OCTOEER 1978

451

Television

Chess

MRM 101 RF Meter SCRUMPIS Gain Control

. ..NEWS PROUECTS . . . MICROPROCESSORS AUDIO. . .

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAYINTERNATIONAL.
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range There is portamento. pitch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector. ADSR repeat, sample and hold. and special cricuitry with precision components to ensure turing stability amongst its many features

The kit includes fully finished metalwork, solid teak cabinet. filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film 1) and it really is complete - right down to the last nut and bolt and last piece of wire' There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music' glass PCB printed with component locations All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be bult easily in a few evenings by almost anyone capable of neat soldering' When finished you will possess a synthesizer comparable in performance and quality with ready bult units selling for between $£ 500$ and $\mathrm{E} 700^{1}$

$200+200$ wait AMPlift

As featured in Electronics Today International

400W rms continuous - 800W peak!
0.03 \% THD at FULL power!

PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short cricuit protection
* Ultra low feedback (an incredıble low 14 dB overalll). super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200W ms continuous to 4 ohm from EACH channel, input sensitivity 0.775 V (OdB)
* Professional quality components. sturdy 19 rack mounting chassis complete with sleeve and feet for free standing work too.

Due to the fantastic success in the launching of this superb new kit. instead of $£ 186.50$ we are able to continue the
special introductory offer of $£ 172.00+$ VATI

Easy to build - plenty of working space with ready access to all components minimal wing extensive instruction suitable for both experience constructors and newcomers to electronics

* Value for money - quality and performance comparable with ready-built amplifiers costing over
E 600 '

PSI 4001 SLAVE MODEL

PSI 4002 STUDIO MODEL

PSI 4001
COMPLETE KIT ONLY £187.50 + VAT PSI 4002
COMPLETE KIT ONLY £196.90

+ VAT

The kuts shown on this page are available as separate packs Prices are given in our FREE CATALOGUE

[^0]our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP 10 3NM
(STD 0264) 64455

Sound project! p. 17

PROJECTS

COMPLEX SOUND GENERATOR
RF POWER METER
POWER BULGE
TELEVISION CHESS GAME
BELL EXTENDER
PROXIMITY SWITCH

A cheaper way to annoy people! What's watt at RF Two into one does go Make your move on screen Keep it ringing the changes A bit near the mark!

INFORMATION

ETI PRINTS	$\mathbf{2 9}$	You know it makes sense
MARKETPLACE	$\mathbf{3 9}$	Time for a couple of offers
ETI SPECIALS	$\mathbf{5 8}$	Make an issue(s) out of 'em
NOVEMBER PREVIEW	$\mathbf{5 6}$	Have we a surprise for you!!!
SUBSCRIPTIONS	$\mathbf{6 9}$	Make life easy
PANEL TRANSFERS	$\mathbf{7 4}$	It'll rub off on you!
ETI BOOK SERVICE	$\mathbf{8 1}$	Read this fine print

ETI PRINTS
MARKETPLACE ETI SPECIALS NOVEMBER PREVIEW SUBSCRIPTIONS
PANEL TRANSFERS
ETI BOOK SERVICE
81 Read this fine print

EDITORIAL AND ADVERTISEMENT OFFICE
25-27 Oxford Street, London WIR 1RF. Telephone 01-434 1781/2. Telex 8811896
Halvor W. Moorshead Editor
Ron Harris B.Sc Assistant Editor Gary Evans Projects Editor Jim Perry Specials Editor
Phil Cohen B.Sc, William King Editorial Assistants John Koblanski Project Design Steve Ramsahadeo Project Development Paul Edwards Technical Illustrator Margaret Hewitt Administration Andrew Scott Office Manager
Kim Hamlin, Bren Goodwin
Tim Salmon, Val Tregidgo Mark Strathern (Manager), Tom Moloney

Reader Services
Advertising

Electronics Today International is normally published on the first Friday of the month prior to the cover date
COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

Purchase books to the value of $\mathbf{\&} 5.00$ from the list below and choose any 60p pak from this page FREE.

BP2	Handbook of Radio. TV \& Industria mitting Tube \& Valve Equivalents	60p \dagger
BP6	Engineers and Machinists Reference Tables	40pt
BP7	Radio \& Electronic Colour Codes and Data	
BP10	Modern Crystal and Transistor Set Circuits for beginners	35p \dagger
BP 15	Constructors Manual of Electronic Circuits for the Home	
BP22	79 Electronic Novelty Circuit	
BP	Firsi book of Practical Electronic Projects	75pt
BP2	52 Projects Using IC741 (or equivalents)	7pt
BP26	Radio Antenna Handbook for Long Distance Reception and Transmission	
BP27	Giant Chart of Radio Electronic Semiconduc and Logic-Symbols	
BP29	Major Solid State Audio Hi-Fi Construction Projects	85pt
BP32	How to Build Your Own Metal \& Treasure Locators	
BP34	Pracfical Repair \& Renovation of Colour TVs	s
BP35	Handbook of IC Audio Preamplifier \& Power Amplifier Construction	
8P36	50 Circuits Using Germanium. Silicon \& Zener Diodes	
BP37	50 Projects Using Relays, SCRs and TRIACS	
		£1.10†
BP39	50 (FET) Field Effect Transistor Projects	E1.25 \dagger
BP43	How to Make Walkie Talkies	¢ 1
BP44	1 C. 555 Timer Projects	E1
BP47	Móbile Discotheque Handbook	£1.35 \dagger
129	Universal Gram-motor Speed Indicator	10pt
160	Coil Design and Construction Manual	
196	AF-RF Reactance - Frequency Chart for Constructors	$15 p \dagger$
202	Handbook of Integrated Circuits (ICs)	
	Equivalents and Substitutes	
205	First Book of Hi-Fi Loudspeaker Enclosures	
213	Electronic Circuits for Model Railways	$85 p$
214	Audio Enthusiasts Handbook	85p
216	Electronic Gadgets and Games	$85 p$
217	Solid State Power Supply Handbook	85 p
219	Solid State Novelty Projects	85p
220	Build Your Own Solid State Hi. Fi and Audio Accessories	85p \dagger
222	Solid State Shortwave Receivers for Beginners	95p \dagger
223	50 Projects Using IC CA3 130	95p
224	50 CmOS IC Projects	95p \dagger
225	A Practical Introduction to Digital ICs	95pt
226	How to Build Advanced Shon Wave	
	Receivers	

BOOKS BY NEWNES

No. 229 Beginners Guide to Electronics	Price £2.25 \dagger
No. 230 Beginners Guide to Television	Price £2.25 \dagger
No. 231 Beginners Guide to Transistors	Price £2.25 \dagger
No. 233 Beginners Guide to Radio	Price £2.75 \dagger
No. 234 Beginners Guide to Colour Television	Price £2.25 \dagger
No. 235 Electronic Diagrams	Price £ $1.80 \dagger$
No. 236 Electronic Components	Price £1.80 \dagger
No. 237 Printed Circuit Assembly	Price £1.80 \dagger
No. 238 Transistor Pocket Book	Price $£ 3.90 \dagger$
No. 225110 Thyristor Projects Using SCRs \& Triacs	Price £2.50†
No. $227110 \mathrm{COS} / \mathrm{MOS}$ Digital IC Projects for the Home Constructor	Price $£ 2.75 \dagger$
No. 226110 Operational Amplifier Projects for the Home	
Constructor	Price £2.50†
No. 242 Electronics Pocket Book	Price £3.90†
No. 23930 Photoelectric Circuits 8 Systems Sy	Price £1.80†

NUTS AND BOLTS

ba botis
multiples of 50

Type	No.	Price	Type	No.	Price
IIS OBA	839	¢1.20	1/2in 4BA	846	60.32
1/3in OBA	840	¢0.75	1/4in 4BA	847	c0. 25
1 in 2 BA	842	¢0.65	1 m 6BA	848	¢0.40
$1 / 2 \mathrm{in} 2 \mathrm{BA}$	843	¢0.45	1/2in 684	849	c0.21
$1 /$ in 2 BA	844	¢0.52	$1 / 4 \mathrm{in}$ 6BA	850	c0.25
1 in 4BA	845	¢0.44			
BA NUTS - packs of cadmium plated full nuts in multiples of 50.					
Type	No.	Price	Type	No.	Price
OBA	855	60.72	4BA	857	¢0.30
28A	856	E0.48	68A	858	E0.24
BA WASHERS - flat cadmium plated plain stamped washers supplied in multipites of 50					
Type	No.	Price	Type	No,	Price
OBA	859	¢0.14	48A	861	¢0.12
28A	B60	¢0.12	6BA	862	¢0.12
SOLDER TAGS - hot timned supplied in multiples of 50					
Type	No.	Price	Type	No.	Price
OBA	851	c0.40	4 BA	853	c0.22
2BA	852	c0. 28	6BA	854	c0.22

SWITCHES

$\begin{array}{lllllllll}\text { Type } & \text { No. } & & \text { Type } & \text { No. } & & \text { Type } & \text { No. } \\ \text { 150mA } & 611 & \mathbf{6 p} & \text { 1A } & 615 & \mathbf{5 p} & 3 A & 619 & \mathbf{5 p} \\ \text { 250mA } & 612 & \mathbf{5 p} & 15 A & 616 & \mathbf{6 p} & 4 A & 620 & \mathbf{6 p} \\ 500 \mathrm{~mA} & 613 & \mathbf{5 p} & 2 A & 617 & \mathbf{5 p} & \mathbf{5 A} & 621 & \mathbf{5 p}\end{array}$

FUSE HOLDERS AND FUSES

INSTRUMENT CASES. In Two eections vinyl covered top and
eides. Aluminium bottom, front and beck.

No. 155	Longth Bin	Width 51/2in	Height 2in	${ }_{\text {Prices }}$ E1.25.
156	11 in	6 in	3 m	E2.12*
157	6 in	43/in	$13 / \mathrm{in}$	¢1.30
158	9 m	51/4n	21/2in	E1.76'
ALUMINIUM BOXES. Made from bright ali., folded construction eech box complete with half inch deep fid and serews.				
No.	Lomgth	Witth	Heighs	Price
159	51/2in	$21 / 4 \mathrm{in}$	11/2in	B2p
160	410	415	11/in	${ }^{622}{ }^{\circ}$
161	4 in	21/4in	11/219	${ }^{62 p}{ }^{\text {a }}$
162	51/4in	4 Am	$1{ }^{1 / 2} \mathrm{in}$	709.
163	4 in	21/2in	2 in	64p ${ }^{\text {a }}$
164	3 in	2 n	${ }^{\text {in }}$	$44{ }^{\circ}$
165	7 in	5 Sin	$21 / 2 \mathrm{im}$	¢1.04.
166	8 in	6 in	3 n	E1.32*
167	6 in	4 in	2 in	${ }^{6} \mathrm{p}^{\prime}$

METAL FOIL CAPACITOR PAK

Containing 50 metar tail Capacitor -hke Mulard C280 series. Med
values ranging from . 01 uf- 2.2 ff . Complete with identitication sheet

TRANSFORMERS

Send tor your copy of our revised cazalogue and price tist NOW! it
contzins 127 pages packed with literally hundreds of semiconductors. contains 127 pages packed with literally hundreds of somic
components and our famous range of 81 -KITS audio modulas

DEPT. ETIIO, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER £99.30 + VAT
This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi -Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection, push-button station selection as well as infinitely variable tuning and a phase locked loop stereo decoder incorporating active filters for "birdy" suppression.

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
This design, published in Wireless World, although straightiorward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels
mechanism is the Goldring-Lenco CRV with electronic speed control.

$\mathbf{T} 20$ + 20 AMPLIFIER $£ 33.10$ + VAT

This kit, based upon a design published in Practical Wireless. uses a single printed circuit board and offers at very low cosi, ease of coristruction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for $\mathbf{£ 3 8 . 4 0 + V A T}$

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the T20 +20 and T30 +30 amplifiers and the cabinet size, front panel forma and electrical characteristics make this tuner compatible with either Facilities included are pre-aligned front-end module, switchable afc, adjustable switchable muting. LED tuning indication and both continuous and push-button channel selection (adjustable by controls on the front panell.

POWERTRAN SFMT TUNER £35.90 + VAT

This is a simple low cost design which can be constructed easily without special alignmen equioment but which still gives a first class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo decoding and controls include switchable afc, switchable muting and push-button channe selection (adjustable by controls on the front panel). This unit matches well with the $\mathbf{T} 20+20$ and T30 +30 amplifiers.

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet. cables, nuts, bolts, etc., and full instructions - in fact everything!
All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE.

PRICE STABILITY: Order with confidence! irrespective of any price changes We will honour all prices in this advertisement until November 30th. 1978 . If ETI October, 1978 issue is mentioned with your order. Errors and VAT rate
changes excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50 p handling and documentation.
U.K. ORDERS: Subject to 12% surcharge for VAT ${ }^{-1}$ (i.e. add $/ /$ to to the price). No $^{\text {S }}$ charge is made for carriage. "or at current rate it changed.
SECURICOR DELIVERY. For this optional service (U.K. mainland only) add E2.50 (VAT inclusive) per kit
SALES COUNTER: If you prefer to collect your kit from the factory. call at Sales Counter (at rear of factory). Open $9 \mathrm{a} . \mathrm{m} .-4.30 \mathrm{p} . \mathrm{m}$. Monday-Thursday.
our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP 10 3NM
(0264) 64455

news digest.

for light music
These charming little blobs are Motorola's new BF900 MOSFETs, designed for use in FM tuner designs. They possess a power gain of 20 dB at 200 MHz and low capacitance. The dual gate configura tion is intended for AGC operation where the first gate receives the RF while the second controls the transconductance (DC) Both gates are diode protected. Dead clever these

Hong Kong King

Some numbers to tick off on your fingers. In the first six months of the year Hong Kong exported 16 million watches (worth $£ 77 \mathrm{~m}$). These break down as 61% mechanical, 29% LCD and only 10% LED and quartz analogue com-

blobs

Motorola Ltd, Semiconductor Division, York House, Empire Way, Wembley, Middx

bined. Surprising LED fig ures eh?

Germany developed a sudden lust for these nontockers and their imports leapt up by 287%, putting them as the second largest consumers - behind the US and ahead of us!

forget who not?

You know we've quite forgotten why we used this photo at all. Now let's see something to do with TV games? Anyway the editorial desks have been bereft of nice lady photos lately - so this one appeared as an oasis amid the dusty filing trays.
P.S. Binatone the people who make the box in front - don't ask what box or in front of what or we won't

speak to you again claim to now taken over half the TV game market - the magic 51% in fact.

 son of eti
 The word is out. For months at ETI we've been planning a second magazine for the electronics enthusiast. Because of the intense competition in this field we've kept quiet about it but now all can be revealed
 ETI has been remarkably successful but we've never pretended that we are ideal reading for the newcomer to electronics-we have assumed that the reader is already hooked into the hobby.
 Hobby Electronics will hit the newstands in just over a month and is designed as a companion to ETI-indeed it is being prepared by the same editorial team
 HE is written for the person wanting to find out about electronics-there'll be projects of course but we reckon we've got some pretty good features as well including 'Into Electronics' a major introductory series linked to the O / A level Electronics course.
 In next month's ETI we'll give you a complete breakdown of the contents of No. 1. The cover shown here is of a 'dry-run' issue that has already been produced in small quantities.

Airamco Ltd. MICRO COMPUTER PRODUCTS

Distributors for JADE COMPUTER PRODUCTS
All products brand new with full induṣtrial specification

Components

27081024×8 EPROM $£ 6.99$
27162048×8 EPROM £29.90
(intel)
25162048×8 EPROM
£29.90
(equivalent of above) T.l
1702256×8 EPROM $£ 4.85$
21044096×1 DRAM $£ 3.50$
8 for £26.00
2107B-4 4096x1 DRAM
£3.50
8 for £26.00
Note New Low Prices 16 K Memory

All Prices EXCLUDE VAT @ 8\%.
Trade discounts on Quantity Please add E1.00 P\&P for S100 items then add VAT @ 8\%.

24-hr. Ansaphone order service with ACCESS or BARCLAY CARD.
MAIL ORDER ONLY

$411616 \mathrm{~K} \times 1$ DRAM	$£ 14.99$
8 for	£108.00
6821 P PIA	£5.90
AY 51013 UART	£4.50
AY51014 UART(5V)	£6.50
AY53600 ENCODER	£9.99
8080A CPU	£8.99
21L02-1 450nS	£1. 20
8 for	E7.92
21 L02 250nS	£1.40
8 for	£9.60
2112-1 256x4 (450)	£2. 25
4044 4K×1 (450)	£7.45
$40451 \mathrm{Kx4}$ (450)	£8.25

For components please add 40p P\&P, then add VAT @ 8\%.
AI央AMCO LTD:
30, WITCHES LINN
ARDROSSAN
AYRSHIRE
KA22 8BR
TEL. 029465530

Semiconductor prices are always changing and the trend is generally downwards. So ring for latest up-to-date details.
drool here

Now before we go any further this lot costs about $£ 2,000$, and is definitely pie in the sky for most of us but its lovely all the same. For once we're gonna let someone describe their own product - take it away HP.

Called the HewlettPackard Model 1742A Delta Time Oscilloscope, the instrument is also available with an optional 3-1/2 digit autoranging digital multimeter which displays time in seconds, milliseconds, or microseconds. This DMM option (034 or 035) can be ordered installed initially, or added later in the field because the delta time capability is built-in the basic oscilloscope. The DMM can also be used to
measure ac and dc voltage and current as well as resistance.

In the delta time mode, the oscilloscope measures time between two events on either channel A or B , or between an event on one channel and an event on the other. Measurements of high-speed digital timing, transition times, propagation delay and clock phasing are rapid and with greater accuracy than with traditional differential delay time base oscilloscopes.
Stable internal trig. gering to 100 MHz requires 1 cm vertical deflection (only 0.3 cm to 25 MHz).

Excuse us while our workbench gently weeps.

close encounters calls

There are probably only a handful of ETI readers who aren't 'Star Wars' fans and most of the staff here have seen it more than once. At the beginning of August one of our people was in North America and saw the first follow-up, 'Battlestar Galactica', made by John Dykstra, the principle effects man on 'Star Wars'

Battlestar Galactica itself is the equivalent of a battleship and the only survivor of twelve such giant fighting ships from a sneak attack launched by the Cylons. The mission of Galactica is to gather together the human survivors of the Galaxy and to find the lost planet Earth which was colonised in the long distant past by other humans

Like 'Star Wars', the
film is full of parables, in this case the Old Testament escape of Moses from Egypt is only thinly disguised. Throughout the film you can't help noticing the Star Wars parallels, even down to the noise made by the laser guns.

Galactica is a film you'll have to see if you get the chance - it lacks the novelty of 'Star Wars', there's no R2D2, Darth Vader or light sabres but the effects are excellent none the less.
Universal, who handle the film, have not yet decided if the film will be distributed here. It is a major, and very expensive (at $\$ 14,000,000$), pilot for a TV series. If it is shown it will not be before next spring.

digest.

watch reaction

Once more into the breach . . . and all that stuff. Why is it that buying anything these days turns into a battle between salesman and (intended) victim? Are there nought but sharks lurking on the far side of the counters? Are all the good men honest and true working for ETI? (ouch).
Forgive the outpourings of despair gentle reader but there really are times when we do wonder. With apologies to all the excellent retail outlets in the trade that we and you know and love, for we feel it may serve to recount this little tale of what happened when one of our staff was perusing digital watches in a nameless emporium in Tottenham Court Road.
Sales Person: (Closing in with a glint; Can 1 help ETI Dupe: It is O.K. thanks I'm just looking at your men's watches - do you have any in stainless steel?
Sales Person: (Rubs hands speculatively) You can see all we have down there - those Seiko are very nice machines(?)
ET1 Dupe: How mucn?
Sales Person: $\quad £ 90.50$ - plus VAT of course. Worth every penny though. Rolls-Royce of watches these - fantastic.
ETI Dupe: Yes very nice - but why are they so much more expensive than those others?
Sales Person: Oh there's no comparison. These work on a totally different principle to ANY other digital watch, and this method is much more expensive to make. Quartz you know.
ETI Dupe: (Displaying his full range of knowledge on the subject) But they all use quartz crystals in the oscillators, and most use the same frequency even don't they?
Sales Person: (Gives smug look and shakes head sagely) No, no, no, no - you've been reading some of these Sunday supplements. Absolute rubbish those. Seiko don't even use an oscillator at all - none of these frequencies at all. Not a moving part in the entire watch.
ETI Dupe: (Beginning to lose contact with reality) But if it doesn't use an oscillator what does it count to keep time?
Sales Person: (Totally confident): Days sir. Very reliable these. Accurate to five secs a month. LCD display, backlight, the whole bit.

ETI Dupe:

(Mystified) LCD? What's that stand for?
Sales Person: (Efficiently and knowledgable) Lit Continuously sir. No need to push a button to find the time out here.
At that point we'll drawn an editorial veil over the proceedings. Believe us or not as you wish - but perhaps shops should show the discourse to their staff, and fire anyone who can find nought wrong. P.S. We're working on a project for a watch that counts days, rather than messy 32 k oscillator signals. Ours times the intervals between ice ages by periods of the moon, and divides by $11,500,000,000,000$.

Texas athome

A users club now exists for those fortunate to own TI machines. Called the ' 59 Club' it resides at 27 Montem Lane, Slough, Berks under the watchful eye of one Tim London. A
program library is in there somewhere too, and a newsletter is envisaged. So if you're into Texas keystrokes you know where to go now.

THIS MONTH'S SPECIAL OFFER
"Motorola Audio Amplifier 1 watt I.C."
1 watt plus into 8-16』9-16V,10-400 MV sensitivity Short circuit proof, no heatsink required Only 90 p with Data and circuits
Sentinel Smoke and Gas Detector. This
beautifully made unit beautifully made unit uses quality comheavy duty. domed diecast box. encased in $\times 11 / 2$ high LED indicator TGS 105 diam in sensor, 24 v , or 12 v by altering 3 resistors will drive relay or lamp. Ideal for caravans. boats. kitchens. etc. etc $£ 6.45$ with circuit and data.
Miniature Vemitron' FM4
amic
10.7
Minz ceramic filters \qquad 50 p each, 3 for ह1 lead
40p each. 3 for $£ 1$ 25 p and plug
Magnetic earpieces with lead and plug
$25 p$ each 5 for $£ 1$
Ulerasonic transducers transmitter and Uitrasonic transducers
receiver. 14 mm diam 40 kcs
4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ per pair for signal injectors, etc...... 1100 100 miniature reed switches, ideal for burgar alarms, model railways, etc §3 30 6.6 -pole 12 volt reed relays on board £2 45
High quality compurer panele smothered in
top-grade components.
lolbs 95 New U.H.F. transiator TV tunsrs. Rotary
type with slow motion drive, aerial socket and leads \quad E2 50 Aluminium TV coax plus 10 for $£ 1$

Miniature dgewise panel mounting level meters 200μ a F.S.D. 90 p 300 mixed resistors $1 / 2 \& 1 / 4$ watt $£ 1.50$ 300 modern mixed caps most types $£ 330$ 00 mixed electrolytics £2 20 300 mixed printed circuit components
300 mixed printed circuit resistors $£ 1$ 100 high-wattage resistors. W W etc
20 assoned Vofs and thermistors $£ 120$ 25 assorted presets, skeleton. etc $£ 120$ 25 assonted pots and presets
470μ F 25 v radial, modern type 10 for $£$ 150 mixed 1 - and 2 -watt resistors $£ 1.50$ 100 k varicap pots, can be banked side by side, very compact $\quad 10$ for $£ 1$ Mains Neons, long leads $\quad 15$ for $\varepsilon 1$ 100 mixed modern miniature ceramic and
plate caps

Don't let vour environment dehydrate You. BUY OUR "HHONEYWELL "HUMIDITY CONTROLLER". Membrane actuated, adjustable by $1 / 4$ shaft. Ideal for greenhouses. Offices, centrally heated Humidifiers or dehydration alams with novel gadget a fraction of priginal cost 1 noach, 3 for $£ 250$ or original cost. $£ 1$

New Super Bergactor Barqains
Naw Super Bargain Diode Pack. Includes zener, power, bridge, varicap, silicon, gerlent value 300 for $£ 295$
lent value 300 for $£ 2.95$.
New Improved Transiator Packs: 100 148 BC 154 BF 274 BC 212 , 1 and lots of others, only $£ 4.95$.
200 transistore as above and including 2 N3055, AC 128, BD 131, BFY50, only £9.95.
$1 T_{\text {ford }} 25 \mathrm{kV}$ ctv eht triplers for Decca "Bradford, chassis brand new $£ 250.5$ for $£ 10$
BD 131 BD 131
SN76115N (equivalent MC 1310) $\quad 50 \mathrm{p}$ TBA 120A
10 assoned convergence pots E1.00 12 Quil low profile 14 pin Ic. sockets.

Deluxe Fibre Glass Printed Circuit Etching Kits
Includes 150 sq ins copper clad f / g board. 1 lb ferric chloride. 1 dalo etch resist pen.
abrasive cleaner. 2 mini drill bits, etch tray and instructions. 150 sq ins fibre glass board Dalo pen
lib ferric chloride to mil spec 5lbs ferric chloride to mil spec Instruction sheet

E2 00
90 p Instruction sheet to mil spec . $\quad £ 5.00$ 30p P\&P ON ALL ABOVE ITEMS SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY DEPT

ETI. 149A BROOKMILL ROAD
ETI
DEPTFORD. LONDON. SE8
Callers by eppointment only

 Postage
We arock thousands more items. It payz to visit us. We are situaled behind Wufford Football Ground Porking space zvaliable.

1-0, 2.2 μ F. 3-3, 4-7, 6-8. 25V: 1-5. 10 20V: 1-5.16V: 10μ F 13p each. 22.25p. 47н F, 100 40p. 10V: $22 \mu \mathrm{~F}, 33,47,6 \mathrm{~V}: 47,68,100$ 3V: 68.100μ F. 20p each	$\begin{aligned} & \text { mes } \\ & 27 \mathrm{n} \\ & 27 \mathrm{p} \\ & 27 \mathrm{p} \\ & 80 \mathrm{p} \\ & 70 \mathrm{p} \end{aligned}$
100V: 0.001, 0.002, 0.005, 001 1 FF 	SLIDER POTENTIOMETERS $0.25 \mathrm{~W} \log$ and linear vatues 60 mm 5 KO -500K n single gang $10 \mathrm{~K} \Omega .500 \mathrm{~K} \Omega$ dual gang Self Slick Graduated Bezels
0.047 F F 4p: $01 \mu \mathrm{~F}$	PRESET POTENTIOMETERS 0.16 500-5M M Minature Vertical \& Horizontal 0.25 W 100n-3.3MO horiz larger 10p 0-25W 200n-4.7MQ Vert.
600,820 $1000.1800,2000,2200$ 18p each 20p each	RESISTORS - Erie make 5\% Carbon Minialure High Stability, Low noise
	type not mixed values
CERAMIC TRIMMER CAPACITORS 2.7pF; 4-15pF: 6-25pF: 8.30pF 20	
	6

JACKSONS VARIABLE CAPACITORS

RF CHOKES

$1 \mu \mathrm{H} .4 .7 .10 .22 .33 .47 .100$ 200. 470
$750,1 \mathrm{mH}, 2.5 .5 .10$
43 mH .100
VEROBOARD

VERO WIRING PEN *
Plus Spool 325p
FERRIC CHLORIDE*
DALO A ETCH RESIST PEN $*+$ spare tip
75p

COPPER CLAD BOAROS

28 pin 42 p: 40 pin 55 p. 60 pin 245 p.

TR $A C 1$ $A C$ $A C$

\qquad

On

-

WATFORD ELEGTRONIGS

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!

(as published in E.T.I. August 1978) Away with analogue meters for with some of these you may often as not use a crystal ball to make circuit measurements instead gaze into our crystal DISPLAY ball but the $31 / 20.5$ LIQUID CRYSTAL DISPLAY - on our amazingly accurate DMM incorporating
$5 \mathrm{AC} \& \mathrm{DC}$ Voltage ranges. 6 resistance ranges AC \& DC Current ranges: 4 Capacitance ranges The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain. powered by only one PP3 battery. There is also a battery check facility
The DM 900 is an attractive hand-held, light weight device, built into a high impact case with carrying handle and has been ingeniously designed to simplify assembly
Never before have all these features been offered to the electronics enthusiast in a single
nit
Special introductory offer £54.50 ($p \& p$ insured add $80 p$)
Calibration service charge for working Units $£ 5.75$. Readybuilt Units available by special Optional order at $£ 78.50 \star$ ($p \& p$ add 80 p)
(Demonst 1.50 *, Carrying Case $£ 1.50$ *)

news digest.

feeling sporty?
Somewhere amid the teeming multitudes of watches that don't go tick in the night, this button ridden wristband from Casio appealed to us. Apart from the usual watch type functions the F100 is a $1 / 100 \mathrm{~S}$ stop watch with lap time facility. Depending on whether you go for the black case or the posh stainless one, it will cost you between $£ 25$ and $£ 50$.

rea has disc trouble

Oh for a standard that is a standard standard. Witness this latest piece of lunacy:
Sometime next year video discs will impact on our lives. Japanese firms are meeting to try and agree a standard format in an effort to avoid shades of four channel lunacy being seen again. So far so good. Unbelievably good in fact.
However just to be b y awkward both RCA and Philips have their own totally incompatible systems all set to burst forth like over-ripe spots. It can be confidently expected that both will
hang onto their own like grim death - if they take part in the talks at all and thus create another battle which at best only one can win, and both will probably get clobbered in.

Informal talks are reported to have already begun in Japan and great interest being shown in combining both video and digital audio retrieval in one product. Good luck to those who would standardise and thus software nicely, and a plague of tolerance failures be upon those who would con found and confuse.
the bench

Although designed as a component handling system, it seems to us this little array would make a handy addition to the home constructors workbench. A wide array of bins are available and all
come in four colours to satisfy the houseproud or colour blind. Designated the $40-12-\mathrm{H}$ it is produced by Link-Hampson Ltd of 5 Bone Lane, Newbury, Berkshire. Look ye thence for further details.

OSTS new from ambit international

counter attractions:

From previous advertisements, we trust you all now know that the OSTS supplies only the very best quality parts, and that buying from the OS.TS you may construct you circuit in total confidence that the parts will not let you down - so this mo ICM7207 A frequency counter crystal contoiled gating and timing IC $\begin{array}{lll}\text { ICM7207 } & \text { A frequency counter crystal contoiled gating and timing IC } & £ 4.95 \\ \text { ICM7208 } & \text { A seven decade counter for use with the } 7207 & £ 14.95\end{array}$ ICM7217 Four decade presettable counter/timer with carry out \& LED drive $£ 9.50$ 25p and an SAE brings you a photocopy of a feature article
using the $7207 / 8$ and 11C90 ECL prescalar for around $£ 60$
Please note that OSTS prices exclude VAT at 8% throughout this side of the page. Most ambit items are at $121 / \% \%$ except those marked . Please keep ordeAs separately totalled,

[D4000 1005

Mitromarket

6800 series		$\begin{array}{\|l} 8216 \\ 8224 \\ 8228 \end{array}$	$£_{£ 4} .25$	$\left\lvert\, \begin{aligned} & 2114 \\ & 2708 \end{aligned}\right.$	$\begin{aligned} & \mathrm{£} 10 \\ & \mathrm{£} 10.55 \\ & \hline \end{aligned}$	
6800\% ¢13						
6820P	f_{6}	8251		Development		
6850P	¢6. 75	8255	65.40	$\begin{array}{ll} \text { MEK6800 } & \text { £220 } \\ \text { TK80 } & £ 306 \end{array}$		
6810 P	$£ 4$	MEMORIES				
6852	fi5			AMI, Signetics.		
8080 series		$\underline{2102}$ E1.70	¢ $£ 3.40$	TI, intersil. Harris etc. OA		
8080	f16	2513	¢7.54			
8212		4027	65.78			

Valtage Regs

$\frac{\text { NEW LOW PRICES }}{7800 \text { series UC TO220 package } 1 \mathrm{~A} \text { all } 95 \mathrm{p}}$ 7900 series UC TO220 package 1 A all $£ 1$ 7900 series UC 10220 package $1 / 2$ all $90 p$ 78LCP series TO92 100 mA all 35 p	L200 up to $3 \mathrm{~A} /$ adjustable V\&A	$195 p$
78 MGT C $\mathrm{V}^{1 / 2 \mathrm{amp}}$ adjustable volts	175 p	78MGT2C $1 / 2 \mathrm{amp}$ adjustable volts $\quad 175 \mathrm{p}$

79MGT2C $1 / 2 \mathrm{amp}$ adjustable volts $\quad 175 \mathrm{p}$ 723 C precision controllei 65 | MAINS FILTERS FOR NOISE/RFI Etc |
| :--- |
| 7 amp in IEC connector $£ 4.83$ |

\qquad

IINERRS

TLL:Standard

From the Warld's leading radio innauatian saurce:

New this month, the DTI200 AM/FM/Time digital readout module in a fully screened enclose for panel mounting. A frequency counter with $10: 7 \mathrm{MHz}$ offset for FM and 455 kHz offset for $A M$, plus a quartz based digital clock function - including an mpx

Moving Coil Meters

Ambit offers a very wide range of low cost meters, together with the unique 'Meter

 meters, together with the unique 'MeterMade' scale system for professional grade Made' scale system for professional grade

scale customizing: \begin{tabular}{llll}
Series \& Scale Area illumination \& cost

\hline 900 \& $14 \times 31 \mathrm{~mm}$ \& internal 12 v \& 250 p

900 \& $14 \times 31 \mathrm{~mm}$ internal 12 v \& 250 p

920 \& $30 \times 50 \mathrm{~mm}$

\hline
\end{tabular} $\begin{array}{lll}930 \quad 36 \times 63 \mathrm{~mm} & \text { internal 12v } & 375 \mathrm{p} \\ 940 \mathrm{twin} 35 \times 45 \mathrm{~mm} & \text { from behind } & 350 \mathrm{p}\end{array}$ $950 \quad 55 \times 45 \mathrm{~mm}$ from behind 300 p Stock movement $200 \mathrm{uA} / 750 \Omega$. The 930 series

is 5% linear, others are 77 uA at 50% FSD. These

Radio;Audio;Comms ICs:

Only the very best quality - and only types we have used in our own laboratory tests Radio frequency + mixers + oscillator(s)		
TDA1062	DC to VHF front end system	1.95
TDA1083/U	N2204 am/fm/audio ln one IC	1.95
TDA1090/UL	N2242 $\mathrm{am} / \mathrm{fm}$ hifi tuner system	3.35
HA1197	LF/30MHz am receiver system	1.40
CA3123E/	$720 \mathrm{LF} / 30 \mathrm{MHz}$ linear system	1.40
TBA651	LF/30MHz linear system	1.81
SD6000	DMOS RF/Mixer pair	3.75
IF amplifiers		
CA3089E/KB	4402 famous FM IF	
HAl137W/K	4420 as $3089+$ deviation mu	2.20
CA3189E	update with deviation mute	2.75
TBA120a/SN	76660 NFM if and detector	0.75
TBA120S	thi gain version TBA1 20	1.00
MC1350P	agc If amp	1.20
MC1330P	synch AM demoduiator	1.35
MC1495L	precision 4 quad multiplier	
MC1496P	popular double balanced mixer	5.
Communications circuits		
K84406	differential amplifier	0.50
KB4412	2 bal.mixers/agc/gain/doub conv	2.55
K84413	$\mathrm{am} / \mathrm{fm} / \mathrm{ssb}$ del. AGC. ANL, mute	2.75
KB4417	3 mV mic processor preamp	2.55
K84423	FM noise blanker system	5
Auctio preamps.		
LM381	stereo high gain/low THD	1.81
LM1303	stereo audio optimized OA	0.99
TDA1054	high quality with atcoption	1.95
K84417	see above	
Audio Power amps		
tbabloas	7W RMS overload protected	1.09
TDA2002	$8 \mathrm{~W} / 2 \Omega$ in pentawatt package	1.95
TDA2020	15W RMS hifi power de couple	2.99
TCA940	10W higher voltage 810	1.80
ULN2283	1W 2.5 to $12 \times$ supply capability	1.00
LM380N8	1W power	1.00
LM380N14	2.5 W power	1.00
HA1370	HiFi 15w in easy heatsink pack	2.99

Stereo Oecoder Oevices MC1310/KB4400.Original pll decoder CA

CA3090 A

Coils \& Filters by TOKO
please note that some prices are increased as a direct result of the failure of $£$ vers ronger trading currencies. (Mainly Yen) $7 \& 10 \mathrm{~mm}$ IFTs for AM/FM - 1000 s es $455 / 470 \mathrm{kHz}$ most types of appens $\quad 30$
10.7 MHz
Short Wave Coils sets TV video and sound $1 \mathrm{Fs} /$ detectors
\qquad
Molded VHF coils full catalogue 15p itra stable colst range/biggest stock
\qquad

BBR 3125 N	4 pole linear pahe 10.7 MHz
BBR 132 A	
Gpole linear phase 10.7 MHz	150

BLR3107N Stereo 4 k 7 impedance
\qquad

BLR23152	Mono 4 k 7 impedance	100
BLR3157	Mono $4 \mathrm{k} 7 / 3 \mathrm{k} 0 \mathrm{imp}$	100

AM/FM/SSB IF FILTERS

\qquad
\qquad

\qquad
Ratio Detectors for FM/NBFM $\begin{array}{lll}1 \text { AAN1508/9 } & 455 \mathrm{kHz} \text { ratio det } & 135 \\ \text { KAHz rato detector } & 66 \mathrm{p}\end{array}$ 94ACS15106/7 10.7MHz ratio detectiok 66p KACSK586HM single $\quad 33$ p Polyvaricon tuning capacitors + trimmers 2A20ST7 $2 \times 265 \mathrm{pF}$ AM
CY $23217 \mathrm{P} \times \underset{\substack{2 \times 20 \mathrm{pFFM} \\ 2 \times 235 \mathrm{pF} \\ 3 \times 20 \mathrm{~F}}}{ }$

Tuner Modules
From the biggest and best range...............
TUNERHEADS for $88 \cdot 108 \mathrm{MHz}$ band 2 (varicap)
EF5803 6 cct, 3 MOSFETs, amp. osc

EF5801 $6 \mathrm{cct}, 2$ MOSFETs, osc op $\begin{array}{ll}\text { EF5600 } & 5 \mathrm{cct}, \text {, MOSFET RF, by TOK } \\ \text { EF5400 } & \text { 4cct balanced mixer/pin agc }\end{array}$ $\begin{array}{ll}\text { EF5400 } & \text { 4ct balanced mixer/pin age } \\ \text { EC } 3302 & \text { 3cct FET input miniature }\end{array}$ ECUNER SETS by LARSHOLT (headt
\qquad $\frac{7253 \text { FET head, mpk decoder inc } \quad 26.50}{\text { IF AMPLIFIERS all with deviation mute, agc. }}$ $\begin{array}{lll}\frac{\text { a ce, meter drives etc }}{} & \\ 7020 & \text { HiGain dual ceramic filter } & 6.95 \\ 7030 & \text { Mitas }\end{array}$ $\begin{array}{llll}7030 & \text { Mos preamp, linear phase filter } & 6.95 \\ 7130 & 2 \text { mos preamps. 3 Iptitters } & 16.25 \\ \text { NBFM1 } & 455 / 470 \mathrm{kHz} \text { NB FM module } & 9.95\end{array}$ MPX decoders, all with pilor tone filters

$$
\begin{aligned}
& \text { D } \quad 1310 \text { based system } \\
& 92310 \quad 3090 \text { A0 based system }
\end{aligned}
$$

93090 3090AO based system
$\begin{array}{ll}91196 & \text { HA1196 based + birdy filter } \\ 911968 & \text { HA1196 based + birdy filtur }\end{array}$
$911223 \begin{aligned} & 2 \times \text { LM } \mathrm{C} \\ & \text { HAB0 audio mon }\end{aligned}$
91197 The original MW/LW varicap
9122 The uniband tuner module
71083 Using TDA1083, provides a comp 19330 for clock ratio etc

SPECIALS: TUNERHEADs 40.200MHZ to special order

The EF5803 and EF5400 are available to
The EF5803 and EF5400 are available to
cover bands in the region described. The co cover bands in the region destual mods required to
depend on quantity and
cover the desired band. Max coverage approx. cover the desired band. Max coverage approx.
20% of centre frequency seiected. Also, please 20% of centre frequency selected. Also, please
allow 3.5 weeks delivery for these items.

4 " Oscilloscope for under $£ 100$

ELECTRICAL DATA
VERTICAL AXIS (Y) Deflection Sensitivity - 100 m V/division Bandwidth (between 3 dB points) - DC (calibrated) - 9 step $01.02 .05,1,2.5 .10 .20,50$ /div. Input Impedance
 i Hz. 350 KHz . Gain Control - Continuous when time bases in EXT position Input Impedance - 1 Ma neut Voltage - Max - $600 \mathrm{~V} P \mathrm{P}$
between seeps -includes time-base calibration position Blanking - Internal - on all ranges. - Variabi
negative
POWER SUPPLY. Input voltage $-115 / 220 \mathrm{VAC} \pm 10 \%$ at $50 / 60 \mathrm{~Hz}$. Power Dissipation - 18 W .
CRT DATA - 4 in - flat tace, single beam - Maximum high voltage - 15 kV - Fitted with 8×10 division blue filter graticule
PHYSICAL DATA Dimensions $-15 \mathrm{~cm}(\mathrm{~m}) \times 205 \mathrm{~cm}(\mathbf{w}) \times 28 \mathrm{~cm}(\mathrm{~d})$. Weight -4.3 Kg (approx.) Stand 2 position flat and inclined Case - Steel, epoxy enamelled front Panel - Aluminium enamelled epoxy Cash with order
£99 + vat
acilloesope
London NW 14 1EJ
 party. The lamps are never off, each one is dimmed for a second and then back to full brightness.

500 mm long, designed for $3 \times 100 \mathrm{~W}$ lamps (not included), complete with 2 metres of cable and 12 months guarantee. Fully suppressed, all electronic (not bi-metal).
$£ 6.25$ each +75 p Post or
TWO for $£ 12.50$ post free
Send now to
M. D. MARKETING
P.O. Box 4, Hinckley, Leics.

Reg, office: 22 Station Road, Hinckley

shorts

- Tandy is doing well with its home computer in the USA, and is expanding, both physically and financially, that side of the business.
- New from GI - the Cricket chip. The A $\dot{Y}-3$ 8910 is a programmable sound generator and is software controlled, needing only a power supply and clock to begin chirping or hooting or ... - Bowmar has Texas's range and is homing in. Texas are being sued for $\$ 3$ million by Bowmar who allege the supply of a large number of defective calculator keyboards.
- XR4741 to you. Nothing to do with sci-fi but a new quad op-amp. Very low noise and better than a 741 in all respects. Available from RASTRA at 275 King St, Hammersmith, London W6. Ideal for audio projects where the hissing of summer circuits is not required
The Government's hi-fi firm, Strathem are to launch their new SM2000 turntable in the autumn, which will replace the SMA2 model. Once again the unit looks technically sound - maybe success at last for nationalised-fi?
- 4 k RAMs which require only 42% of the 2114 standard requirement are now available from Dage Eurosem, and a low power standby mode lets them claim a 70% power saving on an $8 \mathrm{k} \times 16$ memory with 50% duty cycle. Scrooge Electronics take note.
- How about this Britain has exported alectronics to HONG KONG. Blink not sir and read further. A British (wave that flag harder sonny) MPU system is being installed in Hong Kong's airport to control and direct traffic on the runways. Lights around the strips are controlled by the system to guide aircraft, and a VDU gives updated info and what's where and when. Pity nearly all the planes are Boeings
- UK's electricity costs are still among the highest in the world, according to a survey released this month. And our prices are rising third fastest too. 15.9% for commercial users, and only SA, the USA and Canada can better that. Aren't we lucky little consumers then? Where oh where has all the North Sea oil gone?
mans best PAL

The GC- 3300 colour video camera from JVC is the latest item from the land of the rising yen to come to our attention. The camera will significantly add to JVC's range of home/ professional video equipment and with what JVC describe as a "domestic" price tag of $£ 1350$, the GL- 3300 is one of the low est priced colour cameras on sale in the UK.

The camera has a built in 38 mm CRT viewfinder six-to-one zoom lens with macro setting, built in condenser microphone and other features that make the GC-3300 a very versatile camera. Acceptable pictures can be produce at very low (250 lux-bright domestic light level) light levels.

The camera is based on a two tube design which uses a system of multiflexing to produce the colour signal that in mos designs requires three tubes.

odds \&e

LCD Multimeter August 78. On the circuit diagram the annotations for R31 and 32 should be reversed as should those for SW2A and SW2D. Fig. 4. should have the fol lowing designations added to wafers of SW2B and SW2C. Unmarked ter minal at "six 'o' clock' should be 11 and one to right of it 10 . Swap references to terminals 4 and X .

Non-inverting input of IC9C should be taken to junction of IC9A's output with R44 and Chest terminal not to junction of SW2E's wiper and R44 as shown.
STAC time - September 78 On the component overlay IC2 should be rotated through 180°.

Gould Advance InstrumentsProfessional quality at a realistic price.

 Only f195

excluding VAT)

Alpha III Digital Multimeter

Only f89

(exctuding VAT)

OS245A Oscilloscope

Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects.

Now, Gould Advance offer you this professional-quality, dualtrace instrument, at a price which brings it within reach of the amateur enthusiast

Just look at these great Gould Advance features - then compare the OS245A for value!
*DC-10MHz bandwidth * Dual trace

* Clear controls, simple operation
* Fúlly guaranteed for 2 years
$* 5 \mathrm{mV} / \mathrm{div}$. sensitivity
*Time-baserspeeds to
$100 \mathrm{~ns} / \mathrm{div}$.
* 4" CRT with $8 \quad 10$ div.

Gould Instruments Division,
Roebuck Road, Hainault, Essex IG6 3UE.
Telephone: 01-500 1000 Telex: 263785
Registered Number 263834 England

Alpha III Digital Multimeter

With a choice of 25 ranges and basic accuracy of -0.2%, the Alpha III is a professional's multimeter, yet it is versatile enough to cover every amateur application.

And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. *2,000 scale length (100 mV resolution)
*Tough, attractive moulded case

* Bright red LED display
* 25 ranges
* Fully guaranteed for 2 years

Note: This offer applies to the $U . K$ and treland only.
[JT NEWBEAR COMPUTING (30)
Announcing the VIM-1:- from Synertek

* Fully assembled and tested

KI M.I. compatible

* High speed cassette interface (2400 baud)
* 1 K byte storage, expandable on board to 3 K byte
- 4K byte ROM Monitor
* Fully expandable and much much more
$£ 199.00$ plus 8% VAT $£ 1.00$ postage and packing

For further details: Visit Newbear Computing Store, 2 Gately Road, Cheadle, Cheshire, 061-491 2290. Or visit, or write to: Newbear Computing Store, 7 Bone Lane, Newbury, Berks. 063549223. Send for Catalogues of Hardware Components, Literature and Software.

NO DECO SYSTEM IS COMPLIE WIHHOUT...

PIEZO HORNS FANTASTIC SPECI TO REAOERS OF TLECTRONICS TOOAY
 system or $\mathrm{H} \cdot \mathrm{FI}$. Frequency range 5 K -20K No X over required They can be used in any PA system up to 100 W Why pay more? OUR PRICE ONLY £ 4.99 each IP\&P 35p each

ROPELIGHTS Ropelight kits now avallable from Roget Squire's - 22 feel long. 4 channel, including Tube Bulbs and Multipin connectors These ropelights are replacement - we will supply 20 spare bulbs lree with your kit Additional sets of 20 hulbs cost $£ 486$ each
bulgin octal plugs

AND SOCKETS

here salways hundreds of Bulgin

Octal mult way plugs and sockets in stock a
Roger Squire's Each pin rated 6A Perlect for
your Sound to Light System P552 SOCKET
your Sound to light System P552 SOCKET £ 0.65 IP\&P 35p: P551 PLUG £ 1.84 IP\&P 35pl Carriage on 10 or more nominal $£ 100$ Also available 6 -way multicore cable 16 Amps per corel ex stock
¢0 65 per metre Please phone for carriage quote
 A BARGAIN AT C40.50 iP sit in

Send Mail Orders to Roger Squire's Mall Orders, Barnet Trading Estate, Park Road, Barnet. Herts EN5 5SA 01.4413527 Hotlinel 01.4411919 ISwitchboardl Open Mor-Fri. 9.530

YOU CAN'T BEAT OUR

METAL DETECTOR KITS
 FOR VALUE

ETI Mk. 2 Induction Balance metal Detector Kit
$£ 19.00+60 p$ P\&P
Ploses note that Kits do not include Marley Pipe, Cycle Handgrip, no Plywood for the conatruction of the Search Head, but does include Plywood for then
overything olse.
Component Paks for Metal Detectors:-

Resistor Pak	Mk.	Mk.2
Capacitor Pak	30 p	$\mathbf{4 0 p}$
Semiconductor Pak	$£ 1.60$	$£ 1.95$
Verobox	$£ 2.35$	$£ 2.24$
P. B.B.	$£ 2.40$	$£ 3.15$
	$£ 1.00$	$£ 1.25$

S.R.B. Miniature Soldering Iron $16 / 18$ wat

SCOOP!!
We are the SOLE DISTRIBUTORS and STOCKISTS of the 'APOLLO' LOGIC TESTER

No serious amateur can afford to be without one.
deal for Servicing. Workbench. Schools, Industry
The APOU Ideal for Servicing. Workbench. Schools, industry
OTL erc. The 'APOLLO' takes its power trom the circuit under supplies CMOS, TTL绪

CLEAR. UN-AMBIGUOUS indication of Logic State Pin disconnected or Voltage between Iv and 2.2 v 2. High Level (Logic 1) more than 2.2 v

3.

3. Low Level (Logic 0) less than $1 v$

4 Fast pulses (Mark-Space ratio indicated by relative brightness of centre segments)

Special Introductory Offer Price . $£ 11.75$ Inclusive of P.\&P. COST. All our Prices include V.A.T Please include 25 p P. \& P . except where stated otherwise
Our Stores at 31 POOLE ROAD WORKS. Wimborne are open 10 personal shoppers on Fridays from 2.15 pm to 800 pm and on Saturdays from 9.15 am to 6.00 pm . R. F. Equipment Spares Limited, 3 Lacy Cross, Wimborne, Dorset.

Tel. Wimborne (0202) 885854

COMPUTER SYSTEMS LIMITED

The new low cost VDU - Tangerine 1648

Look at these features, and see if you don't over estimate the price -

* Complete kit contains ALL parts required, inc. full spec. i.c.s, double-sided pth board, readybuilt UHF modulator, plus supporting assembly and full applications manual.
* 16 lines of 48 characters.
* Usable with ANY un-modified television.
* Upper and lower case characters, independent of the type of keyboard used.
* Automatic Scroll-up.
* 10 different baud rates inc. 110 with RS232 or $20 / 60 \mathrm{~mA}$ loop compatibility, or parallel mode.
* Page Clear \& Cursor Controls, + all display functions, software controllable.
* "Bell" output for direct speaker drive.
* Simple low-power requirements, less than 5 watts.
* Switchable Cursor, and Auto-Feed.

We have all probably thought at some time or other that it is all very well to be able to buy a micro-processor chip for less than £10, but to justify these high speed devices, a fast terminal is essential and they can cost in excess of $£ 1,000$.

Most of us have access to a television, and this unit will help to provide low-cost terminal'for any computer that is capable of sending \& receiving ASCII in parallel or serial form. All you need is a simple power supply of modest proportions, and of course a t.v. set that receives UHF on 625 lines [Channel 36]. Other extras may include an ASCII keyboard, and a case but they are not essential.

As seen from the list opposite, it has so many features, that we wonder why people are "making do" with all the other units that are currently available. The display quality is superb and most important, does NOT require a single modification to the t.v. set, so no problems with the Rental Companies. Outputs are also available for all unused characters, for any application you care to implement.

When you have compared all the other kits we think that ours will be the natural choice.

ORDERING INFORMATION.

The normal KIT price is $£ 139.86$, which includes postage, packing \& insurance, and VAT @ 8%. HOWEVER, as an introductory gesture we are discounting this price by $£ 10$, for all orders received postmarked BEFORE 12th December 1978.
If you require further information, send an A4 sized self-addressed envelope. If you wish to purchase a kit please send a cheque or money order made payable to:

> TANGERINE COMPUTER SYSTEMS LIMITED RIVERMILL LODGE, LONDON ROAD, ST. IVES, CAMBS. PE17 4BR

Tel: St. Ives (0480) 65666

COMPLEX SOUND GENERATOR

Not quite a synthesizer, but more than your average stylus organ - that's the ETI project team's musical offering this month

WHILE WE WOULD not claim that our Minisynth is the latest in polyphonic synthesizers (It'd never stand up in court) we want to emphasise that this is definitely not another in the never ending stream of Rolf Harris multivibrators

Complex Chip, Easy Sound

The project is based on a new sound generator IC from Texas Instruments. This device has an on board VCO, low frequency oscillator, noise scource, envelope generator and a number of mixing circuits.

The final instrument can be used to provide a number of sounds, some musical, some not. You can use it to entertain, or, in case of those of us whose talents lie in fields other than music, annoy friends and foe alike.

Construction

Construction of the project is relatively straight-forward. Carefully follow the component overlay, as usual, noting the orientation of all electrolytic and tantalum capacitors. It makes sense to use IC sockets for the three ICs.

Before starting construction of the electronic components it might be an idea to tin the keyboard area in order that a more reliable contact is made.

Tinning can be carried out by coating the 'keys' with blobs of solder, heating the whole area up (large soldering iron required - we hope you won't use this for the rest of the construction) and quickly wiping away excess solder with a wet cloth.

The probe can be fashioned from an old biro, which has had its innards replaced by a wire that is connected to the original pall point.

The choice case for the project is much up to personal taste. We put our instrument in a case we made ourselves from thin plywood painted black.

Playing With

The only way to become familiar with the Minisynth is to sit down with the instrument and play with it. This is a painful experience for all concerned and while it won't make you blind could well make you deaf if
the voume is up too far. Some of the sounds produced at this stage are, to say the least, gruesome and for the sake of all concerned this learning period should take place in private. You can expose your talents when the mechanics of playing the machine have been mastered.

A good starting point for the controls is to set the DURATION, ATTACK and DECAY controls to minimum, the SLF OSCILLATOR's course control to the highest frequency range with the fine control set at minimum. Set the VCO and NOISE controls to their mid points and all the MIXER switches down (towards you) - this will select the output from the main VCO. The ENVELOPE / CONTINUOUS control should be down and the OSCILLATOR/KEYBOARD control away from you.

Switching the instrument on should produce a note, the frequency of which can be altered by the VCO control. At this stage the note will be unaffected by the keyboard.

By moving the
OSCILLATOR/KEYBOARD control to the down position the Minisynth can be played via the keyboard, the VCO control às a tune facility.

With the, ENVELOPE/CONTINUOUS control in irs present position the note'sélected by the keyboard will be maintained until the probe is removed from the keyboard. Moving the switch to the up position will mean that the notes selected will be modified by the output of an envelope generator. The envelope generator is set up by the DURATION, ATTACK and DELAY controls. The control functions are self-explanatory, the only point to

HOW IT WORKS

the stylus is not in contact with the keyboard R20 ensures that the non-inverting input (pin 3) is above this fixed voltage, the output of IC1 is thus high.

As the stylus touches the keyboard, the voltage at pin 3 will be pulled down to a level below that on pin 2 by the relatively low impedance voltage determined by the lower leg of the resistor chain. This will cause the output of IC1 to go low. The output of IC1 is taken to SW2 a which selects either this signal or 0 V as the output to pin 9 of IC2.

Pin 9 is the system enable input. IC2 is inhibited when this pin is held high, taking it low enables the various sections of the IC. The transition of this pin from high to low (IC1's action as the keyboard is touched) also initiates the one shot logic (enabled by SW2b) that can provide sounds of short duration - this is described in detail below.

SLF Oscillator

The on chip VCO, as well as being controlled from the external voltage derived from the potential divider chain, can be modulated by an on chip Super Low Frequency oscillator. The VCO is controlled by this oscillator when the VCO select (pin 22) is high.

The SLF can be operated in the range 0.1-30 Hz , the particular frequency being set by the capacitors C1-C4 (selected by SW1) and by the combined resistance of R22 and RV1 (oscillator fine).

As well as providing a sawtooth output for control of the VCO, the SLF oscillator provides en output that is taken to the mixer section of IC2 described below.

Noise Generator and Filter

The on chip noise oscillator's input is taken, via R21, to ground. This sets up the conditions for correct operation of this section the output of which is fed to a noise filter. This modifies the noise generator's output by reducing the high frequency content of the signal. The specific 3 dB point is set by C9 and by the value of R28 and RV7 (filter) in series.

Mixer

Outputs from the noise filter, VCO and SLF oscillator are fed to a mixer circuit. This combines the three signals in a manner determined by the logic levels on pins 25,26 and 27 of the IC2 (mixer select). The particular output or combination of outputs corresponding to the eight possible states of these pins is shown in table 1. The output of the mixer is fed to the envelope generator and modulator.
It should be noted that as opposed to TTL ICs, unconnected inputs of the SN76477 assume a low state.

One Shot Logic

The one shot logic is used to provide sounds of a short duration. The circuit is triggered by a negative going edge on the system enable input, the duration of the "one shot" being determined by C5 and R23 plus RV2 (duration)

ADL
The attack/decay logic determines the enve-
lope of the IC's output controlling as it does the envelope generator.
The ADL mode is selected by logic leve signals on pins 1 and 28. In our circuit pin 28 is left unconnected while pin 1 is taken to SW2b. This selects the output of the one shot when held high and of the VCO when taken low.

Envelope Generator and Modulator

The attack/decay characteristics of the output are determined by C8 in conjunction with R25 and RV4 (attack) and R24 and RV3 (decay).

Output Amplifier

The output of the envelope generator is taken internally to an on chip amplifier the gain of which is set by the ratio of R26.R29. The output of the amplifier appears at pin 13 and is taken via C7 and the volume control RV7 to IC3 an LM380. This IC acts as a power output stage. C11 ensures that the LM380 is stable under all operating conditions, while C1 2 provides DC isolation between IC3's output and the loudspeaker LSI.

Power Supply

The 9 V input is used to power IC3 directly and is then taken via D 1 (to drop 0.6 V) to pin 14 of IC2. This is the input to an internal voltage regulator that powers the IC and also provides a stable 5 V at pin 15 for use elsewhere in the circuit. C10, C11 and C14 provide supply decoupling while LED1, together with current limiting resistor R30, provide an indication that power is applied to the circuit.

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$)

R1	56 k
R2,22,23	
24,26	10 k
R3, 19	6 k 8
R4,5	4 k 7
$R 6,7$	3 k 3
R8	2 k 2
R9	1 k 8
R10,11	$1 \mathrm{k5}$
R12,13	1 k 2
R14,15	1 kO
R16.17,	
18,30	470 R
R20	220 k
R21	39 k
R25,27,	
28	12 k
R29	47 k
POTENTIOMETERS	
RV1	250 k linear
RV2,3,	
4,7	100 k linear
RV5	47 k log
RV6	1 MO linear

CAPACITORS
$\stackrel{C}{C} 1$

C1	10n polyes
C2,8,10	100 n poly
C3	1 uO 35 V
C4	10 u 35 V t
C5,7	4 u 710 V e
C6	3 u 335 V
C9,12	1 nO polyst
C11	1000 u 16
C13,14	47016 V
SEMICONDUCTORS	
ICl	CA3140
IC2	SN76477
IC3	LM380
D1	1N4001
LED1	TIL209

SWITCHES
SW1 single pole, four way rotary SW3-7 SPST

MISELLANEOUS
PCB as pattern, case to suit, probe. 8 ohm loudspeaker, battery eliminator.
note is that because the Minisynth does not have a sample and hold facility in the keyboard section, the note required must be maintained throughout the period of the envelope.

The mixer controls select the
outputs from the various noise sources and oscillators on the instrument. At present it is the output of the main VCO that we are hearing. By setting the
ENVELOPE / CONTINUOUS control
back to its former position and

BUYLINES

All the components except IC2 should be widely available while IC2 will be stocked by Watford, Technomatic and other Texas suppliers. Watford are also to supply a complete kit for the project.

We do not have enough space to reproduce the foil pattern but it will be available on ETIPRINTS or can be obtained by sending an SAE to our offices. Please mark your envelope Complex Sound Foil Patterns.
moving the leftmost mixer control up the output from the SLF
OSCILLATOR can be heard. This oscillator is controlled by the fine and course controls at the top right hand corner of the instrument.

9

DOWN	DOWN	DOWN	VCO
DOWN	DOWN	UP	SLF/NOISE
DOWN	UP	DOWN	NOISE
DOWN	UP	UP	SLF/VCO
UP	DOWN	DOWN	SLF
UP	DOWN	UP	SLF/VCO/NOISE
UP	UP	DOWN	VCO/NOISE
UP	UP	UP	INHIBIT

TABLE 1

Set the leftmost mixer switch to down again and move the right hand switch up, the output from the noise generator will now be heard.

The various combinations of the oscillators and noise source
corresponding to the settings of the mixer controls are shown in Table 1 That then is a run down of the various controls and their effects, its now up to you to put them together and hopefully make a little music.

Two photogrephs showing the PCB from above and below. Note the front panel lettering on page 17 is in error - the attack and delay designations being reversed.

UNBEATABLE PRICES ALL FULL SPEC.

741 (RCA 8DIL) 17p. 2 Red LED 8p, TIL 2098 Red 8p, LM 711 CH (TO5 Voltage Comparator + Data) 25p. TBA810s + Data 65p, 2513 (Upper Case) £5, $1702 £ 2.95$, TMS 3128NC (Shift Reg) 80p, 2521 (Dual 128 Bit Static Shift Reg) $\mathbf{8 0 p} \mathbf{7 5 S 1 0 8}$ (TTL TO MOS Level Converter) 35p, 74150 90p, 74154 £1. 74 HOO 18p. 74H72 30p. 74 H150 90p, 74H183 £1, CD4001 14p, CA3046 65p, CA 3081 70p. 93422 -DC (256×4 RAM) £ 2.25 (Few only). 4027 (300 ns) £2, 40273 £2.50 (Few only). 27081 Kx8 UVEPROT £6.50 Cannon D-Type, 15 way Plug 50p. SKT 50p, Covers 60p. 37 way Plug 80p. SKT 80p, Covers $£ 1$. Amphenol 57 Series 50 -way SKT 95p, 28-way SKT 65p, 24-Way SKT 50p, RS SUBMIN Transformer 240 Input 12-0-12V 50MA (Screened) Type 196-274 £1.35, DIL SWTS 4 -way 55p, 7 -way 80p. P/P 10p. All inquiries s.a.e. please. Cat s.a.e 8×6 free with goods.
Now distributor for Mutek Products including Ides Micro Systems. In stock Video Interface board 16 line 64 characters, data and control inouts video output Ideal for Micro Processor use. With full documentation. £81, P/P plus insurance €1. Brochure available, s.a.e

POCKET PAGER

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ IF contains various tone detectors. Ideal for modifications to 27 MHZ Radio Control OR 28 MHZ Amateur Band. Complete, without 2.5 v DEAC + circuit of similar type. £3.95. P\&P 25p

L. B. ELECTRONICS

 43 WESTACOTT, HAYES MIDDLESEX UB4 8AH
CALCDTAE B BS

 SCIENTIFIC

$$
\begin{aligned}
& \mathrm{Sec} \text { ONLY } £ 27.50+£ 1 \text { P/P ins. } \\
& \text { t4-day moner back offer /f not }
\end{aligned}
$$

COMMODOREPET COMPUTER BK Bytor RAM 2001-8
 (Casselte, VOU Display Unit and Keyboar
ONLY $£ 843.00$ HP19C (Contunums mem key prog printer)
HP29C (as 19 C but no primer)
HP27 (10 mem sci fin / stat 8 digit + exp)
HP67 (card prog 224 steps 26 mem.
-HP97 (card prog 224 slep prins 26 mem)
E 163.00
E 110.00
-HP97 (card prog 224 sleps print 26 mem)
All HP range available including NEW 'E Range Prices on request
CAS 10 FX8000 (sci Cai/ Stopwaten 5 alarms)
CASO FX8000 (sci Cail Stopwatch 5 alarms)
CASIO KXZ20 P (sC1 11 mem. 127 step prog.)
FORTRAN SYSTEM
$\varepsilon 27.65$
$\varepsilon 22.50$
FORTRAN SYSTEM
CASIO PROFXI las above but card prog 1 .
FREE Mains ctarger included
$\mathbf{£ 4 5 . 0 0}$
$\mathbf{E 9 9 . 0 0}$

Texas T159 with PC1OOB £285.00

GOODS FULLY GUARANTEED. PRICES EXCLUDE (ADD 8\%) BUT INC P\&P CHEQUE WITH ORDER Company. Hospital and Gov. orders accepted by phone EXPORT ORDERS ACCEPTED

Tel. 01-4559855

LINEAR CIRCUITS							
			4.25	Lum715k		т⿴囗⿱一𧰨丶30	235
Ca301	1.10	Lu33048	0.96	Lmp 782 K		1815300	2.35
C：3302	2.20	Lm30014	1.08	LmpriLaccz	0.30	18／540	260
C33020，	2.50	（m381an	2.70	（m74．	0.30	тваS400	2.70
Са．3028	0.90	（m3819	1.69	Lm741	0.30	TB6550	3.60
${ }^{\text {20238 }}$	1.25	LM3822	1.32		4.60	тah5500	3.80
	1.50	LM3844	1.55	mm53	¢0	tah56000	3.00
cha3304	2.20	${ }^{1 / 33685}$	0.88	M555	0.33		2.10
C123388	2.90	${ }^{1 / 3387 M}$	1.10	Ne55	0.95		2.20
C．30388	4.10	บ3388	1.00	ME558M	． 98	тватоо9	2.20
${ }^{\text {C133045 }}$	1.55	Lm399\％	1.00	Ne560	4.50	теи720io	06
c^{133946}	0.77	Lm7020	0.31	we561	4.50	твм75	2.36
Ca3048	2.45	Lm709	0.70	M562	4.50	тBA500	45
CM3052	1.78	L．m7098	0.50	Me56s	1.39	тв4800	30
саз3880	0.85	［m79914	0.49	Me566		teabios	30
	2.10	LM770	0.67	Me567	1.90	${ }^{\text {rba }}$	S0
Ch3066	0.50	Lu71014	0.64	we571\％		т8920	2.99
Са13888	1.87	บm？	0.72	SAS560	2.70	rcaliblc	236
C130898	2.90	${ }^{1 / 27236}$	0.75	SA5570	70	тCA	2.55
Ca33900	4.40	L．m723C14	0.45	SAJ110	2.10	tcaz	2.99
${ }_{\text {cose }}^{\text {Ca3 }}$ C30	1.06	Lm？	5.80	s04	1.35	tcat	4.50
140	1.04	Lm7alc	0.70	s042P	${ }^{35}$	таи740	4.50
	0.30	Lmpaica	0.30	SH1600	1.30	TCat50	3.00
L1／307\％	0.50	Lem741C14	0.30	sM660	38	тcatico	
$1{ }^{1 / 2309 \%}$	0.95	［m7atcm	0.99		1.50	TCA105	． 49
LIM 309\％	1.95	LM7488	0.50	sh76023M	1.50	tiamo	． 65
LIM31\％	35	14	0.90	S478033	2.35	TOA1022	． 50
LIM3189	2.45	Lmi 303\％	1.15	тмz	1.35	T0A1024	1.24
Lim3005		304\％		mas30	3.70	TOA1034	． 75
Lim32012	2.15	析	1.52	ma320A	15	tokzo2	． 50
（1433007			1.21	${ }_{\text {mas30 }}$	3.00	บM．170	15
${ }^{\text {Lim320p5 }}$	1.15	（m／3511］	1．30	Tas21	1.10	umaso	215
LM320P12	1.15	Lm／456n	0.45	TM550	O．48		1.25 0.95 0.90
	1.15	U／19951／	0.97	T14560	2.10	т1．082¢	10
LM320024	1.15	${ }^{\text {084 }}$	2.10	тM	20	тиозза	1.40
	6.95	LM1132	6.20	тизтоя	45	ALM	1.45
im30is	0.60	Lmi 828 Cm	1.16	tma30	2.40		80
（13340T5	0.88		1.90	M960	3.90	6\％	． 80
${ }^{\text {Lim340T24 }}$	${ }^{0.88}$	Imiz300	1.90		4.20		80
	0．80	LM184511	1.90	${ }^{1 / 46218}$	2.50		3.00
LM34／P12	0.80	Lm14888	1.98	1m6i	2.55	（13314	3．00
LM341P15	0.80	Lu18	1.90	тM6	1.45	［f137414	0.55
	0.80	LMP8899	4.90	M700			
Lim348，	0.95	im33011	0.60				
Lim3580\％	0.60	Lm3322	0.55	308	1.45		
¢im360M	3.00	Lm34611	0.55	thal 100	2．00		
${ }_{\text {Lim37 }}^{\text {LiH }}$	3.30 235	Lim9300\％	0.68	tanaz		Stoc	
LH350K	6.45	Lm3999\％	0.78	tixh5000	2.34	catal	
Lm333\％	3.35	3914	1.10	тва510	2.35		
4N	3.36	7805k	1.75	t8asiod			
	1.80		1.75				
［m378	2.40	Lm324	0.75	твh：200	2.70		

NOT A KII BUT A READY
TOUUEE
MICROCOMPUTE MiCRoCO
SYSTEM AMERICA＇S FASTEST SELLING MOST INTO A PERSONAL HOME COMPUTER

```
M
```

 documentation． 2 K monitor software en ROM．Powerful
instruction set The beaty of this system is the ease instruction set The beauty of this system is the ease of
extension and versatily，with all the possible fluture requirements catered
for．Up and running in minutes．Any tuture benefits from Commodores PET computer will be soltware compatible with their KIM system an
KIM system has the design flexibitity to suif any equrrements
KIM IS EXPANDABLE－Expand as you learn upio $65 K$ KIM 1 －Basic board with－Expove leatures assembled
KIM 3 － $8 K$ static RAM caid plugs int KIM 3－8K static RAM cand plugs into motherboa
KIM 4 －Motherboard（takes $6 \times$ KiM 3）+ power
KIM 6 Prole KIM 6 －Prolotype board for usej designation
The Commodore PET and KIM are both based on the
VDU INTERFACE wer supply
on the 650
onirol
－conver he 6502 micr $£ 9600$

$\boxed{4} 2.00$ Fully assembled TTY Card－ASC If keyboard in－converts TV set to cheap micro．computer or modem -16 lines $\times 64$ characters
SEND SAE NOW FOR FULL DETALS

CMOS		4021	1.05	${ }^{40508}$	0.85	4077	0.70
		${ }^{40228}$	1.00	40518	0.85	4078	0.27
40018	0.22	40238	0.22	40528	0.86	40818	0.24
	0.22	40248	0.76	40538	0.98	4082	0.27
4002	0.22	40258	0.22	4054	1.48	4085	0.89
${ }_{4006}$	1.25	${ }^{40278}$	0.55	． 4055	1.65	4086	0.69
4007	0.22	40288	0.92	4056	1.65	40898	2.10
${ }^{40088}$	0.99	40298	1.10	4059	6.00	4093 B	1.00
${ }^{4009}$	0.58	4030	0.24	40604	1.15	4094	2.30
4010	0.8	40318	2.25	4063	1.35	4095	1.30
40118	0.22	40358	1.30	410668	0.75	4096	1.30
4012	0.22	4037	1.20	4067	4.85	4097	4.65
${ }^{40138}$	0.52	40418	0.85	4068	0.27	4098	1.00
4014	1.00	${ }^{40028}$	0.86	40698	0.24	45108	1.20
4015	1.05	4043	1.05	40701	0.85	4511	1.75
4016	0.57	4544	1.00	40718	0.24	4516	2.10
40178	105	4045	1.76	4072	0.27	45188	1.20
40188	1.05	40468	1.50	${ }^{40738}$	0.24	FULI	依
40198	0.52	40478	0.96	46758	0.24		
40208	1.15	4049	0.96	40768	0.99		

TTL \＆CMOS

NEW LOW PRICES LEDS＋OPTO

B

$£ 0.55$
$£ 1.45$
1.55

FULL RANGE＋DATA IN OUR 1978 CATALOGUE

LOW COST VDU

CONVERT TV SET TO VDU

The new CRT control chip from Thomson CSF SFF96364．Convert your TV set into an electronic VDU－ 16 lines x 64 characiers－ requires RAM．character generator and litte else for a basic VDU． Available as chip or full display card．
 in．

SEND S．A．E．FOR DETAILS

DIL SKTS	
Low protite ic skis	
8 pin 15p	$22 \mathrm{pm130p}$
14 pin 16p	24 pin 35 p
16 pin 18 p	28 pta 45p
18 pan 27p	40 pin 55p
FULL RANGE OF	
Capacitors	Phodes
Ressistors	caties
Plugz／shis	Cases
Meiers	in our new
Clocks	calalogua

TRIACS piastic pack 400～roz20 Texas				
－ 4 amp	72 p	16 amp	${ }^{938}$	
6 3mp	77p	$20 . \mathrm{mp}$	¢1．87	
8 \％mp	${ }^{82 p}$	25 апр	12.20	
12 mp	93p			
THY RISTORS plastic power				
4 amps 10040.3		8 amps 10070.47	$\begin{aligned} & 12 \mathrm{amps} \\ & 10 \mathrm{kv} 0.63 \end{aligned}$	
20000.4		200r 0.54	2000 0.70	
400 r 0.5		400v 0.68	400N 0.50	
Branded Tenas quality producl				

GAIN CONTROL PART ONE

THERE ARE MANY cases in signal processing where the control of the gain is necessary. Some common examples are automatic volume controls in cassette recorders and in the IF sections of radio receivers. Also in professional audio equipment there is a whole range of compressor, expander, limiter and noise gate devices which find great use in recording and broadcast studios. Maybe you have wondered how the volume of the music drops when the DJ starts to talk and then fades up again when he stops. This process, known as voice over or "ducking," uses voltage control of gain.

Noise reduction systems such as dolby and $d B X$ employ voltage controlled amplifiers. Synthesisers and sound processors obtain effects such as ring modulation, automatic panning frequency shifting, dynamic filtering, tremolo and envelope shaping also by the use of this technique.

Gaining gain

There is a wide variety of methods which can be used to obtain the gain control. This can be anything from constructing the variable gain element yourself from basic parts, to buying IC or module designed specifically to solve your particular problem. Generally the solution is some sort of compromise, because unfortunately the
problem of making high performance controlled gain cells (multipliers), is rather difficult and therefore the IC's tend to be rather expensive.

However with a bit of care a cost effective solution can usually be produced

A good example is the AGC in a transistor radio. The transistors in the IF section have an h_{fe} that varied widely with the magnitude of their collector current. Thus, by sticking three transistors in series it is possible to vary their overall gain by about $40 \mathrm{~dB},(\times 100)$, merely by controlling their collector currents. The AGC stops the audio output of the radio from varying as the radio reception conditions alter.

Electronic multipliers

When it is required to control the level of one signal with that of another, an electronic multiplier is used. This process is analogous to arithmetic multiplication. If input A is positive, Fig. 1, and input B is positive then the product (the output), will also be positive. If A goes negative then the product will be negative. If both A and B are negative then the product will be positive thus preserving the arithmetic rules.

If A and B are limited to be only one sign each then

Left: the principle behind electronic multipliers. The graph shows the possible outputs for a variety of combinations of input polarities.
Above: Internal workings of a CA3080, an Operational Tranconductance Amplifier. Say that too fast and you'll need a new set of teeth.

Tim Orr continues his occasional series of circuits, methods and explanations with a detailed look at how gain can be controlled by another electronic signal, be it squarewave, sinewave or voice signal. This leads to some interesting circuits - from ducks to filters!

the multiplier is known as a one quadrant multiplier. That is the product can only lie in one quadrant. If A can be both $+v e$ and $-v e$, and B only of one sign then the multiplier is known as a two quadrant multiplier. This is what is called an amplitude modulator. The audio signal which is bipolar is A and the control voltage is B.

If A and B can be both + ve and -ve, the product can lie anywhere in the four quadrants and hence the multiplier is known as a four quadrant multiplier. This type of device is found in frequency shifters and ring modulators.

CA3080 - An OTA!

The CA3080 is a two quadrant multiplier, or to give it its full title, it is an Operational Transconductance Amplifier. It has a differential input and a single quadrant current input known as $I_{A B C}$, (amplifier bias current), Fig. 2. The differential transistor pair is used to steer the $\mathrm{I}_{\mathrm{ABC}}$ current between the two transistors Q 2 . There is a region where the input differential voltage is linearly proportional to the percentage of current steered between the two transistors. This voltage region is fairly small, being about 20 mV , but using the CA 3080 in this area then a reasonably linear 2 quadrant multiplier can be obtained.

What has happened is the the $I_{A B C}$ current has been multiplied by the input voltage. The product is the difference between the two collector currents. This difference is extracted by the use of mirrors, current mirrors that is. The current mirrors can be attached to either the +ve or the -ve supply rail.

They have two terminals, and whatever current flows into one terminal, then the same flows into the other, which is why they are called mirrors.

What we want to do is take the difference between the collector currents of Q1 and Q2, I_{C}, is reflected from mirror Y and then from mirror X and then appears at the output. $I_{C 2}$ is reflected from mirror Z and then appears at the output. The two currents are substracted from each other and the output current is thus $\left(I_{C_{2}}-I_{C_{1}}\right)$, which is the product of $I_{A B C} \times V_{1 n} \times K$, where K is a constant. Note that the $\left.\right|_{A B C}$ current is also reflected from a current mirror on the negative rail.

The CA3080 is a low cost two quadrant multiplier and can be used to perform a wide variety of multiplication functions. The linearity of the device holds true for $I_{A B C}$ variations of over three decades. When using this device keep $l_{A B C}$ belów 0.5 mA .

The CA3046 is an array of 5 transistors which are all well matched and relatively cheap. Qe, 4 forms the differential transistor pair, IC1 controls the current and IC2 extracts the differential output current and turns it into an output voltage. The audio input is inserted into the base of Qe but also connected to this node is the emitter of $\mathbf{Q 2} . \mathbf{Q} 2$ and $\mathbf{Q} 5$ serve to predistort the input signal, but they distort the signal the opposite way to which the muftiplier distorts it. This is known as distortion cancelling, and it allows a larger signal level to be applied to the 'multiplier for the same percentage of distortion at the output. The larger input signal allows a higher signal to noise ration to be obtained. Transistor $\mathbf{Q} 1$ is used to bias the bases of Q2, 5 to a suitable operating region.

Stereo Voice Over (Ducking) Circuit for Disco Unit

The circuit operation is as follows. The microphone signal comes via VR1. This pot sets the sensitivity of the circuit to the microphone signal. If it is too sensitive the unit will be "ducking' every time the DJ breathes. IC5 is an amplifier and filter. The filter has been specifically tailored to fit the characteristics of speech, thus making the ducking unit less sensitive to spurious noise. IC2, 3 forms a precision full wave rectifier, the output of which is low pass filtered and then fed to IC4. This wave form is the envelope of the microphone input signal.

JC4 is a peak, negative going, voltage detector with.a gain of x 5. When the DJ begins to speak, IC4 goes negative and in doing so pulls the base of G 1 negative. When the DJ stops speaking the base of $G 1$ rises back towards $O V$ with a time constant determined by CA or CA + CB.

This is the release time and it controls the speed with which the faded down music comes back to full volume. $G 1$ is an emitter follower and is job is to rob current from the gain cells in the NE570.

This current sets the volume of the two music channels. When the base of G 1 is pulled down to the negative rail, the amount of robbed current is maximum, and when no current flows into pins 1 and 16 of the NE570 and all of it flows into g 1, then both nusic channels are turned off.

To set up PR 1, put a large signal into the microphone channel, set RV2 so that it is a short circuit and then adjust PR1 so that the two music channels just close off. PR2 and PR3 should be adjusted so that pins 7 and 10 Of the NE570 are both +6 V

Clever Fuzz Box

Fuzz boxes are used by guitarists to produce harmonic distortion and sustain. If you want to produce only the distortion, but to retain the original envelope of the signal then this is the circuit for you.

IC1 is a 2:1 compressor as described previosuly. This produces a relatively high level signal which then drives ic2, which is a $\times 50$ amplifier with diode clamping. IC 2 produces the distorted (fuzz) found. This is then fed into the IC3 gain cell, the
output of which drives the op amp. This gain cell is driven by the rectified original signal (low pass filtered at 1 k 5 Hz), so that the distorted sound is given the envelope characteristics of the original sound.

If a fuzz sustain sound is required rather than a dynamic fuzz then IC3 could be modified (by the inclusion of a clamped high gain amplifier driving pin 15) so that it acts as a low level expander. This will squelch the noise at the end of the fuzz period.

Track and Hold

In this example the CA3080 is used as a current controlled switch. When the control voltage is high, $I_{A B C}$ is maximum, $\mathbf{0 . 4 4}$ mA) and the OTA gain is maximum. The voltage at pin 2 of IC1 adjusts itself so that it is the same as that on pin 3, this being due to the $\mathbf{1 0 0}$ per cent feedback via the high input impedance voltage follower IC2. When the control voltage is $O V, I_{A B C}$ is zero and hence the gain of the OTA is zero. Therefore no current comes out of its output and so the voltage at the output of IC2 remains frozen (Hold mode). The maximum differential input voltage is 5 V and this must not be exceeded. The capacitor C should be selected to suit the speed of the operation.

Voltag̣e Controlled (Switched) Attenuator

The CD4016 is a quad analogue transmission gate. That is, it is a quad voltage controlled switch. When the control is high the switch is ON, having an effective resistance of about 400R. When the control is low the switch is off and ot looks like a 100 M resistor. Thus by using 4016 switches it is possible to 'Switch' the voltage gain of an amplifier. The resistors in this example are selected to give 6 dB changes in gain.

Filter

A state variable filter produces three outputs: highpass, bandpass, and lowpass. It is thus a very versatile filter structure, even more so if the resonant frequency can be varied. This frequency is linearly proportional to the gain of the two integrators in the filter. Two CA3080's, (IC2, 4) have been used to provide the variable gain, the resonant frequency being proportional to the current $\mathrm{I}_{\text {ABC }}$. Using 741 op amps for IC3 a control range of 100 to 1 , (resonant frequency) can be obtained. If CA3140's are used instead of 741's then this range can be extended to nearly 10,000 to 1.

INTERESTED IN HOME COMPUTING?

Start now and don't get left behind THE NASCOM 1 is here
Ex-stock with full technical services

Nascom Microcomputers

BLANK C12
Racal Quality
CASSETTES
$0.49 p$

Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your
computer. You can OBTAIN and EXCHANGE programs and other software - many now available.

The Powerful $Z 80$
Microprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface Plugs into your domestic T Easy construction from straightforward instructions - no drilling or special tools - Just neat soldering required.

Only $£ 197.50+8 \%$ VAT (includes $p \& p+$ insurance) Manuats seperately
3.50 Monitor quality improved Z80 programming Manual 6 280 Technical Manual Pl0 Technical Manual (All prices add 8% VAT)
3.40 Super Modulator (10 MHz) $\begin{aligned} & 2.50 \\ & 5.50\end{aligned}$
3.40 Power supply suitable for NASCOM
19.90

Available from COMP soon: * 4 K and 16 K RAM expansion boards for NASCOM 1 with sockets on board for MINIBASIC EPROMS. Trade, government and educational enquiries invited. Can be supplied ready built tested and guaranteed.

KEY
 BOARDS

Brand new professional ASCII keyboards (USA) Full technical details included.
Only $£ 59.90$
$+8 \%$ VAT.
Ready built, tested and guaranteed.

LOW COST FULL FUNCTION KEYBOARD KIT.

Only $£ 38.50$
$+8 \%$ VAT
 quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

RF POWER METER

Take a load off your mind - and put a proper and useful load on your antenna - with the ETI Project Team's venture into the realms of the short and shorter wave.

THIS REFLECTOMETER design, apart from being simple, elegant and easy to construct, covers three decades - from 100 kHz to 100 MHz , and can be constructed for RF powers as low as 500 mW or up to 500 watts.

The problem for most designs for reflectometers, or "Swar" meters as they tend to be called colloquially these days, is that they generally only cover about one decade in frequency range - usually 3 to 30 MHz or, if further, have discontinuities and drastic sensitivity variations at the extreme ends of their frequency range.

Sensitivity is a problem with the commercially available instruments also. Those with the best sensitivity - 5W full scale usually - are made for the (overseas) CB market, and while they will work over most of the HF spectrum (some extending beyond that), sensitivity is insufficient if you are working with low power solid state RF circuitry or doing a deal of antenna experimentation.

Performing antenna measurements at powers of 5 W or more is discourteous to say the least, especially where sustained or many consecutive measurements need to be made.

The reflectomter / RF power meter described meets the requirements of most people involved in RF measurements requiring such an instrument and where a disparate variety of facilities are required.

This project will be extremely useful to radio amateurs, servicemen involved in communications, in laboratories, etc.

Construction

Construction is very straightforward. The printed circuit design given is recommended, as variations in layout may affect performance.

All the components are mounted on the copper side of the PCB, which is subsequently assembled onto the coax sockets and mounting bolts.

Commence by winding the toroid current transformer secondary turns. Refer to the circuit diagram. Cut a 45 mm length of RG58, stripping back the braid and insulation as illustrated in the component overlay and photographs. This is not all that critical, but maintain as much braid as you can to reduce problems with errors creeping in at the top end of the frequency range due to discontinuities here.

Slip the toroid over the short length of coax and mount this assembly on the PCB. Position the toroid centrally and fix it in place with a small amount of pliable plastic cement compound.

Mount all the other components next. Pay particular attention to the orientation of the diodes D1, D2, D3.

The trimmer capacitor, C2, is shown as a mica compression type. Any suitable trimmer - such as the Philips film trimmers - can be used, however, the mica compression
trimmer provides a certain amount of 'vernier' adjustment.

The PCB and major components are assembled into a suitable metal box.

The completed PCB is mounted in the following way

Once the coax sockets are mounted, and the two mounting bolts are in position, a coax plug (with cable) should be plugged into each of the sockets in order to locate the centre-conductor pins of each socket.

The PCB is then placed into position and the input/output pads soldered to the coax socket pins. Make sure that a good fillet of solder secures the pin to the PCB pad.

Two nuts on the mounting bolts, one under the PCB, one on top of the PCB, then secure the board mechanically as well as providing a ground connection. Refer to the pictures and components overlay.

Connections to the meter, pot, and switch - located on the front panel, can then be made with short lengths of hookup wire.

Calibration

A suitable RF source, a dummy load and an RF voltmeter or a known-accurate RF power meter are required for test calibration of the instrument. Any of the standard amateur texts (ARRL, RSGB handbooks etc) provide excellent construction details of dummy loads to dissipate a variety of powers. The same texts describe suitable RF

Fig.1. Circuit diagram of the SWR power meter. Note the unusual switch configuration, using a double pole three way switch.
voltmeter probes that may be used in conjunction with a multimeter.

SWR Scale

The instrument is connected between the RF source and the dummy load. Turn the sensitivity control fully anticlockwise. Switch to read forward power.

Key the RF source and slowly rotate the sensitivity control clockwise. The meter reading should increase. If it doesn't, check wiring. If it goes in reverse, you've got D1 back to front!

If all is well, advance the sensitivity control until the meter reads full scale. Switch to read reverse power. Adjust the trimmer C2 to obtain a minimum meter reading. It should go to zero; increase the sensitivity when a very low reading is reached to ensure that C2 is adjusted correctly.

This completes the adjustment of the Reflectometer section. The scale calibration can be obtained from Table 1.

The sale on the meter may be hand-lettered using Letraset or other 'rub-on' lettering. The original lettering may be painted over and the new SWR scale inserted beneath the orignal scale.

HOW IT WORKS

The reflectometer employs a "current transformer" having an electrostatically-shielded primary with a high-ratio secondary winding driving a low value load resistance.

A short length of coaxial cable, passed through a ferrite toroid, forms the primary with the braid connected so as to form an electrostatic shield.
The secondary of the current transformer consists of a winding around the circumference of the toroid, coupled to the magnetic component of the 'leakage' field of the short length of coax cable.
The secondary drivesa centre-tapped resistive load (R2/R3) connected to a voltage sampling network (C1-C2/C3) tapped across the RF input such that sum and difference voltages will appear across the ends of the
current transformer (Tl) secondary winding.
Diodes D1 and D2 rectify the sum and difference voltages from the secondary of T1, RF and audio (modulation) bypassing being provided by C4 and C5. The RF choke, RFCl, provides a low-resistance DC return for the signal rectifiers, D1 and D2.

The power measurement facility is obtained by tapping off a portion of the RF voltage on the line via R5 and R6, and rectifying this with D3. Capacitor C6 provides RF and audio (modulation) bypassing.

As the load on the rectifier is so light - R7 being 100 k and the meter being 2 k , peak power is measured.

Diodes D4 and D5 provide protection for the meter.

BUYLINES

As with all RF projects, some of the components will not be stock items with the majority of suppliers.

In case of difficulty with any of the
items Catronics at Communications House, 20 Wallington Square, Wallington, Surrey should be able to help.

Fig. 2. Component overlay for the PCB. Note that, contrary to the usual practice, the components are mounted on the copper side of the board.

	TABLE 1 Scale reading
SWR	0.5 full scale
$3: 1$	0.42 full scale
$2.5: 1$	0.34 full scale
$2: 1$	0.2 full scale
$1.5: 1$	0.1 full scale
$1.2: 1$	0.05 full scale
$1.1: 1$	

TABLE 2

Peak Power, full scale	$R 2$ value
500 W	6R8
200 W	$2 \times 33 R$ in parallel
100 W	33R
50 W	68R
20 W	$2 \times 330 \mathrm{R}$ in parallel
10 W	330R
5 W	680R
3 W	$1 \mathrm{k}+100 \mathrm{R}$ in series *
	*linearity suffers

Power

The circuit (Fig. 1) shows a divider network, consisting of R5 and R6, tapped across the RF on the coax line.

The lower divider resistance R6 is shown as a variable element. A
miniature deposited carbon track trimpot was used in the prototype The low value types seem to perform quite weill over a wide frequency range and one was used here for convenience. It was set so that the full-scale reading of M1

corresponded to a particular peak power dissipated by the dummy load (as measured with an RF voltmeter or known-accurate RF power meter).

Fixed resistors may be substituted for a trimpot, necessitating only a check of the accuracy of the full scale peak power reading. Values for particular full-scale power readings are given in Table 2.

The power scale should be calibrated to suit the individual instrument. It will be non-linear, particularly at the bottom end

Performance

The inherent impedance of the prototype instrument was measured using a TEK 5 W dummy load and a Hewlett-Packard vector impedance voltmeter. The results are illustrated in Fig. 4.

The impedance discontinuities introduced by the prototype are well

g. 3. The meter, sensitivity pot and switch connections. Leads X and Y go to the D2 and D1 respectively, while the lead marked 'POWER' goes to R7. Refer to Fig. 2.

Fig 4. Top: real or resistive component of the prototype's inherent impedance. Lower:
Reactive component.
inside the basic accuracy capability of the meter movement! The real part of the instrument's impedance is within 5% of the nominal 50 ohms - most of this is probably due to connectors and construction discontinuities.

The variation in the real part of the impedance is within \pm one ohm across the frequency range of the instrument, and can be essentially ignored.

The reactive (imaginary) component of the instrument's inherent impedance is negligible up to 20 MHz when it begins to become slightly capacitive.

The overall impedance decreases rapidly above 100 MHz .

Sensitivity and sensitivity bandwidth of the prototype is excellent. The half-power points of the sensitivity bandwidth of the reflectometer are at approximately 350 kHz and 25 MHz .

Full-scale deflection at 27 MHz requires 0.8 watts into 50 ohms. Mid-band sensitivity is under half a. watt!

Modifications

For higher power applications, the basic sensitivity of the reflectometer can be reduced by one of several methods, or a combination.

If you are working with powers around 20 to 50 watts, R2 and R3 can be reduced to 47 ohms. For higher powers, the number of turns on the toroid can be reduced, and R2/R3 further reduced in value. As a guide, reduce the secondary of T1 to 20 turns and R2, 3 to 47 ohms.

Everything else remains unchanged. This should suit power levels of 200 watts and higher.

Other types of coax sockets can be used, such as the BNC, type N or the inexpensive Belling-Lee sockets. No modifications to the PCB are necessary, however, mounting details of the sockets and board will need to be altered to suit.

The basic reflectometer construction is so simple and inexpensive that several can be built and installed to provide remote SWR / RF-output monitoring of antenna installations.

The RF portion cán be mounted at a convenient place and the reflectometer output leads X and Y taken to remote metering facilities. Power output measurement circuitry is probably superfluous in these circumstances.

Protection circuitry for transceivers and power amplifiers may be simply realised using the basic reflectometer circuit and activating protection devices by comparing the output voltages of D1 and D2.

Swept VSWR measurement can be accomplished using the basic reflectometer circuit. The differential output from D1 / D2 can be used to drive the vertical axis of a CRT display (via suitable amplification), the horizontal axis being driven by the sweep voltage of a voltage-controlled signal generator. Voila! - swept VSWR measurements.

Accurate SWR measurements for

VSWR values below 2:1 can be made by driving an expanded-scale differential voltmeter circuit that measures the output difference between D1 and D2. This technique is well illustrated in reference 2.

This type of instrument is particularly useful when making VSWR performance plots of antennas over a narrow bandwidth (providing they closely match 50 ohms in the first place).

This reflectometer technique can also be used to measure power. However, the authors opted for the diode RF voltmeter method as it is somewhat more versatile, and is unaffected by the sensitivity bandwidth of the toroidal current transformer. See the two references for more details.

The sensitivity bandwidth may be shifted up in frequency by a decade or more, such that it rolls off around 1 MHz and 50 MHz , by employing a toroid for T1 of the same dimensions but made of F25 material. ETI

References

Whilst not the 'definitive' texts on this type of reflectometer, these two references provide good practical sources of information.

1. 'Frequency Independent Directional Wattmeters"; P. G. Martin, Radio Communication (RSGB journal), July, 1972.
2. "Test Equipment for the Radio Amateur"; H. C. Gibson G8CGA, published by the RSGB, 1974.

From the representatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!

Reading maketh a full man ... Francis Bacon (1561-1626)

[^1] *BYTE subscriptions are processed IN USA and are air-freighted \& posted from Amsterdam and will take 3 months to start.
U.K. Subcriptions start within three weeks

TRADE ENQUIRIES WELCOME

SCRUMPI 3

Justin A. T. Halls, of Queen Mary College, takes a look at Bywood's SCRUMPI 3. This kit is an improvement over Bywood's earlier
LED switch kits but is still seen as a sophisticated control device rather than a personal computer. The kit also provides an excellent introduction to the worlds of MPUs.

Srumpi 3 is the cheapest currently available microprocessor kit with full alphanumeric input and a VDU type display. It is the successor to the Scrumpi 1 and 2, switch and LED kits and is based on the same MPU, National Semiconductor's SC / MP. The kit also provides facilities for cassette and teletype interfaces.

Scumpi 3 is built on a $380 \times 190 \mathrm{~mm}$ printed circuit board, with plated through holes and a clearly component overlay. High quality, low profile sockets are provided for all the ICs and two 16 pin DIL sockets are provided for access to the $161 / 0$ ports and the UART. Access to the TTY interface is via four pins at one side of the board, while power supply lines, reset line and video signal are taken to an eight way, 0.1" edge connector. A UHF modulator is mounted on the underside of the board and provides a signal suitable for most 625 line TV sets via a standard phono socket. Data and address busses are not directly available, but test points are provided at either end of the board. Imput is via a 21 key keyboard, made up of good quality switches with transparent key caps, beneath which are fitted selfadhesive labels identifying the key functions.

Three main chips are the sc/mp ii, which has the advantage over the SC/MP 1 of being faster and requiring only a single +5 V power supply, the INS8154 RAM I/O, which contains 128 bytes of memory and provides 16 individually addressable I/O ports, and the AY-5-1013 UART. Two EPROMS, protected from accidental erasure by opaque labels over the quartz windows, hold the 512 byte monitor program and 512 bytes of user accessible $1 / 0$ routines, $A 7 \mathrm{MHz}$ crystal provides a clock from which are derived the VDU control signals as well as a 3.5 MHz clock for the MPU and a 15 kHz clock for the UART: The video interface circuitry occupies nearly half the board and uses the 8675 bwf character generator to provide the full 64 upper case ASCII characters in white on black or black on white, either of which may be selected as standard and which may be mixed on the screen.

Data sheets are provided for the MPU and RAM I/ O chips and two handbooks provide assembly and
operating details. An SC/MP pocket instruction guide is also provided. The user has to provide a $+5 \mathrm{~V},-12 \mathrm{~V}$ power supply plus a 7.5 V supply for the UHF modulator. It is also necessary to drill holes in the PCB to take mounting pillars if the kit is to be fitted in a case, or take legs if the kit is to be used naked. A reset switch is also needed

Getting It All Together

Actual construction of the kit was quite straighforward, although the instruction manuals tended to be reminiscent of some car technical manuals, with instructions like 'all sockets, capacitors, resistors, diodes, links and keyswitches can be installed at this point', and the crystal and one of the ICs are never mentioned at all. One component that did cause some problems was the UJHF modulator. The position of this is not marked on the board and the connections to it are not indicated. A phone call to Bywood confirmed that this does in fact fit beneath the board, the mounting pins having to be filed down to fit the holes provided. If the kit is not fitted in a case the presence of the modulator beneath the board means that legs must be fitted to enable the board to sit squarely on the table when in use.

When fitting the 21 keyswitches care must be taken as the holes for them are not too accurate and bending the pins too far to make them fit could damage the switch. Since many of the tracks run very close together, care should also be taken with the soldering and it is a good idea to leave the kit overnight after assembly and then re-checking very carefully for the presence of solder splashes or bridges.

To minimise the possibility of damage to delicate and expensive ICs and to ease trouble-shooting, the chips are inserted sequentially, checks being made at each stage to ensure that one part of the circuit works before proceeding to the next. Apart from TV synchronisation problems most of this setting up procedure was very simple, although some statements were a little misleading and a great deal of time was spent won-

dering why the address decoding wasn't decoding before we found that the NWDS line had to be earthed first. It is in cases like this that a circuit diagram would have been invaluable. The use of the INV line as a test probe was very clever and useful; if the line is taken to logic 1 , the screen remains the same, but if taken to logic 0 the screen inverts (i.e. black characters on a white background instead of white on black).

Pictures Galore

The video circuitry is basically quite simple, with a 7.02 MHz clock driving a series of dividers and a handful of gates. Two MM2112, 256×4 RMs hold the picture in a memory mapped display. The rest of the video circuitry simply consists of the character generator and a number of buffers.

The UHF modulator is pre-tuned to channel 36 and merely needs connecting to the aerial socket of a TV set. It can be run from the on-board +5 V line, but with some sets better resolution, especially when displaying black characters on a white background, is obtained by running the modulator from a separate supply of about 7.5 V . A simple, unregulated battery eliminator, set at 6 V (actual output about 7.5 V) is sifficient.

The Bywood errata sheet points out that some video monitors or converted TVs require a 4 V pk-pk video signal rather than the 1.5 V pk-pk signal provided by the kit, and that this can be obtained by adjusting the values of R3-R5. We had great difficulty in obtaining a stable picture and eventually had to resort to replacing the riesistors with 470 R presets; even now picture stability is not as good as it might be and it is continually necessary to adjust the vertical and horizontal hold controls. It is quite possible however that these difficulties are due to the use of a cheap portable TV which may well not be set up correctly. No problems have been found with these modulators in other applications.

Key Features

Bywood have managed to squeeze all 64 upper case ASCII characters onto a 21 key keyboard. This is achieved by the use of three shift keys. One soon gets used to using the shift keys and although it would be more convenient for entering hexadecimal code if the lower case characters were $0-9$ and $A-F$, the current layout has presumably been chosen to ease use as a general purpose teletype.

The assembled Scrumpi 3 kit. The system's firmware is resident in the two EPROMs seen top left with their protective labels. The three presets we had to fit to get the video levels right can be seen bottom centre.

Getting In And Out

The teletype interface, supplies and receives a 20 mA current loop and is therefore compatible with many types of TTY. Control of this interface is purely by software, using the SC/MP 'flag O ' for output and 'sense B' line for input, each bit being set or sensed individually, with a delay instruction being used to set the bit rate to 110 baud or whatever rate is required. Unfortunately, details of sending and receiving routines are not supplied, although these should not prove too onorous to write.

Parallel I/O is provided for by the INS8 154 RAM I/O chip which also contains the 128 bytes of RAM supplied with the kit. $16 \mathrm{I} / \mathrm{O}$ lines are available and these may be configured as two independant eight bit ports designated A and B, each of which may be specified as an input or an output port. This provides for very versatile interfacing with the outside world.

For these who prefer a serial interface however, an AY-5-1013 UART is provided. The rate at which data is output or received by the UART is determined by an extemal clock, this being set to sixteen times the desired baud rate. In the Scrumpi 3, the 15.625 kHz line frequency for the VDU is used, providing a baud rate of 960 (not 9600 as stated in the manual). If a more standard baud rate is desired, the internal clock can be disconnected and an external clock provided via one of the $1 / 0$ sockets; 4800 Hz will give 300 baud suitable for a cassette interface, while 1760 Hz will give a rate of 110 baud. No details are given of how to use the UART, but these have been published in ETI (Dec. 1977).

All of these various $1 / O$ lines, except the TTY 20 mA loops, are available from two 16 pin DIL sockets. Each socket is provided with +5 V and ground connections, as well as the UART transmit and receive lines and the MPIJ 'sense A' line, used by SC/MP for software interrupts. In addition socket A has the eight bits of port B, reset, and the UART clock, while socket B looks after the eight bits of port A. Unfortunately the INTR line from the RAM 1/O chip, which is used in handshaking routines, is not available, but it could be connected to an unused pin on one of the sockets, as could the serial input and output lines from the SC/MP which are also unavilable.

Where Its All At

The kit comes with 128 bytes of RAM (not counting the 256 bytes used by the VDU) of which 64 bytes are

Close up view of Scrumpi's keyboard. By using the various shift functions this keypad can provide a full alpha-numeric set.
available to the user for writing programs. Of the remainder, 32 bytes are available as a user stack which may also be used by some of the Scrumpi sub-routines, eight bytes are used for storing labels and eight bytes are used as a monitor permanent area, the remainder being used as monitor stacks during various command routines, This RAM occupies the area of memory fron OF80 to OFFF (see Fig 1). The minitor PROM takes up 512 bytes from 0000 to 01 FF , with 512 bytes of $1 / 0$ sub-routines in PRO M at 0600-07FF. Keyboard, UART, VDU and parallel I/O takes up all the space from OCOO to OF80. Since the SC/MP only provides direct access to the lower twelve bits of the address bus, allowing for $4 K$ of addessability, this leaves 2 K to be accounted for. On-board sockets are available for all this, divided into 2×512 byte PROMS (5204 or 4214) and 1 K of RAM as eight 256×4 (2112). To expand further than this the top four bits of the address bus have to be latched at NADS time, when they appear on the data bus. However since it is assumed that very few users will want to go beyond the available 1 K of RAM and 1 K of PROM without the aid of an assembler, access to the control lines and busses is not provided. For testing purposes however, the busses are available at test points at either end of the board and control lines could be taken out be means of wire links fron convenient points.

Controlling Your Scumpi

The monitor contains five basic commands. Typing ' 1 ', followed by a four digit hexadecimal address and 'INT', results in the display of the address called and the data stored there. A number of alternatives now exist. Typing in a two digit hex number followed by 'INT' will cause that number to be stored at that memory location and the address and contents of the next byte of memory are displayed. Instead of entering data you can type $=n$, where n is an-integar from 0-7. The lowest two characters of the address are then stored and can be used later, by typing '?n', which will calculate the offset required for a programme counter relative jump to the address labelled by n. When using ' $=n$ ' or '?n' the address is not incremented and the offset provided or fresh data may be entered at that location in the normal way. To return from the data input mode to command level, you can either press reset or type ' $>$ '. Typing the command 'L' followed by 'INT' will result in the display of the eight bytes of memory holding the labels.

The command ' H ', followed by a four digit hex address, produces a hexadecimal dump of the next 48 bytes from the address given, arranged as six rows of eight bytes, each row preceded by the address of the first byte in that row.

Having entered a program using ' I ' command and having checked it using a hex dump we now want to run it. This is done simply by typing ' G ' and the address at which the program starts, bearing in mind that the first byte of a program is always ignored. Software breakpoints may be inserted in a program by using an XPPC 3 instruction, exchanging the program counter for the contents of pointer register 3, which returns control to the monitor and gives a current status dump. In this the contents of the three internawcpointer registers are shown, (P3 will always point to the address of the breakpoint), as well as the contents of the accumulator. extension register and status register. In addition, the 32 bytes of user stack are also displayed. The program can be continued from where it left off by typing the command ' C '

In addition to the monitor, eight I/ O subroutines are provided for use by user programs. With these data may be entered from the keyboard or written to the VDU, or messages can be displayed on the VDU. Alternatively the value in the accumulator can be displayed as a hex number (rather than as an ASCII character) with or without a trailing space, or a hex number can be read from the keyboard. Finally four bytes from the user stack may be used to display a six digit number with its sign. All of these subroutines are accessed simply by exchanging the program counter and pointer 3 and most of them are re-enterable.

If additional PROMs are used to extend the monitor, they will be automatically detected by the existing monitor, which checks for a 00 at address 0200, and used directly. One additional PROM that is available from Bywood is a dissassembler, which will take a machine code program and translate it back into mnemonic form, producing a full assembler style listing.

Reading It Up

The two handbooks are well and entertainingly written, starting from absolute basics and working up, so that even someone who had never heard of a microprocessor before would soon be able to use the Scrumpi. Book 1 starts with an explanation of the hexadecimal number system and proceeds to build a micro-(macro-?) processor called PC/MP (Paper and Cardboard Micro Processor) with which it explains all the happenings inside the MPU, by making you do all the internal operations yourself. In this way a deep understanding of what actually occurs within the MPU is imparted.

Having explained the workings of MPUs in general the architecture of SC/MP is considered, along with the necessary associated components such as RAMs and PROMs. Book 1 then goes on to describe the construction and use of Scrumpi 2, most of which is of little interest to the Scrumpi 3 owner, although the final section on interfacing with the outside world via UARTs and ports is of interest even if lacking in detail.

Book 2 is more concerned with Scrumpi 3 and begins by describing the rationale behind the design of this kit. Construction and testing details follow, with a circuit diagram for the VDU and a block diagram for the rest of the system. Bywood consider that 'the PCB is its own circuit diagram' and that further documentation is therefore unnecessary. Having built and tested the kit, you are taken through a series of demonstration pro-

Scrumpi 3's status dump displays the current value of the SC/MP's internal registers plus a hex dump of a section of memory.

grams which display the full character set, write messages on the screen and demonstrate all the internal logical and arithmetic functions that are available. Here again the text is clearly written and we soon got to know how to use the majority of the various facilities that are available. Finally the memory assignments are given as well as a description of the monitor routines, $1 / 0$ subroutines and the optional disassembler. At the end of the book is a glossary of technical terms, some useful addresses and data on the SC / MP II and the INS8154

What there is of the handbook is excellent, well written and well illustrated and without too many errors. However, a great deal of information is lacking, such as any details of how to use the UART or how to configure and use the I/O ports. It would also have been nice if a few simple user programs could have been included, say for a cassette interface, handling the teletype link and maybe some mathematical routines.

Terminal Device

In general this kit succeeds in doing what it sets out to do very well indeed. It is nicely produced, fulfills its designers requirements and the distributor, Bywood Electronics, are very helpful in the event of any difficulties or problems.

The quality of the product is let down however, on two counts. The main defect lies in the lack of information supplied with the kit and this is a very serious failing. A TTY. 20 mA loop interface is provided, with no indication of how to send data to it, or how to receive data from it and whith no mention of what format the data should be in. i.e. what should be supplied in the way of start, stop and parity bits. Also, no data or infornation is provided on the UART and even when a data sheet has been obtained, describing how to use the device, it is necessary to trace out the tracks on the PCB in order to identify the TBMT and DAV lines. Admittedly a data sheet is provided for the INS 8154 , but this is only of marginal use when attempting to use the device and such a versatile chip as this deserves far more recognition in the manuals.

The other failings of the kit are relatively minor, but seem all the more unnecessary for that very reason. Things like not using the serial input and output lines from the SC/MP. The kit already has impressive 1/0 facilities, but why not make use of a facility that is sitting there waiting to be used. The unused INTR line from the RAM I/O chip is another case in point, since this negates a large proportion of the power of the $1 / 0$ device, especially if you want to interface to devices such as A / D converters which require a certain amount of handshaking.

Once you have found out how to use them, the I/ O facilities on this kit are very good, largely thanks to the versatility of the RAM 1/O chip, which gives such a varied selection of $1 / 0$ modes. The keyboard is not as convenient as a full OWERTY keyboard, but it is perfectly adequate for a kit that is intended for semi-dedicated applications. The 8×32 character TV display may seem limited in size when compared to full VDIJ systems, but is quite adequate for the vast majority of applications and it has even been found possible to play Conway's Game of Life on it, although this led to some rather interesting edge effects at times.

This kit is certainly a great advance over Bywood's previous, LED and switch kits and with a price tag of around $£ 150$ is certainly good value for those who are either hooked on SC/MP or who are prepared to use the full power of the kit to make it pay its way as an intelligent terminal for a larger or more powerful system.

MICRO-COMPUTER for the HOBBYIST

THE ONLY COMPLETE MICRO-COMPUTER AVAILABLE TO THE HOME CONSTRUCTOR

FEATURES

* Supplied in kit form for self-assembly

औ Supplied in kit form for self-as

* Fult documentation supplied
\star Fult documentation supplied
* Full 48 key keyboard included
* $2 \mathrm{~K} \times 8$ Ram
* $1 \mathrm{~K} \times 8$ monitor program in Eprom
\star Powerful Mostek Z80 CPU
* 16×48 character display interface to std un-modified T.V
\star T.V. display memory mapped for high speed access
* On board expansion to $2 \mathrm{~K} \times 8$ Eprom
* On board expansion for additional $161 / 0$ lines
* Memory may be expanded to full 60K (plus 4 K existing on board)

SOFTWARE FEATURES

* $1 K \times 8$ monitor program providing
* 8 operating commands, supporting Mem examine/modity, tabulate. copy
break, single step, executive, tape, load, tape dump.
* Reflective monitor addressing for flexible monitor expansion through user programs
- Monitor sub-routines include - delay ASCII coding, binary to hex conversion, clr screen, scroll up, string print, cursor shift and many others.

EXPANSION

- Expansion buffer board
* Memory board. with decoders and all hardware except memory ICS
* 4 K dynamic memory ICS
- 8 K dynamic memory ICS
$£ 25.00$
$£ 35.00$
$€ 35.00$
$£ 36.00$
$\mathbf{6} 60.00$
* 32 K dynamic memory ICS
€ 144.00
* I/O board with decoders and all hardware except ICS
$£ 35.00$
- Sae forful up to 3 PIOs, 1 CTC and 1 UART
- S a e for full expansion details

OTHER HARDWARE

* 2.2A power supply for up to 4 K expansion.
* 8A power supply for larger than 4 K expansion
« Expansion card frame
- Hardware \& software manuals (supplied in kit)

$\varepsilon 24.50$

$E 45.00$
529.50
$£ 3.50$
£3.50
$£ 2.95$

Add VAT at 8% on all iteme except manuala

Manuals
Separately E2.95

Complete Kits NOW IN STOCK
£197.50
+VAT 8%
POST PAID

Sole Appointed London Stockists

ETI MARKET PLACE

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high.

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1 100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display, AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim / Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's. no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9-minute 'snooze' switch is located at the top.

(Inclusive of VAT and Postage)

An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxiord Street
London WIR IRF
Please lind enclosed my cheque PO for $£ 8.95$ (payable to ETI Magazine) for a Unik Time Oigital Alarm Clock.

Name
Adress \qquad

LCD Watch

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes press the button once and you'll get the date (American style). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year.

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:

LCD Watch Offer
ETI Magazine
25-27 Oxford Street
London W1R 1RF
Please find enclosed my cheque/PO for $£ 9.95$ (made payable to ETI Magazine\} for my LCD Digital Waich.

Name
Address

Please allow 14 days for delivery

WHY PAY MORE?! MULTI RANGE METERS TyO TRIAC. \qquad 	VARIABLE VOLTAGE TRANSFORMERS Carriage extra INPUT 230 v. A.C. $50 / 60$ OUTPUT VARIABLE 0/260V. A.c. bRAND NEN. All tyoas. $200 \mathrm{~W}(1 \mathrm{Amp}$) tried A / C $0.5 K V A$ (Max. $2 \% / 2 \mathrm{Amp})$ $\varepsilon 14.50$ $\varepsilon 17.00$ 1 KVA (Max. 5 Amp) 3 KVA (Max. 15 Amp 10 KVA (Max. 50 Amp$)$ 15 KVA (Max. 75 Amp$)$	GEARED MOTORS
0 to 60 MINUTES CLOCKWORK TIMER. inc. VAT \& P) \qquad	LT TRANSFORMERS Vat ap $0.6 \mathrm{v} / 12 \mathrm{v}$ at $20 \mathrm{amp} £ 11.85 \mathrm{P} \& \mathrm{P} £ 1.00\{£ 13.88$ inc. VAT \& P) Other types in stock; phons tor enquiries or send sae for leaflet.	FRACMO MOTOR 56 rom 50 ibs inch 240 vac reversible, 0.7 amp 600 grams Price $£ 15.00$ P\&P $£ 1.50$ ($£ 17.82$). inc. VAT N.M.S
MERCURY SWITCH Size $27 \mathrm{~m} \times 5 \mathrm{~mm}$, 10 for $\mathbf{~ 5 . 0 0}$, 0 otal including IAT £5.72. Min quanlity 10.		A.E.G. WATER PUMP 40 galls per min at 10 ft heading approx ping per ar for light viscosity liquid Dozens of uses insetf-priming. Price. Nole this pump is not 75ρ P\&P (E17.01 inc. VAT \&P) N.M.S
$\begin{aligned} & \mathbf{2 3} \\ & \text { AS } \\ & \text { AS } \\ & \text { Powt } \\ & \text { write } \\ & \text { prie } \end{aligned}$		
	COMPRESSOR \qquad ype producing 20tbs Plus P.S.I per head 3.5 plus Suirable transtormer for $230 / 24$ $£ 1.00$ (inc. VAT £9.72.) N.M.S \qquad	
		$\begin{gathered} \mathrm{cHp} \\ \substack{1044 \\ 1 \\ \hline} \end{gathered}$
VORTEX BLOWER AND VACUUM UNIT Dynarnically talanced iotally encloged 9 rotor with max air delivery of 1.5 cubic metres per min. Max. static pressure 600 mm W.G. Suction or blow from 2 fitted to base of unit Powerful continwously with fixing facilities. Dimensions alloy base $22 \mathrm{~cm} \times$ width $25 \mathrm{~cm} x$ heligh: 25 cm . These units are ex-equipment but have had minimum use. Fully tested Suitabie transformer for $230 / 240$ va.c. $£ 6+£ 1$ P\&P($£ 7.56$ inc VAT \& P). P).		
		VENNER TYPE'ERD TIME SWITCH $200 / 250$ A.C. $30 \mathrm{amp} .2 \mathrm{on} / 2$ olf every 24 hrs at any manually pre-set time. 36 -hour spring reserve arid day ormiting device. Built to highest Electricity Boarspecification. Price $£ 7.50$ P\&P 750 ($£ 9.1$). R \& T
$\begin{aligned} & \text { CENT } \\ & \text { Smenty } \\ & \text { Ant } \\ & \text { Antro } \end{aligned}$		
	WIDERANGE OF DISCO LIGHTING EQUIPMENT S.A.E. (Foolscapl tor deezails	
NI-CAD BATTERY 		A.C. MAINS TIMER UNIT pole switch, which can be preset for any period up lime from 10 mins 106 hrs then switch off. An rated. Ideal for Tape fecorders. Lighis. Electric $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}$. Price $£ 2.25$. Post
Miniature UNISELECTOR E2. 50 P8P 35 Sp \| 13.08 in	 	POWER RHEOSTATS
MICRO SWITCHES Sub min lever $\mathrm{m} / \mathrm{switch}$ type MML46, 10 for $£ 2.50$. Type $3: 15 \mathrm{M} 906 \mathrm{~T} 10$ for $£ 2.50$ post paid ($\mathbf{2} 2.70$ in $\mathrm{Bi}_{1} 9$). BF lever operated 20a. c/o. int. Unimak USA 10 for $\mathbf{C 4 . 0 0}$ plus 50p Ped (min. order 10) ($£ 4.88$ inc. VAT \& P) esistance contacts. 10 for $£ 2.50$. P\&P 300 . Total inc VAT $£ 3.02$ (min 10). N.MS 10). N.M.S	 12V $3 \mathrm{c} / 07 \mathrm{amp} 11$-pin, £1.35 ($\mathbf{~} 1.67 \mathrm{inc}$. VAT \& P). 24 V . Sealed 3 P\&P on any Relay 20 p. Other types available - phone for details.	continuously rated vetion, vitreous ehamel 25 WATT $10,25,100,150,250,500,1 \mathrm{k}, 1.5 \mathrm{k}$ ohm e 2.40 Pos 200 (£2.81 inc VAT \& Pl EOWATT 100.500 . 1 kohm E2.80 Post $25 p(£ 3.40$ inc. VAT \& P). 100 WATT $/ 75 / 10 / 25 / 50 / 100 / 1$ $250 / 500 / \mathrm{lk} / 1.5 k / 2.5 k / 5 k \mathrm{ohm} . £ 5.90$ Post 35 p (£6.75inc Black SHver Skirted Knob calibrated in Nos. 1-9. $1 / 2$ in, dia brass bush. Ideal tor above Rheoslats. 24p en. \qquad
	RESET COUNTER 230 vorts AC digins mig Veader Roor type 1/ 144 LE E1.75 PGP 25 (E2. 18 inc. VAT \& P) 	600 WATT DIMMER SWITCH Easily fitted. Fully guarenteed by makers. Will control up to 600 w of lighting except fluorescent at mains voltage Complete with simple instructions $£ 3.35$ Post 25 p ($£ 4.53$ VAT \& Pj
	INSULATION TESTERS (NEWW) \qquad suitable for bench or helid work, constant speedclutch. Size $8 \mathrm{in} . \mathrm{W} .4 \mathrm{in}$. H. 6 in .. weight 6 lb 500 VOLTS 500 megohms E55.00 Post 80 p ($£ 60.26$ inc. VAT \& PI SAE Ior	ROTARY VACUUM Aif COMPRESSOA B PUMP Carbon vane oit free vacuum pump and compressor. Approx. 20 inch vacustm, 10 PSI ai 79 CFM. Powered by 110 V ac. 18 amp Parvaluy capacitor $£ 14.00$ ptp $£ 1.50$ ($£ 16.74$ inc. VAT + psip). Sutable transformer for $230 / 240 \mathrm{~V}$ a.c operation E5.00 p\&p 100 N.M.S.
240 A.C. SOLENOID OPERATE FLUID VALVE Rated 1 ps.i. will handie up to 70.5 .1 . Forged brass body, stainless steel core and spring y / z in b . s.p. inlel PRICE $£ 3.50$ Post 50 ($£ 4.32$ inc VAT \& P).		Yet another outstanding offer New MMFO Goovidubuier wire ended capacito ors 10 Oor E1.50 pap 50 . ($\mathbf{(1 2} 16 \mathrm{inc} . \overline{\mathrm{VAT}}+\mathrm{pap}$). (Min 10
PARVALUX 230/250Va.c. MOTOR Type SD 18240 NAC reversible 30 rpm 50 libs inch Price £ 15.00 P\&P E1. 50 (E17.82 inc. VAT). N.M.S		
	VICE TRADING SHOWROOMS NOW OPEN AMPLE PARKING	9 little newport street LONDON, WC2H JJJ Tel.: $01-4370576$

POWER BULGE!

Astound your ears and annoy your neighbours with four times your normal sound level, courtesy of the ETI Power Bulge.

POWER AMPLIFIERS COME in
all sorts of shapes and sizes, most small groups rely on 100 W types as they are widely available and relatively cheap. Even though the people next to the speakers think the sound is loud enough the performers usually want more power. The simple solution is to buy more powerful amplifiers - but it can be a lot cheaper to buy two less powerful ones.

The 'Power Bulge' is designed to be used with two low power amplifiers, and produce not just double power but four times the power of the seperate amplifiers! The reason for the apparent power gain is that the voltage finally produced at the loud speaker decides the power - and power is proportional to the square of the voltage.

Construction and Use

The prototype was built into a small Verobox. As large signals are involved screening in a metal box was not needed. The box size dictated the battery type, if you want to use a PP3 or other battery obviously a larger box will be needed.

When completed you need two power amplifiers (preferably of the same type) to use the unit. A normal stereo amplifier is ideal, if it has a tape monitor switch. A signal is taken out from the preamplifier and fed back into the power amplifier section (via the tape input if fitted). The loudspeaker is connected across the two positive speaker terminals as shown.

Fig 1. On the left is a.diagram showing the input and output waveforms from the Power bulge, as can be seen the two outputs (A and B) are 180° out of 'phase with each other. Above right is how to connect the unit to any stereo amplifier, the lower circuit shows additional components suggested to stahilise the speaker load.

-HOW IT WORKS

The idea of the unit is to produce two waveforms 180° out of phase. This is accomplished by Q1. The balance between the two waveforms is equalised with RV1. The three 10u capacitors are to AC couple the signal and C4 is to decouple the battery.

BUYLINES

No problems here, the case is stocked by most component outlets; the battery is available from photographic shops if not stocked by your friendly neighbourhood electronics shop.

Fig. 1 Full circuit diagram

Fig. 3 PCB patterns shown full size

Understanding Digital Electronics New teach-yourself courses

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers
The contents of Design of Digital Systems include:
Book 1 Octal, hexadecimaland binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates. NOT, exlusive OR. NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM ; address decoding: instruction sets; instruction decoding; control program structure
Book 6 Central processing unit (CPU); memory organisation: character representation; program storage; address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and tirne sharing.

Digital Computer Logic and Electronics is designed for the beginner No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDGE LEARNING ENTERPRISES. UNIT 11, RIVERMILL SITE, FREEPOST. ST. IVES, HUNTINGDDN, CAMBS. PE17 4BR. ENGLAND

TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES REGD. IN ENGLAND No. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you
The six volumes of Design of
Digital Systems cost only:
And the four volumes of
Digital Computer Logic and
Electronics cost only:

+90 p. post $\&$ packing

But if you buy both courses, the total cost is only:

Price includes surface mail anywhere in the world - Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT

safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions

THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size A5, 130 pages. This book is a MUST for those with things to say

£2.95

+45 p post $\&$ packing by surface mail anywhere in the world. Airmail extra

GUARANTEE

If you are not entirely satisfied your money will be refunded

Cambridge Learning Enterprises, Unit 11 , Rivermill Site,

 Freepost, St. Ives, Huntingdon, Cambs. PE1 7 4BREngland.
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5.50, p \& p included
sets Design of Digital Systems @ £9.00. p. \& p. included
Combined sets @ £13.00.p \& p included
The Algorithm Writer's guide @ £3.40.p \& p included
Name

Address

I enclose' a 'cheque/PO payable to Cambridge Learning Enterprises for $£$
Please charge my *Access/Barclaycard/Visa/Eurocard/ Māstercharge / İnterbank account number
Signature
-deleted as appropriate
Telephone orders from credit card holders accepted on 048067446 (ansafone). Overseas customers should send a bank d̊raft in sterling drawn on a London Bank.

BARREL TYPE X-Y PLOTTER ASSEMBLY

X-Y PLOTTER ASSEMBLY

PAPER TAPE READER ASSEMBLY

BARREL TYPE X-Y PLOTTER ASSEMBLY

120 V Stepping Motor. Provision for Pe

(Pen not supplied). AS PICTURE $\mathbf{5} 55$ ea. With alternative motor for non-reversible requirements recorder/printer applications With Pen. Sprocket and Paper guides $£ 88$. Other voltage options available. P\&P all Other voita
units E2. 50

X-Y PLOTTER ASSEMBLY

Consisting of frame with $\times \& Y$ assemblies
(No pen but provision)
 Motor options 120 V only $£ 43.45$ ea. 120 V
(can be changed to $12 / 24 \mathrm{~V}$ data suoplies
 versions $£ 2.50$

OSCILLOSCOPE TUBES

Brand New Boxed - Carriage all tubes $£ 3.25$ Telequipment S52. $£ 10$ ea: D51 $£ 15$ ea; S42; $£ 10$ ea; D53A. $£ 20$ ea; D52, £15 ea; S31, £10 ea; Bradley 200, £85 ea; Advance $O S 3000$, $£ 85$ ea; GEC types $924 \mathrm{~F}, £ 25$ ea; 924 E , £17.50 ea; $1496 \mathrm{~B}, £ 75$ ea; Brimar D13.51GH, £65 ea: D10-210GH/32. £40 ea; 13-46GM, £35.ea. NOT BOXED- NEW - WARRANTED. Telefunken D14-131 replacement for Solanron CD1 740 Cossor CDU150, S.E. labs
SM112 and GEC/MOV 1474 at 555 ea

BUILD YOUR DWN BUS

Approx $1 / 2$ metre multiway ribbon cable terminated each end with a 50.way temale
board $\mathbf{E 2}$ ea. P\&P 75 p .

NOW - INCREASE AREA GIVEN TO PICK-A-PACK AT 50p per lb
Large volume of new'components you can't afford to miss
TELETYPE ASR33 with $\mathbf{2 0 m a}$ loop. Good condition. Special low price £ 395 ea

$1 / 2^{\prime \prime}$ MAG TAPE

Approx. $1,500 \mathrm{ft}$. Now 20p each. P\&P E1 Or 7 for E1. Carr E3. 25.
FOR THE VDU BUILDER tube M $28.13 \mathrm{GH} 23 \times 17 \mathrm{~cm}$ at $£ 12$ Base connections supplied.
PLESSEY VDU. No keyboard - weird electronics $\mathbf{£ 6 0}$ ea TELETYPE KSR33 from $£ 275$ each.
Limited quantity of $35 R 0$ - 20 ma loop - can be changed to ASC11 code (3 hours' simple work and $£ 10$ parts) OUR PRICE
EXCLUDING PARTS REQUIRED $£ 70$ ea.
Ex-Ministry Teletype Punches 8 level 110 char per sec $\mathbf{E} 50$ each AMPEX TM7. Nice condition E225
Polished Wooden Cases to take normal 'OWERTY' KEYBOAROS or can be carefully cut to take any size $£ \mathbf{3}$ each. P\&P $£ 1.50$.

$74 S 00$	12p	$74 S 10$	5p	$74 H 51$	7p
7401	5p	7417	14p	7453	5p
$74 S 02$	12p	$74 S 38$	10p	$74 H 74$	12p
74504	12p	7451	5p	$74 S 74$	12p

75325 - Memory Core Drivers. 600 ma capability. Fast. Other uses. RIDICULOUS at £ 1 ea.

AUDIO AMPLIFIER BOARD. Size $41 / 2 \times 21 / 2$ Output pair of
TIP31s. Circuit supplied £1.50 ea. P\&P 30p
DIGITAL 24 -hour CLOCK with built in Alarm as used in Braun
Digital clocks. Silent running. Large illuminated numerals. AC
mains. Size $63 / 8 \times 23 / 1 / \times 23 / 4$. Only E4 25 ea. P\&P 50p

ITT-CREED

Punches and Prints on $7 / 8$,
paper. Complete with Power
paper. Complete with Power
Supply Solid State Size $15 \times$
Supply Solid State Size 15
$111 / 4 \times 22^{\circ}$ deep $\mathbb{E} 13$ ea.

5 LEVEL PAPER TAPE READER
Reversible. Small size
approx. $5 \times 3 \times 4 E 2$ each P\&P E1

* TRANSISTORS/DIODES/

RECTIFIERS, ETC. \star

Guaranteed all full spec devices. Manufacturers

 Markings.At 5p each
BC147: 2 N3707; $\mathrm{BC} 172 \mathrm{~B}: \mathrm{BC} 251 \mathrm{~B} ; \mathrm{BC} 34 \mathrm{BB}$:
 BA102BE: BZX83: TIS61; 2N5040
BA102 BE: B
At $10 p$ each
1 N4733A; SN7451N: BYX10-15KV 0.36A: BYZ.10 15p ea. TIP34A - 50p ea. BD538-40p ea. Heavy Duty Bridge Rectifier - 20p ea CA3 $123 \mathrm{E}-\mathbf{£ 1} 1$ ea. BOY $55-\mathbf{E} 1$ ea 2 N3055 40pea: TIP31B12pea.
TBA560CO £2 ea; 1N4436T-T03 Flat mount 10A 200 piv £ 1 ea 2 N5B79 with 2 N5881 Motorola 150 W Comp, pair $£ 2$.
BD5 55 BD538 Comp
8D535. BD538 Comp pair - 75p
Linear Amp 709-25p ea
P\&P Extra on all - 25 pea.
FINNED HEAT SINK
FINNED HEAT SINK - single TO3 - size $43 / 4$ in x
Texas Bridge Rectifier 5SB05-50V 5A. 60p ea P\&P 20p
MOTOROLA POWER TRANSISTORS type
WO993/441 TO3 Min voltage 500 20p ea P\& 15p.
BFY51-12p
BU208 E1. 20 ea. P\&P 15 p
CABLE NEATERS - neaten up your wire on á chassis with these push-on clips. 10 for 20 p. 100 for $£ 1.50$ P\&P extra.

TELEPHONES. Post Office style 746 Black or two-tone £6.50 ea. Modern style 706 8lack or twotone grey $£ 4.50$ ea. P\&P $£ 1$ each. Old black style £ 1.50 each. P\&PE
HANDSETS only 706 style $£ 1.75$ each. Older
style $£ 1$. P\&, 750 style \&1. P\&P 750
TELEPHONE EXCHANGES. Eg 15 -way automatic exchange only from £95.

* 1000 F Feed thru Capacitors 10 for $\mathbf{3 0 p}$. P\&ip 15 p.
HIVAC Miniature NEONS App 60 V Brand New 10 off 20p. P\& extra.
GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plastic $15 p$ ea. P\&P 10p.
LARGE RANGE OF ELECTROSTATIC VOLTMETERS. From 0-300V $2^{\prime \prime}$ £3, to 20 KV max
 DON'TFORGET YOUR MANUALS. S.A.E with requirements.

POWERFUL MINIATURE GERMAN 12 V REVERSIBLE MOTOR. No load current 70 MA Shaft $5 / 16 \times$ approx $1 / 16$ dia 50p Shap

A MILLION MUST GO

DUAL IN LINE 16.PIN CERAMIC. 12 V Rail Con. ventional TTL package. Guaranteed full spec devices. Full data. 2pea
MIXED PACKAGE - E1 P\&P $25 p$

LOOK AT THESE PRICES

BURROUGHS 9 digit PANAPLEX numeric display. 7 segment 0.25 digits with red bezel. With data $£ 1.95$ ea. P\&P 30 p MINIATURE NIXIE TUBE type ITT 5870 ST. Digit size 0.5 Wire ended. 50 p each. P\&P 20 p . 4 for $£ 1.75$ P\&P 35 p TRANSFORMERS 115 V AC input. Secondary 30 V and 2.6 V IOVA 50p ea. P\&P 50p.
CALCULATOR CHIP. GENERAL INSTRUMENTS type GIMT4 with Data. E1.60 ea. P\&P 20 p
21-WAY SELECTOR SWITCH. Single pole with reset coil 240 V AC coils. Additional switch contacts for auto reset etc. 21.45 ea. P\&P 75p

As ABOVE with additional 240 V relay on base plate and full black plastic cover £ 2.45 ea. P\& P $£ 1.50$
SNAIL BLOWER Developments. Quiet and very 500 MA. Brand new by Airflow POTTER \& BRUMFIELD 18-48V DC Relay 3.50 ea. P\&P El Duty. Plug-in type with base 50 p ea P\&P 25 p
MINIATURE KEYBOARD. Push contacts, marked 0-9 and A.F and 3 user definable keys. $£ 1.75$ ea. P\&P $35 p$
MULLARD CORE LA 4245 at 15 pea. P\&P $10 p$
CLARE REED RELAYS 24 V DC Coil. Single pole make Size $11 / 4^{\prime \prime} \times 7 / 16^{\prime \prime} \times 7 / 16^{\prime \prime}$ at 25p ea. P\&P 10 p .
ROTRON CENTAUR FANS
ROTRON CENTAUR FANS. Size $4.5^{\prime \prime} \times 4.5^{\prime \prime} \times 1.5^{\prime \prime} 115 \mathrm{~V}$ 5-blade £4 ea. P\&P $75 p$
Min. PLUG-IN type RELAYS. Plastic covers. 2-pole c/o 24 V 25p ea. P\&P 15p.
CROUZET/MUR
CROUZET/MURTEN SCHWEIZ MOTORS.
'Pm. Gearbox can be removed 75 e ea P\&P $75 p$.
'pm. Gearbox can be removed. 75 p ea. P\&P 75 p .
FRAMCO MOTORS. 115 V 50 HZ input FRAMCO MOTORS. 115 V 50 HZ input single phase. $1 / 12$ th
HP; 1450 rpm ; on silent mount. As new E2.75 ea. P\&P E1.75. PYE DYNAMICS THICK FILM 1 MHZ Clocking Oscillator. 5 V supply. Size $19 \times 25 \times 6 \mathrm{~mm}$. Drives one TTL load. 72p ea P\&P supply
15 p
COM COMPRESSOR UNIT. Compact. 115 V 50 HZ single phase 15 A continuous 1425 rpm . Outside piston housing approx. $3^{\prime \prime}$ MAGNETIC DEVICES. Plug-in RELAYS 240 V AC. 3 -pole $\mathrm{c} /$ Heavy duty 10 amp. Complete with base. Ex-brand new equipment. NOT USED 3 on sub assembly $£ 2.50$ P\&P $£ 1$ or SMAL ea. P\&P $45 p$.
SMALL MANS TRANSFORMER 240 V Pri. 12 V 100 MA sec G.I. BRIDGE RECTIFIER FAIRCHILD FND10 7 segment (ideal for above) 17p ea cathode 65p ea. P\&P 15 p. Info supplied
MULLARD TUNER MODULES - with data
LP1171 combined AM/FM IF strip 10.7 MHZ £ 3.50 ea
LP1179 FM front end with AM tuning and B7.4MHZ to 104.5MHZ tuning, 10.7 MHZ IF. $£ 3.50$ ea. P \& P 50 p each unit. The Pair £5.75 P\&P 75p.
POWER UNIT MODULE
POWER UNIT MODULE containing 2 small, 3 med. \& 1 large ferrite cores; 3. TO3 power transistors, caps, resistors, high
powered diodes, 9 transistors, 3 min fuse holders, etc. $£ 1.50$ ea P\&PE1.25. P\&P 1.25
GENERAL
GENERAL ELECTRIC OPTO-ISOLATORS type H15VX504 65p ea. P\&P $15 p 10$ for £5. P\&P \& 1
ROTARY SWITCHES. 250 V 10 A 10p ea P\&P $15 p$ LEDEX ROTARY SOLENOIDS 115 V DC. No switch assembly, 25pea. P\&P 25p
POTTER \& BRUMFIELD TIMER RELAYS. 24 /48V Heavy duty 2 -pole $\mathrm{c} / 0$ with 5 secs delay at 48 V increasing with voltage reduction. Timing can be altered by changing value of resistor/ capacitance 50 ea. P\&P 25 p.
AMPHENOL 17 -WAY CHAS
AMPHENOL 17-WAY CHASSIS MOUNT EDGE CONNECTOR. 0.1 spacing. 20p ea. Psp extra
Brooke Chompron Pa Parkindon extractor fan assem bly 115 V operation £1 ea. P\&P £2. OR TWO for £1.50 Carr.
£3.25.

Minimum Mail Order £2. Excess postage refunded. Unless stated - please add £ 3.25 carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./ Educational Depts., Authorities, etc., otherwise Cash with Order

7/9 ARTHUR ROAD, READING, BERKS (rear Technical College, King's Road). Tel: Reading 582605

PIRATES AND JOLLY NOTCHES!
 IT WAS ONLY a few years ago that private or bootleg versions of Bob Dylan's Basement Tapes and Pink Floyd's Dark Side of the Moon, sold like the proverbial hotcakes, along with a host of others.
 These recordings blatantly advertised the fact that they were pirated, and thus of illegal origin - transgressing not only performer's rights but also copyright. Many people were attracted to pirate recordings for there seemed to be something rather exciting about owning a recording which the artist did not approve. Often, the pirate recordings contained material not released on genuine recordings, or were of concert performances which often differ markedly from studio performances. Quality was almost inevitably low-fi!
 Through a combination of circumstances, these bootleg recordings gradually disappeared from the market. Groups employed stewards to hunt through audiences looking for tape recorders, legal prosecutions were brought against bootleg distributors etc. Finally, high prices for low-fi killed the market.
 New Track
 Recently, however, the pirates have changed tack and are presenting recordings that are either made to mimic legitimate releases on well know labels or to appear like legitimate competition. For example, a recording stolen from EMI may either be packaged to look like an EMI recording, or packaged in a sleeve with an authentic-sounding company label, but not that of an authorised EMI trader. In neither case does the artist, EMI or anyone else (save the bootlegger and his outlets) receive any reward.
 Those recordings that mimic legitimate releases are

 If record companies had their way, each disc or pre-recorded tape released and sold to the public, would self-destruct, refuse to play or produce unacceptable sounds if copying was attempted.
 To date, anti-copy remains an impossible dream. Inventors still tackle the problem, the cash rewards for a workable system would be enormous. Inevitably, one red-herring scheme keeps being re-invented
 Back in 1967 /68, the Beatles' Electronics Company, Apple, leaked a story about three patent applications on a new anti-copy system. Any attempt at recording a disc pressed according to this system would result in a high-pitched whistle they claimed. The idea attracted a certain amount of attention, but, in time, the patent applications were allowed to die, along with the publicity and Apple Electronics disintegrated.
 Although details of the idea remain a secret, the system probably involved recording an ultrasonic carrier frequency on the disc. Thus, at any attempt to put the

usually a straight, undoctored copy of the original, with slightly reduced fidelity. When released on a phony label, often the recording is altered in the trarisfer to disguise its origin, usually by dubbing applause or extra instruments onto the copy.

The problem arises here in that both these techniques are far harder to detect and prove as bootleg than the previous methods. The British Phonographic Industry (the UK recording industry trade association) have taken numerous court actions, with some success, resulting from pure detective work.

Self-Destruct

However, the final solution to professional piracy relies on technological aids. This can be achieved by either making the physical act of illegitimate copying technically impossible, or to make the technical detection of such copying unambiguous. Unfortunately, despite considerable efforts, little real practical headway has yet been made in either of these directions.
disc material on tape the carrier on the disc would beat with the tape recorder's ultrasonic bias signal and impress an audible signal on the tape.

In this way, two inaudible frequencies are combined to produce an audible frequency which destroys the recording attempt.

A little thought shows the snags in the system. To produce an audible beat with the very high bias frequency used on tape recorders (around 70 kHz or higher) requires that a similar signal be recorded on the disc. The studio cutting machine won't cut it, the factory pressing machines won't press it and the would-berecordist's cartridge wouldn't reproduce it.

It is also easily filtered out at any stage of the production chain, either intentionally or otherwise, with no loss of quality, because the carrier signal is inaudible anyway. Different tape recorders have widely different bias frequencies which also defeats the system.

The drawbacks are enough to discourage further reinvention of this system and doubtless account for the demise of the Apple patents.

There is another daunting aspect to anti-copy systems. It is likely that if anyone does devise a system that will prevent the copying of a disc or tape onto existing tape recording machines, the recorder manufacturers will soon devise a defeat button or circuit to make copying possible again.

Watermarks

Anti-copy systems appear defeated for the moment. However, the concept of an indelible watermark on the recorded sound appears somewhat less fanciful.

As with anti-copy, watermark systems have gone through numerous futile reinventions. The aim is to record an inaudible identification signal along with the recorded sound. The watermark signal is inaudible to the listener when the disc or tape is played on conventional equipment, but it can be identified or decoded by special equipment.

Ultrasonic (high frequency) and infrasonic (very low frequency) watermarks have similar limitations to the anti-copy schemes. For this reason, it is essential to adopt a sledge-hammer approach to prove the origin of copied material. One such attempt, by Capital Radio who recently broadcast some previously unpublished Beatles tapes, involved putting a loud station ident ('194') over the recording every few seconds. Thus, if ever a bootleg recording is issued, its origin will be audibly stamped all over it! With the station ident so loudly intrusive there would likely to be little incentive anyway.

Notches

There is another approach which a number of recording companies are seriously considering. This is the Audicom system invented by Murray Crosby.

It was originally intended for collating automatically the number of times a commercial was transmitted on ? radio or TV station, for accounting and statistical purposes.

The system works like this: At a frequency around 2-3 kHz , a tight notch filter with a very narrow bandwidth (around 100 Hz) bites a small chunk out of the audio spectrum. At the same time a binary code watermark signal is modulated onto an audio frequency subcarrier of the corresponding frequency and bandwidth so that it fits neatly into the window left by the notch filter. The amplitude of the subcarrier frequency is varied so that it

tracks the audio level of the surrounding programme. In this way, the coded identification signal is always submerged by the programme, but it is still recognisable by a decoder tuned to the narrow band notch frequency and designed to interpret the digital information modulated on the subcarrier.

Sounds like a great system for discs and tapes. However, several difficulties arise. If, for instance, the coded subcarrier is at such a low level, might it not be lost in noise after transmission or the copying process? This is one area which EMI, RIAA and others are investigating. Even if they get results, we are not likely to read, or hear about. Because, if the system is adopted, it would not be prudent for the record companies to indicate the level at which noise destroys the code.

Sub-Noise

One set of technical specifications indicates that when the programme audio level is zero, the subcarrier coded signal will be 55 dB below the peak level the carrier would be at peak audio programme level. When the programme audio is at peak level then the audio subcarrier in the notch will be 40 dB below the programme level. Thus, the subcarrier is always submerged by the programme but would still be detectable by a decoder tuned to the narrow band notch frequency so that the digital watermark code is recognisable by the digital decoder.

토

MK14-the only low-cost keyboard-addressable microcomputer!

 MK14 Microcomputer kitThe MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit -for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid It's been designed forpractical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8 -digit, 7 -segment LED display
* 512×8 Prom, containing monitor
program and interface instructions
* 256 bytes of RAM
* 4MHzcrystal
* 5 V stabiliser
* Single 6V power supply
* Space available for extra 256 byte

RAM and 16 port //O

* Edge connector access to all data lines and I/O ports
Free Manual
Every MK14 Microcomputer kit includes a free Training Manual. It contains

The new Science of Cambridge
 operational instructions and examples for training applications, and numerous programs includingmathroutines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4-part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to ΠY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years ... there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman. Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purely mechanical forms of control systems.

The Science of Cambriage MK14 Standard Microcomputer Kit allows youto learnmore about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the . price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,

6 Kings Parade,
Cambridge,
Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd,
6 Kings Parade, Cambridge,
Cambs., CB2 1SN.
Please send me an MK14 Standard Microcomputer Kit. I enclose cheque/ Money order/PO for $£ 43: 55$ ($£ 39.95$
$+8 \%$ VAT and 40 p p\&p).
Allow 21 days for delivery

QUEEN

KING

BISHOP

KNIGHT

PAWN

TELEVISION

TOLINKA IS A device which is genuinely useful to the chess-player, performing automatically all the housework of listing, analysis and filing of chess information. It is not like a TV game, nor is it one of those machines which plays chess from an internally stored programme, which is little more than chess-like solitaire.

The project is based on a SC /MP MPU, which with some RAM, ROM and various support ICs performs all the work that goes on in this chess players comfort. Don't be worried by the mention of the term MPU - to use Tolinka you won't need to think - or curse - in Hex, manipulate machine code and be generally au fait with ALUs. The machine has been designed to be both straightforward to use and to build

Design Philosophy

Tolinka was designed with cost and availability in mind. When a function could be performed by a few, cheap adily available parts instead of one ecial expensive chip, the former urse was taken. The chess set, for
example, appears to have been made from Leqo bricks. If a chàracter generator ROM with more bits in it had been used in conjunction with a highspeed clock, a chess set which would have met the approval of Lewis Carroll could be produced (though I suspect that gentleman would like the present one). If you have sufficient memory, then you have sufficient resolution to transmit pictures even of Raquel Welch digitally, but no intelligence would be added by this course in spite of the doubled cost - faster memories, more power, bigger box etc

The piece design has been subjected to much consideration and choice became; in the end, a matter of taste. The intention is to represent a Staunton Chess Set without conflict of symbolism or departure from family likeness. It is true that representations are not beyond reproach and any suggestions will be welcomed

In each square 128 bits are available, eight horizontal and sixteen vertical divisions. A border must be left around the piece -

CHESS PART ONE

> Tolinka, the name coined by Victor Korchnoi to describe this machine that can display a full chess set on the TV screen. The pieces may be moved around at will, and all the moves of a game recorded on a cassette tape for later playback and analysis. Barry Savage, the designer, describes this secret weapon of the West.

BUYLINES

A complete kit of parts for this project will be available only from Videotime Products, 56 Queens Road, Basingstoke, Hants, RG21 1REA for the all inclusive price of $£ 109.50$.

Individual parts are also to be
made available but Videotime will offer help, advice and a repair service only to readers who purchase the complete kit. Note also that software, piece design PCB pattern, etc, are subject to copyright.

PAWN
partly so that identification of the square's colour may be made. So a six by thirteen grid is left. With the exception of the pawns it is thought more uniform if the pieces stand upon a level base. The major pieces are bilaterally symmetrical (both halves the same, if you must), the centre of each of the major pieces is therefore a double column.

The Facts Of Life, Or, How Little Computers Are Made

Son, it is time you were told about the birds and the bees. The creation of computers like the creation of new human beings depends upon the combination of hardware with software. Unlike humans, however, the labour involved cannot be said to be unskilled. Once Tolinka had a mother system to which it was joined by an umbilical cord of wires through which was fed power and information.

During this time of gestation Tolinka's programme was undeveloped and volatile. It was stored on cassette tape whilst the
inventor was not working on it. The instructions were entered in Tolinka's surrogate memory from a hexadecimal keyboard, because little computers do not use ASCII or high level languages which do not use memory space in the most economical way. The author did not use assembly language either because continuous conversations with an MPU in machine code soon render even this mnemonic aid superfluous.

The whole purpose of parenthood lies in teaching the offspring how to manage without parents: little birds are taught to fly alone. So Tolinka's mother system eventually generated Tolinka's software package in the form of a PROM and worked herself out of a job. The umbilical cord was severed, a separate power supply constructed, and Tolinka set up house alone in a small box instead of a $19^{\prime \prime}$ card frame.

The first prototype circuit boards were made. And modified. And made again. Etc. Until a version of Tolinka was made which represented all of the most desirable features that it was possible to get into the available

KNIGHT

memory space. But even now there is more than one software package available and the machine which is in use by Viktor Korchnoi's team is different in certain essential respects from that which is used on the World Championship reports or on the BBC 2 late news.

Further obstetric details and examination of the parent system would form another story.

Tolinka is a Microcomputer

Tolinka is a box measuring $8^{\prime \prime} \times 5^{\prime \prime} \times$ $3^{\prime \prime}$ with a 12 switch keyboard, a DIN socket to interface a cassette recorder and UHF output to drive a domestic TV set.

The picture is in black and white. Why do people keep asking if it can be done in colour? They never ask for yellow and green chessmen. Yes, it can be done in colour, but it isn't as experience with video games has shown that monochrome is easier on the eyes - this remark can be justified by many quotations from manufacturers. Monochrome sets also have wider bandwidth and better resolution.)

What follows is a description of how to use Tolinka - when everything else has failed you might try reading it

When connection has been made with the TV and cassette recorder, the TV must be tuned to receive a stable picture. If there is a push button tuner, one of the buttons may be left tuned to Tolinka. The output signal Tolinka is producing is assembled from digital waveforms in a preset fashion and there are no adjustable controls. If the TV is overscanning and losing some of the picture it must be adjusted by someone who knows what he is doing. A TV which is set up correctly does not lose any intelligence, but the chessboard sits rather high in the frame and slightly right of centre so that the status information shown on the left of the board may be seen.

On switching on the pieces appear correctly set for the start of a game. On the left of the picture a two digit move number appears with an arrow indicating which player is to move. It is important to remember that Tolinka always considers the move number as having two digits. If the number is less than 10 it has a leading zero.

Making A Move

Tolinka works by moving the contents of one location in memory to another i.e. the contents of one square to another. The eight move-entry keys are divided mnemonically into two groups, kingside / queenside, and labelled both alphabetically and numerically on the standard 'alpha' chess notation system.

Moving A Piece

Four keystrokes enter a move. d2d4 is a move. b1c3 is another. When the machine has received a total of four keystrokes it will 'flash' the move on screen, moving the piece back and forth three times. This is not yet a permanent move, it is the machine inquiring about you intentions. If you are satisfied that the move which is flashing is the move you intended, the MOVE key may be pressed. Tolinka will the make the move final and update the move counter; if it was white's move the arrow will transfer to indicate black is to play next, if it was black's move the arrow will shift to white's end and the counter will increment.

The same keys are used for letters and numbers so it is important to know where you are in the entry sequence. For this reason a STROKECOUNT appears during partial entry at the bottom left of the screen and denotes th number of entry strokes Tolinka has received. If a total entry has been received the location is blank, otherwise it contains 1,2 or 3. The machine will not accept further instructions unless a proper entry has been made: the

STROKECOUNT must be blank on pressing a function key. If the move which is flashed is not the one desired it may be overwritten by a correct entry of four keystrokes. The game does not progress until the MOVE key is pressed. This maintains integrity with the rules of chess, which state that a move is not made until one's hand has released the piece. If there is a partial entry any key may be pressed until the STROKECOUNT clears, then the correct sequence entered

Tolinka will allow you to move anything anywhere and does not care whether you break every rule in the book, except in three special circumstances. It is never necessary to make more than one move, even when Castling, capturing en passant or Queening a pawn. Tolinka presumes that if you move your king two spaces you intend to castle, and completes the move for you. If you put a white pawn on the back rank Tolinka presumes that you want a queen instead. (Tolinka might not be right in all cases. You might want a knight or a rook to avoid stalemate. Of all the people who will use Tolinka for the rest of thier chess lives, there are a few who might meet this eventuality once or even twice. To these unfortunate few we suggest you extend this apology: "Sorry, couldn't you think of it as a knight, just this once?'") If a pawn is moved diagonally into a square where there is no piece to capture, Tolinka presumes and executes the en passant move.

It is not possible to beat Tolinka by fast entry. It is not necessary to wait for the flashing to stop. There is never any point in holding down any key because Tolinka is only waiting for you to let go. Keystrokes should not overlap: one finger entry prevents this. Touch typists should stick to QWERTY keyboards Tolinka, like the calculator, is a woodpecker's tool.

Tolinka runs out of memory after black's move 62. If the game must

be continued then it must be set up as a position - after 62 moves there are not many pieces left. Positions and Chess Problems can be set up my moving pieces without regard to the rules. There is no legal sequence of moves to the position of many chess problems anyway.

The GO TO Function

During the entry of a game the position which is current is always shown. But any other position in the game may be brought to view by pressing the GOTO key followed by a two digit move number. Do not forget the leading zero for numbers less than 10. When, for example, GOTO, 0, 9 has been keyed in the position will instantly revert to the position at white's ninth move, which will flash on screen. Remember then the flashing is interrogation, and a different move may be entered, or if the move is satisfactory the MOVE key may be pressed. Thus it is possible to step through the game, making modifications as necessary, or go instantly to any point in it.

Pressing GOTO followed by a RECALL or RECORD function key brings trouble. Tolinka identifies RECALL and RECORD with a hexadecimal numer greater than 10 . It therefore cannot increment the decimal counter to equal it - but will willingly spend the rest of eternity trying. The only cure is to switch off.

The block diagram of Tolinka. The hardware sections of the design will be described in detail next month.

You see Tolinka starts again at the beginning of the game when the GOTO button is pressed and plays quickly through to reach the requested point. Note that the GOTO key doubles as zero and the MOVE key doubles as 9 .

Tolinka Is A Videorecorder

There is no need to write down a game sequence. Tolinka records chess games on tape. It records them as a three second leader tone followed by a four second data burst which contains the complete contents of the game memory - up to 62 moves by each player. It follows that a single C60 cassette will hold about 500 games. That's a lot of chess!

Recording time is cheap, less than a penny a game, so it pays to keep two copies of all information and use some tape space between games to make them easy to find. If the tape recorder has a counter a written index should be made, if there is no counter then a single spoken number between games is the best system. To record on the tape a description of opponent, event, date, etc., isn't much help in finding a game in a long tape. These comments are for guidance only, and you will no doubt find your own system for using Tolinka.

A detailed description of the software would fill most of this issue of ETI. What follows is an outline of the various sections that go to make up the systems software.

It is not necessary to be familiar with the detailed architecture of the SC/MP MPU on which the project is based to understand what follows. Briefly, however, the SC/MP is an eight bit MPU with a set of 46 instructions covering arithmetic, logical, data transfer and miscellaneous operations.

The SC/MP has four on board 16 bit pointer registers designed PO-P3. SC/MP forms the address of the next program (data) byte it requires by adding (or subtracting) a displacement, which may be zero, from any one of these four pointers. PO is used by the MPU as the program counter while P1-P3 are assigned by the software. A Power on Reset ensures that when power is first applied the MPU starts by examining location one in program memory, the instructions here set these pointers to indicate locations in the memory field which correspond to the chessboard and the game sequence.

The pointer P3 is reserved for subroutines, while Pl is used to indicate both the chessboard and the keyboard, it being set to the boundary between them. A positive value added to this pointer will find the chessboard, a negative value the keyboard. P2 is used to indicate the game sequence.

The first routine used is called CLEARALL which clears all locations in game RAM and board RAM. Clearall is not a subroutine because it will never be needed again. Its purpose is to overwrite the 'garbage' present in RAM when power is first applied.

Next a subroutine is called. The subroutine is referred to as DEBOX. At a location in the program memory is a table of the chesspieces which have been defined according to following codes:

$000=$ Blank	$100=$ Rook
$001=$ Pawn	$101=$ Queen
$010=$ Knight	$110=$ King
$011=$ Bishop	$111=$ Not assigned

These are the lower three bits: if bit four is high then the piece is white, if it is low then it is black. DEBOX takes the pieces from the table and places them in the 64 locations making up Board. Thus the pieces will be set up for a game. The piece codes stored in the Board RAM are used in conjunction with the piece form PROM, which stores the bit patterns corresponding to the various chess pieces, an address selector and various items of hardware to generate the game display. The operation of this section will be discussed next month.
DEBOX is a subroutine because it will be called again from another part of the programme. A part of this subroutine is to set the Move Number back to '01' and the arrow to indicate white has the move.
The next subroutine to be called is EXTRACT. this examines location one in game memory and places information about the current move in temporary storage. This information includes the 'from' square, the 'to' square, the piece being moved and the piece being captured if any. The purpose of storing this information is that it should not be lost in the move flash sequence to be described.

The SCAN subroutine is now entered. A
location called KEYWORD is cleared and SCANCOUNT is set to a predetermined value. Also FLASHCOUNT is set to a value which determines the number of flashes which will be made following a Move writein. Three flashes are considered enough. The SCANCOUNT determines the duration of the the final byte. The serial output is placed high for three seconds to form the Leader Tone and the transmission is made. Each word does not contain eight bits but six, so an asynchronous format is made by setting the first bit in each word to zero and the final bit to one. This corresponds to a start bit and a interval between flashes. These operations are carried out regardless of whether we require a piece to flash or not.

To perform a single scan sequence the keyboard, which is matrixed from four data lines and three address lines is read, all locations at once, and the result examined for non-zero value. This result is stored in the extension register. After a delay of about seven milliseconds the keyboard is read again and the result compared to the first this is to defeat switchbounce. If the result after the delay period is not the same as the first, or both are zero, there has been no valid keypress and control is passed back to the start of the loop. If there is still a non-zero value then the keyboard is examined one line at a time by changing the address location and adding four to the keyword on zero result, to find the row of switches which contains the valid key. When the row has been found the data is shifted out of the end of the register, adding one to the keyword for each shift, until the result is a clear register. At this point the keyword has a value unique to the individual key. Release is then awaited and debounced as before and return is made to the main programme with a keyword for processing.

When first entered the 'from' and 'to' squares will have been set to zero by the CLEARALL routine. This will mean that when the flash sequence occurs the piece corresponding to square-zero- top left hand square's rook-will be made to flash back and forth to the same square. It will thus seem as if the piece is not flashing.

The MOVE subroutine first examines the STATUS register and hands control back to the keyboard if the Strokecount does not equal zero. This is to prevent spurious moves being made. Then the serial output of the MPU is brought high briefly to record a tone on tape should the tape recorder be operating. The piece moved is examined for 'Kingship' and if it is a king the 'From' location is compared with the 'To' location for a castling situation. The castling routine is entered if necessary, the corresponding Rook being placed on the appropriate side of the King. If the piece fails the 'Kingship' test it is tested for 'Pawnhood'. If it is a pawn it is tested for a diagonal move and if there is no captured piece in a diagonal move situation an EN PASSANT move is presumed and the piece in the square adjacent to the diagonal is removed. If the pawn is moved to the final rank a Queen is substituted. A move is made by accessing the board RAM and writing a blank in the memory location corresponding to the FROM square, derived from the EXTRACT routine, and the corresponding piece
code to the TO square. The arrow which indicates the player is then moved to the opposite location and if this be white's end of the board the Move Counter is incremented. Return is then made to the main programme

If the Keyword is GOTO the scan routine is called twice to fetch the Request Point. The DEBOX routine sets up the pieces and the MOVE routine is called until the Request Point equals the Move Counter. Control is then handed back to the keyboard.
If the Keyword is RECORD the subroutine RECORD is called. This transmits all the contents of Game RAM in serial form on to cassette tape. First a digit 9 is placed in the Cassette Status location on-screen and the final locations in Game Memory are cleared. These locations are used for FLASHCOUNT and SCANCOUNT, etc. The entire contents of Game memory are added together and complemented and the complement stored in stop bit. When the transmission is complete control is handed back to the keyboard. The Baud Rate is not conventional being approximately 460 bits per second.
If the Keyword is RECALL then a six is placed in the Cassette Status position which forms the bitcounter. When a start bit has been received, and verified after half a bit interval, a word of six bits is clocked in at the serial input, right-justified and stored in the next Game RAM location. After a complete Game reception the whole contents of game memory is added together and tested for zero result. If the total equals zero a tick is placed in the cassette status position. Compensating errors would have to be received for a transmission to pass this test and still be incorrect Control is retained in the Recall routine after a transmission and if a tone is received at the serial input the next move in memory is made. (The Subroutine calls other subroutines DEBOX and MOVE.) If a leader tone comes along or any key is pressed control reverts to the keyboard.
If the Keyword is not a Function, then it is Move Information which is being written-in. Bit 2 of the Status register, which keeps account of whether a letter or a figure was entered last, is examined and the appropriate Letter or Figure routine is chosen. The word is processed to make its binary value equivalent to the requested rank or file on the Chessboard and stored in the Game Memory in the appropriate From or To locations which are addressed alternately. The actual form in which the word is stored bears little relationship to the letters/figures code, the top left square being 00 (base 16) and the bottom right $3 F$. Only six bits are necessary to define the squares of a chessboard, these lbeing 26 in number.

As each keystroke is entered the Status register is examined and a Tally, called the Strokecount, is entered in an offboard location on the bottom left of screen memory. The strokecount informs the user of how many keystrokes have been entered. A par tial move entry transfers control back to the main routine After the "Extract' sequence so that spurious moves are not flashed. A total entry passes control to before the "Extract" sequence so that the intended move is flashed for verification.

The MOVE and GOTO operations will be inhibited until the appropriate entry sequence is complete.

The flow chart for Tolinka's software is shown above.
The SCAN subroutine (reproduced in full below) is one section of Tolinka's software.

SCAN - SUBROUTINE		
Video Interval?	06	Copy Status to Accumulator
	D420	And Immediate 20 (Check Sense B)
	9C4E	Back to Keyscan if not zero
Examine Flash	C15D	Get Flashcount from P1 + 5D
	D40F	And OF $=$ Strip off top 4 bits
	9848	Go to keyscan if zero
	B95D	Decrement Flascount
Examine From/ To	06	Copy Status to Accumulator
	D401	And 01
	9C16	Go to 'Back' if odd
'Forth'	C400	Load Immediate zero
	01	Clear Extension Register
	C2FC	Load Fromloc from P2
	01	Fromloc to Extension (Zero to Acc.)
	C980	Storezero to Fromloc at P1 (Board) Implied Address.
	C145	Get piece from P1 'Extract'
	01	Piece to Extension
	C2FD	Load Toloc from P2
	01	Toloc to Ext. Piece to Acc.
	C980	Store Piece in Toloc at P1 - Implied Address
	06	Copy Status to Accumulator
	DC01	Or Immediate 01. = Adjust From/To flag
	07	Copy Accumulator to Status
	901A	Back to Keyscan
'Back	C145	Get piece from P1 Extract'
	01	Piece to Extension
	C2FC	Load Toloc from P2
	01	Exchange Extension with Accumulator
	C980	Replace piece in Fromloc
	C146	Load captured piece from P1 Extract

	01	Capture to Extension
	C2FD	Load Tloc from P2
	01	Exchange Accumulator and Extension
	C980	Restore Capture in Toloc
	06	Copy Status to Accumulator
	D4FE	Set last bit low
	07	Copy Accumulator to Status
	9004	Skip over Flascount Set.
Entry Point	C407	Load 7 = Flashcount
	C95D	Store Flashcount
	C430	Load $30=$ Scancount
	CAFF	Store Scancount at P2
	C400	Load zero
	C94D	Clear Keyword
	C2FF	Load Scancount
	9 CO 3	Go to Scan if not zero
	9880	Otherwise go to 'Video Interval?'
Scan Keyboard	BAFF	Decrement and load scancount
	C1FF	Read Allkeys
	D40F	Strip off top 4 bits
	E40F	Exclusive or OF (Any down?)
	01	Result to Extension
	8 FO 7	Delay 7 milliseconds. (Debounce)
	C1FF	Read Allkeys
	D40F	Strip off top 4 bits
	E40F	Exclusive or OF
	50	And Extension
	98 E 5	Back to Scan if zero (No key down)
Adjust piece	06	Copy Status to Accumulator
	D401	Examine From/To bit
	9 CBE	Make move if set (Go to 'Forth')
Findrow	C4F4	Load Rowcount
	01	Rowcounter to Extension
	C 180	Read Keyboard at implied address
	D40F	Strip off top 4 bits
	E40F	Exclusive of OF
	9 C 12	If not zero go to Rowfound
	C14D	Load Keyword
	02	Clear carry
	F404	Add 4 to Keyword
	C94D	Restore Keyword
	01	Keyword to Extension (Rowcounter to Acc)
	03	Set Carry
	1 F	Rotate Accumulator right with link
	01	Rowcounter back to extension
	C4FF	Load FF (Set all bits high)
	60	Exclusive-or Extension
	98BD	If zero No Row Found. Back to Scan
	90.6	Otherwise back to Findrow
Rowfound	1 C	Shift right
	9806	If zero go to Release
	01	Switchboard to Extension
	A94D	Increment Keyword
	01	Switchboard back to Accumulator
	90F7	Jump to Rowfound
Release	C1FF	Real Allkeys
	D40F	Strip off top 4 bits
	E40F	Exclusive-or OF
	01	Result to Extension
	8FO7	Delay 7 millisecond (Debounce Release)
	C1FF	Readl allkeys
	D40F	Strip off top 4 bits
	E40F	Exclusive or OF
	50	And Extension - Is any Key down?
	9CEE	Go to Release if key still pressed
	C14D	Fetch Keyword
	D40F	Strip off Top 4 bits
	01	Keyword to Extension
	3F	Exchange Pointer Register with Program Counter
		Exit from Subroutine with keyword in
		Extension

(Why is the Subroutine entered in the centre? It is because jumps relative to the Program Counter may only be -128 or +127 locations and it is therefore politic to keep the main decision lines central to the block).

Recording A Game

To record a game the recorder is started in the recording mode, and then Tolinka's RECORD button is pressed. Some tape recorders have a monitor, which means one can hear what is being recorded, and some do not. During the recording time a 9 appears in the 'Cassette Status' position at the top left of the screen. When the 9 disappears recording is complete and the game resets to the opening move. The game in Tolinka's memory is not destroyed by the recording process and it may be recorded as many times as is required. The game may also be modified, other versions tried, and these be recorded as well.

If the move key is pressed whilst the tape is still recording, a tone will be recorded on tape which indicates to Tolinka that it should make a move when the tape is replayed in the RECALL mode. The tone does not contain any information other than to tell Tolinka to make the next move in its memory.

Recalling A Recorded Game

First the game to be recovered must be found on tape, by means of one of the indexing systems previously described. When the leader tone is heard the RECALL key must be pressed. The leader tone has two purposes: to overcome any noise problem leading into game data and to allow the tape recorder's internal Automatic Volume Control to stabilize. The RECALL key must be pressed and released during the three second continuous leader, to transfer control to the cassette recorder.

A 6 will then appear in the 'Cassette Status' position and should remain stationary for the rest of the leader, change to a running digit during the data transmission and be replaced by a tick if the game is received correctly. The tick denotes that a 'Checksum' appended at transmission time has been correctly received. A Checksum is a way of
checking data transmissions. Simply all the words in the data are added together and the total
complemented. This complement is then transmitted as the last byte. When the data is added together it should total zero and the tick denotes that the contents of game memory has been totalled and does, in fact, equal zero.

If a recall is executed when there is no signal connected the machine will check in an all zero game - this is a useful way of clearing game memory. It is also the reason that zero was chosen as the checksum, so that one could be aware that memory was cleared without further checking.

If there is any symbol in the Cassette Status position it means that the Cassette has control, and move tones on tape will cause moves to be executed as they occur. It is also possible to record speech on the tape between the move tones, and explain to anyone who is willing to sit and watch how cleverly you demolished your opponent, blow by blow. Pressing any key such as MOVE or GOTO etc. causes control to revert to the keyboard and tones on tape will be ignored. The only time control may be passed to the Cassette Recorder is during the leader tone. If the Recorder is left playing and another game comes along the leader will pass control back to the keyboard. Operation of the controls is nearly foolproof and almost everyone jecomes expert in ten minutes.

Reliability Of The
 Recording system

For absolute reliability a high quality studio recorder and data certified cassettes should be specified. In practice any recorder which works properly and a good quality audio tape will be quite all right. If possible the same recorder should be used for recording and replay because differences in motor speeds can introduce errors.
When acquaintances in pubs air their ability to read and learn new words tell you about 'dropouts' thank them admiringly. It costs little to spread happiness and they might buy you a drink. The author has never had any problem with dropouts but this may be the influence of fraternity.

Useful Example

Here is an example of use: the French Defence has been decided upon as this season's reply to e $2 e 4$ and a tape will be kept of all French Defences played. The same information will be recorded perhaps on other tapes which are chronological or event files. It only takes a few seconds to record a game and the process may be repeated at will. The French Defence tape begins with analysis from the precedent in literature: standard lines are recorded as an aid to learning the strategy. Later in the tape the actual games are listed followed by their post-mortems, in the light of hindsight. This is a powerful aid to learning.

ETI

Next month the full circuit diagram, together with Hardware How lt Works and full constructional information, will be presented.

The front panel layout of the Chess Game, or Tolinka. Note that the GOTO key doubles as zero and the MOVE Key as nine.

Alemponics totata
 international

We are proud to announce the

ETI-TRITON ONE-BOARD

COMPUTER

WE'VE BEEN WORKING on this project for a considerable time with the designer, Mike Hughes and the kit suppliers Transam Components Ltd; we think we've got a winner.
The ETI-Triton is a powerful single-board computer based on the 8080 MPU . It features a very powerful 2 K integer TINY BASIC as well as a versatile monitor to allow machine code programming. Used with a standard TV and cassette recorder it forms a powerful computing system especially designed for domestic and educational applications. A unique VDU function, together with 64 graphic characters provides the ETI-Triton with excellent graphic handling capacity as well as cursor control.
Practically everything is on one board which will hold up to 3 K of RAM and from the start we've co-operated with Transam Components to have a kit available from square one. ETI is taking a major step forward by giving all constructional details in one-month-there'll be no hanging about for months to see the end of the article. The cost will be around $£ 300$.

AND

A new, regular 24-page supplement in ETI computing today
NO 1 november

The ever increasing activity in the field of personal computing and MPUs over the past year has been reflected by an ever increasing number of pages devoted to these topics in ETI.
The time has come however when we can no longer devote enough space in the magazine to cover all aspects of personal computing as well as keeping up with the world of electronics in general with all our regular features.
From next month we shall be including a brand new magazineComputing Today-within ETI. It is not being produced by cutting down on the regular size of ETI-in fact the November issue will be about 140 pages with the new supplement.
Computing Today will be devoted to personal computing and the first issue will contain the first part in a series on BASIC programming techniques, an article on machine code programming with the TRITON, a report on the US East Coast computer show, a review of the NASCOM 1, a CUTS encoder project plus news and Softspot, our software section.

What to look for

in November's EII

On Sole October 6th

PLUS Venus Spacecraft

IN December two 'Pioneer' spacecraft will arrive at our closest neighbouring planet. One will orbit Venus, collecting data on the atmosphere etc whilst the second will send down several probes to the surface where the temperature is known to be about $500^{\circ} \mathrm{C}$.
Although we now know that the Mekon (remember him?) is unlikely to live there, we know very little indeed about Venus. Next month Brian Dance describes this programme which will increase our understanding of the 'Evening Star'

Autochord Project

A really neat project which is being published in conjunction with Maplin. Basically designed around a new SGS chip set, the Autochord has its principle use with electronic organs-the name describes its function pretty well. It can also be used as a self-standing rhythm generator.

Audio Oscillator

A genuinely new design with a digital readout makes this project a really attractive piece of test gear. It has a range of 10 Hz to 100 kHz with either a sine or square-wave output with a 1 V output plus 10 dB steps down to 1 mV . Sinewave distortion is better than 0.1%. The readout is LCD and resolution is $0.1 / \mathrm{Hz}$ on the lowest range

Snob Project-of-the -Year

Steal a march on the wine-snob! Whilst he nurses his Chateau bottled Burgundy, you can be one-up even with your Spanish plonk-why? Because, as an ETI reader, you will have your own electronic wine temperature indicator which will be described in the November issue.

[^2]

2112 (256 $\times 4$ Static RAM)	
	£1.11
2ILO2 (450ns)	£1.07
($1 \mathrm{~K} \times 1$ Static RAM)	
21 LO 2 (250ns)	£1.60
2114 (1 K×4 Statis RAM)	
	$£ 7.70$
($4 \mathrm{~K} \times 1,16 \mathrm{pin}$, Dynamic RAM)	
5208 (equiv. 2107)	£3.21
($4 \mathrm{~K} \times 1,22$ pin, Dynamic RAM)	
4116	£18.00
(16K $\times 1$, Dynam	M)
2708	$£ 7.87$
($1 \mathrm{~K} \times 8$ UVEPROM)	
8080A (CPU)	£7.45
81 LS95 (Buffer TriS)	75p
81 LS96 (Buffer TriS)	75p
All VAT inclusive for p\&p orders under £5	
Please write for discounts over 100 pieces	
ALL FULL SPEC AND UNUSED (Mail Order only)	
LOTUS	
SOUND	
4 MORGAN STREET	

ETCH RESIST TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and -Pads (6) DILS (7) BENDS 90 and 130 (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price $£ 1$.

GRAPHIC TRANSFERS

WITH SPACER

ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} . \times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8 \mathrm{sin}$ kit or $1 / 4 \mathrm{in} \mathrm{kit}. \mathrm{£1}$ complete. State size
AH orders dispatched promptly.
All post and VAT paid
Ex U.K. add 50 p for air mail
Shop and Trade enquiries welcome *Special Transfers made to order
E. R. NICHOLLS
P.C.B. TRANSFERS

DEPT. ETI/9
46 LOWFIELD ROAD
STOCKPORT, CHES.061-480 2179

SECOND GENERATION INDUCTION BALANCE METAL DETECTOR DESIGNED SPECIALLY/: FOR THE HOME CONSTRUCTOR

- A second generation Induction Balance, system with improved Variable-Tone detection.
- Designed by professionals for easy assembly by amateurs but with very good performance.
- The search coils are fully assembled and adjusted for you.
- Coils pre-assembled and tested wedge shaped search field

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
\star Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc., etc.

> KIT-COMPLETE WITH PREASSEMBLED SEARCH COILS $£ 16.50$
> Plus £1-00p\&p Plus $£ 1=32$ VAT

ASSEMBLED \& TESTED
$£ 22.50$
Plus $£ 1-00 \mathrm{p} \& \mathrm{p}$ Plus $£ 1-80$ VAT
Send sae for free components stocklist
Communication Measurement Ltd 15 MALLINSON OVAL. HARROGATE, YORKS.

THE SINCLAIR PDM35

$£ 27.95$ purchase ordor
A.C. Maıns adaptor $£ 3.95$ deluxe padded carrying case $£ 3.20$ $\mathbf{3 0 k V}$ probe $£ 18.64$
THE SINCLAIR MICROVISION

SINCLAIR DM235
 A full range of optional eccestoriot. (Prices include VAT)
OM 235 meter complete with test leads and prods
$\mathbf{E 5 2 . 8 0}$ $\begin{array}{lll}\text { DM } 235 \text { meter complete with test leads and prods } & \mathbf{8 2 . 8 0} \\ \text { Eveready carrying case with lead storage compartment } & \mathbf{8 8 . 9 5}\end{array}$
 $\mathrm{Hz} £ 3.75$. 30 kV voltage probe 40 V 50
$\varepsilon 18.04$
KRAMER \&
KRAMER \& CO
We will matich any lower advertised price om a caah with
October Place. Holders Hill Roed, London NW14

Mavl order only SAE for data sheats Export enquirres welcome

INCREDIBLE WATCH BARGAINS

 20 FUNCTION CHRONOGRAPH LCD
 hours, minutes, seconds day, date, month. chrono time $1 / 100$ th sec. 2 event timing. 1 st and 2 nd place times, non interrupt bet ween chrono and real ime, back-light.

 ALARM LCD
 six digit hours minutes optional seconds or date. month, date, day, 4 yerar calendar, alarm programmable for any minute in 24 hours with on / off indication, backlight
 STOP PRESS

 Available September

All prices include presentation case. 12 month guarantee. instructions, P \& P Vat. Money back guarantee Send cheque or P.O. to

56 Queens Road, Basıngstoke Hants RG 21 1RE Tel. (0256) 56417 Telex 858747
Trade \& Export Enquirıes Welcome

The ICM 7217 and ICM 7227 are four digit, presetable up/down counters with an onboard presetable register continuously compared to the counter. The ICM 7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data and simple SPDT switches are used for chip control. The ICM 7227 versions are intended for use in processorbased systems where presetting and control functions are performed under processor control.

These circuits provide multiplexed seven segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to dirrectly drive displays of up to 250 mm character height at a 25% duty cycle. The frequency of the onboard oscillator (and thus the multiplex frequency) may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeroes are blanked, and the display drivers may be disabled allowing the display to be used for other purposes. The data appearing at the seven segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.
The ICM7217/7227 (common anode) and ICMI721A/7227A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM 7217B, 7227B (common anode) and ICM7217C/7227C (common cathode) are intended for timing purposes, providing a maximum count of 5959.

These circuits provide three main outputs; a carry/borrow output which allows for direct cascading of counters, a zero output which indicates when the count is zero, and an equal output which indicates when the count is equal to the value contained in the register. Data is multiplexed into and out of the device by means of a tri-state BCD I/O port, which acts as a high impedence input when loading, and provides a multiplexed BCD output. The carry/borrow, equal, and zero outputs, and the BCD port functioning as an output, will drive one standard TTL load.

In order to permit operation in noisly environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.

The carry/borrow output is a positive going signal occurring typically 500 nS after the positive going edge of the count input advancing the counter from 9999 to 0000 counting up and from 0000 to 9999 counting down. This output allows direct cascading of counters.

The equal output assumes a negative level when the contents of the counter and register are equal (i.e., for the duration of one period of the count input until the count is changed by a positive going edge on the count input).
The zero output assumes a negative level when the content of the counter is 0000 .
The digit and segment drivers provide a decoded seven segment display system, capable of directly driving common anode LED displays at typical peak currents of 40 mA per seg. This corresponds to average current of $10 \mathrm{~mA} / \mathrm{seg}$ with the 25% multiplex duty cycle. For the common cathode versions peak segment currents are 12.5 mA , corresponding to average segment currents of 3.1 mA . The display control pin controls the display output using three level logic. The pin is self-biased to a voltage approximately half way between rails which corresponds to normal operation. When this pin is connected to $\mathrm{V}+$, the segments are inhibited, thus disabling the display and reducing power. When this pin is connected to V the leading zero blanking feature is inhibited. For normal operation (display on with leading zero blanking) the pin may be left open. The display may be controlled with a 3 position SPDT switch as in the test circuits.

The BCD input/output port provides a means of transferring data into and out of the device in BCD format. The ICI 7217 versions self-multiplex data into the counter or register via thumbwheel switches in response to inputs at the load counter or load register pins, while in the ICI 7227 versions input/output control and timing must be provided externally. When functioning as outputs, the BCD I/O pins will also drive one standard TTL load.

The onboard multiplex scan oscillator has a nominal freerunning frequency of 10 kHz . This may be reduced by the addition of a single capacitor between the Scan pin and the positive supply, or the oscillator may be directly overdriven to about 20 kHz .

FEATURES

Four decade, presetable up-down counter with parallel zero detect.

Setable register with contents continuously compared to counter.

Directly drives multiplexed seven segment common anode or common cathode LED displays.

On-board multiplex scan oscillator.

Schmitt trigger on count input.

TTL compatible BCD I/O port, carry/borrow, equal and zero outputs.

Display blank control for low power operation; quiescent power dissipation less than 5 mW .

Display off control to allow use of display for other purposes.

7217 numbers refer to hardwired control versions of the device, while 7227 numbers refer to the processor control versions.

The Store pin of the 7217 will allow the output latches to be updated only if it is held low. The device will count up if the Up/Down pin is high and down if low. The Reset pin will allow normal operation when high, resetting the device when taken low. The Load Counter pin has three states. When high the counter is loaded with BCD data, when floating normal operation is selected and when the pin is low the BCD port is forced to a high impedance. The Load Register pin also has three states. High loads the register with BCD data, floating allows normal operation while low disables the display drivers. The three state Display Control disables the segment drivers when high, allows normal operation when floating and inhibits the leading zero blanking when low.
The 7227 pin configurations are somewhat different. The Data Transfer pin will allow normal operation when high, and when pulsed low will cause a transfer of data as directed by the select code set up on pins Select Code Bits 1 and 2. If these are set to 00 there will be no data transfer, 01 will latch the output data, 10 will preset the counter while 11 will preset the register. The Control Word Stobe will allow normal operation when high and when pulsed low will cause the control word set up on the Store and Up/Down pins to be written to the control latches. The Store pin will update the latches if high during CWS's active period, not allowing updates if low. The counter will count up if Up/Down is high, down if low. The display control is a three state input, blanking if low and allowing normal operation if left floating. blanking if low and allowing normal operation of left floating.
The ICM 7217/7227 series provides in one easy to interface circuit (1) a high speed four decade up/down counter with carry out and parallel zero detext) (2) setable register and comparator; (3) output latches for (4) a multiplexed LED display decoder/driver system and (5) multiplexed (or directly addressed in the ICM7227) BCD outputs. These five subsystems can be used together or separately to provide a large number of circuit configurations.

A few possible applications are shown below.

DISPLAY

COUNTER/

ICM7217
ICM7217A
ICM7217B
ICM7217C
ICM7227
ICM7227A
ICM7227B
ICM7227C

Common Anode Decade/9999 Common Cathode Decade/9999 Common Anode Timer/5959 Common Cathode Timer/5959 Common Anode Decade/9999 Common Cathode Decade/9999 Common Anode Timer/5959 Common Cathode Timer/5959

Fig. 1. The 7217 (common anode) version. The display and power connections are the same for the $7217 \mathrm{~B}, 7227$ and 7227B.

UNIT COUNTER WITH BCD OUTPUT

The simplest application of the ICM217 is as a four digit unit counter. All that is required is an ICM7217, a power supply and a four digit display. Add a momentary switch for reset and an SPDT centre-off switch to blank the display or view leading zeroes. One more SPDT gives up/down.

LCD DISPLAY INTERFACE

The low-power operation of the ICM7217 makes an LCD interface desirable. The Siliconix DF411 four digit BCD to LCD display driver easily interfaces to the ICM7217A with one CD4000-series package to provide a total system power consumption of less than 5 mW . The common-cathode devices should be used since in these versions the digit drivers are CMOS, while in the common-anode devices the digit drivers are NPN devices and will not provide full logic swing.

Fig. 2. The 7227A (common cathode) version. The display and power connections are the same for the 7227C, 7217A and 7217C.

PRECISION FREQUENCY COUNTER/TACHOMETER
This circuit is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the store and reset signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7207A connected to V^{+}, the gating time will be 0.1 second which will give tens of hertz in the least significant digit. For shorter gating times an ICM 7207 may be used (with a 6.5536 MHZ crystal), giving a 0.01 second gating with Pin 11 connected to V^{+}and e 0.1 second gating with Pin 11 open.

To implement a four digit tachometer, the ICM7207A with a one second gating should be used. In order to get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60 (or 600 using a 0.1 second gating for faster update). This can be done electronically using a phase-locked loop or mechanically by using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo-dector.

TAPE RECORDER POSITION INDICATOR/CONTROLLER This circuit shows an application which uses the up down counting feature of the ICM7217 to keep track of tape position on a tape recorder. This circuit is representative of the many applications of up/down counting in monitoring dimensional position.

In the tape recorder application, the preset register, equal and zero outputs can be used to control the recorder. To make the recorder stop at a particular point on the tape, the register can be set with the stop point and the equal output used to stop the recorder (either on fast forward, play or rewind).

©3 WIRE WRAPPING CENIRE

Aโ26.75 B£31.95 CE2.82 D 7.44

FROM 80p
TERMINAL AND DISTRIBUTION STRIPS Bread boarding building
blocks with universai blocks with universa:
matrices of solderles matites of solder

- Facllitate auick,
solderless circuit bulla-up and chetk-out on matrix
- Are offered in ten
configurations. - Accept all componen with leads up to 032^{\prime} diameter. - Require
- Includes integral non. shorting instant mounting
becking

HOBBY WRAP TOOL
Wire-wrapping, strlpping,

Unwrapoing tool tor
AWG 30 on $025(0,63 \mathrm{~mm}$ AWG 30 on
Square post
A $54.74 \quad B E 5.07$
 Limited

See us at BREAD BOARD '78 21st-25th November. Seymour Hall, London Seymour Has. A5-A6
Stand Nos.

electrovalue

If you have bought before from Electrovalue，you know just how large and varied our stocks are and how good our service is．For those who have vet to know us，we are publishing a series of five ads．month by month to give
up－to－date information and prices on much of the stocks we carry．These ads．are appearing in rotation in E．T． up－to－date information and prices on much of the stocks we carry．These ads．are appearing in rotation in E．T．I． Elektor，Practical Wireless，Practical Electronics and Everyday Electronics so that the complete series will appear each month．So no matter which journals you read，BY DETACHING AND SAVING THESE PAGES YOU WILL
ACQUIRE A VALUABLE AND COMPREHENSIVE MONEY SAVING CATALOGUE

ACQUIRE A VALUABLE AND COMPREHENSIVE MONEY SAVING CATALOGUE．

Resistors

Type	$1+$	$10+$	$100+$
CR25	－1』 to 3ू 95% E12		
．33W	3p	2p	1.76 N
UPM033	－487	5\％E24	
33W	2p	1.6	1.43 N
CR25	－1M2 to 10M 10\％E12		
．33W	3p	2p	1.76 N
MR25	5R1 to 300K 2\％E24		
4W		4p	3.60 N
UPM050	－407	75% E12	
．5W	2p	1.6	1.43 N
CR37	－ 1 亿 $103 \cap 95 \%$ E12		
． 5 W	3p	2p	1.87 N
UPM075	－ $4 \Omega 7$ to $10 \mathrm{M} 5 \%$ E24		
．75W	2p	1.6	1.43 N
UPM100	－ 4 ¢7 to 4M7 5\％E12		
1 W		4p	3.27 N
UPM100	－5M6 to 10M 10\％E12		
1 W		4p	3.27 N
TR5	10n to 1M 2\％E24		
．5W	$\begin{aligned} & 4 p \\ & 0.22 \Omega \text { to } 0.47 \Omega \pm 0.05 \Omega E 12 \end{aligned}$		
TW1			
1 W	$\begin{aligned} & 15 p \\ & 0.56 \Omega \text { to } 3 R 9 \text { p } 10 \% \text { E } 12^{11.8 N} \end{aligned}$		
TW1			
1 W	15p	13p	11.8 N
GWS3	0．472．12 to 102 10\％E12		
3W	18p	14p	11.0 N
GW33	12Ω to 10K 5% E 12		
3W	18p	14p	11.0 N
GW87	18 to 10n 10\％Ef2		
7W	18p		11.0 N
GW87	12 to $10 \mathrm{~K} 5 \%$ E12		

7W 18p 14p 11．0N Net prices apply for complete 100s only．Bulk prices available．
12 values：1．0．1．2，1．5，1．8，2．2，2．7，3．3，3．9， E24 values． 8.
3．0，3．6，4．3， $5.1,6.2,7.5,9.1$, and their decades． $4.3,5.1,6.2,7.5,9.1$ ，and their

NEW－ERG DUAL IN－LINE
 $\underset{\substack{\text { Onepole chango－ver SDC．} \\ \text { TTwo－pole changeover SDC．} 2}}{\text { SWITC．}}$

 wo－pole change－over SDC． 2 78p
 Multi－type one－pole 8－way Type DS 16A－8 99p Multi－type two－pole 4－way Type DS 16A2－4 £1．08 （These types colour coded）
For fuller range of switches．

Pots．

PG58 mono
C1PG58ST stereo
stocked

PG58 lin：	$4 K 7$ to 1
PG58 log：	10K to 1
C1PG58 lin：	$4 k 7$ to 11
C1PG58 log：	$4 K 7$ to 11
C1PG58ST lin．	$4 K 7$ to 14
C1PG58ST log：	$4 K 7$ to 1 l

Log stereo matching $\quad \pm 2 \mathrm{~dB} @ 10 \% \mathrm{R}$
士 3 dB＠3．2\％
$\pm 4 \mathrm{~dB} @ 1 \%$

NEW－JOYSTICK TWIN POT．UNIT

Pan pot asaembly comprising two carbon treck pote mounted at right angles on rigid plastic box and opernted individually by joyetick control． 100 K or 220 K per section
£2．25

ANOTHER NEW SPECIAL FROM EV
 We are appointed National Distributors for NASCOM 1
 MICROCOMPUTER KITS
 We give delivery
 from stock
 （Net price）
 £197．50
 ＋vat
 －Discounts for quantity buyers
 Retail buyers invited

GOODS SENT POST FREE C．W．O．ORDERS IN UX OVER £5 LIST VALUE．If under，add 27p for handling charges．
－ATTRACTIVE DISCOUNTS ON CASH WITH ORDER （C．W．O．）ORDERS－ 5% where list value is ove £10； 10% where list value is over $£ 25$ ．
－TOP QUALITY MERCHANDISE－－ALL BRAND NEW AND GUARANTEED
－access or BARCLAYCARD ORDERS－just phone or write your number．

V．A．T．－Add 8% to value of order．For items marked add $121 / 2 \%$ ．
－No discount allowable on items marked Net or N．
－tear out and take good care of this page LOOK OUT FOR THE FOLLOWING ADS．AND COLIECT THEM TOO
－OUR COMPUTER SERVICE TAKES GOOD CARE OF YOUR ORDER NO MATTER HOW LARGE OR SMALL．

Knobs

MANY TIMES WHILE you're working in the garden the phone may ring and by the time it is heard, if it is at all, it is often too late to reach the phone. While the GPO will install a remote bell for you it has to be rented and for people who are hard of hearing it may not be loud enough

This bell extender will allow you to add, without touching the phone, an external bell, buzzer or speaker anywhere it is desired. When using a horn loaded speaker the sound level is high enough to be heard over high ambient noise making it ideal for the industrial environment.

Adjustment

There are two controls to be set, these being sensitivity and volume. The volume can be set first by rotating RV1 until the tone starts then adjusting RV2 to give the desired volume. To adjust the sensitivity first tape the sensor coil to the underside of the phone and then adjust RV1 until the sound stops. Note however that it should be rotated slowly as C3 gives a delay on switch off. Check that picking up and replacing the phone does not operate
the alarm then get someone to ring you to check that the phone tone does. It may be necessary to experiment with the position of the pickup coil to get the best results.

Construction

While any construction method could be used we recommend that the PCB board be used and the overlay in Fig. 2 be followed. The pickup coil was made out of 0.125 mm enamelled wire, although the gauge is not important, with about 200 turns wound around a former about 50 mm diameter. The former can then be removed, the wires terminated in some thin plastic insulated wires (twin "bell" wire is ideal) and then the complete coil wrapped with plastic insulation tape.

We built our unit into a small plastic box using an external speaker. The unit can be mounted anywhere suitable, taking care however with the 240 V wiring. The speaker used will depend on the volume required with a larger speaker producing more sound. If a horn speaker is used a very high sound level can be produced

If it is required only to operate a buzzer the second IC can be altered to be an on-off device by deleting C5, R5, R6, D2 and RV2 and fitting a link in place of C5.

Fig. 1. Full circuit diagram of the tele bell extender.

Fig. 2. (above) overlay for the extender's PCB

Fig. 3 (left) full size foil pattern for the telephone bell extender printed circuit board.

HOW IT WORKS

Inside the telephone there is a solenoid which operates a striker which hits a pair of bells to give the ring tone. When it operates there is a high magnetic field generated and we detect this field to give the indication that the bell is ringing. To do this we use a coil wire under the telephone and use an IC to detect the presence of a signal. IC1 has its offset voltage adjusted by RV1 such that a slight positive voltage is needed to make the output go high. It is used in the open loop mode as a comparator only. The capacitor Cl is used to remove the unwanted higher frequency signals.

The oscillator used to operate the speaker is simply a 555 timer with a TIP 3055 to buffer the output. The frequency is determined by C5 and the volume by RV2. Changing the volume does change the frequency slightly. Oscillation can however only occur if the voltage at pin 4 is greater than 0.6 V . If the output of ICl is low, R 3 ensures that pin 4 is less than this voltage. However when the bell rings the output of ICl oscillates high and low in time with the ring tone of the bell. This lifts pin 4 high, allowing IC2 to oscillate and C3 holds pin 4 for a short time to prevent the oscillator turning on and off at the ring tone frequency

The power supply is a simple full wave rectifier with no regulation with ICl being decoupled further by R4 and C4. Batteries could be used but the drain is reasonably high.

PARTS LIST

RESISTORS all $1 / 2 \mathrm{~W} 5 \%$

R1	100 k
R2	4 k 7
R3	2 k 7
R4	$47 R$
R5	27 k
R6	100 R

POTENTIOMETERS
RV1 100 krim

CAPACITORS
C1.C4 100 n polyester
C2 10p ceramic
C 310 OL 16 V electrolytic
C5 $\quad 47 n$ polyester
C7 $\quad 1000 \mathrm{u} 16 \mathrm{~V}$ electrolytic
SEMICONDUCTORS
IC1 CA3130
C2 NE555
Q1 TIP 3055

MISCELLANEOUS
PCB as pattern
Transtormer $240 \mathrm{~V}-12 \mathrm{~V} 6 \mathrm{~V} \mathrm{ct}$
Mains switch. 3 core flex
Box, speaker, pickup coil

NATIONAL low cost watches (or

CASIO QUALITY AND VALUE

 SPORTS WATCHES Up to 25 functions. Net lap and first and second place times to $1 / 100$ th second. F.100. Resin case and strap.

S-14B S/S encased version and bracele
Water resistant to 2 atmospheres (66 ft).

ST-24 CARD TIME Stopwatch from $1 / 10$
second to 10 hour, then second to 10 hour, then
seconds to 24 hours. Or 24
 hr. clock. Net. lap, ist
2nd place Two alarm/ timers Calculator Full memory $\mathrm{K} \% 1 / 8 \times 3 / 2 / \times 2 / 8 \mathrm{sin}$ € 24.95) $£ 19.95$

CQ-81 CALCULATING ALARM CLOCK PLUS 2 ALARM/TIMERS

Two AA batteries last for 10.000 hrs (1
 £17.95

THE INCREDIBLE

FX-8000

43 Scientific funct. $1 / 100$ th sec Stopwatch. Five Alarm/ Timers, sequentional (self. clearing) or repeat. 2 level parenthesis. Memory Deg, Rad, Gra. Siandard deviations. Fractions Sexagesimal Rect Polar conver $53 / 4 \quad 27 \mathrm{oz}$ RRP 535
£29.95
SAVE EEEs WITH THE MONITEL
Telephone call charge calculaior and clock. UK model £28.95. International $£ 38.50$
Send $25 p$ for our wustrated catalogue Prices include Var and P\&P Send your cheque. PO or phone your credil card
TEMPUS

FROM CASIO

Experience has convinced us that for quality. reliability. and value for money, CASIO are unb $\mathbf{3 1 0 R - 2 0 8}$. Round Stopwatch. (€31.95) £26.95
6 digits. Hrs, mins, secs or date, day am/pm. Perpetual alendar Selectable 12 or 24 hour display
510R-19B Round (E35.95) £29.95
$\begin{array}{ll}510 R-198 \text { Round } & (\text { E44.95) £34.95 }\end{array}$
540S-158 Luxury version E49.95) £39.95
45 CS-228 Chronograph. Net. lap and 1 st \& 2nd place
times 12 or 24 hour display. Dual time.
(E64.95) £49.95
All CASIO watches have a calendar display, night illumination mineral glass and stainless steeł cašes feet).

AQ-1000. CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH

Hours, minutes, seconds, am/pm, 24 -hour Alarm with sign. Stopwatch: Net times, Lap mes. 1st 8: 2nd Place limes rom Calculator 10 hrs with ST \& LAP signs. Calculak 20 seconds/month $1 / 4 \times 23 / 9 \times 45 / 9$ (RRP £26.95) £21.95

FREE! SPECIAL OFFER
 THIS MONTH

At least two spare batteries worth up to $£ 1.30$ with every CASIO product advertised. on request with order.

WATCH BATTERIES 65p each D.I.Y. KIT 35 p (with battery order).

Dept. ETI, 19/21 Fitzroy Street,
Cambridge. Tel. 0223312866

NON-SUBSCRIBERS START HERE

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainlybe delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service Electronics Today International 25-27 Oxford Street, London W1R1RF

A REMARKABLE

 NEW SLIM, SENSE LCD WATCH

This watch represents the latest breakthrough in LCD technology. No buttons to push just a highly sensitive touch switch sense dot on the face. The lightest finger touch on the sense dot changes the clear LCD from hours and minutes to month and date, another touch and the seconds appear.

All this in a stylish slim chromed case with an elegant easily adjustable stainless steel band.
For
ONLY £9.95

Send cheques or PO to
FANTASY ENTERPRISES
34 Danbury St ${ }^{2}$, Suite 1 r London N1

GARRARD MRM 101

MUSIC RECOVERY MODULE

GORDON KING examines the new Garrard Music Recovery Module for ETI. This machine is designed to remove the transient noise created by damaged grooves on an LP. How effective is it and how does it work? Read on

THIS INTERESTING BRITISH innovation is a small, self-contained, mains-powered unit designed for connecting between the left and right outputs of a magnetic pickup and the left and right auxiliary or tuner inputs of a hi-fi amplifier. The unit processes the signals passing through it so that the disconcerting clicks produced by badly scratched records are virtually eliminated. In other words, the unit can be regarded as a record 'scratch remover

Basic principle of operation is fairly straightforward. The clicks are processed to form large amplitude pulses which are then applied to an electro-optical fader which, at the precise moment of the clicks, severely attenuates both audio channels, thereby exchanging the clicks for very short periods of 'silence.' Record clicks have a fast rise-time and the effective slewing-rate is determined by the primary parameters of the cartridge, which are the effective tip mass, compliance and, to some extent, the mechanical resistance or damping of the cartridge.

Provided that the attenuation is large enough, that it switches on and switches off swiftly enough just to straddle the periods of the clicks and that it is accurately synchronised to the occurrence of the clicks in the audio channels, then the effect is singularly dramatic - the loss of information during the time of the attenuation appears to be of little subjective moment

The effect is akin to tape dropouts, but it appears to be less affected by the accompanying S / N ratio impairment of these. Experimental work has suggested that provided the period of program loss or attenuation does not exceed about 10 ms , then the result is not unduly obtrusive subjectively. The attenuation period of the MRM-101 is a trifle above 2 mS hence the 'gaps' come and go unnoticed.

Built to A Standard

The unit is built into a shallow enclosure and the front forms a brushed aluminium fascia carrying three controls and three light emitting diodes (LEDs). One control is for power on / off, another for suppressor on / off and the third provides a continuous threshold adjustment for the suppressor action. In use, this is set for the best subjective improvement in reproduction.

If the control is too far advanced music peaks as well as scratch clicks may be processed; if insufficiently advanced only very large amplitude scratch clicks will be processed. It is easy to determine the most desirable setting because one of the LEDs flashes each time a scratch is detected. Thus, when playing a record of given mutilation the control is slowly turned up until the suppressor activity LED flashes on all the significant scratches yet remains unaffected by high-frequency
music peaks. Another LED merely glows when the mains is switched on, while the third LED signifies that the suppressor mode switch is on.

The rear is equipped with 'phono' type and DIN input and output sockets, making it is a simple matter to connect the unit to virtually any contemporary hi-fi amplifier. There is sufficient output to drive a power amplifier direct, but to control the volume this would need its own volume control. Not all power amplifiers are equipped with a volume control, so it is a pity that Garrard did not see fit to include an output gain control. When driving from the unit direct to our power amplifier high quality reproduction was achieved

Operations

Operation of the unit can be appreciated from the diagram in Fig. 1. This is partly schematic and partly in simplified block format. With the suppressor off, the signal is directed from the output of the front-end, which is a partly equalised preamplifier composed of Q1-04 to the output buffer amplifier (RC4136DB), which provides the remainder of the RIAA equalisation.

Equalisation of the front-end is provided by the usual frequency-selective feedback arrangement which gives the 'bass boost' requirements of 3180 and $318 \mu \mathrm{~S}$. The $75 \mu \mathrm{~S}$. de-emphasis equalisation is provided by the 51 k resistor and 1 n 5 capacitor in the feedback path of the output buffer. The circuit as a whole is also engineered to cater for the more recent IEC-98/4 specification corresponding to a 20 Hz additional turnover, equivalent to a time-constant of $7950 \mu \mathrm{~S}$.

A Gain Gained

Front-end gain is about 34 dB at middle frequencies, and an extra 1.6 dB is provided by the output buffer. The circuit has some desirable aspects, including the differential input stage Q1, 2 and the 'Darlington' Q3, 4 stage which provides a high input impedance and low output impedance from Q4 emitter. Operating in the 'suppressor off' mode extremely good quality pickup signals are obtained.

The split equalisation, where the de-emphasis is provided at the output, helps to provide a high S / N ratio, and the circuit overall demonstrates an input overload threshold of about 37 dB at 1 kHz ref. 2 mV input.

Accuracy of the overall RIAA equalisation is revealed by the pen chart response in Fig. 2. This is maintained within 0.25 dB between the left and right channels over the entire spectrum. With the suppressor on the accuracy is almost the same, but our sample did exhibit a very

Fig. 1 (Above) The block diagram of the Garrard click eliminator MRM 101. The pickup amplification and equalisation stages were found to give a very high quality signal output. Note the use of quad op-amp 4136.

Fig. 2 (Right) RIAA equalisation curve for the unit. Channel balance was an excellent 0.25 dB !
mild error round 15 kHz which was subsequently proved to be caused by a poor tolerance component. The tolerance in this area is being tightened by the manufacturer.

To the onset of peak clipping the amplifier is capable of providing an output of 9 V RMS at middle and low frequencies, with adequate reserve up to 20 kHz , resulting in an output slewing rate of round $0.15 \mathrm{~V} /$ $\mu \mathrm{sec}$., which will accommodate all disc material played on top-flight pickups. With the suppressor active the output is reduced by approximately 10 dB , but this is still more than adequate, even when driving direct to a power amplifier. The measured S/N ratio was 75 dB (CCIR / ARM weighting) ref. 7 mV RMS input.

Lines of Frequency

The spectrogram in Fig. 3. gives an excellent impression of the spectra purity with a 200 Hz signal of 2 V RMS output level. Ripple components are below our measuring floor of -90 dB, and the only harmonic of significance is the 2 nd at -79 dB , corresponding to 0.0112% !! With the suppressor active the distortion is greater, as shown by the spectrogram in Fig. 4, again at 2 V RMS output. The 2 nd harmonic again predominates, but this time it is $-50 \mathrm{~dB}(0.3 \%)$. The 3rd harmonic is down at $-59 \mathrm{~dB}(0.112 \%)$, while all subsequent harmonics are at levels of insignificance

The relatively high value of 2 nd harmonic distortion is not disconcerting. Indeed, recent tests have suggested that a controlled amount of even-order non-linearity-can, in fact, enhance rather than detract from the reproduction.

There seems to be a tendency for it to 'disguise' the heavy odd-order distortion carried by some program signal sources, including gramaphone records, and that this can lead to improved auditioning of some highly specified transistor amplifiers - owing to the resulting 'valve type sound,' no doubt!

Circuitous Examination

Looking now at the circuit in Fig. 1 with the suppressor active, it will be seen that the signal from the front-end is directed two ways. One way is to delay line (TDA 1022) and the other way is to the detector/comparator (2xRC4136DB and NE555V).

The detector recognises the whole waveform of a scratch and isolates it from the peaks of the recorded music. Two monostables (one in the NE555V and the other the bipolar transistor Q5) are switched by the scratches to generate pulses of about 3 mS . duration and 10 V amplitude (shown on the diagram). These pulses are then caused to operate LEDs 1 and 2, which are optically-coupled to two pairs of light dependent resistors (LDRs). One pair relates to the right channel and the other pair to the left channel.

Just one channel is shown in the diagram
The LDRs associated with the other channel are drawn in broken line, as also are the inputs and output of the other channel.

Each pair of LDR forms an attenuator (called a fader) and is arranged to control the level of the audio signal eminating from the delay line prior to the signal arriving at the first buffer (RC4136DB). This part of the circuit is deliberately simplified for the sake of description, but in practice the degree of attenuation amounts to some 50 $d B$ in the audio signal channels each time a pulse occurs.

Now, since it takes a little time for the pulses fully to develop, the signals in the audio channels proper need to be delayed slightly so that the scratch pulse on the music signal arrives at the fader at exactly the same time as the pulse created by the detector and associated circuits.

Hold it a Minute

The delay is provided by a 256 -stage TDA 1022 , which is two-phase-clocked by a pair of ICs HEF4011 and HEF4OB. The clock is running at 85 kHz , and the overlap of the two associated waveforms (shown in the diagram) ensures the required delay time. The net result is that each time a scratch click occurs the audio channels are

Fig. 3 Spectrogram of the 200 Hz drive signal, suppressor switched out.
faded by about 50 dB for a period a shade over 2 mS
This straddles the time of the 'real' scratch click, thereby eliminating it.

LED3 is the suppressor activity indicator on the fascia which, being in series with a fader LED, flashes in sympathy with the suppressor action.

The detector circuit includes auto and manual threshold control, while a filter in the amplifier IC, RC4136DB, following the delay line eliminates the spikes and spurious signals produced by the delay line action. It should be noted that although the maximum clipping output is les in the suppressor mode than in the direct mode, the gain of the amplifier sections remains the same in both modes.

It is thus possible to achieve A / B comparisons without level change by switching between the two modes.

House Training

The sample unit has been operating very successfully for several months under typical domestic conditions in our test hi-fi system. It certainly removes the very disconcerting staccoto clicks caused by badly scratched records.

It does not, however, remove the general background noise from worn or dirty records.

Such noises occur in almost continuous manner, so advancing the threshold control to achieve a response to these noises would lead to the elimination of a substantial proportion of the music

Operated as the designers intended, the unit constitutes a valuable item of record playing hardware which, at the probable selling price of $£ 80$ or so, would soon pay for itself, records costing what they do today.

Fig. 4. Spectrogram of the 200 Hz drive signal with the suppressor active.

In spite of the rise in distortion with the suppressor active, the reproduction is very satisfying provided the threshold control is not over-advanced.

In the suppressor off mode, the unit can be regarded as a top-flight RIAA-equalised preamplifier of potentially high audio output which could, if required, be connected direct to a power amplifier, thereby bypassing the circuits and tone controls of conventional preamplifiers, which are regarded by some enthusiasts as an impairment to 'musicality

A Cabled Reason?

Although acoustical feedback (below the howl-round threshold) is currently being blamed for one aspect of adverse auditioning of some record decks, we have recently isolated other, probably more important, causes of auditioning differences.

We have discovered that signal from the power amplifier section can get back to the high gain pickup input via a common impedance or by magnetic induction (from the loud-speaker cables, for example) or electrostatic coupling somewhere.

The degree of response to the delayed spurious signals of this nature can be as great as, if not greater than, the spurious and delayed signals attributable to mild acoustical feedback!

Perhaps this is one reason why the 'special' loudspeaker and source cables are receiving acclaim, because the improved shielding of these cables is reducing the amount of signal back-coupling.

Anyway, during experiments with the MRM 101 we found that by using this unit for disc signal amplification the degree of back-coupling was substantially reduced with respect to certain integrated power amplifiers. Food for thought, at least

ETI

GREENWELD
 443 Millonook Road Southampton SO1 OHX
 Ted:(0703) 772501

All prices quoted include VAT. Add 25 p UK/BFPO Postage. Most orders despatched on day of receipt. SAE with enquiries please. MINIMUM ORDER〔5). Export/Wholesale enquiries welcome. Wholesale list now evailable for bona-fide treders. Surplus components always wanted.

52 logic iCs including 32×74161 (4 bit binary counter) +16 tant bead caps. R's
C s. etc. Over $£ 30$ worth of TTL alone! ONLY £3.00.

DISC CERAMIC PACK
Amazing variety of values and voltages from
a few of to 22 uFt 3 V to 3 kV ! $200 \mathrm{E} 1,500$ a few pf to 22 uFf 3 V
$\mathrm{E} 2.25,1000 £ 4.00$

PC ETCHING KIT MK III
Now contains 200 sq ins. copper clad board. 11b Ferric Chloride. DALO etch-resist pen, abrasive cleaner two miniature drill

EDGE CONNECTORS
Special purchase of these 0.1 pitch double-sided gold-plated connectors en of their origina! list price!
18 way 41p; 21 way 47 p; 32 way 72p; 40 way 90 p.

VERO PLASTIC BOXES
We keep a very large range of VERO prorange of cases, and Series If boxes. SAE fo the ir catalogue

TMS4030 RAM
4096 bit dynamic RAM with 300 ns access time, 470 ns gycle time; single low capacitance high level clock i/p; Fully TTL compatible: Low power dissipation. Supplied with data £2.75.

MISCELLANEOUS IC's Supplied with data if requested MC3302 40 p ZN1034E
 stereo pre-amp 75p; MC1469R voltage reg £1.50; UPC1025H audio $£ 3.50$; 575C2 audio £2.88; TDA2640 audio £2.92; TBA810S audio 70p; SN75110 dual line driver 70p; MC8500 CRCC gen POA

EXPERIMENTERS

CALCULATOR
Based on the C500 chip. this pack of parts enables the more experienced constructor to
make an 8 digit 4 function calculator. The comprehensive data supplied includes full size layout of PCB required. types of suitable display and keyboard that can be used etc Components included in the pack are C500 calculator chip. driver IC ali components for inverter cioc
only $£ \mathbf{3 . 5 0}$.

RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coll. SPCO 3A contacts 93p:
W832 Sub min iype. $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ W701 6V SPCO 1A Contact
25 mm . Only 56 p . but works well on 6 V DC Contacts 3 ac c/o rated 10A 95p.
W819 12 V 1250 DPCO 1 A contacts Size $29 \times 22 \times 18 \mathrm{~mm}$ min. plug-In type 72 p. W83950V ac (24 V DC) coil 11 pin plug-in type. 3 pole C/O 10A contacts Only 85p. W846 Open construction mains relay 3 sels $10 \mathrm{~A} /$ o contacts $£ 1.20$
Send SAE for our relay list - 84 iypes listed
LOW COST PLASTIC BOXES
Made in high impact ABS. The lids are terior of box has PCB quide slots (excep

V219)

V210 B0×62 $\times 40 \mathrm{~mm}$ black
$\vee 213 \quad 100 \times 75 \times 40 \mathrm{~mm}$ black
V216 $\quad 120 \times 100 \times 45 \mathrm{~mm}$ black

STEREO AMPLIFIER
CHASSIS £5.50
Complete and ready built Controls Bass. treble. volume/ on-off, balance. B transistor circuit gives 2 watts per channel output. Just needs transformer and speakers for low cost stereo amp. Suitable metal cabinet (W374) £2.00- or buy the anp. case and trans sockets and knobs freell gell

AMPLIFIER KIT£1.75

Mono gen purpose amp with tone and above amp Output 2 W into 8 ohms Input matched for crystal cartridge 4 transistor arcuit Simple to build on PCB provided Can be either battery or mains operated. (For rnains powered version add $\mathbf{£ 2 . 2 0}$ for suitable transiormer) Blue vinyl cove
aluminum case to suit (W372) E1.30.

1977 / 8 CATALOGUE

blo pages packed with over 4,000

 stems many of them ilustratedvouchers worth 50 p . PRICE $30 \mathrm{p}+15 \mathrm{p}$ post. (Overseas send 60 p surface or E 1 airmail) Also included is our current Bargain
List. Send SAE for bargain list alone.

SIRENS

Use in cars houses anywhere that powerful noise will trighten off would-be in-
truders. Uses 4 HP 7 batts. Overall size $100 \times 72 \times 60 \mathrm{~mm}$ Only $£ 1.70$

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON TMME-No delays in waiting for parts to come or shops to open!
* SAVE ON MONEV - Bulk buying means lowest prices - just compare with others!
* HAVE THE RIGHT PART - No guesswork or substitution necessary
ALL PACKS CONTAIN FULL SPEC. BRAND NEW. MARKED DEVICES SENT BY RETURN OF POST VAT INCLUSIVE
PRICES. K001 50V ceramic plate capacitors. 5\%. 10 of each value 22 pF to 1000 pF . Total 210 £.3.35
$K 002$ Extended range 22 pf to $01 \mu \mathrm{~F} 330$ values $£ 4.90$
$K 003$ Polyester capacitors, 10 each of these values $0.01,0.015,0022,0033.0 .047$ $0068.01 .015,0.22,033 \quad 0.47 \mu \mathrm{~F}$
110 altogether for $£ 4.75$
K004 Mylar capacitors. min 100 V type. 10 each all values from 1000 pF to 10.000 pF Total 130 for $£ 3.75$
K009. Extended mylar pack Contains all values from 1000 pF to $0.47 \mu \mathrm{~F}$. Total 290 capacitors to $£ 11.25$
K005 Polystyrene capacitors. 10 each value from 10 pF to 10.000 pF E12 Series 5\% 1600 T K006 Tantalum bead capacitors. 10 each o $\begin{array}{llllllllll}\text { the following } & 0 & 1.0 & 15 & 0.22 & 0.33 . & 0.47 \\ 0.68 & 1 & 2 & 3 & 3 & 4 & 7 & 6 & 8 & \text { all } 35 \mathrm{~V}\end{array}$ $\begin{array}{lllllllllll}0 & 68 & 2 & 16 & 22 & 16 & 33 / 10 & 47 / 6\end{array}$ $100 / 3$ Total 170 tants for $\mathbf{£ 1 4 . 2 0}$
K 007 Electrolytic capacitors 25 V working. small physical size 10 each of these popular values $1 \quad 2.2 .4$

Toral 70 for $£ 3.50$

k 008 Extended range as above also including 220.470 and $1000 \mu \mathrm{~F}$ Total 100
for $£ 5.90$ for $£ 5.90$
K021 Miniature carbon film 5\% resistors CR25 or similar 10 of each value from $10 R$
to 1 M. E1 2 series Total 610 resistors £ 6.00
K022 Extended range. total 850 resistors from $1 R$ to $10 \mathrm{M} £ 8.30$
KO41 Zener diodes. $400 \mathrm{~mW} 5 \% 8$ YY88 etc. 10 of each value from 27 V to 36 V . E24 series Total 280 for $\mathbf{£ 1 5 . 3 0}$
K042 As above but 5 of each value $£ 8.70$

WE'RE OUT TO FINISH YOU OFFI

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

The transfers are easily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures 180 mm X 240 mm and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

Send $£ 1.75$ includes VAT and postage) for the twosheet set lox Panel Markings Ell Magazine,
25-27 Oxford Street, London WIR IRF.

PROXIMITY SWITCH

ALTHOUGH THIS PROJECT may

 look a bit complicated for a 'mere' switch, it has some unique features, both in design and function, as will be clear from the following:1. It is a true proximity switch. You do not have to actually touch anything to operate it.
2. There are no light beams, sound waves etc. While radio frequencies are used, switching action results solely from the capacitance of 'approaching bodies.'
3. The sensor may be some distance away from the device, and also may extend several feet in length.
4. The sensor - and, if you want to mystify your friends, the switch itself - can be completely concealed from view.
5. The switch latches ON or OFF each time it is operated. No special re-set provision is needed.
6 . Since a relay is used for the actual switching, the 240 V circuit and the 'electronics' are isolated from each other.

Making Magic

In our application, the 'Magic Switch' was installed so that when one walked through a doorway a light in the further room automatically went on. Also, the sensor extended close to the floor, so
that even the family dog was able to "light the way"
(Admittedly, this at first struck terror and bewilderment into the mind of the canine, but, as usual, he soon came to accept the miracle as just one more example of human omnipotence!) Other applications could well include burglar alarms etc., all of which is to say nothing of its main function, which is to impress your friends.

Construction

Use of the PCB of Fig. 4 is recommended, though three prototypes were built using different layouts, and all worked well. Note that this PCB has space for the power transformer and relay, but is left blank as far as the foil pattern for those units is concerned. This enables you to use whatever components you happen to have, or which may be available to you. You can either fill in your own foil pattern, or hard-wire the units into the circuit. Beyond this, no special comments are necessary, except to mention that it is preferable to use IC sockets. Since 240 V AC will be present on-board, the unit should be housed in a suitable cabinet such as a $7-3 / 4^{\prime \prime}$ $\times 4-3 / 8^{\prime \prime}$ plastic utility box. An AC outlet receptacle could be mounted to the box, plus a main switch if desired.

Adjustment

The success of the project depends on the oscillator being just, but only just, within its tolerance limits, and the operating point is set by RV1 (coarse) and RV2. This adjustment is critical, but as a rule RV1 can be preset on the bench and RV2 adjusted at the time of installation. The exact operating point, and hence sensitivity, depends on the length of sensor used.

In a very few cases, RV1 needs to be more than $2 k 2$. The easiest thing is to pad the control with a oto0 series resistor. This can easily be mounted on board and the existing track connecting RV1 to RV2 broken, the additional resistor being 'tapped in in its place.

When you have completed wiring the switch, and have carefully checked your work, plug it in and clip a length of wire $200-300 \mathrm{~mm}$ to the sensor input at point A. Set RV2 to mid-rotation, and adjust RV1 until you hear the relay clicking. This is an approximate adjustment, but at some nearby setting you will find that the relay clicks every time you approach the sensor wire with your hand. If you clip the sensor wire to point B you will find the circuit somewhat less sensitive; since sensitivity increases with sensor length, this is
SR1

\qquad

Fig. 3. (Below) Circuit diagram of the switch's power supply.

PARTS LIST

RESISTORS

All $1 / 4 \mathrm{~W} 5 \%$ unless stated

R1.2	680 R
R3.4	4 k 7
R5	1 kO
R6	39 k
R7-12	1 MO
R13	1 M 2
R14	1 M 8
R15.16	75 k
R17	3 k 3
R18	$68 \mathrm{R} 1 / 2 \mathrm{~W}$
R19	470 R
R20	5 k 6

CAPACITORS
C1,2,3:11,12
C4.5
C8,9,10
C13
C14

| C 14 | 1000 u 16 |
| :--- | :--- | :--- |
| V electrolytic | |
| polyester | |

C15 47u 16 V electrolytic
Note C11 and C12 should be rated at 400 V
SEMICONDUCTORS

IC1	741
IC2	3900
Q1	2 N 3019
Q2	TIP31A
D1-9	IN40O2
ZD1	15 V 400 mW

TRANSFORMER
J1
$240 \mathrm{~V} / 12 \mathrm{~V} 300 \mathrm{~mA}$
MISCELLANEOUS
PCB as pattern. Relay $(10-30 \mathrm{~mA}, 15 \mathrm{~V}$ or less), case to suit, sensor, etc.

Fig. 2. Overlay for the proximity switch PCB (left).

BUYLINES

All of the parts used in this project should be available from most of the advertisers in this issue. Make sure the 100 n capacitors C11 and C12 are adequately rated at 400 V .

The case should be earthed if it is metal as 240 V is present on board. Our prototype, however, was built into a plastic box.
extreme sensitivity can raise problems. If, for instance, the switch is made sensitive out to 1 m from the sensor, merely walking around will probably cause it to switch on and off erratically. This is due to local capacitance-field effects and not to any shortcoming in the switch itself, and therefore makes it desirable to operate with more limited sensitivity.
3. If operation is erratic, it will usually help to connect circuit (-) to a true ground (waterpipe etc.) In most cases, however, this is not necessary.
4. The switch can be directly connected to any metal object (e.g., filing cabinet) you might wish to protect. Likewise, it can be used to operate any external circuit, such as
an alarm. As a protection device, the 'Magic Switch' will baffle any intruder, if not psych him out completely.

Interference

The 'Magic Switch' is relatively immune to interference such as mains surges, field disturbances etc. About the only time trouble may possibly arise is when the switch is run off the same 240 V circuit as is used to power some inductive load, e.g., a refrigerator. The reason is that every time the inductive device is switched on, a large transient voltage is developed on the AC line (chiefly across the 1 ohm resistance of the
main fuse). If your room lights dim every time the 'fridge goes into action, you will appreciate the magnitude of this type of surge Experience has shown that the 'Magic Switch' can cope with most things - SCR dimmers, tape recorders, vacuum cleaners, to name but three which we have operated off the same 240 V line - but in a few cases special precautions are necessary. Mains surge suppressors may be fitted, but generally it is simplest just to run the 'Magic Switch' off a different AC circuit

Fig. 4. Full size foil pattern for the switch's PCB.

ALMARC \& VECTOR GRAPHIC "Nobody Does It Better"

INTRODUCING THE VECTOR 1 COMPUTER

- S-100 BUS
- HIGH QUALITY
- LOW PRICE

Whatever your application Vector Graphic and Almarc have the answer. Mainframes, Memory, I/O Boards, Disk Systems. Processors, and the unmatched High Resolution Graphics board. Send for our catalogue today.

OTHER PRODUCTS:

Solid State Music, including 8k Static Ram Board, £98.95

ALSO:
Cromenco, North Star, Dynabyte, and, our best product, 'Service

Write for details to
ALMARC DATA SYSTEMS LTD.
29 CHESTERFIELD DRIVE BURTON JOYCE, NOTTINGHAM TEL. 0602248565

			- c ch
DEPT. ETL, 5 STATION ROAD, LITLEPORT, CAMBS. G:610E			
Tel. ELY [0353) 860185 [Tues. to Sat.]			
ALL BELOW - ADD 8% VAT IC TEST CLIPS, clip over IC while still soldered to pcb or in socket. Gold-plated pins, ideal for experimenters or service engineers 28 pin DIL £1.75. 40 pin DIL £2 00 Or save by buying one of each for E3 50		ALL BELOW - ADD 8% VAT	ALL BELOW - ADD 8% VAT
	MIXED COMPONENT PACK8. COntaining resistors. capacitors. switches. pots. etc. All new. and hundreds	MUELARD $85 \overline{A 2}$ - $\overline{5} \overline{5} \overline{\text { St }}$ TABILISER VALVES (brand new) 70 p each or 2 for £1 20 hed LeDe (Min type) 5 for 70p VIDICON SCAN COILS (Transistor type. but no data) complete with vidicon base. 6650 each Brand new aEI CS10B/R miCROWAVE DIODES, up to X.8and max noise figure 8.5 dB at 9.375 GHz 80p each	DUAL TOI8 HEATSINKS; $\frac{x}{x} 1 / 2 \times 1 / 4$ with screw-in clamps. 3 for 50p GLASS BEAD FEEDTHROUGH INSULATORS, solder-in type overall dia 5 mm . pack of approx. 50 tor 50 p LARGE GLASS BEAD FEEDTHROUGH INSULATORS. as above tut 8 mm dia pack of approx. 50 for 70ρ 20 V RELAYS. PC8 mounting type. single pole change-
MAINS TRANSFORMERS. TYPE 15/300 240 V input 15 V at 300 mA output. $£ 150$ each	BRAND NEW \& BOXED. AT BARGAIN TYPE L2 TRIANGULAR CORNER CA		
MAINS TRANSFORMERS. TYPE 45/100, 240 . 220. 110.20 . OV input, 45 V at 100 mA output. ह1 50 each	Smart woodgrain formica type finish with nylon grilte Overall height 23×12 wide Contain three $15 \mathrm{ohm} 61 / 2 \times 4$ full range speakers in paralleal +		over. 35p each BSR AUTOCHANGE RECORD PLAYER DECKS with cue device. 33.45-78 rpm , lor 7 , 10 , 12 records
SLOW-MOTION MOTORS, 120 V 50 Hz IRPM Size approx 2 dia. $1 / 2$ deep with $1 / 4$ spindle. 60 peach. or 2 for $E 100$	100 V line transiormer (easily disconnected for 5 o operation) $£ 750$ each (or 2 for $£ 1400$) +12	$43 \times 23 \times 12(111 \times 60 \times 30 \mathrm{~mm}$ (61.10	device 33.45 .78 rpm , for $7 \quad 10 \quad 12$ records Fitted with SC12M Stereo Ceramic cartridge and styli Brand new. $£ 1400+121 / 2 \%$ VAT
		$48 \times 23 \times 15(12 t \times 60 \times 38 \mathrm{~mm}) \quad$ ¢ 1.	GAarARD AuTOCHANGE RECORO PLAYER DECKS. Model 6.300 . with cue device. $33.45-78$ rpm. for7.10 .12 records. Fitted with $\mathrm{KS41B}$ Storao Ceramic carridge and styli. Brand new, $£ 1600+$
$11 / 2 \mathrm{~V}$ DC MOTORS (Ideal for model makers quite powertul). 50p each	TYPE M 704 CEILING SPEAKERS. White plastic	$\times 38 \times 2(121 \times 95 \times 55 \mathrm{~mm}$ $\times 4.8 \times 2(171 \times 121 \times 51 \mathrm{~mm}$	
SUB-MINIATURE ROTARY SWITCHES, 4×5-way make contacis Size approx. 3/3 die 1 deep. 3/16 spindle. 50 o each	ch 8 dia 15 ohm full range spe	$48 \times 3.8 \times 3(121 \times 95 \times 76 \mathrm{~mm}) \quad \mathbf{8 3 . 0 0}$	
	TYPE L4 PORTABLE ${ }_{\text {WPa }}$		Please note. record decks sent by Roadine. allow 14 days for delivery
30 pf BEECIVE TRIMMERS. Brand now. 4 for 50 p Min. Sp/ AIR \$PACE TRIMMERS. Approx \$/4 square 3 lor 50 p	woodgrain formics type finis	$10.6 \times 6.8 \times 2(273 \times 171 \times 51 \mathrm{~mm})$ [4.85	$107 \mathrm{MHzSSB} \times$ TAL FILTERS (2.4 kHz Bondwidth) Low imp type. Carrier and unwanted sideband rejection min -40dB ineed 1069835 \& 10.70165 xials for USB/LSB. NOT SUPPLIED) Size approx $2 \times 1 \times$ - Elo 00 cach.
	10 round. 15 ohm full range speaker +100 V line transformer \& 700 each + $121 / 2 \%$ VAT	SPIRALUX tools for Electronics enthusiast . SAE for list	
Min. SpI COMPRES\$ION TAIMMERS, $1 / 2$ $5 / 16 \quad 4$ for $50 p$ LARGE ELECTROLVTIC PACKS. Contain range of large electrolytic capacitors. low and high voltage types over 40 pieces $£ 3.00$ per pack $(+121 / 2 \%$ VAT)	DECIMAL KEYBOARDS.		
	when pressed contacts go from O/C to approx 25	4 MHz XTAL PACKS (10 assorted xtals between 4 MHz and 5 MHz) Our selection only $£ 100$ pack SOLDER SUCKERS (Plunger Type) Standard Model. €5 50 Skirted Model. £6 00 Spere Nozzles. 65 p each	LOW PASS FILTERS (low imp type). $2-9 \mathrm{MHz}^{\text {. small }}$ metal encapsulation. size approx. $11 / 2 \times 3 / 4 \times 1 / 6$ 75 esch CELESTION 8×5 ELIPTICAL SPEAKERS. 20 ohm . 3 watts rated. E1.5D each $+121 / 2 \%$ VAT
	Dual watch. and spare. Few only $£ 200$ while stocks last		
full range of bernards/gabini electronics BOOK IN STOCK S AE FOR LIST	TRANSISTORS BFY5 1 Transistors 4 for 60p BCY 72 Transistors. 4 for 50p BSX 20 NHF ose / mult). 3 for 50p BC107 (metal can) 4 for 50p BC108 (metal can) 4 for 50p		
A NEW RANGE OF QUALITY BOXES E INSTRUMENT CASES Aluminium Boxtet with Lida		SPARE TIPS (for WP60D) Two types avalable TYPE CC7 (W60D) Standard TYPE AA7 (W60D) Finer tip 160 bach	ALL BELOW - ADD 12 ½ \% VAT
	PBC 108 (plastic BC 108). 5 for 50p	WELLER TCP2 temperature controlled soidering iron and PU2D power unit (replaces Weller TCP 1) Ifon +	VARICAP TUNERS. Mullard type. ELC1043/05 §5.00
	2 N 3819 Fel . 3 for 60 p . 3 for 50 p	and PU2D power unit (replaces weller TCPI) Iron + PSU £30 00 Spare thps CC7 (standard), or K 7 (finer	
AB14 $7 \times 5 \times 21 / 2{ }^{\text {a }}$, 125	BC148 NPN SILICON 4 for 500	Slider Switches. 2 pole make and break for can be used as I pole change-over by linking the two centre puns). 4 lor 50 p	TV SCAN COILS. B/W. to fit 110 degree tubes. £ 1.00 TV Plugs (metal type). 4 for 500
AB15 $\quad 8 \times 6 \times 3 \quad \cdots \quad$ ¢1 50	BCIL 58 PNP SILICON 4 for 50p		
$\begin{array}{ll}\text { AB16 } & 10 \times 7 \times 3\end{array}$	BAY31 Signal Diodes 10 for 350		TV Plugs (metal type), 4 for 50 p
AB17 $10 \times 41 \times 3 \times 3$	- 741 CG RCA OP Amps 4 for E		Din Spaaker Skts 2 -pin. 4 for 3
12	'SCRS 400 V at 3A. stud type. 2 for $£ 100$	PLASTIC PROJECT BOXES, with screws on lids (In black A8S) with brass inserts Type NB 1 approx $3 \times 21 / 2 \times 19 / 2450$ each. Type NB2 approx $31 / 4 \times 21 / 4 \times 1 / 255 p$ Type NB3 approx $41 / 2 \times 31 / 4 \times 11 / 265$ peach Slider Switches 2 pole make and break tor can be used as 1 pole change-over by linking the two centre pins)	
Vinyl Conted Inatrument Cseas Blue Tops with Phain Lower Sections Very emart finish	Watts Flat pack type 2 for E1.50		Dublier Electiolytics. 50 F 450 V , 2 for 50p
			essey
$\begin{array}{ll}\text { WB1 } & 5 \times 21 / 3 \times 21 / 4 \\ \text { WB2 } & 6 \times 4 / 2 \times 1 \%\end{array}$			
$\begin{array}{ll}\text { W83 } & 6 \times 4 / 2 \times 1 / 4 \\ \text { W }\end{array}$	QQVO3/20A	50p	ITr Electrolyucs, 6800u F 25V, high grade.
WB4 $9 \times 51 / 4 \times 2 \frac{1 / 2}{}$	QQVO3/10 (ex squipment) 75 p of		
WB5 11x61/43 $£ 2$	6BH6 (ex equipment). 2 for 50p	CHOKES wound on $1 / 4 \times 1$ long ferrites	Resistor PKS approx 300 preces $1 / 2$ to 2 watt types mixect values our selection fi
$\begin{array}{ll}\text { WB6 } & 11 \times 71 / \times 3 \times 3 / 2\end{array}$	All the above valves are untested.except for heaters.		
$\begin{array}{lll}\text { W87 } & 12 \times 6 \times 51 / 4 \\ \text { W8853 } & 8 \times 5 \times 1 / 2 \times 31 / 2\end{array}$	and no guarantee of percentage of emission is given. Sorry no returns.	$\mathrm{HF}_{40} \mathrm{CHOKES}$ wound on 6.hole tubular territes 5 f	A RANGE OF CAPACITORS AVAILABLE A

THE GREAT PERSONAL COMPUTER WORLD SHOW

Date: 21 st-23rd September 1978. Three days to remember.
Venue: The West Centre Hotel, Lillie Rd., London, SW6
The Exhibition: \star Small computers for business and for the home \star Innovations \star Homebrew systems \star A programmed model railway \star Musical computing \star Breakthrough in colour graphics $\star A$ voice controlled computer. AND THE PERSONAL COMPUTER WORLD MICROCHESS CHAMPIONSHIP. The Computer Chess Tournament is just one of the features that makes the PCW Show the first of its kind in Europe.

Tournament Director: David Levy, the International Chess Master who stands to win £1,250 this month in North America if he beats the updated version of the program that won the World Computer Chess Championship.

The Conference: Day 1 - Business Beginners Day 2 - Schools and Universities Day 3 Beginners and Hobbyists.
FULL DETAILS IN CURRENT AND FORTHCOMING ISSUES OF Personal Computer World Magazine. Available at good newsagents, or at 65 p from PCW, 62A Westbourne Grove, London, W2.

Interested in Exhibiting? Ring Will Martin, 01-486 1951. PCW readers will be coming to their own Show in their thousands.
U.H.F. GREYSCALE AND PATTERN gENERATOR PGGRF

PRODUCES SIX INVALUABLE PATTERNS:-

* CROSSHATCH GRID
* DOT MATRIX
* VERTICALS

ONLY REQUIRES CONNECTION TO U.H.F. AERIAL SOCKET
9V BATTERY OPERATED
TECHNALOGICS now gives you the opportunity to set up colour television receiver the professional way
This pocket size. battery powered unit (consumption less than Bm.a.1) based on latest cmos technology, enables you to set up static convergence, dynamic convergence, picture geometry, colour purity, focus, beam limiting. Greyscale tracking. black level, clamping, etc.. by selecting one of the six patterns generated by the PG6RF on channel 36 (for U.K. 625 -line standard TV sets).
Available either ready built and tested or in D.I.Y. kit form. The kit consists of all components, glasstibre
p.c.b.. tough plastic box with full instructions (modulap.c.b.. .ough plastic box with full ins
tor prebuilit for ease of consiruction).

Ready built and rested guaranteed for 1 year.
KIT $£ 21.50$ BUILT $£ 28.00$ KIT $£ 21.50$ BUILT $£ 28.01$
+50 p p $\&$ all subject to 8% VAT
still available
LDGISCAN MK II COLOUR TELETEXT DECODER
YOU Can now bullo a teletext decoder to the LATEST BBC/IBA/BREMA SPEC. IN.B. Many other decoders are not to full spec.).
Available with full technical back-up in easy to build form for $\in 205$ Kit, £265 ready buils and tested or in mat form, price on request. all subject to $121 / 2 \%$ discount prices for ttl ls and locmos inteGRATED CIRCUITS ON REQUEST. details Large s.a.e.

TECHNALOGICS
8 EGERTON STREET, LIVERPOOL L8 7 LY

METAL DETECTORS

 LESS THAN 1/2 PRICE!We have a number of metal detectors which have failed our stringent factory visual inspection but are guaranteed 100% working. These have slight blemishes but are otherwise in perfect working otherwise in perfect working
order. Detects coins to 8 order. Datects coins to 8
large objects to 2 feet or more. Normal price £16.95.
OUR PRICE TO CLEARE7.95 plus $£ 1$ post

Also available - non-working units. These mostly have simple faults like solder bridges between the circuit board tracks. etc. We.sell so many detectors we don't have time to repair them. Supplied with circuit dia gram, repair information and spare parts list. Give-away price (less than cost of the component part!)
ONLY£4.95!
plus $£ 1$ post
Send Postal Order. cheque, or credit card number. (Goods can be sent COD at $75 p$ extra). Or phone your order, (093 22) 44110-24 hours.

ALTEK

Dopt ETI, 1 Groen Lane, Walton-onThames, Surrey. (Callers please phone first)

IN4148 Diodes by ITT/Texas. 100 for $\mathbf{\varepsilon} 1.50$. These are full spec. devices.			
Unencaded Hexadecimal 19 keyboard 1-10 ABCDEF. 2 optional keys. Shift key, £12.50.			
MM2102 AN-4L 1024×1 Bit. 450 nano sec. Static Ram. £ 1.00 each.			
FND500 Seven Segment Common Cathode Display $£ 1.30$ each. $4 / £ 5.00$.			
5-1013 UART/T ¢6.			
$\begin{aligned} & \text { Red Leds } 01.125^{\prime \prime} \text { or } 0.2^{\prime}, 10 \text { for } £ 1.20 . \\ & 100 / £ 9.00 . \end{aligned}$			
2112256×4 Bit Static Ram 450 nanosec £2.95 each. $4 / £ 11.60$. 8/£22.60.			
Murata Ultrasonic Transducer $£ 2.50$ each. E 4.00 pair.			
741 Op Amp 25p each. 10/£2.00.			
555 Timer. 28p each. 10/£2.50.			
4001°	14p	4029	110p
4007	$16 p$	4047	100p
4011	$14 p$	4049	40p
4012	14p	4060	120p
4013	50 p	4066	$55 p$
4015	$90 p$	4069	$20 p$
4106	40p	4071	$16 p$
4017	90p	4072	18 p
4020	$100 p$	4081	16p
4022	90 p	4082	$16 p$
4023	16p	4510	120p
4024	65p	4511	150p
4025	16 p	4516	110 p
4026	160p	4518	130p
4027 4028	50 p	4	p
4028	90 p		
Prices include Post and VAT			
T. POWELL 306 ST. PAUL'S ROAD, HIGHBURY CORNER, LONDON N.1. Tel. 01-226 1489. Callers welcome 24 hr . Ansaphone order service with ACCESS or BARCLAYCARD No.			

TUNE INTO BARGAIN TV GAME KITS AND COMPONENTS

KITS-

include full instructions, Games chip, pretuned sound and vision modulators, fibre glass PCB, all PCB components

MINIKITS-

inst, Games chips, i/c sskt, coil
B\&W Tank Battle (AY-3-8710)
kit. minikits
B\&W Stunt Rider (AY-3-8765)
B\&W Road Race (AY-3-8603)
$£ 15.90$

B\&W Submarine (AY-3-8605)
Full range of kits on request

Astec Modulators \& Encoders

UM1263 Sound Osc
UM11111 E36 UHF Mod . $£ 1.95$
UM1233 UHF (high quality) £4.95
UM1168 Pal Encoder
£2.50
UM1163 Pal Enc + UHF Mod
$£ 4.95$
European Equivalents available

Accessories

AB Joyśtick controls 200k lin £ 1.95
Crystal 4.4 Mhz
E1.00
Crystal 3.57 Mhz
£1.25
Oscillator coil 100 pH
£0.45
Mains adaptor +150 mA 8 v reg i / c................... $\mathbf{~} \mathbf{5 0}$
All prices include VAT and P\&P (for orders under £10 please add 30p)

Cheques \& POs payable to:
VIDEOTIME PRODUCT.S
56 QUEENS ROAD, BASINGSTOKE, HANTS RG21 1REE Tel: (0256) 56417 Telex 858747
(Trade \& Export Enquiries welcome)

BAD NEWS For knob twiddlers A 300W Lightdimmer with NO knob. Dimming and on /off functions are controlled by touch.
Features include

- No mains rewiring
* Switches on to preset
brightness
- Can he switched and dimmed from many locations using TDE/K kit making 2 -way switching easy E100 88.99 TDE/K £ 1.00
LIGHTING CONTROL KITS (300W)
TSD $300 K$ TOUCHSWITCH \& DIMMER cOM bined. One touch-plate for on/off. Small knob controls brightness. $£ 5.50$ TS300K TOUCHSWITCH. Two touchplates ON /OFF £4.00
SA 300 K AUTOMATIC. One touchplate 300K LIGHTDIMMER $£ 2$

DIGITAL VOLTMETER THERMOMETER KIT
Based on the 7106 single IC $31 / 2$ digit DVM the mewnumbev $\begin{aligned} & \text { kit contains a PCB. res } \\ & \text { istors. capacitors. pre }\end{aligned}$ istors. capacitors, pre
sets. IC and 0.5 liquid
 triac bargains

400V Plastic Case	
3A	58p
6.5A with trigger	80p
8A	74p
12 A	84p
16A	105p
20A	165p
25A	190p
SCR (C106D) 5A/400V	50p
Diac	21p

 $\begin{array}{lll}\text { DL727.5 display } & \ldots & \text { e } 1.50 \\ \text { LCD } & 4 \text { digit }\end{array}$ LCD 5 . 4 digit
LDR 5 dia
$(4$ for $£ 1.00)$ NE555 4 for $£ 1.00$)
$(5$ for $£ 1.00)$ 741 LM3911 temperature IC $\mathbf{£ 1 . 0 0}$
AY.5-1224 AY-5-1224
AY-5-1230 AY-5-1230
ZN 1034 E ICL7106 DVM IC 64.85
$E 1.80$ IN4001
\qquad iN4148 BC182L
MINI MAINS
TRANSFORMERS

Standard 240V mains primary 100 mA secondary	
$6 \mathrm{O}-6 \mathrm{~V}$	
9-0.9V	90p
$12-0.12 \mathrm{~V}$	95p

24 HR. CLOCK/APPLIANCE TIMER KIT
Switches any appliance of up to 1 KW on and off at preset times once a day KIT

- ETI BOOK

 BEGINNERS

 BEGINNERS
 Beginners Guide to Electronics Squirt: $\mathbf{E 2 . 6 5}$
 Beginners Guide to Transistors Reddihough $\mathbf{E} 2.65$
 Electronic Measurement Simplified c Rallmafk $£ 2.20$
 Electronics Seff Taught Avh £4.40
 Beginners Guide to Integrated Circuits Sinctair $£ 3.15$
 Principles of Transistor Circuits : Ans, £ $£ 4.75$
 Understanding Electronic Circuits sinclarr $£ 4.10$
 Understanding Electronic Components wimurle $\mathbf{E} .10$
 Beginners Guide to Radio Kunk £3.15
 Beginners Guide to Audio mnctur $\mathbf{E 3} .10$
 Beginners Guide to Audio I. R Sinchure $£ 3.20$

COOK BOOKS

TV Typewriters Cookbook £7.40
CMOS Cookbook $£ 8.00$
TTL Cookbook 17.55
Active Filters $£ 11.00$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $\mathfrak{£ 9} 9$

APPLICATIONS

Advanced Applications for Pocket Calculators It. sillturl £4.20
Build Your Own Working Robot D. Heiseman E3.55
Electronics and Photography r. Brown $£ 2.30$
Fire and Theft Security Systems a $\boldsymbol{w}_{\text {tl }} \mathbf{£ 2 . 0 0}$
How To Build Proximity Detectors and Metal Locators : Anivdi $\mathbf{£ 3} 35$
How To Build Electronics Kits Capel $£ 2.10$
Linear Integrated Circuit Applications G. Clayton $£ 5.40$
Function Circuits Design \& Applications Burr Brown £15.95
10 Electronic Alarm Projects R M. Marstom £3.45
110 Semiconductor Projects for the Home Constructor R. M. Marsion $£ 3.25$
110 Integrated Circuit Projects for the Home Constructor k M Marwin $£ 3.25$
10 Thyristor Projects Using SCRs R.M Mattom $£ 2.95$
Handbook of IC Circuit Projects Ashe $£ 2.30$
Practical Electronic Project Building Ainslwand conwell $£ 2.45$

TV AND HI-FI

Audio Handbook <i. кime $£ 6.50$
Cassette Tape Recorders II turl $£ 5.25$
Solid State Colour TV Circuits of R wising $£ 6.35$
$\mathrm{Hi}-\mathrm{Fi}$ Loudspeakers and Enclosures \mathbb{X}, hhen $£ 8.20$
How To Build Speaker Enclosures bidmaiuf £3.10

OGIC

Logic Design Projects Using Standard ICs I Wakwrlv $£ 5.10$
Practical Digltal Design Using ICs J Grventwid £ 12.50
Designing With TTL Intergrated Circuits lexion instrument: $\mathbf{£ 9 . 0 5}$
How To Use IC Circuit Logic Elements! sirehter £3.65
110 COSMOS Digital IC Projects for the Home Constructor k is Murtinn £3. 20
Understanding CMOS Inţegrated Circuits k. Meten £3.90
Digital Electronic Circuits and Systems k M Msirris £3.50
MOS DIGITAL ICs 4 Fivnn $£ 4.60$

COMPUTING

Microprocessors and Microcomputers \& suwn $£ 18$.m
Microprocessors 1) (Midivnn $\mathbf{E 8} .40$
Introduction ta Microprocessors Aspmall. $£ 5.90$
Modern Guide to Digital Logic (Processors, Memories and Interfaces) £4.30

OP-AMPS

Applications of Qperational Amplifiers (is.arme (Burt Browni $£ 8.30$
Designing With Operational Amplifiers Burr Aruwn £ 13.75
Experiments With Operational Amplifiers Clovton $£ 3.40$
$\mathbf{1} 10$ Operational Amplifier Projects for the Home Constructor H \& . Marwin $£ 2.95$ Operational Amplifiers Design and Applications (i. Tubery \{Burr Browni£7. 40 Op-Amp Circuit Design \& Applications : ©arr $\mathbf{E 4}$,00

SERVICE

TEST INSTRUMENTS

The Oscilloscope In Use sinclair £3.10
Test Instruments for Electronics M Cliffurd $£ 2.40$
Working With the Oscilloscope A Saunders E1. 95
Servicing With the Oscilloscope Giking $£ 5.60$
Radio Television and Audio Test Instruments king $\mathbf{£ 5} .90$

SERVICING

Electronic Fault Diagnosis sinthur $£ 3.20$
Rapid Servicing of Transistor Equipment si king £2.95
Tape Recorder servicing Manual Gurdner Vol 1: 1968.70 £8.50 ol 2: 1971-74 £8.50
FM Radio Servicing Handhook king $£ 4.80$
Basic Electronic Test Procedures M Guthatb $£ 2.45$

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise в. (arrın $£ 7.50$ Digital Signal Processing Theory \& Applications I. R R.thiner $\mathbb{E} 23.80$ Electronic Communication Systems o, kennedy £8.50
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 20.40$
Principles of Communication Systems 14. Taut $\mathbf{6 8 . 1 0}$

THEORY

Introduction to Digital Filtering Bumer $£ 9.40$
Transistor Circuit Design Texas Insirumens £9.35
Essential Formulae for Electrical and Electronic Engineers * \& Murriv $£ 1.65$ Modern Electronic Maths cliffiurd $£ 6.70$
Semiconductor Circuit Elements T. D Therer $\mathbf{L 6 . 4 0}$
Foundations of Wireless Electronics M. © 'scrokpue $\mathfrak{£ 4 . 4 5}$ Colour Television Theory Hudmon $£ 6.20$

REFERENC E

Transistor Tabelle (lncludes. physical dimensions) £4.10 Electronic Engineers Reference Book (Ed. 4) ।. W. Turner $£ 27.70$
Solid State Circuit Guide Book b Ward £2.25
Electronic Components M A Cillwell $£ 2.45$
Electronic Diagrams M A cirwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits (innodman $\mathbf{E 2}: 30$
International Transistor Selector I D. Tuwer's $£ 5.25$
International FET Selector T is Trwess $£ 4.35$
Popular Valve/Transistor Substitution Guide $£ 2.25$
Padio Valve and Semiconductor Data a M B-il $£ 2.60$
Master Transistor/Integrated Circuit Substitution Handbook 15.60
World Radio TV Handbook 1978 (Station Directory) 88.00
Radio. TV and Audio Technical Reference Aman $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wildink E5.10

MISCELLANEOUS

Integrated Electronics Milm.m@ $\mathbf{£ 7} 70$
Microelectronics Halkmurk $£ 3.90$
Practical Solid State DC Supplies : 1 Thwer E6. 20
Practical Triac/SCR Projects for the Experimenter \& Fill 2.25
Printed Circuit Assembly Hughos \& Colwell $£ 2.45$

Fallen behind recent advances?

Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P

[^3]
microfile.

 Go north young man they said and Gary Evans did this month to see Liverpool's

 Go north young man they said and Gary Evans did this month to see Liverpool's new Personal Computing store.

 new Personal Computing store.}

TAKING LIFE, LIMB and day return ticket in hand, headed North this month. The carrot that induced this seemingly irrational behaviour was the fact that a new computer store was to open in Liverpool, which for those of you whose sense of direction is as bad as mine, is north of London.

Microdigital is Liverpool's first Computing Store and, as far as I know only the second shop in the country to sell a broad range of low cost computing equipment (the other being the Byte Shop). The range of items Microdigital will sell you is indeed large, everything from that dreadful MPU door-chime, through video games and chess machines to PETs and APPLEs taking in the MK14 and NASCOMI on the way. The reason for this wide range, which includes items that many of us would not associate with personal computing, back to the door-chime, is quite straightforward. The aim is to hook people with these items that can be considered impulse purchases in the hope that when installed in the family home they will promote the idea that the computer does have a place in the home.

The site of the shop, like the items stocked, has also been chosen with care. The site is not what would be considered prime by the likes of Dixons, being situated in the business area of the city. The idea behind siting Microdigital here was again to do with hooking potential customers, but here the potential victims are the City Gents of Liverpool. A shop in the "jean jungle" that now

Gary Evans, to photography what Cyril Smith is to the world of ballet, took this photo of Liverpool's new computing store on its opening day.

forms the heart of Liverpool would not have exposed the shops name to this market. The site in Brunswick Street will mean that many of the aforesaid business men will not be able to avoid the name of Microdigital and it is the hope of the company that some of them may even walk through the door. Don't get the idea that the shop is too far from the centre of the city, it's just a few moments walk away so those interested in the novelty value of the shop will still make the trip as well as the already converted Computer Hobbyist.

The staff at Microdigital will offer advice and as one of them comes from 'a background as an accountant, it should mean that the advice given will be formed with an appreciation of the businessman's needs. The shop will also sell a wide variety of literature and software to enable the best use to be made of the different hardware. packages available.

The firm's range of systems is detailed in their catalogue and an SAE to them should secure a copy of same Better still, why not call in and pick one up in person, you'll probably find chatting to the staff very helpful.

Microdigital

25 Brunswick Street
Liverpool 2

Disk-0-Spec

Floppy disk drives will probably be one of the items that will fall in price considerably over the next year, they have to. The cost of producing a drive will fall as the volumes demanded by the world markets increase, after all if you want a handmade cassette deck expect to pay the earth for it, buy 100,000 and the price comes down to a reasonable figure. As we see the price come down we'll also see more people offering hardware / software packages to enable you to hook the drive up to your particular breed of machine. At the present floppies for even the most popular of machines are hard to find, but I've heard of a couple of people who might be able to help.

James Clarke and Co Ltd are interested in developing a 512 K or 1.2 M drive which they see as having some additional memory and, of course, an operating system. They are interested in hearing from anyone who might be interested in such a product.

The other company, Ocean Electronics, have a single card controller for the Shugart SA400, suitable for interfacing this drive to the PET (the company can also offer controllers for 6800 and 8080 based systems)

The card is expected to sell for $£ 120$, and with the SA400 at around $£ 225$, this seems like an attractive package.

The companies can be reached at the addresses shown below.

James Clarke and Co	and	Ocean Electronics
7 All Saints Passage		3 Pavillion Parade
Cambridge	Brighton	
CB2 3LS		BN21RA

CB2 3LS

See The Show, Join The Club

A couple of quick items now. First the Personal Computer World Show will be held at the West Centre Hotel between September 21 and 23. The last day will be devoted to home systems but the whole three days should be worthwhile. Next the North London polytechnic Department of Electronic and Communications Engineering are to form a computer club. The inaugural meeting will be on Wednesday the 5th of October, I hope to be there in room 47 of the old building (their refetence not mine) in the Holloway road just opposite Holloway Road tube for the event. With three PETs and four SWTPC systems available for playing with the'club will hopefully prove a fruitful activity for all concerned.

An update on the MK14 review of last month. I have received the new monitor PROM for this machine and as well as making the entry of data far easier, the RPOM contains an offset calculation routine as well as the software to drive the cassette interface for the MK14. A single step mode of operation is also possible with a small amount of additional hardware.

An update to the TRS-80 review as well. Phil Cornes, one of the panel who reviewed the machine has discovered a few memory saving tricks that can be used with the computer

1. Whenever the last character of a PRINT statement are the final inverted commas of a printed message, those inverted commas may be omitted so that, for example -

10 PR.; "GALLONS USED"
could be abbreviated to -
10 PR.: "GALLONS USED
2. The abbreviation IN for the INPUT statement can be abbreviated still further to I so that -

45 I.X,Y,Z
becomes an acceptable INPUT statement.
3. This abbreviation is the most interesting of the three, and deals with the setting and resetting of flags within programs.
For example, suppose the following appears in one of your programs.
$20 \mathrm{~F}=0$
200 IF $A=B$ THEN $F=1$
This could staggeringly be reduced to the following single statement:
$200 \mathrm{~F}=\mathrm{A}=\mathrm{B}$
In this example the second $=$ is being used as a comparison operator and not as an arithmetic operator. Put into English, this statement would therefore read -

Let the value of F depend on the result of comparing the equality of A and B.

If A does equal B so that the result is a logical "TRUE" then set F to 1 or if A does not equal B (logical "FLASE") set F to 0 .
The same type of statement can be made to work with any of the comparison operators, $><,<,>,=,<=,>=$; so that -
$200 \mathrm{~F}=\mathrm{C}>\mathrm{B}$
would set F to 1 if C were greater than B otherwise it would set F to 0 .

ETi

INTRODUCING TWO WORLD FAMOUS MICROPROCESSOR BASED GAMES UNITS

‘TOLINKA’ CHESS REPORTER -FULL KIT OF PARTS

The original unit used in conjunction with the World Chess Championship at Manilla, August '78, by both Chess Champion Vicktor Korchnio and BBC TV news.

Records every game step, auto en passent, queening and castling. Entire games may be recorded on most domestic cassette recorders. Based on 8060 Mk II Scamp. Full kit including all components - No extras required - £109.50*

* Prices include VAT, packing \& delivery charges and money back guarantee. Send cheque \& PO to

56 Queens Road, Basingstoke, Hants RG 21 1REE
Tel: (0256) 56417. Telex 858747

-6 Wilmslow Audio

THE firm for speakers!
Send 15 p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

```
ATC AUDAX BAKER BOWERS & WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE - ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER McKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE
```


WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

The Sinclair PDM35. A personal digital múltimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ $(+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PIDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.
What you get with a PDM35
$31 / 2$ digit resolution.
Sharp, bright, easily read LEI) display, reading to ± 1.999. Automatic polarity selection. Resolution of 1 mV and 0.1 nA (0.00014 A).
Direct reading of semiconductor forward voltages at 5 different currents Resistance measured up to 20 M s. 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard $10 \mathrm{M} /$ input impedance.

Compare it with an

 analogue meter!The PIDM 35 's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's I)C input impedance of $10 \mathrm{M}_{1}$ is 50 times higher than a $20 \mathrm{ks} /$ volt analogue meter on the 10 V range.

The PDM 35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)

Range: 1 mV to 1000 V .
Accuracy of reading 1:0\% 1 count.
Note: 10 Mr input impedance
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 N to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max resolution 0.1 nA .
Resistance (5 ranges)
Range: 11 t to 20 Mr .
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 1 / 2 \mathrm{in}$.
Weight: $6^{1 / 20} \mathrm{oz}^{2}$.
Power supply: 9V batiery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.
Tried, tested, ready to go!
When you buy your PDM35 it comes complete with leads and test prods, carrying wallet and comprehensive operating instructions.

The PDM35 is a new concept in multimeters - but over 20,000 have already been sold! If you'd like to know more about the PDM35, and how to get one, complete the coupon and post it to us. We'll send you detailed information by return. Send the coupon today!
Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England.

audiophile.

This month Ron Harris lends an ear (and an eye) to a new turntable aid that you can see through immediately; what could be the ultimate in DIY pre-amps and takes note of news about an amplifier in a class of its own.

FIRST - the brickbats. My prize for most inappropriate act of the month goes to Discount Audio in Tottenham Court Road for having the atheistic gall to use an SME Series III as a display stand for a $£ 5$ transistor radio. May your fuses continually blow.

It was also amusing to note a Pioneer SA9500 offered for sale nearby, in the window of a large establishment of some repute. Nothing wrong with that you might say - except that is upside down. No doubt a new-fangled output stage is in use here - the electrons are propelled across the junction by gravity - only someone somewhere put the chips in the wrong way round.

Enough To Make You Blush!

For some time now Crimson Electrik have enjoyed a good reputation based upon the excellence of their power amp modules. And quite right too. The amps are well designed and if assembled carefully offer very good sound reproduction.

The appearance of a pre-amp from the same stable thus aroused the editorial interest and a sample procured. The photo shows the board sat sitting alongside its PSU, and as is evident the PCB is built to a very high standard. The specs are faultless and well detailed, and also too long to give here. Versions are available for both moving coil and moving magnet cartridge types.

To say they come with instructions is probably misleading. Application notes in the best sense of the word are provided, and good detail on usage (and abuse) are given to enable the customer to adapt the modules to his own requirements.

All that's left to tell you is how they sounded - and that I'm afraid I cannot do properly until next month, simply because, as always, the modules arrived very late in the month and there was simply no time to conduct the tests demanded by a product of this pedigree. Initial impressions, however, are very very favourable. Sorry folks but l'm saying no more till next time. Same time, same page - November!

Raise Your Glasses

One of the latest 'tuning' aids to appear on the hi-fi market are various types of turntable mat, which claim to improve the sound quality by offering more nearly ideal conditions for information retrieval from the LP. One of these that has risen to my eye from a small British firm, GA Audio, is composed of glass.

The collection of items which make up one Crimson Electrik pre-amp. The large board on the right is the actual stereo pre-amp, the smaller one is the PSU stabiliser. To construct a seperately powered pre-amp you need all three, but normally the pre-amp would be added to a Crimson power amp to produce an integrated unit.

With the success of the Planar 3 vaguely in mind, experiments with this refugee from a window frame were to prove interesting. It didn't take much to interest some other folks with inclination in this direction, and so a variety of turntables were available at various times to carry the mat.

Glass does have quite a few advantages for this sort of work if you think about it. It is extremely rigid, of good even mass distribution and of course easily kept clean. The felt mats which appear around so many spindles these days gather dust easier than booze attracts ETI staff and are infernally difficult to clean (as are ETI staff!)

By changing turntable mats around the overall sound from a system can be markedly altered - more so in my experience than with these 'super-cables' much vaunted of late as a cheap upgrade.

Turning Tables

The first machine we tried the 'Sound disc' glass mat on was a Technics SL 120 - a unit not much in favour with the musical mites of this world. However if the machine is properly sited on a wall mounted shelf, then its only real disadvantage is overcome that of being more sensitive to outside vibration than is perhaps needed Used like this the SL 120 turns in a good all round performance and one that is not improved by use of a felt mat instead of the thick rubber platter provided

However, the Soundisc did offer an improvement. The image was clearly improved and better defined. Best without the thin felt circle supplied by GA Audio, who would save themselves some money - and improve the product - by losing that completely and improving the instruction sheet instead. Spelling bass with an 'e' is just not musical lads, you can do better than that.

On a variety of other turntables, including the dreaded Linn, we found the Soundisc to offer variable results. On the Linn it seemed to make things worse, while it improved a Transciptor Reference out of all recognition, to the extent that with the Soundisc mounted atop its little black blobs, the Reference came out sounding better than any other deck we,tried (including you-know-what!)

A Painful Gain

Overall then the Soundisc is a good investment, unless you own a Linn or a Rega 3 where no gams can be expected. By supporting the LP properly the glass does appear to bring more information forth from the grooves, and to bring it forth more precisely. At its price of $£ 10.30$ I feel it's worth a try if you're unhappy with your present record playing system for reasons of clarity but make sure it isn't the cartridge at fault first eh? Address: GA Audio, 82 Bromsgrove Road, Redditch, Worcs. B97 4RN.

H-bomb

From the States comes news of the first class H amplifier (Did I hear groans of "Oh no" from that weary music lover in the back row?) Like class G of Hitachi parentry H operates on the PSU.

This time, however, what is described as variproportional analogue logic circuitry' (??) is employed to sense the line voltage needed by looking at the output power required at that time. A second power supply is also present, and is used to help beef up transients. If I were Hitachi I'd be looking pretty closely at this little lot. Soundcraftsmen are guilty of class H , and the model number is MA 5002.

Is it now eyes down for I?

The Write Way To Do It

To all you nice people out there who have written in with questions for the Audiophile service - thank you and I hope I've answered you! Replies have been taking up to four weeks because there were so many of you. I've cleared the backlog now and replies should normally be return of post unless I get kidnapped, shot by bandits attacked by Felicity Kendal etc. (If the latter occurs allow 10 yrs for reply).

The service is still operating (just) so for newcomers: it is intended to be an enquiry service for matters relating to hi-fi. Please include full details of the system you're running and be as specific as possible. Address your envelopes to 'Audiophile,' ETI, 25-27 Oxford Street, London W1R 1 RF

EI

NW $56-S T A T I O N$ ASCII KEYBOARD

Full 128 character set with ROM encoder (Upper and lower case + control shift),
Fully TTL - compatible-power requirements $+5 v-12 v$
Supplied with full technical data, code chart, pin connections, circui diagram and application notes.

SELF-SCAN	BALL MIRATEL
ALPHANUMERIC	VIDEO MONITOR
ANEL DISPLAY	
	9" diagonal P4 phosphor
$16 / 18$ position display	lube. Bandwidth 12 MHz
with 64 character repe	(.3dB). Input voltage
toire, 5×7 dot matrix. In.	$220 \mathrm{~V} 50 / 60 \mathrm{~Hz} 24 \mathrm{~W}$. Out-
put 6-bit BCD-code,	put voltage +15 V DC
power requirements $+5 v .12 \mathrm{v}$. Characters size	ishor circuit protected) +12 kV DC: 12.6 V ms.
	Supplied complete with
dimensions $81 / 4 \times 2 \%$ "	high \& low voltage power
$\times 1 /{ }^{\prime \prime}$ ". Supplied with	supplies, amplifier, and
full technical data. Price	altractive moulded
235.00 +75 p PGP $+8 \%$	plastic housing including
VAT (Mail order total	space for keyboard. Price
¢60.21).	595.00 + carriage + VAT.

SPECIAL PURCHASE-MITE HAZELTINE VISUALDISPLAY UNIT

BRAND NEW SURPLUS ONLY E 75

+ £3.50 P \&P + 8\% VAT (Mail'order total £84.78) 123PAlphanumeric printer mechanisms

Solenoid-operated page printer using standard reversible typewriter ribbon. Prints standard 64 -ASCII character set on $81 / 2^{\prime \prime}$ paper (80 characters per line, 6 lines to the inch). Maximum speed 1 cps. Power requirements 115VDC Compact, light-weightunit $93 / 4 \mathrm{lbs}$ $12^{\prime \prime} \times 9^{\prime \prime} \times 2^{3 / 4}$ ".' Supplied $^{\text {. }}$ complete with full techriical manual

We also specialise in: DEC minis-PDP8 and PDP 11 processors, add-on memory. Oynamics 390. Texas Silent 700. Send for compiete lists.

ELECTRONIC BROKERS LTD 49-53 Pancras Road, London NW1 208 Tel: 01-837 7781. Telex: 298694.

* Teletype Compatible
* 12" Diagonal Screen
* TTY Format Keyboard
* 12 lines of 80 characters
* 64 ASCII Character Set * 5×7 Dot Matrix

Switch-selectable Transmission Speeds up to 9600 baud

* Switch-selectable Parity

MODEL H-1000 PR CE E350 + carriage
 Also available:-

Model H-1200: Specification as for $\mathrm{H}-1000$ except 24 lines of 80 characters displayed. Price $\mathbf{£ 4 2 5 . 0 0}+$ carriage + VAT.
Model H-2000: Buffered/Editing model with direct rursor addressing, dual intensity video, and detachable keyboard with separate numeric and edit clusters. 27 lines of 74 characters.
Price $£ 495.00$ + carriage + VAT.
A copy of trading conditions supplied on reques

AUDIO AND TEST EQUIPMENT MICROCOMPUTERS LEVEL I AND II tRSBO IN STOCK

Only regular stocks listed - other makes and models available Telephone your order with Access and Barclaycards

LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am- 6 pm

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC

TM11 incredible 120 Range Elecronic Multi-meter			130.00
TM3B	AC Micro	volimeter $3 \mathrm{MH}_{7}>4 \mathrm{Megohm}$	$\cdot 117.50$
TM6B	Broadband	dvoitmeter $300 \mathrm{KHz}-400 \mathrm{MHz}$	178.00
360TR : $00 \mathrm{k} / \mathrm{volt}$	23 Range	(plus transistor checker). Large scale	35.50
PROE 20k/volt	26 Range	Large scale	32.00
$708150 \mathrm{k} / \mathrm{volt}$	36 Range	Mulip-meter	23.50
TmK500 30k/volt	22 Range	Multi-meter (plus Continuity Buzzer)	21.00
680R 20k/volf	52 Range	Pocket Multi-meter	34.50
$720020 \mathrm{k} / \mathrm{volt}$	22 Range	Doubie Multi-meter	17.95
Microso 20k/yot	26 Range	Pocket Multi-meter	17.90
171-2 20k/volt	16 Range	Popular Multi-meter	11.95
LT22 20k/volt	19 Range	Pocket Multi-meter with carry case	14.50
T12 5k/woht	13 Range	Pocket Muti-meter	8.95
LT101 /k/volt	12 Range	Pocket Multi meter	50
EM 2000 FET IC VOM 20 Ranges 10 Meg Input K200 FET VOM 38 Ranges GT101, 20K/Volt 23 Ranges/Transistor Checker/Continuity Checker. AVO Bs and a large range of replacement tests leads in stock			$\begin{aligned} & 55.00 \\ & 77.00 \\ & 17.95 \end{aligned}$

IPMENT	GENERATORS aries RC Oscillators	
SWR50 SWR/Power Meter LP30 SoMHz Low Pass Filer	quare output. $3 \mathrm{~Hz}-300 \mathrm{KHz}$	
CX3A 150watl 3 -way AE Swich $\quad 7.50$	${ }_{6} 152$	
OC25kV 100 Meg HV Probe $\quad 11.95$		
9 Value cap S		
DRS 1036 Va		
FX2000		
LC, Univ Loglc C		
Cr1 Continuty Checker . ${ }^{\text {a }}$	TG66A Digital Sine Wave Decade	
M006	${ }_{0} .2 \mathrm{~Hz} .1 .22 \mathrm{MHz}$	
L81 Transistor/Diode Checker 21	TE220 (2udio) 4 bands. Sine 20.200k 65	
3101 Clamp Meter $0 / 9 \mathrm{~K}$	KHz	
	OGIC PROBES AND MONITORS	
-1000V Megohmeter 1000 Megohms $\begin{aligned} & \text { 55.00 }\end{aligned}$		
${ }^{21 / 2}$ Amp Variable Transformer ... $\quad 19.95$	TT2000 Economy probe . . 11.9	
${ }^{5} 5 \mathrm{Amp}$ Varrable Transtormer $\quad 33.0$		
	PIEZO HORN TWEETERS Up to 100 watts each. No x-over reqd. Only 4.95 each ($P / P 20 p$)	
MICROPHONES, SPEAKERS AND COMPONENTS LARGE RANGE IN STOCK		

electronics tomorrow......

by John Miller-Kirkpatrick

SOME months ago I mentioned a form of multi-voltage logic which was being developed by an American company. Recently I was discussing microprocessors with somebody, and they "invented" multi-voltage logic on the spot, after I told them that it had been done before they went on to discuss the ideas they had and with a few ideas of my own we came up with a logic system for the 1990s

One problem with multi-voltage logic is that it is alien to the TRUE or FALSE logic used with binary or boolean logic. It seems that a logic system expressed in ten different voltage levels would be represented by 10 levels of possibility ranging from FALSE at zero volts to TRUE at 10 voltage units passing through REASONABLY TRUE at say 7 voltage units and SNOWFLAKE-IN-HELL at perhaps 1 voltage unit. Problems arise when you try to carry out logical operations such as ANDing 7 units with 1 unit - is the result $(7+1) / 2,7 / 1,1 / 7$ or what "?" arithmetic is simple, it is even in decimal, for example 7 ADD 1 is undoubtedly 8 and 1 minus (Complement and ADD) 7 is 3 isn't it?

If you want to play with multi-value logic try using some CMOS devices run off about a 10 v supply, CMOS switches from Ov to the supply voltage (near enough) and thus a CMOS output on this supply will switch from 0 v to 10 v . If the outputs in question are outputs from a 74C42 1 of 10 decoder then the outputs can be connected to a series of 9 resistors (all say 1 K) arranged as a potential divider so that a common point will have a voltage of between 0 v and 9 v in 1 v increments when the $74 C 42$ inputs are driven from a BCD input. You now have a boolean to decan (?) logic converter, there are several methods of going the other way. One of the simplest methods is probably to use a set of transistors which will switch on at 10 different voltages ($0-9$) and then encode this with binary logic gates to give a 1 of ten and this $B C D$ result.

Of course, you could simply use a variable power supply or two coupled to voltmeters, but somehow this seems to be cheating. Anyway, when you have your generator and readout device you can start to work out some of the rules involved in ten level logic - your ideas are probably just as valid as anyone else's. Perhaps you would like to send in any circuits or ideas to us at ETI so that we can publish them and start a whole new revolution in electronics.

Battery Logic

The logic generators described above could be run from a 9 V battery and as they are simply CMOS, resistors and meters the current consumption would be very low. If you simply use some 9 V batteries, switched potentiometers and meters as in the second example above you would not require any binary logic gates at all. Consider what is happening in this case (taking into account that I just passed " O " level physics and failed chemstry). The voltage in the battery is generated because of one of several types of chemical reaction, some alterations to this voltage may then be caused by logical or arithmetic operations and the result is used to activate a mechanical lever on an analogue voltmeter.

Would it be possible to use chemical reactions as logic elements and thus cut out some or all of the electrical interface. My knowledge of chemistry becomes obvious when I try to recollect the number of ways a chemical can be classified, one way is acid and alkali which I seem to remember are opposites. Surely a mixture of a percentage acidity could be mixed with another of a different acidity under certain conditions to create some form of logical combination which would be accurately repeatable? In which case the resultant could be used in another reaction to give a voltage output and/or a mechanical reaction?

If you consider the reactions of two complex chemicals such as hydrocarbons, nucleic acids, DNA and other things that I know little about, then the complexity of the logic operations which could be handled seems very varied. Having mentioned DNA perhaps I should point out that I see such chemical reactions taking place and being measured on a very small scale, nearly molecular rather than with 100 ml beakers

The microprocessor of the future may require feeding with sugar rather than any form of electricity, temperature and humidity may become more important factors than they are at present and it could get very upset if you spill hot tea on it. The output devices would of course be such things as a chemical print head working on presensitised paper or tape (or screen), the input devices would measure chemical reactions on treated plates which would react to external chemicals such as the human skin. Increasing the memory capacity could be as simple as buying $1 \mathrm{lb}(500 \mathrm{~g})$ of fillet steak or even digging up a few carrots from the garden.

Although this may seem like mid-summer madness it could be a feasible alternative at some future date, after all, if you can operate on things like sugar, fillet steak and carrots (not necessarily together) then why not a microprocessor. Now there is a project for the NEB to invest $£ 50$ million in!

Data Catalogues

When I first became interested in electronics as a hobby one of my main reference books was Henry's catalogue which was full of useful and seemingly useless items. The main attraction of the catalogue was the fact that there were many small but understandable circuit diagrams showing various applications of some of the more complex components. I based my very first digital clock circuit on the circuit by Dave Hunt in one of their catalogues and learnt a lot about digital electronics from what was effectively a sales catalogue.

Recently several manufacturers have donated their latest data books / catalogues to the JMK library (writing Electronics Tomorrow has hidden advantages). These data books are available (at a price) to anyone who cares to contact the manufacturers or their agents and together form a very comprehensive library of LSI components in and around micros. TV games, calculators and telecommunications. I can recommend all of the following books which are the ones I use now and are the latest in a series which I have used for several years now I realise that several manufacturers other than those mentioned have similar books but these seem to cover a wide range and anyway I get these for free!

GIM produce a very comprehensive range of MPU, memory, clock, calculator, TV series, communications and industrial chips. The 1978 catalogue contains data on all of the TV games and interface circuits from the simple bat and ball to the complete home entertainment system. To take an example try looking up the data on the AY-3-1013 UART, the data, descriptions and applications for this IC goes on for about 15 pages and just when you think you have finished and just about exhausted UARTs you turn the page to find that GI also make a $1014,1015,1016$, etc, with multitudinous options and alternatives on the basic design. The GI 1978 Data Catalogue costs $£ 3.00$ from General Instrument Microelectronics Ltd, 1-4 Warwick Street, London W1R 5WB. Tel. 01-4391891

Arming Intel

After a lost of arm twisting Intel were finally persuaded to part with their 1977 Data Catalogue which has a price of 2.50 dollars printed on it. This includes data on RAMs (including 2114). PROMs (including 2716), CCD memory, four MPU chips and associated components, Microcomputer systems and development systems. This book is a must for MPU addicts as Intel uses the "Microbus" approach on MPU add-on ICs which makes them usable on most MPU chips not just those made by Intel. After speaking to a young lady at Intel I am now informed that the 1978 catalogue is now available at $£ 4.00$ and that they can handle a few hundred orders easily but if everybody wants one... Intel'are àt: Intel Corporation UK Ltd, Broadfield House, 4 berweel Towns Road, Cowley, Oxford OX4 3NB. Tel (0865) 771431 .

Naturally National

National Semiconductors would probably claim that their 1977 data books are so far ahead that their contents will remain current during 1978. Natsemi have a range of data books to cover their vast range of products including specialist books for linear, transducers and data acquisition. My library includes the 1976 Linear and 1976 TTL books and the 1977 issues of MOS/LSI (clocks, counters, watches, calcs, CB, COPS, displays, etc); Memory (you name it) and CMOS. The Natsemi CMOS book includes a 4000 series, the 74C TTL compatible series, some applications of these and also data and applications on many unique devices in the CMOS/LSI category. These latter include telephone diallers, TV clock/channel units, DVMs, A/D converters, display and keyboard controllers and 7 seg to BCD converters amongst many other clever and low-cost circuits which have the additional advantages, of CMOS.

ETI

NEW PRODUCTS NEW PRODUCTS POWER AMP KIT

The kat includes all metalwork heatsinks and hardware to house any two of our power amp modutes plus power supply It is contemporarily styled and its quality is consistient with that of our oother croducts Compr

ADVANCED PRE-AMP CPR1

Thus stereo module accomplishes prea amplification of disc and other inputs to an umpeccabte standard The
disc input has no common mode distornion effects thd of $001 \% 40 \mathrm{~dB}$ overioad. 70 dB s n and 6 V , disc input has no common mode distortion effects thd of $001 \% 40 \mathrm{~dB}$ overload. 70 dB s n and $6 \mathrm{~V} \mu \mathrm{~S}$
siew rate Other inputs have 70 mv sensitivity thd of $001 \% 90 \mathrm{~dB} \sin 12 \mathrm{~dB}$ octave subsonic fitter

MOVING COIL PRE-AMP MC1
This stereo module uses multipl
$160, \mathrm{~V}$ for 35 mV output

POWER SUPPLY

power amp supples or our small transtormer TR 6 The power ampkit accommodate in

POWER MMPLIFEA MODULES		powerampkit ¢32.40
CE 608 60W/8 ohms $35-0.35 \%$	116.30	PAEAMPS:
	[19.22	These are awalable in two versians - one uses slandard
CE 1008 $100 \mathrm{~W} / \mathrm{t}$ ohms $55.5 \mathrm{~d}-45 \mathrm{v}$	123.22	cempenenis. and the other jith S $\$$ us as M0 resistors where
CE $1704170 \mathrm{~W} / 4 \mathrm{dmms} 45.00 .450$	\{29.12	necessary and lamituma capaciliors.
	\$31.90	CP91 £29 49: CPM1s £39.98: MC1 £18.50; MC15 £29.49
Tonoloal pownr supmiles		POWER SUPPM:
CPSI lor 2 KCE 608 or ixCE 1004	£14.47	
CP52 lor 2xCE 1004 or $2 / 4 \mathrm{xCE} 608$	\$16.82	brioge diver bil
CPS3 lor 2xCE 1008 or 1xCE 1704	117.66	
CPS4 lor IxCf 1008	115.31	
cpss lor 1xCl 1708	\$22.58	
CPSS lor 2xCE 1704 br 2uce 1700 heatsums	12.98	
Light donty. $50 \mathrm{~mm} .2 \mathrm{c} / \mathrm{W}$	¢1.30	
medium power. 100 mm . $1.4 \mathrm{C} / \mathrm{W}$	E2.20	
Disco/growp. 150 me . $1.1 \mathrm{C} / \mathrm{W}$	£2.85	
Fon. 80 mm , zate 120 er 240 v	£18.50	STAMFORD HOUSE
Fan mounted on two thlad 100 mm Healsaths $2 x .4$ C/w. 65 C max wilh twe 170 w medults	¢29.16	TA STAMFORD STREET LEICESTER LE 1 6NL
THERTMAL CUT PVIT. 70 C	$\mathrm{F}_{19} 9$	

All prices shown are UK only and include VAT and post COD 90p extra. E100 limit Export is no problem please write ior specific quote Send large SAE or 3 Internationat Reply Coupons for detalled information

110 WAVEFORM GENERATOR PROJECTS FOR THE HOME CONSTRUCTOR

R. M. Marston

Many electronic devices, from simple alarm generators to complex test equipment, are based on waveform generators. This addition to the popular series for projects builders shows 110 waveform-generator circuits with a variety of applications of interest to the electronics amateur, student and engineer. All the circuits have been designed, built and fully evaluated by the author. The book includes design charts for readers wishing to design or modify waveform generators to their own specifications,
1978144 pages $216 \times 138 \mathrm{~mm}$ Illustrated 0408003537
Paperback
£2.95
US $\$ 6.00$

By the same author
110 INTEGRATED CIRCUIT PROJECTS FOR THE
HOME CONSTRUCTOR - Second Edition
R. M. Marston

1978128 pages $216 \times 138 \mathrm{~mm}$ Illustrated $040800309 \times$ Paperback

E2.95
US $\$ 6.00$
110 SEMICONDUCTOR PROJECTS FOR THE
HOME CONSTRUCTOR - Second Edition
R. M. Marston

1978128 pages $216 \times 138 \mathrm{~mm}$ Illustrated 040800,3227
Paperback
£2.85
US $\$ 5.75$

NEWNES TECHNICAL BOOKS

Borough Green, Sevenoaks, Kent TN 15 8PH
Telephone: (0732) 884567

MAINS TRANSFORMERS 240 volt Prim. Type 1. 50 voit 10 amp © E4.55 (P\&P $95 p$). Type 2.24 volt tapped at 14 volt 1 amp @ £1.30. (P\&P 30p). Tyoe 3. 22.0-22 volt. 500mA @ E1.60 (P\&, 250
JACKSON TYPE 5pf VARIABLE CAPACITORS@ 75p
S.C.R.s 10 Amp Type 100 PIV @ 25p. 400 PIV @ 50p. 800 PIV @ 60p

50 ASSORTED 2 WATT ZENERS Untested for $57 p$.
SUB-MIN TANTALUM CAPACITORS $4.7 \mu \mathrm{f} 10 \mathrm{v} . \mathrm{w}$. @ $5 \mathrm{p}, 6$ for 25 p .
ERIE SUB-MINIATURE RED CAP. $01 \mu \mathrm{f} 100 \mathrm{v} . w$. @ $5 p$ each.
20 PHOTO TRAN8ISTORS, DARLINGTONS Untested @ $£ 1$
50 VARI-CAP DIODES like BA 102 Untested for 57 p .
400 mW ZENERS Unmarked Good. $3.6 \mathrm{v} .6 .8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}, \mathrm{v}$
$30 \mathrm{v}, 33 \mathrm{v} 36$ volt All MOS LEVEI SENSOR TAA 320 .
X BAND GUNN DIODES with dat with data @ 35p
X BANDRIVTICS 2200n 100 v .w 60p.
$3300 \mu \mathrm{f} 64 \mathrm{v}$ w. © 50p
信
LM 380 AUDIO I.C. with circuits for 80 p .
2 GHz STRIPLINE NPN TRANSISTORS at £1 each.
6 WATT WIRE WOUND POTENTIOMETERS 1.2 K at 22 p .
10 MULTI-TURN PRE-SET TRIMPOTS Assorted @ 57p.
$3010 \times A J$ CRYSTALS Assorted 5100 to 7900 KHz @ C1. 10
WIRE ENDED CRYSTALS $28 \mathrm{KHz} @ 50 \mathrm{p}, 28.5 \mathrm{KHa} @ 50 \mathrm{p}$.
ITT CAPACITORS PMT-2P. 1μ F $100 \mathrm{v} . \mathrm{w}$. at 20 p doz.
100 K DUAL LIN WIRE WOUNO POTENTIOMETERS @ 50p
STUD GIODES. ELECTROLYTICS 3 for 350
STUD DOD
TEXAS SORS TIC 47 200 PIV 300 OA 18 each
ELECTRET MIKE INSERT with FET Pre-AMp ©
100 ASSORTED DISC CERAMICS for 57 P
NPN 5 WATT DARLINGTON TRANSISTORS @ 20p, 3 for 50p.
50. BC 107-8-9 TRANSISTORS Assorted Untested for 57p

VERNITRON FM4 10.7 MHz CERAMIC FILTERS © 500
Mc MURDO 8 PIN PLUGS @ 20p. Sockets @ 20p. Covers @ $15 p$
SILICON BRIDGES 200 PIV @ 25p. 400 PIV 1 amp @ 30p.
ALUMINIUM DIECAST BOXES $4^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$ @ $55 \mathrm{p} .4 .7 / 16^{\circ} \times 2.7 / 16^{\circ} \times 1 / 2 @ 65 p$
 $01 \mathrm{mf125v.w} .1 \%$ CAPACITORS @ $10 p$ each
MINIATURE SUFFLEX CAPACITORS 12, 15, 20. 25. 30.50.56, 100. 120. 300 500 . 1000 pf All $125 \mathrm{v} . \mathrm{w}$. at 20 p doz
MULLARD ELECTROLYTICS $2240 \mu \mathrm{f} 40 \mathrm{v} . \mathrm{w}$. @ $40 \mathrm{p}, 4500 \mu \mathrm{f} 25 \mathrm{v} . \mathrm{w}$., @ 40p. 500μ 10vw. @ 15p, 6400pf16v.w. @ 25p., 8000 f $10 \mathrm{v} . \mathrm{w}$ @ 25 p
BAW O2 HICH SPEED DIODES ar 12 or 35 o.
0 AC 128 TRANSISTORS Branded but untested for 57 p.
100 MULLARD C280 CAPACITORS Assorted for 57 KHz @ £1. 10
PHONO SOCKETS Single @ 5 p. Double @ 10p. Triple @ $15 p .4$ way @ $20 p$.
Please add 20p for post and packing, unless otherwise stated. on U.K. orders under £2
Overseas orders at cost

Radio Component Suppliers, 13 The Strait, Lincoln.

15-240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally suted for all applications All common input functions (mag Cartfidge tuner. etc.), are catered for internally the desired function is achieved either by a merely require connectingto external potentiometers (not included) The HY5 is compatible with all LP power amplifiers and power supplies. To ease construction and mounting a PC connector is FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise -- Low distortion - High overload - iwo simply combined for stereo
APPLICATIONS: Hi-Fi - Mixers - Disco - Guitar and Organ -- Public addres
PPECIFICATIONS
INPUTS Magnetic Pick-up.3mV Ceramic Pick-up 30 mV : Tuner 100 mV Microphone 10 mV : OUTPUTS Tape 100 mV Main output 500 mV R M S
CTIVE TONE COLS
ACTIVE TONE CONTROLS Treble + 12 dB at 10 kHz . Bass +100 H
OVERIOAD 38dB on Mar Signal Nolse Ratio bab
OVERLOAD 38 dB on Maanetic Pick-wo: SUPPLY VOLTAGE +16.50 V

HY5 mounting board B1 $48 p+6 p$ VAT P\&p tree

HY30

15 Watts into 8Ω
The HY30 is an exciting New kit from IL.P it features a virtually indestructible IC with short circuit and thermal protection The kit consists of I C, heatsink, P C board, 4 resistors, 6 capacitors, deally suited to the beginner in audio who wishes to use the most FEATURES: Complete kit - Low Distortion - Short Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment -- Guitar practice amplifier -- Test amplifier - Audio SPECIFICATIONS
OUTPUT POWER 15 W R M S into 81 DISTORTION 01% ai 15 W
NPUT.SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz} \cdot 16 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPIY VOLTAGE +1 V
Price $£ 6.27+78$ p VAT. P\& P free
HY50
25 Watts into 8Ω
The HY50 leads I \& P s total integration approach to power amplifier design The amplifier teatures an integral heatsink logether w the simplicity of no external components During the past three years he amplifier has been refined to the extent that it must be one of the most reliable and robust High FEATURES: Low Distortion
FEATURES: Low Distortion
SPECIFICATIONS: Medium Power Hi-Fi systems - Low power disco -- Guitar amplifier
OUTPUT POWER 25 W RMS in 892 LOAD IMPEDANCE $4-16$ O DISTORTION 004% at 25 W a 1 kHz
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPIY VOITAGE - 25 V SIZE 10550.25 mm equirements including load line and thermal protection, this amplifier sets a new standard in modula
 Five connections. - No external components - Public address . Monitor amplifier .. Guitar and organ
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into B? LOAD IMPEDANCE A-16! DISTORTION 0.04% al 60W at SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ •SUUPPLY VOLTAG Sizo $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 19.01+£ 1.52$ VAT. P\& P free.
HY200
The HY200 now improved to give an output of 120 Watts has been designed to stand the mas rugged conditions. such as disco of group while still retaining 'true Hi-Fi performance FEATURES: Thermal shutdown - Very low distortion -- Loadiline protection - Integral tienisink
120 Watts into 8Ω
APPLICATIONS: Hi-Fi - Disco - Monizor -- Power Slave - industrial - - Public address SPECIFICATIONS NPTI SENSITITY 500 mV
OUTPUT POWER 120 W RMS into 8% LOAD IMPEDANCE 4-16:) DISTORTION 0.05% al 100 W at SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SLZEE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 2799+£ 224$
HY400
240 Watts into 4Ω
high 400 is I. L. P s "Big Daddy" of the range producing 240W into 40 ! It has been designed for high nower disco or public address applications If the amplitier is to be used at continuous high power levels a cooling fan is recommended The amplifier includes all the qualities of the rest of the family to FEATURES. Thermai shudown Very tow distortion
components
APPLICATIONS: Public address -.. Disco - Power slave - Industria
SPECIFICATIONS
OUTPUT POWER.240W RMS into 40 LOAD IMPEDANCE 4-161) DISTORTION 01% at 240 W a
SIGNAL NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times$ B 5 mm
Price £38.61 + £3.09 VAT. P\& P free.
POWER
SUPPLIES

PSU36 suitable for two HY30 $\mathbf{\$} \mathbf{£ 6 . 4 4 + 8 1 p}$ VAT
PSU 50 suitable for two HY 50 's $£ 8.18+£ 102$ VAT
PSU 70 suitable for two HY 120 's $\mathbf{1 4 . 5 8}+£ 1.17$ VAT
PSU 70 suitable for two HY $120 \leq £ 14.58+£ 1.17$ VAT
PSU90 suitabie for one HY $200 £ 15.19+£ 1.21$ VAT
PSU 180 suitable for two HY2000's or one HY400 £25.42 + f. 203 VAT

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd.
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel. (0227) 64723

Please Supply
Total Purchase Price
| Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

A. Hiley

In many amplifiers, the only protection against overload is a single fuse Experience has shown that output transistors can blow faster than fuses. The simple circuit shown below will protect the amplifier in the event of a fault or gross overload

Normally, the current through R1 biases both the transistors fully on The P.D. across the LED is less than 2 V , and it will not light up. In the event of a fault or overload, the current consumption of the amplifier will increase. The forward bias on the transistors will decrease, and they will tend to turn off. This will cause the potentisl across R to decrease, which will increase the bias on the transistors, turning them on again. The overall effect is that current limiting takes place. Under these conditions, the LED will light up, indicating a fault condition. If the fault or overload persists, the main fuse in the amplifier will probably blow. The actual protection circuitry needs no resetting

Under fault conditions, the dissapation in Q2 will be very high, and so it must be bolted onto the chassis or the heatsink

[^4]
Motorcycle Burglar Alarm

N. Hone

Currently available motorcycle alarms are either very expensive or ineffective. This circuit provides protection against theft, or tampering with the machine

Audio Millivoltmeter

J. P. Macaulay

The circuit shown is of a very simple but effective and accurate millivoltmeter. The non inverting input is biased at half supply by the voltage divider R1/R2, decoupled by C2. The input impedance is defined by R3 whilst C1 isolates unwanted DC

Due to normal op-amp action the inverting input follows any voltage present at the non inverting input Because of this the current flowing through the meter, and the resistor selected by $S 1$ is $V_{\text {RMS }} / R$. C3 prevents any DC flowing and hence makes offset nulling unnecessary

With the component values shown the circuit has a flat response from $8 \mathrm{~Hz}-50 \mathrm{kHz}(-3 \mathrm{db})$ on the 10 mV range. The upper limit remains the same on the less sensitive ranges but the lower frequency limit goes under 1 Hz

D5 and D6 provide protection for the meter under reverse bias and overload conditions respectively. The circuit will work from supply rails between 12 and 30 V , and in the quiescent state consumes only 2 mA .

BCD Tone Generator

P. Bailey

When one of the binary codes in the table is set up on the data inputs, a corresponding preset connected to IC1 and 2 will be grounded, and the unijunction will start to oscillate. The frequency of oscillation depending on which output of the ICs is grounded If the 18 presets are tuned to form a chromatic scale and the inputs ina chromatic scale and the inputs in-
terfaced to your MPU data bus - hey presto you have a simple MPU controlled organ!
\qquad

$$
\|
$$

\qquad -

Temperature Control

S. H. Alsop

This circuit provides full phase proportion control of a heater, infrared lamp etc, uses no expensive transformers for its own power, and is extremely sensitive

The LM3911 sensor is connected to the sensor via a 3 core cable, and enclosed in a rubber sleeve to enable it to be used as a probe. The output of the LM3911 varies by $10 \mathrm{mV} / \mathrm{C}$ and the minute change is amplified by the 741. Any increase in temperature will increase the output of the 741 which will lower the base current through Q1 and so reducing the constant charge current to C 2 . This variation of charge current with temperature will alter the time taken for the UJT to fire changing the phase angle of the power to the load

Peak Level Indicator

T. Norris

The diagram shows a simple monstable multivibrator with a LED which is normally lit, but will be briefly ex-
tinguished if the input exceeds a preset (by RV1) level. A possible application is to monitor the output voltage across a loudspeaker, when the LED will flicker with large signals

The 5 k lin pot is set to the tem- limits of this control can be changed perature required and is linear over its by adjusting the 100 k presets entire range. The upper and lower

\star SAME AS ETI OFFER * 5 FUNCTION LCD Hour, Min, Sec, Month, Date S/S Strap and finish $£ 9.65$		* LCD ALARM QUARTZ * Back lite and snooze includes batteries and travel pouch. £17.95
SEIKO Now in stock	ple: Alarm - Chrono List price E130 Metac price £105	
Lamda 11 function 6 digit Lap and net time to $1 / 100 \mathrm{sec}$!! (name may vary but same watch) $£ 14.95$	buler alarm watch swiss QUALITY	buLER DUAL TIME CHRONO Reference 3034 Calibre Chrono quartz. Dial printed mineral Crystal Case all steel case water-resistant battery Strap steel bracelet Colours steel case greystal, steel bracelet ABOUT 30 FUNCTIONS £55
DON'T FORGET WE STOCK A LARGE RANGE OF COMPONENTS: IC'S RESISTOR, ETC. PLEASE PHONE OR SEND S.A.E. FOR QUOTE	ALL PRODUCTS CARRY FULL 12-MONTH GUARANTEE. PLEASE ADD 30p P\&P WITH ALL ORDERS. All prices include VAT. All products subject to availability	RAY-O-VAC WATCH BATTERIES All types $70 p$ Free fitting instruction leaflet with order (please request)
COMPONENTS SPECIAL LED DISPLAY DL707 or DL704 Only 80p each	TV GAMES Black \& white $£ 9.95$ Colour £12.95	
67 HIGH STREET DAVENTRY, NORT Tel. (032 72) 76545	AC Electronics \& Time 327 EDGWARE ROAD LONDON W2 Tel. (01) 7234753	Centre Barclay \& Access welcome Send Card Number with order

Ni-Cad Charger Mod.

B. V. Barton

This modification was made to the ETI 519 Ni -cad charger to protect the cells in case a power cut occured while the cells were charging. Normally the cells on charge would rapidly discharge through the charging circuitry, causing possible damage.

The modification involved the addition of a low voltage thyristor in series with the battery. If power fails, the battery cannot discharge. When power is reapplied, the battery will not continue to charge until SW3 is closed momentarily

4 Channel Synthesizer

T. Huffinley

This circuit will synthesize two rear channels for 'quadraphonic' sound when fed with a stereo signal. The rear output for the Left channel, is a combination of the left channel input
180° out of phase, added to a proportion of the right hand channel (also out of phase). The right hand rear output is obtained in a similar way.

COMPUTER INTERFACES \& PERIPHERALS

For tree catalog Including parts lists and schematics, send a self-addressed stamped envelope.

APPLE II SERIAL I/O INTERFACE*

Patno

Baud rate is continuousiy adjustable from 0 to 30,000 • Plugs into any periph eral connector - Low current drain. RS 232 input and output * On board switch selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address SOFTWARE - Input and Output routine from monitor or BASIC to teletype or other serial printer - Program for using an Apple It for a video or an inteligent terminal. Also can output in correspondence code to interface with some selectrics. Board only - $\$ 15.00$ with parts - $\$ 42.00$; assembled and lested - $\$ 62.00$

MODEM *

Part no. 109

- Type 103 a Full or hall duplex - Works up to 300 baud - Originate or Ans wer - No coils, only low cost components - TTL input and output-serial \bullet Connect 8 ohm speaker
 and crystal mic. directly to board - Uses XR FSK demodulator - Requires +5 volts - Board $\$ 7.60$ with parts $\$ 27.50$

DC POWER SUPPLY*

Part no. 6085

- Board supplies a regulated +5 volts
at 3 amps., $+12,-12$, and -5 volts at
1 a mp. Power required is 8 volts $A C$
at 3 amps., and 24 volts ACC.T. at 1.5
amps. Board only $\$ 12.50$; with
parts excluding transformers $\$ 42.50$

TAPE INTERFACE *

Part no. 111

- Play and record Kansas City Standard tapes • Converts a low cost tape recorder to a digital recorder • Works up to 1200 baud - Digital in and out are TTL-serial •Output of board connects to mic in of recorder - Earphone of
 recorder connects to input on board - No coils Requires +5 volts, low power drain \bullet Board $\$ 7.60$; with parts $\$ 27.50$

T.V. TYPEWRITER

Par1 no 106

- Stand alone TVT - 32 char/line 16 lines, modifications for 64 char/line included - Parallę ASCII (TTL) input Video output - 1 K on board memory Output for computer controlled cur-

ser - Auto scroll Non-destructive curser - Curser inputs: up, down, left, right, home, EOL, EOS - Scroll up, down - Requires +5 volts at 1.5 amps , and -12 volts at 30 mA - All 7400 , TTL chips * Char gen 2513 - Upper case only - Board only $\$ 39.00$; with parts $\$ 145.00$

TIDMA*

Part no. 112

- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate - $\mathrm{S}-100$ bus compatible - Board only $\$ 3500$; with parts $\$ 110.00$

UART \& BAUD RATE GENERATOR

Part no. 101

- Converts serial to parallel and parallel to serial - Low cost on board baud rate generator - Baud rates: 110 . 150, 300, 600, 1200, and 2400 - Low power drain +5 volts and -12 volts required

- TTL compatible - All characters contain a start bit 5 8 data bits, 1 or 2 stop bits, and either odd or even parity - All connections go to a 44 pin gold plated edge connec tor Board only $\$ 12.00$; with parts $\$ 35.00$ with connector add $\$ 3.00$

8K STATIC

 RAMPart no. 300

- 8k Altair bus memory Uses 2102 Static memory chips • Mem ory protect - Gold contacts - Wait states - On board regulator - S -100 bus compatible - Vector input option - TRI state buffered - Board only $\$ 22.50$; with parts $\$ 160.00$

RF MODULATOR*

Part no. 107

- Converts video to AM modulated RF, Channels 2 or 3 . So powerful almost no tuning is required. On board regulated power supply makes this ex-
 tremely stable. Rated very highly in Doctor Dobbs' Journal Recommended by Apple. Power required is 12 volts AC C.T., or +5 volts DC \bullet Board $\$ 7.60$; with parts $\$ 13.50$

RS 232/TTY* INTERFACE

Part no. 600

- Converts RS-232 to 20 mA current loop, and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 volts • Board only $\$ 4.50$, with parts $\$ 7.00$

RS 232/TTL*

 INTERFACEPart no. 232

- Converts TTL to RS-232 and converts RS-232 to
 - Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$, with parts $\$ 7.00$ with connector add $\$ 2.00$

ELECTRONIC SYSTEMS

Temperature to Frequency Convertor

P. Reynolds

This circuit uses the fact that when fed from a constant current source, the forward voltage of a silicon diode varies with temperature, in a reasonably linear way.

Diode D1, and resistor R2 form a potential divider, fed from the constant current source. As the temperature rises the forward voltage of D1 falls tending to turn Q1 off. The output voltage from Q1 will thus rise, and this is used as the control voltage for the CMOS VCO. With the values shown, the device gave an increase of just under $3 \mathrm{HzC}^{-1}$ (between 0 C and 60 C) giving a frequency of 470 Hz at 0 C

Lighting Effects

D. Stewart

This circuit can be used to produce some interesting lighting effects. A unijunction relaxation oscillator is used to trigger the thyristor. The frequency of the oscillator is controlled by RV1. The load (a light bulb) will not be triggered at the same frequency as the unijunction oscillator, and some interesting effects can result. Care should be taken with this circuit as it is not isolated from the mains.

Logic Noise Detector

G. Robinson

Ever since the advent of binary logic, spurious noise spikes and pulses have been the curse of the designers of even elementary systems. This circuit will help detect 'noisy' logic levels. With SW1 in position I, any logic zero spikes occuring on a steady logic ' I ' will set the R-S latch and the LED will be illuminated. With SW1 in position 2, an extra inverter is brought in, and the circuit will be triggered by any logic 'I' spikes.

YOUR NEW PERSONAL COMPUTER SPECIALIST, IN LONDON

TRANJAM

OPENING MID SEPTEMBER IN CHAPEL STREET, NW1

TRANJAM

BRINGS YOU THE TRITON COMPUTER* IN ETI NEXT MONTH

TRANJAM

TRITON* HAS BASIG, ANIMATED GRAPHICS + MEMORY MAPPING

TRANDAM

has a full range of micros and SUPPORT, PLUS SOFTWARE

TRANDAM BRINGS YOU "MEMORY BANK" A FULL MEMORY SERVICE

TRANDAA

CATALOGUE IS AVAILABLE NOW SEND 30p AND SAE

TRANSAM

TRANSAM COMPONENTS LTD. 12 CHAPEL STREET LONDON NW1

TEL: 4028137
NEXT TO EDGWARE ROAD TUBE STATION. MET. LINE
"TRITON COMPUTER' IS THE TRADE MARK OF TRANSAM COMPONENTS LTD

anly Pluase add 30 p to the total cosst of order lor postage Pricas include Va7 Overse.
deduct 7% on litems marked' and 11% on others Ofticial credit orders welcome.

NASCOM 1 Z80 Microcomputer kit Undoubtedly the finest value for money kit available anywhere. Fully socketed. INTERFACE FOR: TV (UHF) TV Monitor Cassette Teletype 32k Ram expansion board May be seen working 9 a.m. - 5 p.m. Mon.-Fri. Callers welcome Price £197.50 + VAT (8\%) Cailers welcome STRATHAND SECURITY Callers welcome 041-552 6731 Tel. order welcome with Access and Barclaycard

Exclusive OR and NOR gates

D. S. Smith

When constructing logic circuits which need either an exclusive OR or exclusive NOR gate, and one is not available, the following arrangement
of NAND or NOR gates can produce the required results. The circuits can be constructed using standard TTL or CMOS gates.

truth table

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

$$
\begin{aligned}
& \text { TRUTH TABLE } \\
& \begin{array}{|c|c|c|}
\hline A & B & C \\
\hline 0 & 0 & 1 \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Electronic Dice

G. Vance

This dice circuit is interesting, as the
six LEDs are arranged to produce a display the same as the dots on a dice When PBI is depressed, the display is blanked and the oscillator (IC7a, b, c) clocks IC2 at about 1 MHz . IC2 counts
from zero and resets on seven. When PBI is released, the display is enabled and a novel decoding system produce the correct output on the LEDs

SIN TEL

THE SINTEL SIX DIGIT MAINS CLOCK KIT with BLEEP ALARM and TOUCH SWITCH SNOOZE

- high brightness display
- automatic intensity control
- deep red display filter
- SLIM White CaSe $205 \mathrm{~mm} \times 40 \mathrm{~mm} \times 140 \mathrm{~mm}$
- battery backup
- CRYSTAL CONTROL FOR IMPROVED ACCURACY

Order as ACK + EEK + XTK


```
BEST OF BYTE Volume 1. 380 pages
Intel Memory Design Handboat
Inted }8080\mathrm{ Microcomputer Systerns User's Mannal
Intel 8085 Microcomputer Symtems User's Manual
Motorole Booklet From the Computer to the Microprocesso
Motoroly MCMOS Databock NOL 5 Series E
Motoroia M6800 Microprocossor Applications Manual
National SC/MP Inockrit Umin's Manual
National SC/MP Tochnical Ooscription
RCA CMOS and Linesi IC Databook
Texas Intrumbents Pin Configuration Guids.A very useful set of gloss cards showing top and bottom
views of }7400\mathrm{ ICs plus many others (T.1. Momories. Op-Amps, etc
Zilog Z80-CPU Technical Magramming Manu:
Zitog Z80 CTC Product Specificat
Zilog z80-p10 Technical Manual
```



```
Z8OMP. Inret 8085. Also free det onso- -amenents.
```

Some Popular Memories available from SINTEL (Soe ETI DATA SHEET SPECIAL July 1978
2102450 nsec IK STATIC RAM 2702650 nsoc STATC RAM 1 K 8 b bit UVEAASABLE ROM
\$500 600 nsec 1K STATIC RAM
E .85
$\mathrm{C1.85}$
ce .80

ASSEMBLED LATCHED COUNTER MODULES

\$IX DIGIT TTL COUNTER MODULE
Our range of Industrial Latched Counter Module Kits is now avalable ready-buith. These counters use both module uses a set of red LED displeys. and features a single in-line plug and socket. Intrifuctions are provided or full det

	TTL				cmos			
	Part No	Built	Part No	Kit	Part No	Bult	Part No	Kit
2 Cm	$401-44$	£13.22	525-412	c11.52	303-584	${ }^{1} 13.02$	340-470	£10.42
4 4tat	715.64	[23.38	657-412	\$17.24	512-564	222.63	880-470	\&18.11
1 bin	233-44	¢33,76	721-412	E25.es	393-564	E $\$ 2.31$	191-470	¢25.05

NEW PRICES AND SOME NEW CMOS ADDITIONS If you noed your CMOS by retum - buy it from SINTEL									
CD4000	0.15	CD4027	0.44	CD4051	0.82	CD4086	$0.64{ }^{\prime}$	coiel ${ }^{\text {c }}$	1.40
CD400 1	0.17	CD4028	0.77	C04052	0.82	C04089	1.38	CD40192	1.40
CO4002	0.17	C04029	1.03	C04053	0.82	CD4093	0.80	CD40193	1.40
CD4006	1.04	C04030	0.50	CD4054	1.04	CD4094	1.69	CD40194	1.19
CO4007	0.18	CO403 ${ }^{1}$	2.00	CD4055	1.18	C04095	0.94	CD40257	1.48
CO4008	0.87	CO4032	0.88	CD4056	1.18	CD4096	0.94	CD4502	0.81
C04009	0.50	$\mathrm{CD}^{\text {co3 }}$	1.25	CO4059	4.28	CD4097	3.38	CD4510	1.01
C04010	0.60	CD4034	1.71	CD4060	1.00	CD4098	0.98	CD4511	1.25
CD4011	0.18	CD4035	1.08	CD4063	0.98	CD4099	1.65	CD4514	2.47
CD4012	0.20	CD4036	2.86	CD4066	0.55	CD40100	2.50	CD4515	2.82
CD4013	0.43	CD4037	0.85	C04067	3.35	CD40101	1.81	CD4516	1.01
CD4014	0.83	CD4038	0.96	CD4068	0.20	CD40102	2.13	CD4518	
CD4015	0.83	CD4039	2.78	C04069	0.20	CD40103	2.13	CD4520	1.04
C04016	0.48	CD4040	0.97	CD4070	0.46	CD40104	1.10	C04527	1.43
C04017	0.78	CD4041	0.75	CD4071	0.20	CD40105	1.08	CD4532	1.21
CD4018	0.83	CD4042	0.85	CD4072	0.20	CD40106	0.62	CD4555	0.76
CD4019	0.50	CD4043	0.88	CD4073	0.20	CD40107	0.68	CD4556	0.78
CD4020	1.11	C04044	0. 0^{4}	CD4075	0.20	CD40108	5.38	MC14528	0.03
CD4021	0.90	CD4045	1.28	CD4076	1.17	CD40109	1.03	MC14553	4.43
CD4022	0.12	CD4046	1.20	CD4077	0.38	CD40160	1.18	IM6508	8.05
C04023	0.18	C04047	0.85	CD4078	0.20	CD40161	1.15	-	0.05
CD4024	0.70	CD4048	0.60	CD4081	0.20	C040162	1.19		
CD4025	0.20	CD4049	0.50	CD4082	0.20	C040163	1.18		
CD4026	1.55	CD4050	0.43	CD4085	0.44	C04018	3.40		

PRICES VALID UNTIL 31 tit AUGUST 1978
OFFICIAL OhDE青S ARE WELCOME from COMpanies. Govt. Depts. Nat Inds, Univs Polys
pep minimum charge the balance will be php. TELEPHONE mnd CREDIT (Invotee) OROERS add VAT $98 \%+60 \mathrm{p}$相

ORDERS TO: SINTEL, PO BOX 75A, OXFORD
Tel: 086549791
FAST SERVICE: We guxprontoe then Tolephone Orders for
oode in steck. recelved by C.1S P.m. (Mon.FFr.) will be
heme by parcel poet) and our stocking if good. Privite curtomers phould telephore tind pey by plving their Accesse of orficiveard number, whith a ninimum order velue of EE.

SINTEL

TARGET ELECTRONICS 16 C FORMERLY "THE RADIO SHOP Bristol BS 1 3NG

Tolephone: Official orders welcomed. Gvt. / Educational Depis. etc.

PANEL METER
rith ILLUMINATION WIRIN Dials are clearly figured on bright white or easy reading. 2.5 F.S.D. accuracy. zero adjustment at front. Cushioned pointer tops. Co
washers.
rewired and have tamp terminals installed n rear
Snap off front cover and insert Lamp Kit opp. extra). 65p
wo 6.3 V bulbs for press-in fitting onto pre-wired connector blocks which require 12.6 V exiernal power

TRANSFORMERS

TR9	6-0-6	100MA	80p
TR2	9-0.9	75 MA	83p
TR3	12-0-12	50MA	90p
TR4	12-0-12	100MA	£1.10
TR1A	6-0.6	100 MA	92p
TR2A	9-0-9	Int screen 75 MA	E1.00
		Int screen50MA	
TR3A	12-0-12		E1.10
		Int screen	

P\&P for above 25

NASCOM 1280 MICROCOMPUTER KIT BARCLAYCARD Includes interface for: TV or Monitor - cassette. dump -
Telerype - spare, PIO, Expansion RAM-80ARD up to 32K. Porentirl. High Leval Language Mini Ftoppy Disk Excellent Potential: High Level Language. Mini Ftoppy Dis
Proposed Seminar on NASCOM 1 Dragonara Hotel. Bristol. Oct. 14th - Please add $121 / 2 \%$ VAT. Remainder 8% VAT
hone in your Access or Barclaycard order. Catalogue 25 p post paid.

Test Unit for Sequential Logic

D. Rayner

Any one testing a sequential logic circuit requires input pulses free of contact bounce. This unit does this, providing two switched, jitter-free outputs and a 'slow' variable speed clock. The complements of these signals are also provided

The components shown give the clock a frequency range of $1-200 \mathrm{~Hz}$ The clock's buffered output will drive up to two TTL inputs

The 100R resistors on all outputs provide some measure of accidental short circuit protection

Speaker Power Indicator

J. Macauley

This circuit will indicate the peak level of an input signal applied to a speaker. It is primarily intended as a fail safe device when connected to an amplifier of higher power rating than the speaker.

The circuit is unique in that no separate DC power supply is required since the circuitry operates from the input voltage to the speaker

R5 isolates the amplifier's output stage from possible fault conditions in the circuit. D1 to D4 full wave rectify the input signal and the resulting DC is used to supply the op amp

The 741 is used as a comparator a reference voltage being obtained from across ZD3 and fed into the inverting input of the op-amp. The non inverting input samples the rectified input signal. When a peak is fed into the circuit the IC's output goes high. and the led flashes. ZD 1 prevents the LED turning on when the output of IC1 is low due to the output being unable to go less than 1.5 V above earth under these circumstances. ZD2 defines the upper limit of the op amp's supply voltage in the presence of large transients whilst R2 is the current limit resistor. It should be obvious that the level at which the led lights is dependent upon the value of R3. The accompanying table shows the value required for this component for dif-

ferent input powers across an 8 ohm load. If different load values are to be used for the speaker the value of R3 can be determined from the equation,

$$
\begin{aligned}
& R 3=14 \mathrm{~V} R-3.3 \mathrm{k} \Omega \\
& P=\text { Pout } \\
& R=\text { load in } \Omega
\end{aligned}
$$

CDI for Positive Earth

R. Vivian

The CDI Mk II ignition published in the May issue has been designed for
negative earth cars. Attempting to install it in positive earth vehicles by reversing the supply connections will lead to problems caused by SCR1 triggering as C3 is discharged (ie as the contact points close, and not as they open).

This modification provides a solution by discharging (C3) through a transistor (Q3) which conducts when the points open. Any general purpose PNP transistor capable of sinking 200mA (eg BC212, BC214L) will do.

Brake Fluid Indicator

D. Shorthouse

This circuit indicates by means of a warning light and a buzzer when the fluid in the tank of a braking system is getting low.

Normally both electrodes are immersed in the brake fluid, and the bases of Q1 and Q2 are at ground potential (the fluid makes a connection between the electrodes and the brake cylinder which is connected to the car chassis). If the fluid level should fall, and either of the electrodes becomes dry, Q1 or Q 2 will turn on which will turn on Q3 and Q4 and the alarm energised.

Acompact 10 MHz Oscilloscope for 1165 !

Gould Advance OS 140

This single trace 'scope offers exceptional performance, with full trigger level control - even when using the bright line facility.
Maximum input sensitivity is 5 mV per division, and timebase speeds are from 200 ns to $>1 \mathrm{~s}$ per division.

Contact us today - at this price the OS140 is too good to miss.
*Applicable to the UK and Eire only.

\Rightarrow GOULD

Gould Instruments Division
Roebuck Road, Hainault, Essex LG6 3UE Telephone 01-500 1000. Telex 263785.

A4 IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).

BUILD THE

- Genuine 5 silicon transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator kit. 4.000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on. - Complete after sales service.
- Weighs only 220z; handle knocks down to $17^{\prime \prime}$ for transport.
Send stamped, self-addressed envelope for literature.

Complete kit with pre-built search coil
 $£ 15.95$
 Plus £1.20 P\&P Plus £1.37 VAT (8\%)
 Built, tested and
 Guaranteed

Full Catalogue 25p
Please enclose $20 p$ P\&P with order

B24-RP stereo cassette glass/ferrite record/ playback
£9.84

> B12-01 mono cass. playbk. $\ldots . . £ \mathbf{£ 1 . 6 0}$

B24-01 stereo cass. playbk.
$£ 2.80$
A28-05 stereo 8tk cartridge
£ 1.80
E12-09 stereo/mono cass, erase
$£ 1.80$

5/7 Church Si, Glewkerne Som. Tel. (0460) 74321

SEMICONDUCTOR OFFERS ALL FULL SPEC.

BC212. BC182. BC 237 . BF 197. BC159. all 8p each. RCA 2015 TO3 Power Transiston (Sim to 2 N 3055) 35p. ACY18 18 p . BF 200

 TO3 Power Transistor (Sim to 2 N 3055) 35 p ACY 18 18p. BF 200 20p. Motorola MRD 305, Photo Transistors 35p. N. ChannetF.E. Ts. similar to 2 N $381918 p$ Mofset Sim to 40673 35p. 3 N140 Mosters 50 p . M 203 Dual Matched Pars Mosfets Single Gate per
 Varicap Diode 35p. MC1310 Ster8o Decoder I.C S E1 20 CD 405 ;
CMOS 50 p. 741 日-pin D $1 . L 23$ p 500 v 600 mA Bridge Recs. (ex.
 Ro EHTT. SIL Rec $15 \mathrm{KV} 2.5 \mathrm{~mA} .15 \mathrm{~mm} \times 5 \mathrm{~mm} 30 \mathrm{p} .781212 \mathrm{~V}$
 12 p each MAN 3 A 3 mm LED Displays 50 p .741 S (wide
bandwidih) 35 p LM 38080 p . M M81 90 p ZN414 75 p . TIL 305 Alpha-numerical Disptays. With data, E2.75. ORP61. Mullard,
new, boxed 30p Special OHter SGS TBABOO ICs. 10 for E2.90.

MICROPHONES. EM 506 Condenser Mikes. Uni- directional.
F.ET AMP Dual imped $50 \mathrm{~K} / 600 \mathrm{hms}$. $30-18 \mathrm{KHz}$ on/otit switch. EII 00 Miniature Tie Pin Condenser mike 1 K imp. Grundig Electret Inseris with buiti-in F. E. T Praamp E1.50. Crystal Mike inserts 37 mm 45 p . Electre: Condenser Mikes 1 KR Imp. with
std Jeck Plug \&2 85 Cassette Condenser Mikes with 25 and 3.5 Jack Plugs E2.85. Standard Cassette Mikes 200 ohm Imped with

MOASE KEYS - H1-speed Type. all metal. E2. 25 Plastic Morse
Keys. 95p. Belling Lee L4305 Masthead Amplifiers and 240 V AC Keys. 95p. Belling Lee L4305 Masthéad Amplifiers and 240 V AC
power unit Group A' UHF. Only $£ 7.50$.

CRYSTALS. 300 KHz HC6U 40p 0.1 Egge Connectors. 64 way
65032 way 400 65p 32 way 40p.
RELAYS. Min 220 vaC Seaied Relay 2 pole C $/ 045 \mathrm{p}$. 240 ov AC Seated Relay 3 pole C/O 5 amp Contacts 11 pin base 80 p 12 voll
4 pole N.O. Reed Relay 20 p Min. 24 v DC Seated 2 -pole C/O
relays 3 -amp contacts New 55 p relays 3 -amp conlacts. New $55 p$
MOTORS. 15106 V DC Model 20p 115 V AC min 3 A.P. M. with Gearbox 30p 240 V AC Synch Motor 1/5th R.P. M. 65 p .240 v AC
Synch. Motor $1 / 24 \mathrm{th}$ R.P.M 65 p . Crouzet 115 v AC 4 R.P.M. Motors. new 95p. 12v DC 5 pole 35p.
BOXES. Black A.6.S. Piastic with brass inserts and lid, $75 \times$
$35 \mathrm{~mm} 40 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} 115 \times 95 \times 16 \mathrm{~mm} 57 \mathrm{p}$.
TOOLS. Radio pliers, 5 in insulated handles $£ 1.40$. Diagonal side cutters. Sin insulated handies ह1 40
MAINS TRANSFORMERS, all 240 V AC primary. Postage shown
in brackets per transiormer
$6-0.6 \quad 100 \mathrm{~mA} .9 .0-975 \mathrm{~m}$
 $100 \mathrm{~mA} 95 \mathrm{p}(15 \mathrm{p}) . \quad+2 v 500 \mathrm{~mA} 95 \mathrm{p}$ (22 p) 12 v 2 Amp . $\mathrm{E}_{2}^{2} 25$

 Xenon/triac pulse transtormer 30 p

SWITCHES - Min Toggle. SPST $8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$. DPDT $8 \times 7 \times$ 7 mm 60 p DPDT Centre $\mathrm{OH} 12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. DPDT C/O Sliders 20p R.S. Single Pole C/O Push Buttons 45 p. Roller Micro
Switches 15 p Min Micro Switches $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. Min Swithes Push to make or push to break Switches $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$

SOLDER SUCKER. Plunger type eye protection, replaceable nozzle, high suction, E4.95. Reed Swiches 28 mm norm. open, 6 p
each.

TAPE HEADS - Cassette Stereo E3.00. BSA MN $13301 / 2$ Track Oual Impedance Rec./ Playback 50p. BSR SRP90 $1 / 4$ Track Siereo
Rec /Playback E1 95 TD 10 Assemblies, two neads. $1 / 3$ Track Fec /Playback Staggered Stereo with buill-in erase per head E1.20 Tape Head Demag 240v AC £1 95.
Buzzers-GPO Type 6.12 V 20 p . Min Solid State Buzzers.
6.9 .12 or 24 v 15 ma 75 p . All Metal Buzzer. 30 mm diam. 6.12 volts, high tone. 25 p
U.N.F TV Transistorised Push Bution Tuners (not Varicap), new and boxed. E2.50.
MURATA MA401L. 40 kHz Transducers, rec/send, E3.25 pair
METERS-Grundig Batt. Level Meter $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ E1. 10

Min. Level Meter $200 \mathrm{Ha} 25 \times 15 \mathrm{~mm} 75 \mathrm{p}$. Ferrantil 600 vAC Meter | Min Level Men |
| :--- |
| C3. |

POT CORE UNIT. Has 5 port cores. including 1 EX2 $243(45 \mathrm{~mm})$
 diodes with a $5-\mathrm{amp}$ plastic S.C.R New $\mathbb{E} 1.75+75 \mathrm{p}$ P\&
LA1230 ad core 15 mm dia $14 \mathrm{mH} \cdot 18 \mathrm{mH}$. HI Q 6 for 50 p

SOLENOIDS - 240 V AC 45 p .12 VDCH Duty 75 p
12-WAY MOTORISED CAM UNITS. 50v AC low rev motor driving

13 Amp rubber tiailer extension sockets. 38p
8 WAY RIBEON-CABLE, min solid core. 15 p metre.
POSTAGE 3OD UNLESS OTHERWISE SHOWN (EXCESS
POSTAGE REFUNDED WITH ORDER) OVERSEAS POST AT POSTAGE REFUNDED WITH ORIER
COST VAT INCLUDED IN ALL PRICES.

ORDER ADDRESS
PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-236-0982

fladAR
 doal vomagr TRANSFORMERS

PRIMARY 220-240 50 HZ
AL TERNATIVE SECONDARY VOLTAGE AND CURRENT
AVAILABLE BY SERIESOR PARALLEL CONNECTION

Type	Voltage	Current	ε	p/p	Type	Voltage	Carren!	£	p / p
60 FE 12	12+12	3a EaCH	3.60	15p	12FE06	$6+6$	IA EACH	2.0	60p
60FE15	$15+15$	2 A EACH	3.60	75p	12FE09	$9+9$	0.75A EACH	2.0	${ }^{600} \mathrm{p}$
60 FE20	$20+20$	1.5A EACH	3.60	75p	12FE 10	$10+10$	O.6A EACH	2.0	6019
60 FE28	$28+28$	1.1A EACH	3.60	750	12 FE 12	$12+12$	O.5A EACH	2.0	60 p
60FE30	$30+30$	1A EACH	3.60	75 p	12FE15 12 FE 20	15+15	0.4A EACH	2.0	${ }^{601}$
					12 tz 0	$20+20$	0.25 EACH *	2.0	60p
SOFE12	$12+12$	2 EACH	3.10	70p	08FED6	$6+6$	0.6A EACH	1.80	50p
50FE15	$15+15$	1.6A EACH	3.10	70p	08FE09	$9+9$	O. 5 S EACH	1.80	50p
50FE20	$20+20$	1.24 EACH	3.10	70p	08 FE 10	$10+10$	0.41 EACH	1.80	50p
50FE28	$28+28$	0.9A EACH	3.10	70p	O8FE12	$12+12$ $15+15$	0.3A EACH	1.80	50 p
50 FE 30	$30+30$	O.8A EACH	3.10	70p	08FE15	$15+15$	0.250 EACH	1.80	50p
					$06 \mathrm{FEO5}$	6+6	0.5A EACH	1.50	50 p
20FE06	$6+6$	1.6A EACH	2.60	$65 p$	06 FE 10	$10+10$	0.35A EACH	1.50	50p
$20 \mathrm{FEO9}$	9+9	1.0A EACH	2.60	65p	06 ft 12	$12+12$	0.25A EACH	1.50	50p.
20 F12	$12+12$	0.8A EACH	2.60	65p	O6FE15	$15+15$	0.20A EACH	1.50	50p
20 FE15	$15+15$	0.6A EACH	2.60						
205 F 20	$20+20$	0.5A EACH	2.60	65p	30FF30	$\begin{aligned} & 0.12-15 \\ & 20-24.30 \end{aligned}$	14	2.95	1.00
60 FE52	26-0.26	1A EACH	3.60	75p	60FE30	$\begin{aligned} & 0-12 \cdot 15- \\ & 20-24-30 \end{aligned}$	24	4.70	1.00
60 F660	30.0-30	1 CACH	3.60	75p	100FE30	0-12-15-	34	5.60	1.00
80 FE52	26-0-26	1.5 EACH	4.50	75p		20-24.30			
80 FE60	30-0.30	1.5A EACH	4.50	$75 p$	100 Ft 60	30.0 .30	2	5.10	1.00
100FE28	28-0-28	2.0 A EACH	4.50	75 ¢	100FE26	26-0.26	2	4.80	1.00
$\begin{aligned} & \text { FLADAR ELECTRIC } \\ & \text { P.O. BOX } 19 \\ & \text { WESTCLIFF-ON-SEA } \\ & \text { ESSEX. } 0702-613314 \end{aligned}$			TRADE ENQUIRIES WELCOME				PAYMENT TERMS C.W.O. Cheques. Postal Orders Please Add 8\% VAT After post \& packing		
			PLEASE ENQUIRE FOR OTHER TYPES NOT SHOWN						

$$
-
$$

- MADE IN DUR DWN U.K. factory
- SWITCH FOR INSTANT RETURN TO OROINARY IGNITION
- ON-OFF IMMOBILIZE FACILITY
- NEG OR POS EARTH
- heavy gauge encloseo METAL CASE
- bullt for years of 0Ependable Service
- REV. LIMITER TO PREVENT OVER-REVVING
- FULL 12 MONTHS GUARAM. TEE

Why pay more when you can still get this strongly buift easily fitted and highly efficient unit at such a wondertul price? We have made and supplied our C.D.I. units to many thousands of satisfied motorists and here is your chance to get one to-day at virtually pre-inflation prices. Based on E T. I's original design and made with their approval, the E.T. Mk. 2 incorporates switch for instant return to conventional ignition motorists like that), on / 04 immob ilise control acility which only you can know where it is positioned, rev. limiter etc. etc. THE BENEFITS TO YOUR CAR AND YOUR POCKET ARE ENORMOUS - easier starting from cold, better on petrol consumption and engine wear and an end to burnt-out contact points. Fitting is easy and you save even more if you build from the kit STATE IF FOR POS. OR NEG. EARTH WHEN ORDERING (12 volts only).

Stirling Sound
37 VANGUARD WAY, SHOEBURYNESS, ESSEX
Telephone (03708) 5543
Shop - 222/224 West Rd., Westcliff-on-Sea

- To Stirling Sound, 37 Vanguard Way, Shoeburyness, Essex

Please send without delay Ready-built C.D.I. Unit(s) @ £14.95 each
(State if + or - earth) ... C.D.1. Kit(s) @ £12.75 each
for which I enclose cheque / money order for $£$
Access/Barclaycard No
NAME
ADDRESS
Liock

QUALITY COMPONENTS BY RETURN

DIGITAC DIGITAL REV. COUNTER

The Digitac is a voltage impulse digital tachometer, which is suitable for all 12 -volt negative earth ignition systems. (Two digit seg= ment display houses in a black case.)

Ready built $£ 19.78$ Kit form £14.96
Prices are fully inclusive (Quantity discounts)

ELECTRONEQUIP

36 Merton Avenue, Portchester Hants PO 16 9NE. 0701873455

MOTOROLA 6800 COMPUTERS

Single board 6800.17 command 1 K Mikbug compatible Monitor, 1 K user RAM, 1 K Crystal Controlled VDU , CUTS fully buffered, room for extra 3×2708 PROMS ….................... Single board 2. Similar to above but with QWERTY keyboard £205.00 NEW Mini 6800. Two p.c.b. kit, 1 K monitor, 1 KVDU, RAM, CUTS, QWERTY
 VDU kit. 1 K Crystal controlled, memory mapped, parallel input video output Should suit most processors .. $£ 60.00$

All prices include VAT and post. Please send SAE for leaflets. Mail Order only

HEWART MICROELECTRONICS

95 Blakelow Road
Macclesfield, Cheshire

Radio,T.V.

 Engineers and Electronic Engineers
If the challenge and rewards of your present job are lacking, here's your opportunity to get into computers.

Abstract

Moving out of the skilled word of 'TV and radionengineering/ servicing and up into the demanding word of compulers is not as easy as you think. You need that one impertant chance: That opporlunity! Here it is. We rea company with age-ahead altitude. We havergol to the top in the fast moving world ol high speted communicalions in just 8 years. Unlike most companies in the lied weare prepared to take on men and women with a solid baskground in radio and TV engineering servicing. Weill give you all the help you need if you have the right ability and aptitude. We have vacancies lö Test Engeneers lo undertake refurbishing and assembly lesting. PCBR involves lesting boards down to componen level and replacing and lesting. Specialist electronic test equipment and computer-aided systems speed up the work and make it more interesting. To join youll need to beable do demenstrate a keen interest to mow up into the demanding and exciting word of computers. Youll also need to show us that you arean exper in your own field. You'll probably have (N C or IINC allbough this isn P vital if you have the right practical experience. For further information conlaw Nike Bell. Data too limited Maxted Chose. Hemel Hempshad, Herts IHP2 7EO Tol: Hemellhempstand 61231

TEST EQUIPMENT DISPOSAL

We are disposing of some
Good Test Gear including
Tektronix Scopes at Silly Prices !!!

Telephone or write for details

Crofton Electronics Limited

35 GROSVENOR ROAD, TWICKENHAM MIDDLESEX . Telephone: 01-891 1923

HAPPY MEMORIES! 21 LO2 RAM £7. 25 for 8. See previous issue for quantity dis counts. 16 pin gold-plated DIL sockets, $16 p$ each, 25 p. p\&p any quantity. Cheque or P.O to G.J.Greaves, 5 Cranbury Terrace Southampton, Hants SO2 oLH. Tel (0703) 20859 for C.O.D. (Extra).

REED SWITCHES 6 for 50p. PHO TOCELLS G98 (equiv. ORP'12) 50 p each. 14 PIN DIL THICK FILM RESISTOR PACKS, each contains $1 \mathrm{k} 2,1 \mathrm{k} 8,3 \mathrm{k}, 5 \mathrm{k} 6$. $8 k 6,13 k, 16 k$ and $2 \times 8 k 2,10$ for E1. Data supplied on photocells and resistor packs. When ordering any of above please supply SAE. CORE MEMORY PLANES, ex. equip., without drive circuits, $4 \mathrm{k}(64 \times 64)$ per plane, $99 p$ each plus 25 p P\&P E7.50 pos't free for 8, £12 post free for 16. G. Langley. 31 Bakers Lane, Woodston, Peterborough.

ELECTRONIC KITS. A company serving the amateur electronics market is interested in purchasing electronic kits to widen its range. Companies selling such kits are invited to contact: Box No. 24, ETI Magazine, 25/27 Oxford St. London W1

BE YOUR OWN BOSS (not electronics) Seen such adverts in other magazines? Ever wondered why the advertisers don't just get on with it themselves? Well a few years ago 1 started a business with just $£ 3$. Within a few months I was earning over $£ 100$ per week (nothing dubious like finance or insurance broking). Just an honest service to the public. Provided you live 7 miles outside my territory, you couldn't harm my operation. Don't send money Just an SAE to B. Kerr, 27 Coles Road, Milton, Cambridge CB4 4BL

[^5]TRS-80? If you have the machine we have the SOFTWARE MATHS/SCIENTIFIC/ GAMES etc. SAE for list to General Software 15 Rockwood Avenue, Crewe, Cheshire CW2 8LU

TAMTRONIK LTD.

In addition to our existing P.C.B. service we now offer our ON BOARD COMPONENT SERVICE including component kits for many ETI projects.

	Component Kil	P.C.B.
Metal Locator II	5.91	0.92
House Alarm A	11.60	1.91
House Alarm B	2.39	0.79
Train Controller	5.27	0.68

Prices above are VAT inclusive. P\&P 20p. Send large SAE for full details of available Component Kits, P.C.B.'s our Component Catalogue and any specified kit list.
"Kits include ONLY Resistors, Potentiometers, capacitors and Semi Con-
ductors
217 TOLLEND ROAD, TIPTON WEST MIDLANDS DY4 OHW TEL. 021-5579144

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors' Hardware and accessories.
Selected range of popular components. Full range of ETI printed circuit boards. normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs.

Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required).
Alfac range of etch resist transfers, and other drawing materials for p.c. boards.
Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

LCD PORTABLE CLOCK/RADID ALARM

 higely accurate
operate as an alarm clock with 4 -minute snooze, or you can wake up o your lavourte programme li can aiso turn the radio oft when you go to sleep ${ }^{1}$
£27.40-60p P\&P, VAT inc.
Winner of the Hong Kong Govarnar's Design Award

TRULY PORTABLE, CORD LESS, ELECTRONIC ALA
CLOCK
at Only E 18.20 inc. VAT. LIQUIO CRYSTAL DISPLAY AEADOUTS (LCD) allow Iruly lightweight portable clocks The low power requirements of LCD
display ailow long bettery life and elimmation of hasy. bulky trans tormers. resulting in light. com Sleek, contemporary styling pact. attractive style

PORTABLE ALARM CLOCK. U wo in the home, in offices and

- Computer - tyos $1 / 2(12.7 \mathrm{~mm}) \mathrm{LCD}$ readoul
- Batrery operated (2xAAA cells)
- Minumum one year battery
- 100% Solid state c
trouble-free operation
- Readout is back lighted for night viewing
- Simple tume serting procedure
- Time synchronising switch for Time zone changes easily made
- Clear. pleasant sounding piezo-efectric alarm
- Touch-to-activate control ber for drowse function giving extra

Dimensions $120 \times 74 \times 19 \mathrm{~mm} / 436^{\prime \prime} \times 25 / 16^{\prime \prime} \times 36^{\prime \prime}$
Werght. 120 grams (4.2 ounces) including giff box and packing
finish Metal with black inset
Wowir ma
We will match any lower advertised price on cash with order basis compettor has goods in stock

KRAMER 8, CO

O Ocrober Place, Holdere Hill Rond, London NW14 1EJ
Telox 888941 Atti Kramer K7. Tell: 01-203 2473 Mall order only. SAE for data sheets Export enquirres welcom

NOW!

11 Micro projacts for you to build in our new micro box

\star M.W. Receiver	\star Signal Injector
\star Ultra SonicTx	\star F.M. Tx
\star Heads or Tails	\star Plant Moisture Uni
\star Electro Magnet	\star Insect Repeller
\star Metronome	\star Hunt the Bleep

\star Metronome * Hunt the Bleep

* Audio/visual continuity tester

All these great micro projects will, including batteries fit into our $60 \times 40 \times 15 \mathrm{~mm}$ box (you can fit two in the space of this advert).
Just 75 p brings all 11 circuits, a Micro Box and a $£ 1$ voucher for our kits.

Send to.

M. D. MARKETING
P.O. Box 4, Hinckley, Leicestershire

741? NOW THE ALTERNATIVES ARE CHEAP TOO! CA741CG 19p. CA3140E 40p. LF 1374 IN (J FET) 35p, MC340IP (Quad Norton) 45p!!! FAST LOCMOS (Brief Data 5p) 4001B/7/IIB/69 17p, 4013B 35p. 4016B 40p, 4017B 65p. 4020B 85p. Next month LOCMOS meets VMOS! 555 24p, 2N3819 14p. Plastic BC 108 50p/10. IS923 25p/10. P\&P 20p. Mail Order only. J. W. Rimmer, 367 Green Lanes, London N4 $10 Y$

SAVE POUNDS on test equipment with MLC modules and kits. Free data sheets $\mathrm{MLC}(\mathrm{E}), 116$ College Road, Southwater Horsham, Sussex

PLEASE MENTION ETI WHEN REPLYING TO ADVERTS

EunDYONROMN oscllioscopz

The Videograph will give you - Sound waves in colour 'Free phase' audio oscilloscope display - Home entertainment - Party/disco display - Stereo signal analysis - rumble. sidethrust, crosstalk all clearly shown Just links pre-amp on
vour slereo with aeria your stereo with aeri
socket on your TVI Complete Kit

Smart Case
\& Controls $£ 6.95$
INC POST \& VAT
Ready-buill Videograph unil $£ 39.95$

ETI PCBs
 TAMTRONIK

Fibre glass P.C.Bs. tinned and drilled for ET1 projects from August 1976 ex-stock
Photocopy of a project from any one magazine 20 prices Photocopy of a project from any one magazine 20p. Prices' are VAT incl. P\&P 30p

Sep 76	560 VOU (3x)	4.60	Dec 77	Clock B	2.10
Nov 76	541 Train Controiler	. 75	Jan 78	Hammer Throw (3x)	4.80
Jan 77	549 Metal Loc. 1	. 85	Jan 78	House Alarm (2x)	2.85
Feb 77	448 \& 449 (4x)	3.75	Feb 78	Metronome	. 65
Feb 77	Bench Amplifier	70	Feb 78	Metal Loc 11	. 92
Mar 77	Digital Voltmeter (4 x)	3.80	Mar 78	Freq. Shitter (2 x)	2.15
May 77	804 TV Game	1.55	Apr 78	Gas Monitor	80
Jun 77	Dig. Frea Meter (4x)	2.90	Jun 78	Spectrum Anal (2x)	8.32
Sep 77	Graphic Equal	1.60	Aug 78	Etiwet	90
Oct 77	Digital Thermometer	1.20	Sep 78	Wheel of Fortune	1.35
Oct 77	3 Channel Tone Contr	ol. 70	Sep 78	Crosshatch gen	1.40
Nov 77	Compander	1.60	Sep 78	Stactimer	2.30
Nov 77	Clock A	1.05			

Special Offer: S68-Set of 7 P.C.Bs. (modified) $£ 12.00$

GOMPONENTS AND KIIS

Kits include Resistors. Capachtors. Potentiometers and Semi-conductors but not P.C. Prices at VAT incl P\&P 30p

Nov 76	Train Controller	5.27		Freq. shift (inc MC 1495s)	
Jan 78	House Alarm A	10.95			16.98
Jan 78	House Alarm B	3.07	Mar 78	Freq. Shift PSU	. 14
Feb 78	Meral Loc II	-5.91	Apr 78	Gas Monitór	1
-Loudspeaker	for ML 11	83	Jun 78	Spectrum Anal	36.51
Mar 78	Freq. Shift (ExM	95)	Aug 78	Etiwer	2.87

COMPLETE KIT - ALL PURPOSE POWER SUPPLY Aug. 7B Incl case screen printed and drilled and other components not on ET. I list $£ 79.16$. P\&P \& Ins. $£ 1.00$

FULL KIT Wheel of Fortune

8.36

ULL KIT Crosshatch gen
12.64

Part kits available on request
P.C.B.s, component kits and full range of components.

Send large s.a.e. for full list of P.C.B.s, component kits

TAMTRONIK LTD

TEL. 021-5579144
Mail Order 217 Toll End Road, Tipton, W. Midlands DY4 0HW
SHOP: 32 MARKET PLACE, GREAT BRIDGE TIPTON, W. MIDLANDS
CALL AND SEE US

A COMPREHENSIVE SERVICE FOR THE ETI CONSTRUCTOR

Many ETI readers will already know us as suppliers of PCBs for ETI projects. We are now providing a comprehensive service to ETI constructors.

If the project you wish to build is published since January 1978 (including Top Projects 6) and is free from copyright restriction, telephone or write (enclosing SAE please), stating name of project and ETI issue, and we will supply a quotation for the project listing individual component prices

> WE ARE ALREADY WORKING ON THIS MONTH'S PROJECTS

Teleplay

 presents the MAGAME games, for out of date ill not go out of date.jurtridge, Just ADD each new cartridge, as it becomes available, will be up to
colour video centre colour Teleplay way You TV.
date the PROGRAM

everything for the modern D.I.Y. electronics enthusiast and more.

[^0]: PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices in this advertisement until November 30th, 1978 if ETI Octoter 1978 issue is mentioned with your order Errors and VAT rate changes
 excluded
 EXPORT ORDERS: No VAT Postage charged at actual cost plus 50 p handing and documentation.
 U.K. ORDERS. Subject to 12% surcharge for VAT" (i e add $1 / 8$ to the price) No
 charge is made for carriage. ' or at current rate if changed
 SECURICOR DELIVERY: For this optional service (U K marnland only) add
 £2 50 (VAT inclusive) per kit
 SALES COUNTER: If you prefer to collect your kit from the factory. call at
 Sales Counter (at rear of factory) Open 9 a.m-4 30 pm Monday-Thursday

[^1]: All publications are published in U.S.A. and shipped air-freight by L.P. Enterprises. In unusual cases, processing may exceed 30 days
 ET1/10.78

[^2]: Features mentioned here are in an advanced state of preparation but circumstances may affect the final contents

[^3]: Personal Shoppers EDGWARE ROAD LONDON W2 Tel: $01-723$ 8432. 9.30am-5.30pm. Half day Thursday. ACTON: Mail Order only. Ho callers GODDS NOT DESPATCHED OUTSIDE UK

[^4]: Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.
 ETI is prepared to consider circuits or ideas submitred by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. items for consideration should be sent to ETI TECH-TIPS. Electronics Today International, 25-27 Oxford St., London W1R 1 RF.

[^5]: LINSLEY-HOOD 75 Watt Power Amp modules, built and tested, from £1250. Complete module kit $£ 1050$ inclusive. Linsley-Hood 75 watt amplifiers constructed and repaired, comprehensive range of spares in stock. Details and lists free I G. Bowman (Dept. E), 59 Fowey Avenue. Torquay, S Devon.

