，eeparate volume controle eact earplece，padded heed． bend．33．27．p／p 20D

HELICAL POTENTIOMETERS ITT MCPMIS 10 TURN 2t WATTS Avalisble 500 ohm，IK， $5 X \mathrm{ohm}$ ． 81.25 eacl P． 1 P． 15 p ．

MW1－6 60mm equare sich MW1－8 Bomm qumara

SPECIAL OFFER！

 SINCLAIR PROJECT 6 STEREO FM TUNER
W4

The firat tuner in the world to ute the phaee lock loop princlple－as ueed for recelving signals from apace cralt because of tie vath improved sisua io noise rallo．Frovide Tuning range 87.5 to 108 MHz ．Automatif tereo indicator．Benditivity： 2 nV ．APC range $\pm 200 \mathrm{KHz}$ ．Sirmal to moleo ratio 65dB．Ontput voltage $2 \times 150 \mathrm{mV}$ ．Opar ating voltage $25-30 \mathrm{~V}$ ．L Bize： $93 \times 40 \times$ 207 mm ．REC．L18\％F． 10 E 25.

Onrepeateble offer－bwy now and suve ower to

BPEIA REGULATED POWER SUPFL Solid atate．Variable output 0－24v DC up to amp．Dia age and curren $r=-\infty \quad \begin{aligned} & \text { age and current } \\ & \text { Input } 320 / 240 v A C \\ & \text { Sinc } 185 \times 85 \times\end{aligned}$
 PS．1000B REGULATED POWER GUPPLI Bolld state，Output 0． $\sqrt{\infty-\infty}+$ amps．Meter to monlt or current．Input 220／240\％

LAPATETTE HA－800 SOLDD ETATL RECETVER

Ganaral covarase
$150-400 \mathrm{k} / \mathrm{s}, ~$
50

012R－0

4 Bands coverlut B50kc／e－30me／b．B．F．O． Buithla speater $220 / 240 \%$ A C Brand ne

AUTO TRANSFORMERS $0116 / 2 s 0 \mathrm{~V}$ ．Slep up or step down．Full ihrouded．

	4．10	P．A P．180
180 W．	28．70	P．．P．18p
300 w．	33.60	P．P．23p
800 W ．	45．95	P．A P．33p
1009 W．	7．80	P．${ }^{\text {P }}$ ．${ }^{38}$
1500 W ．	110.80	P．${ }^{\text {P P P }}$ 431
2250 W．	417.85	P．${ }^{\text {a }}$ ．80p
5000 W．	480．00	P．${ }^{\text {1 P }}$ P． 1

POWER RHEOSTATS

Eigh quality ceramic construction．Windings embedded in visreou ename．Heary duty bruah wiper，Contincous rating wide range ES WATT．10／25／50／100／250／500／1000／1800／2000 or 5000 ohma， 80 p, P．\＆P． 7 50 WATY． $10 / 25 / 50 / 100 / 550 / 500 / 1000 / 2500$ or $3000 \mathrm{ohma} 21 \cdot 15 \mathrm{P}$ ．\＆P． 7 \＆D．

＂YAMABISHI＂VARIABLE VOLTAGE TRANSFORMERS

Everyday Electronics Classified Advertisements

RATES: 9p per word (minimum 12 words). Box No. 10p. extra. Semi-dispiay- $\mathbf{£ 6} \mathbf{0 0}$ per single coiumn inch. Advertisements must be prepaid and addressed to Ciassified Advertisements Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fieetway House, Farringdon Street, London EC\&A 4AD.

SERVICE SHEETS

SERVICE SHEETS (1925-1972) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8,000 models available. Catalogue 13p. Please send S.A.E. with all orders/ enquiries. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex. Tel: Hastings 29066.

RECEIVERS and COMPONENTS

COMPONENT CATALOGUE AND
 DISCOUNT VOUCHERS
 25p POST FREE (UK)

W.E.C. LTD

HIGH STREET, RIPLEY, SURREY

SOUND SUPPLIES

P.A. EOUIPMENT, Marshall imps.
and suitars, etc TOA and Essionstruments accessories 'Reslo. mics atc Eagle amps and COMPONENT5. Resistors, capacitors, plugs, sockets, cables, audio leads, semiconductors, vaives, vero board, etc., for the construetor. Power packs and car droppers for the cassette recorder or radio.
S.A.E. for lise and enquiries. P.A. lise 15p Tel. $01-5082715$ Closed all day Thur

TRANSISTORS: mint, branded top grade AD161/162 c.pr.; 60p; BC107B 12p; BC169C, 10p; 2N2926G, 12p; 2N3702 10p; 2N3704, 10p. Diodes: OA90, 6p IN4002, 5 p . Mail order only, UK post age 5p. AMATRONIX LTD., 396 Selsdon Rd., South Croydon, Surrey, CR2 ODE.

C. F. COLE
 153 Western St., Swansea SA1 3JY
 RS (Radiospares) COMPONENTS
 Quotation by return

COMPUTER PANELS 5BC108, dlodes, 4.50 p post 10p. PANELS WITH SILICON AND' GERM TRANS, at least 50 . B-EI CA poit $15 p$. UNIT WITH 4-LA2 POT CORES CAPS Sep post 15p. ICs 7400 SERIES ON PANEL(S) $10-75 p$ post $10 p$. FALLOUTS 5-13. ORP12 on panel er equipt. 3p cp . WIRE ENDED NEONS $10-45 \mathrm{p}, 20-75 \mathrm{p}$ pont ip. SENO LARGE S.A.E, FOR LIST OF TLB ASSORTE

75 HAVFIELO J.W.EAD RADIO MAIL OROER ONLY

HEW MODEL V.H.F. KIT Mk 2
Our latest kit. Improved deslgn and performance plus ortra amplifier stege, recelves aircraft, IIttle set will glve you endiese houre' of pleasure and can be built in one vening. Powered by - voit battery, complete with easy to follow instruction and bullt in lack socket for use with earphones or ampilher

Onl) £3.5e + p. \& p. 10p U.K. only
lilustrated calalogue of seiected kite and com ponents. 45p P. \& P. fret.

Galleon Trading Co., Dept E.E.
2 surfit Way.
Corringham
tenlord-le-Hope, Eseex

EXPRESS COMPONENTS

17 Albert Square, Stratiord London E15 1HJ
ELECTRONIC KITS FOR

E.E. PROJECTS

Have you waited weeks (or months) in the past for your electronic components to arrive??? Well you won't have to any more-not if you order from us!!! It is our intention to satisfy our customers -quickly and completely!!! This momth's bargains are:-
HORSES FOR COURSES £2.00 WASH/WIPE CONTROLLER £2.10 SIGNAL INJECTOR ELECTRONOME $\mathbf{8 0 . 7 5}$ SHAVERINVERTER (20 mat INFRARED BURGLAR ALARM

These kits comprise all electronic components to complete the project.
OTHER COMPOMENTS Tranniatora: AD142 (oimliar characteriatics to OC28. OC28, OC2
 over 5 a contacts. E1-W each; Waier switchas: each; Microawitch: S.P.C.O...15p each; Poten. tlometers: $25 \mathrm{k} \Omega \log . .12 \mathrm{p}$ each, $250 \mathrm{k} \Omega \mathrm{log}$ with D.P.D.T. awtth,..24p each; Mains neons (with reslafor). . 24p each.

Ordere over 50p post free, others add 5p. MAIL ORDER ONLY

EDUCATIONAL

TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566), Inter text House, London, SW8 4 UJ.
MEN: You can earn $£ 50$ p.w. Learn computer operating. Send for FREE tors Training Centre, G22 Oxford House, 9-15 Oxford Street, London, W.1.

FREE

TO ENGINEERS Whatever your age or experience you nust read New Opportunities. It des
 cribes the easiest way to pass A.M.S.E. A.M.I.M.I., City \& Guilds (all branches), Gen Cert., etc., and gives details of courses in all branches of engineering Mechanics, Flectrical, Civil, Auto, Aero, Radin, TV, Building, etc. You must read this book.

Send for your copy today-FRFE!
B.I.E.T. B32: Aldermaston Court, Reading, RG74PF
Accredited by the Council for the
Arcreditation of Correspondence Culleges
BRITISH INSTITUIE OF ENGINEERING TECHNOLOGY

CASSETTES

TOP QUALITY, low noise audio mag netics cassettes with fitted screws, in library case, C60 30p, C90 40p, C120 50 p P\&P 15p. Ingo Ltd., 72 West End Lane London, NW6.

MISCELLANEOUS

RECORD TV SOUND using our loud. speaker isolating transformer. Provides safe connection to recorder. Instrictions included. \&l post free. CROW'BOROUGH ELE CTTRONICS CROW'BOROUGH ELE CTTRONICS
(E.E.). Eridge Road, Crowborough,
Sussex.

CHROMASONIC ELECTRONICS is well and living at 56 Fortis Green well and living at 56 Fortis Green
Road, London N 10 3HN. 40 page illusRoad, London N 103 HN . 40 page
trated catalogue 20 p post free.
"SHORTWAVE VOICES OF THE WORLD," $£ 1 \cdot 55$. An exceptional book. "World Radio TV Handbook," December 1971, $£ 2 \cdot 80$. "How to Listen to the World," 1971, £1-35. Under $£ 2$, postage 10p. Deliveries first class mail, ask for price list. CWO or send no moneyCOD 25p. DAVID McGARVA, Box 114a, Edinburgh EHI 1HP.

-MUSICAL MIRACLES

KITS to bulld quallity accessorles:-
WAA-WAA all parts, electronic \& mech. $\mathbf{E 2}$ - 83 FUZZORAMA quality fuzz box $£ 4.75$ BASS PEDAL 18^{\prime} and 8^{\prime} tones ess BUILD A SYNTHESISER OR AUTO RHYTHM from Dewtron prolessional modules Cat. ${ }^{15}$ p from D.E.W. Litd. 254 Ringwood Road, Ferndown, Dorset Bíhzs BAR

BEOLDHERS

You can noon be designing your own clrvita with
 ELECTROLERN kit.
Unique circuit bard eilminateq moldering. Completely melf containet. no sulditional componenta
or texthookg required.

KIT 1

Hasic electricity; diodes; transintora; switching and computer circulas introduce, through 26 graded experiments.
59.76 including a M'Ltirange testmeter.

IT 2

Extenda Kit ito amplifier, mocillator and radio clrcuita.
47.76 Including a BigNaL GENERATOR. Poat and package esp per kit. ELECTROLERM
8 hillimabory road, rastleigh, hants.
money retunded if kits are returned within 7 dase.

OMNI-DETECTORS

(Peatured * TV \star Radio 直 Rational Prete) Aochat art of Dowelng in lodern Guise. Brperiance of the electro- Itarnetic spectram. A LABORATORY III A gillale PaCR. If you ojjoy Treagre Eantias. use OMEI-DETECTORS to:-

* Locete AMY buried cobstance, AYI depth.
* Save bours of frailless searching-MAP-DOWSTM pimpolate march area belore jou leate home.
* Analyse ground under your foet without ovenseratching be surlace
Lumitlose other nsas involving health, food, eex, money. OU WILL BE FABCINATED
fand only $22.80+15 p p_{2} g$ for unique pack of 4 dowdins inatroments (non-electronic) and explidt so-pare manad 27 Latham Road. Twickenham. Middr. TWI IBI.

12 VOLT
 FLUORESCENT LIGHTS
 ```(asillustrated)```

 Beat power cuts, be Independent, Ideal for Caravans. Tent. Emergency Lighting, etc Works anywhere where 12 V is available Guaranteed for six months, READY TO USE ą:-
 12ins 8 watt 21ins 13 watt $£ 4.60$ post paid
 SALOP ELECTRONICS
 23 Wylo Cop
 Shrewibury
 Callers
 Enquiries for lists or
 Enquiries Loree S.A.E

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

because this GPO approved transmitter/ recelver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means. Actually It's TWO KITS IN ONE because you get the printed-circuit boards and components for both the transmitter AND recelver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely fiexible design with quite an AMAZING RANGE-has obvious applications for SCHOOL PROJECTS, LANGUAGE, LABORATORIES. SCOUT CAMPS, etc.

GET YOURSI SEND £5•50 NOW

> S.A.E. for details

TO: BOFFIN PROJECTS,
DEPT. KEE
4 CUNLIFFE ROAD.
STONELEIGH, EWELL, SURREY

Please mention
 EVERYDAY ELECTRONICS

when replying to Advertising

- IT COSTS NO MORE

To use gusrantesed professional components. Don't rlak fallure in your building prolects by using suspect junk-box ltema. We are of post, the entlre rango distrlbuted by R. E. Components Lid.

$\underbrace{1}_{\square}$

Printed Circuit type CAP ACITORS, electrolytle, low volfage, small size. In the
following uF/V. $0.47 / 63$, $\begin{array}{lll}\text { lollowing } \mu \text { F/V, } & 0.47 / 63, \\ 1 / 63, & 4.7 / 40, & 10 / 63, \\ 22 / 40,\end{array}$ 1/63/i0, at 7p eseh. $47 / 40$ at
100/40, 100 each. 100/63, $220 / 40$ $470 / 18$ at i3p each. $1000 / 16$ at 18p each.
Phenollc Realn Boards, 172 x 133 x 1.57 mm , punched 6.3 mm grtd, is used for Demo Deck, at 22p eneh. per pach of 144.

Miniature Moulded Bridge RECTIFIERS for printed clrcuit mounting. REC 60,
800 volts 0.0 amp, sitp each. 800 volts, 0.9 amp, 3 epeach.
REC 65,800 volts, 1.3 amps , REC 65,800 volts, $1 \cdot 3$ amps
45p each.
All of the above and many, many other high grade componente, are shown in
our CATALOGUE. Price 2sp by our CATALOG relurn of post
All prices POST FREE In U.K. Mali Order Only From-

NEW
 15 watt Hi Fi AMPLIFIERS

Frequency response 15 to 19000 cs . Signal HELECTRONICS
105. GRANGE ROAD, LONDON S.E. 25

BODINE TYPE N.C.I. GEARED MOTOR

$\begin{array}{cc}\text { (Type 1) }{ }^{71} \text { r.p.m. } \\ \text { Torque } & \text { inch. }\end{array}$
 20 cycle, 0.38 amp (Type 2) inch. Pim. Toraiblo. $1 / 60 \mathrm{kh}$ heph, 50 eycle. 0.28 amp. As new" condition. input voleze of motor formar for $230 / 240 \mathrm{~V}$ e.c. input. Price, either type 03.50 plui ${ }^{35} \mathrm{p}^{2} \mathrm{P}^{\mathrm{P}} \mathrm{E}^{8}$. P. or less trangformar 0.25 plus 27 D P. \& ${ }^{\text {P }}$. .
CONSTMNT SPEED PRECI
SION MADE GO YOL
GOVERNED MOTOR
Saven pole armature ballrace bear
ing. 2,750 r.p.m. Length 2 th, Di H: Shaft length Shaft dia, 5164 . No. load 40 ma. Normal load 350
mA . Price $4.25 \mathrm{P}, \mathrm{B}$ P. 10 p . $230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS
 Manufactured by either Smish. Buils-in gearbox. SR.P.M. A/cw 2 R.P.H. A/cw 6 R.P.H. ew cw = Clockwise $\begin{array}{ll}2 \text { R.P.H. } \mathrm{Cw} & 20 \text { R.P.H. } \mathrm{cw} \\ 30 \text { R.P.H. } \mathrm{cw}\end{array}$ fraction of makers' price. Allat 75 p incl. P. AP. "HONEYWELL" EEVER

OPERATED MICRO SWITCH

 15 mps. 250 volt NEW in maker's. for $\& 1 \cdot 90$ ind. $P \& P$ PROGRAMME

240v A.C. 5 r p.m motor. 2 models available with is cams. Each cam operating 10 micro switch. Camp core individually variable, allowing innumerable combinations. Idealty suited for machinery control. automation, etc. Also in the field of entartainment, for chaser lights, animated displays,
otc. NEW 10 cam 4.75 p. \& p. 250 . 15 cam 45.75 p. ep. 25 p.
Simple 9 cam programme 9×5 amp $I M$. 18 Mieroswitches driven by $115 / 230 \mathrm{~V}$ A.C. 15 P.p.m. motor. Solid fibre cams adjustable.
Price 3.50 p. \& p. $25 p$.

electronic ORGAN KIT

Esay to build. Solid Seate. Two full octave (leas sharps and flats). Fitted hardwood case. Powered by two of parss includines. speaker, etc.io of parss includine speaker, stc.
together with full instructions and 10
tunes. Price $\$ 300$. P. P. 22p. So in I ELECTAONIC PROJECT 50 easy to build Projects. No soldering, no special tools required. The kit includes Speaker. Mezer, Relay.
Transformer, pius a host of other componencs and a 56 -page instrucsion leafiti. Some examples of the 50 possible Projectz ara: Seund Leval Meter ${ }^{2}$ Transistor Radio. Amp
etc. Price E7.75. P. A. 30p.

CRYSTAL RADIO KIT
Complate set of parts, includine: Crystal Diode, Ferrite Aerial, Drilled Chassis, and Parsonal Ear Piece. No soldering, easy to build, full step step instruction -1.75 inc. post.

$$
\begin{aligned}
& \text { VENNER Electric Time Switch } \\
& \text { 20012 }
\end{aligned}
$$

$200 / 250 \mathrm{~V}$ Ex. GPO. Tested. Manually set 2 on, 2 of avary 24 h . Override
 20 A ©j-75. 30A 13.6 . P. \& P. 20p. dusk. OFF dawn. Price as above. PARVALUX TYPE SDZ. $200 / 250$ VOLT A.C. D.C. HIGH SPEED MQTOR Speed $9,000 \quad$ r.p.m.
opprox. or $3,200 \mathrm{r.p} \mathrm{~m}$ used with buils in eovernor or variable speed ovar a wide range if used in conjunction with our Dimmer Switch, illustrated

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/140V e.c. 50/60 OUTPUT VARIABLE 0.260 V from $\frac{1}{1}$ to 50 amp stock. SHROUDED TYPE
amp, 71.09 2.5 amp, 40.05
$10 \mathrm{mp}, \mathrm{amp}, 122.50 \quad 20$ a mp. 40.00

OPEN TYPE (Panel Mounting) tamp. ©4.78.
1 amp. 67.00 2t amp. © ©0S. All eypes carriage paid.

Superior Quality Precision Made

New Power rheostats

100 WATT. 1 ohm, 10A: 5 ohm, 4.7A:
10 ohm, $3 A_{i} 25$ ohm, $2 A: 50$ ohm, i.4A:

$045 \mathrm{~A}: \mathrm{k} \Omega, 200 \mathrm{~mA}: 1.5 \mathrm{kR}, 230 \mathrm{~mA}: 2.5 \mathrm{kS}, 0 \cdot 2 \mathrm{~A}: 35 \mathrm{k}$,

 ts op each. P. © P. 7\&p.

STROBE! STROBE! STROBE!

Build Strobe Unit, using the latest type Xenon white light flash tube. Solid seate timing and triggering circuit. 230/250V a.c. oparation.
Speed adiustabla I to 36 Flash per gee. All electronic components including Veroboard S.C.R. Unijunction NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratoriss, atc. Roller tin printed sircuit. New triger coll, plastic thyristor ppeed adjustable 1-00 f.p.s. Price ©10.50. P. a P. 50p. HY-LYGMT STROBE MK III
Dasigned and produced for use in large halls and utilises silica tube printed eircuit. Speed adjuseable 0-30 f.p.s. Light ousput approx. jouler ing 12.0 . . . A P. 50 . MetAl CAse Including reflector, 4.00 P. \& P. 45 p Post paid wish kit.
THE 'SUPER' HY-LYGHT KIT
Approx. four times the light output of our wall proven My-lyght erobe. Incorporating:

- Reactor control circuie producingan intense white lishe. Never before Strobe Kit with so HIGH an output at so LOW a price. ONLY 20 plus 75p P. \& P.
ATTRACTIVE, ROBUST, FULLY VENTILATED METAL CASE specially designed for the Super Hy-Lysht Kit including raflector 87.00 P. \& P. 45p. Hy-inch POLISHED RERECTOK
Ideally suited for above Strobe kits. Price 53 p, P. \& P. 13p or pose paid with kies.
6 in colour wheel as used for ditico lightine affeces ate. es. 75 incl. P. \& P. can be operated from our 1 rpm synchronous motor'75p incl. P. P.
RELAYS Now SiEMENS PLESSEY, orc. Miniourno

1	2	3	4	1	2	3	4
52	3-6	2 co	63\%*	700	15-35	$2 \mathrm{c} / \mathrm{HD}$	$73{ }^{\circ}$
280	9-12	2 clo	73 p *	700	16-24	6 M	63p*
410	10-18	$4 \mathrm{c} / \mathrm{O}$	$73{ }^{\text {c }}$	1,250	24-36	$4 \mathrm{c} / \mathrm{o}$	63p*
700	16-24	4M 2B	$43{ }^{*}$	2,500	36-45	6 M	63p*
700	16-24	4 clo	$7{ }^{\text {7 }}$	2,400	30-48	$4 \mathrm{c} / \mathrm{o}$	50p.
700	12-24	$2 \mathrm{c} / \mathrm{o}$	$63 p *$	9.000	40-70	2 co	50
700	$6-12$	1 clo HD	50p ${ }^{\circ}$	15k	-5-110	6 M	50p*
700	22-30	$6 \mathrm{c} / 0$	75p				

(1) Coil ohms; (2) Working d.c. voles; (3) Contract:; (4) Price Ho) Reavy Duty. All Post Paid. Incl
12 VOLT D.C. RELAY 140 OHM COIL
Three sets clo contacss rated at 5 amps. 7ep incl. P. A P. (Similar to illustration below.)
'DIAMOND H' 230 VOLT A.C. RELAYS E"B Three sets c/o contacts razed at 5 ampe.
Price: $50 p$ P \& P 10 p . (100 lots 40.00 incl.
Price: $50 p$ P \& P $10 p_{1}$, (100 lots 40.00 incl.
PA P.) (UNUSEO)
P \& P.) (UNUSED)
"KEY SWITCH" 230 YOLT A.C. RELAYS

MINIAT URE LATCHING RELAY
Manufactured by Clare-Ellibet Led. (Type F). 2 clo permanent latching in either direction. Coil 1150 ohm, $15-30$ Volt D.C. Size If high i' wide. I' ehick. Complate with $\mathbf{3}^{\circ}$ Iasds. Now 73p.
incl. P. \& P. incl. P. \& ${ }^{\text {\& }}$ P.

2: MICRO SWITCH-very apecial offor 5 amp c/o contacts. Fires with removable inc. pose. (Min. order 20). 600 WATT DIMMEN SWITCH - - Easily fitted. Fully guaranteed by makers. Will control up to 600 W of all lights except fluorascent at mins voleage. Complet with simple instructions.
is incl. P. 8 P.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space
Dope. E.E. 57 Bridgman Road, Chiswick, London, W4 5BE
Phone 01-995 1560 SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sat. - LITTLE NEWPORT ST. LOMOON WCAH 7J O1-4370576

Why buy aleornativen when you can buy the tenuine erticle from uisa
competitive pricen from stock. BANDEDFKOMTEXAS I.TTTFAIR compet

Abstract

Type 11 12/24 $2 \mathrm{~B} / 00$

BN7 BN7 BN74 SN7 BN7 BN7 GN7 8N7 gN7 8N7 gN74 8N7417 GN7420 QN7422 GN7422 GNT42 GN7425 gN74 BN74 8N743 8N743日N74 $\begin{array}{llll} & 0.70 & 0.89 & 0.85 \\ \text { ON7437 } & 0.65 & 0.61 & 0.44 \\ \text { N7438 } & 0.60 & 0.60\end{array}$ $\begin{array}{llll}\text { SN7438 } & 0.65 & 0.60 & 0.80 \\ \text { N7440 } & 0.50 & 0.20 & 0.80\end{array}$ $\begin{array}{llll}1 \times 740 & 0.20 & 0.18 & 0.16\end{array}$ $\begin{array}{lllll}\text { GN7442 } & 0.75 & 0.72 & 0.70 \\ 0.70\end{array}$ $\begin{array}{lllll}\text { SN743 } & 1.00 & 0.95 & 0.00\end{array}$ 9N7445 $\quad 2.001 .761 .80$ SN7446 $\quad 2.001 .761 .80$ $\begin{array}{lllll}\text { BN7447 } & 1.75 & 1.60 & 1.48 \\ 8 N 7448 & 1.75 & 1.60 & 1.45\end{array}$ PRICES OF 7400 SERIES ARE CALCULATED ON THE TOTAL NUMBER LARGER TEXAS HAND HIGH POWE

A SELECTION OF SEMI-CONDUCTORS FROM STOCK

SPECIAL OFFERS SEMI-CONDUCTORS

Brye $1000 \mathrm{MCs}{ }^{59 \mathrm{pl} 2 \mathrm{M} 2926} \quad 10 \mathrm{p}$ | 1000 MCS | All Colours |
| :---: | :---: |
| $25+20$ | $25+8 p$ |
| $100+17$ | $100+8 p$ |
| $500+15$ | $500+6 p$ |

Butld yourselfaTRANSETOR RADIO

NEW! ROAMER 10 WITH VHF INCLUDING AIRCRAFT

10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MW1, MW2, LW, SW1, SW2, SW3, TRAWLER BAND, VHF AND LOCAL STATIONS AND AIRCRAFT BAND Bullt in Feritite Rod Aerial for MW/LW. Retractable, chrome plated Telescoplc Aerisl, for peak ahort wave and VHF 1iseening. Pueh Pull output uning 600 mo Transintors. 10 Transistors plus 3 Record Sockets. Switched Earpiece socket complete \#itb Eerplece, 10 Transistors plus 3 Diodes. Fine tone moving coll apeaker. Air Apaced gaiged Tuning Cave in black with allver blockling. Size $9^{\circ} \times 7^{*} \times 4^{\circ}$. Eisy to follow lastructions and diagranus. Parta price list and easy bulld plans 300 (FREE with parte).

Total building cost £8.50
P. P. \& Ins. sop (Overses P. \& P. © 1)

\square
 ROAMER (1) © © 8 ElGHT Mk I
 NOW WITH VARIABLE

 TONE CONTROL7 Tunable Wavebands: MWl, MW2, LW, BW1, 8W2 BW3 and Trawler Band. Built in Ferrite Rod Aeriad for MW and LW. Retractable chrome plated Tele6 coplc werial for Short Waves. Push pull output using Belectivity ar ftch. Sw fiched earylece nocket complate with earpiece. 8 transiators plus 3 diodea. Fine tone moving coll speaker. Air spaced ganged tuning comdenmer. Volume on /oft, tuning, wave change and tone controls. Attractive case In rich chestnut whade with gold blocking Size $9 \times 7 \times 4 \mathrm{a}$. approx. Fany to follow instructions and diagrama. Parta Price Lant and Easy Build Plans 25p (FREE with parts).
Total building cost
Overseas P. \mathbb{P}. \&i)

POCKET FIVE

3 Tunable Wavebands MW, LW, Trawler Banu with extended M.W, band for easier tuning
7 stagea-5 transintors and 2 diocies supermennitive ferrite rod serial, the
tone moving coll spesker. Attractive black and gold cane. Bize bi $\times 1 \frac{x}{} 3$ in. Easy bulld plana and parta price list 10 p (FREE with parts). Earpiece with plug and ewitched socket for private listening 30 p eztra.
Total building costs
(Overseas P. $\&$ P. 63p)

8w3 and Tramer
Band. Extra Medium zareband providen easier tuniog of Radio Luxemboure, etc. Bullt in ferrite rod eerml for MW and LW. Retractable section 24 in. chrome plated telemcopic aierial for BW. Bocket for Car Aerial. Poweriul push-pull oufput. 7 tranaistors and 2 diodes. ture tone moving coll speaker. Alr spaced ganged tuning condenser. Yolumiefon/oti, tuning and ware clinge controln. Attractive case $w 1$ th carrying handle
Bize $9 \times 7 \times 4 \ln$. aplurox. Fisay to follow ingtruction and diagrams. Parta pitice liat and easy build plana 150 (PREE with perts). Earplece with plug and switched socket for mivate listening, sop extra. Total building coste
(Overseas P. \& P. 21) 0
\qquad

TRANSONA

FIVE
5 transistops
AND 2 DIODES

3 Tunsble Wavebands: MW, LW and Trawler Bansl ntage- 5 transintorn and 2 diodes, ferrite rod cerinis. tuning condenser volume control, fape toke
 parta price list 100 (F'REE With parth). Fiarplece winh plug and awitched weket for privetelistening 30 p estra.
Total building costs $\boldsymbol{F}_{2} 9$ -

ROAMER SIX
6 Tunable Wrave
banda: MW_{2}. LW hands: MW, LWe,
BW1, BW2, Iraw ler band plua an extra M.W. band
for easier tuning for eavier tuning etc. Senaitivin fer-
lie pud acrial and rise pud aserta and
teleacople merial tor Short Waves.
3 in. Speaker. 8
atages - 8 transistors and 2 alodes Attractive bleck. case with red grille, disl and black trobs olth pollshed motal inserts. Bize 9 y $5 t \times 2$ in. approx. Fasy build plans and parth price list 15 p (FREE with parta). Earplecs Fith plus and awitched socket for prirete Total building
(0verseas P. \&P. \& 1)

TRANS EIGHT

8 TRANSISTORS

 and 3 DIODES

6 Tunable Wavebands: MW, LW,
EW1, BW2: SW3 and Trawler Band.
筑d Trawler Band
acopic aerial for Bhort Waves. for M.W. and L.W. Teletype transintors plus 3 dlodes. Attractive case is black with red grille, dial and black Enoba with polishad metal inserta Size $9 \times 8 \pm \times 21 \mathrm{~m}$. approz. l'ush pull output. Battery econonuimer awitch fer exvended bottery life. Ample power widrive a larger apeaker. Parta price liat and easy butld plans 25p (FREE with parta). distening 30p extras.

RADIO EXCHANGECO

BUILD RADIOS, AMPLIFIERS, ETC. FROM EASY STAGE DIAGRAMS. FIVE CONSTRUCT. COMPONENTS INCLUDE
Tuning Condencer: 2 Volume Controls: 2 sllder Bwitches: 3 inch Speaker: Terminal Berip; Ferilte Rod erial: 3 Plugs and Socketa: Battery Clips: 4 Tag Boards: Balanced Armature Unit: 10 Transistors; s: Resintors: Capscitors: Taree त्र" Knobo.
Units once conntructed are detwehable frorn Master Unit, enabling them to be Manter Unit, eliabling them to be schools. Educational Authoritien end all those interested in radio cons troction
| 61 HIGH STREET, BEDFORD
Tel. 023452367
I enclose $£ \quad$ please send items marked ROAMER TEN \square ROAMER SEVEN ROAMER EIGHT TRANS EIGHT TRANSONA FIVE ROAMER SIX POCKET FIVE \square EDU-KIT
Parts price list and plans for

U.K'S LARGEST ELECTRONICS CENTRES!

NOW 404-496 ELELTRONIC COMPONENTS \& EOUIPMENT 01-402 8381/8382

OPEN!
354-356 HIGH FIDE!ITY \& TAP) EQUIPMENT MT-402 5854/4736
(1) 3 - 309 PA - OISCO - LIGNITING HIGK POWER SOUNO 01.7236963

AYL YOUR ELECTRONÍC REOUIXEMENTS WITHAY 200 YARDS CALL IN ANO SEE GOL YOURSELF

$20+20$ WATT INTEGRATED I.C. STEREO AMPLIFIER
\star FREE TEAK CABINET $\underset{\substack{\text { wlet } \\ \text { plete } \\ \text { kitit }}}{\text { Com- }}$
FEATURES. New slim design with 6 - IC's, IC Sockets, 10 silicon transistors. 4 rectifiers, 2 zeners
special Gardeners low field slim line transformer special Gardeners low field slim line transfor
fibre alass PC panel Complete ehassis work.
HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES RELIABILITY AND EASE OF CONSTRUCTION.
FACILITIES. On/of switch indicator, headphone socket. scparate treble, bass, Volume and balance controls. stratch and Radio Tuner, Aux. Can be altered for Mic., Tape, Tape-head, etc (Parts list Ref. 20 on request)

LOW COST HI-FI SPEAKERS

POLISHED CABINETS 150 . ISOTC 450 44.60. Post 30p.

ML-3 MW/LW TUNER to BUILD

Uses Mullard Module Slow mosion tuning. Builz in battery. Ferrite aerial. Overall
 "BANDSPREAD" PORTASLE TO BUILD

Prim ed circuit all transiator deotitn nd Moll Wave bands plus Medium Wave sendspread for extra selectivisy. Also sluw mprion geared zuning, 600 mW push-pulh output, fibre glass PVC covered cabinet. car aerial. Attractive
TOTAL COST TO BUILD C7.98,

[^2]All parts soid sc Tarately-Leaflee NC. 2

CATALOGUE

Fully detaited and illustrated covering every
aspect of Electronics aspect of Electronics-
olus data, circuirs and plus data, circuizs send lines at Specia' Low Prices and Fully Guaranteed. PRICE 55p Posid (40p FOR CALLERS) PLUS! FIVE 10 p VOUCHERS
Send to this addressHENRY'S RADIO LTD. (Dedt. EE) 3 ALBEMARLE for cazalorue by post only. All.other mail and callers so " 303 ' see below.

MORE OF EVERYTHING AT LOW PRICES ALWAYS AT HENRY'S All the parts you need plus Data and Circuit: - Get a Catalogue - it's all in there!

SPECIAL
KIT PRICE
£28.50
P \& P
DESIGN SLIM
OESIGN WITH
Overall chassis size
COMPLETE WITH fREE TEAK CABINET
Designer approved kits only avoiloble from Henry's

TEST EQUIPMENT

SE250B Pocket Pencil Signal Injector $£ 1$.90 SES00 Pocket Pencil Signal Tracer El-50
TEIS Grid. 85
$500 \quad 30 \mathrm{KNN}$ Multimeter $\begin{gathered}69.25 \\ \text { With leather case } 10.50\end{gathered}$
200 H With leather case 20 K Mulkimezer 4.20 . With case $\mathbf{4 4}$-9
AFIOS $50 \mathrm{~K} / \mathrm{V}$ Multimeter EB . 50 . Wish ease CO .50
U4341
TE200 RF ${ }^{[10.50}$, $120 \mathrm{KHz}-500 \mathrm{MHz}=15.95$ Carr 35
$\begin{array}{ll}\text { TE20D RF Generazor } 120 \mathrm{KHz}-500 \mathrm{MHz} & \mathbf{E} 5.95 \text {. Carr. } 35 \mathrm{D} \\ \text { TE220 Audio Generator } 20 \mathrm{~Hz}-200 \mathrm{KHz} \\ 617.50 \text {. Carr. } 350\end{array}$

PA-Disco-Lighting

UK's Largest Range-Write
phone or call in. Details and

D,30L 3 Channel sound to light unit, 3 kw © 28.50
 DJ705 70 wazz Disco amp/mixer 449.75
DISCOAMP 100 wate Disco amp/mixer 667.50 Dlloss 30 wars Disco amp/mixer 632.00
Artii-Feedback Quality Mic. $\mathbf{1 1}$ - 50
SDL $12^{\circ} 50$ Wate 8 ohm Full range speaker 12.95 DECKS. Use MP60 or SP25/3 see above
FIBRE OPTICS. LIGHTING EFFECTS. PROJECTORS, IN IST, DIMMERS MIXERS Everyeting for PA-Disco-Lighting FREE Stock List Ref. No. 18.

RUILD THIS VHF FH TUNER

 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND. WIDTH, PRINTED CIRCUIY HIGH AND STEREOAND SYEREB
And pular and reception of mono and stereo. gives the REAL sound. All parts sold

separazely. Free Leafler No. 3 \& 7 .
TOTAL 66.97 , p.p. 20. Decoder Kis $\mathbf{2 5 . 9 7}$.
Tuning meter unir al.75
Mains unit (optional) Model P5900 C2.47. Pose 200

SINCLAIR PROJECT 60 MODULES

-SAVE POUNDS! Z30 63.57: Z50 44.37 STEREO 60° PZS 61.97

 67.97; PZB 84.71 PZ6 66.37:Transformer for PZ8 62.95 Active Filter Units 64.45
Stereo FM Tuner ≤ 16.95 Stereo FM Tuner ≤ 16.95
C12 \&1.80; Q16's 415 p

PACKAGE DFALS 2×230, stereo 60, PZS POSt 15.95 $2 \times Z 30$, Stereo 60, PZ6 418.00 $2 \times Z 50$. Stereo 60, PZ8 $£ 20 \cdot 25$ 2xansformer for PZB 62.95
TrAOJECT $605 \mathrm{KIT} ~$ 19.95

[^3]
[^0]: (8) IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable.
 We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
 Subscription Rates including postage for one year, to any part of the world, $22 \cdot 35$.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^1]: 2 watt $10 \%, 69$ ．E12 Berice．

[^2]: D. 320 (Barcery 27p)

[^3]: Prices subject to change without notice E. \& O.E.

