An exclitingúart punce a
 veryome

 everyday

 everyday}

DARKFiOOM TIMER

SIGNAL INJECTOR

Instruments add to

 your efficiency
THE NEW 'INVADER'

ADCOLA L. 646

for Factory Bench

 Line AssemblyA precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits

(illustrated) available

COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability... from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*

Write for price list and catalogue

STEREO AMPLIFIER Type SHV-2 $\times 3$ Watts
Fully bullt. separate vol, base and treble controls each channel; $12 \times 41 \times 6$ in high. EZ80 anil ex ECLS6 valves, O.P, Trans, for 3 -ohm apeakers Double wound mains trann. Suitable for cryatal nugn. cartridge, tuner, etc. With mono-stereo
smitch. $200 \cdot 250 \mathrm{~V}$ a.c. malns, $87+25,50 \mathrm{p}$ P. $\& \mathrm{P}$.

11\% MAINS GRAMOPHONE AMPLIFIER
EZ80, ECLR2, O.P. Tranabimer (3 ohm). Vol. O_{n}. off and Tone Control, Double

MAINS TRANSFORMERS (240-250V input)

Postage in brackets
$6-3 \mathrm{~V}$ at $21 \mathrm{~A}, 40 \mathrm{~g}$ (1 Jp).
250 V at 50 m . and 6.3 V . $1 \mathrm{AA}, 50 \mathrm{p}(20 \mathrm{p})$
22 V et $1 \mathrm{~A}, 63 \mathrm{~V}^{2}$ at 2 A and 250 V at 50 mA . 75 p (2 L p).
90 V st 20 mA and 1.4 V at $230 \mathrm{~mA}, 30 \mathrm{p}$ (1 jp).
Complete set of part witn wiring diagram for battery eliminator to give $90 \mathrm{~V}, \mathrm{H} . \mathrm{T}$. at 20.30 mA and $1.5 \mathrm{~S}^{2}$ at 12d or 250 ma (adjustable). With undrlled aluminlum box

Price 82.76 plus $25 \mathrm{p} P$. \& P.

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants

(2 mins. from Station aril Busen). FULL gUARANTEE. Alderthot 22440 Closed wednesdar. s.a.E. for enquiries please.

FELSTEAD (EE5) ELECTRONICS

LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE SKB 4EE selection Irom our Ijat, ment free for atamped addressed enveloge. (Free overseat) Sesh with Orier only-No (C. D or Caller aervice, Chargen (Min. 6p.) irl brackets after al thema apply to G.B, \& Eire only. Regret Orders under $45 p$. plus charges unacceptable. BAE please, for enyuiries or cannot be replied to, Oversess Orders weicomed.

 All With atandard fittinge and atyll. Mono (iP67 85D. Stereo-compatible Moto GP91/8
 Whe more typer the. : Aco: GP37, GP59, GP65/i7. ©P71. BSR TC8/LP/8T:COLLARO
 PH1LIIPS 3301 ($3000,3066,3302,3304$) $3010(12.13,16)$: SONOTONE 19T/20T. ALLAT 40 p each (6 p). Double-tin turn-over typen ($7 \times$ sap. ot other silse). For Acos fP73. GP9:

 K840A, KG4BB, etc. ALL AT 75p (${ }^{(6 p) \text {). DOUBLE DIAMOND STYLII: (Same dla. tip each }}$ side: no 78) for all types 21.50 ($\mathrm{m}_{\mathrm{i} ;}$). PICK-UP WIRE: Super thin twin fex screened,

 Cream leal (9p either). "NTMC" 308108 ; CM70'PIAANET'Metal, tapered, with neck cord, adaptor for atands $\mathbf{2 1 - 4 7 4 : ~ " M I C ~ 9 1 " ~ h a n d / d e n k ~ B I p : ~ " W I C ~ 4 5 " ~ C u r v e d ~ m e t a l ~ h a r d ~ g r i p ~}$ 21.00. All with leals (all 9p). MICROPHONE 1 NSERTS Diam. 175 or 0.9 either alze 271D (l's to difur 6pi) DYKA YIC: 209 Cardloid Ball, $50 \mathrm{~K} / 600 \Omega$, hulle-in volume control,

 High resistance *000 Ω ailjumtable $02 / \mathrm{p}$ (7 p p). EARPIECES with lead and min. 2.5 mm or $3-5 \mathrm{~mm}$ (Btate whleh) jack plig, MAGNETLC 9p. CRYBTAL (3.5intu plug only) $24 p$ (up to 3 for $6 p$. any type). SOLDERIMG IRON. Blin, modern, British high speed. Ap all parta replaceable, highent quality fully kuaranteed 2t-17) (10p). TRANSFORMERS: sub-1nin $11 \times 11 \times 19$ min, OI TPl'T (3Ω for Gro, sc.) 14 p , or DRIVER $15 p$ (up to

 Re. AC/12f 12pp. AFIIS 20p. AFIIS 15p. AF11: 20 p . OAB 10 p , OA10 10 p . OANI 10p.
 OC171 12pp. $13 \mathrm{Y} 100 /$ M00piv 14 p . Many more incl. power types. thyriators, dc., In liat. BAIMS SRONS, fy ledr 10p. NEON SCREWDRIVER (pock't testerI 17ip (6p elther).
 selectur, On/on switch, pilot lamp. leails, plug, awaptor (2) OUR CURRERT LIST (Rep heailng)
 includes more detala ature, whono pluge, mecketmand alaptora, Tape Recoring and Record Player accessorics. panel and Test metery and enuipment, Multimrtera, min. moturs, test froma mwitchrsrotary. togele, allije cabinet, lamp ac.-electrolytiem, terminals, berchoaril. valve holdem extending aeriale for carn anc portablunety, ind. Iampsand bulbs, diats. Inikes, wepphorie amplliters and pick-ups, driv. corrl inter"onm. caparatance and resintance testing bove wierec) headphones rtc.. etc.

240 London Road, Mitcham. CR4 3HD
Phone: 01-648 8422

Until you've tried the service provided by Home Radio (Components) Limited you've no idea how simple it can be tracking down and obtaining components. It becomes a pleasure instead of a bind! But first you need the Home Radio Catalogue, listing over 8,000 components, more than 1,500 of them illustrated. At 70 pence, including p \& p, it's a giftespecially as every copy contains 10 vouchers each worth 5 pence.
Send coupon today.

 co-date technological improvement had been carefully considered and thoroughly examined. So advanced it will probably make your present radio seem like a "crystal set"! le", far better than any 6 -wave radio even they have produced! We're almost giving them away at C9.97-货 mere iraction of even coday's Russian miracle pricel We challenge you to compare periormance and value with that of $\operatorname{C34}$ radios! instant refund if you are not astounded! Purer and sweeter tone than ever! Much wider band Russians have proved their fantastic ability in electronics-brilliantly reflecting their advanced micra-clicuitryltechniques in the field of apaceship and satellite communications. YOU GET TMIS AMAZING SET FROM US AT A PRICE THAT BEARS NO RELATION TO TRUE VALUE! Yes, 6 separate waveband including Standard Lonr, Medium and Short Waves to cover the world Unique side control waveband selection unit gives incredible ease o station tuning! Thousands of different transmissions and stations a your fingertips 24 hours, a day, even messages from all over the world Superb, 3 weet tone-controlled from a whisper to a roar. Pushepull output Separate ON/OFF volume and Treble/Bass tone controls! Take it anywhereunsconomicial extending to full 33 tin length. It's also a fabulous CAR RADIO-any soeed requires no additional aerial. UNIQUE! Elegant Black. White and Chrome finished case. SIZE 10 in. x in $\times 3$ tin, overall approx. Magnificently designed. made to give years of perfect service. With WRITTEN GUARANTEE, manual with simple operating instructions and circuit diagram. ONLY 69.97, POST, ETC,430, Standard batteries 25p extra. Can also be used through extension amplifier, tape recorder or public address.

INSTRUMENTAL AUODO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR a AMPLIFIER. OPERATES FROM 9v BATTERY (not supplied) ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: $\mathbf{£ 2} .60$ post pald.

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM gy BATTERY (not suppiled) COMPLETE KIT OF COMPONENTS WITH PAINTED CIRCUIT BOARD \& FULL INSTRUC. TIONS. KIT PRICE: $\mathbf{E 2 \cdot 6 0}$ post pald.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

DABAR ELECTRONIC PRODUCTS

98a, LICHFIELO STREET, WALSAIL, STAFFS. WSI IUZ

Vary the strength of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the norma light swicch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fitcings. Two models are available, with the bright chrome knob conerolling up to 300 w or 600 w of alf lights except fluorescents at mains voltages from 200-250 $\mathrm{x}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio incerference suppression

600 W att 63.20. Kir Form E2.70
300 Ware- $\mathbf{~ 2}$-70. Kis Form $\mathbf{6 2} 20$
All plus 10p post and packing
Please send C.W.O. so

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883 As supplied to H.M. Government Departments.

0Radio and TV Components (Acton) Led. $21 E$ High Street, Acton, London W3 6NG
323 Edgware Road, London. W2. Mail orders to Acton. Terms C.W.O. All enquiries S.A.E.

DEVELOPMENT PACK
0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$.

SKELETON PRESET POTENTIOMETERS
tinear: $100,250,500 \Omega$ and decades $505 \mathrm{M} \Omega$. Horizontal or vertical P.C. Sub-miniature $0-1 \mathrm{~W}, 5 p$ each. Miniature $0.25 \mathrm{~W}, 6 \mathrm{p}$ each

SEMICONDUCTORS

ARUSHED ALUMINIUM PANELS
$12 i n \times 6 i n=25 p ; 12 i n \times 2 \ln =10 \rho ;$ in $\times 2 i n=7 p$.

DEPT, E.E.
ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK BEDFORD.

PLEASE ADD TOD TO ORDERS UNDER G Catalogue which contains data sheets for most of the omponents isted will be sent free on request samp appreciated.

MULLARD POLYESTER CAPACITORS C296 SERIES

$400 \mathrm{~V}, 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 24 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p} .0 \cdot 22 \mu \mathrm{~F}, 7 \neq \mathrm{p}$ 160 V 0.01p. 0 .
 MULLARD POIYESTER CAPAEITORS CZ80 SERIES
$250 V$ P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$

MYLAR FILM CAPACITOAS 100 V $24 \mathrm{p}, 0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 34 \mathrm{p}$.

CERAMIC DISC CAPACITORS 100pF to $10,000 \mathrm{pF}$. 2 p each

ELECTROLYTIC CAPACITORS-MULLARO C426 SERIES
$(\mu F / V) 10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$. $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10$ $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0 \cdot 64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ 20/64, 32/64.
$100 / 40,160 / 25,250 / 16,400 / 10,640 / 6 \cdot 4,800 / 4,1000 / 2 \cdot 5,9 \mathrm{p} .100 / 64,160 / 40,250 / 25$,
 $1600 / 10.2500 / 6 \cdot 4,4000 / 2 \cdot 5$, 18p.

ELECTROLYTIC CAPACITORS Miniature P.C. mounting
$(\mu F / V): 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.
5p each

TullityFila for foars

 The'New Picture-Book'way of learning 3ASC ELECTRICITY (5vols.) ELECTRONICS (6vols)You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

Thie carefully pionned series of manuals hes proved a valuable course in training technicians in Electricity Electronics, Radio and Telecommunicutions.
WHAT READERS SAY
CAREFULLY WRITTEN
I am very satisfied with these carefully written and well expressed manuals .. . A.W., Shanklin.

VALUABLE ASSISTANCE . . .
Your valuable assistance has enabled me to find a good position as a Radio and TV Engineer . . . D.S., Bristol.

THEY ARE /NVALUABLE
I find that as a base for a course in Electronics they are invaluable and I have yet to find anything even to approach the same standard... H.N., Rotherham.

To The SELRAY BOOK CO., 60 hayES HILL, HAYES, BROMLEY, KENT BR2 7HP
Please send me WITHOUT URLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return sel, carrage paid in good condition within 7 days or send the following amounts. BASIC ELECTRICITY \&4.50 Cash Price, or Down Payment of $\mathbf{E 1 . 0 0}$ followed by 4 fortnightly payments of $£ 1.00$ each. Total $\mathbf{5 . 0 0}$. BASIC ELECTRONICS £ 5.40 Cash Price, or Down Payment of $£ 1.00$ followed by 5 fortnightly payments $£ 1.00$ each. Total $\mathbf{5 6 . 0 0}$. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as aboveTick Set required (Only one set allowed on free mrial)
BASIC ELECTRICTTY \square BASIC ELECTRONICS Prices include Postage and Packing.

Sifmatzre

NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

EEM PAMEL MEITEMS

USED EXTENSIVELY GY INDUSTRY, GOVERNMENT DEPARTMENTS, - LOW COST QUICK DELIVERY OVER 200 RANGES IH STOCK

SEW"' CLEAR PLASTIC METERS

$50 \mu \mathrm{~A}$ $50-0-50$ $100-0-1$ $200 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$ $500-0-500 \mu \mathrm{~A}$
$\lim _{1 \rightarrow 0} A$
${ }_{5 \mathrm{~mA}}^{1-0-1 \mathrm{~mA}}$ 10 mA

OPDEL TE=\$00, 30,000	p.P. Mirror scale, overlome
protection	$1,200 \mathrm{~V}$. D.C. $0 / 8 / 30 / 120 / 800 /$ $1,200 \mathrm{~V}$. A.C. $0 / 30 \mathrm{uA} / 6 \mathrm{~mA} /$ $60 \mathrm{~mA} / 300 \mathrm{~mA} / 600 \mathrm{~mA}$. $0 / 8 \mathrm{~K} /$ 80 K

+63

MODEL PLI80 20LR/Volt PLC. BE Mirror acale.
$6 / 3 / 12 / 30 / 120 / 600 \mathrm{~V}$ b/3/12/30/120/600V
D.C. $3 / 30 / 120 / 600 \mathrm{~V}$ $50 / 600 \mathrm{~mA} / 60 \mathrm{f}$ $600 \mathrm{~mA} .10 / 100 \mathrm{~K}$] $46 \mathrm{db} .88 \cdot 97 \mathrm{~F}$ \& P 124 P. MODEL 5025 57 Rangen. Giant $\overline{5}$ In. Meter, Polmaty Reverse 8 wlt . Sensitivity: $50 \mathrm{~K} /$ Volt D.C BK/Volt A.C. D.C. Volte: $125,25,1 \cdot 25,5,10,25$.
$50,125,250,500,1,000 \mathrm{~V}$. A.C. Volta: $1.5,3 . \mathrm{S}, 10,25$, D.C. Current: 25, 501 A. $2 \cdot 5,5.25,50,250$ 100 K . $1 \mathrm{MEG}, 10 \mathrm{MEG}$. Decibels: -20 to +80 dB. 21250. P. त P. 171 D . E80. P. P. 171p.
TME MODEL TW-20CB FEA-
TURES RESETTABLE OVER. TURES RESETTABLE OVER. LOAD BUTTON, gensitlvity, $20 \mathrm{~K} \Omega /$ Volt D.C. $5 \mathrm{~K} \Omega / \mathrm{Volk}$
AC. D.C. Volts: $0-0.5,2.5,10$ S1), 250. $1,000 \mathrm{~V}$. A.C. Volta $\begin{array}{cc}0-2.5,10, & 50,250, \\ \text { Gurrenta: } & 0-0.05,000 \\ 0.5 & \text { D.C }\end{array}$ Gurrenta: 0-0.05, 0.5, 000 mA . Renistance: $0-5 \mathrm{~K}, 50 \mathrm{~K}$
 db. E11.50. P. A P: 17dp.
ROUND SCALE TYPE PENCIL TESTER MODEL TS. 68

Completely portable, atmplo to une pocket nized tester. Rangen $0 / 3 / 30 / 300 \mathrm{~V}$ AC
and DC at 2,000 o.p.\% Resistance 0 -20K ohms TMK MODEL 117 P.E.T. ELECTRONIC
 VOLTMETER
Battery operated Battery operated.
11 meg laput, 26 rangés. Large 41' mifror seale. 8ize
$51^{\circ} \times 41^{\circ} x \quad 21^{\circ}$ DC VOLTS $013-$
$1200 V$. AC VOLTE $3-300$ V RMB. $8.0-$ ROOV P-P.DCCUR RFNT $12-12 \mathrm{MA}$
OOM ohm. Declbel. Reslstance up to 2000 m ohm, Decibels -20 to +51 db Complete w
t (ons. 117.50 , P. \& P. 20p.

TE. 65 VALVE VOLTMETER
High quality inatrument
with 28 ranges. D. with 28 ranges. D.C.volte $1.5-1,500 \%$. A.C. volta
$1.5-1,500$: Resistance $1.8-1,5008^{\circ}$ Resistance
up 10
1,000 megohmas. Complete with probe and instructions.
117.50 . P.
. Additional probes avail. able: R.F. 22-12\}: H.V. 28.60.

TE22 SINE SQUARE WAVE AUJIO GENERATORS
 Sline: 20css to 200 c/le on 4 bande Square: 20cpe to $30 \mathrm{kc} / \mathrm{s}$. Output impedance 8,000 A.C. ${ }^{\text {ohms, }}$ 200/250V. Bupplled brand new and guaran* ion mamal and leada. 117.50 . Carr. 37dp. TE-ZORF SIGNAL GENERATOR
 ing 120 kc/a-260
Mc / s on 8 banda. Directly calbrated varisble R.P. attenustor. Operation Brand new with inBrand new with in-
atruction. for details.
TRANSISTORISED L.C.R. A.C

Send ior illurtrated brochure on SEW
Fanel Moters-discomats for ganatities.

EDGWISE METERS

Type PE.70. ${ }^{3}$ 17/32in, $\times 1$ 16/38in. \times

 $\begin{array}{ll}100 \mu \mathrm{~A} \\ 100-0-100 \mu \mathrm{~A} & 28.90 \\ 28.90 & 300 \mathrm{~V} \text {. A.C. } 29.46\end{array}$ | $100-0-100 \mu A$ | 28.90 | $300 V . ~ A . C . ~$ |
| :--- | :--- | :--- |
| $200 \mu \mathrm{~A}$ | 2.46 | |

CODEL LT 1011000 O.P.
J/10/50/2L0/1000 V. D.C. 0/10/50/250/1000 V. A.C. $0 / 1 / 100$ M.A. 0/150 E ohms.

MODEL TE-200 20,000 O.P.V Mirror scale, overlomi protec. tlon. $0 / 5 / 25 / 125 / 1,000 \mathrm{~V}$. D.C. 0/10/50/250/1,000V. A.C. 0/60

TME MODEL MD. 120 Mirmor gcale. $20 \mathrm{k} /$ Volt D.C $00 / 3,000$ v.C. D.C. $6 / 120$ 1,200 V. A.C.
Current $0.60 \mathrm{uA} / 0-12 / 0$ $300 \mathrm{~mA} .0 .60 \mathrm{~K} / 0.6 \mathrm{Meq}$. -20 to +63 dB .84 .821

MODEL 50030.000 O.P.V with overlond protection
mirror seale $0 / \cdot 8 / 2-5 / 10 / 25$ mirror scale $0 / \cdot \mathrm{B/2-5/10/25}$
$100 / 250 / 800 / 1,000 \mathrm{v}$. D.C $0 / 2 \cdot 5 / 10 / 25 / 100 / 250 / 500 /$ $1,000 \mathrm{~V}$. A.C. $0 / 50 \mu \mathrm{~A} / \mathrm{S} / 50 /$ 500 mA . 12 amp. D.C. $0 / 60 / \mathrm{K} / 6$ Meg. $/ 60 \mathrm{Meg} \Omega$. 88-87t. Post pald.

TMK LAB TESTER 100,000 O.P.V. oft. cult Check. Senaitivits; 100,000 O.P.V.D.C. BK /Volt A.C. D.C. Volta:
$-5,2 \cdot B, 10,50,250,1,000$ V. A.C. Volts: $3,10.80$.
$50.250, ~$
$000,1,000 \mathrm{~V}$ D.C. Current: $10,100 \mu \mathrm{~A}$. D.C. Current: $10,100 \mu \mathrm{~A}$.
$10,100,500 \mathrm{~mA}, 2=5,10$ amp. Realatance: $1 \mathrm{~K}, 10 \mathrm{~K} .100 \mathrm{~K}, 10 \mathrm{MEG}$, le Case wilh Cartying Handle. Bize 7 in. $x 6 \mathrm{iln} \times 3 \mathrm{in} .418 \cdot 90$ P. \& P. 25p. U4312 CULTMETER
Extremely aturdy instrument for general lectrical use. 667 o.p. $\%$.
$0 / 3 / 1 \cdot 5 / 7 \cdot 3 / 30 / 60 / 150 / 300$ $00 / 800 \mathrm{VDC}$ and 75 mV . $80 / 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300$ $0 / 3000 \mathrm{~A} / 1 \cdot \mathrm{~B} / 8 / 50 / 60 / 150 /$ 11.5/B/18/60/150/800 1.5/6 AMP, AC. 0/200 К/3K/30K Ω. Accurecy DC 1%, AC 1. 5%. Snite, eige polater, mirror metal carrying with sturdy and instructions. lue P \& 25 p .
RUSSIAN 22 RANGE MULTIMETER Model U 43710,000 O.p.V trument manufactured in U.S.S.R. to the bigheat thandardis. Ranges: 2-8/10 $50 / 250 / 500 / 1000 \mathrm{v}$ D.C.
$10 / 50 / 250 / 500 / 1000 \mathrm{y}$ DC Current 100 wa A.C DC Current 100 wA/1/10 300 ohms $/ 3 / 30 / 300 \mathrm{~K} / 3 \mathrm{M} \Omega$. Complete with batterlen, test leadn, inatructions and at urdy nteel carrylng case.
OUR PRICE $25-97$ P. \& P. $25 p$.
ZONETWELL
DIGITAL
VT. 100
Can be panel or
bench mounted
Basic meter meen-
cures 1 volt D .0.
but can be used to mesaure a wide range of AC and DC volt, current and ohrns with pacy: $\pm 0.2, \pm 1$ digit. Remolution: 1 mV Number of digits: 3 plue lourth overrance digit. Overrange: 100% (up to 1-999). Inpat impedance: 1000 Meg ohm. Mensuring cycle. ber recond. Adjuntment: Automatle zero. ing. full acale siljustment against an internal relerence voltage. Overlosil: to $100 v$. D.C. Input: Fully foating (3 poles). Input power:
$110-230$. A.C. $50 / 60$ ovelea. Overall alze: $51 \mathrm{ln} . x 213 / 16 \mathrm{~m}$. $883 / 1$ मin. AvaILABLE Siln. ${ }^{2}$ 13/16in. X $8 / 1$ ing AVALLABLE
BRAND NEW AND PULIY GUARAN-
TEED AT APHROX. HALP PRICE. BRAND AT APPROX. HALP PRICE.
440.974. Cart. 50 p .
G. W. SMITH
\& CO (RADIO) LTD Also see next two pages

1972

GEMI-CONOLCTORE/VALVES

ALL DEVICES BRAND NEW AND FULLY GUARANTEED

HI-FI EQLIDPMENT SAVE UPTO 333\% OR MORE SEND S.A.E. FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

RECORD DECKS

 E.S.R. MP60 MP60
610 610
310
810
10 TP60 TPDI 81 MPG0 TPDI 117.85 10 T PD 215.85 10 T.P.D.1. 18.75 210 Pa . T. 70 THOREN8 D 125 TD125
TX25 TX25

 TD150AB1 234 | TXII | 28.25 |
| :--- | :--- | ARRARD $2025 \mathrm{~T} / \mathrm{C} * \begin{array}{r}88-50 \\ 35000^{\circ}\end{array}$ 8 P2 $^{25} 111 \quad \begin{array}{r}210.75 \\ \hline 10\end{array}$ t Mono - Stereo Curtidse Al other modela less Cartrulge

BECORD DECK PACKAGES
Decks aupplied plinth and cover plted with cart
 ridge. Garrar 2025 T/C with Bonotone 9TAHCD Garrard BP25 Sonotone gTABCi) Garrard SP25III Goldring 9800 Garrard AP96 Goldring G800 Garrard SP15111/Bhure M70 GERR MP60 Aud io Technics AT Ooldring GL 72 Goldring G800 Goldring GL72 Goldring G800 Goldring GL76 Golditing G800L

SDH 8V HI-FI

PHONES

aput a-16 $\%$ requencs 20-18,000 Hz steren or $\underset{v}{\text { mono }}$ swiume controln each earplece, padded hemd band. 23-97. p/p 20 p

SINCLAIR EQUIPMENT Project Go

0003.

2 I 230 amplifer , stereo 60 pre-anng. PZ5 power supply. 216.75 Carr. 37ip. Or with PZ6 power supply $218 \cdot 86$ Carr. 37 ip. 2×250 supply. 820 25. Cart. 37 \&p. supply. E20 \&6. Cart. 37 \$p.
Tranalormer for PZ8. 22.97\$ extra Adt to ands of the above 84.871 for actlve Project 60 FM Tuner 218.95 . Gart. 37/D. All other Sinciair producta in stock. 2000 Amp 823.75 Carr. 37tp.; 3000 Amp 281-50 Gart. 37 fp -: Neoteric Amp 448.95 NEW PROJFCT 606 - $\mathbf{~ C 2 0 . 9 7}$

LATEST CATALOGUE

Our new 6th edtlion gives full details of a
comprehensire pange of HI-FI EQUIP.
MENT, COMPONENTS, TEST EQUIPMENT and COMMUNICATIONS EQUIP MENT. FREE DIBCOUNT COUPONB

272 pages, fully illastrated and thovsands of SEND NOW ONLY 371 p
P\&P 10p
$-$

$$
\mathrm{Bt}
$$

HEADPHONE AMPLIFIER
All nalicon trans-
fator anplifier oper-
\qquad ceramic or tuner Inpuin with twin stereo controls for esch channel. Operates from 9 y battery. Inpute $5 \mathrm{MU} / 100 \mathrm{MU}$. Outpat 50 MW . 25-97. P, © P. 15p.
NS-I600W STEREO AMPLIFIER
 $\frac{\text { 4 82. P. d P. 16p. }}{\text { HOSDEN DH-DES DE-L.JXE STEREO }}$
 HEADPHONES anical 2 कgy units and fited edjuatable lorel controls. 8 ohm Im pedance. $20-20,000 \mathrm{cpe}$ lead \& atereo jack plug C7-97\% F. P. 121 p

Modei 8-10UTR MOLTI
METER/TBANSISTOR TESTER $100,0000^{\circ}$ p.
MIRROR SCALE/OVER MIRROR SCALE/O
LOAD PROTECTION 0/12-6/3/12/30/120/600 V DC.
$0 / 6 / 30 / 120 / 600$ V. AC.
$0 / 12 / 600 \mathrm{EA} / 12 / 300 \mathrm{MA} / \mathrm{I}$ $0 / 12 / 6000$
Amp. 1 PC.
0/10K/1 M EG $/ 100 \mathrm{MEG}$
Transist $50 \mathrm{db} .0 .01-\mathrm{Mmid}$.
Transistor teaner mieasuren Alpha, beta and
Complete ith hatteries, Instructions and
leads. 513 -50. P/P 25p.
MCA. 220 AUTO.
MATIC VOLTAGE STABILISER
Input 88-125 VAC or 176 .
250 VAC. Output 120 VAC
250 VAC . Output 120 VAC
or 240 VAC .200 VA rating or 240VAC. 200 V
e11.97. Carr. 80 p.

belco arsa solid state sine SQUARE WAVE C.R. OSCILLATOR
 UR-1A S

- Bands covering $650 \mathrm{ke} / 0-30 \pi n c / n$. HET B Bleter, Variable BFO for B8B, Bullt-in Speaker, Bandapread, Seusitivity Control. $220 / 240 v$. A.C. or $12 v$. D.C. 121° I 8° I 7°.
Brand new with inotructions. e25. Carr. 37 ip.

LAFAYETTE HA-600 SOLD STATE RECEIVER

Cenersl coverage $150-400 \mathrm{ke} / \mathrm{m}_{0} \quad 550$
$\mathrm{kc} / \mathrm{g}-30 \mathrm{mc} / \mathrm{s}$.
FH:T $\mathrm{kc} / \mathrm{om}$ eme/s.
front end. is tuech. Illtern, prodnct
detector, varlabif delector, varlabif
B.F.O. noise limiter, S. Meter, Bundspread. RH Galtion 15° srand new with tnat ructiona. \$45. Carr. 50y, 230V/240V SMITHS SYRCHRONOOS GEARED MOTORS
Built in gearbox. All brand new aml boxed 60 RPM CW: 30 RPM CW; $2 \mathrm{k} / \mathrm{HR}$ ACW:
$2 \mathrm{R} / \mathrm{HR} \mathrm{CW} ; 8 \mathrm{D} / \mathrm{DAY} \mathrm{CW}: 10 \mathrm{RPM} \mathrm{CW}$ 20R/ER ACW
50 p each Pont 12p

B.C. 221 FREQUENCY METERS

 latest releme $125 \mathrm{KHz}-20 \mathrm{MHz}$. Exvelleut condliton. Fully tested and checked amil complete with calibrator charts.587.50 each. Cers. 50 p .

SOLID STATE VARIABLE A.C. VOLTAGE REGULATORS

Cormpact and panel
 trol of lamps, drilla. electrical applisinces etc. Input 230/240v. A.C. Output contiduondy
variable trom 20 s - 230% varimble trom 20% - 930 . Model MR 2306 E arap
68 E 46 m 43 mm e8.371.
 Model MR 2310 211-97t. Pomtage 12\$p.

AUTO TRANSFORMERS
$0 / 115 / 230 \mathrm{~V}$. Step up or step down. Pully shrouded.

150 W 300 W 500 W
 500 W 1000 W
 1500 W 5000 W
 82374 28.25 24.874 27.25 28.974 236.00

POWER RHEOSTATS

Eigh quality seramic construction. Wiudings ernbedded in vitreous

 enamel. Heasy duty brush wiper. Continuous reting. Wide ratige 50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2600$ or 5000 obena, 21 -05 P. \& P. 7 P. P. 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or $s 500$ obms, $21-37 /$ P. \& P. 7 ip. YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

Tel: 01-6363715
Tel: 01-4378204
Tel: 01-4379155
Tel: 01-262 0387

CRESCENT DEPT. No. II
 MAMESN
 $11 \& 40$ MAYES ROAD. LONOON NR2 GTL 2383206
 N 22 $\mathrm{6TL}$

COMPONENTS AND HI FI FOR THE HOME CONSTRUCTOR OUR SHOPS ARE OPEN ALL DAY FROM 9 A.M. TO 6 P.M. 6.30 P.M. ON FRIDAY (wE CLOSE ALL DAY THURSDAY) I3 SOUTH MALL, EDMONTON, N-9 8031685

BATTERY ELIMINATOR

Plug your Transistor Radlo. Ampll. fer, Cosmette, etc., into the a.c. mains through this conipect eliminator. 2 j in $\times 2$ in $\times 3$ in approx. oV $11.50,9 \mathrm{~V}$ i1.50. 71 V complece with cable and plug for Pblitps Cessette. ≤ 2 plua 8 P .

CApactiors

 Min! Electrolstica all values up 20100 MPD @ $15 \mathrm{~V}-7 \mathrm{p}$ each. Enuall PF Capmeltora only in packs of 10 but you can mix values- 25 p for 10 .250 MPD @ $25 \mathrm{~V}-15 \mathrm{p}$ 500 MPD (a) $25 \mathrm{~V}=21 \mathrm{p}$ 1000 MFD © 25 V -27D $2000 \mathrm{MPD} @ 25 \mathrm{~V}$ - $\mathrm{HP}^{2000 \mathrm{MPD}}$ 3000 MPD @ 28 V - 45 p Plense inc. 10p. P. \& P. ordern under E 2 value.
EA1000 3 WATT AUDID Aa Audio Amplitar designed around the TAA621 Linear I.C.:Supply Voltage 8 freaker Imp. Frequency
Overall Bize Overall 1 Bize idereo undta, et Full technical module. All guaranteed and a Daggain at

D.P.D.T. SLIDE | WAFER SWITCHES

1 pole 12 wis
2 pole 2 way
2 pole 3 .
2 pole 3 way
2 pole 4 way
2 pole 6 way
3 pole 4 way
3 pole 4 way
4 pole 3 way
(12)

812E
1 lns long \# wlde
82 p each. Please Inc. 5p P. \& P. Up to 3
sitcbes. silticber.

for fast, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

THIN GAUGE SOLDER,

 ESSENTIAL FOR soldering small components and thin wires. High tin content, low melting point, $60 / 40$ alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 75p Size 10A RANGE OF SOLDERS IN HANDY DISPENSERS. REF. ALLOY SWG 19 ($60 / 40$ 18 180° Size
(III) etra- Sevbit 18 18p" ted)
15 60/40 22 220.
Recommended Price

of robust

 constructionSafe, quick and secure it connects 2 -core and 3-core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago.
Safebloc saves time. No need to fit a plug for tests No danger, as no current can pass with the lid open.
Invaluable for testing and demonstrations in industry and shops, the work bench and the home.

Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer.
If ordering by post, send cash with order.
PRICE £2.60+10p P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill, Sussex. Tel. Burgess Hill 2642

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder. there is an alternative - Project 605
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and qutput components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads. cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 3 C watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes,
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$
Guarantee If within 3 monhts of purchasing Profect 605 directly hom us, you are disssobistied wnth it. we will tolund your money at once. Each module is guarmented to wort pertectly and should'any detect viss in normal use we will service if al onci and withoul any coss to you whatsoever porvided that it is atuwned 10 us within 2 years of the purchass dale. Theere will be a small charge lor senics thereaher, No charge lec postage by sulace maili. Air- mail chaiged at cost.

Sinclair Radlonics Ltd., London Road., St. Ives, Huntingdonshire PE1 74 HJ . Telephone: St. Ives (04806) 4311

Specifications

Output-30 watts music power (10 watts per channel R.M.S. into 3Ω).
nputs-Mag. P.U. - 3mV correct 10 R.I.A.A. cutve 20-25.000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up -50 mV . Radio - 5010150 mV . Aux. adjustable between 3 mV . and 3 V
Signal to noise ratio - Better than 70 dB
Distortion - better than 0.2% under all conditions.
Controls - Press buttons for on-off, P.U.. radio and aux. Treble +15 to -15 dB at 10 kHz . Bass $+15 \mathrm{to}-15 \mathrm{~dB}$ at 100 Hz . Volume. Stereo Balance.
Channel matching within 1 dB .
Front panel - brushed aluminium with black knobs Project 605 comprises Stereo 60 pre-amp/control unit. Iwo Z-30 power amplifiers. PZ-5 power supply unit. the unique new Masterlink, leads and instruc-
£29.95
TO SINCLAIR RADIONICSLTO., ST, IVES, HUNTINGODNSHIRE PE174HJ Please send Project 605 post free \square Details and list of stockists \square

Name.
Address.

FEATURING SOME OF THE MANY COMPONENTS FROM THE FREE LST CAT. HAVE YOU SENT FOR YOURS YETII?

TRANSISTORS

We stock all popular types but how about our INTRODUCTION KIT EI-consisting of: OC71, OC44, OC45, AC128, BC107, 2N2926, OC72 incl. data and connection chart. ORDER AS PACK NO: EEI

ZENER DIODES Consisting of a 1 Watt and a 400 milliwatt Zener (or regulator) diode plus FREE 24 page circuit book.
ORDER AS PACK EE3

CAPACITOR PACK
10 popular values of capacitor including polyester and electrolytic good starting stock! Normal Cat. price over 65p ORDER AS PACK EE4

PHOTORESISTOR ORPIL
Price includes data sheet. (German LDRO3 type)
ORDER AS PART NO: LDRO3

NEON PACK
50p
Consisting of 10 miniature neon indicator bulbs 65 Vac 90 Vdc. Use 270 k resistor for mains use.
ORDER AS PACK: EES
BOOKS ETC:
Designers Guide to British Transistors: Data on 1000's of common types $\mathrm{Cl} \cdot 40$ 110 Semiconductor Projects.
Marvellous book for the enthusiast.
61.35

HOW TO ORDER:
Cut out whole advert
Tick boxes for packs required. Fill out name and address enclose payment. ALL ITEMS THIS AD. POST FREE.

PLEASE NOTE: Our "Experimenters Bargain Pack R2."-(Last months ad.) now withdrawn. All orders despatched day of receipt. Spares for all packs in our FREE catalogue.

LST ELECTRONIC	
COMPONENTS LTD.,	
DEPT. E.E.,	
7 COPTFOLD ROAD,	
BRENTWOOD,	
ESSEX.	
WELLEP. MULLARO. NEWMAMKET:	
EIEMENE.TRCA, ISKRA VEROBOARD,	

FIND BURIED TREASURE!
Transistorised Treasure Locator This fully portable tranalin. torined metal locator detects and tracks down buried metal objects-lt signale exset locs:
thon with loud audible sound thon with loud sudible sound
(no phone uned)-usea nay (tranalator redto which At
inalan TITDA GOLD, EILVER. COI胃, JEWELLERY ARGRA OOLOOICAL PIRGED EIC. ITC, Extremely sensf-
ifie, will signed prectere tfow, wid a agan prevence
of certain abjects buried ceriain objects buried OMLI £2;37
ledge of radio No knowbuth will eace tronicu required. Cax be from nine years of age upworls, wlth the clewr, eaay to follow, step-hy-step. fully Ikustrated inntruction:- ISeen standard PP3 baitery, No boldering necenary, KIt ${ }^{2} 9 \cdot \$ 7+27 \mathrm{p} p$. $\& \mathrm{p}$. (Sectional handle I HIlustrated $27 \mathrm{p} p$, * p. (Sectional handle as aeparately. Hate up looks worth avallable
Eavendrop on the exciting world of Aircrift Communications V.H.F. AIRCRAFT BAND OILI CONVERTOR f 9.37 Litien in to AIR-
LIMES. PRIVATE PLAMES, drriplaines. Eomedrop on cround approach control, atr: port tomer, Hear for yourself the discipilimed voices hiding tenseneas on talk downs. Be With them when they have to take nerve ripping decinlong in emergencies-Tune into the international distreas ireguency. Coverk the aircraft trequency band including WAI PRESTVIC A Bidu. Thin fancuatic fully tranalatoried inmerument call be buill by onpome over aine in mader fuo howra, No soldering necenary. Fully iliust rated almple Inatructions take you step-by-step, Usen sisndand PP3 battery. All you do is eztend rod serlal, place clone to auy ordinary medlum wave rallo (even
 2sp p. \& por kit incluiding caed 17 2sp p. a p. for kit inciuding came, nuth, eeparately). CONCORD ELECTRONICS
 WAKE UP IN THE NIGHT AND CAN'T GET OFF TO BLEEP AGAIN YOULD YOU TOQATIRYYINGBLEEP EVERYED OFP Then bulld thing ingenlous EVERY NIGHTT inducer. A even stopa by ifolf so yow don't nave ta morry mbout if befong on all nifint The loudspenter producen sonthing audiofrequency moundn, continuoundy repeatedbut an thme goen on the nound gredually becomes lese and lem-until thes eventually ceame altogether, the effect it has un prople trol is provided for adjuating the length of trol is provided for adjuating the length of
timen. etc., all transistor, can be built by anyon, etc, aver 12 trannistor, can be built by hours. No knowled ge of ciectronica or rialo needed. Extremely mimple, easy-to-follow. step-by-ntep, fully illustrated inntructiona incluiled. No soldering necesaary. Workn of stadiard botterien. entremely economical. Size only $3^{\prime \prime} \times 41^{\prime \prime} \times$ if -take it anywhere.
 selfD ate 75
neparately).

orlefig.7\%
Don't comfuer
lectromite org ordinary
electrontie organs the stmply blow atr over mouth-organ typer reeds eif Fully transistorised. SELT COHPAIILD two full octoves.-play the "Yellow Roose of Tores", play "Silem Night", play "A where of Syne" , olc. ele. You have the "Amill Lamo excttement of bailding it together with the ploanure of playlog a real. Ilve, poriable electronic organ. HO PREVIOUS E1OW LEDEE OF RLECTROMIC FEDED. No noldering necemary, simple as ABC to inake. A nyone oper nime yeara can bwild d ecasily in one inort evenimg folloming be fully iumstrafed
 +23 p D. \& p. for Eitt, including came, nots, ftandard battery (parts avallable meparately). Have all the pleanure of maklog it yourseif, finimh with an excling gift for someone.
Find buried treasure with this READY BUILT E TESTED TREASURE LOCATOR MODULE onx $£ 4.95$ TULLIE TORIEAD PRIMTED CIBCUT
TOR MODULE. Ready buil
 phones and it" plug ing PP3 battery sul crew a handle on and TOU HAVE A OREAEL TREASURE LOCATOR RA悬L -penctrates witer OOLD ELIVEABILY LOCATEA COINE, CAL RELICR, SEWELLERY, RISTORIsignala exact iocation by PiPES: ETC. increaning en you near buried metallic ohjecta, So sewalloe 31 will delect reviain
 ONE CO: dVRE CLEAR SIGNAL ON High coin $4 \cdot 85+30 p$ carr. etc. (high qualty Daninh stethoecope beadphones as. 75 extra if required.) SAYIIL AT ROME FOR 7 DAYE. YOUR MOWEI REOUDEDIN FOLLIF MOT 100%
DMIORTLD.

BUILD 5 RADIO AND ELECTRONIC PROJECTS
ous $£ 197$

Amazing Radio Conatruc. thon aet ! Become a radk expert for 21.97. A coms. plete Home Radio Courne. No experience needed.

Parta Including aimple Instractiona for each deaign. ILug. trated step-by-step plans, all tranulatora, loudapenker personal phone, knob
etc. all you need. Presentation box 87 artre as illu., (if required) (parts avallahie separately) no soldering necernary. fend E1.97 + 28p p. \& p.
SOOTHE YOUR NERYES. RELAX WITH THIS AMAZING RELAXATRON
CUTG OUT NOIBE POL-LUTION-BOOTHES YOU'R frybs Don't under. asatle new dealgn-the RELAXATRON is baskilly: plak nolee menerator. Beniclem being able to miank out extraneous unwanted sounds, it has otber very intereatlot propertlen. For Instance, many people find a rainstormin
myateriounty relay tog, a large
 part of this feeling of well-being can be dropa! !- traced to the mound of falling rainIropat You Worn in type of plak nolee. TRACTING SURROUNDINOS, IF YOU HAVE TROUBLE CONCENTRATING, IF' YOU FEEL TENGED, UNABLE TO RE-LAX-then baild thin fantatic Relaxatron. Once need you wid never want to be withoat darl PPS batteriee (curent userl no amall that battery iff in almont ahelif-life). CAl BE EAMLI BULT BI Arrore OVER 12 THARS OF AGS uting our unique, step-hyntep, fully ilfustrated plans, No soidering necennary. All parts Including cave, a pair of crystal phomes. Components, nuts. screwn, wire, etc, no woldering.
e8. $26+26 \mathrm{p}$. p .
29.25 + 25 p p. \& p. Purta avaliable sepmitaly

BSR LATEST SUPERSLIM STEREO AND MONO Plays $12^{\circ}, 10^{\circ}$ or 7° records. Anto or Manual. A hikh quality unit bacted by BSR and quality unit backed months guars
 $81 z e 181 \times 11 \ddagger$ in
 Above motor board 3 lin . with 8TEREO and MONO ETAL $\mathbf{6 7 . 7 5}$ Post
 RCS DE-LUXE 3 WATT AMPLIFIER. Ready mede With 2 -stere triode pentode whive, 3 watts outpat. Tone end volume controle. Isoleted mains transiormer. KaOba, Whth hith performance Loudspester. Response $50-12,000 \mathrm{cpa}$. Sensitivity
 R.C.S. PORTABLE PLAYER CABINET
 Really smart sppearance with space for R.C.S. Ampliners and mont modern utochangers. Size $18 \times 15 \times 8$ in, Metal Attings. Carping hand restae covered. Popular colours
 GARRARD 8INGLE PLAT TA MK II
 110
 GARRARD PLAYERS with Sonotone gTA Cartridges Stereo Diamond and Mono Sapphire. SP25 Mif II 16. Model 3500 Stereo end Mono Autochanger $\mathrm{E14}$. Poat 25 p.
 ESR JUKIOR SINGLE PLAYER
 €4.50
 EMI PICK-UP ARM WIth mono atal end stylus $21-25$, HIT-FI PICK-UP CARTRIDGES. Dinmond LPP/Stereo Stereolyono 9TA E2.50: GP94 \&2.50: GP93 \&2.00 Ino GP91 21-50; ACOS LP 50p.

E.M.I. WOOFER AND

<5.75 Pont $2 \mathrm{sp}_{\mathrm{p}}$

Comprisimp Ane example of a Wooler 101×6 ing. With mazsive Ceramic Aluminiam Cone centra to improve middle and top reaponse. Also the E....I. Tweter 3 tin. square hisa apecial light-
weirht paper cone and magnet 0 ax weirht pape
Impedance Stunderd Maymum Power Base Retonance

WEYRAD PSO-TRAN........... 45 cps RARW Ferrite Aerlal.. 65 ThANSISTOR
 I. P. PSO/2CC 470 re/s. $33 \mathrm{D} \quad$ Printed Circait, PCA Ird I.P. P60/3CC J.B. Tuaing Oeng P51/1 or P51/2 OPTI
 PSO/8V
VOLUME CONTROLS 800hm Coax 4p, id. Lone spladles. Midget sige
6 K . obms to 2 Mef. Log or
AERAXI AERIALITE LIF, L/8 $15 \mathrm{p}, \mathrm{DR}$. 25 p . $40 \mathrm{yd}, 1140 ; 60$ 万d. 22
 WIRE-WOUND 3-WATT POTS. WIRE-WOUND3-WATT
 Carbon 30 K to 1 mes.
$24 \times 8 \mathrm{in}, 28 \mathrm{p}, 21 \times 34 \mathrm{in} .17 \mathrm{p}, 31 \times 34 \mathrm{in} .28 \mathrm{p} .2!\times 6 \mathrm{in} .30 \mathrm{p}$

8.R.E.PINE Board 0.15 MATEIE 2iln. wide 3p per lin.* s.8. P andrilied tin Board 10×8 in 15 p . (up to 17 im .) MLANL ALUMINIUM CHASSIS 18 e.w.f. Rin, sidee. $7 \times 4 \mathrm{n}$
 $45 \mathrm{D} ; 9 \times 7 \mathrm{n} .60 \mathrm{p} ; 11 \times 7 \mathrm{in}, 70 \mathrm{p} ; 13$
$98 \mathrm{p} ; 18 \times 14 \mathrm{n} .90 \mathrm{p}, 11 \times 3 \mathrm{in} .50 \mathrm{p}$.
ALUMMIUMPANELS 18 \&.w.R. $6 \times 4 \mathrm{in} .9 \mathrm{p}: 8 \times 6 \mathrm{in}, 18 \mathrm{p}$ $14 \times 3 \mathrm{ln} .16 \mathrm{D} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 12 \times 5 \mathrm{in} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p}$ $18 \times 6 \mathrm{in} .28 \mathrm{p} ; 14 \times 8 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{in} 40 \mathrm{p}$.
1\& iach DIAMETER WAVE-CEANOE SWITCEES 25p. 2 p .2 -way, or 2 p .6 6 wey or 3 D .4 -way 25 p each. 1 p . 12-way.
 RECTIPTERS CONTACT COOLED W wave 60 mA 38 p 85 mA 48 p . SILICON BYZ13 30D; 8Y100 30p; RY187 30p. TOGOLESWITCEES, 8 p . 14p: $\mathrm{dp} .18 \mathrm{p} ; \mathrm{dp} . \mathrm{dt} .23 \mathrm{p}$.
"THE INSTANT" BULK TAPE
ERASER \& HEAD DEMAGNETISER
200/250\%. A.C. $\mathrm{C2} 35 \mathrm{Post}$
Leatet S.A.E.
R.C.S. STABILISED POWER PACK KITS All parta and Instructions with Zener Diode. Printed Circuit Bridge Rectiters and Double Wound Maias Transformer input 200/240t. AC. Ontput voltskes evailable or or 18 or 16 or 18 or 20 v . DC et 100 mA or leas. PLEABE STATE VOLTAGE REQUIRED. © POBT hetoile $\mathrm{g} . \mathrm{A} . \mathrm{E}$ size $31 \times 1 ; \times 1 \mathrm{jan}$. CL FREE
GENERAL PURPOSE TRANSISTOR PRE - AMPLIFIER BRITISH MADE Idaal lor Mike, Tape, P. U., Gnitar. Can be ased with
Battery $-12 y$ or B.T. Hine 200.300 J.C. operation.
 For neme with valve or trinaistor eqnipment. $90 p$ Pott
Full instr actions supplied. Detalle B.A.E. Full instr actions supplied. Detaile B.A.E. TEW TUBULAB ELECTROLTTICS 2/350V 14D $250 / 25 \mathrm{~V} \quad \cdots \quad 14 \mathrm{p} \quad 50+50 / 350 \mathrm{~V}$ $20 \mathrm{p} \quad 60+100 / 350 \mathrm{~V}$ $1 / 450 \mathrm{~V} \quad 14 \mathrm{D} \quad 1000 / 25 \mathrm{~V} . \quad 35 \mathrm{p} \quad 32+32 / 250 \mathrm{~V}$

 $\begin{array}{lllllll}32450 V & 20 \mathrm{D} & 8+8 / 450 \mathrm{~V} & 18 \mathrm{D} & 350-50 / 325 \mathrm{~V} & 50 \mathrm{D} \\ 95 / 25 \mathrm{~V} & 10 \mathrm{p} & 8+18 / 450 \mathrm{~V} & 20 \mathrm{p} & 38+38+29350 \mathrm{~V} & 43 \mathrm{D}\end{array}$ | $50 / 25 \mathrm{~V}$ | 10 D | $8+16 / 450 \mathrm{~V}$ | $16+16 / 450 \mathrm{D}$ |
| :--- | :--- | :--- | :--- |
| 5 p | $100+50+60 / 350 \mathrm{~V} 48 \mathrm{D}$ | | |
| $100 / 85 \mathrm{~V}$ | 10 D | $32+32 / 350 \mathrm{~V}$ | 25 D | LOW VOLTAOE EL

1. 2. 4. 5, 8, 18, 25, $30.50,100,800 \mathrm{mP}$. 15 V . 10 p . $100 \mathrm{mF}, 12 \mathrm{~V}, 15 \mathrm{D}: 85 \mathrm{~V}, 20 \mathrm{p} ; 50 \mathrm{~V} .80 \mathrm{p}$.
$1000 \mathrm{mF}, 12 \mathrm{~V}, 17 \mathrm{D}: 25 \mathrm{~V} .35 \mathrm{D}: 50 \mathrm{~V} .4 \mathrm{D} ; 100 \mathrm{~V} .70 \mathrm{p}$.

 CERAMIC 1DF to $0.01 \mathrm{mP}, 4 \mathrm{p}$. Silver Mica 2 to 5000 pF . 4 p PAPER 850V-0.1 4D. 0.5 13p: 1 mF 15p; 2mF 150V 15p. $500 \mathrm{~V}-0.001$ to $0064 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$.
SILVER MICA, Close tolerance $1 \% 2 \cdot 2-500 \mathrm{pF} 8 \mathrm{p} ; 500-2 \cdot 200$ pF 10 D ; $\mathbf{2}, 700-5,600 \mathrm{pF} 20 \mathrm{p}$; $6,800 \mathrm{pF}-001$, mid 30 p ; each. TWIM GANG. " $0-0$ " $208 \mathrm{pF}+176 \mathrm{pF}$. 65D : Siow motion drive $365+385$ with $25+25 \mathrm{pP}$. 30 D 800 pF slow motion, standard 45 p ; mall 3-rade 500 p FE1 80 .
SHORT WAVE, SINGLE. $10 \mathrm{pF} 80 \mathrm{D}: 25 \mathrm{pF}$ 55D: 50 DF 85 D . CHROME TELESCOPIC AERIAL, twivel bame. 231n. 20D, SEON PANEL IADICATORS 250 V AC/DC Red or Amber 20p.
 HIGB STABILITY, 1 w. $2 \% 10$ obme to 1 meg., 10 p . HIGR STABILITY, Wive 10 obms to 10 mes., 4 p. WIAE-WOUTD RESISTORS $\$$ watt. 10 watt. 15 watt 10 ohms to $100 \mathrm{~K}, 10 \mathrm{p}$ ach; g f watt, 1 ohm to B 2 ohme 10 p .

SCOOPI metal plinth and PLASTIC COVER

Cut out ready for Garrard or positlon Latest deslon. Covered in black featherette. £5.50 Antimagnotle, $12 \dot{4} \times 14 \pm \times 7 \frac{1}{2} \mathrm{n}$

MAINS TRANSFORMERS | ALL Post |
| :---: |
| $2 \sigma_{p}$ ect |

 REATER TRARS. 6-3v. 3 a.
Ditto tapped sec, $1,4 \mathrm{v} ., 8,3,4,5,6.3 \mathrm{v} .1$ t amp... 80 D GENERAL PURPOSE LOW FOLTAGE, Tapped Ontpute

 $100 \mathrm{w}, \mathrm{E2.25} ; 500 \mathrm{w}$. $28 \cdot 25$: $750 \mathrm{w}, 810 ; 1000 \mathrm{w}, 214$. CHARGER TRANSFORMERS. ILPUt $200 / 250 \%$.
 FULL WAVE ERIDOE CEARGER RECTIFIERS: 6 or 12v, outputit, 1f amp. $40 \mathrm{p} ; 2 \mathrm{gmp}$. $21 \cdot 30 ; 4 \mathrm{amp}$, 22 -25 All trinsformers Poitake esp ertra.

E.M I. 13 $\frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS

Wht twin tweeters 14
8tate 3 or 8 or 15 ohm
(As illuatrited) Pont 18D
With dared tweeter cone and ceramic magnet. 10 watts.
lus 10,000 gene
E2.25
State 3 or 8 or 16 ohm. Post 18 Recommended Teak Cabinet 55

IOW MINI-MODULE $£ 3.25$

 LOUDSPEAKER KIT Pot 2soTriple spesker aystem combining on ready cot bame. in. chipboard is in, x 8i in. Separate Bana, Middle and Ireble loudipeakers and cronsover condenser, The cone, The mid-renge unit is specially cesisned to add drive to the middle reginter and the tweeter recreatea the top end of the musical spectrum. Total response 20-15,000 epe. Full instractione tor 8 chm matching
TEAE VENEERED BOOKSHELP ENCLOSURE $16 \times 10 \times$ 9in. Modern design with $\& 5$ pont 95 futed wood tront. Highly recommended.

13

ALL RODELS "gAKER SPEAKERS" IN STOCK

BAKER I2in. MAJOR $\mathbf{E 9}$

$30-14,500$ c.p.t., $12 i n$. double cone. wooler and - ith a BAEER ceramic with alt cersmic magnet assembly having - fux denaity of 14,000 gaus and a htal for of 145.000 Marwelle. Bass posonmace 40 e.p.e. Reted 3 or 8 or 16 obms. Poat Free Module ldt, 30-17,000 c.p.e. batile and

Ell. 50

- Group 25 ger " ${ }^{\text {Bl }}$

 12 loch $\$ 7 \quad 12$ jnch $\mathbf{~ C O} \quad$ Group 50 3 or 8 or 15 ohm 3 or 8 of 15 ohm 80 watt 819 TEAK EI-FI SPEAKER CABINETS. Pluted wood lront Por 12 in . or 10in, dis. apeaker $20 \times 13 \times$ Pin. 29. Poit 25 p $\begin{array}{lll}\text { For } 13 \times 3 i n . ~ n r ~ & 8 \mathrm{in} \text {. speaker } 18 \times 10 \times 9 \mathrm{in} \text {. } \quad \text { if, Post } 25 \mathrm{p} \\ \text { E4. Post } 25 \mathrm{p}\end{array}$ For $10 \times$ Sin. or 01n. speaker $16 \times 8 \times 8 \mathrm{in}$. \& 4 . Post 25 pLOUDSPEAKER CABINET WADDING18in. wide, 16 Dt .

GOODMANS $6 \frac{1}{2}$ in. HI-FI WOOFER 8 obm, 10 watt. Large ceramic magnet sesponse $30-18,000 \mathrm{cps}$. Ides) P.A. Columns, Mi-FI Enclosures Syitems, elc. 14

ELAC CONE TWEETER
The movint coil disphragm gives a good radiation pattern to the higher Irequencien and emooth extansion of total response from $1,000 \mathrm{eps}$ to $18,000 \mathrm{cps}$. Size 3 \& x or 15 ohm modele. $\& \mid .90$ Pont 10 p .
horn Twseters $8-16 \mathrm{kc} / \mathrm{s}$. 10 W g ohm of 15 obm 21.50 De_{8} Lawe Horn Tweters $2-18$ Ecile, 16 w . 15 ohm 28. TWOWAY 3000Cpr CROSSOVERS 3 or 8 oo 15 ohm 95 . SPECIAL OFFER! 80 onm. 21 in . din.; 35 ohm. 2 in.: 3 in 25 ohm, siln. dis.; Jin. dia.; $8 \times 4 \mathrm{in} . ; 8 \times 5 \mathrm{in}$ G| EACH $15 \mathrm{ohm}, 3 \mathrm{im}$. dian; $7 \times 4 \mathrm{in}$. $8 \times 5 \mathrm{in}$.
LOUDSPEAKERS P.M. 3 OHMS. 8 ing. $21.10 ; 8 \times 5 \mathrm{in} .21 .25$ 81 n . $21.7 \mathrm{~F}: 10 \times 8 \mathrm{in}, 21.00$.

 EICHARD ALLAN TWIA CONE LOUDSPEREERS 8 in . dle. 4 watt; 10 in . dia. 8 watt: 12 in . dle. 6 wat 3 or 8 or 15 ohm modele 81.95 each. Pont 18 p .
OUTPUT TRANS. EL84 etc. $25 p$; MIKE TRANS. $30: 125 \mathrm{p}$ SPEAEER COVERIRG MATERIALS. Samplea Large S.A.E

BAKER 100 WATT ALL PURPOSE POWER

AMPLIFIER

4 Inputa speech and usic. Hudne Iacilitien Reaponse $10-30,000$ cDr. Matcher 2001250 V . Port Por eperate Treble and Bene controls. Guarsated. Detsill S.A.E.

BARGAIM AM TUAER. Medlum Wave
〔4.50
Trangistor Superiot. Fertite aerial. 8 volu
bargain 4 CHANNEL TRAMSISTOR MONO MIXER Add musical highlighte and sound eflects to recordiart. Will mir Microphone. records, to pe and taner ≤ 3.50 STEREO VERSION OF ABOVE E425.
BAROAM FM TUNER 88-108 Mcis Siz Trangiator, 9 volt Printed Circuit. Calibrated alide dial tun
BABOATM FM TUNER as Bbove leas cabinet
€8.85
GARGACH 3 WATT AMPLIPIER. 4 Trantiator
63.50

Punh-Pull Ready built, with volume control.
COAXIAL PLUG 8p. PANEL SOCKETS 6p. LIKE 18 p UTLET BOXES, SORFACE OE FLUSH 25p
ALAMCED TWIN PEEDERS 5 D Fd. 80 ohm or 300 obme ACK sCCKET Sid. open-etrcuit 14p, closed circait 23 p , IACK PLOOS Std. Chrome 15p 3 5mm. Phono Socket OCEETS Chanie 3 -pio 10 p; 5-pin 10 D. DIN SOCEETS Lead -pln 18p; 5-pin 25p. DIN PLUGS 3-pin 18p; 5-pin 25 p VALVE EOLDERS, Op; CERAMIC Bpi CARS 5D.
 E.M.I. TAPE MOTORSPost 18p. 1200 . of 240 . AC, 1.200 t.D.m. 4 pole Sise $31 \times 2+\times 21$ in. (illustrated). $C 12$ BALFOUR GRAM MOTORS 120% or $240 \mathrm{~m}, \mathrm{~A}, \mathrm{C}, 1,200$ r.p.m. 4 pole

hi.fi Stockists return of post despaich
RADIO COMPONENT
List 5p. Written suarantee with every purchase.
minimum post and packing isp

SPECIALISTS

(Export: Remit cash and extra postage.)

everyday electronics PROJECTS THEORY.

BROADMINDED

A word of caution to newcomers. You'll have to be broadminded to read and enjoy this magazine.

Once upon a time the predominant reason for taking up "electronics" as a hobby was an interest in building radio receivers. But, as is now generally appreciated, radio is merely one special application or branch of this all-embracing technology.

The great expansion in uses of electronic circuits over the last two decades has been of untold benefit to the ordinary person. No longer is an interest in one particular specific applicaton the requisite for involvement in the most exciting technology of the age. Electronics is wide open to all who want to use it.

AN ALL-PURPOSE TOOL

This is no exaggeration. The projects for the private constructor already published in these pages should have made this clear. And new readers can be assured that future designs will demonstrate even further how versatile and how useful is the electronic circuit-even in its simplest form.

Electronics is the all-purpose tool everyone can use to add to comfort or convenience at home, or to assist in the greater enjoyment of
other spare time pursuits. Its practical applicatons know no bounds, and as a mind broadener, we reckon a lively interest in electronics has no equal.

COMMON GROUND

So it's not surprising that our pages have become a meeting place for a great variety of individuals, including, for example, photographers, motorists, gardeners, and pop musiclans; not to mention those legions of handymen whose interests are less specific but who are always ready and eager to seize upon a likely project for use in or around the home. Where else are such diverse interests likely to find cominon ground?

So if you consider yourself to be broadminded, Everyday Electronics should suit you. Join the growing band of electronics constructors who have fun building our designs and enjoy the benefits that electronic aids can provide.

Our April issue will be published on Friday, March 17

EDITOR F. E. BENNETT - M. KENWARD - B. W. TERRELL B.Sc.
ART EDITOR J. D. POUNTNEY - P. A. LOATES - S. W. R. LLOYD
ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^0]
EASY TO CONSTRUCT SIMPIY EXPLAINED

VOL. I NO. 5

CONSTEUCTIONAL PROJECTS
DARKROOM TIMER Get the exposure right by Robert A. Shokleford 246
SIGNAL INJECTOR for testing radios and audio equipment by Alan Jordine 265
SOIL MOISTURE METER Ensures correct wotering by D. Bollen 270

GENERAL FEATURES

EDITORIAL 244
CASES FROM CHASSIS An easy way to make cases by V. S. Evans 251
ELECTRONICS AT SEA Electronics used in ocean going vessels by W. Maconochie 254
TEACH-IN Part 5-Capacitance by Mike Hughes 259
RUMINATIONS by Sensor 264
MEMORY STORE Retrieval by Derek Burn 274
SHOP TALK Construction problems by Mike Kenward 277
READERS LETTERS 278, 281

Approximate cost of components
 for constructional articles, in the box shown opposite is an estimated cost compiled from suppliers current catalogue and advertised prices. Parts for some projects may work out more expensive while others may be cheaper than our quoted price, depending on where the components are plirchased.

We would like to point out that we, as publishers, cannot supply kits of parts or individual items for any of the published designs.

THE circuil ciagran of a timer which cal be used in conjunction with an enlarger to provide stakle exposare control is shown in Fig. 1. Stability is achieved by 1 sing a tantalum capacitor in the timire circuit and high statility resistors of the metal oxide tyoe could also be used in the timer where exteaded range coupled with good sta ility is cesired.

CIRCUIT DESCRIPTION

The delay is ach eved by charging the tantalum capacitor Cl through resistor R_{t}. When the voltage across tue capacizor exceeds the trigger voltage of the inijunction transistor TR1 the unijunctior turns on and C1 discharges rapidly through R3 producing a shor- pulse of current. This julse is anplified ty TR2 and turns on the silicon controlad rectifier CSR1.

In the off state almost the total d.c. supply voltage is dropped across the relay coil and the
elay is encrgised. Current may then flow Ghrough the laac via relay contacts RLA2 while at the same time the other relay contact RLAl latches the circuit d.c. supply. When CRSl turns on it sho ${ }^{-}$circuiss the relay which is de-energised anc its cortacts return to the normally open state switching cff the load supply and also the timer suppiy.

A timing cyde is initiated by pressing the twopole push-on/release-of switch. This allows the relay to latch its zortac:s, switching on the lamp, while at he same tinue the capacitor has any residual charge ou it removed by shorting it to the ground line. Wr.en switch S2 is released the zapacitor begirs t) charge and the timing cycle ${ }^{2}$ egins. Obviously varia_ions of R_{t} will vary the ate at which C_{-}^{-}charges and hence vary the Gelay before the lyad is urned off.

Switch 33 is provided to allow manual overIde of the timer to al onv focusing and exposure meâsurement to te carred out.

> A variable range timer designed for photographic work but suitable for any application needing a timed range from 0 to $4=$ minutes Shackleford.

Fig. 1. The circuit diagram of the darkroom timer. Resistor R_{t} is the timing resistor and is replaced in the prototype by the circuit of Fig. 2.

Approximate cost of components

最

4.50 excluding case

TIMING RANGES AND SWITCHING

To alter the time range a switch (S3) is used that brings into circuit various values of preset resistance Fig. 2. This switch and resistors take the place of R_{t} in Fig. 1. Connections to the circuit are made at points A and B (Fig. 1 and Fig. 2),

The time settings used on the prototype were preset values of $5,10,15,20,25,30,35$ and 40 seconds corresponding to switch S3 positions 1 . $2,3,4,5,6,7$, and 8 respectively. These times cover most of the timing requirements likely to be met in normal darkroom work. The switch circuit diagram is shown in Fig. 2, the switch being a 2 -pole 9 -way wafer type. Only 8 positions are used for the above times, the other being spare. The values of VR1 and VR4 are such as to give a delay of 5 seconds, VR2 is set to give a delay of 10 seconds, while VR3 is set to give a delay of 20 seconds. This then enables the required times to be obtained.

The timed ranges of the unit may be altered to suit individual requirements, or a variable resistor could be used for R_{t} or switched into the circuit by S3 in the ninth position should a continuously variable delay be required.

The capacitor Cl has a value of $100 \mu \mathrm{~F}$, and with a 1 Megohm resistor (R_{t}) this yields a delay of approximately 41_{2} minutes; this has been found to be about the upper limit of the timer

CONSTRUCTION

The timer is constructed in a metal case the dimensions of which are given in the parts list. Two brackets are used to retain the batteries

Fig. 2. Switched timing resistor circuit.

Fig. 3. Layout and wiring of the components mounted on the board. The preset potentiometers are mounted on the uncerside of the board (shown below) so that they can easily be

DARKROOM TIMER

Inside view of the prototype timer.

Fig. 4. Layout and wiring of the components mounted in the case; the board has been cut away to show S3 and S1. The board is held by a bracket fixed to $\mathbf{S 1}$. Switch S 3 has also been shown separately, as it would appear when dismantled, for clarity. The batteries are not shown but their clips are wired up in the approximate positions of the batteries.

Components

Resistors
R1 $820 \Omega 2$
R2 220Ω ?
R3 33Ω
R4 $3.3 \mathrm{k} \Omega$
R5 $22 \Omega 5$ watt wirewound
All $\pm 5 \%$ 立 watt carbon except where stated.

Capacitors
C1 $100 \mu \mathrm{~F}$ tantalum 12 V
Variable Resistors
$\left.\begin{array}{rrl}\text { VR1 } & 25 \mathrm{k} \Omega & \text { skeleton preset } \\ \text { VR2 } & 50 \mathrm{k} \Omega & \text { skeleton preset } \\ \text { VR3 } & 100 \mathrm{k} \Omega & \begin{array}{l}\text { skeleton preset } \\ \text { VR4 }\end{array} \\ \hline\end{array}\right\} R_{t}$

Semiconductors
D1 ZC12 or similar 12V, 250 mW Zener diode
TR1 TIS43 unijunction, silicon pnp
TR2 C762 or 2N697 silicon npn
CSR1 CRS $3 / 05$ or similar $50 \mathrm{~V}, 3 \mathrm{amp}$ controlled silicon rectifier (thyristor)
D2 IN914 (or any similar small diode)
Switches
S1 2 pole push-on, release-off pushbutton
S2 single pole single throw toggle
S3 2 pole 9 way wafer switch
Miscellaneous
RLA1 12V 150s2 relay having 2 normally open contacts (Keyswitch MK2 or similar) B1 PP6 9V batteries-3 off wired in series. Aluminium case $6 \frac{1}{2}$ in $\times 4$ in $\times 4$ in, plain perforated Veroboard 3.2 in $\times 3$ in $\times 0.2$ in matrix, Vero pins to suit board, battery connectors (3 off), insulated terminal post, earth tag, connecting wire, mains lead and plug, knob, 4BA fixings.
and provide a mount for Sl. Switch Sl is also used to mount the circuit board and thus it determines the layout to a certain extent. The layout given need not be followed exactly and the bracket used to mount the switch and board may be modified to suit the parts used.

The circuitry itself is assembled on plain $0 \cdot 2$ inch matrix Veroboard, using Vero terminal pins and the switches and relay are mounted on the front panel and floor of the case respectively. The case is earthed to the main supply through a 3 core mains lead and plug.

Battery B1 is made of three PP6 9V types wired in series; the type and quantity of batteries are determined exclusively by the relay voltage and current requirements.
Mounting of the relay has been left to the individual, as there are so many on the market
of different shapes and sizes and methods of fixing may vary. The only critical parameters are that it should have two normally open contacts and if the unit is to be used for controlling enlarger exposures, the contacts should be suitably rated to carry the lamp current.

Start construction by cutting the board to size and inserting the mounting pins in the positions shown. Connect the pins in the required manner using tinned copper wire and insulating sleeve where required (Fig. 3). Next mount all the components checking the polarity of the capacitors and diodes and the connections to CSR1 and transistors, which should be mounted after the other components and flying leads have been soldered in.

The tantalum capacitor Cl may be either the polarised or non-polarised type and may not be the same shape as that shown in Fig. 3. The correct polarity for polarised types is shown on Cl in Fig. 3.

Once the board is complete and has been checked for wiring errors and dry joints it may be mounted in the chassis, together with the remaining components, and connected up as shown in Fig. 4. Wires to components mounted on the front panel must be left long enough to facilitate removal of the panel for setting up.

Take particular care when wiring the mains to the relay, S 2 , and the load and make sure that an earthing tag is fitted to the case and connected to the mains earth. The output to the load can be, connected directly to the enlarger lamp or terminated in a suitable two-way mains line socket.

SETTING UP

To set the timer up it is only necessary to remove the front panel to gain access to the preset potentiometer. If a multimeter set to its ohms range is connected across one set of relay contacts (without the unit connected to the mains supply) or used on a d.c. volts range to monitor the voltage across the relay coil, then circuit operation will be easily visible, alternatively the unit may be connected to the mains supply and a mains lamp bulb used as the load.

The potentiometers should be set half-way around their tracks and with switch S3 set to the desired time, the circuit triggered by briefly pressing switch S2. The duration of the time delay may then be measured by measuring the time for which the meter pointer is deflected from its initial condition or the lamp is on. The potentiometers may then be adjusted as required and the process repeated until all the desired times are set up.
The front panel can then be designated with the time positions. Once this is complete the unit is ready for use and can be connected to the enlarger lamp and mains supply as required.

fromssis by v.S.Evans

An inexpensive case for your projects, using aluminium chassis

Having decided to build an electronic pro-ject-perhaps to your own design, or maybe partly so, early consideration should be given to the form of its eventual housing.

This may well be an important factor in deciding the size of the circuit board, control panel, or even method of construction and assembly.

HOME BUILT AND READY MADE CASES

Making a neat and presentable cabinet in wood or metal can be quite a problem, and usually requires the use of special tools and skills and takes some time and patience. The alternative is to use or adapt something already made up to the approximate size required.

Instrument cases and die cast boxes can of course be purchased, although a bit expensive, but are excellent for high class permanent projects.
Fig. 1. Front panel is attached to the chassis by means of four self-tapping screws through the flanges

ALUMINIUM CHASSIS

For less exacting or experimental projects use can be made of the considerably cheaper aluminium chassis available by fitting a panel of Paxolin, Formica or Perspex to the open side and using this as the front and control panel.
This panel is made to fit the aluminium chassis such that it rests on the corner flanges of the chassis, Fig. 1 which are slightly recessed, so that quite a neat job results. Small self-tapping metal screws are used to fix the panel to the flanges.

RE-USABLE

If the project is one of a temporary nature, or maybe a prototype which may well be dismantled and re-built, it is as well that the metal case itself (the chassis), is left untouched, i.e. no holes or metal cut-outs are made. This way your case will serve again and again and need
Fig. 2. The Circuit board is fixed to the front panel by four bolis and spacer nuts.

Fig. 3 (a) (left) Fixing the potentiometer to the front panel if there is not enough space on the component board.

Fig. 3 (b) (right). Alternative method for potentiometerfixing.
never be discarded as being full of unwanted holes.

COMPONENTS ATTACHED TO PANEL

To avoid "mutilating" the case, all controls and the component board etc. are mounted on, or attached to, the front panel. This leaves considerable scope for the constructors ingenuity. Fig. 2, shows how the circuit board can be attached to the back of the panel with 4 bolts of suitable length. Spacing sleeves or nuts being used to hold the board at a "distance." Remember to make allowance for corner flanges of the chassis when designing the dimensions of component board.

Controls such as variable potentiometers and variable capacitors can be. mounted on the cir-

cuit board with their spindles protruding through holes drilled in the panel or they can be mounted directly onto the front panel as in Figs. 3(a) and (b).

USING BRACKETS

An alternative method can be employed where the circuit board is attached vertically or horizontally to the panel with small angle brackets. This method would be used where the panel is carrying something bulky such as a meter or multiple wafer switch. Angle brackets may also be used to attach a metal heat sink carrying a power transistor, or, say a horizontal deck to support a mains transformer Fig. 4. If a small loudspeaker is involved this can also be mounted on the panel-the fret being simply a symmetrical pattern of holes drilled in the panel opposite the loudspeaker cone, Fig. 5.

By using a combination of these various ways to attach everything to the front panel, the case can be left virtually "untouched". Panels made from Formica offcuts are cheap, easily cut with a scriber and metal straight-edge, and can be regarded as expendable.

HOLES AND SLOTS

Although it is still necessary to cut holes and slots in the panel for mounting such things as meters, slide switches, etc., it is considerably easier with formica because in most instances the hole or slot can usually be deeply scribed with a scriber and then pushed out. It may then be necessary to "clean up" the hole with a small file. Small holes should be drilled in the usual way.

With Paxolin and Perspex it is slightly more difficult. The usual method for making a large circular hole is to drill around the circumference
of the hole to be removed and then clean up with a file, this takes some time. There are special tools on the market for this-a tank cutter and a disc cutting saw. Both of these fit into drills but they tend to be costly.

Fig. 5. A completed case of a small amplifier showing holes drilled for loudspeaker

FINISHING AND LETTERING

With Formica and Perspex panels there is no finishing required as these are available in a variety of colours with excellent finishes.

With Paxolin, however, its finish is smooth but it is only available in a brown colour which looks ugly. This can be sprayed to the colour of choice using any of the aerosol sprays on the market or even painting with a paintbrush will do. It is best to try the paint on an offcut first to make sure that the Paxolin is not affected by the paint.

As far as labelling the control panel, Letraset is by far the best method, adding a touch of professionalism. All three of the panel materials mentioned above readily accept Letraset.

To prevent the labels from being scratched off it is necessary to cover them with varnish, Letracote Gloss is ideal for this job as it protects the lettering and gives the panel a gloss finish. The whole panel can be sprayed or just the regions of lettering as preferred.

Fig. 6. Various sizes and shapes of available chassis.

Keep a check on the kids while you watch T.V. Simple to construct and easy to install, this device gives you peace of mind

Teaching aid for multiplication or can be used for quick calculations

Just right for testing low voltage circuits

All in the April issue of

on sale
Friday,
March 17

When the young Marconi demonstrated his wireless apparatus by serding a transmission over a distance of less than two miles on Salisbury Plain in 1896, there were many eminent scientists of the day who dismissed the novelty as a toy; and many who firmly believed that wireless waves would be diverted or distorted by hills. As for the possibility of transmitting across water-why, the very suggestion was ridiculous in the extreme. Everyone knew that the wireless waves needed a return path through the earth. Besides, water would absorb the wireless energy like blotting paper.

NO LIMIT

Marconi confounded these opinions on 11th May, 1897, when he carried out a successful transmission from Lavernock Pcint near Penarth to the island of Flat Holm in the Bristel Channel-a distance of three and a half miles. Though some doubters still stuck to their guns, this was hailed as a tremendous scientific achievement, and when a week later he succeeded in sending a message over a distance of nine miles across water, right across the Bristol Charnel to Brean Down in Somerset, scient fic enthusiasm was such that there were those who claimed that there was no limit to what conld now be achieved with sufficiently high-pover apparatus

No limit, indeed. Within four years Marconi had sent his transmissiors across the Atlantic from Foldhu in Cornwall to Signal Hill in New foundlard; and to-day, no mose than a lifespan since the tine when tae young man first arrived in Engand ships at sea a on ormunu eate daily
by Morse or speech with stations right acros; the world, and even modest 75 -watt radiotelephone sets such as those used by Sir Francis Chichester, Robin Knox-Johnson, and Chay Blyth can carry their words across 5,000 miles of ocean. Moreover, during that lifespan, like strong branches from the main trunk of pure communication, have sprung electronic aids to navigation and safety in the shape of direction-finding echo sounding and radar.

Electronics now contribute to efficient com mercial ship operation as intercommunication systems, hyperbolic position-fixing systems closed-circuit television, automatic steerng equipment, data loggers, and automation systems using intricate computer techniques One must, in fact, have the thought in mind that between the time that this article is writien and the date of its appearance in print some new technique or application may he evolved and announced. Such is the rate of accelerat on in the marine electronics industry

RADIO AND ELECTRONICS

Except for the periods inmediately after the two world wars, it is diring the past few years that this expansion of the use of electronics at sea has been most marked. This is pointed by the fact that in April, 1968, the title of the Radio Officers Union was officially changed to the Radio and Electronic Officers Un on, while a number of companies now give extended training to their radio officers to bring them up to the rank of electronics officers. Indeed, even before the last war the responsibilities of the Merchant Navy radio-officer-the traditional.

"sparks"-usually went well beyond the operation and maintenance of his communication station and included the maintenance-and sometimes the operation into the bargain-of echo sounders and direction-finders. Of course, in more recent times he has also become responsible for the maintenance of radar, intercommunication and sound distribution networks, closed-circuit TV for navigation or entertainment purposes, data logging equipment, communal aerial systems, etc.

With the increasing use of automation at sea, and its dependence on electronics for much of its primary control and transmission of data and instructions, a ship's electronics installations are becoming much more complex from day to day and there is even talk-although it is still only talk-of the possibility of sending ships to sea without a crew at all. One wonders-is there indeed no limit?

But that is still in the future. At this moment the use of electronics on board ship is sufficiently considerable to be interesting. Ships' electronic installations naturally differ according to their needs which, of course, are dictated in part by international regulation and aIso by

The Lavernock and Brean Down experiments, May 1897, showing the method by which an increase in distance from three miles to eight miles was obtained. For these experiments kites covered with tin foil were used as aerials.

The control room and studio of the comprehensive television installation on board a cruise liner which distributes a choice of four programmes to more than 400 receivers in the ship's cabins and public rooms.
Navigational CCTV on a container ship in the Manchester Ship Canal clearly shows the forward tug which would otherwise be completely invisible to the officers on the bridge.

at Sea

By W. Machonachie

the type of service in which they are engaged There is thus no "typical" merchant ship installation although regulations lay down the minimum equipment to be carried by four classes of merchant ship and also by fishing vessels.

SHIP CLASSIFICATION

The classification of ships as set out in the Merchant Shipping (Radio) Rules is, as might be expected in an official document, a little on the wordy side, but briefly sunımarised, Class 1 ships are those carrying more than 250 passengers on vpyages of more than 16 hours duration. Class II covers passenger ships not in Class I and all cargo ships of 1600 tons or more. Cargo ships of 500 tons upwards but less than 1600 tons are Class III, and those of 300 tons and more but less than 500 tois constitute Class IV. The rules are not applied to sailing ships, pleasure yachts, or ships smaller than 300 tons, while fishing vessels have their own regulations.
Although there is therefore no typical merchant ship installation it is possible to define fairly accurately a typical installation for a type or class of ship. One of the most common oceangoing ships is the cargo liner, carrying general cargo on a regular service run-say from Southampton to Cape Town. She may carry up to twelve passengers, but is not classified as a passenger ship, and so far as her electronic equipment is concerned she can in broad terms be equated with the refrigerated meat or fruit carrier, or with the container ship, oil tanker, or bulk cargo carrier. All these ships run on international voyages and their electronics must cater primarily for the communication needs of their crews and owners and for the safe, economical and efficient rumning of the ships and their cargoes.

STATUTORY REQUIREMENTS

This type of ship-general cargo, tanker: bulk carrier, etc-whether she be 1600 tons or 300,000 tons, must be equipped to a minimum standard before she is allowed to leave port. The mandatory requirement is for a wireless telegraphy installation capable of both main and emergency operation; an automatic alarm receiver, unless she carries enough radio officers to maintain a continuous human watch; a direction-finder; a portable transmitter/ receiver for emergency use in a lifeboat. All this equipment must be of an officially approved nature, and her crew must include at least one qualified radio officer. Her wireless telegraphy installation has to comprise a main transmitter and separate receiver, both powered from ship's
The electronics officer of a cargo liner with the data logger which monitors 350 performance points in the main and auxiliary machinery, the refrigeration plant, and in the cold cargo space.
mains, as well as an emergency or reserve transmitter and a reserve receiver which derive their power from batteries so that they can be operative in the event of a failure of the mains supply.

The installation must also include a watchkeeping receiver, fitted with a loudspeaker, and capable of reception in the 500 kHz band, and an automatic keying device which can be made to operate either the main or the reserve transmitter in case of emergency and cause them to transmit the auto-alarm signal
This the statutory minimum for Class II ships, which includes some of the largest vessels afloat today, may not seem to comprise a very sophisticated installation. There is, for instance, no compulsion to carry radar-at the present moment. In practice, however, only a very few ships nowadays carry no more than will satisfy the law.

NORMAL INSTALLATION

Walk aboard an ocean-going ship and you will almost certainly find at least one radar set on the bridge. Indeed, many now fit two radars, with interswitching arrangements so that units are in effect interchangeable if either set should suffer a breakdown.

In the wheelhouse you will also see an echosounder, or perhaps two-one recording and the other of the visual indicating type. Her directionfinder will probably be fully automatic, and both this and the radar will be coupled to the gyro-

compass. Moreover, the direction-finder may now be linked with the auto-alarm receiver so that if an auto-alarm signal, preceding the distress call, is received while the radio officer is not on watch, the direction-finder will automatically take a bearing on the distress position.

Our Class II ship will almost certainly have a v.h.f. radiotelephone for short-range speech communication with port facilities such as pilots, tugs, and harbourmasters, and this may have remote control extension units in both wings of the bridge and also in the radio office. The wheelhouse will contain the master control panel of a crew-call and talk-back system providing internal two-way communication with working areas on and below decks and with loudhailing facilities as well, while an internal telephone network will also be provided.

Loudspeakers in crew quarters will be accessible to the crew-call system and will also be linked to a broadcast receiver and amplifier installation to enable personnel to listen to news and entertainment during their off-duty times. Outlet points from a communal aerial system will be fitted in crew's cabins so that they can use their own personal broadcast receivers if they wish. Broadcast radio entertainment is not all that ships' crews can enjoy at sea-television programmes, too, can be watched through the provision of multi-standard receivers which more and more ships are fitting as permanent installations in crew's and officer's mess-rooms.

CCTV AND ELECTRONIC MONITORING

On many large passenger liners today television is a "must" and an installation can be a very comprehensive one indeed, with hundreds of receivers or monitors in public rooms and cabins, offering a choice of four programmes or more. Such a system will be a combination of closed-circuit and off-air TV, taking the latter when within range of suitable shore transmissions and also generating its own on-board programmes with telecine, videotape, and from the ship's own studio and cameras.

Closed-circuit television has another marine application. If the ship is a large oil-tanker, bulk carrier or container vessel with the bridge aft and perhaps as much as 1,000 feet distant from the bows, she may well have a CCTV installation for navigational purposes. In such an installation the TV camera is mounted in the bows or up on the foremast and a monitor is fitted in the wheelhouse to give her officers a close-up view of objects immediately ahead which would otherwise be obscured from human-eye observation. Provided with a remote-controlled steerable camera and facilities for measuring the range and bearing of buoys, tugs, or other comparatively small objects close ahead of the ship, such a system can be invaluable when a very large vessel has to manoeuvre in restricted or busy waterways or has to negotiate canal locks and dock entrances.

Again, CCTV cameras are sometimes used to observe machinery operation in the engine room, where a different kind of electronic watchkeeper in the form of a data logger is often used to monitor hundreds of points of main engine and auxiliaries performance, such as oil pressures, fuel flow, temperatures of bearings and fluids, as well as temperatures and humidity levels in cargo holds and cold stores-in fact, any data which have to be checked regularly.

Data loggers or alarm monitoring systems of this kind are capable of producing a complete check on 400 parameters, with comparisons and off-limits alarm warnings, every three minutes, and will produce an instant readout on demand. The same round of tasks laboriously performed by human agency would keep several men fully occupied for a complete day's work.

SATELLITE AND HYPERBOLIC NAVIGATION SYSTEM

So far in use on only a very few ships is a system of navigation, or more properly positionfinding, which derives information from four United States Navy satellites in polar orbit. These circle the earth every 108 minutes at an altitude of 600 miles, passing over the North and
The electronics officer of a transatlantic cargo liner using the facsimile weather chart receiver and recorder on the bridge.

South Poles, and broadcasting signals which announce their position every two minutes. The special shipborne observation equipment comprises a receiver, a data handler and a teleprinter. The system operates by measuring the Doppler effect variations in the broadcast frequency received from each satellite as it passes, but the shipboard installation is costly and cumbersome and the system is at present in use on only one or two high-prestige ships.

In much more common use are the Decca and Loran hyperbolic position-fixing systems which require only relatively simple and inexpensive receiving and metering equipment on board ships that wish to use them. Decca is very accurate but is relatively short-range and global coverage would therefore require a considerable number of shore station "chains." Loran, perhaps less accurate, will operate over greater distances from the shore transmitters, but so far serves only about one-fifth of the globe with more than 100 shore stations. The system of this type which appears to hold most promise is Omega, the v.l.f. hyperbolic system first developed for United States military use and since made available to cornmercial ships and aircraft. With four shore stations now in operation, transmitting on $10 \cdot 2$ kHz and $13 \cdot 6 \mathrm{kHz}$. Omega will later give complete global coverage with a total of eight shore stations.

WEATHER CHARTS

It goes without saying that knowledge of the weather conditions that lie ahead of a ship is of the greatest value, not only from the point of view of safety, but also because any delay in a voyage is nowadays a very expensive business. Weather forecasts and ice warnings have been a regular feature of international and maritime radio communications for many years-indeed, the Titanic received a number of warnings of ice before she struck the fatal berg.

Until a few years ago ships at sea had to rely on the reception of very lengthy coded morse
A typical communications console in the radio room of a modern passenger vessel. The two s.s.b. main transmitters are not visible in this picture.
broadcasts for their advance weather information. On board ship this involved the time-consuming and laborious task of decoding each transmission after the radio officer had copied it down, and then transferring the verbal information into symbols and figures on a chart, always with the possibility of error. Today some thirty weather facsimile transmitting stations have been established throughout the world by the World Meteorological Organisation, and these broadcast synoptic charts at regular scheduled times. These charts, compiled by the meteorologists and complete with all isobars and symbols, may be received in full facsimile by any suitably equipped ship, free of charge.

The suitable equipment consists only of a special receiver covering .51 spot frequencies and combined with a facsimile chart recorder which produces a permanent image of the chart printed in black or brown on white paper.

MANDATORY-THE MINIMUM

It will be seen that in the majority of well-run ships the mandatory requirement is regarded as the minimum, and any or all of the additional aids we have discussed may also be found in use on board ships for which they are suited.

Large passenger vessels may be expected to carry a wider range of equipment, sometimes with duplicated communications installations, while in such ships high-frequency long-range radiotelephony, nowadays using single-sideband, is the rule rather than the exception. Indeed, many cargo ships also make considerable use of high frequency radio telephone, and some passenger ships and tankers are now fitted with high-speed automatic transmission and reception with automatic error-correcting facilities and teleprinters linked into the shore Telex system.

So far this article has dealt only with the electronics usage of ocean-going ships. Electronics are just as useful to smaller vessels and fishing trawlers, and the types of equipment they employ and the ways in which they use them will be reviewed in a later article.

- Acknowledgement

Photographs kindly provided by The Marconi International Marine Co., Ltd.

By Mike Hughes M.A.

THis month we are going to introduce another very important electronic component, the "capacitor", but first of all let's look at the principle behind it. To do this we will revert to our simple water analogy.

CAPACITY AND CHARGE

There is no need to have a complete circuit to ensure water flow-we could, for example, have used a hose pipe connected to a source of pressure to fill a bucket. Taking this a little bit further if we used a pump that was only capable of producing a pressure equivalent to 30 ft of water and we started to pump water into the bottom of a 40 ft reservoir tank the initial rate of flow would be large and limited only by the resistance of the hose pipe. As the tank filled, the "back pressure" would cause the flow rate to fall and would stop altogether when the level of water in the tank reached 30 ft .

By closing the tap at the inlet of the tank we could take away the pump and hold the water in the tank as "stored energy". By opening the tap the water would flow out at a rate governed only by the resistance of the pipe and the water level in the tank. As the level falls the flow rate reduces until the tank is empty.

We have already defined the electronic analogues of pressure, resistance and flow rate, but we must now introduce a fourth parameter -the quantity of water stored in the tank. In electronic terms we call this the "charge". The water tank is equivalent to the capacitor which has the capacity to hold a given charge.

THE CAPACITOR

In its simplest form a capacitor is two plates of metal separated by a very small distance, see Fig. 1. Connecting a battery in series with a resistor across these plates will cause electrons to be pulled away from the plate connected to the positive terminal and "push"

Fig. 1. Schematic diagram of capacitor being charged.

NO CURRENT FLOWS ACRQSS

them through the resistor to the other plate.
Initially the rate of flow will be limited only by the resistor but as the electrons leave one plate so it will start to show a positive potential with respect to the other. This potential difference will build up as time progresses and slow down the flow rate-just like the pump, hosepipe and tank. Eventually the potential across the capacitor will equal that of the battery and flow will stop.
By observing a voltmeter connected across the capacitor you could see this happening; this will be shown experimentally later. Opening the switch in Fig. 1 is just like turning off the tap and removing the pump. The charge of electrons will stay on the right hand plate and the potential difference will be maintained as shown on the meter. When we do this in practice you will see that the charge leaks away through the resistance of the voltmeter.

By connecting a resistor across the capacitor as in Fig. 2 we can deliberately make the electrons regain their original equilibrium. Initially the flow rate will be high but will get less and less until the capacitor is discharged and the current stops flowing. In principle that is all a capacitor does in any circuit.

Fig. 2. Capacitor discharging through a resistor.

DEFINITIONS AND UNITS

Electronic charge is measured in units called coulombs. One coulomb is defined as the number of electrons that flow past a given point in a wire when a current of one ampere flows for one second.

Capacitance is measured in Farads. A capacitor has a capacitance of one Farad when, if it has been charged with one coulomb of electricity, produces a potential difference of one volt across the plates of the capacitor.

This can be represented mathematically by

$$
C=\frac{Q}{V}
$$

where C is the capacitance measured in Farads Q is the charge on the plates
and V is the potential difference across the plates produced by the existence of Q.
To obtain a charge of one coulomb we would have to have a current of one ampere flowing for one second. This is a very high current in electronic terms and we only experience it in very high power circuits. Thus it should seem fairly logical that values of capacitance we
encounter should be very much less than one Farad.

Usually we deal with millionths of Faradsmicrofarads ($\mu \mathrm{F}$), thousandths of millionthsnanofarads (nF) and billionths-picofarads (pF).

CAPACITOR TYPES

Unlike resistors there is a much wider choice of differing styles of capacitor of both the fixed and variable type. Their circuit symbols are given in Fig. 3.

It has always been a battle to obtain large values of capacitance in a small physical size because the phenomena that causes it is purely geometric-the area and separation of the two plates. If the distance between the plates is decreased, the capacitance increases, but by bringing the plates closer together (in most cases less than a thousandth of an inch) we have to introduce a spacer material-the "dielectric".
The dielectric itself can help increase capacitance but we immediately encounter another problem (except for very expensive dielectric materials), that these materials that enhance capacitance, very often exhibit poor insulation properties. If we used a very poor insulator as a dielectric any charge stored would leak away within the capacitor itself. We would say the capacitor was "leaky".

Some dielectrics will not withstand high voltages across them particularly when they are very thin.

ELECTROLYTIC

Some very effective dielectrics are in the form of a paste where the initial flow of current through the initially "leaky" capacitor produces an electro-chemical reaction that actually forms an insulator. Capacitors which use this form of dielectric are called "electrolytic", and they exhibit polarity properties (i.e. the capacitor can only be connected into circuit one way round). We usually turn to this type of capacitor when very high values of capacitance are required. They come in all shapes, sizes and working voltages.

Different types of capacitor are usually described by the type of dielectric and Fig. 4 shows some of the more important ones.

SILVER MICA AND POLYSTYRENE

Provided they are obtained from a respectable source, leakage is not usually a problem-this is well taken care of in manufacture. Nevertheless, the best type to use when this is the controlling parameter is the silver mica type. These are limited to low values of capacitance from lpF up to $10,000 \mathrm{pF}$; the higher values in the range tend to be rather expensive. They can operate up to about 300 V but individual manufacturers types might differ widely.

Polystyrene capacitors have a similar range of capacity and are usually available at different voltage workings-typically from 30 V to 500 V . While they are not as effective as silver mica types in all applications, they are nevertheless very good insulation wise, and are a little cheaper.

CERAMIC AND POLYESTER

Ceramic dielectric devices also have a similar range of values and working voltages but sometimes are available with wider tolerances (this makes them cheaper) and some types are very sensitive to changes of temperature-this can be a useful or bad thing depending on the application.

Perhaps the most used by the amateur today is the polyester device. These start in value at about $0.01 \mu \mathrm{~F}(10,000 \mathrm{pF})$ and go up to $1 \mu \mathrm{~F}$ with voltage ranges of from 50 to 300 V . Overlapping this range and going up to about $5 \mu \mathrm{~F}$ are polycarbonate types that are a little more expensive than polyester.

TANTALUM

For miniaturisation and high capacitance one can turn to solid Tantalum types. These are fairly new on the amateur scene and are inexpensive. These types have a very low leak-

Table I: COMPARISON OF DIFFERENT CAPACITOR TYPES

| Type | | Capacitance
 Range | Working
 Voltage |
| :--- | :--- | :--- | :--- | Tolerance

age current-typically 0.02 microamp per microfarad volt. Available values range from $0 \cdot 022 \mu \mathrm{~F}$ to $270 \mu \mathrm{~F}$ with working voltages generally from 100 to 60 V respectively.

See Table 1 for a comparison of types.

Fig. 4. Shown above is a variety of common capacitor types: A paper; B polyester; C tubular metallised polyester; D electrolytic can-type; E ganged variable; F electrolytic; G beehive trimmer (concentric); H variable; I metallised polyester; J paper dielectric; K tubular mixed dielectric; L trimmer (compression); M and N metallised polyester; \mathbf{O} silver mica (printed circuit type), P silver mica; Q disc ceramic; R tantalum; S high voltage (pulse) ceramic; T polystyrene.

TOLERANCE

A word about tolerance values. Like all components, capacitors have tolerances which usually vary from one type to another. Generally, silver mica types are within ± 1 per cent and have their values printed on them. Polystyrene can range from ± 2 to ± 10 per cent and also have printed values; likewise with ceramics but the tolerance can be as high as ± 20 per cent. Polyester types are usually ± 20 per cent but values are frequently put on them in colour code form. The code is exactly the same as for resistors except that the values are in units of picofarads (pF), see Fig. 5. Polycarbonate types are similar but values are usually printed.

Electrolytics are usually used where tolerancing is not very important and one requires "at least" a certain value. They generally have tolerances of +100 to -25 per cent. Invariably they have values printed on them.

VARIABLE CAPACITORS

Variable capacitors are limited to comparatively low values-typically up to 500 pF . Their most usual application is for tuning radios and this range of values is ideal. The most frequent type encountered uses an air dielectric and has a number of interleaved plates (to increase the total surface area). One set of plates is attached to a spindle and they can be moved relative to a fixed set. The shape of the vanes is designed so that in the radio tuning application the fre-

Fig. 5. An example of the capacitor colour code.
quency of the tuned signal varies in direct proportion to the degree of rotation.

As with resistors it is sometimes impossible to rely on manufacturing tolerances and preset trimmer types are required. These can be of the compressional type where the gap between two plates is adjusted with a screw, or the concentric type where one cylinder is made to slide over another thus varying the effective surface area of overlap. Values of trimmers are very low and rarely exceed 150 pF .

EXPERIMENT 1

We shall now demonstrate the function of capacitors on the Demo Deck. For this we shall use one that will come in handy later. Ideally we specify an electrolytic with a high value, $500 \mu \mathrm{~F}$ at 25 V . Provided you have one in the range 250 to $1,000 \mu \mathrm{~F}$ and its working voltage is in excess of 12 V it will do.

The circuit diagram and layout on the Demo Deck for this experiment is shown in Figs. 6(a) and (b).

First make a 10 V range voltmeter by using a 10 kilohm resistor in series with the 1 mA meter. Make two flying leads that have crocodile clips on their ends and attach the ends without clips to your voltmeter-make sure you know which one is going to the positive terminal. Now solder the capacitor across any pair of turret tags - identify the terminal of the capacitor (identified with a + sign or a red spot at this end). Solder a 10 kilohm resistor to the positive end of the capacitor and attach its free end to another tag. Now connect a flying lead to the negative end of the capacitor and take it to the negative terminal of the 9 V battery.

Similarly connect a flying lead to the free end of the resistor but leave the other end of the lead free for the time being. Now use the crocodile clips to connect the voltmeter across the capacitor-positive lead to the positive end.

OBSERVATIONS

Initially nothing should show on the meter. Now connect the free wire from the resistor to the positive terminal of the battery. This connection acts as Sl in the circuit diagram. The

Fig. 6(a) (above). The circuit diagram for experiment 1.
Fig. 6(b) (left). The circuit wired up on the Demo Deck.

Fig. 7. Typical charge and discharge curves for a capacitor. Similar curves should be obtained from the results of experiment 1.
voltage across the capacitor will start to rise -fast at first, due to the high current flow-but the rate of rise will get less and less until the meter reads about $4.5 \mathrm{~V}(0.45 \mathrm{~mA}$ on the scale $)$. The reason why the voltage does not rise above 4.5 V is that the resistance of the meter (approximately 10 kilohm) forms a potential divider with the supply resistor. Now disconnect the lead from the positive battery terminal.

The voltage across the capacitor will fall caused by current flowing through the meter circuit-again fast at first and then the rate will tail off until no charge is left. Although it is difficult, try plotting a graph of voltage charged to (reading on meter), against time and then do the same for discharge. You should get curves rather like those shown in Fig. 7.

Although it requires buying another identical capacitor, you could do the same experiment with two 5004 F capacitors in parallel. You will then notice an appreciable increase in the time of both charging and discharging.

SERIES AND PARALLEL

 COMBINATIONSPutting capacitors in parallel increases the

Fig. 8(a) (above). The circuit diagram for experiment 2.
Fig. 8(b) (left). The circuit wired up on the Demo Deck.
monitor the current on the 1 mA meter in series.
Now connect the battery and watch the meter. Initially the charge current will be 0.9 mA but this will gradually fall until full charge has been reached, i.e., the current becomes zero.

Now disconnect the positive lead from the battery and hold it on the negative terminal. Note that the meter tries to read backwards. Repeat the whole experiment, but when you get to the second half, reverse the connections to the meter. The negative current you saw can now be read from the meter scale. This is caused by the capacitor discharging back through the resistor.

Because the immediate "start" current was 0.9 mA you can see that the only thing that limited the current in the first instance was the resistor. You could say that when the resistor is short circuited to the battery negative terminal, you were applying zero volts to the capacitor.

Fig. 9 (a) Integrator and (b) differentiator circuits.
The two experiments carried out demonstrate a pair of very important basic circuits which are
usually seen in the form of Fig. 9. They are respectively called integrator and differentiator circuits.

Next month: Semiconductors and experiments with diodes.

Ruminations BySensor

Take a Card

A friend, who has just returned from the U.S.A., told me that the electronic construction hobby is highly organised over there. Apart from a large number of retailers specializing in the supply of components to the hobby market over the counter or by mail order, there have appeared, in drug stores, supermarkets and other unlikely places, complete kits of parts with full instructions for building electronic projects. The parts are mounted on a card covered by plastic; even the resin cored solder is supplied.
Where integrated circuits are used, the reductions in physical size and in the number of individual components required for a project have made it possible to supply everything required on a card no larger than E.E.

The advantages to the construc-
tor are obvious and apply equally to other complete kits; all the parts are of the correct type and can be expected to work together without difficulty. There are no delivery problems and no frustrations due to unavailability of any component, it would seem to make things almost too easy. But what about all those components one already has? Are these doomed to lie on the workshop shelf until they become obsolete? And what of the pleasure one can gain by searching the advertisements in Everyday Electronics looking for bargain price components? Personally, I would rather buy components as and when I need them and the phrase "any component sold separately" in a kit advertisement, gladdens my heart.

Take Another Card

I tend to lump together all "things sold on cards" as belonging to that class of cheap and nasty products that were once found in the cheaper stores, particularly at Christmas time. I think especially of one called, if memory serves me right, "The Young Carpenter", which con-
tained a "tin" saw, a wooden hammer, trisquare and few other useless "tools". The saw buckled at the first attempt to cut anything, the wooden hammer head broke from its shaft, and the glasspaper disintegrated at the first rub. How much damage to a young child's confidence could be wrought by a toy like this? The young fingers, not very skilful to begin with, the eager desire to make something, inexorably doomed to failure from the outset. It's enough to make anyone neurotic! I found my father's hacksaw and looked for something to saw; my mother's shopping basket lay near to hand and I carefully cut through the handle. There was no malice in the deed, I just wanted to saw something! It was very satisfying -but the aftermath was uncom. fortable.

I am waiting for some manufacturer to bring out a range of educational toys and I suggest one might start with "The Young Roadmender". This would contain a pneumatic drill-realistic noise -really works-keeps children. quiet for hours. For other people's children, of course.

Although only a simple instrument in the field of radio servicing, the pocket signal injector is a most valuable and handy tool for both the amateur and professional.

Because no mains power supply is required for its operation, and due to its small, compact size, this signal injector can be used almost anywhere-in the car, for example, where fault diagnosis can be carried out on the car radio which would normally be removed from the car necessitating, usually, in the car battery and speaker being removed also.

The signal injector is not, in general, able to pinpoint a malfunctioning component, but enables the stage containing the faulty component to be isolated enabling tests appropriate to this stage to be carried out.

CIRCUIT DESCRIPTION

The circuit diagram for the complete signal injector is shown in Fig. 1.

It can be seen that the collector of TR1 is capacitively coupled to the base of TR2 by capacitor C1, and TR2 collector is capacitively

Approximate cost of components

A useful pocket instrument for fault location on transistor radio receivers and audio equipment

SJGDAL

 IDJECTOBBY ALAN JARDINE

Fig. 1. The complete circuit diagram of the signal injector. Output is taken from the collector of TR2. and is a "square" wave of basic frequency 11 kHz .

Components....

```
Resistors
\begin{tabular}{ll} 
R1 & \(22 \mathrm{k} \Omega\) \\
R2 & \(68 \mathrm{k} \Omega\) \\
R3 & \(68 \mathrm{k} \Omega\) \\
R4 & \(22 \mathrm{k} \Omega\)
\end{tabular}
```



```
All \(t\) watt \(\pm 10 \%\)
Capacitors
\(\begin{array}{ll}\text { C1 } & 0.01 \mu \mathrm{~F} \\ \text { C2 } & 0.01 \mu \mathrm{~F}\end{array}\)
C3 \(0.01 \mu \mathrm{~F}\) high voltage type (see text)
Transistors
TR1, TR2 OC44 or 2G344A germanium pnp (2 off)
Switch
S1 on/off pushbutton
Miscellaneous
B1 1.5V battery type HP7
SK1 3 mm insulated socket
PL1 3 mm miniature plug
Veroboard, \(4 \times 25\) holes 0.15 inch matrix 1 inch diameter tube about \(5 \frac{1}{\frac{1}{2}}\) in long (it is advisable to obtain one with a clip-on lid); 1 crocodile clip; 1 in nail; rubber grommet.
```

coupled to the base of TR1 by capacitor C2.
This cross-coupling produces what is in effect an oscillator, due to the feedback action of the capacitors. This type of oscillator is called an astable (free-running) multivibrator.

Basically the multivibrator has two states, TR1 "on" (conducting)-TR2 "off" (non-conducting), and TR2 "on"-TR1 "off." The transistor states are activated by the capacitors Cl and C2; the length of time each is "on" and "off" is dependent on the values of $\mathrm{Cl}, \mathrm{C} 2$ and R2, R3.

OUTPUT WAVEFORM

The output voltage seen at the collector of TR2 is a square wave formed by the periods of TR2 being "on" and "off" as shown in Fig. 2.

The ratio of the time one transistor is "on" to the other is known as the mark/space ratio. In this case $\mathrm{Cl}=\mathrm{C} 2$ and $\mathrm{R} 3=\mathrm{R} 2$, each transistor is on for the same length of time and so it is 1 .

Fig. 2. The waveshape obtained at the output. This is made up from periods of TR2 conducting and non-conducting, the resultant effect being a square wave. A similar wave form is available at the collector of TR1.

The frequency (in Hz) of the square wave at TR2 is given by: $\mathrm{f}=1 \div(1.4 \mathrm{C} \times \mathrm{R})$ where C is in Farads, R in ohms. For the circuit of Fig. 1 the frequency is 1 kHz .

This signal can be regarded as a sine wave of frequency 1 kHz with harmonics $u p$ to 10 MHz . Thus the signal can be injected into any stage of a radio set and will produce a continuous note if the set is in working order.

The capacitor C3, in the output stage, has no influence on the signal produced by the multi-vibrator-its function is to prevent any current flowing into the injector from the radio under test.
It must be stresed at this point that this signal injector is primarily designed for use on transistor radio sets. If it is going to be used on mains sets, capacitor C3 should be a high voltage type, at least 350 volts working and

The photograph on the left shows the completed signal injector being used to test the Astron receiver. Complete test procedure for the Astron is given in the text of this article. The injector can also be used with other radios and audio equipment.

The signal injector completely wired up except for S1 and the earth lead. The probe is secured to the case cap.

Layout and wiring diagram of the complete signal injector. The lead to the crocodile clip passes through a grommet in the side of the case.
the metal case housing the unit must be adequately insulated. Several layers of insulating tape wrapped around the metal case should and must be used.

VEROBOARD LAYOUT

The resistors, capacitors and transistors are all mounted with the battery on a piece of $0 \cdot 15$ inch matrix Veroboard of dimensions $3_{4}{ }_{4} \mathrm{in} . \times$ 5_{8} in. (4×25 holes). The layout of the components is shown in Fig. 3(a).

The Veroboard length was chosen so that the battery can be attached to give a rigid, secure structure.

The underside of the board should be cut as shown in Fig. 3(b). Note the wiring across the copper strips at Al to A4.

MOUNTING THE COMPONENTS

Once the Veroboard is cut we can mount the components. starting with the resistors R1, R2, R3 and R4 followed by the capacitors $\mathrm{Cl}, \mathrm{C} 2$ and C3.

A piece of tinned wire should now be soldered across the 4 strips of copper at Al to A4 with one end protruding through the top of A 4 for later connection to the battery.

Solder a 3 inch piece of insulated wire to the positive terminal of the battery and place the battery on the Veroboard in position shown. Secure in this position by wrapping some insulating tape around the battery and board.

Solder the bare lead from A4 to the battery base (negative terminal).
Next the flying leads to locations X4 and Y4 should be soldered. X4 lead should be about 5 inches long and Y4 should be about 2 ft .

The probe flying lead should now be soldered in position indicated, Y2. This should be about 2 inches long and be of seven strand insulated wire.

All that remains to be done on the board now is to solder the transistors in position. Remember when soldering transistors, to use a heat shunt on the leads being soldered. A small pair of snipe nose pliers held across the lead being soldered will act as an efficient heat shunt. If no heat shunt is used permanent damage to the transistors may result.

Now take the leads from $\mathrm{X} 4, \mathrm{Y} 4$ and the positive battery terminal to the end of the board as shown. These may be held in position by means of a piece of insulating tape on the side of the battery.

Connect the push-button switch S1, as shown and ensure it is in the off position.

CASE

The case used in the prototype was an empty "Steradent" tube which is an aluminium tube with a plastic clip-on cap. A plastic clip-on cap
should be used since it affords insulation of the probe from the case and no lead twisting results from the clip-on action.

A small hole is drilled in the centre of the cap to suit a 3 mm insulated socket (which forms part of the probe), and a nut and washer hold it securely in position.

Another hole is drilled in the opposite end of the tube to suit the switch Sl .

The switch used, and obtainable from Woolworths, was found to be a little large to fit into the tube. It is necessary to file a little off each corner of the switch to enable an easy fit.

At the rear, and on the side of the tube, drill a small hole about ${ }^{3}$.6 inch diameter for the fly lead from Y4. A rubber grommet should be used in the hole for protection of this wire.

PROBE

The probe is very easily constructed. It consists of a 1 inch nail with its end filed to a smooth point and its head soldered to the inside of the 3 mm plug. A length of insulated sleeving is then pushed over the stem of the nail, leaving about ${ }^{1}{ }_{4}$ inch of tip exposed, and the plug cap screwed on. Push the plug into the socket on the lid of the tube-the probe is now complete and the fly lead from location Y2 on the Veroboard can now be soldered to the tag on the socket.

ASSEMBLY

First of all, check that the correct transistor lead connections have been made and that the battery is connected the right way round.

Thread the lead Y4 through the hole on the side of the case. Now lay a thin piece of foam rubber along the bottom of the Veroboard and lap it around the battery end (this may be held in position by a dab of glue and prevents possible shorting against the case) and slide the whole unit, switch end first, into the tube.

Screw the plastic fixing nut on the switch and clip on the lid. The grommet should now be placed in position and a crocodile clip attached to the end of the exterior lead.

The unit is ready for use.

TESTING

Testing the unit is a simple matter. Apply the probe to the aerial socket or aerial connection of a radio set that is known to be in working order, and attach the crocodile clip to the earth line in the radio and switch on.

With the volume knob turned up, a high pitched tone should be heard whatever the setting of the tuner dial.

If there is no sound, recheck the circuit and investigate for breaks in the circuit, short circuiting and dry joints.

Fig. 4 The circuit diagram of the Astron receiver with the test points indicated for fault location and checks.

FAULT LOCATION

The completed signal injector may prove a very useful instrument for the consterictors of the Astron receiver featured in the January edition of Everyday Electronics as well as constructors of other projects or for use in fault locating on commercial transistor receivers.

The Astron circuit will be used to illustrate the use of this instrument, but it will be seen that the testing procedure can be adopted for use on other types of receivers, amplifiers, etc.

Basically what happens is that we work backwards through the circuitry from the loudspeaker listening to the volume and tone of the signal emerging from the loudspeaker.
When a point is reached which produces "no sound", then the fault lies between this point and the previous one. The absence of any sound indicates such things as a faulty component, dry joint, circuit break or wrong connection. When such a "noiseless" stage is reached, this region should be checked in detail.
Foe the Astron, signal injection should be at points 1 to 6 as indicated in Fig. 4.

Assuming that the radio is in perfect working order, the testing procedure should give results as listed below.

PROCEDURE

Turn the volume control full on and adjust the tuner so that no station is tuned-this results in a hiss from the loudspeaker. Attach the crocodile clip to the negative side of capacitor Cl and apply the probe to the points 1 to 6 in numerical order.

Point 1 A high-pitched sound of low volume will be heard over the loudspeaker. This indicates that the loudspeaker is functioning.

Point 2 A louder sound of the same pitch will result, indicating that the TR4 side of the output stage is functioning.

Point 3 The probe of this point produces higher pitched sound but with a reduction in volume as compared with test point 2 . This indicates the functioning of the other half of the output stage -that containing TR3.

Point 4 This point is to test the driver stage containing TR2. A very loud sound is heard that has a lower pitch than point 3 .

Point 5 A higher pitch sound than previous test point with the same volume level. Satisfactory signal indicates R4 and C6 free from fault.

Point 6 This position tests the performance of TR1. The sound produced by probing this point is very loud, with a lower pitch than previous test point.

It is important to test in the way described above, i.e., working back from the loudspeaker. Only if the stage previous to the one on test gives a satisfactory result can any conclusions be drawn about the one on test.

When a faulty stage is located, it should be examined in detail-it may be necessary to use other test equipment for this purpose. When rectified the above test procedure should be carried out again starting from test point 1 . \square

By D. Bollen

Approximate cost of components

 B
3.00 excluding case

ON the face of it, watering the garden would seem to be a simple pastime, but it often does more harm than good. A light sprinkling during dry weather will, for example, merely attract rootlets to the surface and cause excessive transpiration, while water applied to apparently dry soil could percolate down to where roots are actually lying in sodden earth. Even more critical is the watering of plants in pots and seed boxes, because there is no large volume of earth to act as a moisture buffer.

Obviously, plants of different species have their own individual water requirements, and the only reliable way of ensuring that they are catered for is to measure soil moisture content at root depth.

MOISTURE MEASUREMENT

The electrical conductivity of a soil is approximately proportional to its moisture content, and the principle adopted here is to measure the a.c. current flowing between a pair of copper electrodes inserted in the ground. This gives a meter reading linearly calibrated in terms of percentage saturation which can be readily adapted to suit soils of widely differing porosity. It might be thought simpler to use d.c. current between the electrodes, but this would only result in electrode corrosion and errors due to polarisation of the electrodes.

The basic arrangement of the moisture meter is show in Fig. 1, with an oscillator supplying current to the electrodes via an a.c. microammeter and a series resistor. Insulated sleeving is fitted over the electrodes in such a way that only the ends are exposed to the soil, thus the depth at which readings are taken will depend on how far the electrodes are inserted.

Fig. 1. Basic arrangement of the moisture meter.

Components

Resistors
 R1 4.7 kS ,
 R2 $68 \mathrm{k} \Omega$
 R3 68ks

 R4 4.7 kS)
 All $\pm 10 \% \frac{1}{2}$ watt carbon

Capacitors

C1 $1 \mu \mathrm{~F}$ polyester (250 V d.c.)
C2 $0.1 \mu \mathrm{~F}$ polyester (250 V d.c.)
C3 $0.1 \mu \mathrm{~F}$ polyester (250 V d.c.)

Semiconductors

D1-D4	OA 200 (4 off)	
TR1	BC 108	Silicon npn
TR2	BC 108	Silicon npn

Switch
S1 Single pole push to make
Meter
ME1 $500 \mu \mathrm{~A}$ f.s.d. moving coil meter $(100 \mu \mathrm{~A}$ may bè used-see text)

Miscellaneous

VR1 $10 \mathrm{k} \Omega$ vertical skeleton preset potentiometer
B1 PP3 9 V battery
JK1 3.5 mm mono jack socket
PL1 3.5 mm mono jack plug
$2 \frac{3}{4}$ in $\times 2 \frac{1}{d}$ in $\times 0.25$ in matrix plain perforated circuit board, insulated sleeving, mounting pins to suit board, battery connectors, 24 in $x \frac{3}{10}$ in outside diameter copper tubing, case (approximately 4 in $\times 3$ in $\times 3$ in), connecting wire and probe leads.

Fig. 2. Complete circuit diagram of the soil moisture meter.

CIRCUIT

The complete circuit of the moisture meter is given in Fig. 2. Transistors TR1 and TR2 are cross-coupled by capacitors C2 and C3 to form a multivibrator oscillator which provides à squarewave output of 8 V amplitude at a frequency of about 100 Hz . The output is taken through capacitor Cl which serves to prevent a flow of d.c. between the electrodes.

The multivibrator functions by the alternate switching of TR1 and TR2 actioned, at the selected frequency, by the charging of C2 and C3 through R2 and R3. Variation of these components will alter the frequency of the multivibrator.

The output is taken from across the collectors of the two transistors so that current is flowing through the probe circuit at all times. If the output was taken across one transistor only, then no current would flow when that transistor was fully conducting.

The a.c. microammeter in Fig. 2 consists of diodes Dl to D4, which form a bridge rectifier and meter ME1. The preset potentiometer VR1 functions as a series meter resistor and is also used for calibration. A.C. current passes from the collector of TRI, via Cl , through the a.c. microammeter, and then by way of JKl and PLl to the electrodes, through the soil, and returns to the collector of TR2.

Switch Si in Fig. 2 is a push button switch which energises the circuit only when a reading is being taken. The meter MEl has a $500 \mu \mathrm{~A}$
movement, but $100 \mu \mathrm{~A}$ and $50 \mu \mathrm{~A}$ movements may be used if their terminals are shunted by a resistor of 270 ohm or 120 ohm respectively. A convenient meter scale calibration would be $0-100$, or $0-10$, representing 0 to 100 per cent saturated-a method of altering the meter marking is given later in the article.

CONSTRUCTION

The moisture meter components can be housed in a small plastics food container or any other suitable small case, with ME1, S1, and SK1 fixed to the front. The remaining components are assembled on a piece of 0.25 inch matrix plain, perforated circuit board which is bolted to the meter terminals, see Fig. 3.

The photograph used in the heading of this article shows the meter face as marked in the prototype. To designate the meter as shown the movement must be taken from the case and the metal scale carefully removed from the movement. Unwanted markings already on the face can then be carefully removed using an abrasive cleaner or metal polish. Once this has been done new markings can be inked in and the meter reassembled, once again taking care not to damage the movement.

Commence construction by cutting the circuit board to size, and drill two holes to take the meter terminals. Insert all turret tags in the locations shown and then solder on link wires, resistors, VR1, capacitors, and leads, using insulated sleeving where necessary. When the circuit board has cooled, solder the diodes and transistors to the turret tags, using a heat shunt if you are not proficient at soldering the leads quickly.

If the meter polarity is not the same as in Fig. 3, the connections to the solder tags should be reversed. Also, where a $100 \mu \mathrm{~A}$ or $50 \mu \mathrm{~A}$ meter movement is employed, the appropriate value of shunt resistor should be soldered across the meter tags, as mentioned earlier.

Having mounted the meter, push button switch and socket on the front panel, attach the circuit board to the meter and connect up the leads as shown in Fig 4. The battery can be taped to the inside of the box, or a special clip made to hold it in place.

To check that the circuit is functioning cor: rectly, temporarily solder a 4.7 kilohm resistor across SK1, connect up the battery and press S1. Now adjust VRl for a full-scale meter reading. If the meter does not respond at all when S1 is pressed, the circuit should be checked for wiring errors. Check the polarity of the diodes and the transistor connections in particular.

ELECTRODES

Take two pieces of ${ }_{16}$ inch outside diameter copper tubing about 12 inches long (or longer if desired) and. flatten one end of each with a

Fig. 3 (above). The layout and wiring of the complete circuit board. This board is mounted by the meter terminals.

Fig. 4 (right). Connections of the flying leads from the circuit board to the remaining components.

Fig. 5 (below). Construction of the moisture probe-two are required. These are connected by two core wire to JKi via PL1.

hammer, see Fig. 5. Drill the flattened ends to take 6 B.A. screws. Push insulated sleeving over the electrodes leaving about 1 inch of the unflattened ends bare.

The moisture probes may be permanently installed or used at various locations with the meter. Having decided on the location of the electrodes, and the length of cable necessary (this should not exceed 20 yards) solder the ends of the cable to the electrode tags and fit PL1.

SETTING UP AND CALIBRATION

It is advisable to check that the probe cable does not introduce too much capacitance into circuit, especially when a long run is used. Support the electrodes off the ground on a piece of dry wood, connect PLl to the meter and press Sl . If there is a slight movement of the meter pointer away from zero this can be compensated for by adjustment of the meter zeroing screw.

Push the electrodes into the ground, about 3 inches apart, to the required depth, and then pour about two gallons of water onto the soil around the electrodes and leave for an hour or two, until the soil is saturated at root depth,
then press Sl and adjust VRl for a full scale (100 per cent) reading. If, after calibration, there is a prolonged dry spell, the meter reading will slowly decline and may eventually reach zero.

USING THE MOISTURE METER

Some plants will thrive best if their moisture level is maintained within limits, for example, house leeks 10-30 per cent, roses $30-70$ per cent, and marrows 70-95 per cent. Cacti, on the other hand, will demand a seasonal watering programme varying from, say, 60-80 per cent in summer down to $5-10$ per cent in winter.

There are many books available on gardening and the various moisture requirements of plants can be found from these books. If you require the probes to be permanently installed for monitoring of one plant a second set of probes could be constructed and used with the meter to check other plants both indoors and outdoors. A set of smaller probes may be useful when checking small pot plants.

Meter calibration can be checked from time to time when the soil becomes saturated after a heavy rainfall.

MEMORY STORE

Retrieval By

Derek Burn

SUPPOSE that it is true to say that I became involved in electronics by the back door. My only formal training had been a wireless mechanic's course in the RAF, and that was a very long time ago and almost forgotten. Then one day a new neighbour passed the house carrying under one arm a very large and impressive model boat and under the other an equally impressive box covered with an incredible array of knobs and dials. This fascinating sight could not be allowed to pass unremarked and I just had to find out more. I think perhaps a dormant interest had been aroused, for the immediate result of a most interesting conversation was that I gained a new friend and a new hobby.

The magnificent boat was of course radio-controlled, and it turned out that it was not working very well. Hoping that at least a part of my RAF course had stuck, i rashly offered to try to put things right. Fortunately it wasn't too difficult for these were the early days of radio control when
valves and very simple circuits were the only hope for success.

We soon reached that triumphant stage when the gear would work correctly on about half of our visits to the local pond-and that was quite a fair performance in those days!

About this time, commercial equipment was beginning to appear featuring that new-fangled gadget, the transistor. Naturally we could not afford such luxuries, but at least we could try to learn something about the device and attempt to build our own gear. This was a very exciting period for radio control.

The transistor made it possible to devise very much more sophisticated circuitry which was small and light, and yet more reliable than the valve equipment that it replaced. Our visits to the pond became more frequent and much more successful.

As I learnt more about these transistors, I became fascinated by their possibilities, and my interests widened to cover any aspect of electronics that took my fancy. The main reason for this active interest was curiously my inherent laziness.

I had always been put off by the enormous amount of tin-bashing which seemed to be such an
essential feature of the electronics of the valve era. The transistor changed all that. The chassis was now just a piece of printed circuit board, and I felt that I could now get stuck in!

Probably because I was never very successful with r.f. circuits (oscillators would never oscillate and amplifiers invariably did), the ham scene did not appeal to me. However, I discovered an unexpected talent for making multivibrators that worked, and so I was led inevitably into the field of digital circuits. As it happened, model radio control also moved in this direction with the introduction of the so-called digital proportional system, and so my interest in that aspect of electronics was maintained.

The scope of this type of circuitry is almost limitless, bounded only by one's imagination. Well, almost only, another factor being patience. After all, there is a limit to the number of bistables one is prepared to wire up!

Happily, just at this time, integrated circuits burst upon the amateur scene, and really complex circuits such as digital clocks became a reality. I can see no end to this type of electronics for many years to come, and I am happy that it should be so.

E. 24020 watt 240 volts soldering iron fitted with $1 / 4^{\prime \prime}$ iron coated blt. Spare bits 3/32", 1/8" and 3/15' avallable. Can also be supplied for 220 and 110 volts. Price £1.80.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8^{\prime \prime}$ iron coated bit and packed in a transparent display oox. Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $12^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.83$

CN. 240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated 3/32" bit and packed in transparent display box. Also available for $\mathbf{2 2 0}$ volts. Price $£ 1.70$

CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with Iron coated 3/32" bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 22 J, 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering iron 18 watt 240 volts extensively used by H.M. Forces. Suitable for high sfeed soldering and fitted with iron coated 3/32" bit. Also avallable for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ are obtainable. Price $£ 1.83$.

(ax) $x=0 \cdot x)$ your solderins applance specialists.

CCN.24) New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation $(4,000 \vee$ A.C.). Will solder ilve transistors in perfect safety: fitted with $3 / 32^{\circ}$ Iron coated bit. Spare bits $1 / 8^{\prime \prime}$ $3 / 16^{\prime \prime}$ and $1 / 6^{\prime \prime}$ avallable. Can also be supplied for 220 volts Price £ 1.80
CCN.240/7 The same soldering iron fitted with our new 7 -star high efflelency blt for ve-y high speed soldering The triple-coated blts are iron, nickal and chromium plated Price $£ 1.95$

Price $£ 2.40$.

SK. 2
SOLDERING KIT
This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits cf $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder. Heat Sink, 1 amp fuse and bcoklet "How to Solder"

MES. 12
A battery operated 12 volts 25 watt soldering iron complete with 15^{\prime} lead, two crocodile clips for connection to car battery and a booklet "How to Soider" packed in a strong flastic wallet. Price $£ 1.95$.

SK. 1
SOLDERING KIT
The kit contains a 15 watt 240 volts soldering iron
fitted with a $3 / 16^{\prime \prime}$ bit. nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$. a reel of solder, heat sink Price £2.75 cleaning pad, stand and booklet "How to Solder". Also available for $2 \hat{2} 0$ volts.

signhere to answer all your soldering problems.

EleGtrodilue Electronic Component Specialists

THIS MONTH'S SELECTION OF POPULAR ITEMS FROM THE ELECTROVALUE CATALOGUE

TRANSISTORS

No.	Type	Purpone	Price
24697	8il. NPN	Oeneral	18p
2N1304	Ger. NPN	."	${ }^{268}$
9.11305	PNP		26p
2×2846	8II. UJT	Omellator, SCR olriver	47p
21.292a	NPN	Smail sig. amp	11 D
2188055	NPN	High power	${ }^{60 p}$
21.3702	PNP	Low power	13D
2N3704	NPN	Low power	13 D
Ac128	Ger. PNP	8 masil mig./driver	20p
ACl28	PNP	Low power	200
AD149	PNP	High power	58 D
AC176	NPN	Low power	18D
- AD161	NPN	Med. power	${ }^{33 \mathrm{D}}$
- AD162	PNP	Med. power	38 D
BC108	8il. NPN	Smaall aignal	11 D
BC109	NPN	Low notme	120
BC168	NPN	8 mall signal	10 D
BC169	NPN	Low noine	11 D
BY194	NPN	RF amp.	14 D
Bry 51	NPN	Med. current	20p
OA90	Ger. dionle	Mr detector	${ }^{60}$
OA91	. ${ }^{\text {. }}$	General	${ }^{80}$
$\begin{aligned} & \text { sDI } \\ & \text { W09 } \end{aligned}$		sillcon Reetiter 1 atul, Sulicon brilige 1 amis	10p
- Matched	AD181/adi6		${ }^{60}{ }_{p}$

VOLUME CONTROLS, ETC.

Very wide ranges carried in-
cluding the following popular
types :-
4.7Kohms, lokohms, 22

Kohms. 47, 100, 220, 470
Kohms: I' Megohm, 2.2 Megohms.
Log or linear tracking
MONO 12p each: STEREO
(macehed tracks) 42p
Any type with double pole mains switch- 12 p extro

STEREO BALANCE CONTROLS
Log/Ancilog. 10K, 47K. IM
Dual antilog IOK only.

DUAL CONCENTRIC
In any combination of above values 60p, with switch 72p

MAIN LINE AMPLIFIERS

70 watt power amplifier in module form ready to build into any system. With full instructions.

Amplifier module kit
Power supply kit
Matching pre-amplifier kit (for magnetic or ceramic pick-up) less panel, knobs and chassis
nett 612.60
ness $\$ 6.00$

CAPACITORS

Son-polurised

Polyatyrane
10 pF
20 pH
100 pF
100pF
220 pF
2.20 pF
470 pF

170 pr
1000 pr
$1000 \mathrm{pr} \mathrm{r}^{\prime}$
4.00 s 1 F

Polyeater M T
0.01 mF
0.02 mF 0.047 mF
$0 \cdot \operatorname{lin} \mathrm{~F}$
0.22 mF
0.47 mH

101510 p

MISCELLANEOUS ITEMS

INDICATOR LAMPS

NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p; square red rype LSSC/P, 18p; amber type LSSC/A. I8p; clear eype LSSC/C. 18p. All above are for 240 V mains operation. Fila ment types: $6 \mathrm{~V}, 004 \mathrm{~A}$ square red type
 LS5C/C-6V, 30p; 6V 0.04A crear sype LSSC/G-6V, 30p: 12 V 0.04 A LSSC/R-12V, 34p; $34 V 0.04 \mathrm{~A}$ LSSC/R-2BV, 45p.

KNOBS-NUTS, SCREWS, WASHERS - TERMINALS AND MANY OTHER ESSENTIAL ITEMS - see Catalozue

Note-All the above prices are for mono.
FOR STEREO for building into your own cabinet. Two amplifier modules and pre-amp kits are required with matched controls plus one power supply kit, nett price $638 \cdot 40$

ELECTROVALUE - an independent company from its establishment in 1965

RESISTORS

t watt and t watt, all at ip each in the following values (in ohms) :10. 12. 15, 18. 22, 27, 33. 34, 47. 56. 68. 82 and all values in this series up to 10 Megohms.

Power Resistors
3 wates-7p each: 7 watts-9p each. Values as for wats series, but up so 10 Kohms only.
Many other types and values available Full details in catalogue.

VEROBOARD

The universal circuit building board Unclad, $0.1^{\prime \prime}$ matrix
$2^{\prime \prime} \times 3.75^{\prime \prime} \quad 10 p$ $2.5^{\prime \prime} \times 3.75^{\prime \prime} \quad 15 p$
Copperclad Veroboard also in stock in most standard sizes and matrices: also edge connectors, pins, esc
Simple to Build, Astoundingly Good IOW/I5S BAXENDALL SPEAKER As originally designed by P. J. Baxendall and described in Wireless World. 10 wact/15 ohm loudspeaker with equaliser network speaker unir and specially designed cabinet in kit form Size when buile approx. $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$ Price, inc. carriage paid in U.K. Nete ≤ 13.90
overseas customers welcome

IThe Electrovalue catalozue (64 pases and cover, $8 \frac{1}{y}$ y 5 ins) is crammed with money seving items, and illustrated technical information. FREE with orders for $\mathbb{C 1 . 0 0}$ or more. Sent eeparately it costs you $10 p$ post free. Write your order on a sheet of paper with compon ateachad
ELECTROVALUE
28 ST. JUDES ROAD, ENGLEFIELD GREEN EGHAM, SURREY, TW2O OHB

Hours 9-5.30: Sat. 1.0 p.m.
Telephone: Egham 5533 \& 4757 (STD 0784-3) Telex : 264475

COMPONENTS DISCOUNTS

allowed on all items other than those at net prices

$$
10 \% \text { on orders for }
$$

15% on orders for
POSTAGE \& PACKING FREE on orders for $\mathbf{C 2} 20$ or more. Please add 10 p if under
Onderseas orders welcomed. Prices subiect to alteration without prior notice Terms of business - C.W.O. as in catalogue

To ELECTROVALUE, ENGLEFIELD GREEN, EGHAM, SURREY Please send a Goods to value of $\mathbf{f} \ldots$. as derailed on sheet attached, plus FREE copy of catalogue
b Copy of catalogue
(strike out item which does not apply)
NAME
ADDRESS

Enclosed please find t
cash/cheque/money order.

We will try and clear up a few points that have come to light during the last month. First it would appear that in January issue two components were missed out of components lists. In the Astron R9 680ohms was left out (${ }_{4}{ }^{2} \mathrm{~W} \pm 10 \%$ carbon) and in Electro Laugh D1 1N914, diode was left out.
When constructing the Electro Laugh please note the link between P7 and Q7 is not very clear on Fig. 3 as C6 has printed rather darker than it should have.
In the Astron we have also managed to show two C5's on Fig. 3-the one on the left should be C6-and we have transposed the battery leads on Fig. 4. We have also made the same mistake with the battery leads in the Rain Alarm, February issue Fig. 4, sorry about these points.

Whilst talking about these projects there are some other points worth mentioning. The speaker used in the Astron is the same as that specified for the Demo Deck. Due to demand created by these articles the speaker is at present unobtainable, however, some firms have similar size speakers in stock and one of these could be used, provided that its impedance is not less than about 20 ohms. Speakers with much higher impedance than the 35 ohms specified will not provide such a high output power.

Some readers have enquired about the earpiece used in the Electro Laugh, it is a magnetic device and is generally available for around 60p. After some experimenting the unit was also found to work well into a small 75 ohm speaker and this makes a good alternative to the earpiece.

Component Wiring

Apparently new constructors are having difficulty in following our Veroboard layout and wiring diagrams. The main problem seems to be that readers are unsure about what is copper and what is board. In all our diagrams the black strips are the board and the white the copper. The small black dots are connections of the wires to the strips and the large black circular areas with white holes are the areas where the copper has been cut away with a drill or spot face cutter.

Another point that is worrying some constructors is the type of wire we use for making links on the board. In general the wire is 22 s.w.g. tinned copper wire but

Compare the photograph with the drawing and identify the strips of copper, soldered connections and breaks in the strips.
in some cases-where bare wire could touch other wires or com-ponents-single strand covered wire should be used.

We hope that has solved a few problems from previous monthsnow let us look at this month.

Moisture Meter

The 0.25 inch matrix perforated circuit board used in the Moisture Meter is the same as that used in the Demo Deck. To state the position about supply once again, it is made by R. S. Components but not available to readers from them. The board must be purchased through one of the normal components retail firms and a number of them either stock it or will get it for you; the same applies to the mounting pins used.

When it comes to covering the probes with insulating sleeving Home Radio sell some heat shrinkable sleeving which is easy to use and is eminently suitable for the job. The tubing is called Polyshrink and is available in a range of sizes to suit various diameters to be covered from ${ }^{1} 8$ inch to $3{ }_{4}$ inches.

Darkroom Timer

The list of semiconductors used in the Darkroom Timer is varied but the Zener diode, silicon controlled rectifier and diode are all items that are readily available in a variety of type numbers. Indeed many suppliers no longer quote the type numbers but list such things as Zener diodes by the voltage and power rating as we have given in the components list. It is not necessary with this type of device to search for the correct type number provided the ratings we quote are the same.

The wafer switch used is a 2 pole 9 way type and we have shown this as having two wafers, however, it is available in a number of types-all suitableand some may only have one wafer or possibly two with 12 ways on each, it is only necessary to use 8 of the tags and a wiper.

Signal Injector

As far as we can see there are no buying problems concerning the Signal Injector-provided you take note of the advice given in the article concerning the tube used as a case.

Mystery!

Why is the subject of electronics surrounded by such an air of mysteriousness? I am new to electronics and have learned a lot from the first three issues of your magazine. If I want to develop a film there is no mystery. All I need is a developing tank, a bottle of developer and bottle of fixer. It's as easy as making a cup of tea. Your magazine is helping to destroy the mystique that has shrouded the subject for far too long. Carry on the good work.

Russ West
London.

Letraset

Thank you for your latest publication, Everyday Electronics, a great alternative to P.E. which I have been taking for a number of years. I have just completed the record player featured on your first edition, with a few alterations in layout, to suit the plinth I made and I am delighted with results. I have one request to make, could you please inform me where I can purchase L,etraset so often prescribed by your authors for projects but never a source of supply mentioned. I would be grateful if you would also let me know which sheet I would require for audio and if possible, price.
G. H. James

Scotland.
Letraset is available in a vast range of type faces from most large stationers. Each sheet contains a range of letters and num. bers and hence any designation can be made up; the prices of the sheets vary.

Projects

Having just read my first copy of your magazine, Everyday Electronics. I find this magazine most interesting as it deals with the practical aspects of electronics which are often complicated by theory in other periodicals.

I wonder if you have considered the use of electronics as used on small boats as most professionally manufactured electronic aids are very expensive. It would seem
that there is a demand for practical advice as to the construction of instruments which would be of use to small boat owners.
B. L. Strang Edinburgh.
The boat owner will not be overlooked in future issues.

It was quite by chance that I picked up a copy of the January 1972 issue of Everyday Electronics and was so pleased that I have now ordered the first two copies and have placed a firm future order.

I am writing, because I expect that you are feeling your way as regards to the contents and level of your articles. There must be many like myself who reached a fair knowledge in the use of the valve and due to circumstances had to chop the hobby only to find now that there have been so many changes that it is most difficult to take up the hobby again.

Your Teach-In article is just right for us as is the m.w. reflex receiver. I am looking forward to making a start on the Windscreen Wiper Control, when I get the copy.
G. V. Pride

Dorset.

Device Function

May I offer the following comments concerning your new magazine, for which I have placed a regular order, in the hope that they may be of some assistance to you.

You appear to be aiming at simplicity and this is most important, but being specialists, I fear you may drift into the complication and jargon which so limits the field of other electronics magazines. You see I am sure there are a great number of do-it-yourself practical people who would like to widen their hobby scope, without having to do a great deal of research and study. They are the type of people who want to use the equipment in some useful way. After all, many people use motors, relays, solenoids etc., in gadgets and models, without knowing much about equipment designs-flux densities-back e.m.f., etc.

In a good deal of reading I have not come across a clear statement of what transistors and S.C.R.s do, without a long and difficult explanation of how (which incidentally seems to vary). Maybe as specialists you do not appreciate that the practical person is not interested in the how, he accepts a transistor as a "little thimble with three or more wires sticking out of it." What he wants to know is which wire to connect to what in order to make a timer work, a flash gun to flash, a bell to ring etc. In this respect, please keep printing a drawing of the base of the various transistors you use in your projects.

F. R. Holmes

Darlington.
We will keep printing those base drawings and, if you follow Teach-In you will be able to learn, fairly simply, what the various devices actually do.

Preferred

I am a beginner in electronics and therefore E.E. is of great interest to me. My only criticism is that in projects such as the Electro Laugh (which I shall make in the near future), which are built on Veroboard, you only show the holes round the edge. Construction would be greatly simplified if all the holes were shown, mistakes are hard to avoid as it is. I hope you can put this right soon.

In Mr. Sproxton's article Component Buying \& Supplying he mentioned the notorious F. J. Camm who did not use preferred values for resistors and capacitors. Why have these? Why not have multiples of $1,2,3,4$, etc., instead of the E12 series, with the addition of multiples of $1 \cdot 5,2 \cdot 5$, $3 \cdot 5,4 \cdot 5$, etc., instead of E24 series? This does happen to some extent with electrolytic capacitors. Where do the preferred values derive from originally?

Colin Walls
Southend-on-Sea.
We have found from past experience that in most cases when all the holes-or a large number of them-are shown on Veroboard layouts that this tends to make them harder rather than easier to follow. It is a simple matter when constructing a unit to place a transparent ruler along each set of holes to make it easier to follow.
Preferred value resistors are necessary because manufacturers would turn out almost any value otherwise. We have the various series of values because they have been calculated so that any specified value can be made up from the fewest possible number of individual preferred values.

BUDGET HIGH-FIDELITY STEREO SYSTEMS

EREMIER STEREO BYGTESE "ONE' Conaista of the nev Premier 800 all tranaiator stereo ampllher, Garrard 2025 T/C anto manua record player talt Atted atereo mono ceramic cartridge with diampond atylus and mounted is teak Anioh plinth with persjex cover and two metching teak ankin loud. play. 800 mmplifler has an output of 5 watia per channel Fith Inputa for cramic and magnetio pick-up, tape and tuner aloc tape outzut socket and headphone monket. Controls: Bsas. Treble. Volume, Balance, Selector, Power oo/off. Mono/Bteren witch. Etereo Hemdphone peket, Black lastherette cobinet with aluminlum tront panel. Bize: $12 \frac{1}{}^{\circ}>81^{\circ} \times 29^{\circ}$. (Ampifiter mallable eteparately if required $\mathbf{3 1 6 . 2 5}$. Carr. 40p).

PREMIER HI-FI OFFERS

Philips 580
Stereo Amplifier
(List $\mathbf{2 9} 9.00$)
Rogers Ravenabrook II
Stereo Amplifier in teak
case (List 652.50)
Rogers Ravensbourne
Stereo Amplifier in teak case (List 664)
Metrosound ST20E
Stereo Amplifier in teak case (List 639.50)
Goldring GL75
less cartridge (List 441.61)
Garrard SP25 III with
Goldring G800 cartridge
(List 428 -35)
Garrard AP76
less cartridge
Garrard 401 Transcription
Unit (List E40.15)
Garrard 2025 T/C with Sonotone 9TAHC Sonotone STAHC
Diamond Cartridse

Garrard 2025 T/C with Sonotone 9TAHC
Diamond Cartride
ready wired in teak plinth
ready wired
with cover
Carriage and Insurance 50p extra any item.

TAPE CASSETTES
C60 (${ }^{60}$) 370^{3} tor
 C120 (\(\left.\begin{array}{c}120

muln\end{array}\right) 87 \rho_{8}^{3}\)| 3 ior |
| :---: |
| 2.55 | P: \& P. 6p.

PREE CASSETTE HEAD CLEANER with every 10 cassottes purchased.
All cassettes can be supplied with-library cases ot 3p. extra each

SP25 MKIII SPECIAL!

MARRARD SP25 MK III BINGLE RECORD PLAYEE PITTED. HETIC STEREO CAR. TRIDGE COMPLETE in TEAK PLINTE WITH RIGID PERSPEX COVER.
otal list price over E 34.
PREMIER PRICE
± 18.90
P. \& P. sop.

HI-FI STEREO HEADPHONES
Designed to the hlghent posilible atazdard. Fitted 24 ln epeatiker unitu with Adjuatable bead band. 8 ohms impedarice. Complete with sft lead and otereo jack plag. $£ 2.47_{35}{ }^{\mathrm{P}} \mathrm{p}_{\mathrm{p}}{ }^{4} \mathrm{P}$

STEREO STETHOSCOPE BET LOW Imp. 21.RS

 MONO STET ROACOPE SET Low Imp. 68p. P. \& P. P. 10p
E.M.I. $13 \times$ in. HI-FI SPEAKERS Fitued two 2 Hn tweetera, and croamover networt. Impedauce of 16 ohm. Handling capa
clty 10 W. Brand new.
$£ 3.47^{\text {P. A P. } 40 \mathrm{p}}$

NEW LOW COST PREMIER 800 STEREO AMPLIFIER

A iruly hirk quality etereo ampliber-compare the apecilcation, compare the price. Output: 5 watte per dhannel. Prequency responmo: $30-20,000 \mathrm{~Hz}_{2}=2 \mathrm{db}$ Matortion: 1% Out put impedianoe 8 otrms nom. Inputs
ecualised ta R.I.A.A. Magnetio 4 mV . Ceramic 100 mV . ecualised to R.I.A.A. Magnetio 4 mV . Ceramic 100 mV . Taner 100 ma V. Tape 100 mV . Tapa out 160 mV . Din scckett for inpula and out puta. 8tereo headphone socket. Attractive nilum line design black leatheretto only $£ 16.25$ carr. $\mathbf{4 0}$.

"Markman" Soldering Iron. Lightweight t" pencll ble. Ideal for regalar bench use mind around the bome. 25 Wates. 240 volt A.C. $\mathbf{2 1 . 5 0 ~ P ~ \& ~ P ~} 15 \mathrm{p}$
"VERITONE" RECORDING TAPE
SPECLALLY HAMOFACTURED LT D.SA. FROM EXTRA STRONE PRE-8TRETCRED MATRELAL THE QUALITY IS OFEQUALLED TEN8ILI8ED to ensure the mont permanent base. Highly realatant to breat age. mointare, heat, cold of humjdity. High polinhed aplice free faroh. Bmoots LP8 8- 850° P.V.C. 28p LP6 $81^{\circ} 1800^{\circ}$ P.V.C.

 LPS 5. 900 P.V.C. $\quad 50 \mathrm{LP}$ LP7 7 1800 P.V.C.

 Poat and Packing $3^{\circ} 6 \mathrm{p}, \mathrm{B}^{\circ}, \mathrm{Bt}^{\circ}, 8 \mathrm{p}, 7^{\circ} 10 \mathrm{p}$. (2 reelo and over Post Pree).

TEGINCAL thatine in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:
C. \& G. Telecommunication Techns. Certs.

- Radio Amateurs' Examination

General Radiocommunications Certificate.
C. \& G. Radio Servicing Theory.

General Certificate of Education, etc.
Now available, Colour T.V. Servicing
Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and translstor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

tor full details of ICS courses in Radio, T.V. and Electronics

AKAI-LEAK SINGLAIR• TELETON• ARMSTRONG• ROTEL THORENS• PHILIPS GOLDRING•ROGERS • PIONEER

Dept. E.E.5 174 Pentonville Road, London, N1. Telephone 01-2781769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue, Hford, Essex, Tel: 01.550 1086.

Open Monday to Saturday 9.30 a.m. to

6 p.m. LATE NIGHT FRIDAV 7 p.m. MAlL ORDERS. Order with confidence. Serio Postal Order, Cnaque. Mail. CALLERS: Plesse note thol cheques con only be accepted togeiner with cheque cerds (not Burctor Card)

[^1]on miain road leading to the East and West Country

The Bug

I don't know whether I should express my thanks for your new publication, or whether I would be perhaps better advised by my inner self to make this a letter of condemnation of you and your colleagues!
The reason for this indecision on my part, as you may have already guessed, is that I have been well and truly bitten by "the bug." Since I first picked up E.E. in my local newsagent just before Christmas my diet has been one entirely made up of resistors, capacitors, and other mysterious ingredients, some more indigestable than others! I have now devoured two issues of E.E. and two of big brother P.E. but my appetite shows no sign of abating.

Since cutting my teeth on Meccano many years ago I have always been a dabbler, and have run the whole gambit of the more "fiddling" pastimes-model-making, marquetry, fretwork, paperfolding, printing, in fact any hobby that can be enjoyed in a reasonably small space. But until now the radio/electronics world had remained totally incomprehensible, then along comes E.E. and suddenly I begin to get a glimmer of light through the haze and glimpse a whole new area of pleasant and useful activity. Or to come back to earth and use my wife's expression "I see we have a new collection of gadgets cluttering up the kitchen!’

Anyhow, for better or worse, the die has been cast and I am anxious to try out my new soldering iron, and actually construct something. Trouble is, for a couple of reasons, progress is not what I had hoped it might be, and I have yet to hear the first cries of my first-born electronic creation, and am still being denied the heart-warming patter of tiny oscillators!

You see, first of all as a complete absolute beginner, there are many things not covered by "firststep" Teach-In type articles. What is needed is a couple of really basic articles which assume no pre-knowledge at all. For example, what sort of wire do I use for connecting components;

How does one actually mount components on to various types of perforated board; what is used for connecting links (in illustrations e.g. January cover-Laugh Simulator-it looks like bare wire of paper clip proportions). It is the same with books borrowed from library-components are explained in great detail, but the ordinary bricks and mortar are largely ignored.

J. G. Richards

Sale.
The bare wire used for connect ing components on a circuit board is normally 22 s.w.g. linned copper wire - as used for the soldering exercises in Teach-In part 1. Where necessary single strand covered wire may also be used. The Using Printed Wiring Board article in our first issue deals with the component mounting question and Shop Talk this month refers to Veroboard.

Laugh

I am a very keen reader of your magazine and although electronics in todays form is fairly new to me I have tried several of your projects (with great success) and find them very well explained and easy to construct. I must however tell you about one of them in the January edition, the Electro Laugh. I set to work and constructed this project only to find that it would not work. After checking my wiring several times I was about to give up when I discovered (by referring to the circuit diagram) that you have made a mistake. I refer to Fig. 4 This shows the copper strip on the Veroboard as being cut at point Q24 when in fact it should not be cut at all. After soldering a piece of wire across this cut I found that the laugh simulator worked quite well.

Brian Wadsworth Staffs.

This point may help some readers who are having similar troubles. There is actually no mistake in the Electro Laugh wiring, this difficulty has arisen because a link shown under C6 in Fig. 3 has become obscured. Reference is made to this project in Shop 'ralk this month.

Connections

I am writing to you, concerning the Astron M.W. Receiver. I followed the instructions very carefully not forgetting to solder the transistors as requested, on completion I switched on expectingly, but alas, there was no sound apart from the faintest crackling when I switched on. Determined not to be dismayed I checked and rechecked the circuit, till it came to my notice that D1 and D2 in Fig. 1 did not show the same polarities as in Fig. 3. Where upon I reversed the polarities of D1 and D2 to correspond with Fig. 1 but still the result was the same, next I noticed that TRI and TR2 in Fig. 3 were facing in opposite directions yet they are both n.p.n. and have the same value, could you please advise.
M. Torpey

Wood Green.
The diode connections are correct in both Figs. 1 and 3, the positive sign on the diodes corresponds to the arrow head in the circuit symbol.

It would seem that you have been misled by the perspective view of the transistors in Fig. 3. Both TRI and TR2 face the same way, the leads have been shown bent in different directions for clarity. When wiring in transistors refer to the base diagram (shown between the two parts of Fig. 3 in this case) and the lead markings on the wiring diagram.

Some points concerning construction of the Astron*are also given in Shop Talk this month.

Further Control

I have experienced a similar difficulty with the Windscreen Wiper Control as mentioned by Mr. Bacon in your January issue, the maximum delay being seven seconds.

I adjusted R2 to the point of cut-off, disconnected the negative end and found the sum of R2 plus R3 was 200 kilohms. As no adjustment of values at this point could be helpful, I reconnected R2, disconnected C2 and found the control operated normally.

As C2, on test, was satisfactory, I reconnected it with a 125 ohm resistor in series and this achieved the desired result, the delay being variable from five to thirty seconds with R2 operational over the full range.

J. Roscoe Cheshire.

From this letter it would seem that the problem can be caused by leakage through C2, Readers can either fit a resistor in sories or try another capacitor for C2.

G. F. MILWARD

369 Alum Rock Road, Birmingham B8 3DR.
Tel. 021-327 2339
NEW LINES 1.1 I I!
8 E.M.I. Speakers with twin tweecers
8 witt a mplifiers complete
Cassette Tapes: C60, 57p; C90.75p: С 120 , $\dddot{90}_{p}$
GOLDRING MAGNETIC CARTRIDGES (G8SO)
ntercom with Battery s (usually 66 -60)
Neons, with resistor and 2 ft les
Speakers, 8 ohm, $2 t$ in
MULLARD DATA BOOK FÖR 1972
TRANSISTOR EQUIVALENT BOOK, LATEST EDITION
Mikes, Low impedance, dynamic stick eype with on/off switeh Crystal, hand
ockable car aerials
Dee-Gee 25 watrs penc
nsulating Tapa, tin wide, 10 yard rail
Miniature Ouspus Transformers
Rotary Switches, 4 pole 3 way or 2 pole 6 way
Switch cleaner, aerosol cans

Eiectrolytic Capacitors
2,000 $\mu \mathrm{f} \mathbf{2 5}$ vole Rev
$1,000 \mu \mathrm{H} 70$ vole $10,000 \mu \mathrm{f} 35$ vole $10,000 \mu \mathrm{f} 25$ vole $2.000 \mu \mathrm{f} 18$ volt $60 \mu \mathrm{f}, .2200 \mu \mathrm{f} 300$ volt $400 \mu \mathrm{f} 275$ volt $10 \mu \mathrm{f} 6$ volt $10 \mu \mathrm{f} 25$ volt $16 \mu \mathrm{f} 250$ volt

OKM
individually hege numbers of components in quantisies too small to adver mixture of carbon and wire-wound resiseors wave made up parcels containing controls, eransistors, Sold anly that these are mixed parcels only fraction of normal price. It Soid only by weighe

Gross weight 2 Ib
C1 (postage 20p)
C2 (postage 30p)
c3.75 $62 \cdot 80$ 4.75 63.75 4p 30p 40p 1.00 50p 20p c1-25 98p 50p
5p
$12 p$
$15 p$
50p
-
-
Diamond) 94/1D (Stereo, Ceramic, Diamond) (Stereo, Ceramic, Sapphire) ©1-50. ACOS GP two L.P./Stereo needles) ©l.25.

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt, All with polarity protection. 8 watt.type with reflector, suitable for tents, etc. 3 25p. 13 watt type, batten with type, batten fitting for caravans C4, PostagelPacking THESE CAN BE SENT ON APPR 22 in $\times 2 i n \times$ lin $\mathbf{2} 5$. PostagelPacking 250 MENT ON APPROVAL AGAINST FULL PAYMENT.
MULLARD POLYESTER CONDENSERS
$0.15 \mu \mathrm{f}, 0.22 \mu \mathrm{f}, 0.27 \mu \mathrm{f}, 30 \mathrm{p}$ per dozen (11, 15 p per dazen (all 400 V working). of 100 of any one type.

RESISTORS

$\frac{t}{t}$ and $\frac{1}{2}$ watt. Most values in stock, 75p per 1
100. 10p per dozen of any one value. watt to 50 watts. A larg percentandeds of values from 0.7 ohm upwards troltelevision. Owing to the huge variety these can only be offered ""assortor
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15 p .

NEW B.V., A. Valves

Full list. Return Post Service. Cash with order. Stamped addressed

The most accurate pocket size GALGULATOR in the wortd

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4.50$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. EE2)

WILSIC SOUND EFFECTS KITS WAH-WAH PEDAL KIT (Illustrated)
Kit comprises a SELECTIVE AMPLIFIER MODULE KIT to convert the FOOT VOLUME CONTROL PEDAL (as phot to Wah-Wah operation. (as photo) module E1.75, pedal unit Es. Amplifier PLETE KIT ES. pedal unit 2.13. COMmodule, but please note assembly of surply k its fully built, note we cannot REVERBERATION UNIT KIT for dimens
sound source, mic., etc., and amplifier. Batery effect. Connects between KIT $£ 9.20$ (excluding case $£ 7.50$). Assembled VIBRATO UNIT KIT Fase controls. COMPLETE KIT $\mathbf{2 5 . 2 5}$. SEND 15p for he KIT $\mathbf{4}$-25.
SEND 15p for the WILSIC PLANS BOOK, with full details of these
kits; circuits, drawinss and price nins and price lists.
LATEST CATALOGUE 5p (stamps)
WILSIC ELECTRONICS LTD. 6 COPLEY ROAD, DONCASTER, YORKS.

telephone dials
Standard Post Office type.
Guaranteed in working order.

only $50 p$

0 RELAYS FOR Various Contacts and Coil Resistances. No individual selection. Post A Packing 25p			
NEW TESTED AND GUARANTEED			
E2	4	Photo Cella. Sun Batterites. 0.3 to 0.5 V .0 .5 to 2 mA .	50p
B79	4	IN4007 Sil. Rec. diodes. 1,000 PIV lamp plastic	50p
801	10	Reed Switchen, mixed types large and amatit	50p
\bigcirc	200	Mixed Capacitorm Approx. quantity, counted by weighe	50p
H6	250	Mixed Resistors. Aporox. Quantity counted by waight	50p
W7	40	Wirewound Resistors. Mixed erpes and values.	50p
Hi	4	BYI27 Sil. Recs. 1000 PIV I amp. plassic	50p
Hi	2	OCP71 Light Sensitive Photo Transistor	50p
H12	50	NKTIS5/259 Germ. diodes. brand new stock clearance	50p
माड	10	OC71/75 untoded black glass eype PNP Germ.	50p
H19	10	OCBI/81D uncoded white lass type PNP Germ.	50p
H21	20	OC200/1/2/3 PNP Silicon uncoded To-S can	50p
H29	20	OAA7 goly bonded diodes coded MCS2	50p
NEW UNMARKED UNTESTED PACKS			
Est	150	Germanium Diodes Min. glass type	50p
883	200	Trans. manufacturers' reiects all trpes NPN. PNP, sil. and Germ.	50p
884	100	Silicon Oiodes DO. 7 slass equir. to OA200, OA202	50p
B86	50	Sil, Diodes sub. min. N914 and IN916 eypes	50p
Be8	50	Sil. Trans. NPN. PNP equiv. 80 O C200/1 2N706A, BS Y9SA, etc.	50p
81	50	Germanium Transiseora PNP, AF and RF	50p
H6	40	250 mW . Zener Diodes DO-7 Min. Glass Type	50p
H10	25	Mixed volts. If watt Zeners Top hat type	50p
HI7	20	3 amp. Sllicon Stud Rectifiers, mixed voles	50p
HIS	30	Top Mat Sllicon Rectifiers. 750 mA . Mixed volts	50p
H/6	8	Experimentera' Pak of Integrated Circuits. Data supplied	50p
H20	20		50p

MAKE A REY COUNTER FOR YOUR CAR The 'TACHO BLOCK'. This encapsulated block will zurn any accurate per, counter for any car with normal coil ignition

OUR VERY POPULLAR 3P TRANSISTORS
 TYPE "E" PNP G Germanium AF or RF. TYPE "F' PJPN Silicon plastic encapsulation.

FULIY TESTED AND MAREED SEMICONDUCTORS

F.E.T. PRICE

 BREAKTHROUGH !!This field effect transistor is the 2N3823 in a plastic encapsulation lent replacement for the 2 N 3819 Data sheet supplied with device. 1-10 30p each, 10.50 25p each, $50+20 p$ each

BULK BUYING CORNER

NPN/PNP SI icon Planar Transistors. mixed, untested

Sllicon Planar NPN Plastic Transistors, unteked,
to 2N3707.1I. etc., $4 \cdot 23$ per S00; © per 1,060.
Sidicon Planar Dlodan, DO. 7 Glass, wimihar to OA200/202. BAY31-36, 44.50 per 1,000 .

NPN/PNP Silicon Planar Tranaistors. Plastic TO. 18. NPN/PNP So B=113/4, BCIS $3 / 4$, BFI53/160. etc., 44.28
similar 500 ; is per 1.000 .

OC44. OCSS Transistors fully marked and tested,
OC44, OCS5 Transistors fully mark
$500+$ at 0p each; $1,000+$ at op each.
OC7I Transiators. fully marked and tested 500 + at
op each; 1,00) + at 50 each
3823E Fiteld effect Transistors. This is the 2N3823 in

I amp Minlature Plastic Diodest
IN $4001,500+284$ e each; $1,000+$ as $3 p$ each.
IN $4001,500+$ as $4 p$ each; $1,000+$ at $3 p$ each,
IN $4004,500+38$ sp each, $1,000+$ as $5 p$ each.
N $44006,500+$ at $6 p$ each, $1,000+$ ar $5 p$ each.
N4007, $500+$ as $3 p$ each, $1,000+$ is $7 p$ each.
 BY ATES ．EMIHUS • FAIRCHILD FERRANTI • I．T．T．• MULLARD • NEWMARKET • PHILIPS • R．C．A．．TEXAS

TRANSISTORS
 A SELECTION FROM OUR LIST

AAY30 100 AA AAZ
\ll

號

號सर०थ०

$\lll<$

ACCY
ACY
ACY
ACAC
ACY
AC

$A D 1$ $A D 1$ $A D 1$

$A D 1$
$A F I$
$A P 1$
AF
AF
AF

${ }_{A} \mathrm{AF}$

AP

$A P 1$
$A P 1$
$A P 1$
$A F 1$

$\mathrm{A} F 1$
AF
AF 2

AB
A8
A8
A8

A8Y
ABZ2
BAl
BAl

BA1
BA1

BAX
BAY
BAY
BCl0
BCl
BCl
BCl
BCl
BCl
BCl
BCl
BCl
BC
BCl
BCl
BCl
BCl
BCl
BCl
BCl
$\mathrm{BC1}$
BCl
BCl
BCl
BCl
號
號

\section*{| BC |
| :--- |
| PC |
| BC |
| BC |}

\section*{$\begin{array}{ll}\text { BC182L } & 100 \\ \text { BC183L } & 10 p\end{array}$} BC184L 120 BC212L $12{ }^{\circ}$ | ILC213L | 18 D |
| :--- | :--- |
| BC 214 L | N |

 BCY 30
BCY 31 BCY
BCY
BCY
BCY

Full transistor list available－ send for your
free copy today！

HENRY＇S ${ }^{\text {coss liwiegrated cireuits }}$

QUANTITY OFFERSI FROM STOCK

BRAND NEW FULL SPECIFICATION TTLT4 SERIES BRANDED FAIRCHILD，I．T．T．AND TEXAS

AFII7 Mullard 20p
$25+17 p$
$100+15 p$
$500+12 p$
$1000+10 p$
OC35 Mullard 50p
$25+45 p$
$100+40 p$
$500+35 p$
$1000+30 p$
$2 N 2926$ Green 10p
$25+5 p$
$100+8 p$
$500+6 p$
$1000+3 p$
BCI07 All Makes $\begin{array}{r}10 p\end{array}$

DISTRIEUTION

PANELS
Joed That you
aved for wort
4×18 anp sookets in metal bor to take atandard 13 amp fued pluge and oalon cwitoh whe peoce waroing light. Bupplied compioto with 7 feet of beevy cablh. Wired op randy to Fort, hen phes.

RESETTABLE FUSE

How long doee it take you to rtaew fund Ttme yourself wham next ope blows. Then reckroalos joer time en I1 per how bee bow quickly owr remettable fow (anto otroult breately) 11 por dosen, apecity 5,10 or 10 emp-aimed

EXTRACTOR FAN Cleans the atr at the rete of 10,000 erbse th. per hout sutheble sor titavers, bath roomen sactorice, chandita hardly be beard. Compect, है catin with st fing blatel ceatin with st then bladen blades, abpet meal aentm, poil blitch abect mecon coneotor, pand Artas broketa, is plue Sos poent and ins.

MAINS MOTOR Proolaion made-a a and the reoord declre and tape reeor-dem-Udel aloo tor extreotion tas, blower, heacern, eta. Ne: and perteok. Butp at EHL. Poatage 15p for frut ooe Uben 8p tor emeh one ordered.

TELEPHONE DIAL Ex-A.P.O. Parlect workling oder.

CH anch.
TELEPHONE HAND SET Ex-G.P.O. Pertect order. 50 peach +20 p p. ${ }^{2}$ p.
SELECTOR SWITCHES

plan 20p p. © p.
-Kits Fon pnevious pRojectin

> COME SENTIMEL INTRUDEN MLANM SMAP INDICATOR
> All componenti bat not cese or battery 7il WIIDSCREE WIPER CONTHOL
> Componente betoding metal for chanis se niscond PLAYE,
> All mamponents. bet not cace. Ioudopeaker, reoord deck or piok-ug as 5 DEMO DECK
> Compenenta an lite PUZ BOX
> Electronic parts includiag boz $\mathbf{3 1}$. 5 . PHOTOGRAPMIC OLOUR Electroalc compoesters leot cepe ess. ASTHOM RADIO
> All eleotroaic parta hen cem tit
> RyHote FBMPEATURE COMPARATOA
> all electronio perte loes cone 34.25.
> TMAMSISTON MIC, OPMONE All parta $81 \cdot 7$
> All oloctronio perts and metal brecket ater
> RAM WARAMG ALAN
> Il electropio parts and ohmala $\mathbf{3 n}$.e W/MWA PEDAL
> All elootronic parta

MAINS TRANSISTOR POWER

 PACKDoploned to operate tranaptor wetr and ampllisere.
 ComA (olow B warifing). Take the pleow of seny of the sollowing betteries: PP1, PP2, PP4. PPA,

 Els, ply 18 portage.

MICRO SWITCH
dos, It ampuryodel it enob, 51

10 - 10.

CAPACITOR DISCHARGE CAR IGNITION
Tha nytem which hat proved to be amastagly etheient and reliable wan fint deparibed in the7trotleae World mbout a year mo. We can eupply hit of parta for improved and even more efucient vertion (P.W. Jupe), price s40\%. When ordering pleye otate Whethar for poultive or nagative eytutems. Plue 30 p poat.

RADIO STETHOSCOPE
teatent may to tanit Atad-traces algonal from serial to epealye-when efges stope you've found the betio. Une it on Redio, TV. pivis tit oompethtas - coms fandetore and sul parts melv. din peobe tabe and crretal npleot. of win thethooxt bacleed of anpleow 76 extrs pood and tes. 20 p .

1fa. of Poles	Etandard size 11° wafer-allver-plated δ-amp conteot, tetadard $\frac{1}{4}^{\prime \prime}$ apladle 2° long-with loektog waber and nat								
	2 way	3 way	47ay	5 way	6 \%ay	8 tay	9 way	10way	12was
1 pole	40p	40							
2 poles	40 p	40 p	40p	40p	40p	40p	40p	70	70
3 poles	40p	40p	40 p	40p	70p	70 p	70p	09.	
4 poles	40p	40p	40p	70p	70 p	70 p	70 p	81.20	21.28
5 poles	40 p	40p	70p	70 p	85 p	95 p	0\%p	81.45	21.45
6 poles	40p	70 p	70p	70p	95p	95p	93p	21.70	21.70
7 poles	70p	70 p	70p	95 p	21.20	21.20	21-20	81.95	21.95
8 poles	70p	700	70p	95p	21.20	\$1.20	\&1-20	22.20	22-20
9 poles	70p	70 p	95p	${ }^{85}$ \%	21.45	21.45	\$1.45	82.45	22-45
10 poles	70p	70 p	95p	11.2	61 45	$\underline{1145}$	$81 \cdot 45$	28.70	¢2.76
11 poles	$70 p$	0	95 p	11.0	8170	11.70	11.70	22.95	22.95
12 poles	70p	0	95p	11.0	11.70	1.70	11.70	23-20	83.20

TANGENTIAL HEATER UNIT

This beater unit in the very rateat type, irsoet ancient, and quilet running, Ie an itted in Hoover and blower heaters ooding 115 and more. We hise a tew only. Comprlaee motor, impeller, 2 FW element and 1EW elemeat allowion owftching 1. 2 and 3 EW and with thermal arety cot-onk, Can
 need coatrol mwith 2 tilowatt ©0. Don't mis thila. Con'rol Ewich 85p. P. \& P. 40p.

THIS MONTH'S SNIP
MULLARO AUDIO AMPLIFIER MODULE
Uses 4 tremaletorn, and has an ontput of 760 mW into 8 olm mpenter. Input aultable for cryptal mice or plck-up. 9 volt battery operated. Blae 2° loog $\times 1 f^{\circ}$ wides
SPBCLAL BNIP PRICE EOp each. 10 for ss.

POCKET CIRCUIT TESTER

Tent coatinalty for any low repistance elrenti

 tnjeotor (otrealt sapplited), 205 or 2 for 50p. Poat pald

SOIL MOISTURE METER DARKROOM TIMER SIGNAL INJECTOR
 and olhar teatured projecta. To moelve these kite quickly mend quotod approz. price and any change due will be reluaded.

INTEGRATED CIRCUIT EARGAIN

A pareel of mincyrated clrcuits made by the Immous Flemey Compeny. A onete tim-liftetime ofter of Micro-electronic devices well below onet of manntacture.
 cab-atandard or eeoond. 4 of the ICl are aingle dilloon chtp aP emplititert. The Eth ha monolthic NPK motched patr. Regular price of pared well over s5. Foll otrealt detalle of the ICw are tncluded and in addition jou fill reoeire a
 and teohnionl dete of each. Complete paroel only 81 poot pald.
DONT MIA若 THIS TERIPIC BAROAIN.

BATTERY CO NDITION TESTER

Made by Mallory but auttable for all batteries made by Rver Ready and others, moot of which are alice carbon tJpes but aloo morcury manganeae-nicad silver oxtlit and alcaline batiertes may be toted. The teater puit a the ocadition dependiag upoo whreh atction the pointer repte. The section reads "replece"" "wast" or "rood". The tenter is complete in ite cape, dive $88^{\circ} \times 81^{\circ} \times 2^{\circ}$ with jeade and prode. Price 11.75 ples 20p portige.

THERMOSTATS
1ypu "A" 15 mmp . for oontrolling room hatiert, crembowees, atring cupbowerd. Ifa epindle tor 60, Calibretted dlal st extra. Sultable bor foe wair mounting esp.
Tre "E" 15 smp. This is a 17 in . loong rod trpe made by the famoce Sunvic Co. Bptadle adjoct this from $50-680{ }^{\circ} \mathrm{F}$. Interal parew athors the cetking to thia conald be for controlling furnsoe, ovem kilm, immeraloa
heater of to make sam Tra "n" We call this the Ioc-atest and it crate in and out at around treexing point, $2 / 8$ ampe. Fien many unes one of which would bs to teep the loft plpe trom freexlig. If a hength of our blanket wire (ie jd 601) It Woond round the plopes, 40p.

TYp ${ }^{\text {mFib. Thly }}$ In standard rotrigerntor thermotal. Apindie edjuracnent cover normil refrigert tor temperature, EOp.
Trpe "F". Glace ancesed for controlling the temp. or inquid-particalariy thoee in clam Lanke, vat rubber sucker of wire clip-ideal for fich tanks by developers and chernical batho of at trpee. Adiontable over range 50° to $160^{\circ} \mathrm{F}$. Price tip.

TREASURE TRACER Complete Kit (except wooden bettens) io male the mplal detector an the circutt in Practical WIrelen Auguat ivor. at ot plem 20 p post and ingurance.

ORILL CONTROLLER

HIGH ACCURACY THERMOSTAT Usci diterential comparator 1.C. With thermigto as probe. Designer clalms temperature control to what 15.50

AUTO-ELECTRIC

CAR AERIAL

witn dachboard control ewitch-fuily extendable to 40 in . or fully retractable. Dulable for 12 v . positive or megative carth. supplied complote with fitting tintructions and reads mired dachboard swisch. 35.75 plus 25 p pont and ing.

AUTO-LITE
as circult in Prectical \#ifireleas Kit of parta $81 \cdot 20$ pont pald.
TOGGLE SWITCH
3 amp. 260v. with axing ring 7ip each, 7\%p dos.
 CAR ELECTRIC PLUC Fite in plaoe of cigarette lighter. quick motrodion men the a slectrical mystem. 28 gench or 10 for $08 \cdot 4$.
ROCKER SWITCH
18 amp mell-Asing into an oblong hole. 10 mpproximately $1^{\circ} \times$ 年 ${ }^{\circ}$ bp anch. 10 sor B4y

MAINS RELAY BARGAIN
Bpeoial this month are some atrite doublo and treble pole changeove. releys. Contecta rated at 15 empe.
Operating coll wound for 240 V A.C. Good Britth Make. EX-unneed equipment. Size approx. $1^{\circ} \times 1^{\circ}$. Open congtruction Blayle pole 80 enoh 10 for ate

BLANCED ARMATURE

UNIT
600 ohm, oparstes apeaker or mpleroctrevitu. 885 each, 88.50 doz .

2tkW FAN HEATER Three poaltion awitehiot to 8 anit changes in tho wetcher 8witch op owitch down for hall heot (1) WW), swlach ceatral blow cold for rummer coolingadjustable thermontet acts as auto ooatrol and eatety out out. Complete lit sirs. Poot and ins. 50p.

Where potagst is not atuted then criders over Es en poet troo. Below s5 add \$0, Bemieondectore add 59 poot. Over 81 pant iree. BANE With exquirioe phame.

J. BULL (ELECTRICAL) LTD.
 (Dept. E.E.) 7 Park Street, Croydon CRO IYD

 Callers to: taza Tamworth Read, CROYDOMRATES: 7p per word (minimum 12 words). Box No. 7p. extra. Semi-display- $\mathbf{~ 4} 4.50$ per single column inch. Advertisements must be prepaid and addressed to Classifled Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD.

SERVICE SHEETS

* Service Sheets and Manuals *

send S.AE. for 'FREE' List of Practical and Technical Booke on Radio telewision now avarlable to -

BELL'S TELEVISION SERVICES

Albert Place. Harrogate. Yorkshlre. Telephone 0423-86844

RECEIVERS and COMPONENTS

JEF ELECTRONICS

WE SUPPLY
NEW - BRA NDED - GUARANTEED Microcircuits. Transistors, Rectifiers, etc. at highly competitive prices SN76013N (like super IC12!)-£1.50;

741-36p; 2N3055-50p; IN4002-4p.
SPECIAL OFFER! 2W AUDIO AMPLIFIER AND PRE-AMPLIFIER COM BINED MICROCIRCUIT- $£ 1.00$ only including full instructions and postage and packing.
(E.E.3) York House, 12 York Drive, Grappenhall, Warrington, WA4 2EJ.

Mail Order Only. C.W.O. P\&P 7p per order. Overseas 50p. Money back if not satisfied.
LIST FREE ON APPLICATION

DO-IT-YOURSELF... we stock a large range of audio and electronic components at very competitive prices, e.s.: Chassis speakers, crossover networks, hi-fi speaker kiss (Wharfedale 8 Peerless), BAF sound absorbent, speaker srilie fabrics, inductors, resistors, electrolytics (reversible and polarised), transisters, etc. Send for FREE list. ($2 \times 3 \mathrm{p}$ stamps for fabric samples.) Mail-order ONLY. No callers please.:

4 UDIOSCAN M

COTPUTER PANELS 5-BCI08, DIODES. 15p, poat 5p 4-50p, Pont lop. AIERICAI PAMELS TOTAL AT PONENTS, 4-65p, Poat 10p. ABSORTED PANHLA $6-75$, Post 15p. UITT WITE 4 LA\& POT CORR Plus 112% CAPACITORE 50p, Poat 12P, BINGLEA 80p c.p. ORPIA ON PANEL EX EQUIPT. ABP c.p. FERRITR ROD 7 x 18 p . Post 8 p each. Poot for 527 p . ICa 7400 glties on PAMELA 10-75p, Poat 10p. 'FALL OUTR $6-10 p$ Poet 3p COPPER CLAD PAZOLIM RINGLE A1DED $8 \times 8,10 p$. Poot Sp each, 13×11, $80 p$, Poat 8 p TRAIN $200-250 \mathrm{~V}$. 30 e c.p. ELECYROLTTICS 5,000 MPD, 25 V . 40 p c.p. $\& 2$ POSITIOA SIEPPIMG SWITCE
 Poot 12p. BARI 10 WIRE TIDED HEOIS 30ρ. Pont 7 p
 15-50p c.p. A8sORTLD POTs f" gPIEDLEs SiNGL AND GANGED 15-50 c.p. TRAHEORMER II DE CAET BOX MAINS PRIM. BEC 26-0-28 AT 0.65 AMP OR $2 \times 13 V$, it. Poot 25p. SEND LARGE B.A.E. FOR IBT OF PANALA, ETC

31b AR8ORTED PANELS 75p c.P.
CONTAIN REG, CAPS, DIODEB INDUCTORE, ETC

J.W.B. RADIO

76 BAYFIELD ROAD, SALTORD 6, LAMCS MAIL ORDER ONLY

SERVICE SHEETS (1925-1971) for Televisions, Radios, Transistors, Tape Televisions, Radios, Transistors, Tape
Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8,000 models available. Catalogue 13p. Please send S.A.E. with all orders/ enquiries. HAMILTON RADIO, 54 I ondon Road, Bexhill, Sussex. Telethone: Bexhill 7097.

PRINTED CIRCUITS

MAKE YOUR OWN printed circuits Industry use etched printed circuits boards because they are the cheapest and most flexible method of mounting components. Now you can make your own. Send $£ 1 \cdot 20$ for your kit today (FREE two circuit diagrams for experl(FREE two circuit diagrams for experi$\begin{array}{lll}\text { menting) } & \text { to } \\ \text { TRONICS } \\ \text { P.O. Box } 39,2\end{array}$ Woodland Avenue, Brentwood, Essex.

EDUCATIONAL.
ENGINEERS-get a technical certificate. Postal courses in Engineering, cate. Postal courses in Engineering, Electronics, Radio, T.V., Computers,
Draughtsmanship, Building, etc. FREE book from: BIET (Dept. Hं.23) Aldermaston Court, Reading RG7 4PF. Accredited by CACC.
TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566), Intertext House, London, SW8 4UJ. Accredited by the CACC

MISCELLANEOUS

RECORD TV SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included. $£ 1$ post free. CROWBOROUGH ELECTRONICS (E.E.), Eridge Road, Crowborough, Sussex.

> EHRTOMASOMITR electronits 1972 CATALOGUE 20p. post free
> bf Fortis green road, London N10 3HN

INDISPENSABLE GUIDE for Hi-Fi equipment; buy Audio Supply's new 100 page photographically illustrated catalogue (60 p). Fair cash terms and service. Our associates manufacture records from customers'tapes. Specify requirements to Sound News, 18 Blenheim Road, London, W4 IES.
UNIMIXER 4 S mono/stereo mixing unit £45. Recent reviews, specs. from manufacturers; Soundex Ltd., 18 Blen. heim Road, London, W4 IES.

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
because this GPO approved transmitter/ receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means. Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGE-has obvious applications for SCHOOL PROJECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc.

GET YOURSI SEND $\mathbf{£ 5} 50$ NOW
S.A.E. for delalls

TO: BOFFIN PROJECTS'

DEPT. KEE.
4 CUNLIFFE ROAD,
STONELEIGH, EWELL, SURREY

PROFESSIONAL CONTROL PANELS

with EASCIA KIT

MAKE YOUR OWN PANELS IN PERMANENT. ANODISED, SELF-ADHESIVE ALUMINIUM, NO SPECIAL EQUIPMENT NEEDED. EASYTOFOLLOW INSTRUCTIONS. CHOICE OF SILVER ON BLACK, RED, BLUE, GREEN.
 $\left.\begin{array}{l}\text { No. 1. KIT (} 54 \text { sq. in.) } \\ \text { No. } 2 . \\ \text { KIT } \\ \text { (72 sq. } \mathrm{in} .)\end{array}\right) .$. MPE Led., Dpt D.E. Bridse St. Clay Cross, Derbys

Beat Power Cuts, 12 ins watt Tube, ideal for Caravan. Tent. Emargency Lighsing, esc. Fully Transistorised, Low Battery Drain. With ON/OFF Switch and 12 V Socket to run other Lights or 12 V Equipment.
Unbeatableat $£ 3.30$
or in kit lorm £2.90
Easy to construct
SALOP ELECTRONICS Callers weicome 21 Wria Cop
Shrewabury, Shropahire Large S.A.E. for lists

JOHN SAYS.

HING MODULATOR by Dewtron is professionad, transformerless, 5-iransistor, has adjustabje FI/F2 rejection. Module 27. Unit CB-N. WAA-WAA Pedal kit of all parts, incl, all mechanics it instr. Only E2-95. AUTO RHYTHM from Dewtron modules. Simple unit for walkz, foxtrot etc. costs 118.00 in modules. SYNTHE. SISER MODULES and other miracles.
Send ISp for illust. list. Send ISp for illust. list. D.E.W. Ltd., 254 Ringwood Road,
Ferndown, Dorset. Ferndown, Doreet.

AGATALOBUE
 Is the first step to a successful electronic building project. Beginners and experts alike can select their needs from a cataIogue which shows the wealth of Professional components distributed by R.S. Components Ltd. (formerly Radiospares). Every Radiospares item specified in constructional features can be supplied, just as quickly as the poseman can get to your home.
 ALL LISTED COMPONENTS ARE POST PAID TO YOUR HOME IN THE U.K STRICTLY MAIL ORDER ONLY.
 SEND ONLY 25p FOR YOUR COPY OF THIS INVALUABLE 96-PAGE CATALOGUE TO:-
 CELECTRON-E
 MAIL OROER ELECTRONIC COMPONENTS P.O. Box No. I,
 Llantwit Major, Glamorgan CF6 9YN

EX COMPDTER PRIMTED CIBCUIT PAKELA $2 \ln \times 4 \mathrm{ln}$ packeal with aemi-cunductira anil top quality reniators, capacitora, d lodee, etc. Our price io boarida sop, P, \& P. Fi, Whi a kuaranteed mindmum of 35 traniblora. Bata a transiatora Includen)
speclal bargain pack. 35 boards for 21. P. \& P. 1 Rp. Whth a guaranteed mataithun of 85 translohers. Data on tramsietore Included.
PAlbeLs with a power tramatatere similar to OC28 on each board-components 2 boarila (t OC28) 50p. IP. \& P. fil.
9 OAb, 3 OA10, 3 J'ut Corea, 26 Resistors, 14

 P. \& P. 2ip.
700C OPER ATIOMAL AMPLIIIER TOS

250 MIXED RESISTORS

I50 MIXED HI STABS

QUARTZ HALOGEN BULBS

Whth long leaids. 12 V 55 W for car spot fights. projectorn, elc. 80 p erich. . . T. SI.
GPO EXTENSIOM TELEPROMES

BARGAIN RELAY OFFER
Sithgle pole cbange over silver contucta 25 V to
60 V . 2.5 k a coll. 8 fur 80 p . 1P. \& P. 5 p .
KEYTRONICS mail order only 44 EARLS COURT ROAD
LONDON, W. 8
01-4788499

BOOINE TYPE N.C.I. GEAREO MOTOR
 Roversible. li70th h.p. 50 cycle, 0.38 amp (Type 2)
28 r.p.m. Torque 2016 inch. Pime Toversible. $1,80 \mathrm{kh}$ h.p.i 50 cycle, 0.28 amp. $1 \mathrm{ASV}^{\text {new }}$ ac. sendition. Snpur volrage of motor former for $230 / 240 \mathrm{~V}$ a.c. input. Price, either type 63.15 ofus $35 \mathrm{p} \mathbf{P}$. \& P . or less transformer $\frac{62 \cdot 13}{12}$ volus 27p P. \& P. Powerful \mathcal{L} amp. RESpeed 3.750 RPM com-
 plete with external gear speed of aqprable) 125 RPM. Sivine fina $\frac{4 t^{\prime \prime} \times}{230 \mathrm{~V}} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS
Manufactured by either
Smith. Buits-in gearbox
IR.P.M. cw $/$ R.P.H.A/cw 10 R.P.H. A/cw 60 R.P.M. cw 2R.P.H. 3 R.P.H. A/cw 15 R.P.H. A/cw 3 R.P.H. A/cw 20 R.P.H. cw
6R.P.H. cw 30 R.P.H. cw ise.
$\mathrm{ew}=$ Clock
Fraction of makers' price. Allat $7{ }^{2} \mathrm{~s}$ pincl. P. . PP. G.E.C. 12 WAY 15 AMP. CON NECTORS NEW in maker's Noffigetes. Carton. $\quad 1.25$
per dox
aid Min 1.50 per dox. Post
PROGRAMME TIMENS

Drives 15 cams, ear.
operating a 10 amp
micro switeh. Cams are ind.
vidually variable. allowing innumerable combi-
nations. Ideally suited for machinery convrol automacion, exc. Also in the field of enter:

ELECTRONIC ORGAN KIT
Easy to build. Solid State. Two fuli $\{$ hardwood case. Powered by two $\}$ penlite $1+V$ batteries. Complete set of parts including speaker, etc. tunes. Price $\oint .00$. P. \& P. 22p.
50 in I ELECTHONIC PROJECT 50 easy to build Proje
ing. no special tools required. The kit incluces Speaker. Meter, Relay, Transformer, plus a host of other
components and a 56 -page instruction componenis and a 56 -page instruction
leaflet. Some examples of the 50 leaflet. Some examples of the 50
possible Projects are: Sound Level possible 2 Projects are: Sound Level etc. Price $\mathbb{7 7 . 7 5}$. P. \& P. 30p.

CRYSTAL RADIO KIT
Complete set of parts, including Chassis, and Personal Eap Piece, No Chassis, and Personal Ear Piece. No
soldering, easy to build, full step by
siep insurucrion VENNER Elecric Time Switch VENNER Eleceric Time Switch
$200 / 250$ Ex. GPO. Tested. M
 OFF dawn. Price as above.
MICRO SWITCH
Fitred with removable Eush button sssembly
 OPERATED MICRO SWITCH A.C. c/o contacts. NEW in maker's Carton. Price: 10

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230,140V a.c. 50,60 OUTPUT
VARIABLE 0.260V
All Types (and Spares)
from $\frac{1}{8}$ to 50 amp from stock.
SHROUDED TYPE
$\begin{array}{ll}1 \text { amp, } 87.00 & 2.5 \text { amp, } 20.05\end{array}$ $10 \mathrm{mmp}, 422.50 \quad 20$ a mp. 449.00 37.5 amp . $22.00 \quad 50 \mathrm{mmp}$. 89.00 All plus (1.00 carr. where not specified. OPEN TYPE (Panel Mountins) $\frac{1}{1} \mathrm{mp}$. 4.75.

Superion quality vecision Maxie
 $\mathrm{H}=\mathrm{w}$ P PW:R Ry:
 100 WATT. 1 ohm, 10A: 5 ohm, 47 A :
 10 ohm, 3A: 25 ohm, $2 \mathrm{~A} ; 50$ ohm, I.4A;

100 ohm, IA: 250 ohm; $0.7 \mathrm{~A} ; 500$ ohm
mA . Diamerer 3 fin Shaft lengeh fin, dia. If in. All at 140 each. P. \& P. 5p. 50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$. All at 25 WAT'T. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3 \cdot 5 / 5 \mathrm{k} \Omega$. All at 78p each. 户. A. P. ISp

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the lutest type Kenon white jight Mash 2 ube solid state timing and triggering EXPERIMENTEAS' ECONOMY KIT
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijunction Xenon Tube and instructions $\mathbf{6 6} \cdot \mathbf{3 0}$, plus $\mathbf{2 5 p}$ P. \& P. NEW INDUSTRIAL KIT
Idealty suitable fer schools, laboratories. etc. Roller tin printed circuit. New tritzer coit, plastic thyristor. Speed adustable HY-LYGHT STKOBE MK III
This strobe has been designed and produced for use in utilises a silica plug-in tube for longer life expectancy. printed circuit for easy assembly, also a special trigger coil and output capacitor. Speed adjustable $0-30$ f.p.s. Light output approx. 4 joules. \&12.00. P. \& P. $50 p$. SPECIALLY DESIGNED. FULLY VENTILATED
METAL CASE. Induding reflector. $44-00 \mathrm{P}$. \& P. 4Sp METAL CASE, In

THE 'SUPER' HY-LYGHT KIT

Approx. four times the light output of our well prove

Hy-Lyght strobe. Incorporating:
Heavy duty power supply
Varibile speed rom $1-23$ flash per sec
The brilliant light output of the "SUPER" HY-LYGHT sives fabulous effects with colour filter.
Never before a Strobe Kit with so HIGH an output at so LOW a price. ONLY 20 plus 75p P. \& P METAL CASE specially designed for the Super Hy-Lyght Kit including reflector 27.00 P. \& P. 45p. 7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 53p, P. \& P.

RELAYS New SIEMENS PLESSEY. etc. Miniature
 (1) Coil ohms; (2) Working d.c. volts; (3) Contracts; (4) Price
(HD) Heavy Duty. All Post Paid. 12 VOLT D.C. RELAY
Three sets c/o contacts rated at 5 amps. 78p incl. P. \& P. (Similar to illustration below.) 'DIAMOND H* 230 VOLT A.C. RELAYS -2 (UNUSED)
Price: $50 \mathrm{p} P \mathrm{P}$ \& P concacts rated at 10 m amps. 100 lots $\& 40.00$ incl.
P\& P.)
'KEY SWITCH* 230 VOLT A.C. RELAYS
One set clo contacts rated at 7.5 amps . BOXED. Price: 40p. One set c/o contacts rated at 7.5 amps
P \& P 5 . (100 lots 82.00 incl. P \& P.)
230 VOLT A.C. SOLENOID OPERATED IL.P. VALVE
Will handle liquids or gases up to 7 p.s.i. spring. t" b.s.p. inletfoutlet. Precision made, spring. "" b.s.p. inletfoutlet. Precision made,
Britigh mfg. Price fi.75. P. \& P. 20p.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. E.E. 57 BAIDGMAN ROAD, LONDON, W4 5BB Phone 0i-195 1560 SHOWROOM HOW OPEN MON.FFRI.

Personal callers only. Open Sat. 9 LITTLE NEWPORT ST. LONOON WC2H 7JJ O1-437 0579

TRANSISTORS

MULLARD SUB-MIN ELECTROLYTIC
 Values: (μ F/V): $0.64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2 \cdot 6 / 16 ; 2.8 / 64 ; 4 / 10 ; 4 / 40 ; 8 / 64 ;$ $8.4 / 6-4 ; 6.4 / 25 ; 8 / 40 ; 10 / 16 ; 10 / 64 ; 12-5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 26 / 64 ;$
$25 / 25 ; 32 / 10 ; 32 / 40 ; 82 / 64 ; 40 / 16 ; 80 / 6.4 ; 50 / 25 ; 80 / 40 ; 84 / 10 ; 80 / 2.8 ;$ 25/26; $32 / 10 ; 32 / 40 ; 82 / 64 ; 40 / 16 ; 80 / 6 \cdot 4 ; 80 / 25 ; 80 / 40 ;$ R4/10; $80 / 2.8$ $80 / 16 ; 80 / 25 ; 100 / 8 \cdot 4$: $125 / 10 ; 125 / 18 ; 200 / 6 \cdot 4 ; 200 / 10 ; 320 / 6 \cdot 4$.

SILICON RECTIFIERS

HYRISTORS (SCR)	L
PIV 500100000000	CAPACITORS
1 A 260 27id 3740 400 47io	0.01. 0.022, 0.033, 0.0473 s each
4A S7id 85P 57ip - 77ip	
7A - 87ic 9210 - 81.12\%	
TIC47 0.0 amp . 200 PIV 55 p .	$0.15,0.22,0.38 \ldots . \quad . \quad 8 \mathrm{p}$ ench
Also 12 mmp . 100 PIV 75p	
2N3525 at	$\begin{aligned} & 0.68 \\ & 1 \mu \mathrm{~F} \end{aligned}$
	1.6 MF 21D
VEROBOARD $22 \mu \mathrm{~F}$	
$\begin{array}{cc} 0.15 & 0.1 \\ \text { Matris Matris } \end{array}$	WIRE-WOUND EESISTORS
$21 \times 31 \mathrm{in}$ 17i0 20p	2.5 watt 5% (up to 270 ohnus
$21 \times 8 \mathrm{ln} \times 210 \quad 240$	
	5 watte 5% (up to $8.2 \mathrm{k} \Omega$ onls), 9 p 10 watt 8% (up to $25 k \Omega$ ouly), 100
Vero Pins (Bag of 36) 80p	
Vero Cutter 45p Pin Inmertion Toois (-1 and 15	POTENTIOMETERS
matrix) at 55p.	Carbon: Log, and Lin., lens awitch, 16D.
HEAT SINKS \quad Log. and Lin.ewth swilch,	
	Twin Ganged 8tereo Pota, Log. and $\mathrm{Ln} \mathrm{n}_{\mathrm{og}} 40 \mathrm{p}$.
Finned for Óne TO-3 Trane., 83 p .	
For so-1, 2ip. For TO-5, Sp	PRESETS (CARBON)
inned, For TO-18. SD Finued	80 VERTICAL
RESISTORS	0.3 Watt 6id EORIZONTAL
	THERMI
Twatt $5 \%, 10 . \quad$ E24 Beries.	
Wentt $5 \%, 1 p \mathrm{p}$.	R58 (8TC) 21.27% VA3706 95p
2\% M/0 ${ }^{\text {\% }}$.	K151 (1k) 18p VAl077 80p
1 Watt 10%, 2tp. iw	Muilard Thermintors also in
2 watt 10%. 0 p. El2 Eerien	stock. Please enquire

Tel. 01-452 0161/2/3 A. MARSHALL \& SON Telex 21492

28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2

Build yourselfaTRANSISTOR RADIO

28

NEW! "EDU-KIT"

BUILD RADIOS, AMPLIFIERS. ETC.
FROM EASY STAGE DIAGRAM'S FIVE UNITS INCLUDING MASTER UNIT TO COMPONENTS INCLUDE
Tuning Condenert: 2 Volume Controln: 2 slider
 erial: 3 Plugs and Sockets: Batter: Clps: 4 Tag
Boarda: Balanced Armature Unlt: 10 Trannistorn: es: Resiatory: Capacitors: Tnree fo K nobs Unite once conntructed sre detachable from Master Unit. enabling them to be Schools. Eductional Authorities and all thome intereated io radio conntruct lon
All parts including SS-50 p. p. \&
Case and Plans

Calfera aide entrance Barratts Show Shoo
Open 10-1, 2,30-4.30 Mon,-Fri. -12 Sat.

Exclusive to readers of "EVERYDAY ELECTRONICS" "EVERYDAY SEVEN"

Total building cost £8.50

P. P. \& In. 80p
(Overseas P. \& P. 41

ROAMER SIX
 for Bhort Waved
3 in. Bpeaker. B
stagen- 6 tranamera and 2 otogea including Mieroalod milie. Tiam and black knobs with polished metal inserta. Size $9 \times 5 t \times 2$ lin. approx. Fany bulld metas and parts price list 150 (FREE wlth parts). Farplece

Fith plug and awithed nocket for privato listeniag

TRANS EIGHT

8 TRANSISTOF. and 3 DIODE:

Tunable Wave
 BW1, sW\%, EW3 and Trawler Eand. Bensitive ferrite rod aerial for M.W. and L.W. Telecopic aerial for Bhort Wasea. 3 in . Speaker. 8 improved rpe tranaintuis plus 3 diodes. Attractire case in black with red grille, dlal and black knobs with polished
metad inmerta. Eize $9 \times 5 \& \times 21 \mathrm{in}$. approx. Push pull output. Batters economiser suitch for extended battery ife. Ample pewer to drive a larger speaker. Parts price 1 lst and eas build plann 25 p (FREE With parta). Earplece with plug and switched socket for private

Total building costs
(Oversean P. \&P. \& $)$

RADIO EXCHANGECO

61 HIGH STREET, BEDFORD
Tel. 023452367
I enclose E
please send items marked ROAMER TEN \square EVERYDAY SEVEN ROAMER EIGHT \square TRANS EIGHT TRANSONA FIVE ROAMER SIX PCCKET FIVE \square EDU-KIT
I Parts price list and plans for
| Name
Address

10th EDITION CATALOGUE

TEST EQUIPMENT Huge range in stock－too
much to list here．It＇s all in the latest catalogue－prices specifications etc．Also Panel
Meters and Edze Meters

GAARARD MCDONALD GOLDRING UMNTABLES CHASSIS（Past SOp）

SP2513 \＆11．30 HT70 \＄1660 MP60 \＆11．30 MP610\＆15．15 AP76 $\mathbf{2 0 . 5 0}$ Zero lo0s 44.97 With PLINTHICOVE | MP60 PO PE 70D |
| :--- |
| 17.65 |

$\begin{array}{ll}\text { HP60 PC } & 177.65 \\ \text { HLT5 PC } & \mathbf{3 7 . 3 5} \\ \text { HT70 PC } & \mathbf{2 3 . 5 0}\end{array}$

GL72P	232.95
125	

CART／PLINTH／COVER

> GLT2PC/GB00
（HL）AP76／G800
HT70 PC／G800
MP60 PCISC5M

（HL）SP25／3／G800H | （HL）Sp25／3／G800H |
| :--- |
| （HL） 2025 TC19TAHCD |
| 14.95 |

ULTRASONIC
TRANDUCERS
FOR USE WITH PURCHASES
Send to this address－Henry＇s Radio Led．，（Dept．EE）． 3 Albemarle Way，London，E．C．I－for catalogue by post only．

All other mail and callers to＂ 303 ＂，see below
HENRY＇S CATALOGUE IS A MUSTFORELECTRONIC
COMPONENTS OF ALL TYPES
 Teleton F2000 Med／Secreo 2025 TC／19TAHCD Auto with plinth and cover．Palr match－ ing speakers R60．Size 16 x $9 \mathrm{f} \times 6 \mathrm{tin}$ ．All leads etc．
 or with MPGOISC5MD Single Player 857：50，Carr． 2

2200 SYSTEM

 Rota $10+10$ wates Stereo Amplifier，Garrard SP25／3 Goldring G80CH，plinth and cover，pair of speakers SOL2（or KNBOO）Slze $18 \times 10+\times$ ${ }^{7} 2$

206 B SYSTEM Teleton $5 \mathrm{AQ206BB}+8$ watts
Stereo Amplhfer，Garrard SP25／3，Goldring GB00H plinth and cover．Pair of ipeakers SDLI（or KBO），Size is \times lot $\times 7$ fin．All leads List
690 $\mathbf{5 5 . 9 5}$ Carr． 62 or with 2025TC19TA HCD and $K 60$ Speakers $16 \times 94 \times 6 \mathrm{tin}$ ， PHILIPS SYSTEM RH7E1 10 ＋ 10 wats Med／ Long／Short／stareo FM Tuner Amplifier pair RHail Speaker Systems $101 \times 7 \frac{1}{x} \times 7$ Iin．
McDonald MP6OPIInth／Cover McDonald MP60／Plinth／Cover

FREE Latest HI Fi\＆Tape Recorder 12 page Stock Discount
PUBLIC ADDRESS，LIGHTING \＆DISCOTHEQUE EQUIPMENT

DJl0s5 30 whtt rms Amplifier， 4 inputs，master tone

and volume controls etc． 8 ohm output．Cased portable． E13．50．Post 40
Dif0 70 watt rms version．Cased portable． 15300. Post ${ }^{40 \mathrm{p}} \mathrm{p}$
DISCOAMP 100 watt rms to 8 ohms． 4 inputs，separate bass and treble controls，PFL，etc．Cased for cabinet or rack mounting $46-50$ ．Post $40 p$
McDONALO MP60 fitted 5C5MO cartrldge to match above olinth with cover． Post 70p；
DJ30LIl＇ channel light control unit for above ampll． fiers． $3 \times 1 \mathrm{~K}$ Watt．Treble，Bass and Mid range． $33 \cdot 50$ ． Post 35p．
EFFECTS PROJECTOR5－Coloured rotating light patterns． BABY IMP 250 watt Tungsten 272 －50 LIQI $150-150$ watt O．I．

MORE OF EVERYTHNG AT LOW PRICES ALWAYS AT HENRY＇S

POLISMED CABINETS FOR ISO，ISOTC and 450 Post 300．

OWER AMPLIFIER MODULES Quatity transformarless low noise amplifiers Modern compact deslgns．PA25 and PA50 upplied with plug harness for use wlth 1U442 Power Supply．
MPA12／3 18v． 0.8 A ．12W， $3-4$ ohm， 44.50 MPA12／15 30w， 0.5 A ． $12 \mathrm{~W}, 12.16$ ． 14.50 25．25
MU24／40 Malns unit for 1 or 2 MPA12／3 or 15． 14.50
PA25 22－0－72v，1A．25W， 8 ohm． $\mathbf{6 7}$ ．50 PA50 22－0－22v．2A．50W，3－4 ohm，E9－50 MU442 Mains unit for I or 2 PA25 or I only PASO， 6600

Post 20p per unit
ALL SILICON．FET PREAMPLIFIER AND PIIXER SELF POWERED

30日mW TRANSISTOR AMPLIFIEM MODEL $4.3 \% 0$ Fully ussembled 5 TR Amplifier．Size $54 \times$ If x in． $1-10 \mathrm{mV}$ adlustable sensitivity． Ourput $3-8$ ohms．Fieted Vol．control． 9 volt operated．Thousands of uses plus 9 volt operated．Thousands of uses plus low cose．
 （or 2 for Ei．2．p，p．p．15p）

BUILD THIS VHP FM TUNER 5 TRANSISTORS 300 kels BAND． WIOTH，PRINTEO CIRCUIT，HIGH
FIDELITY REPRODUCTION．MONO AND STEREO
A popular VHF FM Tuner for qualicy and reception of mono and stereo． There ls no doubt about it－VHF FM separacely．Froe Leaflet No． 3 t TOTAL Ss－97．p．p．20p．Cablnet 100p．Decoder Kit 65．97． Mains unle（optional）Mod
Mains unit（optional）Model PS900 〔2 47．Post 20p
Mains unit for Tuner and Decoder PS1200 K2．62．Post 20 p
SINCLAIR，PROJECT 60 MODULES －SAVE POUNDS！ 230 © 43
STEREO

60 $\begin{array}{lll}250 & 64.38 \\ P 25 & 69.98 \\ P Z 8 & 65.97\end{array}$ | PZ6 | 17.98 |
| :--- | :--- |

Transformer for PZA $\mathbb{C 2 \cdot 9}$

 Active Filter Unit 4.7 Stereo FM Tuner $\$ 20-25$ ALSO IN STOCK 2000 C23．75： 3000 C 31.50

PACKAGE DEALS
$\frac{2}{2} \times \mathbf{Z} 30$ ，Stereo 60，PZ5 416.75 2×230, Stereo 60，PZ6 $\mathbb{2} 18.25$
$2 \times$ Z50，Stereo 60，PZ8 $£ 20-25$ Post 25p extra on above items Transformer for PZ8 12.95
Post 200
NEW PROJECT 605 KIT $220-95$
Post 250 ＂BANDSPREAD＂PORTARLE TO BUILD

Printed circuit all zransistor design using Mullard RFfif Module．Medium and Long Wave bands plus Medium Wave Bandspread for extra selectivity． Also slow motion seared euning， 600
$m W$ m W push－pull output，fibre slass PVC
covered cabinet，car aerial．attractlve covered cabinet，car aerial．
TOPEarance and performanise． B．p；32p．（Baztery 22p）．All parts sold separately－Leaflet No． 2. advertised） 66.9 最 $\mathbf{3 5}$ from seock－Leafler No previously

SLIDER CONTROLS．TOP quality 60 mm ingles and gange complate with now．（Post ly 5 ： 6 of more 20p） $5 K, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K}$, I Meik．Log and Lin 45 each $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ ，Los and Linganged．

Electronic Cotipontints．
 Audió and Test Gear Centr 356 BDCMARE ROAD． LONDPNEW． 2. Tel：01－402 4736

High Fiffury soles． Demonstratians CCitre 354 EDGWARE ROAD． IONDON，W． 2
Fels－012042 58：

P．A．，Disco
\＆Lighing contre
30 EDGWARE IOAZ．
をoMDON W． 2.
TA1 M15123 606．

[^0]: © IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $\mathbf{E 2 \cdot 3 5}$.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^1]: 2 minutes lioni KJNG'S CROSS EUSTON \& ST PANCRAS

