A NEW MAGAZINE BRINGING A E E ERTONE HOBBY PROJECTS EASY HYY EXPLAINED

....AND THE EXPERIMENTER

Ancolla suderining Instruments add to your efficieincy

THE NEW 'INVADER'

ADCOLA L. 646

for Factory Bench Line Assembly

A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits

(illustrated) available
COPPER

838 -	
$\square-$	
B 14 年 ${ }^{\text {a }}$ - 2.4 mm chisel face	
$824 \frac{1}{10}-4.75 \mathrm{~mm}$ SCREWDRIVER	
-	
B $12 \frac{1}{19}-4.75 \mathrm{~mm}$ EVELET ait	
B $58{\frac{1}{\frac{1}{2}^{\circ}}}^{\circ}-6.34 \mathrm{~mm}$ chisel fact	
LONG LIFE	
- 0	
B $42 \mathrm{LL} \mathrm{t}^{\circ} \mathrm{C}$ - 4.75 mm	chisel face
$\longrightarrow-$	
B $38 \mathrm{LL} \mathrm{k}^{\circ}-3.2 \mathrm{~mm}$	chisel face
$\square \longrightarrow$	
B 14 LL $\mathrm{f}^{\text {\% }}$ - 2.4 mm	chisel face
$\square 5$	
B4LL $\mathrm{Ha}^{\circ}-4.75 \mathrm{~mm}$	SCREWOAIVER FACE

Don"t take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability .. . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

of robust construction

Safe, quick and secure it connects 2 -core and 3 -core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago.
Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. Invaluable for testing and demonstrations in industry and shops, the work bench and the home.
Ask for Safebloc at your jocal stockist - or you can order it direct from the manufacturer.
If ordering by post, send cash with order.
PRICE £2.60+10p P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill,Sussex.Tel. Burgess Hill2642

Selections from FELSTEAD ELECTRONICS' List
(Sent free tor stamped addressed envelope to address below)
Transistor: etc. AC126 12 $\frac{1 p}{}$ p. AF115 20p. AF116 15 p . AF117 20p. OAS 7ip. OA10 71 p.
 12 ip. OC170 20p. OC171 12pp. Many more in list. S.D.R. BY100 800piv 14p. 6 ip.p series: BYZ13 300 piv 20p. BYZ12 600 piv 25 p . BYZ11 900 piv 30 p . BYZ10 1200 piv 35 p . (Charges 61 p up to 11, paid for 12 and over). Sub-Min Traniformers: OUTPUT 3Ω for OC72 etc. 14 p . DRIVER 15 p (up to 6,6 tp). SOLDERING IRON. 81 lm modern, British highepeed 81°, all parts replaceable, highest quality, full guarantee: 81.07 (10p). DIAMOND STYLI Replacernents for B8R TC8/LP, TC8/S, TC8LP/STEREO: COLLARO 'O': RONETTE BF 40LP: Garrard GC2/LP and GCB/LP: ACOB GP65/67, all at 40p (6p). ACOS GP73 PHITIPS AG3306; $3060(3063,3066,3301,3302,3304$); Garrard GKB25, GCM21, GCB23 and many more 'Garrard' etc. 'ypes. All at 75 p . (6 p). All are of the very higheat quality DOURLE DIAMOND: BT4 (ST3, ©T5); BT10 (8T9, BT8); 9TA, 9TAHC, 3306, GP91 (For GP92, GP93, GP94 cartridges): GP91-SC for all GP91-SC Cartridges. All at $£ 1-50$ each (6p) SAPPHIRE STYLII. All those types shown above under -Diamond fiylf at 40 p ' also GP37 at 17 hp each (5p) and GP91 and GP918C at 40p (5p). No others. PICK-UP CARTRIDGES All Btandard fittings and stylit. Mono GP67/2 80p. BTEREO-COMPATIBLE (MONO) GP91/BC t1-10 STEREO GP93 \&1.30 GTEREO CERAMIC GP94 11.85 SONOTONE STEREO 9TAFC (DIA.) £2.40. RECORDING TAPE. 8till the faest quality Britiah Mylar
 Cassettes in list. MICROPFONFS. Crystal Mic 91, hand/desk 81p. MIC45. Curved metal hand-grip £1-00. CM21 Grey hand deak 62 p. 8tick '60' 81 -021. CM 70 "Planet" machined metal tapered stick type with neck cord, adaptor to ft foor stands 81.471 (all 9p). LAPPEL (or hand) with clip 32ip (6p). All are fitted with leads. Dynamic MS10 $50 \mathrm{~K} \Omega$ for desk tapered with base and slide-out adaptor $£ 1 \cdot \theta 7$. MS11. Similar, but fixed on swivel swan neck to switch-titted base, $£ 2-28 \frac{1}{2}$ (Rither 15p). Type 209 Cardioid ball, $50 \mathrm{~K} / 600 \Omega$. omnt dir, built-in vol. control, on/oti switch, special lead, handle (as good as money can buy) $28 \cdot 30$. UD130 Uni-Dir. Ball, mesh, $50 \mathrm{~K} / 600 \Omega$, Adap., cable, jack plug $84-80$. (20 p) DM160, omni-dir., Ball, 59 K Cable adaptor $£ 3 \cdot 871$ (all at 27 mp). MICROPEONE INSERTS, Dia., $1.75^{\prime \prime}$ OR 0.9° either bize R7fp (6p). EARPIECES with lead and min. $6 p$ on any). HEADPHONES De-luxe STEREO $8-16$ Ohms $£ 2.471$ same fitted control each earplece $£ 4 \cdot 20$. Both have lead and stereo jack plug (17 ip.) High Res. 2000 ohm. Adjustable 924 p (7 lp). SPEAKERS $12^{\prime \prime}$ ROUND fitted tweeter, 8 or 15Ω (state
 (6 p). EMI $13^{\circ} \times 8^{\circ}, 3,8$ or 15Ω (state which) $£ 2 \cdot 12$) (25 p): with two tweeters and erossover network 15 S $£ 3.75$ (25p). VIBRATORS. $12 \mathrm{~V} 4+$ pln non-synch. 121HD4, 24° ex. pina 27ip. 12V 7-pin Bynch. (128R7) 621p. (Both types $6 \frac{1}{2}$ p per vibrator). CONNECTING WIRE. Packs of 5 coils asstd. cols. ea. coll 5 yds. Solid core 14 p (6 p). Flexible 16p (7 \&p) Guper thin for transistor wiring 16p (6 p). PICK-UP WIRE. Super thin twin flex. 日creened and sheathed 6p yd. (6p up to 6yds.-over free). RETRACTABLE Flez Leads. (Curlies) Phonoplug each end 12ft. 39 p . 64 t phono plug/phono socket other end 25 p . 124 t . 421 D (6 p per lead all types). SEND S.A.E. for full free list of mains eliminators, smplifiers, extension aerials (car and portable), electrolytics, vol. controls, more microphones, transismin. and sub-min. slide types, pultitest meters, panel meters, all types of British and continental plugg and sockets, croc clipg terminals, valve holders siso Goldring G800 series cartridges etc., etc. 'Special Ofier' Hines at very low prices.

FELSTEAD ELECTRONICS (EE. 2)

LONGLEY LANE, GATLEY, CHEADLE, CHES. SK8 4EE
Cash with order only. No COD or Caller Servlce. Charges (Min. 6 p) in brackets after all Items. Regret Orders under 25p excluding postage, unacceptable. 8AE please ior enquiries or cannot be replied to. Charges apply G.B. and Eire only. Overseas orders welcomed (lists free overseas).

SR WAYS
 HOME RADIO (Components) LTD. Dept. EE, 234-240 London Rd., Mitcham, CR4 3HD. 01-648 8422 of obtaining components quickly \& easily

I

 CALL AT No. 240

 CALL AT No. 240 London Rd., Mitcham

 London Rd., Mitcham}

If you live within easy reach of Mitcham or are In the area at any time do call on us. We are almost opposite Mitcham Baths. We open 9 a.m. every weekday. On Wednesdays we close 1 p.m. and all other days, includirig Saturdays, 5.30 p.m. On Saturdays we have extra staff to deal with queries. We carry a vast stock of components, and 999 times out of a 1,000 we can immediately lay our hands on the particular item required.

JOIN OUR CREDIT ACCOUNT SERVICE

We began our Credit Account Service about 18 months ago and it has proved extremely popular. Little wonder! Our customers find It a very simple and convenient way of purchasing all their radio and electronic needs. We supply pre-paid envelopes and order forms and no matter how many orders you send us you make only one payment per month. There are several other advantages with our Credit Account Service. Please write or phone for details.

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

Although we are kept busy selling "over the counter" we supply even more by Mail Order. You can telephone any time of day or night, Sundays included. If you ring out of office hours a recording machine takes your message for us to deal with as soon as we open shop again. Our number is 01-648 8422. If you wish to order by post our address is in the panel at the top of the page. We deal with all orders promptly.

Post this Coupon with Cheque or PO for 70p

WHICHEVER WAY YOU

 CHOOSE you need the Home Radio CatalogueIn its 315 pages are listed over 8,000 components; over 1,500 of them illustrated. Each copy contains 10 Vouchers, each worth $5 p$ when used as instructed. Free Supplements are supplied regularly to keep you up-to-date. The Catalogue costs 50 p over the counter, or 70 p including postage and packing.

YATES ELECTRONIG
 (FLITWICK) LTD

RESISTORS
WW Iskra high stabillcy carbon film-very low noise-capless construction IW Mullard CR25 carbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. 4W Erie wire wound.

Power	wound.	-	Values	Price	
watts	Tolerance	Range	available	1-99	$100+$
t	5\%	$4 \cdot 7 \Omega-2 \cdot 2 \mathrm{M} \Omega$	E24	1.0p	0.8p
$\frac{1}{2}$	10\%	3. $3 \mathrm{M} \Omega-10 \mathrm{M} \Omega$	E12	1.0p	$0 \cdot 8 \mathrm{p}$
t	10\%	$1 \Omega-3 \cdot 9 \Omega$	E12	$1.0 p$	$0 \cdot 8 \mathrm{p}$
1	5\%	$4 \cdot 7 \Omega-1 \mathrm{M} \Omega$	E12	$1 \cdot 0 p$	0.8p
4	10\%	$1 \Omega-100$	E12	60	5.5p

Quantity price applies for any selection. Ignore fractions on total order.

DEVELOPMENT PACK
0.5 wate 5% Iskra resistors 5 off each value $4 \cdot 7 \Omega$ to $I M \Omega$

E12 pack 325 resistors $\mathbb{C 2}$ - 40 . E24 pack 650 resistors $\mathbb{C 4}$-70.
POTENTIOMETERS
Carbon track $5 k \Omega$ to $2 M \Omega, \log$ or linear ($\log \frac{\mathrm{W}}{} \mathrm{W}$, lin +W).
Carbon track $5 k \Omega$ to $2 M \Omega, \log$ or lonear (log. W, win th 24 .
Single, $12 p$. Dual gang (stereo), $40 p$. Single D.P. switeh 24 .
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C. mounting ($0 \cdot 1$ matrix).
Sub-miniacure 0 . $1 \mathrm{~W}, 5 \mathrm{p}$ each. Miniature $0.25 \mathrm{~W}, 6$ each

SEMICONDUCTORS								
AC126	12p	BFY52	22p	OC81	12p	2N3055	72p	
AC127	12p	BSY56	30p	OC82	12p	2 N 3702	15p	
AC120	12p	BS $\times 21$	25p	ORPI2	48p	2N3703	14 p	
ADI40	40p	BY124	71p	\|N400		710	2 N 3704	$17 \pm p$
AFIIS	20p	BYZ10	20p	IN4002	10p	2N3705	15p	
AFl17	20p	BYZ13	20p	IN4003	$11 p$	2N3706	12p	
BC107	10p	OABS	7 p	IN4004	12p	2N3707	18tp	
BCl08	10p	OA91	5p	IN4005	$13 p$	2N3708	10p	
BC109	10p	OA202	$7 p$	IN4006	$13 p$	2N3709	$11 p$	
BFYS0	22p	OC71	12p	IN4007	13p	2N3710	12p	
BFYSI	22p	OC72	12p	2N2926	$11 p$	2N3711	14p	
ZENER DIODES $400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to 30 V . 15 p .				ROTARY SWITCHES 2P2W, IP12W, 2P6W, 3P4W,				

BRUSHED ALUMINIUM PANELS
12 in $\times 6$ in $=25 p ; \quad 12 i n \times 2 \frac{1}{2} i n=10 p ; \quad 9 i n \times 2 i n=7 p$.

DEPT. E.E.
ELSTOW STORAGE DEPOT, KEMPSTOM HARDWICK,
BEDFORD.
C.W.O. PLEASE. POST AND PACKING, PLEASE ADD IOP TO ORDERS UNDER 12 . Catalogue which contains date sheets for most of the components listed will be sent free on request. 5p stamp appreciated.
10% DISCOUNT TO ALL CALLERS ON SATURDAYS

MULLARD POLYESTER CAPACITORS C296 SERIES

$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu F, 0.022 \mu F, 0.033 \mu F, 3 p .0 .047 \mu F, 0.068 \mu F, 0.1 \mu F, 4 p .0 .15 \mu F, 6 p .0 .22 \mu F, 7 \frac{1}{2} p$. $160 V: 0.01 \mu F$. 0.015 , 13 p .
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 3 \frac{1}{\frac{1}{2} \mathrm{p}, 0.15 \mu \mathrm{~F} \text {, }, ~} 0$ $4 \frac{1}{2} p_{0} 0.22 \mu F, 5 p .0 .33 \mu F, 6 p .0 .47 \mu F, 7 \frac{1}{2} p .0 .68 \mu F$, $11 p$. $1.0 \mu F, 13 p$.
250 V P.C mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.066 \mu \mathrm{~F}$
 $1: 5 \mu \mathrm{~F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAR FILM CAPACITORS IO0V. $2 \frac{1}{2} p .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.06 \mathrm{~F}, 0.01 \mu \mathrm{~F}_{\mathrm{F}}, 0.02 \mu \mathrm{~F}$

CERAMICDISCCAPACITORS

CAPACITOR DEVELOPMENT PACK

Selection of 100 ceramic and polyester capacitors, 100 pF to $1 \cdot 0 \mu \mathrm{~F}, ~ £ 2.90$.
ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
6p each $(\mu$ F/V) $10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$, $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10$ $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0 \cdot 64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ 20/64, 32/64.

ELECTROLYTIC CAPACITORS Miniature P.C. mounting
5p each.
ELECTROLYTIC CAPACITORS Miniarure P.C. mounting
$(\mu \mathrm{F} / \mathrm{V}): 10 / 12,50 / 12,100 / 12,200 / 12.5 / 25,10 / 25,25 / 25,100 / 25$

VEROBOARD

JACK PLUGS AND SOCKETS
Standard screened $18 \mathrm{p} \quad 2.5 \mathrm{~mm}$ insulated standard insulated $120 \quad 3.5 \mathrm{~mm}$ insulated $\begin{array}{lll}\text { Standard socker } & 15 \mathrm{p} & \mathbf{2} .5 \mathrm{~mm} \text { screened } \\ \text { Socket }\end{array}$ Stereo socket $18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ socker
D.I.N. PLUGS AND SOCKETS

2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin
Plug 12p. Socket 8 p.

BATTERY ELIMINATOR
OV mains power supply. Same size as PPQ 61.50

Vary the strength of your lighting with a DTWMASOITCH

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with thie bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{y}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression

600 Watt - $\mathbf{6 3 - 2 0}$. Kit Form $£ 2.70$
300 Watt- $\mathbf{£ 2} \cdot 70$. Kit form $\mathbf{£ 2} 20$ All plus 10p post and packing.
Please send C.W.O. so

> DEXTER \& COMPANY
> 5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883, As supplied to H.M. Government Departments.

FIND BURIED TREASURE WITH THIS READY BUILT \& TESTED

BRAID NEW FULY TRAIBISTORISED PRIMTED CIRCUIT METAL DETECTOR MODULE. Ready buif and teotad-lust plug in a PP3 battery and "phones and lt's working. Put it in acase,
acrew a handle on and TOU EAVE A PORTABLE TREASURE LOCATOR EASLL WORTE ABOUT

 by "beep" pltch increasing as you near buried metallic objects. PRIIT TDD CIRCUIT SEARCE COII so stable and sansiffee if will detect eertain objects bur ied SEVMRAL PERT BELOW GROUMDI GIVES CL:AR SIOMAI OM OKE COII ! Yow could even pay for your holidaye with two or thres dayt electronie comblned wealth of all nstlons, ORDER ROW WFInE PRESENT STOCES LAST-TRETHEDDOUS DEALAD EXPECTMD AT THIR REIABKABLY LOW PRICE, DEMONSTRATIONS DAMY ORDERS DFAPATCEIMD II STRICT ROTATIOF. SEAD NOW $84-95+30 \mathrm{p}$ cerr. $(99 /-+6 /-)$ etc. (High qually Danish Stethoscope hemdphones $\mathbf{2 2 - 7 5}$ ($58 /-$) extra if required).

SOOTHE YOUR NERVES, RELAX WITH THIS AMAZING

CUTB OUS HOISE POLLUTION- POOTERE TOUR FERVES\& Don't underestimate the unea of this fantastic new deaign-the RELAXATROV is basically a piniz nolse generator based on avasanche operated tranais-
tors. Beside being able tn mash out extraneous unwanted mound, it hea other very intereating propertles. For instance, many people find rainstorm myoteriously relaxing, a large part of this feeling of well-belng can be directly traced to the sound of falling raindrops l-o well known type of pink noise. A group of Dentimis have experimented ow palimenta with this pink nois- MO AMRSTHETICS WERE U8ED I The nolse oatensibly created a moat definite react lon on these patienta, nervous gystems with the results that their pain systems were bloched. IP TOU WORE IL HOISY OR DIETRACTIMG sURROUIDIIGS, IF YOU HAVE TROUBLE COMCLITRATIIG, IF YOU FRGL TERSED, UMABLR TO RELAEthen build this fantastic Relaratron. Once used you will never want to be without it-use this aniazing pink noise gen-
erator whenever you feel uneasy, can't relax or wiah to concentrate. TAKE IT ANYWHERE, pocket sized. Usea standard erator whenever you feel uneasy, can't relax or winh to concentrate. TAKE IT ANYWHERE, pocket sized. Uses standari
 12 YEARS OF AGE using our unlque, Btep-by*atep, fully illustrated plans. No aoldering necespary. All parta including case,
(e palr of crystal phonen, Components, Nuts, Screws, Wire, etc. etc. no soldering. Send only $2925+25 p(46 /=+5 /-)$ p. \& p. (e palr of crystal phonen, Com
parts avaliable neparately.)

SHORTWAVE TRANSISTOR RADIO

Can be built in one evening

 gre short waver, Girink advanced world-wide performance, we chose this ABC, full ilinyone trom a years up can follow the atep-by-atep, easy-asForked Aratited insuructions. (We built ten prototypes and everyoned in 30 mina-Rrads, Alrich, USA, 8witherlend, otc. Experience thrills of world wide news, sport, music, etc. Esvendrop on unusual brosdcasts. Uses PP3 hattery. Tranimiorised (no valveal). Slze only $3^{\prime \prime} \times 4 y^{\prime \prime} \times 1{ }^{\circ}$. As p. p. \& p. for al
separatelv).

EAVESDROP ON THE EXCITING WORLD OF AIRCRAFT COMMUNICATIONS - JUST OUT V.H.F. AIRGRAFT BAND CONVERTER

Hekes lantestic Meny thousanda of vihi. Aireraft Band Convertert now Christmes Gift solling in U.8.A. Lieten in to AIRLINRS, PRIVATE PLANES, JETPLAKES, Eavesifop on exetling eronstalk between pilots, grotsid approaeh control, atrport tower. Hear for vourself the diseiplined roires hiding texseness on taik downs. Be with them when they have to take nerve rippling dectaions in emergenciea-Tune fato the internatlonal distress frequency. Covers the aircraft frequency band inciuding EEATHROW, GATWICK, LUTOF, RIMGWAT, PRESTWICE ETC., ETC, CLEARASA BELL Thls iantastle fully transistorised Instrument can be duilt by anyome wine to minety in under tro howes. (Our design team built four-everyone worked frat time). No knowledge of radio or alectronice required. No soldering necenrary. Fully lilustrated almply worded instructions lake you atep-by-step. Uees standard PP3 battery. Size only $4_{10}^{\circ} \times 3^{\circ} \times 11^{\circ}$. All you do is ertend rod aerial, place close to any ordinary medium-wave radio (even tiny portables) NO COHIECTIONs WHATEVER NEEDED Une indoors or outdoors. THISRE WILL BE ENORMOUE DELCAED FOR THOS NEW DESIGV, SESD NOW, OLLI $32.87(47 / 0)+25 \mathrm{p}(4 / 6)$ p. \& p. for all parta, including case nuts, screws, wire, etc., etc. (Parta avallable meparately)

FIND BURIED TREASURE!

TREASURE LOCATOR

 TRANSISTORISEDHOW IT's EERE AT LAST, after experimenting for four and half monthe with a multitude of different circuitt and carry ing out actual Ield teata wlth prototype, our denign team have come
up with thla real winner. This fully portable transigtorized metal up with thla resi winner. This fully portable transistorized metal
locator detecte and tracks down buried metal objects-it algnala locator detects and tracks down buried metal objects-it algnala
exact location with lond audlble sound (no phones used)-uses any translator radio which fits ingide-
 KETER, LOAT COINS, JEWELLERT. OLOGICAL PIECES RETRS, ARCHAK OLOGGETS ETC., ETC. Outdoors or indoors. Exirrmeiy sensithen, will sional presence of certain objects buried sever ai
feet below grownd No knowledge of radlo or electronics required. Cam be built with ease in one ohors evening by anybody from nine yrafs of ape upwards, with the wonderfully clear, easy to follow, step-by-step, fully illustrated instructions-it. $\quad \begin{gathered}\text { resilly is enay an } \\ \text { Transistorized }\end{gathered}$ A.B.C. Transistorized - no
valves. Uses standard PP3

BUILD 5 RADIO AND
 COU LIKE TO BE GMITLY BOOTHRD OFF TO SATISFTIRG SLEEAP EVERI MOBTP Then build thin ingenioun electronic sleep inducer. Heven slops by itself so you don's have to worry abowt il beino on all night The loudspeaker produces cothing aud lo-trequency sounds, continuously repeated-but an time goer on the sounda gradually become lena and lear
until they eventually cesae atogether, the effeci it has om people of amazinoly rery nimitar to Aypmosis. A control la pro--until they eventually cease altogether, the eifect it has om peopie is amazinoly rery rimitar to Aypmosis. A control in prose Vided for adjusting the length of time etc., all transistor, can be buit by anyone over 12 yearn of age in about two hours.
No knowjedge of ejectronica or railo needed. Extremely simple, easy-to-follow, ntep-by-step, fully illustrated inetructiong
 It anywhere. All parts including cave, loudapeaker, componenth, nuts, wire, acrews, etc. etc. THERE WILL BE A GREAT

Anyose from nine geare upwards can soldering necessary. It really is as simple as a.b.c. to make. atep-by-step, simply worded KRTT at our, simply worded instroctions. BIG DEIEAMD AMTICIPATKD FOR TEIS UINQUE IM8TRUCse, loudgpeaker, transigtors, condensern, resistors, knobs, tranalormer, volume control, fire, nuta, nerews, simple case, loudspeaker, yourseil, Anlah with an exciting Christmas gift for someone.

REAL WORKING ELECTRONIC ORGAN
Don't confwee with ordinary electric orpant that timply blow air oper moushoroan type reeds ete. Eight months were apent In creating and testing this superb, revolutionary electronic organ, Folly transiatorized-no valves. Proper weli-contained loudepasker. Fifleen separale beyt "pan fwo fwll octaves "play
the "Pellow Rose of Tezas", play "Silent Niphl", play "Auh the "Pellow Rose of Tezag", play "Silend Niphi", play "Auhd
 working electronic orgsi. Although it's no theative organ h's
certainly no tiny thing, it measures $13 \times 10 \times 2 t^{\circ}$. You have the thrill and excitement of building it together with the pleanure of playlng a real, live, throbbing electronic organ. Take if anvehere-play if arywher. 10 PREVIOUS RHOWLEDGE
 ild it asally in one short evaniag following the fully thustrater,

GET A GOOD NIGHT'S SLEEP-EVERY NIGHT! INGENIOUS ELECTRONIC

CAE'T SLEEP AT MGETAP DO YOU WAKE UP IL THE MIORT AMD CAM'T GET OFF TO RLEEFP AGAMP WOULD
battery. No soldering necesRary. Size of detector head demand oxpected it thit remarkably low prion-Temarkably low grio SEET STOCES LABT All parta Including de tector head cane, nuta, screws. wire, simple $01 \mathrm{~L} \mathrm{Y}_{28.87} \mathrm{etc}$ (17/6) etc. $27 \mathrm{p}(5 / 6)$
(Sectional

 extra). Part. avaishle
heparately. Made up
look worth els

EXAMINE AT HOME FORT DAYS, YOUR MONEY REFUNDED IN FULL IF NOT 100% DELIGHTED.

[^0]
Sinclair Q16/Micromatic

016 High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design. technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the Q16 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencies without loss.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading : up to 14 watts RMS.
Input Impedance: 8 ohms.
Frequency response: From 60 to 16.000 Hz . confirmed by independently plotted B and K curve.
Driver unit: Special high compliance unit having massive ceramic magnet of 11.000 gauss. aluminium speech coil and special cone suspension for excellent transient response.
Size and styling: $9 \frac{3}{4} \mathrm{in}$. square on face x $4 \frac{13}{} \mathrm{in}$. deep with neat pedestal base. Black all over cellular foam front with natural solid teak surround.
Price £8.98.

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage $A M$ receiver brilliantly designed to provide remarkable standards of selectivity. power and quality for its size. Powerful AGC counteracts fading from distant stations: bandspread at higher, frequencies makes reception of Radio 1 easy. The plug-in magnetic earpiece provided, matches the Micromatic's output to 'give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contained within the minute attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find it as easy to take with you as your wrist watch. and dependable under the severest listening conditions.

Specifications:

Size: $36 \times 33 \times 13 \mathrm{~mm}(1.8 \times 1.3 \times 0.5 \mathrm{in}$.) Weight: including batteries. 28.4 gm (1 oz.)
Case: Black plastic with anodised aluminium front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies (550 to $1,600 \mathrm{KHz}$).
Earpiece: Magnetic type
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece. case, instructions and solder $\mathbf{£ 2 . 4 8}$.
Ready built. rested and guaranteed, with earpiece $£ 2.98$.
Two Mallory Mercury batteries type RM675 required from radio shops. chemists etc.

Sinclair Radionics Ltd., London Rd, St. Ives Huntingdonshire PE17 4HJ.
Telephone St. Ives (048 06) 4311

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder, there is an alternative - Project 605.
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 30 watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.

Guarantee
II within 3 months of purchasing Pioject 605 directly from us, you are dissatisfied with it, we will refund your monay at once, Each module is guaranteed to work perfiecty and should any defect arise in normsl use we will service it at once and without any cost to you whatsoever provided that it. is returned to us within 2 yeats of the purchase date. There will be a small charge for sevice thereather. No charge for postage by surface mail, Alr-mail charged al cost.

Sinclair Radionics Ltd., London Road. St. Ives, Huntingdonshire PE1 74 HJ Telephone: SL. Ives (04806) 4311

Specifications

Output - 30 watts music power (10 watts per channel R.M.S. into 3Ω).
Inputs - Mag. P.U. - 3 mV correct to R.I.A.A. curve 20-25,000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up -50 mV . Radio -50 to 150 mV . Aux. adjustable between 3 mV . and 3 V .
Signal to noise ratio - Better than 70 dB .
Distortion - better than 0.2% under all conditions.
Controls - Press buttons for on-off, P.U., radio and aux. Treble +15 to -15 dB at 10 kHz . Bass +15 to -15 dB at 100 Hz . Volume. Stereo Bàlance.
Channel matching within 1 dB .
Front panel - brushed aluminium with black knobs.
Project 605 comprises Stereo 60 pre-amp/control unit. two Z-30 power amplifiers. PZ-5 power supply unit, the unique new Masterlink, leads and instructions manual complete in one pack. Post free
£29.95

[^1]

SOLID STATE BLOCK MODULES Phono pre-amp E1811 inpv 100k: gain 28dB max output volt: max input 50 mV , Tape pre-amp as above E1813. ohms gain 20 dB 300 mw Organ tone onc Elsis tone Organ tone owe E1316 tone req. $200 \cdot 1 \mathrm{E}, 8 \mathrm{gz}$ oukput 80 mW . All sbove modules 9 ol. Dual gasher E1318 flash time $1-4$ secs power 6 ALUTTNTUK CRASgIS Made from 18 gauge aluminlum 4 elded chassis with corner brackets. All are 23° depth.

$$
6 \times 3-419
$$

$6 \times 4-45 p \quad 12 \times 3-58 \mathrm{p}$

 $8 \times 6-58 p \quad 12 \times 5-61 p$ $12 \times 8-88 \mathrm{p}$ Please send 10 p per chasajs $P, \& I$ CAPACTIORS Mini Electrolytics all values upto 100MPD (a) $16 \mathrm{~V}-79$ each to 100MFD @ $16 \mathrm{~F}-7 \mathrm{p}$ each. 8mall PF Capscitors only in packa of 10 but you can mis alues-25p for 10 .

250 MPD @ $25 \mathrm{~V}-15 \mathrm{p}$
500 MFD @ $25 \mathrm{~V}-21 \mathrm{p}$
1000 MFD ($25 \mathrm{~V}-87 \mathrm{D}$
$1000 \mathrm{MFD} @ 25 \mathrm{~V}-87 \mathrm{p}$
2000 MFD @ $25 \mathrm{~V}-34 \mathrm{p}$
3000 MFD @ $25 \mathrm{~V}-45 \mathrm{p}$
5000 MFD 25V-580 Pleane inc. 10 p. P. \& \mathbf{P}. wit orders under $\& 2$ value.
EA1000 3 WATT AUDIO AMPLIFIER MODULE An Audio Ampllfter designed aronnd the TAA621 Ininear I.C.:supply Voltage Speaker Imp. Frequency Overall 8ize Ideal Amplifer … $50 \mathrm{~h} / \mathrm{K}-25 \mathrm{LHz}$ Ideal Amplifier module. All guara and diagrama with each

BIZE 1t ins long for wide $13 p_{3 p \mathrm{P}}^{\mathrm{em}}$
WAFES BWITCHES SWITCH 1 pole 12 way 2 pole 2 way
2 pole 3 way 2 pole 4 way 2 pole 6 way 3 pole 4 wiy 4 pole 3 way $29 p$ each. Please inc
5 P P. \& P. Up to Sp P. \&
switches.

$$
\square
$$

The'New Picture-Book'way of learning BASC ELECTRICITY (5 vols)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is ilfustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

Thia carefully pianned series of manuals has proved a valuable course in training technicians in Electricity Electronics, Radio and Telecommunications.
WHAT READERS SAY
" 'KEY' TO THE KNOWLEDGE"
"Your books have been the key to the knowledge I have needed." J.M., Horsham.

"UNDERSTAND THE BASIC FACTS"

"This is the first time I have been able to understand the basic facts as all other books are too complicated." L.W., Sheffield
"IDEAL TEACHING AGENTS"
"The books are ideal teaching agents. Thank you"

To The SELRAY BOOK CO. 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT UBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY $£ 4.50$ Cash Price, or Down Payment of $£ 1.00$ followed by4 fortnightly payments of $£ 1.00$ each. Total 85.00 . BASIC ELECTRONICS £5.30 Cash Price, or Down Payment of 11.00 followed by 5 fortnightly payments $\$ 1.00$ each. Total $£ 6.00$. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
\square BASIC ELECTRICITY \square BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

10 \& 23, TOTTENHAM COURT ROAD, LONDON, W. 1 TEL: 01-636 3451/2639 HEAD OFFICE \& MAIL ORDER DEPT. 23,TOTTENHAM CT. RD. TEL:01-636 3451

G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

SPECIAL SOP PACKS, ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE! ! ! RESISTORS. t1t wate
assorted to 3 watt
to 7 watt
0 watts
Multi-tapped watt
APER CONDENSERS
TV types
Miniature
ELECTROL YTIC CO
Suitable for Mains
Suitable for
Radio/TV
Transistor types
Mixed (both types)
CONDENSERS
MULLARD POLYESTER
COND.
SILVER MICA
WIRE-WOUND 3-WaE SLIDERS
VOLUME CONTROLS
100 50p Assorted NUTS AND BOLTS. Mixed length/type
$8 B, A$
8 B.A
6 B.A
6 B.A.
4 B.A.
$\begin{array}{lr}2 \text { B.A. } & 10050 \mathrm{p} \\ 2 \text { B.A } & 10050 \mathrm{D}\end{array}$
METAL SPÉAKER GRILLES
$7 \frac{1}{2}$ in.
EAP
$3 \frac{1}{2}$ in.
No Plug
2.5 mm Plug
3.5 mm Plug

500 MICRO-AMP LEVEL
METERS
VEROBOARD, TRIAL PACK
5 BOARDS + CUTTER
$50 p$

TRANSISTORS

P.N.P. Untested but mainly 50 50p

 N.P.N. Untested but mainly 50 p O.K. 50 50p OCP 71 equivalent $\quad 5 \mathrm{50p}$ Light-sensitive Diodes 1050 p (These produce up to I ma from light) $\begin{array}{ll}\text { OC44 Mullard Ise grade } & 4 \\ \text { OC45 Mullard Boxed } & 50 p \\ 50 p\end{array}$ OC45 Mullard Boxed $\quad 5$ 50p 2 G378 Outpus, Marked $\quad 5$ 50p $\begin{array}{ll}\text { ASY 22, Marked } & 5 \\ \text { ASt }\end{array}$ $\begin{array}{ll}\text { AY } 127 \text {, Rectifiers } & 4 \\ & 50 \mathrm{p}\end{array}$ IN4007 Rectifiers (1200 V peak) STC $3 / 4$ Rectifier DIODES (OA 81 昆 OA 91) 40 50p WIRESolid Core. Insul. 100yds. 50p $\begin{array}{ll}\text { Solid Core. Insul. 100yds. } & \text { 50p } \\ \text { Stranded ditso } & \text { Soyds. } \\ \text { SOLAR CELLS }\end{array}$
Large Selenium
Small
50p
(6 cells will power a Micromatic radio)
CO.AXIAL CABLE
Semi Alr-spaced $15 y d s$. $50 p$
CRYSTAL TAPE RECORDER
MIKES
YRSTAL EARPIECES
TRANSISTORISED signal
Injector Kit
TRANSISTORISED Signal
Tracer Kit
TRANSISTORISEO CAR REV. 50p
COUNTER KIT (Needs 1 ma. meter as indicator) 1 50p

Unrepeatable Offer ! ! ! !
Surplus VEROBOARDS, $3 \frac{3}{4}{ }^{\prime \prime} \times 2 \frac{1}{2 \prime} \times \times \cdot 15$
Only 10 p each or $\mathrm{LI} \cdot 00$ per dozen

TANTALUM CAPACITORS. COMPARE THE PRICE-ONLY IOp EACH ! ! ! !

Sub-miniature	types	
$0.047 \mu \mathrm{~F}$	50	volts
$0.056 \mu \mathrm{~F}$	50	voles
$0.07 \mu \mathrm{~F}$	20	voles
0.1 MF	20	voles
0.1 HF	S0	voles
$0.18 \mu \mathrm{~F}$	20	voles
$0.33 \mu \mathrm{~F}$	35	voles
$0.47 \mu \mathrm{~F}$	35	volts
0.68 ¢ F	20	voles
$1.0 \mu \mathrm{~F}$	15	voles
$2 \cdot 2 \mu \mathrm{~F}$	3	voles
2.7 MF	15	volts
2.7 HF	35	volts
$3.0 \mu \mathrm{~F}$	12	volts
10.0 HF		voles

Min
0
0
0
0
0
0
0
0
0
0
1
1
1
2
2

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number. of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light-sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner. Light sensitive aerosol spray
Developer spray

We have huge numbers of components in quanticies too small to advertise individually. In order to "elear the decks" we have made up parcels concaining a mixture of carbon and wire-wound resistors, electrolytic and paper condensers, controls, eransissers, diodes eze., for a kiny fraction of normal price. it is emphasised that chese are mixed parcels only-contents cannot be stipulated! Sold only by weight.

Gross weight 2 lb .
$\epsilon 1$ (postage 20p)
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order I5p.

WELCOME NEW READER ! !

For those of you who haven't heard of LST:-
LST are one of the oldest companies in Electronics Mail Order.
LST have a reputation for quality and service second to none.
LST stock only top quality components from the biggest names in Electronics.
LST's prices are the lowest possible commensurate with quality.
LST's 44 page catalogue is available FREE, the only Company to our
 knowledge making this offer!

SPECIAL EXPERIMENTORS BARGAIN PACK OFFER

To Introduce the new reader to electronlcs-a fascinating hobby-LST are offering for a limited perlod only a speclal package deal conlaining common transistors \& diodes, common values of resistors and capacitors, solder, clrcult board, and other useful brand new components at common transistors \& diodes, common values of resistors and capacitors, solder, circuit bargin price of $£ 2$ - Our normal catalogue orice over $£ 41!$ Just place a fick in the box-tear out coupon, fill in your name and address, LST will ship your catalogue (free) or your bargain pack (£2) by return.

```
CUT OUT THIS COUPON }
```

> LST ELECTRONIC COMPONENTS LTD., DEPT. E.E., 7 COPTFOLD ROAD, BRENTWOOD, ESSEX.

ADDRESS

Vol Gramophone Unit. Collaro battery operated ith pick up on unit plate. 4 speed auto-stop turnover cartridge. Price 2250 plus 40 p poat and insurance.
Bay Time Slot Meter. Marle by Sangamo Weaton stypes-one for each coln, 2tp, op or 10p. Price 21.75 each plus 25 p post and insurance. Photo Electric Kit. Contains photo cell, relay, tranglstor and all parts to make light operated switch. Originally $£ 2$. Himited quantity to clear. E1-25 plus 20p post and insurance.
Desit/Hand Mike. Made by Acos. Grystal Insert in neat plastle case which opens at right angles for desk or opens completely for hand hold
general purpose mike. Price 85p each.
rinted Circuit Eits. Hagato Pk. 3 facilities in kit form include printing, etching, resist remova, pets to own specifications. Price $21 \cdot 25+20 \mathrm{p}$.

DEMO DECK

as described last month \&6 post free

Laboratory lastruments. For horizontal use in atrong black reinforced bakelite cases with worew down terminals especially sultable for experiments (manulacturers auoted accuracy of better 1.6%). Foilowing arailable:
D.C. Voltmeter $0-300$ v. f.s.d. moving coll mirror acale meter aize approx. $5 \times 4 \frac{4}{4} \times 1 / \mathrm{In}$. Price 81.75.
D.C. Voltmeter, $0-30$ v. 1.x.d. moving coil mirror acale meter. Size approz. $5 \times 4 \times 1 / \ln$. Price AO/DC Milliameters 3 ranze, moving Iron mirror acale meter. Range melection 25,50 and 100 ma by aelection switch mirror scale (coil resistance morked) uize, $71 \times 5 \times 31$ ln. type $35999 / 1$.
Price $£ 9.75$. Price $£ 9.75$.
Micrommeter 100 micro amps 1.s.d., moving coll mirror acale precision meter (coll realstance markeri) size, $8 \times 4!\times 2\} \mathrm{in}$. type $\mathrm{M} / 109 / 1$ Price 23.
Galvometer 20-0-20 1.s.d. moving coil precision laboratory mstrument of exiremely high sensi $6 \frac{1}{2} \times 8 \times 2 \mathrm{in}$. Price 25 . Parmeko Neptune Serien C. Core Tranaformers. These transformers are beautifully made, ateel encased, stove enamelled black, upright mounting. prlmary screen and bre new and nnused. Smal quantitiea only of each type available an followa: Modol $6000 / 78.275-0-275 \mathrm{v}$. at 330 mA , and 6.3 v . at 4.6a. Price $84 \cdot 50$. +50 p post.
Model $6000 / 71.290-215-0-215-290$ at 125 mA , and 2 at 6-3v. 6 . Price $£ 4.50+40 \mathrm{p}$ port.
Model 49 . 250 v . at $10 \mathrm{~mA}, 6-3 \mathrm{v}$. at 3 s , 5 v , at 0.75 s . Price $28+30 \mathrm{p}$ post.
Model 47. $620-0-620$ at 9 mA . $4 v$. at 1A. Price Parmetro Fop pont.
Parmetro Noptune C. Core Chokes. These are Model $6000 / 784 \mathrm{~F}$ at 580 msformers above Model 55.10 F at $1 \mathrm{~mA} .82 .50+40 \mathrm{p}$. 50 p p Model 40 . 10 H at 70 mA . $21 \cdot 50+40 \mathrm{p}$ poat. Model 69. TOH at 110 mA . Price $£ 2+40 \mathrm{p}$ port Fuse Rolders. Hesvy duty type B.g.s. 88440 . Reyrolle power tuse holders. English Electric type $\$.100 .1$, ex. equipment. Price 50 p -
Fuses. H.R.C. $100 \mathrm{~A}, 160 \mathrm{~A}$, type EA..... Eng. Blectric $100 \mathrm{~A}, 160 \mathrm{~A}$, type 84 TF
80 A., new, all at 25 p each
Eloctronic Car Ignition. In addition to the kite for 12 v . cars we can also supply aystems for 6 y . cars. These are not kits but made up and ready Carbork. Price $25 \cdot 50+30 \mathrm{p}$ post.
Carbon Resistors. We are now atocking thene in a big way and will be pleased to quote apecial pricen
to quantity buyers. Made by Erie. Morganite or
Dubiliar.

	Price each			
	$1-9$	$10-99$	$100-999$	1.000
watt	$1 p$	$8 p$	$8 p$	$8 p$
1 watt	$8 p$	$18 p$	$15 p$	$125 p$
2 watt	$4 p$	$32 p$	$30 p$	$875 p$

8 pecis 1 Renistor Asuortment Offer (1) $100 \times \$$ watt remintors made up of 2 each of 50 atmerent values Price 50p.
Special Resistor Assortment Offer (2). 1.000×1 watt restators maile up of 20 each of 50 different values Price eveny apaced between 10 hm and special
but 1 Resintor Assortment Offer (3). An oller 1 Spocial Resistor ase
but 1 watt. Price 88
12 Way Sub-Miniature Malti-core Oable 7.0076 copper cores, each core P.V.C. insulated and of
difterent colour. P.V.C. covered overall and approz. 品 in. tuick. Price 20 p per yard.

DRILL CONTROLLER NEW IKW MODEL

CONTROL
DRILL

\qquad Electronically changes - apeed from approximaximum. Full power at all speeds by finger-tip
control. Kit inciudes all parts, case, everything and post and hasurance. Made up model also available. 22.25 plus
$13 p$ post and p.
Noon Indicator Lamps. With amber lens, atandard type with bullt in resistor for masins. 100 each. 10 tor 90 p .
condensers. Another addtion to our range.
$500 \mu \mathrm{~F}$ at 50 v .15 p each, 10 for $£ 1 \cdot 25$.

MICROSONIC KEY CHAIN RADIO
tranaintor Keychain Radio in very pretty case, aize $2: \times 2: \times 1 \mathrm{fin}$. complete with
leather zipped bag. 7 iransiator, ferrite rod, Loudrpeaker.
In transit trom the East thene sets sufferel corrosion the batteries were left in them but when this corrosion is cleared away they should work-oftered without gusrantee xcept that they are new. Price only $x 1.25$ less batteries plus 13p post. 6 for ef post free Pair of rechargesble hatteriem and charger 85 p

24-HOUR TIME SWITCH Made by Amiths, these are AC maina operated. Made by Smiths, these are AC mains operated.
NOT GLOCKWORK. Ideal for mounting on rack NOT CLOCK WORK. Ideal for mounting on rack or shelf or can be built Into box with 13A socket. completely aljustable time periods per 24 clircuit on or off during these periods. $£ 2.50$ post and Ins. 23 p. Addtional thme contactn 50 p pair.

THE FULL-FI STEREO SIX

The amplifier
You wll be seamazed at the foulnems of reproduction and at fulneas of reproduction and at or tuner will reproduce. Bull or tuner wif reproduce. Bullt
into metal cabinet elegantly antyled metal calmulated teak finished o blend with modern furnishings, this amplifter uses an Integrated solid state circuit with an output power of 6 watta R.M.S. split over the two channels. The monllifer la Ideal for ure with normal plck-upe and tuners, It has a donble wound mains transformer sind ganged volume and tone controls-also switching for Mono to Stereo, tuner or pick-up. Other controls include "treble lift and cut"" "halance" and separate mains on/on switch. UNREPEATABLE PRICE is f 9 plus 38p post and fasurance.

THIS MONTHS SNIP

POCKET CIRCUIT TESTER

Teat continulty of any low resistance circuit, house whing, car electrics. Teste polarity of diodes and rectifiern. Also ideal size for converslon to signal injector (circuit supplied) 30 p or 2 for 50 post psid.

TANGENTIAL HEATER UNITS Thin heater unit is the very lateat type, moat efficlent, and qulet running. Is as fitted in Hoover and blower heaters costing sls and more. We have - few only. Comprises motor, impeller, 2 kW element and 1 kW element allowing s witching 1 , 2 and $3 k W$ and with thernal salety cut-out. Can be fitted into any metal line case or cabinet. Only need control switch. $23 \cdot 60.2 \mathrm{KW}$ Model as sbove

ezcept 2 kllowatts 22.50 . Don't misa this. | except 2 kilowatts |
| :--- |
| Control $8 w i t c h ~ 35 p . ~ P . ~ \& ~ P . ~$ |

LAST MONTH'S FEATURES

Kits of parts available as follous:-

HOME SENTINEL INTRUDER ALARM SNAP INDICATOR
All components but not case or battery 75y. WINDSCREEN WIPER CONTROL All components including metal for chanais $£ 1$-50. RECORD PLAYER
All components, but not case, loudepeaker, record deck or pick-up 25.15

DISTRIBUTION PANELS

Just what you need for work bench or lab.

atandard 13 amp fused plugs and on/oft awitch with neon warning light. Supplied complete with 7 feet of heavy cable. Wlred up reany to work, $£ 2$ lean plug
82.25 with Atted 18 amp plug: 82.40 with atted 15 amp plug, plus 88 p . 1 .

CAPACITOR DISCHARGE CAR IGNITION

This system which has proved to be amazingly efficient and relisble wan Arst dercribed in the Wirelens World about a year sgo. We can aupply kit of (P.W. June), price $84 \cdot 95$. When ordering please state whether for positive on negative systems. Plus 30 p post.

15 WATT 12 in HI-FI SPEAKER Is undoubtedly one of the tineat londapeakers that we have over offered, produced by one of the country ${ }^{\circ}$ most famous nakern. It has die-cast metal frame and is atrongly recommended for HI-Fl and public address. Handling $15 W$ R.M.B. - Cone moulded Abre-Freq. remponse 30 10,000 c.p.s.-specify 3 or 15 ohms. Chassis diam. 12 in . -12 in , over mounting lage. Overall height $8 \frac{1}{\mathrm{~h}}$. A 410 spesker offered this month for $\mathbf{5 3 . 7 5}$ plus 30 p poat and insurance.

Commutator Motor. Small, size approz. 3 in . plus
1 in . of shaft. 3 in . high $\times 1 \% \mathrm{ln}$ wide, but high peed and very powerful. These motors operate from the mains. Are particuiarly ueeful as they an be speed controlled by our thyristor kit or b ariable resistor. El each
Auto Light Kit. The circuit for this appeared in Pracifal Wireless, October lisue. It Is a slinple circuit but has many uses: Parking light, porch Complete kit, no case 85 p. Suitable case 80 p . Charger git. Comprines of a 3 amp. tranaformer 5 amp. rectifler and a pair of hefty crocodfic cllp. With wiring diagran. 81.40 plus 20 p pont and insurance.

SPARTAN Portable

RADIO

Long and medium wave,
transistor, slze $61 \mathrm{~m} . \times 4 \mathrm{in} . \times$
1 in. with larger than usua peaker giving very good one. Bund arial fordistant stations. A real bargain complete
 with leather case, carry ing with leather case, carrying al
$£ 3.75$ plus 25 p port and ins.
Thermistor Bead Type. For instrumenta, medica spplications, etc. ITT No. GL2s. 75p each 10 for 86.75.
3 Core Mains Leads. Special offer this month is : 6 ft . lead with 23/36 cores and coloured according the new code Lee., Brown-live; Yellow/Greenearth; Blue-neutral. Price 6 p each or 10 for 50 p Interrated Cirenit Mountings. Enables 1.C's to be prevent damage to soldering. 14 pin type 14 p each or 10 for $\mathbf{1 1}-26.16$ pin type 18 p each or 10 for 21-44. Note these are suitable for use with printer circult or vero boards.
Plain Paxolin Panols. Medium thlcknesa. Ideal for tronta and for transistor projecta generally.

Size	1	10	Size	1	10
6×2	6p	54 p	6×6	18p	41.
12×2	18 p	E1.08	12×6	80 p	82.
6×25	78	63D	6×8	$81 p$	\&1.
12×24	14p	£1.26	12×8	40p	28
8×4	12p	21.08	12×12	80 p	45
12 \& 1	24p	\&2.18	24×12	81.00	

70 THINGS YOU CAN MAKE

 Bend B.A.E. today for list of 70 constructor projects - Instruments - slarms - counters locks - radios. etc., otc.
0-8 AMMETER

 2 in. square full vision face for fugh mounting. Moving iro Price 48 p each. 10 for $\begin{aligned} & \text { es-00. }\end{aligned}$
PAPST MINHATURE EXTRACTOR

 FANSBeautifully made as are all papet motors. Intended for cooling compnters but suitable for any equipment. Size tifin. aquare and $1 \frac{1}{2}$ in. thick. Insurance 20 p .

24hr CLOCK SWITCH In metal case with 13 amp eocket. 8miths movement, 2 ons and 2 offs per 24 hours. Original retall price ${ }^{2} 7$ each Friginal retail price en each f4.00 ench.

\$4.00 esch.

NUMICATOR

TUBES
For digital instruments, counters timers clackn, etc. Hi-vac XN. 8. Price $£ 1.45$ each. 10 for $£ 13$.

SNAP ACTION

SLIDE SWITCH
Reted 5a. 240v. Male by Arrow. Type fitted in the handles of 5 p each. 10 for 45 p .

> Where postage to not atated then orders over \&5 are poat free. Below cs add 20p. Bemiconductors and 6 post. Over 21 post free. 8.A.E. with enquirits please.
(Dept. E.E.) 7 Park Street, Croydon CRO IYD

PHILIPS PORTABLE PLAYER CABINET

Size $18 \times 15 \mathrm{j} \times 7 \mathrm{in}$. Cut for B.8.R. ©A12/14/15/18/20 deck. Ampliner apbce 14. $\times 3 \times 3 i \mathrm{in}$, Satio aluminium rront arille. Really smart appe
Blact/White. Chrome Attings.
BSR C. 109 SUPERSLIM

STEREO AND MONO

 Playe $12^{2},-10^{\circ}$ or $7^{\prime \prime}$ records qualits uail backed by BSR rullabillty with 18 monthr' gusrantee. AC $200 / 250$ Sizo $131 \times 111 \mathrm{in}$. Above motor board 3 inn below motor basd 21 in .With 8 TEREO end MONO X

¢7.75 por
GARRARD SINGLE PLAE TA MK It Stereo/Mono 210 GARRARD PLAYERS with Sonotone 9TA Cartridgen Stereo Dismond and Mono Sapphire. SPR5 Mk It \&15 Model 3500 stereo and Mono Autochanger \&14. Post 25p. BECORD PLAYER PORTABLE CABINET
63.75 With space for R.C.S. Amplifler! and mons Post 250 modern a utochangers. Two-tone reaine covered. Port 250 BCS DE-LUXE 3 WRTT AMPLIFIER. Ready made with 2 -stage triode pentode valve, 3 watts output. Ton and volume control. Isolated mains transiormer, knobs loudspeaker valves ECL82, EZSB0. 20 mV . Pont 25 d , 4
Response $50-22,000 \mathrm{cps}$. Sensiflvity 200 m R.C.S. TEAK WOOD BASE, Ready cut out $\mathbf{2 . 7 5}$ R.C.8. PLASTIC COFERS FOR ABOVE BASE.
12.75 EMI PICK-UP ARM with mono stal and stylun 21.25 HI-FI PIOK-UP CARTRIDGES. Dismond Storeo/Mono GTA 82.50 ; GP94 48.50 ; GP93 £2.00; Mono GP91 $\$ 1-50$ GC8 $81 \cdot 25$: ACOS L.P. only $\$ 0$ p.

AM-FM/VHF TUNING GANG

 Super quality small size 1$\} \times 1\} \times$ 365 pP with $25+25 \mathrm{pF}$. British made. Geared slow motion drive 6:1. Platic dunt cover. 6BA tapped iront fizing. Cast aluminium Yrame

50 p Post Free
WEYRAD PSO-TRANSISTOR COILS RA2W Forrito
OAc. P50/1AC.
IF. P50/2CC $470 \mathrm{kc} / \mathrm{s}$ rd I. P. P50/3CC P50/3V Spare Core\#
Driper Trans. LPDTA
Printed Circnit, PCAL Printed Circnit, PC weyrad Bootlet

PSO OPTI

[^2] .. 33

TOLUME CONTROLS Long apladies. Midget Slze K. ohms to 8 Mes. LOO or

800hm Coax 4p. yd. BRITISH AERIALITE AERAXIAL-AIR SPACED 40 Jd . $£ 1 \cdot 40 ; 60 \mathrm{Jd} . \varepsilon 2$ TRINGE LOW LOES 10 p 5 .
Ideal $6 R 5$ and colour. Edge 5K.S.P. Transistor 25p Ideal 625 and colour. UP yd. WLRE-WOUND 3-WATM PONS. STANDARD SIRA POTS, Tlalues 10Ω to $30 \mathrm{~K} .$,
Carbon 30 K to 2 meg. $\mathrm{LSp} \begin{aligned} & \text { LONG SPINDLE } \\ & 10 \text { OHMS to } 100 \mathrm{E} .40 p\end{aligned}$ VEROROARD $\times 3 \ln 15 \mathrm{p}$. 25×3 MTRIX
 EDGE CONK ECTORS 16 wRy 25p; 24 way 38p.
PINS 3θ per packet 17p. FACE CUTTERS 38p.
S.R.B.P. Board 0.15 MATRIX 2bln. wide 3 p per lin. $3 i \mathrm{in}$. wide 4 p per 1 in .; 5 in . side 5 p per 11 n . (up to 17 in .). S.R.B.P. undrilled itin, Borrd $10 \times 8 \mathrm{in}$. 15 p .

BLANK ALUMINIUM CHASSIS. 18 E.w.g. 2|in. sides. $6 \times 4 \mathrm{in} .45 p ; 8 \times 6 \mathrm{in} .50 \mathrm{p}: 10 \times 7 \mathrm{in}$, 70p; $14 \times \sin .80 \mathrm{p}$; ALUMINIUM PANELS 18 s.w.g. $6 \times 4 \mathrm{in} .8 \mathrm{p}: 8 \times 6 \mathrm{in} .15 \mathrm{p}$: $10 \times 7 \mathrm{in} .17 \mathrm{p} ; 12 \times 8 \mathrm{mn} .23 \mathrm{p} ; 14 \times 9 \mathrm{in}$. $27 \mathrm{p} ; 12 \times 12 \mathrm{in}$. 32 p . If inch DIAMETER WAVE-CHANGE SWITCHES 25 p . 2 p. 2-way, or 2 p .6 -way or 3 p . 4 -way 25 peach 1 p . 12-wsy. 1 inch DLAMETER Wevechange "MAEITS" 1 D. 12-way. 2 p. 8 -way, 3 p. 4 -way, 4 p. 3 -way, 8 p. 2-way, 1 water 60 p ,

R.CS. STABILISED POWER PACK KIT

All partu and Instractions with Zeper Diode, Printed Circuit, Bridge Rectiferi and Double Wound Mains Trenslormer Input $200 / 840 \%$. AC. Output voltages availeble 6 or 8 or PLEASE 8TATE VOLTAGE REQUIRED. Detsilp s.A.E.
GENERAL PURPOSE TRANSISTOR PRE AMPLIFIER BRITISH MADE

 Size $18^{\prime \prime}$ ₹ $1 t^{\prime \prime} \times z^{\prime \prime}$. Response 25 c.p.s. to
For use with valve or trenaiator equipment. Pnil Inatructione supplied. 90p Post
10 p Brend new. Guaranteed. Detaila B.A.E. YP 350
 $18 / 450 \mathrm{~V}$
$38 / 450 \mathrm{~V}$ $25 / 25 \mathrm{~V}$
 $100 / 25 \mathrm{~V} \quad 10 \mathrm{p} \quad 16+16 / 450 \mathrm{~V} 2 \mathrm{pp} \mid 32+32+32 / 350 \mathrm{~V} 43 \mathrm{p}$ SUB-MIM $\quad 32+32 / 30 \mathrm{VL} \quad 100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$ 200 mF 15 V . $10 \mathrm{CTROL} \mathrm{YTICS}. \mathrm{1.2,4,5,8,16,25,30,30,100}$, CERAMIC $10 \mathrm{p} ; 500,1000 \mathrm{mP} 12 \mathrm{~V} 18 \mathrm{p} ; 2000 \mathrm{~m} / 25 \mathrm{~V}$ 35p PAPER $850 \mathrm{~F}=0.14 \mathrm{p}, 0.513 \mathrm{p}$; 1 mF 15p; 2 mF 150 F 15 p $5007-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.25 \mathrm{8p} ; 0.4785 \mathrm{p}$ 8 SILVER M10A. Close tolersnce $1 \% 2-200 \mathrm{pl} 8 \mathrm{p} ; 500-2 \cdot 200$ pF 10p; 2,700-5,600pF 20p; 8.800p P-0.01, midd 30p; esch $885+865$ with $25+25 p$ p
 CREOME TELESCOPIC AERIAL, Fwivel bare, 23 in. 20 p
 TRIMMERS. Compression $30,50,700 \mathrm{FF}, 5 \mathrm{p} ; 100 \mathrm{pF}, 150 \mathrm{pF}$ ${ }^{8 p} ; 250 \mathrm{pF}, 10 \mathrm{p} ; 600 \mathrm{pF}, 10 \mathrm{p} ; 750 \mathrm{pF} 10 \mathrm{p} ; 1250 \mathrm{pF} 10 \mathrm{p}$. SILICON REC. 40-LUCAS EDS500 Eridge $70 \mathrm{~V}^{5}$ amp 11
 85 mA 48 p. SILICON BYZ13 300; BY100 30p; BY187 30p
EK-GOVERNMENT RECTLFIEES $250 \mathrm{v}, 200 \mathrm{~mA}, 30 \mathrm{p}$. EK-GOVERNMENT RECHIFIERS 250v, 200mA, 30p.
NEON PANEL INDICATORS 2507 AC/DC Red or Amber 2 KEOS PANEL INDICATORS 2507 AO/DC REd or Amber
RESISTORS.
 10 ohms to $100 \mathrm{~K}, 10 \mathrm{peach} ; 2$, watt, 1 ohm to $8-2$ ohme 10 p 10 onms to $100 \mathrm{~K}, 10 \mathrm{peach} ; 2$; watt, 1 ohm to 8 -2 ohms 10 p PHILIPS TRANSISTOR FM STEREO
 moltiplex decoder. As used in LEAK Troughline Tuner. Brand New. Prealigned with 9 remi-conduc:
tors. 245 . DC st 8 mA . Complete with circuit and com nection detalls. 44 POST
$31 \times 2 \times 1$ FREE

MAINS TRANSFORMERS $\underset{\substack{\text { ALu } \\ 250 \\ \text { poser }}}{ }$

 MIDGET $220 \mathrm{v} .45 \mathrm{~mA} .8-3$. 2 . $21 \times 24 \times 2 \mathrm{n}$ F.E. AURORA TRAN8. $12+12 \%, 1300 \mathrm{~mA}$
MINI-MAINS $20 \mathrm{v}, 100 \mathrm{~mA} .11 \times 1 \% \times 1 \mathrm{in}$. MINI-MAINS $20 \mathrm{v}, 100 \mathrm{~mA} .11 \times 1 \% \times 1$ in
 GENERAL PURPOSE LOW YOLTAGE. Tappod O 80 p at 2 amp. 3. 4. 5, 6, 8, 9. 10, 19, 15, 18, 24 and 30 7. 29.00 1 amp., $6,8,10,12,16,18,20,24,30,38,40,48,60,22 \cdot 00$ q smp. $8,8,10,12,16,18,20,24,30,88,40,48,80,83.00$
AUTO TRANSFORMERS 115v. to 230 v . or 230 v . to 115 v . Input/Output. 150 w . \&200; 800 w . 25 ; 1000 w . 812 . OFARGER TRANSFORMERS. Input 200/250\%.
 outputs, 1% amp. $40 \mathrm{p} ; 2$ amp. 55 p ; 4 amp. 85 p .
All transtormer, Postage 25 p extra.

E.M I. $13 \frac{1}{2} \times 8 i n$. LOUDSPEAKERS

 With twin tweeters Slate 3 or 8 or 18 ohm \&4 (As illuatrated) Pont 15 p With flared tweeter cone and ceramic magnet. 10 watts. flus res. $10,60 \mathrm{cp}$ f2.25 Ststo 3 er 8 or 15 ohm. Poat 150 Recommended Teak CebineiSize $16 \times 10 \times$ Oln. Pont 25 p

IOW MINI-MODULE $£ 3.25$ LOUDSPEAKER KIT
 Pogt 25p

Triple spesker ajstem combining on ready cat baffe In. chipboard 15 in. X 8 in, Separato Bass, Middle had rreble loudspeasers sad crossover condeneer, The

ALL MODELS "BAKER SPEAKERS"IN STOCK BAKER I2in. MAJOR $\&$

30-14,300 c.p.s. 12 in double cone. wooler and weeter cone torether with a BAKER ceremi cognet assembly havina Our denaity of 14.000 raus and a total finx of 145,000 Marwells. Bass esonance 40 c.p.en Reted 0 watts. Voice coils 3 or 8 or 15 ohms. Post Free Kodule kit, $30-17,000$ c.p.E bame and natructions. Ell. 50

- BAKER MBIG-SOUND" SPEAKERS

Group 25" Group 35. 'Group 50
 3 or 8 ur 15 ohm 8 or 8 of 15 ohm 8 of 16 ohm TEAK EI-RI SPEAEER CABINETS. Fluted wood front For 12in. round Loudspeaker
For 18×8 in. Londipeaker
89. Polt 25 D

For $10 \times 6 \mathrm{in}$. round Loudspoelor
4. Post 25 p

OODMANS EL-FI 6in. WOOFER
ohm, 10 watt. Large ceramic magnet.
Hi-Fi Enclosures syntems, otc. (4

ELAC CONE TWEETER
 LATEST DESIGK

The moring coil diaphrapm Eives a good radiation paftern to the higher Irequencien and a smooth extension of total response Irom $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size $31 \times$ 3) x in. deep. Rating 10 watte. 3 ohm
or 15 ohm modols. 16 anm models. ≤ 1.90

Horn Tweetern 2-18kc/s, 10 W 8 ohm or 18 ohm 81.50 TWO-WAY 3000 cpi CROSSOVERS 8 or 8 or 15 ohm $95 p$. SPECIAL OFPER! 80 ohm, 2 lin, dia.; $35 \mathrm{ohm}, 2 \mathrm{in}$.; 3 in 25 ohm, 2lin. dia.; 3in. dia.; $8 \times 4 \mathrm{in} . ; 8 \times 51 \mathrm{n}$. \mid EACE $5 \mathrm{ohm}, 8 \frac{1}{2} \mathrm{in}$ dia.; $7 \times 4 \mathrm{in} . ; 8 \times 5 \mathrm{in}$.
ohm, $8 \times 4 \mathrm{in}$. 3 ohm, 8 in. 3 in . Sin. $5 \times 8 \mathrm{in}$. $7 \times 4 \mathrm{in}$ LOUDSPEAKERS P.M. 3 OHMS. 811 n . $21.10: 8 \times$ sin. 81.25 $8 \times 8 \mathrm{in}$. $80 \mathrm{p} ; 8 \mathrm{ln}$. $81.75: 10 \times 6 \mathrm{~m}, 21.90$.
Sin. WOOFER 8 wattemax. $20-10,000 \mathrm{cps}, 8$ or 15 ohm, $81-80$
ELAC 8 ln . De Lure Ceramic 8 ohm or 15 ohm in. ELAC 8 in . De Lure Ceramic 8 ohm or 15 ohm $\frac{18}{} 50$. in. dia. 4 watt: 10 in . dia, 5 watt: 12 in . dia. 8 wett . 9 or 15 ohm
 UTPUT RANS. ELS4 otc. 25p;MIKE TRARS. $50: 125 p$. GOODMAN'G OUTPUT TRANSFORMER 5 watt push-puil or valves EL84 atc., 3. 8 smd 15 ohma 85 p . Post 20 p . BAKER 100 WATT ALL
UZPOSE PO
APLIFIER
input! speech and unsic. Gring tacilities. Reaponse -80,000 cps. Matchea 200/250v. Treble And Biss comirols Gusebie and Bass controls.

ALL EAGLE PRODUCTS

ILLUSTRATED EAGLE CATALOGUE 20p. Pont Free, BARGAIN AM TUABR. Medium Ws Fe. $\mathbf{C 4}$ BARGAIN 4 CHANREL TRANSISTOR MIXER Add musical highlights and sound effects to recordinge Will mix Microphone, records, tape and tuner whin ex parate controls into single outpul. woll. BARGAIN FM TUNER 88-108 Mc/s Six Tranaiator, 9 volt
Printed Circuit. Calibrated elide dial tuaing. Printed Circuit. Calibrated slide dial tuning. flo
 £7.50

BARGAIN 3 WATT AMPLIFIER. 1 Transiator〔3.50
COAXIAL PLUG 6p. PANEL SOCKETS 8p. LINE 18p.
OUTLET BOXES, SURFACE OF FLUSE 25D
BALANCED TWIN FEEDERS $5 p$ yd. 80 ohmi or 300 ohms. JACK SOCKET Std. open-circuit 140. closed circult 28p; Chrome Lead Socket 45p. Phono Plugs 5p. Phono Socket 5p. JACK PLUGS Sid. Chrome 150; 3.5 mm Chrome 14p. DIH SOCKETS Chassis 8 -pin $10 \mathrm{p} ; 5$-pin 10p. DIN SOCKET8 Lead

cone. The mid-Range unit is specially deaigned to add drive to the middle register and the tweeter recreates the top end of the musical spectrum. Tutal response $20-15,000 \mathrm{cps}$. Full inatructions for 3 or 15 ohm TEAE VENEERED BOOKSEELF ENCLOSURE. $181 \times 10\} \times$ Bin. Modern Design.
dary grey Tygen covered bsfile E.M.I. TAPE MOTORSPost 15p. 120 v . of 240v. A. 1.200 R.p.m. pole 135 mA . Spiadle $0.187 \times 0.75 \mathrm{in}$. E 1.25 Bize $34 \times 2 \frac{1}{2} \times 2 f \mathrm{in}$. (illuatrated).
BALFOUR GRAM MOTORS 120 v . of 240v. A.C. 1.200 P.p.m. 1 pole

CALLERS WELCOME
CUSTOMERS FREE CAR PARK

337 WHITEHORSE ROAD, CROVDON

Open 9-6 p.m. (Wednesdays 9-1 p.m.,
(Enport: Remit cash and extra postage.) Buses 133, 68 pass door. S.R. Stn. Selhurst.
"Stella 99"
INSTRUMENT CASES

Size
$6^{\prime \prime} W \times 4^{\prime \prime} H$ $\times 4$ "D

We Believe the Finest Instrument Case in the Country. Beats all competitors for Price and strength
Fibreglass Press Moulded in Grey, and Blue. Supplied with 4 Rubber Feet. 18 SWG Alloy Chassis. 16 SWG Alloy Front Panel. Front Panel has Protective Film for marking out and protection. Chromed die cast handle. The case has two sets of Runners Moulded in which will take Alloy or P.C. Board Chassis. Same day off-the-shelf delivery. This slze of case can be turned on end to make $4^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{H} \times 4^{\prime \prime} \mathrm{D}$. Please advise if handle and feet to be supplied loose. Panel Punching available on 100 up. Trade and quantity discounts on request.

Full list of Accessories Available, sent whth each order, i.e. Switches, Panel Lamps, Ampllfiers, Fuses, etc.
E. R. NICHOLLS

46 Lowfield Road, STOCKPORT, CHESHIRE Tel: 061-480 2179

WILSIC SOUND EFFECTS KITS

WAH.WAH PEDAL KIT (Illustrated)
Kit comprises a SELECTIVE'AMPLIFIER MODULE KIT to convert the FOOT VOLUME CONTROL PEDAL (as photo) to Wah-Wah operation. Amplifier module $£ 1.75$, pedal unit $£ 5 \cdot 13$, COMPLETE KIT $£ 6.50$ add 38 p for assembly of module, but please note we cannot supply kits fully buile.
REVERBERATION UNIT KIT. For dimension effect. Connects between sound source, mic., etc., and amplifier. Battery powered. COMPLETE KIT $\mathbf{£ 9 . 2 0}$ (excluding case $\mathbf{£ 7 . 5 0}$). Assembled in slimline cabinet $\mathbf{£ 1 2 . 5 0}$. VIBRATO UNIT KIT. Foot pedal unit with variable speed and depth controls. COMPLETE KIT £5-25.
SEND 15p for the WILSIC PLANS BOOK, with full details of these kits; circuits, drawings and price lists.

LATEST CATALOGUE 5p (stamps)

WILSIC ELECTRONICS LTD.
6 COPLEY ROAD, DONCASTER, YORKS.

PARKERS SHEET

METAL FOLDING

 MACHINES HEAYY VICE MODELSWith Bevelled Former Bars

No. 1. Capacity 18 gauge mild steel $\because 36 \mathrm{in}$. wide
615.00

No. 3. Capacisy 16 gauge mild steel $X 18 \mathrm{in}$, wide
610.00

No. 3. Capacity 16 gauge mild steel x 18in, wide $\ldots \ldots .\}$. Also new bench models. Capacities $36 \mathrm{in} . \times 18$ gauge $£ 30.0024 \mathrm{in} . x$ 16 gauge $£ 29-00$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in . model, $27 \frac{1}{2} p$ per ft . Other models $17 \frac{1}{2} \mathrm{p}$. The two smaller models will form flanges. As supplied to Government Departments. Universities, Hospitals: One year's guarantee. Money refunded if not satisfied. Send for details.
A. B, PARKER, Folding Machine Works,

Heckmondwike 3997

Dept.E.E.2.174 Pentonville Road, London, N1. Telephone 01-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue, Ilford, Essex. Tel: 01-5501086.

6 p.m. LATE NIGMT FRIDAY 7 p.m. MAIL OROERS: Order with contidence. Sena Postal Order. Cheque. Mail. CALLEAS: Please note that cneques can only be accepted together wirn cheque cards (not Barclay Card).

2 minutes from KING'S CROSS. EUSTON \&T. PANCRAS
on main rood leading to the East and West Country

everyday
 electronics

A DELICATE TOUCH

To anyone not previously familiar with the technical aspect of electronics, the constructional projects included in last month's issue were probably quite revealing. Not least in the modest quantity of parts involved and their small size. It is really surprising what can be achieved with just a few tiny components which one could hold quite comfortably in the palm of the hand.

Maybe it looks altogether too simple for words. And in a sense it is. But beginners should take their first steps with thought and care, and be duly appreciative of the need to develop a certain dexterity in the manual work involved: in the manipulation of the components and wiring, and in the making of good sound soldered joints. A delicate touch closely akin to that of the scientific instrument maker is the kind of manual skill required in modern electronic construction work.

WHAT'S IN A NAME?

It will be noted that we frequently use the word "gadget" as a general term of convenience applicable to most of the constructional projects featured in this magazine. We employ the word in its original sense, meaning a small fitting or contrivance. However, modern usage has tended to downgrade the word gadget so that in some minds it has become synonymous with "gimmick."

To avoid any misunderstanding, we must explain that all designs offered to private con-
structors are practical items, capable of providing definite useful functions. True some may have a rather more serious application than others, but all are designed to a purpose. For the want of a better or more appropriate term, "gadget" will continue to be used when referring to the small items of electronic equipment. But gimmicks pure and simple, or gimcrack items, will not be our concern.

PROVED DESIGNS

One further point must be made clear in this connection. All Everyday Electronics projects are tested and proved by our own technical staff prior to being presented to our readers. We do not deal in "paper designs." A hobby is a hobby: nevertheless time is a valuable commodity, none more so than the "spare" variety. We want to help our readers use it profitably, enjoyably, and economically.

STOP PRESS

Our thanks to those who have already written following the publication of our first number. Next month we will publish a selection of readers' letters. We welcome all views, so why not drop us a line if you have not already done so?

Our January issue will be published on Friday, December 17

EDITOR F. E. BENNETT - ART EDITOR J. D. POUNTNEY - M. KENWARD - P. A. LOATES
ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^3]
EASY TO CONSTRUCT SIMPLY EXPLAINED

CONSTRUCTIONAL PROJECTS

PHOTOGRAPHIC CULOUR TEMPERATURE METER For selecting camera filters by D. Bollen 78
WINDSCREEN WIPER CONTROL Part 2: Fitting to the car by S. B. Squire 85
DEMO DECK Circuit building and experimenting deck by Mike Hughes 99
FUZZ BOX Add weird effects to your music by N. D. Jones 104
GENERAL FEATURES
EDITORIAL 76
MEMORY STORE Retrieval by George Dunning 83
SHOP TALK Your buying problems solved by Mike Kenward 84
ELECTRONICS PAST AND PRESENT Part 2: by Prof. G. D. Sims 87
TEACH IN Part 2: Electric Current by Mike Hughes 93
SPECIAL TOOL KIT OFFER 97
RUMINATIONS by Sensor 109
COMPONENT BUYING AND SUPPLYING Part 2: Suppliers by A. Sproxton 110
EVENING ELECTRONICS Clubs and classes $1 / 3$

Special Offer

As a service to all our readers and especially those who are new to electronic construction we offer the Everyday Electronics Tool Kit at a special price. For further details of this offer see page 97.

Get the colours right with this Photographic Colour Temperature Meter. It tells you simply and quickly what correction filters to fit to your camera.

Photographers who use reversal film to make colour transparencies often find that a particular shot turns out to have an unnatural red, yellow, or blue tinge. Unlike the human eye, a colour film cannot compensate for small changes in the "quality" of daylight and other light sources.

A film correctly balanced for standard daylight will record subjects under household tungsten lamp illumination with a deep red hue, but the most perceptive photographer sees the same scene as no more than orange-yellow. Similarly, a subject in shade under a clear blue sky is depicted as deep blue by the film, but is seen as bluish grey by the eye.

A simple colour temperature meter of the type described here will help to reduce the number of failures on a roll of film by showing when colour casts are present, and will also assist in the selection of camera filters to eliminate such casts.

COLOUR TEMPERATURE

If a black body such as a piece of carbon, is heated, it will exhibit a range of colours as its temperature increases, from a dull red, through orange and yellow, to a bluish white. Obviously, the colour of the carbon is closely related to its temperature, and the characteristics of most common light sources are close enough to that of

Approximate cost of components

B275 pus case

Components....

Resistors
R1 1kS2
R2 $2.2 \mathrm{k} \Omega$
All $\pm 10 \%$, $\frac{1}{2}$ watt carbon except where stated.
Potentiometers
VR1 100Ω horizontal skeleton pre-set
VR2 $2 \mathrm{k} \Omega$ slider type pre-set
VR3 500Ω wire wound (1 watt type)
Light Dependent Resistors
PCC1, PCC2 ORP12 (2off)
\section*{Meter}
ME1 $\quad 100-0-100 \mu \mathrm{~A}$ moving coil centre zero, stereo balance type
\section*{Switch}
S1 Single pole push-to-make
\section*{Miscellaneous}
B1 9V PP3 type
Cellophane (see text), knob with pointer.
Plain perforated s.r.b.p. board 2 in $\times 1$ in \times 0.15 in matrix and pins.
Formica for case or suitable plastic box.
Connecting wire
Battery connectors.
L.D.R. Holders (see text).

a black body to allow a similar correlation between colour and temperature to be used. Table 1 lists the equivalent colour temperatures of several kinds of light source.

One way of measuring colour temperature is by means of two photosensors, one behind a red filter and the other behind a blue filter, with the filters adjusted so that the sensors give equal outputs under standard daylight conditions. If the photosensors are then illuminated by a light source which is either more red or more blue than standard daylight, the sensor outputs will differ by an amount roughly proportional to the change of colour temperature.

Fig. 1. Basic circult diagram.

CIRCUIT OPERATION

It would be possible to wire the two photosensors in such a way that colour temperature could be read straight from a voltmeter scale, but this would involve taking the meter to bits for calibration, and an unwanted load would be placed on the photosensors by the internal resistance of the meter. Such an arrangement would also be sensitive to changes in battery voltage, so a nulling technique was chosen for the colour temperature meter, using an easily calibrated potentiometer.

In the basic circuit of Fig. 1, the photosensors are light dependent resistors (l.d.r.s) PCCl and PCC2. The resistance of these l.d.r.s decreases when they are exposed to light. As long as both sensors are equally illuminated they should have similar resistance values irrespective of light intensity, and the voltage at the junction of the sensors will remain constant. The slider of potentiometer VR1 in Fig. 1 is adjusted to give the same voltage as the sensors so no current flows through centre-zero ME1, hence, no load is placed on the sensors.

Assume now that sensors PCC1 and PCC2 are provided with blue and red filters respectively, Under even illumination of both sensors, light

Table 1: COLOUR TEMPERATURE OF LIGHT SOURCES

Source	Temperature in degrees Kelvin
Candle	$\mathbf{1 , 9 0 0}$
100 watt household lamp	2,800
Photoflood lamp	3,400
Direct sunlight, sunrise or sunset	$2,000-4,000$
Direct sunlight, noon	$4,500-5,500$
Sunlight plus whlte clouds or	
haze	5,900
Electronic flash or blue flash-	5,900
bulbs	$5,9,650$
Sunlight plus clear blue sky	$6,650-7,150$
Light overcast	8,350
Heavy overcast	In shade, sunlight plus white
clouds or haze	7,150
In shade, clear blue sky	$9,000-25,000$

Fig. 2. Complete circuit diagram of the Photographic Colour Temperature Meter.
from a predominantly blue source will pass virtually unhindered through the blue filter to PCC1, but will be blocked by the PCC2 filter. Thus, with more light reaching PCCl, it will have a lower resistance than PCC2 and the voltage at the junction of PCCl and PCC2 will rise, causing the meter pointer to deflect away from zero.

Much the same applies with red light, but here the meter pointer will deflect in the other direction as the voltage at the junction of PCC1 and PCC2 falls. Potentiometer VR1 is adjusted to bring the meter reading back to zero, and the change of colour temperature is given by the angular rotation of VR1 spindle.

CIRCUIT REFINEMENTS

The circuit of Fig. 1 would not work well in practice, for the following reasons. Sensors PCCl and PCC2 would have to be perfectly matched if the instrument was not to respond to changes in light intensity as well as colour temperature, blue and red filters would have to be of known density and colour, and only a small centre portion of VR1 total track resistance would be usable.

In the complete circuit of the colour temperature meter Fig. 2, a low value potentiometer VR1 is inserted between PCC1 and PCC2 to eliminate l.d.r. resistance mismatch under high light intensities; this component also protects the sensors against an excessive current flow. In conditions of dim illumination, the resistance of the sensors can be equalised by masking one of them with a spot of ink or paint, as described later.

To simplify construction and reduce cost, the colour temperature meter uses simple blue and red filters made from several layers of coloured
cellophane (obtainable from most stationers), and VR2 is included in the circuit of Fig. 2 to correct individual filter variations and allow for circuit tolerances.

Calibrated potentiometer VR3 in Fig. 2 has a low track resistance in relation to the total resistance of the chain formed by VR2, R1, VR3 and R2, so that full use can be made of VR3 rotation to provide widely spaced calibration points.

CONSTRUCTION

The case for the prototype was constructed from Formica, but almost any non-metallic case of suitable dimensions could be used. The case should be drilled to the dimensions given in Fig. 3 before any further construction is undertaken. Once the drilling is complete meter ME1 can be fixed as can the two l.d.r.'s.

The sensors PCC1 and PCC2 are housed in small, opaque cylinders made from plastic cigar holder stoppers or bottle tops, see Fig. 4. Each l.d.r. holder must be cut-down with a sharp knife to make the internal height equal to the height of the l.d.r., to ensure a wide-angle of light acceptance. Blue and red filters are fitted at a later stage. The l.d.r.'s are glued into the holders which are then glued to the case.

The preset potentiometers VR1 and VR2 are mounted on a piece of plain perforated s.r.b.p. board using mounting pins as indicated in Fig. 5. Potentiometer VR3 can then be mounted through a hole cut in the board and resistors R1 and R2 connected-one pin is used for R2. The board is then fixed inside the case using VR3 mounting.

Switch Sl can now be inserted through its
Photograph showing the inside of the Photo-
graphic Colour Temperature Meter.

Fig. 3. Case drilling diagram.

Fig. 4. Details of the I.d.r. and filter mount.

Fig. 6. Dial calibration.

mounting hole and securely fixed. Finally, wire up the unit, as shown in Fig. 5, using p.v.c. covered stranded wire. Make sure to leave enough wire between S1 and VR2 wiper for adjustment of VR2. Connect the battery observing the correct polarity and the instrument is ready for setting up.

Apart from the need for both sensors to be placed side by side, as closely as possible, the instrument layout can be modified to suit individual requirements.

SETTING UP

Adjust VR1, VR2, and VR3 to the mid-track position. Place the colour temperature meter about 3 feet from a 100 watt pearl lamp, aligned so that PCC1 and PCC2 receive exactly the same amount of light. Press S1 and use the tip of a finger to find out which sensor needs masking to bring the pointer of ME1 to zero, then place a spot of ink or paint (black) on the face of the selected l.d.r. to achieve balance.
Next position the colour temperature meter with sensors almost in contact with the 100 watt bulb (maximum illumination), taking care that PCC1 and PCC2 receive the same amount of light. Adjust VR1 for zero balance.

The next stage is to prepare the red and blue filters, made from orange and pale blue (avoid mauve) cellophane respectively. Cut a paper disc to the outside diameter of the sensor holders. Fold orange and blue cellophane several times and cut out the filter discs with sharp scissors using the paper disc as a template. Glue four discs of blue cellophane on the PCC1 holder as shown in Fig. 3.

Take the colour temperature meter out of doors on an overcast day, well away from walls or trees. Set VR3 to the mid position and commence placing red filter discs over PCC2 until ME1 reads near zero when S1 is pressed. About twelve orange cellophane discs (red filter) will be required because the l.d.r. is more sensitive to red than blue light. The red filter discs can now be glued on the PCC2 holder, and the meter is ready for calibration.

CALIBRATION

In the absence of standard light sources, the following method of calibration is suggested. Make a temporary paper disc dial for VR3, with the scale shown in Fig. 5 lightly pencilled in. Set the pointer of VR3 at 2,800 degrees Kelvin and position the colour temperature meter a few inches from a 100 watt pearl bulb. With PCCl and PCC2 equally illuminated, press S1 and adjust VR2 for zero balance.

For the next calibration check, choose a heavy overcast day, within an hour of noon, and set VR3 pointer to 8,350 degrees Kelvin in summer, 8,100 degrees Kelvin in spring or autumn, or 7,800 degrees Kelvin in winter. With sensors pointing straight up at the sky, press S1 and
observe the null meter. If the meter does not read zero, adjust VR3 for a null and mark the position of VR3 pointer on the paper disc dial. It should now be possible to gauge the discrepancy, if any, between the VR3 setting and the scale of Fig. 5.

If necessary, reposition the pointer knob on VR3 spindle and go through the above checks again for a new setting of VR2 until agreement is reached with the Fig. 5 scale. It is recommended that the temporary VR3 scale be left on the temperature meter for a few weeks so that various checks can be made, using Table 1 as a guide, and transparencies can be evaluated. When satisfied with results, a permanent scale can be made for VR3. A more accurate calibration technique is possible if several colour correction filters are available.

MIRED VALUES

Special correction filters may be placed in front of a camera lens to modify the colour temperature of light falling on the film. If the scene being photographed has a blue cast, a reddish filter of the right grade will give the transparency a normal colour balance. Correction filters are also used to achieve special effects, and to match a daylight type film to artificial light or vice versa. There is, however, a practical difficulty in selecting the right filter for the job. A given grade of filter will have a much greater effect at higher colour temperatures than at lower ones.

To make the process of filter selection simple, correction filters are graded in values based on the reciprocal of colour temperature, called the mired, see Fig. 5 and Table 2. A given grade of filter will always produce the same amount of correction anywhere on the mired scale.

Colour correction filters are identified by the letter R or B (standing for red or blue) followed by a number which is the filter rating in mireds divided by ten. For example, an R6 filter will make the colour of a light source more red by an amount corresponding to a shift of 60 mireds. Two filters placed together have an additive effect, a B6 plus a B12 will give a total shift towards blue of 180 mireds.

When the colour temperature meter has been roughly calibrated, it is a simple matter to interpolate between major calibration points with correction filters. Suppose that the colour temperature meter is reading the light from a 100 watt bulb with VR3 set to 2,800 degrees Kelvin (356 mireds), a B12 filter interposed between PCC1, PCC2, and the light source will raise the effective colour temperature by $356-120$ mireds $=4,240$ degrees Kelvin, thus giving a fresh calibration point. With several filters, and a few known light sources, the whole colour temperature scale can be filled in by the above method.

USING THE METER

Since the object of the meter is to measure the colour of light sources only, avoid reflected light from brightly coloured objects, clothes, and green grass, etc.

To take a shade reading out of doors, either stand in the shade of a neutral colour building with the meter pointing away from it towards the sky, or interpose the body between the meter and the sun. Always make sure that both sensors receive the same amount of light.
To measure the colour temperature of sunlight, the best method is to angle a sheet of white

Table 2: COLOUR TEMPERATURE AND MIRED SCALES

Degrees Kelvin	Mireds	
2,500	400	
2,850	350	
3,330	300	
4,000	250	
5,000	200	
6,650	150	
8,000	125	
10,000	100	
13,300	75	
20,000	50	
	Mireds $=\frac{1,000,000}{\text { degrees Kelvin }}$	

paper towards the sun and take a reading from the paper. A similar method can be employed to take an integrated reading of mixed sunlight and skylight, by having the sheet of paper horizontal with the meter looking down at it. Alternatively, point the meter straight up at the sky with the sun illuminating both sensors evenly from front or back.

MEMORY STORE

by George Dunning

MY Father, like most of his contemporaries, had been during the late twentles an enthusiastic d.i.y. wireless constructor. Evidently, the radio we know was evolved on hundreds of breadboards in back kitchensfrom delicate crystal sets through temperamental t.r.f.s with leaky grids to superhets with horn loudspeakers-by amateurs such as he.
One of my earliest recollections was of a great moment, when after much adjustment and carefultuning he summoned the whole household to the earphones. After a dramatic silence during which the phones were passed around, everybody joyfuilly agreed that It definitely was the sound of a violin and the earphone was held to my tiny ear to witness the historic event.
Not long after that, fairly reliable sets with cone speakers appeared on the market: the enthusiasm for wireless construction waned and the whole paraphernalia was retired to the shed.
Many years later in a dark corner I discovered a large torroidal
coil and on blowing the dust from its label I read "What are the wild waves saying?" My curiosity was aroused and I asked the inevitable question: "How does wireless work, Dad?" His answer was curt and final; "You've no time to fiddle about with that, lad while there's studies to attend to". It remained a mystery-a thing I dismissed from my mind so that in time I not only did not know, but I did not want to know about things electronlc; they were not my line of country.
And so it remained until the mid fifties. At that time I was working as a routine chemist and I began to notice how the advent of electronics enabled automatic physical methods to cut out some of the lengthy analytical chemical methods. It became increasingly clear that my livelihood would eventually be threatened and so, in short, I decided that as I could not beat them then I must join them. Accordingly I enrolled for evening classes in Telecommunications.
Thus I entered the world of electronics comparatively late in life. The wireless theory I acquired led me naturally via journals such as Practical Wireless and later

Practical Electronlcs to the fascinating hobby of electronic gadgetry. No elaborate workshop was needed. Armed with a multirange meter, a soldering iron and a pair of strippers most projects could be tackled on the kitchen table.

For me the fascination lies in innovation. I cannot ever remember having copied a constructional item, component by component. My projects are usually a hotch-potch of several past constructional features and ideas arranged so as to exploit some component new to the amateur market: a thyristor replacing a relay, an i.c. replacing both vibrator and amplifier together. The excitement comes in finding out if it will work.

Looking back, I would say that by learning the theory first I gained greater pleasure and was able to build more efficiently sooner-but it was by no means essential to efficient construction. With only a knowledge of Ohm"s Law and a healthy respect for Finnigan's Law anyone at any time can jump in at the deep end and soon be swimming around with those hitherto strange fish; the amateur constructors.

Unfortunately we have to write the copy for Shop Talk before the previous issue is on sale and hence no "feedback" from you, the readers, is available to tell us if indeed we did solve all your buying problems. However, if any general buying points do arise from various articles we should be able to deal with them in the following issue.

Having had a few phone calls concerning R.S. Components arising from another source it is possibly worthwhile reinforcing what was said last month, and also to mention that one or two firms are now specialising in R.S. Components parts and a look at adverts at the back may be advantageous.

After looking through the components lists this month it would appear that nearly all the components are readily available.

Photographic Colour Temperature Meter

The slider preset potentiometer may not be easy to get for the Colour Temperature Meter, other types could be used but the slider fits in well. Some of the London shops should be able to help if your supplier cannot. The push button used by the author will probably not be obtainable but any "press for on" push button that is not too big should be all right; there are a number generally available.

The original case looks very neat and is made of white Formica, held together with Araldite.

Fuzz Box

Well, the Fuzz Box should be straightforward as far as buying goes. Once again the author's case looks neat and is both strong and inexpensive.

Demo Deck

Take note of the piece about RS Components above and you should have few problems in buying for the Demo Deck. Strangely enough, the only real buying problem Mike Hughes had was in

obtaining the 0.06 amp (60 milliamp) bulbs. If you cannot get them Home Radio are the people to write to.

Our Demo Deck cabinet was made by a professional from Afrormosia Mahogany and looks very presentable. Obviously, many people could not make up such a good cabinet but our design is recommended as it has facilities for all the necessary bits and pieces.

Teach-In

If you have any problems buying those few resistors for next month's Teach-In, you are just not trying. If you get 5 per cent types so much the better, they will probably not cost any more.

New Prodicts

To protect your hands, clothing, the kitchen table and even carpets, a soldering iron stand is a must. You should never hang your iron on equipment or the edge of a table as it is all too easy

to reach across it and burn a hole in your clothing or skin.

If you have an area where you can set up a permanent work bench then buy a good stand and screw it to a bench. If you have to move around or use "borrowed space" then buy a good free-standing iron stand. This will help when you clear the work area as you can move the iron in the stand without having to wait or it to cool.

There are many stands available and most iron manufacturers make a stand for their irons. One universal one that was sent to us some time ago is shown in use with an Adcola Invader Iron left. This stand is well constructed and is available as a free standing or bench mounted type, and will take any iron with an element diameter less than 1_{2} inch. It is attractively finished in red anodised aluminium, with a tip cleaning pad, made by Stangard and is available from Home Radio (Components) Ltd., for $£ 1.33$ (bench mounted) or $£ 1.83$ (free standing as shown).

Bradewik is a sort of "solder sucker," it is designed to remove solder from joints being desoldered. This should prove useful when working on the Demo Deck as it will prevent those large blobs of solder from building up around the tag posts.
To desolder a joint, simply apply the wick simultaneously with a soldering iron, the wick will soak up the solder as it melts. The solder-filled part of the wick can then be cut off.

Bradewik is available in four width sizes from 0.025 inch to 0.1 inch, the 0.075 inch sizes (Green Label) should suit most constructors. Available from Light Soldering Developments Ltd., 28 Sydenham Road, Croydon, CR9 2LL, or retail shops, the cost is 90 p for approximately five feet of any wilth.

Windscreen Wiper Part Two By S.B. Squire

LAST month we showed how the unit can be fitted to cars with single speed field coil motors however, some cars are fitted with two speed wipers using a field coil motor, the wiring diagram for these motors is shown in Fig. 6a, Fig. 6b shows how the unit is wired to this system. If required the unit may be used to operate the wipers at either of the two speeds depending on the wiper switch position (1 or 2) that the yellow wire from RLAl is connected to. Wiring shown in Fig. 6b is for positive earth, reverse X and Y for negative earth systems. The green wire is not used and need not be fitted.

PERMANENT MAGNET MOTORS

During the last few years permanent magnet wiper motors have been fitted to many cars and these motors are wired up as shown in Fig. 7a. You will notice that the parking switch shorts out the motor when it is turned off. This is so that the motor stops quickly. Most cars fitted with permanent magnet wiper motors are wired negative earth and Fig. 7b shows how the unit
is wired to such a system. Notice that the wire between the wiper switch and the parking switch is broken and the normally closed side of the set of changeover relay contacts inserted in this line (green and blue wires from RLA1).

The normally open contact (yellow wire from RLAI) is wired to the other side of the wiper switch. The blue wire must be wired to the wiper switch-the non earth side.
If your car has a permanent magnet motor and is wired for positive earth, simply reverse wires X and Y shown in Fig. 7b.
The fourth and final system is the two-speed permanent magnet type, again usually wired for negative earth. It is possible to use this unit with these motors but only on the first switched speed, reference to Fig. 8a will show the car wiring normally used with such a motor and Fig. 8b shows how to wire the unit to the motor, note that the normally closed side of the changeover contacts are wired between the wiper switch and the parking switch (blue and green wires from RLAI) while the third-normally open contact (yellow wire from RLAl) is wired

(a)

Fig. 6a. Wiring diagram for a two speed field coll wiper motor.

(b)

Fig. 6b. Showing how the unit is wired to a two speed field coil system-positive earth shown. In this configuration either speed can be used depending on which wiper switch position the yellow wire is connected to.

to earth. The centre contact (blue) must be connected to the wiper switch as shown.
If your car has a positive earth two-speed permanent magnet motor simply reverse wires i X and Y .

IDENTIFYING THE CAR WIRING

You should be able to determine the type of motor used in your car from the number of connecting wires on the switch, i.e., 2 wires (single speed)-field coil; 3 wires (two-speed)field coil dual speed; 3 wires (single speed)permanent magnet; 4 wires (two-speed)-permanent magnet. It should be possible to obtain a wiring diagram and find out which colour wires go where and how the various switches are wired up, but if this is not possible then you
will have to trace the wires on the car to find out how to wire in your controller.

OPERATION

Once the unit is fitted to the car it is operated without touching the normal wiper switch. With the wipers off, switching on the unit will give one wiper sweep (back to the park position) approximately every five seconds. Further rotation of the control knob will increase the time interval between sweeps up to approximately 25 seconds. The 0 to 10 scale on the knob can be used as a guide to the delay time.

For normal operation of the wipers simply switch off the unit and turn on the wiper switch. in the normal way.

Fig. 8a. Wiring diagram for a two speed permanent wiper motor.

Fig. 8b. Showing how the unit is wired for a two speed permanent magnet wiper motor. Note that the wire between the motor and the first switch position must be disconnected and the relay contacts wired in. Negative earth system shown.

PAST \& FREEETT

By Prof. G.D. Sims, OBE, PhD (southamplen uniestity)

The second half of our story opens with the introduction of integrated circuits-and the beginning of microelectronics. Some of the significant new applications that have already emerged as a result of technological developments are mentioned, and finally, some likely prospects for the future are discussed.

Top left: Cold cathode neon filled numerical indicator tubes. Such devices are used in electronic measuring and computing equipment to provide visual readout of data (Mullard)

Bottom left: Ferranti Mark I Computer at Manchester University 1951. This was the first British electronic computer. It employed 3,000 valves, and a refrigeration system ; cathode ray tubes were used as data stores, in addition there was a magnetic store. This picture shows just part of the computer, the central processor and the control desk (Ferranti)

Top right: Small size solid state display made up from a matrix of tiny gallium arsenide phosphide light-emitting diodes. Can be arranged to provide numbers or words of any length (Marconi)

Bottom right: The latest Ferranti Computer, Argus 500, is a fast computer system for on-line applications. The central processor, the subunit at extreme left of picture, can operate with one microsecond core stores. Compare this small sub-unit with the large cabinets required to house the central processor of the Mark 1 (Ferranti)

The success of microelectronics as we know it today stems largely from the exploitation of the silicon planar process. A typical integrated circuit may contain a number of transistors, resistors and capacitors all made within the same silicon "chip" the interconnection pattern between them being evaporated on after all of the components have been formed. "Large scale integrated circuits" can contain thousands of devices all made in the same piece of silicon.

The majority of integrated circuits commercially available at the present day, however, are the simpler ones and these alone open up a host of new possibilities in electronic design for both professional and amateur alike.

Integrated circuits for colour television. From left to right: colour demodulator, central signal processor, voltage reference source, and intercarrier sound i.f..and detector (Mullard)

LINEAR INTEGRATED CIRCUITS

Whereas at one time the task of wiring up separate components to form an amplifier was "bread and butter" to the engineer, it is now often possible to buy a suitable amplifier integrated in a single chip and ready for use. "Linear" integrated circuits (such as amplifiers) are commonly available in a variety of forms and can be regarded as the design blocks of our future systems in much the same way that the transistor, and earlier still the valve, were in the past.

DIGITAL INTEGRATED CIRCUITS

Integrated circuits, however, have come to be most widely used in "digital" (pulse) applications such as those involved, for example, in the design of the computers to which we have referred.

We have already drawn attention to the fact that electronic circuits can make yes/no decisions and hence "think". The design of "thinking" systems therefore is very much concerned with the design of "logical systems", which perform deductive tasks in much the same way that a human being does. It is this link with logic which has given impetus to much of the digital integrated circuit development.

Contrast between the conventional "discrete component" version of a colour receiver i.f. amplifier; and one incorporating a linear integrated circuit (Mullard)

Many "families" of such integrated circuits are available, each forming a comprehensive range of logical functions and some of these are now extremely cheap to buy. In many other applications besides computing, for example in control systems and in communications, it is better to design in terms of digital building blocks rather than around the linear circuits traditionally used; and many future developments, of increasing interest to amateurs, will centre around the uses of these digital modules.

The microcircuit therefore is the key to our future. Let us look at the advances which electronics has made possible in recent years and at the same time some of the problems which lie ahead.

Decade counter using two digital integrated circuits (top) compared with a similar device using discrete components (Mullard)

The central processor of the Argus 500 Computer. This unit incorporates 980 integrated circuits and 220 discrete semi-conductor devices; and is 30 in . high, 22 deep and 5 in . wide (Ferranti)

MAN/MACHINE PROBLEMS

One area which is currently exciting great interest is the man/machine interface problem, coupled with the question of how can we replace human functions by electronic systems?

At the present time electronic systems exist which can learn fairly satisfactorily to read even handwriting, though as yet they are far from being sufficiently perfect for use, for example, in letter or parcel sorting. However, if standard alphabets are used the possibility of such tasks as stock control being performed by machines which scan invoices and ultimately, perhaps, even audit books, seems to be within the realms of the possible.

A related problem is concerned with the identification and artificial production of those
attributes of sounds which characterise speech. Clearly knowledge of this kind is vital also to the elimination of those characteristics which produce discomfort in human beings and to the alleviation of noise pollution generally.

Similar techniques to those used in this field of "pattern recognition" can also be used in medical diagnosis to compare patient information with that of previous cases in order to predict appropriate methods of treatment.

All of these applications depend upon suitable electronic circuits which will recognise, classify, identify and compare, symbols, signals or noises and it is only with the coming of cheap electronics that such systems-previously regarded as being too expensive or too complicated to make-are now possible.

ELECTRONICS AND "MEDICINE"

Mention of the medical field touches upon one of those areas where electronics has now started to make very significant contributions; we can for example now produce an artificial hand so sensitive that it can pick up fragile objects without crushing them and so positive that it can hold objects tightly, merely when the human mind controlling the hand thinks that it wishes to perform one or other of these functions. Such a hand is actuated by signals from nerve endings in the body and will imitate any movement which a natural hand would have performed.

Further development is still needed before such aids find general application as certain electromechanical problems still exist, but the pure electronics, which interprets the nerve signals and controls the hand motion, can now be reduced to a volume and weight compatible with a normal limb size: all of this thanks to the development of microelectronic techniques.

A related application also envisages the use of

Prototype model of adaptive artificial hand. It is driven by six compact d.c. permanent magnet motors and contains about thirty transducers. These provide the control system with detailed information about the object being grasped such as its shape, position and stability ; they also monitor the forces, velocities and positions of the digits. This experimental device weighs twice as much as its human counterpart. Commands for the control system are derived from myoelectric signals produced by the operator (Dept. of E.E., Southampton University)

Diagnosis by Computer. This heart specialist in the United States uses an electronic telephone to transmit a patient's heart record from this electrocardiograph to a computer. The computer will analyze the signals and return a diagnosis in about two minutes (U.S. Information Service)
microelectric techniques to produce feedback signals to control nervous or spasm conditions, or to make up for damage to the nerve paths, which act as the normal communication channels between the brain and limbs, such as might be associated with some forms of paralysis. A whole family of related devices, which is now coming under consideration, involves such items as talking aids for those with speech defects, or typing aids for those who have lost the use of limbs.

A voice operated typewriter, actuated by spoken signals in the form of a kind of morse code, can now be made and the possibilities which this kind of device opens up are tremendous. One could, for example, now envisage a small computer making its time available to a range of aids of this type, enabling a complete office or workshop to be manned by people who were disabled in one way or another

The fact that electronics could now offer employment possibilities to the handicapped is both important and exciting and could not have been contemplated a few years ago. In this area, however, we are only just at the beginning of the road.

AUTOMATED DESIGN AND PRODUCTION

Many other previously manually executed jobs
of course are now already performed by special purpose computer systems. For example, electronic control of machine tools is finding increasing use in industry.

In this case the operator specifies to the control system just what shape the machine is to cut-he does this by way of data on punched tape or cards-and the machine proceeds to produce the work automatically with little need for human intervention.

Further back in the design chain, newly developed electronic draughting machines are also rapidly gaining acceptance. Production of, for example, a radar system may require as many as 20,000 detail drawings, which such a machine, suitably programmed, can produce on command from basic master sketches.

Initially the master is produced from data typed into the machine while other parts of the sketch are drawn in using a light pen controlled by the "draughtsman". Amendments can also be

Designer in dialogue with computer. A senior designer is shown adding another stage to the MOS microcircuit which he is designing in cooperation with a Myriad computer. He is using a light pen to put a new section into the main circuit design, having called it from the computer store using the keyboard. (Marconi)
made via the light pen and the drawings can thus be amended and up-dated when necessary.

Similar computer based design techniques are used in the production of large scale computer systems themselves where the back wiring diagrams are both devised and produced by computers: the same is true of the printed circuit boards on which the components and individual microcircuits are housed. The computer can lay out these boards in an optimum way and what was once a very tedious and time consuming human operation has now been reduced in a straightforward programming exercise.

COMPUTER AIDED DESIGN

Computer aided draughting to which we have just referred should not be confused with "Computer Aided Design" (C.A.D.), which is attracting
excited interest in all branches of the engineering industry.

In the electronics field, circuit diagrams and systems specifications can be fed into a computer which will in turn calculate all the component values to meet the specification. Before the electronic system is actually built, the machine will simulate any design arrived at, see if it is perfect and in some cases can even lay out the various masks needed to produce microcircuits of which the system will ultimately be built

Clearly techniques of this kind are unnecessary with simple circuits and systems such as the amateur would need to deal with, but the complexity of many of the things the professional electronic engineer is now called upon to produce is such that only with aids of this kind can he complete his assignment in a realistically short time-if at all.

Present limitations of C.A.D. depend mainly upon the size of the computer needed to deal with really ambitious systems, and on the ability of those engaged in semiconductor device research to produce suitable "models" of their device behaviour from which the computer can work. Such limitations apart, however, it is in principle possible for the computer to design an electronic system right from the initial circuit diagram through to the digital information which will control the making of the masks used to produce the component microcircuits of which the system will ultimately be built. Many of these processes are still in the research stage, but the days of at least partly automated circuit production are rapidly drawing nearer.

In other fields of engineering, C.A.D. techniques are used to produce minimum cost systems, for example, in an electricity supply system optimum sizes and kinds of components can be chosen by the computer, using linear programming techniques, to perform within given safety factors any specified function.

MODERN COMMUNICATIONS

In communications, with the advance of digital techniques, (for example, pulse code modulation) microelectronics has again found a natural home and the electronic telephone exchanges of the future will be realised in very different form from those currently installed, as increasing degrees of circuit integration are incorporated.

Problems of signal storage still remain, though acoustic techniques, ferromagnetic bubble storage and more particularly the recent improvements in M.O.S. technology offer hopes of early progress on this front too.

In the field of signal transmission, waveguide techniques have now been developed to the point where they offer advantages in some situations over cable or microwave links. Indeed the Post Office is currently installing a 16 kilometre experimental run of multimode helical waveguide, which is due to be incorporated into

This 50 mm helical waveguide, seen at the Post Office research station Martlesham Heath, can carry several millions of voice channels (The Post Office)
regular communications use in 1973.
A single 50 mm helical waveguide can accommodate several millions of voice channels and though these techniques have been in prospect for several decades, it is only recently that the major difficulties have been resolved and the system has become economic. Trunk waveguide systems may well form the future transmission medium on some of the world's busiest communication routes, for the bandwidth available to us for free space microlinks is rapidly being used up.

Until recently, even given that the waveguide system itself had presented no problems, the terminal equipment to decode the signals and separate the individual channels would have been formidably complicated, without the electronic sophistication available to us today.

OPTO-ELECTRONICS

What else is in store? We are steadily approaching a new age in which light producing devices offer increasing possibilities as a means of conveying information. New electronic light sources and detectors together with low-loss optical fibres enable us to conduct light round corners and such techniques on a small scale enable the surgeon, for example, to investigate the interior of his patient using illuminated mirrors at the end of a fibre light guide.

In years to come fibres could well serve as a
long- as well as a short-distance communication medium offering even greater bandwidth than that which is offered by the waveguide techniques mentioned previously.

We have seen already that there is good reason to dispense with devices depending upon free electrons (as in the old thermionic valves) wherever possible in favour of solid state devices. There are two areas where we have not succeeded; one is in the design of high power

Development of television picture tubes since 1945: (lower left) 9 in., $14 \cdot 6 \mathrm{in}$. front to back; (lower right) 14in., $16 \cdot 6 \mathrm{in}$., (top left) 17in., $15 \cdot 6 \mathrm{in}$; (top right) 19in., 12in. (Mullard)

The television screen of the future? A new type of display panel using a special "liquid crystal" material is currently under development. Words or other information appear on it when a low voltage is supplied by wires which are concealed in this photograph. Immediate practical uses are likely to be data readouts for control panels, animated labelling for keyboards, and see-through map displays which pilots and drivers can read "head-up" without losing sight of the view ahead. One day, "liquid crystals" might provide television screens thin enough to hang on a wall (Marconi)
transmitting valves where the electron tube still reigns supreme; the other is in the display field where the cathode ray tube also remains unchallenged.

Yet, once again much research is directed towards finding solid state replacements for these devices, enabling us prospectively to get get rid of high voltages, hot cathodes and relatively short lifetimes. The day of the all solid state camera tube and the solid state display cannot be far away!

RETROSPECT

The pace of this advance has been breathtaking and the rapidity with which we have accommodated it equally so. We take for granted already the computers which process our bank cheques, we take for granted the information which is transmitted back to earth from weather satellites and indeed the fact that we can now receive television pictures from, for example, Japan whereas at one time the only way of doing this was to send a film round the world by aircraft.

We take for granted the safety of the navigational systems in the aircraft in which we fly, that the radio altimeter will tell the pilot the correct height when he is coming in to land, or indeed, even more so, that the automatic landing system will handle the aircraft and not miscalculate the point at which it is supposed to meet the ground! We fail to notice the increasing reliability of our telephone system, of which we are perhaps even less conscious when things go wrong!

All of these developments have occurred within the last fifty years, some within the last fifteen, and because of them and more particularly through our television sets we all know far more about the other countries of the world and their peoples than previous generations could have dreamed of. We have all become accustomed to, and indeed have come to expect, ease of communication and travel in all senses. The social effects of these developments all due to electronics have already been immense even if their source has not always been generally recognised.

It may be, as some have suggested, that the era of rapid developments in electronics is now passing and that as we move into the future the progress will be less spectacular. Past experience teaches one to treat such predictions with caution-though, true or not, we may be assured that the demand for electronics equipment and the need for people who understand how to design it will continue.

With the development of simple, easy to use circuits more and more people will find in electronics a diverting pastime which they can put to useful purposes. The main developments may be behind us but the future nevertheless remains tremendously exciting!

THE trouble with an electric current is that you cannot see it. Perhaps this simple fact is the main reason why a mystique has built up about electronics. Once you have a grasp of what causes an electric current to flow then a lot of basic electronics can be understood right away.

CURRENT FLOW

We all take for granted that we can connect a bulb to a battery and make the bulb light upthis is because an electric current flows through the bulb.

How can we prove that current is "flowing"? To have a flow we must pre-suppose that the flow is in one direction only, like a stream. We can show that there is a directional property to current flow very simply but we will need three components: a 9 volt battery, a 9 volt bulb in a lamp holder, and an electronic component called a diode.

We shall be talking about diodes later so at this stage let us consider it simply as a one way valve to the flow of electric current. If you wish to buy a diode capable of doing this experiment you should ask for one having a forward current of 1 amp and a working voltage of at least 12 volts. There are many types to choose fromperhaps the most common having type numbers 1N4001, 1N4002, 1N4003, 1N4004 (the 1N4001 should be the cheapest because it has the lowest working voltage). Fig. 1 shows the appearance of some common diodes that will do. Note there are two wires and either an arrow shaped symbol pointing along the device or a spot or band around one end.

The 1N4001 has a band which corresponds to the end to which the arrow symbol is pointing. This arrow is pointing in the direction along which the diode will allow electric current to flow.

Fig. 1. Two common diode encapsulations are shown above a ball-valve which represents a diode. Water can flow from left to right but not from right to left, likewise a diode allows electric current to flow only in the direction of the arrow in the symbol (shown below the ball valve). This assumes that current flows from positive to negative.

CURRENT FLOWS THIS WAY

Fig. 2. The bulb lights with the diode connected as shown but will not light lif the diode is reversed as in the broken line drawing.

Fig. 3. Water analogy of Fig. 2.
Connect the lamp to the battery with two wires and see that the lamp lights. Reverse the leads to the battery: the lamp still lights. Now put the diode in the circuit. Connect the banded end of the diode (arrow head end) to the negative terminal of the battery; the other end to the bulb; the other side of the bulb to the positive terminal (we say that the battery, bulb and diode are connected in series). The lamp lights again. Now reverse the diode in the circuit so that the banded end is pointing towards the bulb. The lamp does not light because the diode does not allow current to flow through it this way round (Fig. 2).

By referring to the way the diode was connected in the circuit we can decide which way the current was flowing. It was, in fact, from the positive terminal through the bulb and diode into the negative terminal. This simple circuit has a nice analogy if we consider water as electricity, a pump as our battery (producing pressure) a spring loaded ball valve as our diode, and a radiator as the lamp (Fig. 3).

DEFINITION

We shall return to this analogy shortly but first let us simply describe what constitutes an electric current. It is quite simply the transfer
of energy from one place to another, the energy being transmitted by the movement of minute particles of matter called electrons. These electrons have a negative charge and like north and south poles of a magnet the negatively charged electrons are attracted to positive potential (voltage)-they are repelled by a negative voltage.

Every material has a number of free electrons within it; copper has a great many and hence is capable of carrying more electric current (for a given cross section) than most other materialswe call it a good conductor. Glass has very few free electrons and hence we call it a bad conductor (or an insulator).

If a piece of copper wire connects the positive terminal to the negative terminal of our battery (do not do this in practice because you will run the battery down) we can imagine the free electrons in the copper moving from the negative terminal to the positive. Note that here is an ambiguity; although electrons move from negative to positive we say (by definition passed down through the ages) that current flows from positive to negative. This sounds confusing but does not usually cause many headaches and because it is such a ridiculous ambiguity it is easy to remember. Unfortunately the definition cannot be changed easily because all the rules of electromagnetism are based on it. During the series we will always assume that conventional current flows from positive to negative.

Fig. 4. More electrons move pass the dotted line per second with a thick wire than do with a thin wire.

If we had a thick piece of copper wire we would expect more electrons to move past a given point per unit of time than with a thin piece (Fig. 4). Likewise if our battery had a higher voltage it would seem logical that we would get the same sort of effect. This is exactly what does happen. We call the rate of movement (flow) of electrons the electric current, the battery voltage is the pressure or motive force driving them, we call this the electro motive force (e.m.f. for short) and the copper wire is the conductor which has the ability of allowing large numbers or small numbers of electrons to move depending on its area of cross section; we call this the resistance to flow.

WATER ANALOGY

Having defined the basic elements of a real .electric current let us now return to our analogy with water. We have already used the terms pressure and flow. We can demonstrate electrical resistance by having a water pipe of small bore connected in series with a pump-similar to a domestic central heating system. The smaller the bore, or the more radiators we have, the higher the pressure we need from our pump to maintain the flow.

It is common practice to measure water pressures relative to a given "head" of water. At the inlet of the pump the pressure is zero because this is our reference point. At the outlet the pressure will be high and positive and in between the various radiators we will still measure positive pressures but they will get less and less as we go round the circuit (Fig. 5).

If we took the junction of radiators B and C as our reference we would measure positive pressures on the "upstream" side of the point and negative pressures on the "downstream" side. What we are in fact measuring is the "pressure difference" between two points. If we have a high resistance to flow between two points we will get a corresponding high pressure difference. This is exactly what happens with an electric current. Let us replace the pump with a battery and the radiators with electronic components called resistors (Fig. 6.)-these are devices which have been specially designed to restrict the flow of current and have values measured in ohms. The drawing on the left shows the components as they would appear in real life but now look at the schematic diagram on the right which uses symbols to represent the components. B1 is the battery, R1, R2, R3, and R4 represent resistors. The voltage (or e.m.f.) of the battery is the driving pressure, say 4 volts. If all the resistors have identical value we can say that relative to the negative terminal of the battery the potential at the junctions of R1 and R2 is +3 volts, between R2 and R3 is +2 volts and between R3 and R4 is +1 volt.

Three types of moving coil meters. A. Edge wise type. B. The "standard" type used in the Demo Deck. C. Centre zero type.

MEASURING CURRENT

It is all very well talking about currents and potential differences but how do we measure them? We have seen that a current flowing through a resistor produces a potential difference. Similarly an e.m.f. across a resistor will produce a current. There is a relationship between these, therefore we should be able to measure potential difference in terms of current. This will be covered in more detail later.

Fig. 5. Water analogy of a circuit showing difference in pressures.

Most instruments in their basic form measure current and are modified to use the relationship mentioned to measure potential difference (voltage). The most common type in use today is the moving coil galvanometer. A small electric current made to pass through a coil of wire pivoted in a strong magnetic field makes the coil move on its pivot against the action of a spring (Fig. 7). A fine pointer attached to the coil moves over a graduated scale calibrated in units of current (amp or fractions of an amp).

Moving coil meters are specified in terms of their sensitivity. For example those used in cars do not have to be very sensitive as the currents measured are very high ($10-20 \mathrm{amp}$) and the coil is usually only a turn or two of very heavy wire. In electronics we are usually concerned with minute electric currents in the order of thousandths or even millionths of an amp and it is quite common to have a meter having a full scale deflection of 100 millionths of amp (100 microamp). The wire used for the coil in this case is extremely fine and there are many turns. The price of meters is directly proportional to

Fig. 7. Basis of the movement of a moving coil galvanometer.

their size and sensitivity; obviously it is not sensible to buy something that is too good for an application but when obtaining a meter it is always better to err on the side of higher sensitivity-it can always be reduced.

Next month we shall go into more detail about the relationship between current, potential difference and resistance and will carry out some simple experiments. In preparation for this it is suggested that this month you make the Demo Deck. This "table top laboratory" will be used frequently during the series and for those with a limited amount of working space it should permit work on the dining room table without too many severe repercussions!

You might be tempted to start experimenting with the Demo Deck at this stage; if you are, be extremely careful that you do not pass excessive current through the meter. If you do not understand what this means it is safer to leave things as they are until next month when we shall be putting the deck through its paces, using a few extra components.

The electronic components required are:
2 1,0000hm 士 10\% $\frac{1}{4}$ watt resistors, 210,000 ohm $\pm 10 \% \frac{1}{2}$ watt resistors and $222,000 \mathrm{ohm}$ $\pm 10 \% \frac{1}{4}$ watt resistors

Next month: Ohm's law explained and used to make a

Exclusive money-saving offer to our readers

- TAPERED NOSE PLIERS
- INSULATED SIDE CUTTERS
- STEADFAST 4"

ELECTRICIANS SCREWDRIVER

- STEADFAST 3" INSULATED ELECTRICIANS SCREWDRIVER
- TUBE MULTICORE SOLDER IN DISPENSER
- All in a black PVC WALLET. with pockets and press stud fastenings

This valuable set of tools contains the items we described in "Teach-In" for beginners last month as being essential to anyone setting out to enjoy the hobby of electronics. Having the right tools makes the job that much easier to do.
Take advantage of this great offer, exclusive to readers of "Everyday Electronics". Send for your Beginner's Tool Kit today.

how to order

1. Supplies are limited and we advise readers to send in early for this offer to avoid possible disappointment. If there is a heavy demand there may be a delay of 2-3 weeks before the kit is despatched; and should the demand prove exceptionally heavy our supplies may be exhausted before the closing date of 31st December, 1971
2. Please fill in both Address Sections 1 and 2 of the Order Coupon, in ink, with your name and address in BLOCK CAPITALS.
We regret that we cannot supply kits to readers who send in a remittance without completing the Order Coupon.
3. This Offer is available only to readers in Great Britain and Northern Ireland.
4. Please do not enclose any correspondence with your Order Coupon, and remittance.
5. Cheques and postal orders to be crossed ' $\&$ Co.', made payable to IPC Magazines Limited, (please write your name and address on the back of cheque) and sent to: EVERYDAY ELECTRONICS TOOL KIT OFFER, 136 Long Acre, London WC99 9 YB

PLEASE FILL IN BOTH ADDRESS SECTIONS 1 AND 2 WITH YOUR NAME AND ADDRESS IN BLOCK CAPITALS

ADDRESS SECTION 1. (Please cut round dotted line) ADDRESS SECTION 2.		
EVERYDAY ELECTRONICS TOOL KIT OFFER		T.K.
Number	Name	
I enclose P.O./Cheque Value		
Please send me Kit(s) at $£ 1.97$ Each Name	5.-	
Address		
E.E. 12.71		EVERYDAY ELECTRONICS Offers Dept., 136 Long Acre London. WC99 9YB. E.E.12.71

YOU WIIL WISH TO BUILD THE ANTIOOII M.W.RECEIVER

..AND TME REMOTE TEMPERATURE COMPARATOR

Measures small temperature changes in liquids
 ...simple 6 and inexpensive

ELECTRONICS AND THE MUSIC SCENE

Describes the way in which electronics has changed the "musical sound" in recent years and the devices that produce the "special effects" now in common use

TEACH-N PART 3

Explains fully the resistor colour code. Various experiments are carried out using the Demo Deck in which Ohm's law is verified

T He Demo Deck has been designed for the constructor who wishes to carry out simple experimental work with the minimum amount of space utilisation, and who desires also the possibility of re-using components several times over. Most particularly it is used as the work horse of the Teach-In series and those readers who are following this in a practical sense are strongly advised to make a Demo Deck so that they can perform the exercises and experiments exactly as described.

THE DECK
The deck itself has no circuit diagram but is a flat bed on which is mounted a range of components, together with a sturdy re-usable soldering board. An important feature of the deck for those with limited space is the special cabinet.

The deck is mounted on a specially designed cabinet, this provides accommodation for tools and components and also housing for the loudspeaker and batteries. Thus at the end of experimental work everything can be tidied away neatly and the unit itself-if built well-is quite attractive in appearance.

No doubt it will be repeated in Teach-In, but
it is important in any hobby that care is taken -you are your own master but you should set yourself high standards for workmanship and never settle for something that you think you could possibly do better. This is an attitude that should always be taken in electronics because most problems ultimately boil down to untidy or slip-shod workmanship. Make as good a job of this table top laboratory as possible; remember you will be using it as a tool for the rest of this series and probably much longer.

There is no need to follow the details exactly, but those following Teach-In are advised not to deviate too far from the published design. Some more advanced constructors may like to use the basic design suitably modified to their own purposes. For the benefit of beginners we shall

Approximate cost of components
\square
『 5.50 plus cabinet

$$
O=\text { TURREI TAGS }
$$

Fig. 1 Pin layout on the small perforated board, note the area left for mounting to the chassis.
specify the components in detail but, of course, some latitude is possible and costs can be cut by careful shopping around.

TAG BOARD

The basis of the Demo Deck is the tag post board which can be used for soldering up experimental circuits. This is made on a standard piece of R.S. Components perforated board that has holes set on a 0.25 inch matrix. The tags used are from the same manufacturer and are the ones typed "small". The standard layout of pins-that will be used in the Teach-In series -is shown in Fig. 1. It can be seen that not all the perforations are used; this is for reasons of economy and clearness of layout; experienced constructors might prefer a full matrix of pins.

To rivet the pins in position hold the special die (this is supplied with a gross packet of tags) in a vice and insert the long shank of the pin in the die. Offer the perforated board to the short shank end of the rivet-which is protruding from the die-so that the pin is firmly seated in the hole then use a centre punch to splay out the end and, using a small hammer, firmly flatten the rivet and make sure it is holding tightly, see Fig. 2. This should be done for all relevant positions on the board-make sure that the margin around the board is kept clear of pins as this will be used for mounting purposes.

CHASSIS

The chassis of the prototype deck was made out of 14 gauge aluminium plate and obviously
this makes a very sturdy job even though the material is a little difficult to work. Other materials can be used but it should be remembered that the unit is designed to give quite some service, therefore ensure that the material is strong enough. A good alternative would be ${ }_{16}{ }^{3}$ inch plywood or a strong grade of hardboard. If a wooden panel is used it must ultimately be coated with varnish or enamel paint so that lettering can be added.

The layout of the components can be seen in the photographs so holes should be cut in the panel to facilitate mounting; dimensions for the components used in the prototype are shown in

Components

Potentiometers

VR1 100 ohm wirewound
VR2 5,000 ohm (5 kilohm) carbon
VR3 25,000 ohm (25 kilohm) carbon
VR4 500,000 ohm (500 kilohm) carbon

Lamps

LP1 6 volt 0.06 amp MES bulb and holder
LP2 6 volt 0.06 amp MES bulb and holder

Loudspeaker

LS1 35 ohm $3 \frac{3}{3}$ inch diameter
(R.S. Components)

Meter

ME1 1 milliamp full scale deflection moving coll meter with $1 \frac{1}{2}$ inch square face (S.E.W. type MR38P)

Battery
B1 $4 \frac{1}{2}$ volt screw terminal bell battery (2 off)

Miscellaneous

1 small perforated board (R.S. Components)
1 gross box small turret tags (R.S. Components)
2 ten way 2 amp terminal blocks (R.S. Components Barrier Strip 2A)
6 Slim screw terminals, different colours (R.S. Components)

Banana plugs to fit screw terminals (optional accessory)-if alternative terminals are used these may not have facility for plugs
Small or medium crocodile clíps (optional accessory)
2 yards (approx.) single strand insulated connecting wire
2 yards (approx.) light duty twin flex (for leads to B1 and LS1)
2 yards (approx.) seven strand insulated connecting wire (for connecting leads)
Aluminium or other material for chassis (see text)
Wood for housing (see Fig. 5). Lettering sheet. Varnish etc.

c $3 / 8$ DIA.
Fig. 3 Drilling details for the Demo Deck
 cabinet, including spaces for batteries, loudspeaker and tools. The loudspeaker must be protected from the back

Wood used in the
 for all external panels. Internal panels

the layout drawing (Fig. 3). It is as well to check the diameter of fixing holes because some components of different manufacture can vary in physical dimensions.

Check that the potentiometers, lamp holders, terminals and meter will fix correctly and then finish off the surface of the Demo Deck. If aluminium is used, make a satin finish by scrubbing the surface in a horizontal direction with fine grade wire wool; lightly dust off the metallic powder produced without getting finger marks on the surface and immediately apply a coat of polyurethane varnish. When dry apply lettering either with transfers or Letraset and then give a final protection coat of varnish. If you have used a wooden surface apply one or two coats of a hard gloss paint and when dry carry out the lettering as above. Finish off with a coat of clear varnish. Each tag should be identified by a number/letter code and this can be applied to the chassis around the edge of the board. The designations are applied as shown in Fig. 1.

WIRING

Now is the time to mount permanently all the components. Take care when handling the 1 milliamp meter and make sure that you have the potentiometers mounted in the right places. If necessary cut the shafts of the potentiometers, to take the knobs, before mounting on the deck. The values of resistance are printed on the side of the potentiometer cans. The underside wiring is only to route the terminals of the components to the Demo Deck terminals
and Fig. 4 shows the details. Take note that there is a cross-over in the wiring sense of the potentiometer terminals and ensure that the polarity of the meter is correct. All meters should have the positive terminal marked + or with a red spot of paint. Leave the flying leads from the battery and loudspeaker terminals about 18 inches long: these will be connected to the components mounted in the wooden cabinet.

Set the deck aside and make a suitable support. It is recommended that a cabinet similar to that described in Fig. 5 be made. This will hold the batteries and loudspeaker, as well as having a compartment for tools and small extra components. Fig. 5 shows an exploded view of the prototype design. Make sure that you leave sufficient room to gain access to the batteries and that the rear of the loudspeaker is protected.

All that remains to be done is to make up some accessory leads. It is suggested that you keep an assortment of single ended and double ended crocodile clip leads and two or three single ended banana plug leads. These will be extremely useful for experimentation and can save a lot of frustrating time wasting.

There is only one word which need be said about the use of the deck. While the tag posts can be re-soldered many times it is worthwhile attempting to use the minimum amount of solder otherwise there will be a tendency to build up a large "blob" which can be annoying and ultimately make further soldering difficult. Should the wiring panel reach a condition when it can no longer be used it can be replaced simply by undoing the eight screws and dropping it out. \square

Fig. 4 Underside wiring of the Demo Deck(wires A and B should be transposed)

With the revival of the fuzz sound now that "heavy" groups are becoming more and more popular, a fuzz box using the minimum of components has been designed.

The unit is constructed using Veroboard and this is mounted, together with sockets, switch, fuzz control potentiometer and battery inside a constructed aluminium case measuring only $4 \mathrm{in} . \times 2_{8}^{7} \mathrm{in} . \times 1^{1}{ }_{2} \mathrm{in}$.

CIRCUIT

The circuit diagram for the fuzz box is shown in Fig. 1. It is basically a two-stage transistor amplifier using $n p n$ transistors. The input is first amplified by TR1 and then passed to the base of TR2. This second stage acts as an overdriven amplifier which clips and distorts the signal, producing the effect called "fuzz."

The bias on the base of TR2 can be adjusted by means of the potentiometer VR1. This changes the nature of the distortion and provides a certain amount of control over the "quality" of the fuzz.

The pre-set VR2 is incorporated to act as a variable attenuator so as to prevent overloading
of the main amplifier where permanent damage could be sustained if the output from the fuzz box was too high.

The values of the capacitors C2 and C3 have been chosen so as to provide a certain amount of treble boost which is a desirable effect with the fuzz sound. If more treble boost is required, this can be obtained by decreasing the values of C2 and C3.

WIRING THE VEROBOARD

The position of the components and the wiring on the Veroboard is shown in Fig. 2. All the resistors, capacitors and transistors can quite easily be mounted on a piece of standard Veroboard size $2^{1}{ }_{2} \mathrm{in} . \times 1^{1}{ }_{2} \mathrm{in} . \times 0 \cdot 15 \mathrm{in}$. matrix. The copper strips on the underside of the board should be cut as shown in Fig. 2, either with a small drill or the special Veroboard cutting tool that can be obtained from most stockists.

A mounting hole should be drilled at location E1 on the Veroboard so that it may be secured to the lid of the metal case by means of a 6BA nut and bolt.

Mount and solder all the components and

Fig. 1. The circuit diagram of the fuzz box.
flying leads on the board as shown, taking special care when soldering the transistors. It is recommended that a heat shunt be used, such as a pair of pliers gripping the transistor lead being soldered. This conducts away the heat from the soldering iron which would otherwise damage the transistor.

Fig. 2. The layout of the components on the top side and underside of the veroboard. Note that the flying leads to SK1 and SK2 are of screened cable. The transistor base connections as viewed from underneath are shown below. The larger drilled hole at E1 is for mounting purposes.

Some form of insulation should be placed between the Veroboard and the lid to ensure there is no "shorting" of the rear of the Veroboard by the metal lid. A piece of insulation tape stuck to the lid, under the Veroboard, is sufficient to prevent this.

CASE CONSTRUCTION

The size, shape and material of the case may be tailor-made to individual requirements, but the one shown in the photograph and described here was, besides having a neat appearance, found to be easy to construct and readily able to house all the components in a neat and tidy fashion.

The prototype case was made from $1 / 16 \mathrm{in}$. thick aluminium sheet to the dimensions given in Fig. 3.

All holes should be drilled before the metal is bent to shape.

The holes for fixing SK1, SK2, and VR1 will require large drill bits, up to ${ }^{1}{ }_{2} \mathrm{in}$. diameter. If these are not available, a smaller hole should be drilled first and then filed with a circular file until the correct size is obtained.
The slot for accommodating the slide on-off switch is easiest made using the "drill and file" method. That is, drill holes at the extremes of the rectangular area to be removed and then straighten up the perimeter with a small file.
The lid, which forms the base, is made from the same material as the body of the case and should have a ${ }^{1}{ }_{4} \mathrm{in}$. lip to enable attachment to the body by means of 2 small self-tapping screws.

The case is now ready for assembly.

ASSEMBLY

Fix SK1, SK2, VR1 and S1 firmly in their positions in the case as shown in Fig. 4, and then wire them to the Veroboard. The length of all these wires should be about 5 to 6 inches.

Screened cable must be used for the connections between SK1, SK2 and the Veroboard. This eliminates interference.

SIMPLE ALUMINIUM CASE WITH DETACHABLE BASE
Fig. 3. The case dimensions and positions of holes to be drilled.

Approximate
cost of components
1.60 plus case

Components....

Resistors

R1	$1 \mathrm{M} \Omega$
R2	$4 \cdot 7 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$
R4	$1 \mathrm{M} \Omega$
	All $\frac{1}{4} \mathrm{~W} \pm 10 \%$

Potentiometers

VR1 $1 \mathrm{M} \Omega$ log. or linear
VR2 $100 \mathrm{k} \Omega$ skeleton preset

Capacitors

C1 $50 \mu \mathrm{~F}$ elect. 15 V
C2 $0.047 \mu \mathrm{~F}$
C3 $\quad 0.01 \mu \mathrm{~F}$
Transistors
TR1, TR2 2N2926 silicon npn (2 off)

Miscellaneous

SK1, SK2 Standard jack sockets (2 off)
S1 Slide on/off switch
B1 9V battery (PP3) and connecting terminal, $\frac{1}{16}$ inch, aluminium sheet for case. 12 in. screened lead. 16 holes $x 9$ strips x 0.15 in. matrix Veroboard. Control knob.

ANIIX the soldering appliance specialists

CN. 240/2 Miniature soldering iran 15 watt 240 volts, fitted with nickel plated $3 / 32^{\prime \prime}$ bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$
CN. 240 Miniature soldering Iron 15 watt 240 volts, fitted with Iron coated $3 / 32^{\prime \prime}$ bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220 , 110,50 or 24 volts. Price $£ 1.70$ (Supplied in standard pack)
G. 240 Miniature soldering iron 18 watt 240 volts ex tensively used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit. Also available for 220 valts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ are obtainable. Price $£ 1.83$ (Supplied in standard pack)

E. 240 with $14^{\prime \prime}$ Iron coated bit. Spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.80$.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8^{\prime \prime}$ iron coated bit and packed in a trensparent display box. Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ avallable. Can also be supplled for 220° and 110 volts. Price $£ 1.83$

CCN. 240 New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation (4,000 v A.C.). Will solder live transistors in perfect safety, fitted with $3 / 32^{\prime \prime}$ fron coated bit. Spare bits $1 / 8^{\prime \prime}$. $3 / 16^{\prime \prime}$ and $1 / /^{\prime \prime}$ avallable. Can also be supplied for 220 volts. Price $£ 1.80$
CCN. $240 / 7$ The same soldering iron fitted with our new 7 -star high efficlency bit for very high speed soldering. The bits are iron coated, nickel and chromlum plated. Price $£ 1.95$

SK. 2
SOLDERING KIT
This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder. Heat Sink. 1 amp fuse and booklet
 "How to Solder"

MES. 12

A battery operated 12 volts 25 watt soldering iron complete with 15' lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet. Price $£ 1.95$

from electrical and radio shops or from Antex Lid. FREEPOST, (no stamp required) Plymouth, PL1 1BR. Telephone 0752 67377/8

Ienclose cheque/P.O./Cash (Giro No. 2581000)

Please send the following:
\qquad Name \qquad
Address

[^4]Connect the battery terminal as shown in Fig. 4 making sure that the polarity is correct, otherwise damage to the transistors may result.,

All that remains to be done is to fix the Veroboard to theolid by means of a small nut and bolt, clip in the bàttery and secure the lid. The fuzz box is now complete and ready for use.

If required a foot switch may be included in the fuzz box to switch in and out the fuzz effect. Such a switch must be arranged to connect the input to the output (SK1 to SK2) and screened lead should be used to wire up the switch.

USES

The fuzz box is used extensively and mostly by "groups" for lead guitar where it is placed between the guitar and the main amplifier, but it may be employed for effect with almost any instrument, such as bass guitar, electronic organ, and even microphone. Weird and interesting sounds may be obtained by using the fuzz box
in conjunction with a microphone used to amplify musical instruments such as a trumpet and trombone. This device is a must for the musical sound experimenter.

回

Ruminations BySensor

The I.C. man cometh

The reductions in size and production costs and the improvement in reliability of complex electronic systems, brought about by the use of integrated circuits has lead to their incorporation into all kinds of equipment. 'Apart from the more obvious applications such as computers and kindred equipment, radar, television and communications systems; integrated circuits can now be found in applications as diverse as washing machines, model aircraft control and in fuel injection and ignition systems for motor cars. With these facts in mind, I began to wonder what the future electronic "foreigner" will be like.

Before writing anything else I must hasten to add that I am not going to discuss genetics; a "foreigner", in industrial terms, is a private job carried out on works premises. The foreigner can take many forms, it may be a small repair job which requires facilities not normally available in the home, such as welding or turning, or it may be a complete piece of equipment, designed and built within the works. Foreigners are
usually relatively small in dimensions, or capable of being broken down into small units, so that they can be hidden from authority and eventually smuggled out of the factory.

One thing common to all foreigners is that they seldom reach completion; in the first flush of enthusiasm there is much frenzied activity which is highly infectious. Colleagues will rush to assist with ideas and materials, other departments will lend exper. tise and facilities, and if these offers of help are not strongly resisted from the outset, the original creator will find that his precious brainchild has been wrenched from his grasp to be broken down into a number of sub projects spread throughout the works.
Further sub-division may then take place and it can be said that the more sub-divisions there are, the less likelihood there is of the project being completed. Also, the rate of working falls off very rapidly after the initial fervour has evaporated-as there are few things more boring than old foreigners, especially other people's foreigners. These rules can be expressed in simplified form as:

$$
\begin{aligned}
& t_{0}=F_{\mathrm{r}} U_{\mathrm{s}} T_{\text {rate }}+\Sigma I \\
& \text { where } t_{0}=\text { time to completion } \\
& F_{\mathrm{r}}=\text { "foreigner receptiveness" (a } \\
& \text { constant for the factory) }
\end{aligned}
$$

$U_{s}=$ the number of unit subdivisions
$T_{\text {rate }}=$ the rate of toiling
$\Sigma I=$ the sum of all the inertia factors of everyone involved (similar rules apply to bona fide jobs but F_{r} is replaced by a term O representing official support).

But what, you may ask, has all this to do with integrated circuits? Well, integrated circuits are small -one of the essential features of a foreigner; (though I heard that a 60 foot maypole was once built as a foreigner; but that is another story!) they are virtually complete in themselves and often merely require connection to a power supply and some ancillary input or output equipment and they are ready for use. A wide range of timing circuits and audio circuits exists and the versatile operational amplifier lends itself to many projects.
Can we expect to see a flood of baby alarms, exposure timers, model railway controllers and electronic roulette games pouring through the factory gates? I think not, for there is still the problem of the box, case or cabinet. This is where the greatest inertia is traditionally encountered and where $F_{r} U_{s} T_{\text {rate }}$ approaches infinity. Until we discover how to "grow" boxes around our foreigners, they are doomed to remain what they have always been -memorials to frustrated creativity.

AM sure I am speaking not only for my fellow component suppliers, when I say nothing delights us more than to hear a customer say "Have you got such and such in stock]? \qquad wonderful 1 . have been searching everywhere for one". At the other end of the scale there is the customer who reduces us all to the depths of despair and seems to assume that we run out of something he wants purposely to thwart his plans.
On the whole, you, the customer are sympathetic and understanding, but when you have heard some of our problems, I'm sure you will be even more so. First there are the obvious problems, that we are dealing with thousands of different items and added to that, change in electronics is so rapid that obsolescence is also fast. This is particularly noticeable in transistors, where frequently some types are superseded by new versions before the originals have even reached the public.

The Middlemen

What increases our difficulties is the fact that we are the men in the middle. We are dependent on manufacturers or wholesalers and should they decide that a certain item is not worth handling they stop making it, usually all our tears won't make them change their minds!
There are two factors involved here, percentage of gross profit and stock turn round. The percentage of gross profit can be varied by altering the buying or selling price, but the stock turn (which
simply means the speed at which an item sells) depends entirely on the demand!

Stock Turn-Over

On the average a supplier might expect to turn his stock over six times during the year for example, if he has 12 plugs in stock, he would expect to sell 72 during a year. One very large firm of electronic wholesalers has a very rigid policy on this and once sales have slumped below a certain level on an item, they just drop it completely. With smaller firms such as ours, if we thought the item irreplaceable we would try and keep it going as a service to customers; but to illustrate how difficult that can be in practice, let me tell you of one actual case.
We used to purchase Pyrex glass aerial strainers from Eddystone Radio. They decided to discontinue them so we went to the manufacturers. They agreed to supply us in minimum quantities of 250 , so we went ahead. Then about two years ago they politely informed us that they would not supply us with less than 1,000 ! As the nett price was over 20p each, this meant an outlay of over $£ 200$ for an item we sold at the rate of one or two hundred a year!! Naturally we were compelled to give them up.

Combined Operation

It is with the object of overcoming this difficulty that I recently formed a Group of Suppllers called "Group One". I am very pleased to say that our successes
as a group have been reasonably high and we have been able to prevent many items from disappearing altogether. To quote a few, the Standard Maka Switch Kit, Acoustic Acetate Wadding, and the Electroniques SMD2 Drive and Dial. Wherever we see an item threatened which we think ought to remain available to you, the customer, we act to preserve it. Our other basic aim is to keep down prices. It might be appropriate at this point to mention. prices because it is one of our most thorny problems.

we act to preserve it

Price Increases

Ever since the last war, prices have been rising faster and faster. When there is a price increase, a manufacturer or wholesaler simply writes to us and states "As from today's date the price of X has gone up by Y per cent". Often they don't even tell us and we only discover it from the invoices.
What a contrast to the position of us dealers! Many of us have thousands of brochures and cata-

28 watts, r.m.s. 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$

 separate output for tape recorder. Filters (an unusual feature in this price range) and tone controls give a wide range of bass and treble adjustment which compensate for input deficiencies and domestic acoustic conditions.

PRICES SYSTEM I
Viscount III R101 amplifier $\quad 622 \cdot 00+90$ p p\&p $2 \times$ Duo Type II speakers, $\quad £ 14 \cdot 00+£ 2 p \& p$ Garrard SP25 Mk. III with MAG cartridge plinth and cover $\underline{£ 23: 00+£ 1 \cdot 50}$

Total

£59.00
Available complete for only $\mathbf{6 5 2} \cdot \mathbf{0 0}+\mathbf{6 3} \cdot \mathbf{5 0}$
SYSTEM 2
Viscount R101 amplifier $\quad £ 22 \cdot 00+90$ p p\&p $2 \times$ Duo Type III speakers $£ 32 \cdot 00+£ 3$ p\&p Garrard SP25 Mk. III with MAG.
cartridge, plinth and cover $\mathbf{£ 2 3 \cdot 0 0 + £ 1 \cdot 5 0}$
Total $\overline{E 77,00}$ p\&p
Available complete for $\mathbf{6 6 9 + 6 4} \mathbf{p \& p}$
SYSTEM 3
Viscount III Amplifier R100 $\mid E 17 \cdot 00+90 p p \& p$
$\mathbf{2 \times}$ Duo Type II speakers, pair $£ 14 \cdot 00+£ 2$ p\&p
Garrard SP25 Mk. III with CER. diamond
cartridge, plinth and cover $£ 21 \cdot 00+£ 1 \cdot 50$
Total $\overline{\mathbf{E 5 2 . 0 0}} \mathrm{p} \mathrm{\& p}$
Available complete for anly $\mathbf{E 4 9} \cdot 00+£ 3 \cdot 50$
RTV
Radio and TV Components (Acton) Ltd. 21 e High Street, Acton, London W3 6NG
323 Edgware Road, London, W.2. Mail orders to Acton. Terms C.W.O. All enquiries S.A.E.
Goods not despatched outside U.K.

The components you want plus good service, prompt delivery \& attractive discounts
 EE. 2

ELEGTROVALUE Electronic Component Specialists

THIS MONTH'S SELECTION OF POPULAR ITEMS FROM THE ELECTROVALUE CATALOGUE

TRANSISTORS

Price

CAPACITORS

Non-polarined		Electrolytic	
Polystyrent		1 mF 40 V	6p
		5 mFF 64 V	6p
		10 mF 64 V	6 p
		20 mF 64 V	${ }^{81}$
		25 mF 25 V	6 p
10pF	3p	50 mF 25 V	6p
22pF	8p	80 mF 25 V	6p
100pF	3p	100 mF 25 V	7 P
220 pF	3p	220 mF 25 V	10p
470pF	3p	470 mF 25 V	
1000 pF	3p	1000 mF 26 V	80p
2200 pF	3D	2000 mF 25 V	
4700 pF	-p	5000 mF 25 V	
Polyester ME T		Many other higher and lower ratings	
0.01 mF	8p		
0.02 mF	50	will be found in	
0.047 mF	$日^{81}$	the catalogue.	
. 0.1 mF	6p	Close tolerance	
0.22 mF	6p	and high atability	
0.47 mF	10p	types also.	
1 mF	14p		

RESISTORS

t watt and $\frac{1}{\downarrow}$ watt, all at Ip each
in the following values (in ohms) :-
10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and all values in this series up to 10 Megohms.

Power Resistors
3 watts-7p each: 7 watts-9p each.
Values as for $\$$ watt series, but up to 10 Kohms only.
Mony other types and values available. Full details in catalogue.

VEROBOARD

The universal circuit building board Unclad, $0.1^{\prime \prime}$ matrix

$2^{\prime \prime} \times 3.75^{\prime \prime}$	$10 p$
$2.5^{\prime \prime} \times 3.75^{\prime \prime}$	$15 p$
$5^{\prime \prime} \times 3.75^{\prime \prime}$	$25 p$

0000000000

000000000:

000000000\end{array}\right.\) Copperclad Veroboard also in stock in all standard sizes and matrices; also edge connectors, pins, ete.

PEAK SOUND ENGLEFIED 840
Brilliantly designed hi-fl amplifier with facility to take add-in stereo FM tuner. Superb porformance. $20+20$ watts RMS into 8 ohm speakers. As advertised $£ 49 \cdot 50$. Brand new and guaranteed in maker's carton
$\{33.75$
(+75 p carr in U.K.)

MISCELLANEOUS ITEMS

INDICATOR LAMPS
NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p; chrome bezel, round clear NR/C 24p. Neon, square red eype LS5C/P. 18p; amber eype LS5C/A. 18p; clear type LS5C/C, 18p. Al above are for 240 V mains operation. Filament types: $6 \mathrm{~V}, 0.04 \mathrm{~A}$ square red sype LS5C/R-6V. 30p. 6 V 0.04A amber type LSSC/A-6V, 30p; 6V 0.04A elear type L55C/C-6V, 30p; 6Y 0.04A green rype LSSC/G-6V, 30p; 12V 0.04A LS5C/R-12V, 34p: 34 V 0.04 A LS5C/R-28V, 45 p.

COLVERN 3 wate Wire-wound Potentio meters. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega$ $250,500 \Omega$, $1 \mathrm{~K}, \mathrm{i} .5 \mathrm{~K}, \mathbf{2} .5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}$ 25K, 50 K . 32 p each DIN CONNECTORS
oudspeaker plug socket

Loudspeaker	2-pole	12 p	10 p
Audio	2.	3-pole	

Audio ... 3-pole 13p 10p Audio -... 4-pole 14p 12p Audio … 5-pole 180 dez $15 p$ 12p Audio … 5-pole 240 deg. ${ }^{\text {Spole }}$ 15p 13p
HANDZOOK OF TRANSISTOR 40p. (Postage 3p if ordered alone).
KNOBS-NUTS, SCREWS, WASMERS - CIR-KIT - LOUDSPEAKERS TRANSFORMERS

overseas

 CUSTOMERS WELCOMEH IOP CATALOGUEFREE WITH ORDERS FOR E1.00 OR MORE
The Electrovalue catalogue (64 pages and cover, $8 \ddagger \times 5 \dagger$ ins) is crammed with money saving ltems, and illustrated technical information. FREE with orders for $\$ 1.00$ or mors. Sent separately it costs you 10p post free. Write your order on a sheet of paper with coupon attached

electrovalue

28 ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY,

Hours 9-5.30: Sat. 1.0 p.m.
Telephone: Egham 5533 \& 4757 (STD 0784-3)
Telex : 264475

COMPONENTS DISCOUNTS

allowed on all items other than those at net prices.
10% on orders for
15\% on orders for

POSTAGE \& PACKING FREE on orders for $£ 2.00$ or more. Please add 10 p if under.
Overseas orders welcomed. Prices subject to alteration without prior notice.

TO ELECTROVALUE, ENGLEFIELD GREEN, EGHAM, SURREY
Please send a Goods to value of E. as detailed on sheet attached, plus FREE copy of catalogue.
b Copy of catalogue.
(strike out item which does not apply)
NAME
ADDRESS
(Enclosed please find E.
cosh/cheque/money order.
logues in circulation and consequently we shall be receiving too little money for our goods. When the price jump is big, we finish up selling below cost! We must then, either write to you, the customer, asking for more money (which does not help the customerdealer relationshlp), or we must lose money.

Many years ago, we took our prices out of our catalogue and put them in a separate supplement as we argued that although we couldn't reprint the catalogue for every price change, at least we could change a price supplement several times a year. Lately, the rapidity of price changes made even this unworkable and we have now installed an Offset Litho Machine to print our own Price Supplements on the spot. Price changes can be made within minutes and at last we are keeping up with them!

Price changes can be made within minutes

Packing and Postage

One minor problem which I think we have solved fairly well is making a part charge towards the cost of packing and postage. After much thought, we decided to average out the cost of all postage and charge this as a standard rate. At the moment it is 18 p per parcel. Naturally the customer who orders some heavy transformers is happy, but the customer who orders 25 p worth of resistors less so.

Occasionally a customer might write and say "You charged me 18 p for post and packing and I noticed that my 25p worth of resistors were just put in a padded bag with a 3 p stamp on it". It is then necessary to point out that our gross profit on the transaction is probably 8 p and apart from the bag costing us 3p and the stamp $3 p$, the staff handling it are earning about 1 p per minute! But I must be fair and say we probably receive less than 12 letters a year in this vein. I think even with "cash with
order", that probably all dealers lose money on orders under £1but again it is a service to the customer. We stress again and again, try and send one big order instead of several small orders, help yourself to save postage and also help us!

Stock Control

Nothing frustrates you, the customer, more than to be told that an item you require is out of stock. You may put this down to bad management and poor stock control. Well, a few years ago, one of the glants in the electronic components industry decided to go into the retail side, and produced magnificent catalogues, spent thousands in advertising and yet after a year or two, it was obviously not going according to plan.
Knowing that we had achieved a very modest success in the business, two of the firms executives came and took my partner and I to lunch and it was apparent they wanted to find out what made. us tick! When they got round to stock control, they said "What do you do?" and we said "What do you do?" "Well," they said, "when an order comes in it is fed into the computer. The computer makes out the invoice, types the label, checks the stock, and when the stock falls below a certain predetermined level, re-orders! And now, what do you do?"
"Oh!" we replied, "well if we pick up a box and it's empty, we re-order, If the box is battered and worn out (they are cardboard by the way) we obviously should order bigger quantities, if there is more than a certain pre-determined thickness of dust on the box, this item is a slow seller and should be discontinued."
The two executives stared at us in disbellef until we convinced
. more than a certain predetermined. thicknes of dust

them that we were telling them the truth, and when we pressed them, they admilted they were out of stock of various goods far more often than we were!! We then went on to tell them why-there are too many variables for any computer to cope with, therefore one might just as well do it the simplest way!
Next month I will discuss the influence of magazine constructional articles upon the supply situation.

Many readers, both newcomers to electronics and experienced hobbylsts, may be interested in evening classes or clubs for electronic enthusiasts. There are many evening classes run for both beginners and experienced constructors all over the country and we know that some evening Institutes run more than one course. Although these courses will have been going on for more than a month when you read this, most of them will gladly accept newcomers.

If you are interested in joining such a class, we recommend you to get in touch with your local education authority, who can inform you of all the courses in your area. For Londoners the booklet "Floodlight"available from most newsagents gives all the courses being held in the Greater London area.

As well as evening classes there are some electronics clubs operating within the British Isles, the largest of these being the British Amateur Electronics Club. For more information about this club and lts activities please write to:

Mr. C. Bogod, The Secretary, B.A.E.C., 26 Forrest Road, Penarth, Glamorgan.
EVERYDAY ELECTRONICS may be visiting some evening classes and club activities and reporting on them during the coming months. So if you run or belong to such a group and you feel that you have something interesting to show us or that the arrangement and activities of your group warrant mention, then let us know.

BODINE TYPE N.C.I. GEARED MOTOR
VARIABLE VOLTAGE TRANSFORMERS
 Reversible. $1 / 70$ th h.p. YARIABLE 0.260 V
So cycle, 0.38 amp (Type 2) All Types (and Spares)
28 r.p.m. Torque 201 l . from $\frac{1}{2}$ to 50 a mp from stock. inch. Reversible. $1 / 80 \mathrm{th}$. SHROUDED TYPE
h.p. SO cycle, 0.28 amp.
h.p., So cycle, 0.28 mpp .
"As new" condition. Input voltage of motor
115 V a.c. Supplied complete with transformer for $230 / 240 \mathrm{~V}$ a.c. Input. Price, eizher type 63.15 plus $35 p$. $\&$. P. or less trans$12 \mathrm{VOLT} D C$ MOTOR
Powerful i amp. RE-
VER $\$ 1$ BLE motor.
Speed 3,750 RPM com-
plete with external gear
train (removable) giving final
speed of 125 RPM. Size $4 t^{\prime \prime} \times 2 t^{\prime \prime}$
dia. Price $95 p$ inc. post. $230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS

Manulactured by either Sangamo. Maydon or Smith. Built-in gearbox rev. per hour. Anti-clockwise rocation 3 revs. per hour. Anti-clock wise rotation 15 revs. per hour. Anti-clockwise rotation 60 revs. per hour. I r.p.m. Clockwise. Fraction of makers' price. Allat 75p incl. P, \&P. MICRO SWITCH 5 amp c/o contacts. pus

MINIATURE MEVEL METER
Approximately 300 micro amp basic, as fitted to
 type dual coloured dial

ELECTRONIC ORGAN KIT

Easy to build. Solid State. Two fuld octave (less sharps and flats). Fitred
hardwood case. Powered by two hardwood case. Powered by two of parts including speaker. etc., together with fuli instrucxions and tunes. Price 23-00. P. \& P. 22p 50 in 1 ELECTRONIC PROJECT 50 easy to build Proiects. No soldering. no special tools required. The
kit includes Speaker. Mecer. Relay Transformer. plus a host of other components. and a $56-p a g e$ instruction possible Projects are: Sound the 50 Mater, 2 Transiscor Radio. Amplifier. etc. Price 67.75 . P. \& P. 30p. CRYSTAL RADIO KIT Complete set of parts, including: Crystal Diode, Ferrite Aerial, Drilled soldering. easy to build, full step by soldering. easy to build, full step by
step instruction. E1.75 inc. post.

230v AC SOLENOID

 Extremely powerful with fited with mounting feel. size: $4^{\prime \prime}$ long, $21^{\prime \prime}$ wide.high. 22.00 incl. P. \& P.

VENNER Electric Time Switch

 200/250V Ex. GPO. Tested. Manually er 2 on, 2 off every 24 h . Override 20A 63.75. P. \& P. 20p. Also available with solar dial ON dusk. OFF dawn. Price as above.RELAYS SIEMENS, PLESSEY, Etc MINIATURE RELAYS COMPETITIVE PRICES

	2	3	4	1	2	3	4
45	6-9	2 HD M	50	700	15-35	$2 \mathrm{c} / 0 \mathrm{HD}$	73p*
185	12-18	$4 \mathrm{c} / \mathrm{o}$	73p	700	16-24		$65 p$ *
230	$9-12$	$4 \mathrm{c} / \mathrm{o}$	78p	1,250	24-36	$4 \mathrm{c} / \mathrm{o}$	63 p *
280	9-12	$2 \mathrm{c} / \mathrm{o}$	$73 \mathrm{p}{ }^{\text {* }}$	2.500	36-45	6M	63 p *
600	18-32	4 clo	78p*	2.400	30-48	$4 \mathrm{c} / \mathrm{O}$	50p
700	16-24	4M2B	63 p*	5.800	40-70	4 elo	63p*
700	16-24	$4 \mathrm{c} / \mathrm{o}$	78p*	9,000	40-70	$2 \mathrm{c} / \mathrm{o}$	50p
700	12-24	$2 \mathrm{c} / \mathrm{o}$	83 p*	15k	85-110	6M	50p*

(1) Coil ohms; (2) Working d.c. volts; (3) Coneracts; (4) Price (HD) Heavy Duty. All Post Paid. Including Base.

MAINS RELAY
230 V a.c. coll $3 \mathrm{c} / \mathrm{o}$. 10 amp a.c. cóntaces, 50 p plus $B_{p} P$. \& P.

OW POWER UHF TRANSMITTEF

 \section*{SERVICE TRADING CO
 \section*{SERVICE TRADING CO

 SERVICE TRADING CO}

 SERVICE TRADING CO}All Mail Orders-Also Callers-Ample Parking Space
Dept. E.E. 57 BRIDGMAN ROAD. LONDON, W4 5BB Phone 01-995 1560

SHOWROOM NOW OPEN MON.-FRI

Personal callers only. Open Sat. 9 LITTLE NEWPORT ST. LONDON WC2H 7JJ $01-4370576$

-N-TE-R-LOQ-C-K-I-N-C
PLASTO SIMAAEE DRAWERS

devised for storing small
parts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plascic drawers have label slots/ removable space dividers. Bulld up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (ID) (Sins x 2tins 21/ins.). \&1-35 DOZEN.
DOUBLE UNITS (2D) (5ins $\% 4 \frac{1}{2} \mathrm{ins}$ $2 \frac{1}{4}$ ins). $22 \cdot 25$ DOZEN.
TREBLE (3D) 12.35 for 8 .
DOUBLE TREBLE 2 draws, in one outer case (6D2), 43.65 for 8 , EXTRA LARGE SIZE (6DI) $\{3 \cdot 30$ for 8 .

PLUS QUANTITY DISCOUNTS!

Orders 45 and over DEDUCT 5% in the C Orders $\mathbb{E} 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the \mathcal{L} Orders $£ 20$ and over DEDUCT 10% in the \mathcal{C} PACKING/POSTAGE/CARRIAGE: Add 35p co all orders under C5. Orders 15 and over. packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES
ALL PRICES TAX PAID

WTHMT

(Dept. EE12) 124 Cricklewood Broadway. London, N.W. 2 Tel, 01-450 4844

EEM PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT OEPARTMENTS EDUCATIONAL AUTHORITIES, ETC.

- LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO OROER

$N E N$	$\because S E M$	DES	CNS!
CLEAR	C	8	PAME
	METERS	METERS	
		TYPE S-80	
-	$100 \times 80 \mathrm{~mm} .$	80 mm .	
	$100 \times 80 \mathrm{~mm}$.	square fronts	
	20V. D.C. . . $23 \cdot 10$	s0¢a...... 23.20	
$50 \mu \mathrm{~A}$...... 83.80	S0V. D.C. . 83.10	50-0-50 $\mu \mathrm{A} \quad 23.10$	50V. D.C... 2×0
$50-0-50 \mu \mathrm{~A}$	300V. D.C. ${ }^{3} 3.10$	$100 \mu \mathrm{~A} \ldots \ldots .22 .75$	300 v. D.C. 22.80
100μ A $\ldots . .23 .20$	1 amp. D.C. $83 \cdot 10$	100-0-100 A A 23.10	1 mmp . D.C. $£ 2.80$
$100-0-100 \mu \mathrm{~A}$ ¢3.45	5 amp D.C. ${ }^{\text {a }} 3.10$	500μ A 83.00	5 amp . D.C. 22.60
$500 \mu \mathrm{~A}$.... ${ }^{23} 3 \cdot 35$	300 V, A.C. ${ }^{3} 3 \cdot 10$	$1 \mathrm{~mA} \ldots \ldots .$. e 260	300 V, A.C. 28.80
1 ma 29.10	VU Meter.. $£ 3.75$	20 V . D.C... 2260	VU Meter.. $£ 3.37$

"SEW" CLEAR PLASTIC METERS

Type MR. $85 P$. $4 \mathrm{itn} . \times 4$ titn. fronts.

-

Type MR. 52P. 2\%tn. square fronts.		
$50-0-50 \mu \mathrm{~A}$	22.80	20v. D.C.
$100 \mu \mathrm{~A}$	£2.80	50V. D.C. . 22.00
100-0-100	82.50	300V. D.C. 22.00
$500 \mu \mathrm{~A}$	22.30	15 V A.C. .. $22 \cdot 10$
1 mA	22.00	300 V. A.C. 22.10
5 mA	$\underline{28} 00$	S Meter 1 mA 22.10
10ma	22.00	
50 mA	22.00	1 amp A.C. ${ }^{2} 2.00$
100 mA	22.00	5 mup. A.C.- $£ 2.00$
500 mA	82.00	10 mmp . A.C. $* 2.00$
1 a	22.00	20 mmp . A.C.* $22 \cdot 00$
	22.00	

$50 \mu \mathrm{~A}$	23.37	10 V . D.C. .. 22
$80-0-50 \mu \mathrm{~A}$	£2.75	20V. D.C. .. 28.20
$100 \mu \mathrm{~A}$	22.75	50 V . D.C. . 22.20
100-0-	182.85	150V.D.C... $£ 2 \cdot 20$
$200 \mu \mathrm{~A}$	22-85	300 V. D.C. 22 -20
500μ	22.40	15V. A.C., . 22.80
$500-$	22-20	$50 \mathrm{~V}, \mathrm{~A}$. C... 22.80
	£2.20	150V, A.C. 22.30
5 mA	28.20	300V. A.C. 42
10 ma	42.20	500V. A.C. 22.30
50 mA	22.20	8 Meter 1 mA 22.37
100 mA	22.20	vu Me
500 mA	22.20	50 mA A.C. ${ }^{2} 28.20$
1 amp .	82.20	100mA A.C. ${ }^{\text {e }}$ 2. 20
mp	12.20	200 mA A.C. ${ }^{*} 22 \cdot 20$
10 mmp	£2.20	500 mA A.C. ${ }^{\text {c }}$ 22-20
15 am	E2-20	1 amp A.C.* 22.20
20 mmp .	£2.20	6 mmp A.C. ${ }^{\text {c } 22.20}$
30 mmp .	\&2.30	10 mp . A. $0 \cdot \mathrm{e} 2 \cdot 20$
50 amp .	\&2.50	20 мmp. A.C. ${ }^{\circ}$ ¢2 220
5v. D.C.	28.80	amp. A.C.

\section*{*MOVING IRONALLOTHERS MOVINGCOIL
 Please add postage
 SEW EDUCATIONAL
 METERS
 Type ED.107. Size overall $100 \mathrm{~mm} \times$ A new range of high A new range of high

quality moving coll quatrumenta Ideal for achool experibench applications. mirror scale. The meter movement is easily accensible to in the following ranges:
 | 5014 | 25-00 | 20 V d.c. $£ 4-40$ |
| :---: | :---: | :---: |
| $100 \mu \mathrm{~A}$ | 24.65 | 50 V d.c. $84 \cdot 40$ |
| 1 mA | 84.40 | 300V d.c. ... 24-40 |
| $50-0.50 \mu \mathrm{~A}$ | £4.65 | |
| $1 \cdot 0 \cdot 1 \mathrm{~mA}$. | £4-40 | $\mathrm{D}_{\text {IR }} \mathrm{l}_{\text {range }}$ |
| 1A d.e. | £4.40 | $500 \mathrm{~mA} / 5 \mathrm{~A}$ d.c. $£ 4.65$ |
| \$A d.c. | 24.40 | B V/50V d.c... £4.65 |
| 10 V d.c. | 44-40 | |

EDGWISE METERS

Type PE.70. 3 17/32in. $\times 1$ 16/82in.

 $\begin{array}{lll}100 \mu \mathrm{~A} & \ldots 3.0 \mathrm{C} \\ 100-0-100 \mu \mathrm{~A} & £ 2.90 & 300 \text { V. A.C. } 28.45\end{array}$ $\begin{array}{llll}100-0-100 \mu \mathrm{~A} & £ 2.90 \\ 200 \mu \mathrm{~A} & \ldots . . & \& 2.90 & \text { VU Meter. . } 23 \cdot \mathrm{si}\end{array}$

Send for illustrated brochure on SEW

MULTIMETERS for GVERY purposel

.P.V. Mitror scale, overload protection $0 / .6 / 3 / 15 / 60 / 300 /$
1,200 V. D.C. $0 / 6 / 30 / 120 / 600 /$ $1,200 \mathrm{~V}$.
$1,200 \mathrm{~V} . \mathrm{C}$.
A.C. $\quad 0 / 6 / 30 / 120 / 600 /$
$0 / 30 \mathrm{~A} / 6 \mathrm{~mA} /$ $60 \mathrm{~mA} / 300 \mathrm{~mA} / 600 \mathrm{~mA}$. $0 / 8 \mathrm{~K} /$ $30 \mathrm{~K} / 800 \mathrm{~K} / 8$ meg. ohm -20 to

$\frac{10 p}{10 D}$

$\sqrt{26}$
MODEL TE-200 20,000 O.P.V. Mirror scale, overload protec Tion. 0/5/25/125/1,000V. D.C /10/50/250/1,000V. A.C. 0/50 -20 to +62 db . £3.75. P. \& P. 15p.
 R/V0 PL486 k $\Omega /$ Volt AC 6/3/12/30/120/600V D.C. $3 / 30 / 120 / 600 \mathrm{~V}$ A.C. $50 / 600 \mathrm{uA} / 60$ Meg/10 Meg? 46 db . 26.871 P $\$$ P 1810. MK MODEL MD. 120

MODEL $\$ 0030,000$ O.P.V with overload protection mirror sealo 0/-6/2-5/10/26
$100 / 250 / 500 / 1,000 \mathrm{v}$. D.C $0 / 2 \cdot 3 / 10 / 25 / 100 / 250 / 500$ $1,000 \mathrm{~V}$. Ac. $0 / 50 \mu \mathrm{~A} / 5 / 50 \mathrm{j}$ 500 mA . 12 amp. D.C. $0 / 60 / \mathrm{K} / \mathrm{C}$ Meg. $/ 60 \mathrm{Meg} \Omega$ £8.87t. Post pail.

TME LAB TESTER.
100,000 O.P.V. $64 \ln$. 100,000 O.P.V. 6 ln Scale Buzzer Short Circuit Check. Bensttivity
100,000 O.P.V. D.C. 8 E 100,000 O.P.V. D.C. $8 \mathbb{}$
V olt A.C. D.C. Voite: 5, $2 \cdot 5,10,80,250,1,000$
V. A.Q. Volts: 3, 10,50
$50.250,800,100,0 \%$ D.C. Current: $10,100 \mathrm{LA}$ $10.100,500 \mathrm{~mA}, 2 \cdot 5,10$ amp. Resistance: $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{MEG}$, $100 \mathrm{MEG} \mathrm{\Omega}$. Decibels: -10 to +49 db . Pla ic Case win Carrying Handle. Size 7 tin 6 6 in . 3 3ia. $£ 18 \cdot 90$ P. \& P. 28 p . RUSSIAN 22 RANGE MUETIMETER A Arst class versatlle instrunent manufactured in U.A.S.R. to the hlghest 50/250/500/1000v D.C. $2 \cdot 5 /$ 10/50/250/500/100v/
DC Current 100 wA/1/10 00ma/La, Reaistance Complete $/ 30 / 300 \mathrm{~K} / 3 \mathrm{M} \Omega$. Complete with batteries, sturdy arteel carrylng and sturdy atel carrying case
OUR PRICE \&5.97P. $\&$ P.
25p
TO. 2 PORTABLE OSCILLOSCOPE A reneral purpose low for everyday ute. Y amp. Bend width $2 \mathrm{CPG}-1 \mathrm{MHZ}$, Input Imp. 2 meg $\Omega 25$
P.F. Ilumunated scale. 2in. tube. $115 \times 180 \times$ 330 mm . Welght 81b. $220 / 240 \mathrm{~V}$ a.c. Supplied
 1200 V . AC VOLTS $3-300 \mathrm{~V}$ RM8. $8 \cdot 0=$
R00V P.P. DC CUR. R00V P.P. DCCUR2000 M ohm. Decthela Renlstance up to 2000 M ohm. Decibelac-
-20 to +51 db Complete with leadm/instructlons. 17.50, P. di P. 20 p .

TE-40 HIGH SENSITIVITY A.C. VOLTMETER 10 meg. Input 10 rangea: 300 V . R.M.S. $4 \mathrm{cps} .-1.2 \mathrm{Mc} / \mathrm{s}$. Dectbels -40 to +50 dB . Supplied brand new complete With leads and inatructions. Operstion 230V. A.C. 217.50.
Carr. 25 .

TE22 SINE SQUARE WAVE AUDIO GENERATORS Sine: 20 cpa to 200
 ke/s on 1 bends. Square: 20cps to
$30 \mathrm{kc} / \mathrm{s}$. Output Impedance 8,000 ohme, $200 / 260 \mathrm{~V}$. Aupplied brand new and guaran:
tion manual and leads. $818 \cdot 50$. Carr. 37 ip.
TE-20RF SIGNAL GENERATOR Ing 120 ke/a-260 Mc/rs on 6 bands. Directly calibrated
variable R.F. tenuator, Operation Brand new with in struction. 18 . P. \& P. 371D. S.A.R. for details.
 RIDGE
bridgeonering ex. cellent range and cont. Ranges: R . $1 \Omega-11 \cdot 1$ meg Ω
Ranges $\pm 1 \%$ L. $1 \mu \mathrm{H} .111$ HENRYS 6 Rangea 2 , 6 Ranges $\pm 2 \%$. TURNS RATIO 1:1/1000 $1,000 \mathrm{cps}$. Operated from 9 volts. $100 \mu \mathrm{~s}$. Meter indication. Attractive 2 tone metal

FTC-401 TRANSISTOR TESTER

Full capabilitiea for mes
suring A, B and ICO.
NPN or PNP. Equally
edaptable for checking
dioder. supplied com-
diodes. Supplied com-
plete with instructlons,
plete with instruction \&8.971. P. \& P. 15p.. (ot: RONEYWELL VOLTMETER
VT 100 ETER
VT. 100
bench mounted
Hasic meter me
but can be uned to meanure of widle range of AC and DC volt, current and ohms with optional plug in cards. Specinestion: Accuracy: ± 0.2, ± 1 digit. Remolution: 1 mV . Number of digits: 3 plus fourth overrange digit. Overrange: 100% (up to $1-999$). Input
impedance: 1000 Mes ohm. Messuring cycle: 1 impedance: 1000 Meg ohm. Measuring cycle: Ing, full scale adjustment against an internal reference voltage. Overlond: to $\mathbf{1 0 0 v}$. D.C. Input: Fully foating (3 polea). Input power: $110-230 \mathrm{v}$. A.C. $80 / 60$ eycles. Overall dize: 61 in . $\mathrm{I}_{2} 213 / 16 \mathrm{in}$. x $83 / 16 \mathrm{in}$. AVAILABLE BRAND NEW AND FULLY GUARAN: TEED AT APPROX. HALF PRICE. 249-07s. C'art. 80p.

SEMI-CONDUCTORE/VALVES

ALL DEVICES BRAND NEWAND FULLY GUARANTEED

RECORD DECKS

B．s．8．
Minl Monot 24.87 Cl29t $£ 6.70$ $\begin{array}{ll}\text { MP60 } & 1076 \\ 110 & 114.65\end{array}$ 110 211．85 MP00 T．P．D． 1 MP60 TPD 10 T．P．D． 1 17.05 216.85
820.97 10 T．P．D．I．
80.85
815.65 1．T． 70 Package THORERS P125 e59．85 TD125AB $£ 94.25$ TX25 D160AII 884.80 TX11

> GARRARD 2025 T／C ${ }^{3500}$ 28．5 SP25 III 210.50 ${ }_{4}^{8 L 68 B}$ SL72B 8L75B SLO5B 01 2LRO 100A 844.97 zero loos GL69／2 GL69P／3 GL75 GL76P LID69／75 PIONEER PLI2AO s Mono＊tereo Cartridge lll other models less Cartridge

ECORD DECE
PACKAGES
Decks supplied ready wired in plinth and cover

Idge．Garrard
2025 T／C with Sonotone 9TAHOD Garrard SP25III Goldring G800 arrard AP76 Goldring G800 B8R MP60 A adio Technien AT．B5 Waldring GL60／2 Goldring G800 Goldring GL75 Goldring G800 toldrimg GL75 Goldring G800E

SPECIAL

PURCHASE
rand new 180 100 wat peakers．Made by Celeation F Fane． $18^{\circ} 100$ watt rms Umited stock only．

 | 189.96 |
| :--- | e21．00 242－50 246.65

\qquad iel．

SINCLAIR EQUIPMENT Profect 00．Packago offers．

उ才全会

I Z30 ampliaer，stereo 60 pre－mmp，PZ5 power supply． 216.75 Cart． 37 hp Or with mplifer，tereo 60 pre－mmp，PZ8 poner apply． $220-26$ ．Cars．37tp．
Transformer for PZs．ese971 extra
Add to any of the sbove s4．874 for active Iter unit and 218.90 tor pair of Qi6 speakers． Project 60 FM Tuper 28085 ．Cars． 871 p ． 2000 other sinclajr products in stock． ta1．50 Cat 37 Cart s7tp 1010 riol2 59．50 R0． KCT 605 － 220.88 Cent 37 p

LATEST CATALOGUE

Oar new 6th edition givee hull detalls of a
comprehensive range of HI－FI EQUIP－ comprehensive range of HI－FI EQUIP－ MENT AD COMMUNICATIONE EQUIP IENT．FRER DIBCOUNT COUPONB
 Value 50p 272 pagea，
fully nlus－ trated and detalliag bargains． SEND NOW
ONLY $37 \frac{1}{2} p$ $P \& P$ 10p

TO－3 PORTABLE OSCILLOSCOPE

 $3 \mathrm{in}^{2}$ tube Fmp Sensitiv． ity $0.1 \mathrm{p} p-\mathrm{p} / \mathrm{CM}$ ．Band． Width $1.5 \mathrm{cps}-3 \cdot 5 \mathrm{MHz}$ ．
Ingut fmp． 2 meg $\Omega 25 \mathrm{pF}$ Input imp． 2 meg $\Omega 20 \mathrm{pF}$ $\mathrm{D}-\mathrm{p} / \mathrm{CM}$ ．Bandwldth 1.5 cpa -800 KH E ．Input Imp． 2 meg $\Omega 20 \mathrm{p}$ ．Time have． 5 ranges $10 \mathrm{cps}-300 \mathrm{KHz}$ ． Bynchronization．Internal／ external．Hluralnated scale $140 \times 215 \times 330$ mm ．Welght 15 1b． $220 / 240 \mathrm{~V}$ ．A．C．Supplied $\frac{\text { brand new wlth handbook．837．50．Carr．} 5}{\text { RUSSIAN C1－16 DOUBLE }}$ BEAM OSCILLOSCOPES
5 MHs Pass Band．Separate $\mathbf{Y 1}, \mathbf{Y} 2$ ampli－ Gera．Calibrabed triggered aweep from 2 seo to 100 mili vec／cm． supplied complete with al
Instructions 887 ．Cart．paild

BELCO AF－SA SOLID STATE SINE SQUARE WAVE CR．OSCILLATOR sine 18－200，000 Hz：Square 18－50，000 Hz

PP21 RRGULATED POWER BUPPLE Soltd state．Varlable outpat 0－247 DC up meter to monitor volt． age and corrent．Inpu $220 / 240 \mathrm{v}$ AO．Size $185 \times 85 \times 105 \mathrm{~mm}$

P8． 1000 B BEGULATED POWER 8UPPLY Solld state．Ousput 6，9 or 12 volt DC up to 3 amps．Meter to monito current．Input 220／240
AC．Size $4^{\circ} \times 34^{\circ} \times 84^{\circ}$ 11．97．F．\＆P． 25 p ．

URR－80 RECEIVER
Banda covering 500kc／s－30me／e．B．P．O． ullt－fn Speaker 220／240\％．A．O．Brand new with lastructions． 818.75 ．Carr， 37 ip LAFAYETTE EA－800 SOLT STATE RECEIVER General coverage 150－400ko／a 880 front end． 3 mecb． filters，produet detector，varlable 8 gnal Generstor． 5 ranges
$400 \mathrm{kHz}-30 \mathrm{mHz}$ ．An $400 \mathrm{kHz}-30 \mathrm{mFz}$ ．An
inexpensive instrument Inerpensive instrument
for the handyman． Operates on 9 v battery． Wlde easy to read scal 5i \times 5t $\times 3$ 3in． Complete with Instruc tlons and leals． 27.97 t ．P．\＆．20p．

TRANSISTORISED GRID DIP METERS

Six ranges． $440 \mathrm{Kc} / \mathrm{s} .-280$ Me／s．Operates on 0v．battery Foll instructions． $812 \cdot 50$ P．\＆P．17ip．

TEIII．DECADE RESISTANCE ATTENUATOR Variable range
 Unbalsncea T and
Bridge T．Impedance 600Ω range（ $0.1 \mathrm{~dB} \times$ $10)+(1 d B: 10)+10+20+30+40 \mathrm{~dB}$ acy： 0.05 dB ．Indication $\mathrm{dB} \times 0.01$ Maximum input less tban $4 W$（ 50 V ）．Built in 300Ω losd reaistance with internal，ozterna $\frac{\text { witch．Brand new．} \$ 8 \% \cdot 60 \text { ．P．\＆P．} 25 \mathrm{p} \text { ．}}{\text { Q } 230 \text { VOLT A．C．} 50}$ CrCLES RELAYS
Brand new． 3 sets of changeover contacts at 5 amp rating． 50 p each． P．\＆P． 10 p （ 100 lots 240）
Quantites svallable．
0° Wide Angle 1m A Metert

MW1－6 60 mm square 28.97 $\begin{array}{ll}\text { MW } 1.680 \mathrm{~mm} \text { square } & 88.97 \\ \text { MW } 1.880 \mathrm{~mm} \\ \text { square } & 84.97\end{array}$ P．\＆P．extra P．\＆P．oxtr
 B．F．O．，noleo 1 imi ． ker，8．Meter，Bandspread．RF Galm． $1 E^{\circ}$ I Brand new with itostructions．SAD．Cart， 500 ．

CRYSTAL CALABRATORS NO． 10
 Bmall portable cryata 8ize $7 \times 71 \times 41 \mathrm{ln}$ ． Frequency range 500 $\mathrm{Ke} / \mathrm{s}-10 \mathrm{Mc} / \mathrm{e}$（up to 30 Mc／a on harmontes）．
Calibrated dial．Powel 12 V D．C． 0.3 A ．Ercellent condi． tion．24．47t．Cart．37\＄p． HELICAL POTENTIOMETERS A vailable 500 ohm， $1 \mathrm{~K}, 5 \mathrm{~K}$ ohm． 11.25 each B．C． 221 FREQUENCY METERS latest release $126 \mathrm{KHz-20} \mathrm{MHz}$ ．Excellent condition．Fully tested and checked and complete with callbrator charts．
sca．Carr．50p．
SOLID STATE VARIABLE A．C．VOLTAGE REGULATORS Compact and panel
 trol of lamps，drilla， electrical appliances etc． Input 230／240\％．A．C． variable from $20 \mathrm{v}-230 \mathrm{v}$ ． Model MR 2305 s smp ． $68 \mathrm{x} 46 \mathrm{x} 43 \mathrm{~mm} 28 \cdot 874$ ． Model MR 231010 amp 90 I 68 x 60 mm sill．97\}. Poatage 121p.

AUTO TRANSFORMERS
$0 / 116 / 230 \mathrm{~V}$ ．Step up or atep down．Pulls rouded．

300 W．
300
500
W．
1000 W.
1500 W ．
82.87
48.20
84.38
87.25
48.07

P．\＆P P． 17
P．
P．
P．
P．
P．
P．
P．
P．

TELETON SAQ－206

 STEREO AMPLIFIER

Latest exciting release．Brand new model $8+6$ walta rms．Inpute ior mag，xtal，ux
tape．Volume，bass，treble，sllding balance， acratch alter sid lourners controls．Lat

Prohably the mont puparar budget tuner，
Amp．and now offered at a rdiculous price． 5 watts r．m．s．per ohannel．Tape／Cer phono inputs．APC／Bulli－in MPZ．List E51． SK PRICE E\＆8－7．CaIT．SOp．
SUGGSTED SYSTET

SUGGESTED SY8TEM F． 2000 ，Garrard 2020 cher Changer nitted pair of cartridge，With plints and cover and pair of G．W．S． 3 way speakers．Total Rec ＊TRANSISTORTSED FM TUNER
 6 TRANER
HIGH QUALOR
TUNER GITR TUNER， $8 I Z E$
ONLT $6 \times 4 \times 2 \mathrm{in}$ 3 I．F．etages criminetor．Ample output to teed mon amplifiers．Operates on 9 V battery．Coverage
 Lestic value for money．e6．37，P．
Sterto maltiplez adaptors 24.97 t

HEADPMOREO AMPPHON All sillcon trana－ tes from mer oper ceramic or tuner inputs with twin stereo ceramic or tuner inputs with twin stereo
headphonf outputs and separate volume headphons outpuis and separate volume battery．Inputs $5 \mathrm{MU} / 100 \mathrm{MU}$ ．Ontput 50 MW 65．87．P．P． 150 ．

AMPLIFIER xcoptlona budget prlce nutcesc． 8 witched separate balance，volume，treble，basq con trols．Output 2×6 W RMS．Inputs Mag．Tape X ［s］，Tuner，Tape Out．114．75．Carr． 37 p EA． 41 REVERBERATION els contalned PLIFIER med，battery operated，$\alpha=$ in phone，suitar，etc．，and Volume control．depth
everberation control．Beantiful walno cabinet． $7 \frac{1}{} \times \mathbf{3} \times 41 \mathrm{~m}$ ． 65.97 ．P．\quad P． 15 p BH．001 HEAD． SET AND BOOM Moving coil．Ideal for language teaching，com muncations．Kesdphone 1 mp .16 ohms．Mlero phone tmp． 200 oh
162. ．\＆ 150
HOSIDEN DH－08S DE－LUXE STERE nical 2 wnique mech thed why units and ontrols． 8 ohm lovel． pedance．20－20，000 cpa Complete with spring 7．97\％．P．\＆P．12to．

POWER RHEOSTATS

High quality ceramic conatruction．Windtage embedded in vitreous ensmel．Heavy dity brush wiper．Continuous rating．Wlde range
25 WATM， $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms $78 / \mathrm{p}$ ．P．\＆P． 7 pp 50 W．TK． $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohrns， 21.05 P．\＆P． 7 ip． 100 WATT． $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohms， $81 \cdot 27 / \mathrm{P}$ ．\＆P． 7 P．
＂YAMABISHI＂VARIABLE VOLTAGE TRANSFORMERS

20115

 Excellent quality．Tow price－ 1 mmediato delivery| s！ | | |
| :---: | :---: | :---: |
| Purpose Bench | | |
| Mouating | | |
| | Amp | 87.00 |
| 2.5 | Amp | 88.05 |
| 5 | Amp | 511.76 |
| | Amp | 215．80 |
| 10 | Amp | 282．50 |
| 12 | Amp | 288.60 |
| | Amp | 49 |

8－260B Panel Yoantiar 15 Amp

2ntac
87.00
0.05
（4y） 2.5 Amp Please add postage
Please add partage
MODRLS
INPUT 230 VOLTB
OUTPUTT VARIABLE
Special disconnts for quantity

Everyday Electronics Classified Advertisements

RATES: 7p per word (minimum 12 words). Box No. 7p. extra. Semi-display- $£ 4.50$ per single column Inch. Advertisements must be prepaid and addressed to Classifled Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. MagazInes Ltd., Fleetway House, Farringdon Street, London EC4A 4AD.

SERVICE SHEETS

* Service Sheets and Manuals * COVERING RADIOS, TELEVISIONS, TAPE RECORDERS, RECORD PLAYERS. ETC. FROM 1933 UP-TO-DATE

 FROM 4OD. EACH - 1971 SERVICE SHEET INDEX LIST 2OP. - S.A.E. WITH ENOUIRIES PLEASEBEGINNER'S GUIDE TO RADIO by G.J. KIng. 7h Edition, 204 poge
BEGINNER'S GUIDE TO TELEVISION by G.J. King. 208 poges
UNDERSTANDING THE SEMICONDUCTOR by C.N. Mathews. 128 page UNDERSTANDING TELEVIIION by. J.R. Davies. 512 pages
OUESTIONS AND ANSWERS ON TRANSISTORS by C Brown. 96 poges
QUESTIONS AND ANSWERS ON RADIO AND T.V. by H.W. Hellyer. 128 poges:
RADIO VAL VE AND TRANSISTOR DATA by A.M. Ball. 340 poge 5.
SEMICONDUCTORS: BASIC THEORY AND DEVICES by I. K ampel. 272 poges
PHOTO-ELECTRONIC DEVICES by J.B. Dence. 165 pages
RADIO CONTROL FOR MODEL S by Data Publications Lid. 192° pages AUDIO AMPLIFIERS by Doto Publications Lid. 128 panes

ical
 Books on R
 BELL'S TELEVISION SERVICE'S

Albert Place, Harrogate, Yorkshlre. Telephone 0423-86844

RECEIVERS and COMPONENTS

JEF ELECTRONICS

WELCOMES READERS TO
EVERYDAY ELECTRONICS
NEW - BRANDED - GUPly Microcircults, Transistors, Rectifiers, etc. at highly competitive prices.
SN76013N (like super IC12!)- $£ 1.50$ 741-36p; 2N3055-54p; 1N4002-4p
INTRODUCTORY OFFER! Send $7 p$ in stamps for our list and a high gain planar NPN transistor.
(E.E. 12) York House, 12 York Drive, Grappenhall, Warrington.
Mail Order Only. C.W.O. P\&P 7p per order. Overseas 50 p . Money back if not satisfied.

DO-IT-YOU RSELF ... we stock a large range of audio and electronic components at very competisive prices, e.g.: Chassiss peakers, erossover networks, hi-fi speaker kits (Wharfedale * Peerless), BAF sound absorbent, speaker grille fabrics, inductors, reslstors, electrolytics (reversible and polarised), eransistors, etc. Send for FREE list. ($2 \times 3 \mathrm{p}$ stamps for fabric samples.) Mail-order ONLY. No callers please.:

A UDIOSCAN

(Dept. EE12)
M, pances seyane

POLYSTYRENE CAPACITORS $125 v$ Values from 150pt to 0.015 (NO 4700 pf) 15 p dozen, nost 5 p 10's ON PANELS 0.015 (No 4700 p) 15 p dozen, nost 5 p IC's ON PANELS
7400 series at least $10-75 \mathrm{p}$, post 10 p with details. COMPUTER PANELS, F-BCIO8.DIODES $15 \mathrm{p}, \mathrm{post} 5 \mathrm{p}, 4$ 50 p , post 10p. AMERICAN PANELS total at least 30
transistors, first grade components, detsils provided $3-$
 Silicon PNP 85p, post 5p. MIXED PAMELS B for \&l, post 15p, no midget panels, plenty of components, at least 60 trankistors. FERRITEROD 7 I 12p, post 8 p each, 27 p for 5 . LAL FOT CORES ex equipment, 20 p pont paid, ORP12 on panel ex equlpt. 35 p post paid. COPPER CLAD PAXOLIM single elded $13 \times 1130 \mathrm{p}$, post 8 p each. COMPUTER RELAYS DPDT 700 ohm coil, weigh t Oz. alao weigh toz, carry 2 amp and 5000 ohm coil welgh weighs 1t oz. 35p post paid. small sywcirionots
 TROLYTTCS $5,000 \mathrm{mit}$ 25v 40 p post paid.
ASSORTED PANELS WITH RES, CAPS, DIODES, INDUCTORS.
Ib. 75 p post paid.

J.W.B. RADIO

75 HAYPIELD ROAD, SALPORD 6, LANCS. MAIL ORDER ONLY

SERVICE SHEETS (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8,000 models available. Catalogue 13p. Please send S.A.E. with all orders/ enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex. Telephone: Bexhill 7097.

EDUCATIONAL

TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566), Intertext House, London, SW8 4UJ. Accredited by the CACC.

MISCELLANEOUS

FASCIA PANELS, DIALS, NAME. PLATES etc. (single or multiples) in etched aluminium to. individual specification. Hardware supplies for constructors, s.a.e details and list.
R. A. Marsh,

29 Shelbourne Road,
Stratford on Avon, Warwke.

12 VOLT

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan. Tent. Emergency Lighting, etc. Fully Transistorised, Low Batcery Drafh. With ON/OFF Swisch and 12 V Socket to un other Lights or 12 V Equipment.
Unbeatable at $£ 3.30$
post paid
or in kit form $£ 2.90$
SALOP ELECTRONICS Callers welcome 23 Wyle Cop
Shrewsbury, Shropshire Large S.A.E. for lists

PROFESSIONAL CONTROL PANELS

MAKE YOUR OWN PANELS IN PERMANENT ANODISED, SELF-ADHESIVE ALUMINIUM. NO SPECIAL EQUIPMENT NEEDED. OF SILVER ON BLACK, RED, BLUE, GREEN. TRIAL KIT (36 sq. in.) $\quad . \quad$ t1. 28 carr. pd.
 MPE Ltd., Dpt D.E. Bridge St. Clay Cross, Derbys

LIGHTWEIGHT TREASURE-PROBE

Look for BURIED COINS, silver, gold and metal relics PROFESSIONALL WROBE. An extremely EASY.TO-BUILD kif that REALLY DOES WORK I SIMPLE. TO-FOLLOWINSTRUCTIONS. It comes to your doorstep with maximum-copper
PRINTED-CIRCUIT BOARD plus ALL ELECTRONIC COMPONENTS ineluding search-coil and earphone. Think of the fun you'll have BEACHCOMBING with the sensillve TREASURE-PROBE, and the expectancy of hearing its LOUD 'BEEP' to tell you YYOU'RE ON TO PROBE SEND \&6.95 NOWI

BOFFIN PROJECTS

4,CUNLIFFE RD,
STONELEIGH, EWELL
SURREY
Desloned by GERRY BROWN JOHN
SALMON and presented on TV
RECORDER OWNERS-Speak to the world through Britain's largest Tape-X-Change: WORLDWIDE TAPETALK, 35 The Gardens, Harrow. Particulars: $2^{1}{ }_{2}$ p stamp.

JOHN SAYS.

RING MODULATOR by Dewtron is professional, transformerless, 5-transister, has adjustable FI/F2 rejection. Module $£ 7$,
Unlt $£ 899$. WAA-WAA Pedal kit of ali Unit $£ 8 \cdot 90$. WAA-WAA Pedal kit of ali parts, incl. all mechanics a instr. Only
Q2.95. AUTO RHYTHM from Dewtron C2.95. A UTO RHYTHM from Dewtron modules. Simple unit for walez, foxtror
erc. costs E 18.00 in modules. SYNTHE erc. costs E18.00 in modules. SYNTHE-
SISER MOOULES and other miracles. SISER MODULES and
Send 15 p for illust. list.
D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset.

NO NEED TO WORRY ABOUT

A TRANSMITTING LICENCE

because this GPO approved transmitter/receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since shey won't be heard by conventional means. Actually iz's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver, You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for SCHOOL PROJECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc.

GET YOURS! SEND 55.20 NOW
TO: BOFFIN PROJECTS
DEPT. KW2010
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY

HAVE YOU TRIED S.RBP.
nippibonrd
Speclal offer closes November30 Two Nippiboards Type 1A or one Type 2AS-25p Four Type 1A or one Type 4 AS-40p (add 5p p\&p) ALSO S.L. 403D l.e. $£ 1.99$ (add 9p p\&p)

LOOK AT THESE PRICES

CARTRIDGES

Aco GP67-2, OP91-35C 21-12]: Aco OP93-1 21.334: Acos GP94-1 21.62 ; ; Bonotone 9TABC E1.974. All above ta niakers' cartona. BSR X4H 1.50.

THIS MONTE'S SPECLAL OFPER
Garrart SP25 Mk. III with K840A cartridge. In good quality teak plinth with perspex dust
cover. Complete with all leadia ready SF2S Mk. III deck only less cartridge $\mathbf{\$ 1 2 . 8 7 .}$
ploas \& sockets
Phono plugs, assorted colours Ap. 45p per doz. : Coaxial plugs, alumlnlum 7ip; Cosxial couplern 7tp: 2 pla DIN pluge 15p; 3 pin DIN pluga $15 \mathrm{p} ; 5$ pin DIN plugs 17p: 2 pln, 3 pin \& 8 pin DIN rocketo 7ip; Wander plugs 2pp: sockets 31p: Banana pluga 5ip: J/Plugs with solder terminal and 10 . Chipisndard Side Eatry J/Pluga black and chrome 24 p; Insulated 1/sockets-o/ect 20 p , e/ect 17 p .
electrolitic capactiors
$4 \mathrm{uF} 180 \mathrm{v} 4 \mathrm{p}: 8 \mathrm{FF} 500 \mathrm{v} 15 \mathrm{p}$; 10 uF 180v ip; $12 \mathrm{uF} 25 \mathrm{v} 4 \mathrm{D} ; 16 \mathrm{uF} 450 \mathrm{v}{ }^{140} \mathrm{D} ; 16 \mathrm{uF}+16 \mathrm{uF}$

 $10,000 \mathrm{uF} 25 \mathrm{v} 75 \mathrm{p}: 20,000 \mathrm{uF} 30 \mathrm{v} 41.05$.

GEOREE FRANCIS (OEPT EE)

12-14. MDDLE GATE. NEWARE. MOTTS. Telophone: Hewerk 4783.

INSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM 9v 8ATTERY (not supplled) ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: ©2.60 post pald.

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC.. UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM 9v BATTERY (not supplied) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULLINSTRUC. TIONS. KIT PRICE: E2. 60 post pald.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

DABAR ELECTRONIC PRODUCTS

Ets, LICMFIELD BTREET, WALSABL, ETAFFS, WS1 IUZ

A LONG COOL LIFE

for your valuable components with the

S.D.C. DeC range of SOLDERLESS breadboards

S-Dec	Available as single packs with booklet and control panel @ $£ 1.44$ or the DeCSTOR doubie pack containing 2 S-DeCs, booklet, control panel, all in a plastic storage container. Only £2.88. A 4 DeC pack is available, only £5.10.
T-DeC	Now available to the amateur, 208 connection points. 38 independent junctions. Accommodates I.Cs using standard carriers. Three times the capability for only twice the price! Unit pack with control panel $£ 2.88$.
$\mu-D e C$	Primarily for use with integrated circuits; further details on request.
	T-DeCs, S-DeCs and Accessories are all obtainable from leading suppliers throughout the U.K.
ART WORK	in case of difficulty complete the coupon and mall without delay. Post
	S.D.C. ELECTRONICS (SALES) LTD. 34 Arkwright Road, Astmoor Industrial Estate, Runcorn, Cheshire Tel.: Runcorn 65041

Please send me:
............T-DeC PackS-Dec Single PackDeCSTOR Pack4-DeC Pack
Tick here if you require further details of the μ-DeC
I enclose PO/Cheque/Money Order value £
Money refunded if not satisfied
Name
Address

FULLY TESTED AND MARKED				CLEARANCE LINES			
AC107 AC126 ACl 27 ACl A8 ACI76 AC239 AF186 AFI59 $8 \mathrm{BC171}=8 \mathrm{BC107}$ $8 \mathrm{Cl} 72=\mathrm{BCl} 108$ 8 8F274 BFY50 $85 Y 25$ BSY 26 BSY 27 BSY28 BSY29 OC41 OC44 $\mathrm{OC}_{4} 5$ $\mathrm{OC72}$ $\mathrm{OC73}$ -C81 C8ID OC83 -Cl 39 OCI 40	0.15 0.13						
	01701			COLOUR T.V. LINE OUTPUT TRANS-FORMERS.Designed to give 25 KV when used			
	0.25			with PL509. and PY500 valves. As removed from			
	0.15 0.37			NOW ONLY 500 each Post and Packing 25 p .			
	${ }_{0}^{0.50}$			Amp. Plastic Rectifiers. These are voltage, BYI27 range. Ideal for low voltage Power Units, ete. Price: © 1 per 100.			
	0.37						
	-13						
	0.15 0.15 0.15	Power Transistors					${ }_{6}^{50}+$
	0.25 0.57	${ }^{0 \mathrm{O} 20}$	0.50	${ }^{\text {Pr }}$			
	0.13	OC23	-0.30		5	5	4
	${ }_{0}^{0} 113$	-	0.25 0.30		25	20	15
	0.13 0.15	- 35	0.25	Matched Sers of OC45's	15	12	10
	0.13 0.13	¢ $\begin{aligned} & \text { OC36 } \\ & \text { AD149 }\end{aligned}$	0.37 0.30	AA47 Gold Bonded Diodes, Marked \& tested I Watt Zener Diodes 7.5,	3	3	2
	0.13	${ }^{\text {AUY }} 10$	1.25 0.25		5	4	3
	0.13	2N3055	0.63	24, 27, $30,36,43$, Volts Wate Zener Diodes 51 ,			
	0.17	Diodes		$8.2,11,13,16,24,20$, Micov. Micro Switches, 5/P. C/O. 1 Amp. Bridge Rect. 25v.	202525	172020	151515
	${ }^{0}$	AA95	0.10 0.10 0.09				
	0.20 0.13	OA79	- 0.08				
	$\begin{array}{cc}\mathrm{OCl} \\ \mathrm{OCl} 49 & 0.17 \\ 0.17\end{array}$	IN914	0.07	integrated circuits			
				SL4030 Audio Amp. ${ }^{\mathbf{3}}$ Watt TO9CLinear Opp. Amp.	${ }_{50}^{2.00}$	${ }^{1} 195$	${ }_{35}^{1.80}$
				Gates Factory Marked \&		22	
PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 50 p WITH ORDERS OVER C4				Marked \& Tested, A.E. 1			
				$\begin{aligned} & 40 \\ & 4: 00 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 96 \\ & 35 \end{aligned}$	30 30 30	

OUR VERY POPULAR 3P TRANSISTORS
FULLY TESTED \& GUARANTEED
TYPE " A" PNP 5ilicon alloy, mecal TO. 5 can. 25300 type, direct replacement for the OC200/203 range.
TYPE " B "PNP Silicon, plastic encapsulation, low voltage but good gain, these are of the $2 \mathrm{~N} 3702 / 3$ and 2 N4059/62 range.

TYPE "E"PNP Germanium AF or RF--please state on order. Fully marked and tested.
TYPE "F" NPN sflicon plastic ericapsulation, low noise amplifier of the $2 \mathrm{~N} 3708,9,10,11$.

BULK BUYING CORNER

NPN/PNP Silicon Planar Transistors, mixed, unrested, similar to $2 \mathrm{~N} 706 / 6 \mathrm{~A} / \mathrm{B}$, BSY26-29, B
BCY70, etc. E4. 25 per 500 ; \&8 per 1,000

Silicon Planar NPN Plastic Transistors, untested, gimilar to $2 \mathrm{~N} 3707-11$, etc., 64.25 per 500 ; E 8 pcr 1,000

Silicon Planar Diodes, DO-7 Glass, similar to OA200/202, BAY31-36, 24.50 per 1,000.

NPN/PNP Sllicon Planar Transistors, PlasticTO-18, similar to $\mathrm{BC} / 13 / 4$, BC153/4, BFI53/160, etc.〔4.25 per $500 ; 68$ per 1,000 .

OC44, OC55 Transistors fully marked and tested, $500+$ at $8 p$ each: $1,000+a \varepsilon 6 p$ each.

OC7I Transistors, fully marked and tested, $500+$ at $6 p$ each; $1,000+$ at $5 p$ each.

3823E Field effect Transistors. This is the 2N3823 in Plastic Case, $500+13$ peach; $1,000+10 p$ each.

I amp Miniasure Plastic Dlodes
iN4001, $500+3 p$ each; $8,000+3 p$ each
N $\mathrm{N} 4004,500+$ at 5 p each, $3,000+$ at 4 p each.
N $\mathrm{N} 4007,500+$ at $6 p$ each, $1,000+$ at $5 p$ each.

NEW		SMARKED UNTESTED	PAKS
B66	150	Germanium Diedes Min. glass type	50p
-83	200	Trans. manufacturers' rejects all sypes NPN, PNP, sil, and Germ.	p
B84	100	Silicon Diodes DO-7 glass equiv, to OA200, OA202	50p
B8	50	Sil. Diodes sub. min. IN914 and IN916 types	Op
B88	50	Sil, Trans, NPN, PNP, equiv. 20 OC2001, 2N7O6A, BSY95A, etc.	50p
860	10	7 Watt Zener Diodes Mixed Voltages	p
H6	40	250 mW . Zener Diodes DO.7 Min. Glass Type	Op
H10	25	Mixed volts, if watt Zene Top hat type	Op
सा1	30	MAT Series "alloy" pnp Transistors	50p
His	30	Top Hat Silicon Rectifiers, 750 mA . Mixed volts	50p
H16	8	Experimenters' Pak of integrazed Cireuits. Data supplied	50p
H2	20	BYI26/7 Type 5ilicon Rectifiers, I amp plastle. Mixed voles.	50p

new tested and guaranteed paks

B2	4	$\begin{aligned} & \text { Pho } \\ & 0.3 \end{aligned}$	50p
879	4	IN4007 Sil. Rec. diodes 1,000 PIV lamp plastic	
¢81	10	Reed Switches, mixed eypes large and smali	50p
B9	200	Mixed Capacitors. Postage 13p. Approx. quantity, counted by weighe	
H4	250	Mixed Resistors. Postage 10p. Approx. quantity, counted by weighs	
H7	40	Wirewound Resistors. Mixed types and values. Postage $8 p$	
H8	4	8Y127 Sil. Recs. 1000 PIV. I amp. plastic	p
H9	2	OCP7I Light Sensisive Photo Transistor	
H/2	50	NKT 155/259 Germ. diodes, brand new stock clearance	P
H18	10	OC71/75 uncoded black glas type PNP Germ.	
HI9	10	OC81/8ID uncoded white glass type PNP Gorm.	p
H28	20	OC2001\|1/2/3 PNP Silicon uncoded TO. 5 can	
H29	20	OA47 gold bonded coded MCS2	

F.E.T. PRICE BREAKTHROUGH ! ! !

This field effect transistor is the 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N 3819 .

Data sheet supplied with device.
1.10 30p each, $10-50$ 25p each, $50+$ 20p each.

Make a Rev. Counter for your Car. The -TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into linear and accurate rev. counter for any car.

each

FREE CATALOGUE AND LISTS Tor:DIODES, INTEGRATED CIRCUITS, FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10p post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

8 reLays for £1
Various Contacts and Coil Resistances. No individual selection. Post and Packing 25p

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Build yourselfaTRANSISTOR RADIO

NEW! ROAMER 10 WITH VHF INCLUDING AIRCRAFT

10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MW1, MW2, LW, SW1, SW2, SW3, TRAWLER BAND. VHF AND LOCAL STATIONS AND AIRCRAFT BAND Buitt in Ferrite Rod Aerial for MW/LW. Retractable, chrome plated 7 section Telescopic Aerial, can be angled and rotated for peai ahort wave and VBF listening. Push Pul output using 600 mw Transiators. Car Aerial and Tape Record Bockete. Swiched Ear piece Socket complete with Earpiece. 10 Transistors plus 3 Diodes. 7 in $\times 4$ in Bpeaker Air spaced ganged Tuning Condenser with VHF section. Volume on/off, Wave Change and Tone Control. Attractive case in black winh slver blacking, alze bild plans 80 Easy to follow instructions and diagrams. Parts price list and aasy build plans 80 p FREE with parts)

ROAMER ElGht Mk I
 NOW WITH VARIABLE TONE CONTROL

7 Tunable Wavebands: MW1, MW2, LW, SW1, gW2, SW 3 and Trawler Band. Built in Ferrite Rod Aerial for MW and LW, Retractable chrome plated Tele600 mW transiptors, Car werisl Push pull output using
 vith earplece, 8 transistors plus 3 diodes, 7 in $x 4$ in Speaker. Aif rpaced ganged tuning condenser. Volumel on/off, tuning, wave change and tone controls. Attractive case in rich chestnut shade with gold blocking. Size $9 \times 7 \times 4 \mathrm{in}$. approx. Easy to follow netructions and diagrams. Parta Price List and Easy Build Plans 25p (PREE with parts).
Total building cost $8: 18$ P. P. \&
(Overseas P. \& P. \&1)

POCKET FIVE

Tunable Wavebands MW, LW, Trawler Band with extended M.W band for easier tuning 7 ntagea-5 transistors and 2 diodes, upersensitive ferrite rod aerial, fin tone moving coll speaker. Attractive black and gold case. Size 5 . 1 it \times 3sin. Easy bulld plans and parts price Iist 10p (FREE with parts). Earpiece with plug and switched socket for private listening 30 p

Total building costs (Overseas P. \& P. 63p)

Exclusive to readers of

 "EVERYDAY ELECTRONICS"
"EVERYDAY SEVEN"

MEDIUM and LONG WAVE PORTABLE. geecially des or easy construction incorporating 7 ranaintors and diodes, air apacitor pu laning cutput puah pull transistors hesp duty mw Volume on oft control, tuning control and wave change switch. Handsome, atrongly made wooden case, size 111" $\times 7$ r $^{\prime \prime} \times 3$ " " with carrylng handle and black knobs with spun sllver inserts. The Ideal radio for those who are comparatively inexperienced in electronic construction. Easy separately for 25 p .

Total building cost \&8.50
P. P. \& Ins. 50p

Overseas $\mathbf{P}, \& \mathbf{P}$ \& $\mathbf{\& 1}$
 teleacopic aerial for Short Waves.
stages -6 transistors and 2 dlodes including MicroAlloy R.F. Transistors, etc. Atcractive black case with red grille, dial and black knobs with polished metal and parts price lint 15 p (FREE with parta). Earplece with plug and switched socket for private listenling 30D extra.
Total building costs $2=18$ P. P. 2
(Overseas P. \& P. \&1)

TRANS EIGHT

8 TRANSISTORS and 3 DIODES

6 Tunable Wave-
bands: MW, LW,
SWI, 8W2, SW3
Sensitive ferrite rod serial for M.W, and IW Tele sconio acrial for short Waves M.W. and L.W. Tele. type transiators plus 3 diodes. Attractive case in black with red grille, dial and black knobs with pollehed metal inserts, size $9 \times 81 \times 2$ inn. approx. Push pull output. Battery economiser $8 w$ itch for extended battery life. Ample power to drive a larger speaker. Parta price list and easy build plans 25p (FREE with parts), Earpiece with plug and switched aocket for private listenfing 30 p extra.
Total building costs $24,4\left\{\begin{array}{l}\text { P. P. \& } \\ \text { (Overseas P. \& P. \&1) }\end{array}\right.$

RADIO EXCHANGECO

61 HIGH STREET, BEDFORD.
Tel. 023452367

> I enclose E........................ please send items marked

ROAMERTEN \square EVERYDAY SEVEN ROAMER EIGHT \square TRANS EIGHT TRANSONA FIVE \square ROAMER SIX POCKET FIVE \square EDU-KIT

Parts price list and plans for

Send to this address-Henry's Radio Ltd., (Dept. EE),
3 Albemarle Way, London, E.C.I-for catalogue by 3 Albemarle Way, London, E.C.I-for catalogue by post only.

All other mail to " 303 ", see below
A NEW HENRY'S CATALOGUE IS A MUST FOR ELECTRONICS TODAY!

HOME EQUIPMENT
AF105 50k/V multimeter (IHus.). Price 68.50, p.p. 20p. Leather case E1-42. Price $53 \cdot 87$, p.p. 20p. Case 62p.
$50030 \mathrm{k} / \mathrm{V}$ multimeter.
Price $68 \cdot 87$, P.p. 20p. Leather case $£ 1 \cdot 50$ THL33 $2 \mathrm{k} / \mathrm{V}$.
Price $64 \cdot 12$, p.D. 15p. Leather case CI - 15
TE65 Valve voltmeter
Price $£ 17 \cdot 50$, p.p. 40 p . SE250B Pocket pencil signal injector. Price $\leqslant 1-75$, p.p.
15 p. SE500 Pocket pencil si eracer. Price $\mathbf{E l}$-50, P.P. 15 p.
TE20D RF generator. Price E15, P.p. 40p. TEI5 Grid dip meter. Price $£ 12 \cdot 50$, p.p. 40 p. TO3 Scope 3 in. tube. Price 637.50 , p.p. 50 p . TE22 Audio Generator. Price f17, P.p. 40 p. CI-5 Pulse Scope. $\in 39 \cdot 00$, p.p. 50p. U4341 AC/DC Multitester and transistor testor. AC \& DC Current. In steel case. Price $£ 10 \cdot 50$. p.p. $15 p$.
TMK $50030 \mathrm{k} / \mathrm{v}$ Multitester. Price $88 \cdot 87$ p.p. TMK $50030 \mathrm{k} / \mathrm{v}$ Multitester. Price $\mathbf{\text { E8.87, p.p. I3p. Leather case }}$ C1.98.
LARGEST RANGE of Panel Merers, Edge Meters and Test Equipment of every sort. Full details in latest catalogue-see above.

COST HI-FI SPEAKERS
E.M.I. Size $13 \frac{1^{\prime \prime}}{2} \times 8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Large Cer
TYPE $150 \frac{6}{}$ watt, 3,8 or 15
ohms E2. 12 . Post 22 . 8 or 15
YPE 150 TC Twin cone ver-
sion 2.75. Pose 22p.
TYPE 45010 wart with twin
tweeters and crossover. 3, 8 or 15 ohms. 63-50. Post 25p. TYPE 35020 watt with tweeter and crossover. 8 and 15 ohms.
POLISHE

SPEAKER KITS

WHARFEDALE $4-8$ ohms. PEERLESS 8 ohm Systems.
 Unit 5. $12^{\prime \prime} 35 \mathrm{~W} .620^{-25} \quad 4-30 / 1212^{\prime \prime} 40 \mathrm{~W}$ E22-75. Carriage etc. 50 p each. $\quad 750$ per pair for Kits.

SAVE 40% ON LIST PLUS FREE DUST BUG ROTA 1500. $5+5$ watts. Garrard 2025TC with 9TAHC diamond ceramic. Plinth/ Cover. SDL 'Envoy' Compact Speakers.
SAVE
S47-50 627 Carr TELETON '206' Garrard SP25 Mk. III, Goldring G800 Series Cart., Plinth/Cover. New 15 watt Quality SDL 'Envoy' Bookshelf Speaker Systems, all leads erc
SAVE
$\mathbf{S 4 4 . 9 5}$ $\begin{array}{lll}\text { SAVE } \\ £ 30.00 & 54.95 & \text { Carr }\end{array}$ TELETON F2000, Med. Wave, Stereo FM Tuner Amplifier, Garrard 2025TC, 9TAHC Diam., Plinth/Cover. New 15 watt Speaker Systems as above, all leads, etc. SAVE $\quad 599.95$

ROTA $220010+10 \mathrm{Watt}$ Garrard SP25 III/G800H Plinth/Cover. New 15 wat SDL "Calypso" Speaker Sys$\begin{array}{ll}\text { tems, } \\ \text { SAVE } & \text { all leads, etc. } \\ 663.95\end{array}$

LOW PRICES PLUS 12 MONTHS GUARANTEE \& DEMONSTRATIONS FREE
LATEST SPECIAL PRICE STOCK LIST STEREO SYGTEMS Ref. 16/17

FREE BROCHURES - INGETRONIC ORGANS IN KIT FORM No. 9 ${ }_{36}$ TRANSISTORS, I.C.'s No.

20 WATT I.C. AMPLIFIER Toshiba 20 wast Power. Ampli Toshiba Pre-Amplifier I.C. C1. 50.
Data and suggested circuits
No. 42, $19 p$.
SL4030 3 watt I.C. with data
and eircuits \&1.50.
NIXIE TUBES (post 15p Xer order)
XN3 or XN13 $0-9$ side view with data sheet, 85p each. GN4 end view 0-9 with
socket and data, fi.75. All t.C's for Digital Clocks in l.C.s for Digital Clocks in CIRCUIT No. 29/2 15p.

HENRYS RADIO ONIC CENTRES

ELECTRONIC ORGANS . MAIL ORDER

BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS $300 \mathrm{ke} / \mathrm{s}$ BAND-WIDTH, PRINTED CIRCUIT, MONO AND STEREO.
A popular VHF FM Tuner for quality and reception of mono and stereo. gives the REAL sound. All parts sold
 separately. Free Leaflet No. 3 \& 7. TOTAL \&6-97, p.p. 20p. Cabiner 100p. Decoder Kit E5.97. Tuning meter $\mathbf{C l}$ -
Mains unit (oprional) Model PS900 $\mathbf{E 2 . 4 7}$
Mains unit for Tuner and Decoder PSI200 $2 \cdot 62$.
HIGH QUALITY SILICON AMPLIFIERS AND Price C16.50.
SILICON POWER AMPLIFIERS RMS OUTPUT PA 2525 watts into 8 ohms $\mathbf{6 7} .50$.
MU442 Power 5 upply for I or 2 PA25's or 1 only PA50, C6.00. Post 20 p .
POSt ${ }^{20}$ pROCHURE No. 25 ON REOUEST. NO SOLDERINGALL UNITS INTERCONNECTING ON DEMONSTRATION TT"356"

TERRIFIC SAVINGS!

GARRARD - BSR - THORENS
GOLDRING PIONEER
CONNOISSEUR

CHASSIS (P) (less cartridge) (le SP25 Mk III f11.30 cartridge, with cover) AMP60 $£ 19.97$ HT70PC $£ 24.00$

 \begin{tabular}{lll}
MP610 \& 15.15 \& GL69/2 PC $£ 32.00$

\hline 1510

 $\begin{array}{lll}\text { HT70 } & \text { \& } 16.60 \text { GL75PC } 42.50\end{array}$ GL69/2 E21.97 TD150AB/ GL75 E22-00

DUAL 1215 \& GA2.00 \& GA3 11

\hline $45 \cdot 50$

\hline
\end{tabular}

 2025 TC I9TAHC 59.50 CARTRIDGE *3000/9TAHC TEAK PI/TIStd. WINTH BNI Delux COVER HBN4 Std. State + PGITG std deck) BSR Delu BSR Deluxe $\mathrm{f6} 6.50$ =Chassis 50p, with plinth/cover 70p, Plinth/Cover 30p

300 mW TRANSISTOR AMPLIFIER MODEL $4-300$ Fully assembled 4TR Amplifier. Size $5 \frac{1}{2} x$ 17
O x in. $1-10 \mathrm{mV}$ adjustable sensitivity.
O $3-8$ ohms. Fitted Vol. Control. 9 volt operated. Thousands of uses plus low cost.
low cost.
p.p. 15p).

SINCLAIR PROJECT 60 PACKAGE DEALS -SAVE POUNDS!
2×230 amplifier,
pzereo 60 pre-amp.
Girr 40wer supply, 16 .75,
3 upply $£ 18-25$. Carr. 40 p. 2×250 ampli-
fier, stereo 60 pre-amp. PZ8 power supply $\mathbf{1 2 0 - 2 5}$, Carr. 40p Transformer for PZ8 $\mathbf{6 2} 45$ extra. NEWI Project '605' stereo system E20.97. Any of the above with Active Filter unit add 44.75 or with pair. Q16 speakers add C16. Also new FM Tuner E20-25. 2000 Amplifier 624.50, P.p. 50p. 3000 Amplifier £31.50. Also IC12 E2-50.
"BANDSPREAD" PORTABLE TO BUILD
Printed circuit all transistor design using Mullard RFIF Madule. Medium and Long Wave bands plus Medium Wave Bandspread for extra slectivity. Also slow motion geared suning, PVC mW push-pull output, fibre giass cVive appearance and performance. TOTAL COST TO BUILD 87.98 p.p. 32p (Bartery 22p). All parts sold separately-Leafet No. ${ }^{32}$. stock-Leafles No.

All magnetic- Recommended for Y940 ($=A D$ 76K) 63 25; AT66 $44-95$ G850 $£ 4 \cdot 25$; AT21 $£ 9 \cdot 60$ G800 or G800H 56.55 C7. 32 or C

\qquad

MORE OF SYERYTHWG AT LOW PRICES ALWAISS FROM HENRY'S "eomponents in atock for mort published designe-

Electronic Components,
Audio and Test Gear Centre
356 EDCWARE ROAD,
LONDON, W.2.
Tel : 01-402 4736

Mail Urders, Special Bargain Shop, Industrial Sales 303 EDGWAREROAD. LONDON, W.2.
Tel: 01-723 1008/9

[^0]:
 (STAFF WANTED FOR ALL DEPARTMENTS) Callers wolcome 9 a.m. - $\mathrm{p} . \mathrm{m}$. inc. Saturdar

[^1]: To SINCLAIR RADIONICS LTD., ST. IVES, HUNTINGDONSHIRE PEI7AHJ
 Piease send Project 605 post free \square Details and list of stockists \square
 Name.
 Address, ...

[^2]: 3 p
 30 p 50 p
 50 p

[^3]: (c) IPC Magazines Limited 1971. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2 \cdot 35$.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^4]: Tel. 01-452 0161/2/3 A. MARSHALL \& SON
 Send 5p for now Comprehensive
 conduceor and l.C. lise (24 pages).
 Telex 21492
 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
 CALLERS WELCOME
 HRS. 9-8.30 MON.-FRI.
 ${ }_{3}^{9-1.0} \frac{\text { sAT }}{\text { gTors. }}$

