An exciling - uk4 - - for everyone everyday electronics

D.C. POWER SUPPKY UNIT

6

THE NEW 'INVADER'

 ADCOLA L. 646
for Factory Bench

 Line AssemblyA precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits
 (illustrated) available

COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability .. . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
PRICE $£ 1.85$

COMPLETE AMPLIFIER

Stereo amplifier with double wound mains transformer ($200-250 \mathrm{v}$. a.c.) ; $2 \times$ ECL82 valves giving $2 \times 2 \frac{1}{2}$ W; printed circuit ($10^{\prime \prime} \times 3 \ell^{\prime \prime}$) mounted on metal chassis. Ganged tone controls, sep. vol. controls; on-off switch; excellent channel separation. Output trans. for 3 -ohm speakers. For crystal, ceramic cartridges or radio tuner. Only $£ 6.25$ (post 40 p).
Beautifully finished teak or walnut wooden cabinets $10 \frac{1}{\prime \prime}^{\prime \prime} \times 5 \frac{1}{} 1 "^{\prime \prime} \times 7^{\prime \prime}$ deep for $6^{\prime \prime} \times 4^{\prime \prime}$ speakers. $£ 5$ pair (post 30 p). Separate speakers to fit $£ 2 \cdot 30$ pair (post 20 p). B.S.R. autochanger C129 fitted stereo cartridge £9 carr. pd,
PACKAGE DEAL-above autochanger, 2 cabinets, 2 separate speakers, plinth \& perspex cover, above amplifier. All for £25 (carr, £1-50). All necessary audio leads and plugs supplied. 12 months' guarantee (valves $3 \mathrm{~m}!\mathrm{hs}$).

GLADSTONE RADIO
66 Elms Road, Aldershot, Hants.

Telephone: 22240.

FELSTEAD (EE6) ELECTRONICS

LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE SK8 4EE Selection fronly our lint, rent free for atampeit wdremsed etsvelope. (Free oversean). Cash with Oriler orly-No COD or C'ulter service. Chargen (Min. $6 p$.) in brackets after at
 RECORDING TAPE: Finest quality/value Hritinh Mylar available: STANDARD 5° 600ft
 (7ip on 5° and $5 \frac{1}{*}^{\circ}, 9 p$ on $7^{\circ \prime}$. Other sizes, ('aspetter and ax'cemorien in list. CARTRIDGES
 21-10: STEREO (iP43 21-40. Ntereo Ctramic (:P44 21-95. (6p) Conparatives phown in lint with more typen incl. Sonotone 9TAHC rioliring dic, at lowent pricen DIAMOND

 KN40.A. KN+1B, Mtc. ALLAT 75p (RP). DOUBLE DIAMOND STYLII: (Name lia. lip esch mide: m ik) for all typen $\$ 1.50$ (6p). PICK-UP WIRE: Nuper thin twlt fiex mereened, sheathed, Bp per yark. (l'p tc A yip, Gp, "ver chargem prid.) All wapphires it lint. MICROPHONES: CHYHTAL; LALPLL $1 f^{\circ}$, Clip/hand, leal 3.5mm jack plug 32ip (ip). CM20
 and lead (9 p either). "TTl'K'fil $21 \cdot 02:$ ("M70 "l'LANET' Setal, capered, with neek cord, 21.00. All with lemis (all 9 p). MICROPHONE INBERTS Diam. $1-75$ or 0.9 , hther dize 271p (1'p to f fur 6 p.) DYNAVIC: 209 Cardloid Ball, $50 \mathrm{~K} / 600 \Omega$, huilt-in volutie control onfoff nwltch, special thit leas, the bent ralue anywhere e6-80; I'D I30, uni-dir. menh hali
 adaptor, Jack plug 88.874 (27 , peach). SPEAKERS. Sthit very popular $1 \mathbf{2}$ ROUND, Atted tweetor, 3 or 15 nhms (Ntale which) $21-871$ (274 p)-or pair for stereo 24.95 chargea pald
 $3 \cdot 5 \mathrm{~mm}$ (atate which) jack pluz, MA(iNETIC Op. CRYBTAL (3.5 mm miug only) 24 m (up

 Sub-min $11 \times 11 \times 12 \mathrm{~mm}$, OU"PU'T (3 § for OC72, \&c.) 14 p , or DRIVER 150 (up to 12 for $6 p \mathrm{~F}$. CORFECTIIG WI 3E. Packn of 5 colla, each coil 5 yds, tantd. coln. BOLID CORE 14p. FIEEXIBLE or FIPER THIN for transister wiring ac. ejther 16p. (Any pack 6p). RETRACTABLE FLEXIBLE LEADS. (CURLIEP): With phono plug ea. end 6 ft

 MAINS KEON8, fly leads 10p- HEON SCREWDRIVE: (pocket tester) 17ip (6p either). MAIIS BATTER ELIMMAT YR. Input 240 V AC. Output 3, 6, 7f and 9 V DC by switch selector, Onjoff switch, pllot linip, leails, plug, adaptor to suit moat tranaistor seta and carelte recorders. Sultable for model use: 桻-15 (24), OUR CURaser LIsT (see heading) Includes more detalis of all ato we phis cartridge replacennent table, many unrepealable Apecial Ofters, and cable, croc, cilph, Volume controls, Din plugs, Co-Ax, ntandard, mini panel ind Teat nieters and equipment, Multimeters, min. motors, test prods, pwitcheprotary, toggle, alile cabinet, las ip sc.- electrolytics, terminsla, beroboard, valve holders, extending aerials for cars and jortable setm, ind. lamps and bulbs, dials, mikea, telephone amplifiers anil pick-ups, drive cord, inter-coms, capacitance and reaintance teating bozes stereo hemphones etc., etc.

240 London Road, Mitcham. CR4 3HD
Phone: 01-648 8422

Until you've tried the service provided by Home Radio (Components) Limited you've no idea how simple it can be tracking down and obtaining components. It becomes a pleasure instead of a bind! But first you need the Home Radio Catalogue, listing over 8,000 components, more than 1,500 of them illustrated. At 70 pence, including p \& p, it's a giftespecially as every copy contains 10 vouchers each worth 5 pence.

Send coupon today.

CRESCENT mant 11 \& 40 MAYES ROAD. LONDON N2Z GTL 8883206
 MAIL ORDER DEPT. No. II MAYS RD. LONDOH N22 6TL
 COMPONENTS AND HI FI FOR THE HOME CONSTRUCTOR oUR Shops are open all day FROM (WA.M. TO ${ }^{6}$ P.M. 6.30 P.M. ON FRIDAY (WE CIOSE ALL DAY THURSDAY) 13 SOUTH MALL, EDMONTON, N•9 8031685

BLOC

 of robust constructionSafe, quick and secure it connects 2 -core and 3 -core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago.
Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. Invaluable for testing and demonstrations in industry and shops, the work bench and the home.

Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer. If ordering by post, send cash with order. PRICE E $2.60+10 p$ P.\&P. EACH Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill, Sussex.Tel. Burgess Hill 2642

PARKERS SHEET
METAL FOLDING MACHINES

heavy vice MODELS

With Bevelled Former Bars

No. 1. Capacity 18 gauge mild steel 36 in . wide ... $\mathbb{1} 15.00$
No. 2. Capacicy 18 gauge mildsteel $\times 24 \mathrm{in}$. wide \ldots.... $\mathbf{f 1 2 . 0 0}$ No. 3. Capacity 16 gauge mild steel x l8in. Wide $\quad \mathbf{~} 35.00 \quad 24$ in Also new bench models. Capacit End folding artachments for radio chassis. Tray and Box making for $36 i n$ model, 27 ip per ft. Other models 171p. The ewo smaller models will form flanges. As supplied to Government Lepartmenes, Universities. Hospitals.

One year's guarantee. Money refunded if not satisfied. Send for details
A. B. PARKER, Folding Mschine Works,

Heckmondwike 3997

The most accurate pocket size GALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4 \cdot 50$ for this invaluable spiral slide rule on approval with money back

TELEPHONE DIALS
Standard Post Office type
Guaranteed in working ordar

only 50p

COMPLETE TELEPHONES EX. G.P.O. NORMAL HOUSEHOLD TYPE ONLY £1 EACH
POST \& PACKING 35p EACH

2	4	Photo Cells, Sun Bateries. $0.3100 .5 \mathrm{~V} \quad 0.5=2 \mathrm{~mA}$.	50p
77	4	in4007 Sil. Rec. diodes. 1.000 PIV ismp plastic	50p
881	10	Reed Switches. mixed types larat and smali	50p
	200	Mixed Capacieora. Approx. quantity, counted by weighe	50p
	250	Mixed Resinorory Approx. quantity counted by weight	50p
H7	40	Wirowound Resistors. Mlxed rypes and values.	50p
H\%	4	BY 127 Sit. Rece. 1000 PIV I amp. plastic	50p
${ }^{40}$	2	OCP7!Lughe Sensitive Photo Transiator	50p
	50	NKTIS5/259 Germ. diodes, brand new stock clearance	50p
H18	10	OC71/75 uncoded black alats type PNP Germ.	50p
Hif	10	OC81/81D uncoded white Blase eype PNP Germ.	50p
428	20	OC200/1/2/3 PNP silicon uncoded TO-5 can	50p
429	20	OA47 tole bonded diodes coded MC52	50p
NEW UNMARKED UNTESTED PACKS			
66	150	Germanium Diades Min. glavs tppe	50p
31)	200	Trant. manufacturers' reiecta all typer NPN, PNP. sil. and Germ.	50p
384	100	Siticon Diodes DO-7 glasa equir. to OA200. OA202	50p
38	50	\$il. Diades sub. min. IN9I4 and IN916 typen	50p
888	50	Sil. Trans. NPN. PNP equir to OC200/ 2N706A. B5Y95A, etc.	50p
1	50	Germanium Transistors PNP, AF and RF	50p
H6	40	250 mW . Zener Diodes 00.7 Min . Glass Type	50p
410	25	Mixed volts. If wate Zeners Top hat type	50p
417	20	3 amp. Salicon Seud Rectifiera, mixed volts	50p
H15	30	Top Mat Silicon Rectifiers. 750 mA . Mixed volts	50p
416	8	Experimenters Pak of Integrated Circuits. Data supplied	50p
H20	20	BYI26/7 Type Silicon Rectifiers 1 amp platic. Mixed voles.	50p

MAKE A REV COUNTER FOR YOUR CAR

F.E.T. PRICE BREAKTHROUGH !!

This field effect transistor is the 2N3823 in a plastic encapsulation coded as 3823 E . It is also an excellent replacement for the 2 N 3819 Data sheet supplied with device. 1.1030 p each, 10.5025 p each. $50+20 p$ eact.

OUR VERY POPULAR 3P TRANSISTORS
TYPE "A"" FNP Silicon alloy, TO-S can.
TYPE "8" FFNP Silison, plastic encapsulation.
TYPE "E" PNP Germannum AF or RF.
FULLY TESTED AND MARKED SEMICONDUCTORS

	40	
AC107	0.13	OC170
ACl26	0.13	OC171
AC127	0.17	OC200
ACl20	0.11	OC201
ACI76	0.25	2 Cl 31
ACY17	0.13	26303
AF239	0.17	2N7H
AFis6	0. 50	2N1302-3
AFl39	0.37	2 N1304-5
8C154	0.25	$2 \mathrm{~N} 1306-7$
BC107	0.13	2N1300-9
日C108	0.13	2N3E19FET
BC109	0.14	
BF194	- 13	Power
$8 \mathrm{Pr274}$	0.15	$0<20$
BFYSO	0.20	OC23
E5Y25	0.57	-C25
BSY26	0.13	OC26
B5Y27	0.13	-
85×28	0.13	OC3s
B5Y29	0.13	OC36
BSYOSA	0.15	ADI4
OC41	- 0.13	Aurio
0 O 44	0.13	25034
OC45	0.13	2N305s
$0 \mathrm{C71}$	0.13	2N30ss
OC72	$0 \cdot 13$	Diodes
OC81	0.13	AAY42
ocaio	0.11	OA95
OCE3	0.20	OA79
OC139	0.13	OABI
OC140	0.17	IN9114

BULK BUYING CORNER

NPN/PNP illicon Planar Transintora, mined, untested,
vimilar to $\overline{3 N 7 O 6 / 6 A / B, ~ B S Y 26-29, B 5 Y 95 A, ~ B C Y 70, ~ e t c . ~}$

Silicon Plenar NPN Plastic Transistors, untested, similar

Silicon Planar Dlades. DO-7 Glass, similar so OA200/202. BAY3H-36, 64 -50 per 1.000 .
NPN/PNP Silicon Planar Transistors. PIztic TO-18.

OC44, OC $\$ 5$ Transistors fully marked ind sented
$500+$ at so each: $1.000+$ at op each
OC71 Tranaistors, fully marked and texted, $500+$ at
ofp each $^{0} 1,000+$ ac Sp each.
3823E Field effect Transistors. This is the 2N3823
3823E Field effect Transistors. This is the 2 N
Plastic Case $500+$ iJp each; $\mathrm{i}, 000+10 \mathrm{p}$ esch
1 amp Miniature Platic Diodes:
in $4001,500+$ at 40 each: $1,000+$ at $3 p$ eact.
in $4004,500+$ at $5 p$ each, $1,000+$ as $4 p$ each:
IN $4006,500+$ at $6 p$ each,, $000+$ at $3 p$ each:
in 4007 , $500+$ at $\$ p$ each, $1,000+$ at $7 p$ each.

CN. 240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated $3 / 32^{\prime \prime}$ bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$
CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with iron coated $3 / 32^{\prime \prime}$ bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220. 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering iron 18 watt 240 volts extensively used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit. Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and ${ }^{\prime \prime \prime}$ " are obtainable. Price $£ 1.83$.

CCN. 240 New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation ($4,000 \vee$ A.C.). Will solder live transistors in perfect safety: fitted with $3 / 32^{\prime \prime}$ Iron coated bit. Spare bits $1 / 8^{\prime \prime}$ $3 / 16^{\prime \prime}$ and $1 / 4^{"}$ available Can also be supplied for 220 volts. Price $£ 1.80$
CCN. 240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The triple-coated bits are iron, nickel and chromium plated. Price $£ 1.95$

E. 240

E/" iron 20 watt 240 volts soldering iron fitted with available. Can also be supplied for 220 and 110 volts.

Price $£ 1.80$.

ES. 24025 watt 240 volts soldering iron fitted with $1 / 8^{\prime \prime}$ iron coated bit Spare bits $3 / 32^{\circ \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.83$

MES. 12
A battery operated 12 volts 25 watt soldering iron complete with 15 ' lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet. Price $£ 1.95$.

SK. 1
SOLDERING KIT

The kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, heat sink. cleaning pad, stand and booklet "How
Price £2.75 to Solder". Also available for 220 volts.

SK. 2

SOLDERING KIT
This kit contains a 15 wall 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, Heat Sink.
1 amp fuse and booklet "How to Solder"

for fast, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavlly oxidised surfaces. No extra flux required.

SAVBIT ALLOY

 ALSO REDUCES COPPER BIT WEAR.Ecomically packed for
 general electrical and electronic soldering. 75 ft 18 gauge on plastic reel. Recommended retall price 75p
Size 12

A RANGE OF
 SOLDERS IN HANDY DISPENSERS.

REF. ALLOY SWG
19A 60/40 18 18p*
Size 5
(ill-
ustra- Savbit 18 18p* ted)
15 60/40 $22 \quad 22$ p*
-Recommended Price

THIN GAUGE SOLDER,
ESSENTIAL FOR
soldering small components and thin wires. High tin content, low melting point, $60 / 40$ alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 75p Size 10

From Electrical and Hardware shops. II unobtainahte, write to:

Multicore Solders Ltd., Hemel Hempstead, Herts.

RADIOCOMSTRIUCTOR

MARCH ISSUE FEATURES 'EASY' 2" METRE RECEIVER

By F. G. Rayer, Assoc.I.E.R.E. G30GR.
An excellent project for the newcomer to 2 metre reception - employs a super-regenerative detector, this 3 valve receiver offers no alignment problems.

MORE CONSTRUCTIONAL PROJECTS ON SALE NOW PRICE 20p

Copies may also be obtained direct from the Publishers, 24p. including postage. Published by Data Publications Ltd. 57 Maida Vale, London W. 9

BSR LATEST
 SUPERSLIM STEREO AND MONO Plays $12^{\circ} .10^{\circ}$ or $7^{\prime \prime}$ records Auto or Manual. A big reliability with 12 monthy Enarantee. Size Ist $\times 11!$ in. Above motor board 3 lin . below motor board 2 ifn below motor board 2 !ia. with ETEREO and MONO
 mowo-s.compatile
 £8.75 Pont 28 ob .
 RCS DE-LUXE 8 WATT AMPLIFIER. Ready made with 2-atage triode pentode valve, 8 watt output. Tone With bigh performance Loudspealior.

R.C.S. PORTABLE PLAYER CABINET

E4
$\stackrel{\substack{\text { Pos. } \\ 28 p \\ \hline}}{ }$

Eeally amert appearance with space lor R.C.8. Amplitiers and most modern autochangers. Bize $18 \times 18 \times 8$ in. Metal Attings. Carrying handle. Popular Two-tone rerine covered.
GARRARD SIMGLE PLAY TA MK II
E10
GARRARD PLAYERS with Sonotone 9TA Certridgen Stereo Diamond and Mono Sapphire. SP25 Mk III 218.
Model 3500 Stereo and Mono Autochinger f14. Pont 2Sp B8R JUNIOR SIMGLE PLAYER
€ 4.50
Turntable, 4 -apeed motor and separate pick-up
EMI PICK-UP ARM with moan xtal and atylun 21-25 HI-PI PICK-UP CARTRIDGES. Diamond LP/8tereo Mono Sapphire GPG1 $21-50 ; \mathrm{ACOS} \mathrm{LP}$ sipphire sop.
E.M.I. WOORER AND
£5.75 Pont esp
Comprising a tine exsmple of a Wooter $101 \times 64 \mathrm{in}$. With a manive Cersmic Alaminium Coae centre to tmprove middle and top response. Also the E.Ma. Iweeter ${ }^{2}$ inin. equare hal a apecial lightwaight paper cone and magaet luy 10,000 Jines.
mpedance standard
Unimum Power Brain Resonance

35 to $\begin{array}{r}18,000 \mathrm{cps} \\ 45 \mathrm{cps}\end{array}$

WEYRAD PSO-TRANSISTOR COILS

OAc P50/LAC

F. PSO/ECC 470 k

Ird I.F. PS0/3CC
P51/1 of P51/2 88 D
80 p
83 p

PSO/3V Spare Corel 30
50 p Printed Circuit, PCA1 J.B. Tuning Gang. W.B. Tuning Gang OPTI50 p
50 p Mallard Ferrife Rod $8 \times 81 \mathrm{n} .20 \mathrm{p}, 6 \times 3 \mathrm{3n} .25 \mathrm{p}$.

VOLUME CONTROLS
Long opindles. Midet Size
8 K . obme to 2 Mog. Log or
LIF. L/8 15p. D.P. 25p.
TEREO L/B DP. D.P. 75p.
800bm Coax 4d. yd. BRITISH AERIALITE AERAIIAL-AIR SPACED $40 \mathrm{yd} .21 \cdot 40 ; 60 \mathrm{yd} .22$.
FRIMGE LOW LOSS PRINGE LOW LOSS |Op yd

WIRE-WOUND 3-WATT POTS. WIRE-WOUND3-WATT melt typ with malt inob. STANDARD SIZE POTS.
 VEROBOARD 016 MATRIX $21 \times 8 i n .26 \mathrm{p} .2\} \times 38 \mathrm{in} .17 \mathrm{p} .81 \times 31 \mathrm{in} .28 \mathrm{p} .81 \times 5 \mathrm{jn} .30 \mathrm{p}$ EDGE CONEECTORS 18 wiy 85 p ; 84 way 38p
A.R.B.P. Bostd 015 MATRIX $2 \| \mathrm{in}$. Wide 3 p per 1 in . 8 inn . Wide 4 p per 1 in ; Sin. side 5 p per lin. (up to 17 in .) B.R.B.P. undrilled itiln, Board $10 \times$ 8in. 15 p .
 $450: 9 \times 7 \mathrm{in} .60 \mathrm{p} ; 11 \times 7 \mathrm{in} .70 \mathrm{p} ; 18 \times 9 \mathrm{in} .90 \mathrm{p} ; 14 \times 11 \mathrm{in}$

14×3. $14 \times 3 i n .16 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 18 \times 61 \mathrm{n} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p}:$
$18 \times 6 \mathrm{~m} .28 \mathrm{p} ; 14 \times 9 \mathrm{in} .34 \mathrm{p} ; 18 \times 12 \mathrm{in} 40 \mathrm{p}$

14 inch DIAMETER WAVE-CEANGE 8 WITCRES 25p. 2 p . 2-way, or 2 D .6 -way or 3 D .4 -way 25 p each. 1 v . 12-way or 4 D. 2-way, or 4 D. 3-way 25 p.
SILICON REC. 40-LUCA8 2DS500 Bridge 70V 5 amp el RECTIFIERS CONTACT COOLED NAVE 60 mA 38 p :
 "THE INSTANT" BULK TAPE ERASER I HEAO DEMAGNETISER

HI-FI STOCKISTS RETURN OF POST DESPATCH

RADIO COMPONENT

R.C.S. STABILISED POWER PACK KITS

All parts and fantructions with Zener Diode, Printed Circuit Brdse Rectifers and Double Wonnd Maini Tranaformer nput $200 / 240 \pi$. AC. Ontpat voltages availeple 6 or or PLEASE STATE VOLTAGE REQUIRED. 12 PORT

GENERAL PURPOSE TRANSISTOR

 PRE.AMPLIFIER BRITISH MADE Ideal for Miko. Tape, P.U.. Gultar. Can be uned wilh Battery 18 y or H.T. line 200800 F D.C. operation
 NEW TUBULAR ELECTEOL YTTCS CAA TYPES $\begin{array}{ccccccc}2 / 880 V & 14 \% & 250 / 25 V & 14 \mathrm{p} & 50+80 / 850 \mathrm{~V} & 35 \mathrm{p}\end{array}$

 \begin{tabular}{ll|ll|l}
$1 / 460 V$ \& $14 p$ \& $1000 / 25 \mathrm{~V} .$. \& 35 p \& $32+32 / 250 \mathrm{~V}$

$16 / 450 \mathrm{~V}$ \& 15 D \& $1000 / 50 \mathrm{~V}$. \& 47 p \& $32+32 / 450 \mathrm{~V}$

$32 / 450 \mathrm{~V}$ \& 80 p \& $8+8 / 450 \mathrm{~V}$ \& 18 p \& $350+50 / 325 \mathrm{~V}$

$25 / 25 \mathrm{~V}$ \& 10 D \& $8+16 / 450 \mathrm{~V}$ \& 20 p \& $30+80 \mathrm{p}$

 $\begin{array}{lllll}50 / 25 \mathrm{~V} \\ 50 / 50 \mathrm{~V} . . & 10 \mathrm{p} & 16+16 / 450 \mathrm{~V} & 25 \mathrm{p} & 100+53+50 / 350 \mathrm{~V} 48 \mathrm{p}\end{array}$

$500 / 25 \mathrm{~V}$ \& 10 p \& $16+18 / 450 \mathrm{~V}$

1025 p

\hline 25 p
\end{tabular} LOW VOLTAJE ELECTROLYTICS $1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF}$. $28 \mathrm{~V}, 10 \mathrm{p}$. 500 mF . 12 V . $15 \mathrm{p}: 85 \mathrm{~V}$. $20 \mathrm{p}: 50 \mathrm{~V} .80 \mathrm{p}$. $1000 \mathrm{mF} .12 \mathrm{~V}, 17 \mathrm{D}$; $25 \mathrm{~V} .35 \mathrm{p} ; 60 \mathrm{~V} .47 \mathrm{p}$; 100V. 70p.

 2500 mF .50 V.
$5000 \mathrm{mF}, 8 \mathrm{~V}, 95 \mathrm{p} ; 1 \mathrm{gV} .4200 \mathrm{mF} ; 25 \mathrm{~V} .76 \mathrm{p}: 38 \mathrm{~V}, 85 \mathrm{p} ; 50 \mathrm{~V}, 85 \mathrm{p}$ CERAMIC 1pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Sitver Mice 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$ PAPER 850V-0.1 4D. 0.6 13D; 1 mP 18p; 2mF 150V 15p
 SILVER MICA. Close tolerance 1% 2-2-500pF 8p: 500-2-200 DF 10p; 2,700-5,600pF 20p: 6.800pF-0.01, mild 30p; esch. TWIN GANG. " 0 -0" $208 \mathrm{pF}+176 \mathrm{pF}, 65 \mathrm{p}$: Slow motion drive $385+385$ with $25+25 \mathrm{p}$. 500500 pF alow mothon, standerd 45 D ; mall 3 -gang $800 \mathrm{pFR1} 60$
SHORT WAVE. SINOLE. 10pF 30p; 25pF SSD: 50pF 55p NEON PANEL IMDICATORS 250 A AC/DC Rec or Amber 20D RESISTORS, tw., \& w., $20 \% 10 ; 2$ w. 5p 10 ohms to 10 mes HIOH STABILITY. + w. $2 \% 10$ ohm to 1 neen., 10 p . HIOH $8 T A B I L I T Y . ~ W . ~$
Ditto 5% Prejerred Filues 10 ohm to 10 mef.. 4 p . WIRE-WOUND RESISTORS o watt, 10 watt. 15 watt

SCOOP! METALTPLINTH AND Cut out ready tor Garrard or B.S.R. Will play with cover in positlon. Latest deaion.
 Post 25p Antimagntlle. $12+\times 14+\times$ 7tin ALSO AVAILABLE IN SOLID MAHOGANY NATURAL POLISHED FINISH AT SAME PRICE

250-0-250 80 mA .6 .3 v. 4 smp. 250-0-200 $80 \mathrm{~mA} .8 \cdot 3$ v. 4 smp. 81.50

 MINIATURE 200 ष. $20 \mathrm{~mA}, 6.37 .1 \mathrm{s} 23 \times .23 \times 2 \mathrm{~m}$.
 MIMI-MAINE $20 \mathrm{v}, 100 \mathrm{~mA}$. If $\times 11 \times 1 \mathrm{in}$
 Dltto tapped rec. 1.4 .., $2,3,4,5.6 .3 \mathrm{~F} .1 \nmid \mathrm{fmp}$. GEKERAL PURPOSE LOW OLTAGE. Tapped Output at 2 amp. 3. 4, 5, 6, 8, 9, 10, 12, 15, 18, 24 end 30 . 22.25
1 amp., $8,8,10,12,16,18,20,24,30,36,40,48,60,22.25$

5 smp. $8,8,10,12,16,18,20,84,30,38,10,48,60.48 .75$ AUTO TRAFSFORMERS 115 v , to 230 v , of 280 v . to 116 v 150w. $225 ; 500 \mathrm{w}$. $26 \cdot 25 ; 750 \mathrm{w}$. $210 ; 1000 \mathrm{w}$. 214.
CHARGER CHARGER TRANSFORMERS. IDDOt $200 / 250 \mathrm{v}$
 FULL WAVE BRIDGE CHARGER RECIFIERS

 E.M I. $13 \frac{1}{2} \times 8 \mathrm{Bn}$
LOUDSPEAKERS
wwh
 state 3 or 8 or 18 ohm Pont 15p With fiared tweeter cone and coramic $\begin{aligned} & \text { magnet. } 10 \text { watta. } \\ & \text { Bama rea. } 45-60 \mathrm{cpl} .\end{aligned}, 4275$ Flux 10,000 genes - Post 150

IOW MINI-MODULE $£ 3.25$ LOUDSPEAKER KIT
 Post 25D

Triple speaker aysiem combining on raady cot banie.
in. chiptoard 15 in. $\times 8 i$ in. Separate Bas. Middie and Troble loadipestery and crossover cendenser. The heave daty 5 in . Bass Woofer unit has a low resonance cone. The mid-Range nait is apecially dosigned to add drive to the middle reniater s nd the iweeter recreater the top end of the mustes apectrum. Total rasponac 20-16.000 cps. Tall instructions for 8 ohm matchng. $18 \times 10 \times$ Bin. Modern dosign Fith $\& 5$ Post 25p

ALL MODELS "BAKER SPEAKERS" IN STOCE

BAKER I 2in. MAJOR \&9

30-14.500 c.p.E., $12 i n$

 double cone, wooter and tweeter cone logether witb a BAEER coramic maxnet assembly beving s Guz deasity of 14,000 gatse and a tutal fux of 145.000 Maxwelts. Bas remonance 40 c.p.g. Reted 80 watte. Voice coils 3 or 8 or 18 ohma. Post Fres Module kitt, 80-17.000 c.p.b. mitb tweeter. crossover, $\left.\begin{aligned} & \text { butpe and } \\ & \text { inatructions. }\end{aligned} \right\rvert\, 1 / 50$BAKER "BIG-SOUND" SPEAEERS $\begin{array}{lll}12 \text { Jnch } \\ 25 \text { watt } & 12 \text { fuch } \\ 35 \text { watt } & \leq 9 \quad 15 \text { tach } \\ 80 \text { watt }\end{array} \leq 19$ 3 or 8 ur 15 ohm 8 or 8 og 15 ohm 8 or 15 ohm TEAE HI-PI EPEAKER CABINETS. Fluted wood front For 12 im . ur 10 in . dis. speaker $80 \times 12 \times 9 \mathrm{in}$. 29. Post 85 p

GOODMANS $6 \frac{1}{2}$ in. HI-FI WOOFER 8 ohm, 10 watt. Large ceramic marnet Special Cambrie cone rarround. Fregueacy Hit-Pi Enclosures Syatems. te. $\$ 4$

ELAC CONE TWEETER

 The movink coil diaphrarm givas a good radiation pattera to the higher frequencies Irom $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size 81 X $3 \ddagger \times 8$ in. deep. Ratina 10 watte. 3 ohm $3 \& \times$ gin. deep. Ratingor 15 obm models.
C $1: 90$

Horn Tweeters 8-16ke/s, 10 W 8 nhm or 15 ohm 81.50 De Luxe Born Tweeteri \&-18 Kc/b, $15 \mathrm{~W}, 15 \mathrm{nhm}$ 23. TWO-WAY 3000 cpI CROSSOVERS 8 of 8 or 15 ohm 98 p . SPECIAL OFPER! $80 \mathrm{nhm}, 8$ in. $21 \mathrm{im} ; 85 \mathrm{obm}$. $2 \mathrm{in} . ; 3 \mathrm{gin}$
 3 ohm. 81 in . 3 in. Sin. $5 \times 31 \mathrm{in} .7 \times 41 \mathrm{n}$. LOUDSPEAEERSP.M. 3 OHMS. 81in. $21.50 ;$
 ELAC 10in. 10W. De Luse Ceramic. 8 ohm. 84 . BICHARD ALLAM TWIM CONE LOUDSPEAKERS. $8 i n$. dis. 4 watt; 10 in . dia. 5 Fatt; $12 \mathrm{In}^{5}$ dla. 6 watt
 SPEAEER COVERIMG MATERIALS. SAmples LARTE S.A.E. GATIO ELS4 etc., 3 , 8 and 15 ohme 80 p . Pont 20 p .

BAKER 100 WATT
ALL PURPOSE
POWER

AMPLIFIER

4 Inputa apeech and mabic. Mining facilltios Response 10 30,000 cpe. Matches all loudspeakers. A.C. 2001250V. Soparate Treble and BAB controls.
Oraranteec. Detall S.A.E.
EARGAIX AM TUNER. Medium Wave.
Transiator superbet. Ferfte merial. volt.
 Add muscal highlighta and sound edectit Will miz tilicrophone, records, tape and tuner $\$ 3.50$ with sepsrate controls into single outprt. 9 volt
STEREO VERSION OF ABOVE e4. 50. STEREO VERSION OF ABOVE 84.50
HARGAIX FM TONER 88-108 Mc/s Siz Traaniator. 9 volt Printed Circuit. Calibreted slide dial tuning. 512.50 Walnat Cabinet. Sise $2 \times 5 \times 4$ inch
18.85

BARGAII 3 WATT AMPLIFIER. 4 Transisto
Puch-Pull Ready builf, with votume control. 9 v
£3.50

COAEIAL PLUG 6p. PANEL SOCEETS 6p. LINE 18D. OUTLET SOXES, SURPACE OR PLUSH 2Sp.
BALANCED TWIN FEEDERS $8 D$ yd. 80 ohme or 800 ohma. JACE SOCEET Std. opea-circuit $14 p$, closed circuit $28 p$: Chrome Lead socket 46p. Pbono Plaki 5 p . Phono 8ocket 5 p . JACE PLUOS BId. Chrome $15 \mathrm{p} ; 35 \mathrm{~mm}$ Chrome 14p. DIN

E.M.I. TAPE MOTORSPost 15p.
 Sise $31 \times 21 \times 21 \mathrm{n}$. (illatrated). $\leq 1 \cdot 25$ BALFOUR GRAM MOTORS
 50 mA . Spindle
$21 \times 21 . \times 1+10$. 21×21. CUSTOMERS FREE CAR PARK CALLERS WELCOME 337 WHITEHORSE ROAD, CROYDON Open 9-6 p.m. (Wednesdays 9-I p.m.. Saturdays $9-5 \mathrm{pm.m}$. LOUDSPEAKER. Pifteen separate kevis apan co full octaves-play the . Yellow Rose of Torat", play Silent Nigh", piay "A uld Lang $S_{y n}$ " ose. ete. You have the thrill and excitement of building it together with the pleasure of playing a real, live, prortable electronle orgary $N O$ PREVIOUS KNOW. LEDGE OF ELECTRONICS NEEDED. No soldering necensary, Biruple an ABC to make. Anyone oweq wine wenpa ean build it easily by tone thom trenimg following ane fully inustrated. +23 p p. \& p. for kit, including cese, nute. screws, simple instructions, etc. Usem standard battery (partanailable separately). Have all the pleasure of thaking it youraelt. haish with an excting gift for eomeone.
Find buried treasure with this READY BUILT \& TESTED
TREASURE LOCATOR MODULE
ONLY $f 409$
P LLLT TEANSIS. TORISED PRINTED CLRCUIT METAL DETEC.

 TOR MODULE. Randy but and sested-Junt plog in A PPS battery and 'phones und it'a working. Put it in a case, PORTABLE TREASURE LOCATOR EABRT WORTA ABOUT 280 ! Extremely eanitlre -penetrates through earth, sand. muth. water, elc.-EASILY LOCATES COINS, GOLD, BILYER, JEWELLFRY, HIBTORICAL RELICS, BURIED PIPES, ETC. Bignala exact location by -beep" pitch increasing an you near burled meisllic objects. 8 o rensifite if wril delect eertain GROUMD GIVES CLEAR SIGNAI ON ONE COIN $84.95+30 \mathrm{p}$ anAL ON (High qually Danlish Stethoncope head. phones es.75 extre H required.) | EXAMIFE AT HOME FOR 7 DAIS. TOUR |
| :--- |
| 100% | EOKET REE UIDED IN FULL IF MOT 100% DELIGHTED.

BUILD 5 RADIO AND
ELECTRONIC PROJECTS

outh $£ 1 \cdot 97$

Amazing Radio Construction met! Become a radio expert for $\mathbf{8 1} \cdot 97$. A com plete Home Radio Course. No experience needel. Parta Inclading simple Instructiona for each design. Illus trated step-by-step plans. all transistors, loudspeaker, permonal phone, Knobs, ncrews, 37p extra a illus. (If required) (parta available meparately) no soldering neceasary. Send \&1.87 + 23p p. \& p.

SOOTHE YOUR NERYES,

RELAX WITH THIS AMAZING
RELAXATRON
CUTS OUT NOIRE POL-LUTION-800THES YOUR NERVES! Don't under. entimate she raen of thin fanRELAXATRON ie bentically a pink noise gemernior. Besiden pint noise gemerator. besiden extraneous unwanted coundn, It has other very interesting propertles. For instance, many people find a rainntorm mysterioundy relaxina, a large
 part of this reeling of well-being can directly traced to the monnd of falling rain. droph-a well known type of pink nolee TRACTINO WRK IN NOIEY OR DIG. TRACTINA SURROUNDINGS. IF YOU HoUE TROUBLE CONCENTRATING, IF LAX FEEL TENBED, UNABLE TO REOnce when build thas iantantic Relaration. Once used you will never want to be wilthont It-TAKE 1 T ANYWHERE. Use: alan. dard PP3 batteries (current uned so amand BE EASILY BULT BI A TEARS OF AGE using our onigue step-by step, fully Hnstrated plans. No eoldering necenary. All parta tncluding case, a pair of crystal phones. Components, nuts. mcrews. Wire, etc. no soldering.
$22 \cdot 25+25 p$ p. p . Parts availab.

CONCORD ELECTRONICS LTD (EE4X) 8 W

FIND BURIED TREASURE
Transistorised Treasure Locator OF Th/ This sully portable tranalimtorised metal locator detecte objects-it algraln exact location with lood audible mound (no phones uned)-uses any tranistor radio which fits inside-no connections needed. COIB CORCHAEOLOOICAL PECES ARCHAEOLOGICAL PEEES diee. widl tional prenence frim winh ease in one shorl evening by anybody clear, easy to follow, upep-by- witep the illuatrated Instructions-Upes siandaril PP3 battery. No soldering necesmary. KIt Incladea nuts, errewa, wire, etc. onky ta $87+27 \mathrm{p}$ p. \& Pir (Bectional handle ar Hluntrated 75 p extra). Partn avallable
Eavesdrop on the exciting world of Aircraft Communications V. H.F. AIRCRAFT BAND ONLI CONVERTOR f $\ddagger .37$ LINES, PRIVATE PLAFES, JETPLAKES Eaveddrop on ereiling cross falk between pilots, poot lowor, hear for yoursalf
the diseipisined the direciplined volices hiding tendeness on talk dinens. FIth them when they have taxe nerve ripping decinions in emergenclet-Tune into the aircraft frequency band including HEATHROW. OATWICE, LUTON, RIMG WAY, PRESTWICK, ETC. ETC. CLEAR AS A BELLL. This fanteatic fully tranniatorised instrament can be buill by anyome oeer nime Pnllyder inco hours. No soldering neceneery. Pnlly IUuatrated simple instructiona take you step-by-atep, Uses at andard PP3 battery. to you do ls erdend rod serial, place clome tiny portables). FO COMRECTIONS WHAT EVER NEEDED. GEND ONLY $22.87+$ 2sp p. \& p. for kit tncluding came, note. crews, wire, etc. etc. (parta avaliable eparately).

SHORTWAVE

TRANSISTOR

 RADIO E2:25

Anyone from 9 yesth up can follow the step-by-step, easy an BC fally Hllustrated inNo moldering necemary. 76 statione logged on rod aerial in 30 min . Ransta, Alrica, U8A, 8 witserland, etc. Experience thrille of world wide news, sport, cants. Usen PPS battery. mise only 3° I 41° x 14' Only $22 \cdot 25+17 \mathrm{p}$ p. \& p. Kit locludes cabinet, merews, Indtructions, etc. (Parta arailable meparately).

INGENIOUS ELECTRONIC

SLEEP INDUCER

59.75
 CAN'T BLEEP AT NIGHT8!

IN THE NIGHT AND CANT GET OPF TO BLEEP. AGAIN F WOULD YOU LIKE TO BE GENTLY BOOTHED OFF TO EATIEPTING BLEEP BVERY NIGHTT Then build this ingenjous elect rotaic sleep inducer. It eww atopi by disedf so you don'l have to worty about th being on all nighl/ The londspeaker produces soothing audlobut ay time goes on the mound repeatedbecomea lear and lean-until they eventoally cease altogether, the effert if has ow people is amazingly very similar to hypnosis. A con. trol is provided for adjunting the length of times, etc., all tranalntor, can be built by athyone over 12 years of age in about two hours. No knowledge of electromes or radio hoeded. Extremely simple, eany-to-follow. tep-by-step, folly Hustrated instructionk moluded. No toderimg mereasary. Works of
 Kit includes caee, nnts, wire, screve et sEND \&2.75 + 25p p. \& ip. (parto avallable separataly).

ELECTR

Vary the strength of your lighting with a (IMM2:sivich

The DIMMASWITCH is an ateracsive and effic. lene dimmer unit which fies in place of the normal lighe swiech and is connected up in exactly she same way. The ivory mounsing plase of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up so 300 w or 600 w of all lighes except fluorescents at mains volcages from 200-250 v, 50Hz. The DIMMASWITCH has built-in radio interference suppression:

600 Watt ©3-20. Kit Form <2.70
300 Wact- $\mathbf{2}$ 70. Kit Form $\mathbf{C 2} 20$
All plus 10 p pose and packing.
Please send C.W.O. to

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883, As supplied to H.M. Government Departments.

Everyday Electronics, April 1972

DRILL CONTROLLER
CONTROL DRILI SPEEDS NEWIKWMODEL Rlectronlcally change： speed from epproxl－
mately 10 reva．to mately 10 reva．to martmum．Full power ot all speeds by ninger－tip parta，cane，everything and full Instructiona．al－60 plus 13p post and jnaurance．Minde up model and and p ．
MAINS OPERATED CONTACTOR $220 / 240 \mathrm{~T}$ ． 50 eycle solenpold ulth maninsted core so very circulte each rated at 10 ampe． Extremely well made by a German glectrical Company． Overall alae 2t $\times 2 \times 2 \mathrm{in}$ ． Ol each．

NEED A SPECIAL SWITCH？ Doable Leal Contect．Very alight preasure closes \Rightarrow ech，both dos．Plestic panh od saltable for operating 5y each，45 doz．

AUTO－ELECTRIC

CAR AERIAL
－ith dashboard control ewitch－fully extendable to 40 in ．or fully retractable． Suitable for 12 v ．poatitve or negative earth．Bupplled complete with fitting lastructione and ready wired danbboer switch． 5.78 plan $25 p$ poot and ing．

TOGGLE SWITCH
3 amp．250v．with axlog ring 7ty each，75p dos． MICRO SWITCH
5 amp changeover contacts， 91 10 p ench or El 1.0 os dos．

MINIATURE

WAFER SWITCHES
${ }_{3}^{2}$ pole，${ }^{2}$ way－ 4 pole，${ }^{3}$ way－ ${ }^{3}$ pole， 8 way－ 4 pole，${ }^{3}$ may－2 6 way－ 1 pole． 12 was．All at 100 each． 21.30 for ien，your aesortment．

BLANKET SWITCH

Dooble pole ith neon let into side mo lominoun in dark． uoe with waterpoool sjement．ne plantic case 30 e ench．s beat model 40

CAR ELECTRIC Plug
Fits in plece of cigare tie lighter． Uueful methor for making a
 TREASURE TRACER Complete Kit（except wooden battenn）to numke the metal detector as the circult in Practica！ Wirelees Auruat troe．部管 plus 20 p post and ingurace．

QUICK CUPPA

Mind Immersion Heater． 350. $300 / 240 \mathrm{v}$ ．Bonta full cup in sbont two minutes．Uee any wocket or
lamp holder．
Have at bedalde for lea，baby＇：food，etc． 81 －25，poot and losurance 14p．12v．car model aloo svaliable same price．Jus

SNAP ACTION SLIDE SWITCH Rated Ba．240v．Made by Arrow．Type vacuums，etc．Sp each， 10 for asp．

NUMICATOR TUEES

For digital instrumente，connlery，timera，

＊ 12 way sus－miniature

 MULTI－CORE CABLET．0076 copper cores each core P．V．C．Inmulated and of difierent colour．P．V．C．covered overall and approx．3／16in．thict．Price 503 per yand

LIGHT CELL
Almoot zero reatetant in sun＊ light increacee to 10 K Ohms realo seaded． $81 z e$ approz． 1 in ．dia．by tin．zhick． Rated at 500 MW ．Wire ended． 43 y with chrcuit． Atso ORP 1211 ght cell 46 p ．

THE FULL－FI STEREO SIX

The amplition
You $w i l l$ bersation of the mer You will be smazed to the fullneas of reprodoction and at the added qualitien your recorde or tuner will reproduce．Bullt mounting on plinth this amplifer uses an integrated soldd state circuitimith an oatput power of 6 whit R．M．8．eplit over the two channeis．The amplier is ical or mee wian gorma olume and tone controls also switching for Mono to Btereo，tuner or plek－ud． UNREPEATABLE PRICE Is 380 plus 200 poot and insurance．Bimulated teat cablinet $11 \cdot \mathrm{~s}$（poot free when crdered with chamis）．

DISTRIEUTION PANELS

Juat Fhat jou need for wort bench or lab．
tandard 13 amp fused plage and on／ofi switch with neon warning lieht．Bupplied complete with 6 fett if tex cable．Whred up ready to wort． 28.8 plua $28 \mathrm{p} P$ ．

Imithe 84 hour 8 on／8 of Tise switote．Thle ts the popals－ model．tured in the Autowet and Morphy Richarde time ©0 cycle．Contacts awith up to 13 ampe．Price Aivis

TANGENTIAL HEATER UNITS

Thla heater unit is the very latest type，moat efficient，aod quilet running．Is as atted in Hoover and blower heaters coating 215 and mope．We have a few ouly Comprisen motor，impelier， $2 \mathbb{F}$ ．element and 1tw，elernent allowing switchins ． 2 gnd $3 \leq W$ ．and with thermal safety cutout．Can be fitted into any metal bine
 2 kW ．Model as bove except 2 hllowate e． 50 Don＇t mise this．Control B－itch 55 s ．P．\＆P． 40 p ．

POCKET CIRCUIT TESTER
Teat continulty for any low reaistance chrcult，house wiring car eiectrics．Tente polarity of diodes and rectitiers．Also ldiea sop or 2 for soo post gatd．injector（circuit supplied）

COMPUTER TAPE

2，400ft of the Beat Marnetle Tape money can buy－users claim food reanlts with Video and cound．1in．Fide 31.00 plue 39p pont and inurratice，with cametic．I In wide $i 1.00$ plan 30 p pont and taith each plus a0p poat and inmorance．

THIS MONTHS SNIP

MULLARD I．F．AMPLIFIER
3 tranaistors， 10 tuned circuitn，Mulard Ref．No．LP L65289．Prequency not known but belleved to be around 405．Mounted on printed elreult

RADIO STETHOSCOPE

Rasieat way to tault find－traces sifnal from werial
to eppeater－when signal etope you＇ve found the
tauit．Use it on Redlo，TV．
amplitar，maphing－eom－
plete Eat comprises two apecia．
ding probe tube and crystial
earpiece．t in in tetho
extra poul and tns． 200 ． 75

CAPACITOR DISCHARGE CAR IONITIO N

 in improved and even more effcient verulos（Proctioal

 for 6v，vehicies．A－At plue 20p．

TYPE 25 RELAYS

Theee are miniature relayn．sise approx． 1 hth inch hich $\times 11^{\prime \prime}$ wide x \＆deep． 4 change over allver／gold contacts．Contact rating lamp 100 v D．C．Fitted with \＆plantic cover．Coil operate： approx． $200 \mathrm{Mr} \mathrm{D.C} .\mathrm{avalable} \mathrm{with} \mathrm{the} \mathrm{following} \mathrm{colle:-}$ 28 ohm for $1 \mathrm{v}-2.5 \mathrm{v} \quad 45 \mathrm{ohm}$ for $4 \mathrm{~F}-7.6 \mathrm{v} \quad 52 \mathrm{ohm}$ for $4.9 \mathrm{v}-6 \mathrm{v}$ 90 ohm for $5.5 \mathrm{v}-11.6 \mathrm{v} \quad 150 \mathrm{ohm}$ for $10 \mathrm{v}-15 \mathrm{v} \quad 580$ ohm for $17 \mathrm{v}-86 \mathrm{v}$ 1250 ohm for $27 \mathrm{v}-44 \mathrm{v} \quad 3500$ ohm for $31 \mathrm{v}-60 \mathrm{v} \quad 6800$ ohm for $27 \mathrm{v}-44 \mathrm{v}$ 75 each． 10 for 88.75 ．Aino one whith 16,800 ohm coll but thin han only 2 beavy duty change over gold contecte．Price $\mathbf{3} 1 \cdot 4$

mullard audio amplifier module

Usea 4 trangintors，and has an output of 750 mW into ohm apaskers．Input reitable for oryatal inic．or pletrop． 9 volt battery operated． 8 ire 2° lonR x it wid $\times 1^{-1}$ high．SPPCIAL 8NIP PRICE 00 pench .10 for 15.

0－8 AMMETER

2in．equare full vialon for fuak moanting．Moving fron ingtroment．Ideal for charger．Price 45p each． 10 tor 9 ． 20.

AABT ALABX
SDTPL CALCULATOR POWER SUPPLI UNIS Te reodve thea and oflor featerch lite prompdy sond sprodimeto feoted pitoe and we will rofund any change．

Verchoarl．We are now etocking thin in varlous alizen．Pricen followa：

			0.1		0.15
2f \times 8\％	＊		820	．	189
21×5	．		815	－	88
31×51	．		犋	．	4t
8 \％$\times 5$	．		75	．	\％7
17×21	\cdots		789	．	57t
17×81			100p	－	$7{ }^{\text {P }}$
17×5（plain）	\cdots		－	．	750
$17 \times 3 \frac{1}{\text {（plain）}}$		．	－	－	884
17×24（plain）			－		87\％
$2 \mathrm{t} \times 5$（plain）			－		174P
21×31（plain）				．	15
Pin intersection	－01		476		4719
Bpos face cutter	．		8710	＊	87\％
Plit 50 pine	．	，	301	．	30

Glas enceed，ewliches opersted by external magnet－gold welded coptecta．We can now ofter －trpes：
Wintare， 1^{\prime} long \times approximately $\|^{\circ}$ dlameter． Wir make and break up to AA up to 800 V ． Price 11．5 each，ard dozen． 2° long x diameter．The will break currents of up to 1 A ，voltage up to 250 V ． Price 10 p each， 00 p per dozen．
Risk．Flat type，ge loog，jast over $H^{\prime \prime}$ thjck， Aettened out，io that it can be fitted into ： nmallins apace or a larger quantity may be packed Into syuare colepold．Rating 1A g00V．Price 80 each， 8 per dozen．
8mall ceramic magnetn to operate these reed wirches op each， 000 dozen．
iny hod Lolers．Solenoide on moulder bobbing thin magnetic ahselds－printed efrcuit of panel mounting，
R100．Coll Realatance Reel firtrehea Prier $\begin{array}{llll}71005 & 2 \mathrm{~K} & 1 \text { normally open } \\ 81916 & 6 \mathrm{~K} & 1 \text { nornaly open }\end{array}$ $05009 \mathrm{~K} \quad 1$ normailly cloped 78 050031500 \＆K ohms 1 normally open 62040 1500 \＆ 800 ohmi in normally open 58 normall open reeds ．lthis opolenold．Opertie on 600 mW ．Coil redetance $9 K$ ohma．Price 41－95 each．
Irultulo Roed Reley．Ret，081． 2 normally open 1 normally cloned coil realetance 50 ohnus．Price 7ib． Fisostat．Thls is a thermontat with Bencor on the end of long caplliary tabe．The temperature range is $50-120^{\circ} \mathrm{C}$ ．opprox．The oetting in by apladle for pointer knob（knob not supplied）． The fensor can be immerned in the liquild or can be fixed to the container or an when used on an heating element．Price 06p each， $85 \cdot 8$ for ten Many other thermontata avalable plene requent Hat．

KITS FOR PREVIOUS PROJECTS
Unleas otherwiee thated，Elta contain elec－ sroaie parts only．The case and special itema can be obtalned localy．Aine reterned for refund if construction has not been utarted．We reserve the right to sobetitute to at to avold undue delay．

HONE SENTINEL INTRUDER ALARM
Electronlo Componente with cane $\mathbf{2} \cdot 76$
SMAP INDICATOी ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．75p．
WINDSCREEN WIPER CONTROL
Components ficluding metal for chande RECORD PLAYER
Alt components，but not case，londspe aker， record deck of plek－up 鲇－50
DEMO DECK \＆6．75 POST PAID
FUZ B0X ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．SI－85
PHOTOGRAPHIC COLOUN
TEMPERATURE METIR
12.65

TEMPENGTURE ． 5
REMOTE TEMPERATURE
COMPARATOR 4.25

ELECTRO LUUGH ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 8
TRANSISTOR MICROPHONE ．．．．．．．．．．． 1.70
GUTO ALERT
4 olectronic parte and metal brectet 5 en
RAIM WARNING ALARM
All olectronle parts and chamena 11.80

WA－WA PEDAL \qquad
OARKROOM TIMER 2－4

SIGNAL IWJECTOR 64．50

SOIL MOISTURE METER

Where pootage in not utated then orders over e5 are poat tree．Below 25 add 80p．Bemi－ conductore add 5s poist．Over 21 post free．
B．A．E．With enquiries please．

J．BULL（ELECTRICAL）LTD．
（Dept．E．E．） 7 Park Street，Croydon CRO IYD Callort to：192／s Tamworth Mond，CROYDON
 FOR WORLD WIDE KECEPTION. Oniy put
into production after incorporation of every concelvable poselble up-to-date technological Improvement had been carefully considered and thoroughly omamined, So advanced it will probably make your propent Padio seom like a "crystal set' 1 li's far better than any 6-wave radio fren they have producedi Wereamost tiving them away at cs.e7-s mere compare performance and value with that of 634 radiosl instant refund if you are not astounded! Puper and sweeter tone than evert Much wider band ppread than hitherto for "pin-point" etation eelectionl Once asain the Russians have proved their fantastic ablify in electronies-brilliantly raflectint cheir advanced micro-cicuitry techniques in the field of spaceship and satellite communications. YOU GET THIS AMAZING SET FROM US AT A PRICE THAT BEARS NO RELATION TO TRUE VALUEI Yes, 6 epparate wavebind including Stendard Long, Medium and Short Waves to cover the world! Unigue side control wivebund eplection unit gives incredible esese of station tuningl Thousends of different eransmissions and stations at Your fingertipe 24 houre aday, even messages from all over the world, Separste ON/OFF volume and Treble/Bass tone controls! Take it anywhererums economically on standard batseries. Internal ferrita rod aerial plus built-in telescopic aerial extending to full 33 tin length. It's aleo a fabulou: CAR RADIO-any speed requires no additional aorial. UNIOUEI Elegant Black, White and Chrome finished case. SIZE IOtin. $x \operatorname{Bin} x 3 \notin i n$, overall approx. Magnificently designed, made ro sive years of perfect sorvice. With WhITTEN GUARANTEE, manual with simple operating instructions and

Also let $37 \lambda 1$ Hieh Holborn, LONDON, W.C. 1 (Thurs. 7). Both stores open from MONDAY-SATURDAY 9 a.m.-6 p.m.

NOW BUILD ON! - WITH LST

FEATURING SOME OF THE MANY COMPONENTS FROM THE FREE LST CAT. HAVE YOU SENT FOR YOURS YET!?!

TRANSISTORS
Wo stock all popular eypes but how about our INTRODUCTION KIT \&I-consisting of: OC71, OC44, OC45, AC128, BC107, 2N2926. OC72 incl. data and connection chare. ORDER AS PACK NO: EEI

> DIODES INTRODUCTION KIT 50p $2 \times$ OABI, $2 \times$ OA $2004 \times 1 \mathrm{~N} 4001$ (All recently used in EE projects) ORDER AS PACK NO: EE2.

VEROBOARD
36 square inches total area (approx) consisting of 11 and .15 matrix ORDER AS PACK VIO:

IC AMPLIFIER
PLESSEY SL403D WITH DATA AND CIRCUIT INSTRUCTIONS
ORDER AS 5L403D

CAPACITOR PACK

10 popular values of capacitor including polyester and electrolytic good starting stock! Normal Cat. price over 65p
ORDER AS PACK EE4

PHOTORESISTOR ORPII
Price includes data sheet. (German LORO3 type)
ORDER AS PART NO: LDRO3
Cl.50 NEON PACK

NEON PACK \quad 50p bulbs 65 Vac 90 Vdc . Use 270 k resistor for mains use.
ORDER AS PACK: EES

BOOKS ETC:

Designers Guide so British Transistors: Data on 1000's of common types $\$ 1-40$ 110 Semiconductor Projects.
Marvelious book for the enthusiast: fl. 35

HOW TO ORDER:
Cut ous whole advert
Tick boxes for packs required.
Fill out name and address enclose payment. ALL ITEMS THIS AD. POST FREE.

PLEASE NOTE: Offer applies UK only-Overseas send extra postage. We will refund any overpayment All orders despatched day of receipt. Spares for all packs in our FREE catalozue.

LST ELECTRONIC COMPONENTS LTD., DEPT. E.E.,
 7 COPTFOLD ROAD, BRENTWOOD, ESSEX.

STOCMISTS-DISTRIBUTORS OF: IR,
WELLER, MULLARD, NEWMARKET;
BIEMENS, RCA, ISKRA VEROBOARD;
S-DECS, TEXAS, G.E.

BUDGET HIGH-FIDELITY STEREO SYSTEMS

 manasl recond player untt htled rtereo mono ceramic cartridge with diamond stylur and mounted in teat firm sh plinth with perspez cover and two matchlag teak finish loudnpeaker syntems. Aboluteiy complete and supplited ready to plug in and play, 800 amplifier han an output of 5 waita per channel with laputs for ceramic and magnetic pick up, hape and tuner also tape output sockel sid headphone socket. Controls: Baw, Trebl, meparately if required 116.25 . Carr. 40p).PREMIER STEREO BYSTEM "TWWO", as above but with Gartard BP25 MK Ill and magnetic cart ridge. ONLY 248. Cart. 21.75.

METER BARGAINS
MODEL GT-800 MULTIMETER A precision made pocket nized teat meter. dealy nuitedicta or electronic appliances. Supplied complete with tent lead and batteries. RANGEs-DC Voltages: 10, $50,250,1,000 \mathrm{~V}$ ($1,000 \mathrm{op} \mathrm{V}$). AC Voltage: $10.80,260,1,000 \mathrm{~V}$ ($1,000 \mathrm{opV}$).
DC Current: 1 th $\mathrm{A}, 100 \mathrm{~mA}$. Resintance: DC Current: ImA, 100 mA. Resintance:
$0 \cdot 150 \mathrm{~K}$ ohns. Decibel: $=10+22 \mathrm{db}$ (ait 0.150 K ohms. Decibel: $-10+\frac{22 \mathrm{db}}{}$

MULTIMETER 20,000 O.P. \mathbf{V}

 Featuren large eany-to.read meter, wide cholce of ranges. With tent leais, $250-600-2500 \mathrm{v}$. A.C. Voltagen $0-18-80-$ $100-500-1000 \mathrm{v}$. D.C. Carrent: $0-60 \mu \mathrm{~A}$ $25 \mathrm{~mA}-250 \mathrm{~mA}$. Reslitance: $0-6000$ ohma $0-6$ megohms (300 ohms and 30 Kohms , at centre acale). Capacity: $10 \mu \mu 1$ to
$.001 \mu\}$. 001μ to -1μ P. Declbeln $=20$ to +20 dB . 24.90 . P . \& P. 17p.
 MODEL CT-62 MULTITESTER RANGEE-DC Yoitages: $0,5,25,100$ $500 / 1.000 \mathrm{~V}(20,000$ ohme $/ \mathrm{V})$. AC Volt-
agen: $0, \mathrm{~s}, 25,100,500,1,000 \mathrm{~V}$ (10,000 ohmu/V). DC Current: $0,80 \mu \mathrm{~A}, 0,5$,
 6 M .60 M ohme. Decibela: $=20 \mathrm{db}$ to
+62 db in 5 ranges. $25 \cdot 62 . \mathrm{P}, \& \mathrm{P} .17 \mathrm{p}$ \Longrightarrow WELLER "ETPERT" SOLDER GUN. Saven time and stmplifiea
moldering in the home and ervice dept. Two powition trigger gives inatunt dual hest $100 / 140$ £3.95

"Markaman" Soldering Iron. Lightweight h"pencll bit Ideal for regular bench use and arou
wattas. 240 volt A.C. 21 - 80 P. d\& P. 15 p

VERITAS V. 313 TAPE HEAD DEFLUXER
 A munt for all tape users ! Tape heals become permanently niagneeized with conntant une:
thla lemde to bsckground noine that prevente perfect recordinga. Blmply applied to recording heal the V313 eaven head rree of magnetiam. Cleana £1•72 any tape head in seconds.
"VERITONE" RECORDING TAPE
specially manupactured in u.s.a. prom extra strong PRE-STRETCHED MATERIAL TEE QUALITY IB UNEQUALLED. TENBILIBED to ensure the mont permanent bace. Highly renistant to breakage, moiature, heat, cold or humidity. High pollshed apllee free finlsh, Bmooth
output throughout the entire audio range. Double wrapped-attractively bored.

 DT3 St B00 POLYESTER S7 TTE SI 8400 POLYESTER E1.87
 DTS $\mathrm{s}^{\circ} 1800^{\circ}$ POLYEATER 750 DT7 7° 2400 POLTESTER 21.25
 case (Lise ©S2.50) case (List 664) case (List \&39.50) Goldring GL75 (List $\mathbb{2} 88 \cdot 35$) with wire with coter

PREMIER HI-FI OFFERS

Rogers Ravensbrook 11 Stereo Amplifier in teak

Rogers Ravensbourne Stereo Amplifier in teak

Metrosound ST20E
Stereo Amplifier in teak
less cartridge (List 441-61) Garrard SP25 111 with Goldring G800 cartridge £38.50 £49.00 £28.50 £29.00 £15.50

SP25 MKIII SPECIIAL!

Garmipalap76
less cartridge

PREMIER 800 STEREO AMPLIFIER

A truly lugh quality ptereo amplifer-compare the Apecificatlon, compare the price. Output: 5 watts per channel. Frequency renponme: $30 \cdot 20,000 \mathrm{Kz}=2 \mathrm{db}$
Distortion: 1% Outyut Impedance 8 ohms nom. Input equatiser to R.I.A.A. Magnetic $4 m$ V. Ceramle 100 mV Tuner 100 mV . Tape 100 mV . Tape out 150 mV . Din sockets for Imputs and outputs. Controls: Rane, Treble Volume. Balance, Selector. Mono/Btereo switch Stereo headphone nocket. Attractive alim line desigi black leatherette cabinet with aluminium front pancl Elze $12 t^{\circ} \times 6 t^{\circ} \times 21$
only £16.25 cart sop.

HI-FI STEREO HEADPHONES Designed to the highent posible slandard. Fittecl 2fin. speaker innts with
molt pedded ear mufls. moft padded ear muft. 8 ohma Impedance. Com: plete with 6 ft lead and ateren Jack plug. $=2247 \begin{gathered}\text { P. } \\ 25 p .\end{gathered}$
BTEREO ETETHOBCOPE EET LOW imp. 21.25 P.\&P. 10p MONO STETHOBCOPE SET LOW Imp. D2p. P. \& P. 10p
 E.M.I. 13×8 in HI-FI SPEAKERS Fitted two 2 Hin tweeters and croanover network. Imped ance
8 or 15 obm. Hendling capa-E3-47
P. \& P. 40 P
VERITAS V.I49 MIXER
Garrard $2025 \mathrm{~T} / \mathrm{C}$ with Sa 97
Stereo Ceramic Cartridee Sereo 2025 T/C with $£ 12 \cdot 45$ ready Ceramic Cartridge

Carriage and Insurance 50p extra any item.

वरुणास

everyday electronics
 PROJECTS ... THEORY

SELF SERVICE

The enthusiast who has more than a passing or casual interest in electronics will require a few items of test and measuring equipment. These will aid him when building projects, carrying out experiments, and fault finding. Such requirements are not lavish, and can be limited to about four or five items. Furthermore these can be reasonably simple in design, and can be built by the constructor himself, with real saving to his pocket.

Everyday Electronics will be publishing designs for such items of equipment, from time to time. And this month we make a start by including full details of a mains operated power supply unit.

ON TAP

As we have already declared, many useful electronic devices and gadgets can be battery operated and if proof of this is required, look over the projects we have published to date.

Dry batteries have obvious advantages, but if a fair amount of practical work is intended, it will be found very convenient to have permanently on hand a d.c. supply that can be easily varied to give any output between zero and 16 volts. In other words, a "stand-in" for any of the commonly used batteries. So we recommend this power unit as an important acquisition for every constructor's workshop.

PLUNGE IN

We hope some of the enthusiasm shown by our Memory Store writers has been infectious and that many others have, as a result, been encouraged to take the plunge for the first time.
The wife of one reminiscing scribe has indeed taken the plunge-with pen, not soldering iron though-and her cautionary tale is published for the benefit of other wives!

WOMEN'S LIB

But in this enlightened age-equality of the sexes and all that-why should we assume electronics to be an exclusively male hobby?

In industry, the fair sex plays a prominent part in the manufacture of minute devices like transistors and other components; also in the wiring up and assembly of complete electronic equipments. Feminine touch and dexterity (and patience!) are assets in such operations.
There seems no logical reason why these attributes should not be channelled into a recreational activity as well. So perhaps the wife could be recruited as an assistant-or does the thought provoke cries of horror from hubby!
Seriously, there must be quite a number of women who are interested in electronics and who actively participate in this hobby of their own accord. We would like to hear from you, Iadies.

Our May issue will be published on Friday, April 21

EDITOR F. E. BENNETT - M. KENWARD - B. W. TERRELL B.Sc.
ART EDITOR J. D. POUNTNEY - P. A. LOATES - S. W. R. LLOYD
ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. I NO. 6APRIL 1972
CONSTRUCTIONAL PROJECTS
SIMPLE CALCULATOR An interesting educational project by Mike Hughes 302
D.C. POWER SUPPLY UNIT For testing constructed gadgets by F. C. Judd 320
BABY ALARM Remote oudio monitor by A. Lester-Rands 326
GENERAL FEATURES
EDITORIAL 300
RUMINATIONS by Sensor 306
SHOP TALK Equipment and component buying by Mike Kenword 307
THE TAPE RECORDER How it works by John Howcroft 308
WIFELY WOES A constructor's wife odvises others by June Burn 313
TEACH-IN Port 6-Semiconductors: Diodes by Mike Hughes 314
FIFTY YEARS OF BRITISH BROADCASTING How it all begon 330
IN-STORE WATCH-DOG Electronic food protection 330
TEACH-IN HALF TERM TEST See whot you reolly know 333
READERS LETTERS Comment and criticism from you 334, 337

Components

Resistor
R1 $1 \cdot 2 \mathrm{k} \Omega 2=10 \%, \frac{1}{4} \mathrm{~W}$ carbon
Variable Resistors
VR1 300S:
VR2 5ks2

All linear wirewound

Diodes

D1-4 OA81 or equivalent germanium diode
D5 IN4148 or equivalent silicon diode

Miscellaneous

ME1 100 /A to 1 mA edgwise level meter (see text)
S1 single pole single throw toggle switch
B1 9V Battery. PP3 type
Small Terry clip to hold battery, battery connector, pointer knobs, materials for case. connecting wire.

CIRCUIT THEORY

The complete circuit diagram is shown in Fig. 1. Potentiometers VR1, 2 and 3 are all working in their true mode-as potential dividers. Let us assume that we will be running off a 10 volt supply line (in actual fact it does not matter what this voltage is in the final unit). The potential at the wiper of VR1 can be set between zero and 10 volts the value being in direct proportion to the degree of rotation of the wiper. By calibrating the knob of this potentiometer with numbers from 0 to 10 we were able to accurately set a voltage to represent the number in question (we call this voltage the "analogue" of the number).

Potentiometer VR2 takes the potential at the wiper of VR1 and in turn we can tap cff any proportion of this potential depending on how far we turn the control of VR2. If we connected a voltmeter between the wiper of VR2 and the common rail (Fig. 2) we could read the voltage

Fig. 2. Theoretical circuit to show the basic operation of the Simple Calculator.
that was left. Let us also calibrate the scale of VR2 with numbers 0 to $1 \cdot 0$ in $0 \cdot 1$ divisions. Set VR1 to five (the potential at its wiper would be 5 volts). Now set VR2 to 0.5 (i.e half way)-the potential read on the meter would be 2.5 volts. The circuit is actually multiplying 5 by 0.5 to give an answer 2.5 but of course the answer is shown as an analogue voltage. You could work out a similar state of affairs by setting the number 8 on VR1 with $0 \cdot 4$ on VR2; the answer would be shown as $3 \cdot 2 \mathrm{~V}$.

FINAL DESIGN

Obviously for the system to be accurate if battery voltage must be stable and als at $\quad i$ sight it would appear that the supply . . e ought to be 10 V . The latter point is not sarily true because we could make a volts. which was arbitrarily calibrated in "numbe as opposed to real voltage levels. In practic however we need not worry about the battery voltage at all if we use a potentiometer (VR3 Fig. 1) to convert from the analogue voltage back to a number. This is done by having VR3 as a potential divider across the supply voltage. It is possible to set the wiper so that the potential produced by it exactly equals the potential at the wiper of VR2 and the answer is read off on the dial of VR3.

Fig. 1. Complete circuit diagram of the Simple Calculator.

We detect that the potentials at the two wipers are the same by detecting current flow. When there is no potential difference (i.e. potentials at X and Y are the same) no current will flow through the meter and diode circuitry. If that at VR2 is more positive then current will flow through DI, into the positive terminal of the meter and out through D2 (R1 is only there to protect the diodes from excessive current and D5 protects the meter movement). On the other hand if the wiper of VR3 was the more positive, current would flow the other way through D3 again into the positive terminal of the meter but out through D4.

Note that the meter will always read a positive current irrespective of the direction of current flow by virtue of the diode bridge. To find the answer to a multiplication all we have to do is adjust VR3 until the meter shows zero current flow and then read the proportion of rotation of VR3 off its dial.

OPERATION

As with a slide rule you can use the instrument to multiply any magnitude of numbers but you must decide for yourself where the decimal place will occur in the answer. In practice you should always attempt to set the number whose first digit is closest to 10 on VR1, otherwise you might find that the potential of the answer may be less than one unit of calibration and hence difficult to read on the dial.
Because of the independence of the meter to direction of current flow the polarity of the supply is unimportant and because everything is measured in terms of degree of shaft rotation of potentiometers and VR3 is run off exactly the same voltage as VRI the actual value of the supply is unimportant. In practice it ought to be at least $4 \cdot 5$ volts to ensure sufficient current through the meter to enable one to identify an obvious zero, hence 9 volts will do. The prototype used a small PP3 type battery. Current drain is very small and if an on/off switch is provided the life of the battery ought ṇot to be much less than its shelf life.

CONSTRUCTION

The potentiometers should be wirewound types and must be linear law. Note that VRI has a value of resistance very much less than VR2 or VR3 although the actual values do not have to be the same as the prototype you should keep this ratio of values about the same or greater i.e., VRI can be anything in the range 100 to 300 ohms while VR2 and VR3 can be 2 kilohms to 5 kilohms.

Diodes D1, 2, 3 and 4 must be germanium types to avoid a wide "dead band" on the meter and D5 must be a silicon type because it must not pass forward current until 500 mV is placed across it. Most edgewise level meters may be used for the meter; the sensitivity should be
between $100^{\mu} \mathrm{A}$ and lmA; actual sensitivity controls the ease of detecting small variations from zero current. Resistor Rl can be in the range 500 ohm to 1.5 kilohm.

The layout and wiring of the unit is shown in Fig. 3. All wiring is self supporting and layout is not important; the only important things to watch for are the polarities of the diodes and the meter, and to which ends of the potentiometers wires are connected-this is vital otherwise calibration will be reversed! As previously stated the battery polarity is not important in this circuit.

SCALE MARKING

Different types of potentiometer have different overall degrees of rotation and this must be determined for the types you have. Remember that there may be a dead portion of a few degrees at either end of the track. Use an ohm meter to determine the active degree of rotation you have and measure this using a pointer knob moving over a protractor. Once you have found this value (it should be between 260 degrees and 300 degrees, depending on the type of manufacture) divide it by 10 and then use a protractor to exactly mark off ten equal divisions round each potentiometer fixing (Fig. 4). These can be drawn in as radial lines over which a large pointer knob can move.

It cannot be over emphasised that this is the most critical part of the job if the instrument is to be at all accurate. Further subdivisions can be placed inbetween the major divisions if required.

The prototype used a piece of 14 gauge aluminium for the front panel (Fig. 5). Careful scrubbing with dry wire wool in a horizontal direction will produce a satin finịsh which can be

Fig. 4. Potentiometer control marking. This should be carried out as accurately as possible.

Simple Calculator

Fig. 3. Layout and wiring of the Simple Calculator. Battery BI is mounted in a Terry clip fixed to the front panel.

View of the completed Simple Calculator showing the designations affixed to the front panel using Letraset.
immediately lacquered with aerosol polyurethane varnish. This provides a good finished surface which can be marked using Letraset. The surface can then be given a final coat of varnish to protect the lettering. A practical tip to ensure reasonable accuracy is to adjust the zero set of the meter (in simple level meters this may be inside the case) so that the needle is some way up the scale in its neutral position; this makes it easier to determine a zero current position.
A simple wooden case can be made to house the completed unit as shown in Fig. 5. The hole for the meter may differ according to the type of meter used.

APPLICATION

The knobs of the prototype were labelled A, B and C as shown in Fig. 5. This way it is easy to give instructions on how to use the calculator. Set the two numbers to be multiplied together on A and B and then turn C until minimum current is seen to flow through the meter; the answer can be read off dial C.

Reciprocals can be found by setting C at 1 , next set the number whose reciprocal is required on B and turn A for zero current-the answer is shown on dial A. An extension of this enables one to carry out divisions where the answer must always be a decimal fraction less than unity. For example 2 divided by 3 . Set 2 on C and 3 on B and turn A for zero current. The number displayed on A will be approximately $6 \cdot 6$ this means that the answer is $0 \cdot 66$.

If you wish you may subdivide the main divisions of the scale into ten finer units thus enabling better accuracy with two digit numbers. Obviously the larger the diameter of the scales the easier it is to work accurately, but there is a limit to the ultimate accuracy of the calculator. This is due to the linearity of the potentiometers and the ability of the meter to detect very small current near zero-the latter could be improved by using a more expensive $50 \mu \mathrm{~A}$ meter.
Cover picture: Blackboard and easel kindly loaned by A. W. Gamage Led., Holborn

Ruminations By Sensor

Time to Stare

So restrictions on TV broadcasting hours are to be removed. I'm all for freedom and removal of restrictions but 1 am very suspicious of this move. There is, already, much more than enough TV for me, I don't want to pay for any more, and if programme time is increased someone has to pay. We all know who foots the bill, like it or not, in the end. As I see it, commercial television companies will sieze the opportunity to sell more advertising time and will need to make programmes to fill in the slots between the advertisements. Inevitably, many of these new programmes must be in the "popular appeal" i.e. lowest common denominator class in order to capture the largest audience for the advertisements. So we are
unlikely to see anything different on our screens-just the mixture as before-but more of it.
The B.B.C. will want to compete with the commercial companies for the mass audience and must, therefore, increase its output of "popular" programmes; consequently, there will be a call for an increase in the licence fee. The cost of additional advertising on I.T.V. will be passed on to the consumer, by way of higher prices, resulting in a further increase in the cost of living. What will the viewer get out of it, more mush for morons?

Unnatural Breaks

The other evening I felt in need of some relaxation and I tuned in to I.T.V. to watch Appointment with Fear. The Hammer Films spine-chiller looked quite promising but didn't stand a chance; three breaks for advertisements made sure that any feelings of terror that might have been aroused were quickly dispelled. Rhapsodies about beans, margarine and pet food are unlikely to chill the marrow-at
least, not in their currently presented form, and but for the advertisements I could have been in bed ten minutes earlier.
I can switch off, I can choose my programmes but I cannot choose the advertisements that will interrupt my viewing and, perhaps, spoil my carefully selected entertainment. The B.B.C. has recently stepped up the advertising of its own programmes. The programmes have not been interrupted, as yet, for the advertisements but I find them irritating, nevertheless.
What does it all add up to? In my opinion, the entertainment value of television viewing is declining. I may be getting old and crotchety and a bit neurotic, but I look back with nostalgia to the days when full length plays and documentary films were regular features of evening viewing. We complained, from time to time when old films were shown too frequently, but those were surely the great days of television. Somewhere along the way, standards have slipped; it seems such a shame-electronics deserves better than this.

ANUMBER of readers have written to us asking for advice when buying a test meter. Firstly let us say that we will be publishing a design for such a meter at some time-it will be a simple device, easy to construct and providing ranges that would be used most for testing our designs. For those who still want to buy a meter the following advice may be of some assistance.

Firstly most meters are only as good as the price tag, by this we mean that it is probably best to buy the best you can afford. A good meter properly used and carefully treated will last a lifetime and if you buy a good one 10 start with you will never regret it. How do you know the good ones from the bad? The ranges available and the ohms per volt are the best way to tell $(20,000$ ohms per volt or more is good).

You can ignore the dB range and the capacitance range, unless you really know what you are doing these are useless so do not buy a meter just because it has these two extra ranges. We would not advise anyone to buy a meter costing less than about $£ 3$-you could probably make one as good for less.

If you can find a 20,000 ohms per volt (on d.c. ranges) meter with the following ranges it will satisfy most requirements for transistorised equipment testing and servicing:

D.C. Volts 0.500 volts in about 4 ranges

A.C. Volts 0.500 volts in about 3 ranges
D.C. Current 0.500 mA in about 3 ranges

Resistance $0-5 \mathrm{M} \Omega$ in 2 or

3 ranges
You may find it difficult to obtain a 500 mA d.c. range on the less expensive meters, you could settle for a maximum of 250 mA .

The Normatest 2000 multi-range

If you want something really professional. for $£ 17 \cdot 50$ the Normatest 2000 multi-range test meter, that has recently been announced in this country, has 41 ranges, is 20,000 ohms per volt d.c. and 4,000 ohms per volt a.c. It covers the range $0-6 \mathrm{~A}$ d.c., 0 600 V d.c., 0.6 A a.c., $0-600 \mathrm{~V}$ a.c., $0-5 \mathrm{M} \Omega$ in 6 ranges and has a maximum error of ± 2.5 per cent for the d.c. ranges. The meter can also be used to measure temperature (with the addition of a separate thermocouple) and gain -20 to +46 dB . The price includes a carrying case and test leads.

We hope this information will be of some assistance, now let's look at possible problems arising from this issue.

Simple Calculator

You can hardly go wrong with the Simple Calculator construction, it will even work with the battery reversed! One point to watch is that you use germanium diodes for the bridge and a silicon diode for meter protection. The reasons for this are stated in the text. Almost any small meter will do and there are a number of 1 mA range ones available from many suppliers.

Incidentally a centre zero meter could have been used without the bridge but this could have added to the cost. Also the article explains the bridge principle so you can learn something from it, we try to be educational as well as practical!

The wirewound potentiometers can be any rating-you will see
from the photo's that one used in the prototype was much larger than the other two-this does not matter. Incidentally you will find it difficult to buy \log wirewound pots as they are not available, so the ones you do buy may not be marked linear, if you see what we mean.

The knobs used on the prototype are home made and are not available, however there are plenty of fairly large pointer knobs that are available.

Baby Alarm

The Newmarket PC2 amplifier module for the Baby Alarm is available from Home Radio and LST Components Ltd., incidentally L.S.T. are the distributors; prices may vary slightly its best to check first. Other than the module there should be very few buying problems.

As stated in the text the case used for the microphone does not have to be as large as it is and any small crystal microphone could be used. There are some available from suppliers for 60 p or less-both the miniature types and the plastic encased types; this is probably cheaper than buying an insert and a case. If you do buy a complete microphone you will need a line socket to connect the microphone lead to the screened lead that feeds the amplifier.

Power Supply

The transformer used in the Power Supply Unit should be of reasonable size to fit the case design and a suitable 13.5 V secondary type is available from Henry's Radio Ltd. The meter used in the prototype is a 1 mA meter that has been calibrated 0.20 V by the author. This meter can be replaced by a 20 V f.s.d. meter that is available from G. W. Smith Ltd. Three things to note if you use the 20 V meter; it costs the same as the 1 mA meter, the two multiplier resistors R4 and R5 ($10 \mathrm{k} \Omega$ each) are replaced by a wire link and, the only point against, the meter is not so versatile if you want to use it in any other equipment at a later date.

Almost any 50 p.i.v. (or greater) bridge rectifier that can pass about 200 mA will be suitable for the power supply or, as stated in the text it can be replaced by four individual rectifiers wired up in a bridge; this may be cheaper.

Ove of the most important developments in modern communications is the maynetic lape recorder: Now cäpable of recording, preserving and reproducirg high fidelity sound. Besides being a valuable instrument in manv scientific projects and daily commumication media, tape reccrders have become part of the everyday domestic somind system. Moderin developments, such as cassetles and more compact battery powered recorders have made taped raterial bery simple to handle, use and store.

HISTORY

The "magnetic sound recorder". as i: was briginally known was lisst expounded in theory by Obe:lin Smith in 1888. Smith devised a machine which would apply metallic dusi to a cotton cord on which sound could then be recordec by a magnelic: induction process. The machine did not. however see the light of dey.

It was not until 1898 that the first practical magnetic recorder vas built. it used a steel wire as the recording media. This "wire" recorder was produced hy a Dane named Valdema Poulson. The recorder used a mechanical electrical meatus of recordingeand reproducing sound since, at that tims, no electronic means were available: the valve aad not been invented.

Sound was recorted trough a carbon ricro-
phone comected antio an electric circuit powered by a large dry battery. To replay the recorded sound a set of headphones was substituted for the carhon microphone.

Little more was heard about tape or magnetic recorders until the 1930s when Dr. Karl Stille developed an aledionic magnetic recorder. Dr. Stille used steel tape in his machine and similar machines were deweloped and used for a numberof years by the Br ish Broadcasting Corporation.

During the second World War the Allies made use of steel wire recorders while the Germans developed a plast $=$-based. metallic oxide coated tape; this was the forerunner of today's mag. netic tapes. The stecl wire medium is noiv virtually extirct. liut was used until quite recently in dictatiug machines.

MAGNETIC TAPES

The modern uecording tape consists of a special plastic hase normally acetate or polyester with a coating of ferrcus oxide or similar metallic oxide. The partices of metallic oxide can be incuod by a magnetic field so that they possess a similar magerti= field. The magnetic impresston in these part cles can represent a certain solnd a d, until the tape is disturbed by additional stragnetic forces the recorded magnetic impression will rersain on the tape.

To apply the necassary force to magnetise the

Fig. 1. The basic method of creating a magnetic field on a recording tape.
oxide particles on the tape so that these represent a piece of music or speech we apply the theory of electromagnetism. Magnetism can be created by passing an electric current through a coil of wire, preferably wound around a soft iron core. In the case of a recording head for a tape recorder this core usually consists of a number of soft iron laminates. The amount of magnetism can be varied by the amount of current flowing through the coil. To change the sound waves into an electric current a microphone and an amplifier are used. Sound waves acting upon a microphone mechanism produce a very small electric current. The amplifier magnifies the current produced by the microphone and, in turn, passes it on to the recording head of the tape recorder. The recording head transforms the electric current into a magnetic force. As the sound source varies in frequency and volume so also does the current and the strength and frequency of the magnetic signal at the recording head, and hence on the tape (Fig. 1).

RECORDING HEAD

The metal core of the recording head forms almost a complete circle, with the exception of a very small gap at the point where the tape will pass by it. The space created by the gap is closed by the ferrous oxide coating on the tape resting against the recording head, making a complete 360 degree magnetic field.

Thus the particles on the tape will acquire a magnetic impression or field similar to the signal being created by the current flowing through the coil. As the current varies, so does the magnetic field and, in turn, so does the magnetic impression on the ferrous oxide particles on the tape. During a recording the tape is passing the recording head at a constant speed. The impression of the magnetic particles on the tape is, therefore, a constant process.

BIAS

Unfortunately although the above description is true, in transforming sound waves into magnetic patterns on a tape, a problem which is fundamental to magnetic recording was encountered. This problem had to be solved before magnetic recording could be considered really satisfactory.

It was found that, when a magnetising force is applied to ferrous material the degree of magnetisation produced and retained is not proportional to the applied magnetising force. Beginning from zero, the amount of magnetisation first tends to rise very slowly, then rises more rapidly, then tapers off again as the ferrous material becomes magnetically saturated.

This occurs for magnetisation in either direction, so that the overall curve of induced magnetic flux plotted against magnetising force is as shown in Fig. 2 (curve (a)). The diagram also illustrates what happens to a sine wave signal which is passed through such a recording system.

For clarity, the input is shown as a pure sine wave (curve (b)). When transformed into a magnetic pattern, then recovered for subsequent amplification, the kink in the centre of the magnetisation curve is found to have produced a kink in the signal waveform (curve (c)). The end result is very severe distortion in the reproduced sound.

To overcome this effect, it is necessary to apply a magnetic "bias" to the tape so that the signal does not, as it were, centre on the kinked part of the magnetism curve.

The earliest system of magnetic bias involves placing a magnet near the recording gap, or passing a direct current through the recording head, together with the signal to be recorded, which causes the signal to centre on one of the straight portions of the curve.

Fig. 2. Illustrating the distortion produced by recording without bias.

Fig. 3. High frequency bias recording system.
While a relatively simple method "d.c." or "permanent magnet" bias (as this system is called) tends to produce a recording with undue background noise. This is due largely to the fact that each discrete particle on the tape is magnetised in the same direction, so that the tiny pulses they produced are all additive and are heard as noise on playback.

HIGH FREQUENCY BIAS

Nowadays, all but the most elementary recorder's use a system of high frequency bias. A special oscillator in the recorder produces a high frequency signal well above the limit of hearing. During recording, this high frequency bias signal is fed into the recording head, along with the input signal.

Because the bias signal is at a very much higher frequency than the sound signal, the head is responding to a powerful magnetising force, even during instants when the sound signal waveform is passing through zero. This modifies fundamentally the way in which the particles on the tape respond to the sound signal.

In fact, as far as the recording head is concerned, the input signal is a composite waveform as illustrated in Fig. 3. As the tape passes across the gap in the record head, each particle is subject to one or more complete cycles of high frequency energy and is displaced bodily somewhere along its magnetising curve by the simultaneous presence of the audio waveform.

What each particle retains in the way of remanent flux would take far more space to explain than is available here. The end result, when the tape is played back, is an output waveform which is substantially free from non linear distortion, as in Fig. 3.

Because the particles are not all uniformly
magnetised in one direction as with d.c. bias, they do not tend to generate additive noise pulses as they pass across the replay head. The background noise with high frequency bias is therefore much lower than with d.c. bias.

ERASE SYSTEM

In most tape recorders, the high frequency oscillator incorporated to provide the bias is actually made to serve double duty. In a normal tape recorder the threading is arranged so that the tape passes over an "erase" head just before it reaches the record/play head. During replay the erase head is not in use. When a recording is being made, however, a strong signal from the high frequency oscillator is fed into the erase head, creating an intense high frequency magnetic field across the gap in its exposed surface.
The amplitude of this erase signal is made such that it magnetically saturates the particles on the tape in both directions as they pass across the erase gap. As they move out of the gap the magnetic cycling diminishes to zero and the particles are left with zero magnetisation. In other words erasure eliminates any previous recording so that the tape passes to the record head magnetically "clean".

REPLAY

To reproduce sound from a recorded tape is basically a reversal of the procedure and techriques used in recording it without the need for the bias. Where a current flowing through a coil can create a magnetic field, so too can a magnetic field passed through a coil create a current.

The tape is played back by passing it across the playback head in the same direction and at the same speed as when the recording process took place. (It might be noted that many tape recorders use a single head for both recording and playback functions.)

As the tape passes the gap in the playback head the magnetic impression carried by the ferrous oxide particles is induced into the play-

A modern stereo tape recorder.

Fig. 4. Block diagrams of two basic tape recorder systems. Left-the system using separate record and replay heads. Right-the system using a single record/replay head.
back head. This magnetic field creates a current within the head and this current is fed into an amplifier and then to a loudspeaker.

The amplifier normally has a special frequency response to compensate for any changes in amplitude of the audio signal due to the record and replay process. Just as one head can be used for record and playback function. Block diagrams of two basic systems are shown in Fig. 4.

TAPE TRANSPORT

The transport mechanism used in a tape recorder is an interesting and essential device. It moves the tape across the recording, playback and erase heads.

On very cheap machines tape movement is achieved merely by motorising the take-up spool, simple though this method may be, it is not very effective. The actual speed of the tape across the heads will vary according to the amount of the tape on the take-up reel. For this reason any tape recorded on a machine of this nature must be played back on the same machine. On another machine the sound would be distorted because of variation in the original tape speed across the heads.

The more usual method of transporting tape, is to have a driving shaft or capstan close to the heads. The tape is held in contact with the capstan by a pressurised idler (or pinch) wheel. The capstan is directly connected to a flywheel (to ensure a constant speed) which is usually belt driven from a central motor.

This motor, through the use of additional belts, also keeps the take-up spool functioning so tape does not spill once it leaves the driving capstan. There is normally a slipping clutch arrangement on the take-up spool. This allows the speed of the spool to vary according to the amount of tape on it so that it keeps pace with the capstan and does not apply too much tension to the tape as it leaves the capstan (Fig 5).

The supply spool is usually more or less free-
wheeling with just a little pressure on it to prevent it from unspooling tape when the driving capstan and take-up spool are stopped. Some tape recorders have two driving capstans -one at each end of the erase and record/ playback heads. This ensures a very high degree of accuracy in tape speed, which means more faithful reproduction of material recorded and played back.
Many modern tape recorders use three motors, one drives the capstan and is usually a synchronous motor which maintains a true speed constant to the mains frequency. The other two motors drive the take-up and supply reels. The operation of these two motors is governed by electro-magnetic switchgear to ensure the proper amount of tension on the reels so tape mishandling is eliminated.

FAST WIND

Almost all modern tape recorders are able to wind on and rewind the tape at a fast speed. In either of these modes the tape transport is concerned with but one purpose-that of getting tape onto one reel or the other as quickly as possible. The tape is not required to perform any electronic duty and is therefore lifted free and clear of the heads and released from the driving capstan mechanism. This allows the un-

Fig. 5. Basic mechanical arrangement of a modern tape recorder.

hindered passage of tape in either direction at fast speed. The mechanism lifting the tape clear of the heads also serves to protect the heads. The rate of wear under rewind conditions would soon render the heads useless.
In the fast forward mode, power is applied to the take-up reel. In the rewind mode the supply reel is powered. There is usually a slight braking effect on the opposite reel to prevent tape spillage should the operator decide to stop the tape.

Additional to the transport mechanism are tape guides which ensure proper alignment of the tape as it passes across the heads. Pressure pads are used to make sure the tape is held against the heads during recording and playback so there is no air gap between them. Both of these items help to ensure good reproduction of sound.

MULTI TRACK

Alignment of the tape across the heads is quite important particularly with the multi-track machines (two and four track). Originally tape recorders used just a single track, recorded across the full width of the tape. After playing such a tape it had to be rewound before it could be played again. The single track (which is confined to monaural recording) is used today for high fidelity requirements in professional and broadcast work.

FULL TRACK RECORDWG

Fig. 6. Various track arrangements. In the four track system gap 1 records tracks 1 and 4, and gap 2 records tracks 2 and 3.

The next advance was the half or two-track system. This means the recording and playback heads are only as wide as half the width of the tape (actually slightly less than half to allow for separation of the two tracks).
With the two-track system a tape could be played through one way, then turned over and played through again using the material on the second track. The two-track machine also opened the way for stereo tape recording using one track for each channel but only (as in the onetrack monaural system) capable of being played in one direction.

The underside view of a Brenell tape deck. This deck used three separate motors, one synchronous type for the capstan and the other two to drive each spool.

The four-track system solved the matter of letting one run a tape back and forth using stereo material. It also allows one to put a considerable amount of monaural material on a single reel of tape. This is done by ignoring the stereo mode completely and recording different monaural material on each of the four tracks (Fig. 6).

TAPE SPEED

The amount of material which can be recorded on a given length of tape can also be varied by the speed of the tape past the heads. Standard speeds in common use today are $7^{1} 2,3^{3}{ }_{4}$ and $1^{7} 8$ inches per second (in/sec). Other speeds are also used, such as 15 and $30 \mathrm{in} / \mathrm{sec}$ for sound studios and broadcast use. The faster speed is used where the utmost in fidelity of sound is required. The slower speed is only practical for voice reproduction and is used on some dictation machines or for recording lectures where fidelity is less important than extended playing time.

However, more advanced electronics and higher precision heads-at greater cost, of course-can offset the loss of fidelity at low tape speeds. Most modern domestic tape recorders offer high fidelity at $7{ }^{1} 2 \mathrm{in} / \mathrm{sec}$ however, and this means reasonable tape costs for those building up their own libraries.
It should be realised, however, that the quality of the recorded material will not always match the quality of the original when taping from discs. And, of course, there is a variation in the ability of different tape recorders to duplicate the original fidelity of the sound.

As can be seen the modern recorder is a long way from the Poulson machine of the 1890s and with the introduction of electronic noise reduction systems and advances in the mechanical and tape aspects the tape recorder will go on advancing for some time.

arrangement can lead to domestic friction. Electronic equipment may be functional but it most certainly is not decorative, and all those trailing wires do have a nasty habit of getting entangled with the cleaner!
If he is messy with the solderingiron, try to get some newspaper between the carpet and the flying solder-it's hell trying to get blobs of the stuff out of the Axminster/Wilton. I have yet to solve the problem of getting it off of the wallpaper, although this can usefully provide an excuse for demanding a change of decor.

Of course, your husband's new hobby will have its fringe benefits. As he becomes more proficient, he will be able to make all sorts of useful gadgets for the home and car-or so 1 am told! Let's face it though, these marvels of science seldom seem to materi-

.. . don't use his soldering iron as a tin opener
. . . I have yet to solve the problem of getting it off the wallpaper

A few hints and tips for constructors' wives, passed on by the wife of last month's Memory Store author

By JUNE BURN

alise. In my experience, electronic test equipment breeds only more electronic test equipment. Still, I don't really want an electrically heated loo seat, do you?

This can be an irritating hobby, but bear with it. Ask him what he's making (even if you don't understand one word of the answer), sympathise when it doesn't work (it never does at first), don't use his soldering iron as a tin opener, and your marriage will probably survive this new interest. After all, while he's immersed in his transistors and integrated circuits, he's not got his mind on other birds, neither is he in the local with the boys. Mind you, there have been times when I would have liked to get my hands on that chap with the boat (see last month). Well, how would you like solder all over your cooker?

. . . he's not got his mind on other birds.

THIS month we introduce a very important family of components called "semiconductors." Much has been written describing these devices and many people might wince if they looked at the background theory in detail. Nevertheless, in the practical sense they are fairly easy to understand and once you get the hang of their basic functions they are not so formidable.
In this series we shall limit ourselves to two types of semiconductor-the "diode" already mentioned in Teach-In Part 2, and the "transistor."

N- AND P-TYPE DOPING

First of all a few words about semiconductors in general; if you have difficulty understanding the reasons why they work, do not worry-it is useful if you can, but not disastrous if you cannot.

They are usually made from the metals, germanium or silicon, which have the unusual property (for metals) of having very poor electrical conductivity in their pure states at room temperature. This is because the atoms are bonded together in a very precise manner and there are no "spare" electrons "floating about" as is the case of copper for example.

If we heat up the pure material we can "dislodge" a number of electrons and it will start to conduct electricity in the usual way. Alternatively, if we introduce an impurity into the metal (e.g., arsenic or phosphorus) we can distort the precise equilibrium so that an extra electron is available for conduction for every

Fig. 1. Schematic diagrams of a p-n junction (a) no voltage applied-not biased (b) reverse biased (c) forward biased.

(a)

impurity atom added-this is known as"doping." These extra electrons will be free to move about thus increasing the electrical conductivity. By "adding" electrons in this manner we say we are introducing "negative carriers" (of current) and the resultant material is called an "n-type" semiconductor.

We could have "doped" the material with boron which has the effect of absorbing an electron for every atom added. This leaves a "hole" where the electron should have been. As this also upsets the equilibrium an electric current can be made to pass, only this time because the holes move (from positive to negative). A material doped in this way is called "p type"; the p standing for "positive carriers."

In practice the level of doping is very low and typically is only a few parts per million.

Because we can artificially control the conductivity in this way the metals germanium and silicon are called semiconductors.

P-N JUNCTION

Using modern techniques it is possible to bring together n - and p-type materials so that they are in perfect contact. At the interface between the two, the spare electrons in the n-type will cancel out the spare holes in the p-type, and a band is built up that is devoid of either positive or negative carriers.

At first you might think that this cancellation process would go on until all possible opposite pairs of carriers had cancelled out-but this is not so.

As the electrons move from the n-type material they deave it with a small positive charge. Likewise the holes moving from the ptype material will leave behind a slight negative charge. Eventually the negative charge in the p-type will start to repel any more electrons attempting to move across the interface and the cancellation process will stop at this point. The band of cancelled carriers is normally called the "depletion layer."

the dIode

The semiconductor diode is simply a p -n junction. Let's see why it will only allow current to flow in one direction. The potential across the junction caused by the cancellation process is as if we had connected a battery between the p- and n-type materials with its negative terminal going to the p-type Fig. 1(a).
If we now connect a battery across the two materials (positive terminal to the n-type and negative terminal to the p-type), we will allow more cancellation to take place at the junction thus increasing its width Fig. 1(b); but because there are no free carriers in the depletion layer no current can flow across it.

In practice there are always a few carriers present (generated by other impurities or heat) and so there will be a minute current detectable

Three common diodes: (a) medium power rectifier, BY100 silicon (b) signal diode IN4148 silicon (c) signal diode OA91, glass encapsulated pointcontact germanium (Magnified $\times 2 \frac{1}{2}$).
-this we call "leakage current." If this leakage current is too great the junction becomes valueless. If, on the other hand, we had connected the battery in the opposite sense Fig. 1(c), the depletion layer would be destroyed when the voltage exceeded that of the "virtual" battery.

In the absence of the depletion layer (which was acting like an insulating barrier) current can flow virtually unlimited. When the battery was connected so no current flowed, the junction is said to be "reverse biased," but when current flows it is said to be "forward biased."

The voltage level of the virtual battery is rather important because it is quite noticeable in electronic circuits. For germanium it can be from 50 to 300 mV and 300 to 600 mV for silicon; variations are caused by changes of temperature.

BREAKDOWN AND POWER DISSIPATION

If we reverse bias the junction and apply larger and larger voltages, eventually we reach a level when the depletion layer breaks down and conduction suddenly occurs. This level is called the "reverse breakdown voltage" and can destroy the junction. This can vary from one or two volts to thousands of volts depending on the way the junction was made. Usually this sets the limit which we must never exceed but in some cases (Zener diodes) practical use is made of this parameter.

When conducting in a forward direction the material shows a degree of electrical resistance (even though it is usually small) and consequently some power is dissipated; this generates
heat and a rise in temperature degrades the junction performance. We always have to set a maximum forward current to prevent this happening.

All diodes work on the same principle and the only variations are in the magnitudes of reverse voltage and forward current limits, while the quality is defined by the reverse leakage current.

Like all semiconductors, diodes are sensitive to heat and although they are reasonably tolerant you should avoid overheating them when soldering (see Teach-In Part 1). With glass encapsulations you should not bend the lead out wires too close to the seal otherwise you might orack the glass!

DIODE TYPES

Diodes are identified by type numbers which are usually printed on the case. Regrettably one cannot identify any particular characteristic from this number and the only way to become familiar with these is to look them up in manufacturers' data sheets.

As there are thousands of different types of diodes made it is impossible to cover all possibilities in this series but by and large you will find that you can deal with most eventualities with either one of the following or similar types. OA91-a low voltage current germanium diode encapsulated in glass; 1N4148-this is very similar to the OA91 except that it is made from silicon; 1N4004-a reasonably high voltage (400 V) medium current (1 A) device made from silicon.

Because they are low voltage and current devices the OA91 and 1N4148 are sometimes
referred to as "signal diodes" while high voltage and medium to high current devices-such as the 1N4004 are called "rectifiers." The most important characteristics of these devices are given in Table 1.

POLARITY AND TEST

The two terminations of the diode have names. If you refer to Fig. 2, the end to which the arrow

Fig. 2. The circuit symbol used for the diode showing the polarities. Current flow is out of the cathode.
head of its symbol is pointing is called the cathode and this is usually marked on the actual device with a band, spot, or a + sign. The other (unmarked) end is called the anode. If you

Fig. 3(a) (above). The circuit diagram for polarity test and demonstrating current flow in one direction only.

Fig. 3(b) (left). The circuit of Fig. 3(a) wired up on the Demo Deck.

Table 1: PARAMETERS OF SOME COMMON DIODES

Type No.	Description	Max. reverse voltage (V)	Max. leakage current ($\mu \mathrm{A}$)	Max. forward current
OA91	Germanium point contact signal diode	115	$\begin{gathered} 275 \text { at } \\ 100 \mathrm{~V} \end{gathered}$	50 mA
IN4148	Silicon planar diffused signal diode	75	$\begin{gathered} 0.025 \text { at } \\ 20 \mathrm{~V} \end{gathered}$	225 mA
IN914	Silicon planar diffused signal diode,	75	$\begin{aligned} & 0.025 \mathrm{~V}^{\text {at }} \end{aligned}$	110 mA
AAl43	Germanium gold bonded signal diode	30	$\begin{gathered} 20 \text { at } \\ 20 \mathrm{~V} \end{gathered}$	60 mA
OA200	Silicon alloy diffused signal diode	50	$\begin{aligned} & 0.1 \text { at } \\ & 50 \mathrm{~V} \end{aligned}$	160 mA
ZSIOA	silicon alloy diffused signal diode	60	$\begin{aligned} & 0.05 \mathrm{at} \\ & 60 \mathrm{~V} \end{aligned}$	100 mA
IN4004	Silicon planar diffused rectifier	400	$\begin{aligned} & 5 \mathrm{at} \\ & 400 \mathrm{~V} \end{aligned}$	IA

make the anode positive with respect to the cathode the diode is forward biased and will conduct. Try this for yourself using the Demo Deck (see Fig. 3), then reverse the diode to see that no current flows when it is reverse biased.

Use each of the three diodes to see that by and large they all exhibit the same effect. This is a simple test that can be used to see if a diode is working correctly.

CHARACTERISTICS-FORWARD BIASED

diode "characteristic" curve. This is simply a curve or graph that shows the amount of current flowing through it for different applied voltages.

To prevent passing too much current through the diode we shall limit it with an external resistor R3 in series with the diode, see Fig. 3(a).

Use VR1 on the Demo Deck to make a potential divider to use as a variable voltage source, and a 10 kilohm resistor in series with the 1 mA meter to make a 10 V full-scale voltmeter.

Connect the diode D1 (OA91) as indicated in Figs. 4(a) and (b).

Prepare a table for recording the voltages at points A and $B-V_{A}$ and V_{B} respectively.

Starting at zero volts and working up in small increments, measure V_{A} (crocodile olip at point A) and then V_{B} (clip at point B) for each increment. Repeat the experiment with the silicon diode, IN4148.

It can be seen that the voltage across the diode is equal to $\left(V_{A}-V_{B}\right)$-multiply by 1000 to convert to mV .

Now the current flowing through the diode at each measurement is determined indirectly using the voltage seen across R3 and applying Ohm's law. In this case $\mathrm{l}=\mathrm{V}_{\mathrm{B}} \div \mathrm{R} 3$. Since the

Fig. 4(a) (above). The circuit diagram for measuring the diode characteristics.

Fig. 4(b) (left). The circuit of Fig. 4(a) wired up on the Demo Deck.

Fig. 5. Forward and reverse characteristics for the OA91 (germanium) and IN4148 (silicon) diodes obtained using circuit of Fig. 4(a). The two curves would eventually become parallel straight lines if we were able to plot the characteristics to a higher voltage.
value of R 5 is 1 kilohm, the numerical value of V_{B} (in volts) gives the current flowing, in mA.

Plotting graphs of current flowing against the applied voltage will give curves similar to those in Fig. 5.

It can be seen that for the germanium diode, OA91, there is a sudden change from passing little current to complete forward biasing at about 150 mV . For the silicon diode, 1 N 4148 , this change occurs at a much higher voltage, 500 mV .

This abrupt change or "knee" of the graph occurs when the voltage we are applying just exceeds the virtual battery across the junction of the diode.

-REVERSE, BIASED

Although we do not have a high enough voltage available to cause reverse breakdown you can start to plot the reverse characteristics of these two diodes by reversing them in the circuit, i.e., cathode to the wiper of VRI and measuring current for different voltages exactly as before. Of course you should read zero current at all voltages. Leakage current will be present but will not show up because our measuring system is not sufficiently sensitive.

TACHOMETER EXPERIMENT

We can demonstrate a very simple application of where two diodes can be used in a circuit. It is a very crude form of tachometer that will record on a meter the rate at which a contact is made to open and close. The circuit is shown in Fig. 6(a) and should be wired up on Demo Deck as shown in Fig. 6(b). You will only need one extra component-a $16 \mu \mathrm{~F}$ capacitor with a minimum working voltage of 12 V . Dl is the 0A91 and D2 the 1N4148 (another OA91 would work equally as well for the latter).

Fig. 6(a) (above). The circuit diagram for the Tachometer experiment.

Fig. 6(b) (left). The circuit of Fig. 6(a) wired up on the Demo Deck.

Photograph of the Demo Deck in use for measuring the characteristics of the IN4148 (silicon) diode.

METHOD

To operate the circuit, momentarily connect the positive end of Cl to the +9 V supply and watch the meter, it will kick up a small amount and then slowly settle back towards zero. Now "dab" the wire on the +9 V terminal at a regular rate-say once a second-and notice that the meter starts to read higher and although there is a slight waver in the reading you can see an average current level. Now speed up the rate of making the contacts-the meter reads higher. Note that this circuit will only work for rates up to a few a second.

THEORY

The circuit we are using is called a "diode pump" and works as follows: initially there is no charge on C2 so the meter reads zero. When you apply the positive lead to Cl a momentary charge current will flow through Cl, Dl and C 2 which are all in series.

Because Cl has a small capacitance, it will charge up quickly-C2 only attaining a small charge-and the charge current stops (even though the wire is still connected to the battery).

Capacitor C2 does, however, charge up by a small finite amount and this causes the "kick" you see on the meter, but C 2 will then start to discharge slowly through the 10 kilohm resistance of the meter circuit.

When you disconnect the battery, Cl will discharge through R5 and D2.

During the charging part of the cycle, D2 was reverse biased because the potential at its cathode was predominantly more positive than the anode, but now the positive charge at the positive end of Cl is applied, through R 5 , to the anode and so it conducts this charge away at a rate limited by the value of R5.
The potential at the cathode of D2 thus falls to zero. Because C2 has a slight positive charge on it Dl now becomes reverse biased and pre-
vents C 2 discharging back through the circuit. If you re-apply the +9 V to Cl the charge part of the cycle starts again and the potential at C2 will either rise back to its previous level or go higher, depending on time between pulses.
The circuit gets its name "pump" because the two diodes work rather like the leather flap valve of an old-fashioned water pump that is pumping squirts of water into a bucket with a hole in the bottom.

The circuit given here is purely for demonstration purposes and cannot be used for many practical applications due to its inability to work at pulse rates greater than about three per sec (i.e., frequency of about 3 Hz) but the principle is used very frequently particularly in equipment such as electronic car rev-counters.
Next month we shall deal with the principles of the transistor and armed with that information we shall be able to move on to make some simple circuits.

Now try the Test on page 333.

TEACH-IN PART 5-ERRATA

We apologise for a technical error with regards to the capacitor colour coding system given in last month's Teach-In.
There are numerous capacitor colour coding systems in use and the one given last month refers to the very popular Mullard C280 series and should be amended as follows: the first three bands are correctly labelled, i.e., lst and 2nd digits and the multiplier. The fourth band gives the tolerance and is either black or white indicating ± 20 and ± 10 per cent respectively.

The fifth band indicates the working voltage, red 250 V , yellow 400 V .

THOSE who contemplate carrying out much experimental and constructional work with transistorised electronics will find that the use of batteries as a power supply can prove rather expensive.

A simple variable voltage power supply of the kind illustrated in this article will more than pay for itself in quite a short time and unlike batteries it doesn't run down. It will supply any voltage up to 16 V at a nominal maximum current of 100 mA and is fully protected against overload even to the extent of a direct short circuit across the output
At very low current drain i.e. in the region of 10 to 20 mA , the maximum voltage is about 17 V which is suitable for many $n p n$ silicon transistor audio pre-amplifiers for example, requiring between 16 and 18 V for operation.

POSITIVE OR NEGATIVE EARTH

Either the positive or negative rails can be "earthed" according to the requirements of the circuit being supplied. It is only necessary to move switch S 2 to the appropriate position.

The meter always indicates the voltage at the output terminals i.e. the operating voltage being used. The a.c. ripple at any operating voltage and up to maximum nominal current drain is less than 0.5 mV .

At any steady continuous current drain the voltage variation at any setting is negligible.

CIRCUIT DESCRIPTION

The complete circuit diagram is shown in Fig. 1 and is a fairly simple arrangement employing a small power transistor, TR1, to control the output voltage.

The transformer Tl steps down the mains voltage to 14 V a.c. (r.m.s.) and applies this to points X and Y on the "diode bridge" network. This arrangement of the diodes gives full-wave rectification across points A and B .

The reservoir capacitor Cl connected across the bridge "smoothes" the pulsating d.c. from the bridge producing a mean d.c. level of about 20 V with a small amount of "ripple" voltage. This is applied to the series combination of R1 and the Zener diode, D5. Capacitor C2 across

Fig. 1. The complete circuit diagram of the D.C. Power Supply Unit.

D5 helps to eliminate ripple voltage that may be present.
The Zener diode has the property of being able to supply a constant voltage over a wide range of current flow through it.

Components....

```
Resistors
    R1 1k\Omega2 \pm1% tW hi-stab.
    R2 10\Omega2 10W wirewound
    R3 15k\Omega }\pm10% +W carbo
    R4 10k\Omega2 =1% tW hi-stab.
    R5 10k\Omega2 \pm1% \W hi-stab.
    SEE ?
Capacitors
    C1 2000\muF 25V elect.
    C2 500\muF 25V elect.
Diodes
D1-D4 BY164CS1 Bridge type rectifier (1 off)
                or if desired 1N4002 (4 off)
    D5 BZX61/C18 18V 1W Zener or any 18V
        400mW Zener
```

Transistors
TR1 AD162 germanium pno
Potentiometers
VR1 50k Ω linear carbon
Miscellaneous
T1 240 V primary 12 to 14 V 200 mA secondary
transformer.
ME1 0-1mA 75Ω internal resistance meter
S1 Mains switch slide type, D.P.S.T.
S2 Slide type switch, D.P.D.T.
LP1 Mains panel neon with built in resistor
2 insulated terminals (1 red, 1 black); 0.15 in
matrix perforated s.r.b.p. size $3 \frac{3}{4} \times 2$ tin.;
16 s.w.g. aluminium $3 \frac{1}{2} \times 2 \frac{1}{2} i n$. for heatsink;
control knob to suit VR1; aluminium angle
$\frac{3}{8} \times \frac{7}{t i n}$; various B.A. nuts and bolts for
fixing of panel components; aluminium for
building housing case or Universal chassis
parts-CU168 ($7 \times 5 \mathrm{in}$.) 2 off, CU147 ($7 \times 3 \mathrm{in}$.)
2 off, CU145 (5 x 3in.) 2 off.

The base-emitter voltage is the difference between the output voltage and the voltage supplied to the base of TR1 via VRl from the Zener diode (which is constant for any setting of VR1).

If the output voltage decreases (due to heavy load for example) so the base-emitter voltage increases, causing the output voltage to increase and in doing so causes the base-emitter voltage to decrease thereby decreasing the output voltage. Thus the circuit is self-compensating and the output voltage remains substantially constant for a wide range of output loads.
The supply rails can only be earthed by the switch S2 which connects either the positive or negative rail to common earth.

No part of the circuit, except the frame and core of the mains transformer, is directly connected to the panel and case, which is earthed.

CONSTRUCTION

The prototype was constructed in a box made from Universal chassis parts with everything mounted on the front panel, but any size case
will do. The layout is not critical and may be modified to suit individual requirements. However it is essential that a heatsink be used to mount TRl otherwise damage will occur to TR1.

Most of the components are mounted on a piece of $0 \cdot 15$ in matrix perforated s.r.b.p. size $4 \times 2{ }_{4}{ }_{4} \mathrm{in}$. The layout of these components on the board is shown in Fig. 2.

Begin by wiring up the board as indicated, attaching all the flying leads and remembering to use a heat shunt when soldering the Zener diode, D5, in position.

The next thing to do is to make the mounting bracket for the component board and the heatsink, and cut and drill the front panel to the sizes given in Figs. 3 and 4.

When this is done, attach the remaining components including the transformer Tl , to the front panel in the positions indicated.

It is best next to attach TR1 to its heatsink making sure that TR1 is completely insulated from the heatsink by using the appropriate size mica washer and insulating bushes. Connection to the collector (which is the body of the transistor) is made via a solder tag under one of the securing bolts.

Now connect the transistor to the component board via the flying leads and then attach it to the front panel in the positions indicated.

Connect all the flying leads from the component board and the transformer to the panel mounted components and wire an R3, R4 and R5 as shown in Fig. 5. Connect a suitable length of mains lead to Sl as shown.

THE METER

The resistors R4 and R5 are hi-stability types, and in series with the 1 mA full scale deflection meter convert it to a 20 V voltmeter.

Although the prototype was built with this kind of meter arrangement, it may be better to use one of the readily available 20 V voltmeters which costs the same as the lmA meter and need no calibration. The 20 V meter would

D.C.POWER SUPPIY UNIT'

 Fig. 5. Shows the position.ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes. Fig. 5. Shows the position.
ing of all the components
in the aluminium case and
the flying lead connections
to the component board.
Ensure that TR1 is fully
insulated from the heatsink
by using a mica washer
and plastic bushes.

Fig. 2. The layout of the components on both sides of the board.
replace the lmA meter and the series resistors R4 and R5.

If however, a lmA f.s.d. meter is used as the voltmeter, it will be necessary to remove the meter scale and recalibrate it to read 0 to 20 volts.
This is done as follows: take off the meter cover and remove the meter scale by undoing the two retaining screws; gently slide the scale away from the meter. The original figures can be era-ed and new figures 0 -20 inscribed.

USING THE UNIT

It is a simple matter setting up the power supply unit for a specific job and should be carried out as follows: attach the battery leads from the test project to the negative and positive insulated terminals on the unit panel. decide which lead is the earth lead and switch S2 (marked E on front panel) to the correct position.
Turn VR1 fully anticlockwise (zero volts) and then plug in to the mains and turn on switch Sl. Rotate VRl to give desired voltage level-this is indicated on the meter.
The completed power supply unit is protected against temporary short circuits by the inclusion of the high wattage resistor R2 which will dissipate any power due to overload, However do not leave the unit running with a short circuited output, but switch it off until the overload is removed.

A direct short circuit will instantly reduce the output volts to zero and this will be shown on the meter. The unit will comfortably supply up to 100 mA continuous at any voltage below 16 V and between 150 and 200 mA intermittent at 16 V .

Fig. 3. (above) The dimensions of the heatsink for TR1.
Fig. 4. (left) The dimensions of the front panel showing positions of holes and cut-outs for mounting the components.

Order Now:
 Everyday Electronics CONSTRUCTORS COMPANION
 inside every copy of the MAY issue of Everyday Electronics

This is a booklet you will not want to be without. It provides a useful reference on many aspects of electronics A list of transistors with types, base connections and brief data is provided together with information on transistor circuit configurations. Resistor and capacitor types and colour codes; data on other circuit components. Features on various constructional methods and the art of soldering will interest all new constructors.

Metal Locator

Designed for construction simplicity and ease of operation this single transistor metal locator provides a meter indication when buried metal is located. Just right for beachcombing or searching your back garden.

Electronic Sound and Music

Our feature article next month describes how to make your own electronic music using an ordinary tape recorder and an audio tone generator that will also be described in this same issue.

There is bound to be a heavy demand for this special May issue. Make certain of your copy by placing an order with your usual supplier.

A simple design using a ready made amplifier module to simplify construction. Designed with the baby's safety in mind.

By A. Lester-Rands

Ne need to have the an-fi or TV sound duced to whisper level, just in case the baby should awake and voice its discomfort. The baby alarm described in this article will solve the problem of being able to heer cries of protest.
The circuit has been smplified to a great extent by using a teacy built main amplifier, but some constructiontal exercise can be obtained from building the microphone pre-amplifier and of course assembling the units within their respečtive boxes. The photographs show the original boxes that were used to house the amplifier and speaker, and the microphonc. These are plastic electrical connecting boxes obtainable from electrical fittings retailers and are available in a variety of sizes Choose a pair approximately the same dimensions as the originals which were about 41_{2} inches by 41_{2} inches by $3^{\frac{1}{2}}$ inches deep. These towes are generally white and do not laok out of place in most homes. The crystal microphone could be put
into a much smaller bjx or a standard crystal microphone in a plastic case could be used if desired.

THE CIRCUIT
The circuit is given in Fig. I and consists of a one transistor pre-armpl fier consisting, of TR1 which raises the sigal level from the microphone to a sufficient level to supcly the amplifier No attempt has been made to match the high impedance of the crysta: micropione to the amplifier input impedarce as this would cnly complicate the circuit; loss cue to mismatch is made up by: the ampl.fier gain antyway. The preamplifier is connecte1 to the Nowmarket PC2 amplifier, the circuit difgrar of which is shown in Fig. 1, via the volume cont:o. Vin1. The output from the $P C 2$ medale goes direct to the loudspeaker ${ }^{3}$ which may be axy iniature (2^{2} : to 32_{2} jnch) 15 -or 25 óhm mpeciarce type. A brief specificationt of the anjplisier is gisen in Table 1.

Approximate cost of rcomponents £ 4.00 plus case

CONSTRUCTION

The pre-amplifier is constructed on a small piece of plain circuit board as shown in Fig. 2 and this and the PC2 amplifier are bolted on one side of the amplifier case. The capacitors used in the prototype are printed circuit types with both wires at one end. This simplifies construction and provides a neater finished job, however, this type of capacitor does not have to be used. If the capacitors available are larger than those specified this will not matter as there is plenty of room for larger types on the component board. The finished board is a similar size to the PC2 amplifier and the two units are mounted together on one side of the case.

Operating voltage
Output
Input resistance
Input sensitivity
ImV for 50 mW output
Quiescent (no signal) current 10 mA

With a box the same size as the original, or larger, there should be ample space for a PP9 battery as well as the loudspeaker. The layout of the components on the front panel of the amplifier box is shown in Fig. 3 and the photographs but again this may be varied to suit the size of the box used. Note that two wander plug type sockets (SK1) for the microphone lead are mounted on the side of the case. A miniature jack or similar two-pin connection could be used instead but the earthed connection must be from the screening braid of the microphone cable (black socket to screen). The wiring between the various components mounted in the case is shown in Fig. 3.

All that remains is to mount the crystal microphone in its box (Fig. 4) and connect it to the sockets on the side. (A jack or two-pin connection could also be used here instead of wander

Fig. 1. Circuit diagram of the Baby Alarm. The part of the circuit enclosed by the dotted line box is the Newmarket PC2 amplifier module.

Baby Alarm

Fig. 4. Microphone wiring for box mounting.

Fig. 2. (Above) Layout and wiring of the component mounting board.

Fig. 3. (Below) Interwiring of the amplifier box of the Baby Alarm.

Components

Resistors

R1	$68 \mathrm{ks!}$
R2	$10 \mathrm{ks!}$
R3	$6.8 \mathrm{ks!}$
R4	$1 \mathrm{kS!}$
R5	$2 \cdot 2 \mathrm{ks}!$
! W	10% carbon

SHOP
 TALIK

Capacitors

C1 2.5./F elect. 12V
C2 $50 \mu \mathrm{~F}$ elect. 12 V
C3 $10 \mu \mathrm{~F}$ elect. 12 V
C4 $100 \mu \mathrm{~F}$ elect. 12V
Potentiometer
VR1 10k!? log. carbon
Transistor
TR1 NKT 274 germanium pnp
Miscellaneous
S1 Double-pole single-throw slide or toggle switch
B1 9V PP9 battery
PC2 Newmarket amplifier module
MIC1 Crystal microphone insert (any small type or complete microphone)
SKI, PLI wander plugs and sockets (2 red, 2 black of each)
LS1 Miniature $2 \frac{1}{2}$ in. to $3 \frac{1}{2}$ in. 15 or 25Ω loudspeaker
Screened lead (length as required), plain perforated 0.15 inch matrix Veroboard $2 \frac{1}{2} i n$. , $1 \frac{1}{2} i n .6 \mathrm{BA}$ fixings, connecting wire, plastic cases (see text), control knob.
plug sockets.) It does not matter which way round the leads to the microphone insert are connected. The screening cable should preferably be screened light-weight microphone cable. The baby alarm units may be permanently mounted if required or, the microphone may simply be placed a few feet away from the cot, the cable led to the living room and the amplifier connected up. The whole can be quickly gathered up and put away when it is not in use.

In operation the unit is quite sensitive and with the microphone even 6 feet away from a crying baby the sound from the loudspeaker at half to full volume setting will be as loud as if the baby were in the same room.

SAFETY

The alarm is inherently safe due to its being battery operated. There is no d.c. present at the microphone end and hence even if the baby removes the leads and puts them in its mouth no harm can come of it, provided the plugs are securely fixed. The box used to house the microphone is also harmless to a baby and quite tough; if a complete microphone is used this should be taken into account when purchasing.

Due to the high impedance of the microphone the length of lead used to connect the two units should be kept as short as possible to avoid unnecessary noise or oscillation. The prototype was tested with a 15 yard length of screened lead and gave satisfactory results, suggesting that a reasonable increase on this length could be used without any major problems. To keep lead length within reason the wire could be fed from an upstairs room to a ground floor room via the windows instead of running it down a staircase. Routing the connecting wire parallel with mains wiring should also be avoided as this will induce hum in the circuit.

CHECKING THE UNIT

The standing current consumed by the amplifier with no signals is approximately 10 mA so do not leave the unit running longer than is necessary. To test for operation, short circuit the microphone sockets and turn the volume control full on. A soft hiss should be heard from the loudspeaker. Flace the microphone in another room to prevent feedback, which will occur if the microphone is near the speaker, and check by getting someone to speak quietly into the microphone. A good signal should be obtained from the speaker.

The unit is now ready for use and can either be permanently installed or placed in position as necessary.

Fifty years of British Broadcasting

FEifty years ago British broad casting was born in an exarmy hut near Chelmsford in Essex, when on February 14, 1922 a group of Marconi engineers began a series of regular experimental transmissions. Every Tuesday evening from a rigged-up transmitter, call sign 2MT Writtle, or more affectionately to its listeners, Two Emma Tock. They transmitted programmes whose original purpose was entirely technical. Shortly afterwards, in May, another transmitter, later to be even better known, was opened up by the company at Marconi House in the Strand in London. This was the famous 2LO station that provided the foundation from which the British Broadcasting Company grew after its formation on November 14 of the same year.
Two Emma Tock provided the first regular broadcast service in this country, and incidentally broadcasting's first audience, an audience which in its enthusiasm for the pioneering programmes, generated the original demand for public service broadcasting. The 2MT transmitter was set up for use in a series of experiments designed to "stablish the effective range of a wireless telephony transmitter. At the same time a number of radio amateurs were appearing, largely young ex-
servicemen who had learnt about radio during the 1914 -18 war, who had put together their own receiving sets, and who wanted transmissions to receive. Earlier experiments with entertainment had shown that there was a potential for wireless telephony outside official communication and navigation usage, but the official attitude had been discouraging.

2MT opened regular broadcasts officially on behalf of the amateurs who needed a source against which they could calibrate their receivers, and to begin with its programmes were not very much more interesting than early 1920 transmissions made before the government clamp-down, when W. T. Ditcham read from Bradshaw's railway timetable, but the enthusiasm and gaiety of the young Marconi engineers who ran it very soon turned it into a halfhour's entertainment in its own right.

The names of those men read like a roll-call of some of the great names in Broadcasting. In charge of the project was Captain P. P. Eckersley, who later went to the new British Broadcasting Company as its first Chief Engineer. It was his infectious and spontaneous humour which gave 2MT its unique flavour; he had a gift for ad-libbing that constantly alarmed those of a less adventurous disposition who worked with him. Others in the team were Noel Ashbridge, later Sir Noel, who was the BBC's first technical director, R. T. B. Wynn, a later Chief Engineer of the BBC
and B. N. MacLarty, who became Head of the BBC's Design and Installation team.

By contrast, Marconi's 2 LO station, granted its licence in May, began a rather staid existence, a happy coincidence for the pioneers of 2 MT , as it gave them an opportunity to provide skits and lampoons which were much appreciated by their listeners. 2 LO operated on conditions of restricted timing, at first even no music, and low power, beginning with 100 watts, later raised to $1{ }_{2} \mathrm{~kW}$.

By this time many wireless societies had been formed and more and more the demand for radio receivers was being felt. In the United States since 1919 "wireless" had become fashionable, but with no constitutional control of the use of wavelengths, chaos reigned in a commercially sponsored free-for-all. The British Government, seeking a way from the dilemma posed by popular demand on the one hand and a justifiable reluctance to allow free access to the air on the other, set up the Wireless Sub-Committee of the Imperial Communications Committee in April of 1922. After consideration, their recommendation to set up a single broadcasting company was accepted and in November 1922 the British Broadcasting Company was formed from six commercially interested companies with $£ 100,000$ share capital.

2MT Writtle continued to transmit until the following January. when it finally closed down.

In-Store Watch-dog

ST Michatl now has an electronic watch-dog to help with quality control.

Marks \& Spencer's St Michael brandname has long been a byword for dependability and has recently been developing in the foods market. As part of their quality control effort in this sensitive area, Marks are using a GEC-Elliott instrument in their shops, to check that chilled and frozen goods are maintained at the optimum temperatures for freshness and quality.

The equipment consists of a portable temperature measuring and recording system. It enables
spot checks to be made at a moment's notice, or can operate continuously after the store has closed to record changes throughout the day, overnight or during the weekend. Although the company has supplied similar static
equipment for cold stores, warehouses and refrigerated ships, this is the first portable system for the retail trade. The system is trolley mounted, so that it can be moved from counter to counter, or store to store.

electrovalue Electronic Component Specialists

THIS MONTH'S SELECTION OF POPULAR ITEMS from the electrovalue catalogue

no.	Trpe	Purpose	Price
$2 \mathrm{Fr97}$	811. NPN	Genera!	18p
$2 \mathrm{H1804}$	Ger. NPN	..	260
$2{ }^{211805}$	PNP		${ }^{28} \mathrm{D}$
272848	8il. UJT	Onclilator, 8CR dificer	470
211892a	NPN	Bmall sig. amp	$11 p$
8.88056	NPN	High power	${ }^{60 p}$
8182708	PNP	Low power	180
283704	NPN	Low power	180
AC126	Ger. PNP	Buall rig./driver	${ }^{20 p}$
AC128	PNP	Low power	${ }^{20 \%}$
AD149	PNP	Hish power	${ }^{\text {sis }}$
Ac176	NPN	Low power	${ }^{16 p}$
- AD161	NPN	Med. power	${ }^{330}$
- 010162	PNP	Med, power	36p
BC108	8i1. NPN	Small signal	110
8 Cl 09	NPN	Low noine	$12 p$
BC188	NPN	Small sigrial	${ }^{100}$
BC189	NPN	Low bolue	119
BFios	NPN	EP amp.	140
${ }^{\text {873 }} 51$	NPN	Med. current	${ }^{20 p}$
OADO	Ger. diode	RF detector	${ }^{60}$
$0 \mathrm{AP1}$	- ".	General	${ }^{\text {sp }}$
ED1	,	Sulicon Rectinet 1 amp	${ }^{10 \mathrm{p}}$
W02		Sllicon brldge 1 amp	${ }^{60}$
- Matcbed pair	AD161/AD162		60p

VOLUME CONTROLS, ETC

Very wide ranges carried including the following popular types:-
4.7 Kohms, lOKohms, 22

Kohms 47, 100, 220, 470
Kohms: I Mesohm, 2.2
Kohms;
Log or linear tracks
MONO 12p each: STEREO (macched eracks) 42p
Any type with double pole moins switeh-12p extro

STEREO BALANCE CONTROLS
Log/Ankilog. IOK 47K IM
Dual antilos IOK only.

DUAL CONCENTRIC
In any combination of above values 60 p , with switch $\mathbf{7 2} \mathrm{p}$

MAIN LINE AMPLIFIERS

70 watt power amplifier in module form reody to build into any system. With full instructions.

2, 5 IOpCATALOG

The Electrovalue catalogue (64 pages and cover, $8+5$ Stins) ia crammed with money saving liema, and illustrated technical information. FREE with orders for 41.00 or more. Sent sepapately it coste you lop post free, Write your order on a sheet of paper with coupon attached

CAPACITORS
Mon-polerised

Polgmytene
$10 \mathrm{p} F$
22 pr
100 pF
220 pF
470 pH
1000 pr
200 pF
4700pr

Polyeater MET
.01 m
0.02 mP
n .047 mF
1). 1 mF
0.22 mF
0.47 mF

1 mP

MISCELLANEOUS ITEMS

INDICATOR LAMPS
NEON chrome bezel, round red NR/R, 24p; chrome bezel. round amber $N R / A$. $24 p$; chrome bezel, round clear NR/C 24p. Neon square red eype LS5C/P. $18 p \mathrm{~m}$ amber typ LSSC/A. IBp; ciear type LS5C/C, 18p. All
bove are for 240 V malns operation. Fila above are or 240 V mans operation. mont types: $6 \mathrm{~V}, 0.04 \mathrm{~A}$ square red type LS5C/A-6V, 30p: 6V 004A clear eype L55CIC-6V, 30pi 6V 0-94A green evpe LS5C/G-6V, 30pj12V0.04A L5SC/R-12V, 34p $28 V 004 \mathrm{~A}$ LSSC/R-28V, 45p.

KNOBS—NUTS, SCREWS, WASHERS - TERMINALS AND MANY OTMER ESSENTIAL ITEMS - see Cselogue

overseas

 customers WELCOMEFOR STEREO for building into your own cabinet. Two amplifier modules and pre-amp kits are required with matched controls plus one power supply kit, nett price

ELECTROVALUE - an independent company from its establishment in 1965

RESISTORS

t watt and f watt. all at Ip each in she following values (in ohms) :10, 12, 15, 18, 22, 27, 33, 34, 47, 56, 68, 82 and all values in this series up to 10 Megohms.
Power Resistors
3 watts-7p each: 7 watts-9p each
Values as lor watt series, bus up so 10 Kohms only.
Many other types and values available.
Full details in catalogue.

VEROBOARD

The unlversal circuit buildins board Unclad, 0.1" matrix
$2^{\prime \prime} \times 3.79^{\prime \prime} 10 \mathrm{p}$
$2.5^{\prime \prime} \times 3.75^{\prime \prime} \quad 15 p$
$5^{\prime \prime} \times 3.75^{\prime \prime} \quad 25 p$
Copperclad Veroboard also in stock in most tandard sizes and matrices; also adge connectors, pins, etc.
Simple to Build, Astoundingly Good 10W/I5 B BAXENDALL SPEAKER As originally designed by P. J. Baxendall and described in Wireless World. 10 wats/15 ohm loudspeaker with equaliser network speaker unit and specially designed cabinet inkic form. Size when buile approx. $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$ Price, inc, carriage paid in U.K. Nett $\leq 13-90$

COLVERN 3 watt WIre-wound Potentio. meters. 10Ω. $15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega$, 150Ω 250,. $500 \Omega, 1 K, 1.5 K, 2.5 K, 5 K, 10 K, 15 K$ DIN CONNECTORS

		plug	
		12p	
Audio	3-pol		
Audio	4-pole	14	
Audio	5 -pote 180 de	15°	
Audio	$5-$ pole 240 deg.	$15 p$	
Audio	6-pole		
HANDBOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES, 40 p .			
HANDEOOK OF TESTED TRANSISTOR CIRCUITS, 40p. COLOUR CODE WALL CHART, I5p. (Add 3p for P/P if any of above three iterms are ordered separately,)			

COMPONENTS DISCOUNTS
allowed on all items other than those at NETT ppices.

$$
\begin{array}{ll}
10 \% \text { on orders for } & 15 \% \text { on orders for } \\
\text { is or more } &
\end{array}
$$

POSTAGE A PACKING FREE on orders for $\mathbf{2 0 . 0 0}$ or more. Please add top if
under
Terma of business - C.W.O, at ie catalogue

[^1] (Type (1) lolb r.p.m. Rorque ${ }^{\text {Reversible }} 101 \mathrm{~b}$ ijoth inch. 50 cycle, 0.38 amp (Type 2) 20 r.p.m. Torque 201b inch. R.meversible. $1 / 80 \mathrm{th}$ h.p. 50 cycle, 0.28 amp . "As now"' condition. Input volrage of motor 115 V a.c. Supplied complete with transformar for $230 / 240 \mathrm{Y}$ e.c. input. Price, either
 - 12 Volthoc Motol Pownerful i ${ }^{\text {amp. RE. }}$
Speed 3,750 RPM com-
plete with external gear
train (removable) sivin
spoed of egprox. 125 kPM. Size final
$4 t^{\prime \prime} \times 2 t^{\prime \prime}$ dia. Price t3p inc. pois.
$230 \mathrm{~V} / 270 \mathrm{~V}$ COMPACI
SYNCHRONOUS
GEARED MOTORS

Manufactured by either Sangamo, Haydon or Smith. Built-in tearbox.
R.P.M. CW 1 R.P.H. A/cw 10 R.P.H. A/cw $\begin{array}{lll}60 \text { R.P.M. } \mathrm{cw} & 3 \text { R.P.P.H. CW } & 15 \text { R.P.H. A/cw } \\ 6 \text { R.P.H. } & 20 \text { R.P.H. } \mathrm{cw} \\ \mathrm{cw}=\text { Clock } \\ & 60 \text { R.P.H. } \mathrm{cw}\end{array}$
A/cw=Anti-cloc
Fraction of makery pe rotation.
 CONNECTORS NEW in NEW
 BAKELITE CI.2S
plex doz.
. 50 per doz. Post
PROGNQMME TIMERS
(Mir. by "Mag
Devices Ltd. ${ }^{\text {a }}$)
${ }^{240 v}$ A.Crouzet" 5 r.p.m Drives 15 cams, each operacing a 10 amp vidually viteh. Cams are individually variable. allowing innumerabie combinations. Ideally suited for machinery control, automation, etc. Also in the field of entertainmant, for chaser lights, animated displays,
etc. NEW PRICE: 1.75. P. \& P. 25 p .

electronic

ORGAN KIT
Easy to build. Solid State. Two full octave (less sharps and flats). Fitted hardwood easa. Powered by two
penlite $1 \frac{1}{2} \mathrm{~b}$ batteries. Complete set of parts including spalker. atc., together with full instructions and
tunes. Price 900. P. A P. 22 p .
50 in 1 ELECTRONIC PMOJECT 50 easy to build Proiects. No soldering, no special tools required. The Transformer, plus a host of other components and a 56-page instruction leafler. Some examples of the 50 possible Projects are: Sound Leval Meter 2 Transistor Radio, Amplifier, etc. Price $\$ 7.75$. P. \& P. 30p.

CRYSTAL MADIO KIT

Complete set of parts, including:

 Chassis, and Personal Earial, Drilled soldering, easy to build, full step by step instruction. Cl.75 inc. post.viver
200/250V Ex. GPO. Tefwitch
set 2 on, 2 off every 24 h . Mrenully twitch: 10A $\mathbf{2} .75$, ISA M3.25, available with solar dial ${ }^{20 \mathrm{~N}}$ dusk, OfF dawn. Price as above
MICRO SWITCH Fitted with removable Exsh butzon assembly. "HONEYWELL" LEVER OPERATED MICRO SWITCH A.c. amps. 250 volt A.C. c/o conkets. Carton. in makerice: 10 for $\mathrm{Cl} \cdot 00$ incl. P \& P .

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/140V E.c. 50/60 OUTPUT
VARIABLE 0.260 V
All Typen (and Speres)
from t to 50 amp from stock.
SHROUDED TYPE
1 amp. 7.00 2.5 amp, te-05
10 amp, 11.75
10 amp. $22.50 \quad 20$ amp. c4p-00
15 amp. 125.0023 amp, 25.00
37.5 amp. $882.00 \quad 50$ amp, $6 \% 100$

All plus C1.00 carr. where not specified.
OPEN TYPE (Panel Mountins) \ddagger amp. 44.75

Superior Quality Precision Made

NEW Power rheostais

100 WATT. 1 ohm. 10A; 5 ohm, 4.7A:
10 ohm, 3A; 25 ohm, 2A; 50 ohm, 1.4A:
$0.45 \mathrm{~A}: 1 \mathrm{~m}, 200 \mathrm{~mA}: 1.5 \mathrm{H} \Omega, 230 \mathrm{~mA}$: $2,5 \Omega 2 \mathrm{si}$, Ω mA . Diameter 3 tin Shaft lensth tin, dia. H in, All at 1.50 mA. Diameter 3fin Shaft lensth tin. dia. Hin, All at 1.50
each. P. sech. WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$: All at f1.12 each. P. A P. P/1P.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3 \cdot 5 / 5 k \Omega$. All at 7ep each. P. A P. I5p. $^{\text {A }}$

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest gype Xenon white light flash tube. Solid state timing and triggering circuit. 230/250V a.c. operation.
speed. adjuscable I to 36 Flash per sac. All electronic Speed. adjustable to 36 Flash per s.c. All electronic Xenon Tube and instructions $\mathbf{6}-\mathbf{3 0}$, plus 25p P. \& P. NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyristo Speed adjuscable $1-80$ f.p.s. Prica Cio.50. P. \& P. 50p. HY-LYGHT STROBE MK III
This strobe has been designed and produced for use in large rooms, halis and the photographic field and utilizas a silica plugein tube for longer life expectancy, printed circuit for asy assembiy, iso a specia tricser coil and output eapacitor. Speed adjuskale output approx. 4 joules. 12 -00. P. 500 SPFBCIALLY OPROXIGNID. FULLY VENTILATED METAL CASE. Including reflector. 44-00 P. \& P. 45p Post paid with kit.
THE ‘SUPER’ HY-LYGHT KIT
Approx. four times the light output of our well proven Hy-Lyght strobe. Incorporating: - Haavy duty power supply

8 Variable speed from l-23 fash par sec.

- Reactor control circuit producing an intense white light. The brilliant light output of the "SUPER" HY-LYGHT gives fabulous eflects with colour filter.
Never belore i Strobe K it with to HIGH Nover before Strobe kit with so HIGH an output at so ATTRACTIVE, NOBUST, FULLEY VENTILATED METAL CASE specially designed for the 5uper Hy-Lyght Kit including refector $77-00$ P. \& P. $45 p$ 7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 53p, P. \& P. 13p or post paid with kits.

RELAYS New SIEMENS PLESSEY, enc. Miniature
 (1) Coil ohms; (2) Working d.e. volts; (3) Contracss; (4) Price D) Heavy Duty. All Post Paid.

12 VOLT D.C. RELAY
 (Similar to illustration below.)
"DIAMOND M' 230 VOLT A.C. RELAYS ${ }^{2}$ (UNUSED)
Thrae sets c/o contacte rated at 5 amps.
P 100. (100 lots 640.00 inct

'KEY SWITCH' 230 VOLT A.C. RELAYS
One set c/o contacts rated at 7.5 amps . BOXED. Price: 40p. P \& P 5p . (100 lots 15200 incl, P \& P.)
230 VOLT A.C. SOLENOID OPENATEO
I L. 230 VALYE
Will handle liquids or gases up to 7 p.s.i. Forged brass body, stainless steel core and spring. ${ }^{*}$ b.s.p. inlet/outlet. Precision made,
British mfs. Price 11.75 . P. 焦 P. 20p. British mfs. Price it.75. P. \& P. 20p.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. E.E. 57 BRIDGMAN ROAD, LONDON, W4 58 E Phone 01-195 1560 SHOWROOM NOW OPEN MON.-FRI. LONDON WCZH 7I! O1-437 0579

INSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM 9v BATTERY (not supplied) ALL COMPONENTS AND PRINTED CIRCUIT BOARO WITH FULL INSTRUCTIONS. KIT PRICE: E2.00 posl paid.

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC.. UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM ov BATTERY (not supplied) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULLINSTRUC. TIONS. KIT PRICE: E2. 4 post paid.

MAIL ORDER ONLY.
S.A.E. ALL ENOUIRIES.

DABAR ELECTRONIC PRODUCTS

ra, LICHFIELO STREET. WALSAIL, STAFFS. WSI IUZ

[^2]

It is always fun to prove to yourself how much you know, hence we have devised this test at the half way point of Teach-In. Do not worry if you are unable to answer all the questions, it simply means that you have not taken in all the information we have given. We will publish full answers next month so do not write to us with your answers or queries.

We have tried to set the sort of questions that will probably come up when you are actually involved in sorting out practical designs. Ultimately you ought to be able to answer them all from memory of the principles involved.
(1) In an electric circuit do electrons flow from the positive to the negative terminal of the battery or vice versa?
(2) Which of the following abbreviations are used to describe the magnitude of current:
(a) $m V$, (b) μA, (c) $p F$, (d) $\mu \mathrm{F}$, (e) A, (f) $n V$, (g) $k \Omega$.
(3) What would you expect the potential difference across a 2.2 kilohm resistor to be if 0.01 amperes were flowing through it.
(4) We can make a voltmeter by putting a resistor in series with a sensitive ammeter. Does it matter if the resistor is connected between the positive terminal of the meter and the battery's positive terminal or between the respective negative terminals?
(5) What current do you think would be flowing through R1 in Fig. 1? If you put another resistor in parallel with R2 would the current through R1 increase or decrease?
(6) What would be the minimum power rating of devices you would use for R1, R2 and R3 shown in Fig. 2?
(7) What would be the maximum power dissipation of the potentiometer shown in Fig. 3?
(8) The colour codes on resistors are as follows: what are the ohmic values and tolerances?
(a) Yellow, Violet, Red, Silver.

From Abroad

I have now had the first three issues of your publication and find it very interesting. They are on sale here exactly a month after publication, which seems a long time. Also it is difficult to get the required components as we only have one stockist in town. Is it possible to have a parcel of all components for a project sent direct from England?
I have made the Demo Deck and tried the experiments on page 151, January Everyday Electronics. According to your dia-grams the positive terminal of the meter is connected to the positive terminal of the battery. By doing this I find the needle shooting across the dial of the meter. However, by connecting the positive battery terminal to the resistors then to the meter positive terminal I get the correct readings.

If the current goes from positive to negative then surely the resistors should come before the meter, and if this is the case, then the positive sign on the diagrams should be on the other side of the battery. Please explain.

> D. A. Watson South Africa.

It would seem that you have inadvertantly connected your Demo Deck meter across the battery with no resistors in circuit. As the current flows around the whole circuit from positive to negative battery terminals and the resistors merely limit the flow it does not matter where in the circuit they are.

Thanks for a great new magazine, will be making most of your projects shown. Envy your low low prices. OC71 costs £3 here!!!! J. Koppard Wellington, N. Zealand.

At those prices it may be cheaper to buy from one of the British suppliers. Unfortunately we are unable to show the beautiful grass-skirted Tahitian girl on the front of the postcard from this reader!

Constructive-Helpful!

As a regular subscriber to "big brother" Practical Electronics, permit me to add my quota of appreciation of particular features in the welcome appearance of the new member of the "practicals" family.
First, I note the very commend. able provision of space for readers' letters. The growth of such a feature can provide a fraternal, club-like air. Both constructive and controversial writers therein can be respectively helpful or entertaining.

Myself an octogenarian who has followed the present hobby since the first days of the crystal detector and early usage of the now archaic term "wireless", which many qualified speakers and writers still use, l would like here to submit a small specially chosen item appropriate to the purpose of the Teach-In feature. It is with reference to the definition of alternating current as frequently seen in text books and other sources of instruction in basic electricity.

The virtually stereotype explanation says, "a current which flows this way and then that." To the uninformed, the nature of such expression at once conveys a relatively slow change without a precise frequency as required for practical use.

Still, with newcomers and beginners in mind, I would like here to repeat my comment, earlier published in Practical Electronics, which deplored the continued proliferation of semiconductors listed by retailers.

With every sympathy and understanding of the advertisers' problems in this matter, a list of over one thousand code markings for the identity of the devices being offered will serve only those readers who already know precisely that which they require. They may at the same time be aware of the many equivalents given in a list. It follows therefore that the ordinary active amateur constructor is saved frustration only by the authors of the constructional projects stipulating not only the preferred type of device, but also where possible, other
alternatives, all of which point to the need for progressive enthusiasts to avail themselves of comprehensive data on solid-state products.

In good humour and intention, I now turn to the question of two essentially familiar componentsvariable resistors and capacitors. The more experienced followers of the electronics cult must have noticed that many suppliers who regardless of its specific use, persist in calling the former article a "volume control", while others continue to call the latter "condensors" or "condensers".

Lastly, for those who may not be aware, there is an excellently produced, colour illustrated, twenty-four page booklet issued by Joseph Lucas Ltd. under the title, "The Story of Semiconductors." Whether one knows it all or not, the lucid manner of presentation is a pleasure to read. To conclude, do 1 hear electronically simulated laughter at my laboured views?
P. Ashdown Cheshire.

No laughter from us! We hope our booklet in the next issue will help with transistor data.

Commercial Equipment

I have followed with interest your magazine since the first issue and have found it most helpful and informative. Your Teach-In articles are an excellent idea, and in particular I would commend the Shop Talk articles. These fulfil the purpose of providing the newcomer with what he needs to know about component buying, something that other magazines seem to think he knows already.

However, there is one "gap" I think you could yet fill. Your projects at present are all on the same theme-construction of simple self-contained electronic devices.

No doubt many readers are interested in these, in particular the devices for cars such as the Auto Alert I would consider most useful since it is not easy to obtain proprietary devices at reasonable cost to serve the same purpose. But I would be interested to see some articles about ordinary household apparatus, and simple repairs and modifications to them. For instance: What common faults can one expect to develop in a radio set and how can one deal with them?

How can one suppress electrical apparatus that is causing interference. How to fit a socket to a television set to make tape

For several vears now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not 10 solder, there is an alternative - Project 605
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at zach end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete $3 C$ watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is 10 arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.
Guarantee 11 within 3 months of pucthasing Project 605 direstly fom us, you are dissatistied with it. we witt retund your money at once, Each module is gyaranieed to worth perfectily and should any defect arise in normal use we will senice in al once and wilhout any coss to you whassevere provided that it is retarned to us within 2 years of the purchase date. There will be a small eharge for service therather. No chage tor oostage or surface mait, Air-mail charged at cost.

Sinclair Radionics Lid., London Road. St. Ives, Huntingdonshire PE174HJ Telephone: St. Ives (04806) 4311

Specifications
Output-30 watts music power (10 watts per channel R.M.S. into 3Ω).
Inpuis-Mag. P.U. -3 mV correct to R.I.A.A. curve 20-25.000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pack-up -50 mV . Radio -50 to 150 mV Aux adjustable between 3 mV . and 3 V
Signal to noise ratio - Better than 70dB
Distorion - better than 0.2% under all conditions.
Controls - Press buttons for on-off. P U., radio and aux. Trebla +15 to -15 dB at 10 kHz . Bass +15 to -15 dB at 100 Hz Volume. Stereo Balance.
Channel matching within 1 dB
Front panel - brushed aluminium with black knobs.
Project 605 comprises Stereo 60 pre-amp/conuol
unit. two $Z-30$ power amplitiess. $\mathrm{PZ}-5$ power supply unit. the unique new Masterlink, leads and instructions manual complete in ore pack. Post free
£29.95
To Sinclair raolonics itd., st. ives, huntingdonshire peitahj
Please send Project 605 post free \square Details and list of stockists \square
Name
Address
for which I enclose $£ 29.95$ cheque/money order/cash
E.E.6B

BRAND NEW GUARANTEED

TRANSISTORS											
20801	209	2 Ns 404	23to	40310	45	BC212L	18．	B8x	48	NKT281	87
20302	0	2N3408	45	40311	4，	BCY 80	\％${ }^{\text {a }}$	BEX60	4	NKTT401	971
20303	）	2 NH 14	2310	40312	478	BCY 31		${ }^{\text {B8I }} 181$		NRTT402	
20808	4	2 NS 315	230	40314	87\％	BCYs\％	c）	B8X 76	2	NETT403	\％
20308		2 N 3416	97\％	40820	476	BCY33	3	B8x77	27\％	NRT404	P
20309	30	$2 \mathrm{~N}^{3} 417$	371	40323	82	BCT3 ${ }^{\text {a }}$		B8178	375	NET405	36
20371	15	$2 \mathrm{NS370}$	81．5	40524	47.	BCY3R	40%	B8Y10	27）	NKT406	3
20374		2N3572	97b	${ }^{40326}$	3710	BCY89	0	B8Y11	4	NKT681	
20351	23t	2N3005	17\％	40829	${ }^{30}$	BCY40		BgY24	，	NET42	3
2 N 404	2	2N3608	27\％	40344	27\％	BCY42	15	B9728	15\％	NKT438	\％
91596		2／53007	23t	40347	576	BCY4	15	B8Y26	17\％	NKT603	
2N697	17．	2N3702	11.	40348	684	BCY54	317	BAY27	17\％	NKT618P	
2N694	85	2N8703	10	40360	45	BCYEA	2tp	R8Y29	17\％	NET ${ }^{\text {a }}$	
2N706	18t	2N3704	11.	40361	17\％	BCrs9	240	B8Y29	178	NKT677\％	
21706 A	$1{ }^{1}$	2N8705	10	40382	576	BCYG0	078	88Y32		NET718	
${ }^{2 N 708}$		2N8706		40370	28	8CY70		88Y38		NKT781	
2N709	20	2N3707	11.	40408	57.1	BCY71	\％	B6Y37		NET104	
28718	5	2 N 3708	${ }^{08}$	${ }^{40447}$	40	BCY\％	1715	Bay 38	8		
231724	200	2N3709		40408	5	BCZ10	176	80739			15
27727		2N8710		40410	ct	BCz11		88740		SETI0	
${ }^{818914}$	171	${ }^{2818711}$	18 p	40467 A	7	${ }_{8}^{\text {BD1 }}$ 812	3.1	818981			
21916	1710	2×3725		${ }^{401080}$							
${ }^{2} 2 \mathrm{~N} 91898$	8\％	$\begin{aligned} & \text { 2Na716 } \\ & \text { 2N3791 } \end{aligned}$	$\begin{aligned} & 81.30 \\ & 22.06 \end{aligned}$	＋10000	${ }^{5} 8$	${ }_{3}$ BD128	315		975		4710
211830	\％	2N3819	${ }^{3} 5 \mathrm{p}$	Acles		BD131	75	ETE5			
28.1090		288923	771	AC127		BD182	45	20976		KET601	
2×1091		2182854	\％${ }^{1}$	${ }_{\text {AC12 }}$		BDY10	9．7	新 Y^{4}			1
2.1131		2N8864	2710	${ }^{\text {ACl54 }}$	P	BDT11					
251182	$17{ }^{1}$	2N2SS6 2N 23654	\％	AC178 ACla		${ }_{\text {BDF17 }}$	${ }^{81}$	$\begin{aligned} & \text { norge } \\ & \text { nigrsa } \end{aligned}$	18		
2M1509	17	2119858	2	${ }^{\text {Aclias }}$	271	BDT10	9－7	B8w41			
251804		${ }^{2 N 3686 A}$	\％	ACE17	87	BDY20	18.18	${ }^{\text {B／bw70 }}$	7_{7}	NETE0	
911805		${ }^{21788588}$	\％	ACF18		BDY38	${ }^{7} 1$	C111	7		
211300		${ }^{2 N 82888 A}$	8	ACY 19		BDY 60	1.	$\mathrm{Cag}^{\text {c }}$	7		
2×1307	5	${ }^{21} 2 \times 88898$	蔇	${ }^{\text {ACY }}$	20	BDY61 BDY	11．00	${ }_{\text {c／e }}$			
271506			．	${ }^{\text {ACY }}$		${ }_{\text {BFI15 }}$	1－0	${ }_{\text {c }}$			
211507		2 N 3868	1.6	ACY 28		BF117	4710	C74	25	NK	
211613		$2{ }^{153877}$	408	ACY ${ }^{0}$	8	BF163	875	D18P1	875		
2 M 1631		2N8877A	－	ACY41	\％	Bris\％	12	D16－2			
2M1632		2N3000		ACY44	40	BF173	10	${ }^{\text {D1 }} 168$	87		
2N1628	27	2n3900A		AD140	53	BP17\％	3	D16P4			
2 N 1639		${ }^{2 \times 3901}$	7	AD149	675	${ }^{\text {BFP17\％}}$	\％	GETIO2			
2N1671		$2 \mathrm{NsP003}$		AD150	40	BF179		GET118			
811711	85	2x3004	87	${ }_{\text {AD }}{ }^{\text {AD }} 161$	875	BF180 BF181		GET114		${ }^{0} \mathrm{CO28}$	
2N1809 2N1393	${ }^{27}$	2N3900		AD162		BF181 BFI d	3\％	GET118		${ }^{0} \mathrm{CO} 28$	
212147	83	2 N 4058	175	AP114	250	BFin6	4tp	GET120	5	OCO^{58}	
2152145	－7t	2N4059	1	AF115	\％	RF194	176	GETE73	18	0028	875
312160	575	2N4060	12\％	${ }^{\text {AF116 }}$	，	BF19s	10	GET880		${ }^{\mathrm{OCz}}$	
${ }^{2 N 2103}$		${ }^{2 N 4} 4061$	124	AF117	${ }^{80}$	${ }_{\text {BFIP }}^{\text {BF }}$		GETEA8		OCzs	
2N2193A	4t）	${ }^{2 \mathrm{~N}} 4062$	${ }^{12} 8$	AF118 ${ }_{\text {AFII }}$	80	${ }_{\text {BF197 }}$	${ }^{4} 8$	${ }_{\text {GETE90 }}$	8	${ }^{\text {OC35 }}$	
212217	87p	2154285	176	AF124	21）	BF200	6	GET3\％	－	$0 \mathrm{OC4}$	
212218		2N4289	17\％	${ }_{\text {AF125 }}$		HF224	13.	GET997		OC42	
$2 \mathrm{N2219}$	5	2N4287	17%	AF126	－	${ }^{\text {AFP225 }}$	15	GET89		0 OCH	
312290		2N4288	17\％	AF127	17%	BP 237	\％	${ }^{1} 1400$	1.07	OC4	
912291		214289	17	AF134	87	${ }^{\text {AF236 }}$		MJ420	A1．18	OC70	
218228		2N4290	17i	${ }^{\text {AFlis }}$	ctip	${ }^{\text {BFP24 }}$	7	${ }^{M 12421}$	0.10	$\mathrm{OCO}_{0} \mathrm{CO}$	
9x\％270	67	${ }^{2 N} 4291$	17%	AF179	$7{ }^{7}$	BFW61 BFX12	47	MJ430		${ }_{0}^{0} \mathrm{OC7}$	
250297	${ }^{305}$	2N4792	${ }^{12} 5$	${ }_{\text {AF1 }}^{\text {AF1 }}$（180	48	${ }_{\text {BFIT12 }}$	820	MJ440		${ }_{0}^{0} \mathrm{OC7} 2$	18\％
－112808	17%	2N4303	68\％		480	${ }_{\text {BFX }}$	d	${ }^{\text {MJ }} 4881$	${ }^{11}$	$0 \mathrm{OC7}$	
2N2869A	$17+$	2N5028	87	AF379	478	BFX 30	80	MJ490	1.00	$0 \mathrm{C76}$	
212410	410	2NS029	675	$A^{4} 280$	cto	BFX42	275	MJ491	11.87	0×77	
215243：	的碞	2N6030	4010	${ }_{\text {AF211 }}$	219	BFX4	37.	MJ1800	88.174	0 Cal	
392404	210	2N6172	${ }^{12}{ }^{\text {p }}$	A8Y 26	80，	BFX ${ }^{68}$	－76	MJES40		Ocas	
2×2630	20］	2N6174	${ }^{52} 9$	A8Y27	975	${ }_{\text {BFX }}{ }_{\text {B }}$		MJES20		${ }^{\mathrm{OCS}} 3$	
252540	815	2 N 5175	$52+8$	A8Y28	\％${ }^{7}$	BFX8S	${ }^{235}$	MPF102	$7{ }^{71}$	${ }_{0}^{0} \mathrm{Cl} 139$	
－ 2×2618		${ }_{\text {2NS }}$	P	${ }_{\text {ABY }}^{\text {AB }}$	\％	${ }_{\text {BFX }}{ }^{\text {BFI }} 8$	27	MPF103	376	OC140	
2×2646	cti	2N6245	1	A8Y50	25	BFX88	－	HPP104	${ }^{27}$	OC170	
2N2698	23t	2NS246	ct	A8Y51	285	BFX89	to	MPF105	87\％	OC171	
2 N 2711	4	2N6249	${ }^{47}$	A8Y54		BFI93A	70	MPPas638	${ }^{\text {dip }}$	OC720	
259712		2N6266	4．	A8Y86	231	BFY 10	230	NKT0013	${ }^{4} 7$	00002	
2N2713	\％ 7	2N6266	28	AU103	81.15	${ }_{\text {BFY }}{ }^{\text {BFP1 }}$	48	NKT124	4tp	OC202	
2N2714	38	2N6267		${ }_{\text {A820 }}$	16	${ }_{\text {BFY17 }}$		NETI	${ }^{278}$	00204	
$2 \mathrm{2N2904}$	\％ 2	2N6308	10	BClos	10	BFY19	3	NET128	27\％	OC205	
2192004A	219	2N6307	775	BC109	10）	BFY20	12	NKT185	87\％	OC207	
2129005	779	2N ${ }^{\text {a } 5064}$	876	${ }^{\mathrm{BCl} 18}$	${ }^{15 \%}$	$\mathrm{BFY}^{\text {BFP21 }}$	4	NKT137	231	OCP71	
212905A	40%	2 N 5309	cis	BC116	${ }_{15}^{150}$	BFY 24 BFY25				ORP12	
${ }_{2}{ }^{2 N 2906}$	\％）	2N5310	${ }^{810}$	${ }_{\text {BC118 }}$	${ }_{10 \%}$	${ }_{\text {BFY }}{ }^{\text {BF }}$		NKT ${ }^{\text {N12 }}$		PS46A	
${ }^{2 N} 2 \mathrm{~N} 29007 \mathrm{c}$	${ }^{2}$	${ }_{\text {2Ns35s }}$	8710	${ }_{\text {BC121 }}^{\text {BC118 }}$	80	${ }_{\text {BFY }}{ }^{\text {BF }}$	8	NETY13	10	Tis34	
231928	15	2N6356	210	BC12？	200	BFY 30		NKT 214	10	T1843	870
2N2924	150	2 N 5365	${ }^{61}$	BC125	20	BFY41		NKT215	4	T1844	10
232925	15	2N6366	88	BC126	20p	BFY48	4	NKT316	7t	T1845	11
2N2926		2 NS 2967	${ }^{571}$	${ }^{\text {BC1 }} 40$	275	BFY50	20	NKT217	4t	TIE4	11
Green Yellow	${ }^{14}$	286467 28005	${ }_{77} 7$	－${ }_{\text {BC147 }}^{\text {BC1 }}$	${ }^{10 \%}$	${ }_{\text {BPYP51 }}^{\text {BPY }}$		NKT219	80\％	T1847	181
Otang	$1 / 5$	28020	180	BC149	18．	BFY53	171p	NKT224	明	T1849	18
2N5011	－	28102	10	BC132	17%	BFY56A	57.	NKT325	415	T1850	17
283014	atb	28108	0	${ }^{\text {BCl }}{ }^{\text {a }}$		BFY75		NKT239		T1851	18
${ }_{2} \mathbf{2 1 5 0 5 3}$	1	28104		${ }_{8}^{8 C 158}$	${ }_{18}{ }^{18}$	$\underset{\text { BFY76 }}{\substack{\text { BFY }}}$	${ }^{4}$	NKT ${ }^{\text {NKT237 }}$	明	T1862	18
2N3055	4	${ }_{28802}^{2801}$	0	${ }_{\text {BC160 }}$	0	BFYPO	97	NKT240	171	Tiseo	
2N3133	4	${ }^{28503}$	175	${ }_{8} \mathrm{BC1} 167$	110	BFWb8	73	NKT241	775	T1861	
2N3134	40	3N83		8C188B	10	BFW59		NXT342		T1802	7
2N3135	45	2N128	\％	Bciesc	11	BPW80		NKT248	$1{ }^{1}$	T1P29A	
2N3136	\＄8	2 N 140	77	BC169B	${ }_{18}^{11}$	${ }_{\text {BPX }}$	1.	NKT244	178	TIP30A	
${ }_{2} \mathbf{2} 13891$		8N142		${ }_{\text {BC1 }}{ }_{\text {BC1 }}$	2\％	BPY 10	21－45	NKKT201	80	TIPs2A	7
2133901A		8 N 143	076	BC171	15 p	BRY39	87t	NKT282	10	TIP3AA	
2 N 3392	$17{ }^{\circ}$	81152		${ }^{\text {BCl7 }}$	15	B8X19	17.	NKT264			
${ }^{2 N 3893}$	1	R．C．A．	部	BC175	290	B8820	17\％	NKT271		TIP34A	
218394	15	${ }^{40050}$		${ }_{\text {BC1／2 }}$	10	${ }_{\text {Bgx }}{ }^{\text {Bg }}$	875	NET272		TIPSAA	
2N8402		40251	ctip	${ }_{\text {BC188 }}$	11.	${ }_{\text {B81 }}{ }^{\text {B87 }}$	47	NET276			
Post 4 Packing 13p per order．Europe 25p．Commonwealth（ Matching charge（audio transistors only） $15 p$ extra per Prices subject so alteration without prior notice．											

TTL．LOGIC I．C．NEW PRICES

MULLARD SUB－MIN ELECTROLYTIC
and reage adial Med $1 / 40 ; 1.6 / 28 ; 2.5 / 16 ; 2 \cdot 5 / 44 ; 4 / 10 ; 4 / 40 ; 5 / 84$

 80／16；80／25；100／4．4：125／10； $126 / 16 ; 200 / 6 \cdot 4 ; 200 / 10 ; 320 / 4.4$ ．

SILICON RECTIFIERS

PIV	60	100	200	400	600	800	1000	1200
14	8	0	103	11	181）	15	80	－
8A	15			$2{ }^{215}$		80		
6 A			\％	80	83	689	\cdots	
10.4	－	Esto	7\％	＊	774	4tb	7715	1－45
16 A	－	574	$4{ }^{4}$	774	\％	$7{ }^{71}$	11.0	41．571
86A	－		－	11.0	1－2	81．50	23－50	
1 amp	8 an	are pl	te en	peula				

amp and semp are plantic encepeulation．
DIODES \＆RECTIFIERS

THYRISTORS（ECR）

 Al100 12 amp．i00 PIV 76 2Ns528 at 4.1245
VERODOARD

Tel．01－452 0161／2／3 A．MARSHALL 8，SON Telex 21492

28 CRICKLEWOOD BROADWAY，LONDON，N．W． 2
recordings from the sound channel? How does one acquire circuit diagrams and service sheets for radio sets etc?

Another point in the diagrams accompanying the projects, the dimensions in inches, quarters and eighths strike me as a bit archaic, in view of the fact that most of the electronics industry works in metric units. If you must use inches, could you not use decimal fractions, e.g. 2-7in.

Finally, I would like to record my appreciation of the excellent drawings, photographs and general layout of the magazine.

Wishing your magazine every success,

M. D. McMahon Middlesbrough.

The subject of servicing, repair and alteration of commercial equipment is a vast one and often individual items must be described separately. Thus we cannot and will not be able to cover such subjects.

Taking your point about metric measurement, we feel that most readers would prefer to use the conventional system, but we are always pleased to receive com-ment-so what do other readers feel?

When I saw the title of your magazine on the bookstall Ifoolishly as it turned outassumed that it would contain some reference to "electronicflash", a piece of apparatus used by thousands of photographers both amateur and professional.

But nowhere in your pageseither editorial or advertisement -is there the slightest hint that such things as flash-guns exist. Of course your magazine is not the only offender. I wonder whether there is some conspiracy to keep circuit diagrams and maintenance of electronic flash systems out of reach of the public so that "repairers" can go on fleecing us.

As you undoubtedly know there is a tremendous sale on these relatively simple pieces of equipment. Consequently there must be many people like myself who use them and would welcome some details of construction and maintenance and the names of suppliers who could provide the necessary components.

I do not know whether my letter is useful as a contribution to your letters from readers page.
H. A. Williams

Swansea.
Designs for flash guns are within our scope but supply of the flash tubes is not so easy at present. We are not able to cover the design and maintenance of commercial flash guns.

Capacitors

I have just completed my first circuit-your Snap Sequence In-dicator-and, guess what? It worked! Thanks mainly to your helpful Teach-In series.

As a complete beginner I have managed to understand what has been said so far, but then came Capacitors and there my enthusiasm cooled down a bit.

I am not mathematically. minded and think it would be helpful if you printed a few sums in full to show how to arrive at for example, $0.01 \mu \mathrm{~F}$., as I am not sure how to change pF 's into $\mu \mathrm{F}$'s etc. Also I have not seen nF on a capacitor but in my catalogue a lot of capacitors are shown in mF . Please advise me what this stands for as I can find no mention of same in your Teach-In series.

Please could you advise me whether metallised polyester capacitors are suitable for all applications where electrolytic capacitors are not specified.

I hope you may be able to consider this letter for your letter page as I am sure there are a lot of home-constructors who, like me, find looking for the right capacitor in a catalogue extremely difficult owing to the wide range of types, voltages, etc. available.

B. Way
 Isle of Wight.

Capacitors are usually designated in $\mu F, n F$ and $p F$, these are millionths of Farads $(\div 1,000,000)$ thousandths of millionths of Farads $(\div 1,000,000,000)$ and billionths of Farads $(\div 1,000,000,000,000)$. Thus to change from $p F$ to μF divide by $1,000,000$; hence $10,000 \mathrm{pF}=$ $0 \cdot 01, M$. To change from \quad, F to $p F$ multiply by $1,000,000$; hence $0 \cdot 15 \mu F=150,000 \mathrm{pF}$. The use of $n F$ is rather restricted and will probably be seldom encountered. If a manufacturer or supplier quotes $m F$ he means μF.

Metallised polyester types are suitable for all our projects unless specific types are given and providing the specified value is available.

Q. and A.

As a follow up to D. Hill's letter in the February issue of Everyday Electronics, I wish to endorse his suggestion of a Question and Answers section. Readers' Letters and Shop Talk are most helpful, but with a Question and Answer section short and to the point, more information could be conveyed, e.g. your abbreviations section is a perfect example as, to a beginner such as myself, a quotation such as s.r.b.p. is double dutch.

Belated congratulations on your magazine, which through the Teach-In series gives a welcome lead-in to electronics.
W. McLintock

Londonderry, N. Ireland.
It seems that a number of readers would like such a page and we will be looking into the possibility of including this item in future.

No Waa!

I am writing to you to see if you could possibly help me. In this montli's edition of Everyday Electronics, you featured a circuit for a Waa-Waa Pedal, which I have built, but unfortunately I cannot get it to function properly. Every time I. press the pedal down, all that happens is that I get a very slight increase in volume, and when I bring the pedal back, I get a slight decrease in volume.

I have checked the circuit that many times now that I am beginning to give up hope.

R. Templeton

Melton Mowbray.
If you have checked out the circuit, paying special attention to transistor lead connections and capacitor polarities, and everything is correct, then we suggest that you experiment with the value of capacitor C2 (part of the filter network) as its value is critical.

If, for example, its value is too low due to a high tolerance figure, then the peak of the filter characteristic curve, Fig. 1 will be at too high a frequency-beyond or at the top end of the guitar upper scale.

Try increasing the value of C2 in small steps. This can be done by placing a capacitor across the one already in circuit. Capacitors in parallel are addilive.

Astron

May I as a complete stranger to the world of electronics, congratulate you on your magazine Everyday Electronics. I have followed with interest your magazine from its conception, especially your Teach-In. I dared not experiment with anything you published in case I made a hash of it But after following your instructions on how to build the Astron radio I was honestly surprised with the results I achieved. James McFadden

Belfast.

YATES GLEGTRONICS
 (FLITWICK) LTD

DEVELOPMENT PACK

0.5 watt 5% Iskra pesistors 5 of each value 4.7Ω so $1 \mathrm{M} \Omega$

E12 pack 325 resistors $\mathbf{4 2} \mathbf{4 0}$. E24 pack 650 resistors $\mathbf{4 4} 70$

POTENTIOMETERS

Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$, log or linear $(\log t W, \operatorname{lin} \nmid W)$.

SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix
Sub-miniature 0.1W, 5p each. Miniature 0.25 W , sp each

SEMICONDUCTOR									
AC107	15p	BC 108	10p	BFY52	22p	OC7I	$12 p$	IN4006	12p
AC126	12p	BC 109	10 p	BY127	12p	OC72	12p	IN4007	12p
AC127	120	BC147	13 p	BZYIO	20p	OC81	12p	2N2926R	9p
$A C 128$	$12 p$	BC148	13 p	BZY13	20p	OC82	12p	-2N29260	9p
AC131	12p	BCI49	13p	OA85	7 p	OC82D	12p	2N2926Y	9p
ADI40	50p	BC157	$14 p$	OA90	5p	ORPI2	50p	2N2926	0p
AFII4	20p	BC158	$14 p$	OA91	5p	IN4001	$6 p$	2N3055	$60 p$
AFIIS	20p	BC159	$14 p$	OA202	7p	IN4002	10p	2N3702	13p
F116	200	BF179	32p	OC26	45p	IN4003	10p	2N3703	110
F117	20p	BFY50	22p	OC44	12p	IN4004	10p	2N3707	13 p
BCl07	10p	BFYSI	22p	OC45	120	IN4005	12p	2N3711	10p
ZENER DIODES									

BRUSHED ALUMINIUM PANELS

DEPT. E.E.
ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD
C.W.O. PLEASE. POST AND PACKING PLEASE ADD IOp TO ORDERS UNDER $£$ Catalogue which contains data sheets for most of the componenss listed will be sent free on request 5p stamp appreclated
10% DISCOUNT TO ALL CALLERS ON SATURDAYS

MULLARD POLYE'STER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ 0.015μ F, $0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.06 \mathrm{~B} \mu \mathrm{~F}, 0 \cdot 1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}, 7 \mathrm{p}$ $0.33 \mu \mathrm{~F}, 11 \mathrm{p}, 0.47 \mu \mathrm{~F}, 13 \mathrm{p}, 02 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 34 \mathrm{p}, 0.15 \mu \mathrm{~F}$ 4 4P, $0.22 \mu \mathrm{~F}, 5 \mathrm{5} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 74 \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p}, 1.0 \mu \mathrm{~F}, 13 \mathrm{p}$.
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F},{ }^{3} \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $3+p \cdot 0 \cdot 1 \mu F, 4 p \cdot 0 \cdot 15 \mu F, 0 \cdot 22 \mu F, 5 p \cdot 0 \cdot 33 \mu F, 6 \frac{1}{3} p \cdot 0.47 \mu F, 84 p \cdot 0.60 \mu F, 11 p, 1 \cdot 0 \mu F, 13 p$ $\cdot 5 \mu F, 20 p .2 \cdot 2 \mu F, 24 p$.

MYLAR FILM CAPACITORS IOOV $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$

CERAMIC DISC CAPACITORS 2tp. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$.

ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
LF/V) $10 / 2 \cdot 5,40 / 2,5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4$ e eac $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10$ $125 / 10,200 / 10,2 \cdot 5 / 16,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16,1 \cdot 6 / 25,6 \cdot 4 / 25,12 \cdot 5 / 25$, $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0 \cdot 64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ 20/64, 32/64

MULLARD C437 SERIES

$100 / 40,160 / 25,250 / 16,400 / 10,640 / 6 \cdot 4,800 / 4,1000 / 2 \cdot 5,9$ p. $100 / 64,160 / 40,250 / 25$ 100014. 1000110 $1600 / 10,2500 / 6 \cdot 4,4000 / 2 \cdot 5,18 p$

VEROBOARD		JACK PLUGS AND SOCKETS			
0.1	0.15	Standard screened	18p	2.5 mm insulated	8 p
$2+\times 32$ 22p	17 p	Standard insulazed	12p	3. 5 mm insulated	8 p
2×5	$21 p$	Stereo screened	35 p	3. 5 mm screened	13 p
$31 \times 3424 \mathrm{l}$	$21 p$	Standard socket	15	2.5 mm socker	$8 \mathrm{8p}$
31×5	28p	Stereo socket	18 p	3. 5 mm socket	8 p
17×21	$57 p$	D.I.N, PLUGS AND SOCKETS			
$17 \times 34100 p$	78p				
17×5 (plain)	82p	2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ} .6$ pin			
$17 \times 3 \pm$ (plain)	60p	Plug 12p. Socker 8p.			
$17 \times 2+$ (plain)	42p	6 way screened cable 22p/metre			
$2+\times 5$ (plain)	12p				
$2 \mathrm{f} \times 3$ (plain)	$11 p$				
Pin insertion tool 52 p	$52 p$				
Sporface curter 42p	42p	BATTERY ELIM	AT		
Pke. 50 pins 20p	20p	9 V mains power sup	ply.	ame size as PP9	ery.

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

Thie carefully pianned seriet of manuals has proved valuable course in trainins techniciane in Electricity, Electronce, Radio and
WHAT READERS SAY

"EXCELLENT PUBLICATION"

Thank you for the excellent publication: the best in form and type I have ever come across"
T.L.O.. Shanklin

"READABLE AND INTERESTING"

"The Manuals are so readable and interesting that I do not think this magazine does full justice to the wonderful contents
S.T.P., Bangor

"REAL HELP"

"I And the Basic Manuals the best in their class a nd a real help in my work in phototype electronics.
C.L.P. Cardif

To The SELRAY BOOK CO., 60 hayES hill. hayes, BROMLEY, KEMT BR2 TMP
Please send me WITHOUT UBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, catriage paid in good condition within 7 days or send the following amounts. BASIC ELECTRICITY $\mathbf{2 4 . 5 0}$ Cash Price, or Down Payment of $\$ 1.00$ followed by 4 fortnightly payments of $£ 1.00$ each. Total $£ 5.00$. BASIC ELECTRONICS £5.40 Cash Price, or Down Payment of $£ 1.00$ followed by 5 fortnightly payments $£ 1.00$ each. Total $\mathbf{£ 6 . 0 0}$. This offer applies to UNITED KINGDOM ONIY. Overseas customers cash with order, prices as above
Tick Set required (Only one sef allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Poatage and Packing.
Signature
(Lf under 21 signature required of parent or guardian)

NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

GEM PANEL METERS

MULTIMETERS for GUSRY purpose/

USED EXTENSIVELY BY INDUBTRY, GOVERMMENT DEPARTMENTS, - LOW COST - QUICK DELIVERY OVER ZW RANGES IN BTOCK

"SEW" CLEAR PLASTIC METERS
Type KR.88P. 4tin. $\times 4 \mathrm{jin}$. Ironta.

SEYWOOD :W-500 sok \quad / Voll. Mirror 3 cale DC
$0.6 / 312 / 30 / 300 / 600$
0.3 ${ }_{600}$ DCurrent 20uA/6 $10 \mathrm{~K} / 100 \mathrm{~K} / \mathrm{l}$ Yes $/ 10$ Meg. Decibeis -20 to $+87 \mathrm{db} . \mathrm{s}^{27.50}$. P. A. P. 15p
nound scale type pencil testen MODEL IS ${ }^{6}$

Completely portable, almple to une pocket sized tentbr.

 ONLY 11.97 P. A P. ${ }^{139}$

370 WTR MULTI-

BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

Nem high quality port-
able fatrument. mble jantrument. 8inr
1 Hz 100 KHz . 8quare 20 Hz to 20 KH :
Outpot
maxx Output max $+{ }^{10} \mathrm{~dB}$
$(10 \mathrm{~K}$ ohms
Opera.
 812 m
120 mm.
Price 1287 -50. Cart. 2sp.

*MOVING IRONALLOTHERS MOVING COIL Please add postage

SEW EDUCATIONAL

METERS
Tyet TD.107. Sise

A new range of hish A new range of hifh fortrument. ideal mente and oxperibench applications. 3^{*} mirror scale. The nueter movement is ensily acceminge In the following ranges:

[^3]

EDGWISE METERS

gond for filloctrated wrochure on sETV
Panal for illoctration mochure on sin

Tge vess 8tin en

$25 \mu .8$. 88-80	300 Y . D.C.
	30 V. A.C.* 1
$50-0-50 \mu \mathrm{~A}$? 5	50V. A.C. ${ }^{\text {de }}$
$100 \mu \mathrm{~A}$....	180才. A.C. ${ }^{\text {des }}$
	300 V . A.C.* 81.
	$500 \mathrm{~mA} \mathrm{A.C.*}{ }^{\mathbf{1}}$.
	1 anp. A.C.* ${ }^{\text {a }}$ (1.05
$\underline{1-0-1 m A . . ~}$	
5 mA ${ }^{\text {1/8 }}$	10 amp. a.C. ${ }^{\text {ende\% }}$
10 mA ${ }^{\text {che }}$	20 mmp . A.C. ${ }^{\text {chen }}$
60 mA 81.0	
$100 \mathrm{~mA} . . . \mathrm{ll}$ (es	60 mmp A.C. ${ }^{6} 1.8$
$500 \mathrm{~mA}180$	VLMeter . . ${ }_{\text {S }}$

H1OR1 HODEL 720Z 0yerlond Prol
Overlosd protection.
$5 / 25 / 100 / 800 / 1000$ $10 / 60 / 250 / 1000$ VAC 50 EA/2minA. $20 \mathrm{~K} / 2$ nie:

 TETE息 TRAMEISTOR IIRROR ECAL O O Fitig LOAD PROTzCrion $0 / \cdot 12-6 / 3 / 12 / 30 / 120 / 600$ 0/6/80/120/800 V. AC. $0 / 12 / 600 \mathrm{uA} / 1 \mathrm{D} / 300 \mathrm{M} / \mathrm{M}:$ Amp. DC. $-20 \mathrm{t},+50 \mathrm{dh}$.
Trandutor tester memruren Alpha, beta and 1co. Coniniete with batteries, ingtruction and lemp. 18.50, P.P. 25 p.

ET100B4 MOLTI-METER Features ${ }^{\text {A.C. }}$ current
ranges.
100,000
O.p.v. Mirror Beale, Overloed protection.
$0 / \cdot 5 / 2 \cdot 5 / 10 / 50 /=50 / 8001$ 1000 V DK 0f2-8/10/50/:50/1000 v

${ }_{0}{ }^{\circ} \mathrm{C}$

0/10/250uA/2 - 3/25/250

10 Anp AC. $0 / 20 \mathrm{~K} / 200 \mathrm{~K} \mathrm{HMEG} / 20 \mathrm{MEt}$
RUSSIAM 22 RAMGE MULTIMETER Model t‘ 437 10.000 o.p.v. atrunient nimulactured in atrumient manulactured in
U.S.S.R. to the highent U.8.S.R. to the highent
ntandarin. Rangew: $2 \cdot 8 / 10$ / 60/250/500/1000v D.C. 2-5/ $10 / 50 / 250 / 500 / 1000 \mathrm{v}$
DC Current 100 wA/1/10)
100manA, Remistance
800 ohme/3/30/300K/3M Ω. teat leads, inatructions anil
eturdy steel carrylong cave.

26p.

TO-3 PORTABLE OSCILLOSCOPE
 3in. tube. Y mmp. Benatit.
 Fidth $1.3 \mathrm{cps}-1 \cdot 5 \mathrm{MBz}$;
Input Imp. 2 meg $\Omega 25 \mathrm{pr}$ Input lmp. 2 meg Ω anp. manderity $0 . y^{\circ}$. X emp. Beualurity 1.6 cps
p-p/CE. Bandwldth
-800 EH . Input mes Ω in 20 pP . Time bace 5 reages 10 cpa- 800 KHz.
sjnchronlation. Internal. external. Itluminated scale $140 \times 216 \times 330$ mnu. Welght $151 \mathrm{ib}, 220 / 240$ W. A.C. Supplied brand new with hambook. 887.50. Carr. 80p

HOMEYWELL DIGTRAL DOLTALGTER

 VT. 100Can be pazel
bench mountell
Baale meter mea

oures can be uned to neesure a wide ranse of but can be uned to nieasure a whe rang of optional plug in carda, Specification: Accuracy: \pm 0. digit. Overrange: 100% (up to 1.990). Input tmpedmace; 1000 Meg ohtu. Meanuring cycle: 1 per neconal. Adjuatnient: Automatic zeroing, full scale wiljastnent agalast an laternal reference voltage. Overloed: to 1007 . D.C.
 $81 \mathrm{in} . x 213 / 16 \mathrm{in}$. x $93 / 16 \mathrm{jn}$. AVAILABLE BRAND NEW AND FULLY GUARANTEED AT APPROX. HALF PRICE. sis.97\}. t'arr. 50 p .
G. W. SMITH
\& CO (RADIO) LTD.
Also see next two pages

GEMI-CONDUCTORS/VALVES
 ALL DEVICES BRAND NEW AND FULLY GUARANTEED

\begin{abstract}

 an301 00 2N3416 27D 2N5450 | | 20 p | 2 N 3417 | 37 p | 28102 |
| :--- | :--- | :--- | :--- | :--- | $0302 \quad 20 \mathrm{p}$ $20303 \quad 20 \mathrm{D} 2 \times 3440$ 20306

$2 G 308$ | 2 G 308 | 30 p | 2 N 3564 | 17 p | 28301 |
| :--- | :--- | :--- | :--- | :--- |
| 2 N 3565 | 15 D | 28300 | | | | 2 G 309 | 80 p | 2 N 3565 | 15 p | 28302 |
| :--- | :--- | :--- | :--- | :--- |
| G371 | 150 | 2 N 3568 | 28 | 28303 |

 | 20374 | 20 p | 2 N 3569 | 25 p | 28304 |
| :--- | :--- | :--- | ---: | ---: | ---: |
| 28501 | | | | |
| 2 G 381 | 22 p | 2 N 3570 | 125 p | 285002 | 2N388A $2 N 388 A$

$2 N 404$ $2 N 404$
$2 N 696$ 2N697 2N697
$2 N$ 2 N 699
2 N 708
 $2 \mathrm{~N}^{2} 706 \mathrm{~A}$ 2N708
2N709 2N709
2N718
$2 N 718$ 2N718A 2N727
2NO14 2 N 918
2 N 918 2N918
2N929 2 N 929
2 N 930
 2N 2 N 1090
2 N 1091 2N1091 2N1131 2 N 132
2 N 1302 2 N 1302
2 N 1304 $2 N 1308$
$2 N 1305$ $2 N 1305$
$2 N 1306$ $2 N 1306$
$2 N 1307$ $2 N 1307$
$2 N 1308$
$2 N 1309$ 2 N 1309
2 N 1507 2N1607 2N1631 N1632 2 N 1637
2 N 1638 2N1639 $2 N 170$
$2 N 171$ 2N1889 2 N 1893
2 N 2147 2 N 2160
2 N 2193 2N2193A 2N2194
2 N 2194 A2N2217
2N2218
2NN22192N221802N2221N2222A${ }^{2 N} 22297$2N2368N23692N2389A2 N 2410
2 N 2482N24842N25392N2040$2 \times 2614$$2 N 2614$

$2 N 2646$2N2711| $2 N 2712$ | $25 p$ | $2 N 4286$ |
| :--- | :--- | :--- |
| $2 N 4287$ | | |$2 N 2713 \quad 27 \mathrm{p}$ 2N42872 N 29042N2904A2 N 290 s

2 N 29052N2905A2N2906\begin{tabular}{ll|l}
$2 N 2907$ \& 25 p \& 2 N 4964

2 N 4965

\hline $\mathbf{N} 2923$

$2 N 2923$ \& 15 D \& 2 N 5027

\hline

2N2925 15D 2N50282 N 2925 S 150 2 N 5029

$2 N 2924 G$ \& $12 p$ \& $2 N 5030$

$2 N 29260$ \& 120 \& $2 N 5171$

2N29260 120 2N5172

$2 N 2926 Y$ \& 18 p \& 2 Nb 174

2 N 3011 \& 80 p \& 2 N 5175

2N3014 250 2 NB 176$2 N 30532^{20}$ 2NE232A$\begin{array}{lll}2 N 3055 & 72 \mathrm{D} & 2 \mathrm{~N} 5246\end{array}$

$2 N 3391$ \& 20 p \& 2 N 5307

2 N 308

2N3391A 80p ${ }_{20}^{2 N 5308}$

$2 N 3391 A$ \& 80 p \& $2 \mathrm{2N} 5309$

2 N 3392 \& 17 p \& 2 N 5310

\hline $2 N 3393$ \& $15 p$ \& $2 N 6310$

\hline $2 N 3394$ \& 15 \& $2 N 554$

2N3394 15D ${ }^{2 N} 3402{ }^{2 N 55}$

$2 N 3402$ \& 28 p \& $2 N 5356$

$2 \mathrm{~N} \$ 403$ \& 28 \& $2 N 5$

$\begin{array}{lll}2 N 3403 & 28 p & 2 N 5365 \\ 2 N 3404 & 820 & 2 N 5365\end{array}$

$2 N 3404$ \& 38 p \& $2 N B 366$

$2 N S 405$ \& 45 p \& 2 S

\hline
\end{tabular}

 25p HC119 $50 \mathrm{D}-\mathrm{BCl} 21$ \begin{tabular}{l|l}
60 p \& BC122

BC125

80 p \& BCl 25

BCI26

75 D \& BC126

82 D \& $\mathrm{BC134}$

35 \& HC1

32 D \& BC134

350 \& BC135

BC135

BC136

BC137
\end{tabular} BC136

BC137
BC138 BC138
RCl
RC1 BC140
BC141

BC147 | BC141 |
| :--- |
| BC147 |
| BC148 |
| BC1 | BC149

BC182
BC1

 \begin{tabular}{l|ll|ll}
159 \& BFX12 \& 229 \& NKT224

150 \& BFX13 \& 28 D \& NKT225 \& 20 D

15 p \& BFX13 \& 28 D \& NKT225 \& 28D

30 D \& BFX29 \& 25 D \& NKT229 \& 80p
\end{tabular}

$0 p$	BFX 37	$30 p$	NKT238	28
50	BFX44	870	NKT240	27

$25 p$	BFX88	$67 p$	NKT241	$27 p$
$18 p$	BFX84	$25 p$	NKT242	$20 p$
$12 p$	BFX85	$80 p$	NKT243	$62 p$
$15 p$	BFX86	$25 p$	NKT244	$17 p$
150	BFK87	$25 p$	NKT245	$20 p$

150	BFX87	25 p	NKT245	20 p
800	BFX88	20 D	NKT261	80 p

12 D	BFY18	$25 p$	NKT262						
BFY19	25 D	NKT274 20							
17 BFY	21	20	NKT275		170	BFY21	$42 p$	NKT275	$20 p$
:---	:---	:---	:---	:---					
20 DFPY	BF	4D	NKT278	$25 p$					
20p	BFY29	40 p	NKT281	27 D					

20p	BFY29
15p	BYY
10	

 \begin{tabular}{l|l|ll}
Circuits \& FJH111 \& 70 D \& SN7440 20D

FJH121 \& 25D \& BN744AN

CA3000 1800 \& FJH121 \& 25D \& EN7441AN

\hline
\end{tabular}

 CA3018
CA3018A

	38. 25	2.	800	EL95	
OB:	45 p 2	2575	420	exso	
OZ4	80D 25	${ }_{25} 26$	85p	EM81	60p
$1 \mathrm{L4}$	20030	30 C 15	80 p	EM84	35 p
125	40 D 30	30 Cl 7	90p	EM8s	1.00
185	30 D 3	30 Cl 18	80D	EM87	70p
IT4	$25 p 3$	30 F 5	85p	EYS 1	40p
144	30p 3	30 FLl	759	EY8	400
IUs	60p 3	30 FL 12	120p	EY87	P
2 D 21	35 p 3	$30 \mathrm{FL14}$	95 D	EZ40	
304	50 p 3	30 LLS	85 p	E241	${ }^{\text {D }}$
384	35 D 3	30 L 17	80 p	E280	87p
$3 \mathrm{SV}_{4}$	48p 3	${ }^{30} 12$	80 D	EZ81	
BR4	75 D 3	30 P 19	85 D	OZ32	48D
$5{ }^{5} 4$	85 p 3	30 PL	750	0234	
$5{ }^{514}$	45 B 3	30PL13	93 p	K T60	22.05
5 Y 3	40 g 3	30PL14	90p	K T88	32.00
$5 \mathrm{Z40}$	40 p 3	35 L 8	s0p	MU14	75p
8/30L2	80.	35 W 4	850	PABC8	40p
$8 \mathrm{AC7}$	40 P	3524	850	PC86	
$8 \mathrm{AO7}$	40	3525	60p	PC88	607
6AK5	85 D	50B5	50p	PC97	
8AK6	60 D	50C5	50p	PC900	48D
6AL5	20 D	80	650	PCC84	
6AM6	80 D	85.4	60D	pceas	400
6AQ3	33p	807		PCC88	,
${ }^{8186}$	40 p	1825	60p	PCC89	500
6AT6	850	5763		PCC188	50.
6AU6	25p	6148	180	PCFPO	80 D
6AV6	50	AZ31		PCF82	
${ }^{6 B A 6}$	250	CY31	85D	PCF84	800
${ }^{68 E A}$	30 D	DAP91	80 p	PCP88	
6BH6	760	Dap'of	45	PCProo	80 D
6BJ8	50 p	DF91	220	PCP801	
$6 \mathrm{BQ7A}$	40 D	DF96	45	PCP803	50
6 BR 7	90 D	DK91		PCFP05	
6BR8	70D	DK92	850	PCF80	70]
6BW6	85 p	DK98		PCP808	
68W7	${ }^{80}{ }^{\text {D }}$	DL92	350	PCLA2	35D
${ }^{61328}$	40 D	DL94	48p	PCL83	
${ }_{604}$	330	DL96	450	PCL84	45p
6CD6	125 D	DM70	40 p	PCL85	
${ }^{6 C L} 8$	50 D	DY88	829	PCLSA	480
scw	${ }^{85}$	DY87	33p	PFL20	
${ }_{6} \mathrm{~F} 1$	${ }^{68}$	E880C	100 p	PLa6	85 p
${ }^{6} \mathrm{FFGG}$	850	E180F	100p	PLS	
${ }_{6} 6{ }^{\text {P13 }}$	450	EABC80	35D	PL82	5 D
6 F 14	70 P	EAF42	85p	PL83	
6 Fris	650	E891	20p	PL84	10D
$8 \mathrm{Fr}^{18}$	P	EbC41	559	Plano	
${ }_{6}^{6 F 23}$	85	EbC81	30 p	P1.504	80 D
8H8	170	Ebr80		PY32	
${ }^{60} 4$	80 D	E8F83	100	PY33	53D
$6 \mathrm{J5}$	250	EBP89	32 p	PY80	
${ }^{6 J 50}$	30 p	EbLel	80D	PY81	800
8J6	20 p	EC88		PY82	
6 J 7	45 p	ECas	80 D	PY83	38 p
6K86	40 p	ECCA 0		PY88	
6L80T	45	ECC84	300	PY800	40p
6LD29	50 p	ECCss		PY80	
607	40D	ECCA 8	40 D	U25	80 D
8847	40 p	ECP80		U28	
6807	40 D	ECF82	35 p	U50	D
68.7	40p	ECFP8		U52	
$68 \mathrm{K7}$	400	ECH21	57.	U191	75D
68.2	3 sp	еСН35	100p	U281	
68N7	35p	ECH 42	780	U282	40p
6897	40p	ECH81	300	U301	
6 U 4	65p	ECH83	480	U801	21.80
6V60	$25 p$	ECL80	45.	UABC80	
${ }^{6066 T}$	32 p	ECLs	35 p	UAF42	${ }^{565}$
8×4	35 D	ECLA3	${ }^{70}{ }^{\text {p }}$	UBCA1	60p
6×50	30 p	Eclag	40 D	UBCA	${ }^{40 \mathrm{D}}$
6xbet	40 D	EF37A	120p	UBF80	p
10 C 2	50 p	EF39	500	TBP89	35p
10F1	750	EP40	50 p	Uucs 4	49p
10P13	60 p	EF61		U0C85	40p
10P14	\&1.10	EP42	70p	UCF80	P
12AT6	30 p	EF80	25	UC1121	
12AT7	30 D	EP85	350	UCH42	70p
12AU7	,	EP86	80.	UCH81	10D
$12 \mathrm{AX7}$	30 D	EFP9	28p	UCLA:	${ }^{85}$
l2AV6	${ }^{40}{ }^{\circ}$	$\mathrm{EP91}^{\text {Pr }}$	30.	UCLA3	${ }^{60} \mathrm{D}$
12 BAB	40 D	EP92	35p	UP41	60p
	400	EF183	35 p	UF80	${ }^{85}$
!2B67	45p	EF184	35p	UP88	40 p
$19 \mathrm{AQ5}$ 20 D 1	850	EH90	40 D	UF89	40 p
$20 \mathrm{D1}$	50 D	ELa34	50 p	ULS 1	${ }^{65}$
$20 \mathrm{~F}^{2}$	65 D	EL33	21.25	UL84	40 D
${ }_{20 \mathrm{P} 1}^{20 \mathrm{~L}}$	21.10	ELd	80p	UY41	48p
${ }_{20 \mathrm{P}}^{20} 1$	80p	ELA2	600	UY85	${ }^{40 p}$
${ }_{2}^{208} \mathbf{P}^{3}$	80 p	EL8	65p	VR105/30	30 38p
20 P 4	21.10	ELS	250	VR150/3	30 35p
20Ps	21.20	EL8s	43p	Add 12p	in 2
2010	20	EL91	350	for posto	age

RECORD DECKS
B．S．R．
Mind Monot $£ 4.8$
C129t C129才
$\mathbf{3} 1 \mathrm{P6} 0$ MP8
610 610
810 310

 | MP60 TPD 21765 |
| :--- | :--- |
| 1585 | 610 T．P．D． 1220.97 \＄10 T．P．D．I． 218.75 210 Packare ${ }^{219.85}$

H．T．70 215.55 H．T． 70 Pack THORENS TDI25
TDI25AB TDI25
TX25
 TDI50ABII $240 \cdot 25$ TXIl angs T／C 3000° 28.50
87.50
80.75
 3500 ＊ 4 Mono－stereo Cartridk All other models lens Cartiduly RECORD DECK
PACKAGES
Decks supplied
remily wired in plinth and cover idge．Carrard

2025 T／C with sonotone PTAIICD 218.96 Garrar！gP25 gonot one gTA IICD Garrard Speztill Goliring 0800 Garrard AP76 Goldring 8800 Garrard BPesill／8hure M75－ GARTA MPGO Audlo Technilea AT． Goldring QL72 Goldring 0800 Goldring GL75 Goldring G800 Goldriug Cliarriage sop extra any model．
＊TRANSISTORISED FM TUNER
HIAH QUALITY
TUNER，EIZE
ONEYEXA 218.95
218.95
229.95 21995
819.95 280.95
221.00 287.50
242.50 $246+65$
 3 1．F stages
Double tunest dis－ crimilnator．Ample amplifiers，Operates on 9 V hattery．Coreragc ant ic value for money．28－37\％P．AB P1215 stereo multiplex adaptorm 24.831

SINCLAIR EQUIPMENT

Project 60 Jrackac oltcra

2 I 230 amplitier，ntereo 60 pre－nmp，P25 power aupply． 216.75 carr．371p．Or with PZ6 power nupply $\$ 18.85$ Carr． 37 ip． 2×250 aupply． 2025 ．Carr． 37 fp ． Tranmiormer tor P28．28．97）extr Alter unlt and 113.90 for pair of 018 speshers Project 60 HM Tuner $218 \cdot \mathrm{es}$ ．Carr． 37 ln All other Binelair product：In alock． 231.50 Chrt．3ilp．：Neoterle Amp 243 －95 UEW PROJFCT

LATEST CATALOGUE

Our new 6th edition gives full detalla of MENT．COMPONENTB．TEST EQUIP MENT and COMMUNICATIONR EUUIP MENT，FHFE DIACOUNT COUPONS

> 272 paren． tully tllas． detailing thousands SEND NOW ONLY $37 \frac{1}{2} p$ P\＆P 10p

TELETON SAO－206B STEREO AMPLIFIER
 C60 on min 42 p ． 3 for 88p． 3 for 21.10 Cansette Heal Cleaner 30p．Pout Extr

TE－40 HIGH SENSITIVITY

10 meg．input 10 ranges 300 V ．R．M．g．4cpa．－1－2 Mc／m Decibels -40 to +50 dB ．
gupplied brand new complete Supplied brand tuew complete
with leada and Instructions． Operstion 230 V．A．C． 21750 ． Cart．28p．

E．t．Electronic 11 meg Imput， 26 rangen．Large 41°
 DC VOLTS 03 ．
1200 V ．AC VOLTB 1200 V ．AC VOLTB
$3-300 \mathrm{~V}$ RMB． $8-0-$ Roov P－P．DCCUR． -20 to +51 db Complete with lenos／lastruc thona．217，50，P．\＆P．20p．

PRS－2 PEOTO ELECTRIC RELAY

E4312 MOLTMETER
Extremely sturdy instrument for general $6 / 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300 /$
$600 / 900$ VDC and 75 mV ． of $3 / 1 \cdot 5 / 7-5 / 30 / 60 / 150 / 300$ $600 / 900 \mathrm{VAC}$ $6,300 \mathrm{MA} / 1 \cdot 5 / 8 / 50 / 60 / 150 /$
AMP．D．C． 0／15／6／15／60／150／600MA $1.5 / 6$ AMP．AC．
－ 200 П／3K $/ 30 \mathrm{~K} \Omega$.
\qquad Kolfe，edge pointer．mirro
weale．Complete with sturly
 and Instructlons． $89 \cdot 60$ plus P．\＆P． $25 p$

UR－1A SOLID STATE COMMUNICATION RECEIVER
4 Bandl covering $580 \mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{m}$ ．FET， Speaker，Bandspread．Gensitivity Control． Speaker，Bandipresd．Sensitivity Control
$220 / 240^{\circ} \mathrm{v}$ ．A．C．or 12 v ．D．C． $129^{\circ} \mathrm{x}$
$41^{\circ} \times 7^{\circ}$ Brand new．wtit Inatructiona．225．Curr． 37 中p． IAPAYETTE GA－600 SOLID STATE RECEIVER TE 1018 DE－LDIE MONO EJGA IMPE Sempltive，soft earpad miljustable healband． Magnetle，In
2,600 oinma．

EMI LOUDSPEAEERS
Model $350.13^{\circ} \mathrm{I} 8^{\circ}$ wht
Model 350 ． 13° I 8° with
single tweeter／crosmover
$20 \cdot 20,000 \mathrm{~Hz}$ ． 15 watt
RM8．Available 8 or 15 olins． 27.50 each．P．
Model 450． 13° I 8°－ Hth
twin tweters／criasoner RMS．Avallable or 15 Phme． 25 ．

41－8\％。

MP7 MXE
 huta Mon： 2 ，my Sok， 100 mV I meg．Output 250 mV 100 K ．

HOSIDEN DH－O2S STEREO HEADPHONES

保METER
 5 mlerophone in puts each vith controls enabling complete mixing
 and excellent wer－
formance combined． Adjustable bead pedsnce． $\mathbf{2 0 - 1 2 , 0 0 0}$ eps．Complete with plug．ONLY 22.871

1021 STEREO LISTENIMC
STATION

MCA． 220 AUTO． MATIC VOLTAGE STABILISER
Input 88－125 VAC or 176
250VAC．Outpriz 120VAC or 240VAC． 200
e11． 77. Carr． 50 p

POWER RHEOSTATS

ligh qually ceramic construction．Windingen embeldiled in viltreous
enamel．Heavy duty brush wiper．Contlanoun ratigg．Wide range enamel．Heary duty brush wiper．Conthound rating．Wide range
 50 WATI． $10 / 25 / 80 / 100 / 250 / 500 / 1000 / 2500$ or 3000 ohms，il 05 P．A．P．7／p． 100 W ATY．1／6／10／25／50，100／250／500／1000 or $\% 500$ ohme，21－37／P．\＆P．7／P
＂YAMABISHI＂VARIABLE VOLTAGE TRANSFORMERS

8－280 Genera Purpose Bench
1 Amp 27.00
$\begin{array}{rrr}2.5 \mathrm{Amp} & 28.08 \\ 5 \mathrm{Amp} & 211.75\end{array}$
8 Amp
215.90
12 Amp
$\begin{array}{ll}12 \mathrm{Amp} & 220.0 \\ 20 \mathrm{Amp} & 240.00\end{array}$

1 S －260B Mounting
$87-00$
2505 Pleace add $28-05$ ALL MODELA INPUT 230 VOLTM 30／60 CYCLES
TPU OUTPUT VARIABLE
special discounts for quantity

Everyday Electronics Classified Advertisements

RATES: 7p per word (minimum 12 words). Box No. 7p. extra. Semi-display- $\mathbf{~ 4} \cdot \mathbf{5 0}$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Lid., Fleetway House, Farringdon Street, London EC4A 4AD.

SERVICE SHEETS

SERVICE SHEETS (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8,000 models available. Catalogue i3p. Please send S.A.E, with all orders/ enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex. Telephone: Bexhill 7097.

RECEIVERS and COMPONENTS
NEW BRANDED GUARANTEED TOP QUALITY
MICROCIRCUITS and TRANSISTORS ALL COMPLETE WITH DATA 2N3055 48p; 741 36p; 723 75p
SOLDERCON I.C. Pin Sockets-0.7p per pin in strips any length.
Sena for List and a 2N2926 (Green) FREE during APRIL 1972

JEF ELECTRONICS (E.E.4)
York Hse., 12 York Dr., Grappenhall, Warrington WA4 2EJ.
Mail Order Only. C.W.O. P\&P 7p per order. O/seas 65p. Money back if not satisfied. Discounts begin at 10 off.

COLPUTIER PAMELA 5 -BCIOS, DIODFS. $15 p$ pont $5 p$. 4 -60p. Poot 10p. AYERICAI PADELS TOTAL AT LEABT 60 TRANBIGTORS, FIRET GRADE COM. PONENTB, 4-65p, Pont $10 p$. As80RTED PAYELS 6-7t\%, Post 15p. DWIT WTTH 4 LAR POT CORES Plus 112% CAPACITORB 50p, Pont 1\%p, 8INGLEH 20p c.p. ORP18 ON PASEL EX EQLIPT. AOpe.p. FERIITL
 5-10p, Pont 3p. COPPER CLAD PA YOLIN RINGLE BIDED 8 I $5,10 p$, Post $5 p$ each, 13 I $114,80 p$, Poet 8p each. HALL IITCEROLOUS 工OTOR WITH GEAR TRAIN 200-260V. 80 p c.p. ELECTROLTTICS 5,000
 AC MANS OPERATED, WITH MAINS RESET, gop, Post 12 p . BAIER 10 WIRE ERDED NEON 8 80p, Post 7 p .

 AND GANGED $15-60 \mathrm{p}$ e.p. TRATAFORIER IS DIE
CAST BOX MAINS PRIM. BEC $26-0-2 H$ AT 0.66 AMP 1. Post 25p. SEND LARGE S.A.E. FO\& LIBT OF PANELS, ETC.

31b AgSORTFD PANELA 76p. r.p.
RES, CAPS, DIODES INDECTORG, ETC.
J.W.B. RADIO

7 EAYTIELD ROAD, BALFORD 8, LANCS MALL ORDER ONLY

Send now for our
ILLUSTRATED COMPONENT EQUIPMENT CATALOGUE SLIDE AND ROTARY LAMP DIMMER CATALOGUE

IOp each—posi free
YOUNG ELECTRONICS
54 Lawford Rd. London, NWS 2LN 01-267-0201

DO-IT-YOURSELF ... we stock a large range of audio and electronic componentsat very competitive prices, e.c.: Chassis speakers, crossover networks, hi-fi speaker kits (Wharfedale a Peerless), BAF sound absorbent, speaker srille fabrics, inductors, resistors, electrolytics (reversible and polarised), transistors, etc. Send for FREE lise. (2×3 p seamps for fabric sarnoles.) Mail-order ONLY. No callers pleast.:

A UDIOSCAN
 Depl. EE472)

BEATD IEW G.P.O. TYPE 3000 RELAY8 2000 OhM Coll, $1 \times$ Nopnamlly Clowed Contect, 60 p 2000 OhM Coll, I \times Normally Closell Ileavy Duty (O (ac $75 \mathrm{p}, \mathrm{P} . \& \mathrm{P}, 15 \mathrm{p}$ 1000 OhM Coll, $2 \times$ Change.over Light Duty Contacta We can supply any trpe of (A,P.O. 3000 Relayn. Component parceln include Ploge, Gockets, Capacitorn, cic, etc., 4 th. nett weight, $1 \cdot 00$, P. \& P. 30 p

ELEKON ENTERPRISES

12A TOTTEMHAY STREET, LONDON, WIP gPQ TwI. 01 -590-7091

EDUCATIONAL

TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566), Intertext House, London, SW8 4UJ.

MEN: You can earn £50 p.w. Learn computer operating. Send for FREE brochure-London Computer Opera-brochure-London Computer operators Training Centre, 9 G22 Loxise, $9-15$ Oxford Street, London, W.1.
 cribes the easiest AIM City \&ay to pass A.M.S.E., A.M.I.M... Cert., etc., and pives details of courses in all branches of engineering Mechanics, Electrical, Civil, Auto, Aero, Radio, TV, Building. etc, You'must read this book.

Send for your copy roday-FREE!
B.I.E.T. B125, Aldermaston Court, Reading, RG7 4PF
Accredited by the Councll for the Accreditation of Correspondence Colleges

BRITISH INSTITUIE OF ENGINEERING TECHNOLOGY

MISCELLANEOUS

PROFESSIONAL CONTROL PANELS

 winh FASCIA KITMAKE YOUR OWNPANELSIN PERMANENT, ANODISED, SELFFADHESIVE ALUMINIUM. NO SPECIAL EQUIPMENT NEEDED. EASY TO FOLLOW INSTRUCTIONS. CHOICE OF SILVER ON BLACK, RED, BLUE, GREEN, TRIAL KIT ($36 \mathrm{sq} . \mathrm{in}$.) .. 41.28 carr. pd. No. 1. KIT (54 sq. in.) \quad. $1 . e^{2}$ carr. pd No. 2, KIT (72 sq. in.) 62.30 carr. pd MPE Led., Dpt D.E, Bridge St. Clay Cress, Derbys

A CATALOGUE

Is the first atep to a succeastul electronic buliding project. Beginners and experte alle can select thelr needs from a catalogue which hows the wealth of Profeselonal componente dietributed by R.S. Componente Lid. (formerly Radiospares). Every Radloepares Item epecifed in conetructlonal fentures can be eupplied, Just as quickly as the postman can get to youp home.
ALL LISTED COMPONENTS ARE POST PAD TO YOUR HOME IN THE U.K. STRICTLY MAIL ORDER ONLY.
SEND ONLY 250 FOR YOUR COPY OF THIS INVALUABLE OB-PAGE CATALOGUE TO:-

CELECTRDN-E
P.O. BOX MO. 1 ,

LLANTWIT MAJOR, GLAMORGAN CFE OYN

WILSIC SOUND EFFECTS KITS

WAH-WAH PEDAL KIT (Illustrated)
Kit comprises a SELECTIVE AMPLIFIER MODULE KIT to convert the FOOT VOLUME CONTROL PEDAL (as photo) to Wah-Wah operation. Amplifier module \&1.75, pedal unic \&5.13, COMPLETE KIT CS. 50 add 38p for assembly of module, but please note we cannot supply kits fully built.
REVERBERATION UNIT KIT. For dimension effect, Connects between sound source, mic. etc., and amplifier. Battery powered. COMPLETE KIT $£ 9.20$ (excluding case $£ 7.50$). Assembled in slimline cabinet $£ 12.50$. VIBRATO UNIT KIT. Foot pedal unit with variable speed and depth controls. COMPLETE KIT ©5. 25 .
SEND I5p for the WILSIC PLANS BOOK, with full details of these kits; circuits, drawings and price lists.

LATEST CATALOGUE 5p (stamps)
WILSIC ELECTRONICS LTD. 6 COPLEY ROAD, DONCASTER, YORKS.

MISCELLANEOUS-continued
RECORD TV SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included. $£ 1$ post free. CROWBOROUGH ELECTRONICS (E.E.), Eridge Road, Crowborough, Sussex.

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

because this GPO approved transmitter/ receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means. Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible desion with quite an AMAZING RANGE-has obvious applications for SCHOOL PROJECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc.

GET YOURS! SEND £5.50 NOW S.A.E. for details

TO: BOFFIN PROJECTS
DEPT, KEE.
4 CUNLIFFE ROAD,
STONELEIGH, EWELL, SURREY

CASSETTE BARGAINS, Paros recorder Mains/battery complete for only 117 post free. Low-noise tape cassettes, $\quad \mathbf{C 6 0 - 3 2 p}, \quad \mathbf{C 9 0 - 5 0} \mathrm{p}, \mathrm{Cl20-70p}$. cassettes, Write for other bargains. Hargreaves Write for other bargains. Hargreaves
Electrics, 4 Roman Way, Dordon, Electrics,
Tamworth,
Staffordshire.

IOHN SAYS
RING MODULATOR by Dewtron is professional. transformerless, 5 -eransistor. has adjustable F1/F2 rejection. Module 87 . Unit fe•\%. WAA-WAA Pedal kit of all parts, incl. all mechanics s instr. Only 62.93. AUTO RHYTHM from Dewtron modules. Simple unit for waltz, foxtrot stc. costs 18 s.00 in modules. SYNY He SISER MODULES and other miracles. Send $15 p$ for illuse. list.
D.E.W. Led., 254 Ringwood Road, Ferndown, Dorsat.

RANPEN

why mot build yeur orejects im madorn leokling cates made of Porspar P lasides boing robest a mathergreef, Proeper is available in a varioty of wight celcurs, trasesareat and epaese. Cases are avallable in hit form for the followint:-

Astaon sh-40 memore TEMP. Comp. then mone sentinel soge rain hlanl so-e
 (STATE OU. OF METER HOLE MIEN ORDEKIVG) all sifees imaludo paf. cash - with - order
16,seymour nead, tilcuay, essex imill 7ap

BHiOMASORUR electranics

SL403D ©1-50, SN76013 61-25, MFC4000 52p, AD161/162 pair 60p, A.M. Coil set with ferrite rod \&1 (p. \& p. 6p all orders). Carbon Track pots 12p + Switch 24p. Fully illustrated 1972 Catalogue 20p fully illus
56 Fortis Green Rd, London N10 3HN

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan, Tent, Emergency Lighting, etc Fully Transistorised, Low Battery Drain. With ON'OFF Switch and 12V Socket to run other Lights or 12 V Equipment.
Unbeatable at 53.30 post paid
or in kit form -2.91
Eosy to construct
SALOP ELECTRONICS Caller! welcome
23 Wyle Cop
Shrewsbury, Shropshire Large S.A.E. for lists

"I'D LIKE TO TEACH THE WORLD TO PLAY"

So l've designed an Electronlc Automatlc Chord selector which can be fitted to mosi organs or which can be made into an Accompliment Instrumen ldeal for groupi, the family can play or as an Instrument which all the family can play. Send for detal/s to
J. MOLLOY

Elm Road, Tokers Green, Reading, Berks.

80UAD STPPLIES
(Lonahtow) CO. LTD.
for
Eagle International and International Rectifer Product TOA P,A. EL uipment and Mikes.
Capacitors. Eenlators. Ploge. Nockete, Cablea. Audin eadr. Aeniconiluctors, Vilves, Vero llompl, etc., for the conntructor.

ELECTRONIC8 DEPT. TeI. 01-50s-2715 12 fmarts Lans, Lomaton. Ekeex.
Foart 9.80 a.nh.-1 p.m., e-6 p.m. MOB., Tons, Wor. asd Pri. ; 9.80 a. .n. $=1$ p.m.. 2-5.80 p.4. Bat. Clowed all das Thurades.
G. F. MILWARD

369 Alum Rock Road, Birmingham B8 3DR.
Tel. 021-327 2339

NEW LINES!!!!!

E.M.l. Speakers with twin
 tweeters

... ...
3.73
62.80
a watt amplifiers complete
Casserse Tapes: C60, 37p: C90 73p; C120. 90p
GOLDRING MAGNETIC CARTRIDGES (G850)
Cardioid Ball sype Mikes (usually $\mathbf{(6 . 6 0)}$
Insercom with Bastery \& Lead
Neons, with resistor and 2 ft lead
Speakers, 8 ohm, $2 \dagger$ in
Speakers, ohm, ${ }^{2}$ in
TRANSISTOR EQUIVALENT BOOK, LATEST EDITION
Mikes. Low impedance, dynamic stick type with on/off switch
Cryscal. hand
Crystal Inserts wish bracke
ockable car aerials
Dek-Gee 25 wates pencil bit soldering ir ons
Speakers, $2 \nmid$ in, 8 ohms
Insulating Tape, tin wide, 10 yard rolls
Miniature Output Transformers
Rotary 5 witches, 4 pole 3 way or 2 pole 6 way
Switch cleaner, aerosol cans

14.75
 13.75

12.50

3p 45p 30p

STOCKTAKING CLEARANCEI IMPOSSIBLE TO REPEATI
We have huge numbers of components in quantities too small to advertise individually, In order so "clear the decks" we have made up parcels containing a mixture of carbon and wira-wound resissors, electrolytic and paper condensers, controls, eransistors, diodes etc., fer tiny fraction of normal price. It is mphasised that these are mixed parcels only-contents cannot be stipulated sold only by weight.

Gross weight 2 Ib
Gross weight 5 lb
$C 1$ (postase 20p)
0 (postage 30p)

\section*{UNBEATABLE PRICE 1 \& 18
 LINEAR INTEGRATED CIRCUITS. Direct from manufacturer, all 100% to specification.
 | 709 C | \ldots | \ldots | 35p | 100 up | \ldots | \ldots | 24p |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 741 C | \ldots | \ldots | 50p | 100 up | \ldots | \ldots | $35 p$ |}

VEROBOARD

$2 \operatorname{tin} \times 1$ in $\times 0.15$ in 6p $\sin \times 3$ in $\times 0.15$ in 28 p 3 in $\times 3$ in $\times 0.1$ in 24 p 3) in $\times 2 \operatorname{tin} \times 0.15$ in $16 p$ 17in $\times 2$ in $\times 0.1 \sin 35 p$ sin $\times 2$ in $\times 0.1$ in $23 p$ 3tin $x 3$ in $\times 0.15$ in 20p 17 in $\times 3$ in $\times 0.1 \sin 74 p$ sin $\times 3$ in $\times 0.1$ in 28p Sin $\times 2 \operatorname{tin} \times 0.15$ in 20p 3 it $\times 2 \operatorname{tin} \times 3.1$ in 210 Spot Face Cutter 34p. Pin Insert Tool 41p. Terminal Pins (0.1 or 0.15) 36 for 18p. Special Offer Pack consisting of 52 tin \times lin boards and a Spot Face Cutter-50p

- POD PLAER CARTRIDGES Wall bulow normal prices

G90 Masnetic Stereo Cartridges, Diamond Needle. 6 mV output, C2-73. ACOS GP $67 / 2$ (Mono, Crystal) 73p. ACOS GP 9113 (Compatible, Crystal) 41. ACO GP 93/1 (Stereo, Crystal, Sapphire) C1-25. ACOS GP 93/ID (Stereo. Crystal Diamond) ©1.61. ACOS GP 9411 (Steree, Ceramic, Sapphire) \$1.50. ACOS GP 94/ID (Sterco, Ceramic, Diamond) $1 \cdot 18$. ACOS GP 95/l (Stereo, Crystal with two L.P./5tereo needles) (1-25.

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with Faverse polarisy prosection. 8 watt tyoe with reflector, suitable for sents, etc.. 3 PostagelPackins 250. 15 watt type, batten fitting for caravans 44, PostagelPackin 25p. 13 watt type, batten with switch, 22 in $\times 2$ in \times lin CS, Postage/Packing 25p THESE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT.

MULLARD POLYESTER CONDENSERS
1,000pf, 1,200pf. 1,500pl, 1,000pf. 2,200pi, 15p per dozen (all 400 V working). $0.15 \mu \mathrm{f}, 0.22 \mu \mathrm{f}, 0.27 \mu \mathrm{f}, 30 \mathrm{p}$ per dozen (all 160 V working). 25% discount for lot of 100 of any one type.

NESISTORS

and twatt. Most values in stock, 73p per 100. 10p per dozen of any one value. WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards 1 watt to 50 wates. A larse percentage of these are multi-tapped oroppers for radioftelevision Owing to the huge variety thesa can only be offered assorted a\& 50p per dozen.
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15p.

HENRY'S LOW CORT FIRST GRADE BRAND BRANDED GERMANIUM I Ind SIUCON TRANSISTORS, THODES, RECTIFIERS, BY ATES : EMIHUS • FAIRCHILD F FERRANTI • I.T.T. MULLARD - NEWMARKET P PHILIPS •R.C.A. • TEXAS

TRANSISTORS
 A SELECTION FROM OUR LIST

HENRY'S soos INtegrated cireuits
BRAND NEW FULL SPECIFICATION TTLT4 SERIES BRANDED FAIRCHILD, I.T.T. AND TEXAS

No	Description	
7400	ut NAND gates	
7401	Quad 2-input open collector NAND gaten	
7402	Qued 2-Input NOR aites	
7403	Quad 2 -input open collector NAND gates	
7404	Hextuple laverters	
7405	Hex Inverters with open collector outputh	
7410	Triple 3-input NAND gates ..	
7413	Dual 4 -input Bchmitt triggers	
7420	Dus! 4 -jnput NAND gatee	
7480	Blagle 8-Input NAND gates	
7440	Dual 4-input NAND bufter gates	
7441	BCD-Decimal decoder/Nixle driver	
7442	BCD-Decimal decoder (4 -10-1ine) TTL O/P	
7448		
7447		
7448	BCD-Dectmal 7 mag . decoder/indicalor driver BCD-Decimal 7 eeg. decoder/driver TTL O/P	
7450	Expand dual 2-Input AND-OR-INVERT gates	
7461	Dusl 2 -w ide 2 -input AND-OR-IN VERT graten	
7453	Quad 2-input expand AND-OR-INVERT gate	
7454	4-wide 2-Input AND-OR-INVERT gate*	
7480	Dual 4 -input expandera	
7470	8ingie J-K fip-iop (gated triputa)	
7472	Single J-K Alp foop (gated Inputa)	
7478	Dual J*K A1p fop	
7474	Dual ${ }^{\text {D dip top }}$	
7475	Quantruple bistable latch	
7476	Dual J-K flp-flope with Preett a	
7480	Gated Full Adder	
7481	18-blt read/write memory	
7482	2-bit binary Full Adder	
7483	4-blt blnary Pull Adder	
7484	16-blt RAN with gated wite Inputa..	
7486	Quairuple 2-Input Exclusive OR gater	
7490	BCD decade counter	
7491	8-blt shift register	
7402	Divide twelve counter	
7493	4 -bit binary counter	
7494	Dual entry 4 -bit shift reginter	
7495	-blt up-down abilt reglater	
7498	5-bit parallel/gerial in/out shift register	
74100	8-bit biatable latch	
74118	Fiextuple Bet-Renet latche:	
74121	Monisatable multivibratora BCD-Decimal decoder/Nix le drtver	
7141		
74148	BCD-Decimal decoder/Nixle drivep BCD-Decimal decoder (1-4-line) TTL 0/P	
74150	RCD-Decimal decoder (1.t-ine) TTL O/P	
75151	8 -bit date eelector/maltiplezer	
74185	Dual t-line to 1 -1tne rata selector multiplezer	
74184	16-blt decoder/demultiplexer .. Duad 2-Ine to 4 -line decoder/denultiplexer	
74255		
74150	Dual 2 -line to 4-line decoder/demultiplezer.	
74190	Sync decade up-down counter, 1-1/ne mode	
74191	Byne 4-blt up-down counter, 1-line mode	
74102	Bync decade up-dowin counter, 2-llne mode	
74193	Sync 4-blt up-down counter, 2 - line mode	
74196	Asynchronoun presettable decade counter	

再
$\begin{array}{ccccc}\text { Y FOR } & \text { QUAKTITY } & \text { PRICES } & \\ 2-11 & 12-84 & 25-90 & 100+ & 250+ \\ 20 p & 18 p & 14 p & 14 p & 12 p \\ 20 p & 18 p & 16 p & 14 p & 12 p\end{array}$
7401 Qurd 2-input open collector NAND gaten
7408 Qued 2-Input NOR gates
7403 Quad a-input open
7404 Hextuple inverter
410 Triple 3-input NAND getes
7413 Dual teinput Bchmitt triggers
7480 Blogle 8-Jnput NAND gates
7440 Dual 4 -input NAND bufter gates
7442 BCD-Decimal decoder (4-10-1Ine) TTL O/P
7447 BCD-Dectmal 7 mg. decoder /indicator driver
7448
BCD-Decimal 7 oeg. decoder/driver TTL O/P
450 Expand dial 2-Input AND-OR-INVERT gatea
7453 Quad 2-input expand AND-OR-INVERT
7454 -wide 2-loput AND-OR-INVERT gate
7470 Dus 4 -input expander
7472 single J-K tip hop (geted Inputa)
7474 Dual J.K Aip top
7474 Dual D dip dop
747% Quatruple bistable ate
7480 Gated Full Adder
$\begin{array}{ll}7482 & \text { 2-bit binary Full Adder } \\ 7483 & \text { 4-bit blnary Pull Adder }\end{array}$
7484 16-blt RAN with gater witie Inputa,
7486 Qualrupie 2-Input Excluive OR gaten
7490 BCD decade counter
7492 Divide twelve counter
7494 Dual entry f-blt shift reginter
7498 5-bit parallel/gerial in/out shift regiater
74100 8-bit biatable latch
74121 Moninatable multivibratore
74145 BCD -Decimal decoder (1. 4-line) TTL O/P
74150 16-bt date selector/multiplezer

74154 16-bH decoder/dernultiplexer
74150 Dual 2 -line to 4 -line decoder/demultiplezer
74190 Bync deesde up-down counter, l-line mode
74192 Bync decade up-dowin counter, 2-Ilne mod
74193 gyne 4 -bit up-down counter, 2-Jine mode
$\begin{array}{ll}74198 \\ 74197 & \text { Anynchronoun presettable decade counter ... } 21.50 \\ 71.50\end{array}$
Complete data on the aboop in bookled 20 pases, Ref. 29,1 ssur 2 a
Texas 1.C. Handbook. Complete intormation on 100 2ypes.
Integrated circult mockels 14 pin D.I.L. $25 \mathrm{p}: 16$ pin D.I.L. 30 p.

INTEGRATED CIRCUIT		PLESSEY INTEORATED CIRCUIT 3 Watt Ampliser
M PC4000P	550	$8 \mathrm{~L} 403 \mathrm{D}$
M PC4010P	600	Complete with e-page
1 Cl 2	22.50	booklet, circuits
PA246	21-50	and dats
TAD100	11.50	
TAD110	11.50	ee.
MC724P	500	
702 C (TO5)	750	ZENER DIODES
709 C (TO5)	450	$1-25100 \quad 500 \quad 1000$
7000 (D.I.L.)	45p	$24+$ + +
723C(T05)	21.00	$400 \mathrm{~m} / \mathrm{m}$
741(4TOS)	80 p	BZY 88
MCL303P	1200	meries ${ }^{\text {c }}$ 12p 10p 8p 7p
MCl304P	29.25	11 watt
BL.403D	11.30	24 werles 25p 28p 20p 170 15p
741 (DIL)	760	3 watt
914(T05)	400	3 TZ berien 30p 27p 25p 29p 200
923(TO5)	40p	10 Wratt
toshiba		2S serien $\quad+40 \mathrm{p}$ 870 35p 30p 250
20 watt nimp.	24.47	All types are 5%. Wlre Ended + these gtud in voltagen 3.3 .100 volt in all
Toshisa Pre amp	21.50	gtud. in voltagea $3 \cdot 3 \cdot 100$ volt in all atandard valuen. $3 \cdot 3 \cdot 33$ volt.

TRIACS
stud with accessorien

SILICON RECTIFIERS

SAMP SILICON RECTIFIERS						
Type	I.V.	1-49	$50+$	100	500	$000+$
IN4001	30	6	50	410	4p	810
IN 4002	100	7	80	6p	4ip	4 p
IN4003	200	8	70	6p	5 D	410
IN4004	400	8 p	7 p	6 p	50	410
1N4005	600	100	90	8 p	70	60
1N4006	800	12p	100	9p	80	78
1 N 4007	1000	150	120	109	80	8p

QUANTITY OFFERS FROM STOCK

AFII7 Mullard 20p
$25+17 p$
$100+15 p$
$500+12 p$
$1000+10 p$

Butld yourselfaTRAMSISTOR BADIO

 NEW! ROAMER 10 WITH VHF INCLJDING AIRCRAFT10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MWI, MW2, LW, SW1, SW2, SW3, TRAWLER BAND. VHF AND LOCAL STATIONS AND AIRCRAFT BAND Huitt in Ferrite Rod Aerial for Mw/LW. Retractable, chrome platel 7 section Telescopic Aerial, can be angled and rotated for peak short wave abul VHF lintening. Push Pull plece Socket complete with Earpiece. 10 Tramintorm plus 3 Dioden. $8^{\circ} \times y^{*}$ Bpeaker Air spaced ganged Tuning Condenser with VHF mection. Volume on/on, Wave Clange
 (FREE with parts).

7 Tunable Wavebands: MWI, MW:, I,W, sw1, 8 W!. HW3 and Trawler Hami. Built In Ferrite Kont Aerial for MW and LW. Retractable chrome plated Teleacopic aerlal for Bhort Waven. Pumis pull output uning
600 um $600 m$ Whansintorn, Car acrial and Taje record mocks.
Belectivity mitch. Switched earnipe aucket rouplete - Ith parpiece. o trandatorm plus 3 llinien. $8^{\circ} \times 0^{\circ}$ Bpeaker. Air apaced gangeal tuning condpiner. Volunue on/on, tuning, ware change abd tone controlm Attractive came in rich chentnul whate with coll blocking. size $9 \times 7 \times 4 i n$. approx. Easy to follow Inatructions and diagraum. Parta Price Laist and fiasy Bulld lians 25p (FREE with parta Totat buididing cost $£ 6.98$

POCKET FIVE

3 Tunable Wavebatude
MW. LW, Trawler Ban
whh extended M.W.
of Luxembourg. etc.
7 ntages-5 translatory atil $\ddot{2}$ alionlem,
tone moving coll speaker. Allractlue black and golel
 plug und awitched smket for private listenling 30p

Total building costs
(Uversen $P .8 \cdot 23$
2

 for MW and IW. Retractahle 4 mect lon 24 kn . chrome plated telewopic sertal for 8 SW. Socket for Car serlal.
Powerful push-pull output. 7 trabinintors and 2 dioden. including Mlaro-Aloy $\mathbb{R} . \boldsymbol{F}$. Transistorn. a heave duty neluding 3lcro-Anos R.F. Transistors. is heace uuty
 caue whb earry ing handle, 8 ize $9 \times 7 \times 4$ in. apprax. Pany to follow instructiona and diagramm. Party price lint and eany buibl plans 15p (FREE with parts). Farplece with plug anl wwitched socket for frirate intening, 30D exfra
Total wiiding costs $£ 5 \cdot 98$

TRANSONA FIVE

5 TRANSISTORS AND 2 DIODES

3 Tunable Wavebonalm: $M W$, LW and Trawler Hanul 7 stage- 5 tranajators and z dionlen, ferrite rod aerial tunlag condenert voluse control, Bne tone grille. Size $64 \times 4 f \times 11 \mathrm{la}$. Eany bulld plans and parla price IIR 10p (PREP with parth). Earpiece with plug and ow itched socket for privite listening 30pertra
Total buiding costs $£ 2.50$

ROAMER SIX
1 Tunable Wave
bands: MW, LW bands: Miv, LW
gwi, gwy, Traw sW1, gWy, Traw.
ler band plus an
extra M. W, banil extra M.W, bani
for pasper tuning of e. Sensitlve fer. rite rod serial and
telencople acral teleacopic arial
or Bhort Waven.

 Alloy R.F. Transitorn, elte. Atirwetive black cane with
red grille. dial aml hiack' knobs with polished ruetal
 and parta price liat iJp ($\mathcal{F R E E}$ with partn). Earplece with plang

TRANS EIGHT

8 TRANSISTORS and 3 DIODES 6 Tunable Waseswl. Nw: swa and Trawler liarbi.
Sensiture ferrite mod aurial for M. WV. and L.W. Telencopic arrial for Bhort Waven. 3in. Spaker. 8 improved type trasisistora plus 3 dioden. Attractive case in netal innerta. Size $9 \times 51 \times 2\{\mathrm{In}$. npprox. Pumb puil
 11fe. Ample power to drlve a larger npeaker. Papta
price linat and eans buidd plana 550 (FREP with parts). Farpiece with ploig athl switched sucket for prisate Instening 30p evtra.

RADIO EXCHANGE CO

| 61 HIGH STREET, BEDFORD. Tel. 023452367
I enclose $f \quad$ please send items mar'sed

ROAMER TEN	\square	ROAMER SEVEN	\square
ROAMER EIGHT	\square	TRANS EIGHT	\square
TRANSONA FIVE \square	ROAMER SIX	\square	
POCKET FIVE	\square	EDU-KIT	\square

| Parts price list and plans for

TENRTS RAMIO KMTHED ENGLAND'S LEADING ELECTRONIC CENTRES

10th EDITION CATALOGUE

TEST EQUIPMENT
Huge range in stock-too much to list here. It's all in the latest catalogue-pricesspecifications erc. Also Panel Meters and Edge Meters. GARRARD McDONALO GOLDRING CHASS15 (Post 50p) MP60 \&ili.30 MT70 $£ 16.60$ AP76 E20.50 Zero 1005 With PLINTHICOVER MP60 Post 70p) MP60 PC $\quad 417.65$
HL75 PC $\begin{array}{lll}\text { HL75 PC } & 637.35 \\ \text { HT70 PC } & 623.50\end{array}$ $\begin{array}{lr}\text { HT70 PC } & \mathbf{~} 23.50 \\ \text { GL72P } & \mathbf{6 3 2} .95\end{array}$ CARTIPLINTH/COVER GL72PC, (Post 70p) (HL)AP76/G800 HT70 PC/G800 MP60 PCISC5M 129.95
$\quad \$ 17.50$ (HL) 2025 TC19TAHCO 819.95

TRANDUCERS

 Operate at $40 \mathrm{ke} / \mathrm{s}$ up to 100 yds. Ideal remote switching and slignalling. Complete with data and circuits. FOWER INTEGRATED SL403D-3data, layouts ate circules fi 80 P.C. Board 60p; Heat Sink 14p IC12- 6 watt with data and TOSHIBA- 20 Amp Module 44.57 Power TOSHIBADIC Preamplifier 41.50 TOSHIBA-Data l Circuirs Book No. 42 10p TEXAS PUBLICATIONS l.100 watt Ampllfiers and C1.25 Price list No, 4BA FREE 700 page IC Data Book (No. 2) 420 page Transistor $\begin{gathered}60 \mathrm{p} \\ \mathrm{Data}\end{gathered}$ (No. 3) ${ }^{60} \mathrm{p}$ 340 page Transistor Data (Post etc. 15 p each. 20p per 2 or 3 books)

NIXIE TUBES
(Post 15p per I to ${ }^{6)}$
$\times N 3$ XN13, GN6 0.9 . side view with date 85p. GNP.7, GNP.E 0-9. Side view with decimal points and data ${ }_{6 \mathrm{GN}_{4}}$ socket and dara 4.65

SEE EARLIER PAGE FOR TRANSISTORS A DIODES, esc. FREE LIST No. 36 ON
REQUEST.

Teleton F2000 MĒ/Stereo FM Tuner Amplifier. Garrard 2025TC/9TAHCD Auto with Plinth and cover. Pair match ons speakers K60, Size 16
$96 t \operatorname{tin}$. All leads etc.
Llse 554.65 Carr. 2
or with MP60/SC5MO Single
Player $\mathbf{6 7} \mathbf{5 0}$. Carr. $£ 2$.
2200 SYSTEM
Rota $10+10$ watts Stereo Amplifier, Garrard SP25/3, Goldring, G 800 H , plinth and (or KNB00) Size $18 \times \operatorname{lof} x$ 7 fin. All leads etc.
Liss
694.50

REE Latest Hi Fid Tape Recorder 12 pare Srock Discoun

Teleton SAQ206B8 + 8 watts Stereo Amplifier, Garrard plinth and cover Gair plinth and cover. Pair of $15 \times 10 \frac{1}{2} \times 7$ in. All leads
List $\mathbf{5 5 5 . 9 5}$ Carr. 42
or with 2025 TC/9TAHCD and $K 60 \$ p e a k e r s ~$
$449-95$
4

ROTEL SYSTEM RX $1508+8$ walu Med/FM pair of SDI? Suner Amplifier $18^{\circ} \times 101^{\circ} \times 7{ }^{\circ}$ Garrard SP25/111/Plinth/Cover/GoldFing 6800 H cart. All leads etc. \$99.95 Carr. $\$ 2.50$

PUBLIC ADDRESS, LIGHTING \& DISCOTHEQUE EQUIPMENT
Djloss 30 watt rms Amplifier, 4 iviputs, master zone
and volume controls ete. 6 ohm output. Cased portable.
\{ 33.50 . Post 40 p
DJ70s 70 wate rms version. Cased portable, ' 653 . 00. Co.
DISCOAMP 100 wate rm's to 8 ohms. 4 inputs, seoarate bass and trebie controls, PFL, etc. Cased for cabinet or rack mounting 676.50. Post 40D.
SCSMD cartridge to march above plinth with cover, Pose 70p cartridge to match above amplifiers. C17.50.
D 301.11 channel lighe control unit for above ampliDosulif. 3 channel light control unit for above ampliPost 35p. PROJECTORS-Coloured
EFFECTS PRO rotating ight patterns. LIQI 50-50 wate Q.I. C32.50

FULL RANGE
OF
LIGHTING
LIQ1 150-150 wate Q.I. C50 00 STOCK

LOW COST HI-FI SPEAKERS
 E.M,I, Slae $134^{\prime \prime} \times 84^{\prime \prime}$, Large Cer
TYPE 1506 watt, 3 , 8 or 15
Ohms 42.20 . Post $22^{\prime 2}$. Ohms 22-20. Post 22p. sion $\mathbf{2} \cdot 75$, Pose 22p. GPE 45010 watt with twin or 15 ohms. E3-85. Pose 25 p TPPE 35020 watt with eweeter and crossover. 6 and 15 ohms.

POLISHED CABINETS For 150, 150TC and $450<460$. Pose 34p.

OlVER AMPLIFIER MODULES Qualiey eransformerless 10 w noise amplifiers
suitable for all Audio, $P A$ and Hi-Fi use. suitable for all Audio, PA and Hi-Fi use.
Modern compact designs. PA25 and PA50 Modern compact designs. PA25 and PA50
supplied with plug harness for use with supplied with plug h
MU442 Power Supply.

MPA12/3 18v. 0.8A. 12W. 3-4 ohm. 4430 MPA12/15 30v. $0.5 \mathrm{~A}, 12 \mathrm{~W} .12 .16$ ohm. MU24/40 Mains unit for 1 or 2 MPAl2/3 or $15.14-50$
PA25 22-0-22v. IA. $25 \mathrm{~W}, 8 \mathrm{ohm} .17 .50$ PA25 22-0.22v. 1A. $25 \mathrm{~W}, 8$ ohm. 17.50
PA50 $22-0.22 \mathrm{v} .2 \mathrm{~A} .50 \mathrm{~W} 3-4 \mathrm{ohm}$, $49 \cdot 50$ MU442 Mains unit for I or 2PA25 or I only

Post 20p per unis
ALL SILICON-FET PREAMPLIFIER AND MIXER SELF POWERED

All inputs. Adjustable inpue and output. DIN sockers. Tape in and out. Microphone mixing. Suitable

B ULLD THIS VMF FM TUNER 5 TRANSISTORS $100 \mathrm{ke} / \mathrm{s}$ BAND. FIDEUTY REPRODUCTION. MONO ANO 5TEREO
A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doube about it--VHF FM gives the REAL sound. All parts sold separately. Free Leaflet No. 3 \& 7.

TOT.AL ©6.97, p.P. 20p. Cabinet 100 p. Decoder Kit 15.97 . Muning meter unit elts
Mains unit optional) Model P\$900 42-47. Post 20p
SINCLAIR PROJECT 60 MODULES
-SAVE POUNDS
$\begin{array}{llll}Z 30 \quad 43.60 & Z 50 & i 4.38 \\ \text { STEREO } & \text { PZS } & 6.98\end{array}$ $\begin{array}{llll}\text { STEREO } & \text { PZ5 } & 63.98 \\ 60 & \text { O7.98 } & \text { PZ8 } & 65.97\end{array}$ $\begin{array}{lll}\text { PZ6 } & \text { 16.38 }\end{array}$

Trantormer for PZ8 62.95 | Active Fliter Unit 84.75 |
| :--- |
| Stereo FM Tuner |
| 20.25 | ICI2 $12 \cdot 50$; Q16's 68 ea . M50 IN sTOCK 2000 E23.75: 3000 \& 31 -50

PACKAGE DEALS
$\frac{2}{2} \times 230$, stereo 60, PZ5 eld.75 2×750, Stereo 60, PZ6 1 1月-25 Post 25. Stereo 60, PZ6 E20.25 Transformer for PZB C2.ss NEW PROJECT 605 KIT $£ 20.95$ "BAMDS?READ"

ORTABLE TO BUILD
SPECIAL!! Anti-Feedback Mi phone designed and made fo Henry's for all PA/Disco Equipmene.
Lll.50 clat Mono ($0.001^{\prime \prime}$) \&1. 50 per yd. reel. COMPLETE RANGE OF DISCOIPA AND. LIGHTING ON DISPLAY AT "309"
Call, write or phone for details and
lists.
MORE OF EVERYTHING AT LOW PRICES AIWAYS AT HENRYS

Printed circuit all transistor design using Mullard RFIIF Module. Medin:on and long Wave bands plus Medium Also slow motion seared tuning, 6 y. mW push-pull outpur, fibre glass'PVC coverad cabinet, car lerial. Atractlve appearance and perforfiance.
TOTAL COST TO BUILD $\$ 7.98$. P.p: 32p. (Battery 22p). All parts sold separately-Leaffet No. 2. advertisec) $\mathbf{4 6} 98$, p.p. 35 p from seock , p.p. jp from scock Leaflet No.

SLIDEH CONTROLS. Top guality 60 mm singles and ang complete with knobs. (Post 1-5 15p; 6 or more 20p) $5 K, 10 K, 25 K, 50 K, 100 \mathrm{~K}, 500 \mathrm{~K}$, 1 Meg. Log and Lin 4.5 p each $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, \mathrm{Log}$ and Linganged. 75 p each

Audio and Test Gear Cemer
LONDON MY2
309. 354

+

[^0]: (c) IPC Magazines Limited 1972. Copyrighe in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $\mathrm{E2} \cdot \mathbf{3 5}$.
 Everyday Electronics, Fleetway House, Farring don Sṭreet, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^1]: I To ELECTROVALUE, ENGLEFIELD GREEN. EGHAM, SURREY Please send a Goods to value of E................... as decaited on sheet arcached, plus FREE copy of catalozue.
 b Copy of catalogue. IOp.
 (strike out item which does not apply)
 NAME
 ADDRESS

[^2]: EX COMPDTER PRINTED CIRCUIT PAEELS $2 \ln \times 4$ in packed with memi-conductors and top quality reaistorn, capacitors. dioden, etc. Our price minimum of 10 s tranaistors. Data on tranaistors included.
 SPECLAL BARGAIE PACE. 25 boardn for 21. P. \& P. ${ }^{18 p}$. With a guaranteed minimum of 85 tranalatora. Data on tranditors included.

 PAMELA with 2 power transiatora similar to OC28 on each board-componenta 2 boarda $(4 \times 0 \mathrm{C} 28$) 60 D, P. P. 6 p .

 9 OAd, 3 OAlo. 3 Pot Cotes, 26 Resintora, 1 Capmeltors, 3 GET 872, 3 GET 872B, 1 GET 875 Ail tong lesded on penele $13 \mathrm{in} \times 4 \mathrm{~m}$. 4 for E , P. \& P. 25 p.

 700C OPERATIONAL AYPLLEER TOS
 8 lead I.C. 1 ofl sop. $\quad 60$ off $85 p$
 250 MIXED RESISTORS 62p tand watt.
 150 MIXED HI STABS 62p
 t. I and 1 watt 8% and better:

 QUARTZ HALOGEN BULBS
 With lond leads. 12 V 56W for car spot jights, projectorn, etc. 80 each, P. \& P. 8 p.

 GPO EITREIOK TELEPROXIS
 Th hat but whout bell. 06 each, P. P. 30p 2. P. \& P. BOp

 ## BARGAIN RELAY OFFER

 Blatie pole chanke over ailver contact 20sov. 2.54Ω coll. 8 for 50 . P. P. 8 p .

 KEYTRONICS mail order only

 ## 44 EARLS COURT ROAD

 LONDON, W. 8
 01-4788499

[^3]: $604 \mathrm{~A}25 .0020 \mathrm{~V}$ d.c. . . . 24.40 100 pa $\lim _{0-0-50}$ $1-0-\operatorname{lm} A$. 1Ad...
 Ad.e:
 $10 \mathrm{Vd.c}$.

