

HANDBOOK 6

Nº 45 Copyright

RADIO REFERENCE HANDBOOK

COMPILED BY BERNARD B. BABANI.

the following for their

No. 45 Copyright 1945. Bernards (Publishers) Ltd. LONDON, W.6 The Author wishes to express his most sincere thanks to the following for their kindness and courtesy in granting him the use of important data, without which the scope of this work of reference would have been much reduced :---

Claude Lyons Ltd., Tottenham Court Road, London, and Liverpool. (Britain's premier Importers of American Electronic Equipment).

General Radio Company, Cambridge, Mass., U.S.A.

- Sylvania Electric Products Incorporated, Emporium, Penna., U.S.A.
- Allen B. Du Mont, Labs., Incorporated, 2, Main Avenue, Passiac, N.J., U.S.A.
- Radio Corporation of America, Harrison, N.J., U.S.A.

Radio Craft Magazine, N.Y., U.S.A.

Telegraph Condenser Company, London, England.

Vactite Co. Ltd., London, England.

London Electric Wire Co., and Smiths Ltd., London.

Dubillier Condenser (1925) Ltd., London.

Bureau of Standards, Department of Commerce, United States Government.

Mullard Radio Valve Co., Ltd., London, England.

Etc., etc., etc.

B. B. BABANI.

London, 1945.

BRITISH AND U.S.A. RESISTANCE COLOUR CODE.

Colour code shall consist of four bands of colour which may be adjacent to each other or be slightly separated from each other as desired. They shall be placed on the resistor towards one end of it and the significance of the colour bands shall be read from the band nearest to one end and in the order of the bands as follows :---

Band	Indicates
1st	First significant figure of the resistance value.
2nd	Second significant figure of the resistance value.
3rd	Decimal multiplier applicable to the first two significant figures.
4th	% Tolerance.

The meaning assigned to the various colours are set out in the Table below :---

Colou	r Carro	Shade	Significant Figures	Decimal Multiplier	Tolerance
Black			0	1	
Brown		No. 13	1	10	
Red		No. 38	2	100	
Orange		No. 57	3	1,000	
Yellow		No. 55	4	10,000	
Green		No. 26	5	100,000	-
Blue	Read Ball	No. 5	6	1.000.000	
Violet	and here	*	7	10.000.000	
Grev	an antimo a	No. 31	8	100.000.000	
White			9	1,000,000 000	
Gold (metallic) 2012 48	*	TO IS WHI	0.1	5%
Silver (metalli	c)	*		0.01	10%
No additional	colour	-	-	a. 1789 (15)	20%

*No suitable shade is included in the B.S. Specification.

The violet shall be a dark violet.

Note.—The shade colours specified are those referred to in B.S.S. No. 381C—1931.

The above information supplied by courtesy of Dubilier Condenser Co. (1925) Ltd.

Colour Mark	1 First Figure	2 Second Figure	3 Third Figure	4 Multiplier Value	5 Direct Current Voltage Test Rating	6 Percentage Tolerance Plus or Minus
Black	0	0	- 0	Nil		The party of the
Brown	1	1	1	× 10	100	1%
Red	2	2	2	\times 100	200	2%
Orange	3	3	3	× 1,000	300	3%
Yellow	4	4	4	\times 10,000	400	4%
Green	5	5	5	\times 100,000	-500	5%
Blue	6	6	6	\times 1,000,000	600	6%
Violet	7	7	7	\times 10,000,000	700	7%
Grey	8	8	8	\times 100,000,000	800	8%
White	9	9	9	\times 1,000,000,000	900	9%
Gold		13 <u>-</u>		\div 10	1,000	5%
Silver				$\div 100$	2,000	10%
No Colour	-		04.3	n Heren (e)	500	20%

BRITISH AND U.S.A. COLOUR CODES FOR FIXED MICA CONDENSERS.

BRITISH AND U.S.A. COLOUR CODES FOR RADIO COMPONENTS.

FILEFC

		rube	N.	
Colour:		Value :	Colour:	Value :
Black		.060 Amp.	Dark Blue	1 Amp.
Grey		.100 Amp.	Light Blue	1.5 Amp.
Red		.150 Amp.	Purple	2 Amp.
Brown	1	.250 Amp.	White	3 Amp.
Yellow		.500 Amp.	Black and White	5 Amp.
Green		.750 Amp.		The second particular

FIXED CONDENSER LEADS.

Value :	Colour:
Centre lead of Voltage doubler Condensers	White
Principal Negative Lead	Black
2nd Negative ", and and a second second	Brown
3rd " "	Grey
5th highest Capacity +	Violet
4th " " +	Blue
3rd " " + official	Green
2nd "nebeen "luga+t and days avoid applica	Yellow
Highest Capacity +	Red

When 2 capacities are of the same value, the one of the higher voltage rating has the higher colour in the table.

Series connections are marked	+
Common Positive junctions are marked	Ŧ
Unconnected sections are marked	&
Common Negative junctions are marked	

Examples :--

 $6 \pm 6 = A$ series voltage doubler connection.

2 + 2 = Two 2uF condensers with common positive lead.

4 & 4 = Two isolated 4uF condensers.

8 - 8 = Two 8uF condensers with common negative lead.

WANDER PLUGS.

Value :	Colour:
Highest + H.T.	Red
2nd highest + H.T.	Yellow
3rd highest $+$ H.T.	Green
4th highest $+$ H.T.	Blue
L.T. Positive	Pink
L.T. —	Black
H.T	Black
G.B. +	Black
Highest G.B. —	Brown
2nd highest G.B. —	Grey
3rd highest G.B. —	White

Any additional battery lead is Violet, and any centre tap is White.

BRITISH AND U.S.A. COLOUR CODES.

U.S.A. COLOUR CODES FOR LOUDSPEAKER LEADS AND PLUG CONNECTORS.

A = Blue lead. B = Brown lead. C = Red lead. D = Black and Red striped lead. E = Slate and Red striped lead. F = Yellow and Red striped lead. G = Black lead. H = Green lead. J = Black and Green striped lead. K = Yellow and Green striped lead. P = Primary. S = Secondary.

> Sketch A. Plugs shown with Pins facing the reader.

> Sketch B. Plugs shown with Pins facing the reader.

> Sketch C. Plugs shown with Pins facing the reader.

> Sketch D. Plugs shown with Pins facing the reader.

> Sketch E. Plugs shown with Pins facing the reader.

> Sketch F. Plugs shown with Pins facing the reader.

BRITISH AND U.S.A. COLOUR CODES.

BRITISH COLOUR CODE FOR BATTERY CORDS.

Colour.

Maroon Maroon and Red Red Black and Green Black with Green Tracer Green Black with Yellow Tracer Yellow Black with Red Tracer Black with Brown Tracer High Potential, Brown

Purpose.

3rd Positive Voltage. 2nd Positive Voltage. Highest Positive Voltage. 2nd Negative Bias. Maximum Negative Bias. Positive Bias Voltage. Negative L.T. Voltage. Negative L.T. Voltage. Negative H.T. Loud-speaker Connections. Loud-speaker Connections.

U.S.A. COLOUR CODE FOR

A.F. Transformers.

Blue = plate (finish) lead of primary.

Red = B + lead (this applies whether the primary is plain or centre-tapped).

Brown = plate (start) lead on centre-tapped primaries. (Blue may be used for this lead if polarity is not important).

Green = grid (finish) lead to secondary.

Black = grid return (this applies whether the secondary is plain or centre-tapped).

Yellow = grid (start) lead on centre-tapped secondaries. (Green may be used for this lead if polarity is not important).

Note.—These markings apply also to line-to-grid and tube-to-line transformers.

Loudspeaker Voice Coils.

Green = finish.Black = start.

Loudspeaker Field Coils.

Black and Red = start. Yellow and Red = finish. Slate and Red = tap (if any).

Power Transformers.

1.	Primary Leads				Black
	If tapped :				
	Common		,-		Black
	Тар				Black and Yellow Striped
	Finish				Black and Red Striped
2.	High-Voltage Plate	Wind	ling		Red
	Centre-Tap				Red and Yellow Striped
3.	Rectifier Fil. Windi	ng		~	Yellow
	Centre-Tap		-A.S.U	·	Yellow and Blue Striped
4.	Fil. Winding No. 1		Summer and a		Green
	Centre-Tap	1 20	n 200	1.0	Green and Yellow Striped
5	Fil Winding No 2				Brown
0.	Centre-Tap		-		Brown and Yellow Stribed.
6	Fil Winding No 3	Set they			Slate
0.	Centre-Tan	1.003			Slate and Vellow Stribed
	contre-rap				State and a citow Striped

RADIO GRAMOPHONE ELECTRIC MOTORS. COLOUR CODE FOR FREQUENCY.

White dot	=	25	cycles
Green dot	-	50	"
No mark	=	60	

U.S.A. COLOUR CODE FOR MULTIPLE BATTERY CABLES.

BRITISH MAINS TRANSFORMER LEADS.

Primary Winding 10 volt tapping 210 volt " 230 volt " 250 volt " Zero tapping

Secondary Winding High tension ends ", centre tap Rectifier heater ends , centre tap Valve heater ends ", centre tap Additional L.T. winding ends ", centre tap Earthing Lead Colour. Black and Green. Black and Yellow. Black and Red. Black and Brown. Black.

Colour. Red. Red and Yellow. Green. Green and Yellow. Brown. Blue Blue and Yellow. Bare Wire

G.E.C. Wiring Colour Code.

White .			High-potential connections to aerial and first section of band-pass circuits, also non-earth side of special coil.
Green .	•••••		Other high potential signal circuits, including grid circuits.
Blue .			Screening grid circuits.
Pink .			Cathode connections.
Orange .			Anode connections.
Black .			Earth connections.
Slate .			H.T. negative, when not earthed.
Red .			Smoothed H.T. positive.
Red/Whit	te	1.100	Unsmoothed H.T. positive.
Green/WI	hite		A.V.C. and grid de-coupling.
Black/Re	d	1	Inductance in transment a coll in a bridgent
Black/WI	hite	5	Heaters.
Black/Re	d		L.T. positive (in battery sets).

BRITISH MOVING COIL SPEAKER-COLOUR CODE.

Colour.	Purpose.					
Green (outer end)	Output Transformer-Primary ends of winding.					
Brown (inner end)	,,	,,	Primary	ends o	f winding.	
Red	"	"	Primary	centre	tap.	
Maroon	,,	,,	Secondar	y end-	-inside.	
White	,,	"	, Market	,,	outside.	
Yellow	Field W	Vinding-Out	tside end.			
Black	And and	" Insi	ide end.			

I.F. Transformers.

Blue = plate lead.

Red = B + lead.

Green = grid (or diode) lead.

Black = grid (or diode) return.

NOTE.—If the secondary of the i.f.t. is centre-tapped, the second diode plate lead is green-and-black striped, and black is used for the centre-tap lead.

REACTANCE FORMULAS.

Reactance is measured in ohms and is defined as the resistance against the flow of an A.C. in any component due to its capacity or inductance. Amongst other factors it is variable due to the frequency of the A.C.

Reactance in ohms of a condenser is equal to 1 divided by $(6.283 \times \text{frequency of A.C. in cycles per second} \times \text{capacity of condenser}$ in farads).

Reactance of a coil is equal to $(6.283 \times \text{frequency of A.C. in cycles})$ per second \times inductance of coil in henries).

Reactance of a condenser and a coil in series is equal to the reactance of the coil on its own minus the reactance of the condenser.

RESONANT FREQUENCY.

This is the condition when a condenser and coil in a tuning circuit are so adjusted as to produce resonance. The formula for this condition is as follows :--

Frequency of resonance = $1 \div [6.283]$ (square root of the coil inductance in henries multiplied by the condenser capacity in farads)

Capacity in farads of a condenser in a resonant circuit =

 $1 \div [39.478 \times (resonant frequency)^2 \times inductance of the coil in circuit in henries]$

Inductance in henries of a coil in a resonant circuit =

 $1 \div [39.478 \times (resonant frequency)^2 \times capacity of the condenser in circuit in farads].$

WORLD-WIDE MILEAGE CHART.

9

ELECTRICAL DEFINITIONS.

Capacity is calculated by the charge which must be transmitted to a body to lift its potential one unit. A capacity of one farad needs one coulomb of electricity to increase its potential by one volt.

Charged with a quantity A to a potential E a conductor has a capacity K equal to :---

 $A \div E$

Amperage of alternating current in circuits which include resistance and inductance is equal to :---

$$\sqrt{S^2 + (6.28 \text{ FL})^2}$$

where F is the frequency in cycles per second, L the inductance in henries. Current will be expressed in virtual amperes where S is in ohms and V in virtual volts. The denominator gives the impedance of the circuit in question.

For circuits also involving a capacity K in farads, the impedance is then equal to :—

$$\sqrt{B^2 + (6.28FL - \frac{1}{6.28FK})^2}$$

Current in a simple circuit.—The current in a circuit including a cell of electromotive force V, an external resistance U and internal resistance P is equal to :—

$$\overline{Y + P}$$
 amperes

For two cells in parallel the amperage is equal to :---

$$\frac{V}{V + \frac{P}{2}}$$

For two cells in series the amperage is equal to :--

$$\frac{V}{Y+2P}$$

Conductivity is measured by the amount of electricity moved across a unit area per unit potential rise in unit time. S is the reciprocal of resistivity. **Specific conductance** or **volume conductivity** is equal to :---

Ι

where V is the volume resistivity. Equivalent conductivity E is equal to :—

$$S \div W$$

where W is the number of equivalents per unit volume of solution. Mass conductivity is equal to :-- $\frac{S}{D}$

where D is density.

The dielectric constant of a medium is shown by E in the equation :---

A + BD

EU²

where A is the force of attraction between two charges B and D parted by a distance U in a uniform medium.

Hysteresis.—The magnetization of mass of iron or steel due to a magnetic field which is made to alter through a cycle of value, lags behind the field. This effect is known as hysteresis.

Steinmetz' equation for hysteresis states that the loss of energy in ergs per cycle per cubic centimetre is equal to :--

CM1.6

where M is the maximum induction in maxwells per cm.² and C the co-efficient of hysteresis.

Force between two magnetic poles.—If two poles of strength V and W are separated by a distance D in a medium whose permeability is P, the force between them is equal to :—

VW

PD² dynes

when the permeability of a vacuum is unity. Here D is in cm. and V and W are in cgs. units of pole strength.

The strength of a magnetic field at a point distant D from an isolated pole of strength K is equal to :—

K

PD² gauss

Here K and D are in cgs. units.

Faraday's Law.—The mass of substance decomposed by the passing of the same amount of electricity through different electrolytic cells are, for the same electrolyte, equal, and for different electrolytes are in ratio to the combining weight of the elements which are deposited.

Induced electromotive force in a circuit is in ratio to the amount of alteration of magnetic flux through the circuit and is equal to :--

$\frac{A}{B}$ volts

where A is the change of magnetic flux in a time B. The current induced * is equal to :--

A

where C is the resistance of the circuit.

Heat Effect.—The heat caused in a circuit by an electric current of A amperes flowing through a resistance of R ohms, with a difference of potential of V volts for a time T seconds is equal to :—

VAT or TRA² calories

4.18 4.18

Kirchoff's Laws.—(a) The algebraic sum of the currents which meet at any point is equal to zero. (b) The algebraic sum of the products of the current and the resistance in each conductor in a closed circuit is equal to the electromotive force in the stated circuit. **Magnetic Field due a Magnet.**—At a point on the magnetic axis extended at a distance S cm. from the magnet centre, the length of magnet being R cms. whose poles are +P and -P and magnetic moment T, the field strength is equal to :—

2 SRP
$$\div \left[S^2 - \left(\frac{R}{2}\right)^2\right]^2$$
 gauss

If S is large compared with R then the field is equal to :— $\frac{2}{2}$

 $2T \div S^2$

Magnetic Field due to a Current.—The strength of the magnetic field at the midpoint of a round conductor of radius R and in which a current C in absolute electromagnetic units is passing is equal to :—

6.28C gauss

If the circular coil has M turns the magnetic intensity at the centre is equal to :--

$\frac{6.28MC}{R}$ gauss

The magnetic field in a long single layer coil of M turns per centimetre length passing a current C in absolute electromagnetic units is equal to :---

If C is given in amperes the above formulae then become equal to :---

 $\frac{6.28C}{10R}$, $\frac{6.28MC}{10R}$, 1.256MC.

Lenz's Law.—When an electromotive force is caused in a conductor by an alteration in the relation between the magnetic field and conductor, the electromotive force direction is such as to produce a current whose magnetic field will oppose the change.

The Magnetic Field.—At a point on a line cutting the magnet into two right angles, is equal to :—

$$\operatorname{RP}$$
 $\div \left[\left(\frac{\operatorname{R}}{2} \right)^2 + \operatorname{S}^2 \right]^{1.5}$ gauss

The magnetic field for large values of r is equal to :-

 $T \div S^3$ gauss

The electrostatic unit of charge is the quantity which, if concentrated at a point and set at unit distance from an equivalent and similarly concentrated amount, is repelled with unit force. If the distance is one cm. and the force of repulsion one dyne and the surrounding medium is a vacuum, this is equivalent to one electrostatic unit of quantity. The electromagnetic unit of quantity is known as the amount transferred by unit current in unit time. The quantity passed by one ampere in one second is called the coulomb. The faraday is the electrical charge carried by one gram equivalent. The coulomb is equal to :--

 3×10^9 electrostatic units

The time of frequency of vibration of a magnet of magnetic moment A and moment of inertia B oscillating in a field of strength G is equal to :—

$6.28\sqrt{B \div GA}$ seconds

The power developed by an electric current in watts passing in a conductor where V is the difference of potential at its ends in volts, R is its resistance in ohms, and A the current in amperes is equal to :—

RA² or AV watts.

The power for alternating current in a circuit is equal to :-

AV cos P watts

where V and A are the effective values of the electromotive force and current in volts and amperes and P the phase angle between the current and the impressed electromotive force and the ratio watts \div AVW cos P is known as the power factor.

$$\tan_{\mathrm{K}^6} \frac{\mathrm{RF}}{6.28\mathrm{A}}$$

Torque produced by the effect of one magnet on another.—The turning moment felt by a magnet of pole strength M and length R put at a distance K from another magnet of length S and pole strength N where the axis of the first is perpendicular to the axis of the second, and the centre of the first magnet is on the extended axis of the second one, then the torque is equal to :—

$$\frac{\mathrm{NMRS}}{4(\mathrm{K}^3)}$$
 B.

If the first magnet is turned through angle A, the formula for the torque is equal to :---

 $8 \frac{\text{NMRS cos A}}{4(\text{K}^3)}$

The pulling effect of a magnet with induction K has a pole face of area B the force then being equal to :--

K² B ÷ 25.132

DATA ON ALTERNATING CURRENTS

Ohms Law for A.C. is modified as follows :--

$$= \frac{E}{\sqrt{\left[\frac{R^2 + (LM - 1)^2}{CM}\right]^2}}$$

Where E = voltage, A = amperes, R = ohms resistance, C = capacitance in farads, L = inductance in henries, F = frequency, and $M = 2\pi F$.

Note for 50 cycles supply M = 314.16

A

, ,
$$60$$
 , , $M = 376.99$

Special formula for Resistance only $A = E \div R$

,, ,, Capacitance only A = ECM

, Inductance only $A = E \div LM$

R.M.S. (Root mean Square) values, is the value of A.C. that has the same heating effect as D.C.

In the case of Sine Waves which generally apply

Maximum value = $\pi \div 2$ average value = $\sqrt{2 \text{ R.M.S.}}$ value.

Form Factor = R.M.S. value = π

,,

Average value $2\sqrt{2}$

Average Value $= 2 \div \pi \times \text{maximum value.}$ Power Factor = P.F. or equivalent $\cos \emptyset$.

Watts

Volts \times Amps.

P.F. is equal to the cosine of the angle of lag between voltage and current in the case of Sine Waves.

Power in A.C. circuits.—Single Phase Watts = Volts \times amps. \times cos \emptyset .

2 phase Watts = $2 \times \text{volts} \times \text{amps.} \times \cos \emptyset$.

3 phase Watts = $\sqrt{3} \times \text{volts} \times \text{amps.} \times \cos \emptyset$.

Where in each case the amps is the line current and volts the voltage between lines. (This is incorrect for common wires in 2 and 3 phase circuits).

Delta connection 3 phase motors. Voltage across phase windings = Line Volts. Current in phase windings = Line current $\div \sqrt{3}$.

Star connections, 3 phase motors. Voltage across phase windings = Line Volts $\div \sqrt{3}$. Current in phase windings = Line current.

Three-phase Supply.—The black wire is neutral and the red, green, and white wires are the 3-phase leads. If single phase connection is desired use neutral and any one of the three coloured wires. Three-phase voltage between phase-wires is equal to $\sqrt{3} \times$ single phase voltage.

USEFUL FORMULAE.

Theoretical power of single phase circuit in K.V.A. = (Volts \times Amps.) \div 1,000.

Real power of single phase circuit in kilowatts = (Volts \times Amps. \times P.F.) \div 1,000.

Apparent power of 2-phase circuit in K.V.A. = $(2 \times \text{Volts} \times \text{Amps.})$ \div 1,000.

Real power of 2-phase circuit in Kilowatts = $(2 \times \text{Volts} \times \text{Amps.} \times \text{P.F.}) \div 1,000.$

Theoretical power of 3-phase circuit in K.V.A. = $(1.73 \times \text{Volts} \times \text{Amps.}) \div 1,000$.

Real power of 3-phase circuit in Kilowatts = $(1.73 \times \text{Volts} \times \text{Amps.} \times \text{P.F.}) \div 1,000$.

Input of 1, 2, or 3-phase Motor in K.V.A. = (H.P. \times .746) \div (Efficiency \times P.F.).

Output of 1, 2 or 3-phase Motors in H.P. = (Input in K.V.A. \times Efficiency \times P.F.) \div .746.

RADIO FORMULAS AND LAWS.

Wavelength of a Tuned Circuit.

W = 1,885 \sqrt{AB} where A = inductance in microhenries, and B = capacity in microfarads.

Frequency of a Tuned Circuit.

 $F = \frac{1,000,000}{6.283 \sqrt{AB}}$ where F = frequency in cycles per second and

A and B have values as shown in the previous formula.

Low Frequency Amplification.

The voltage stage gain of an L.F. transformer coupled-amplifier is approximately as follows :---

$$A = \mu \frac{N_2}{N_1} \times \sqrt{\frac{P}{P^2 \times R^2}}$$

Where μ = voltage gain of valve, N₂ = number of secondary turns of transformer, N₁ = number of primary turns of transformer, R = A.C. resistance of valve, and P = reactance of primary coil in ohms.

Resistance Coupled L.F. Amplification.

Voltage stage gain of a resistance coupled L.F. amplifier is as follows :

$$\mathbf{A} = \boldsymbol{\mu} \times \frac{\mathbf{R}}{\mathbf{R} + \mathbf{T}}$$

where μ = amplification factor of valve, R = external coupling resistance on ohms. and T = A.C. resistance (impedance) of valve.

USEFUL CONSTANTS.

π	=	3.14159	g	=	32.16
$3 \div \pi$	#	.95492	$1 \div 2\mathrm{g}$	=	.01555
π^2	=	9.8696	$\pi \div \sqrt{\mathrm{g}}$	=	.55399
$\sqrt{\pi}$	=	1.77245	$\sqrt[3]{6 \div \pi}$	=	1.2407
$1 \div \sqrt[3]{\pi}$	-	.68278	$\pi \div 3$	-	1.0472
$\pi \div 4$	=	.7854	$1 \div \pi$	=	.31831
2g	=	64.32	$1 \div \pi^2$	-	.10132
$1 \div \sqrt{g}$	-	.17634	$^{3}\sqrt{\pi}$	=	1.46459
$\pi \div 180$	-	.01745	$\sqrt[3]{3 \div 47}$	ī -=	.62035
2π	=	6.28318	g^2	=	1034.226
$4\pi \div 3$	=	4.18879	$\sqrt{2\mathrm{g}}$	=	8.01998
π^3	=	31.00628	e	=	2.71828
$1 \div \sqrt{\pi}$	=	.56419	$180^\circ \div \pi$	-	57.2958°
$3\sqrt{\pi^2}$	-	2.14503			

DECIBEL CONVERSION TABLES

It is convenient in measurements and calculations on communications systems to express the ratio between any two amounts of electric or acoustic power in units on a logarithmic scale. The decibel (1/10th of the bel) on the briggsian or base-10 scale and the neperon the napierian or base-e scale are in almost universal use for this purpose.

Since voltage and current are related to power by impedance, both the decibel and the neper can be used to express voltage and current ratios, if care is taken

Decibel — The number of decibels N_{db} corresponding to the ratio between two amounts of power P_1 and P_2 is

$$N_{db} = 10 \log_{10} \frac{P_1}{P_2}$$
(1)

When two voltages E_1 and E_2 or two currents I_1 and I_2 operate in the same or equal impedances,

$$N_{db} = 20 \log_{10} \frac{E_1}{E_2}$$
(2)
$$N_{db} = 20 \log_{10} \frac{I_1}{I_2}$$
(3)

(3)

and

and

If E_1 and E_2 or I_1 and I_2 operate in unequal impedances,

$$N_{db} = 20 \log_{10} \frac{E_1}{E_2} + 10 \log_{10} \frac{Z_2}{Z_1} + 10 \log_{10} \frac{k_1}{k_2}$$
(4)

and
$$N_{db} = 20 \log_{10} \frac{I_1}{I_2} + 10 \log_{10} \frac{Z_1}{Z_2} + 10 \log_{10} \frac{k_1}{k_2}$$
 (5)

where Z_1 and Z_2 are the absolute magnitudes of the corresponding impedances and k_1 and k_2 are the values of power factor for the impedances. Note that Table I and Table II can be used to evaluate the impedance and power factor terms, since both are similar to the expression for power ratio, equation (1).

to account for the impedances associated with them. In a similar manner the corresponding acoustical quantities can be compared.

Table I and Table II on the following pages have been prepared to facilitate making conversions in either direction between the number of decibels and the corresponding power, voltage, and current ratios. Both tables can also be used for nepers and the mile of standard cable by applying the conversion factors from the table on the opposite page.

Neper -- The number of nepers Nnep

corresponding to a power ratio $\frac{P_1}{P_1}$ is

$$N_{nep} = \frac{1}{2} \log_e \frac{P_1}{P_2}$$
 (6)

For voltage ratios $\frac{E_1}{E_2}$ or current

ratios $\frac{I_1}{I_2}$ working in the same or equal impedances,

$$N_{nep} = \log_e \frac{E_1}{E_2}$$
(7)
$$N_{nep} = \log_e \frac{I_1}{I_2}$$

When E_1 and E_2 or I_1 and I_2 operate in unequal impedances,

$$N_{nep} = \log_e \frac{E_1}{E_2} + \frac{1}{2} \log_e \frac{Z_2}{Z_1} + \frac{1}{2} \log_e \frac{k_1}{k_2} \quad (8)$$

$$N_{nep} = \log_e \frac{I_1}{I_2} + \frac{1}{2} \log_e \frac{Z_1}{Z_2} + \frac{1}{2} \log_e \frac{k_1}{k_2} \quad (9)$$

where Z_1 and Z_2 and k_1 and k_2 are as in equations (4) and (5).

RELATIONS BETWEEN DECIBELS, NEPERS, AND MILES OF STANDARD CABLE

10 lbs	Multiply	By	To Find
	decibels	1151	nepers
	decibels	1.056	miles of standard cable
miles of	standard cable	947	decibels
miles of	standard cable	109	nepers
	nepers	8.686	decibels
	nepers	9 175	miles of standard cable

TO FIND VALUES OUTSIDE THE RANGE OF CONVERSION TABLES

Values outside the range of either Table I or Table II on the following pages can be readily found with the help of the following simple rules

TABLE I: DECIBELS TO VOLTAGE AND POWER RATIOS

Number of decibels positive (+). Subtract +20 decibels successively from the given number of decibels until the remainder falls within range of Table I. To find the voltage ratio, multiply the corresponding value from the right-hand voltage-ratio column by 10 for each time you subtracted 20 db. To find the power ratio, multiply the corresponding value from the right-hand power-ratio column by 100 for each time you subtracted 20 db.

Example — Given: 49.2 db 49.2 db - 20 db - 20 db = 9.2 dbVoltage ratio: $9.2 \text{ db} \rightarrow$ $2.884 \times 10 \times 10 = 288.4$ Power ratio: $9.2 \text{ db} \rightarrow$ $8.318 \times 100 \times 100 = 83180$ Number of decibels negative (-): Add +20 decibels successively to the given number of decibels until the sum falls within the range of Table I. For the voltage ratio, divide the value from the left-hand voltage-ratio column by 10 for each time you added 20 db. For the power ratio, divide the value from the left-hand power-ratio column by 100 for each time you added 20 db.

Example — Given: -49.2 db -49.2 db + 20 db + 20 db = -9.2 db

Voltage ratio: $-9.2 \text{ db} \rightarrow$.3467 × 1/10 × 1/10 = .003467

Power ratio: $-9.2 \text{ db} \rightarrow$.1202 × 1/100 × 1/100 = .00001202

TABLE II : VOLTAGE RATIOS TO DECIBELS

For ratios smaller than those in table — Multiply the given ratio by 10 successively until the product can be found in the table. From the number of decibels thus found, subtract +20 decibels for each time you multiplied by 10.

Example — Given Voltage ratio = .0131 .0131 \times 10 = .131 \times 10 = 1.31

From Table II, 1.31 →

2.345 db - 20 db - 20 db = -37.655 db 17.050 db + 20 db + 20 db = 57.050 db

table — Divide the given ratio by 10 successively until the remainder can be found in the table. To the number of decibels thus found, add + 20 db for each time you divided by 10.

For ratios greater than those in

Example — Given: Voltage ratio = 712 712 \times 1/10 = 71.2 \times 1/10 = 7.12

From Table II, $7.12 \rightarrow$

TABLE I

GIVEN: Decibels

TO FIND: Power and Pressure Ratios

TO ACCOUNT FOR THE SIGN OF THE DECIBEL

For positive (+) values of the decibel — Both pressure and power ratios are greater than unity. Use the two right-hand columns.

dh

For negative (-) values of the decibel-Both pressure and power ratios are less than unity. Use the two left-hand columns.

Power

Ratio

8.128

0.1230

+9.1 db

-9.1 db

Pressure

Ratio

2.851

0.3508

Example-Given: ± 9.1 db. Find:

and the	+			le aking		aled +	al free	+ minted	
Pressure Ratio	Power Ratio	db	Pressure Ratio	Power Ratio	Pressure Ratio	Power Ratio	db	Pressure Ratio	Power Ratio
1.0000	1.0000	0	1.000	1.000	.5623	.3162	5.0	1.778	3.162
.9886	.9772	.1	1.012	1.023	.5559	.3090	5.1	1.799	3.236
.9772	.9550	.2	1.023	1.047	.5495	.3020	5.2	1.820	3.311
.9661	.9333	.3	1.035	1.072	.5433	.2951	5.3	1.841	3.388
.9550	.9120	.4	1.047	1.096	.5370	.2884	5.4	1.862	3.467
.9441	.8913	.5	$\begin{array}{c} 1.059 \\ 1.072 \\ 1.084 \\ 1.096 \\ 1.109 \end{array}$	1.122	.5309	.2818	5.5	1.884	3.548
.9333	.8710	.6		1.148	.5248	.2754	5.6	1.905	3.631
.9226	.8511	.7		1.175	.5188	.2692	5.7	1.928	3.715
.9120	.8318	.8		1.202	.5129	.2630	5.8	1.950	3.802
.9016	.8128	.9		1.230	.5070	.2570	5.9	1.972	3.890
.8913	.7943	1.0	1.122	1.259	.5012	.2512	6.0	1.995	3.981
.8810	.7762	1.1	1.135	1.288	.4955	.9455	6.1	2.018	4.074
.8710	.7586	1.2	1.148	1.318	.4898	.2399	6.2	2.042	4.169
.8610	.7413	1.3	1.161	1.349	.4842	.9344	6.3	2.065	4.266
.8511	.7244	1.4	1.175	1.380	.4786	.9291	6.4	2.089	4.365
.8414 .8318 .8222 .8128 .8035	.7079 .6918 .6761 .6607 .6457	1.5 1.6 1.7 1.8 1.9	$1.189 \\ 1.202 \\ 1.216 \\ 1.230 \\ 1.245$	1.413 1.445 1.479 1.514 1.549	.4732 .4677 .4624 .4571 .4519	.2239 .2188 .2138 .2089 .2042	$ \begin{array}{r} 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ \end{array} $	2.113 2.138 2.163 2.188 2.188 2.213	4.467 4.571 4.677 4.786 4.898
.7943 .7852 .7762 .7674 .7586	.6310 .6166 .6026 .5888 .5754	2.0 2.1 2.2 2.3 2.4	1.259 1.274 1.288 1.303 1.318	1.585 1.622 1.660 1.698 1.738	.4467 .4416 .4365 .4315 .4266	.1995 .1950 .1905 .1862 .1862 .1820	7.0 7.1 7.2 7.3 7.4	2.239 2.265 2.291 2.317 2.344	5.012 5.129 5.248 5.370 5.495
.7499 .7413 .7328 .7244 .7161	.5623 .5495 .5370 .5248 .5129	2.5 2.6 2.7 2.8 2.9	$1.334 \\ 1.349 \\ 1.365 \\ 1.380 \\ 1.396$	1.778 1.820 1.862 1.905 1.950	.4217 .4169 .4121 .4074 .4027	$.1778 \\ .1738 \\ .1698 \\ .1600 \\ .1622$	7.5 7.6 7.7 7.8 7.9	2.371 2.399 2.427 2.455 2.483	5.623 5.754 5.888 6.026 6.166
.7079	.5012	3.0	$\begin{array}{r} \textbf{1.413} \\ \textbf{1.429} \\ \textbf{1.445} \\ \textbf{1.462} \\ \textbf{1.479} \end{array}$	1.995	.3981	.1585	8.0	2.512	6.310
.6998	.4898	3.1		2.042	.3936	.1549	8.1	2.541	6.457
.6918	.4786	3.2		2.089	.3890	.1514	8.2	2.570	6.607
.6839	.4677	3.3		2.138	.3846	.1479	8.3	2.600	6.761
.6761	.4571	3.4		2.188	.3802	.1445	8.4	2.630	6.918
.6683 .6607 .6531 .6457 .6383	$\begin{array}{r} .4467\\ .4365\\ .4266\\ .4169\\ .4074\end{array}$	3.5 3.6 3.7 3.8 3.9	$1.496 \\ 1.514 \\ 1.531 \\ 1.549 \\ 1.567$	2.239 2.291 2.344 2.399 2.455	.3758 .3715 .3673 .3631 .3589	.1413 .1380 .1349 .1318 .1288	8.5 8.6 8.7 8.8 8.9	2.661 2.692 2.723 2.754 2.786	7.079 7 244 7.413 7.586 7.762
.6310	.3981	4.0	$\begin{array}{c} 1.585 \\ 1.603 \\ 1.622 \\ 1.641 \\ 1.660 \end{array}$	2.512	.3548	.1259	9.0	2.818	7.943
.6237	.3890	4.1		2.570	.3508	.1230	9.1	2.851	8.128
.6166	.3802	4.2		2.630	.3467	.1202	9.2	2.884	8.318
.6095	.3715	4.3		2.692	.3428	.1175	9.3	2.917	8.511
.6026	.3631	4.4		2.754	.3388	.1148	9.4	2.951	8.710
.5957	.3548	4.5	$1.679 \\ 1.698 \\ 1.718 \\ 1.738 \\ 1.758 \\ 1.758 \\ 1.758 \\ 1.758 \\ 1.758 \\ 1.758 \\ 1.758 \\ 1.698 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.699 \\ 1.698 \\ 1.718 \\ 1.75$	2.818	.3350	.1122	9.5	2.985	8.913
.5888	.8467	4.6		2.884	.3311	.1096	9.6	3.020	9.120
.5821	.3388	4.7		2.951	.3273	.1072	9.7	3.055	9.333
.5754	.3311	4.8		3.020	.3236	.1047	9.8	3.090	9.550
.5689	.3256	4.9		3.090	.3199	.1023	9.9	3.126	9.772

TABLE I (continued)

-	+		*			*	-00+	*	
Pressure Ratio	Power Ratio	db	Pressure Ratio	Power Ratio	Pressure Ratio	Power Ratio	db	Pressure Ratio	Power Ratio
.3162 .3126 .3090 .3055 .3020	.1000 .09772 .09550 .09333 .09120	10.0 10.1 10.2 10.3 10.4	3.162, 3.199' 3.236 3.273 3.311	10.000 10.23 10.47 10.72 10.96	.1585 .1567 .1549 .1531 .1514	.02512 .02455 .02399 .02344 .02291	16.0 16.1 16.2 16.3 16.4	6.310 6.383 6.457 6.531 6.607	39.81 40.74 41.69 42.66 43.65
.2985 .2951 .2917 .2884 .2851	.08913 .08710 .08511 .08318 .08128	10.5 10.6 10.7 10.8 10.9	3.350 3.388 3.428 3.467 3.508	11.22 11.48 11.75 12.02 12.30	.1496 .1479 .1462 .1445 .1429	.02239 .02188 .02138 .02089 .02042	$ \begin{array}{r} 16.5 \\ 16.6 \\ 16.7 \\ 16.8 \\ 16.9 \\ 16.9 \\ \end{array} $	6.683 6.761 6.839 6.918 6.998	44.67 45.71 46.77 47.86 48.98
.2818 .2786 .2754 .2723 .2692	.07943 .07762 .07586 .07413 .07244	11.0 11.1 11.2 11.3 11.4	3.548 3.589 3.631 3.673 3.715	12.59 12.88 13.18 13.49 13.80	.1413 .1396 .1380 .1365 .1349	.01995 .01950 .01905 .01862 .01820	17.0 17.1 17.9 17.3 17.4	7.079 7.161 7.244 7.328 7.413	50.12 51.29 52.48 53.70 54.95
.2661 .2630 .2600 .2570 .2541	$\begin{array}{r} .07079\\ .06918\\ .06761\\ .06607\\ .06457\end{array}$	$ \begin{array}{r} 11.5 \\ 11.6 \\ 11.7 \\ 11.8 \\ 11.9 \\ \end{array} $	3.758 3.802 3.846 3.890 3.936	$14.13 \\ 14.45 \\ 14.79 \\ 15.14 \\ 15.49$.1334 .1318 .1303 .1288 .1274	$\begin{array}{r} .01778\\ .01738\\ .01698\\ .01660\\ .01622\end{array}$	17.5 17.6 17.7 17.8 17.9	7.499 7.586 7.674 7.762 7.852	56.23 57.54 58.88 60.26 61.66
.2512 .2483 .2455 .2427 .2899	.06310 .06166 .06026 .05888 .05754	12.0 12.1 12.2 12.3 12.4	3.981 4.027 4.074 4.121 4.169	15.85 16.22 16.60 16.98 17.38	.1259 .1245 .1230 .1216 .1202	.01585 .01549 .01514 .01479 .01445	18.0 18.1 18.2 18.3 18.4	7.943 8.035 8.128 8.222 8.318	63.10 64.57 66.07 67.61 69.18
.2371 .2344 .2317 .2291 .2265	.05623 .05495 .05370 .05248 .05129	12.5 12.6 12.7 12.8 12.9	4.217 4.266 4.315 4.365 4.416	17.78 18.20 18.62 19.05 19.50	$\begin{array}{r} .1189\\ .1175\\ .1161\\ .1148\\ .1135\end{array}$.01413 .01380 .01349 .01318 .01288	18.5 18.6 18.7 18.8 18.9	8.414 8.511 8.610 8.710 8.811	70.79 72.44 74.13 75.86 77.62
.2239 .2213 .2188 .2163 .2163 .2188	.05012 .04898 .04786 .04677 .04571	13.0 13.1 13.2 13.3 13.4	4.467 4.519 4.571 4.624 4.677	19.95 20.42 20.89 21.38 21.88	.1122 .1109 .1096 .1084 .1072	.01259 .01230 .01202 .01175 .01148	19.0 19.1 19.2 19.3 19.4	8.913 9.016 9.120 9.226 9.333	79.43 81.28 83.18 85.11 87.10
.2113 .2089 .2065 .2042 .2018	$\begin{array}{r} .04467\\ .04365\\ .04266\\ .04169\\ .04074\end{array}$	13.5 13.6 13.7 13.8 13.9	4.732 4.786 4.842 4.898 4.955	22.39 22.91 23.44 23.99 24.55	.1059 .1047 .1035 .1023 .1012	.01122 .01096 .01072 .01047 .01023	19.5 19.6 19.7 19.8 19.9	9.441 9.550 9.661 9.772 9.886	89.15 91.20 93.33 95.50 97.72
.1995 .1972	.03981 .03890	14.0 14.1	5.012 5.070	25.12 25.70	.1000	.01000	20.0	10.000	100.00
.1950 .1928 .1905	.03802 .03715 .03631	14.2 14.3 14.4	5.129 5.188 5.248	26.30 26.92 27.54		4	- <i>db</i> +	*	1- 1- 1-3
.1884 .1862	.03548 .03467	14.5 14.6	5.309 5.370	28.18 28.84	Pressure Ratio	Power Ratio	db	Pressure Ratio	Power Ratio
.1820 .1799	.03311 .03236	14.8 14.9	5.495 5.559	30.20 30.90	3.162×10 10	10 ⁻¹ 10 ⁻¹ 10 ⁻²	10 20	3.162	0 10 ²
.1778	.03162	15.0 15.1	5.623 5.689	31.62 32.36	3.162×10 10	$1-2 10^{-3} 10^{-3} 10^{-4}$	30 40	3.162×1 1	$\begin{array}{c c}0 & 10^{3} \\ 0^{2} & 10^{4}\end{array}$
.1738 .1718 .1698	.02951 .02884	15.2 15.3 15.4	5.754 5.821 5.888	33.11 33.88 \$4.67	\$.162×10 10	-3 10 ⁻⁵ -3 10 ⁻⁶	50 60	3.162×1 1	02 105 03 10 ⁶
.1679 .1660	.02818 .02754	15.5 15.6	5.957 6.026 6.005	35.48 36.31	3.162×10 10 3.162×10	$\begin{array}{c c} -4 & 10^{-7} \\ -4 & 10^{-8} \\ -5 & 10^{-9} \end{array}$	70 80 90	3.162×1 1 3.162×1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
.1622	.02630 .02570	15.8 15.9	6.166 6.237	37.15 38.02 38.90	10	-5 10-10	100	1	05 1010

To find decibel values outside the range of this table, see page 17

TABLE II

(bounines), [3,18AT

GIVEN: { Pressure } Ratio

TO FIND: Decibels

POWER RATIOS

To find the number of decibels corresponding to a given power ratio ratio—Assume the given power ratio to be a voltage ratio and find the corresponding number of decibels from the table. The desired result is exactly

one-half of the number of decibels thus found.

Example — Given: a power ratio of 3.41. Find: 3.41 in the table:

 $3.41 \rightarrow 10.655 \text{ db} × \frac{1}{2} = 5.328 \text{ db}$

Pressure Ratio	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
1.0	.000	086	172	257	241	474	506	598	668	749
1.1	.828	.906	.984	1.062	1.138	1 914	1 989	1 364	1 4 9 8	1.511
1.2	1.584	1.656	1.727	1.798	1.868	1.938	8.007	9 076	9144	9 919
1.3	2.279	2.345	2.411	2.477	2.542	9.607	2.671	2 784	2 798	2 860
1.4	2.923	2.984	3.046	3.107	3.167	3.227	3.287	3.346	8.405	3.464
1.5	9 599	9 580	8 697	9 604	9 750	9 907	9 9 9 9 9	9019	9 079	1 000
1.6	4 082	4 197	4 190	4 944	4 997	4 850	4 409	4 454	A 500	4.010
1.7	4.609	4.660	4.711	4 761	4 811	4 861	4 910	4 959	5.008	5 057
1.8	5 105	5 154	5 901	5 940	5 906	5 949	5 800	5 427	5 499	5 590
1.9	5.575	5.621	5.666	5.711	5.756	5.801	5.845	5.889	5.933	5.977
2.0	6.021	6.064	6.107	6,150	6,193	6.235	6.277	6.319	6.361	6.403
2.1	6.444	6.486	6.527	6.568	6.608	6.649	6.689	6.729	6.769	6.809
2.2	6.848	6.888	6.927	6.966	7.008	7.044	7.082	7.121	7.159	7.197
2.3	7.235	7.272	7.310	7.347	7.384	7.421	7.458	7.495	7.582	7.568
2.4	7.604	7.640	7.676	7.712	7.748	7.783	7.819	7.854	7.889	7.924
2.5	7.959	7.993	8.028	8.062	8.097	8.131	8.165	8.199	8.232	8.266
2.6	8.299	8.333	8.366	8.599	8.432	8.465	8.498	8.530	8.563	8.595
2.7	8.627	8.659	8.691	8.723	8.755	8.787	8.818	8.850	8.881	8.912
2.8	8.943	8.974	9.005	9.036	9.066	9.097	9.127	9.158	9.188	9.218
2.9	9.248	9.278	9.308	9.337	9.367	9.396	9.426	9.455	9.484	9.513
3.0	9.542	9.571	9.600	9.629	9.657	9.686	9.714	9.743	9.771	9.799
3.1	9.827	9.855	9.883	9.911	9.939	9.966	9.994	10.021	10.049	10.076
3.2	10.103	10.130	10.157	10.184	10.211	10.238	10.264	10.291	10.317	10.844
3.3	10.570	10.597	10.423	10.449	10.475	10.501	10.527	10.559	10.578	10.604
3.4	10.630	10.655	10.681	10.706	10.731	10.756	10.782	10.807	10.832	10.857
S.5	10.881	10.906	10.931	10.955	10.980	11.005	11.029	11.053	11.078	11,102
3.6	11.126	11.150	11.174	11.198	11.222	11.246	11.270	11.293	11.317	11.341
3.7	11.364	11.387	11.411	11.454	11.457	11.481	11.504	11.527	11.550	11.578
3.8	11.596	11.618	11.641	11.664	11.687	11.709	11.732	11.754	11.777	11.799
3.9	11.821	11.844	11.866	11.888	11.910	11.932	11.954	11.976	11.998	12.019
4.0	12.041	12.063	12.085	12.106	12.128	12.149	12.171	12.192	12.213	12.234
4.1	12.256	12.277	12.298	12.519	12.840	12.361	12.382	12.403	12.424	12.444
4.2	12.465	12.486	12.506	12.527	12.547	12.568	12.588	12.609	12.629	12.649
4.5	12.669	12.690	12.710	12.750	12.750	12.770	12.790	12.810	12.829	12.849
4.4	12.869	12.889	12.908	12.928	12.948	12.967	12.987	13.006	13.026	13.045
4.5	13.064	13.084	13.105	13.122	13.141	13.160	13.179	13.198	13.217	13.236
4.6	13.255	13.274	13.293	13.312	13.330	13.349	13.368	15.386	13.405	18.425
4.7	13.442	13.460	13.479	13.497	13.516	13.534	18.552	13.570	13.589	13.607
4.8	13.625	13.643	13.661	13.679	13.697	13.715	13.733	13.751	13.768	13.786
4.9	13.804	13.822	13.839	15.857	13.875	13.892	13.910	13.927	13.945	13.962
5.0	13.979	13.997	14.014	14.031	14.049	14.066	14.083	14,100	14.117	14.134
5.1	14.151	14.168	14.185	14.202	14.219	14.236	14.253	14.270	14.287	14.803
5.2	14.320	14.337	14.353	14.370	14.387	14.403	14.420	14.436	14.453	14.469
5.3	14.486	14.502	14.518	14.535	14.551	14.567	14.583	14.599	14.616	14.652
5.4	14.648	14.664	14.680	14.696	14.712	14.728	14.744	14.760	14.776	14.791
5.5	14.807	14.823	14.839	14.855	14.870	14.886	14.902	14.917	14.933	14.948
5.6	14.964	14.979	14.995	15.010	15.026	15.041	15.056	15.072	15.087	15.102
5.7	15.117	15.133	15.148	15.163	15.178	15.193	15.208	15,224	15,239	15.254
5.8	15.269	15.284	15.298	15.313	15.328	15.343	15.358	15.373	15.388	15.402
5.9	15.417	15.432	15.446	15.461	15.476	15.490	15.505	15.519	15.584	15.549
and the miles					Carlotter .	Station of the state of the	and a - Marine -	- Contraction of the	Contraction in the second	

TABLE II (continued)

Decourse	100000000000000000000000000000000000000	1	1	1	1					
I ressure	00	10	-00	00					A LANDAR	E FILELIE
Mario	.00	.01	20.	.03	.04	.05	.06	.07	.08	.09
(0	15 512				C. States	- The second second				
0.0	15.503	15.577	15.592	15.606	15.621	15.635	15.649	15.664	15.678	15.692
6.1	15.707	15.721	15.735	15.749	15.763	15.778	15.792	15.806	15.820	15.834
6.2	15.848	15.862	15.876	15.890	15.904	15,918	15.931	15.945	15 959	15 978
6.3	15.987	16.001	16.014	16.028	16 042	16 055	16 069	16.089	16 006	16 110
6.4	16.124	16.137	16 151	16 164	16 178	18 101	16.005	16 010	10.000	10.110
3180880344			10.101	10.101	10.110	10,131	10.205	10.210	10.232	10.245
65	16 959	16 070	10 005	10 000	10.010	10.000				and a state through
6.6	10.200	10.212	10.285	10.298	10.312	16.325	16.338	16.351	16.365	16.378
0.0	10.391	10.404	16.417	16.430	16.443	16.456	16.469	16.483	16.496	16.509
0.7	10.521	16.554	16.547	16.560	16.573	16.586	16.599	16.612	16.625	16.637
6.8	16.650	16.663	16.676	16.688	16.701	16.714	16.726	16.739	16.752	16.764
6.9	16.777	16.790	16.802	16.815	16.827	16.840	16.859	16.865	16 877	16 890
1000		and a state for the	Commission of the local diversion of the		and particular	- Charlester and a		101000	10.011	10.000
7.0	16.902	16.914	16.927	16 030	16 051	16 064	16 076	16 000	17 001	17 012
7.1	17 025	17 097	17 050	17 089	17 074	10.704	10.970	10.900	17.001	17.013
79	17 147	17 150	17.000	17.002	17.079	17.030	17.098	17.110	17.122	17.135
70	17 000	17.109	17.171	17.183	17.195	17.207	17.219	17.231	17.243	17.255
1.0	17.200	17.278	17.290	17.302	17.314	17.326	17.338	17.349	17.361	17.373
1.9	17.385	17,396	17.408	17.420	17.431	17.443	17.455	17.466	17.478	17.490
Thenes)	the state of the	6.6.11	and building	1123	a substant	2. 10. 2	A DECEMBER OF		1. A. 1.	Land and the
7.5	17.501	17.513	17.524	17.586	17.547	17.559	17.570	17.582	17.593	17 605
7.6	17.616	17.628	17.639	17.650	17.662	17 679	17 685	17 696	17 707	17 710
7.7	17.730	17 741	17 759	17 764	17 775	17 700	17.000	17 000	17.000	17.001
78	17 842	17 959	17 964	17 075	17 000	17.700	17.797	17.808	17.820	17.831
7.0	17 059	17.000	17.00%	11.015	17.880	17.897	17.908	17.919	17.931	17.942
1.9	17.955	17.904	17.975	17.985	17.996	18.007	18.018	18.029	18.040	18.051
	10.010	10.000	200 1 210		State B	18.198.2	Children and	2.101时是 百	1.3.828 -	AUSTIL
0.6	18.002	18.073	18.083	18.094	18.105	18.116	18.127	18.137	18.148	18.159
8.1	18.170	18.180	18.191	18.202	18.212	18.923	18.934	18 244	18 955	18 966
8.2	18,276	18.987	18 997	18 308	18 910	18 990	19 940	19 950	10 901	10 071
8.3	18.382	18 200	18 400	18 419	19 499	10.020	10.040	10.000	10.301	10.371
84	18 486	19 400	10.200	10.910	10.920	10.434	18.444	18.405	18.465	18.475
A CADING 1	10.200	10.200	10.000	10.017	18.527	18.537	18.547	18.558	18.568	18.578
0.5	10 000	10 100	10.000			and the second second	James	instance and the	and the second	and and the
8.0	18.588	18.599	18.609	18.619	18.629	18.639	18.649	18.660	18.670	18.680
8.6	18.690	18.700	18.710	18.720	18.730	18.740	18.750	18.760	18.770	18,780
8.7	18.790	18.800	18.810	18.820	18.830	18.840	18.850	18.860	18,870	18,880
8.8	18.890	18.900	18,909	18,919	18,929	18,939	18 949	18.958	18 968	18 078
8.9	18.988	18.998	19.007	19 017	10 097	10.098	10.046	10.056	10.000	10.075
CARGE TER					10.001	10.000	10.010	10.000	13.000	19.010
9.0	19 085	10 004	10 104	10 114	10 122	10 122	1 1 1 1 1 1	10 150	10 110	10 100
01	10 191	10,100	10,000	17.112	19.125	19.133	19.143	19.152	19.102	19.171
0.1	10.101	19.190	19.200	19.209	19.219	19.228	19.238	19.247	19.257	19.266
9.2	19.270	19.285	19.295	19.304	19.313	19.323	19.332	19.342	19.351	19.360
9.3	19.370	19.379	19.388	19.398	19.407	19.416	19.426	19.435	19,444	19.453
9.4	19.463	19.472	19.481	19.490	19:499	19.509	19.518	19.527	19.536	19.545
A CELLER N			A REAL PROPERTY	T. JUST TO THE			S.L.			
9.5	19.554	19.564	19,578	19.582	19.591	19.600	19 600	10 619	10 697	10 898
9.6	19.645	19 654	19 664	10 673	10 699	10 601	10,700	10,010	10.027	10.000
9.7	19 735	10 744	10 759	10 760	10.002	10.091	19.700	19.709	19.718	19.726
0.8	10 995	10 999	10.003	10.002	19.771	19.780	19.789	19.798	19.807	19.816
9.8	19.825	19.833	19.842	19.851	19.860	19.869	19.878	19.886	19.895	19.904
9.9	19.913	19.921	19.930	19.939	19.948	19.956	19.965	19.974	19.983	19.991
zini	. 93 - 1	22 ···		1	- The second	8.1				SEATS
Pressure	- Contraction	the start	Sur El gar	1 1 1 1 1 1 1 1	AND STATES	27 100 1	1.350.000		-	1
Ratio	0	1	2	3	4	5	6	7	8	0
		- and -	and and	- har y m	1 Par ant			Contraction of the		
10	20.000	26.828	21.584	22 279	22 923	22 522	24 092	24 600	25 105	DE ERE
20	26 021	96 444	98 949	97 995	97 604	07 050	00.002	00.007	23.105	23.575
80	90 540	90 007	20.020	21.200	27.004	27.959	28.299	28.627	28.943	29.248
10	29.042	29.827	30.103	30.370	30.630	30.881	31.126	31.364	31.596	\$1.821
40	32.041	32.256	32.465	32.669	32.869	33.064	33.255	33.449	88 695	99 804

21

34.648

36.124 37.385 38.486 39.463 34.807

36.258

30.258 37.501 38.588 39.554 34.964 36.391

37.616 38.690 39.645 35.117 36.521

37.730 38.790 39.735 35.269

36.650

37.842

38.890

39.825

35.417 36.777 37.953

38.988 39.913

50

60

70

80

90

100

33.979

35.563 36.902

38.062

39.085

40.000

34.151

35.707 37.025 38.170

39.181

34.320

35.848

37.147 38.276

39.276

34.486

35.987

37.266 38.382

39.370

PROPERTIE'S OF SOLID

	Specific Gravity	Tensile Strength Lbs. per square inch (Multiply by 10 ³)	Compres- sive Strength Lbs. per square inch (Muitiply by 103)	Softens at °C.	Stable at °C.	Specific Hest	Coefficient of Linear Expansion Parts in 10 ⁶ per °C.	Heat Con- ductivity C.g.s.
Amber	1.1	219.5		250	180	1	44	-0.0
CASEIN - MOULDED	1.33	7	- Series	177	165		80	
CELLULOSE ACETATE	1.3	3.	4	70	65	.5	150	. 0005
CELLULOSE NITRATE	1.5	3-6	TREAD	85	85	.36	140	. 0003
FIBRE	1.3	10	25	130	95		25	.0011
GLASS - CROWN	2.48	2-5	10-30	1100		. 161	8.9	. 0025
GLASS - FLINT	3.7	3-6	6-10	- 174-1		.117	7.9	. 002
GLASS - PYREX	2.25	1 2997	40	600	520	.2	3.2	.0027
METHACRYLIC RESIN	1.19	8-9	12	135	90	. 45	70	. 00055
MICA - CLEAR INDIA	2.8			1200	600	2.06	3-7	.0018
MYCALEX	3.5	6-8	25-40		350	.22	8-9	.0014
MARBLE - WHITE	2.7	2	8-15			.21	8-12	.0015
PHENOL - PURE	1.3	5-11	15-30		120	.3	28	.0004
PHENOL - YELLOW	1.9	5.5	Ela		130		and the second	
PHENOL -BLACK MOULDED	1,35	7.5	30		140	. 35	40	. 0005
PHENOL - PAPER BASE	1.35	10-15	30	1	125	.3	30	. 00065
PHENOL - CLOTH BASE	1.38	11	35	0113	115	. 35	20	.0005
PORCELAIN	2.4	3-6	30-50	1610	1050	.25	4-5	. 0025
PORCELAIN — DRY-PROCESS	2.3	2-3	30-50		1050	. 26	3-4	. 0025
QUARTZ - FUSED	2.21	7-10	200	1430	1150	. 18	45	. 0024
RUBBER - HARD	1.15	4-7	7	70	65	. 33	70-80	. 0004
SLATE	2.8	5	15	1.16.17	Tay AA	.22	10	.005
STEATITE	2.5	8-10	50-100	1500	1000		6-8	and the second
STYRENE (Polymerized)	1.05	6-9	14	90	75	. 324	70	. 0004
SULPHUR	2.05	1000		113	95	.17	64	. 0006
SHELLAC	1.1	.9	. 7	85	75	12.90	100.01.	.0006
TITANIUM DIOXIDE	4-5	4	60	1600	THE ST	12:44	7-8	1.101
UREA — FORMALDEHYDE Compounds	1.48	6-9	25-30	200	80		and and a	. 00017
VINYL RESINS - UNFILLED	1.35	8-10			50	.244	70	. 0005
and a series of the series of the series of the				The second				
The second second second second		and an arrest	and the	Section 2	- Autor	in the second	Second Second	- AN

INSULATING MATERIALS

Dielectric	Po	wer Fact per con	or	Mischina-	Water Ab- sorption	Cest	LONG WIRE MUC
Constant	60 Cyclos	1 Kc	1 Mc	ability	% in 24 hours	Dollars	KEMARKS
2.9	1251.21	100	.2	Very Good	0	12	Natural Petrified Resin
6.4	138	23%	6	Very Good	4-9	1200	Accession on the sec
6-8	7	(CIMA	3-6	Very Good	4	. 50	Tenite Safety Film - Burns very slowly.
4-7	5-9	5	5	Very Good	2-3	. 50	"Cellukid" "Pyralin" "Pyroxylin" - Burns rapidly
4-5	6-9	5	5	Very Good	30	. 35	A GINAL RULL DEPRES
6.2		1		No	0		Window Glass
7	123-1	. 45	.4	No	0	a Napel	- ANNARAN T TE TT.
4.5	last l	.5	.2	Very Poor	0	1.0	TOWER OF SHUT
2.8	3	2	2	Very Good	.3	a la mais	"Lucite" "Plexiglass" - Slow burning
7-7.3	. 03	. 02	. 02	and the second	PHO 2119	5	and a stand of the stand
6-8	1961	.6	. 3	Poor	. 035	. 80	Mica and Lead Borate
7-9	P60	2611.3	4	Fair	Very high	1-3	Conservation of the
5	2		1	Very Good	. 15	1	"Catalin" "Bakelite" - Burns very slowly
5.3	2.5	1.4	.7	Poor	.2	. 65	"Low-Loss Bakelite" - Nearly non- burning
5.5	8	6	3.5	Fair	.3	. 40	Nearly non-burning
5.5	6	5	3.5	Good	. 2-1	. 55	Nearly non-burning
5.6	5	5	5	Good	.7	. 65	Nearly non-burning
6.5-7	2	1 .	.6	No	Low •	- ALLE	and the second second
6.2-7.5	2	1.	.7	No	.1-1		ALLE.
4.2	. 03	. 03	. 03	Very Poor	0		SiO: conducts at 800° C.
2-3	1	1	.59	Fair	. 02	. 60	Burns slowly
6-8	Brank.	.9		Fair	High	THE!	COLO SALANC
6.1	1	.4	.3	No	. 02	and the second	Magnesium Silicate - "Isolantite"
2.4-2.9	. 02	. 02	. 03	Good	.01	1.20	"Victron" "Trolitul" - Very slow burn-
3-3.8			Ser	PATE (BE		. 03	Burne rapidly
2.5-4	2.5		.9		.1	. 25	Burns readily
90-170	343	1	. 06	No	0	. 20	Rutile
6-7	5	3.8	3	Fair	344	VA	"Beetle" "Plaskon"
4		1.4	1.7	Very Good	. 15		"Vinylite" - Non-burning
			1.000		Charles to	1.000	STADIES - OCH CONTRACT
1	12			7	12.20		A second second second

23

HALF WAVE Q MATCHED AERIAL

5= -0 =6 =6 -0 =0 -9 -m = -9 0 50 7 WAYELENGTH * 0 3 N m 9 0 0 3 8 4 0 3 4259-1 3194-1 1 722-531-1 51-2779-1 1 1 1 1 1 1 1 1 1 1 377'-6389-2755-2296-968-984--816 248-057-14 8-5 97-765 725 689 656 620 861 810 574 10 =9 -9 10 10 -0 =0 -9 -9 0 -0 -9 -0 3= -0 -0 = 9 -0 0 0 0 9 0 N 0 6 WAVELENCTHS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5905 3937 2362 968 688 476 312 181 010 787 11811 2952 984 906 844 8 4 0 622 492 165 562 532 N 512 69 73 65 47 CONSTRUCTION 5 WAVELENCTHS -0 =0 -6 9 ē 8 9 S 3 0 00 N 0 3 0 5 81 3 00 4 N 6-7-1 01 0 406-230-891'-2460-640--660 9842'-1 1 1 1 1 1 1 1 1 1 1 1 4921-3280-1968-984-68-755'-703-DIMENSIONS 656'-820 615 578 546 518 492 443 410 393 436 10 118 =9 10 3" 11-12 4 -00 4 124'-10" 10 -0 -0 = 22 = = = -4 WAVELENCTHS o 9 N 0 9 8 0 0 00 0 0 4 2624'-787'-984'-875'- (562'-525'-1 L 3937'-1968'-1 1 1 1 1 1 1 1 1 1 574-713'-604'-492'-312'-656'-7874 463 375 437 414 94 54 341 328 5 AERIAL 3 3 -0-10-=9 10 -6 -0 =10=0 -m 0 5" -6 9 3= 3 WAVELENCTHS -m 3 3 9 0 0 01 WITH 3 3 - 181 ī 1 1 1 984-1 311-0 1 5905'-844'-1 1 1 492'-1 1 1 1 1 347'-1 1 476-738'-453-369'-295'-422'-328-2952'-1968'-393-656 590 535 2 66-246 281 256 9 FOR 236 FREQUENCIES -4 -0 19 -N 10 -4 2 WAVELENCTHS ĩn N 10 18 3 0 0 0 10 0 00 0 10 -8 0 6 LENGTHS 328 ---3937'-312-984-787-656'-562'-437'-2461 231 1-2071-87 '-Î 1 356 '-1 _1 -, 262 1 1 1 1 _! _1 1 302'-968'-492 281 262 218 61 17 20 64 57 -311 =~ -9 EN WAVELENCTH -00 -0 78'-4" = + = 8 19 "6 "8 01 0 0 0 00 0 5 3 6 4 0 246'--896 328-281-1 64'-0 984'-1 492'-3931-151-1 131-123-6 93'-1 _1 1 1 1 1 1 j _1 1 656'-96 40--60 -EO -186 218 115 WIRE 88 S 82 78 8 50 11.11-8 =0 2 "N -s = = MAVELENGTH =N 0 2= -9 0 6 m 9 0 3 σ 0 0 5 0 9 6 N 738'-1 I I 1 246-211-1 1 1 1476-1 1 1 1 1 _1 1 -1 1 1 1 1 1 TABLE -RESONANT 369 2 95-492 184 64 05 47 33 33 113 86 92 86 32 20 ~ 73 99 64 65 5 N N 5 in I ---0 -0 -3" =0 "1 = 0 =-WAVELENCTI 4 S 0 57'-10 N 9 4 8 91 0 3 4 00 0 S 492'-75'-6 65'-8 984 '-I -96 1 1 98'- 9 82'-0 70'- 1 ð 1 1 1 1 1 1 1 1 1 Ĩ 328' 246-64--68 40 23. 60 19 49 46 15 N 0 -10 =9 =9 WAVELENCTH LONC 2" -0 -0 = -101-= 50 54 '- 8" = 35 1-2" - - --0-- 3 37 - 9 6 11---4 4-= 8 6 N 0 0 1-19 1 ī 1 1 1 J _1 J 1 1 246 64' 23 492 98 821 20 49 44 32 30 28 27 25 24 23 22 -5 00 6 14 in Megacycles FREQUENCY 1.5 2.5 0.6 3.5 4.0 4.5 5.0 5.5 0.9 6.5 2.0 7.5 8.0 8.5 0.6 9.5 0.0 10.5 0.11 11.5 0 12.5 N

26

TAF.LE O	F FREQUE	ENCIES WI	TH DIMENS	IONS OF RE	SONANT W	IRE LENGT	HS FOR A	FIAL CON	STRUCTION [CONTINUED]
FF:EQUENCY in Megacycles	MAVELENCTH	T WAVELENCTH	3 WAVELENCTH	WAVELENCTH LONG	2 WAVELENCTHS	3 WAVELENCTHS	4 WAVELENCTHS	SWAVELENGTHS	6 WAVELENCTHS	7 WAVELENGTHS
0.61	11-,81	371-911	56'8 "	75'-6"	151'-0"	226-6"	302'-0"	3771-6 #	453'-0'	528'-6 "
13.5	181-31	36'-5 "	541-8"	72'-10"	145'-8 "	218-6"	291'-4"	364'-2 "	437'-0'	209'-10"
14.0	12'-7"	35'-2"	521-9"	70'-4	140'-8 "	211-0"	281'-3"	351'-8"	422'-0'	492'-2"
16.0	15'-5"	30'-9 "	46'-1 "	9-19	123'-0"	184'-6 "	246 -1 -	307'-6 "	368'-0	430'-6"
18.0	13'-8 "	27'-4 "	41 -0"	54 - 8 "	109!-4 "	164'-0 "	218'-8"	273'-4 "	328 -0	382'-8"
20.0	12'-4 "	24'-8 "	36'-0"	49-3"	98'-6"	1471-911	197'-0"	246'-1 "	295'-6'	344'-9"
22-0	11,-3	22'-5 "	33'-8"	44'-9"	89'-6"	134'-3"	179'-0"	2231-9"	268'-6'	313'-3"
24.0	10'-3 "	20'-6 "	30'-9"	41 -0"	82 -0"	123'-0"	164 -0"	205'-0 "	246 1-1	2871-01
26.0	1 9-16	11-181	28'-5"	37 '-10"	75'-8"	113'-6"	151-4"	189'-2 "	227 1-0	264'-10"
28.0	1 6-18	12'-6 "	26-3"	35'-1"	70 - 2 "	105'-3 "	140'-4"	175'-5"	210 1-6	246'-1"
30.0	81-3"	16'-5 "	24 - 8 "	32 1-10"	65 -8 "	98 - 6 "	131 - 4"	164'-2"	197 1-0	229'-10"
35.0	1,0-,2	141-1	21 -1 "	28'-2"	56'-4 "	84'-6 "	112'-8"	140'-10"	0-1 691	197'-2 "
40-0	9	12 - 3 "	18'-4 "	24 '- 7 "	49'-2 "	73'-9 "	98'-4"	122 -11	147 -6	1721-1
50.0	4'-11	01-6	14 1-9	19,-81	37'-4 "	59-6	74 - 8"	96 -4 "	118 1-0	133 -8
0.09	4 1-14	8'-22"	12 -34	16'-5 "	32 -10"	49'-3 "	65 -8"	82 - 1	9-1 86	114'-11
70.0	3'-9"	71-164	11 -34	15'-0 ¹	30'-1 "	45'-12"	60'-2"	75'-21	8-, 06	105'-32"
80.0	3'-2	6 - 13	9 -33	12 -31	24 - 7 "	36 -102	49'-2"	61 ¹ -5 ¹¹	73 1-92	86'-02
0.06	2'-81	5 - 5 7	8 '-24	11-,01	21,-10"	32 - 9 "	43'-8"	54 "-7 "	65 '-6	76'-5 "
0.001	2'-52"	4 -105	7 '-45"	01- 6	19-161	29'-6 "	39'-4"	49'-2"	20-1 65	68'-10"
120.0	2'-02"	4 - 17 "	6 1-13"	8 -27	16'-5"	24'-72'	32 '-10"	41 -02	49 1-3	57 ¹ -5 ¹
140.0		3'-6 "	5 '-3	7 -04	14 -02	21 -03	28'-1"	35 -14	42 1-12	49 - 13
160.0	1-1	3 - 13	4 -83	6 - 31/2	12 - 7 "	18 -102	25'-2"	31 -52	37 1-9	44 -02
180-0	1 -43"	2 - 9 2	4 -24	5 - 7	11 -2 "	16-91	22 '-4 "	27 -11 "	33 1-6	39 -1 "
200.0	1 - 23	2 - 5 <u>+</u>	3 - 84	4 -11	01- 6	14 - 9	19 - 81	24 -7 "	29 -6	34 -5
250-0	0	1 - 113	2 -113	3 -114	7 -10	1 + 93	15 -9"	19 - 8	23 - 72	27 -67
300-0	0'-98	1 - 72	2 - 5	3 - 37	6 - 7 "	6 -105	13 -2"	16 - 57	6-, 61	23,-04

TRANSMISSION AND FEEDER LINE FORMULAS. Two Wire Line.

Let A = Wire centre spacing in inches.

- B = Wire diameters in inches.
- C = Line impedance in ohms.
- D = Capacity of twin line feeder in mmf. per foot.E = Inductance of twin line feeder in millihenries per foot.

$$\mathbf{C} = \mathbf{276.36} \left\{ \log \left(2\mathbf{A} \div \mathbf{B} \right) \right\} \cdot \mathbf{D} = \mathbf{3.679} \div \left\{ \log \left(2\mathbf{A} \div \mathbf{B} \right) \right\} \cdot \mathbf{E} = .2812 \left\{ \log \left(2\mathbf{A} \div \mathbf{B} \right) \right\} \cdot \mathbf{E}$$

Concentric Line.

A and B are given in inches.

$$C = 138.18 \left\{ \log (B \div A) \right\}$$
 ohms.

Double Twin Line.

A and B are given in inches.

 $C = 138.18 \left\{ \log (1.41421 \text{ B} \div \text{A}) \right\} \text{ ohms.}$

Shielded Twin Line.

A, B and F are given in inches.

 $C = 276.36 \log \frac{2B}{A} \left\{ \left\{ 1 - (B \div 2F)^2 \right\} \div \left\{ 1 + (B \div 2F)^2 \right\} \right\} \text{ ohms.}$

Twin Single Line.

A and B are given in inches.

$$C = 207.3 \{ \log (1.587401A \div B) \}$$
ohms.

Square Concentric Line.

A and B are given in inches.

 $C = 171.71 \{ \log (1.148 B \div A) \}$ ohms.

Single Wire Line.

A and B are given in inches.

 $C = 138.18 \left\{ \log (4 \text{ A} \div B) \right\} \text{ ohms.}$

Parallel Thin Strip Foil Line.

A and B are given in inches.

$$\mathbf{C} = 1188 \div \left[1 + 2.3 \log \left(2.3 \log \left(\frac{(1+3.142B)}{A} \right) + \frac{3.142B}{A} + 1 \right) + \frac{3.142B}{A} \right]$$

The formula for this type of line is only true when B is much greater than A.

METER FORMULAS FOR DIRECT CURRENT MEASUREMENTS.

(a) To find the ohms. per volt resistance of a voltmeter. This value is equal to :--

 $1 \div$ full scale current in amperes.

(b) To increase range of meter for voltage reading by any desired multiplier.

Let B = multiplier resistance value in ohms.

A = Total meter resistance in ohms.

Then $B = (Required full scale reading in volts \div by the full scale meter current in amperes).$

(c) To increase range of milliameter for current reading by any desired multiplier.

Let C = Required multiplying factor.

B = Shunt resistance value in ohms.

A = Total meter resistance in ohms.

Then $B = A \div (C - 1)$.

(d) To find ohmage value of unknown resistance by using a voltmeter and battery.

Let B = value of unknown resistance.

A = resistance of voltmeter in ohms.

Then B = A (Reading of voltmeter with closed switch

 \div Reading of voltmeter with open switch) - 1

(e) To find value of universal current shunts.

Let D = required multiplier factor.

- C + B = total resistance in ohms. for lowest shunted current range required.
- A = meter resistance in ohms.

(f) To find ohmage value of unknown resistance by means of milliameter and battery.

Let C = series resistor for limiting battery current so as to give a reading on the meter scale when switch is open.

B = unknown resistance.

A = resistance of milliameter in ohms.

Then $B = \{$ Switch closed meter current reading \div (switch open meter current reading minus switch closed meter current reading) $\}$.

(g) To find ohmage value of unknown resistance by means of milliameter, battery and any known resistor.

- Let C = known resistance value in ohms.
 - B = unknown resistance value in ohms.

A = Meter resistance in ohms.

Then $B = \{C + A\}$ (Meter current reading with closed switch minus meter current reading with open switch) \div current meter reading with open switch $\}$.

UNKNOWN RESISTANCE

 $(h_1$ To find the direct current resistance in ohms, of an unidentified voltmeter or milliameter.

Let C and B = Variable resistors.

A = unknown meter resistance.

Then connect circuit as shown in diagram with resistor C only being used in circuit, whilst B is disconnected by switch being open. With switch open vary C for full scale meter reading, then bring resister B into circuit by closing switch, and vary B until the meter reading returns to half scale. Then, if the value of resistance B at this setting is checked by an ohmmeter, the reading shown is equal to the resistance of A. It is vital that resistance C is of sufficiently high value to prevent an off the scale meter reading. If the full scale current of the meter is known, it is easy to calculate value of C by the following formula :—

B&S GAUGE WIRE

• ON THESE TWO PAGES are presented charts for determining the number of turns and the size of wire to be used in order to obtain a given inductance on a given winding form.

In the left-hand chart the variables are *n*, the number of turns, and $\frac{l}{d}$, the ratio of winding length to winding diameter. The ratio of inductance to diameter of winding $\left(\frac{L}{d}\right)$ is used as a parameter. The curves were computed from the expression given in Circular 74 of the U.S. Bureau of Standards,* which, using the terminology of the chart, may be written.

$$L = \frac{.02508 \ n^2 d^2}{l} K \tag{1}$$

where L is the inductance in μh

K is Nagaoka's constant and d and l are in inches.

[&]quot;"Radio Instruments and Measurements," p. 252.

For a given inductance the number of turns is then,

$$n = \sqrt{\left(\frac{L}{d}\right) \left(\frac{l}{d}\right) (39.88) \left(\frac{l}{K}\right)} \quad (2)$$

This form of the expression is particularly convenient because, in designing coils, the engineer usually starts with a

given coil form $(\frac{l}{d}$ known) and needs a

given inductance $L(\frac{L}{d}easily calculated)$.

Since Nagaoka's constant depends on the ratio $\frac{l}{d}$, the use of this ratio for the horizontal scale makes all the curves parallel, so that, in plotting them, only one curve need be calculated. The other can be drawn from a template.

For interpolating between curves, a logarithmic scale covering one decade of $\frac{L}{d}$ is shown at the right of the chart.

The second chart is plotted from standard winding data published by wire manufacturers.

As an example of the use of these charts, consider the problem of designing a coil of 100 μ h inductance on a winding form two inches in diameter, with an available winding space of two mches. The quantity $\frac{l}{d}$ is unity and $\frac{L}{d}$ is 50. Entering the chart at $\frac{L}{d} = 50$ and following down the curve to the vertical line $\frac{l}{d} = 1$ we find that *n*, as indicated by the left

hand vertical scale, is 54 turns. With a winding space of two inches this is equivalent to 27 turns per linear inch, close wound. The second chart shows that No. 18 enamel or single silk-, No. 20 double-silk-, or single cotton- or No. 22 double-cotton-covered wire would be used close wound. No. 25 bare wire, double spaced, could also be used.

BIAS RESISTANCE.

Cathode Bigs.

respectively.

Grid Leak Bias.

 $Vg = Ig \times Rg$ $Rg = \frac{Vg}{Ig}$ $Rg = \frac{Vg - E}{Ig}$

Where Rg=grid leak resistance, Vg=bias voltage, Ig=d.c. grid current, and E= voltage of series battery.

 $Rg = \underbrace{Vg}_{Ag+As+Aa} \text{ where } Vg \& Rg \text{ are as} \\ Ag+As+Aa \text{ above, and } Ag, As, and Aa are grid, screen, and anode currents }$

CALCULATION OF CORRECT RESISTOR FOR SELF BIAS. From Ohms. law :--

Grid Bias Voltage \times 1,000.

 $\mathbf{R} =$ Total Cathode Current in Ma \times number of Valves involved.

For Triodes total cathode current = plate current.

For Pentodes and Tetrodes, total cathode current = plate plus screen currents.

For Pentagrids, total cathode current = plate plus screen plus oscillator plate currents.

Example.—Find Bias Resistor for two 6K6 Valves operating in push pull with 315 volts on the plates.

The following data is obtained from valve characteristics for the 6K6 from Bernards "Radio Valve Manual, No. 30," price 3/6.

Grid Bias = 21 volts.

Screen Current = 4 Ma.

Plate Current = 25.5 Ma. Total Cathode Current = 29.5 Ma. $21 \times 1,000$ 21.000

Therefore, $R = \frac{21 \times 1,000}{29.5 \times 2} = \frac{21,000}{59} = 355$ ohms. approximately.

When over biased operation is used the advised bias resistor value will be shewn under Ratings and current applications for the type of Valve involved in Bernard's "Radio Valve Manual."

TIME CONVERSION LOG. (TIMES IN G.M.T.)

ALEUTIAN ISLANDS	60	Sp	4 p	30	20	Ip.	120	lla	100	9a	8a	7a	6a	5a	40	3a	Za	la	12-	Ilo	100	90	80	70
ALASKA (Haiwaii Is. Less 1/2 hp.)	70	60	5p	40	30	20	Ip	120	lla	100	9a	80	7a	6a	5a	4a	3a	2a	la	12m	IIp	100	90	80
YUKON.	80	70	6p	5p	40	30	20	Ip	120	lla	10a	9a	8a	7a	6a	5a	Aa	3a	Za	la	120	IIp	100	90
PACIFIC TIME. Canada & U.S.A.	90	80	7ρ	6 p	50	4p	30	20	Ip	120	Ila	10a	9a	8a	7a	6 a	5a	4a	3a	2a	la	12.	llp	10,0
MOUNTAIN TIME,	100	90	80	70	50	50	40	30	20	Ip	120	lla	10a	9a	8a	7a	6a	5a	40	3a	Za	la	12	llo
CENTRAL TIME,	110	100	90	80	70	60	50	40	30	20	Ip	12.	lla	100	9a	Ba	7a	6a	5a	40	3a	2a	la	120
EASTERN STAN.TIME, Cuba.	12.	IIp	IOp	90	30	7,0	60	50	4,0	30	20	Ip	120	lla	100	90	8a	7a	6a	5a	4a	3a	Za	la
ATLANTIC TIME, Canada, Argentine (Yenez, less %h	la	12-	Ilp	10p	90	80	70	60	50	40	30	20	Ip	120	Ila	100	9a	8a	7a	6a	Sa	40	30	20
BRAZIL	2.0	la	12-	IIp	10p	90	80	70	60	50	40	30	20	Ip	120	lla	Ka	9a	8a	7a	6a	5a	40	3a
AZORES IS.	30	20	la	120	IIp	No	9 p	80	70	60	5p	40	30	20	Ip	12	lla	100	9a	8a	7a	6a	5a	4a
ICELAND, W.AFRICA, CANARY IS.	40	30	20	la	120	llp	100	90	80	70	60	50	40	30	20	Ip	120	Ila	10a	9a	8a	7a	6a	5a
ENGLAND, FRANCE, SPAIN, (HOLLAND add 20mins)	5a	40	30	20	la	120	IIp	100	90	80	70	60	50	40	30	20	10	120	Ila	100	9a	8a	70	6a
NORWAY, SWEDEN, GERMANY, ITALY.	60	50	40	30	20	la	12	IIp	100	90	80	70	60	50	40	30	20	Ip	120	Ila	Da	9a	Ba	Ta
RUSSIA (Moscow) EGYPT, S.AFRICA.	70	6a	50	40	30	20	la	12	IIp	100	90	80	7p	60	50	4,0	30	20	10	120	Ila	100	9a	Ba
MADAGASCAR, ARABIA, ABYSSINIA, PERSIA.	80	70	60	50	40	30	20	la	12-	IIp	100	90	80	7,0	60	50	40	30	20	10	120	lla	10a	9a
CENTRAL RUSSIA, TURKESTAN.	90	80	7a	6a	Sa	4a	3a	2a	la	120	IIp	100	90	80	70	60	50	40	30	20	Ip	120	Ila	100
INDIA, (Add 30 mins.)	100	9a	80	7a	60	Sa	40	30	20	la	IZm	IIp	100	90	80	70	60	50	40	30	20	10	120	Ila
BURMA, TIBET, E.INDIA, (Calcutta).	Ila	100	9a	Ba	7.0	6a	50	40	3a	Za	la	12n	llp	100	90	80	70	60	50	40	30	20	10	120
SUMATRA, (Java, add 20 mins.)	12	la	100	90	80	70	60	50	4a	3a	20	la	12.	llp	100	90	80	7,0	60	50	40	30	20	Ip
CHINA, WEST AUSTRALIA.	ip	120	lla	100	9a	80	70	6a	5a	40	30	20	la	12n	llp	100	90	80	7,0	60	50	40	30	20
JAPAN, (CENTRAL AUSTRALIA, Add 30mins.)	20	Ip	12	lla	100	90	Ba	7a	6a	5a	40	30	20	la	12.	Ilp	10p	90	80	70	60	50	40	30
EAST AUSTRALIA, NEW GUINEA.	30	20	Ip	120	lla	Vaa	9a	Ba	7a	60	5a	4 a	3a	20	la.	12	IIp	100	90	80	70	60	50	40
SOLOMAN IS., NEW HEBRIDES.	40	30	20	Ip	120	la	100	9a	Ba	7a	6a	5a	40	3a	20	la	120	IIp	100	90	80	7,	60	5,0
NE ZEALAND, (Less 30 mins.)	Sp	40	30	20	10	120	Ila	100	9a	Ba	7a	60	5a	40	3a	20	la	12m	llo	10p	90	80	70	60

TO FIND TIME AND DAY IN ANY COUNTRY OF THE WORLD (G.M.T.).

Select horizontal line opposite the country in which you live (using particular time band mentioned for your locality), and move along this line to the nearest hour as shown by your watch, then move up or down the vertical column to the line opposite the country in which you desire the time. The figure at the intersection is the time required ("a" denotes a.m.; "p" denotes p.m.).

To find the day, the rule is—if when moving up or down the vertical column you pass the zig-zag line in an upward movement, the time indicated will be "yesterday," or one day behind. If in moving downward on the vertical column you cross the zig-zag line, the time indicated is "to-morrow," or one day ahead.

Example.

If it is 5 p.m. on Wednesday in London (G.M.T.), what time and day is it in New Zealand? Follow horizontally along the line marked "ENGLAND" to 5 p.m. and drop down from this point to the New Zealand horizontal line. The intersection gives the time as 5 a.m. Having crossed the heavy zig-zag line in a downward direction the time is one day ahead. HENCE IT IS 5 A.M. THURSDAY MORNING IN NEW ZEALAND.

THE CIRCULAR MIL.

The circular mil. is a modern and facile method of calculating area of wire cross sections and is equal to the square of the wire diameter given in mils., which are the one thousandth part of an inch. Example : 26 S.W.G. wire is equal to .018" diameter ; the circular mil. area of this size wire is calculated thus, $18 \times 18 = 324$. Therefore, the circular mil. area is equal to 324 mils.

The circular mil. foot is a piece of wire one foot in length by one circular mil, in area.

SYMBOLS OF TIME AND RELATION TO G.M.T.

VARIOUS PARTS OF THE WORLD:

L.S.T.	Local Standard Time.
G.M.T.	Greenwich Mean Time.
B.S.T.	British Summer Time 1 hour ahead of G.M.T.
	(August 9th—April) DURING WINTER.
D.B.S.T.	Double British Summer Time. 2 hours ahead of G.M.T.
	(April—August 8th). DURING SUMMER.
C.E.T.	Central European Time. 1 hour ahead of G.M.T.
S.A.T.	South African Time. 2 hours
I.S.T.	Indian Standard Time. 54
E.A.S.T.	Eastern Australian Standard 10 ,, , , , , , , , , , , , , , , , , ,
J.S.T.	Japanese Standard Time. 9
H.S.T.	Haiwaiian Standard Time. 101 earlier than G.M.T.
B.G.T.	British Guiana Time.

NORTH AND SOUTH AMERICA (INCLUDING CANADA, U.S.A., LATIN-AMERICA).

D.S.T.	Daylight Saving Time.	1 41	ours	earlie	r than	G.M.T.
A.S.T.	Atlantic Standard Time.	4	,,	,,	,,	
or A.T.	a manager a sector and	an man				
E.S.T.	Eastern Standard Time.	5	,,	,,	.,,	,,
E.W.T.	EASTERN WAR TIME.	4	,,	.,,	,,	"
C.S.T.	Central Standard Time.	6	,,	,,	,,	"
or C.T.		A Burney				
M.S.T.	Mountain Standard Time.	7	,,,	,,	,,	"
P.S.T.	Pacific Standard Time.	8	,,	,,	,,	,,
P.W.T.	PACIFIC WAR TIME.	17	,,	"	,,	

NOTE: With U.S.A. standards of time in particular, WAR TIME IS ONE HOUR EARLIER IN EVERY CASE.

> TO CONVERT TO B.S.T. ADD 1 HOUR. TO CONVERT TO D.B.S.T. ADD 2 HOURS.

THESE MUST BE ADDED

2 HOURS

ADD

TO B.S.T.-

TO CONVERT G.M.T. TO CONVERT G.M.T.

THESE MUST BE SUBTRACTED

TIME AND RELATION OF G.M.T. WITH OTHER PARTS OF THE WORLD.

Most Short-wave schedules make use of the 24-hour system for indicating times. Thus, 00.00 is midnight or zero hour, and 12.00corresponds to noon. The time 7 a.m. is denoted thus: 07.00, 10 a.m. thus, 10.00; 4 p.m. by 16.00, 7 p.m. by 19.00, 9 p.m. by 21.00, and 11 p.m. by 23.00. Then follows 00.00 or zero hour

The conversion of Greenwich Mean Time to that of other places throughout the world and vice versa usually gives the beginner trouble and for this purpose reference should be made to the page detailing the SYMBOLS OF TIME and their equivalents, and the TIME ZONE AND CONVERSION CHART.

The earth rotates through 360 degrees in 24 hours, that is, through 15 degrees in one hour. Thus, one hour difference of mean time at two places denotes that they differ 15 degrees in LONGI-TUDE. As the earth rotates from West to East, places—

- (1) East of Greenwich are AHEAD OF G.M.T.
- (2) and those West of Greenwich, EARLIER THAN G.M.T.

Many stations announce times locally, and these should be noted, and comparison and reckoning made when converting to G.M.T. (or B.S.T. and D.B.S.T.). Thus, if the listener happened to be listening to Sydney, Australia, on 31.28 metres at 19.00 or 7 p.m. D.B.S.T., Sunday, August 17th, the time by Eastern Australian Standard Time would be 03.00 MONDAY, AUGUST 18th. Similarly, E.S.T., or Eastern Standard Time in New York, is 5 hours earlier that G.M.T., and Eastern War Time, 4 hours earlier, and not only the time but the date should-be considered when reckoning.

As will be seen from the Time Symbol Table and the Time Zone Chart, Hawaii, British Guiana, Labrador, Newfoundland, India, and New Zealand have their own standard times. Venezuela is included in the A.S.T. Zone, and South Africa is a zone by itself.

In China, Afghanistan, Iran, Arabia, Abyssinia, Borneo, Sumatra, Greenland, parts of New Guinea, and certain other parts, either the legal time is not known or no legal time is kept.

In particular, it should be noted that with her entry into the war, the United States has adopted "WAR TIME." Eastern War Time is 4 hours earlier than G.M.T., and Pacific War Time is 7 hours earlier. Again, Time in Britain is as follows: During the Winter B.S.T. is 1 hour ahead of G.M.T., and during the Summer D.B.S.T. is 2 hours ahead of G.M.T. Thus: 15.00 B.S.T. corresponds to 14.00 G.M.T., and 15.00 D.B.S.T. corresponds to 13.00 G.M.T.

FREQUENCY (c/s)

Piano scale showing the frequencies to which the keys are usually tuned, which is to a slightly different pitch from that used by physicists, based on Middle C = 256 c/s., and such scales are apt to be misleading. Frequencies of black keys can be obtained by multiplying the frequency of the white key below it by 1.05946. This scale is useful for the approximate calibration of oscillators and rough determination of resonant frequencies, etc.

VIBRATIONS AND THE MUSICAL SCALE.

Ratio of vibrations of 1 octave in any part of the Musical Scale :--

Note			C.	D.	E.	F.	G.	Α.	В.	C.
Ratio	TP. Jana		1	9/8	5/4	4/3	3/2	5/3	15/8	2
Decimal	Ratio		1	1.125	1.25	1.33	1.5	1.66	1.875	2
Tonic Sol	l Fa Sc	ale	Doh	Ray	Me	Fah	Soh	Lah	Te	Doh

* STROBOSCOPE TABLE.

FREQUE	NCY of (c/s.)	15	25	33	40	50	60	80	90	100
RECORD	78 r.p.m.	23	38	51	62	77	92	123	139	154

To find the number of black spokes required for any speed and a.c. mains-frequency, the formula is :---

$$N \dots = 120.f$$

where N = number of black spokes.

f = mains supply frequency.

 $\mathbf{r} =$ speed of record required.

N.B .--- 180 black spokes are required at 331 r.p.m. for 50 c/s. mains,

							and the second se	and the second se		
2	3	4	-	2	3	4	1	2	e .	4
usical Scale.	International Chromatic Scale	American Chromatic Scale .	Note on Scele .	Musical Scale.	International Chromatic Scale .	American Chromatic Scale.	Note on Scale .	Musical Scale .	Chromatic Scale .	Chromatic Scale .
00.91	16-17	16-35	0	144-00	145-16	146-83	2	1365-33	1381-04	16-96E1
16-95	EI-71	17-32	TO	152-56	153-80	155-56	**	1446-29	1463+16	1479-98
18-00	18-15	18-35	- 3	160-00	162-94	164-81	U	1536-00	1550-16	1567-98
10.51	19-22	19-45	2	170-66	•172-63	174-61	t*:	1627.33	1642-34	1661-22
2000	20.37	20-60	#1	180-79	182-89	185.00		1706-66	1740-00	1760-00
EE.IC	21.58	21.83	• •	192-00	193-77	00-961	**	1807-69	1843-47	1864-66
22-60	22.86	23.12	C#	203-42	205-29	207-65	8	1920-00	1953-08	197 5 • 53
24-00	24.22	24-50	+ 4	213-33	217-50	220-00	c,7	2048-00	2069-22	2093-00
25-43	25.66	25.96	A #	225-96	230-43	233-08	#0	2169.77	2192-26	2217-46
26.66	27.19	27-50	* 00	240-00	244-14	246.94	0	2304-00	2322-62	2349-32
28-25	28.80	29-14	middle C.4	256-00	2 58-65	261-63	4	2441-00	2460-73	2489-02
30.00	30-52	30-87	40	271-22	274-03	277-18	W	2560-00	2607-05	2637-02
32.00	32.33	32-70	-0	288.00	- 290-33	293-66	4	2730-66	2762-08	2793-83
33-90	34-25	34-65	0#	305-12	307-59	311-13	#	2892-58	2926-32	5959-96
36.00	36-29	36-71	3	320-00	325-88	329-63	0	3072.00	3100.33	3135-96
38-14	38-45	36-69	2	341.33	345-26	349-23	C#	3254-66	3284-68	3322.44
40-00	40-74	41-20	F.B.	361-57	365.79	369-99	*	3413-33	3480-00	3520-00
42-66	43-16	43.65	50	384-00	387-54	392-00	**	3615.38	3686-93	3729-31
45-20	45-72	46-25	C#	406-83	410-59	415-30	8	3840-00	3906-17	3951-07
48.00	48-44	49.00		426-66	435-00	440.00	8 0	1096-00	4138-44	4186-01
50-85	51.32	16-15	#¥	451-92	460-87	466.16	c#	4339-55	4384-52	4434.92
53-33	54.38	55.00	8	480.00	408-27	\$93.68	0	4 608-00	4645-24	4698.64
56-49	57.61	50-27	CS	512.00	517.31	523-25	40	4882-00	4 921-46	4978-04
60-00	61.03	61-74	+ U	542-44	548-07	554 - 37	ш	5120-00	5214.10	5274.04
64-00	64-66	65-41	- 0	576-00	580-66	587.33	L	5461-33	5524-16	5587-66
67-81	68-51	69-30	中 口 中	610-25	615-18	622-25	11	5785-16	5852-64	26-6165
72.00	72.58	73.42	. 3	640.00	651-76	659-26	U	6144.00	6200-66	6271.92
76.28	26.90	77-78	b.	682-66	690.52	699-46	40	6509+32	6569.36	6644.83
80.00	81-47	82.41	H-	723-15	731-58	139.99	~	6826-66	00-0969	7040-00
85.33	86.31	87-31	¥-0	768.00	775-08	763-59	**	7230-77	7373-86	7458-62
90.39	91-45	92.50	C.H.	813-67	821-17	830.61	8	7680-00	7812+34	1902-14
96.00	68-95	98.00	A	853-33	870-00	880-00	65	8192.00	8276+88	8372-02
12-101	102-65	103-83	- A.t	903-85	921-73	932-33	c #	8679-10	8769+04	8869-84
99-901	108-75	00-011	6	00.096	\$76.54	987-77	0	9216-00	9290-48	9397 •28
112-98	115-22	116-54	C.6	1024-00	1034-61	1046-50	#0	9764+00	9842+92	99566
120-00	122-07	123-47	c#	1084-89	1096-13	1108-73	u	10240-00	10428-20	10548-08
128-00	129+33	130-61	0	1152-00	1161.31	1174-66		10922-66	11048-32	11175-32
135-61	137-02	138-59	#a	1220-50	1230.37	1244.51	#1	11570-32	11705-28	11839-84
		and the second second	The second secon		and					and a second sec

RADIO VALVE FORMULAS.

When A = Grid Voltage

- B = Mutual Conductance in mhos.
- C = Dynamic Anode resistance in ohms.

D = Anode Voltage.

E = Amplification factor.

F = Anode current.

G = Anode load resistance.

H = Filament or Cathode current.

K = Signal Voltage.

 $L = Alteration in D \div alteration in F.$

Maximum power output = $(KE)^2 \div 4$ C.

 $E = alteration D \div alteration in A.$

Stage Gain = E
$$[G \div (C+G)]$$
.

 $B = alteration in F \div alteration in A.$

Voltage output = E $[(G \times K) \div (G + C)].$

Cathode resistor = $A \div H$ ohms.

Power output = $[(K \times E) \div (G + C)]^2 \times G.$

Highest undistorted power output = $(K \times E)^2 \div (4.5 \text{ C.})$.

TRANG C	PRC	RESISTA	NCE M	ATERISTICS	S OF	
MATERIAL	Resistance relative to COPPER	Resistance in ohms per circular Mil-Foot.	Temperature Coefficient of Resistivity per °C	Resistance in Microhms per cubic Centimetre	Resistance in ohms per square Mil-Foot	Resistance in Microhms per cubic Inch
Copper, Steel. Aluminium, Pure Iron. Silver, Cold. Platinum, Tin, Zinc, Lead. Nickel, Advance, Eureka. Glowray. Climax. Constantan. Excello. Ideal. Manganin. Platinold. Constantan. Excello. Ideal. Manganin. Platinold. Constantan. Excello. Ideal. Manganin. Platinold. Corban. Constantan. Excello. Ideal. Manganin. Platinold. Corban. Brightray. Dullray. Cupro. No-Mag. Nicrome 15% * 80% 20% Corronil. Red ray. Mangonic. B.B. Ferry. Zodiac. Tarnac. Ferrozoid. Cromaloy. 2 * 4 Nickel-Silver.1 * 4 Platinum-Intium. * 4 Platinum-Intium.	1.0 6.4 1.7 5.8 0.9 1.3 5.8 6.6 3.3 127 6.0 28.4 28.4 52.8 28.0 50.4 28.4 52.8 28.0 50.4 28.4 52.8 28.0 25.5 24.3 29.4 2030.0 58.0 81.8 852.8 63.2 29.9 8.6 23.9 8.6 23.9 8.6 23.9 8.6 23.9 8.6 23.9 8.6 23.9 8.6 23.9 8.6 23.9 8.6 23.9 8.6 23.9 22.6 5 8.0 8.6 8.6 3.3 22.5 5 24.3 20.9 1.5 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4	10-3 67-4 16-9 60-2 9-5 14-6 60-2 67-5 33-8 133-0 61-4 295-0 295-0 295-0 295-0 295-0 265-0 253-0 253-0 265-0 253-0 265-0 253-0 255-0 265-0 255-0 255-0 255-0 255-0 255-0 255-0 255-0 2020-0 555-0 255-0 255-0 255-0 255-0 555-0 555-0 255-0 555-0 284-0 289-0 215-0 555-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 555-0 289-0 215-0 555-0 255-0 555-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-0 255-0 250-	+•0039 +•0037 +•0037 +•0035 +•0037 +•0035 +•0037 +•0036 +•0039 +•0059 +•0009 +•00001 +•00001 +•00001 +•00001 +•00001 +•00001 +•00001 +•00001 +•00001 +•00001 +•00005 +•00019 +•00005 +•00019 +•00005 +•00019 +•00005 +•00019 +•00005 +•00001 +•00005 +•00001 +•00005 +•00001 +•00005 +•00002 +•0000000000	$\begin{array}{c} 1.724\\ 11.2\\ 2.82\\ 10.0\\ 1.59\\ 2.43\\ 10.0\\ 11.4\\ 5.7\\ 21.9\\ 10.2\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 49.0\\ 391.0\\ 49.0\\ 35.0\\ 5.7\\ 42.0\\ 33.0\\ 76.0\\ 49.0\\ 33.0\\ 76.0\\ 49.0\\ 33.0\\ 76.0\\ 49.0\\ 33.0\\ 76.0\\ 49.0\\ 33.0\\ 76.0\\ 49.0\\ 33.0\\ 100.0\\ 10.0\\ 93.0\\ 14.95\\ 40.0\\ 48.0\\ 36.0\\ 39.0\\ 88.0\\ 39.0\\ 88.0\\ 39.0\\ 88.0\\ 39.0\\ 88.0\\ 39.0\\ 88.0\\ 39.0\\ 10.0\\ 31.0\\ 31.0\\ 31.0\\ 31.0\\ 31.4\\ 90.0\\ \end{array}$	$\begin{array}{c} 8 \cdot 0 \\ 53 \cdot 0 \\ 13 \cdot 0 \\ 47 \cdot 0 \\ 7 \cdot 5 \\ 11 \cdot 0 \\ 27 \cdot 0 \\ 10 4 \\ 232 \cdot 0 \\ 232 \cdot 0 \\ 232 \cdot 0 \\ 473 \cdot 0 \\ 232 \cdot 0 \\ 473 \cdot 0 \\ 232 \cdot 0 \\ 232 \cdot 0 \\ 473 \cdot 0 \\ 232 \cdot 0 \\ 232 \cdot 0 \\ 199 \cdot 0 \\ 232 \cdot 0 \\ 156 \cdot 0 \\ 236 \cdot 0 \\ 123 \cdot 0 \\ 123 \cdot 0 \\ 667 \cdot 0 \\ 123 \cdot 0 \\ 1$	0.68 4.41 1.11 3.94 0.94 4.49 2.25 8.63 4.02 19.31 19.31 19.31 19.31 19.31 19.31 19.31 16.55 20.12 16.55 13.94 4.29.94 19.31 137.90 3.94 4.29.94 10.394 4.29.94 10.394 4.29.94 10.394 4.29.94 10.394 4.29.94 10.394 4.29.94 10.394 4.29.94 10.394 10.394 4.29.94 10.344 10.555 10.394 10.555 10.394 10.555 10.394 10.555 10.394 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.5576

	10. mm	Star Cl - A Di	14.00		RESISTA	INCE N	/IRE	DAT	1 0 0 0 -		-	atori	
ALL STREET	NICI	KEL SILVE	R WIR	w	W	ANGANIN	WIRE	1000	d	LATINOID V	IRE	120 1212 2012	
	RESIS	TANCE	Amor	Lage	RESIS	TANCE	Amoe	- 20 -	RESIS	TANCE	Amber		
Standing of	- Sugar		requir	ed tor			require	d for			require	d tor	
5. W. G.	Ohms per 1000 ft.	Ohms par Ounce	tempe	rature of	Ohms per 1000 ft.	Ohms per Ounce	temper	ature of	Ohms per 1000 ft.	Ohms per Ounce	temperature	of	Día, in INCHES
00000	would-	akhtow.	200°C	100°C	appida.	a pprox.	20000	100°C	appi of.	approx.	20005	100°C	1.0
8		1	1	1	9.6	•008	61	39	9-5	900-	1		•160
10		A THE C	1	1	15-0	810.	39	27	14.9	810.	1		•128
12		-	1	1	22-7	.042	28	21	22.7	.042	1	1	•104
14	1	114	1	1	38-3	.12	17.5	11-7	38.4	-12	1	1	-080
16	34	11.	14.2	1.0	59.65	05.	1.01	7.2	2.65	16.	1	1	-064
8	59	•53	9.4	1.9	107	56.	2.6	5.1	108	-95	1	1	-048
2 5	60	1-1	9.3	4.1	180	2.9	5.1	3.6	189	2.9	Î I		.036
22	180	5-04	4.2	3-1	315	8.0	3-8	2.6	316	8.7	1		•028
23		1	1		428	15	1	1			1		•024
24	292	12.25	1		510	21	1		509	22	1	1	-022
25	:;		000	00	617	32	000	1000	100	1	1	1	.020
20	431	27.56			918	48	11		764	48	11	11	•0164
28	699	64.37	1	1	1156	112		-	1165	112	1	1	•0148
30	617	121	1		1600	211			1601	212	1		•0124
32	1		1	1	2105	367	1	1	2104	367	1	1	-0108
34	1		1	1	2935	704	0.00	100	2933	705		1	•0092
38	14 1 1 1	a laura	1	1	6918	0066	1		6917	1086			900.
40	-	-		1	10762	9530	1	1	10764	9531	1		•0048
42	-	1	1	1	15413	19500	1	1	15416	19500	1	1	•004
44		1000	1	1	24083	48000	1	1	24087	48000	1	1	.0032
46	-	ana ana	Da no	10	42816	152000		U B	48819	152000	1	TA I	•0024
2		The above	data su	polied	by courtery	of Landon E	lectric	Wire Co.	& Smiths Ltd	(LEWCOS)			

NICKEL CHROME 15% WIRES AND TAPES.

Temperature Co-efficient (20)° to 5	00°C.)			0.00	0202 pe	er °C.
Specific Resistance			110	micro	ohms p	er cm.	cube
Comparative Resistance : C	opper	= Unit	y				60
Specific Gravity		19	9 1.0				8.27
Melting Point					(1,4	00°C.
Tensile Strength-Annealed	Rod	1.50		4	17 tons	per sq.	inch
Specific Heat-by weight							0.112

NICKEL CHROME 80/20% WIRES AND TAPES.

Temperature Co-efficient (20	° to 5	00°C.)			0.00	0098 pe	er °C.
Specific Resistance			109	micro	hms p	er cm.	cube
Comparative Resistance : Co	opper	= Uni	ty				61늘
Specific Gravity			8 9				8.35
Melting Point						13	75°C.
Tensile Strength-Annealed	Rod			5	9 tons	per sq.	inch
Specific Heat-by weight			2		00	1	0.106

NICKEL CHROME 15% RESISTANCE TAPE.

Current necessary to maintain a given temperature rise. Wire held straight and horizontal in air with free radiation.

Size,	l per	Resistance 1,000 ya Ohms.	e ards	An tempe	peres fo grature r	r a ise of	Weight per 1,000
Inch.	100 °C.	500 °C.	1,000 °C.	100 °C.	500 °C.	1,000 °C.	yards lbs.
$\begin{array}{c} .025 \times .002\\ .025 \times .003\\ .025 \times .004\\ .025 \times .006\\ .025 \times .008\end{array}$	34,713 22,671 15,114 10,832 7,734	37,380 24,413 16,275 11,665 8,328	38,610 25,215 16,810 12,048 8,601	0.46 0.65 0.80 0.91 1.14	$1.27 \\ 1.65 \\ 2.11 \\ 2.61 \\ 3.14$	2.59 3.39 4.32 5.15 6.17	$\begin{array}{c} 0.453 \\ 0.720 \\ 1.058 \\ 1.501 \\ 2.086 \end{array}$
$\begin{array}{c} .03125 \times .003 \\ .03125 \times .004 \\ .03125 \times .006 \\ .03125 \times .008 \\ .03125 \times .010 \end{array}$	17,124 12,564 7,929 6,072 4,839	18,440 13,529 8,538 6,539 5,211	19,045 13,973 8,819 6,753 5,382	$\begin{array}{c} 0.76 \\ 0.82 \\ 1.05 \\ 1.33 \\ 1.50 \end{array}$	2.04 2.48 2.95 3.76 4.13	4.19 5.02 6.17 7.6 8.54	0.949 1.316 2.070 2,672 3.383
$.050 \times .004$ $.050 \times .006$ $.050 \times .008$ $.050 \times .010$	8,934 5,295 3,741 2,968	9,620 5,702 4,028 3,196	9,936 5,889 4,161 3,302	$1.11 \\ 1.46 \\ 1.79 \\ 2.05$	3.30 4.23 4.87 5.73	6.68 8.96 11.15 12.98	$\begin{array}{c} 1.875\\ 3.168\\ 4.362\\ 5,024 \end{array}$

NICKEL CHROME 15% RESISTANCE WIRE.

Current necessary to maintain a given temperature rise. Wire held straight and horizontal in air with free radiation.

Size S.W.	Diam. Inch	M/m.	R per 1	esistance 1,000 yan Ohms.	rds,	Am tempe	peres fo rature 1	or a rise of	Weight per 1,000
G.	in on	elitor 7	15.5 °C.	500 °C.	1,000 °C.	100 °C.	°C.	°C.	lbs.
16 17 18 19 20	.064 .056 .048 .040 .036	1.62 1.42 1.21 1.01 0.91	493 644 876 1,262 1,557	530 693 943 1,359 1,678	548 716 974 1,404 1,733	6.6 5.4 4.2 3.2 2.7	19.3 16.3 13.1 10.0 8.6	42.1 35.0 27.8 20.95 17.80	34.6 26.4 19.4 13.5 10.9
21 22 23 24 25	.032 .028 .024 .022 .020	0.81 0.71 0.60 0.55 0.50	1,973 2,577 3,507 4,175 5,049	2,124 2,774 3,776 4,495 5,438	2,194 2,865 3,901 4,643 5,616	$2.18 \\ 1.92 \\ 1.66 \\ 1.52 \\ 1.39$	6.75 5.72 4.81 4.37 3.93	14.05 11.83 9.73 8.74 7.75	8.64 6.62 4.86 4.08 3.37
26 27 28 29 30	.018 .0164 .0148 .0136 .0124	$\begin{array}{c} 0.45 \\ 0.41 \\ 0.37 \\ 0.34 \\ 0.31 \end{array}$	6,232 7,513 9,223 11,180 13,140	6,714 8,090 9,931 11,940 14,150	6,934 8,356 10,260 12,430 14,610	$1.23 \\ 1.10 \\ 1.01 \\ 0.95 \\ 0.88$	3.50 3.16 2.83 2.59 2.32	$\begin{array}{r} 6.67 \\ 6.03 \\ 5.30 \\ 4.77 \\ 4.26 \end{array}$	2.73 2.27 1.84 1.56 1.29
31 32 33 34 35	.0116 .0108 .0100 .0092 .0084	0.29 0.27 0.25 0.23 0.21	15,010 17,320 20,200 23,870 28,630	16,170 18,650 21,760 25,700 30,830	16,700 19,260 22,470 26,550 31,840	0.83 0.78 0.73 0.67 0.62	$2.16 \\ 2.00 \\ 1.84 \\ 1.68 \\ 1.52$	3.92 3.59 3.26 2.95 2.64	1.136 0.985 0.844 0.715 0.596
36 37 38 39 40	.0076 .0068 .0060 .0052 .0048	0.19 0.17 0.15 0.13 0.12	34,980 43,690 56,140 74,710 87,690	37,670 47,050 60,440 80,450 94,420	38,910 48,590 62,430 83,090 97,530	$\begin{array}{c} 0.57 \\ 0.51 \\ 0.47 \\ 0.42 \\ 0.40 \end{array}$	$1.27 \\ 1.21 \\ 1.06 \\ 0.91 \\ 0.84$	2.36 2.07 1.77 1.49 1.38	$\begin{array}{c} 0.487\\ 0.390\\ 0.304\\ 0.228\\ 0.194\end{array}$
41 42 43 44 45	.0044 .0040 .0036 .0032 .0028	$\begin{array}{c} 0.111 \\ 0.101 \\ 0.091 \\ 0.081 \\ 0.071 \end{array}$	102,700 124,200 153,200 193,900 253,100	232 11 00 232 11 00 232 11 00	199985			(3000000000000000000000000000000000000	$\begin{array}{c} 0.1632\\ 0.1353\\ 0.1095\\ 0.0864\\ 0.0663\end{array}$
46 47 48 49 50	.0024 .0020 .0016 .0012 .0010	$\begin{array}{c} 0.061 \\ 0.050 \\ 0.040 \\ 0.030 \\ 0.025 \end{array}$	344,600 496,200 781,400 1,420,000 1,985,000					100 500 500 500 500 500 500 500 500 500	$\begin{array}{c} 0.0486\\ 0.0339\\ 0.0214\\ 0.0118\\ 0.0084 \end{array}$

The above data should be regarded as approximate.

NICKEL CHROME 80/20% RESISTANCE WIRE. Current necessary to maintain a given temperature rise. Wire held straight and horizontal in air with free radiation.

Size S.W.	Diam.	M/m.	R per 1	esistance ,000 yan Ohms.	e vds,	Am tempe	peres fo rature v	or a rise of	Weight per 1,000
G. d	Inch.	THE SH	15.5 °C.	500 °C.	1,000 °C.	100 °C.	500 °C.	1,000 °C.	yards, lbs.
16 17 18 19 20	.064 .056 .048 .040 .036	$ \begin{array}{r} 1.62 \\ 1.42 \\ 1.21 \\ 1.01 \\ 0.91 \end{array} $	480 627 854 1,229 1,518	502 655 893 1,286 1,587	503 657 895 1,289 1,592	$ \begin{array}{r} 6.4 \\ 5.3 \\ 4.3 \\ 3.4 \\ 2.9 \\ \end{array} $	$18.75 \\15.50 \\12.60 \\10.00 \\8.60$	42.5 35.1 28.3 22.1 18.9	34.9 26.7 19.6 13.6 11.0
21 22 23 24 25	.032 .028 .024 .022 .020	$\begin{array}{c} 0.81 \\ 0.71 \\ 0.60 \\ 0.55 \\ 0.50 \end{array}$	1,937 2,509 3,415 4,065 4,918	2,010 2,624 3,574 4,253 5,145	2,015 2,631 3,581 4,263 5,157	$2.4 \\ 1.9 \\ 1.5 \\ 1.3 \\ 1.13$	$7.40 \\ 6.30 \\ 5.20 \\ 4.45 \\ 3.95$	16.0 13.4 10.8 9.5 8.35	8.73 6.68 4.91 4.12 3.41
26 27 28 29 30	.018 .0164 .0148 .0136 .0124	0.45 0.41 0.37 0.34 0.31	6,072 7,314 8,978 10,635 12,794	6,350 7,654 9,397 11,129 13,388	6,367 7,673 9,419 11,155 13,420	0.99 0.90 0.80 0.75 0.68	3.50 3.14 2.80 2.55 2.30	$7.28 \\ 6.45 \\ 5.65 \\ 5.06 \\ 4.50 $	2.76 2.29 1.86 1.57 1.31
31 32 33 34 35	.0116 .0108 .0100 .0092 .0084	0.29 0.27 0.25 0.23 0.21	14,619 16,863 19,671 23,229 27,874	15,181 17,647 20,585 24,319 29,172	15,334 17,690 20,634 24,377 29,242	$\begin{array}{c} 0.64 \\ 0.60 \\ 0.56 \\ 0.52 \\ 0.48 \end{array}$	$2.15 \\ 1.99 \\ 1.84 \\ 1.68 \\ 1.51$	4.15 3.78 3.44 3.12 2.78	$\begin{array}{c} 1.147 \\ 0.994 \\ 0.852 \\ 0.721 \\ 0.601 \end{array}$
36 37 38 39 40	.0076 .0068 .0060 .0052 .0048	$\begin{array}{c} 0.19 \\ 0.17 \\ 0.15 \\ 0.13 \\ 0.12 \end{array}$	34,055 42,531 54,647 72,744 85,369	35,643 44,513 57,190 76,118 89,344	35,729 44,621 57,327 76,302 89,557	$\begin{array}{c} 0.43 \\ 0.39 \\ 0.35 \\ 0.32 \\ 0.30 \end{array}$	1.34 1.19 1.03 0.90 0.83	2.48 2.19 1.91 1.63 1.51	$\begin{array}{c} 0.492 \\ 0.394 \\ 0.306 \\ 0.230 \\ 0.196 \end{array}$
41 42 43 44 •45	.0044 .0040 .0036 .0032 .0028	0.111 0.101 0.091 0.081 0.071	95,950 122,860 151,750 192,180 250,910						0.1650 0.1365 0.1107 0.0873 0.0669
46 47 48 49 50	.0024 .0020 .0016 .0012 .0010	$\begin{array}{c} 0.061 \\ 0.050 \\ 0.040 \\ 0.030 \\ 0.025 \end{array}$	341,600 491,770 767,230 1,365,150 1,967,080	Coloradori azrik	and bear to rear any L				0.0492 0.0342 0.0217 0.0119 0.0085

The above data should be regarded as approximate.

NICKEL CHROME 5% WIRES AND TAPES.

Temperature Co-effi	cient (2	0° to 5	00°C.)			0.001	05 p	er °C.
Specific Resistance	8 2)			91	micro	hms per	cm.	cube
Specific Gravity				····]				8.13
Melting Point			0				1,4	90°C.
Specific Heat-by w	weight		8			.03.1		0.113

NICKEL CHROME 80/20% RESISTANCE TAPE.

Current necessary to maintain a given temperature rise. Wire held straight and horizontal in air with free radiation.

Size,	per	Resistanc 1,000 ya Ohms.	e rds,	An tempe	peres fo erature r	r a ise of	Weight per 1,000
Inch.	100 °C.	500 °C.	1,000 °C.	100 °C.	500 °C.	1,000 °C.	yards, lbs.
$\begin{array}{c} .025 \times .002 \\ .025 \times .003 \\ .025 \times .004 \\ .025 \times .006 \\ .025 \times .008 \end{array}$	33,567 23,422 15,132 9,963 7,395	34,830 24,305 15,703 10,339 7,672	34,914 24,363 15,740 10,364 7,692	0.61 0.68 0.75 0.83 1.11	$ 1.41 \\ 1.61 \\ 2.06 \\ 2.80 \\ 3.31 $	2.92 3.40 4.28 5.37 6.27	0.482 0.681 1.058 1.623 2.177
$\begin{array}{c} .03125 \times .003 \\ .03125 \times .004 \\ .03125 \times .006 \\ .03125 \times .008 \\ .03125 \times .010 \end{array}$	$15,814 \\ 12,734 \\ 7,358 \\ 6,108 \\ 4,481$	16,410 13,214 7,635 6,338 4,650	16,450 13,246 7,654 6,368 4,661	$\begin{array}{c} 0.71 \\ 0.92 \\ 1.20 \\ 1.23 \\ 1.42 \end{array}$	2.09 2.52 3.20 3,67 4.25	4.53 4.83 6.26 7.28 8.90	0.968 1.289 2.123 2.652 3.508
$.050 \times .004$ $.050 \times .006$ $.050 \times .008$ $.050 \times .010$	7,815 4,938 3,817 2,812	8,109 5,124 3,961 2,918	8,129 5,136 3,971 2,925	$ \begin{array}{r} 1.21 \\ 1.63 \\ 1.97 \\ 2.01 \end{array} $	3.43 4.56 5.35 5.53	7.36 9.55 11.47 12.36	$\begin{array}{r} 2.063 \\ 3.181 \\ 4.244 \\ 5.460 \end{array}$

The above data should be regarded as approximate.

This Table is supplied by courtesy of :--

VACTITE WIRE COMPANY LIMITED, LONDON, S.W. 1.

FUSE WIRE TABLES

Figures are approximate and for commercial use only

Current	Ellu Ellu AL	D	IAMETER IN INCHE	8.	
Amperes.	Copper.	Aluminium.	Tin.	Allo-Tin.	Lead.
1	-0020	-0028	-0076	-0084	-0084
2	-0036	-0040	-0116	-0136	-0124
3	-0044	-0052	-0148	-018	-0164
4	-0052	-0068	-018	-022	-020
5	-0060	-0076	-022	-024	-024
10	-0100	-0124	-036	-040	-036
15	-0124	-0164	-044	-048	-048
20	-0156	-0180	-052	-064	-060
25	-018	-0220	-064	-072	-072
30	-020	-024	-072	-080	-078
35	-023	-028	-076	092	-084
40	-024	-030	-084	-096	-096
45	-026	-032	-092	-104	-104
50	-028	-036	-096	-116	-108
60	-032	-040	-110	-128	-124
70 80 90 100 120	· 036 · 040 044 · 048 · 052	-044 -048 -052 -056 -064	-122 -134 -144 -152 -176	-144 -160 -168 -180 -202	-136 -150 -162 -174

EUREKA RESISTANCE WIRE

CURRENT NECESSARY TO MAINTAIN GIVEN TEMPERATURE RISE. WIRE HELD STRAIGHT

AND ROMIZ	ONTAL IN A	IR WILLE F.	REE RADIATION.	
the state of the s	ACCORDED IN THE PARTY OF THE PA	Contraction of the local division of the loc	and the second second second second second second	é

Size	Dism.	Charles Contraction of the	Amperes f	or a Temperatu	re rise of	Resistance per	Weight per 1 000
S.W.O,	Inch	M/m.	100* C.	200° C.	300° O.	1.006 yards at 15.5° C. Ohms.	yards, lbs.
8 9 10 11 12	160 -144 -128 -116 -104	4.06 3.65 3.25 2.94 2.64	29.0 24.0 20.1 18.5 14.8	44.5 37.2 30.8 28.1 22.4	57.9 48.7 40.0 36.4 29.0	34.5 42.6 54.0 65.7 81.8	233-5 189-0 149-2 122-8 98-6
13 14 15 16 17	092 -080 -072 -034 -056	2.33 2.03 1.82 1.62 1.42	12-6 10-5 9-3 8-1 7-0	18-8 15-5 13-4 11-5 9-8	24.5 20.1 17.4 15.1 13.0	104-4 138-1 170-6 215-9 281-9	77-1 53-4 47-3 37-4 28-6
18 19 20 21 22	048 040 036 -032 -028	1.21 1.01 .91 .81 .71	5-75 4-6 4-1 3-8 3-1	8-2 6-7 6-0 5-4 4-6	11.0 9.2 8.3 7.4 6.5	384 552 682 864 1128	21.0 14.6 11.8 9.35 7.15
23 24 25 26 27 28 29 30 31 31 32	024 -622 -020 -018 -0164 -0148 -0136 -0124 -0116 -0108	-60 -55 -50 -45 -41 -37 -34 -31 -29 -27	2.7 2.4 2.18 2.00 1.82 1.66 1.54 1.40 1.30 1.20	4 00 3 55 3 20 2 90 2 68 2 42 2 22 2 00 1 81 1 64	5.5 5.0 4.06 3.60 3.21 2.85 2.58 2.30 2.13 1.94	1535 1826 2211 2729 3288 4205 4781 5750 6570 7581	5-24 4-41 3-64 2-96 2-46 2-00 1-69 1-40 1-23 1-06
33 34 35 36 37	-0100 -0092 -0084 -0076 -0068	-25 -23 -21 -19 -17	1.03 .98 .85 .75 .66	1.46 1.30 1.13 .98 .83	$ \begin{array}{r} 1.77 \\ 1.60 \\ 1.42 \\ 1.26 \\ 1.09 \\ \end{array} $	8842 10440 12530 15310 19130	-912 -771 -644 -526 -421
38 39 40 41 42	-0060 -0052 -0048 -0044 -0040	-15 -13 -12 -11 -10	-58 -50 -46	.70 .58 .52	-93 -78 -70	24550 32700 38380 45670 55260	-328 -246 -210 -176 -146
43 44 45 46 47	-0036 -0032 -0028 -0024 -0020	-09 -08 -07 -06 -05	10000 1400 1400 1400 1400 1000	1		68070 86370 112800 153500 221000	-118 -093 -072 -053 -036
48 49 50	0616 -0012 -0010	-040 -030 025		- Andrew		345400 614000 884200	-023 -013 -009

The above information supplied by courtesy of LEWCOS LTD.

-			EL	ECTR	ICA	L CA	BLE	SIZE	5		*******	-	
NOMINAL AREA Sq. Inch.	OLD STANDARD No. S.W.G	STA No	NEW NDARD /inch.	Dia. In Inches	per j	VEIGHT 1000 yds. in Ibs.	MA RES perito in	XIMUM ISTANCE DOO yds. OHMS.		LENGT CIRCU per Volt In fe	IH of JIT drop	CA of si	PACITY ngle cables in AMPS.
- 001 - 002 - 002 - 003 - 003 - 004 - 005 - 005 - 005 - 007 - 004 - 004 - 005 - 005 - 005 - 007 - 004 - 004 - 005 -	1/20 	1 3 3 1 7 7 7 7 19 19 19 19 19 19 19 19 19 19	- 036 - 044 - 029 - 036 - 036 - 029 - 036 - 044 - 029 - 064 - 044 - 044 - 052 - 064 - 072 - 063 - 072 - 063 - 003 -	0-036 0-044 0-062 0-078 0-068 0-068 0-068 0-132 0-156 0-132 0-220 0-220 0-220 0-220 0-320 0-320 0-320 0-320 0-320 0-321 0-568 0-568 0-568 0-568 0-568 0-568 0-568 0-564 0-568 0-564 0-520 0-300 0-300000000	A Superior Passas Device Passas	11-76 17-58 23-37 33-02 53-37-20 55-33 125-4 174-9 264-9 264-9 264-9 264-9 264-9 264-9 264-9 264-9 264-9 264-9 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 212-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 21-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 264-9 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20	24-2 16-2 12-6 5-3 3-4 2-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	9 6 8 88 98 99 99 99 90 90 90 90 90 90 90		300 300 299 280 339 56 61 71 83 908 102 123 1452 1452 1452 1452 1452 1452 1452 1452		N. N-S-U HOADS SERVED	4-1 6-1 7-8 12-0 12-2 24-0 53-0 53-0 53-0 64-0 53-0 83-0 97-0 119-0 130-0 119-0 130-0 119-0 135-0 135-0 119-0 135-
2 Dames of	2. Jahr	Tento via		FLE	XIE	BLE C	ORD	S	1	Catality .		100	
\$12	E	Al in S	REA q. Inches	CURRE RATIN In Am	NT G pr.	RESISTA per 1000 single co	NCE D yards	MAX	MUN CHT Ibs.	A	YARD: WEIG	S PE	R POUND or TWIN risted)
14/-00 23/-00 40/-00 70/-00 110/-00 162/-00	076 076 076 076 076 076 076		0006 0010 0017 0030 0048 0070	2 3 5 10 15 20		39-7 24-2 13-8 7-9 5-0 3-4	453		350000	101100		17 .13	5 3 75 55 55 53 33
1.8	MAX	IML	JM C	CURR	EN	T RAT	ING	OF	C	ABL	ES	State	
	Rot	AMPE	RES A.C.	Voltage per	drop 100 fe	et		Rating -AMP	in ERE	S A.C.	Vol	tage	drop 100 feet
SIZE		Co UP TO	res in a	one shea	th	SI:	ZE -	C	TO	in or	ne she	ath	2.4
	AM	PS.	VOLTS	AMPS.	VOLT	s		AMPS.	vo	LTS	AMP	5.	VOLTS
1/·044 3/·029 3/·036 7/·029	5510	UP TO	2·8 2·1 2·8 2·9 2	5 5 8 12 UP T	2222	8 19/.0 1 19/.0 4 19/.0 4 37/.0 37/.0	052 064 083 072 083 103	78 102 147 190 229 298		1.75 1.55 1.35 1.28 1.26 1.28	62 82 119 151 183 236		1.4 1.19 1.04 0.98 0.98
7/-036 7/-044 7/-052 7/-064 19/-044	29 38 45 56		3:4 3:1 2:7 -2:1 2:0	23 30 36 46 52	2:22	9 61/- 4 61/- 2 91/- 75 127/-	093 103 103 103	358 413 530 648		1-38 1-50 1-80 2-10	286	6	1.04
1	6 (CAF	ACI	TYO	FF	USES	IN	AMP	EF	RES		14	
FUSE	C T	WIF	COPPER	STANDAR	E ALLO	DY FI	USE	TINNE	DCO	OPPER	STAN	DARD	E
(n Amp		Ula.	5.W.C.	0164	5.W.	c. in	Amps.	Dja.	+	5.W.C.	Dia.	250	S.W.C.
3 8+5 10 15 17 20 24		006 0054 0i24 0i36 02 022 024 028	38 35 30 29 25 24 23 22	·024 ·032	23 21		37 46 53 60 64 83 00	·04 ·048 ·048 ·056 ·056 ·072 ·08		19 18 18 17 17 15			HITH

REACTANCE CHART

Always use corresponding scales

The accompanying chart may be used to find:

(1) The reactance of a given inductance at a given frequency.

(2) The reactance of a given capacitance at a given frequency.(3) The resonant frequency of a given inductance and capacitance.

In order to facilitate the determination of magnitude of the quantities involved to two or three significant figures the chart is divided into two parts. Figure 1 is the complete chart to be used for rough calculations Figure 2, which is a single decade of Figure 1 enlarged approximately 7 times, is to be used where the significant two or three figures are to be determined.

TO FIND REACTANCE

Enter the charts vertically from the bottom (frequency) and along the lines shanting upward to the left (capacitance) or to the right (inductance). Corresponding scales (upper or lower) must be used throughout. Project horizontally to the left from the intersection and read reactance.

The above data supplied by courtesy of CLAUDE LYONS LTD. / GENERAL RADIO CO., U.S.A.

TO FIND RESONANT FREQUENCY

Enter (b) slanting lines for the given inductance and capacitance. Project-iowaward from their intersection and read resonant frequency from the bottom scale. Corresponding scales (upper or lower) muri be used throughout

Example: The sample point indicated (Figure 1) corresponds to a frequency of about 700 kc and an inductance of 300 μ h, or a capacitance of 100 μ d, giving in either case a reactance of about 4,000 ohms. The remonant frequency of a circuit containing these values of inductance and capacitance is, of course, 700 kc, approximately.

USE OF FIGURE 1

Figure 2 is used to obtain additional precision of reading but does not place the decimal point which must be located from a preliminary entry on Figure 1. Since the chart necessarily requires two logarithmic decades for inductance and capacitance for every single decade of frequency and nectance, unless the correct decade for L and C is chosen, the calculated values of reactance and frequency will be in error by a factor of 3.16.

Example: (Continued.) The reactance corresponding to 500 μ h or 100 $\mu\mu$ f is 2,230 ohms at 712 kc, their resonant frequency.

The above data supplied by courtesy of CLAUDE LYON LTD. / GENERAL RADIO COMPANY, U.S.A.

SPEAKER OUTPUT TRANSFORMERS FORMULAS.

Ascertain output valve load resistance from "Bernards Valve Manual' No. 30, price 3/6, or from manufacturers data sheets and also speaker speech coil impedance in ohms. Norz.—When two valves operate in Push-Pull, reckon the output load resistance to be twice that of a single valve, and when two valves are operating in parallel reckon output load resistance to be half that of a single valve.

The speaker output transformer ratio is equal to :---

Square root of (Optimum valve load resistance) ÷ (speaker

speech coil impedance in ohms) {.

When extension speakers are required to be used with the same speech coil impedance as that used in the normal internal speaker, the output transformer ratio is equal to :---

Square root of Number of speakers × { (optimum valve load

resistance) ÷ (single speaker speech coil impedance in ohms.)

Output transformer ratio for extra speakers with different speech coil impedances. In this case it is necessary for each speaker to have its own output transformer.

The output transformer ratio of each speaker is equal to :--

Square root of Number of speakers × { (Optimum valve load resistance) ÷ (Impedance in ohms. of speech coil of speaker being used) }

OUTPUT TRANSFORMERS

VALVE LOAD		an idi	nonma S	PEECH	COIL	MPEDA	NCES	Ald ishay	ng ha ACD
P.P. OPERATION)		2Ω	3Ω	50	8 Ω	10 1	15 Ω	20 A	25 L
4000		44.7	36.5	28-3	22.4	50	16.4	14.1	12.6
5000		50	40.8	31.6	25	22.4	18.3	15.8	14.1
6000	A	54.8	44.7	34.6	27.4	24.5	20	17.3	15.5
8000	T	63.3	51.6	40	31.6	28.3	23	20	17.9
10000	SO	70.7	57.7	44.7	35.3	31.6	25.8	22.4	20
12000	E	77.5	63.3	49	38.7	34.6	28.3	24.5	22
14000	NA.	83.7	68.3	53	41.8	37.4	30.6	26.5	23.7
16000	L.	89.4	73	56.6	44.7	40	32.8	28.3	25.3
20000		100	81.6	63.2	50	44.7	36.5	31.6	28.3
25000		111.8	91.3	70.7	55.9	50	40.8	35.3	31.6

AS. arda Valv sheeta an	BUNUL BUNU BUNU	BRI	TISH		ISON	BETWE WIF	RE G	AUG	ES	E Tanta Lat	unit.
SIZE	4/0	3/0	2/0	0	1 1	2	3	4	5	6	7
S.W.G.	•400	•372	·348	•324	-300	·276	·252	·232	•212	.192	.176
B.W.G.	•454	•425	•380	•340	.300	•284	·259	·238	.220	·203	.180
B. & S.	•460	•4096	·364-8	·3249	·2893	·2576	·2294	•2043	•1819	1620	•1443
SIZE	8	9	10	Ц	12	13	14	15	16	17	18
S.W.G.	•160	•144	•128	•116	.104	.092	-080	.072	•064	•056	-048
B.W.C.	•165	•148	-134	.120	•109	•095	.083	•072	-065	- 058	-049
B.& S.	-1285	·1144	-1019	-0907	-0808	•072	·0641	0571	-0508	0453	-0403
SIZE	19	20	21	22	23.	24	25	26	27	28	29
S.W.G.	.040	·036	·032	·028	.024	.022	.020	-018	0164	·0148	·0136
B.W.G.	.042	·035	•032	•028	•025	.022	.020	-018	.016	-014	.013
B.&S.	·O359	·032	·0285	•0253	·0226	.0201	•0179	-0159	-0142	0126	-0113
SIZE	30	31	32	33	34	35	36	37	38	39	40
S.W.G.	-0124	·0116	-0108	.010	.0092	.0084	.0076	.0068	.006	.0052	.0048
B.W.G.	.012	.010	.009	.008	.007	.005	.004				
B.& S.	0000	.0089	-0079	-0071	-0063	-0056	•005	-0045	.004	-0035	·0031
SIZE	41	42	43	44	45	46	47	48	49	50	
S.W.G.	0044	.0040	-0036	·0032	-0028	.0024	.002	.0016	-0012	.001	Surger .
B.W.G. B.& S.	0028	.0025	.0022	.002	-0018						
		The at	ove dat	a suppli	ed by co	urtesy o	LEWC	OS LTD			

RADIO S	OLDER	C	OMPOSIT	ION AND N	AELTIN	G	POINTS
Composition	Percentag	je	Melting at ^o F	Composition	Percent	age	Melting at °F
LEAD TIN	100	3	452	LEAD TIN	40	}	462
LEAD	90 10	}	411	LEAD	30	}	494
LEAD	80 20	}	381	LEAD	20 80	}	551
LEAD TIN	70 30	}	366	LEAD TIN	10 90	}	568
LEAD	60 40	}	373	LEAD TIN	100	}	617
LEAD TIN	50 50	}	411	COL LAND			COCES

TEMPERATURE CONVERSION TABLE-FAHRENHEIT AND CENTIGRADE

The above data supplied by courtesy of London Electric Wire Co. & Smiths Ltd. (LEWCOS)

C°+32 Í P. -32) -(F°-ů

using the following formulæ The above figures have been arrived at by

WIRE ABBREVIATIONS The following abbreviations are recognised through the trade as being standard and should therefore be used when ordering or specifying.

S.C.C	Single Cotton Covered.	Standard Stan	dard Coverine.
D.C.C	Double Cotton Covered.	Fine Fine	Covering.
T.C.C	Triple Cotton Covered.	B/D or Brd Braid	led.
Lam	Laminated.	Compd. strand Com	Dressed strand.
S.W.S	Single White Silk.	H.D Hard	Drawn.
D.W.S	Double White Silk.	S.D Soft]	Drawn.
S.S.C	Single Silk Covered.	H.C High	Conductivity.
D.S.C	Double Silk Covered.	Pl. cu Plain	copper.
Enam	Enamelied.	T/d. cu Tinn	ed copper.
Enam. & S.S.C	Enamelled & Single Silk Covered.	S.I.R., or S.P.R Singl	e lapping of Pure Rubber.
Enam. & D.S.C	Enamelled & Double Silk Covered	D.I.R., or D.P.R Doub	ole lapping of Pure Rubber.
Enam. & S.C.C	Enamelled and Single Cotton	Pfd Paraf	fined.
	Covered.	S.W.G Stand	lard Wire Gauge.
Enam. & D.C.C	Enamelled and Double Cotton Covered.	B.W.G Birmi	ingham Wire Gauge.
S.P.C	Single Paper Covered.	B.&S Brow	n & Sharp's Gauge.
D.P.C	Double Paper Covered.	V.C. tape Varn	ished cambric tape (also
T.P.C	Triple Paper Covered.	tape	i).

The above data supplied by courtery of London Electric Wire Co. & Smiths Ltd. (LEWCOS)

SECTIONAL AREA, WEIGHT AND RESISTANCE OF STRANDED CIRCULAR CONDUCTORS

P A BASE	io.	DW	ILTIPLYING CONSTANT	the second se
Number of Wires Stranded.	Diameter.	Sectional Area.	Weight	Resistance.
3	2.155	2.94118	3.06000	0.340000
[+ cuercy 14 house]	3	6.88235	7.12000	0.145299
19	S	18.6471	19.3600	0.0536278
37	7	36.2941	37.7200	0.0275527
61	6	59.8235	62.2000	0.0167158
91	H	89.2353	92.8000	0.0112063
0000 127	13	124.529	129.520	0.00803023
169	15	165.706	172.360	0.00603479
NONTE A	-9		and the second se	

Multiply by 2.94118=.001943 sq. inch

The above data supplied by courtesy of London Electric Wire Co. & Smiths Ltd. (LEWCOS)

102 CACTER LEN RECOM

Area of single wire=.0006605 sq. inch EXAMPLE.-To find the area of a 3/.029 Conductor:-

	±10%	+ 20%		±10%	+20%		±10%	$\pm 20\%$	Ltd.
STANDARDISATION IN THE USE OF FIXED RESISTORS. DW TO APPLY "STANDARD VALUES " NOTE : Tolerance range \pm 20% must be used wherever possible Tolerance range \pm 10% may only be used where essential	11 11 - 13 14 - 16 17 - 19 20 - 32 - 30 20 - 36 36 - 42 33 - 51 52 - 61 62 - 77 74 - 90 +	8 12 15 18 22 27 33 3° 47 56 68 82 5 12 18 18 26 27 39 18 56 55 81 +2	0 15 22 33 47 68	10 108 - 133 155 155 155 152 - 198 985 - 243 - 297 257 - 254 351 - 429 433 - 545 504 - 616 517 - 248 738 - 902 +	- 120 120 180 220 210 210 330 350 470 560 820 - 120 120 - 180 7.8 - 251 264 - 356 706 561 544 - 820 + 2	0 150 220 330 470 680	100 1080 1320 1320 1320 1320 1380 1380 1320 2430 2430 2430 350 350 350 42.00 12.010 560 6160 4120 120 750 2392 020 ± 1	- 1200 1200 - 1800 1760 - 7610 2640 - 3960 3760 - 5640 5440 - 8160	00 1500 2200 3300 4700 6800 hart supplied by courtesy of Dubilier Condenser Co. (1925) Lt
Ĭ	For the range (in ohms)	for the range (in ohms)	use — ohms	For the range 90 (in ohms)	For the range (a)	use ohms	For the range (in ohms) use — ohms	For the range (800 -	The above

.

·····································	±20%	÷10%	±20%	±10%	±20%
PANDARDIBATION IN THE USE OF RESISTORA. PHOW TO APPLY "STANDARD VALUES" NOTE: Tolerance range ±20% must be used where essential Tolerance range ±10% may only be used where essential	12000 12000 12000 1800 26100 26100 26100 26400 86400 86400 8600 10000 15000 22000 33000 47000 68000	30000 10600 135000 130000 100000 100000 100000	0000 12000 18000 14600 24400 396000 37600 54.000 54.000 84.000 100000 150000 220000 330000 470000 680000	1.00 Meg. 1.13 Meg. 1.5 Meg. 1.5 Meg. 1.5 Meg. 1.4 Meg. 1.5 Meg. 1.5 Meg. 1.5 Meg. 5.04 Meg. 5.14 Meg. 7.18 Meg 1.12 Meg. 1.12 Meg. 1.5 Meg. 1.19 Meg. 1.7 Meg. 1.5 Meg. 1.5 Meg. 1.7 Meg. 5.7 Meg. 5.04 Meg. 5.4 Meg. 7.2 Meg. 1.0 Meg. 1.2 Meg. 1.5 Meg. 1.8 Meg. 2.2 Meg. 3.1 Meg. 3.1 Meg. 3.1 Meg. 4.7 Meg. 5.6 Meg. 6.8 Meg. 8.2 Meg.	Other 1.2 Meg 1.8 Meg 1.8 Meg 1.8 Meg 1.8 Meg 1.0 Meg
For the range (in ohms) use — ohms	For the range (in ohms) use — ohms	59 For the range (in ohms) use - ohms	For the range (in ohms) use - ohms	For the range (in ohms) use - ohms	For the range (in ohms) use - ohms The a

WAVELENGTH FREQUENCY AND L.C. FACTOR TABLES.

To use these tables which give inductance capacity values for Radio Frequencies the following examples are shown :---

1. Given a tuned circuit total capacity .0005 mfd. and inductance 245 microhenries, what is the natural wavelength and frequency? Answer: the L.C. constant is $.0005 \times 245 = .1225$; therefore, wavelength is 660 metres and frequency 454.3 Kilocycles.

2. What inductance is needed to tune a .0005 mfd. condenser to 1,900 metres. Answer: L.C. for 1,900 metres = 1.016; therefore, inductance is 1.016 divided by .0005 which equals 2.032 microhenries.

3. A circuit with a natural frequency of 1,250 Kc. is required, the tuning coil inductance being 81 microhenries. What capacity should be connected across the coil? Answer: L.C. for 1,250 Kc. = .01624; hence capacity is .01622 \div by 81 which equals .0002 microfarads.

MULTIPLYING FACTORS FOR OTHER RANGES OUTSIDE THIS TABLE.

- (A) If column 1 is multiplied by 10 then read column 2 multiplied by 100, and column 3 divided by 10.
- (B) If column 1 is divided by 10, then read column 2 divided by 100 and column 3 multiplied by 10.
- (c) If column 2 is multiplied by 10 then column 1 is multiplied by $\sqrt{10}$ and column 3 is divided by $\sqrt{10}$.
- (b) If column 2 is divided by 10 then column 1 is divided by $\sqrt{10}$ and column 3 is multiplied by $\sqrt{10}$.
- (E) If column 3 is multiplied by 10 then column 1 is divided by 10 and column 2 is divided by 100.
- (F) If column 3 is divided by 10 then column 1 is multiplied by 10. and column 2 is multiplied by 100.

W/length	L.×C. Factor	Frequency	W/length	L.×C. Factor	Frequency
Metres.	m.f. and m.h.	Kilocycles.	Metres.	m.f. and m.h.	Kilocycles
1 1	.00000028	299820.0	55	.0008521	5451.0
2	.00000112	149910.0	60	.001014	4997.0
3	.00000253	99940.0	65	.001188	4613.0
4	.00000451	74955.0	70	.001379	4283.0
5	.00000704	59964.0	75	.001583	3998.0
6	.00001014	49970.0	80	.001801	3748.0
7	.00001383	42831.4	85	.002034	3527.0
8	.00001801	37477.5	90	.002280	3331.0
9	.00002282	33313.3	95	.002541	3156.0
10	.00002816	29982.0	100	.002816	2998.0
15	.0000635	19990.0	105	.003101	2855.0
20	.0001129	14991.0	110	.003404	2726.0
25	.9001754	11990.0	115	.003721	2607.0
30	.0002531	9994.0	120	.004052	2498.0
35	.0003445	8566.0	125	.004402	2399.0
40	.0004503	7495.5	130	.004757	2306.0
45	.0005702	6663.0	135	.005132	2221.0
50	.0007039	5996.4	140	.005518	2142.0

W/length Metres.	L.×C. Factor m.f. and m.h.	Frequency Kilocycles	W/length Metres.	$L. \times C.$ Factor m.f. and m.h.	Frequency Kilocycles
145	.005923	2067.0	395	.04392	759.1
150	.006335	1999.0	400	.04503	749.4
155	.006764	1934.0	405	04617	740.3
160	.007204	1873.0	410	.04733	731.3
165	.007661	1817.0	415	.04851	722.5
170	.008134	1763.0	420	.04968	713.9
175	.008622	1713.0	425	.05084	705.5
180	.009120	1665.0	430	.05198	697.3
185	.009631	1620.0	435	.05323	689.2
190	.01016	1578.0	440	.05446	681.4
195	.01070	1539.0	445	.05573	673.8
200	.01129	1499.0	450	.05700	666.3
205	.01182	1463.0	455	.05830	658.9
210	.01239	1428.0	460	.05960	651.8
215	.01301	1395.0	465	06092	644.8
220	.01362	1362.0	470	06225	637.9
225	.01425	1333.0	475	.06356	631.2
230	.01490	1303.0	480	.06485	624.6
235	.01554	1276.0	485	.06624	618.2
• 240	.01624	1249.0	490	.06757	611.9
245	.01689	1224.0	495	.06898	605.7
250	.01755	1199.0	500	.07039	599.6
255	.01830	1176.0	505	07184	593.7
260	.01902	1153.0	510	07327	587.8
265	.01977	1131.0	515	.07468	582.2
270	.02052	1110.0	520	.07606	576.6
275	.02125	1090.0	525	.07757	571.1
280	.02209	1070.0	530	.07903	565.7
285	.02285	1052.0	535	.08055	560.4
290	.02372	1034.0	540	.08208	555.2
295	.02451	1016.0	545	.08363	550.1
300	.02530	999.4	550	.08518	545.1
305	.02621	983.1	555	.08677	540.2
310	.02704	967.2	560	.08836	535.4
315	.02795	951.8	565	.08986	530.7
320	.02884	936.9	570	.09141	526.0
325	.02975	922.5	575	.09304	521.4
330	.03069	908.6	580	.09467	516.8
335	.03161	895.1	585	.09630	512.5
340	.03250	881.8	590	.09803	508.2
345	.03351	869.1	595	.09973	503.9
350	.03446	856.5	600	.1014	499.7
355	.03552	844.6	605	.1031	495.7
360	.03648	832.8	610	.1047	491.5
365	.03753	821.4	615	.1064	487.5
370	.03856	810.3	620	.1082	483.6
375	.03962	799.5	625	.1099	479.7
380	.04070	789.0	630	.1117	475.9
385	.04173	778.8	635	.1136	472.1
390	.04277	768.7	640	.1154	468.5

1415 1113 1464.8 895 $.2254$ 335.0 645 11205 457.7 905 $.2306$ 331.3 665 1205 457.7 905 $.2306$ 331.3 660 1225 454.3 910 $.2322$ 329.5 665 $.1244$ 450.9 915 $.2357$ 327.7 670 $.1263$ 447.6 920 $.2381$ 325.9 675 $.1282$ 444.2 925 $.2407$ 324.1 680 $.1302$ 440.9 930 $.2434$ 322.3 685 $.1322$ 437.7 935 $.2461$ 320.7 690 $.1341$ 434.5 940 $.2487$ 319.0 695 $.1360$ 431.4 945 $.2514$ 317.6 700 $.1378$ 428.3 950 $.2541$ 315.6 700 $.1378$ 428.3 955 $.2568$ 314.0 710 $.1419$ 422.3 960 $.2595$ 312.3 715 $.1439$ 416.4 970 $.2647$ 309.1 725 $.1479$ 413.6 975 $.2668$ 314.0 710 $.1419$ 405.2 990 $.2759$ 302.8 745 $.1520$ 407.9 985 $.2731$ 304.4 740 $.1540$ 405.2 990 $.2759$ 302.8 755 $.1604$ 397.1 $.1010$ $.2879$ 296.9 755 <th>W/length</th> <th>$L. \times C.$ Factor</th> <th>Frequency</th> <th>W/length Metres</th> <th>$L. \times C.$ Factor m f and m h.</th> <th>Frequency</th>	W/length	$L. \times C.$ Factor	Frequency	W/length Metres	$L. \times C.$ Factor m f and m h.	Frequency
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAE	1171	464.8	895	2254	335.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	850	1199	461.3	900	2280	333.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	855	1205	457.7	905	2306	331.3
300 1240 450.9 915 2357 327.7 670 1263 447.6 920 2381 325.9 675 1282 444.2 925 2407 324.1 680 1302 440.9 930 2434 322.3 685 $.1322$ 437.7 935 $.2461$ 320.7 690 $.1341$ 434.5 940 $.2487$ 319.0 695 $.1360$ 431.4 945 $.2514$ 317.3 700 $.1378$ 428.3 950 $.2541$ 315.6 705 $.1398$ 425.3 955 $.2568$ 314.0 710 $.1419$ 422.3 960 $.2595$ 312.3 715 $.1439$ 419.3 965 $.2621$ 310.7 720 $.1459$ 416.4 970 $.2647$ 309.1 725 $.1479$ 413.6 975 $.2676$ 307.5 730 $.1501$ 410.7 980 $.2704$ 305.9 735 $.1520$ 407.9 985 $.2731$ 304.4 740 $.1540$ 405.2 990 $.2759$ 302.8 745 $.1561$ 402.4 995 $.2788$ 301.3 755 $.1604$ 397.1 $1,010$ $.2879$ 296.9 760 $.1625$ 394.5 $1,020$ $.2927$ 293.9 765 $.1646$ 391.9 $1,030$ $.2986$ 291.1 775 <	660	1225	454.3	910	2332	329.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	665	1244	450.9	915	.2357	327.7
375.1282.144.2.925.2407.324.1680.1302.440.9.930.2434.322.3685.1322.437.7.935.2461.320.7690.1341.434.5.940.2487.319.0695.1360.431.4.945.2514.317.3700.1378.428.3.950.2541.315.6705.1398.425.3.955.2668.314.0710.1419.422.3.960.2595.312.3715.1439.419.3.965.2621.310.7720.1459.416.4.970.2647.309.1725.1479.413.6.975.2676.307.5730.1501.410.7.980.2704.305.9735.1520.407.9.985.2731.304.4740.1540.405.2.990.2759.302.8755.1604.397.1.1010.2879.296.9760.1625.394.5.1020.2927.293.9765.1646.391.9.1030.2986.291.1770.1668.389.4.1040.3045.288.3775.1691.366.9.1050.3105.285.5780.1714.384.4.1060.3161.282.8785.1735.381.9.1070.3222.280.2790.1756.379.5.1,080.3283.277.6 <t< td=""><td>670</td><td>1263</td><td>447.6</td><td>920</td><td>.2381</td><td>325.9</td></t<>	670	1263	447.6	920	.2381	325.9
680 1.302 440.9 930 $.2434$ 322.3 685 $.1322$ 437.7 935 $.2461$ 320.7 690 $.1341$ 434.5 940 $.2487$ 319.0 695 $.1360$ 431.4 945 $.2514$ 317.3 700 $.1378$ 428.3 950 $.2541$ 315.6 705 $.1398$ 422.3 960 $.2595$ 312.3 715 $.1439$ 419.3 965 $.2621$ 310.7 720 $.1459$ 416.4 970 $.2647$ 309.1 725 $.1479$ 413.6 975 $.2676$ 307.5 730 $.1501$ 410.7 980 $.2704$ 305.9 735 $.1520$ 407.9 985 $.2731$ 304.4 740 $.1540$ 405.2 990 $.2759$ 302.8 745 $.1561$ 402.4 995 $.2788$ 301.3 750 $.1583$ 399.8 $1,000$ $.2816$ 299.8 755 $.1604$ 397.1 $1,010$ $.2879$ 296.9 765 $.1646$ 391.9 $1,030$ $.2986$ 291.1 770 $.1668$ 389.4 $1,040$ $.3045$ 288.3 775 $.1691$ 386.9 $1,050$ $.3105$ 288.5 780 $.1714$ $.384.4$ $1,060$ $.3161$ 282.8 785 $.1735$ $.381.9$ $1,070$ $.3222$ 280.2 <	675	1282	444.2	925	.2407	324.1
685.1322437.7935.2461320.7690.1341434.5940.2487319.0695.1360431.4945.2514317.3700.1378428.3950.2541315.6705.1398425.3955.2568314.0710.1419422.3960.2595312.3715.1439419.3965.2621310.7720.1459416.4970.2647309.1725.1479413.6975.2676307.5730.1501410.7980.2704305.9735.1520407.9985.2788301.3745.1561402.4995.2788301.3750.1583399.81,000.2816299.8755.1604397.11,010.2879296.9760.1625394.51,020.2927293.9765.1646391.91,030.2986291.1770.1668389.41,040.3045288.3775.1691386.91,050.3105285.5780.1714.384.41,060.3161282.8785.1735.39.51,080.3283277.6795.1778.377.1.1,990.3344275.1800.1801.374.81,100.3404272.6805.1824.372.4.1,110	680	1302	440.9	930	.2434	322.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	685	.1322	437.7	935	.2461	320.7
695.1360431.4945.2514317.3700.1378428.3950.2541315.6705.1398425.3955.2568314.0710.1419422.3960.2595312.3715.1439419.3965.2621310.7720.1459416.4970.2647309.1725.1479413.6975.2676307.5730.1501410.7980.2704305.9735.1520407.9985.2731304.4740.1540405.2990.2759302.8745.1561402.4995.2788301.3750.1583399.81,000.2816299.8765.1604397.11,010.2879296.9760.1625394.51,020.2927293.9765.1646391.91,030.2986291.1770.1668389.41,040.3045288.3775.1691386.91,050.3105285.5780.1714384.41,060.3161282.8785.1735381.91,070.3222280.2790.1756379.51,080.3283277.6795.1778377.11,090.3344275.1800.1801374.81,100.3404272.6805.1824372.41,110 </td <td>690</td> <td>.1341</td> <td>434.5</td> <td>940</td> <td>.2487</td> <td>319.0</td>	690	.1341	434.5	940	.2487	319.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	695	.1360	431.4	945	.2514	317.3
705.1398 425.3 955 .2568 314.0 710 .1419 422.3 960 .2595 312.3 715 .1439 419.3 965 .2621 310.7 720 .1459 416.4 970 .2647 309.1 725 .1479 413.6 975 .2676 307.5 730 .1501 410.7 980 .2704 305.9 735 .1520 407.9 985 .2731 304.4 740 .1540 405.2 990 .2759 302.8 745 .1561 402.4 995 .2788 301.3 750 .1583 399.8 $1,000$.2816 299.8 755 .1604 397.1 $1,010$.2879296.9 760 .1625 394.5 $1,020$.2927293.9 765 .1646 391.9 $1,030$.2986291.1 770 .1668 389.4 $1,040$.3045288.3 775 .1691 386.9 $1,050$.3105285.5 780 .1714 384.4 $1,060$.3161282.8 795 .1735 381.9 $1,070$.3222280.2 790 .1756 379.5 $1,080$.3283277.6 795 .1788 377.1 $1,090$.3344275.1 800 .1801 374.8 $1,100$.3404272.6 805 .1824 372.4 $1,110$.3595265.3 <td>700</td> <td>.1378</td> <td>428.3</td> <td>950</td> <td>.2541</td> <td>315.6</td>	700	.1378	428.3	950	.2541	315.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	705	.1398	425.3	955	.2568	314.0
715.1439419.3965.2621310.7 720 .1459416.4970.2647309.1 725 .1479413.6975.2676307.5 730 .1501410.7980.2704305.9 735 .1520407.9985.2731304.4 740 .1540405.2990.2759302.8 745 .1561402.4995.2788301.3 750 .1583399.81,000.2816299.8 755 .1604397.11,010.2879296.9 760 .1625394.51,020.2927293.9 765 .1646391.91,030.2986291.1 770 .1668389.41,040.3045288.3 775 .1691386.91,050.3105285.5 780 .1714384.41,060.3161282.8 785 .1735381.91,070.3222280.2 790 .1756379.51,080.3283277.6 795 .1778377.11,090.3344275.1 800 .1801.374.81,100.3404272.6 805 .1824372.41,110.3468270.1 810 .1847.370.11,120.3531267.7 810 .1893.365.7.1,140.3660265.3 820 .1893.365.7.1,140.3660265.3 <td>710</td> <td>.1419</td> <td>422.3</td> <td>960</td> <td>.2595</td> <td>312.3</td>	710	.1419	422.3	960	.2595	312.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	715	.1439	419.3	965	.2621	310.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	720	.1459	416.4	970	.2647	309.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	725	.1479	413.6	975	.2676	307.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	730	.1501	410.7	980	.2704	305.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	735	.1520	407.9	985	.2731	304.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	740	.1540	405.2	990	.2759	302.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	745	.1561	402.4	995	.2788	301.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	750	.1583	399.8	1,000	.2816	299.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	755	.1604	397.1	1,010	.2879	296.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	760	.1625	394.5	1,020	.2927	293.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	765	.1646	391.9	1,030	.2986	291.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	770	.1668	389.4	1,040	.3045	288.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	775	.1691	386.9	1,050	.3105	285.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	780	.1714	384.4	1,060	.3161	282.8
790 .1756 379.5 1,080 .3283 277.6 795 .1778 377.1 1,090 .3344 275.1 800 .1801 374.8 1,100 .3404 272.6 805 .1824 372.4 1,110 .3468 270.1 810 .1847 370.1 1,120 .3531 267.7 815 .1870 367.9 1,130 .3595 265.3 820 .1893 365.7 1,140 .3660 263.0 825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	785	.1735	381.9	1,070	.3222	280.2
795 .1778 377.1 1,090 .3344 275.1 800 .1801 374.8 1,100 .3404 272.6 805 .1824 372.4 1,110 .3468 270.1 810 .1847 370.1 1,120 .3531 267.7 815 .1870 367.9 1,130 .3595 265.3 820 .1893 365.7 1,140 .3660 263.0 825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	790	.1756	379.5	1,080	.3283	277.6
800 .1801 374.8 1,100 .3404 272.6 805 .1824 372.4 1,110 .3468 270.1 810 .1847 370.1 1,120 .3531 267.7 815 .1870 367.9 1,130 .3595 265.3 820 .1893 365.7 1,140 .3660 263.0 825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	795	.1778	377.1	1,090	.3344	275.1
805 .1824 372.4 1,110 .3468 270.1 810 .1847 370.1 1,120 .3531 267.7 815 .1870 367.9 1,130 .3595 265.3 820 .1893 365.7 1,140 .3660 263.0 825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	800	.1801	374.8	1,100	.3404	272.6
810 .1847 370.1 1,120 .3531 267.7 815 .1870 367.9 1,130 .3595 265.3 820 .1893 365.7 1,140 .3660 263.0 825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	805	.1824	372.4	1,110	.3468	270.1
815 .1870 367.9 1,130 .3955 255.3 820 .1893 365.7 1,140 .3660 263.0 825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	810	.1847	370.1	1,120	.3531	267.7
820 .1893 365.7 1,140 .3660 253.0 825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	815	.1870	367.9	1,130	.3595	265.3
825 .1917 363.4 1,150 .3721 260.7 830 .1941 361.2 1,160 .3786 258.5 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	820	.1893	365.7	1,140	.3660	263.0
830 .1941 361.2 1,160 .3765 236.3 835 .1963 359.0 1,170 .3853 256.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	825	.1917	363.4	1,150	.3721	200.7
835 .1963 359.0 1,170 .3533 236.3 840 .1985 356.9 1,180 .3921 254.1 845 .2009 354.8 1,190 .3988 252.1	830	.1941	361.2	1,160	.3/80	200.0
840 .1985 356.9 1,180 .3921 234.1 845 .2009 354.8 1,190 .3988 252.1	835	.1963	359.0	1,170	.3853	250.0
845 .2009 354.8 1,190 .3968 252.1	840	.1985	356.9	1,180	.3921	254.1
0001 0001 000 1000 1050 910 8	845	.2009	354.8	1,190	.3900	232.1
850 .2034 352.7 1,200 .4052 245.0	850	.2034	352.7	1,200	.4052	249.0
855 .2057 350.7 1,220 .4191 245.6 000 0001 249.6 1.240 4326 241.7	855	.2057	350.7	1,220	4191	240.8
860 .2081 348.0 1,240 .4320 241.7	860	.2081	348.0	1,240	.4020	238.0
865 .2106 340.6 1,200 .4470 230.0 070 9199 344.6 1,290 4609 934.9	865	.2106	340.0	1,200	4609	234.9
870 .2152 344.0 1,200 .4003 204.2	870	.2132	249.7	1 300	4757	230 6
875 .2150 342.7 1,500 .4757 250.0 990 9170 340.7 1,320 4905 227.2	8/5	.2130	340.7	1,320	4905	227.2
880 .2179 340.7 1,520 .4303 227.2 995 9204 338.8 1.340 5053 223.7	880	.2179	338.8	1 340	5053	223.7
890 2229 336.9 1.360 .5208 220.4	890	2229	336.9	1.360	.5208	220.4

W/length	$L. \times C.$ Factor	Frequency	W/length	$L \times C$. Factor	Frequency
Metres.	m.i. and m.n.	Knocycles.	Metres.	1.1. and 11.11.	Knocycles
1,380	.5359	217.3	2,500	1.7597	119.9
1,400	.5517	214.2	2,600	1.9027	115.3
1,420	.5675	211.0	2,700	2.0521	111.0
1,440	.5837	208.2	2,800	2.2071	107.0
1,460	.5999	205.3	2,900	2.3662	103.4
1,480	.6165	202.5	3,000	2.5331	99.9
1,500	.6334	199.9	3,100	2.7052	96.7
1,520	.6502	197.3	3,200	2.8831	93.7
1,540	.6671	.194.7	3,300	3.0849	90.9
1,560	.6849	192.3	3,400	3.2552	88.2
1,580	.7028	189.8	3,500	3.4479	85.6
1,600	.7206	187.3	3,600	3.6478	83.3
1,620	.7388	185.1	3,700	3.8539	81.0
1,640	.7573	182.8	3,800	4.0648	78.9
1,660	.7756	180.6	3,900	4.2811	76.9
1,680	.7946	178.4	4,000	4.5007	74.9
1,700	.8135	176.3	4,100	4.7322	73.1
1,720	.8329	174.3	4,200	4.9657	71.4
1,740	.8520	172.3	4,300	5.2061	69.7
1,760	.8720	170.3	4,400	5.4512	68.1
1,780	.8917	168.4	4,500	5,6999	• 66.6
1,800	.9121	166.5	4,600	5,9561	65.2
1,820	.9327	164.7	4,700	6.2188	63.8
1,840	.9531	162.9	4,800	6.4861	62.5
1,860	.9742	161.2	4,900	6.7592	61.2
1,880	.9949	159.5	5,000	7.038	59.9
1,900	1.0165	157.8	5,100	7.321	58.8
1,920	1.0375	156.2	5,200	7.609	57.7
1,940	1.0598	154.5	5,300 -	7.911	56.6
1,960	1.0811	153.1	5,400	8.212	55.5
1,980	1.1036	151.4	5,500	8.508	54.5
2,000	1.1257	149.9	5,600	8.829	53.5
2,100	1.2413	142.8	5,700	9.151	52.6
2,200	1.3624	136.2	5,800	9.472	51.7
2,300	1.4894	130.3	5,900	9.809	50.8
2,400 •	1.6218	124.9	6,000	10.11	49.9

PRAK

FREQUENCY, INDUCTIVE REACTANCE, AND CAPACITIVE REACTANCE TABLE.

Column 1 is calculated to cover values of 100 to 10 Kc. To cover this and other ranges the following multipliers are used :--

Col	ımn 1.	I. Column 2.		Colu	mn 3.
X	.0001	× .1		X	.01
X	.001	0. X	1	×	.1
×	.01	× .0	01	×	1 000
×	.1	X .0	0001	×	10
X	1	X .0	00001	×	100
X	10	× .0	000001	×	1000
X	100	× .0	000001	×	10000
X	1000	× .0	0000001	×	100000
X	10000	× .0	00000001	×	1000000

To find the capacitive reactance, first obtain the value of Column 2 for the required frequency and multiply this by the correct factor for this frequency, then divide this result by C (which is equal to the number of microfarads capacity of the capacitor) and then multiply the final result by 1,000,000.

When the capacity "C" is quoted in farads, multiply finally the result by 1 instead of by 1,000,000.

When the capacity "C" is quoted in micromicrofarads, multiply finally the result by 1,000,000,000,000 instead of by 1,000,000.

Example :—Find capacitive reactance of a 100 mf condenser at 500 Kc. This is therefore equal to :—

 $[(.31832 \times .000001) \div 100] \times 1000000$ ohms. = .00318 ohms.

To find the inductive reactance, first obtain the value of Column 3 for the required frequency and multiply this by the correct factor for this frequency, then multiply this result by L (which is equal to the number of Henries Inductance of the Inductor).

Example :--Find Inductive reactance of a .005 henry coil at 3,000 Kc. (3 Mc.). This is therefore equal to :--

 $(1884.7 \times 10000) \times .005$ ohms. = 94235 ohms.

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 1 COLUMN 2 COLUMN 3

Frequency	$\begin{array}{l} 1 \div w = \\ 1 \div 2 \pi \mathrm{f} \end{array}$	$w = 2\pi f$	Frequency	$\begin{array}{l} 1 \div w = \\ 1 \div 2\pi \mathrm{f} \end{array}$	$w=2\pi \mathrm{f}$
100.0	.15915	6283.2	95.5	.16664	6000.3
99.5	.15994	6251.7	95.0	.16751	5969.1
99.0	.16071	6220.5	94.5	.16843	5937.4
98.5	.16157	6189.1	94.0	.16932	5906.1
98.0	.16238	6157.4	93.5	.17022	5874.7
97.5	.16325	• 6126.1	93.0	.17112	5843.5
97.0	.16408	6094.7	92.5	.17205	5812.1
96.5	.16491	6063.2	92.0	.17298	5780.5
96.0	.16578	6031.7	91.5	.17388	5749.2

COLUMN 1	COLUMN 2	COLUMN 3	COLUMN 1	COLUMN 2	COLUMN 3
Frequency	$\begin{array}{c} 1 \div w = \\ 1 \div 2\pi f \end{array}$	$m = 2\pi f$	Frequency	$1 \div w = 1 \div 2\pi i$	
arequency	• • • • • •	w - 2 //1	Frequency	$1 \div 2\pi 1$	$w = 2\pi i$
91.0	.17489	5717.6	66.5	23933	4178 2
90.5	.17587	5686.2	66.0	24114	4146.9
90.0	.17689	5654.8	65.5	24298	4115 4
89.5	.17782	5623.6	65.0	24487	4084 2
89.0	.17883	5589.1	64.5	24674	4059.7
88.5	.17987	5560.5	64.0	24868	4021.2
88.0	.18097	5529 1	63.5	25062	2020.0
87.5	.18188	5497.9	63.0	25262	3058 4
87.0	.18292	5466.3	62.5	25468	3027 1
86.5	.18399	5435.1	62.0	25671	3905 6
86.0	.18505	5403.6	61.5	25878	3964.9
85.5	.18615	5372.2	61.0	26001	2022 0
85.0	.18723	5340.6	60.5	26309	3001.2
84.5	.18834	5309.4	60.0	26524	3760.9
84.0	18945	5277.8	59.5	26749	3709.6
83.5	.19061	5246.4	59.0	26076	3730.3
83.0	19176	5215.1	58 5	27207	2675 7
82.5	19291	5183 7	58.0	.27207	30/3./
82.0	19407	5152 1	57.5	.27441	3044.3
81.5	19529	5120.7	57.0	.27070	3012.8
81.0	19648	5089 4	56.5	.2/922	3581.5
80.5	19771	5058 1	56.0	.20109	3550.1
80.0	19892	5026.7	55.5	.20421	3518.0
79.5	20018	4995 2	55.0	.20070	3487.1
79.0	20147	4963 6	54.5	.20921	3433.8
78.5	20275	4932.8	54.0	.29202	3424.3
78.0	20403	4900.8	52 5	.294//	3392.8
77.5	20536	1960.0	52.0	.29748	3361.4
77.0	20669	1838 9	50.0	.30030	3330.2
76.5	20803	1906 6	52.5	.30316	3298.7
76.0	20041	4775 3	52.0	.30606	3267.4
75.5	21081	4743 0	51.0	.30903	3235.8
75.0	21220	4712 5	50.5	.31207	3204.3
74.5	21362	4681 1	50.0	.31310	3173.1
74.0	21507	4649 7	19.5	.31832	3141.0
73.5	21654	4619.2	49.5	.32151	3110.2
73.0	21801	4586 7	49.0	.32479	30/8.7
72.5	21953	4555 3	40.0	.02014	3047.3
72.0	22104	4503.0	40.0	.3315/	3015.8
71.5	22250	1102 5	47.5	.33504	2984.6
71.0	22415	1492.0	47.0	.33862	2953.2
70.5	22575	1401.2	40.0	.34220	2921.8
70.0	22746	4308 3	40.0	.34012	2890.3
69.5	22901	1366.0	40.0	.34980	2858.8
69.0	23065	1335 1	45.0	.0000/	2827.4
68.5	23237	4303.9	44.5	.30/04	2796.1
68.0	23406	4000.9	44.0	.301/8	2764.5
67.5	23577	4212.0	43.5	.3658/	2733.2
67.0	29754	4241.2	43.0	.37012	2701.8
01.0	.20104	4400.0	42.0	.37449	2670.3

Frequency, Inductive Reactance, and Capacitive Reactance Table.

Frequency, Inductive Reactance, and Capacitive Reactance Table.						
COLUMN 1	COLUMN 2	COLUMN 3	COLUMN 1	COLUMN 2	COLUMN 3	
- Freedom - Freedom	$1 \div w =$		In sid	$1 \div w =$		
Frequency	$1 \div 2\pi t$	$w=2\pi i$	Frequency	$1 \div 2\pi f$	$w = 2\pi f$	
42.0	.37891	2638.9	25.5	62415	1602.2	
41.5	.38356	2607.5	25.0	.63664	1570.8	
41.0	.38815	2576.1	24.5	.64954	1539.4	
40.5	.39298	2544.7	24.0	.66311	1508.1	
40.0	.39779	2513.2	23.5	.67726	1476.4	
39.5	.40292	2481.8	23.0	.69244	1445.2	
39.0	.40808	2450.4	22.5	.70737	1413.7	
38.5	.41338	2419.1	22.0	.72395	1382.3	
38.0	.41884	2387.6	21.5	.74024	1350.8	
37.5	.42441	2356.1	21.0	.75785	1319.5	
37.0	.43015	2324.9	20.5	.77633	1288.2	
36.5	.43602	2293.5	20.0	.79563	1256.5	
36.0	.44208	2262.0	19.5	.81619	1225.3	
35.5	.44833	2230.4	19.0	.83766	1193.8	
35.0	.45491	2199.2	18.5	.86031	1162.3	
34.5	.46132	2167.6	18.0	.88418	1131.0	
34.0	.46812	2136.4	17.5	.90983	1099.5	
33.5	.47508	2104.8	17.0	.93623	1068.1	
33.0	.48228	2073.4	16.5	.96459	1036.7	
32.5	.48977	2042.1	16.0	.99472	1005.2	
32.0	.49736	2010.7	15.5	1.0262	973.88	
31.5	.50525	1979.1	15.0	1.0611	942.49	
31.0	.51301	1947.9	14.5	1.0975	911.07	
30.5	.52181	1916.3	14.0	1.1367	879.64	
30.0	.53051	1884.7	13.5	1.1788	848.23	
29.5	.53952	1853.5	13.0	1.2244	816.82	
29.0	.54881	1822.2	12.5	1.2733	785.41	
28.5	.55844	1790.6	12.0	1.3261	753.99	
28.0	.56841	1759.4	11.5	1.3851	722.56	
27.5	.57841	1728.8	11.0	1.4478	691.16	
27.0	.58995	1696.5	10.5	1.5157	659.73	

WIRE CALCULATIONS FOR COIL FORMS.

This formula will permit calculation of the number of turns and the length of wire required of any specific diameter selected.

- Let A = length of wire in inches required to fill coil winding space entirely.
 - B = wire diameter in inches.

.60060

.61214

26.5

26.0

C = radius of coil form in inches from dead centre to highest point of winding space.

10.0

1.5915

628.32

- D = radius of coil form in inches from dead centre to lowest point of winding space.
- E = available winding length in inches.

1665.0

1633.5

F = number of turns of wire to entirely fill actual winding space.

Then $F = E[(C - D) \div B^2]$ and $A = [(3.1416 E) \div B^2] [C^2 - D^2].$

OHMS. LAW FOR A.C.

Where I = current in amperes. Z = impedance in ohms.E = voltage across Z.P = wattage.X = degrees of phase angle. $\mathbf{E} = \mathbf{P} \div (\mathbf{I} \cos \mathbf{X}).$ $=\sqrt{PZ \div \cos X}$ = IZ. $Z = P \div (I^2 \cos X).$ $= E \div I.$ $= (E^2 \cos X) \div P.$ $P = IE \cos X.$ $= (E^2 \cos X) \div Z_{\circ}$ $= I^2 Z \cos X.$ $I = P \div (E \cos X)$. Ten = E ÷ Z. Proved start to refine a - - $=\sqrt{P \div (Z \cos X)}.$ 704 bas [14 + 10 - 0] 3 - 9 mon

WAVELENGTH AND FREQUENCY TABLE.

This table enables all calculations for wavelength and frequency to be arrived at. Although the table only covers a limited scale it is quite easy to cover any range required by the following method : If the figure in column A is multiplied by 10 the answer in column B must be divided by 10, or if the figure in column A is divided by 100 the answer in column B must be multiplied by 100. If column A is used to denote wavelength, then the answer in column B will be in Megacycles, or if column A is used for Frequency in Megacycles, the answer in column B will denote the equivalent wavelength in metres. This table is based on the fact that the frequency in kilocycles is equal to 299,820 \div by the wavelength in metres, whilst the wavelength in metres is equal to 299,820 \div by the frequency in kilocycles.

RETA 0480

A B A B A B A B A B 2998 1000 3156 950 3331 900 3527 850 374.8 800 3001 999 3156 949 3335 899 3551 849 375.7 799 3007 997 3166 947 3342 897 3540 847 376.2 797 3010 996 3169 946 3346 896 3544 846 376.7 796 3011 995 317.9 943 3557 893 3556 843 378.2 793 30122 992 318.6 941 3565 891 3565 841 3790 791 3022 992 318.6 941 3556 891 3565 841 3790 791 3022 992 318.6 941 3569 850 584 3800	F	REQL	ENC	A AI	ND	WAVE	LENG	тн	TABLE	
2998 1000 3156 950 333-1 900 3527 650 374.8 800 3001 999 3159 949 3335 899 3551 649 375.2 799 3007 997 3166 947 3342 897 3540 847 376.2 797 3010 996 3179 946 3354 896 3544 846 376.7 795 3016 994 3176 944 3357 893 3556 843 378.2 793 3022 992 318.6 941 3365 891 3565 841 379.0 791 3022 992 318.6 941 3365 891 3556 841 379.0 790 3031 989 3190 940 3369 887 382 837 881.79 788 3034 986 320.3 936 3384 886 3580.8 <th>A</th> <th>В</th> <th>A</th> <th>В</th> <th>A</th> <th>В</th> <th>A</th> <th>B</th> <th>A</th> <th>в</th>	A	В	A	В	A	В	A	B	A	в
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	299.8	1000	315.6	950	333.1	900	352.7	850	374.8	800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300.1	999	315.9	949	333-5	899	3531	849	375.2	799
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300.4	998	316-2	948	3339	898	3536	848	375.7	798
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300.7	997	316.6	947	3342	897	3540	847	376.2	797
3016 994 317-3 945 3350 895 3548 845 377-1 795 3016 994 317-9 943 3357 893 3552 844 377-6 794 3019 943 3357 893 3556 844 377-6 794 3022 992 318-6 941 3365 891 3556 844 379-0 791 3023 990 319-0 940 3366 891 356-9 840 379-0 791 3035 988 319-5 939 337-3 889 557-4 839 380-0 789 3035 988 319-9 937 3380 887 382 837 381-0 784 3041 986 320-7 935 3388 885 359-0 835 381-9 785 3044 985 320-7 932 3398 882 350-4 832 384-9 784 305-9 983 321-4 933 3395 883 <td>301.0</td> <td>996</td> <td>5169</td> <td>946</td> <td>3346</td> <td>896</td> <td>3544</td> <td>846</td> <td>376.7</td> <td>796</td>	301.0	996	5169	946	3346	896	3544	846	376.7	796
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	201.5	995	317.5	945	3350	895	3548	845	377.1	795
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	301.9	0934	317.0	043	775.7	894	3552	844	377.6	794
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302.2	002	318.3	047	336.1	895	3550	843	378.2	793
3128 990 3190 940 3369 890 3359 840 3795 790 3031 989 3193 939 3373 889 3574 839 3800 789 3035 988 3196 938 3376 888 3574 839 3800 789 3035 987 3199 957 3380 887 3582 837 8810 787 3041 986 3203 936 3384 886 3586 836 811 787 3044 985 3207 935 3384 886 3586 836 811 787 3044 985 3207 935 3384 886 3599 833 3824 784 3050 983 3214 933 3395 883 3599 833 3829 783 3053 982 3217 932 3396 882 3564 832 3844 782 3056 981 3220 931 4033 881 3608 831 3839 781 3055 982 3217 932 3407 880 3612 830 3844 782 3056 981 3227 929 3411 879 36616 829 3849 779 3066 978 3231 928 3415 876 5650 826 3864 776 3072 975 <td< td=""><td>302.5</td><td>991</td><td>318.6</td><td>941</td><td>3365</td><td>891</td><td>356.5</td><td>841</td><td>370.0</td><td>792</td></td<>	302.5	991	318.6	941	3365	891	356.5	841	370.0	792
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302.8	990	319.0	940	3369	890	356.9	840	379.5	791
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.1	989	319.3	939	337.3	889	357.4	839	380.0	789
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303·5	988	319.6	938	337.6	888	357.8	838	380.5	788
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3038	987	319.9	937	3380	887	358.2	837	381.0	787
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	304.1	986	320.3	936	338.4	886	358.6	836	381.4	786
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3044	985	320.7	935	3388	885	359.0	835	381.9	785
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	304.7	984	321.0	934	339.2	884	359.5	834	382.4	784
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	305.0	983	321.4	933	3395	883	359.9	833	382.9	783
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2053	982	321.7	932	5398	882	360.4	832	383.4	782
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205.0	901	322.3	951	3403	881	3608	831	383.9	781
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	306-3	979	322.5	930	3407	070	3616	8 30	3844	780
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	306.6	978	323.1	929	3415	978	362.1	029	205.4	779
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3069	977	323.4	927	3419	877	362.5	827	385.0	777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	307.2	976	3238	926	342.3	876	363.0	826	386.4	776
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	307.5	975	3241	925	3427	875	363.4	825	386.9	775
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3078	974	3245	924	3430	874	363.9	824	387.4	774
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3081	973	3248	923	3434	873	3643	823	387.9	773
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3084	972	325.2	922	3438	872	3647	822	388.4	772
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3088	971	325.5	921	3442	871	365.2	821	388.9	771
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3091	970	325.9	920	3446	870	3657	820	389.4	770
5058 968 5266 918 5454 868 5665 818 3904 768 310-1 967 5270 917 3458 867 3670 817 390.9 767 310-4 966 327.5 916 3458 867 3670 817 390.9 767 3104 966 327.5 916 3462 866 5674 816 391.4 766 3108 965 327.7 915 3466 865 3679 815 391.9 765 3110 964 3280 914 3474 863 3688 813 392.4 764 311.7 963 3284 913 3474 863 3688 813 392.4 762 311.7 962 3288 912 3478 862 3692 812 393.4 762 3120 961 3291 911 3482 861 3696 811 394.0 761 3123 960 3295 910	3094	969	326.2	919	3450	869	366.1	819	389.9	769
5101 967 5270 917 5458 867 5670 817 5909 767 3104 966 3273 916 3462 866 3674 816 3914 766 3108 965 3277 915 3466 865 3674 816 3914 766 3108 965 3277 915 3466 865 3679 815 3919 765 3110 964 3280 914 3470 864 3683 814 3924 764 3113 963 3284 913 3474 863 3688 813 392.9 763 3117 962 3288 912 3478 862 3692 812 393.4 762 3120 961 3291 911 3482 861 3696 811 394.0 761 3123 960 3295 910 3486 860 3701 810 394.5 760 3127 959 3299 908 3494 <td>2098</td> <td>968</td> <td>5266</td> <td>918</td> <td>3454</td> <td>868</td> <td>3665</td> <td>818</td> <td>390.4</td> <td>768</td>	2098	968	5266	918	3454	868	3665	818	390.4	768
3104 965 3273 916 5462 866 5674 816 5914 765 3108 965 3277 915 3466 865 3679 815 3919 765 3110 964 3280 914 3470 864 3683 814 3924 764 3113 963 3284 913 3474 863 3688 813 3924 764 3117 962 3288 912 3478 862 3692 812 3934 762 3120 961 3291 911 3482 861 3696 811 3940 761 3123 960 3295 910 3486 860 3701 810 3945 760 3127 999 399 859 3706 809 3950 759 3130 958 3302 908 3494 858 3711 808 3955 758 3133 957 3306 907 3498 857 3715	310.1	967	327.7	917	3458	867	36/0	817	390.9	161
3110 964 3280 913 3476 864 3683 814 3924 764 3113 963 3284 913 3474 863 3688 814 3924 764 3117 962 3288 912 3478 862 3692 812 3934 762 3117 962 3288 912 3478 862 3692 812 3934 762 3120 961 3291 911 3482 861 3696 811 39440 761 3123 960 3295 910 3486 860 3701 810 3945 760 3127 959 3299 909 3490 859 3706 809 3955 759 3130 958 3302 908 3494 858 37115 807 3960 757 3136 956 3509 906 3502 856 3720 <t< td=""><td>310.8</td><td>965</td><td>327.7</td><td>910</td><td>3462</td><td>865</td><td>367.9</td><td>915</td><td>3010</td><td>765</td></t<>	310.8	965	327.7	910	3462	865	367.9	915	3010	765
5113 963 3284 913 3474 863 3688 813 592-9 763 3117 962 3288 912 3478 862 3692 812 3934 762 3117 962 3288 912 3478 862 3692 812 3934 762 3120 961 3291 911 3482 861 3696 811 3940 761 3123 960 3295 910 3486 860 3701 810 3945 760 3127 959 3299 909 3490 859 3706 809 3955 759 3130 958 3302 908 3494 858 3711 808 3955 758 3133 957 3306 907 3498 857 3715 807 3960 757 3136 956 3502 856 3720 806 3966 <td< td=""><td>3110</td><td>964</td><td>3280</td><td>914</td><td>3470</td><td>864</td><td>3683</td><td>814</td><td>3024</td><td>764</td></td<>	3110	964	3280	914	3470	864	3683	814	3024	764
3117 962 3288 912 3478 862 3692 812 3934 762 3120 961 3291 911 3482 861 3696 811 3940 761 3123 960 3295 910 3486 860 3701 810 3945 760 312.7 959 3299 909 3490 859 3706 809 3950 759 3130 958 3302 908 3494 858 3711 808 395.5 758 3133 957 3306 907 3498 857 3715 807 3960 757 3136 956 3509 906 3502 856 3720 806 3966 756 3140 955 3313 905 3507 855 3724 805 397.1 759 3143 954 3317 904 3511 874 3726 <	311.3	963	3284	913	3474	863	3688	813	392.9	763
3120 961 3291 911 3482 861 3696 811 3940 761 3123 960 3295 910 3486 860 3701 810 3945 760 3127 959 3299 909 3490 859 3706 809 3950 759 3130 958 3302 908 3494 858 3711 808 3955 758 3133 957 3306 907 3498 857 3715 807 3960 757 3136 956 3309 906 3502 856 3720 806 3966 756 3140 955 3513 905 3507 855 3724 805 3971 755 3143 954 3317 904 3511 856 3724 807 397.6 754	311.7	962	3288	912	3478	862	369.2	812	393.4	762
3123 960 3295 910 3486 860 5701 810 3945 760 3127 959 3299 909 3490 859 3706 809 3950 759 3130 958 3302 908 3494 858 3711 808 3955 758 3133 957 3506 907 3498 857 3715 807 3960 757 3136 956 3309 906 3502 856 3720 806 3966 756 3140 955 3313 905 3507 855 3724 805 397.1 755 314.3 954 331.7 904 351.1 855 3724 805 397.6 756	3120	961	329.1	911	3482	861	3696	811	3940	761
312.7 959 3299 909 3490 859 3706 809 3950 759 3130 958 3302 908 3494 858 371.1 808 395.5 758 3133 957 3506 907 3498 857 371.5 807 396.0 757 3136 956 3309 906 3502 856 3720 806 396.6 756 3140 955 3313 905 350.7 855 3724 805 397.1 755 314.3 954 331.7 904 351.1 857 3724 805 397.6 756	312.3	960	3295	910	3486	860	3701	810	394.5	760
3130 958 3302 908 3494 858 371·1 808 395·5 758 3133 957 3306 907 3498 857 371·5 807 396·0 757 3136 956 3309 906 350·2 856 3720 806 396·6 756 3140 955 3313 905 3507 855 3724 805 397·1 755 314-3 954 331-7 904 351·1 855 3724 806 397.6 756	312.7	959	3299	909	3490	859	370.6	809	3950	759
5155 957 5506 907 3498 857 3715 807 396.0 757 3136 956 3309 906 3502 856 3720 806 3966 756 3140 955 3313 905 3507 855 3724 805 397.1 755 314-3 954 3317 904 351.1 855 3724 804 397.6 756	3130	958	3302	908	3494	858	371.1	808	395.5	758
3140 955 3313 905 3507 855 3720 806 3966 756 3140 955 3313 905 3507 855 3724 805 397.1 755 314.3 954 331.7 904 351.1 855 3724 805 397.6 756	3133	957	330.6	907	3498	857	371.5	807	396.0	757
3143 954 3317 004 3511 854 3720 804 3976 755	5156	956	5509	906	3502	856	372.0	806	3966	756
	3140	955	3313	905	5507	855	3/24	805	5971	755
3146 053 3321 003 3515 053 3774 003 3000 754	3146	954	3321	904	2515	054	372.9	804	397.6	754
3149 952 3324 902 3519 953 3739 902 3087 753	3149	952	3324	903	351.0	053	373.0	803	300.7	755
315:3 951 3328 901 3523 851 3743 801 3992 751	315.3	951	3328	901	352.3	851	3743	801	399.2	751

F	REQU	JENC	YA	ND	WAVE	LENG	тн 1	ABLE	R
A	В	A	В	A	В	A	В	A	В
599.8	750	428.3	700	461.3	650	499.7	600	545.1	550
400.3	749	428.9	699	462.0	649	500.5	599	546.1	549
4008	748	429.5	698	462.7	648	5014	598	547.1	548
401.4	747	430.1	697	463.4	647	502.2	597	548.1	547
401.9	746	430.8	696	464.1	646	5031	596	5491	546
402.4	745	4314	695	4048	645	5047	595	551.1	543
402 9	747	4321	603	0664	643	5056	593	5522	543
4041	747	432.3	692	4670	642	506.5	592	553.2	542
4046	741	433.9	691	4677	641	507.3	591	5542	541
4052	740	434.5	690	4685	640	508.2	590	555.2	540
405.7	739	4351	689	4692	639	5090	589	5563	539
406.3	738	4358	688	4699	638	509.9	588	557.3	538
406.8	737	436.4	687	470.7	637	510.8	587	558·3	537
407.4	736	437.1	686	471.4	636	511.6	586	559.4	536
407.9	735	437.7	685	472.1	635	512.5	585	560.4	535
4085	734	438.3	684	4729	634	513.4	584	561.5	534
4090	755	4390	683	4/36	655	514:3	282	5625	555
4096	731	4090	682	4/44	631	515.2	582	5050	552
410.2	731	4403	600	4/52	630	516.8	580	565.7	530
411.3	730	1416	679	476.7	629	517.7	579	5668	529
411.8	728	4423	678	477.4	628	518.7	578	567.8	528
412.4	727	4429	677	4782	627	519.6	577	568.9	527
413.0	726	4435	676	4789	626	520.5	576	570.1	526
413.6	725	4442	675	4797	625	521.4	575	571.1	525
414.1	724	4448	674	4805	624	522.3	574	572.2	524
414.7	723	4455	673	481.3	623	523.2	573	573.3	523
415.3	722	4462	672	4820	622	524.2	572	574:4	522
415.8	721	4468	671	4828	621	525.1	571	575.5	521
416.4	720	44/6	670	4830	620	5260	5/0	5/66	520
4170	719	0480	609	19844	619	520.9	569	5700	519
419.2	717	4400	667	4051	617	5200	567	5700	517
418.8	716	450.2	666	486.7	616	5200	566	5811	516
419.3	715	450.9	665	487.5	615	530.7	565	582.2	515
4199	714	451.5	664	4883	614	531.6	564	583.3	514
420.5	713	452.2	663	4891	613	532.5	563	584.4	513
421.1	712	4529	662	4899	612	533 5	562	585.5	512
421.7	711	4536	661	4907	611	5345	561	586.6	511
422.3	710	4543	660	4915	610	5354	560	587.8	510
422.9	709	455-1	659	4924	609	536-4	559	588.9	509
423.5	708	455.7	658	493.1	608	537 3	558	590.2	508
424.1	707	456.3	657	4939	607	558.3	557	5913	507
424.1	706	4570	650	4948	606	539.2	556	5925	506
4255	705	458.4	650	4957	603	541.2	550	5957	505
4265	703	459.1	653	4903	603	542.2	553	596.1	503
4271	702	4598	652	4980	602	5432	552	597.3	502
427.7	701	460.5	651	4989	601	5441	551	5984	501
1	1.4	A CONTRACTOR OF	A REAL PROPERTY.	A CONTRACT OF A	AND ADDRESS	A STATISTICS	A STATE OF A		A STATE OF THE PARTY OF THE PAR

F	REQU	ENCY	AN	ID V	VAVE	LENGT	н	TABL	E
A	В	A	В	Α	В	A	В	A	В
599 . 6	500	666.3	450	749.4	400	856.5	350	999.4	300
600 · 8	499	667.8	449	751.3	399	859.1	349	1003-	299
602 · 1	498	669.2	448	753.2	398	861.6	348	1006.	298
603 · 3	497	670.7	447	755 1	397	864.1	347	1009 ·	297
604 . 5	496	672.2	446	757.1	396	865 5	346	1013 .	296
605 .7	495	6/3.8	445	759.1	395	869 1	345	1016 .	295
608.2	194	676.0	1444	7610	394	0110	3/2	1020.	294
609.4	493	678.3	442	764.8	392	876 .7	343	1024.	295
610 .6	491	679.9	441	766.7	391	879.2	341	1030 .	291
611.9	490	681.4	440	768.7	390	881.8	340	1034 .	290
613 .1	489	683.0	439	770.7	389	884 4	339	1037 .	289
614 .4	488	6846	438	772.7	388	887 .1	338	1041 .	288
615 .6	487	686.1	437	774.7	387	889 .7	337	1045 .	287
616 .9	486	687.7	436	776-8	386	892.3	336	1048 .	286
618 2	485	689.2	435	778.8	385	895 .1	335	1052 .	285
619.5	484	690.8	434	780.8	384	897 .7	334	1056 .	284
620 .7	483	692.4	433	782.8	383	900 .3	333	1059 •	283
627 7	482	694.0	452	784.8	382	905 1	222	1065	202
624 .6	401	693.0	430	780.0	301	903.0	330	1070 .	201
625 .9	470	608.9	429	791.1	379	900 0	320	1074.	279
627.3	478	700.6	428	793.2	378	014.1	328	1078.	278
628.6	477	702.2	427	795 3	377	916.9	327	1082	277
629.9	476	7038	426	797.4	376	919.7	326	1086	276
631 .2	475	705.5	425	799 5	375	922.5	325	1090	275
632 . 5	474	707.1	424	801.7	374	925.4	324	1094.	274
633.9	473	708.8	423	803.8	373	928.2	323	1098	273
635 . 2	472	710.5	422	805.9	372	931.1	322	1102	272
636.6	471	712.2	421	808-1	371	934.1	321	1106.	271
637.9	470	715.9	420	810.3	370	936.9	320	1110.	270
639.3	469	715.6	419	812.5	369	959.8	519	1115	269
640.6	468	710.1	418	8141	368	942.8	318	1119	208
643.4	466	720.7	416	819.7	366	948 8	316	1127	266
644.8	465	722.5	415	821.4	365	951.8	315	1131	265
646.2	464	724.2	414	823.8	364	954.8	314	1136	264
647.6	463	725.9	413	826.1	363	957.9	313	1141.	263
649.1	462	727.7	412	828·3	362	961.1	312	1145	262
650 4	461	729 5	411	8304	361	964.1	311	1149	261
651.8	460	731.3	410	832·8	360	967.2	310	1153	260
653.2	459	733-1	409	835.2	359	970.3	309	1158	259
654.6	458	734.9	408	837.5	358	973.4	308	1162	258
656.1	457	7367	407	859.8	557	976.7	307	1167	257
659.0	455	740.3	406	8422	355	919.8	306	1176	250
660.4	454	742.1	404	847.1	354	986.2	304	1180.	250
661.9	453	744-1	403	849.4	353	989 4	303	1185	253
663.3	452	745.8	402	851-8	352	992.8	302	1190.	252
664.8	451	747.7	401	8542	351	996.2	301	1195	251

FI	REQU	ENCY	AN	D V	VAVEL	ENGT	H -	TABLE	
A	В	A	B	A	В	A	В	A	В
1199	250	1362	220	1578	190	1873	160	2306	130
1204	249	1369	219	1587	189	1885	159	2323	129
1209	248	1375	218	1595	188	1898	158	2342	128
1214	247	1381	217	1603	187	1910	157	2361	127
1219	246	1388	216	1612	186	1923	156	2380	126
1224	245	1395	215	1620	185	1934	155	2399	125
1229	244	1401	214	1629	184	1947	154	2417	124
1234	243	1407	213	1638	183	1960	153	2438	123
1239	242	1414	212	1647	182	1973	152	2458	122
1244	241	1421	211	1656	181	1986	151	2478	121
1249	240	1428	210	1665	180	2000	150	2498	120
1255	239	1435	209	1675	179	2012	149	2521	119
1260	238	1442	208	1684	178	2025	148	2541	1 18
1265	237	1448	207	1694	177	2040	147	2563	117
1270	236	1454	206	1703	176	2053	146	2585	116
1276	235	1463	205	1713	175	2067	145	2607	115
1281	234	1470	204	1/23	1/4	2082	144	2630	114
1287	233	1477	203	1733	1/3	2097	143	2653	113
1293	232	1484	202	1/43	1/2	2110	142	20//	112
1298	231	1492	201	1753	170	2127	141	2701	110
1303	230	1499	200	1705	170	2142	140	2720	100
1309	229	1507	199	1704	109	2157	139	2776	109
1515	220	1514	190	1704	100	21/5	130	2000	100
1521	227	1525	197	1006	167	2004	137	2000	107
152/	226	1551	196	1800	166	2204	100	2020	100
1330	225	1545	195	1820	164	2221	134	2055	105
1558	224	1545	194	1020	163	225/	134	2005	104
1344	223	1553	195	1059	162	2234	133	2039	103
1357	221	1570	191	1862	161	2212	131	2959	101
1337		1310	and the second	1002		2205	(way and	2998	100
	and the second	and the second second	and the second	1 × 5 × 5	10			2000	100

a. c. = alternating current Wechsel-	acrial, plain Einfachantenne a. f. = audio frequency Hörfrequenz
accordance Abstimmung	agate Achat
acid Säure	A. H. = ampere hour Amperestunde
adapt anpassen	air condenser Luftkondensator
adapter Zwischenstecker	air core Luftkern (d. h. ohne Eisenkern)
adjustable condenser variabler Kon- densator	air core protecting choke Schutzdrossel ohne Eisenkern
adjustable disc condenser Drehkon-	air gap Luftspalt
densator	allotment Verteilung
adjusting slider Kontaktschieber	alloy Legierung
advance Nickelin	alteration of the coupling Veränderung
serial Antenne	der Kopplung
aerial change-over switch Antennen- umschalter	alternating current Wechselstrom alternator Wechselstromgenerator
aerial extension Luftleitergebilde	alternator disc set Generator mit rotie-
aerial inductance Antennenselbstinduk-	render Funkenstrecke
tion	alum Alaun

ammeter Amperemeter amperage Amperezahl ampere-turns Amperewindungen amplification Verstärkung amplification factor Verstärkungsgrad amplifier Verstärker amplify verstärken angle Winkel angular velocity Winkelgeschwindigkeit antagonistic entgegenwirkend antenna Luftleiter antinode Kurvenband aperture Öffnung apex Spitze application Anwendung arbor Achse arc Lichtbogen arc transmitter Lichtbogensender area turns Windungsfläche argentan Neusilber armature, condenser Kondensatorbelegung armature of a dynamo Anker einer Dynamo armatures of a condenser wirksame Metallteile eines Kondensators armour bewehren, armieren artificial antenna künstliche Antenne artificial line künstliche Leitung arrester, earth terminal Erdung über Funkenstrecke arrester, lightning Blitzableiter asynchronous discharger Plattenfunkenstrecke atmospherics Luftstörungen attenuate dämpfen attenuation Amplitudenabtall treier Wellen, Dämpfung audibility factor Hörbarkeit audio frequency Tonfrequenz auto-coupling galvanisch-induktive Kopplung autodyne Rückkopplungsempfänger. Schwingaudion auto-heterodyne Schwingaudion auto-room Apparatesaal auto transformer Spartransformator auto transmitter automatischer Geber auxiliary coil Hilfsspule average value Mittelwert A. W. G. = American wire gauge Amerikanische Drahtlehre hackstay Pardune balance, capacity Gegengewicht balance, electric elektrisches Gleichgewicht

balancing aerial vom Sender entkoppelte Empfangsantenne ball-shaped kugelförmig band of frequencies Frequenzbereich bare wire blanker Draht beacon, directional gerichtete Strahlung beacon, radio Richtungssender beam Strahl beam transmitting station Einstrahlfunkstelle, Richtsendeanlage bearing Teilung beat Überlagerung, Pulsation beat-frequency Überlagerungsfrequenz beats heterodyne Überlagerung mit Röhre beat note Schwebungston beat receiver Überlagerungsempfänger beat reception Überlagerungsempfang bent antenna geknickte Antenne bell Klingel bevel wheel Kegelrad bilateral zweiseitig blocking of continuous current Gleich stromblockierung blower Gebläse blowsout, spark Funkenlöschung bobbin Spule boss Nabe box-kite Kastendrachen bracket Stütze branched currents verzweigte Ströme branched spark verzweigter Funke brass Messing braze hartlöten breaker, circuit Stromunterbrecher break, hammer Hammerunterbrecher break spark Unterbrechungsfunke break, vibrating Hammerunterbrecher broadcasting Rundfunk brush, contact Kontaktbürste brush discharge Büschelentladung B. S. G. = British Standard Gauge Britische Normallehre bull variometer Kugelvariometer busbars Sammelschienen buzzer Summer by-pass condenser Überbrückungskondensator cages Käfigantenne calibration condenser Eichkondensator

calibration condenser Eichkondensator calido Chromnickelstahl cali-bell Alarmglocke call letter Rufzeichen capacity earth Gegengewicht capacity, specific inductive Dielektrizitätskonstante

carbon Kohle cardboard Pappe carrier current telephony Hochfrequenztelephonie auf Leitungen carrier wave Trägerwelle case Gehäuse cast iron Gußeisen catch Haken cathode ray oscillograph Braunsche Röhre c. c. = continuous current Gleichstrom cell, galvanic galvanisches Element cell, photo Photozelle cell sensitive to light lichtempfindliche Zelle cell, wet nasses Element c. e. m. f. = counter electromotoric force gegenelektromotorische Kraft centre of gravity Schwerpunkt cessation Stillstand, Unterbrechung change of connection for Umschaltung anf change over switch Umschalter changer Wandler change-tune switch Wellenumschalter changer, frequency Frequenzwandler charge Ladung charging switch Ladeschalter chatter prellen, klappern choke Drossel choking coil Drosselspule circuit Stromkreis circuit breaker Ausschalter circuit, magnetic magnetischer Kreis circular cross-section runder Querschnitt click ticken. Knackgeräusche close coupling feste Kopplung closed circuit current Ruhestrom closed oscillating circuit geschlossener Schwingungskreis closer, circuit Stromschließer coarse mesh grid grobmaschiges Gitter coated filament, oxide Oxydheizfaden coating Überzug coating of the jar Metallbelag der Leydener Flaschen coating of a condenser Kondensatorbelegung code. Morse Morseschrift coherence Frittung coll Spule coil antenna Rahmenantenne common reactance gegenseitige Induktion concentrator Klinkenumschalter

condenser armature Kondensatorbelegung condenser circuit Kondensatorkreis condenser transmitter Kondensator. mikrophon conductance Leitfähigkeit conduction Ubertragung conductivity spezifische Leitfähigkeit conductor Leiter cone antenna Kegelantenne connection Verbindung connector Verbindungsklemme constrained oscillation erzwungene Schwingung continuous current Gleichstrom continuous wave kontinuierliche Welle contortion Verzerrung control steuern control grid Steuergitter converter rotierender Umformer convey übertragen coordination, inductive Übersprechen copper Kupfer core Kern, Ader core, air ohne Eisenkern core. iron Eisenkern core-carbon Dochtkohle cotton Baumwolle counterpoise Gegengewicht counter voltage Gegenspannung counterweight Gegengewicht coupled oscillatory circuits gekoppelte Schwingungskreise couple, thermo- Thermoelement coupling Kopplung coupling coefficient Kopplungskoeffizient coupling, flexible biegsame Verbindung coupling, reaction Rückkopplung c. p. s. = cycles per second Perioden/sec crest Scheitelwert cross-section Querschnitt crystal rectifler Kristalldetektor cube Kubus cube root Kubikwurzel cu.cm. Kubikzentimeter cu.ft. Kubikfuß current Strom cusp Wendepunkt cut-out Ausschalter c. w. == continuous waves ungedämpfte Wellen cycles Perioden cymometer Wellenmesser

damped waves gedämpfte Wellen damper Schalldämpfer damping Dämpfung damping, loss Verlustdämpfung damping of the antenna radiation Strahlungsdämpfung damping reduction Dämpfungsreduktion dampness Fcuchtigkeit dash Morsestrich d. c. = direct current Gleichstrom dead stromlos, spannungslos dead-beat aperiodisch (Grenzwert) decay Abfall, Dämpfungsfaktor decaying current abnehmende Stromstärke decoherence Entfrittung decreasing amplitude abnehmende Amplitude decrement Dämpfungsdekrement decremeter Dämpfungsmesser deflecting plates Ablenkungselektroden deflection Durchbiegung, Galvanometerausschlag deflectional sensitivity Empfindlichkeit des Zeigerausschlags degree of coupling Kopplungsgrad demijohn Glasballon d. f. = direction finding Richtungsbestimmung delta-connected in Dreiecksschaltung density Dichte departure Abweichung dependence Abhängigkeit depth Tiefe derivation Ableitung design Konstruktion, Ausführung detune verstimmen device Vorrichtung, Erfindung device suspension Aufhängevorrichtung dielectric strength dielektrische Festigkeit dielectric substance Dielektrikum diode valve Zweielektrodenröhre direct current Gleichstrom directional aerial gerichtete Antenne directional reception Richtempfang directional wireless telegraphy gerichtete Radio-Telegraphie direction finder Peilempfänger directive reception gerichteter Empfang disc Scheibe disc condenser, adjustable Drehkondensator disc gap Scheibenfunkenstrecke disc set, alternator Generator mit rotierender Funkenstrecke

discharge Entladung discharger Funkenstrecke displacement current dielektrischer Verschiebungsstrom disruptive strength Durchschlagsfestigkeit dissipate zerstreuen dissipation of energy Energiezerstreuung distance of transmission Reichweite distance, sparking Funkenstrecke distortion Verzerrung disturbance Störung distributed capacity verteilte Kapazität dog Zahn, Klinke dot Morsepunkt double-pole switch zweipoliger Schalter drop, voltage Spannungsabfall drum Trommel drum armature Trommelanker drum winding Trommelwicklung drummy dumpf dry cell Trockenelement dual receiver Reflexempfänger duplex, working Duplexbetrieb duration of oscillation Schwingungsdauer dving oscillation abklingende Schwingung earth arrester Erdung über Funkenstrecke earth capacity Gegengewicht earth connection Erdverbindung earth screen Gegengewicht earth terminal arrester Erdung über Funkenstrecke earth return Erdrückleitung economical transformer Spartransformator eddy currents Wirbelströme efficiency Wirkungsgrad electron current Elektronenstrom electron tube Elektronenröhre elevated conductor Luftleitergebilde e. m. elektromagnetische Einheiten embosser Reliefschreiber e. m. f. elektromotorische Kraft emission, electron Elektronenemission emit aussenden enamel Emaille end face Stirnfläche endodyne Schwingungserzeuger (Überlagerer) engine Maschine equation Gleichung

equifrequent conductor mitschwingender Leiter c. s. elektrostatische Einheiten equi-radial aerial ungerichtete Antenne even harmonics geradzahlige Oberschwingungen excite erregen excitation Erregung excited, self- selbsterregt excited, separately fremderregy exciter Erreger exciting spark gap Erreger-Funkenstrecke exhaustion Erschöpfung extension of antenna Verlängerung der Antenne extinguisher, spark Funkenlöschung exude ausscheiden evelet Öse

fading Verschwinden der Zeichen fall in potential Spannungsabfall fail, signals Zeichen bleiben aus fan antenna Harfenantenne fan-shaped antenna Fächerantenne feeble signals schwache Zeichen field, electric elektrisches Feld field-break switch Magnetausschalter field coil Feldspule filament Heizfaden filament battery Heizbatterie fillngs Feilspäne fine mesh grid feinmaschiges Gitter fixed discharger feste Funkenstrecke flat copper Flachkupfer flat square coil Flachspule flat tuning unscharfes Abstimmen flexible coupling biegsame Verbindung flicked off zerbackt fluctuation Schwankung flux Kraftfluß flywheel circuit Schwungradschaltung force, electromotive elektromotorische Kraft forced oscillation erzwungene Schwingung F. P. S. = foot-pound-second-system praktisches engl. Maßsystem frame aerial Rahmenantenne freedom from troubles Störungsfreiheit frequency, limiting Grenzfrequenz frequency meter Frequenzmesser ft. = foot Fuß fundamental oscillation Grundschwingung

funnel-shaped antenna trichterförmige Antenne fuse Sicherung

gain Gewinn, Verstärkungsgrad galena Bleiglanz gauge eichen gap Spalt gap, spark Funkenstrecke gauze Gaze geared down to untersetzt auf gear, head Kopffernhörer generating plant Stromerzeugungsanlage German silver Neusilber gilt vergoldet glow lamp Glühlampe glow discharger lamp Glimmlampe granular coherer Körnerfritter gravity, centre of Schwerpunkt grid Gitter grid leak Gitterableitung grinder atm. Störungen besonderer Art ground connection Erdverbindung grounded geerdet group frequency Frequenz einer Wellengruppe

hammer break Hammerunterbrecher hanger Luftkabel hard rubber Hartgummi harmonic oscillation Oberschwingung harmonics Oberschwingungen heart-shape herzförmig height, effective wirksame Höhe height of mast Masthöhe height, radiation Strahlhöhe Hertzian waves Hertzsche Wellen heterodyne Überlagerung, Schwingungserzeugung durch Überlagerung heterodyne receiver Überlagerungsempfänger h. f. = high frequency Hochfrequenz high damping große Dämpfung high frequency Hochfrequenz high-power station Kraftstation high-pressure condenser Hochspannungskondensator high-speed telegraphy Schnelltelegraphie

high tension Hochspannung

homodyne reception Empfang mit Erzeugung der Trägerfrequenz

honeycomb coll Spule mit Wabenwicklung

hot-cathode Glühkathode

hot-wire Hitzdraht

hotwire ammeter Hitzdrahtamperemeter

h. p. = horse power Pferdestärke h.t. = high tension Hochspannung ignition device Zündapparat image transmission Bildübertragung impact excitation StoBerregung Impedance scheinbarer Widerstand imperfect tuning unscharfe Abstimmung impression of the signals, clear scharfe Abgrenzung der Zeichen in. = inch Zoll inaudible unhörbar incandescent cathode Glühkathode incidence, angle of Einfallswinkel indiarubber Gummi inductance Selbstinduktion inductance coil Selbstinduktionsspule induction coil Induktionsspule, Funkeninduktor inductive capacity, specific Dielektrizitätskonstante inductive transmitter gekoppelter Sender indoor aerial Zimmerantenne inefficient unwirksam inert träge initial intensity Anfangsintensität inker Farbschreiber inkwriter Farbschreiber input zugeführte Leistung, Kraftbedarf insulation Isolation Insulator Isolator insert einschalten intensifier Verstärker interference Störung, besonders durch Interferenz mit anderen Wellen Intermediate circuit Zwischenkreis interrupter Unterbrecher, Ticker Iron Eisen iron core Eisenkern ironclad eisenbewehrt ironless eisenfrei ivory Elfenbein jack Klinke, Umschaltklinke iam stören iammings Störungen lar capacity Flaschenkapazität iars. Leyden Leydener Flaschen iet Strahl ligger Kopplungstransformator joint Gelenk, Verschluß

kallirotron Verstärker mit Widerstandsübertragern k. c. = kilocycles Kilohertz keeper of a magnet Magnetanker

kenotron Hochvakuumgleichrichterröhre key Taste key, relay Tastrelais key, sending Sendetaste kite Drachen knife switch Messerschalter, Hebelschalter lamp Röhre lattice mast Gittermast lattice coil Spule mit Wabenwicklung laver Schicht layer of tin-foll Stanniolbelag lb = pound (libra) Pfund lead Blei, Leitung leading-in insulator Einführungsisolator leading-through Durchführung leak, grid Gitterableitung leakage Ableitung leakage flux Streufluß leaking Ableitung left-handed thread Linksgewinde legibility of signals Lesbarkeit voa Zeichen length of spark Funkenlänge lengthening coll Verlängerungsspule lens Linse lever Hebelarm Leyden jar Leydener Flasche lightning arrester Blitzableiter limiting frequency Grenzfrequenz line Leitung linkage Verkettung lines of force Kraftlinien load Ladung, Last loading coil Verlängerungsspule local oscillator Überlagerer locking device Sperrvorrichtung long-distance station Großstation loop antenna Rahmenantenne loop, current Strombauch loop of the oscillation Schwingungsbauch loop, potential Spannungsbauch loose coupling lose Kopplung loss damping Verlustdämpfung low frequency Niederfrequenz low tension Niederspannung luminous rays Lichtstrahlen magnetism Magnetismus

magnification Verstärkung magnifier Verstärker magnitude Größe main-busbars Hauptsammelschienen

main circuit Hauptstromkreis main switch Hauptschalter mains, d. c. Gleichstromnetz manipulation Tastung marble Marmor marking contact Zeichenstromkontakt mast Mast masthead Mastspitze mean value Mittelwert means for tuning Abstimmittel measure messen measurement Messung mesh, coarse grobmaschig mesh, fine feinmaschig mesh. grid Gittermasche message Telegramm meter Meßinstrument micrometric spark discharger Funkenmikrometer M. M. F. = magnetomotive force magnetomotorische Kraft monitoring device Anrufeinrichtung movable plates drehbare Platten multilayer coil mehrlagige Spule multiple antenna Vielfachantenne multiple spark gap unterteilte Funkenstrecke multi turn viele Windungen mute antenna künstliche Antenne mutual induction gegenseitige Induktion natural oscillation Eigenschwingung natural wave-length Eigenschwingung network, aerial Luftleitergebilde nodal point of vibration Schwingungsknoten node, current Stromknoten node, potential Spannungsknoten node, vibration Schwingungsknoten noise Geräusch non-inductive induktionsfrei non-oscillatory aperiodisch note magnification Tonverstärkung note of pitch Überlagerungston note tuning Tonabstimmung, Tonhöhe der Abstimmung odd harmonics ungradzahlige Oberschwingungen oll-break switch Ölschalter onc-way in einer Richtung, Simplex open circuit Arbeitsstromkreis open oscillating circuit offener Schwingungskreis

opposite phase entgegengesetzte Phase oscillating valve Senderöhre oscillation Schwingung oscillatory circuit Schwingungskreis oscillion Elektronenröhre output abgegebene Leistung overload Überlastung oxide-coated filament Oxydheizfaden pancake coil Flachspule pawl Sperrklinke partial wave Kopplungswelle passage of spark Funkenübergang nasteboard Pappe p. d. Potentialdifferenz peak-load Spitzenbelastung peaky curve spitze Kurve nerforator Lochapparat phase difference by dielectric loss Verlustwinkel phase displacement Phasenverschiebung phase relation Phasenbeziehung picofarad = Mikromikrofarad pictures, transmission of Bildübertragung pitch Tonhöhe, Pech nitch of the beat note Tonhöhe der Überlagerung pitch of the signal note Tonhöhe des **Zeichens** plain aerial alte Marconi-Antenne plant Anlage plate Anode plate current Anodenstrom plate supply Anodenbatterie pliodynatron Doppelgitterröhre pliotron Elektronenröhre mit sehr gutem Vakuum plug Kontaktstöpsel pointed spitz pole-piece Polschuh portable station tragbare Station powder coherer Pulverfritter practice huzzer Übungssummer pressboard Preßspan press switch Druckschalter printing telegraph Drucktelegraph propagation of waves Fortpflanzung von Wellen propagation, velocity of wave- Fortpflanzungsgeschwindigkeit protecting choke Drosselspule pulse Wechsel, halbe Periode nuncher Stanzapparat push-pull amplifier Druck-Zug-Verstärker, Gegentaktverstärker

quench löschen quenched spark Löschfunken

quenched spark gap Löschfunkenstrecke quick-break switch Momentschalter range Reichweite range of frequencies Frequenzbereich. Spektrum radiation, Strahlung radiation into space Ausstrahlung rapidity of signaling Telegraphiergeschwindigkeit raw rubber Rohgummi ravs Strahlen reactance induktiver Widerstand reaction coupling Rückkopplung reactor Drosselspule re-broadcasting Ballsender receiver Empfänger receiving aerial Empfangsantenne recess Nute, Eindrehung recording telegraph Schreibtelegraph recorder Schreiber, Schreibtelegraph rectifier Gleichrichter regenerative amplifier Rückkopplungsverstärker reflex circuit Rückkopplungskreis reluctance magnetischer Widerstand r. m. s. = root mean square Effektiv. wert relay Relais remote control Fernbed enung remote control switch Fernschalter repeater Relaisübertragung repeating amplifier Kaskadenverstärker repeating relay Übertragungsrelais resistance Widerstand resonant conductor mitschwingender Leiter reversal of current Stromumkehrung reverser, current Stromwender revolutions Umdrehungen revolve rotieren ribbon Flachdraht right-handed thread Rechtsgewinde rising current zunehmende Stromstärke roof-shaped antenna dachförmige Antenne root Wurzel rope, steel Stahlpardune rotating field Drehfeld rotation frame aerial drehbare Rahmen. antenne r. p. m. = revolutions per minute Um. drehungen in der Minute subber Gummi rubbing contact Reibungskontakt rush of current Stromstoß

safe carriing capacity maximale Belast. barkeit safety plug Schmelzsicherung saturation current Sättigungsstrom screen Schirm, Skala screened cabin abgeschirmter Empfangsraum screening box Schutzkasten screw Schraube screwdriver Schraubenzieher search coil Suchspule selectivity Störungsfreiheit, Selektivität self capacity Eigenkapazität self exited selbsterregt self-heterodyne receiver Rückkopplungsempfänger sending key Sendetaste sensibility Empfindlichkeit sensitiveness Empfindlichkeit sensitivity Empfindlichkeit separate heterodyne receiver Empfänger mit Überlagerer series-connected condensers in Serie geschaltete Kondensatoren series-resonant circuit Resonanzkreis in Reihenschaltung set Apparatesatz shaking Erschütterung shape of (the) curve Kurvenform sharply tuned scharf abgestimmt sharpness of tuning Abstimmschärfe shielded transformer gepanzerter Transformator short circuiting device Kurzschließer short wave condenser Verkürzungskondensator shortening condenser Verkürzungskondensator shunt Nebenschluß shunt regulator Nebenschlußregulator S. I. C. = specific inductive capacity Dielektrizitätskonstante side band Seidenband durch Modulation signal-to-noise ratio Verhältnis von Lautstärke zu Störungen signal strength Lautstärke silver Silber sine curve Sinuskurve single phase einphasig single-pole switch einpoliger Schalter sinusoidal sinusförmig sketch Skizze slider, adjusting Schiebekontakt sliding contact Schiebekontakt slightly damped schwach gedämpft slight damping schwache Dämpfung

slip ring Schleifring slit Schlitz small-power station Kleinstation smooth glatt smooth disc discharger rotierende Funkenstrecke ohne Zacken smother condenser Ausgleichkondensator soft iron Weicheisen soft-iron vane instrument Weicheiseninstrument solenoid Spule solution Lösung (in Flüssigkeit) sourdine Schalldämpfer spacing contact Trennstromkontakt span Antennenabspannung span pole Abspannpfahl spark Funke spark coil Funkeninduktor spark discharge Funkenübergang sparking distance Funkenstrecke spark gap Funkenstrecke spark gap, multiple unterteilte Funkenstrecke spark micrometer gap Funkenmikrometer spark, guenched Löschfunken spark rate Funkenzahl specific inductive capacity Dielektrizitätskonstanté speed of signalling Telegraphiergeschwindigkeit speed, transmitting Sendegeschwindigkeit spot of light Lichtzeiger spring Feder spring drum Federtrommel square Quadrat squealing Selbsttönen (von Verstärkern) squirrel cage aerial Reusenantenne stage, multi- mehrstufig starter Anlasser starting resistance Anlasser static frequency changer (statischer) Frequenzwandler statics atmosphärische Störungen station, long-distance Großstation station, small-power Kleinstation steadiness of the wave Konstanz der Wellenlänge steel Stahl steen steil step, to come in in Tritt kommen step-up transformer Hochtransformator

stop-screw Anschlagschraube storage battery Akkumulatorenbatterie straight oscillator geradliniger Oszillator straight wire ausgespannter Draht strain-insulator zugfester Antennenisolator strays atmosphärische Störungen strength, dielectrice dielektrische Festigkeit strength, disruptive Durchschlagsfestigkeit strength, signal Lautstärke strengthened verstärkt stress, dielectric dielektrische Beanspruchung strip, paper Papierstreifen strongly damped stark gedämpft studded mit Zähnen versehen studded disc discharger rotierende Funkenstrecke mit Zähnen studio Aufnahmreaum sulphuric acid Schwefelsäure superimpose überlagern supply Speisung, Stromzuführung, Stromquelle support, antenna Antennenbefestigung surface Oberfläche suspension device Aufhängevorrichtung s. w. g. = standard wire gauge swinging Schwingung switch Schalter switch, change-over Umschalter switch, change-tune Wellenumschalter switchboard Schalttafel synchronous spark discharger rotierende Funkenstrecke syntonic wireless telegraphy abgestimmte drahtlose Telegraphie syntonisation Abstimmung syntonise abstimmen syntonising coil Abstimmspule syntonising inductance Variometer syntony Abstimmung tapper Klopfer tapping Erschütterung tension Spannung

83

terminal Klemme

tester Prüfapparat testing Prüfung

thermions Thermionen

thermionic amplifier Röhrenverstärker

thermionic valve detector Audionröhre

thermionic valve Elektronenröhre

thermo-couple Thermoelement

test Versuch

thoriated tungsten filament Wolfram-Heizfaden mit Thoroxyd thread Gewinde tight coupling feste Kopplung time of oscillation Schwingungsdauer timed spark Taktfunken tin Zinn tin-foil coating Staniolbelag toll cable Fernkabel toll call Ferngespräch toroidal coil Ringspule T-shaped antenna T-Antenne traffic Verkehr trailing aerial freihängende Antenne transformer Transformator transient current Augenblicksstrom transient potential difference Augenblicksspannung transmitter Sender transmitter, inductive gekoppelter Sender transmitting, aerial Sendeantenne transmitting insulator Isolator für Sendeantenne transmitting valve Senderöhre trembler Selbstunterbrecher triode Dreielektrodenröhre troubles Störungen tube Röhre tune abstimmen tuner Abstimmapparat tungsten Wolfram tuning Abstimmung tuning fork Stimmgabel tuning fork circuit breaker Stimmgabelunterbrecher turns, ampere- Amperewindungen twin-coupled condenser doppelt geschalteter Kondensator

umbrella aerial Schirmantenne undamped waves ungedämpfte Wellen undulatory movement Schwingung unidirectional einseitig gerichtet unit Einheit, Einheitsmaß unpure unrein useful damping Nutzdämpfung useful effect Nutzleistung valve Röhre valve receiver Röhrenempfänger valve transmitter Röhrensender vertical electric waves stehende elektrische Wellen vibrating break Hammerunterbrecher vibration Schwingung vibration period Schwingungsperiode voltage Spannung volumen indicator Lautstärkenmesser volumen of speech Lautstärke water-jet Wasserstrahl wave Welle wave antenna Horizontal-Antenne (Länge ≈ 1 Wellenlänge) wave-changing switch Wellenumschalter wave-length Wellenlänge wave propagation Fortpflanzung der Wellen wave-train Wellenzug wave tuning Wellenlängenabstimmung wavemeter Wellenmesser weak coupling lose Kopplung weakly damped schwach gedämpft wear Abnutzung wheel Rad wheels, train of Räderwerk whistling Pfeifen winding Wickelung wing circuit Anodenstromkreis wire Draht wired wireless Hochfrequenztelegraphie auf Leitungen wireless telegraphy drahtlose Telegraphie worm Schneckenrad Y-connected in Sternschaltung yoke Joch

zincite Rotzinkerz

IMPEDANCE.

Impedance is the whole opposition of a radio circuit or component to the passage of an A.C. at any specific frequency and is, in fact, a combination of reactance and resistance. Numerically its value is denoted in Ohms.

Let $A =$	impedance in ohms.	PETILI	
B ==	capacity in farads.	E. F. F. F. T.	
C ==	reactance of inducti	on in ohms.	
D =	inductance of coil in	n henries.	
E =	D.C. resistance in o	hms.	
G =	reactance of capacit	y in ohms.	REFLE
A =	G		Fig. 31.
A =	E		Fig. 32.
A ==	C	··· P	Fig. 33.
A =	$\sqrt{G^2 + E^2} \dots$		Fig 34.
A ==	$1 \div \left(\frac{1}{G_1} + \frac{1}{G_2} \right)$)	Fig. 37.
A =	$GC \div (\sqrt{C^2 - G^2})$		Fig. 41.
A =	$CE \div (\sqrt{C^2 + E^2})$		Fig. 42.
A =	$1 \div \left(\frac{1}{C_1} + \frac{1}{C_2}\right)$)	Fig. 39.
A ==	C - G		Fig. 35.
A =	$\sqrt{C^2 + E^2}$	···· (1 ···)	Fig. 36.
	$1:(\frac{1}{1}+\frac{1}{1})$		Fig 38
A =	$T = (E_1 + E_2)$	1.4.1.1.1.1	Fig. 30.
A =	$GE \div (\sqrt{G^2 + E^2})$) 1	Fig. 40.
1 2 2 2 3		A FILL	
122		ll	00-0
FIG. 31.	FIG.32.	EIG S FIG	.33.
			00
FIC 7		11	
FIG. 3	FIG. 3	3. 00000	FIG. 30.
	[-····]	. Teees	ee-
20052	. I mil	Le000	ee_
4 6 A. O.	FIG.38.	FIG.	39.
Sal lot	2000000000	020000	0000000
FIG. 37.		res	ler-
Tww	T all	1	
L			12
FIG. 40). FIG. 41.	E CA Q & FIC	. 46.

199				tine. Diezo		OPP	ER V	NIRE	TAB	LES		のないの			L
C.	DI AMETER.	Weight in Ibs.	Resistance	Resistance in ohms per	TUI	RNS PER	INCH CI	LOSE WO	UND	Area of wire	TURNS P	ER SOUARE	INCH WITH	WIRES WOUN	ID SIDE BY
The second				1000yds	Enamel.	Single Silk	Double Silk	Single Cotton	Double Cotton	in circular Mils	Enamel	Single Silk	Double Silk	Single Cotton	Double Cotton
_0	•5000	2271.0	.000053	.12227	1		1		1	250000					
.0.	.4320	1.695.1	960000.	.16379	1	1	1	1	1	186624	1				
0.	.3720	1256-9	-000175	•2209	1	1	1	1	1	138384					
0	.3240	935.5	506000-	-2912	!	1		1		104976					
~	.2760	6-169	-000580	-4013	1	1		1	1	76176	1	-			
1	.2320	438-9	001161	•5679	1	1	1		1	53824		1			
.0	.1920	334.8	-002476	•8292	1	1		1	1	36864		1			
~	1 600	232.5	005135	1-1941	1	1				25600			1		1
0	.1280	148.82	-012537	1.8657	7.5	1	1			16384	56	-			日本
_	.1160	112.22	018587	2.272	8.2	1	1	8.0	7.6	13456	67	1	-	64	g
N	.1040	98.24	-02877	2.826	1.6	1	1	8-8	8.4	10816	83	1	1	3 5	3 7
9	.0920	76-88	04698	3.612	9.4	1	1	6.6	6.9	8464	88	1		80	20
4	00800	58-13	08216	4.776	8.01	-	1	11.2	10.5	6400	117	1	1	125	3
S	.0720	47.09	.12523	5.897	13.2	1	1	12.5	8.11	5184	174	1		157	130
9	.0640	37.20	.2006	119.9	14.8	14.7	14.5	13-9	13-0	4096	219	216	210	661	169
2	-0560	28.48	.3422	9.747	16.9	16.7	16.5	15.7	14.5	3136	285	279	272	246	210
~	.0480	20.93	.6340	13.267	19.7	8.61	19.4	18.0	16.8	2304	388	392	376	324	282
-	.0400	14.533	1.3146	19.105	23.5	23.5	23-0	21.0	19.4	1600	562	552	529	441	376
0	.0360	11 - 772	2.004	23.59	26.0	26.0	25.3	23.5	21.0	1296	676	676	640	552	441
	-0320	9.301	3.209	29.85	29.2	1.62	28.3	26.1	23.0	1024	852	847	800	681	529
	.0280	7.121	5.475	38.99	33.0	0.66	6. IE	1.62	25.4	784	1089	1089	1017	846	645
2 .	0240	1 2332	0-144	53.07	38.3	39.6	37.8	34.2	28.4	576	1467	1568	1428	1169	796
+ .	0220-	4.396	4.366	63-16	41.6	42.1	36.9	36.7	31.0	484	1730	1772	1361	1346	961
-	0020.	3.633	21-030	76.42	45.5	460	1.64	39.6	1.65	400	2070	2116	1857	1568	1095
		Th	e above da	ta supplied	ph cou	rtesy o	f Londo	on Elec	tric Wir	+ Co. & S	miths Ltd.	[LEWCOS]		10	10

3588 5640 640 2284 2470 2672 260 4057 4583 SIDE BY OTHER 5026 Cotton 413 489 116 2116 253 TURNS PER SQUARE INCH WITH WIRES WOUND SIDE AND EACH LAYER IMMEDIATELY ABOVE THE 4382 9 544 2520 2862 3260 3576 3943 6 400 293 8408 1449 9801 Single 849 2134 88 N 5625 2769 ¢ 9584 0816 4435 5565 24964 53824 Double 3806 7161 22201 28561 38416 44944 2333 4956 628 717 826 32761 3294 273 72900 59049 5024 5913 6707 7867 8892 4884 8225 41616 49284 91204 Co. & Smiths Ltd. (LEWCOS) 3806 4448 22801 30625 35344 3113 0404 25921 2321 Single 2621 26896 31684 36864 43264 51529 65536 81796 0889 S 7956 9409 1025 6384 6006 21025 5256 6839 4356 3456 2520 822 3036 Enamel 37.21 + 53.76 36.00 2.96 268.96 00.9 00.00 70.56 27 .04 23 -04 9.36 5.76 4.00 vea of wire 324-00 219.04 84.96 34.56 84.64 57.76 7.84 2.56 Mils. 16.64 46.24 0.24 00. • 44 in circular CONTINUED above data supplied by courtesy of London Electric Wire 47.8 40.5 46-0 49.7 6.65 63-7 67.7 6.01 38.6 44.4 2.15 Double 1.15 75.1 25.4 37.6 CLOSE WOUND 80.0 0.66 2.16 COPPER WIRE TABLES Single Cotton 46.2 50.2 5.65 57.1 59-8 62.8 56.2 6.69 85.4 01 12 43.0 6.06 9.79 Double 9.99 74.6 29.3 84.7 61.7 70.4 48.3 52.3 57-4 113 125 49 96 232 04 131 58 69 212 TURNS PER INCH 8 76.9 8-18 58.7 55.8 94.3 51.2 2.18 56.7 12.4 302 Single 02 35 204 22 51 75 8.8 243 270 -19 222 97.0 0.19 66.0 2.17 82.7 89.3 50.2 72.5 286 55.1 105 45 178 192 208 256 333 385 116 28 64 227 iname! 13.65 65.27 529.2 910.5 Recistance in ohms per 98.80 433.2 130.5 326.7 578.9 39.55 1.50E 361.2 94.35 1.199 849.1 227-2 262.1 30570 1000 yds 7642 21230 2359 2985 3899 5307 11941 in ohms per ib. 32.06 76.86 42.35 3365000 46.52 85 .87 469.8 676.0 2597.0 013079 623000 Resistance 70.14 336.5 574.0 513500 247.4 008.7 54750 01440 210300 340 6269 3146 20040 32090 4603 0 The Weight in Ibs. per 1000 yds. £80600 17585 · 14 533 11772 00301 05232 03633 02325 6800 3966 2222 2093 .9895 0594 ·9083 6409 5246 -3270 -7688 .4200 2456 07121 2.443 2.943 0180 0164 0148 0124 0010 9600 0024 0136 -0108 0092 0084 00 76 0068 0000 0052 0048 0044 0040 0028 00200 0016 0100 DIAMETER 0032 0116 0012 S.W.C. 26 28 28 29 29 33 33 34 34 36 33 39 39 39 30 42 50 4-

RESISTANCE CALCULATOR

DUBILIER

The above chart supplied by courtesy of Dubilier Condenser Co. (1925) Ltd.

POWE	RR	ATING	GS (OF	FIX	EC		RESI	STAN	CES	
Wattage Rating OHMS	50	100	250	500	750		1000	2000	3000	4000	5000
0.5 Watt { Amps Volts	•1 5	·07 ·0	045 11	·03: 16	2 .02	5.	022	·016 32	·013 39·5	·011 45	-010 50
I • O Watt-{ Amps Volts	•141 7	·10 ·	063 16	·04! 22	5 •03 27	6 .	032 32	•022 45	·018 55	·016 62·5	•014 71
2.0 Watts Amps Volts	·2 10	· 141 ·	089 23·1	·061 32·5	·05 39		045 45	·032 62	·026 77	·022 89	·020 100
3-O Watts Amps Volts	·25 12·2	•173 • 17•3 2	108	·076 39	5 ·06 49	2.	O55 55	·040 77	·032 95	·027 110	·025 121
5-O Watts Amps Volts	-32 15-8	· 224 · 22·4 3	141	· 100		3	·071 71	•050 100	·041 124	·035	•032 159
Wattage Rating OHMS	6000	7000	800	•	9000	100	00	15000	20000	25000	30000
O-5 Watt - Amps Volts	•009 55	•008 59	•00 63	08 -0	0075 67	·0 7	07	·0058 86	•0055 100	·0045 110	·004 124
I-OWatt { Amps Volts	•013 77	·012 84	·01 89	1.	0105 95	·0 10	010	·008	-007 141	·0063	·0058 174
2-O Watts Amps Volts	•018 110	·017 118	·01	6	O15 135	·0	14	·011 172	·010 200	·009 225	·0082 244
3-O Watts Amps Volts	·022 135	·021 145	·02	4	Q18 164	·0 17	17	·014 213	•012 245	• OII 272	·010 300
5.0 Watts Amps Volts	·029 173	·027 188	·02 20	5	023	·0 2	22 25	· 018 265	• 016 315	• 014 355	•013 389
Wattage Rating OHMS	40000	50000	7500	00 10	00000	200	000	250000	500000	750000	1000000
O-5Watt { Amps Volts	·0035 140	·003	·00	25 .	0021 220	·00 32	DI5 21	·0014 350	· 001 500	-0008 612	·0007 709
I-O Watt - Amps Volts	·005 200	•0043 225	· OC 27)36 '5	·003 309	·0 4	023 41	• 002 500	•0014 700	·0012 866	·001 1000
2-OWatts Amps Volts	·0071 282	·0063 317	· OC 38)52 · 7	0044 440	·0 6	032 31	·0028 700	·002	-0016 1224	-0014 1410
3-OWatts Amps Volts	•0087 344	·0077 386	•00 47	62 · 5	0055	· C 7	004 70	·0035 861	•0025 1200	·002	-0017 1720
5-OWatts Amps Volts	• 011 448	•010 500	·00 61	3	·007 707	·0	05	•0045 1120	· 003	·0026 1937	·0022 2250

BRIT	ISH A	Assoc	ATIO	N THI	READ	5 (B.A.) M	ETRI	с то	DEC	CIM	AL
		RADIUS-	T I	P-	×	an and	Gell.	EC	UIV	ALEN	ITS-	1
	Þ:	147°A	ALA	JA	A		M/M	INCH	M/M	INCH	M/M	INCH
	10-3-	N.N.		Ker	1		.01	.0004	.43	.0169	.85	.0335
	Highlight.	~~~~~	B	1			.02	·0003	•44	.0173	-86	.0339
-	THRDS	OUTSIDE	CORE	PITCH	DEPTH	PADIUS	103	10012	.45	10101	1.87	0343
Nº	PER	DIA	DIA	"P"	*D"	"R"	.05	.0020	.47	0185	-89	0350
0	25.38	-2362	1890	10304	10236	.0072	.06	.0024	.48	.0189	.90	.0354
1 T	28.25	-2087	1663	0354	0212	.0064	.07	.0028	.49	.0193	-91	·0358
2	31.35	.1850	1468	.0319	10191	.0058	.08	.0032	.50	.0197	.92	.0362
3	34.84	.1614	1272	.0287	·0172	.0052	.09	.0036	.51	·0201	.93	.0366
	43.10	1260	.0080	.0260	0156	.0047	10	.004	.52	.0205	.94	-03701
6	47.85	.1102	0852	.0209	.0125	.0038	112	.0043	.54	.0209	.95	03/4
7	52.91	.0984	·0758	·0189	·0113	.0034	1.13	0051	.55	.0217	.97	0382
8	59.17	.0866	.0664	.0169	1010	.0031	.14	.0055	.56	-0221	.98	.0386
9	64.94	·0748	0564	0154	.0092	0028	.15	.0059	.57	.0225	.99	.03898
III	81.97	.0591	.0445	.0122	.0073	.0023	.16	.0063	.58	·0228	1	.0394
12	90.91	·0511	·0375	.0110	.0066	.0020	.17	.0067	.59	.0232	2	.0787
13	102.0	·0472	.0354	.0098	.0059	.0018	18	.0071	.00	.0236	3	-1181
14	109.9	·0394	·0284	10091	.0055	.0016	19	.0075	.61	0240	4	1575
15	120.5	0354	0254	0083	.0050	-0015	.20	.00/9	1.63	0244	5	1908
17	149.3	·0276	.0196	.0067	.0040	.0012	.22	.0087	.64	.0252	7	2756
18	169.5	.0244	·0174	.0059	.0035	1100	.23	.0091	.65	.0256	8	-315
19	181-8	.0213	·0147	·Q055	.0033	.0010	.24	.0095	.66	-026	9	.3543
20	212.8	·0189	·0133	.0047	.0028	.0009	.25	.0099	.67	.0264	10	.3937
22	256.4	-0146	.0100	.0039	.0028	-0007	.26	.0103	.68	.0268	11	•4331
23	285.7	.0130	.0088	.0035	.0021	-0006	.27	.0106	-69	·0272	12	•4724
24	323.6	·0114	.0076	.0031	.0019	.0006	-28	0110	.70	0276	13	-5118
BRIT	ISH S	TANDAR	D FIN	E THI	READS	(B.S.F.)	1.30	10114	.72	.0279	14	-5005
allen St	ME SAL	RADIL	JSk	-P	10. 10. 172		1.31	.0122	.73	.0287	16	.6299
	1	Art	ALE	A	1		.32	·0126	.74	.0291	17	.6693
	P	200×	AF	AR	A		.33	.013	.75	·0295	18	.7082
	-#	1-2-CA		X	R	an a sea	.34	0134	.76	.0299	19	.748
			B		A		.35	0138	.77	.0303	20	.7874
	OUTSID	ECORE	THRDS	PITCH	DEPTH	RADIUS	-30	-0142	.78	.0307	22	-8661
DIA	DIA	DIA	PER	"P"	"D"	"R"	-38	.0150	-80	.0315	23	.9055
7/22	.21875	1731	28	.03571	.0229	.0049	.39	.0154	.81	.0319	24	.9449
1/4	-250	.2007	26	.0385	.0246	.0053	.40	.0158	.82	.0323	25	.9842
9/32	-28125	.2320	26	.0385	.0246	.0053	-41	.0162	.83	·0327	(Salar	
5/16	-3125	-2543	22	-0454	.0291	.0062	.42	.0166	.84	.0331	1	
3/8	.375	-3110	20	.050	.0320	.0069	E	S.S.F. T	APP	ING D	RIL	LS
1/16	-4375	-3664	18	0556	.0356	.0076	DIAD	PULICU	IDDI	IDIALDO	III In	ADDU
12	500	420	16	0625	.040	-0086	S	IZE	SIZE	SI	ZE	SIZE
5/0	625	-4825	14	00714	.040	.0086	11.1	3/ 7/	"11"	11/ 39	1	" 7/
TILLE	-6875	.596	14	0714	.0457	-0098	4	64 16	077	16 31 21	64	63/
3/4	.750	.6433	12	.0833	.0534	.0114	4	107 1/2	176	4 1	32 12	8 64
13/10	-8125	.7058	12	.0833	.0534	.0114	16	F /16	131/6	13/6 23	32 1/	41/64
7/8	.875	-7586	11	.09091	.0582	·0125	3/0 "	0" 5%	35/	1/0 49	100	CALL STATE
1"	1.000	-8719	10	.1000	.064	-0137	1.01	110	1 - 0.	41.01.	04	
11/8	1.125	.9827	9	·1111	.0711	.0153	B.S	.F. CL	ARA	NCE	DRIL	LS
11/4	1.250	1.1077	9	•1111	.0711	.0153	DIAID	RILLIDIA	DRIL	UDIA DR	ILLIDI	ADRILL
13/8	1.375	1.2149	8	1250	080	0172	S	IZE	SIZE	SI	ZE	SIZE
15/2	1.625	1.4640	8	1250	.080	0172	1/1	1/00 3/	* v "	11/ 45	11	61%
13/4	1.750	1.567	7	1428	10015	10196	12 V	-4 71	29/	3/40	111	1171
2	2.000	1.817	7	1428	.0915	.0196	4	16	6.	4 4	6411	4 64
21/4	2.250	2.0366	6	-1667	-1067	.0229	10 2	164 1/2	33/6	1 16 53	64 13	8 25/64
21/2	2.500	2.2866	6	-1667	-1067	.0229	5/1	0" %	37	1/0 57	11	3 33/
23/4	2.750	2.5366	6	-1667	-1067	.0229	3/2	5/ 5/	41	11/11	1 15	141
13	3.000	2.7439	5	.2000	.1281	.0275	8	64 8	164		64 7	8 64

RADIO SIGNALING CODES

THE ALPHADET	USEFUL PUNCTUATION & OTHER SIGNS	PR	ONUN-	ARABIC	MORSE
N	FOLL STOP (.)			LLILLA	STMOOL
		AL	IF	10	TATURO .
Par Pare	HYPHEN OP DASH(-)	B	-	C	
R	FRACTION BAR (/) -··-·		- Canada		
F S	SEPARATION SICN (BETWEEN	- TA	(mpar	U	TUY3
G T -	WHOLE NUMBER & FRACTION)	TI	1.199 J. 44		ACART
H U	BRACKETS (())	1	TA	0	4300
I V	BREAK OR DOUBLE DASH(=)	11	EEM	3	
J .=== W .==	INTERROGATION MARK(?)	1.	1 1 1 1 1 1 1	0	AUBINA.
K X	ERASE (OR ERROR)	H	4	Ģ	U.M.
L Y	STARTING SIGNAL	K	AH	8	
M Z	END OF MESSAGE		ALC COLOR		
NUMERALS	CLOSING DOWN	D	AL.	-	MORDINE
1 6	. INTERVAL (WAIT)	-DI	JAL	i	
2 7	MESSAGE RECEIVED			pur tom	
3 8	READY TO RECEIVE	R	4	>	SIGME.
4 9	OR SOS		v		LAT.
5 0	ACCENTED LETTERS		States a state		Managy
ABBREVIATED	X N	SE	EEN	5	··· 189
NUMERALS		-	IFEN		CITED .
2 7	A OR A TELET O	St	ILEN	~	6269
3 8	<u>CH</u> <u></u> <u>U</u>	SA	D	ø	
4 9					CHETTAR
5 0 -	U.S.A. MORSE	D.	AD	3	OT MOLENE
LETTERS	PUNCTUATION MARKS ETC.	T	4	.P	
A 0	PARENTHESIS	17		r.	
B P	OUDTATION		A	~	
c	END OF OUDTATION	- AI	N	3	
D R · ··	COLON DASH			0	- File Balling
E	CAPITALIZED LETTER	. [C	HAIN	C	TAG
F T	SMALL LETTER	-	10-37	.3	
C U		1 6 6		A COLORADO AND A COLORADO	
and the second sec	COLON FOLLOWED				
H ····· V ···-	COLON FOLLOWED BY QUOTATION	. 9	AF	ق	
H···· V···-	COLON FOLLOWED BY-QUOTATION QUESTION MARK	· Q	AF	<u>ت</u>	
H ····· V ··· I ··· W · J ··-· X ·-··	COLON FOLLOWED BY QUOTATION QUESTION MARK EXCLAMATION MARK	- Q	AF AF	ت ل	
H ···· V ···- I ·· W · J ··-· X ·-·· K -·- Y ·· ··	COLON FOLLOWED BY-QUOTATION QUESTION MARK EXCLAMATION MARK COLON SEMICOLON	· Q - K/	AF AF	ت ق ل	
H · · · · V · · · - · · · · · · · · · · ·	COLON FOLLOWED BY-QUOTATION QUESTION MARK EXCLAMATION MARK COLON SEMICOLON DADAC RAPH	· Q K/	AF AF	ت ك ل	
H · · · · V · · · – J · · · · W · – – J · · · · X · – · · K – · · · Y · · · · L – Z · · · · M – E · · · ·	COLON FOLLOWED BY-QUOTATION OUESTION MARK EXCLAMATION MARK COLON SEMICOLON PARACRAPH APOSTROPHE	· Q K/	AF AF AM EEM	ق ك ل ۲	
H V I W J X K Y M E N	COLON FOLLOWED BY QUOTATION QUESTION MARK EXCLAMATION MARK COLON SEMICOLON PARACRAPH APOSTROPHE ODLLAR		AF AF AM EEM	ت ت ل ل ن	
H V J X K Y L Z M E N N LIME BALS	COLON FOLLOWED BY QUOTATION QUESTION MARK EXCLAMATION MARK COLON SEMICOLON PARACRAPH APOSTROPHE DOLLAR CENTS		AF AF AM EEM DON	ن ت ت ت ن	
H V J X K Y L Z M E N NUMERALS	COLON FOLLOWED BY -QUOTATION QUESTION MARK EXCLAMATION MARK EXCLAMATION MARK SEMICOLON PARACRAPH APOSTROPHE DOLLAR POUND STERLINC	- Q K/	AF AF AM EEM DON AW	ت ق ك ل ك ا ك ا ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت	·····
H V I W J X K Y M E N N UMERALS I 6	COLON FOLLOWED BY-QUOTATION QUESTION MARK EXCLAMATION MARK COLON SEMICOLON PARACRAPH APOSTROPHE DOLLAR CENTS POUND STERLINC SHILLINC		AF AF AM EEM DON AW	ت ق ل ل ع ب ا	
H V I W J X K Y M E N N NUMERALS I6 27	COLON FOLLOWED BY -QUOTATION QUESTION MARK EXCLAMATION MARK EXCLAMATION MARK SEMICOLON PARACRAPH APOSTROPHE ODLLAR CENTS POUND STERLINC PERCENT	· Q K/ L/ M N W HI	AF AF AM EEM DON AW E	ن ح ح ح ح ح ح ح	
H V J X K Y L Z N N N UMERALS 1 2	COLON FOLLOWED BY -QUOTATION QUESTION MARK EXCLAMATION MARK COLON SEMICOLON PARACRAPH APOSTROPHE DOLLAR CE NTS POUND STERLINC SHILLING PERCENT PERCENT	· Q K/	AF AF AM EEM DON AW E	ت ل ل ل ا ل ا ل ر ر ر ر ر ر ر ر ر ر ر ر ر	
H V I W J X K Y L Z N N N N UMERALS I6 27 38 4	COLON FOLLOWED BY -QUOTATION QUESTION MARK EXCLAMATION MARK COLON SEMICOLON PARACRAPH APOSTROPHE DOLLAR CENTS POUND STERLING PERCENT PERCENT COMMA	· Q K/	AF AF AM EEM DON AW E	ن ل ل ل ل ل ل ن ن و ت ل ل ل ل ل ل ل ل ل ل ل ل ل ل ل ل ل ل	

	66	RUS	SSIAN	Sie			RKISH
ENCLISH CREEK MORSE	RUSSIAN	NEARES	T EQUIV	ALENT	MORSE	LET	TER MORSE
AIPHA A	A	ENGL		ILA	SIMBOL	D.C.S.	SIMBOL
BETA B	6	RE CONTRACTOR	B	18 11 20		F	
CAMMA F	B		V.	1.11.5.3		C	
DELTA A	r	-	ċ		The second s	0	
EPSILON E	Δ	The second	D			D	
ZETA Z	E.3		E			E	
ETU H	ж	NY THE	J	1		F	
THETA @	3	Star 19	Z	A STORA		0	
IOTA I ··	И		1	-1-6)1-8	13.005	H	
KAPPA K	Й	an and party	Y	60000		1	
LAMBDA A	K	man of	K	MENTER		J	
MU M	Л	a son faith f	L /90	S ALA IN		K	
NU N	м	Service State	M	1120108		L	
XI =	Н		N	1.22.21		N	
OMICRON O	0		0	NG DIA		N	2.2.2
РІ П	п	ANTE CONTRACTOR	P	Contraction of the second		0	
RHO P	P		R	6		Ö	
SIGMA E ····	C	and the local diversion	S			P	
TAU T -	T	State P.	T	1 . C	-	R	
YPSILON Y	y		U	mar La		S	
РНІ ф	•		F	1		\$	
CHI X	X		КН			Т	
PSI Ψ	ų		TS	VE APAN		U	
OMECA A ·	Ч	No. of Street	CH	The state of the s		Ü	
ETA YPSILON HY	Ш		SH	All Anno 1		V	
YPSILON IOTA YI	Щ		SHCH	3 -4		Y	
OMICRON YPSILON OY	b,b	-	MUTE			Z	
ALPHA IOTA AI	Ы	States - B	1	A Designed		The los	See Marine
ALPHA YPSILON AY	10	ALLA PL	YU	- Shora			
EPSILON YPSILON EY	Я		YA	360		Part Vice	
OMICRONIOTA OI	A State of the		1. 19.62	1.2.1.0.0	2 A GERAND		Con Constanting
JAPANESE MOR	SE (KNO	OWN A	S KATA	KANA	RADIO C	ODE)	N
A HA KA MA	NA NA	RA	SA	TA	WA	YA	
アハカマ	+	3	++	タ	7	ヤ	NAN NICORI
the second s	-			CAR S	0172300	1	050100
E HE KE MI	E NE	RE	SE	TE	(W)E	(Y)E	PERIOD
							QUOTES
エヘイノ	*	V	Ľ	T	Ľ	1	
					A DARK		BRACKETS
HI KI M	NI.	RI.	SI	TI.	(W)I	(n)	
イレエミ	-	11	:1	4	Ħ	1	QUESTION
The second of the second secon				A Torney	in the second		MARK
0 HO KO M	D NO	RO	50	TO	WO	YO	
							PARACRAPH
	and the second se				A DECK OF THE OWNER	-	AND A DESCRIPTION OF A
7 M J 2	1	n	1		009 10	and	
	,		,		3 4 4 6 6	-	NICORI
	NU	RU	SU	TU	(w)U	YU	NICORI

"Q" SIGNALS.

The signals are intended as advice when no question mark follows them.

This code was originally used by wireless telegraphy operators at the but it has now become the standard code for use in all forms of Wireless Telegraphic Service.

It should be noted that, in a number of Aeronautical Services the words "True Bearing" and "True Course" are called "Geographical Hearing " and " Geographical Course." ORA What is the name of your station? How far approximately are you from my station? ORB ORC What Company (or Government) settles the accounts for your station ? Where are you bound for and where are you from ? ORD QRG ... Will you tell me my exact frequency (wavelength) in kc/s. (or metres)? ORH ... Does my frequency (wavelength) vary? ORI ... Is my note good ? ORI Do you receive me badly? Are my signals weak? ... ORK ... What is the legibility of my signals (1 to 5)? ORL Are you busy? ORM. Are you being interfered with ? ... Are you troubled by atmospherics? ORN Shall I increase power ? QRO ... Shall I decrease power? QRP ORO .. Shall I send faster? .. Shall I send slower? ORS Shall I stop sending? ORT Have you anything for me? ORU ... ORV ... Are you ready? ... Shall I tell......that you are calling him on......kc/s. (or.....metres)? ORW Shall I wait. When will you call me again ? ORX ... QRY ... What is my turn? QRZ ... Who is calling me? OSA What is the strength of my signals (1 to 5). ... Does the strength of my signals vary? · OSB ... ÕSD ÕSG Is my keying correct? Are my signals distinct? ... Shall I send...... Telegrams (or one telegram) at a ... time? QSJ What is the charge per word forincluding your internal telegraph charge ? QSK Shall I continue with the transmission of all my traffic? I can hear you through my signals. OSL Can you give me acknowledgment of receipt? ... Shall I repeat the last telegram I sent you? QSM Can you communicate with.....direct (or through QSO the medium of.....)? Will you re-transmit to free of charge ? Testin. OSP OSR Has the distress call received from been cleared ? ...

- OST ... General call preceding message addressed to all amateurs.
- QSU ... Shall I send (or reply) on.....kc/s. (or metres) and/or on waves of Type A1, A2, A3 or B?
- QSV ... Shall I send a series of VVV.....?
- QSW ... Will you send on.....kc/s. (or.....metres), and/or on waves of Type A1, A2, A3, or B?

		"Q" SIGNALS—continued.
QSX		Will you listen forkc/s.
A TRANSFER		(ormetres) ?
QSY		Shall I change to transmission onkc/s. (or
		metres) without changing the type of wave. or
ALL REPORT		shall I change to transmission on another wave?
QSZ		Shall I send each word or group twice ?
QIA	•••	Shall I cancel telegram No as if it had not been
OTD		Sent ?
OTC	•••	How many telegrams have you to cond?
ÕTE		What is my true bearing in relation to you? on
XII.	· · · ·	What is my true bearing in relation to you : OR
		What is the true bearing of (call sign) in relation to
		(call sign) ?
OTF		Will you give me the position of my station according to the
~		bearings taken by the direction finding stations which you
		control?
QTG		Will you send your call sign for fifty seconds followed by a
		dash of ten seconds onkc/s. (ormetres)
0.0011		in order that I may take your bearing?
QTH		What is your position in latitude and longitude (or by any
OTT		other way of showing it) ?
ÕTI		What is your true course?
ÖTM	••••	Send Radio electric signals and submarine sound signals to
Sim		enable me to fix my bearing and my distance
ОТО		Have you left dock (or port)?
ÕTP		Are you going to enter dock (or port)?
ÕTO		Can you communicate with my station by means of the
		International code of Signals?
QTR		What is the exact time ?
QTU		What are the hours during which your station is open ?
QUA		Have you news of(call sign of the mobile
OUD		station)?
QOB		Can you give me in this order information concerning
		(place of observation) ?
OUC		What is the last message received by you from
200	March	(call sign of the mobile station) ?
OUD		Have you received the urgency signal sent by
~		(call sign of the mobile station)?
QUF		Have you received the distress signal sent by
		(call sign of the mobile station) ?
QUG		Are you being forced to alight in the sea (or to land)?
QUH)	Will you indicate the present barometric pressure at sea
OUT		level ?
Ő01		will you indicate the true course for me to follow, with no
OUK		Can you tall me the condition of the see showing of
Sou		(place or co-ordinates) ?
OUI.	a said	Can you tell me the swell observed at
200	100	co-ordinates) ?
QUM		Is the distress traffic ended ?

AERONAUTICAL "Q" SIGNALS.

Used especially in Airways Communications by Authority of the F.C.C. in the United States of America.

This code is used chiefly for Aircraft to Aircraft, and Aircraft to

Due to safety grounds, many of the signals have been omitted here and only the most popular are included.

QAA		At what time do you expect to arrive at?
OAB		Are you making for?
OAC		Are you returning to?
OAD		At what time did you leave (place of departure)?
OAE		Have you news of
OAF		At what time did you pass?
OAG		Arrange your flight in order to arrive at(time)
		at(place). OR
		I am arranging my flight in order to arrive at(time)
		at(place).
OAH		What is your height?
OAL	1.1.1.1.	Has any Aircraft been signalled in my vicinity?
OAL		Shall I try to search for an aircraft in my vicinity (or by
10.00		any other indication) ?. OR
		Shall I try to search for aircraft in my vicinity (or by any
		other indication) ?
OAK	1 0G	Is another aircraft flying in my vicinity involving a risk of
20		collision ?
OAL	1.Picc	Are you going to land at?
ÖAM		Can you give me the latest meteorological weather report
MUSICI		for(place of observation)?
OAN	a married by	Can you give me the latest meteorological report concerning
10		surface wind for
OAO		Can you give me the latest meteorological report concerning
10	- drie	upper wind for(place of observation)?
OAP		Shall I listen for you (or for) on kilocycles
2		(or metres) ?
OAO		Am I in the vicinity of a prohibited area or of
~ ~		prohibited area (name of prohibited area)?
QAR		May I stop listening on the watch wave for minutes?
ÕAS		You are flying over a prohibited area of over
~		prohibited area (name of prohibited area).
QAT		Shall I continue to send?
QAX		Have you in your aircraft the following person, for whom
		I have waiting a radiotelegram (here follows the designa-
		tion of the person as it appears in the address of the radio-
		telegram, name and qualification) ?
QAZ		Are you flying in a thunderstorm ?
QBA		What is the visibility at(place) ?
QBB		What is the height of the cloud base at(place)?
QBC		Can you transmit to me the meteorological observation at
		present made by you from the aircraft?
QBE		I am about to wind in my aerial.
QBF		Are you flying in cloud ?
QBG		Are you flying above cloud ?
QBH		Are you flying below cloud ?
QBI		The bad visibility regulations are in force.
QBJ		At what height is the upper limit of cloud?
QBM		Hassent any message for me?

		AERONAUTICAL "Q" SIGNALS—continued.
OBN	1	Are you flying between two layers of cloud ?
ÕBT		You are missing your dots.
ÕBU	10.00	Are you sure of the accuracy of telegram?
ÕBW		Did you receive the telegram sent at(time)?
ÕCA	al filter	You are causing delay by your slowness in answering
ÕCB		You are causing delay by answering out of your turn
ÕCG		Shall I stand guard for you in the frequency of
~		kilocycles (wave length of metres) ?
OCM		There seems to be a defect in your transmission
ÕCP	200 mi	Your note is bad.
õcs	ald r	My reception on long waves has broken flown
ÕCT		My reception on short waves has broken down
ÕCY		I am working on trailing aerial OR
20		Work on trailing aerial
ODB		Have you sent telegram to?
ÕDC		Telegram has been sent by wire
ODD		Telegram No has been refused by
Ser		not in order Please inform sender
ODH		What is causing the present interference?
ODK		Answer in the alphabetical order of the call signs
ODL	(or t	Do you intend to ask me for a series of bearings
ODM		What is the magnetic course to steer with no wind to make
2Dm	1. 31	for you or for
ODO		Can you have transmitted by station on its
200	100	working wave or on the wave its call sign
		followed by a prolonged dash for minutes
		in order to permit me to use my aircraft D F Installation
ODD		in order to permit me to use my ancrait D r instanation.

QDR ... What is my magnetic bearing in relation to you or to.....?

COMMERCIAL "Z" SIGNALS.

The signals are intended as advice when no question mark follows them.

This code was originally used by wireless telegraphy operators at sea but it is now being used by all Commercial Wireless Telegraphic Companies throughout the world.

ZAL		Alter your wave length.
ZAN		We can receive absolutely nothing.
ZAP		Acknowledge please.
ZBN		Break, go ahead with new slip.
ZBS		Your signals blurring.
ZBY	5112.000	Break, go back vard (metre).
ZCD	The	Your collation is different.
ZCO		Your collation omitted.
ZCP		Local receiving conditions poor. Please increase to maximum.
ZCS		Cease sending.
ZCT	anna deill	Send code twice.
ZCW		Are you in direct communication with ?
ZDH		Your dots are too heavy (long). Adjust lighten. (shorten)
ZDL		Your dots are too light (short). Adjust heavier. (lengthen)
ZDM		Your dots missing.
ZDV		Your dots varving length. Please remedy.
ZFA		Failing Auto.

IN NAME.	co	MMERCIAL "Z" SIGNALS—continued.
ZFB	***	Signals are fading badly.
ZFF		Please observe and furnish frame code reports on
		(code letters and frequency) kilocycles.
ZFS		Signals are fading slightly.
ZGF		signals good for w.p.m.
ZGS		Your signals getting stronger.
ZGW		Your signals getting weaker.
ZHA		How are your conditions for Automatic reception?
ZHC		How are your receiving conditions?
ZHS		Send high speed auto w.p.m.
ZHY		We are holding you.
ZIR		Your transmitter has strong idle radiation
ZKG		Say when ready to resume
ZLB		Give long breaks please
ZLD		We are getting long dash from you
TIS		We are suffering from a lightning storm
ZMO		Stand by moment
ZMD		Misnunch or perforator failures
ZMO		Stand by for
TND		We do not get your breaks. We could twice
INC		Receiving conditions no good for code
ZNU		All clean of traffic
GNN		All clear of trainc.
ZOA		we have checked transmitter call letters
HONRY .		Signals are radiating on air at
ZOH	***	What traffic have you on hand?
ZOK		We are receiving O.K.
ZOR		Transmit revs. continuously.
ZPO		Send plain once.
ZPP		Punch plain only.
ZPR		Re run slip at present running.
ZPT		Send plain twice.
ZRA	1.1.1	Reversed auto tape.
ZRC	111	Can you receive code?
ZRL	***	Re run slip before one now running.
ZRO	***	Are you receiving O.K.?
ZSF		Send faster.
ZSH		Static heavy here.
ZSO		Transmit slips once.
ZSR		Your signals strong and readable.
ZSS		Send slower.
ZST		Transmit slips twice.
ZSU		Your signals are unreadable.
ZSV		Your speed varying.
ZTA		Transmit by auto.
ZTH		Transmit by hand.
ZUA		Our conditions unsuitable for andulator or auto
		recording.
ZUB		We have been unable to break you.
ZVF		Signals varying in frequency.
ZVP		Send V's please.
ZVS		Signals varying in intensity.
ZWC		Wipers or clicks here.
ZWO		Send words once.
ZWR	1 Y	Your signals weak but readable.
ZWT		Send words twice.
ZYS		What is your speed of transmission?

SIGNAL STRENGTH REPORTS. THE "QSA-R" SYSTEM.

"Q" Readability System.

QSA1—Barely perceptible ; unreadable.

QSA2—Weak ; readable only now and then.

QSA3-Fairly good ; readable with difficulty.

QSA4—Good readable signals.

QSA5-Very good signals; perfectly readable.

"R " Audibility System.

R1-Very weak signals; hardly readable.

R2-Weak signals; barely readable.

R3-Weak signals; but can be read.

R4—Fair signals; easily readable.

R5-Fairly strong signals.

R6-Good signals.

R7—Good strong signals, that come through QRM and QRN.

R8-Very strong signals; heard several feet from the phones.

R9-Extremely strong signals.

"T" Tone System.

T1-(" T3, R6 ") very rough 25 or 60 cycle A.C. tone.

T2-Rough 60 cycle A.C. tone.

T3-Poor A.C. tone. Sounds like no filter.

T4-Fair A.C., small filter.

T5-Nearly pure D.C. tone, good filter, but has key thumps, or back wave, etc.

T6-Nearly pure D.C. tone. Very good filter ; keying perfect.

T7-Pure D.C. tone, but has key thumps, back wave, etc.

T8—Pure D.C.

T9-Pure crystal controlled D.C. tone.

Readability. THE "RST" SYSTEM.

R1—Unreadable.

R2-Barely readable-very few words distinguishable.

R3—Readable with some difficulty.

R4—Readable with practically no difficulty.

R5-Perfectly readable.

Signal Strength.

S1—Faint—signals barely perceptible.

S2—Extremely weak signals.

S3-Weak signals.

S4-Fair signals.

S5-Fairly good signals.

S6-Good signals.

S7-Fairly strong signals.

S8-Strong signals.

S9-Extremely strong signals.

Tone.

T1—Extremely rough, hissing note.

T2-Very rough A.C. note-no trace of musicality.

T3-Rough, low-pitched A.C. note-slightly musical.

T4-Rather rough A.C. note-moderately musical.

T5-Musically modulated note.

T6-Modulated note-slight trace of whistle.

T7-New D.C. note-smooth ripple.

T8—Good D.C. note—minute trace of ripple.

T9-Purest D.C. note.

If the note appears to be crystal controlled, add X following the appropriate number.

AMATEUR OF "HAM" ABBREVIATIONS USUALLY USED IN NON-COMMERCIAL WIRELESS TRAFFIC.

ABT	About	IC	T soo
ACIN	Again	ICW	Interrupted Continuous
ALLEY IN	Agam	IC W	Interrupted Continuous
And in	Anead	77	wave
AHR	Another	K	Go ahead
ANI	Any	LID	Poor Operator
APRX	Approximate-	LIL	Little
	Approximately	LFT	Left
BC	Broadcast	LST	Last-Listen
BD	Bad	LTR	Letter
114	Before	MG	Motor Generator
BIC	Break	MI	My
IIN	Been	MK	Make
IND	Band	MO	More
BCUZ	Bacausa	MSG	Message
DEUZ	Between	MT	Empty
DIT WIN	Detween	MII	No
DIZ	Business	N	NO Nothing Dail
C	See, Yes.	ND	Nothing Doing
CLR	Clear	NG	No good
CN	Can	N11	Nothing
CNT	Cant	NM	No more
CK	Check	NR	Number
CKT	Circuit	NW	Now
CMG	Coming	OB	Old Boy
CUD	Could	OL	Old Lady
CW	Continuous Wave	OM	Old Man
CUL	See you later	OP	Operator
CUAGN	See you again	OT	Old Top-Timer
DA	Dav	ow	Old Woman
DE	Erom	DIC	Diego
DH	Deadhoad	DCE	Diago
DINT	Did not	FSE	Drease
DINI	Did lide	PA	Press
DNT	Don't	R	OK
DX	Long distance	RCD	Received
ES	And	RCVR	Receiver
EZ	Easy	RI	Radio Inspector
FB	Fine business	SA	Say
FM	From	SEZ	Says
FR	For	SM	Some
FRO	Frequency	SW	Short Wave
GA	Go ahead	SIG	Signal
GB	Good Bye	SKED	Schedule
GM	Good Morning	TEC	Traffic
GN	Good Night	TMW	To-morrow
GG	Coing	TP	There
	Cat Cat	TT	That
G1	Got. Get	TT	Taka
GND	Ground	TK	Thesh
HA or HI	Laughter	1K5	Inanks
HM	Him	INK	Think
HR	Here—Hear	TNX	Thanks
HV	Have	U	You
HW	How	UD	You would

AMATEUR ABBREVIATIONS-continued.

UL		You will	WT	What
UR		Your	WX	Weather
VT		Vacuum Tube (Valve)	X	Interference
VY		Very	XMTR	Transmitter
WA	·	Word after	XTAL	Crystal
WB		Word before	YF	Wife
WD		Would	YL	Young Lady
WF		Word following	YR	Your
WK		Work	30	Finish-end
WL		Will-would	73	Best regards
WN		When	88	Love and Kisses

INTERNATIONAL AMATEUR PREFIXES.

Prefix	Country	Prefix	Country
AC4	Tibet	FL8	Somali Coast
AR	Syria	FM8	Martinique
CE	Chile	FN	French India
CM	Cuba	FO8	French Oceania Tabiti
CN1	Tangier Zone	FP8	St Pierre and Miquelon
CN8	Morocco	FO8	French Equatorial Africa
СО	Cuba (Phones)	FR8	Reunion
CP	Bolivia	FT8	Tunis
CR4	Cape Verde	FU8	New Hebrides
CR5	Portuguese Guinea	FY8	French Guiana
CR6	Angola	G	England
CR7	Mozambique	G1	Northern Ireland
CR8	Portuguese India	GM	Scotland
CR9	Macao	GW	Wales
CR10	Timor	HA	Hungary
CT1	Portugal	HB	Switzerland
CT2	Azores	HC	Ecuador
CT3	Madeira	HH	Haiti
CX	Uruguay	HI	Dominican Republic
D	Germany	HI.HK	Colombian Republic
EA	Spain	HP	Panama
EA8	Canary Islands	HR	Honduras
EI	Eire	HS	Siam
EL	Liberia	HZ	Hediaz
EQ	Iran	Ι	Italy
ES	Estonia	17	Ethiopia
F3, F8	France	I	Japan
FA	Algeria	K4	Puerto Rico
FB8	Madagascar	KB4	Virgin Islands
FC8	Clipperton Islands	K5	Canal Zone
FD8	French Togoland	K6	Guam, Hawaii, Samoa,
FE8	French Cameroons	K7	Alaska (Wake Is.)
FF8	French West Africa	KA	Phillipine Islands
FG8	Guadeloupe	LA	Norway
FI8	French Indo-China	LU	Argentine
FK8	New Caledonia	LX	Luxemburg

INTERNATIONAL AMATEUR PREFIXES-continued.

Profix	Country	Prefix	Country
IV	Lithuania	VR2	Fiji Islands
12	Bulgaria	VR3	Fannings Islands
MX	Manchukuo	VR4	British Solomon Islands
NY	Canal Zone	VR5	Tonga Islands
OA	Peru	VSL VS2	a chaga a change
OH	Finland	VS3	Malava
OK	Czechoslovakia	VS4	Borneo
ON	Belgium	VS5	Sarawak
005	Belgian Congo	VS6	Hong Kong
OX	Greenland	VS7	Ceylon
OY	Faroe Islands	VU	India
OZ	Denmark	W	U.S.A.
PA	Netherlands	XE	Mexico
PK	Netherlands East Indies	XT, XU	China
PX	Andorra	XZ	Burma
PY	Brazil	YA	Afghanistan
PZ	Surinam	YI	Iraq
SM	Sweden	YJ, FU8	New Hebrides
SP	Poland	YL	Latvia
ST	Sudan	YM	Danzig
SU	Egypt	YN	Nicaragua
SV	Greece	YR	Roumania
TA	Turkey	YS	Salvador
TF	Iceland	YT, YU	Jugoslavia
U, UE		YV.	Venezuela
UK, UX	U.S.S.R.	ZA	Albania
VE	Canada	ZA1	Malta
VK	Australia	ZB1	Gibraltar
vo	Newfoundland	ZCI	Transjordania
VP1	British Honduras	ZC2	Cocos Islands
VP2	Dominica, Grenada, St.	ZC3	Christmas Islands
	Lucia, Antigua	ZC4	Cyprus
VP3	British Guiana	206	Palestine
VP4	Trinidad & Tobago	ZDI	Sierra Leone
VP5	Cayman Island, Jamaica,	ZD2	Nigeria, Cameroons (Brit.)
	Turks and Calcos Isles	LD4	Gold Coast, logoland
VP6	Barbados	700	(Brit.)
VP/	Banamas	ZDO	Nyasaland
VQ2	North Rhodesia	ZD7	St. Helena
VQ3	Tanganyika	208	Gambla South Phodosia
VQ4	Kenya	ZEI	Nom Zooland
VQ5	Uganda British Compliland	ZL	Someo (Western)
VQ6	British Somaliland	ZM	Samoa (western)
VUS	Cilbert & Elline Island	TC	Falaguay South Africa
VRI	Gilbert & Ellice Islands	25	South Anica

when + is very small compared with S.

The following Section of 82 Pages is reprinted by kind permission of the U.S. Government Dept. of Commerce, Bureau of Standards from their circular No. C 74.

FORMULAS AND DATA

R

CALCULATION OF CAPACITY CAPACITY OF CONDENSERS

Units.—The capacities given by the following formulas are in micromicrofarads. This unit is 10^{-12} of the farad, the farad being defined as the capacity of a condenser charged to a potential of 1 volt by 1 coulomb of electricity. The micromicrofarad and the microfarad (one-millionth of a farad) are the units commonly used in radio work. Radio writers have occasionally used the cgs electrostatic unit, sometimes called the "centimeter" This unit is 1.1124 micromicrofarads.

In the formulas here given all lengths are expressed in centimeters and all areas in square centimeters. The constants given are correct³¹ to 0.1 per cent.

PARALLEL PLATE CONDENSER

Let
$$S =$$
surface area of one side of one plate

 $\tau =$ thickness of the dielectric

K = dielectric constant (K = 1 for air, and for most ordinary substances lies between 1 and 10)

$$C = 0.0885 K \frac{S}{\tau}$$
 micromicrofarads. (110)

If, instead of a single pair of metal plates, there are N similar plates with dielectric between, alternate plates being connected in parallel,

$$C = 0.0885 K \frac{(N-1)S}{\tau}$$
 (111)

In these formulas no allowance is made for the curving of the lines of force at the edges of the plates; the effect is negligible when τ is very small compared with S.

³¹ The constants given in the formulas are correct for absolute units. To reduce to international units the values in absolute units should be multiplied by 1.00053. This difference need not be considered when calculations correct to 1 part in 1000 only are required.

VARIABLE CONDENSER WITH SEMICIRCULAR PLATES

Let N =total number of parallel plates

- $r_1 =$ outside radius of the plates
- $r_1 = \text{inner radius of plates}$
- $\tau =$ thickness of dielectric
- K = dielectric constant

Then, for the position of maximum capacity (movable plates between the fixed plates),

$$C = 0.1390K \frac{(N-1)(r_1^2 - r_3^2)}{\tau}$$
(112)

This formula does not take into account the effect of the edges of the plates, but as the capacity is also affected by the containing case it will not generally be worth while to take the edge effect into account.

Formula (112) gives the maximum capacity between the plates with this form of condenser. As the movable plates are rotated the capacity decreases, and ordinarily the decrease in capacity is proportional to the angle through which the plates are rotated.

ISOLATED DISK OF NEGLIGIBLE THICKNESS

Let d = diameter of the disk then C = 0.354d

ISOLATED SPHERE

Let d = diameter of the spherethen C = 0.556 d

TWO CONCENTRIC SPHERES

Let r_1 = inner radius of outside sphere

 $r_1 = radius of inside sphere$

K = dielectric constant of material between the spheres

$$C = 1.112 K \frac{r_1 r_2}{r_1 - r_2}$$
(115)

(113)

(114)

(116)

TWO COAXIAL CYLINDERS

Let $r_1 = radius$ of outer cylinder

 $r_1 = radius of inner cylinder$

K = dielectric constant of material between the cylinders

l = length of each cylinder

$$C = \frac{0.2416l}{\log_{10} \frac{r_1}{r_2}}$$

This formula makes no allowance for the difference in density of the charge as the ends of the cylinders are approached.

CAPACITY OF WIRES AND ANTENNAS.

SINGLE LONG WIRE PARALLEL TO THE GROUND

For a single wire of length l and diameter d, suspended at a height k above the ground, the capacity is

$$C = \frac{0.2416l}{\log_{10} \frac{4h}{d} + \log_{10} \left\{ \frac{l/2 + \sqrt{l^2/4 + d^2/4}}{l/2 + \sqrt{l^2/4 + 4h^2}} \right\}}$$
(117)

Usually the diameter d may be neglected in comparison with the length l, and the following equations are convenient for numerical computations.

For $\frac{4h}{l} \equiv 1$,

$$C = \frac{0.2416 l}{\log_{10} \frac{4h}{d} - k_1}$$

For $\frac{l}{4h} \ge 1$,

$$C = \frac{0.2416 \, l}{\log_{10} \frac{2l}{d} - k_{s}} \tag{119}$$

(118)

in which the quantities

$$k_1 = \log_{10} \left\{ \frac{1 + \sqrt{1 + \left(\frac{4h}{l}\right)^2}}{2} \right\}$$

and

$$k_2 = \log_{10} \left\{ \frac{l}{4h} + \sqrt{1 + \left(\frac{l}{4h}\right)^2} \right\}$$

may be interpolated from Table 6,

These formulas assume a uniform distribution of charge from point to point of the wire.

VERTICAL WIRE

Formula (119), omitting the k_2 in the denominator, is sometimes used to calculate the capacity of a vertical wire. It applies accurately only when h is large compared with l, and gives very rough values for a vertical single-wire antenna, the lower end of which is connected to apparatus at least several meters above the ground. CAPACITY BETWEEN TWO HORIZONTAL PARALLEL WIRES AT THE SAME HEIGHT

Let d = the diameter of cross section of the wires

- l = length of each wire
- h = the height of the wires above the earth
 - D = distance between centers of the wires.

The capacity is defined as the quotient of the charge on one wire, divided by the difference in potential of the two wires, when the potential of one wire is as much positive as the other is negative.

$$C = \frac{0.1208 l}{\log_{10} \left\{ \frac{l/2 + \sqrt{P/4 + d^2/4}}{l/2 + \sqrt{P/4 + 4\hbar^2}} \cdot \frac{4\hbar}{d} \right\} - \log_{10} \left\{ \frac{l/2 + \sqrt{P/4 + D^2}}{l/2 + \sqrt{P/4 + D^2 + 4\hbar^2}} \cdot \frac{\sqrt{D^2 + 4\hbar^2}}{D} \right\}}$$
(120)

In most cases d/l and D/l may be neglected in comparison with unity, and we may write

$$C = \frac{0.1208 \, l}{\log_{10} \frac{2D}{d} - \frac{D^2}{8h^2}} \tag{121}$$

TWO PARALLEL WIRES, ONE ABOVE THE OTHER

For the case of one wire placed vertically above the other, the formula (121) may usually be used, taking for the value of h the mean height of the wires, $\frac{h_1+h_2}{2}$. The potential of one wire is assumed to be as much positive as the other is negative.

CAPACITY OF TWO PARALLEL WIRES JOINED TOGETHER

Let l = the length of each wire

D = distance between centers

h = their height above the earth

d = diameter of cross section.

The wires are supposed to be parallel to each other and to lie in a horizontal plane. They are joined together so that they are at the same potential. The capacity is defined as the quotient of the sum of their charges by the potential above the earth.

$$C = \frac{0.4831 l}{\log_{10}\left\{\frac{l/2 + \sqrt{l^2/4 + d^2/4}}{l/2 + \sqrt{l^2/4 + d^2}} \cdot \frac{4\hbar}{d}\right\} + \log_{10}\left\{\frac{l/2 + \sqrt{l^2/4 + D^2}}{l/2 + \sqrt{l^2/4 + D^2 + 4\hbar^2}} \cdot \frac{\sqrt{4\hbar^2 + D^2}}{D}\right\}} (122)$$

which, in those cases where d^2/l^2 and $\left(\frac{D}{2h}\right)^2$ may be neglected in comparison with unity, may be written in the following forms:
For
$$\frac{4h}{l} \gtrsim t$$
,

$$C = \frac{0.4831 l}{\log_{10} \frac{4h}{d} + \log_{10} \frac{2h}{D} - 2k_1}$$
(123)

For $\frac{l}{4h} \ge 1$,

$$C = \frac{0.4831 \, l}{\log_{10} \frac{2l}{d} + \log_{10} \frac{l}{D} - 2k_2} \tag{124}$$

The quantities k_1 and k_2 are the same as in (118) and (119) and may be obtained from Table 6,

These formulas assume a uniform distribution of charge along the wire.

CAPACITY OF A NUMBER OF HORIZONTAL WIRES IN PARALLEL

This case is of importance in the calculation of the capacity of certain forms of antenna. The wires are supposed to be joined together, and thus all are at the same potential. Their capacity in parallel is then defined as the quotient of the sum of all their charges by their common potential.

)An expression for this case as accurate as the preceding formula (120) for two wires would be very complicated. The following simpler solution is nearly as accurate, and in view of the disturbing effect of trees, houses, and other like objects on the capacity of an antenna, will suffice for ordinary purposes of design.

Let n = number of wires in parallel

D = spacing of wires in parallel, measured between centers

d = diameter of wire

k = height of the wires above the ground

l = length of each wire.

Then if the potential coefficients be calculated as follows:

$$\phi_{11} = 4.605 \left[\log_{10} \frac{4h}{d} - k_1 \right]$$

$$\phi_{12} = 4.605 \left[\log_{10} \frac{2h}{D} - k_1 \right]$$
for $\frac{4h}{l} \ge 1$, (125)

or,

$$p_{11} = 4.605 \left[\log_{10} \frac{2l}{d} - k_2 \right]$$

$$p_{12} = 4.605 \left[\log_{10} \frac{l}{D} - k_2 \right]$$
 for $\frac{l}{4k} \equiv t$, (126)

the approximate capacity of the n wires in parallel will be

$$C = 1.112l_{1} + \left[\frac{p_{11} + (n-1)p_{12}}{n} - k\right]$$
(127)

the quantities k, k_1 and k_2 being obtained from Tables 6 and 7,

Example.—To find the capacity of an antenna of 10 wires 0.16 inch in diameter, in parallel, each wire 110 feet long, the spacing between the wires being 2 feet and their height above the ground 80 feet.

For this case $4h/l = \frac{320}{110}$ or l/4h = 0.344 and Table 6 gives $k_3 = 0.146$.

$$2l/d = \frac{2 \times 12 \times 110}{0.16} = 16500, \ \log_{10} \frac{2l}{d} = 4.2175$$
$$l/D = \frac{110}{2} = 55 \qquad \log_{10} l/D = 1.7404$$

$$\therefore p_{11} = 4.605 [4.218 - 0.146] = 18.75$$
$$p_{12} = 4.605 [1.740 - 0.146] = 7.340$$

and from formula (127) and Table 7 the capacity is, reducing the length of the wires to cm

$$C = (1.112 \times 110 \times 30.5) \div \left[\frac{18.75 + 9(7.340)}{10} - 2.05 \right]$$

= 584 \mu \mu f = 0.000584 \mu f.

Example.—A second antenna of 10 wires, 3/32 inch diameter, 155 feet long, spaced 2.5 feet apart, and stretched at a distance of 64 feet from the earth.

For this case
$$l/4h = \frac{155}{256} = 0.606$$
, $k_2 = 0.249$
 $2l/d = 39680$, $\log_{10} \frac{2l}{d} = 4.5986$
 $l/D = 62$, $\log_{10} l/D = 1.7924$
 $p_{11} = 20.04$, $p_{12} = 7.11$, $\frac{p_{11} + 9p_{12}}{10} = 2.05 = 6.35$
 $C = \frac{1.112 \times 155 \times 30.5}{6.35} = 0.000829 \ \mu f$

If the length of the antenna had been 500 feet, with the height unchanged, then $\frac{4h}{l} = \frac{256}{500} = 0.512$, $k_1 = 0.026$, $\log_{10} \frac{4h}{d} = 4.5154$, $\log_{10} \frac{2h}{D} = 1.7093$; by (125) $p_{11} = 20.67$, $p_{12} = 7.75$, k = 2.05,

$$C = \frac{1.112 \times 500 \times 30.5}{6.99} = 0.002426 \ \mu f.$$

TABLES FOR CAPACITY CALCULATIONS

TABLE 5 .- For Converting Common Logarithms Into Natural Logarithms

Common	Netural	Common	Waturel	Common	Watural	Common	Netural
0	0.0000	25.0	57.565	50.0	115. 129	75.0	172. 694
1.0	2.3026	26.0	59.867	51.0	117. 432	76.0	174. 996
2.0	4.6052	27.0	62.170	52.0	119. 734	77.0	177. 299
3.0	6.9078	28.0	64.472	53.0	122. 037	78.0	179. 602
4.0	9.2103	29.0	66.775	54.0	124. 340	79.0	181. 904
5.0	11. 513	30.0	69.078	55.0	125. 642	80.0	184. 207
6.0	13. 816	31.0	71.380	56.0	128. 945	81.0	186. 509
7.0	16. 118	32.0	73.683	57.0	131. 247	82.0	188. 812
8.0	18. 421	33.0	75.985	58.0	133. 550	83.0	191. 115
9.0	20. 723	34.0	78.283	59.0	135. 853	84.0	193. 417
10.0	23. 026	35.0	80, 590	60.0	138. 155	85.0	195. 720
11.0	25. 328	36.0	82, 893	61.0	140. 458	86.0	198. 022
12.0	27. 631	37.0	85, 196	62.0	142. 760	87.0	200. 325
13.0	29. 934	38.0	87, 498	63.0	145. 063	83.0	202. 627
14.0	32. 235	39.0	89, 801	64.0	147. 365	89.0	204. 930
15.0	34. 539	40.0	92. 103	65.0	149.668	90.0	207. 233
16.0	56. 841	41.0	94. 405	65.0	151.971	91.0	209. 535
17.0	59. 144	42.0	96. 709	67.0	154.273	92.0	211. 838
18.0	41. 447	43.0	99. 011	68.0	156.576	93.0	214. 140
19.0	43. 749	44.0	101. 314	69.0	158.878	94.0	216. 443
20.0	46. 052	45.0	103. 616	70.0	161, 181	95.0	218.746
21.0	48. 354	46.0	105. 919	71.0	163, 484	96.0	221.048
22.0	50. 657	47.0	108. 221	72.0	165, 786	97.0	223.351
23.0	52. 959	48.0	110. 524	73.0	168, 699	98.0	225.653
24.0	55. 252	49.0	112. 827	74.0	170, 391	99.0	227.956
		AND MADE		120584		100.0	230. 259

The table is carried out to a higher precision than the formulas, e.g., 2.3026 is abbreviated to 2.303 in the formulas.

Examples .- To illustrate the use of such a table, suppose we wish to find the natural logarithm of 37.48. The common logarithm of 37.48 is 1.57380.

If we denote the number 2.3026 by M, then from the table

I. 5		M=;	3. 4539
.0	73 -	M =	. 1681
.0	0800	M =	. 0018

3. 6238=loge 37. 48

To find the natural logarithm of 0.00748: The common logarithm is 3.87390, which may be written 0 87390-3. Entering the table we find 0.87 M=2.00325 -3 M=-6.9078

.0039 M = .00898

-6. 9078

-4. 8056 =natural log of 0.00748

TABLE 6.-For Use in Connection with Formulas (118), (119), (123), (124), (125), and (126)

4h/l	k1	1/4h	k,	4b/l	kı	1/4h	kı
0 0.1 .2 .3 .4 .5	0 0.001 .004 .009 .016 .025	0 0.1 .2 .3 .4 .5	0 0.043 .086 .128 .159 .209	0.6 .7 .8 .9 1.0	0.035 .045 .057 .069 .082	0.6 :7 .8 .9 1.0	0. 247 . 283 . 318 . 351 . 383

TABLE 7.-Values of k in Formulas (127) and (146)

	til kin s		k	P	k	n	DI KIGA
2 3 4 5	0 0.308 .621 .906	6 7 8 9 10	1.18 1.43 1.66 1.86 2.05	11 12 13 14 15	2. 22 2. 37 2. 51 2. 63 2. 74	16 17 18 19 20	2.85 2.95 3.04 3.14 3.24

CALCULATION OF INDUCTANCE

GENERAL

In this section are given formulas for the calculation of self and mutual inductance in the more common circuits met with in practice. The attempt is here made, not to present all the formulas available for this purpose, but rather the minimum number required, and to attain an accuracy of about one part in a thousand. So far as has seemed practicable, tables have been prepared to facilitate numerical calculations. In some cases, to render interpolation more certain, the values in the tables are carried out to one more significant figure than is necessary. In such instances, after having obtained the required quantity by interpolation from a table, the superfluous figure may be dropped. In all the tables the intervals for which the desired quantities are tabulated are taken small enough to render the consideration of second differences in interpolation unnecessary.

Most of the formulas given are for low frequencies, this fact being indicated by the subscript zero, thus L_o, M_o . The high-frequency formulas are given where such are known. Fortunately it is possible by proper design to render unimportant the change of inductance with frequency, except in cases where extremely high precision is required.

The usual unit of inductance used in radio work is the microhenry, which is one millionth of the international henry.³² The

²⁶ The constants in the formulas for inductance given here refer to absolute units To reduce to international units multiply by 0.99048. Since, however, an accuracy of the order of only one part in a thousand is sought here, it will not be necessary to take this difference into account.

henry is defined as the inductance "in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second." I henry = 1000 millihenries = 10° microhenries = 10° cgs electromagnetic units.

In the following formulas lengths and other dimensions are expressed in centimeters, unless otherwise stipulated, and the inductance calculated will be in microhenries.

Logarithms are given, either to the natural base ϵ or to the base 10, as indicated. The labor involved in the multiplication of common logarithms by the factor 2.303 to reduce to the corresponding natural logarithms will be very materially reduced by the employment of the multiplication table, Table 5,

which is an abridgement of the table for this purpose usually given in collections of logarithms.

All of these formulas assume that there is no iron in the vicinity of the conductor or circuit of which the inductance is to be calculated. Thus, the formulas here given can not be used to calculate the inductance of electromagnets.

SELF-INDUCTANCE OF WIRES AND ANTENNAS

STRAIGHT, ROUND WIRE

If l = length of wire

d = diameter of cross section

 μ = permeability of the material of the wire

$$L_0 = 0.002l \left[\log_{4} \frac{4l}{d} - 1 + \frac{\mu}{4} \right] \text{ microhenries}$$
 (128)

= 0.002*l*
$$\left[2.303 \log_{10} \frac{4l}{d} - 1 + \frac{\mu}{4} \right]$$
 microhenries (129)

For all except iron wires this becomes

$$L_{o} = 0.002l \left[2.303 \log_{10} \frac{4l}{d} - 0.75 \right]$$
(130)

For wires whose length is less than about 1000 times the diameter of the cross section $\left(\frac{2l}{d} < 1000\right)$, the term $\frac{d}{2l}$ should be added inside the brackets. These formulas give merely the self-inductance of one conductor. If the return conductor is not far away, the mutual inductances have to be taken into account (see formulas (134) and (136)).

As the frequency of the current increases, the inductance diminishes, and approaches the limiting value

$$L_{\infty} = 0.002l \left[2.303 \log_{10} \frac{4l}{d} - 1 \right]$$
 (131)

which holds for infinite frequency.

The general formula for the inductance at any frequency is

$$L = 0.002l \left[2.303 \log_{10} \frac{4l}{d} - 1 + \mu \delta \right]$$
 (132)

where δ is a quantity given in Table 8, as a function of x where

$$x = 0.1405 d \sqrt{\frac{\mu j}{\rho}}$$
 (133)

f =frequency:

 ρ = volume resistivity of wire in microhm-centimeters

 $\rho_{\rm o} = {\rm same for copper}$

 $\mu = 1$ for all except ison wires.

For copper at 20° C, $x_0 = 0.1071 d \sqrt{f}$.

The value a_c of x for a copper wire 0.1 cm in diameter at different frequencies may be obtained from Table 19, For a copper wire d cm in diameter $x_c = 10 d a_c$ and for a wire of some other material $x = 10 d a_c \sqrt{\mu \frac{\rho_c}{\rho}}$.

The total change in inductance when the frequency of the current is raised from zero to infinity is a function of the ratio of the length of the wire to the diameter of the cross section. Thus, the decrease in inductance of a wire whose length is 25 times the diameter is 6 per cent at infinite frequency; and for a wire 100 000 times as long as its diameter, 2 per cent.

Example.—For a copper wire of length 206.25 cm and diameter 0.25 cm at a wave length of 600 meters, that is $j = 500\ 000$, the value of x is 18.93, and from Table 8, $\delta = 0.037$.

$$\mu = 1, \quad \frac{4l}{d} = 3300, \quad \log_{10} 3300 = 3.51851$$

(From Table 5)

log. 3300	= 8.0590
starter and	414
	12
	8.1016

For zero frequency

 $L_0 = 0.4 [8.102 - 1 + 0.25] = 2.941$ microhenry

For $f = 500\ 000$

L = 0.4 [8.102 - 1 + 0.037] = 2.856 microhenry

a difference of 2.9 per cent out of a possible 3.4 per cent,

For an iron wire of the same length and diameter, assuming a resistivity 7 times as great as that of copper, and a permeability of 100, the value of x is $\sqrt{\frac{100}{7}}$ times as great as for the copper wire, or 71.5, and for this value of x,

 $\delta = 0.010$ (Table 8) $L_0 = 0.4 [32.10] = 12.84 \ \mu h$ $L = 0.4 [8.102] = 3.24 \ \mu h$ at 500 000 cycles.

The limiting value is $L_{\infty} = 2.84 \ \mu h$.

TWO PARALLEL, ROUND WIRES-RETURN CIRCUIT

In this case the current is supposed to flow in opposite directions in two parallel wires each of length l and diameter d. Denoting by D the distance from the center of one wire to the center of the other,

$$L = 0.004 \ l \left[2.303 \ \log_{10} \frac{2D}{d} - \frac{D}{l} + \mu \delta \right]$$
 (134)

The permeability of the wires being μ , and δ being obtained from (133) and Table 8, For low frequency $\delta = c.c.$. This formula neglects the inductance of the connecting wires between the two main wires. If these are not of negligible length, their inductances may be calculated by (132) and added to the result obtained by (134), or else the whole circuit may be treated by the formula (138) for the rectangle below.

STRAIGHT RECTANGULAR BAR

Let l =length of bar.

b, c = sides of the rectangular section.

$$L_0 = 0.002 \ l \left[2.303 \ \log_{10} \frac{2l}{b+c} + 0.5 + 0.2235 \ \frac{(b+c)}{l} \right]$$
(135)

The last term may be neglected for values of l greater than about 50 times (b+c).

The permeability of the wire is here assumed as unity.

RETURN CIRCUIT OF RECTANGULAR WIRES

If the wires are supposed to be of the same cross section, b by c, and length l, and of permeability unity, and the distance between their centers is D,

$$L_{\bullet} = 0.004 \ l \left[2.303 \log_{10} \frac{D}{b+c} + \frac{3}{2} - \frac{D}{l} + 0.2235 \frac{(b+c)}{l} \right] (136)$$

FIG. 178.—The two conductors of a return circuit of rectangular wires

For wires of different sizes, the inductance is given by $L_0 = L_1 + L_2 - 2M$ in which the inductances L_1 and L_2 of the individual wires are to be calculated by (135), and their mutual inductance M by (174) below.

SQUARE OF ROUND WIRE

If a is the length of one side of the square and the wire is of circular cross section of diameter d, the permeability of the wire being μ ,

$$L = 0.008 \ a \left[2.303 \ \log_{10} \frac{2a}{d} + \frac{d}{2a} - 0.774 + \mu \delta \right]$$
(137)

in which δ may be obtained from Table 8 as a function of the argument x given in formula (133). The value of δ for low frequency is 0.25, and for infinite frequency is 0.

RECTANGLE OF ROUND WIRE

Let the sides of the rectangle be a and a_1 , the diagonal $g = \sqrt{a^2 + a_1^2}$ and d = diameter of the cross section of the wire. Then the inductance at any frequency is

$$L = 0.00921 \left[(a + a_1) \log_{10} \frac{4aa_1}{d} - a \log_{10} (a + g) - a_1 \log_{10} (a_1 + g) \right] + 0.004 \left[\mu \delta (a + a_1) + 2 (g + d/2) - 2 (a + a_1) \right]$$
(138)

The quantity δ is obtained by use of (133) and Table 8. Its value for zero frequency is 0.25, and is 0 for infinite frequency.

FIG. 179.—Rectangle of rectangular wire

Assuming the dimensions of the section of the wire to be b and c, and the sides of the rectangle a and a_1 , then for nonmagnetic material the inductance at low frequency is

$$L_{0} = 0.00921 \left[(a + a_{1}) \log_{10} \frac{2aa_{1}}{b + c} - a \log_{10} (a + g) - a_{1} \log_{10} (a_{1} + g) \right] + 0.004 \left[2g - \frac{a + a_{1}}{2} + 0.447 (b + c) \right]$$
(139)

where $g = \sqrt{a^2 + a_1^2}$

INDUCTANCE OF GROUNDED HORIZONTAL WIRE

If we have a wire placed horizontally with the earth, which acts as the return for the current, the self-inductance of the wire is given by the following formula, in which

- l =length of the wire
- h =height above ground
- d =diameter of the wire
- μ = permeability of the wire
- δ = constant given in Table 8, to take account of the effect of frequency

$$L = 0.004605 \ l \left[\log_{10} \frac{4h}{d} + \log_{10} \left\{ \frac{l + \sqrt{l^2 + d^2/4}}{l + \sqrt{l^2 + 4h^2}} \right\} \right]$$

+ 0.002 $\left[\sqrt{l^2 + 4h^2} - \sqrt{l^2 + d^2/4} + \mu l\delta - 2h + \frac{d}{2} \right]$ (140)

which, neglecting $\frac{d}{l}$, as may be done in all practical cases, may be written in the following forms convenient for calculation:

For $\frac{2h}{l} \ge 1$,

$$L = 0.002 \ l \left[2.3026 \ \log_{10} \frac{4h}{d} - P + \mu \delta \right]$$
(141)

and for $\frac{l}{2h} \ge 1$,

$$L = 0.002 \ l \left[2.3026 \ \log_{10} \frac{4l}{d} - Q + \mu \delta \right]$$
(142)

the values of P and Q being obtained by interpolation from Table 9,

Mutual Inductance of Two Parallel Grounded Wires.—The two wires are assumed to be stretched horizontally, with both ends grounded, the earth forming the return circuit

Let l = length of each wire

d = diameter of wire

D = distance between centers of the wires

h = height above the earth

Then

$$M = 0.004605 l \left[\log_{10} \frac{\sqrt{4h^2 + D^2}}{D} + \log_{10} \left\{ \frac{l + \sqrt{l^2 + D^2}}{l + \sqrt{l^2 + D^2} + 4h^2} \right\} \right] + 0.002 \left[\sqrt{l^2 + D^2 + 4h^2} - \sqrt{l^2 + D^2} + D - \sqrt{D^2 + 4h^2} \right]$$
(143)

which, if we neglect $\frac{D^2}{l^3}$ and $\left(\frac{D}{2h}\right)^2$ may be expressed in the following forms:

For $\frac{2h}{l} \ge 1$,

$$M = 0.002 \ l \left[2.3026 \ \log_{10} \frac{2h}{D} - P + \frac{D}{l} \right]$$
(144)

and for $\frac{l}{2h} \ge 1$,

$$M = 0.002 l \left[2.3026 \log_{10} \frac{2l}{D} - Q + \frac{D}{l} \right]$$
(145)

the values of the quantities P and Q being obtained by interpolation from Table 9.

INDUCTANCE OF GROUNDED WIRES IN PARALLEL

The expressions for the inductance of n grounded wires in parallel involve the inductances of the single wires and the mutual inductances between the wires. Even in the case that the wires are all alike and evenly spaced, these expressions are very complicated.

The following approximate equation, which neglects the resistances of wires, is capable of giving results accurate to perhaps \mathbf{r} per cent, for n wires of the same diameter evenly spaced.

Calculate by equations (141), (142), (144), or (145) the inductance L_1 per unit length of a single wire and the mutual inductance M_1 per unit length of any two adjacent wires using, of course, the actual length in the calculation of the ratios $\frac{2h}{l}, \frac{2l}{d}$, etc. Then

$$L = l \left[\frac{L_1 + (n-1) M_1}{n} - 0.001 k \right]$$
(146)

in which n is the number of wires in parallel and k is a function of n tabulated in Table 7,

Example.—An antenna of 10 wires in parallel, each wire 155 feet long and $\frac{3}{32}$ inch in diameter, spaced 2.5 feet apart, and suspended at a height of 64 feet above the earth. Find the inductance at 100 000 cycles per second.

We have here $\frac{2h}{l} = \frac{128}{155} = 0.826$, and using this as argument in

Table 9, P = 0.6671.

From (133) x = 8.07, and thence from Table 8, $\delta = 0.087$.

$$\frac{4h}{d} = 256 \times 12 \times \frac{32}{3} = 32\ 768,\ \log_{10}\frac{4h}{d} = 4.515$$
$$\frac{2h}{D} = \frac{128}{2.5} = 51.2 \qquad \log_{10}\frac{2h}{D} = 1.709$$

Then, from formulas (141) and (144)

$$L_1 = 0.002[4.515 \times 2.3026 - 0.667 + 0.087]$$

= 0.01963 μh per cm

$$M_1 = 0.002[1.709 \times 2.3026 - 0.667 + 0.016]$$

= 0.006568 μh per cm.

From Table 7 we find for n = 10, k = 2.05, so that the inductance as calculated by (146) is

$$L = 155 \times 30.5 \left[\frac{0.01963 + 9(0.006568)}{10} - 0.00205 \right]$$

= 4727 [0.00582] = 27.4 \mu h.

CIRCULAR RING OF CIRCULAR SECTION

If a = mean radius of ring

d = diameter of wire, the inductance at any frequency is,

except for values of $\frac{d}{2a} > 0.2$,

$$L = 0.01257 \ a \left\{ 2.303 \ \log_{10} \frac{16a}{d} - 2 + \mu \delta \right\}$$
(147)

in which δ will be obtained from (133) and Table 8, Its value for zero frequency is 0.25.

TUBE BENT INTO A CIRCLE

Let the inner and outer diameters of the annular cross section of the tube be d_1 and d_2 , respectively, and the mean radius of the circle *a*, then neglecting $\frac{d_1^2}{a^2}$ and $\frac{d_2^2}{a^2}$

$$L_{0} = 0.01257 \ a \left[2.303 \ \log_{10} \frac{16a}{d_{2}} - 1.75 - \frac{d_{1}^{2}}{2(d_{2}^{2} - d_{1}^{2})} + 2.303 \ \frac{d_{1}^{4}}{(d_{2}^{2} - d_{1}^{2})^{2}} \log_{10} \frac{d_{2}}{d_{1}} \right]$$
(148)

For infinite frequency this becomes

$$L_{\infty} = 0.01257 a \left[2.303 \log_{10} \frac{16a}{d_2} - 2 \right]$$
(149)

SELF-INDUCTANCE OF COILS

CIRCULAR COIL OF CIRCULAR CROSS SECTION

For a coil of n fine wires wound with the mean radius of the turns equal to a, the area of cross section of the winding being a circle of diameter d,

$$L_0 = 0.01257 \ an^2 \left\{ 2.303 \ \log_{10} \frac{16a}{d} - 1.75 \right\}$$
(150)

This neglects the space occupied by the insulation between the wires.

TORUS WITH SINGLE-LAYER WINDING

A torus is a ring of circular cross section (doughnut shape). Let R = distance from axis to center of cross section of the winding a = radius of the turns of the winding n = number of turns of the winding

$$L_0 = 0.01257 n^2 [R - \sqrt{R^2 - a^2}]$$
(151)

FIG. 180.—Torus of single layer winding

TOROIDAL COIL OF RECTANGULAR CROSS SECTION WITH SINGLE-LAYER WINDING

A coil of this shape might also be called a circular solenoid of rectangular section.

Let r_1 = inner radius of toroid (distance from the axis to inside of winding)

r₂=outer radius of toroid (distance from axis to outside of winding)

h = axial depth of toroid.

Then $L_0 = 0.004606 n^2 h \log_{10} \frac{r_3}{r}$

(152)

FIG. 181.—Toroidal coil of rectangular section with single layer winding

The value so computed is strictly correct only for an infinitely thin winding.

SINGLE-LAYER COIL OR SOLEHOID

An approximate value is given by

$$L_{s} = \frac{0.03948 \ a^{2}n^{2}}{b}K \tag{153}$$

where n = number of turns of the winding, a = radius of the coil, measured from the axis to the center of any wire, b = length of coil = n times the distance between centers of turns, and K is a

function of $\frac{2a}{b}$ and is given in Table 10, which was calculated by Nagaoka.

For a coil very long in comparison with its diameter, K = 1.

Formula (153) takes no account of the shape or size of the cross section of the wire. Formulas are given below for more accurate calculation of the low-frequency inductance. The inductance at high frequency can not generally be calculated with great accuracy. Formulas which take account of the skin effect, or change of current distribution with frequency, have been developed. The change is very small when the coil is wound with suitably stranded wire. The inductance at high frequencies depends, however, also on the capacity of the coil, which is generally not calculable. If the capacity is known, from measurements or otherwise, its effect upon the inductance can be calculated by

$$L_{a} = L \left[I + \omega^{3} C L(IO)^{-18} \right]$$
(154)

where L_a is the apparent or observed value of the inductance, C is in micromicrofarads, and L in microhenries. The inductance of a coil is decreased by skin effect, and is increased by capacity. The changes due to these two effects sometimes neutralize each other, and in general, formula (153) gives about as good a value of the high-frequency inductance as can be obtained.

Round Wire.—The low-frequency inductance of a coil wound with round wire can be calculated to much higher precision than that of formula (153) by the use of correction terms. Formula (153) gives strictly, the inductance of the equivalent current sheet, which is a winding in which the wire is replaced by an extremely thin tape, the center of each turn of tape being situated at the center of a turn of wire, the edges of adjacent tapes being separated by an infinitely thin insulation. The inductance of the actual coil is obtained from the current-sheet inductance as follows:

Putting L_0 = inductance of equivalent cylindrical current sheet, obtained from (153)

- $L_{o} =$ inductance of the coil at low frequencies
 - n = number of turns
 - a = radius of coil measured out to the center of the wire
- D = pitch of winding = distance from center of one wire to the center of the next measured along the axis b = length of equivalent current sheet = nD
- d = diameter of the bare wire

Then $L_0 = L_a - 0.01257$ na (A + B) microhenry (155) in which A is constant, which takes into account the difference in self-inductance of a turn of the wire from that of a turn of the current sheet, and B depends on the difference in mutual inductance of the turns of the coil from that of the turns of the current sheet. The quantities A and B may be interpolated from Tables 11 and 12,

Example.—A coil of 400 turns of round wire of bare diameter 0.05 cm, wound with a pitch of 10 turns per cm, on a form of such a diameter that the mean radius out to the center of the wire is 10 cm.

$$a = 10, \ b = nD = 40, \ n = 400, \ D = 0.1, \ \frac{d}{D} = 0.5$$

The value of K corresponding to $\frac{2a}{b} = 0.5$ is 0.8181 (Table 10).

 $L_{s} = 0.03948 (400)^{2} \frac{100}{40} 0.8181 = 0.03948 \times 400\ 000 \times 0.8181$

= 12 919 microhenries = 0.012919 henry

 $\frac{\log 0.03948 = \overline{2}.59638}{\log 400\ 000} = 5.60206} \\ \log \ 0.8181 = \overline{1}.91281$

4.11125

Entering Tables 11 and 12 with $\frac{a}{D} = 0.5$, n = 400, we find

A = -0.136B = 0.335

$$A + B = 0.199$$

The correction in (155) is, accordingly

$$0.01257(400)$$
 10 (0.199) = 9.99 microhenries.

The total inductance is 12 919-10=12 909 microhenries.

Example.—A coil of 79 turns of wire of about 0.8 mm bare diameter. The mean diameter is about 22.3 cm and, for determining the pitch, it was found that the distance from the firstto the 79th wire was 9.0 cm.

We have, then,

$$a = 11.15, D = \frac{9.0}{78} = 0.115, b = nD = 79 \times 0.115 = 9.12$$

 $\frac{2a}{b} = 2.445, \frac{d}{D} = \frac{0.08}{0.115} = 0.7$

The value of K is given by Table 10 as 0.4772, so that

$L_s = 0.0$	$(79)^2 \frac{(11.15)^2}{9.12} 0.4$	772 = 1602.8 microhenries
log o 2 log	$0.03948 = \overline{2}.59638$ 79 = 3.79526	For $n = 79$, $\frac{d}{D} = 0.7$, Tables 11
2 log	11.15 = 2.09454	and 12 give
log	0.4772 = 1.67870	A = 0.200
	4. 16488	<i>B</i> = 0. 326
log	9.12 = 0.95999	(A+B) = 0.526
	3, 20480	

The correction is $0.01257 \times 79 \times 11.15 \times 0.526 = 5.8$ microhenries, and the total is 1597.0 microhenries. The measured inductance of this coil is 1595.5.

COLL WOUND WITH WIRE OR STRIP OF RECTANGULAR CROSS SECTION

Approximate values may be obtained for a coil wound with rectangular-section wire or strip by using the simple formula (153), as already explained. More precise values for the low-frequency inductance could be calculated in the same manner as for round wire above, using different values for A and B. It is simpler, however, to use formula (156) below, which applies to the single-layer coil if the symbols are given the following meaning: $a = \text{radius measured from the axis out to the center of the cross section of the wire; <math>b = \text{the pitch of the winding } D$, multiplied by the number of turns n; $c = w = \text{the radial dimension of the wire; } t = \text{the axial thickness of the wire. The correction for the cross section of the wire is obtained by using formulas (161) and (162), using <math>v = \frac{w}{D}$, $\tau = \frac{t}{D}$.

Example.—A solenoid of 30 turns is wound with ribbon $\frac{1}{16}$ inch thick, with a winding pitch of $\frac{1}{16}$ inch to form a solenoid of mean diameter 10 inches.

Here
$$a = 5 \times 2.54 = 12.70$$
 cm, $w = c = \frac{1}{4}(2.54) = 0.635$ cm
 $b = 30 \times \frac{1}{4}(2.54) = 19.05$ cm, $c/b = \frac{1}{30}$, $D = 0.635$
 $t = \frac{1}{16}(2.54)$

for the equivalent coil. Solving this by Rosa's formula (156), using $\frac{2a}{b} = \frac{4}{3}$, K = 0.6230 (Table 10), $\frac{b}{c} = 30$, $B_s = 0.3218$, we find $L_u = 182.55 \ \mu h$. The value obtained by Stefan's formula (157) is very slightly in error, being 182.5.

To obtain the correction, we have $v = \frac{w}{D} = 1$, $\tau = \frac{1}{4}$, and therefore $A_1 = \log_{\tau} \frac{2}{1.25} = 0.470$ $B_1 = -2 \left[\frac{29}{30} 0.060 + \frac{28}{30} 0.018 + \frac{27}{30} 0.008 + \frac{26}{30} 0.005 + \frac{21}{30} 0.001 \right] = -0.188$

so that the correction is (0.01257) 30 (12.70) $(0.282) = 1.35 \mu h$, and the total inductance is 183.9.

INDUCTANCE OF POLYGONAL COILS

Such coils, instead of being wound on a cylindrical form, are wrapped around a frame such that each turn of wire incloses an area bounded by a polygon.

No formula has been developed to fit this case, but it is found that the inductance of such a coil (when the number of sides of the polygon is fairly large) may be calculated, within 1 per cent, by assuming that the coil is equivalent to a helix, whose mean radius is equal to the mean of the radii of the circumscribed and inscribed circles of the polygon. That is, if r = the radius of the circumscribed circle, Fig. 182 (which can be measured without difficulty for a polygon for which the number of sides N is an even number), then the modified radius $a_o = r \cos^2 \frac{\pi}{2N}$ is to be used for a in the formulas (153) and (155) of the preceding section. **Examples.**—The following table gives the results obtained by this method for some 12-sided polygonal coils, the measured inductance being given for comparison. For N = 12, $a_0 = 0.983r$.

Coll	in lyrola	0.	o K. (se	D	8	Calculated ph	Lo measured µb
	6.35	6.24	23	0.32	7.3	63.0	61.7
	8.25	8.10	28	.32	9.0	124.7	126.3
C	11. 43	11. 22	52	.212	11.0	-638.0	630.5
D	11. 43	11. 22	34	.318	10.8	274.9	274.6
E	13.97	13.73	64	. 211	13.1	1119.5	1115.5
7	19.05	18.71	117	.158	18.5	5389	5387

MULTIPLE-LAYER COILS

Different formulas are used for long than for short coils. For long coils of few layers, sometimes called multiple-layer solenoids, the inductance is given, approximately, by

 $L_u = L_s - \frac{0.01257n^2ac}{b} (0.693 + B_s)$ (156)

FIG. 182.—Polygonal coil

where $L_{\bullet} =$ inductance, calculated by (153), letting n = number of turns of the winding a = radius of coil measured from the axis to the center of cross section of the winding b = length of coil = distance between centers of turns, times number of turns in one layer c = radial depth of winding = distance between centers of two adjacent layers times number of layers $B_{\bullet} =$ correction given in Table 13, in terms of the ratio $\frac{b}{c}$ Values obtained by this formula are less accurate as the ratio c/a is greater, and may be a few parts in 1000 in error for values of this ratio as great as 0.25, and $\frac{b}{a}$ as great as 5. For accurate results a correction needs to be applied to L_u (see (159) below).

The solution of the problem for short coils is based on that for the ideal case of a circular coil of rectangular cross section. Such a coil would be realized by a winding of wire of rectangular cross

FIG. 183.—Multiple-layer coil with winding of rectangular cross section

section, arranged in several layers, with an insulating space of negligible thickness between adjacent wires.

Let a = the mean radius of the winding, measured from the axis to the center of the cross section

b = the axial dimension of the cross section

c = the radial dimension of the cross section

 $d = \sqrt{b^2 + c^2}$ = the diagonal of the cross section

n = number of turns of rectangular wire.

Then, if the dimensions b and c are small in comparison with a, the inductance is very accurately given by Stefan's formula, which, for b > c, takes the form

$$L_{12} = 0.01257 an^{2} \left[\left(1 + \frac{b^{2}}{32a^{2}} + \frac{c^{2}}{96a^{2}} \right) \log_{e} \frac{8a}{d} y_{1} + \frac{b^{2}}{16a^{2}} y_{2} \right] \\ = 0.01257 an^{2} \left[2.303 \left(1 + \frac{b^{2}}{32a^{2}} + \frac{c^{2}}{96a^{2}} \right) \log_{10} \frac{8a}{d} y_{1} + \frac{b^{2}}{16a^{2}} y_{2} \right] (157)$$

where y_1 and y_2 are constants given in Table 14,

For disk or pancake coils, b < c, and the formula becomes

$$L_{u} = 0.01257 an^{2} \left[\left(1 + \frac{b^{2}}{32a^{2}} + \frac{c^{2}}{96a^{2}} \right) \log_{0} \frac{8a}{d} - y_{1} + \frac{c^{2}}{16a^{2}} y_{3} \right] \\ = 0.01257 an^{2} \left[2.303 \left(1 + \frac{b^{2}}{32a^{2}} + \frac{c^{2}}{96a^{2}} \right) \log_{10} \frac{8a}{d} - y_{1} + \frac{c^{2}}{16a^{2}} y_{3} \right] (158)$$

in which y_1 and y_3 are given in Table 14,

The constant y_1 is the same function of both b/c and c/b, so that its argument, in any given case, is the ratio of the smaller dimension to the larger; y_2 and y_3 are functions of c/b and b/c, respectively, the arguments being not greater than unity in either case.

The error due to the neglect of higher order terms in $\frac{b}{a}$ and $\frac{c}{a}$ in formulas (157) and (158) becomes more important the greater the diagonal of the cross section is, in comparison with the mean radius, but even in the most unfavorable case, c/b small, the inaccuracy with values of the diagonal as great as the mean radius does not exceed one-tenth of 1 per cent. The accuracy is greater with disk coils than with long coils, and best of all when the cross section is square.

For long coils (those in which the length b is greater than the mean radius a), the error of formula (157) becomes rapidly greater. In cases where both dimensions of the cross section are large, in comparison with the mean radius, no formulas well adapted to numerical computations are available, but this is not to be regarded as a case of practical importance in radio engineering.

COIL OF ROUND WIRE WOUND IN A CHANNEL OF RECTANGULAR CROSS SECTION

If we suppose that the distance between the centers of adjacent wires in the same layer is D_1 , and that the distance between the centers of wires in adjacent layers is D_2 , then the dimensions of the cross section of the equivalent coil with uniform distribution of the current over the cross section will be given by $b = n_1D_1$, $c = n_2D_2$, where n_1 and n_2 are, respectively, the number of turns per layer, and the number of layers.

The inductance of the equivalent coil calculated by formulas (156), (157), or (158), using these dimensions and the same mean radius as the actual coil, is a very close approximation to the value for the actual coil, unless the percentage of the cross section occupied by insulating space is large.

When such is the case, the correction to the inductance, given in the following formula, may be added:

$$\Delta L = 0.01257 \, an \left[2.30 \, \log_{10} \frac{D}{d} + 0.138 + E \right] \tag{159}$$

in which D = distance between centers of adjacent wires

d = diameter of the bare wire

E = a term depending on the number of turns and their arrangement in the cross section. Its value may with sufficient accuracy be taken as equal to 0.017. The correction in (159) should, in any case, be roughly calculated, to see if it need be taken into account.

Example.—Suppose a coil of winding channel b=c=1.5 cm, wound with 15 layers of wire, with 15 turns per layer, the mean radius of the winding being 5 cm. Diameter of bare wire = 0.08 cm.

In this case formula (158) gives

$n = 225, d^2 = 4.5, $	$\frac{d^3}{d^2} = \frac{4.5}{25} = 0.18, b/c = 1, j$	$y_1 = 0.8483, y_3 = 0.816$	
$L_u = (0.01257)$	$(5)(225)^{2}\left[\left\{1+\frac{3(0.3)^{2}}{9}\right\}\right]$	$\frac{+(0.3)^2}{100}$ log. $\frac{8}{\sqrt{0.18}}$	
	$-0.8483 + \frac{(0.3)^3}{16} 0.8$		
log 8 = 0.90309	2.76310° 1.0	$0375 \log \frac{8a}{d} = 2.9$	478
log 0.18 = 1.62764	.17269	$-y_1 =8$	483
$\log_{10} \frac{8a}{d} = 1.27543$	$\frac{1}{5}$ 2.93683 = log. $\frac{8a}{d}$	$\frac{0.09}{16} 0.816 = 0.000$	995 046
and the second se	Supervision de Superior	2. 10	04

log 10 2.10	4 = 0.32305 = 4.70436			
log 10 0.01 log 10 5	257 = 2.09934 = 0.69897	$L_u = 6694$ microhenries.		
	3 82572			

The correction for insulation is found from (159), as follows:

$$\frac{D}{d} = \frac{0}{0.08} = \frac{5}{4}, \ \log_{10} \frac{5}{4} = 0.09691, \ \log_{10} \frac{5}{4} = 0.223$$

0.138
$$E = 0.017$$

0.378
ction = (0.01257) (5) (225) 0.378 = 3.34 \mu h

corre

. See Table s.

The total inductance is 6697 microhenries = 6.697 millihenries. The correction could, in this case, have been safely neglected. *Example.*—A coil of 10 layers of 100 turns per layer, mean radius = 10 cm, the wires being spaced 0.1 cm apart.

For this case n = 1000, a = 10, b = 10, c = 1.

Using formula (156) with $\frac{2a}{b} = 2$, K = 0.5255, b/c = 10

 $L_{\rm s} = (0.03948) \frac{1000^2 \, 10^2}{10} 0.5255 = 207 \, 400$ microhenries.

For the correction, Table 13 gives for $\frac{b}{c} = 10$

0.693 B.=0.279

so that the correction = $(0.01257)10^{6}\frac{10}{10}0.973 = 12200$ and the inductance is

 $L_u = 207 400 - 12 200 = 195 200$ microhenries = 195.2 millihenries.

The formula (157) gives a value about one part in 900 higher than this.

INDUCTANCE OF A FLAT SPIRAL

Such a spiral may be wound of metal ribbon, or of thicker rectangular wire, or of round wire. In each case, the inductance calculated for the equivalent coil, whose dimensions are measured by the method about to be treated, will generally be as close as I per cent to the truth, the value thus computed being too small.

If *n* wires, Fig. 184, of rectangular cross section are used, whose width in the direction of the axis is w, whose thickness is t, and whose pitch, measured from the center of cross section of one turn to the corresponding point of the next wire is D, then the dimensions of the cross section of the equivalent coil are to be taken as b = w, c = nD, and as before $d = \sqrt{b^2 + c^2}$.

The mean radius of the equivalent coil is to be taken as $a = a_1 + \frac{1}{2}(n-1)D$, the distance a_1 being one-half of the distance AB (see Fig. 185) measured from the innermost end of the spiral across the center of the spiral to the opposite point of the innermost turn.

The inductance L_u of the equivalent coil is to be calculated using the above dimensions in (158), assuming for *n* the same number of turns as that of the spiral. If round wire is employed, the same method is used for obtaining the mean radius a and the dimension c, but it is more convenient to take b as zero, and use for the calculation of the inductance of the equivalent coil the special form of (158) which follows when b is placed equal to zero.

$$L_{a} = 0.01257 \ an^{2} \left\{ \log_{a} \frac{8a}{c} - \frac{1}{2} + \frac{c^{2}}{96a^{2}} \left(\log_{a} \frac{8a}{c} + \frac{43}{12} \right) \right\}$$

= 0.01257 \ n^{2}a \left\{ 2.303 \log_{10} \frac{8a}{c} - \frac{1}{2} + \frac{c^{2}}{96a^{2}} \left(2.303 \log_{10} \frac{8a}{c} + \frac{43}{12} \right) \right\} (160)

FIG. 184.—Sectional view of flat spiral wound with metal ribbon FIG. 185 .- Side view of flat spiral

The correction for cross section may, in each case, be made by adding 0.01257 na (A_1+B_1) to the value of inductance for the equivalent coil.

For round wires the quantities A_1 and B_1 may be taken as equal to A and B in the Tables 11 and 12, just as in the case of single-layer coils of round wire.

In the case of wire or strip of rectangular cross section the matter is more complicated on account of the two dimensions of the cross section.

If we let $\frac{w}{D} = v$ and $\frac{t}{D} = \tau$, then the quantities involved in the calculation of A, and B, may be made to depend on these two

parameters alone. The equations are then with sufficient accuracy:

$$A_1 = \log_{\theta} \frac{\nu + 1}{\nu + \tau} = 2.303 \, \log_{10} \frac{\nu + 1}{\nu + \tau}$$
(161)

$$B_{1} = -2 \left[\frac{n-1}{n} \delta_{12} + \frac{n-2}{n} \delta_{13} + \frac{n-3}{n} \delta_{14} + \dots + \frac{1}{n} \delta_{1n} \right]$$
(162)

in which δ_{12} , δ_{13} , etc., are to be taken from Table 15,

Example.—For a spiral of 38 turns, wound with copper ribbon whose cross sectional dimensions are 3/8 by 1/32 inch, the inner diameter was found to be $2a_1 = 10.3$ cm and the measured pitch was found to be 0.40 cm.

The dimensions of the equivalent coil of rectangular cross section are, accordingly,

$$b = 3/8 \text{ inch} = 0.953 \text{ cm},$$

$$a = \frac{10.3}{2} + \frac{1}{2} 37 (0.4) = 12.55,$$

$$c = 38 \times 0.40 = 15.2.$$

For this coil b/c = 0.0627 which gives (Table 14) $y_1 = 0.5604$.

$$y_3 = 0.599, \frac{d^3}{a^3} = 1.472, \log_3 \frac{8a}{d} = 1.886.$$

Hence from (158),

 $L_u = (0.01257) (12.55) (38)^2 [1.015(1.886) - 0.5604 + 0.055]$ = 323.3 microhenries. For this spiral $\nu = 2.38$, $\tau = 0.108$

$$A_{1} = 2.303 \log_{10} \frac{3.38}{2.58} = 0.270$$

$$B_{1} = -2 \left[\frac{37}{38} (0.028) + \frac{36}{38} (0.013) + \frac{35}{38} (0.007) + \frac{34}{38} (0.004) + \frac{33}{38} (0.003) + \frac{32}{38} (0.002) + \frac{31}{38} (0.002) + \frac{30}{38} (0.001) + \cdots \right]$$

$$= -0.112, A_{1} + B_{1} = 0.159$$

and the total correction is (0.01257) (38) (12.55) $(0.159) = 0.95 \ \mu h$ so that the total inductance of the spiral is 324.2 microhenries. The measured value was 323.5.

INDUCTANCE OF A SQUARE COLL.

Two cases present themselves

(a) A square coil wound in a rectangular cross section.

(b) A square coil wound in a single layer.

MULTIPLE-LAYER SQUARE COIL

Let a be the side of the square measured to the center of the rectangular cross section which has sides b and c, and let n be the total number of turns.

Then

$$L_{\rm u} = 0.008 \ an^2 \left[2.303 \ \log_{10} \frac{a}{b+c} + 0.2235 \frac{b+c}{a} + 0.726 \right]$$
(163)

If the cross section is a square, b = c, this becomes

$$L_{\rm u} = 0.008 \, an^3 \left[2.303 \, \log_{10} \frac{a}{b} + 0.447 \, \frac{b}{a} + 0.033 \right] \tag{164}$$

A correction for the insulating space between the wires may be calculated by equation (159) if we replace 0.01257 an therein by

FIG. 187 .- Single-layer square coil

0.008 an. This correction is additive, but will be negligible unless the insulating space between the wires is large.

SINGLE-LAYER SQUARE COLL

- Let a = the side of the square, measured to the center of the wire n = number of turns
 - $D = \text{pitch of the winding, that is, the distance between the center of one wire and the center of the next (Fig. 187) <math>b = nD$

Then

$$L_{o} = 0.008 \ an^{2} \left[2.303 \ \log_{10} \frac{a}{b} + 0.726 + 0.2231 \frac{b}{a} \right] -0.008 \ an \ [A+B]$$
(165)

in which A and B are constants having the same meaning as in (155) to be taken from Tables 11 and 12, if the wires are of round cross section. If the wire is a rectangular strip having a dimension t along the axis of the coil and w perpendicular to it, calculate L_u by (163) and correct for cross section by (161) and (162) and Table 15, using 0.008 an (A_1+B_1) .

Example.—Suppose a square coil, 100 cm on a side, wound in a single layer with 4 turns of round wire, 0.1 cm bare diameter, the winding pitch being 0.5 cm.

In this case n = 4 d = 0.1 $b = 4 \times 0.5 = 2.0$ a = 100 D = 0.5

The main term in formula (165) gives

$$0.008 \times 100 \times 16 \left[2.303 \log_{10} \frac{100}{2} + 0.726 + 0.004 \right]$$

= 12.8 [3.912 + 0.726 + 0.004] = 59.42 microhenries

Entering Tables 11 and 12,

with
$$\frac{d}{D} = \frac{0.1}{0.5} = 0.2$$
 and $n = 4$,

$$A = -1.053$$

 $B = 0.197$.

0.008 an [-0.856] = -2.74 microhenries, so that $L_u = 59.42 + 2.74 = 62.16$ microhenries.

This result may be checked by computing the self-inductance L_1 of a single turn and the mutual inductances M_{PQ} of the individual turns, and summing them up. Thus we find

$$4 L_{1} = 22.65$$

$$6M_{12} = 21.74$$

$$4M_{13} = 12.29$$

$$2M_{14} = 5.50$$

$$62.18$$
 microhenries.

Formula (165) applies only when the length b is small compared with the side of the square a.

RECTANGULAR COIL OF RECTANGULAR CROSS SECTION

Let the sides of the rectangle be a and a_1 , the dimensions of the cross section b and c, and the number of turns n, $q = \sqrt{a^2 + a_1^2}$

$$L_{u} = 0.00921 (a + a_{1}) n^{2} \left[\log_{10} \frac{2aa_{1}}{b + c} - \frac{a}{a + a_{1}} \log_{10} (a + g) - \frac{a_{1}}{a + a_{1}} \log_{10} (a_{1} + g) \right] + 0.004 (a + a_{1}) n^{2} \left[2 \left(\frac{g}{a + a_{1}} \right) - \frac{1}{2} + 0.447 \frac{(b + c)}{(a + a_{1})} \right]$$
(166)

Correct for cross section by (159) for round wire.

SINGLE-LAYER RECTANGULAR COIL

Let a and a_1 be the sides of the rectangle, D the pitch of the winding, b = nD, and n the number of turns. Then

FIG. 188.—Single-layer rectangular coil.

$$L_{0} = 0.00921 \ (a + a_{1}) \ n^{2} \left[\log_{10} \frac{2aa_{1}}{b} - \frac{a}{a + a_{1}} \log_{10} (a + g) \right]$$

$$\frac{a_{1}}{a + a_{1}} \log_{10} (a_{1} + g) + 0.004 \ (a + a_{1}) \ n^{2} \left[\frac{2g}{a + a_{1}} - \frac{1}{2} + 0.447 \ \frac{b}{a + a_{1}} \right] - 0.004 \ (a + a_{1}) \ n \ (A + B).$$
(167)

where A and B are to be taken from Tables 11 and 12, if the coil is wound with round wire. If wound with strip, take b=nD and c = radial thickness of strip. Calculate L_u by (166) and correct for cross section by (161), (162), and Table 15.

FLAT RECTANGULAR COIL

Let a_0 and a'_0 be the outside dimensions of the coil, measured between centers of the wire, D the pitch of the winding, measured between the centers of adjacent wires (Fig. 189), n the number of complete turns, d the diameter of the bare wire, c=nD.

$$g = \text{diagonal} = \sqrt{a^2 + a_1^2}, a = a_0 - (n-1)D, a_1 = a'_0 - (n-1)D.$$

Then

$$L_0 = L_u - 0.004 \ n(a + a_1)(A + B)$$

where

$$L_{0} = 0.009210 \ n^{2} \left[(a+a_{1}) \log_{10} \frac{2aa_{1}}{c} - a \log_{10}(a+g) - a_{1} \log_{10}(a_{1}+g) \right] + 0.004 \ n^{2} \left[2g - \frac{a+a_{1}}{2} + 0.447 \ c \right] (168)$$

and A and B are constants to be taken from Tables 11 and 12 for round wire. If the coil is wound with rectangular strip, put b-width of the strip, and c=nD, and calculate L_u by (166) using for A and B the values A, and B, of (161) and (162) Table 15.

FLAT SQUARE COIL

If a_0 be here the side of the square, measured between centers of two outside wires, and $a=a_0-(n-1)D$, the nomenclature being as in the previous section,

FIG. 189.-Flat square coil.

 $L_0 = L_u - 0.008 \ n \ a \ (A + B)$

in which

$$L_{u} = 0.008 \, n^{2} a \left[2.303 \, \log_{10} \frac{a}{c} + 0.2235 \, \frac{c}{a} + 0.726 \right] \quad (169)$$

For round wire the constants A and B are given in Tables 11 and 12. If the coil is wound with strip proceed as for rectangular flat coils of strip, above.

Example.—A coil of 4 turns of 0.22 cm stranded wire was found to have $a_0 = 102$ cm, the pitch of the winding being D = 2.25 cm. Here

$$a = 102 - 3 \times 2.25 = 95.25$$

 $c = 4 \times 2.25 = 9.0$

$$L_{u} = 0.008 \times 16 \times 95.25 \left[2.303 \log_{10} \frac{95.25}{9.0} + 0.2235 \frac{9.0}{95.25} + 0.726 \right]$$

$$= 16 \times 0.762 [2.359 + 0.021 + 0.726] = 37.87 \mu h$$

For

$$n = 4$$
 and $\frac{d}{D} = \frac{0.22}{2.25} = 0.098$, Tables 11 and 12 give
 $A = -1.767$, and $B = 0.197$

the correction is $0.008 \times 4 \times 95.25$ (-1.570) = -4.79 µh so that $L_0 = 37.87 + 4.79 = 42.66$ microhenries.

The measured value, uncorrected for lead wires was 44.5 microhenries.

DOUBLE FLAT RECTANGULAR COIL

Such a coil consists of two similar flat, rectangular coils, such as are treated in the preceding sections, placed with their axes in the same straight line, and their planes at a distance x apart. The two sections of such a coil may be used either singly, or in series, or in parallel.

The general method of treatment is to obtain the inductance L_1 of the single sections by formula (168) or (166), as described in the preceding sections, and the mutual inductance of the two sections, as shown below.

Then when used in series $L' = 2(L_1 + M)$, and when used in parallel $L'' = \frac{L_1 + M}{2}$

To obtain the mutual inductance, formula (183) or (184) for two equal, parallel rectangles or squares, multiplied by the product of the number of turns of the two, should be used, putting for the dimensions of the rectangles a and a_1 as defined under (168) and (169) and for the distance D in (183) or (184) a modified distance r given by the expression

$$r = kc, c = nD, (x/c \text{ small})$$

in which

2.303
$$\log_{10}k = 2.303 \frac{x^2}{c^2} \log_{10} \frac{x}{c} + \pi \frac{x}{c} - \frac{3}{2} - \frac{3}{2} \frac{x^2}{c^2} - \frac{1}{12} \frac{x^4}{c^4}$$
 (170)

When x is not small in comparison with c, r will have to be calculated by the equation

$$\log_{10} r = \frac{x^2}{c^2} \log_{10} x + \frac{1}{2} \left(1 - \frac{x^2}{c^2} \right) \log_{10} \left(c^2 + x^2 \right) + \frac{\left(2\frac{x}{c} \tan \frac{-1}{x} - \frac{3}{2} \right)}{2.303} (171)$$

When the distance x between the planes of the coils is chosen equal to the pitch D of their windings, the calculation of their inductance, when joined in series, may be obtained in a simpler manner. Putting b = 2D and $n_1 = 2n$, the number of turns of the two windings in series,

$$L' = 0.008 \ n_1^2 a \left[2.303 \ \log_{10} \frac{a}{b+c} + 0.2235 \ \frac{b+c}{a} + 0.726 \right] + 0.008 \ n_1 a \left[2.303 \ \log_{10} \frac{D}{d} + 0.153 \right]$$
(172)

for a square coil, and

$$L' = 0.009210 \ n_1^2 \left[(a+a_1) \log_{10} \frac{2aa_1}{b+c} - a \log_{10} (a+g) - a_1 \log_{10} (a+g) \right] + 0.004 \ n_1^2 \left[2g - \frac{a+a_1}{2} + 0.447(b+c) \right] + 0.004 \ n_1(a+a_1) \left[2.303 \log_{10} \frac{D}{d} + 0.153 \right]$$
(173)

for a rectangular coil

 $g = \sqrt{a^2 + a_1^2}, d = \text{diameter of bare wire.}$

Example.—As an example of the use of these formulas, take the case of an actual coil of two sections, each being a flat, square coil of 5 turns of 0.12 cm wire, wound with a pitch of D = 1.27cm, the distance of the planes of the coils being x = 1.27 cm. The length of a side of the outside turn was 101 cm.

Putting n = 5, $a = 101 - 4 \times 1.27 = 95.9$, $c = 5 \times 1.27 = 6.35$, and d/D = 0.1, formula (169) gives $L_1 = 66.28 + 6.14 = 72.42\mu h$, for a single section.

To obtain the mutual inductance, we find by (170) for

$$\frac{x}{c} = \frac{1.27}{6.35} = 0.2$$

2.303 $\log_{10} k = 2.303 \times 0.04 (-0.699) + 0.2 \pi - \frac{3}{2} - \frac{3}{2}(0.04) - \frac{1}{12}(0.0016)$

$$= -0.0644 + 0.6283 - 1.5 - 0.06 - 0.0001$$

= -0.9962

 $\log_{10} k = -0.4326 = \overline{1.5674}$

k = 0.3693 and $r = 0.3693 \times 6.35 = 2.344$

Putting this value of r in place of D in (184) with a = 95.9

$$M = 0.008 \times 5 \times 5 \left[2.303 \times 95.9 \log_{10} \left(\frac{191.8 \times 95.93}{231.5 \times 2.344} \right) + 135.62 - 191.86 + 2.34 \right] = 56.82 \ \mu h$$

For the two coils in series, then

 $L' = 2(72.42 + 56.82) = 258.5 \ \mu h$

and for the parallel arrangement

$$L'' = \frac{72.42 + 56.82}{2} = 64.6 \ \mu h$$

The inductance of the coils in series may also be found by putting a = 95.9, b = 6.35, c = 2.54, $n_1 = 10$ in (163) and (159) and we find $L = 239.8 + 18.8 = 258.6 \ \mu h$ in agreement with the other method.

MUTUAL INDUCTANCE

The following formulas for mutual inductance hold strictly only for low frequencies. In general, however, the values will be the same at high frequencies.

TWO PARALLEL WIRES OR BARS SIDE BY SIDE

- Let l = length of each wire or bar.
 - D = distance between centers of the wires.

The following expression is exact when the $F_{IG. 100.}$ —Two paratwires have no appreciable cross section, but is lel wires side by side sufficiently exact even when the cross section is large if l is great compared with D. Within these limits the shape is immaterial.

$$M = 0.002 \left[2.303 l \log_{10} \frac{l + \sqrt{l^2 + D^2}}{D} - \sqrt{l^2 + D^2} + D \right]$$
(174)

=
$$0.002l \left[2.303 \log_{10} \frac{2l}{D} - 1 + \frac{D}{l} \right]$$
 nearly. (175)

TWO WIRES END TO END WITH THEIR AXES IN LINE

Let the lengths of the two wires be l and m, their radii being supposed to be small. Then,

$$M = 0.002303 \left[l \log_{10} \frac{l+m}{l} + m \log_{10} \frac{l+m}{m} \right]$$
(176)
$$\prod_{m} \prod_{l} \prod_{$$

FIG. 191.-Two wires end to end in same straight line

TWO WIRES WITH THEIR AXES IN THE SAME STRAIGHT LINE BUT SEPARATED

Let their lengths be l and m and the distance between the nearer ends be Z.

$$M = 0.002303 [(l+m+Z) \log_{10} (l+m+Z) + Z \log_{10} Z - (l+Z) \log_{10} (l+Z) - (m+Z) \log_{10} (m+Z)]$$
(177)

TWO WIRES WITH AXES IN PARALLEL LINES

If AD, AD', AC, AC', etc., represent the distances shown in the figure, the general formula is

$$M = 0.001151 \left[l \log_{10} \left[\frac{AD + AD'}{AD - AD'} \times \frac{AC - AC'}{AC + AC'} \right] + m \log_{10} \left[\frac{AD + AD'}{AD - AD'} \times \frac{BD - BD'}{BD + BD'} \right] + 2 \log_{10} \left[\frac{AD + AD'}{AD - AD'} \times \frac{AC - AC'}{AC + AC'} \times \frac{BD - BD'}{BD + BD'} \times \frac{BC + BC'}{BC - BC'} \right]$$
(178)
$$- 0.001 (AD - AC - BD + BC)$$

the distances being AD' = l + m + Z, $AD = \sqrt{x^2 + (l + m + Z)^2}$, etc. This formula holds for Z = 0, but not when one wire overlaps on the other.

When they overlap, as in Fig. 194,

$$M = M_{1,34} + M_{23} + M_{24} \tag{(179)}$$

in which $M_{1,34}$ is to be calculated by the general formula, using Z = o and putting the segment PV for l and ST for m, while for M_{24} the length VR is put for l and WT for m with Z=o. The

mutual inductance M_{23} of the overlapping portions is obtained by (174).

FIG. 194.—Two wires with axes in parallel lines; a particular case of Fig. 193

F10. 195.—Two wires with axes in parallel F10. 196.—Two wires with axes in parallel lines, lines; another particular case of Fig. 193 with one end of each on the same perpendicular

and for the wires of Fig. 196

$$M = 0.001 \left[4.605l \log_{10} \left(\frac{2l + \sqrt{D^2 + 4l^2}}{l + \sqrt{D^2 + l^2}} \right) - \sqrt{D^2 + 4l^2} + 2\sqrt{D^2 + l^2} - D \right]$$
(181)

MUTUAL INDUCTANCE OF TWO PARALLEL SYMMETRICALLY PLACED WIRES

FIG.197.—Two parallel symmetrically placed wires

Putting for the lengths of the two wires 2l and $2l_1$ (2l the shorter) and for their distance apart D

$$M = 0.002 \left[2.303(2l) \log_{10} \left\{ \frac{l + l_1 + \sqrt{(l + l_1)^2 + D^2}}{D} \right\} + 2.303(l_1 - l) \log_{10} \left\{ \frac{l + l_1 + \sqrt{(l + l_1)^2 + D^2}}{l_1 - l + \sqrt{(l_1 - l)^2 + D^2}} \right\} + \sqrt{(l_1 - l)^2 + D^2} - \sqrt{(l + l_1)^2 + D^2} \right]$$
(182)

TWO EQUAL PARALLEL RECTANGLES

Let a and a_i be the sides of the rectangles and D the distance between their planes, the centers of the rectangles being in the same line, perpendicular to these planes

$$M = 0.009210 \left[a \log_{10} \left\{ \frac{a + \sqrt{a^2 + D^2}}{a + \sqrt{a^2 + a_1^2 + D^2}} \times \frac{\sqrt{a_1^2 + D^2}}{D} \right\} + a_1 \log_{10} \left\{ \frac{a_1 + \sqrt{a_1^2 + D^2}}{a_1 + \sqrt{a^2 + a_1^2 + D^2}} \times \frac{\sqrt{a^2 + D^2}}{D} \right\} \right] + 0.008 \left[\sqrt{a^2 + a_1^2 + D^2} - \sqrt{a^2 + D^2} - \sqrt{a_1^2 + D^2} + D \right]$$
(183)

TWO EQUAL PARALLEL SQUARES

If a is the side of each square and D is the distance between their planes, then the preceding formula becomes

$$M = 0.01842 \left[a \log_{10} \left\{ \frac{a + \sqrt{a^2 + D^2}}{a + \sqrt{2a^2 + D^2}} \times \frac{\sqrt{a^2 + D^2}}{D} \right\} \right]$$

+ 0.008 [$\sqrt{2a^2 + D^2} - 2\sqrt{a^2 + D^2} + D$] (184)

MUTUAE INDUCTANCE OF TWO RECTANGLES IN THE SAME PLANE WITH THEIR SIDES PARALLEL

$$M = (M_{16} + M_{30} + M_{45} + M_{27}) - (M_{13} + M_{25} + M_{36} + M_{47})$$
(185)

FIG. 198.—Two rectangles in the same plane with their sides parallel

the separate mutual inductances being calculated by formula (182), if the sides are symmetrically placed, and by (182) and (178) if that is not the case.

If the rectangles have a common center $M_{18} = M_{28}$, $M_{45} = M_{27}$, $M_{18} = M_{50}$, $M_{25} = M_{47}$ and for the case of concentric squares, we have

$$M = 4(M_{18} - M_{18}) \tag{186}$$

TWO PARALLEL COAXIAL CIRCLES

This is an important case because of its applicability in calculating the mutual inductances of coils (see below)

Let a = the smaller radius (Fig. 199)

A =the larger radius.

D = the distance between the planes of the circles. Then

$$\frac{a^{2}}{r_{1}} = \sqrt{\frac{\left(1-\frac{a}{A}\right)^{2}+\frac{D^{2}}{A^{2}}}{\left(1+\frac{a}{A}\right)^{3}+\frac{D^{2}}{A^{2}}}}$$
must be calculated, and

$$M = F \sqrt{Aa}$$

where F may be obtained by interpolation in Table 16 for the calculated value of $\frac{r_2}{r_1}$

 r_1 = the longest distance between the circumferences.

r₂ = the shortest distance between the circumferences.

TWO COAXIAL CIRCULAR COILS OF RECTANGULAR CROSS SECTION

If the coil windings are of square, or nearly square, cross section, a first approximation to the mutual inductance is

$$M = n_1 n_2 M_0 \tag{188}$$

where n_1 and n_2 are the number of turns on the two coils and M_{\circ} is the mutual inductance of two coaxial circles, one located at the center of the cross section of one of the coils and the other at the center of the cross section of the other.

(187)

FIG. 199.—Cross sections of two parallel coaxial circles

F16. 200. — Two parallel coaxial corls with windings of rectangular cross section

Thus, if

a = mean radius of one coil, measured from the axis to the center of cross section,

A = mean radius, similarly measured, of the other coil,

D = distance between the planes passed through the centers of cross section of the coils, perpendicular to their common axis (Fig. 200).

the value M_{\circ} will be computed by formula (187) and Table 16, using the values of a, A, and D, just defined.

If the cross sections of the windings are square, this value will not be more than a few parts in a thousand in error, even with relatively large cross sectional dimensions,

except when the coils are close together.

A more accurate value for coils of square cross section may be obtained by supposing the two parallel circles to remain at the distance D, but to have radii

$$a_1 = a \left(1 + \frac{b_1^2}{24 a^2} \right)$$
 and $A_1 = A \left(1 + \frac{b_2^2}{24 A^2} \right)$ (189)

where b_1 and b_2 are the dimensions of the square cross sections corresponding to the coils of mean radius a and A, respectively.

When the correction factors in (189) are only a few parts in 1000, the values of r_2/r_1 , and hence F, are very little affected, and the fractional correction to the mutual inductance, to allow for the cross sections, is approximately equal to the geometric mean of the fractional corrections to a and A, so that an estimate of the magnitude of the correction to the mutual inductance may be gained with little labor.

With rectangular cross sections the error from the assumption that the coils may be replaced by equivalent filaments at the center of the cross section is more important than in the case of coils of square cross section and rapidly increases as the axial dimension of one or both of the cross sections is increased, in relation to the distance D between the median planes. The error may, easily, be as great as 1 per cent or more in practical cases.

An estimate of the magnitude of the error, in any case, may be made by dividing the coils up into two or more sections of, as nearly as possible, square cross section, and assuming that each portion of the coil may be replaced by a circular filament at the center of its cross section.

Suppose that coil A is divided into two equal parts, and replaced by two filaments 1, 2, while coil B is likewise replaced by two filaments 3, 4, then, assuming that each filament is associated with a number of turns which is the same fraction of the whole number of turns in the coil as the area of the section is to the whole cross sectional area (one-half in this case) we have

$$M = \frac{n_1}{2} \frac{n_2}{2} M_{13} + \frac{n_1 n_2}{4} M_{14} + \frac{n_1 n_2}{4} M_{23} + \frac{n_1 n_2}{4} M_{24}$$

= $n_1 n_2 \left(\frac{M_{13} + M_{14} + M_{25} + M_{24}}{4} \right)$ (190)

in which M_{13} is the mutual inductance of the two circular filaments 1 and 3, etc.

For a discussion of more accurate methods for correcting for the cross section of coils, the reader is referred to Bulletin, Bureau of Standards, 8, pages 33-43; 1912.

If the coils are of the nature of solenoids of few layers, it is best to use the formulas for the mutual inductance of coaxial solenoids given in the next section.

Example.—Suppose two coils of square cross section 2 cm on a side, the radii being, a = 20, A = 25, and the distance between their median planes being D = 10 cm (Fig. 201). Further, suppose that one coil has 100 turns and the other 500.

Then

$$\frac{r_2}{r_1} = \sqrt{\frac{\left(1 - \frac{20}{25}\right)^2 + \left(\frac{10}{25}\right)^2}{\left(1 + \frac{20}{25}\right)^2 + \left(\frac{10}{25}\right)^2}} = \sqrt{\frac{0.20}{3.40}} = 0.24253$$

From Table 16 we find, corresponding to this value of $\frac{r_2}{r_1}$,

F = 0.01113. Therefore, from (187)
$$M_0 = 0.01113\sqrt{25 \times 20} = 0.2489\mu h$$

and

$$M = n_1 n_2 M_0 = 100 \times 500 \times 0.2489$$

= 12 445 microhenries
= 0.012445 henry.

FIG. 201.—Example of two parallel coaxial coils with windings of rectangular cross section

If we take account of the cross sections we have from (189)

$$a_{1} = 20 \left(1 + \frac{2^{2}}{24 \times 20^{2}} \right) = 20 (1.00042)$$
$$A_{1} = 25 \left(1 + \left(\frac{2}{25} \right)^{2} \frac{1}{24} \right) = 25 (1.00027)$$

so that the correction factor to the mutual inductance will be of the order of about $\sqrt{1.00042 \times 1.00027}$, or the mutual inductance should be increased by about 3.5 parts in 10 000 only.

Example.—Fig. 202 shows two coils of rectangular cross section. For coil P, a = 20, $b_1 = 2$, $c_1 = 3$, $n_1 = 600$. For coil Q, A = 25, $b_2 = 4$, $c_2 = 1$, $n_2 = 400$ and D = 10. If, first, we replace each coil by a circular filament at the center of its cross section, we have the same value of M_{o} as in the previous example, and

 $M = 600 \times 400 \times 0.2489$ microhenries.

More precise formulas, involving a good deal of computation, show that the true value is

$$M = 600 \times 400 \times 0.249844$$

so that the approximate value is about 3.8 parts in 1000 too small.

Each coil is then subdivided into two sections and filaments p, q, r, s, imagined to pass through FIG. 202.-Another the center of cross section of each of these subdiviexample of Fig. sions: The data for these filaments are as follows:

200

Radhus	Filaments	1	A	D	F2/T1	F
p 19. 25	pr	19. 25	25	9	0. 2365	0. 01140
q 20.75	ps	19.25	25	11	. 2722	. 009872
r 25	qr	20.75	25	9	. 2135	. 01255
. 25	Q8	20.75	25	11	. 2506	. 01077

We find then

$$M = 600 \times 400 \left\{ \frac{0.2501 + 0.2166 + 0.2858 + 0.2452}{4} \right\} = 600 \times 400 \times 0.24942$$

a result which is 1.7 in 1000 too small.

The increase in accuracy is hardly commensurate with the increased labor

MUTUAL INDUCTANCE OF COAKIAL SOLENOIDS NOT CONCENTRIC

Gray's formula, given for this case, supposes that each coil approximates the condition of a continuous thin winding, that is, a current sheet.

Let a = the smaller radius, measured from the axis of the coil to the center of the wire

- A = the larger radius, measured in the same way
- 2l = length of the coil of smaller radius = number of turns times the pitch of winding
- 2x = length of the coil of larger radius, measured in the same
 way

 n_1 and n_2 = total number of turns on the two coils

D = axial distance between centers of the coils

$$\begin{array}{ll} x_1 = D - x & r_1 = \sqrt{x_1^2 + A^2} \\ x_2 = D + x & r_2 = \sqrt{x_2^2 + A^2} \end{array}$$

Then

$$M = 0.009870 \frac{a^2 A^2 n_1 n_2}{2x \cdot 2l} \left[K_1 k_1 + K_3 k_3 + K_3 k_3 \right]$$
(191)

in which

$$K_{1} = \frac{2}{A^{2}} \left(\frac{x_{2}}{r_{2}} - \frac{x_{1}}{r_{1}} \right), \ k_{1} = 2l$$

$$K_{2} = \frac{1}{2} \left(\frac{x_{1}}{r_{1}^{6}} - \frac{x_{2}}{r_{2}^{6}} \right), \ k_{3} = a^{2}l \left(3 - 4\frac{l^{2}}{a^{2}} \right)$$

$$K_{5} = -\frac{A^{2}}{8} \left[\frac{x_{1}}{r_{1}^{6}} \left(3 - 4\frac{x_{1}^{2}}{A^{2}} \right) - \frac{x_{2}}{r_{2}^{6}} \left(3 - 4\frac{x_{2}^{2}}{A^{2}} \right) \right]$$

$$k_{5} = a^{4}l \left(\frac{5}{2} - 10\frac{l^{2}}{a^{2}} + 4\frac{l^{4}}{a^{4}} \right)$$

This formula is most accurate for short coils with relatively great distance between them. In the case of long coils it is sometimes necessary to subdivide the coil into two or more parts. The mutual inductance of each of these parts on the other coil having been found, the total mutual inductance is obtained by adding these values.

Example .--

2x = 20.55 A = 6.44 $n_1 = 15$ 2l = 27.38 a = 4.435 $n_2 = 75$ Distance between the adjacent ends of the two solenoids = 7.2 cm. Then

3

c ₁ = 20.89	$k_1K_1 = 0.04294$		
c2 = 41.44	$k_3K_3 = .01827$		
	$k_{s}K_{s} = .00519$		

0.06640

and
$$M = 0.009870 \left(\frac{a^2 A^2 n_1 n_2}{2x 2l} \right) 0.06640 = 1.069$$
 microhenries

3.99432	
=1.29378	$\log 2x = 1.31281$
=1.61778	$\log 2l = 1.43743$
= 3.05115	
= 2.82217	2.75024
2.77020	
2.75024	
	= 3.99432 = 1.29378 = 1.61778 = 3.05115 = $\overline{2.82217}$ 2.77920 2.75024

 $0.02896 = \log M$

Dividing the longer coil into two sections C and D of 37 and 38 turns, respectively, and repeating the calculation for the mutual inductance of these sections on the other coil R (Fig. 204).

For MRC	For MRD
$k_1K_1 = 0.04889$	$k_1K_1 = 0.01155$
$k_{s}K_{s} = .00652$	$k_{3}K_{3} = .00061$
$k_{\rm s}K_{\rm s} = .00005$	the southers
0.05546	0.01210

and $M = M_{\rm RC} + M_{\rm RD} = 0.8917 + 0.1956 = 1.087 \ \mu h$.

Further subdivision showed that this last value is not in error by more than 5 parts in 10 000.

The criterion as to the necessity of subdivision is the rapidity with which the terms k_1K_1 , k_3K_3 , etc., fall off in value. In the first case k_7K_7 and k_9K_6 are not negligible. The expressions for these quantities are not here given because they are laborious to calculate, and it is easier to obtain the value of the mutual inductance by the subdivision method.

COAXIAL, CONCENTRIC SOLENOIDS (OUTER COIL THE LONGER)

The formula here given holds, strictly, only for current sheets. The lengths of the coils should be taken as equal to the number of turns times the pitch of the winding in each case. Then the mutual inductance of the current sheets is not appreciably different from that of the coils.

Let a = smaller radius A = larger radius $2x = e \neq u i \forall a l e n t$ length of outer coil $2l = e \neq u i \forall a l e n t$ length of inner coil $g = \sqrt{x^2 + A^2} = \text{diag-onal.}$

Then

$$M = \frac{0.01974 \ a^2 n_1 n_2}{g} \left[1 + \frac{A^2 a^2}{8g^4} \left(3 - 4 \frac{l^2}{a^2} \right) \right]$$
(192)

This formula is more accurate, the shorter the coils and the greater the difference of their radii, but in most practical cases the accuracy is ample. In many cases the second term in (192) is negligible, and it is a good plan to make a preliminary rough calculation of this term to see whether it will need to be considered. In the case of long coils, and of coils of nearly equal radii, the terms neglected in this formula may be as great as I per cent. A criterion of rapid convergence is, in general, the smallness of $\frac{a^2A^2}{g^4}$, but the magnitude of the coefficient $\left(3-4\frac{l^2}{a^2}\right)$ and the corresponding coefficients of terms neglected in (192) may in some cases modify this condition for rapid convergence materially.

Example.-

 $2x = 30 \qquad 2l = 5 \qquad g = \sqrt{250} \qquad \frac{a^2 A^2}{g^4} = \frac{4}{625}$ $A = 5 \qquad a = 4$ $n_1 = 300 \qquad n_2 = 200$

$$0.01974 \frac{a^2 n_1 n_2}{g} = 1198.5$$

M = 1198.5 (1 + .00115) = 1199.9 microhenries.

For the case, however, where

although the value of $\frac{a^2A^2}{g^4} = \frac{1}{5000}$ only, the coefficient $\left(3-4\frac{p}{a^2}\right)$ = 141, (the length of the coil is great compared with its radius) so that the term in $\frac{a^3A^2}{g^4}$ is -0.0282, and investigation of the complete formula shows that the succeeding terms are -0.0127 and -0.0048, so that their neglect will give an error of over 1.5 per cent.

CONCENTRIC COAXIAL SOLENOIDS (OUTER COIL THE SHORTER)

FIG. 206.-Coaxial concentric solenoids, outer coil being shorter

In this case we have to put $g = \sqrt{l^2 + A^2}$, and the formula is

$$M = 0.01974 \frac{a^2 n_1 n_2}{g} \left[\mathbf{I} + \frac{A^2 a^2}{8g^4} \left(3 - 4 \frac{x^2}{a^2} \right) \right]$$
(193)

which is rapidly convergent in most cases.

TABLES FOR INDUCTANCE CALCULATIONS

TABLE 8.—Values of δ in Formulas (132), (134), (137), (138), (140), (141), (142), and (147), for Calculating Inductance of Straight Wires at Any Frequency

	8	I	8
0 0.5 1.0 1.5 2.0	0.250 .250 .249 .247 .247 .240	12.0 14.0 16.0 18.0 20.0	0.059 .050 .044 .039 .035
2.5 3.0 3.5 4.0 4.5	0.228 .211 .191 .1715 .154	25. 0 30. 0 40. 0 50. 0 60. 0	0.028 ,024 .0175 .014 .012
5.0 6.0 7.0 8.0 9.0 10.0	0. 139 .116 .100 .088 .078 .070	70.0 80.0 90.0 100.0	0.010 .009 .008 .007 .000

TABLE 9.-Constants P and Q in Formulas (141), (142), (144), and (145)

2 <u>h</u>	P CO	1 25	Q	2 <u>h</u> 1	Р	$\frac{l}{2\hbar}$	Q
0 0.1 .2 .3 .4 .5	0 0.0975 .1900 .2773 .3508 .4393	0 0.1 .2 .3 .4 .5	1.0000 1.0499 1.0997 1.1489 1.1975 1.2452	0.6 .7 .8 .9 1.0	0.5136 .5840 .6507 .7139 .7740	0.6 .7 .8 .9 1.0	1. 2918 1. 3373 1. 3819 1. 4251 1. 4672

TABLE 10.	-Values	of K	for Use	in	Formula	(153)
-----------	---------	--------	---------	----	---------	-------

Diameter Length	K	Difference	Diameter Length	K	Difference	Diameter Length	K	Difference
0.00	1.0000	-0.0209	2.00	0. 5255	-0.0113	7.00	0.2584	0.0047
.05	.9791	203	2.10	. 5137	112	7.20	.2537	45
.10	.9588	197	2.20	. 5025	107	7.40	.2491	43
.15	.9391	190	2.30	. 4918	102	7.60	.2448	42
.20	.9201	185	2.40	. 4816	97	7.80	.2406	40
0.25 .30 .35 .40 .45	0.9016 .8838 .8665 .8499 .8337	-0.0178 173 167 162 156	2.50 2.60 2.70 2.80 2.90	0. 4719 . 4626 . 4537 . 4452 . 4370	-0.0093 89 85 82 78	8.00 8.50 9.00 9.50 10.00	0. 2366 . 2272 . 2185 . 2106 . 2033	-0.0094 86 79 73
0.50	0.8181	-0.0150	3.00	0. 4292	-0.0075	10.0	0. 2033	-0.0133
.55	.8031	146	3.10	. 4217	72	11.0	. 1903	113
.60	.7885	140	3.20	. 4145	70	12.0	. 1790	98
.65	.7745	136	3.30	. 4075	67	13.0	. 1692	87
.70	.7609	131	3.40	. 4008	64	14.0	. 1605	78
0.75	0.7478	-0.0127	3.50	0. 3944	-0.0062	15.0	0. 1527	-0.0070
.80	-7351	123	3.60	. 3882	60	16.0	. 1457	63
.85	.7228	118	3.70	. 3822	58	17 0	. 1394	58
.90	.7110	115	3.80	. 3764	56	18.0	. 1336	52
.95	.6995	111	3.90	. 3708	54	19.0	. 1284	48
1.00	0.6884	-0.0107	4.00	0. 3654	-0.0052	20.0	0.1236	-0.0085
1.05	.6777	104	4.10	. 3602	51	22 0	.1151	73
1.10	.6673	100	4.20	. 3551	49	24 0	.1078	63
1.15	.6573	98	4.30	. 3502	47	26 0	.1015	56
1.20	.6475	94	4.40	. 3455	46	28.0	.0959	49
1. 25	0.6381	-0.0091	4.50	0. 3409	-0.0045	30.0	0.0910	-0.0102
1. 30	.6290	89	4.60	. 3364	43	35.0	.0808	80
1. 35	.6201	86	4.70	. 3321	42	40.0	.0728	64
1. 40	.6115	84	4.80	. 3279	41	45.0	.0654	53
1. 45	.6031	81	4.90	. 3238	40	50.0	.0611	43
1, 50 1, 55 1, 60 1, 65 1, 70	0.5950 -5871 -5795 -5721 -5649	0 0079 76 74 72 70	5.00 5.20 5.40 5.60 5.80	0. 3198 . 3122 . 3050 . 2981 . 2916	-0.0076 72 69 65 62	60. 0 70. 0 80. 0 90. 0 100. 0	0.0528 .0467 .0419 .0381 .0350	- 0. 0061 48 38 31
1.75 1.80 1.85 1.90 1.95	0.5579 .5511 .5444 .5379 .5316	-0.0068 67 65 63 61	6.00 6.20 6.40 6.60 6.80	0. 2854 . 2795 . 2739 . 2685 . 2633	-0.0059 56 54 52 49	B copies		

TABLE 11 .-- Values of Correction Term A in Formulas (155), (165), (168), and (169)

e D	A	Difference	e D	A	Difference	d D	A	Difference
1.00	0.557	-0.051	0.40	0. 359	-0.052	0.15	-1.340	0.069
0.95	.506	54	.38	.411	54	.14	1.409	74
.90	.452	57	.36	.465	57	.13	1.483	80
.85	.394	61	.34	.522	61	.12	1.563	87
.80	.334	65	.32	.583	64	.11	1.650	96
0.75	0.269	-0.069	0.30	0.647	-0.069	0.10	-1.746	-0.105
.70	.200	74	.28	.716	74	.09	1.851	.118
.65	.126	80	.26	.790	80	.08	1.969	.133
.69	.046	87	.24	.870	87	.07	2.102	.154
.55	041	95	.22	.957	96	.06	2.255	.173
0.50 .48 .46 .44 .42	-0.136 .177 .220 .264 .311	-0.041 43 44 47 48	0.20 .19 .18 .17 .16	-1.053 1.104 1.153 1.215 1.276	-0.051 54 57 61 64	0.05 .04 .03 .02 .01	-2.439 2.662 2.950 3.355 4.048	-0.223 .288 .405 .693

TABLE 12 .--- Values of Correction B in Formulas (155), (165), (168), and (169)

Number of turns, n	B	Number of turns, 7	B
1 2 3 4 5	0.000	40	0.315
	.114	45	.317
	.166	50	.319
	.197	60	.322
	.218	70	.324
6 7 8 9	0.233 .244 .253 .260 .266	80 90 109 150 200	0. 326 . 327 . 328 . 331 . 333
15	0.286	300	0.334
20	.297	400	.335
25	.304	500	.336
30	.308	700	.336
35	.312	1000	.336

TABLE 13.-Values of B, for Use in Formula (156)

<u>à</u>	В.	bic	В,
1 2 3 4 5	0.0000 .1202 .1753 .2076 .2292	16 17 18 19 20	0.3017 .3041 .3062 .3082 .3082 .3099
6	0.2445	21	0.3116
7	.2563	22	.3131
8	.2656	23	.3145
9	.2730	24	.3157
10	.2792	25	.3169
11	0.2844	26	0.3180
12	.2888	27	.3190
13	.2927	28	.3200
14	.2961	29	.3209
15	.2991	30	.3218

TABLE 14.—Constants U	Jsed in	Formulas	157) and ((158)
-----------------------	---------	----------	-----	---------	-------

b/c or cib	уі	Difference	c/b	¥2.	Difference	ð;c	y,	Differ- ence
0 025	0. 5000	0.0253	0	0.125	0.002	0	0.597	0.002
.05	. 5490	434 386	0.05	. 127 . 132	5 10	0.05 .10	. 599 . 602	36
0.15 .20 .25 .30	0.6310 .6652 .6953 .7217	0.0342 301 266 230	0.15 .20 .25 .30	0.142 .155 .171 .192	0.013 16 20 23	0.15 .20 .25 .30	0.608 .615 .624 .633	0.607 9 9
0.35 .40 .45 .50	0.7447 .7645 .7816 .7960	Q. 0198 171 144 121	0.35 .40 .45 .50	0.215 .242 .273 .307	0.027 31 34 37	0.35 .40 .45 .50	0.643 .654 .665 .677	0.011
4.55 .60 .65 .70	0.8081 .8182 .8265 .8331	0.0101 63 66 52	0.55 .60 .65 .70	0. 344 . 384 . 427 . 474	0.040 43 47 49	0.55 .60 .65 .70	0.690 .702 .715 .729	0.012 13 14 13
0.75 .80 .85 .90	0.8383 .8422 .8451 .8470	0.0039 29 19 10	0.75 .80 .85 .90	0. 523 . 576 . 632 . 690	0.053 56 59 62	0.75 .80 .85 .90	0.742 .756 .771 .786	0.014 15 15 15
0.95 · 1.00	0. 8480	0.0003	0.95	0.752	0.054	0.95	0.801	0.015

TABLE 15 .- Values of Constants in Formula (162)

			Values	of 811					Value	es of dis	-
	r=0	0.1	0.3	0.5	0.7	0.9		T==0	0.3	0.6	0.9
0	0.114	0.113	0.106	0.092	0.068	0. 030	0	0. 022	0.020	0.014	0.004
0.5	. 090	. 089	. 089	. 070	. 049	. 020	0.5	. 021	. 019	. 014	. 004
1.0	064	. 064	. 059	. 050	. 034	.013	1.0	. 019	. 018	.013	. 004
1.5	047	. 046	. 043	. 036	. 025	. 009	2.0	. 015	. 015	.010	. 003
2.0	. 035	. 035	. 032	. 027	. 018	. 007	4.0	. 008	. 008	. 005	. 002
3.0	022	. 022	. 020	. 017	. 011	. 004	6.0	. 005	. 005	. 004	. 001
4.0	.015	. 015	. 014	. 012	.008	. 003	10.0	. 003	. 003	. 002	. 005
6.0	008	. 008	. 008	. 006	. 004	. 002		22		1.000	0.014
8.0	006	006	. 005	. 004	. 003	. 001	우비님	184 (1)	1 3	1.1236	(Gymen is
10.0	. 004	. 004	. 004	. 003	. 002	. 001	-	1			

	(es	Value	s of dis		10.10.10	Selling	Valu	es of dis	
	7=0	0.3	0.6	0.9	v	0	0.1	0.5	0.9
0	0.009	0.009	0.006	0.002	0	0.005	0.005	0.004	0.001
1	. 009	. 008	006	500.	5	. 003	. 003	002	. 601
3	. 007	. 006	. 004	. 001	10	. 002	. 002	:001	. 000
5	004	. 004	. 003	. 001	1 VAL	1163	1 35 1		1.6.3
10	. 002	. 002	. 001	.000	Sector Sector	1	1 Tours	La Stark	11042

	1	alues of	816		v	alues of	817		v	alues of	ð18
•	r=0 and 3.1	0.5	0.9		7=0 and 0.1	0.5	0.9		7=0 and 0.1	0.5	0.9
0	0.003	0.003	0.001	0	0. 002	0. 002	0.001	0	0.002	0.001	0. 000
5	. 002	. 002	. 000	5	. 002	. 001	. 000	5	. 001	. 001	. 000
10	. 001	. 001	. 000	10	. 001	. 001	. 000	10	. 001	. 001	. 000

Note -The maximum values of all further values of the &'s are 0.001 or less.

F1/T1		Difference	£1/T1	F	Difference	T2/T1	* 7	Difference
0	00	1 Carlos		Lis er a	The do	19(71)	and brie	gathair
0.010	0.05016	-0.00120	0.30	0.008844	-0.000341	0.80	0.0007345	-0.0000604
.011	4897	109	. 31	8503	328	. 81	0/41	579
. 012	4787	100	.34	81/3	319	. 06	0106	555
0.012	4697	-0.00003	. 33	7550	304	. 03	5076	507
014	4504	-0.00093		1333	630		3010	301
015	4507	81	0 35	0 007260	-0 000280	0.85	0004560	-0 0000484
016	4426	148	. 36	6989	270	. 86	4085	460
018	4278	132	.37	6720	260	.87	3625	437
		00 1100	.38	6460	249	. 88	3188	413
0.020	0.04146	-0.00119	.39	6211	241	. 89	2775	389
.022	4027	109	The last	There detail	Charles Ser	d'realers "	and a second	- Di marre
. 024	3918	100	0.40	0.005970	-0.000232	0.90	0.0002386	-0.0000365
. 026	3818	93	.41	5738	225	. 91	2021	341
. 028	3725	86	.42	5514	217	. 92	1680	316
R. 1 1 1 3 3	12.4.2.4.6.1	A Deck Carlo	. 43	5297	210	.93	1364	290
0.030	3639	-0.00081	.44	5087	202	.94	1074	263
. 032	3558	76		0 001000	0 000105			
. 034	3482	71	0.45	0.009885	-0.000195	0.95	0.00008107	-0.00002351
. 036	3411	68	. 40	4090	189	. 96	5756	2046
. 038	3343	64	- 47	4501	183	.97	3710	1706
		1. 1. 1. 1. 1. S. S	. 48	4310	170	. 98	2004	1301
0.040	0.03279	-0.00051	. 99	9140	1/1	:99	703	703
.042	3218	.58	0.50	0 003969	-0.000165	1.00	0	
.044	3160	\$55	51	3803	160		- Frank and	
.046	3105	53	.52	3643	156	0.950	0.00008107	-0.00000494
.048	3052	51	53	3487	150	.952	7613	482
				3337	146	.954	7131	470
0.050	0.03001	-0.00226	1.1.1		Saulia Co.	.956	6661	458
. 060	2775	191	0.55	0.003191	-0.000141	. 958	6202	446
. 070	2584	164	. 56	3050	137			A TO BE AN ALL ALL ALL ALL ALL ALL ALL ALL ALL
. 080	. 2420	144	. 57	2913	133	0.960	0. 00005756	-0.00000436
. 090	2276	128	. 58	2780	128	. 962	5320	421
1 - 1 - 1 - 1	1000000000	CALL STATE AND	. 59	2652	125	.964	4899	409
e. 100	0. 02148	-0.00116				. 966	4490	397
.11	2032	104	0.60	0.002527	-0.000120	. 968	4093	383
.12	1928	96	.01	2407	117		1	
.13	1832	89	. 04	2290	113	0.970	0.00003710	-0.0000370
- 14	-1743	8Z	.03	2069	105	.972	3340	356
				6000	100	.974	2984	341
0.15	0.01001	-0.00075	0.65	0.001962	-0.000103	.970	2043	347
. 10	1580	11	. 66	1859	99	.9/8	2310	312
. 17	1515	00	. 67	1760	96	0 000	10 00000000	-
- 18	1449	06	. 68	1664	93	0.980	0.00002004	-0.00000296
.13	1301	29	. 69	1571	90	. 906	1/00	269
- 20	0 01320	-0.00058				. 904	1169	242
21	1273	-0.00055	0.70	0.001481	-0.00087	. 900	026	228
. 22	1221	50	.71	1394	84	. 300	540	243
. 23	1171	47	.76	1310	81	0.000	0.00000703	-0.00000201
.24	1124	45	.73	1428	78	992	502	177
			. 14	1150	10	004	326	148
0.25	0.010792	-0.000425	0.75	0.0010741	-0.0000731	995	177	115
. 26	10366	408	.76	10010	704	.998	062	62
. 27	0.009958	388	.77	9306	680			
. 28	9570	371	. 78	8626	653		A CONTRACTOR	

TABLE 16.-Values of F in Formula (187) for the Calculation of the Mutual Inductance of Coaxial Circles

DESIGN OF INDUCTANCE COILS

71. DESIGN OF SINGLE-LAYER COILS

The problems of design of single-layer coils may be broadly classified as of two kinds.

(1) Where it is required to design a coil which shall have a certain desired inductance with a given length of wire, the choice of dimensions of the winding and kind of wire to be used being unrestricted within rather broad limits. This class of problems of design includes a consideration of the question as to what

shape of coil will give the required inductance with the minimum resistance.

(2) Given a certain winding form or frame, what pitch of winding and number of turns will be necessary, if a certain inductance is to be obtained.

In the following treatment of the problem the inductance of the coil will be assumed as equal to that of the equivalent cylindrical current sheet. This is allowable, since, in general, the correction for the cross section of the wire will not amount to more than 1 per cent of the total inductance, an amount which may be safely neglected in making the design. The formulas to be given may, of course, be used for making a calculation of the inductance of a given coil. Nevertheless, since their practical use is made to depend upon the interpolation of numerical values from a graph, for accurate calculations formulas (153) and (155) should be used.

The inductances of coils of different size, but of identical shape, and the same number of turns, are proportional to the ratio of their linear dimensions. Every formula for 'the inductance should, accordingly, be capable of expression in terms of some single chosen linear dimension, all the other dimensions occurring in the formula in pairs in the form of ratios.

Two formulas are here developed, the first applicable to the solution of problems of the first class, giving the inductance in terms of the total length of wire l, the second for problems presupposing a winding frame of given dimensions. Both show the dependence of the inductance on the shape of the coil

Coil of Minimum Resistance.—The fundamental relations of the constants of a coil are

$$l = 2\pi an \qquad b = nD$$
$$L_{s} = 4\pi^{2}n^{2}\frac{a^{2}}{L}K \text{ cgs units}$$

the constant K being a function of the shape factor $\frac{2a}{b}$, diameter + length (Table 10,)

The expression for the inductance may be written as

$$L_{\bullet} = \frac{2\pi a l n}{b \cdot} K$$

and n may be eliminated by substituting for it the expression

$$n = \sqrt{\frac{lb}{2\pi aD}} = \nu \sqrt{\frac{l}{D}},$$
154

obtained by multiplying together the two expressions involving n above. There results, then

$$L_s = l \sqrt{\pi \frac{2a}{b} \frac{l}{D}} K \quad \text{cgs units}$$

or

$$L_{s} = \frac{l^{\frac{3}{2}}}{\sqrt{D}} \frac{K}{1000} \sqrt{\pi \frac{2a}{b}} = \frac{l^{\frac{3}{2}}}{\sqrt{D}} F \text{ microhenries.}$$
(194)

FIG. 207.-(1) Variation of F with different ratios of coil diameter to length; (2) variations of v with ratios of diameter to length

To aid in the use of this formula the curve of Fig. 207 has been prepared, which enables the value of $F = \frac{K}{1000} \sqrt{\pi \frac{2a}{b}}$ to be obtained for any desired value of $\frac{2a}{b}$. The formula (194) and the curve enable one to obtain with very little labor the approximate value of the inductance which may be obtained in a coil of given shape with given *l* and *D*. On the same figure is also plotted the factor $v = \sqrt{\frac{b}{\pi 2a}}$ as a function of $\frac{2a}{b}$ (see example below). Coil Wound on Given Form.—To obtain the second formula, we substitute for n its value $\frac{b}{D}$, and

$$L_{\bullet} = 4\pi^2 \frac{b^2}{D^2} \frac{a^2}{b} K = 2a\pi^2 \left(\frac{2a}{D}\right)^2 \frac{b}{2a} K \text{ cgs units}$$

or

$$L_{s} = \frac{(2a)^{3}}{D^{3}} \left[\frac{\pi^{3}}{1000} \frac{b}{2a} K \right] \text{microhenries}$$
(195)

and, finally,

$$\frac{(2a)^3}{L_0 D^2} \neq j \tag{196}$$

FIG. 208.—Variation of f and $\log_{10} f$ with $\frac{2a}{b}$

To aid in making calculations the curves of Fig. 208 have been prepared, which give the values of j and $\log_{10} j = \log_{10} \left[\frac{1000}{\pi^3 K} \frac{2a}{b} \right]$ for different values of $\frac{2a}{b}$. The value of $\log_{10} j$ is plotted, rather than that of j, for large values of $\frac{2a}{b}$, to enable values to be interpolated with greater accuracy. From formula (194) and Fig. 207 it is at once evident that with a given length of wire, wound with a given pitch, that coil has the greatest inductance, which has such a shape that the ratio $\frac{\text{diameter}}{\text{length}} = 2.46$ approximately. Or, to obtain a coil of a certain desired inductance, with a minimum resistance, this relation should be realized. However, although the inductance diminishes rather rapidly for longer coils than this, changes in the direction of making the coil shorter relative to the diameter are not important over rather wide limits. Naturally, other considerations may modify the design appreciably. These other considerations include the distributed capacity of the coil and the variation of resistance with frequency.

Example.—Given the pitch of winding, the shape of the $coil\left(\frac{2a}{b}\right)$, and the inductance, to determine the length of wire necessary, the dimensions of the coil and the number of turns.

Assumin	g D = 0.2 cm	n, $\frac{2a}{b} = 2.6$, $L_s = 1000$ microhenries,
By form	ula (194), <i>l</i> ³ =	$=\frac{1000\sqrt{0.2}}{0.001322}$, (the value of $F = 0.001322$ being
log 1000 1/2 log 0.2	D = 3. = $\overline{1.65052}$ 2.65052	taken from the curve of Fig. 207) or $l=4850$ cm. The number of turns may be obtained immediately from the relation \sqrt{l}
$\frac{\log F}{\frac{3}{2}\log l}$	= 3.12123 = 5.52929 = 1.84310	$n = \sqrt{\frac{\iota}{D}} \sqrt{\frac{0}{2\pi a}} = \nu \sqrt{\frac{\iota}{D}}$ and the graph of ν .
log t	= 3.08619	

Here $n = \sqrt{\frac{4850}{0.2}} (0.350) = 54.5$ turns, and b = nD = 10.9 cm, while $2a = 2.6 \times 10.9 = 28.3$ cm.

If the pitch of the winding had been assumed greater, or a coil of much larger inductance were required, the design of the coil would call for larger dimensions, and cases may arise where the design may prove unsatisfactory, because the coil would be too large. The effect of changing the length and pitch, the shape being taken constant, may be seen from (194), which shows that $L_0 \propto \frac{l_1^2}{\sqrt{D}}$, so that a given fractional increase in the length of the wire is more

effective in increasing the inductance than the same fractional decrease in the pitch. The number of turns depends on $\sqrt{\frac{l}{D}}$ the shape of the coil being kept the same.

Example.—Formula (194) will also enable the question to be answered as to what pitch must be used if a given length of wire is to be wound with a certain shape of coil to give a desired inductance. If the pitch comes out smaller than the diameter of the proposed wire, the assumed length of wire must be increased.

Suppose that an inductance of 10 000 microhenries is desired

with 50 meters of wire, the value of $\frac{2a}{b}$ being taken as 2.6. as before. Then

 $\sqrt{D} = \frac{l^{\frac{1}{2}}}{L_s}F = \frac{(5000)^{\frac{1}{2}} 0.001322}{10\ 000}$, or D = 0.00218 cm,

which is manifestly impracticably small.

The maximum inductance attainable with the given length of wire could be found by solving (194) for L with the smallest practicable pitch substituted for D, that value being used for F, which corresponds to the assumed ratio of diameter to length.

Example.—Suppose we have a winding form of given diameter 2a = 10 cm, how many turns of wire will have to be used for an inductance of $1000\mu h$ if the winding pitch is taken as 0.2, and what will be the axial length of the winding?

From (196)

$$f = \frac{1000}{1000 \times 0.04} = 25 \text{ or } \log_{10} f = 1.398$$

From Fig. 208 this corresponds to a value of $\frac{2a}{b} = 0.225$, or b

must be 45 cm, and the number of turns $n = \frac{b}{D} = \frac{45}{0.2} = 225$. Such a coil would be too long to be convenient. A smaller pitch should be used.

Example.—Suppose we have given the same winding form, and we wish to find what pitch is necessary for an inductance of $1000\mu h$, in order that the length of the coil shall not be greater than the diameter.

For

 $\frac{2a}{b} = 1, f = 148$ (Fig. 208)

and by (196)

$$D^2 = \frac{(2a)^3}{L_a f} = \frac{1000}{1000 \times 148}$$
 or $D = 0.082$

This is a pretty close winding, showing that the winding form has rather too small a diameter for a coil of this inductance.

Example.—To find the diameter of a winding form to give an inductance of $1000\mu h$, with a shape ratio $\frac{2a}{b} = 2.6$, the pitch being chosen as 0.2 cm.

From (196) we have $(2a)^3 = L_0 D^2$.

The value of f for $\frac{2a}{b} = 2.6$ is (from Fig. 208) given by $\log_{10} f =$ 2.75 or f = 565 approximately. Therefore $(2a)^3 = 1000 \times 0.04 \times$ 565, or 2a = 28.2 cm, which will give b = 10.85, n = 54.2.

If, instead, the shape is assumed to be given by $\frac{2a}{b} = 1$, then $\log f = 2.17$ or f = 148.

 $(2a)^3 = 1000 \times 0.04 \times 148$, or 2a = 18.1 cm = b, and n = 90.5.

The values of j taken from Fig. 208 are not so precise as could be calculated from the equation (195), but the accuracy should suffice for this kind of work.

DESIGN OF MULTIPLE-LAYER COILS

For purposes of design we may neglect the correction for cross section of the wire, formula (159), and operate on formulas (157) and (158) alone

Two forms of equation have been found useful, the first involving the length of wire in the coil and the second the mean radius of the coil.

Suppose that the length of the winding l, the distance between the centers of adjacent wires D, shape of cross section $\frac{b}{c}$, and the shape ratio of the coil $\frac{c}{a}$, are given. We obtain an expression for n by multiplying together the fundamental equations,

$$n = \frac{bc}{D^2} = \frac{b}{c} \left(\frac{c}{D}\right)^2$$
 and $n^2 = \frac{l^2}{(2\pi a)^2}$

which involves ratios of known quantities only.

$$n = \left(\frac{l}{\bar{D}}\right)^3 \left(\frac{c}{a}\right)^4 \left(\frac{b}{c}\right)^4 \left(\frac{1}{2\pi}\right)^3$$
(197)

In equation (158) the factor $4\pi an^2 = 2ln$, and if the value of *n* just found, be introduced, we have finally for c > b

$$L = \sqrt[3]{\frac{2}{\pi^2}} \frac{l^3}{D^3} \left(\frac{c}{a} \right)^3 \left(\frac{b}{c} \right)^3 \left[\log_e 8 - \log_e \frac{c}{a} - \frac{1}{2} \log_e \left(1 + \frac{b^2}{c^2} \right) - y_1 + \frac{c^2}{16a^2} \left[y_3 + \frac{1}{6} \left(1 + 3 \frac{b^2}{c^2} \right) \left[\log_e \frac{8a}{c} - \frac{1}{2} \log_e \left(1 + \frac{b^2}{c^2} \right) \right] \right]$$
(198)

and for b > c

$$L = \sqrt[3]{\frac{2}{\pi^2}} \frac{l^{i}}{D^{i}} \left(\frac{c}{a}\right)^{i} \left(\frac{b}{c}\right)^{i} \left[\log_{\epsilon} 8 - \log_{\epsilon} \frac{c}{a} - \log_{\epsilon} \frac{b}{c} - \frac{1}{2} \log_{\epsilon} \left(1 + \frac{c^{2}}{b^{2}}\right) - y_{1} + \frac{c^{2}}{16a^{2}} \frac{b^{2}}{c^{2}} \left[y_{2} + \frac{1}{2} \left(1 + \frac{c^{2}}{3b^{2}}\right) \left[\log_{\epsilon} \frac{8a}{c} - \log_{\epsilon} \frac{b}{c} - \frac{1}{2} \log_{\epsilon} \left(1 + \frac{c^{2}}{b^{2}}\right) \right]\right]$$
(199)

FIG. 209.-Values of (G) for given values of c and b

Both of these equations may be written in the form

$$L = \frac{l^2}{D^2} G \text{ microhenries}$$
(200)

in which G is a factor whose value for given values of $\frac{c}{a}$ and $\frac{b}{c}$ may be taken from the curves of Fig. 209.

When l is known

$$a = \sqrt[3]{\frac{l}{2\pi} \frac{c}{b} \frac{D^{s}}{(c/a)^3}}$$

(201)

From these curves one can see that, for a square cross section, b/c = 1, the inductance of a given length of wire is a maximum for a value of $\frac{c}{a}$ equal to about $\frac{2}{3}$. Investigation shows that this point is, more exactly, c/a = 0.662; that is, for a mean diameter of coil = 3.02 times the side of the cross section. Further, for a given resistance and shape of coil, the square cross section gives a greater inductance than any other form.

FIG. 210. - Values of (g) for given values of $\frac{c}{a}$ and $\frac{b}{b}$

The second design formula supposes that the dimensions a, c, and $\frac{b}{c}$ of the winding form are given, together with the pitch of the winding. The expressions (157) and (158) for the inductance may then be written

$$L = 0.01257 \ a \frac{b^2}{c^2} \left(\frac{c}{\bar{D}}\right)^4 g \text{ microhenries}$$
(202)

(203)

 $= 0.01257 an^3 q$

The curves of Fig. 210, which give g for different values of $\frac{c}{a}$ and $\frac{b}{c}$ allow of interpolation of the proper value in any given case.

Example.—Suppose we have a wire of such a size that it may be wound 20 turns to the centimeter, and we wish to design a coil to have an inductance of 10 millihenries, to have a square cross section and such a mean radius as to obtain the desired inductance with the smallest resistance (smallest length of the wire).

The latter condition requires that $\frac{c}{a} = 0.662$. The given quantities are D = 0.05 cm, b/c = 1. From Fig. 209 we find that G = 0.000606, so that (200) becomes 10 000 = $\frac{l^4}{(0.05)^3}$ 0.000606, from which l = 64.58 cm or 64.58 meters of wire.

2/3 log $D = \overline{1}.13265$ From the fundamental equation (201) log $\frac{10^{\dagger}}{0.606} = 7.21753$ 5/3 log $l = \overline{6.35018}$ 1/3 log l = 1.270042 log $l = \overline{7.62022}$ log l = 3.81011 = 1.80

and thence $b = c = 0.662 \times 1.80 = 1.19$, and $n = \frac{bc}{D^2} = \frac{(1.19)^2}{0.0025} = 570$

This coil is rather too small to allow of its dimensions being accurately measured.

If wire of double the pitch is used, the design works out with the following results

> l = 85.22 meters c = b = 2.08n = 432 a = 3.18

which is more suitable.

Example.—We have a form whose dimensions are 2a = 10, c = 3, b = 2.4, wound with wire of such a size that there are 10 turns per cm; that is, D = 0.1. What is the inductance obtained and what length of wire is used?

$$n = \frac{bc}{D^2} = \frac{3 \times 2.4}{0.01} = 720$$

From Fig. 210 the interpolated value of g for $\frac{b}{c} = 0.8$, c/a = 0.6 is 1.54 (calculated directly from (158) = 1.552). Accordingly,

$$L = 0.01257 \times 5 \times 720^{\circ} \times 1.54 = 50 \ 160 \ \mu h.$$

= 50.16 millihenries.

The length of wire is $l = 2\pi$ an = 10 π 720.= 22 600 cm = 226 meters.

Example.—The same formula might be used to answer the question, How many turns would have to be wound (completely filling this cross section) in order to obtain a desired inductance, say 20 millihenries. From (203),

$$n^2 = \frac{L}{0.01257 \ ag} = \frac{20 \ 000}{(0.01257) \ 5 \ (1.54)} = 206 \ 500$$

or n would be 454, which would mean that

$$D^2 = \frac{bc}{454} = \frac{7.20}{454} = 0.0158$$

or D = 0.126, so that the wire would have to wind about 8 turns to the centimeter.

The skin effect and capacity between the layers of the wire are larger in this kind of coil than in the other forms previously considered. A multiple layer coil is therefore to be regarded as undesirable in radio work, and if it be used the cross section should be made small relative to the mean radius.

DESIGN OF FLAT SPIRALS

The design of a flat spiral differs from that of a multiple layer coil in that the actual width b of the tape used (not b/c) is supposed to be a given quantity

The fundamental equations are

$$n = \frac{c}{D}$$
 and $n = \frac{l}{2\pi a}$,

which, on multiplication, give

$$n = \sqrt{\frac{1}{2\pi}} \frac{c}{a} \overline{D}$$

(204)

and this introduced into the expression $4\pi an^2 = 2ln$ gives finally

FIG. 211. - Value of (H) for given values of candb

The factor H, which may be determined from the curves of Fig. 211 is a function of c/a and b/c. The latter quantity may be expressed in terms of the known quantities by the equation

$$\frac{b}{c} = b\sqrt{\frac{2\pi}{lD}} + \sqrt{\frac{c}{a}}$$
(206)

Accordingly, the curves are plotted with H as ordinates, c/a as abscissas, and $b \sqrt{\frac{2\pi}{ID}}$ as parameter

An important deduction which may be made from the curves is that for the maximum inductance with a given length of tape the ratio c/a should be about $\frac{1}{2}$, which means that the opening of the spiral should have a radius nearly as great as the dimension across the turns of the spiral. This point in design is in agreement with the practical observation that turns in the center of the spiral add a disproportionate amount to the high-frequency resistance of the spiral.

Example.—Find the length of tape 0.6 cm wide, wound with a pitch of 0.6 cm, to give an inductance of $200 \ \mu h$, assuming such proportions that c/a=1. Work out the design.

Since *l* is not known, the parameter $b \sqrt{\frac{2\pi}{lD}}$ is not known. Assume a value of 0.1 for the latter. Then for the value c/a=1 the curve (Fig. 211) gives H=0.00123.

Thence $l^{\frac{3}{4}} = \frac{200\sqrt{0.6}}{0.00123}$ or l=3287 cm. With this value of l, the parameter is 0.6 $\sqrt{\frac{2\pi}{1972}}$ or 0.0339, to which the value H=0.00128 corresponds (with $\frac{c}{a}=1$). Repeating the calculation of l with this value of H, we find l=3370 cm as a second approximation. The next approximation gives a parameter of 0.0335 and the values of H and l are sensibly unchanged.

Using this parameter in (206), $\frac{b}{c} = 0.0335$ or $c = \frac{0.6}{0.0335} = 17.9$ and the value of a = 17.9 likewise. The number of turns will be $n = \frac{17.9}{0.6}$ = about 25^{1/2}.

Example.—We have 17.50 meters of tape 1 cm wide, which we wind with a pitch of 0.5 cm, to such a shape that c/a = 0.8.

Here D = 0.5, l = 1750 cm, b = 1. The parameter is $\sqrt{\frac{2\pi}{875}} = 0.0847$, to which, for c/a = 0.8, H = 0.001248 corresponds.

sources and taking

· Bernette

$$L = \frac{(1750)^4}{\sqrt{0.5}} \text{ o.001248} = 129.2 \ \mu h$$

$$\frac{b}{c} = \frac{0.0847}{\sqrt{0.8}} = 0.0947, \text{ by equation (206)}$$

$$c = \frac{1}{0.0947} = 10.56 \text{ cm.}$$

$$a = \frac{10.56}{0.8} = 13.2$$

and the number of turns, $n = \frac{10.56}{0.5} = 21$ nearly.

Example.—The problem may arise as to how closely the tape in the preceding case would have to be wound, still keeping $\frac{c}{a} = 0.8$, to obtain an inductance of 200 μh .

Changing the pitch D will change the parameter of the curves, and hence H. The changes in the latter will not be important, for small changes in D, so that to a first approximation the inductance will change inversely as \sqrt{D} .

Therefore

$$\sqrt{\frac{D}{0.5}} = \frac{129.2}{200}$$
, or $D = 0.2086$ cm.

Calculating the parameter with this value we find 0.1312, and thence H = 0.001216, so that the second approximation is $\sqrt{D} = \frac{(1750)!}{200} (0.001216)$, and D = 0.1981, and another approximation is 0.197, the parameter being 0.1346. The dimensions are found from

$$\frac{b}{c} = \frac{0.1346}{\sqrt{0.8}} = 0.1505 \qquad c = \frac{4}{0.1505} = 6.64$$
$$a = \frac{c}{0.8} = 8.30 \qquad n = \frac{6.649}{0.197} = 34 \text{ nearly}.$$

HIGH-FREQUENCY RESISTANCE

RESISTANCE OF SIMPLE CONDUCTORS

Two principal causes act to increase the resistance of a circuit carrying a current of high frequency, above the value of its resistance with direct current, viz, the so-called skin effect and the capacity between the conductors This section deals exclusively with the skin effect or change of resistance caused by change of current distribution within the conductor

Unfortunately, formulas for the skin effect are available only for the most simple circuits, and for other very common cases in practice only qualitative indications of the magnitude of the increase in resistance can be given.

In what follows

R = the resistance at frequency f

 R_{o} = the resistance with direct current or very low frequency alternating current.

The quantity of greatest practical interest is not R, but the resistance ratio $\frac{R}{R_o}$. Given this ratio for the desired frequency and the easily measured direct-current resistance, the high-frequency resistance follows at once.

The skin effect in a conductor always depends, in addition to the thickness of the conductor, on the parameter $\sqrt{\frac{2\mu f}{\rho}} \sqrt{\frac{1}{1000}}$ in which

on the parameter $\sqrt{\rho}$ $\sqrt{1000}$ in which μ =permeability of the material, j=frequency of the current, ρ =the volume resistivity in microhm-cms, so that as far as skin effect is concerned, a thick wire at low frequencies may show as great a skin effect as a thin one at much higher frequency.

The skin effect is greater in good conductors than in wires of high resistivity, and conductors of magnetic material show an exaggerated increase of resistance with frequency.

Cylindrical Straight Wires.—For this case accurate values of the resistance ratio are given by the formula and tables here given.

If d is the diameter of the cross section of the wire in cm, the quantity

$$x = \pi d \sqrt{\frac{2\mu f}{\varphi}} \sqrt{\frac{1}{1000}}$$
 (207)

must be calculated (or, in the case of copper, obtained for the desired frequency from Table 19, and formula (209)). Knowing the value of x, the value of $\frac{R}{R_o}$ may be taken at once from Table 17, which gives the value of $\frac{R}{R_o}$ directly for a wide range of values of x.

Table 19 gives values of

by $\sqrt{\mu^{\rho_c}}$.

 $a_{a} = 0.0107003 \sqrt{f}$ (208)

for a copper wire at 20° C, 0.1 cm in diameter, and at various frequencies. The value of x for a copper wire of diameter d in cm is

$$x_{\rm c} = 10 da_{\rm c} \tag{209}$$

For a material of resistivity ρ and permeability μ , the parameter x may also be simply obtained from the value which holds for a copper wire of the same diameter, by multiplying the latter value

The range of Table 19 may be considerably extended by remembering that a is proportional to \sqrt{f} or $\sqrt{\frac{1}{\lambda}}$, where λ is the wave length.

Table 18, will be found useful, when it is desired to determine what is the largest diameter of wire of a given material, which has a resistance ratio of not more than 1 per cent greater than unity. These values are, of course, based on certain assumed values of resistivity; temperature changes and differences of chemical composition will slightly alter the values. In the case of iron wires μ is the effective permeability over the cycle. This will, in general, be impossible to estimate closely. The values given show plainly how important is the skin effect in iron wires.

For a resistance ratio only one-tenth per cent greater than unity the values in Table 18 should be multiplied by 0.55, and for a 10 per cent increase of the high-frequency resistance the diameters given in the table must be multiplied by 1.78.

The formulas above given apply only to wires which are too far away from others to be affected by the latter. For wires near together, as, for example, in the case of parallel wires forming a return circuit, the mutual effect of one wire on the other always increases the ratio $\frac{R}{R_o}$. No formula for calculating this effect is available, but it is only for wires nearly in contact that it is important. At distances of 10 to 20 cm the mutual effect is entirely negligible.

Tubular Conductors.—The resistance ratio of tubular conductors in which the thickness of the walls of the tube is small in comparison with the mean diameter of the tube, may be calculated by the theoretical formula for an infinite plane of twice the thickness of the walls of the tube.

The value of the resistance ratio for this case may be obtained directly from Table 20, page 311, in terms of the quantity

 $\beta = x\tau \sqrt{2 \div d}$ (210)

where

$$\tau$$
 = the thickness of the walls of the tube in cm

x = the parameter defined in formula (207).

For copper tubes the parameter β_c may be obtained very simply from the values of α_c in Table 19, and the relation $\beta_c = 10\sqrt{2}\tau \alpha_c$. For values of β greater than 4 no table is necessary, since we have simply, with an accuracy always greater than one-tenth of 1 per cent,

$$\frac{R}{R_o} = \beta \tag{211}$$

Sufficient experimental evidence is not available to indicate an accurate method of procedure in the case of tubing where the ratio of diameter to wall thickness is not large. Measurements with tubing in which this ratio is as small as two or three indicate

that approximate values of $\frac{R}{R_o}$ for this case may be calculated by using for τ , in the calculation of the parameter β , a value equal to two-thirds of the actual thickness of the walls of the tube.

Tubing which is very thin in comparison with its radius has, for the same cross section, a smaller high-frequency resistance than any other single conductor. For this reason galvanizediron pipe is a good form of conductor for some radio work, the current all flowing in the thin layer of zinc. A conductor of smaller resistance than a tube of a certain cross section is obtained by the use of very fine strands separated widely from one another; there are practical difficulties, however, in making the separation great enough.

In a return circuit of tubular conductors the distance between the conductors should be kept as great as 10 or 20 cm. For tubular conductors nearly in contact the resistance ratio may be double that for a spacing of a few centimeters.

F10. 212.--Cross section of strip conductors forming a return circuit with narrow surfaces in the same plane

Strip Conductors.—If two strips form together a return circuit and they are so placed that there is only a small thickness of dielectric between the wider face of one and the same face of the other (Fig. 212), the resistance ratio may be calculated by formula (210), using for τ the actual thickness of the strip. As the thickness of the insulating space between the plates is increased, the accuracy of the formula decreases, but the error does not amount to more than a few per cent for values of this thickness as great as several centimeters.

FIG. 213.—Cross section of strip conductors forming a return circuit with wide surfaces in the same plane

For a return circuit of strips placed with their wider faces in the same plane (Fig. 213), no formula is available. This is an unfavorable arrangement. As the distance t is reduced below a few centimeters the ratio $\frac{R}{R_o}$ increases rapidly and with the strips very close together may be as great as twice the value for the arrangement of Fig. 212.

For single strips—that is, for return circuits in which the distance between the conductors is so great that there is no appreciable mutual effect between the conductors—formula (210) is inapplicable owing to "edge effect"—the effect of the magnetic field produced by the current in the center of the strip upon the outer portions of the cross section.

Thus the resistance ratio $\frac{R}{R_o}$ is greater in a wide strip than in a narrow one of the same thickness, and in every case the resistance ratio is greater than for the two juxtaposed strips of Fig. 212. For $\frac{R}{R_o}$ between 1 and 1.5, the increase over formula (210) is usually not greater than 10 per cent.

Strips of square, or nearly square, cross section have values of $\frac{R}{R_o}$ hot very different from those which hold for round conductors of the same area of cross section, the values being greater for the square strip than for the round conductor whose diameter is equal to the side of the square.

Simple Circuits of Round or Rectangular Wire.—The ratio of the resistance at high frequencies to that with direct current may be accurately obtained from Table 17, for circles or rectangles of round wire and in fact for any circuit of which the length is great compared with the thickness of the wire, provided no considerable portions of the circuit are placed close together. In the latter case, the resistance ratio is somewhat increased beyond the value calculated by the previous method and by an amount which can not be calculated

The resistance ratio for a circuit of wire of rectangular section may be treated by the same method as for a single strip. If portions of the circuit are in close proximity, the precautions mentioned for two strips near together (p. 303) should be borne in mind.

RESISTANCE OF COILS

Single-Layer Coil; Wire of Rectangular Cross Section.—The only case for which an exact formula is available is that of a single-layer winding of wire of rectangular cross section with an insulation of negligible thickness between the turns, the length of the winding being assumed to be very great compared with the mean radius, and the latter being assumed very great compared with the thickness of the wire.

If R = the resistance at high frequency

 R_{o} = the resistance to direct current

 τ = the radial thickness of the wire

b = the axial thickness of the wire

 ρ = the volume resistivity of the wire in microhm-cm

 $\rho_{\rm o}$ = the volume resistivity of copper

 μ = the permeability of the wire

D = the pitch of the winding,

then $\frac{R}{R_o}$ may be obtained directly from Table 20, having

calculated first the quantity $\beta = 10\tau \sqrt{2} a$, in which $a = 0.1985 \sqrt{\frac{\mu f}{\rho}}$. Values of a_o for copper are given in Table 19, and the value of a for any other material is obtained from a_o by the relation $a = a_c \sqrt{\mu \frac{\rho_o}{\rho}}$. For values of β greater than are included in Table

20 we have simply $\frac{R}{R_{\circ}} = \beta$.

In practice the ideal conditions presupposed above will not be realized. To reduce the value calculated for the idealized winding corrections need to be applied: (1) For the spacing of the wire, (2) for the round cross section of the wire, (3) for the curvature of the wire, (4) for the finite length of the coil.

Correction for Pitch of the Winding.—To take into account the fact that the pitch of the winding is not in general equal to the axial breadth of the wire an approximation is obtained if for β the argument

$$\beta' = \beta \sqrt{\frac{b}{D}}$$
 is substituted.

For values of D greater than about 3b the values of $\frac{R}{R_o}$ thus obtained are too small.

Correction for the Round Cross Section of the Wire.—For coils of round wire only empirical expressions are known, and more experimental work is desirable.

To obtain an accuracy of perhaps 10 per cent in the resistance ratio the following procedure may be used:

Calculate first by (210) and Table 20, the resistance ratio $\frac{R'}{R_o'}$, supposing the coil to be wound with wire of square cross section of the same thickness as the actual diameter, taking into account the correction for the pitch of the winding. Then the resistance ratio $\frac{R}{R_o}$ for a winding of round wire will be found by the relation

$$\frac{R}{R_{o}} = 1 + 0.59 \left[\frac{R' - R_{o}'}{R_{o}'} \right]$$
(212)

Effect of Thickness of the Wire.—Although formula (210) holds only for a coil whose diameter is very great in comparison with the thickness of the wire, the error resulting from non-fulfillment of this condition will, in practical cases, be small compared with the other corrections and may be neglected.

Correction for Finite Length of the Coil.—For short coils the resistance ratio is greater than for long coils of the same wire, pitch, and radius, due to the appreciable strength of the magnetic field close to the wires on the outside of the coil.

No formulas are available for calculating this effect, but experiment seems to show that for short coils of thick wire at radio frequencies the resistance ratio may be expressed by

$$\frac{R}{R_o} = \frac{A}{\sqrt{\lambda}} + \frac{B}{\lambda^3}$$
(213)

in which the first term represents the value as calculated by the formulas of the preceding section for long coils, while the constant of the second term has to be obtained by experiment. At long wave lengths the first term will predominate, but at very short wave lengths the second term may be equal or even larger than the first.

For round copper wires we may obtain the constant A by the relation $A = 15500 \ dR_0$.

Multiple-Layer Coils.—For this case no accurate formulas have been derived. Experiment shows that the resistance ratio is much greater for a multiple-layer coil than for a single-layer coil of the same wire. Furthermore, the capacity of such a coil has, as already pointed out, a large effect on the resistance of the coil. Consequently, it is usually impossible to calculate even an approximate value for the change of resistance with frequency. At very high frequencies losses in the dielectric between the wires may cause an appreciable increase in the effective resistance of the coil. This effect is proportional to j^a .

STRANDED WIRE

The use of conductors consisting of a number of fine wires to reduce the skin effect is common. The resistance ratio for a stranded conductor is, however, always considerably larger than the value calculated by Table 19, and Table 17,

for a single one of the strands. Only when the strands are at impracticably large distances from one another is this condition even approximately realized.

Formulas have been proposed for calculating the resistance ratio of stranded conductors, but although they enable qualitatively correct conclusions to be drawn as to the effect of changing the frequency and some of the other variables, they do not give numerical values which agree at all closely with experiment. The cause for this lies, probably, to a large extent in the importance of small changes in the arrangement of the strands. The following general statements will serve as a rough guide as to what may be expected for the order of magnitude of the resistance ratio as an aid in design, but when a precise knowledge of the resistance ratio is required in any given case it should be measured.

Bare Strands in Contact.—The resistance ratio of n strands of bare wire placed parallel and making contact with one another is found by experiment to be the same as for a round solid wire which has the same area of cross section as the sum of the crosssectional areas of the strands; that is, n times the cross section of a single strand. This will be essentially the case in conductors that are in contact and are poorly insulated, except that at high frequencies the additional loss of energy due to heating of the imperfect contacts by the passage of the current from one strand to another may raise the resistance still higher.

Insulated Strands.—As the distance between the strands is increased, the resistance ratio falls, rapidly at first, and then more slowly toward the limit which holds for a single isolated strand. A very moderate thickness of insulation between the strands will quite materially reduce the resistance ratio, provided conduction in the dielectric is negligible.

Spiraling or twisting the strands has the effect of increasing the resistance ratio slightly, the distance between the strands being unchanged.

Transposition of the strands so that each takes up successively all possible positions in the cross section—as for example, by thorough braiding—reduces the resistance ratio but not as low as the value for a single strand.

Twisting together conductors, each of which is made up of a number of strands twisted together, the resulting composite conductor being twisted together with other similar composite conductors, etc., is a common method for transposing the strands in the cross section. Such conductors do not have a resistance ratio very much different from a simple bundle of well-insulated strands.

The most efficient method of transposition is to combine the strands in a hollow tube of basket weave. Such a conductor is naturally more costly than other forms of stranded conductor.

Effect of Number of Strands.—With respect to the choice of the number of strands, experiment shows that the absolute rise of the resistance in ohms depends on the diameter of a single strand, but is independent of the number of strands. Since, however, the direct-current resistance of the conductor is smaller the greater the number of the strands, the resistance ratio is greater the greater the number of strands. Reducing the diameter of the strands reduces the resistance ratio, the number of strands remaining unchanged, but to obtain a given current-carrying capacity, or a small enough total resistance, the total cross section must not be lowered below a certain limit, so that, in general, reducing the diameter of the strands means an increase in the number of strands.

With enameled strands of about 0.07 mm bare diameter twisted together to form a composite conductor the order of magnitude of the resistance ratio may be estimated by the following procedure. Calculate by Table 19, and Table 17. the resistance ratio for a single strand at the desired frequency (this value of R/R_0 will lie very close to unity), and carry out the same calculation for the equivalent solid wire, whose diameter will of course be $d\sqrt{n}$, where n = the number of strands and d = the diameter of a single strand. Then the resistance ratio for the stranded conductor will, for moderate frequencies, lie about one-quarter to one-third of the way between these two values, being closer to the lower limit. This holds for straight wires up to higher frequencies than for solenoids. (See critical frequency mentioned in second paragraph below.) Not all so-called litzendraht is as good as this by any means. For a woven tube the resistance ratio may be as low as one-tenth of the way from the lower to the upper limits mentioned.

Coils of Stranded Wire.—In the case of solenoids wound with stranded conductor, the resistance ratio is always larger than for the straight conductor, and at high frequencies may be two to three times as great. It is appreciably greater for a very short coil than for a long solenoid.

For moderate frequencies the resistance ratio is less than for a similar coil of solid wire of the same cross section as just stated, but for every stranded-conductor coil there is a critical frequency above which the stranded conductor has the larger resistance ratio. This critical frequency lies higher the finer the strands and the smaller their number. For 100 strands of say 0.07 mm diameter this limit lies above the more usual radio frequencies.

This supposes that losses in the dielectric are not important, which is the case for single-layer coils with strands well insulated. In multiple-layer coils of stranded wire, dielectric losses are not negligible at high frequencies.

TABLES FOR RESISTANCE CALCULATIONS

TABLE 17 .- Ratio of High-Frequency Resistance to the Direct-Current Resistance

T	R Ro p	Difference	I	R R.	Difference	I I	R.	Difference
0.5	1.0000	0.0003	5.2	2.114	0.070	14.0	5.209	0.177
.6	1.0007	.0005	5.6	2.254	.070	15.0	5.562	. 353
.8	1.0012	. 0013	6.0	2. 394	. 069	16.0	5.915	0.353
.9	1.0034	. 0018	0.2	2.403	.070	17.0	6. 621	. 353
1.0	1.005	0.003	6.4	2.533 2.603	0.070	19.0 20.0	6.974 7.328	. 354
1.2	1.011	.004	6.8	2.673	.070	21.0	7. 681	0.353
1.4	1.020	.006	7.2	2.813	.071	22.0	8.034	. 353
्युयुष्	1.020	0.000	7.6	2.001	0.070	24.0	8.741	. 353
1.0	1.033	.010	7.8	3.024	. 070	25.0	9.094	0 70
1.8	1.052	.012	8.0 8.2	3. 165	.070	28.0	10.15	.71
2.0	1.078	. 033	8.4	3. 235	.071	32.0	11. 57	.70
2.2	1.111	0.041	8.6 8.8	3. 306	0.071	34.0	12.00	0.71
2.6	1. 201	. 056	9.0	3. 446	.071	38.0	13.69	.71
3.0	1. 318	. 067	9.4	3. 587	.071	40.0	14.40	.71
3. 2	1. 385	0.071	9.6	3.658	0.070	44.0	15.81	.71
3.6	1. 450	.073	10.0	3. 799	.176	46.0	16.52 17.22	0.70
3.8	1.603	.075	10.5	3.975	-176	50.0	17.93 21.47	3.54
4.2	1.752	0.074	11.5	4. 327	0.177	70.0	25.00	3.54
4.4	1.826	.073	12.0 12.5	4 504 4.680	.176	80.0 90.0	28.54 32.07	3.53
4.8	1.971 2.043	.072	13.0 13.5	4.856	.177	100.0	35. 61 00	TOUR STOR
		and the second						

[See formulas (207), (208), and (209)]

TABLE 18 .- Maximum Diameter of Wires for High-Frequency Resistance Ratio of 1.01

3.0

20

1.8

1.6

1.4

1.2

0.8 1.0

0.6

..4

0.2

0.1

Prequency + 104......

Wave length, moters	3000	1500	750	88	375	300	250	214.3	187.5	166.7	150	100
Material	THE REAL		ini The second se		A	lameter In	centimete		1		Real of	RO RO
Copper	0.0356	0.0251	Q. 0177	0.0145	0.0125	0.0112	0.0102	0,0095	Q. 0069	0.0084	0. 0079	0.0065
Silver	.0345	.0244	. 0172	.0141	.0122	.0109	6600.	.0092	.0086	. 0082	. 0077	.0063
Geld	.0420	1620.	.0210	.0172	.0149	. 0133	.0121	. 0112	.0105	6600 .	H600 .	. 0077
Platinum.	.1120	E610 .	.0560	. 0457	. 0396	HSEO .	. 0323	. 0300	. 0280	. 0264	.0250	. 0205
Mercury.	192.	. 187	.132	.1080	9660 *	. 0836	.0763	. 0706	1990.	. 0623	1650.	. 0483
Manganin	.1784	.1261	. 0892	.0729	.0631	.0564	. 0515	1100.	. 0446	.0420	.0399	.0325
Constantan.	.1692	1137	9460.	.0772	.0664	9650.	.0546	.0506	ETHO .	.0446	. 0423	. 0345
German allver	. 1942	. 1372	02260	.0792	.0692	, 0614	.0360	.0518	.0485	. 0458	N540.	. 0354
Graphite	.765	145.	.383	.312	1/2.	. 242	.221	.204	. 191	.180	171.	.140
Carbon	1.60	1.13	108.	.654	.566	.506	. 462	.428	.400	. 377	.358	262.
1000 ng 1	0.00263 .00373	0.00186	0.00131 .00187 .00418	0.00108 .00152	0. 00094 . 00132 . 00295	0.00083 .00118 .00264	0.00076 .00108	.00000.	0. 00066 . 00093 . 00209	0.00062 .00068	0.00059	52100°.
												-
t cycles per second	ae	Difference	λ meters	f cycles per second	a.	Difference	λ meters					
---------------------------	--------	------------	-------------	---------------------------	------------	------------	-------------					
100	0 1071	0.0443	5 R 2 R/R	50 000	2 205	0.220	6000					
200	1514	0341		60 000	2. 595	0.229	6000					
300	1855	0287		20 000	2 924	.610	3000					
400	2142	.0253		80 000	6.834	.195	4260					
500	2305	0220		00 000	3.029	.184	3750					
300	. 6333	. 0663		90 000	3.213	.174	3333					
600	0.2624	0.0210	0 0 0 0 0	100 000	3 387	0.761	2000					
700	.2834	.0195		150 000	4 148	642	2000					
800	3029	.0184		200 000	4 700		1500					
900	. 3213	.0174		250 000	5 255	503	1300					
1000	3387	1402		300 000	5.000	- 311	1200					
1000				300 000	5.000	.310	1000					
2000	0.4790	0.1076		333 333	6 184	0 380	000					
3000	. 5866	8000		375 000	6 564	452	800					
4000	.6774	.0799		428 570	7 012	561	200					
. 5000	.7573	0723		500 000	7 572	.301	600					
				600 000	9 206	.165	500					
6000	0.8296	0.0664			0. 230	.001	200					
2000	8960	0610		700 000	0.060	0.216	490					
8000	9570	0501		750 000	0.900	0.313	769					
0000	1 0160	0.0001		900 000	9.675	. 304	400					
	1.0100	.055		000 000	9.5/9	. 561	3/5					
10.000	1 071	0 241	20.000	1 000 000	10.10	.55	333					
15 000	1 212	202	30 000	1 000 000	10.71	6.41	300					
20 000	1 514	241	15 000	1 500 000	10.10	1						
20 000	1 955	. 341	15 000	2 000 000	13.12	5.43	200					
40 000	2 142	. 267	10 000	3 000 000	18.55		100					
40 000	6.196	. 633	7500		The second	1 12						

TABLE 19.—Values of the Argument α_{e} for Copper Wire 0.1 cm Diameter and Resistivity 1.724 Microhm-cms $(\alpha_{e}=.0107003\sqrt{f})$

TABLE 20.—Values of $\frac{R}{R_o}$ for Use with Formula (210)

ß	R R,	Difference	β	R R.	Difference	B	R.	Difference
0 0.1 .2 .3 .4 .5 0.55 .60 .75 0.80 .95 .95 1.00	1.000 1.000 1.000 1.001 1.002 1.006 1.003 1.012 1.016 1.021 1.028 1.036 1.036 1.036 1.057 1.070 1.086	0.002 004 004 005 007 008 0.009 011 013 013 016	1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 2.0 2.1 2.2 2.3 2.4 2.5	1.086 1.123 1.170 1.229 1.298 1.378 1.468 1.566 1.672 1.783 1.898 2.015 2.132 2.248 2.364 2.477	0.037 .047 .059 .069 .080 .090 .090 .090 .106 .111 .115 .117 .117 .117 .117 .113 .111	2.5 2.6 2.7 2.8 3.0 3.1 3.2 3.3 3.4 3.5 5 5.6 3.7 3.8 3.9 4.0	2.477 2.588 2.697 2.803 2.907 3.010 3.111 3.212 3.311 3.410 3.509 3.608 3.706 3.804 3.902 4.000	0.111 .109 .106 .104 .103 .101 0.101 0.99 .099 .099 .099 .099 0.098 .098

MISCELLANEOUS FORMULAS AND DATA

WAVE LENGTH AND FREQUENCY OF RESONANCE

$\lambda_{\rm em} = 1.8838 \times 10^{11} \sqrt{LC}$ (cgs electromagnetic units)	(214)
=6.283 \sqrt{L} cgs electromagnetic C cgs electrostatic	(215)
$\lambda_{m} = 0.05957 \sqrt{L \text{ cgs electromagnetic } C \text{ micromicrofarad}}$	(216)
= 1.884 \sqrt{L} microhenry C micromicrofarad	(217)
=1884 VL microhenry C microfarad	(218)
= 59 570 \sqrt{L} millihenry C microfarad	(219)
= 1 884 000 \sqrt{L} henry C microfarad	(220)
$f = \frac{159.2}{\sqrt{L \text{ henry } C \text{ microfarad}}}$	(221)
$= \frac{5033}{\sqrt{L \text{ millihenry } C \text{ microfarad}}}$	(222)
159 200	(223)
$\omega = \frac{1000}{\sqrt{L \text{ henry } C \text{ microfarad}}}$	(224)
$\frac{31620}{\sqrt{L \text{ millihenry } C \text{ microfarad}}}$	(225)
$= \frac{1\ 000\ 000}{\sqrt{L\ microhenry\ C\ microfarad}}$	(226)
$T = \frac{1}{f} = \frac{2\pi}{\omega}$. Subject symptom of $\frac{1}{\sqrt{2}}$	(227)
$\lambda_{\rm m} = \frac{2.998 \times 10^8}{j}$	(228)
$\frac{1.884 \times 10^9}{\omega}$ sim $\omega > V$ besistor if it stations in a	(229)

MISCELLANEOUS RADIO FORMULAS

When units are not specified, international electric units are to be understood. These are the ordinary units, based on the international ohm and ampere, the centimeter and the second. Full information is given on electric units in reference No. 152, Appendix 2

Current in Simple Series Circuit.-

$$I = \frac{E}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$
(230)

Phase Angle .--

$$\tan \theta = \frac{X}{R} = \frac{X_{L} - X_{o}}{R}$$
(231)

$$= \frac{\omega L - \frac{1}{\omega C}}{R}$$
 in simple series circuit. (232)

Sharpness of Resonance.-

$$\frac{\sqrt{\frac{I_{r}^{2} - I_{1}^{2}}{I_{1}^{2}}}}{\frac{\pm (C_{r} - C)}{C}} = \frac{1}{R\omega C_{r}} = \frac{\omega L}{R}$$
(233)

Current at Parallel Resonance.-

$$I = \frac{ER}{R^2 + \omega^2 L^2}$$
(234)

Coefficient of Coupling .-

(224) 4

$$k = \frac{X_{\rm m}}{\sqrt{X_1 X_1}} \tag{235}$$

$$= \frac{M}{\sqrt{L_1 L_2}} \text{ for direct and inductive coupling}$$
 (236)

$$=\frac{\sqrt{C_1 C_2}}{C_m}$$
 for capacitive coupling. (237)

Power Input in Condenser-

$$P = 0.5 \times 10^{-6} NCE_{0}^{2}$$
 watts (238)

for C in microfarads, E_0 in volts, and N = number of charges per second.

Power Loss in Condenser-

$$P = \omega C E^2 \sin \psi \tag{239}$$

Condenser Phase Difference-

$$\psi = r\omega C \tag{240}$$

for ψ in radians, r in ohms, C in farads.

$$\psi = 0.1079 \frac{rC}{\lambda} \text{ degrees}$$
 (241)

for r in ohms, C in micromicrofarads, λ in meters.

$$\psi = 389. \frac{rC}{\lambda}$$
 seconds (242)

for r in ohms, C in micromicrofarads, λ in meters

$$r = \psi \times \frac{0.001}{C} \times \frac{\lambda}{1000} \times 0.154 \text{ ohms}$$
 (243)

for ψ in minutes, C in microfarads, λ in meters. Energy Associated with Inductance—

$$V = \frac{1}{2}LI^2 \tag{244}$$

Inductance of Coil Having Capacity:

$$L_{a} = \frac{L}{I - \omega^{2} C L}$$
(245)

for C in farads, L in the denominator in henries.

$$L_{a} = L\left(1 + 3.553 \frac{CL}{\lambda^{3}}\right)$$
 approximately (246)

for λ in meters, C in micromicrofarads, L in the parentheses in microhenries. This formula is accurate when the last term is small compared with unity.

Current Transformer-

$$\frac{I_{1}}{I_{2}} = \frac{n_{2}}{n_{1}} \left(I + \frac{aR_{2}}{\omega L_{2}} \right)$$
(247)

Audibility-

$$\frac{I}{I_{t}} = \frac{s+t}{s}$$
(248)

Natural Oscillations of Horizontal Antenna.-

$$\lambda = \frac{1199}{m} \sqrt{C_0 L_0}, \ m = 1, \ 3, \ 5, \ \dots$$
 (249)

for λ in meters, C_0 = capacity in microfarads for uniform voltage, L_0 = inductance in microhenries for uniform current.

Approximate Wave Length of Resonance for Loaded Antenna .-

$$\lambda = 1884 \sqrt{C_0 \left(L + \frac{L_o}{3}\right)} \tag{250}$$

where L = inductance of loading coil in microhenries and other quantities are as in preceding formula.

Radiation Resistance of an Antenna.-

$$R = 1580 \left(\frac{h}{\lambda}\right)^2 \text{ ohms}$$
 (251)

where h = height from ground to center of capacity, and h and λ are in the same units, and λ is considerably greater than the fundamental wave length.

Electron Flow From Hot Filament .-

$$I_{*} = A T^{\mathcal{H}} \epsilon^{-} \tilde{\tau} \tag{252}$$

where I_{s} = electron current in milliamperes per centimeter ² of filamen³ surface, T = absolute temperature, and A and b depend on metal of filament; for tungsten $A = 2.5 \times 10^{10}$, b = 52500.

Electron Current in 3-Electrode Tube.-

$$I_{n} = k \left(E_{n} + k_{1} v_{1} \right)^{\frac{1}{2}} \tag{253}$$

where $E_B = \text{plate voltage}$, $v_1 = \text{grid voltage}$, $k_1 = \text{amplification constant}$.

Resistance Measurement by Resistance—Variation Method Using Undamped Emf.—

$$R = R_1 \frac{I_1}{I - I_1}$$
(254)

Resistance Measurement by Resistance—Variation Method Using Impulse Excitation.—

$$R = R_1 \frac{I_1^2}{I^2 - I_1^2}$$
(255)

Resistance Measurement by Reactance-Variation Method Using Undamped emf.—

$$R = X_1 \sqrt{\frac{I_1^2}{I_r^2 - I_1^2}}$$
(256)

where X_1 = change of reactance between the two observations of current.

Natural Frequency of Simple Series Circuit .--

$$j = \frac{1}{2\pi} \sqrt{\frac{1}{CL} - \frac{R^2}{4L^2}}$$
(257)
$$\omega = \frac{1}{\sqrt{CL} \sqrt{1 + (\frac{\delta}{2\pi})^2}}$$
(258)

Number of Oscillations to Reduce Current to'r Per Cent of Initial Value in Wave Train.—

$$n = \frac{4.6}{\delta} \tag{259}$$

Logarithmic Decrement.-

between their and

$$\delta = \log_{i} \frac{I_{1}}{I_{2}} = \frac{a}{f}$$
(260)
$$= \pi \frac{R}{\omega L} = \pi R \omega \dot{C} = \pi R \sqrt{\frac{C}{L}}$$

 $= \frac{\pi}{\text{sharpness of resonance}}$ = $\pi \times \text{phase difference of condenser or coil, the resistance being in one or the other}$

average energy dissipated per cycle

2 X average magnetic energy at the current maxima

$$\delta = 0.00167 \frac{R\lambda}{L} \tag{261}$$

for R in ohms, λ in meters, L in microhenries.

$$\delta = 5918 \frac{RC}{\lambda} \tag{262}$$

for R in ohms, λ in meters, C in microfarads.

$$\delta = 3.1416 R \sqrt{\frac{C}{L}}$$
 (263)

for R in ohms, C in microfarads, L in microhenries.

Current at resonance Produced by Slightly Damped emf Induced in a Circuit.—

$$I^{2} = \frac{N E_{o}^{2}}{16j^{3}L^{2}\delta'\delta(\delta'+\delta)}$$
(264)

Decrement Measurement by Reactance-Variation Method.-

$$\delta' + \delta = \pi \frac{C_2 - C_1}{C_2 + C_1} \sqrt{\frac{I_1^2}{I_r^2 - I_1^2}}$$
(265)

POWER TRANSFORMERS.

Transformers may be regarded either as impedance or voltage matching devices, and when designing power transformers, it is more convenient to consider the voltage ratios.

Transformers for power supplies consist of two coils, or sets of coils, wound on an iron core to assist the coupling between them and thus improve their mutual inductance. Power from the A.C. mains is supplied to one coil or set of coils and the magnetic flux set up in the iron core and around the coil induces currents in the second set of coils, the voltages across these coils being either higher (step up) or lower (step down) than the voltage supplied.

The coil to which power is fed is known as the primary, those from which power is taken are known as secondaries, and in radio power transformers are of both step up and step down windings.

The size of each winding bears a very definite relationship to the power supplied to or drawn from it, the number of turns controlling the voltage, and the resistance, expressed as the diameter of the wire, controlling the current.

The number of turns varies inversely as the size of the core.

The core is built up of thin sheets of iron in the form known as a laminated core, and this is a method used in practically all A.C. apparatus. Clearly the rapidly varying magnetic flux will induce currents in the core as well as in the windings around it and if the core were one mass of metal with a very low resistance the current so induced would be exceedingly high. It is necessary, therefore to increase the electrical resistance of the core, which can only be done as described, by splitting it into thin sheets and insulating each sheet from the next. Eddy currents will still flow but the total loss of power so caused will be far less than it would otherwise have been.

Laminations are insulated in several ways—by chemical treatment of the metal surface, by varnish, by very thin cemented paper—and there are two main shapes of laminations, the E and I type and the T and U type, both sets giving a three-legged core (Fig. 9a).

When the laminations are being inserted into the finished coils on their former they must be alternated, that is an E must go in from the left with an I from the right, then an I from the left and an E from the right and so on, the laminations being brought into tight contact with no air gaps.

The cross sectional area of the core, Fig. 9b, is chosen from the formula given by "The Radio Designer's Handbook," Iliffe, where

$$A = \frac{\sqrt{W}}{5.58}$$

where W is the volt-amperes output, and A is the cross section area in square inches.

Example 1.

A transformer is to supply 300 volts at 100 m/as., 4 volts at 2 amps, and 4 volts at 4 amps.

The total output, therefore, for an ideal transformer is 100

 $300 \times \frac{100}{1,000} + (4 \times 2) + (4 \times 4) \\ = 30 + 8 + 16 = 54$

Therefore, A = $\frac{\sqrt{54}}{5.58}$ or 1.3 square inches is the necessary core area.

The formula connecting the number of turns in a winding with a given voltage, size of core, frequency and flux density is

 $E = \frac{4.44 \times F \times H \times N \times A}{E}$

100,000,000

Where E is the voltage supplied to or supplied by the winding, F is the mains frequency, H is the number of lines of magnetic flux per square inch in the iron, and A is the cross sectional area of the core.

If E is allowed to equal I then the calculation will give the number of turns per volt for any winding on that core.

It is supposed that often transformers will be re-wound using materials to hand, and in this case the characteristics of the iron will not be known. The best compromise in such conditions is to let H equal 60,000 lines per square inch, a figure at which many power transformers are run, although if winding space and other conditions permit, this may be reduced to 50,000 lines. A, it must be remembered, is built up of laminated sheets which have insulation on one side at least so that the actual magnetic area will be only 90% or so of the geometrical area. This measured area, then, should be reduced by 10% for the calculation. The shape of the core must be well proportioned, each outer limb having half the width of the middle limb on which all the windings are placed in layers, thus occupying the window space "a × b" of Fig. 9a. The general order of the windings is primary inside, nearest the limb, the H.T. secondary and the heater windings outside, of which there are usually at least two, one to supply the rectifier heater and one for the valve heaters of the receiver or apparatus.

The regulation of the transformer is very important—that is the virtue of its having only a small output voltage variation with varying current loads—and depends to a great extent on the iron of the core, the shape of the core and the filling of the window space with windings, there being no large gap between the last layers of wire and the outside limbs. The core must be large enough and the wire diameter fully adequate to handle the loads expected.

The main losses in a transformer are "iron" and "copper" losses: those watts lost due to eddy currents and the purely magnetizing effect on the core, and the watts lost due to the currents flowing in the resistances of the windings. Theoretical transformer design requires these losses to be equal when the transformer will be at its most efficient working level, but for the purposes of small transformer design, it will be sufficient to base all calculations on a theoretical efficiency of 80% instead of the 90% or so which, with care, will be obtained. These losses will be dissipated as heat and any transformer which heats up in working to anything but a small degree is inefficient and wasteful. Power is being lost, regulation will be poor and insulation will be subjected to the most undesirable strains. A good transformer will work for hours with a temperature rise which can scarcely be observed by touch.

The windings are usually on a former, Fig. 9c, a tube which will fit the core tightly with end checks to clear the window space, and through which the leads pass. Such a former can be made of stiff cardboard well shellaced or of thin paxolin. Cardboard is quite suitable for ordinary voltages; the tube is first made to fit the core and the end checks are fitted, then the whole is well varnished and allowed to set hard. It will perhaps be best to follow the design and construction of a specimen transformer throughout.

Example 2.

A transformer is to be made with the specification :--Primary to be tapped to 210, 230, 250 volts, H.T. secondary to give 350-0-350 volts, 120 m/as, valve heater secondary to give 6.3 volts 3 amps. and Rectifier heater secondary to give 5 volts 2 amps.

The watts ratings, therefore, are :--

350×120 m/as (only half the H.T. winding supplies current at one time) =	42 watts
$b.3 \times \delta = \dots \dots$	18.9 "
Giving an <i>output</i> total wattage of or, say, 71 watts.	70.9 watts

The cross sectional area of the core should be at least A = $\frac{\sqrt{71}}{5.58}$

or 1.5 square inches, and assuming an efficiency of 80%, which should certainly be bettered in practice, the input wattage is therefore

 $71 \times \frac{100}{80}$ or 88.7 watts.

At a working voltage of 230, therefore (the usual mains voltage) the primary will take $\frac{88.7}{230}$ amps. or .4 amps. nearly, and the wire must be chosen to carry this current safely. The question of insulation enters here.

Commercial transformers, as inspection will show, are most often wound with enamelled wire, but conditions are different from those obtaining for home construction. The commercial transformer is machine wound so that the wire can be, and generally is slightly spaced between turns so that there is no rubbing of the enamel, whilst the wire tension can be more accurately controlled. For amateur construction enamelled wire can be used but on no account should it be wire taken from old coils or transformers. It must be new and every precaution must be taken to ensure the covering is not cracked, kinked or rubbed for a breakdown in insulation in any winding renders the whole transformer useless.

Probably the best plan is to use enamelled wire with the added protection of a single silk covering for the heavier primary winding.

A suitable core is now chosen, one with an area of 2 square inches (reducing to an electrical area of 1.8 square inches) being before the writer.

The turns per volt formula becomes, then,

 $1 = 4.44 \times 50 \times 60,000 \times N \times 1.8$

100,000,000

but if desired a factor can be produced relating to all transformers where H is taken as 60,000 by leaving out the terms N and A.

This factor, obviously, for 50-cycle mains, is $1 = 4.44 \times 50 \times 60,000 \times AN$ 100,000,000 = .1332 AN so that the formula for this transformer becomes $1 = .1332 \times 1.8 \times N$ = .24 Nand N = 1 or 4.2 turns per volt. .24

The windings can all be calculated, then, the primary having $250 \times 4.2 = 1,050$ turns tapped at 966 and 882 turns, the secondary has 700 $\times 4.2 = 2,940$ turns, centre tapped, the valve heater secondary has $6.3 \times 4.2 = 26.5$ turns and the rectifier secondary has $5 \times 4.2 = 21$ turns.

The size of wire, as already shown, affects the current flowing in the winding, and for this type of transformer the gauge may be chosen on the basis of a current flow of 2,000 amps. per square inch

The primary draws .4 amps. so, from the wire table, it will be seen that S.W.G. 26 S.S. and E copper wire will be suitable; for the H.T. secondary enamelled wire with an interleaving of thin waxed paper between each layer will be used, and to carry the 120 m/as S.W.G. 34 copper wire will be suitable.

S.W.G. 18 copper wire, enamelled, will suit both heater windings, and to make up losses one extra turn is usually added to the calculated figures for these two coils.

It is now necessary to pay some attention to mechanical details and to check over the dimensions of the former. The size of the window space, $a \times b$, as shown in Fig. 9a, is one and one-eighth inches by one and seven-eighths inches and the former may be supposed to be made of one-eighth material, card or paxolin. This will reduce the available space in three directions, leaving the depth of the window one inch and the length one and five-eighths inches. The space taken by each winding must now be calculated

THE PRIMARY.

S.W.G. 26 S.S. and E. winds 48 turns to the inch, so that the former will take $48 \times 1\frac{5}{8}$ turns per layer, or 78 turns. The number of layers will be 1,050 or 14 layers and the height will therefore be $\frac{1}{8}$ inch.

78

THE H.T. SECONDARY.

S.W.G. 34 E. wire winds 100 turns per inch so that each layer will contain $100 \times 1\frac{5}{8}$ or 162 turns. The number of layers will be 2,940162

or 19 layers, and these will be slightly greater than $\frac{1}{4}$ inch high including paper interleaving.

THE HEATER SECONDARIES.

S.W.G. 18 E. wire winds 19.7 turns per inch so that one layer will contain $19.7 \times 1\frac{5}{4}$ or 32 turns, so that each heater winding will fit into a layer comfortably, and the whole wire height of the two windings together will be under $\frac{1}{4}$ inch.

The total height of the wire alone, then, is $\frac{1}{3} + \frac{1}{5} + \frac{1}{8}$ or $\frac{2}{3}$ inch, leaving $\frac{1}{3}$ inch space for insulation.

When the former is made, shellaced and perfectly hard the cheeks may be drilled for the leads, using the figures above as guides or the holes may be made as the work progresses providing there is no chance whatever of damaging the wire insulation in any way. The primary is wound first, the wire being cleaned properly with spirit, not by scraping, and having a flexible lead soldered to it. The soldered joint must be perfectly smooth with no sharp points or projecting wire ends, and it is then covered with insulating sleeving which carries the flex lead through the cheek. The wire is then wound either by hand or by a simple winder, which is much to be preferred. All that is needed is a spindle turning in end plates or bearings, a handle at one end. Two adjustable cheeks are then mounted on the spindle to grip the former tightly, the spindle (which might well be a long screw-threaded rod) passing through the centre hole of the former. The former is then rotated with the right hand, the wire being fed off its reel and tensioned evenly with the left. The turns should be laid evenly side by side and counted as they are put on-in the absence, as is likely, of a mechanical counter, it is convenient to mark every twenty turns on a sheet of paper.

It is fatal to lose count!

The primary winding is not interleaved so that, when the end of one layer is reached, the wire is wound straight back on itself and tension must not be over tight for each corner of the former presents a sharp right angle bend to the wire, whilst the lower turns have to sustain the considerable strain of all those windings above them.

It is necessary to understand the effect of one short-circuiting turn in any winding. It would consist of a very low resistance loop in which, therefore, a very high current would be induced, this causing heating and consequent burning of the insulation on adjoining turns of wire, whilst the extra load reflected into the primary might cause that winding to be overloaded to the fusing point. It must be realised that the current flowing in the primary depends entirely on the load being drawn from the secondaries ;with the secondaries disconnected the only current flowing in the primary is the small core magnetizing current and the winding acts as a choke. The taps for the various primary voltages can be taken out in the same manner as the taps on coils, by drawing out a loop of wire and returning the wire to the next turn without any breaks or joins, or a flex lead may be soldered to the winding at the correct turn and well insulated. Whenever possible taps should be arranged to fall at the end of a layer so that they may be passed straight through the former check. If, however, they have to pass over several turns the insulation must be perfect and on no account must uneveness of winding be allowed in the next layers. Any hump in the centre of the coil will be magnified in the later layers with a corresponding strain on wire and insulation.

When the primary is finished, and a flex lead soldered to the last turns, the winding must be insulated from the following coils. The best material is Empire Cloth interwoven with glass fibres and known under such names as Glassite, but plain Empire Cloth may be used. Every part of the primary must be covered, the insulation being carried up snugly to the former cheeks.

Many transformers have an electrostatic screen wound over the primary to prevent interference from the mains being induced into the secondaries. It consists simply of one layer of fine insulated wire— S.W.G. 34 emamelled, for example—one end of the wire being anchored internally and the other brought out through insulating sleeving. The end brought out is earthed to the receiver or other apparatus worked from the transformer. Naturally just as much attention must be paid to the insulation of the screen as of any other winding ; no load is taken from it as only one end has a connection but shorting turns would give rise to the same heavy overloads mentioned above.

If the screen is included, another layer of Empire Cloth is wound over it, giving a smooth, even base for the H.T. winding. Again a flex lead is soldered to the start of the coil and insulated, but in this winding a sheet of thin paper is interleaved between each layer of wire. Excellent paper for this purpose can be obtained by stripping down an old paper condenser of the Mansbridge type, any punctured parts of the paper being discarded. On each wire layer one turn of paper is wound, fitting tight up the cheeks, and the wire is wound back over it to form the next layer.

At the centre tap a flex lead is soldered to the wire and anchored firmly in the coil, the flex being taken through the cheek and the joint, as before, being perfectly smooth and insulated. When the H.T. winding is finished another layer of Empire Cloth or Glassite is laid over it and the valve heater winding made, the commencing lead through one cheek and the finishing lead through the other. A layer of Empire Cloth or Glassite separates it from the last winding, that for the rectifier heater which is put on in the same way.

Study of any power pack will show that the full H.T. voltage is established between the H.T. and rectifier heater windings and the insulation between them must be perfect. Any breakdown here will immediately ruin both transformer and rectifier valve. When the former is wound it is given a last covering of cloth and the laminations are inserted into the centre aperture in order as already explained. The stampings must be inserted carefully for it may be possible to run a sharp edge or corner into and through the former material, cutting or scraping the primary winding.

The laminations must be clamped into a solid mass with wooden or metal clamps which can also be drilled to provide fixing holes for bolting the transformer to its chassis.

TESTING.

The first tests to be given the transformer are continuity and insulation checks, these being performed with a neon lamp worked from the A.C. mains. One mains lead is taken to the metal core of the transformer and the other, through the neon lamp, to each lead from the windings in turn. Any lighting of the lamp indicates a short circuit from a winding to the core which must be rectified. The next test is to check the insulation between the windings; transfer the lead from the core to the common primary wire and test the screen and secondary leads in turn with the neon lamp, transferring the mains lead from the primary to each secondary in turn as the test progresses.

Again, any lighting of the lamp indicates a short circuit, but actually any short circuits so discovered would be due to very careless workmanship and are unlikely.

Finally, the continuity of each winding is checked with the neon lamp, connecting it across each coil in turn, not forgetting the tappings, when the lamp should light.

If a small megger set is available really valuable insulation tests can be made, but care must be used to choose a voltage below any break-down voltage calculated for the insulation used. However, as the peak voltage across the H.T. secondary of the transformer described would be almost 1,000 volts, the transformer should certainly show a resistance of many megohms at 2,000 volts between windings.

When the transformer has been checked for insulation and continuity, its voltage ratios can be checked. The primary is connected through the suitable tapping to the A.C. Mains, with all the secondary leads well separated so that no two can short-circuit together.

Never check secondaries by touching the leads together to produce a spark—results are spectacular but impose an unnatural strain on the primary and should the transformer have been wound to close limits the high currents flowing will probably fuse a winding.

Switch on with the primary only in circuit. After a slight thump or click there should be very little hum from the core, and any appreciable noise indicates loose laminations which must be tightened. Let the primary run alone for ten minutes and check for warming up. Any temperature rise indicates either a totally incorrect winding size or shorting turns in any one of the windings.

In either case connect an A.C. voltmeter across each secondary in turn, and note the voltages obtained from each. If they are all somewhat low and the transformer is heating up, it is likely that there are shorting turns in the primary. If one voltage is low and the transformer is heating up there are probably shorting turns in that secondary alone. Any winding with shorting turns must be re-wound but if the work has been done properly and good wire used, there is very little reason for this fault to occur.

Check the voltage on the H.T. secondary from the centre tap to either end of the winding—there should be no difference in the readings, or at most one of only one or two volts. The heater winding voltages will be a little high but when the load is taken from them they will fall slightly to their correct value.

If the voltages are correct the transformer may be finished and coupled up, but a power test is advisable. For this, non-inductive resistors of adequate watts ratings must be used in the following manner.

The H.T. secondary supplies 350 volts at 120 m/as, or, disregarding the centre tap, 700 volts at 60 m/as. This is a wattage of 42, the resistance needed being $R = \frac{700 \times 1,000}{60}$ or 11,666 ohms, which might well be made up of lamps, whilst the L.T. windings can be tested on load using a resistor of 20 watts rating, 2.1 ohms for the valve heaters winding and one of 10 watts, 2.5 ohms for the rectifier winding, or, of course, the actual valve heaters to be used.

The test should run for an hour at least and the rise of temperature of the transformer tested—in commercial practice it might rise by 40 degrees C. but this should be bettered.

When the testing is completed the transformer can be finished. If the core is clamped satisfactorily and the transformer is to be permanently installed, nothing more need be done but if the transformer is to be used for experimental work the leads should not be used for direct connections but should be taken to terminals, mounted on paxolin in the form of a strip secured by two of the clamping bolts.

If the transformer can be mounted in an iron case or can, any stray fields which might give rise to hum can be suppressed. The old case of a choke or transformer could be used or even a heavy tin. In this case the leads should be brought out through insulating bushings or the terminal strip should be well insulated. The case or can should not be allowed to touch the winding at any point, both to assist in insulation and also to allow air to circulate freely for the purposes of ventilation.

In some cases the most tiresome and painstaking work, that of winding the H.T. secondary coil, can be avoided. The transformer can be made on a proportionately smaller core with primary and secondary windings to feed the valve and rectifier heaters, the H.T. being drawn straight from the mains by using the rectifier as a half-wave device (Fig. 10b). Provided that the rather lower voltage output is sufficient, this system can be very useful.

The operation of the power pack as a whole may here be considered, with reference to Fig. 10a, where the transformer just described is shown in its circuit. The H.T. secondary has been wound to give a R.M.S. voltage of 350, which means that the peak voltage will be 350×1.414 (peak value of a sinusoidal wave)

Thus the rectifier anodes will have peak voltages of 495 volts, the whole winding having a peak voltage across it of 990 volts, and even after the voltage drop due to the rectifier is allowed for, the condenser A,

the reservoir condenser, has a voltage across it well in excess of 350 volts—probably 450 volts. This explains why the voltage rating for this condenser is necessarily high; a 350 volt rating condenser would soon fail in this position.

The actual value of the condenser in microfarads is more or less of a compromise for the final output voltage of the power pack depends to a great extent on the size of the reservoir. If it were to be omitted the output voltage would be very low and as it rises in capacity so the output voltage rises towards the peak value. Before the peak voltage is reached, however, the condenser is excessively large (and expensive), but, moreover, it would be drawing very heavy currents from the rectifier valve on each surge or peak of the cycle and the valve would soon loose its emission. Ordinary practice usually fixes the value of the reservoir condenser at 8 microfarads for full-wave working, but in the writer's opinion this value may safely be exceeded if extra voltage is needed. It is interesting to note that in one commercial circuit where two heavy duty rectifiers in parallel feed a large amplifier, the reservoir condenser is as high as 25 microfarads. The only protecting device is a 50 ohm resistor in the positive lead to the condenser, this acting as a surge limiter, and if the reservoir condenser is to be large, it might be as well to use such a limiting resistor of reasonable current carrying capacity.

Valuable protection to the rectifier and transformer can be given by inserting simple fuses in the circuit, as shown in Fig. 10. They can be of the flash lamp bulb type, with a current rating to suit the load to be taken from the power pack with extra provision for any surges that might occur as the condenser charges up.

HIGH VOLTAGE TRANSFORMERS.

It is unlikely that the amateur will attempt the task of winding a High Voltage Transformer such as would be used to supply a large cathode ray tube, but a few points about High Voltage practice might be touched upon.

First, the peak inverse voltage across a typical television transformer might reach as high as 10,000 volts, so that great care is essential during testing to see that no risk of touching any live circuit is taken.

Secondly, the positive side of such a power pack is usually earthed, so that strain is placed on insulation in many ways. For example, the primary of the transformer might easily be earthed via the mains; in such a case the end of the secondary nearest the primary would be the earthed end, thus preventing a large potential difference directly across the insulation separating the windings.

Thirdly, air insulation is often relied upon. At high voltages a trace of moisture upon an insulating surface might give rise to sparking or arcing which, while slight at first, would rapidly become something approaching a short circuit. For this reason the layers of the secondary are not carried to the end checks of the former and as the winding grows outward from the centre the layers are made shorter, giving a pyramidical or stepped effect. In this way, as the potential above earth rises through the winding, so does the distance between any earthed object and the winding increase. Fourthly, the potential difference between the rectifier heater winding and the H.T. winding makes it necessary to have perfect insulation between the windings, a separate heater transformer helping in this respect. Metal rectifiers give very good results for cathode ray tule power supplies.

LOW FREQUENCY CHOKES.

The Low Frequency Choke is used in the power pack to filter out hum from the current supply, for intervalve coupling and in various forms of input and output circuits. Slightly different methods of construction are used dependent upon whether the choke is to carry direct current in the winding as well as A.C.; in a power pack, for example, D.C. is flowing whilst in a parallel fed intervalve coupling D.C. would be excluded by a blocking condenser.

The effect of D.C. in the winding is to decrease the incremental permeability of the core material—in practice a laminated core is used as in the transformer—so that the iron saturates more rapidly and the inductance of the choke is lowered. This inductance loss can only be partially countered by arranging to have a small air gap between the sets of laminations in the assembled core.

For chokes carrying A.C. alone, therefore, the laminations are interleaved as are those in a transformer, but, for a choke carrying D.C. and A.C., the laminations are assembled with the two sets of stampings, one on each side—that is all the E's on one side, and all the I's opposite (or all T's together opposite all U's, whichever type of stamping is used)—and it will be seen that, in the core assembled in this manner, there will be three air gaps, one at the end of each limb, Fig. 11.

So far as the magnetic circuit is concerned even a tightly clamped butt joint acts as a small air gap, and for correspondingly larger air gaps a piece of thin tissue paper may be inserted between the end of each limb and the opposite laminations. The calculation of the correct air gap for any single case is rather involved, however, and it is recommended that, for mixed A.C. and D.C. operation, the gap should be decided upon by experiment. As a rough guide it may be said that the close butt joint will do for currents of 5 or even 10 milliamps, but for higher currents the gap must be widened by inserting a "5 thou" sheet of tissue or more.

CHOKES FOR ALTERNATING CURRENT ONLY.

These are chokes as used for intervalve coupling, tone control, bass boosting, resonant circuits and audio oscillators, wherever the current feed to the valve is "shunted." The inductance of the choke is given by :—

$L = \frac{3.2 \times N^2 \times U \times A}{1 \times 100,000,000}$

Where L is the inductance in henrys, N is the number of turns of wire, U is the incremental A.C. permeability of the iron core material, A is the cross sectional area of the winding limb in square inches and 1 is the length of the magnetic path in inches.

A safe figure to use for U is 1,000 unless greater information about the core material is available, and 1 is measured directly from the laminations. A well-shaped core has the two outer legs only half the width of the inner or winding leg, so that the magnetic path is split equally into two, and the length, 1, to be measured is the centre line of ONE of these two paths as shown by the dotted line in Fig. 11.

Example 1.

A choke to possess an inductance of 100 henrys is to be wound on the core of Fig. 11, the dimensions being as shown.

Calculate the number of turns and the size of wire.

1 is measured on the core along the path shown and is 6.2 inches.

The area of the winding limb is 8 inches \times 1 inch, or .8 square inches, and as the permeability has been taken as a low figure, there is no real need for the 10% allowance to compensate for the thickness of the lamination insulation. The formula becomes, then :—

$$100 = \frac{3.2 \times N^{2} \times 1,000 \times .8}{6.2 \times 100,000,000}$$

or N² = 24218750
nd N = 4,920 turns nearly, say 5,000 turns.

The winding space is .6 inch \times 1.3 inch and, allowing .1 inch each way for a former with end cheeks, this reduces to an area of .5 inch \times 1.1 inch or .55 square inches, so wire must be used which will wind

 $\frac{1}{55}$ × 5,000 turns per square inch or 9,090 turns per square inch.

Reference to the wire tables shows that S.W.G. 34 enamelled copper wire winds 10,000 turns per square inch, which gives a little room for uneveness in winding.

The choke is finished in the same way as a transformer, with a tightly clamped core and a tape or cloth binding to protect the wire. No provision has here been made for interleaving the windings with paper as it is unlikely that any really dangerous voltage would be set up in such a choke.

CHOKES FOR MIXED CURRENTS.

Where the choke is to carry D.C. as well as A.C. it will scarcely be possible to wind such a high inductance (should it be needed) on such a small core unless the D.C. component is practically negligible. In the first place the wire would need to be of a heavier gauge to carry the current as well as to reduce the D.C. resistance to as low a figure as possible.

For example, it may be necessary to use a choke as the anode load for a valve for the reason that a suitable resistance load reduces the anode voltage to too low a figure.

The choke will still present a high impedance to the A.C. signal but the D.C. resistance must be low or otherwise the whole purpose of the choke will be defeated. This means a thicker gauge of wire and

therefore a larger core, for the number of turns must still be high to maintain the inductance and therefore the impedance to the signal. The simplest way out of the difficulty is to measure the winding space of the core to be used and choose a gauge of wire which, when wound to fill the space, will give a D.C. resistance suitable for the permitted voltage drop. This may be done by taking the length of an average turn on the winding limb, multiplying the number of turns given by the wire table by this length to find the whole length of wire in the winding, and then to check the resistance of this length in the wire tables.

The length of the average turn is, of course, the average of the length of the first and last turns on the winding, and may be measured on the cheek of the core, supposing the average turn to be geometrically situated at half the winding depth.

When the wire gauge is finally chosen the former can be wound, the core butt jointed or gapped according to the D.C. to be passed, and the inductance, if required, may then be measured on a test set as described in "Modern Radio Test Gear Construction." (Bernards 1/6).

providence.	and the second second	gridence and beauty		and a second second second	and the second second	and the second		P. Land at make	States States		
S.W.C	WORKINC	LENGTH PER OHM OF	ENA	MEL	DOU	BLE	SIN	LK	COT	BLE	EES.S.C.
No	2,00040	BARE	PER	PER	PER	PER	PER	PER	PER	PER	PER
16	6.434	YARDS 13.4	14 81	219-4	14.71	216-3	14.93	223	13-16	1731	14-2
18	3.62	75 3	19.72	388.9	19-61	384.7	20	400	16.95	287.3	19
20	2.036	42.4	25-97	674.4	25.64	657.3	26.32	692.8	21.28	452-7	24.7
22	1-232	25.6	33.33	1141	32.26	1041	33.33	1111	25.64	657·3	31.2
24	-76	15-8	42.37	1794	40	1600	42.55	1810	31.25	976.8	39.5
26	.508	10.6	51.55	2655	48.78	2379	51 81	2684	35.71	1275	48.1
28	.344	7.18	62.50	3906	57.8	3341	62.11	3858	40.32	1625	57.8
30	.24	5.03	74-63	5569	67.11	45 64	72.99	5326	44.64	1992	67
35	-182	3.85	85.47	7308	75.19	5652	82.64	6830	48.08	2311	76-3
34	.132	2.77	100	10,000	85.47	7308	95.24	9070	52.08	2712	87.7
36	.090	1.89	120-5	14,520	99.01	9800	112.4	12,630	60.24	3629	102
38	-06	1.18	151-5	22,950	117-6	13,830	137	18,770	66.67	4446	125
40	-036	-755	188.7	35,620	137	18,770	163.9	25,870	72.46	5250	151

COPPER WIRE TABLES

Smoothing chokes also may be wound in this way. Choose a suitable core with a cross sectional area of at least 1 square inch and a window space of at least 2 square inches and decide from the wire tables the gauge of wire which will carry the maximum current safely, using a current density of 1,500 or 2,000 amperes per square inch. Enamelled wire is suitable for the winding and again the layers should not need to be interleaved, the space which would be used by the paper being of greater value if filled with wire.

The gap can be adjusted experimentally by allowing the choke to supply filtered D.C. to a sensitive receiver or amplifier. The core clamping bolts are loosened just sufficiently to allow the sets of laminations to be moved and the space between them is gradually opened until the hum in loudspeaker, with no signals and the gain control right out, is at a minimum. The gap can then be set with a paper or very thin fibre packing and the core re-clamped.

The testing of insulation and general performance of the choke can be modelled on the lines described in Section 4.

SOLUTION OF RIGHT ANGLE TRIANGLES

SINE $\phi = \frac{A}{H}$		IDE ADJACI IDE OPPOS IVPOTENUS $f \phi = \frac{O}{A}$ S $f \phi = \frac{A}{O}$ CO	ENT TO ϕ SE SE ECANT $\phi = -$		ANGLE			
PARTS			PARTS TO B	EFOUND				
CIVEN	НҮР	ADJ SIDE	OPP SIDE	ANGLE	OPP ANGLE			
AND ADJACENT			VHYP-ADJ2	$COSINE = \frac{ADJ}{HYP}$	$SINE = \frac{ADJ}{HYP}$			
HYPOTENUSE AND OPPOSITE		VHYP-OPP2		$SINE = \frac{OPP}{HYP}$	$COSINE = \frac{OPP}{HYP}$			
HYPOTENUSE AND ANGLE		HYP X COSINE	HYP X SINE	El Salvarda	90°-ANGLE			
ADJACENT AND OPPOSITE	VADJ ² +OPP		and a state of the	$TAN = \frac{OPP}{ADJ}$	COTAN = OPP			
ADJACENT AND ANCLE	ADJ	-	ADJ X TANCENT		90°-ANGLE			
OPPOSITE AND ANGLE	OPP SINE	OPP X COTAN		and the second second	90°-ANGLE			
B.A.	B.A. TAPPING DRILLS B.A. CLEARANCE DRILLS							
BA. DRILL B.	A. DRILL B.A	DRILL BA	DRILL	B.A. DRILL B.A. D	RILL B.A. DRILL			

B.A. No	SIZE	NO.	SIZE	B.A. No	SIZE	No.	SIZE
0	No12	5	No 40	10	No 56	15	No 72
1	No19	6	No 44	11	No 58	16	No 74
2	No26	7	No 48	12	N o 63	17	No 76
3	No 30	8	No 51	13	No 65	18	No77
4	No34	9	No 53	14	No 70	19	No 79

B.A. No	DRILL	B.A. No	DRILL	B.A. No	DRILL
0	"C*	6	No 32	12	No54
1	No 3	7	No 37	13	No 54
2	Noll	8	No42	14	3/64
3	No 19	9	No46.	15	No 60
4	No 26	10	No49		instant?
5	No 29	11	No 51		

CATHODE-RAY OSCILLOGRAPHS

INTRODUCTION

The cathode-ray oscillograph is one of the most versatile electronic instruments which has ever been developed as an aid to investigators of natural phenomena, and as a time saving accurate method for observing the characteristics of both electrical and mechanical machines. Fundamentally, the oscillograph provides a means of plotting a visual curve on a fluorescent indicating screen. The coordinates of the curve are usually of the orthogonal or.Cartesian type, and, in the conventional instrument, the horizontal axis represents time, Instantaneous values of any quantity which can ment is that it cannot be damaged by the application of over-voltage on the deflection system. Furthermore, the indicator requires a negligible amount of power for operation. Thus, the source of the phenomenon under observation is not burdened, with a load whick might disturb its operating characteristics.

Uses

What are the practical applications of such a device? Needless to say, from the fundamental description above, it can be seen that they are

Sine waves of a tuning fork. A.440 eycles per second

Oscillogram of the operation of a two-way anap-awitch, accurately timed in milliseconds

G-392 cycles per second as produced by a single reed of an accordian

Oscillogram of the response of a siven amplifier to a 100 kilocycle square-wave signal

Figure 1 Typical Oscillograms

be converted into an electrical potenfial, whose amplitude will vary according to the variation of that quantity, are plotted along the vertical axis of the screen. Essentially, a cathode-ray oscillograph is an instrument with which the value of an unknown variable voltage may be plotted against a time reference. The indicating pointer or element is an electron beam having negligible inertia. Therefore, the instrument may be used to plot rapidly changing quantities which cannot be plotted with a mechanical system of indication. Another advantage of the electronic beam type of indicator ele-

Oscillogram showing the precise wave form of the DuMont Variable-Frequency Stimulator for brain surgery and research

manifold. A little thought will disclose hundreds of ideas for specialized applications. A few of the more general uses are for the study and testing of the operation of radio receivers, transmitters, welding circuits, transmission lines, electronic control devices, circuit breakers, ignition coils, relays, and other electrical devices. An oscillograph, may also be used to advantage in the study of vibrations, properties of metals, and dynamic mechanical unbalance. Production testing applications even include fast and accurate adjustment of watches and musical in struments. Not to be overlooked are uses in the field of internal combustion engines, where detonation studies and pressure-volume curves can be plotted.

The first domestic cathode-ray oscillograph was introduced in the United States in 1932 by the Allen B. Du Mont Laboratories. The limitations of these instruments compared to modern developments are quite severe. Nevertheless, what had previously been a laboratory curiosity evolved into a widely used instrument. The continual increase in use and interest led to rapid improvements and expanded produc-tion. Since the Du Mont Laboratories manufacture not only the equipment, but also the cathode-ray tubes used as the indicator, and the gas discharge tubes used in time-base generating circuits, it has been possible to supervise improvements in all three items simultaneously and thus produce a product of enviable quality.

DuMont Quality and Performance

A continuous research and development program assures the user of Du Mont equipment that it incorporates the latest innovations and improvements. Conservative design practice results in long life and dependable performance. All component parts are operated well below rated values, and mechanical design is such that the equipment will be rugged and convenient to operate. Painstaking methods are used in production to maintain a standard of quality which is unquestionable. Incoming test on capacitances, potentiometresistances, inductances, transers. formers, and vacuum tubes result in minimum failure of component parts. A rigorous mechanical and electrical inspection is maintained to make certain that Du Mont instruments will exceed the stated performance characteristics. Finally, a sample portion of the factory output is submitted to the Engineering Department for life and quality tests. Individual records are kept on each instrument as it is tested in production. These precautions and procedures are further evidence to support the statement that the name of Du Mont is synonymous with high quality and fine performance.

GENERAL DESCRIPTION

High Voltage Power Supply

A cathode-ray tube in itself is not a complete indicating device. In order to produce a spot on the fluorescent screen, the proper voltages must be applied to the various electrodes, as specified in the tube section of this reference manual. Fortunately, the power requirement is not severe. Although potentials of at least 1000 volts are required, the current drain is so small that bulky transformers and chokes are not necessary. The purposes of the different voltages applied to the tube electrodes are to focus, to accelerate and to position the electron beam so that a small, intense, yet visible spot is produced to trace the curve on the fluorescent screen. In addition, a source of heater power must be available to operate the indirectly heated cathode of the cathode-ray tube. Power supply details are discussed in a section which follows.

Amplifiers

The combination of the cathode-ray tube and power supply then is enough to form the indicator element. Unfortunately, the tube itself is a relatively insensitive device, and potentials in the order of several hundred volts are necessary for full scale deflection. Most applications involve input potentials of much lesser magnitudes and, therefore, an amplifier is necessary to supply the beam deflection voltages to the tube.

While the amplifier will permit the study of small voltages, it will also impose limitations on the character of signals that can be transmitted by the amplifier. With the unknown signal applied directly to the deflection plates, the maximum amplitude observable will be limited only by the full scale deflection of the beam, the maximum frequency which can be applied is limited by the transit time of the beam passing between the deflection plates. and also by the shunt capacitance between deflection plate terminals. Transit time effects generally restrict usefulness to below 200 megacycles in commercial tubes operated at accelerating potentials of about 1500 volts. Low capacitive reactance at higher frequencies may load down the signal source.

Applying a direct current voltage to the plates will deflect the beam proportionally to the magnitude of that voltage, and the beam will remain tixed in its deflected position until that d-c deflection voltage is removed. Therefore, there is no low frequency limitation when direct connection is used. In fact, it is the application of a direct current voltage, controllable in magnitude, that is used to position the beam in both horizontal and vertical directions in the complete oscillograph unit.

When an amplifier is interposed between signal source and deflection plates, the signal will be faithfully reproduced only if the limitations of the amplifier are not exceeded. These limitations include frequency discrimingtion both in the amplifier and input attenuator circuits, phase distortion and the maximum allowable direct current and peak input voltages. The minimum signal voltage is determined by the least amount of beam deflection which can be tolerated for effective study. and therefore by the gain of the deflection amplifier. The maximum voltage which can be applied is limited by the voltage rating of any input coupling capacitances and the voltage range of the input amplifier stage. Of

course, a radio frequency signal will not be passed by an audio frequency amplifier, nor will a direct current signal be amplified by an alternating current amplifier. Attention must also be directed towards the gain or attenuation control, since the effects of the variable distributed capacitance depending on the setting of the rotor in a high resistance potentiometer can cause extreme phase and frequency distortion at the higher frequencies.

A very important consideration in choosing an oscillograph is the frequency response characteristic of the vertical axis amplifier. Many applications of an oscillograph require the observation of pulses, square waves and other non-sinusoidal waveforms. Therefore, not only must the sinusoidal response be uniform, but the transient response must permit undistorted amplification of irregular wave shapes.

This amplifier discussion thus far has been restricted largely to the vertical axis. Similarly, these considerations apply to the horizontal amplifier. For most applications, the signal applied to the horizontal deflecting plates provides for the movement of the spot at a uniform rate with respect to time. Such a signal provides the time-axis along which is plotted the unknown variable voltage. After the spot has traveled the width of the screen, it snaps back to its starting position and the process is repeated. Without going into a detailed discussion of the generator which supplies the horizontal voltage, it will suffice to say that the waveform of this time-axis deflecting voltage is usually of a saw-tooth nature, and therefore, is rich in harmonic content. Since this saw-tooth voltage is amplified by the horizontal amplifier, the frequency and phase characteristics of that amplifier should permit undistorted amplification of sinusoidal signals of frequencies extending both far above and below the saw-tooth recurrence rates. Frequently, the saw-tooth frequency range is from a few cycles per second to over 50,000 cycles per second. so that quite stringent requirements are

Figure 2 Block Diagram of Typical Oscillograph Circuit Groups

imposed on the frequency response characteristic of this amplifier.

It is also desirable for the horizontal and vertical amplifier to have identical phase characteristics to facilitate accurate study of the relationship between two different signals, each being applied to a separate axis. Such a connection will produce a pattern called a "Lissajou Pigure". A detailed discussion of these figures is given in the application notes in the rear of this manual and may be found in many text books.

Linear Time-Base Generator

The linear time-base generator of sweep oscillator is the integral part of the oscillograph unit which generates the saw-looth voltage producing the linear time-base referred to above. The time-base is not restricted to a linear function, but can also be a sinusoidal, circular or spiral function or any other shape that may be desirable for particular applications.

The saw-tooth wave is generally developed by a relaxation oscillator in which a gas discharge tube is used. There are certain limitations on the gas discharge type, however, which are discussed further on.

A feature of the sweep oscillator is its ability to synchronize its frequency of oscillation with the frequency of the unknown signal so that in cases of recurrent phenomena the spot begins its excursion each period at the same point on the wave of the unknown. The resulting luminescent pattern is a stabilized wave. With the pattern "lacked in", the rapid retrace of the wave many times a second will give the appearance to the human eye of a "still photograph" because of the persistence of the fluorescent-phosphorescent screen on the cathode-ray tube coupled with the persistence of human vision.

For some applications it is necessary to record a phenomenon which does not continually recur, but exists for a short time interval and then disappears. Such a phenomenon is known as a transient. If the ordinary sweep oscillator were used, the horizontal spot travel would be entirely independent of the transient, and the observer would have no assurance that the beginning of the unknown wave would occur at the beainning of the spot excursion on the screen. , This condition is nicely provided for by a single sweep circuit which generates a time-base only when a transient initiates it. Initiation of the single sweep may be effected either by the transient itself, in case that transient cannot be controlled at will by the observer, or by an independent voltage applied to the synchronizing terminal which can also control the initiation of the transient. The single sweep circuit is discussed in greater detail later.

For applications involving rotating machinery, it is often desirable to use a sinusoidal sweep, which can be obtained from either an external sinusoidal oscillator, or from a small generator mounted on the rotating shaft so that the frequency will correspond to the speed of the shaft.

Where photographic recording of transients is involved, the travel of the continuously exposed film very often provides the linear time-base, and the horizontal deflection circuits are not used at all. In such an arrangement the shutter of the motion picture camera must be removed.

Reference was made above to the time required for the beam to return to its original starting position. In some studies, the appearance of that return trace is objectionable, and means are usually provided to blank it out. This blanking out process is accomplished by applying a negative pulse at the grid of the cathode-ray tube during the return trace interval. The negative pulse is derived from the saw-tooth wave generated by the sweep oscillator.

Intensity Modulation

The subject of blanking or intensifying the beam naturally brings to mind the application of beam intensity modulation for other purposes. In the case of television, the grid of the cathoderay tube is modulated by a voltage which causes the spot or trace to become lighter or darker in accordance with the voltage variations. This same principle may be used in oscillographs to provide timing demarcations, or reference points on the trace or pattern. These timing marks can be provided by an external oscillator or pulse generator whose frequency is known. Other times, the signal available for beam modulation is less than that needed for extinguishing the beam, and therefore, an amplifier is needed. This amplifier is commonly known as the Z-axis amplifier. A further use for this provision is to intensify the beam over , portions of the trace where the writing rate of the spot is so great that the fluorescent screen is not sufficiently excited. Thus, the intensity is more uniform throughout the entire trace and photographic exposure is facilitated. Furthermore, the portion of the trace which is most interesting is often the least visible. This provision will prevent burning and damage to the fluorescent-phosphorescent screen caused by operation of the intensity control at maximum (i. e., zero bias) in an attempt to improve the total visibility.

Low Voltage Power Supply

In general, the requirements of the power supply for the amplifiers, the sweep circuit, and the positioning circuits are more exacting than the high voltage supply for operation of the cathode-ray tube. Not only must the filtered output be exceptionally free from a-c ripple to prevent hum from appearing on the trace because of voltage variations on the amplifiers, but also small irregularities in the power source must be eliminated to prevent momentary disturbances of the position of the beam, and of the size of the pattern. Furthermore, any magnetic fields from the transformer and chokes must be shielded from the cathode-ray tube since the beam position will be influenced by magnetic as well as electrostatic fields. It is interesting to observe that the magnetic field of the earth itself is sufficient to cause at least a half inch of deflection in the larger tubes.

Good design practice requires the use of separate power supplies for the cathode-ray tube and the associated circuits to prevent interaction of controls.

Mechanical Considerations

Any piece of electronic equipment, no matter how complicated, should be so designed that it is rugged and compact, and yet the various components should be readily accessible. Layout of the various components in Du Mont Oscillographs is planned to eliminate cross coupling difficulties and to provide short direct leads in high impedance and high frequency portions of the assembly. In addition, controls are located on the front panel in such a fashion that related controls are grouped together. In general, all controls involving the vertical or Y-axis amplifier are arranged vertically on the left side of the panel; and all horizontal controls on the right side. The sweep oscillator and synchronizing controls are also arouped together.

All steel parts are plated to prevent corrosion, and the usual practice of lock washer assembly with all machine screws is observed. Rivet fasteners are eliminated on all parts that might require replacement. Recent oscillograph types are provided with a sturdy front cover to protect the face of the cathoderay tube and the control knobs.

Nearly all DuMont oscillographs are of the portable type, Electronic apparatus which consists of a number of rather complicated circuits requires extreme caution in design, particularly in mechanical respects. No possibilities are overlooked, and even the weight distribution of the units is planned so that the weight load when carried by the handle is well balanced.

Conclusion

This section has been presented with the purpose of acquainting the layman with the operation and construction of Du Mont Cathode-ray Oscillographs.

Detailed information follows in the instrument section, and further material can be found in the cathode-ray tube section. From time to time application briefs, which may be assembled in the rear of this reference manual, will be forwarded. These sheets are intended to familiarize the user of cathode-ray equipment with the varied applications of Du Mont instruments.

OSCILLOGRAPH DESIGN CONSIDERATIONS POWER SUPPLIES

Requirements of power supplies for cathode-ray oscillographs are more stringent than for the majority of electronic applications. Since power supply ripple voltages might show up as spurious deflection or cause modulation of beam intensity, good filtering is essential.

Transformer

The cathode-ray tube is extremely sensitive to electric and magnetic fields. therefore it is essential that the power transformer have a low external magnetic field and in some cases it must be equipped with a magnetic shield. The transformer should be located as remotely as possible from the cathode-ray tube and must be oriented so that its external field has the least effect of spurious deflection. Furthermore, the transformer, being the heaviest single component, should be located in a position such that the oscillograph will have an even weight distribution to facilitate its handling. Usually, a compromise must be made between these two factors. In general, the power transformer (and power supply) should be located near the rear of the instrument.

Since the majority of cathode-ray oscillographs are portable, it is essential to keep the size and weight of the transformer at a minimum consistent with good design practice. In no case, however, should a scarifice be made in transformer ratings in order to obtain small size and weight. The insulation must be acceptable for at least the sum of the maximum positive and negative voltages.

The power supply transformer should have a lamination stack designed for at least the minimum operating frequency and preferably for a lower frequency in order to keep external magnetic fields at a minimum. A high turns-per-volt ratio is desirable even though it tends to increase the physical size of the transformer

Primary

The primary windings should be completely surrounded by a grounded electrostatic shield to prevent capacitive coupling to the high voltage winding.

A safety switch of the momentary close type, connected in series with one side of the primary to the power line. is usually mounted on the rear of the chassis. Such a mounting is used so that the switch is closed only when the chassis is completely within its cabinet. This protection is important since dangerously high voltages are employed.

Secondary

The exact voltages and currents required of the secondary windings of the power transformer will, of course, depend upon the subsequent oscillograph circuit. In all cases, the cathoderay tube filament winding must be a separate winding and must be insulated from ground for at least the full accelerating potential. It is customary to insulate the windings from the core for at least twice the rated operating voltage plus 1000 volts. The cathode. ray tube heater winding also must be surrounded by a grounded electrostatic shield to eliminate capacitive coupling of this winding to other windings, which would cause distortion of the pattern by intensity modulation of the beam at power-line frequency. It is, likewise, desirable to shield the heater windings for the power supply regulator tubes, and these windings should be separate from the amplifier windings.

Amplifier voltages are usually obtained from a center-tapped secondary winding, such as those found in conventional radio receiver transformers. Secondary voltages in the order of 400 r.m.s. volts on either side of the center tap, and current values from 20 to 200 milliamperes, depending upon the d-c load requirements, are common.

High voltage for the cathode-ray tube is usually obtained from an extension of one side of the secondary winding. Voltages from 800 to 1500 volts r.m.s. either side of center tap are the usual supply voltages for 3 and 5 inch oscillographs. Current requirements are small, being in the order of 2 or 3 milliamperes.

Figure 3 shows the schematic diagram of a typical oscillograph transtormer.

Low Voltage Supplies

The oscillograph may have several low-voltage supplies for the amplifier and other circuits. All of them may often be derived from the same transformer winding. The supply will usually have positive and negative sections, either or both of which may be regulated or unregulated.

The voltage and current requirements for the deflection amplifier circuits are determined by the deflection factor of the cathode-ray for the accelerating potential at which the tube will be operated, the type of amplifier circuits, the frequency response range, and other factors which may depend upon particular operating conditions.

When balanced deflection circuits are used, as is true in the more recent designs, the spurious deflections resulting from line-voltage changes and from residual hum tend to be cancelled out. A further advantage in the use of balanced deflection circuits is that the deflection-amplifier supply voltage need be only half that for an unbalanced amplifier having the same signal-voltage output.

Filtering and Regulation

The power supplies for any low-level stages of the deflection amplifier usually must have better filtering, stability, and regulation, not only because any spurious signals introduced into these stages are amplified by the final amplifier, but also because such stages are usually unbalanced, or single-ended. In general, the percentage of ripple content should not exceed 0.5% of the d-c supply voltage. Final deflection amplifiers, which sometimes require high voltages, seldom need a regulated supply. Furthermore, it is common practice to supply from a common source, several circuits within the oscillograph performing different functions. The tendency toward coupling through the com-

Figure 3 Typical power transformer for use in a cathoderay oscillograph

mon impedance of the power supply must be lessened by reducing that impedance. Reduction of this impedance is accomplished effectively by the use of voltage regulating devices.

The two types of voltage regulators in general use in oscillographic circuits are the gas-tube regulator and the electronic degenerative regulator.

Gas-tube regulators make use of the fact that, within their operating range, the voltage between electrodes is constant for large variations in electrode current. Some neon tubes and the VR series of cold-cathode discharge tubes are examples of this type of voltage regulator. The VR tubes will maintain con stant voltage within the range of electrode currents from 5 to 30 milliamperes. An additional rectifier may be connected as indicated in Figure 4. To provide a half wave low-voltage negative supply from the same winding used for the positive supply, a simple resistance-capacitance filter following the rectifier will often suffice. Figure 4 also shows the complete circuit using VR tubes to produce positive and negative regulated voltages. The resistances in series with the VR tubes are used to limit the current to values within their operating range.

Figure 4 Gas-tube regulated supply

The degenerative-regulator makes use of a high-vacuum tube connected between the power supply and the load and operated as a variable resistance in such a manner as to give a constant völtage across the load depite changes in line voltage or load current. A complete circuit of such a regulator is given in Figure 5.

HIGH VOLTAGE SUPPLIES

In almost all oscillographs the accelerating electrode is operated at ground potential and the cathode at a negative potential. This potential may range from 1000 volts to 6000 volts or more. In oscillographs equipped with intensifier-type cathode-ray tubes, the total accelerating potential is divided, so that part of it is applied between the cathode and the accelerating electrode, and the remainder between the accelerating electrode and the intensifier. The potential between the accelerating electrode and the intensifier should not exceed 50% of the total accelerating potential.

Degenerative regulator circuit

Therefore, with the accelerating electrode at ground potential, the cathode will be negative and the intensitier positive. This somewhat simplifies the filter and transformer requirements for any individual electrode with respect to ground, although the total voltage is still the same. Insulation for the transformer must be based on the total accelerating potential.

The average potential of the deflection plates should be at or near the accelerating electrode potential to prevent acceleration of the beam by the deflection plates with resultant defocusing and change in deflection sensitivity Simpler" deflection plate coupling schemes may be used when the accelerating electrode is operated at ground potential since the hazard and complication of high voltages are eliminated.

While the voltages necessary to operate the cathode-ray tube are high, the currents required are small. Half-wave rectification and resistance-capacitance filtering is ample. Insufficient filtering, however, may cause spurious intensity modulation of the beam or modulation of deflection sensivity in accordance with the residual power supply ripple. When circuits are provided for intensity modulation, better filtering of the highvoltage supply is necessary than for oscillographs in which this provision is not made.

The functions of the various amplifiers used in a cathode-ray oscilloaraph impose rigid requirements upon their design. Cathode-ray tube deflection elements necessarily operate at high signal potentials. Therefore, to provide an instrument suitable for wide application, it is necessary to provide amplification of the signals it is desired to study. These amplifiers should preferably be incorporated within the instrument itself. Although it is customary to refer to the voltage or power gain of an amplifier as a measure of its performance, actually, for oscillographic applications, these terms do not have any particular significance since a given amplifier will produce entirely different results with different cathoderay tubes, and even with the same cathode-ray tube if the accelerating potential is changed. Also, most conventional amplifier ratings refer to electrical quantities only, whereas the indication on a cathode-ray tube is strictly visual. For this reason it is desirable to incorporate two new terms in stating amplifier performance. One is the sensitivity of the amplifier at its input terminals in terms of the visual effect produced by a certain electrical cause. The other term, involving the frequency response, will be discussed later.

Deflection Sensitivity and Deflection Factor

It is convenient to express the gain ot a given amplifier by use of the term "Deflection Sensitivity," which is the ratio of the lineal deflection produced on the cathode-ray tube screen to the r.m.s. or the direct current voltage required at the input terminals to produce this deflection. Deflection Sensitivity, therefore, gives a convenient figure for comparison of various types of oscillographs irrespective of type of acthode ray tube used or the accelerating potential at which it is operated. An increasingly desirable term used for the sake of convenience is the term "Deflection Factor," which is the reciprocal of the "sensitivity" ratio.

In general, the useful range of a cathode-ray oscillograph extends from zero frequency to several hundred megacycles, provided sufficient voltage is available to allow a reasonable deflection with direct connection to the cathode-ray tube deflection plates. The amplifiers generally provided will extend the useful voltage range while at the same time will restrict the useful frequency range. Since these two considerations tend to operate in opposite directions, a factor taking both into account is useful in determining the performance of a particular amplifier. Such a factor is that obtained by taking the product of the gain and the band width. Consequently, it follows "that an amplifier with high gain will not usually have a wide band width, and an amplifier with an extended high frequency range will have a high deflection factor or similarly a low deflection sensitivity. Obviously, a large number of amplifying stages can be used to increase the gain to any desired value, providing noise disturbances can be kept to a satisfactory minimum. For a device which provides a visual indication, however, the requirements for stability are stringent, Unless sufficient stability is provided, accurate photographic records of cathode-ray tube indications are not practical. As a result, the design of any oscillographic amplifier is necessarily a compromise.

Square Wave Response

Since a cathode-ray oscillograph is primarily a test instrument, it should give a true representation of the signal under observation. In order to investigate the characteristics of an amplifier, it is common practice to apply a squarewave signal, as shown in Figure 6, to the input circuit. The steep front of such a wave gives an indication of the highfrequency or "transient" response, and the flat top of the wave is an indication of the low frequency characteristics of the amplifier, where the terms "high" and "low" frequency are relative to the fundamental frequency of the square wave.

Low Frequency Distortion

If a low frequency square wave signal is applied to the amplifier circuit shown in Figure 7 between point A and ground, and if the time constant of the grid circuit, C.R. is too small, the signal at point B and therefore at the output between point C and ground, will appear as shown by the dotted line in Figure 6. This sawtooth distortion is caused by the charging and discharging of the capacitance C. through resistance R. during the flat top periods. This type of low-frequency distortion may obviously be reduced or eliminated by making the values of C. and R. sufficiently large so that the time constant of this part of the circuit becomes very large. For very good low-frequency response, i.e. with this type of distortion eliminated, the physical size of the capacitance required becomes unreasonable since the grid resistance must be limited in value by the grid current characteristics of the vacuum tube. It is also desirable to keep the time constant of this part of the circuit as small as possible since it will determine the actual time required for the amplifier to recover from the effects of a large transient pulse. One method of obtaining good low-frequency response while still limiting the size of C and R is to employ plate circuit compensation as shown in Figure 8. By the addition of the resistance-capacitance circuit R: C. in the plate circuit of the amplifier as shown in Figure 8A, a voltage appears at point D having a form as shown in Figure 8B. When this potential is added to that shown by the dotted line in Figure 6, the resultant is the original square wave, which appears at point C in Figure 8A. This compensation must be carefully balanced to provide the proper amount of compensation to correct for the amplifier characteristics without introducing additional distortion.

Figure 8 Low frequency plate circuit compensation

Stray Circuit Capacitances

The presence of stray circuit capacitances and the interelectrode capacitances of the vacuum tubes in the amplifier may be represented by the dotted shunt capacitance Co shown in Figure 9. These stray circuit capacitances have the effect of decreasing the plate load impedance as the signal frequency is

Figure 10 Showing response characteristics

increased. High frequencies are therefore attenuated and the frequency response curve will appear as shown by curve A of Figure 10.

High Frequency Compensation

By the insertion of a series inductance L1 in the plate circuit of the amplifier, as shown in Figure 9, a reactance increasing with frequency is added to the vacuum tube plate load to increase its impedance at high frequencies and, to, consequently, maintain the amplifier gain at these frequencies. If this inductance should be increased in value above the optimum, a response curve similar to curve C of Figure 10 will be obtained. This rising characteristic is obtained by resonance between the added inductance LI and the stray circuit capacitance Co. This type of characteristic will accentuate the response to signal components over a limited frequency range, thus tending to distort the signal under observation. The effect is shown in Figure 11, illustrating a tendency toward oscillation at the start of each half cycle of the square wave. The inductive compensation employed should be so proportioned that the maximum increase in high frequency response is obtained without introducing additional distortion of the signal. An example of proper compensation is shown by curve B of Figure 10, and a typical example of good wave response corresponding to this type of characteristic is illustrated by Figure 12, for a square wave of 100,000 squarewave cycles per second. It will be noted that usable deflections may be obtained at frequencies higher than the high-frequency rating of the amplifiers, provided that the amplifier characteristics are taken into consideration and the resulting pattern properly interpreted

Overpeaked square wave characteristic

Proper square wave response

D-C Signals

The resistance-capacitance coupled amplifiers ordinarily employed in cathode-ray oscillographs will not pass direct current signals because of the inability of a capacitance to pass direct current. Signals which are composed of an alternating component superimposed upon a direct current are therefore established upon a new reference axis corresponding to the average level of the alternating component. Since means are already available for the measurement of the direct current component of the signal by meters and direct connection to deflection plates. automatically removing the d-c component results in being able to obtain fullscale deflection, or more, of the alternating component, thereby facilitating fine detail study of the pattern.

Although nearly all oscillographs do not include direct current amplifiers, special instruments have been made with them. This problem has proved difficult to solve since direct current amplifiers are in general, rather unstable, the instability increasing with the gain. Improvements have been made in their design in recent years, but they are not yet in widespread use. The use of carrier current amplifiers in obtaining a high gain for direct current use has been suggested, and future developments may include such amplifiers.

Noise

Noise is another factor to be considered in amplifier design. Noise includes such component factors as actual noise produced by controls, microphonics, and residual hum. It should be remembered that an oscillograph provides a visual indication and noise, as such, is not apparent except as a distortion of the pattern under observation. Consequently, care is exercised in the selection of gain controls, vacuum tube types and other components to be used. This particular consideration is becoming more important since the state of the art is indicating a trend toward higher accelerating potentials and more sensitive instrument amplifiers to extend the range of usefulness.

Z-Axis Amplifiers

Separate amplifiers are usually provided for Z-axis or intensity modulation of the cathode-ray beam. The considerations of the design of these amplifiers are, in general, different from those employed for deflection. The output voltage requirements are considerably less severe, while the frequency range usually extends to a higher upper limit. Since these conditions are generally true, the design of an amplifier is considerably simplified, even though an extended frequency range is desired. The lowered output voltage requirements for complete modulation of the cathode-ray tube, beam allows the use of low plate impedance in the final stage of this amplifier for extended high-frequency response. Since, in general, the source of signal for operation of this amplifier is an external signal generator, the input sensitivity need not be too great, thus simplifying the design of this amplifier still further by requiring fewer amplifying stages. One desirable feature which may be incorporated is a means for reversing the polarity of the modulating signal to allow selection at will of either a reduction or an increase in the intensity of the beam.

Uses

One of the principal uses of the L-axis amplifier is to provide a means for impressing a timing signal upon the pattern. The timing signal for this purpose is supplied desirably in the form of sharp pulses of short duration and necessarily higher frequency or rate than the signal under observation in order to increase the accuracy with which the time interval between certain events can be determined and in order to prevent elimination of large sections of the trace. Although the linear time-base provided is very nearly linear in time, it cannot be depended upon for highly accurate determinations. Therefore, use of the modulation amplifier for timing purposes is recommended.

In some cases this amplifier handles the signal used for elimination of the return trace or flyback of the time-base to prevent confusion of the pattern.

Attenuators

Since the oscillograph is a measuring instrument, the power drawn from the circuit under test should be a minimum. The input circuits must have provision also for attenuation of the signal to a value which may be handled by the input of the first vacuum tube without distortion or overload. This provision requires a high impedance, low capacitance, voltage divider placed across the input terminals of the oscillograph. The simplest method of obtaining such a voltage divider would be to use a high-resistance potentiometer in the arid circuit of the first vacuum tube. The use of such an attenuator however, is

subject to certain limitations, mainly extreme frequency discrimination at intermediate settings. As shown in Figure 13, the distributed capacitances C, and C2 produce a voltage division at the higher frequencies. This voltage division is essentially constant and independent of the setting of the potentiometer arm. Thus, as the posititon of the potentiometer arm is changed, the relative voltage division across the sections of the potentiometer and capacitances will differ, producing serious frequency discrimination. Although this frequency discrimination may be reduced by using a low-resistance potentiometer,

the loading upon the circuit under test will be excessive. A solution of the difficulty is to provide an input attenua-

Figure 14 Stepped attenuator

tor with fixed steps and adjustable capacitance elements as illustrated in Figure 14. This scheme will permit individual adjustment for each attenuation ratio, maintaining uniform voltage division over a wide frequency range. Obviously, this cannot be used as the only attenuator, since to cover a wide voltage range and still maintain useful attenuation ratios, a large number of steps would be required. Consequently, an additional method of attenuation will be required for fine adjustment. Such a method is available by the use of a cathode follower stage, providing a low impedance cathode output suitable for use with a continuous attenuator, or gain control.

One type of circuit, which involves a cathode-follower stage, and which will allow a wider range of input signal than conventional amplifiers is shown in Figure 15. This circuit will, however,

have a definite frequency limitation, but it is a definite improvement over other previous systems. For the widest possible frequency range without frequency discrimination, the circuit of Figure 16 will be used. With R₁ and R₂ both low in value, the circuit capacitances will be

Improved cathode follower circuit

ineffectual even in the megacycle region. C_i is used as a blocking capacitance in both cases to remove the direct current from the control R. Both of these circuits when used in conjunction with the fixed-step attenuator permit an extremely wide range of voltage input without frequency discrimination.

Positioning Circuits

The cathode-follower circuit illustrated in Figure 15 may also be used for obtaining a means of providing a positioning voltage for cases where the deflection amplifier is directly con-

Figure 17 Illustrating a d-c positioning scheme

nected to the deflecting plates of the tube. Such a circuit is illustrated in Figure 17, as well as a method for connecting the amplifier to the deflection plates, and still operating the deflection plates at or near ground potential

Since the cathode of V, operates at a positive potential with respect to ground, and since the return for R: is to a negative supply, some point on R. can be made a point of zero potential. Consequently, a direct current voltage is available when applied to the arid of V. to cause the direct current plate voltage of V: to vary, and therefore, to cause direct current positioning. The resistor R. comprises the plate load for the deflection amplifier V₂, while R₂ and R. returned to a high negative potential provide direct current voltage division to cause point P to be at zero potential with respect to ground. Capacitance C. is provided to reduce the attenuation of the alternating current signal component. Since R. is necessarily high in value, the time constant of C. and R. will not attenuate the low frequencies appreciably. The chief advantage of direct current positioning is that of eliminating the lag usually associated with alternating current positioning, when good low frequency response is maintained.

Alternating current positioning, as illustrated in Figure 18, is used for applications where the lag is not serious, or when direct current connection is not desirable.

Figure 18 Alternating current positioning circuit

The above mentioned lag or "electrical backlash" is caused by the time required for the capacitance C. and C. to establish a steady direct current potential at plates D. and D. after position control potentiometers R. and R. have been adjusted to some new value. This time is necessitated by the large time constants C.R. and C.R. High values of resistance are necessary at R. and R. to maintain a high input impedance at the deflection plates and to insure good low frequency response in the deflection plate coupling circuit.

TIME-BASES OR SWEEP GENERATORS

Since practically every pattern on the screen of the cathode-ray tube is a plot of some variable quantity with respect to time, the motion of the luminescent spot with respect to time is of utmost importance. The most common deflection system consists of two sets of parallel deflection plates arranged at right angles to each other. By making the potential of one set of plates in some manner proportional to time, and that of the other set proportional to the prenomenon to be studied, a plot can be obtained in the usual Cartesian coordinate form. The deflection of the spot by a potential proportional to time would trace out a linear time-base. Many other types of time-bases are used in which

the deflecting potential is proportional to some function of time. Examples of these are the sinusoidal and circular time-bases. Figure 19, after Puckle, shows an entire family tree of timebases. All of the types shown will not be discussed here, but each type has particular advantages for some specialized investigation.

Linear Time-Bases

The linear-time-base is adaptable to wide varieties of uses. A plot of a voltage wave which would produce a lin-

ear time-base is shown in Figure 20. The interval from A to C constitutes one period. The linear portion AB is variously called the 'go" time or the 'sweep" time. The interval BC is the return or "flyback" time during which the fluorscent spot returns to its position occupied at the beginning of the period. An ideal linear time-base would have a sweep portion perfectly linear, and a return time of relatively very short duration. Practical circuits for generating linear time-base are usually the result of compromises among the desirable features. Some of the factors which must be considered in determining the most suitable design are listed below:

- 1. Linearity of sweep voltage.
- 2. Ratio of sweep to return time.
- 3. Frequency range.
- 4. Ease of synchronization.
- 5. Return trace pulse, (polarity and impedance).
- 6. Single sweep possibilities:
- 7. Supply voltage required.

- 8. Output level and impedance.
- 9. Number and type of tubes required.
- Number of variable circuit components necessary to give usable results over required range of frequencies.

The order of the listing does not necessarily indicate the relative importance of the factor involved. The use to which the time-base is put will determine the weight each factor must be given.

Synchronization

In order that a stationary patternwill appear on the cathode-ray tube screen, the time-base must have the same period as the variable quantity to be plotted or some sub-multiple of that period. The adjustment of the timebase to this condition is called synchronization. Synchronization cam be accomplished by injecting a voltage of the proper frequency into the time-base generator in such a manner that it controls the frequency of oscillation. The amount of voltage necessary to give good synchronization depends upon the circuit employed.

Return Trace Blanking

The rapid motion of the spot during the return period will cause a relatively faint trace of its path to appear on the face of the cathode-ray tube. If the return time is an appreciable part of the linear time-base period, this trace may cause confusion in interpreting the pattern. To prevent such confusion, the beam may be extinguished during the return time by applying a negative voltage to the grid of the cathode-ray tube sufficient to extinguish or "cut off" the electron beam.

A method of obtaining a suitable blanking voltage is to apply the sawtooth voltage to a differentiating circuit which will generate a pulse corresponding to the rapid change in voltage and current during the return time. This pulse of voltage is often present in some part of the generator circuit during the return time, and it is only necessary to adjust its amplitude and polarity and apply it to the cathode-ray tube grid to get satisfactory return trace blanking.

Single Sweep

When transient phenomena are to be observed, it is desirable to have occur only a single linear sweep which lasts for the duration of the transient, and which is initiated by the beginning of the transient or some related disturbance occurring just before the start of the transient. If it is wished to observe the very beginning of the transient, the latter method is recommended since a finite time is required to start the sweep after the initiating pulse occurs.

The description of a method of obtaining single sweeps from gas-triode linear time-base generators appears below under the section on gas-triode generators.

Gas Triodes

The most common method of obtaining a saw-tooth wave is to allow a capacitance to charge from a high voltage source through a resistance. Only a relatively small portion of the charging curve of the R-C network is used.

Figure 21 Basic gas triode sweep oscillator circuit

Analysis of oscillation and synchronizing

With the capacitance connected from plate to cathode of a gas diode or triode. that capacitance is allowed to charge only to a relatively low potential determined by the breakdown potential of the discharge tube. Figure 21 shows the basic circuit of the oscillator just described. The discharge tube could be a gas diode, but the advantages of the three-element tube lie in the ease with which the triode oscillator may be synchronized to a signal applied to the grid.

Figure 22 gives a picture of the oscillation and the action of a synchronizing voltage applied to the grid. If no synchronizing voltage is applied, the discharge tube will start to conduct when its plate voltage reaches the value Ef. The conduction of the tube will quickly lower the plate voltage by discharging the capacitance. When the plate voltage falls to the extinction potential Ex. conduction ceases and the cycle starts again. The rapidity with which the plate voltage will rise is, of course, dependent on the charging constants R and C, and the supply voltage

E. The exact relation is E. E. (1 - o Te)

where E is the capacitance voltage at any time t and e is the base of natural logarithms. The frequency of oscillation

will be approximately: 1· RE E. = F.

If a synchronizing voltage is applied to the grid, the firing potential will vary in accordance with it in the manner shown. When the firing potential is reduced by the synchronizing signal, the tube will conduct before it ordinarily would under no signal conditions. Thus, if the "free running" or synchronized period of the oscillator is slightly greater than the period of the synchronizing signal, the discharge through the tube will occur sooner when the synchronizing voltage is applied than under "free running" conditions. Thus, the oscillator will be synchronized to the grid signal.

In practice, it is usual to make R continuously variable over a range of six or eight to one, and C variable in steps of about five to one by switching capacitors. This scheme assures both coarse and fine adjustment of the sweep frequency and provides for the overlapping of the adjacent ranges.

The source of the signal to which the linear time-base is to be synchronized may usually be selected by a synchronizing selector switch. Either an external, power line frequency, or Y-axis signal is usually used.

The Y-axis signal used for synchronizing should be picked off at some point in the Y-amplifier system where it will be of sufficient amplitude to provide good synchronizing. A continuous variable control for the adjustment of the amount of synchronizing voltage which reaches the gas-triode arid is desirable. Only the minimum amount of synchronizing voltage necessary to give good synchronization should ever be used. since excess synchronizing voltage at the gas-triode grid will introduce nonlinearity.

The charging curve of the capacitance is, of course, exponential in nature, but by using only a small portion of the complete cycle the departure from linearity can be made small. Good design of the oscillator circuit calls for not more than 10% or 15% of the supply voltage appearing in the region between the firing and extinction potentials.

The oscillator just described has a useful range of from two to fifty thousand cycles per second. At the higher frequencies, the time required to discharge the capacitance becomes an appreciable part of the total cycle because of the de-ionization time of the gastriode. This de-ionization time is the limiting factor in high frequency operation.

At low frequencies, the leakage of the charging capacitance will become a factor in determining the linearity of the time-base. The effect of leakage will be to prevent the voltage from rising as rapidly as it should, and the time-base will slow down during the last portion of the sweep period.

The gas-triode time-base lends itself to single sweep application without radical circuit revisions. Figure 23 shows a time-base circuit to which has been added a diode with its plate connected to a gas-triode plate, and its cathode to a source of variable potential. If the cathode of the diode is set to a voltage below that at which the gas triode will lire, conduction through the diode will take place when the plate voltage tends to rise above this value of cathode potential. Thus, the "clipping" action of the diode will allow the plate voltage of the gas triode to be adjusted to a value just below that at which the tube fires. If a positive signal is then introduced on the grid of the gas triode, the firing potential may be lowered below that value set by the diode, and the tube will conduct. When the extinction potential is reached, the tube ceases conducting and the capacitance starts to charge again through the series resistance. If the signal has been removed from the grid during this next charging interval, the voltage to which the capacitance will charge is again limited by the diode, and the tube will not fire a second time

A complete single cycle has thus occurred, consisting of a return trace and then a single linear sweep. By initiating the sweep with a signal occurring just before the beginning of the transient to be studied, and adjusting the value of the charging capacitance and resistance, the single sweep period may be made to occur during the same interval as the transient. In order to have the entire single sweep on the screen, the spot should be positioned to the edge of the screen while in the rest position. The return trace will then . rapidly displace the spot across the screen, and the linear trace will occur as the spot returns to its rest position during the charging of the capacitance.

For fullest utilization of the single sweep, a photographic recording of the trace should be made. To prevent fogging of the camera film by the luminescent spot before and after the transient. a shutter can be used which opens only during the sweep period. This method is not practical for fast sweep rates. By positioning the spot just off the screen for its rest position, the fogging may be

A basic single sweep

reduced. The most effective method is to have the beam in the "on" condition only during the sweep time, and off at all other times. By providing a positive pulse at the grid of the cathode-ray tube during the sweep period, this switching arrangement may be accomplished. Methods of obtaining such a pulse will not be discussed, as they would depend upon the particular application of the single sweep.

High Vacuum Sweep Circuits

The limitations of the gas-triode lineartime-base generator are not encountered with circuits using vacuum tubes. Several types of circuits have been developed which utilize the "trigger" characteristics of triodes or pentodes. This "triggering action" is a result of a sudden change in plate or screen current caused by only a slight change in some other circuit constant. The sudden change in current or voltage is used to charge or discharge a capacitance. The subsequent charge or discharge takes place through a resistance and the sweep voltage appears across the capacitance.

Circuits of this type will give linear time-bases as high as 1,000,000 cycles per second, and as low as 2 cycles per second. These high vacuum sweep types have disadvantages in that they are generally more complex and reguire more tubes and more power than gas-triode types.

Other Time-Bases

While the linear type is the most useful of all time-bases, special applications often call for other types of timebases. A linear time-base generator of some type is generally an integral part of a general purpose cathode-ray oscillograph. However, provision should be made for the use of externally generated time-bases. Connections should be available either directly or through the amplifiers to the deflection plates.

Sinusoidal

By applying a sinusoidal voltage to the timing axis, deflection proportional to the sine function of an angular variable may be obtained. Near the center of the trace, i.e., when the voltage wave is near zero, the velocity of the spot is nearly linear. By making the total deflection large, this center portion may be used as a linear time-base. If the phase of the sinusoidal voltage is shifted through 180°, a phenomena occurring during any part of the wave period may be centered on the screen for observation.

Another time-base involving sinusoidal waves is produced by applying one of two sinusoidal potentials which are 90° out of phase to each set of deilection plates. If the amplitudes are equal and no harmonics are present, a circular trace will result. The quantity under investigation may then be applied either to the deflection plates to produce rectilinear deflection, or to the accelerating electrode to produce radial deflection, or to the modulating electrode to produce blanking.

Spiral and Radial

Combinations of linear and sinusoidal voltages may be used to generate spiral or radial time-bases by applying a circular time-base to the deflection plates and a linear voltage to the second anode.

An advantage of the circular and spiral time-base is that for a given size tube, the length and duration of the time-base of the graph plotted is greatly increased over that obtainable with the more generally used linear-time-base. The circular time-base is also suited for applications involving a phenomenon which is a function of an angular quantity such as in rotary motion studies.

The reader is hereby advised that pages 200 to 220 inclusive of this book deal with Cathode Ray Oscilloscope assembly, while pages 221 to 229 refer principally to the actual Cathode Ray circuits.

Introduction

In recent years the cathode-ray tube providing, as it does, a two dimensional indicating device free from inerlia effects and capable of plotting one quantity as a function of another-has become one of the most important inatruments available for electrical observations, measurements, and indications. As used in the cathode-ray oscillograph It provides the engineer and technician with an instrument whose usefulness is immeasurable. Its use makes possible instantaneous observations of the variations of related phenomena with respect to one another, and hours, days, even weeks of painstaking point by point investigation are often eliminated. Used at irst almost entirely for oscillographic work, the cathode-ray tube later became the medium for reproduction of television pictures, and even more recently it has been applied to a myriad of special indicating applications.

The cathode-ray tube is not as new a device as might be supposed from the rapid increase in its use in recent years. In fact, the first device in which an electron stream in a sealed tube was focused on a fluorescent screen to produce a movable fluorescent spot was built by Braun in 1897. The introduction of the hot cathode in 1905, the application of gas focusing (now generally abandoned), improvements in cathode design, the use of a negative grid, general improvement in the "electron gun," improvements in the fluorescent screen, and the development of suitable auxiliary circuits gradually brought the cathode-ray tube to its present usefulness as a multi-purpose device.

The Modern Cathode-ray Tube

An outline drawing of a modern highvacuum cathoderay tube is shown in Figure 1. A heater element (7) mounted within a cathode sleeve (8) operates to heat the oxide coating on the end of this sleeve and cause electron emission. The electric field produced by the control electrode (11) acts to draw the elecing electrode (11) acts to draw the electrons emitted from the cathode into a narrow beam having a small minimum cross-section in the vicinity of the grid.

From this point the electron beam diverges until it passes through the region between the focusing electrode (11) and the accelerating electrode (33) where the electric field set up by these electrodes causes the beam to converge so that it reaches the fluorescent screen (24) in a small spot. This action is analogous to the action of optical lenses on light, and it may be said that the minimum beam cross-section in the vicinity of the grid is focused onto the screen by the electron lens formed by the field between the focusing electrode and the accelerating electrode.

The control electrode is ordinarily operated at a negative potential with respect to the cathode and the beam current (and therefore the brightness of the spot) is varied by varying this bias potential. This potential difference is in the order of 100 volts maximum. The focusing electrode usually operates at a lower voltage than the accelerating electrode, and it is by variation of this focusing electrode voltage, in the vicinity of 500 volts for 2000 volts accelerating potential, that the spot is properly focused on the screen. The entire beam forming structure is known as the "electron gun."

After leaving the gun the electron beam passes between the plates of the deflection-plate pair (16) and then between the plates of the pair (17). A potential difference applied between the plates of the pair (16) produces an electric field which deflects. the electron beam in a direction perpendicular to the plane of those plates. Similarly a potential applied between the plates of pair (17) results in deflection of the beam in a direction perpendicular to the direction of deflection produced by plate pair (16). Thus it is possible to control the position of the spot on the screen by two potentials applied to the two sets of deflection plates.

It will be noted that in this cathoderay tube, focusing and deflection of the

Fig. 1—A typical high-vacuum, hot-cathode, low-voltage, electron-leris focus, cathode-ray tube. The parts shown are as follows:

Base Pins Alignment Key Base Collar Base Collar Base Better Press Heater Leads (Heater in- serted inside the cathode tubing) Cathode Support Collar (Cathode inserted inside	the grid tubing) 9-Ceramic Supports (two supports diametrically op- posed) 10Control Electrode 11Support Collar 13Accelerating Electrode 14Mount Supports 15Mica Deflection Plate Sup- port Rings	17-Deflection Platt 18-Spring Contac contact with s 19-Stattc Shield 20-Glass Envelop 21-Electron Beam 22-Intensitier Tar 24-Fluorescent S c terial 25-Pattern traced
(Cathode inserted inside	port Rings 16—Deflection Plate Pair D ₃ -D.	25-Pattern traced

beam are both accomplished by electrostatic fields. It is also possible to use electromagnetic fields for either focusing or deflection or both. However, the convenience of electrostatic focusing and deflection, and the advantages of electrostatic deflection, especially for operation over wide frequency ranges, have made it almost universal except in a few special applications.

The intensifier electrode (22), a Du Mont development, is operated at a higher voltage than the accelerating electrode. This intensifier electrode serves to further accelerate the beam subsequent to deflection." The sensitivity of the beam to electrostatic deflection varies inversely with the potential applied to the accelerating electrode, which potential, measured from cathode, determines the velocity of electrons in the deflection-plate region. However, the brilliance of the trace caused by the electron beam increases with increase in accelerating potential. A compromise must therefore be made between brilliance and deflection sensitivity. With the intensifier-type cathode-ray tube. the necessity for compromise is greatly reduced, since the beam may be deflected at a low accelerating electrode potential and then further accelerated after deflection by a higher potential applied to the intensifier electrode.

7-Deflection Plate Pair D. D. 8-Spring Contact (Makes contact with static shield) Statte Shield 0-Glass Envelope

2-Intensifier Electrode 3-Intensifier Terminal 4-Fluorescent Screen Ma-

5-Pattern traced by beam

Considerations Involved in the Choice and Use of Cathode-ray Tubes

In choosing a cathode-ray tube for any particular application, points which should be considered are the type of screen to be used, the operating potentials which can be supplied conveniently or economically, the spot size and intensity required, the deflection sensitivity required, and the importance of deflection-plate or arid capacitances. Some of these factors are interdependent, and compromises must usually be made

Screens

Standard Du Mont cathode-ray tubes are available with four types of screens, referred to as type P1, P2, P4, and P5, which satisfy the requirements of most applications. The type Pl screen produces a green trace of medium persistence and is well suited for generalpurpose visual oscillographic work. It is quite efficient, and bright traces can be obtained with comparatively low accelerating voltages. The spectral distribution of the light produced is in the region of high sensitivity of the human eye, resulting in good contrast when the tube is illuminated by external daylight or incandescent lighting.

The type P2 screen produces a green trace with a long persistence characteristic and is useful for visual observations of transient signals and of very low frequency recurrent signals. With this type of screen a pattern can be observed for a period ranging from a fraction of a second to 50 or 100 seconds after it has been produced, depending upon the writing rate of the spot, the accelerating potential, and the level of the surrounding light. Because of the many factors affecting the useful persistence time, it is difficult to give quantitative data. However, it has been found empirically that, at a writing rate of 150 inches per second, a persistence time of approximately 5 seconds may be obtained from a cathode-ray tube operating at an accelerating potential of 2500 volts. It is essential that a high accelerating potential be used with longpersistence screens, and it is for this reason that tubes having a maximum overall accelerating potential rating of less than 2500 volts are not manufactured with the type P2 screen.

The type P4 screen is generally used for television applications in which a white trace is desired. It has been found that where a screen must be observed for long periods of time, this type of screen will cause less eye fatigue than the other screen types.

The type P5 short persistence blue screen is particularly suited for applications involving photographic film recording. The high actinic value of its radiation is desirable for best film exposure density and the short persistence characteristic is essential to prevent fogging of a moving film recorder and time base. Photographic recording methods are discussed in a section which follows.

Operating Potentials, Spot Size, Intensity, Deflection Sensitivity

In most applications high deflection sensitivity, high intensity, small spot size, and minimum operating potentials are desirable. Since there are several conflicting factors involved, compromise is usually necessary. In general, intensity and spot size must be considered together. With a given tube the spot size and brilliance improve with increasing accelerating voltage, but the deflection sensitivity decreases. Furthermore, high accelerating voltages are in themselves undesirable from the standpoint of economy and simplicity in equipment. The particular application will, therefore, determine the tube to be used and the conditions of its operation. Where maximum intensity and minimum spot size are most important, high accelerating voltages are indicated. Where maximum deflection sensitivity is the most important requirement, lower accelerating potentials should be used. For applications where a maximum deflection sensitivity and a maximum brilliance are required, intensifier-type cathoderay tubes should be used, since a high final accelerating potential can be used with a minimum of effect on the deflection sensitivity. The intensifier-type cathode-ray tube also simplifies the power supply problem for a given overall accelerating potential by reducing the maximum voltage for which the power supply must be insulated from ground.

Deflection-Plate Capacitances

For applications where high frequencies must be supplied to the deflection plates, minimum deflection-plate lead lengths and capacitances are essential. For such applications, special high-frequency cathode-ray tubes are made in which the leads are brought from the deflection plates directly to terminal caps on the neck of the cathode-ray tube opposite the plates. In this way the total effective capacitance between two plates of a deflection-plate pair can be lowered to two or three micro-microfarads.

Special Considerations Involved In Photographic Work

Photography of cathode-ray tube patterns has been mentioned briefly in connection with fluorescent screens, but there are further special considerations involved when cathode-ray tube patterns are to be photographed.

Photography of the stationary patterns produced on the cathode-ray tube screen by recurrent signals may be effected very easily since the camera shutter may be left open as long as is necessary to obtain the required negative density. In such cases the brilliance of the trace is comparatively unimportant, since the camera shutter need only be left open for a comparatively long period when the brilliance is low. With some types of signals (such as square waves) where the writing rate over various portions of the cycle changes greatly with resultant large variations in brightness over different parts of the pattern, it may become necessary to overexpose the brighter parts of the pattern in order to obtain satisfactory recording of the less intense portions.

It is in the photography of transient patterns, however, that the most careful attention must be paid to writing rates and film requirements. There are two methods applicable to photographic recording of non-recurrent transient signals; a moving film method and a stationary film method. In the moving film method the spot on the cathode-ray tube is deflected by the signal along one axis only, and the time axis is provided by the motion of the film in a direction perpendicular to the deflection of the spot. In the stationary film method, the time-base is provided by a single linear sweep of the spot by one set of deflection plates, the signal being applied to the other set. The single sweep must be initiated simultaneously with or just prior to the start of the transient to be studied. The camera shutter must be opened before the occurrence of the transient and closed after the transient has occurred.

The moving film method may put restrictions upon the allowable persistence time of the fluorescent screen, depending upon the speed of movement of the film, which in turn is determined by the signal to be recorded. It has the advantage of being capable of providing a time base of practically unlimited length, however, and in some cases simplifies the electrical arrangements. Regardless of which method is used, the writing speed of the spot will have a fundamental bearing upon the negative density produced with a given set of electrical and optical conditions; and, in fact, there will be a limit to the writing speed which can be recorded satisfactorily under such conditions.

It has been determined empirically that writing rates of 1500 inches per second can be photographed satisfactorily using a type Pl screen, an accelerating potential of 1000 volts, a lens opening of f4.5, a magnification of 0.50, and an emulsion having a Weston speed rating of approximately 24. The practicability of photographing transient traces of higher writing rates may be determined from the above data and the following facts. The writing rate can be increased in approximately inverse proportion to the square of the f rating of the lens. It can be further increased approximately in proportion to the square of the accelerating potential. Further increase can be effected by the use of faster film and by the use of the type P5 fluorescent screen. In fact, this screen is recommended for equipment which is to be used primarily for photodraphic purposes. Satisfactory photographic recording of writing rates of 20,000 inches per second is not at all uncommon, and rates as high as 100,000 inches per second have been recorded with excellent results. Circuits especially devised for transient studies have been incorporated into existing commercial oscillographic equipment.

A table of films recommended for use with the various types of fluorescent screens follows:

BCREEN	TYPE P1 (medium-persistence green radiation)	TYPE P2 (long-persistence blue- green radiation)	TYPE P5 (short-persistence blue radiation)
ROLL FILM	1. Verichrome 2. Super-XX 3. Panatomic-X	1. Verichrome 2. Regular N.C. 3. Panatomic-X	1. Verichrome 2. Regular N.C. 3. Panatomic-X
PLATES	 Eastman Super Panchro Press Eastman Ortho-Press Eastman 50 	 Eastman Super Panchro Press Eastman Ortho-Press Eastman 50 	1. Eastman 40 2. Easiman Ortho-Press 3. Eastman Universal
FILM PACKS	1. Verichrome 2. Super-XX 3. Panatomic-X	1. Verichrome 2. Panatomic-X	1. Verichrome 2. Panatomic-X
35-mm. ROLL FILM	1. Super-XX Pan. 2. Plus-X 3. Panatomic-X	1. Super-XX Pan. 2. Plus-X 3. Safety Positive Film	 Ortho Negative Film Super-XX Pan. Safety Positive Film

The following materials are suggested for photography of black-and-white screens:

TYPE P4

Tri-X Pan. Super Panchro Press Super Ortho Press Super-XX Ortho-X

Operating Notes

Cathode-ray tube power supplies must usually provide between 1000 and 5000 volts d.c. at from one to three miliamperes. In oscillographic applications, usual practice is to operate the accelerating electrode (second anode) at ground potential, in order that the deflection plates may be substantially at ground potential and thus facilitate their coupling to detlecting signal circuits and reduce the hazard in making connections directly to the deflection plates. When this method of operation is used, it is necessary to insulate the transformer winding supplying heater power to the cathode-ray tube for the full accelerating voltage, since the heater and cathode are operated at a negative potential with respect to ground equal

to this voltage.

A voltage divider is ordinarily used to provide the required voltages for the control electrode (grid) and focusing electrode (first anode). The negative grid voltage is provided by a rheostat or potentiometer at the negative end of the voltage divider, and sufficient range should be provided to permit variation of grid bias from zero to a value at least equal to the maximum cut-off voltage for the tube at the accelerating voltage at which it is to be operated. The focusing voltage potentiometer should be capable of providing a range of voltage to the focusing electrode corresponding to the range over which the voltage required for focus is permitted to vary by the specification for the particular tube type involved.

In order to reduce defocusing of the spot to a minimum, positioning and signal voltages should be balanced whenever possible; that is, equal positive and negative voltages should be applied to the two plates of a deflection-plate pair.

The intensifier should ordinarily be operated at a potential 30% to 100% above the accelerating electrode potential. When lower values of intensifier voltage are to be used, the intensifier can be connected to a 300 or 400 volt plate supply if such a supply is readily available. If not, or if a higher intensifier potential is desired, a separate rectifier with a simple resistance-capacitance filter, operating from the same transformer winding as the accelerating voltage supply, is easily provided.

A typical power supply, with positioning circuits and deflection-plate input circuits, is shown in Figure 2. Such a supply will provide adequate voltages for operating intensifier-type cathoderay tubes, such as the Type SLP series. A supply for cathode-ray tubes not provided with an intensifier electrode is shown in Figure 3.

In a transformer designed for operating cathode-ray tube circuits, both the cathode-ray tube heater winding and the primary winding should be completely surrounded with grounded electrostatic shields. These shields are necessary to prevent electrostatic coupling to the heater winding which might cause intensity modulation and to prevent electrostatic coupling from the high voltage winding to the other windings. It is advisable to ground the chassis of cathode-ray equipment to prevent any possibility of the chassis attaining a high potential with respect to ground. The potentials at which cathode-ray tubes operate are dangerous, and precaution should be taken to prevent contact with them.

DU MONT

Fig. 2-Typical power supply for intensifier type cathode-ray tube.

Fig. 3-Typical power supply for cathode-ray tube (no intensifier).

Discussion of Tube Characteristic Sheets

On the following pages will be found descriptions and characteristics of the various Du Mont cathode-ray tubes. These bulletins are arranged to give the essential data on each type in the manner which the industry has found most useful and complete.

Values of capacitance are average values, and are given for the modulating electrode and the dellection plate electrodes in various combinations which are deemed sufficient for design purposes. The tolerances given the various ratings under typical operation are those adopted by the Radio Manufacturers Association as standard throughout the industry. Particular notice of these tolerances should be given in designing the associated operating equipment with which the cathode-ray tube is to be used.

The units of deflection factor and deflection sensitivity have been chosen so that all types of tubes, regardless of accelerating potentials used, are referred to a common level for comparison. That level is one kilovolt. If the tube is to be operated at an accelerating potential other than one kilovolt, as it usually is, the deflection factor value should be multiplied by the value in kilovolts of the operating potential to obtain the actual operating deflection factor. The sensitivity value should be divided by the same ratio. In intensifier-type tubes this value is given for the condition of the intensifier operating at the same potential as the second anode. In addition, the effect of the intensifier is indicated by the values of deflection factor and sensitivity under typical operating conditions.

In the event that the exact accelerating potential actually used is not given under typical operating conditions, the correct values of cut-off bics, focusing voltage and deflection factors can be readily computed, since these values are all directly proportional to the accelerating potential.

These proportions also hold for intensifier-type cathode-ray tubes providing the ratio of intensifier potential to second anode potential is kept constant. It will be found that the effect of the intensifier potential on cut-off bias and focusing voltage is negligible. Increasing the intensifier potential does not decrease the life of the cathode; in fact, it will tend to increase its useful life since for a given trace intensity a lesser value of beam current is required.

Definition and Terms

Cathode-ray Tube: An essentially inertialess indicating electronic device in which a stream of electrons produced by a cathode is directed toward a fluorescent or phosphorescent screen, deflected by either an electric or magnetic field in accordance with the strength and direction of that field, and then impinged on the screen to produce a visible spot of light. The deflection may be static or dynamic.

Gun Structure: A metal assembly within the tube in which the electron stream is produced, controlled, focused, and accelerated. This assembly usually consists of:

1. Heater: A spiral coil of resistance wire which is heated by the current flow through it. The heat produced serves to raise the temperature of the cathode.

 Cathode: A metal sleeve, surrounding the heater, the end of which is coated with a material which copiously emits electrons when heated to a high temperature.

3. Control Electrode: A metal structure adjacent to the cathode which controls the potential relationship between this electrode, sometimes called the grid, and the cathode. This electrode controls the light intensity of the image on the screen of the tube by controlling the magnitude of the beam current.

4. Focusing Electrode: A metal cylinder, otherwise known as Anode No. 1. The electrostatic field produced by this electrode in combination with the control electrode, and the accelerating electrode (see below) acts similarly to an optical lens in focusing the electron stream to a small spot on the screen (see below).

5. Accelerating electrode: Otherwise known as Anode No. 2. This electrode serves to increase the kinetic energy of the electron stream by increasing its velocity so that upon impact on the screen α visible radiation will be emitted.

Deflection Plates: Usually consist of two pairs of parallel plates, the pairs being perpendicular to each other. The electrostatic field existing between each plate pair causes angular displacement of the electron beam.

Intensifier Electrode: Otherwise known as Anode No. 3. Imparts additional kinetic energy to the electron stream after deflection. This post-acceleration results in an increase in light intensity without a large decrease in deflection sensitivity (see text).

Screen: A fluorescent-phosphorescent chemical coating on the face of the glass blank which converts kinetic energy of the electron stream into visible radiation.

Trace: The line or combination of lines produced by the rapid movement of the spot. Such effect is due to the persistence characteristic of the human eye and of the screen.

Astigmatism: Focus condition in which the spot is not round thus causing different trace widths depending upon the direction of the trace.

Symmetrical Deflection: Deflection by an electric field produced by a pair of deflection plates to which equal and opposite deflection signal potentials are applied.

Non-Linear Deflection: Phenomenon in which the increment of deflection per unit increment of applied deflection voltage is not constant along the direction of deflection.

Halo: A ring or circular band of visible radiation surrounding the spot on the screen.

Yoke: A coil of wire placed near or ground the neck of the tube to produce either deflection, focusing, or both. Used with electromagnetic types. This system is not ordinarily used for oscillographic applications, but is found in television and in special equipment.

Symbols:

En-Control Electrode Voltage

En-Focusing Electrode Voltage

Es-Accelerating Electrode Voltage

Em-Intensifier Electrode Voltage

D.D.-Deflection plate pair adjacent to accelerating electrode.

D.D.-Deflection plate pair adjacent to screen

Volts/ky.in.-term for deflection factor with En=1000 volts

mm. kv./d.c. volt-term for deflection sensitivity with En=1000 volts

Installation Notes

Du Mont cathode-ray tubes may be operated in any position. It is sometimes necessary that they be inclosed in a grounded metal shield to protect them from stray electric fields, and they should be located as far as possible from transformers and chokes, the magnetic field of which can cause spurious magnetic deflection. In some cases magnetic shielding is necessary to prefent such magnetic deflection of the beam. Care should be taken to insure that any shields used are not magnetized.

It is possible that the nickel assembly composing the gun structure will become magnetized due to the existence of a strong magnetic field. The effect of such magnetization may be to defocus the spot, or otherwise change its shape, to reduce its intensity, to distort the deflecting fields thus producing non-linear deflection, or to deposition the spot or trace permanently. This disturbance may be remedied by placing the tube axially within a solenoid which produces a strong alternating field and then gradually removing the tube from the influence of that alternating field.

Du Mont cathode-ray tubes are sufficiently strong mechanically to withstand the shocks of ordinary handling and temperature changes. Especially in the case of the larger tubes, however, the glass bulb is under considerable stress from atmospheric pressure. Consequently, hard bumps and extreme temperature changes should be avoided. Care should be taken to avoid scratching the bulb since such scratches will greatly weaken the glass.

For a sum by sur office

APPLICATION NOTE Number 1

FREQUENCY AND PHASE DETERMINATIONS WITH THE CATHODE-RAY OSCILLOGRAPH

One of the simplest and most accurate methods of making frequency and phase comparisons is with the cathoderay oscillograph or cathode-ray tube with suitable power supply. Such studies involve the observation of a pattern produced on the screen known as a "Lissajou Figure" which is produced by applying a varying voltage on each pair of deflection plates. This "Lissajou Figure" is the result of the spot of the cathode-ray tube being deflected along the X- and Y-axes simultaneously. While the deflection forces act in perpendicular directions, their vector sum produces a movement or displacement in a third direction depending on the instantaneous magnitude of each deflecting voltage.

Phase Measurements

If forces OA and OB in Figure 1 vary independently in magnitude but in a certain fixed manner which is periodic, the location of point C, which is the spot on the screen of the tube, will be caused to move in a fixed pattern.

Now, assume that two alternating voltages of identical frequency, phase, and amplitude characteristics are applied to the two pairs of deflection plates. The resultant pattern may then be determined graphically. In Figure 2 the numbers correspond to identical times on the waves of the two deflection voltages. The resultant figure is determined by projecting these points until they intersect.

230

Figure 2

Figure 2 illustrates the case of a sinusoidal wave shape.

Now, if one of the sinusoidal deflection voltages shown in Figure 2 is applied to its deflection plate pair with a 90° phase retardation with respect to the other sinusoidal deflection voltage so that as voltage X is at its peak when voltage Y is at zero, the resultant pattern is more interesting. If the two voltages have equal amplitudes, the pattern observed will be a perfect circle; if unequal, an ellipse. This is shown in Fig. 3.

If the complete cycle is divided into 360 degrees, then in this arbitrary discussion, the peaks of the sine-wave X will occur at the 90 degree and 270 degree positions; while the peaks of the sine wave Y will correspond to the 0 degree and 180 degree positions on the time axis of voltage X. The angular difference between the two waves then is 90° with wave X leading wave Y. This relationship may be also viewed as wave Y lagging X by 270°.

This graphical construction may also be carried through for other degrees of phase differences. Typical resultant patterns are shown in Fig. 4 on the following page.

This phenomenon may be used for accurate measurements of phase differences at frequencies from a few cycles per second to several megacycles per second. In the case of sine wave shapes the formula trapearing be-

low Fig. 5 may be used to calculate the angular phase difference.

. It can be seen that there will be more than one solution. If the notation of Fignure 6 is used, the quadrant must be noted from the orientation of the major axis of the ellipse and the direction of spot motion. The latter may be determined by shifting the phase of one of the voltages in a known direction and observing the effect on the pattern. This formula must be used with care if the signals are applied to amplifiers preceding the deflection plate pairs of the

where V2==zero to peak value of vertical voltage.

cathrode-ray tube. In this case it is necessary that the phase distortion characteristics of the amplifiers are either identical at the frequency of the applied signals, or that any differences are properly taken into account in solving the formula above.

Frequency Determinations

If a signal is applied to the vertical plates with a frequency which is exactly an integral number of times the frequency of a similar signal applied to the horizontal plates, a stationary pattern such as that seen in Figure 6 would be observed. This pattern is for the case of the vertical frequency being three times the horizontal frequency.

If the frequency factor is not exactly an integer the pattern will appear to rotate. If the speed of rotation is such that one "toch" appears on the left side of the pattern and another "tooth" disappears on the right side at a rate of one "tooth" per second, then the vertical frequency as noted above will differ from the horizontal frequency by

1 12 11 12 19 19

 $3fx \pm 1$. Where fx is the horizontal frequency. The proper sign to apply depends on the apparent direction of trace movement, which may be determined by deliberately changing the vertical frequency in a known direction and noting whether or not the pattern appears to rotate at a greater or decreased rate. Then, if an accurately calibrated standard frequency source is used for X-axis deflection, any unknown signal may be applied to the Y-axis and its frequency measured.

In Figure 7 are shown typical frequency ratios for X- with respect to Y-axis frequencies. For the complex patterns, the number of points tangent to the horizontal sides of an imaginary rectangle just enclosing the pattern, compared to the number of tangent points on the vertical sides results in the ratio of the vertical frequency to the horizontal frequency.

Another simple method of computing the vertical to horizontal frequency ratio is to count the number of peaks, along the top horizontal edge of an enclosing rectangle and divide by the maximum number of intersections in the figure along any vertical line. As the frequency ratios become more complex, the pattern will also become complex and will not lend itself to rapid visual analysis.

When the frequency ratio is large, another scheme for determining the exact frequency ratio by inspection is to use the gear-wheel pattern arrangement shown in Figure 8. This type of pattern is produced by causing the low frequency to provide a circular sweep through a phase splitting network, and then by causing the high frequency to modulate the 2nd anode of the cathoderay tube. For the pattern shown the 12:1 ratio of the high to low frequency is determined by the number of teeth. Another method is to modulate the grid of the cathode-ray tube instead

Figure 8

of the 2nd anode. With such an arrangement the pattern will appear as seen in Figure 9 for a 12:1 ratio.

Thus, the cathode-ray oscillograph may be simply employed to provide accurate and dependable information as to the phase and frequency characteristics of alternating current signals. This method is particularly suited to production testing and laboratory applications, where a quick visual test is desired. The most elementary types of cathoderay oscillographs, such as the Type 164-E are entirely satisfactory.

MODERN CONDENSER TECHNIQUE

by

J. H. Cozens, B.Sc., (Hons.), A.M.I.E.E.

OF

TELEGRAPH CONDENSER CO. LTD.

The Paper Dielectric Condenser

General Description.

Little need be said about the physical form of this type of condenser, which is quite well known. The electrodes consist of metal foils (usually Aluminium but sometimes Tin or Copper) interleaved with paper and rolled into compact form. The paper is specially dried and impregnated in wax, or oil. The smaller units are usually housed in tubes of cardboard, bakelised paper or sometimes motal, while the larger units are normally housed in metal boxes.

A good quality paper condenser in a hermetically sealed container will have an insulation resistance of the order of 1,000 to 10,000 megohms for a capacity of 1μ F and the power factor will usually be of the order of 0.003. The most frequently met capacities range from 0.001 to 10μ F but, of course, capacities up to several hundreds of microfarads are sometimes made for special purposes. Typical uses are for coupling and decoupling in A.F. amplifiers (and sometimes in R.F. circuits) and smoothing of H.T. supplies particularly where heavy ripple currents have to be carried.

Non-inductive Condensers.

A property of paper condensers which appears to cause some confusion from time to time, is the residual inductance, and the term "Non-inductive Condenser" is much misused.

It is easy to understand why the early condensers of this type had a relatively high inductance since the foils form a coil of many turns. The foil material is usually aluminium and contact is made with the foil by inserting lugs of, say, tin or other readily solderable metal. This construction will therefore be referred to as the "lug type."

The first effective method of reducing the inductance was the projection of the foils, one from each end of the roll, so that current could enter and leave along the edge of the coil and thus avoid a circular path. So that the edges may be soldered together, this usually means the use of tin foil which is about $2\frac{1}{2}$ times as heavy as aluminium and has about 4 times the resistivity. This construction, which will be called "extended foil type," is often referred to, both in this country and America, as the "non-inductive type," a distinction which is quite erroneous to-day since by careful design it is now possible to make lug type condensers with inductance no greater than that of the extended foil type.

This point may be illustrated by the following measurements made at a test frequency of 50 mc.

Condenser Type •		Inductance	Series Resistance	
Lug type	·	0.020µH.	0.52 ohm.	
Extended Foil type		0.014µH.	0.38 ohm.	

This test suggests that the lug type has a slightly higher inductance, but the difference is negligible. However, further recent improvements in design have enabled even this difference to be eliminated and some cases have been known of R.F. circuits in which the lug type has given the better performance.

The constructional difference between the lug and extended foil types is indicated in Figs. 1*a* and 1*b*, which show diagrammatically portions of the unrolled condensers.

The advantage of the extended foil type lies in its lower equivalent series ' resistance and greater current carrying capacity, but from the foregoing it can be seen that it has no exclusive right to the name " noninductive." In fact, no condenser can be truly non-inductive, and it would be preferable to use the term "lowinductance condenser."

Fig. 1b.-Extended foil type.

for both the types described above, adding "lug type " or " extended foil type " where necessary, to distinguish between them.

PAPER

FOIL

In circuit design, the only paper condensers whose inductance is likely to be of importance, are the tubulars. Fortunately, with these types it is found that the inductance is very nearly independent of capacity and a useful approximation may be obtained by taking the inductance as that of a straight 20 S.W.G. copper wire the length of the condenser (assuming of course that the condenser has been properly designed). This inductance should lie between 0.02 and 0.05 μ H.

This brings out a very important point and that is the fact that it is useless worrying about the inductance of a condenser if it is connected in circuit with wires several times its own length.

A knowledge of the inductance of a condenser may sometimes be usefully employed by choosing the capacity so that it resonates with its own inductance at some particular frequency and so provides a much enhanced by-pass effect at that frequency. This has actually been done in certain radio interference filters. The reduction of impedance near the resonant frequency is shown compared with the curve for a perfect condenser in Fig. 2.

Fig. 2.-Effect of residual inductance on impedance of a 0.1 µF condenser. 237

Sealing of Tubular Condensers.

The greatest enemy of the paper condenser is moisture, and not only must this be removed as thoroughly as possible during manufacture but the finished product must be protected against the ingress of moisture during service or storage.

The hermetic scaling of the larger condensers housed in metal boxes does not present a great deal of difficulty, but the smallness of the tubular condenser complicates the problem somewhat.

The majority of the tubular condensers are contained in impregnated paper tubes and the commonest method of protecting them against moisture is to give them a good coating of suitable wax. Condensers thus treated can give very good performance under conditions of high humidity. Recently, however, there has arisen a demand for tubular condensers to withstand extremely severe tropical conditions, and new methods of sealing have consequently been developed.

One such method involves the use of a bakelite moulded tube having a moulded-in terminal at each end. The tube is made in two halves which are cemented and clamped together after insertion of the condenser unit, and connecting wires are brought out through the hollow terminal stems which are subsequently sealed by soldering.

A modification of this form employs a tube moulded in one piece with a cylindrical metal insert at each end, the insert being spun over on to a metal disc with a suitable gasket between to provide the seal.

A third method retains the paper tube but treats this with a special material which renders the tube moisture proof to a greater degree than the simple wax coating

The fourth method is to use a ceramic tube as a container, to metallise the ends of the tube and solder caps on the ends to give complete sealing. A variation of this method is to use a metal tube and close the ends by soldering on a ceramic disc which has been metallised round the edge, the wire being brought out through a small hole in the disc and sealed in by soldering.

The fifth method, which is perhaps the most recent, makes use of a glass tube which is sealed, either in a similar manner to the ceramic tube or by means of end caps similar to bottle closures of the screw on or press-on variety.

The thoroughness of the sealing of all these types results in condensers of extremely high resistance to severe tropical conditions.

Harmonic Analysis.

A very simple application of the paper condenser which the author has found useful is in the analysis of low frequency voltage wave-forms.

A wave which has only a small harmonic content is often difficult to analyse, particularly if its deviation from true sine wave-form is only of the same order of magnitude as the thickness of the oscillograph trace.

The method is to connect a condenser across the supply to be examined and record the wave-form of the current through the condenser. The current through the condenser is proportional to frequency so that the harmonics will be amplified according to their order. This is useful since it usually happens that the higher the harmonic the smaller its magnitude in the original wave-form. The analysis is therefore carried out on the current wave-form, where the harmonics are amplified, and then the second harmonic is divided by 2, the third by 3, the fourth by 4 and so on to obtain the analysis of the original voltage wave. Fig. 3a shows the apparent absence of harmonics in a particular voltage wave, while the corresponding condenser current wave (Fig. 3b), shows the harmonics clearly.

Spark Suppression.

A use which has grown up very rapidly of late is the suppression of sparking at the contacts of D.C. switches, usually thermostatically operated. As an example of what can be done in this direction, a certain thermostat whose contacts were rated for 15 A. A.C. but only 0.1 A. D.C. could, after the fitting of a suitable condenser, be rated for 15 A. on either A.C. or D.C.

Many people appear to have the impression that a resistance should be used in series with the condenser for spark suppression, but this is seldom advisable and, frequently, even a small resistance will ruin the effect of the condenser when currents of 1 A. or more are being handled.

It is not usually possible to calculate the optimum capacity for a given circuit, and the capacity is best found by trial and error, Generally speaking, the larger the capacity, the smaller the spark as the contacts break, but the greater the spark due to condenser discharge when the contacts close. Provided that the switch is well designed and has contacts of adequate area, a, capacity can usually be found which will give negligible sparking both at make and break.

When the load is resistive the condenser should be connected directly across the contacts and need be rated at no greater voltage than that of the supply. If the load is inductive, it may be found better to connect the condenser permanently in parallel with the load, and in some cases one in each position may be the best arrangement. This point should be decided by trial.

With an inductive load, voltage peaks much higher than the supply voltage may occur and the condenser must be rated accordingly. It is possible to reduce the inductive surge by means of the condenser, but more will be said about that in the section on electrolytics.

Paper Condensers used on A.C.

In general; paper condensers rated up to 450 V. D.C. may be used on A.C. provided that the peak voltage does not exceed the D.C. voltage rating of the condenser. It does not follow, however, that a condenser of higher D.C. voltage rating is suitable for A.C. operation at equivalent peak voltage. It is a good general rule not to apply more than 300 V. R.M.S. to any D.C. condenser, whatever its voltage rating, without first consulting the makers, since A.C. rating in excess of 300 V. R.M.S. usually calls for special design. It might appear, at first sight, unnecessary to emphasise this point, but the Author has known many instances where its incomplete understanding has led to trouble. For example, if a condenser is charged and discharged rapidly, as may occur in a time base circuit, it is often forgotten that this is equivalent to applying a steady D.C. potential with a superposed alternating potential, and if the charging voltage is high enough, the A.C. component may have a harmful effect on the condenser, even though the lat'er has a D.C. rating in excess of the charging voltage.

3. Mica Condensers

Little need be said about this type, since it has undergone only slight changes in recent vears except for the development of the silvered mica types.

The general form of mica condenser is quite well known and consists of alternate layers of mica and metallic foil electrodes held together by some form of clamp.

The chief characteristic of this type of condenser is its low power factor, usually of the order of 0.0003 to 0.0005, which remains sensibly constant with varying frequency and renders the condenser particularly suitable for use in R.F. circuits where low loss is required.

In the silvered mica condenser the electrode takes the form of a silver film deposited by a special technique on the mica. Since this film adheres closely to the mica and excludes any possibility of air pockets or relative motion of electrode and dielectric, a high degree of stability is attained.

4. Ceramic Condensers

General.

In this type of condenser a ceramic body, having in the simplest case the form of a disc, is given a metallic coating (usually silver) on the opposite parallel faces to provide the electrodes, the ceramic material forming the dielectric.

A discussion of this class of condenser becomes largely a discussion on the electrical properties of the various ceramic materials and might well form the subject of a separate paper. In this instance only the outstanding general properties which typify this class will be mentioned.

Properties and Types of Materials.

Perhaps the most interesting property of these ceramic bodies is their low power factor at radio frequencies and the fact that the power factor improves with increasing frequency, making them especially suitable for short wave working:

The ceramic materials fall into two main classes. The first class have a base of soapstone, are white in appearance, have permittivity of the order of 6 and give condensers with a positive temperature coefficient of capacity of the order of 10^{-4} per degree C. Frequentite, Frequelex and Calit are examples of this class. The second class have a base of Titanium Dioxide (Rutile) and are light brown or buff in colour. They have a phenomenal permittivity of the order of 80 and produce condensers with a negative capacity temperature coefficient. of 6 to 8×10^{-4} per degree C. Examples of this class of material are Faradex, Permalex and Condensa. Condensers made with the Rutile type of body usually have a high power factor at audio frequencies, but the improvement with increase of frequency is sufficient to make the power factor satisfactory at radio frequencies. However, recent research has shown that it is possible to make a ceramic body of high permittivity and negative capacity temperature coefficient which has a good power factor throughout the frequency range from very low audio frequencies upwards.

Compensated Temperature Coefficient.

An interesting application is the use of the negative temperature coefficient material to balance out the positive temperature coefficient of the coil in a tuned circuit. By using two condensers in parallel, one having a positive and one a negative temperature coefficient, any temperature coefficient can be obtained between the two extremes by choosing the appropriate ratio for the two capacities.

5. Electrolytic Condensers

General.

The outstanding feature of this type of condenser is the large capacity which can be obtained in a given volume, particularly when the applied voltage is low.

With a paper dielectric condenser the size for a given capacity depends upon the voltage rating, but the 200 V. condenser is usually the smallest obtainable since the dielectric of the 200 V. condenser is the thinnest paper normally available. No further reduction, in size is possible therefore, even though the working voltage may be much below 200.

In the case of the electrolytic condenser the reduction in size with decreasing voltage rating can be carried right down to about 3 volts, so that for very low working voltages enormous capacities can be obtained in a small space. As an example, a condenser of capacity of $20,000\mu$ F for 3 volt working can be made in a box 3 in. $\times 4$ in. $\times 2\frac{1}{2}$ in., and the construction of a condenser of capacity 1 Farad, once thought quite fantastic, now becomes quite a simple matter. It is interesting to reflect that if we consider the sun as a spherical conductor, its radius being 432,000 miles, it will have a capacity of only 0.08 Farad, and an electrolytic condenser of this capacity could be contained in a box measuring 5 in. cube.

Nature of the Dielectric.

The nature of the dielectric merits some discussion since, although it has been well treated in various publications, an appreciation of certain points is essential to a useful understanding of some of the properties of these condensers.

About the middle of the nineteenth century it was discovered that an electrolytic cell could behave as a condenser, and eventually it was observed that with certain electrode materials the capacity varied greatly with the applied voltage, while with other materials, notably aluminium, the variation of capacity with voltage was quite small. Accordingly two classes of electrolytic condenser are recognised, (a) the polarisation type, using, for example, platinum electrodes, and (b) the oxide film type with electrodes of, say, aluminium.

The differences between these two types will be referred to later. It is the oxide film type which has undergone such rapid development during the past 15 years.

If a piece of aluminium is made the anode of an electrolytic cell containing a solution of ammonium borate and the cell is connected, in series with a resistance, to a D.C. supply, a current will flow, limited initially only by the resistance. This current will gradually diminish and at the same time the voltage across the cell will rise, the rate of change of current and voltage decreasing with time so that each will gradually settle down to a steady value.

On removing the aluminium from the cell it will now be found to have a coating of aluminium oxide produced by the oxygen liberated by electrolysis, and it is this oxide which forms the dielectric of the electrolytic condenser. The oxide film is transparent, but it can usually be detected by visual inspection owing to the interference colours which it produces. Sometimes the thicker films appear to have a greyish tint. This process, which produces the oxide film on the aluminium, is known as "forming" or "anodising."

The interference colours are an indication of the extrême thinness of the film and it is interesting to attempt to estimate the film thickness by observation of these colours.

For a given anode surface area the capacity obtained is found by experiment to be inversely proportional to the voltage used in the formation process, from which it follows that the thickness of the film is proportional to the forming voltage. Now from the theory of physical optics it may be deduced that a film of transparent material will appear coloured if the thickness' of the film is given by the relation.

$$t = \frac{n\lambda}{2\sqrt{\mu^2 - \sin^2\theta}} \text{ or } t = \frac{(2n+1)\lambda}{4\sqrt{\mu^2 - \sin^2\theta}}$$

according as the light does or does not suffer a reversal of phase on reflection at the inner surface, where

t =thickness of film

 $\mu =$ refractive index of film

 $\theta =$ the angle of incidence

 λ = the wavelength of the light removed by interference

n=a small integer.

Thus, taking the shortest wavelength of visible light to be 4,000 Å, $\mu=1.5$, which seems to be a reasonable approximation, and $\theta=0$ i.e. normal incidence, the thinnest film which should show colours would have a thickness of 1,333 Å or 666 Å.

The thickness of the film for a given formation voltage varies somewhat with the electrolyte used and the details of the process, but for one particular process the 100 volt foil is the lowest voltage foil which shows any colours except for very large angles of incidence. With this foil formed at 100 volts, a surface area of 17.6 cm³, is required to give a capacity of 1 μ F whence the permittivity k of the film may be calculated from the formula $k = \frac{4\pi tC}{A}$. If the thickness is 1,333Å, this gives k = 8.6 while t = 666Å gives k = 4.3. The observed value of k for pure dry aluminium oxide is about 7.8 which suggests that the first formula mentioned above for thickness is the correct one to use and the thickness of film on the 100 volt foil is approximately 1,300Å thick. Even the thickest film therefore, formed at about 600 volts will have a thickness only of the order of the wavelength of red light.

Bearing in mind the fact that the capacity of a parallel plate condenser is inversely proportional to the thickness of the dielectric between the plates, it will now be readily understood how the electrolytic condenser can have such a large capacity. It is interesting to note that aluminium has a very great chemical affinity for oxygen and that on exposure to air, the metal rapidly grows a very thin transparent film of oxide so that it is practically impossible to obtain aluminium without at least a thin film on its surface, a fact which has sometimes been the cause of high resistance contact on an aluminium chassis. This film is generally found to have a thickness of the order of 50Å. and Professor Mott has shown by the use of quantum mechanics that this is the maximum thickness which could develop at normal temperatures without the addition of energy to the electrons of the metal. Thus it is possible to use aluminium in its normal state to form a condenser which will operate at very small potentials but of course the oxide is not in its best form and the practice is not recommended.

A further interesting point about Professor Mott's work is that he has reached the conclusion that the film builds up, not by oxygen penetrating the oxide layer and combining with aluminium at the bottom of the layer, but by the movement of metallic ions through the oxide layer to combine with oxygen at the surface,

Etched Anodes.

An important development which resulted in an even greater capacity per unit volume of condenser was the roughening of the anode to increase its surface area. If the electrodes of a paper dielectric condenser were roughened, no advantage would be gained since the thickness of the dielectric would be large compared with the undulations on the electrode surface, and further, the contour of the second electrode could not be made to follow that of the first so that, if anything, a loss of capacity would result because the mean distance between the electrodes would be increased. This is illustrated in Fig. 4 (a) in which the thickness of foil and paper is exaggerated for the sake of clarity.

Fig. 4b.-Section of electrolytic condenser with one electrode etched.

In the case of the electrolytic condenser the dielectric is so thin that it readily follows the contour of the anode and since the true cathode is the electrolyte this also is able to conform to the irregularities of the anode surface as shown diagrammatically in Fig. 4 (b). In this way the capacity may be increased by as much as 10 times, though in practice the gain is usually adjusted to between 2 and 5 times. The roughening may be performed by mechanical means, which can seldom be made to give an increase of more than 2:1, or by etching which can be made to give much larger increases. Generally speaking, the higher the voltage to which a foil is formed the more difficult it is to get a high gain because the thicker oxide film tends to level out the surface of the anode.

Practical Forms.

The electrolytic condenser may be classified into "wet" or "aqueous" types and "dry" types. A third class, the "semi-dry" type is sometimes referred to but this is so similar in construction to the dry type that no separate discussion is needed here.

The wet type consists generally of a rigid aluminium anode, upon which an oxide layer has been formed, rigidly mounted in a cylindrical metal container (usually aluminium) filled with electrolyte. This type is obsolescent but is briefly described here as a step in the understanding of the electrolytic condenser.

It is important to realise that the central aluminium electrode is the anode of the condenser, the oxide film is the dielectric and the solution is the cathode, the very small spacing between the anode and cathode being responsible for the large capacity obtained. The metallic container is frequently referred to as the cathode and this is convenient but not strictly correct since it is really only a means of making contact with the true cathode i.e. the solution.

A few years ago, before the dry type reached its present stage of development, the wet type was the more reliable and was recommended in preference to the dry, but now that the dry type can be made as reliable as the wet the latter is falling into disuse. This is not surprising since, while the wet type must be mounted upright in operation, the dry type can be mounted in any position and further has better electrical characteristics.

The general form of the dry electrolytic unit is very similar to that of a paper dielectric condenser. Two aluminium foils, one with an oxide film and one without, are interleaved with paper or other suitable material and rolled up into a compact cylindrical form. The paper or other separator is saturated with electrolyte the consistency of which may be anything from that of a viscous liquid to a hard fudge-like cream, depending on the technique of the manufacturer. This electrolyte usually contains ammonia in combination with boric acid and some form of polyhydric alcohol such as glycerol or ethylene glycol.

The oxide film is put on to the positive foil by passing it continuously through an electrolytic bath of which it forms the positive pole. The bath itself usually forms the negative pole and the applied voltage is rather more (say.20%) than the voltage at which the condenser will be rated. The other foil, usually called the negative foil, is untreated and serves to make intimate contact with the electrolyte and so minimise the effective series resistance of the condenser.

One end of each foil is folded back to form a lug projecting at right angles to the length of the foil and these lugs provide means of making connection from the condenser unit to the terminals.

The finished unit must be assembled in a container and hermetically sealed because the electrolyte is usually hygroscopic and increase of moisture content would be detrimental. The container is preferably of aluminium but may be of inert non-metallic material such as bakelite. Sometimes tin plate is used for the container but then the unit is usually wrapped in some way to prevent the electrolyte making contact with the case.

Properties.

The principal properties of the electrolytic condenser are as follows.

(a) Capacity. This is very large for a given bulk and does not vary greatly with applied voltage.

In the polarisation type of cell consisting, say, of a pair of platinum plates in dilute sulphuric acid, the dielectric appears to be a layer of gas on the electrode surface and the capacity obtained depends on the applied voltage and increases very rapidly with increasing voltage.

With the oxide film type however, this effect does not occur, the change of capacity with applied voltage being small, and usually there is a slight decrease in capacity with increasing voltage.

(b) Power Factor. Compared with other classes of condenser, the power factor of electrolytics is high. It may be anything from 2% to 30% at 50 c.p.s. depending on the type.

As a useful rough approximation, the electrolytic condenser may be considered to consist of a perfect capacity in series with a fixed resistance. Thus the power factor will be roughly proportional to frequency for low audio frequencies and will tend to unity at high frequencies. This does not necessarily mean that the condenser is useless at high frequencies, since it will still discriminate between A.C. and D.C.

- (c) Insulation Resistance. This is low compared with other types and is usually between 5 and 50 megohm-microfarads. For this reason leakage current is usually specified rather than resistance. Leakage increases with, and at a slightly greater rate than, applied voltage, until the rated voltage is exceeded, after which the leakage current increases very rapidly.
- (d) Temperature Coefficient. Increase of temperature brings about an increase of capacity and leakage current and a decrease in power factor. The latter property is useful in helping to prevent excessive temperature rise due to ripple currents.

The temperature coefficients of capacity and power factor are not unduly great at normal room temperatures but begin to increase rather rapidly when the temperature drops below about -20° C. However, new types are in the course of development which will operate satisfactorily at very much lower temperatures.

Applications.

Some of the applications of electrolytic condensers will now be discussed.

Reservoir Condensers.

Probably a greater number of electrolytic condensers have been used for smoothing the H.T. supply to radio receiver circuits than for any other purpose. The condensers used in the H.T. supply circuits are usually 4, 8, 16 or 32μ F, and may be considered under two headings, viz. Reservoirs and Smoothers.

- The reservoir condenser performs two functions. One is to increase the mean voltage output of the rectifier and the other is to confer some measure of smoothing on the output. The voltage across the reservoir condenser is a fluctuating one and may be considered as a steady D.C. component, plus an A.C. component usually known as the ripple voltage. The fundamental frequency of this ripple voltage is equal to that of the supply for half-wave rectifiers and voltage summation circuits and twice that of the supply for current summation and bridge circuits.

Now when an alternating potential E exists across a condenser of capacity C farads, a current flows through the condenser of magnitude $E\omega C$ where ω is 2π times the frequency, and thus an appreciable alternating current flows through the reservoir condenser. In normal commercial radio circuits, this ripple current may be anything from 50 to 150 mA R.M.S., and its value should be carefully considered when choosing the reservoir condenser to ensure that it does not exceed the maker's rating.

The power factor of the condenser may be taken as that fraction of the total alternating current through the condenser which is in phase with the applied voltage and so causes the generation of heat in the condenser. For a reservoir condenser, therefore, it is desirable that the power factor should be as small as possible since in most cases the generation of heat is the factor which limits the amount of ripple which the condenser can safely carry.

The ripple current through the reservoir is approximately proportiona to the D.C. output current so that for small current outputs it may be neglected. The best procedure is of course to measure the ripple current to ensure that the rating is not exceeded, but, as a guide to a preliminary choice, the condenser will most probably be safe from the ripple aspect if the following conditions are not exceeded.

Capacity µF.	D.G. Output.				
	Plain Anode		Etched Anode		
The provest	Half-wave	Full-wave	Half-wave	Full-wave	
• 4	30 mA.	60 mA.	20 mA.	40 mA.	
8	45 mA.	85 mA.	30 mA.	60 mA.	
16	60 mA.	120 mA.	40 mA.	80 mA.	
32	90 mA.	170 mA.	60 mA.	120 mA.	

The column headed "Half-wave" includes the voltage doubler, which is essentially two half-wave rectifiers in series, and the "Full-wave" column refers to the usual current summation circuit and to bridge rectifiers.

It is emphasised that the above figures are not meant as hard and fast ratings, since these will naturally vary from one type to another, but are intended as a guide where ripple currents cannot readily be measured or the ripple rating of the condenser is unknown.

As a further guide, if the circuit is run for half an hour or so delivering full load and no appreciable temperature rise in the reservoir condenser can be observed, then the ripple current is not likely to be excessive.

One other point has to be observed in choosing the reservoir condenser and that is that it must be rated to withstand the maximum peak voltage which will be applied to it, and this will often be considerably more than the D.C. output. In actual fact it will be the output voltage plus the voltage drop in the smoothing choke plus the peak of the ripple voltage. The condenser may thus easily have to withstand 50 or 100 volts in excess of the output voltage.

Smoothing Condensers.

It has been stated above, that for the reservoir condenser a low power factor is required, and it is often suggested that low power factor is the chief criterion of a good condenser. This, however, is not true since low power factor may be obtained in manufacture at the expense of breakdown voltage, leakage current and condenser life. It does not follow, therefore, that of two condensers, the one with the lower power factor is the better condenser. In fact, the higher power factor condenser may be the better of the two in all respects, including smoothing efficiency as will be shown later.

In a smoothing condenser, power factor is of little importance provided that it does not exceed 30%, and even values higher than this may sometimes be used without loss of smoothing efficiency.

It is commonly assumed that in a filter circuit such as Fig. 5, the output ripple voltage is proportional to the condenser impedance. This is not strictly true, but let it be taken as true for the moment. Then the curve of Fig. 6 showing variation of impedance with power factor for a condenser of fixed capacity, will show that power factors up to 30% may be neglected and further indicates that a power factor of even 50% means an increase of only $15\frac{1}{2}\%$ in the impedance and hence an increase of only 1.25 dB. in hum level.

Fig. 5 -Simple smoothing circuit.

Now consider two condensers, A and B, and suppose A has capacity 8.0μ F and power factor 2%, while B has capacity 8.1μ F and power factor 15%. A would probably be the most popular choice for a smoothing circuit, but, in actual fact, its impedance is equal to that of B, and furthermore, as will be shown later, B will provide even better smoothing than A. Also it is possible that A would have a higher leakage and a shorter life than B. It must be remembered, too, that the manufacturer's capacity tolerance is never less than 10% (it is usually -10% + 50%) and this would swamp any variation in impedance due to power factor.

It thus appears that, provided a designer has the slightest margin in hand on his smoothing capacity, he need not worry unduly about the power factor of the condenser, and it might even be suggested that he should specify a minimum value for power factor because, for maximum smoothing efficiency, there is an optimum value of condenser power factor which is not zero as is popularly supposed.

It is instructive to consider in greater detail the effect of power factor on smoothing, and the simple smoothing filter having a series choke and shunt condenser as shown in Fig. 5 is taken as a basis for this investigation.

To simplify the calculation it will be assumed that the load impedance is large-compared with that of the condenser and does not appreciably affect the impedance measured between the condenser terminals.

Fig. 6.—Relation between impedance and power factor for condenser of unit reactance.

From the vector diagram Fig. 7

 $Z^{2} = Z_{C}^{2} + Z_{L}^{2} - 2Z_{C}Z_{L}\cos[\pi - (\theta + \phi)] \dots \dots \dots \dots (1)$

Whence $\left(\frac{Z}{Z_C}\right)^2 = 1 + \left(\frac{Z_L}{Z_C}\right)^2 + 2\left(\frac{Z_L}{Z_C}\right)\cos(\theta + \phi)$. (2)

Now suppose that the condenser has constant impedance but its power factor may vary. Then $\left(\frac{Z_L}{Z_C}\right)$ will be a constant, say k, and the smoothing ratio S which is equal to $\frac{Z}{Z_C}$ will be given by the relation.

 $S^2 = 1 + k^2 + 2k \cos(\theta + \phi)$

which means that S will increase continuously as $(\theta + \phi)$ decreases, reaching

a maximum value when $\phi = 0$ since θ is fixed and ϕ cannot be negative.

Hence of two condensers of equal impedance that with the higher power factor will give the higher smoothing ratio.

Now consider the effect of varying the power factor of a condenser of fixed capacity. In this case X_C is constant while Z_C and ϕ are varied.

From the vector diagram,

 $Z_{\rm C} = \frac{X_{\rm C}}{\sin \phi}$ and substituting this

value in the R.H.S. of equation (2) Fig. 7.—Vector diagram for circuit of gives Fig. 5.

$$\left(\frac{Z}{Z_{\rm C}}\right)^3 = 1 + \left(\frac{Z_{\rm L}}{X_{\rm C}}\right)^3 \sin^2 \phi + 2\left(\frac{Z_{\rm L}}{X_{\rm C}}\right) \sin \phi \cos\left(\theta + \phi\right)$$

i.e.
$$S^2 = 1 + A^2 \sin^2 \phi + 2A \sin \phi \cos(\theta + \phi) \dots$$
 (3)
Where $A = \frac{Z_L}{X_C}$ which is a constant.

To find the condition that S may be a maximum, differentiate equation (3) thus -

When S is a maximum S² is also a maximum and $\frac{d(S^2)}{d\phi} = 0$. i.e. $(2 \sin \theta - A) \sin 2\phi = 2\cos \theta \cos 2\phi$

$$\tan 2\phi = \frac{2\cos\theta}{2\sin\theta - A}$$
 (6)

To proceed further it is necessary to assign values to A and θ and in order to work an example A will be made 10 and $\theta = 60^{\circ}$.

Then
$$\tan 2\phi = \frac{2\cos 60^\circ}{2\sin 60^\circ - 10} = -0.1209$$

and $\phi = -3^\circ 27'$ or 86° 33'

The negative angle is obviously inadmissible and the positive angle will give either a maximum or a minimum value for S. To test this, differentiate equation (4) giving

$$\frac{d^2 (5^2)}{d \phi^2} = 20 [10 \cos 173^\circ 6' - 2 \sin 233^\circ 6'] \\= -166.58$$
and hence $\phi = 86^{\circ} 33'$ gives a maximum value for S, which means that the condenser will be most efficient in the smoothing circuit if its power factor ($\cos \phi$) is 0.06 or 6% and to reduce the power factor below this figure would increase the output ripple voltage.

From the formulæ developed above it becomes clear that the optimum condenser power factor is never zero except in the impossible case when the choke power factor is zero

That the optimum power factor for a smoothing condenser is not zero may be confirmed experimentally by the simple circuit of Fig. 8, where C_g is a condenser of negligible power factor and R is a variable resistance inserted in series with C_g to give the effect of increasing its power factor. The output ripple voltage is measured on the A.C. voltmeter V which contains a small condenser to isolate it from D.C. If R, initially zero, is gradually increased, the output ripple voltage measured by V will be found to decrease gradually until a certain value of R is reached, after which further increase of R will produce an increase in the reading on V. The optimum value of R found in this way is usually rather higher than that indicated by the theory outlined above and further investigations on this point are being carried out

It is interesting to note that if the series choke of the filter circuit be replaced by a pure resistance, as it might be for a high impedance load circuit, a similar set of conditions will be found to obtain, the appropriate formula being derived by putting $\theta = 0$ in equations (1) to (6).

Fig. 8.-Circuit for demonstration of optimum power factor for smoothing condenser

Surge Absorbing Condensers.

The electrolytic condenser can be very usefully employed for preventing dangerous voltage rise occurring when a highly inductive circuit carrying a direct current is broken.

Fig. 9.-Electrolytic condenser used to absorb inductive surge.

The condenser is connected as shown in Fig. 9 and acts more as an asymmetric conductor than a condenser although the capacity does help. While a steady current flows through L, the current through C is very small but when the switch S is opened and the main current interrupted, the induced e.m.f. in L is in such a direction that a current flows through the condenser

in its reverse (i.e. low resistance) direction and the energy stored in L is dissipated.

In an actual case the following measurements were made on an electromagnet energised from a 300V. D.C. supply, the peak voltage across L being measured at the instant S was opened.

Type of	Condenser		Capacity (μ F)	Peak Voltage
Paper	ninger and su	as weather	1	2,550
Paper			2	2,000
Paper			4	1,700
Paper			10	1,100
Electrolytic (revers	ible)		8	500
Electrolytic (polari	sed)		8	150

Welding Condensers.

An interesting application of electrolytic condensers is in spot welding. For this type of work a condenser of many thousands of microfarads is charged and then discharged through the primary of a specially designed welding transformer.

This method of spot welding has two great advantages over other methods. Firstly, it enables the energy used in each weld, and hence the quality of the weld, to be controlled with great accuracy and secondly, it almost completely eliminates the fluctuations of mains voltage which result from the very heavy transient currents taken by the standard type of spot welder.

The latter advantage results from the fact that the condenser welder draws its energy relatively slowly from the mains as the condenser charges up, the stored energy in the condenser being released in a relatively short time to make the welds, whereas the standard type of welder takes its short bursts of energy straight from the mains as required, resulting in the well known voltage fluctuations.

Testing.

In view of the uses to which electrolytic condensers are put, the relatively large changes which occur with change of temperature and the wide manufacturing tolerances, it is but very rarely that accurate measurements of the characteristics of these condensers are required. In fact, very precise determinations are generally confined to the manufacturers' laboratories and for this reason the few hints on testing which follow are intended, not for the condenser specialist but for the general worker who may want to make rough measurements without purchasing special apparatus.

Measurement of Capacity

The simplest method of measuring capacity is by a measurement of impedance. The condenser is connected in series with an ammeter or milliameter, according to its suspected capacity, and a small alternating voltage applied as shown in Fig. 10. The current which flows through the condenser is given by $I = E\omega C$ whence $C = \frac{I}{\omega E}$ farads. The filament winding of a mains transformer is a useful voltage source and its nominal voltage may be used for calculation purposes but it is better to connect a high impedance voltmeter across the condenser to measure the true voltage. An

Avometer may well be used for this purpose and some models have a scale already calibrated in microfarads.

Fig. 10.-Capacity measurement by impedance method.

A variation of this method is to use a series resistance of known value as shown in Fig. 11 and to measure the voltages E_R and E_C across resistance and condenser respectively. Capacity is then given by $C = \frac{E_R}{DE}$ farads.

Perhaps the best modification, if many tests are contemplated, is to use the circuit of Fig. 10 and calibrate the ammeter by means of condensers of known capacity. Some resistance in series with the meter is desirable to prevent the latter being damaged by short-circuits.

No account of power factor is taken in the above methods and this is seen to be justified for rough measurements by the discussion in 5.6.2 above.

It will be noted that no provision is made for a polarisation voltage and, despite the oft repeated advice to the contrary, no polarisation is necessary. The accuracy does not warrant it, and the condenser will certainly not be harmed by application of a small alternating voltage for the short period required to make a test.

In many instances a capacity bridge will be available, and this, too, may be used without the simultaneous application of a polarisation voltage.

With either of the above methods it is good practice to apply to the condenser a D.C. polarising voltage equal to, or a little less than, the rated voltage, just prior to the capacity test, but this is a much simpler procedure than applying the D.C. and A.C. together. The period between the removal of the condenser from the D.C. circuit and the capacity test should not be more than about 5 minutes.

Measurement of Power Factor.

A bridge method is desirable for the measurement of the power factor of an electrolytic condenser and a very satisfactory circuit is the series resistance modification of the De Sauty Bridge (see "Alternating Current Bridge Methods," B. Hague, Pitman).

Since the power factor to be measured is high, a good quality paper condenser can be used as a standard.

The test frequency should be 50 c.p.s. and the filament winding on a mains transformer is a convenient source. As in the case of the measurement

of capacity, it is not necessary to apply a polarising voltage during the actual measurement, but'it is desirable to do so for a few minutes immediately before making the measurement.

Measurement of Leakage Current.

C

For this test the condenser should be connected, in series with a resistance and milliammeter, to a D.C. source the voltage of which is approximately equal to, but not greater than, the voltage rating of the-condenser. The value of the resistance should be chosen to pass a current of 100 to 200 mA. when the condenser is short circuited.

When the circuit is first completed, the current will rise momentarily almost to the short circuit value and will then decay, rapidly at first and then at a gradually decreasing rate, till it finally settles down to a steady value. A multi-range milliammeter with switch for selecting ranges is useful so that it can be set to a high range to protect it from damage due to condenser charging current and then switched to a more sensitive range as the current decays.

The leakage current will normally fall to a value corresponding to an insulation resistance of about 10 megohm-microfarads in 1 to 5 minutes, but may take longer than this if the condenser has been out of use for a very long period.

OMMONLY USED	LETTERS OF THE
GREEK	ALPHABET
RELINS S	in incasting in any
Letter	Name
T	Alpha
β	Beta
Y	Gamma
Δ }	Delta
0)	Theta
λ	Lambda
μ	Mu
π	Pi
6	Rho
\$	Phi
a }	Omega
w j	

(ONVERSION TAB	LES.	To obtain converse
To change	Into	Multiply by	multiply by
Cubic Centimetres	Cubic Inches	0.06102	16.39
Calories	Kilogrammetres	427.0	0.00234
Dynes	Grammes weight	0.001019	980.39
Cubic Yards	Cubic Metres	0.7646	1.308
Cubic Inches	Litres	0.0164	61.0
B.Th.U.	Watt-hours	0.2931	3.41
Atmospheres	Lb./sq. in.	14.70	0.068
B.Th.U.	Calories	0.252	3.97
B.Th.U.	Foot Pounds	777.4	0.001285
Centimetres	Inches	0.3937	2.54
Cubic Feet	Cubic Metres	0.0283	35.31
Dynes	Poundals	0.000072	13825.52
Feet	Metres	0.305	3.281
Ergs	Foot-lb.	7.373×10	-8 1.36×107
Foot-lb.	Kilogrammetres	0.1384	7.23
Feet/sec.	Miles/hr.	0.68182	1.467
Feet/min.	Miles/hr.	0.01137	88.0
Feet/sec.	Metres/min.	18.288	0.0547
Grains	Grammes	0.0648	15.432
Gallons	Litres	4.546	0.2205
Foot-lb./sec.	Horse-power	+ 0.0018	55.0
Feet/min.	Metres/sec.	0.00508	196.8
Horse-power	B.Th.U./min.	42.41	0.0236
Grammes/c.c.	Lb./cu. in.	0.03613	27.68
Gallons	Cubic Feet	0.161	6.211
Grammes	Ounces	0.03527	28.35
Grammes/sq. m.	Ounces/sq. yd.	0.0295	33.9
Inches	Millimetres	25.4	0.03937
Horse-power	Kilogrammetres/se	ec. 76.04	0.01315
Horse-power	Watts	746.0	0.00134
Joules	Watt-seconds	1.0	1.0
Inches	Feet	0.0833	12.0
Imperial Gallons	U.S. Gallons	1.205	0.830
Kilocalories/Kilogramme	B.In.U./ID.	1.80	0.55
Joules	Ergs	10'	10-7
Inches of Mercury	LD./sq. in.	0.4902	2.04
Inches	Metres	0.0254	39.37
Vilocolorica	D Th U	2000 0	0.000051
Knocalories Kg /D S	D.111.U.	3908.0	0.000251
K Cal lom flom the C?	D Th II /in /ha /E9	2.200	0.4475
Kilogrammoa	D.11.0./III./III./F	0.000	0.100
Matras	LU. Vorde	1.203	0.434
Kilowatt Hours	Toulog	26 \ 105	0.514
Kilogrammes/sg om	The lag in	14.99	27 × 10-
Kilogrammes	LD./sq. m.	0.000801	1016 2
Kilometres	Miles	0.621	1 600
Poundals	I b weight	0.03107	32 15
Knots	mnh	1 151	0.868
Kilowatts	Horse-nower	1 3406	0.746
Litres	Pinte	1.76	0.568
Metres/sec	mph	2.94	0.447
Square Metres	Square Vards	1 197	0.8361
Square Centimetres	Square Inches	0.155	6 4516
Tonnes	Tons	0.9842	1.016

LOGARITHMS

x. 1	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10 11 12 13 14 15 16 17 18 19	·0000 ·0414 ·0792 ·1139 ·1461 ·1761 ·2041 ·2304 ·2553 ·2788	0043 0453 0828 1173 1492 1790 2068 2330 2577 2810	0086 0492 0864 1206 1523 1818 2095 2355 2601 2833	0128 0531 0899 1239 1553 1847 2122 2380 2625 2856	0170 0569 0934 1271 1584 1875 2148 2405 2648 2878	0212 0607 0969 1303 1614 1903 2175 2430 2672 2900	0253 0645 1004 1335 1644 1931 2201 2455 2695 2923	0294 0682 1038 1367 1673 1959 2227 2480 2718 2945	0334 0719 1072 1399 1703 1987 2253 2504 2742 2967	0374 0755 1106 1430 1732 2014 2279 2529 2765 2989	44333333222	8876665554	12 11 10 10 9 8 8 7 7 7	17 15 14 13 12 11 11 10 9 9	21 19 17 16 15 14 13 12 12 11	25 23 21 19 18 17 16 15 14 13	29 26 24 23 21 20 18 17 16 16	33 30 28 26 24 21 20 19 18	37 34 31 29 27 25 24 22 21 20
20 21 22 23 24 25 26 27 28 29	· 3010 · 3222 · 3424 · 3617 · 3802 · 3979 · 4150 · 4314 · 4472 · 4624	3032 3243 3444 3636 3820 3997 4166 4330 4487 4639	3054 3263 3464 3655 3838 4014 4183 4346 4502 4654	3075 3284 3483 3674 3856 4031 4200 4362 4518 4669	3096 3304 3502 3692 3874 4048 4216 4378 4533 4683	3118 3324 3522 3711 3892 4065 4232 4393 4548 4698	3139 3345 3541 3729 3909 4082 4249 4409 4564 4713	3160 3365 3560 3747 3927 4099 4265 4425 4579 4728	3181 3385 3579 3766 3945 4116 4281 4440 4594 4742	3201 3404 3598 3784 3962 4133 4298 4456 4609 4757	2222222222	**********	6666555554	88877776666	11 10 9 9 9 8 8 8 7	13 12 12 11 11 10 9 9 9	15 14 14 13 12 12 11 11 11 11	17 16 15 15 14 13 13 12 12	19 18 17 17 16 15 15 14 14 13
30 31 32 33 34 35 36 37 38 39	•4771 •4914 •5051 •5185 •5315 •5441 •5563 •5682 •5798 •5911	4786 4928 5065 5198 5328 5453 5575 5694 5809 5922	4800 4942 5079 5211 5340 5465 5587 5705 5821 5933	4814 4955 5092 5224 5353 5478 5599 5717 5832 5944	4829 4969 5105 5237 5366 5490 5611 5729 5843 5955	4843 4983 5119 5250 5378 5502 5623 5740 5855 5966	4857 4997 5132 5263 5391 5514 5635 5752 5866 5977	4874 5011 5145 5276 5403 5527 5647 5763 5877 5988	4886 5024 5159 5289 5416 5539 5658 5775 5888 5999	4900 5038 5172 5302 5428 5551 5670 5786 5899 6010		M M M M M M M M M M M M M M M M M M M	********	66555555554	7776666665	988888777777	10 10 9 9 9 9 8 8 8 8	11 11 10 10 10 9 9 9	13 12 12 12 12 11 11 10 10
40 41 42 43 44 45 46 47 48 49	-6021 -6128 -6232 -6335 -6435 -6532 -6532 -6532 -6628 -6721 -6812 -6902	6031 6138 6243 6345 6444 6542 6637 6730 6821 6911	6042 6149 6253 6455 6454 6551 6646 6739 6830 6920	6053 6160 6263 6365 6464 6561 6656 6749 6839 6928	6064 6170 6274 6375 6474 6571 6665 6758 6848 6937	6075 6180 6284 6385 6484 6580 6675 6767 6857 6946	6085 6191 6294 6395 6493 6590 6684 6776 6866 6955	6096 6201 6304 6405 6503 6599 6693 6785 6875 6875 6964	6107 6212 6314 6415 6513 6609 6702 6794 6884 6972	6117 6222 6325 6425 6425 6618 6712 6803 6893 6893 6981		NNNNNNNNN	wwwwwwwww	********	5555555555	6666666555	8777777666	9888887777	10 9 9 9 9 9 8 8 8 8
50 51 52 53 54	-6990 -7076 -7160 -7243 -7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396		222222	33222	333333	44444	55555	66666	77766	88777

LOGARITHMS

	0		2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
55 56 57 58 59	·7404 ·7482 ·7559 ·7634 ·7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7435 7513 7589 7664 773 0	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	7459 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	1 1 1 1	2 2 2 1 1	22222	333333	44444	55544	55555	66666	77777
60 61 62 63 64 65 66 67 68 69	·7782 ·7853 ·7924 ·7993 ·8062 ·8129 ·8195 ·8261 ·8325 ·8388	7789 7860 7931 8000 8069 8136 8202 8267 8331 8395	7796 7868 7938 8007 8075 8142 8209 8274 8338 8401	7803 7875 7945 8014 8082 8149 8215 8280 8344 8407	7810 7882 7952 8021 8089 8156 8222 8287 8351 8414	7818 7889 7959 8028 8096 8162 8228 8293 8293 8357 8420	7825 7896 7966 8035 8102 8169 8235 8299 8363 8426	7832 7903 7973 8041 8109 8176 8241 8306 8370 8432	7839 7910 7980 8048 8116 8182 8248 8312 8376 8439	7846 7917 7987 8055 8122 8189 8254 8319 8382 8382 8345			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	*******	*******	5555554544	666555555555	0000000000
70 71 72 73 74 75 76 77 78 79	·8451 ·8513 ·8573 ·8633 ·8692 ·8751 ·8808 ·8865 ·8921 ·8976	8457 8519 8579 8639 8698 8756 8814 8871 8927 8982	8463 8525 8585 8645 8704 8762 8820 8876 8820 8876 8932 8937	8470 8531 8591 8651 8710 8768 8825 8882 8882 8938 8993	8476 8537 8597 8657 8716 8774 8831 8887 8943 8998	8482 8543 8603 8663 8722 8779 8837 8893 8949 9004	8488 8549 8609 8669 8727 8785 8785 8785 8842 8899 8954 9009	8494 8555 8615 8675 8733 8791 8848 8904 8960 9015	8500 8561 8621 8681 8739 8797 8854 8910 8965 9020	8506 8567 8627 8686 8745 8802 8859 8915 8971 9025			~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	***********	********	5555555444	655555555555
80 81 82 83 84 85 86 87 88 87 88 89	· 9031 · 9085 · 9138 · 9191 · 9243 · 9294 · 9345 · 9395 · 9445 · 9494	9036 9090 9143 9196 9248 9299 9350 9400 9450 9499	9042 9096 9149 9201 9253 9304 9355 9405 9455 9504	9047 9101 9154 9206 9258 9309 9360 9410 9460 9509	9053 9106 9159 9212 9263 9315 9365 9415 9465 9513	9058 9112 9165 9217 9269 9320- 9370 9420 9469 9518	9063 9117 9170 9222 9274 9325 9375 9425 9474 9523	9069 9122 9175 9227 9279 9330 9380 9430 9430 9479 9528	9074 9128 9180 9232 9284 9335 9385 9385 9485 9484 9533	9079 9133 9186 9238 9289 9340 9390 9440 9489 9538	1 0 0 0		22222222	222222222222	*****	*****	4*********	********	5555555444
90 91 92 93 94 95 96 97 98 99	·9542 ·9590 ·9638 ·9685 ·9731 ·9777 ·9823 ·9868 ·9912 ·9956	9547 9595 9643 9689 9736 9782 9827 9872 9872 9917 9961	9552 9600 9647- 9694 9741 9786 9832 9877 9921 9965	9557 9605 9652 9699 9745 9791 9836 9881 9926 9969	9562 9609 9657 9703 9750 9795 9841 9886 9930 9974	9566 9614 9661 9708 9754 9800 9845 9890 9934 9978	9571 9619 9666 9713 9759 9805 9850 9850 9894 9939 9983	9576 9624 9671 9717 9763 9809 9854 9899 9943 9987	9581 9628 9675 9722 9768 9814 9859 9903 9948 9991	9586 9633 9680 9727 9773 9818 9863 9908 9908 9952 9996	000000000000000000000000000000000000000			22222222222	222222222222	MUMUMUMUMU	Mawawawaw	********	*******

ANTILOGARITHMS

2	0	à I 8	2	3	4	5	6	7	8	9	۹	2	3	4	5	6	7	8	9
·00 ·01 ·02 ·03 ·04 ·05 ·06 ·07 ·08 ·09	1000 1023 1047 1072 1096 1122 1148 1175 1202 1230	1002 1026 1050 1074 1099 1125 1151 1178 1205 1233	1005 1028 1052 1076 1102 1127 1153 1180 1208 1236	1007 1030 1054 1079 1104 1130 1156 1183 1211 1239	1009 1033 1057 1081 1107 1132 1159 1186 1213 1242	1012 1035 1059 1084 1109 1135 1161 1189 1216 1245	1014 1038 1062 1086 1112 1138 1164 1191 1219 1247	1016 1040 1064 1089 1114 1140 1167 1194 1222 1250	1019 1042 1067 1091 1117 1143 1169 1197 1225 1253	1021 1045 1069 1094 1119 1146 1172 1199 1227 1256	000000000000000000000000000000000000000	0000					~~~~~~~~~	~~~~~~~~~~~~	222222233
• 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19	1259 1288 1318 1349 1380 1413 1445 1479 1514 1549	1262 1291 1321 1352 1384 1416 1449 1483 1517 1552	1265 1294 1324 1324 1355 1387 1419 1452 1486 1521 1556	1268 1297 1327 1358 1390 1422 1455 1489 1524 1560	1271 1300 1330 1361 1393 1426 1459 1493 1528 1563	1274 1303 1334 1365 1396 1429 1462 1496 1531 1567	1276 1306 1337 1368 1400 1432 1466 1500 1535 1570	1279 1309 1340 1371 1403 1435 1469 1503 1538 1574	1282 1312 1343 1374 1406 1439 1472 1507 1542 1578	1285 1315 1346 1377 1409 1442 1476 1510 1545 1581	000000000000000000000000000000000000000				12222222222	2222222222222	2222222222	~~~~	******
·20 ·21 ·22 ·23 ·24 ·25 ·26 ·27 ·28 ·29	1585 1622 1660 1698 1738 1778 1820 1862 1905 1950	1589 1626 1663 1702 1742 1782 1824 1866 1910 1954	1592 1629 1667 1706 1746 1786 1828 1871 1914 1959	1596 1633 1671 1710 1750 1791 1832 1875 1919 1963	1600 1637 1675 1714 1754 1795 1837 1879 1923 1968	1603 1641 1679 1718 1758 1799 1841 1884 1928 1972	1607 1644 1683 1722 1762 1803 1845 1888 1932 1977	1611 1648 1687 1726 1766 1807 1849 1892 1936 1982	1614 1652 1690 1730 1770 1811 1854 1897 1941 1986	1618 1656 1694 1734 1774 1816 1858 1901 1945 1991				-2222222222	~~~~~~~~~~~	2222223333	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3334444444
· 30 · 31 · 32 · 33 · 34 · 35 · 36 · 37 · 38 · 39	1995 2042 2089 2138 2188 2239 2291 2344 2399 2455	2000 2046 2094 2143 2193 2244 2296 2350 2404 2460	2004 2051 2099 2148 2198 2249 2301 2355 2410 2466	2009 2056 2104 2153 2203 2254 2307 2360 2415 2472	2014 2061 2109 2158 2208 2259 2312 2366 2421 2477	2018 2065 2113 2163 2213 2265 2317 2371 2427 2483	2023 2070 2118 2168 2218 2270 2323 2377 2432 2489	2028 2075 2123 2173 2223 2275 2328 2382 2438 2495	2032 2080 2128 2178 2228 2280 2334 2388 2443 2500	2037 2084 2133 2183 2234 2286 2339 2393 2449 2506				222222222222	22223333333	~~~~~	******	********	44445555555
·40 ·41 ·42 ·43 ·44 ·45 ·46 ·47 ·48 ·49	2512 2570 2630 2692 2754 2818 2884 2951 3020 3090	2518 2576 2636 2698 2761 2825 2891 2958 3027 3097	2523 2582 2642 2704 2767 2831 2897 2965 3034 3105	2529 2588 2649 2710 2773 2838 2904 2972 3041 3112	2535 2594 2655 2716 2780 2844 2911 2979 3048 3119	2541 2600 2661 2723 2786 2851 2917 2985 3055 3126	2547 2606 2667 2729 2793 2858 2924 2992 3062 3133	2553 2612 2673 2735 2799 2864 2931 2999 3069 3141	2559 2618 2679 2742 2805 2871 2938- 3006 3076 3148	2564 2624 2685 2748 2812 2877 2944 3013 3083 3155			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22233333333	******	********	4444455555	55555555566	5566666666

-

ANTILOGARITHMS

and the second second	-	-	and the owner whether	And Designation	Contraction of the local division of the loc	-	Printer State	-	-	and a state of the	-	-	-	-	-	-	-	-	-
0	0	813	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304		2	2	3	4	5	5	6	7
• 52	3311	3319	3327	3334	3342	3350	3357	3365	3373	1888	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
·54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
· 55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3832	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
						-		1000					_	_	_				_
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	F	2	3	4	5	6	6	7	8 .
1 .61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1 F	2	3	4	5	6	7	8	9.
.62	4169	4178	4188	4198	4207	4217	4227	4236	4746	4256	1	2	3	4	5	6	7	8	9
.63	4265	4276	4285	4295	4305	4315	4325	4335	4345	4355	le is	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	5	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560		2	3	4	š	6	7	8	9
.66	4571	4581	4592	4603	4613	4674	4634	4645	4656	4467	1	5	3		S.	6	7	à	10
167	4677	4688	4400	4710	4771	4772	4747	4752	4764	4007		2	2	3	5	7	0	6	10
.68	4786	4797	4808	4010	4931	4947	4057	4/33	4075	4/13		2	3	7	2	7	0	0	10
00	4000	4000	4000	1017	10012	1072	1033	4077	4000	400/		4	3	4	0	-	0	7	10
.03	1070	4703	4720	4732	4773	4755	4200	97/1	4909	5000	1	Z	3	2	0	1	8	3	10
.70	5012	5022	5025	5047	CAER	5070	5003	E002	FLOF	5117		2			1	7	0	0	11
.70	5120	5023	5033	15041	5050	5070	5082	5093	5105	511/		2	4	5	0	1	8	7	1
1.1	5127	5140	5154	10104	51/0	5188	5200	SZIZ	5214	5236		2	4	5	6	1	8	10	11
.12	5248	5200	52/2	5284	5297	5309	5321	5333	5346	5358		2	4	5	6	1	9	10	11
1 .73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483		3	4	5	6	8	9	10	11
-14	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610		3	4	5	6	8	9	10	12
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741		3	4	5	7	8	9	10	12
•76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	E E	3	4	5	7	8	10	11	12
•78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	E	3	4	6	7	8	10	11	13
.79	6156	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
				-	-	-							-	-				-	
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
18.	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
· 82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	Ĩ	4	5	7	9	11	12	14	16
.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	ó	ii .	13	14	16
Constanting											-		-		-		-	-	
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8490	2	-	6	9	10	12	14	16	18
.94	8710	8730	8750	8770	8790	8810	8831	0050	0070	0000	2	7	4	0	10	12	14	16	18
.05	0012	0033	0054	0074	0005	0014	0031	0057	0072	0072	4	7	2	0	10	12	17	17	10
175	0713	0733	8754	0103	0775	0016	9036	905/	90/8	9099	2	7	0	Ø	10	12	13	17	10
07	0222	0251	9102	9183	9204	9226	924/	9268	9290	9311	2	4	6	8	11	13	15	17	17
- 97	9333	7354	93/6	9391	7419	9441	9462	9484	9506	9528	2	4	1	9		13	15	17	20
- 98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
~99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

POWERS AND ROOTS

n	n ² 100	\sqrt{n}	n ³	3√⊓	3 √10n	\$√100n	VIOn
1234567890	1 9 16 25 36 49 64 81 100	1 1 • 414 1 • 732 2 2 • 236 2 • 449 2 • 646 2 • 828 3 • 000 3 • 162	1 8 27 64 125 216 343 512 729 1000	1 1 · 260 1 · 442 1 · 587 1 · 710 1 · 817 1 · 913 2 · 000 2 · 080 2 · 154	2 · 154 2 · 714 3 · 107 3 · 420 3 · 684 3 · 915 4 · 121 4 · 309 4 · 481 4 · 642	4.642 5.848 6.694 7.368 7.937 8.434 8.879 9.283 9.655 10.000	3.162 4.472 5.477 6.325 7.071 7.746 8.367 8.944 9.487 10.0
11 12 13 14 15 16 17 18 19 20	121 144 169 196 225 256 289 324 361 400	3.317 3.464 3.606 3.742 3.873 4.000 4.123 4.243 4.359 4.472	1331 1728 2197 2744 3375 4096 4913 5832 6859 8000	2-224 2-289 2-351 2-410 2-466 2-520 2-571 2-621 2-668 2-714	4.791 4.932 5.066 5.192 5.313 5.429 5.540 5.646 5.749 5.848	10.323 10.627 10.914 11.187 11.447 11.696 11.935 12.164 12.386 12.599	10'-488 10'-954 11'-402 11'-832 12'-247 12'-649 13'-038 13'-416 13'-784 14'-142 -
21 22 23 24 25 26 27 28 29 30	441 484 529 576 625 676 729 784 841 900	4.583 4.690 4.796 4.899 5.000 5.099 5.099 5.196 5.292 5.385 5.477	9261 10648 12167 13824 15625 17576 19683 21952 24389 27000	2.759 2.802 2.844 2.924 2.962 3.000 3.037 3.072 3.107	5 • 944 6 • 037 6 • 127 6 • 214 6 • 300 6 • 383 6 • 463 6 • 542 6 • 619 6 • 694	12-806 13-006 13-200 13-389 13-572 13-751 13-925 14-095 14-260 14-422	14.491 14.832 15.166 15.492 15.811 16.125 16.432 16.733 17.029 17.321
31 32 33 34 35 36 37 38 39 40	961 1024 1089 1156 1225 1296 1369 1444 1521 1600	5.568 5.657 5.745 5.831 5.916 6.000 6.083 6.164 6.245 6.325	29791 32768 35937 39304 42875 46656 50653 54872 59319 64000	3 · 141 3 · 175 3 · 208 3 · 240 3 · 271 3 · 302 3 · 332 3 · 362 3 · 391 3 · 420	6.768 6.840 6.910 6.980 7.047 7.114 7.179 7.243 7.306 7.368	14-581 14-736 14-888 15-037 15-183 15-326 15-467 15-605 15-741 15-874	17.607 17.889 18.166 18.439 18.708 18.974 19.235 19.494 19.748 20.00
41 42 43 44 45 46 47 48 49 50	1681 1764 1849 1936 2025 2116 2209 2304 2401 2500	6.403 6.481 6.557 6.633 6.708 6.782 6.856 6.928 7.000 7.071	68921 74088 79507 85184 91125 97336 103823 110592 117649 125000	3 · 448 3 · 476 3 · 503 3 · 557 3 · 583 3 · 609 3 · 634 3 · 659 3 · 684	7.429 7.489 7.548 7.606 7.663 7.719 7.775 7.830 7.884 7.937	16.005 16.134 16.261 16.386 16.510 16.631 16.751 16.869 16.985 17.100	20-248 20-494 20-736 20-976 21-213 21-448 21-679 21-909 22-136 22-361

POWERS AND ROOTS

n	n²	\sqrt{n}	n ³	s√n	³ √10n	.³∕100n	√10n
51	2601	7-141	132651	3.708	7 · 990	17.213	22.583
52	2704	7-211	140608	3.733	8 · 041	17.325	22.804
53	2809	7-280	148877	3.756	8 · 093	17.435	23.022
54	2916	7-348	157464	3.780	8 · 143	17.544	23.238
55	3025	7-416	166375	3.803	8 · 193	17.652	23.452
56	3136	7-483	175616	3.826	8 · 243	17.758	23.664
57	3249	7-550	185193	3.829	8 · 291	17.863	23.875
58	3364	7-616	195112	3.871	8 · 340	17.967	24.083
59	3481	7-681	205379	3.893	8 · 387	18.070	24.290
60	3600	7-746	216000	3.915	8 · 434	18.171	24.495
61 ·	3721	7.810	226981	3.936	8 • 481	18.272	24.698
62	3844	7.874	238328	3.958	8 • 527	18.371	24.900
63	3969	7.937	250047	3.979	8 • 573	18.469	25.100
64	4096	8.000	262144	4.000	8 • 618	18.566	25.298
65	4225	8.062	274625	4.021	8 • 662	18.663	25.495
66	4356	8.124	287496	4.041	8 • 707	18.758	25.690
67	4489	8.185	300763	4.062	8 • 750	18.852	25.884
68	4624	8.246	314432	4.082	8 • 794	18.945	26.077
69	4761	8.307	328509	4.102	8 • 837	19.038	26.268
-70	4900	8.367	343000	4.121	8 • 879	19.129	26.458
71	5041	8 · 426	357911	4.141	8.921	19.220	26.646
72	5184	8 · 485	373248	4.160	8.963	19.310	26.833
73	5329	8 · 544	389017	4.179	9.004	19.399	27.019
74	5476	8 · 602	405224	4.198	9.045	19.487	27.203
75	5625	8 · 660	421875	4.217	9.086	19.574	27.386
76	5776	8 · 718	438976	4.236	9.126	19.661	27.568
77	5929	8 · 775	456533	4.254	9.166	19.747	27.749
78	6084	8 · 832	474552	4.273	9.205	19.832	27.928
79	6241	8 · 868	493039	4.291	9.244	19.916	28.107
80	6400	8 · 944	512000	4.309	9.283	20.000	28.284
81 82 83 84 85 86 87 88 89 90	6561 6724 6889 7056 7225 7396 7569 7744 7921 8100	9.000 9.055 9.110 9.165 9.220 9.274 9.327 9.381 9.434 9.487	531441 551368 571787 592704 614125 636056 658503 681472 704969 729000	4:327 4:344 4:362 4:380 4:397 4:414 4:431 4:448 4:465 4:481	9-322 9-360 9-398 9-435 9-473 9-510 9-546 9-583 9-619 9-655	20.083 20.165 20.247 20.328 20.408 20.488 20.567 20.646 20.724 20.801	28.460 28.636 28.983 29.155 29.326 29.496 29.665 29.833 30.000
91 92 93 94 95 96 97 98 99 99 100	8281 8464 8649 8836 9025 9216 9409 9604 9801 10000	9.539 9.592 9.644 9.695 9.747 9.798 9.849 9.899 9.899 9.950 10.000	753571 778688 804357 830584 857375 884736 912673 941192 970299 1000000	4 · 498 4 · 514 4 · 531 4 · 547 4 · 563 4 · 579 4 · 595 4 · 610 4 · 626 4 · 642	9.691 9.726 9.761 9.830 9.865 9.899 9.933 9.967 10.000	20-878 20-954 21-029 21-105 21-179 21-253 21-327 21-400 21-472 21-544	30.166 30.332 30.496 30.659 30.822 30.984 31.145 31.305 31.464 31.623

MATHEMATICAL SYMBOLS

>>	Is much greater that	In. 2.101	19.1Y2	Therefore.	
>	Is greater than.		Δ	Increment or Decrement.	
=	Identity.			Parallel to.	
¥	Is approximately equ	ol to.	_	Negative. Minus. Subtract.	
≠	Does not equal.		X or •	Multiplied by.	
¥II	Less than or equal t	0.	+	Positive. Plus. Add.	
≧	Greater than or equa	ol to.		Negative or positive.	
«	is much less thon.		Ŧ	Minus or Plus.	
<	Is less than.		[]	Positive or Negative.	1
n	Absolute value of n.		±.	Plus or Minus.	
T	Perpendicular to		÷or:	Divided by.	
4	Angle.		= or ::	Equals .	
	UNITS			Examples :	
A	Ampere	Volt		$M\Omega = Megohm (meg.$)
Ah	Ampere-hour M	Watt	bour	KW = Kilowatt.	
F	Farad 1	2 Ohm		mA = Milliamp	
H	Henry C/	S Cycle	er Secon	nd UV = Microvolt	
db	Decibel			HUF = Micro-Microfa	rad.
	And second and and			Mc/s = Megacycles per second	d.
				k c/s = Kilocycles per secon	d.
	MULTIPLES AND SUBMU	LTIPLES		mH = Millihenry	
И	Mega. = 10^6 μ	Micro :	= 10-6	$\mu F = Microfarad.$	*
<i>k</i>	$Kilo. = 10^{-3} \qquad \mu\mu$	Micro-n Pica.		10-12 pF = Pica-farad	
"			061		

SYMBOLS

NORMALLY IN COMMON USE IN RADIO AND ELECTRICAL FORMULAE

B	Magnetic Flux Density	R	Resistance .
С	Copacity.	Ra	A.C. Anode Resistance of Valve.
E	Electromotive Force [E.M.F].	Rd	Dynamic Resistance of Tuned
i	Instantaneous E. M.F.	S	Magnetic Reluctance .
1	Frequency.	t	Time
G	Magneto-Motive-Force [M.M.F.].	V	Potential Difference
G	Conductance.	W	Energy.
gor gn	7 Mutual Conductance of Valve.	x	Reactance. for states da fa
H	Magnetic Field Strength .	Z	Impedance. al a la antina a la al
1	Current.	x	Wavelength.
i	Instantaneous Current.	μ	Valve Amplification Factor
K	Specific Inductive Capacity.	μ	Magnetic Permeability
'L	Self Inductance.	π	Ratio of Circumference to Diameter of Circle = 3-14 [approx.]
M	Mutual Inductance.	6	Specific Resistance
11.10 m	Amplification Factor of Valve.	${\Phi}$	Magnetic Flux.
P	Power	9	Phase Angle.
Q	Quantity of Electricity.	ω	Angular Velocity
	and the second s	-H-AND	

SIGNS AND SYMBOLS

THEORETICAL DIAGRAMS OF VALVE TYPES.

- Indirectly heated Diode. a
- b Indirectly heated Double Diode.
- C Diode.

Indirectly heated Diode and Beam Power Amplifier. d

B Indirectly heated Diode Pentode.

- f Diode Pentode.
- Half Wave Cold Rectifier.
- gh Double Diode.
- i Full Wave Cold Rectifier.
- Indirectly heated Diode Triode. i
- Indirectly heated Diode Triode Pentode. k
- 1 Diode Triode Pentode.
- m Double Diode Triode.
- Indirectly heated Double Diode Pentode. n
- Indirectly heated Pentagrid Converter. 0
- Pentagrid Converter. p
- Indirectly heated Triode Hexode. 9
- Indirectly heated Triode Heptode. V
- Indirectly heated Octode. S
- t Indirectly heated Pentagrid Mixer.
- 21 Heptode.
- Indirectly heated Twin Triode. U
- Twin Triode. W
- x Indirectly heated Twin Plate Triode.
- Indirectly heated Twin Input Grid Triode. y
- Indirectly heated Triode Pentode. 2
- aa Indirectly heated Triode.
- Tetrode. ab
- Diode Triode Tetrode. ac
- ad Indirectly heated Pentode.
- Indirectly Heated Beam Power Valve. ae
- af Twin Pentode.
- Indirectly heated Beam Power Pentode. ag
- ah Indirectly heated Directly-coupled Twin Triode.
- Indirectly heated Electron-Ray with Triode. ai
- aj Indirectly heated Twin Electron Ray.
- Gas Tetrode. ak

THEORETICAL DIAGRAMS OF VALVE TYPES, CONT'

ALL ABOUT BALLAST AND RESISTOR "TUBES"

The term "ballast" is a general term which has been applied to all types of *regulating tubes*. The present popular types of ballast tubes should really be divided into 3 groups according to the type of service for which they are designed.

(I) CURRENT REGULATORS

These are designed to maintain the current to the set (usually filament current) constant when the voltage of the filament supply battery varies during its life.

In battery-operated sets using 2-volt tubes the filaments of all of the tubes are wired in parallel and connected to the filament supply battery. For satisfactory operation of the set and satisfactory tube life the filament current to the tubes must be maintained fairly close to its rated value. During the life of the filament battery its terminal voltage gradually decreases, which means that the current delivered to the tubes in the set also decreases. Many of these sets use 2 drycells in series for a filament supply. When new these have a terminal voltage of about 3.8 volts so that obviously some resistance must be inserted into the set filament circuit so that the tubes will not get more than the rated 2.0 volts. An ordinary resistor would take care of this but as the drycells dropped in voltage during life, the voltage applied to the tubes would become lower and lower, affecting both the performance of the set and the life of the tubes.

The current regulator tube is intended to replace this resistor and in addition to reducing the battery voltage to the proper value, it has the additional property of automatically changing its resistance so that, in spite of variations in the terminal voltage of the battery, the curent supplied to the tubes is held constant.

Since the filaments of the tubes in battery sets are all wired in parallel each different combination of tubes requires a different regulator tube. For example, a set using 1-6C6, 2-34's, 1-82, 1-30, and 1-19 would have a total filament current of 0.620-ampere and would use a type 131 current regulator (see Table).

To determine the proper current regulator for any set, it is simply necessary to determine the total filament current and use the regulator tube having this rating. The total set current can be determined by noting the number and type of tubes in the set and determining their respective filament currents from published characteristics such as found in the "National Union Handbook."

(2) VOLTAGE REGULATORS

These are designed to maintain the voltage to the set (usually plate and/or screen) constant when the current drawn by the set varies. Tubes of this type are not usually encountered in ordinary broadcast receivers.

The voltage regulator has the property of automatically varying the amount of current which it draws so that the voltage across its terminals remains constant. If one of these regulators is connected as part of the voltage divider across a power supply, the voltage across the regulator will remain constant regardless of variations in current through the divider or voltage variations from the power supply.

The operation of a voltage regulator may be explained by a simple analogy. Suppose we build a dam across a river. Let the water coming down the river represent our power supply voltage, the dam represent our voltage regulator, and the level of the water above the dam the voltage supplied to the set. No matter how much water comes down the river, the level above the dam will remain approximately constant because all the surplus spills over the dam.

(3) LINE BALLASTS OR RESISTORS

These are designed for use as line dropping resistors in A.C.-D.C. sets and are normally connected in series with the filaments of the tubes in the set.

In this type of set all of the tube filaments are wired in series. Since the total filament voltage required is normally much less than 110 volts, a resistor or regulator must be connected in series with the filaments to make up the additional voltage drop.

The purpose and function of the line ballast are similar to the action of the current regulator described previously. The ballast tube automatically varies its resistance so that the filament voltage and current are maintained at proper values in spite of variation in line voltage.

Several of the so-called ballast tubes are nothing but resistors and have little or no regulating action. In purchasing be sure to secure true regulators and not just resistors mounted in a metal tube can.

The proper size or type of ballast to use is determined by the filament current drain and the number of tubes in the set. Some of these types are supplied with taps for lighting one or two pilot lights.

There is another type of ballast regulator for A.C. sets. This type is connected in series with the primary of the power transformer, and is intended to keep the transformer voltage constant regardless of variations in line voltage.

In Table I (at end of article) are listed all the glass-envelope tube types shown in Table II and referred-to in basing illustrations A to I (incl.) at the top of this and the facing page.

METAL BALLASTRONS

In addition to the previously-described group of glass-envelope ballast and resistor "tubes" there is also a group of metal-envelope resistance units which the Serviceman frequently encounters. One type in this group is National Union Co.'s type known as the Ballastron; it is available in 2 models, designated A and B. (See Fig. B.)

These 2 Ballastrons serve as replacements for over 100 R.M.A.-coded ballast tubes and many special radio manufacturers' types.

On the base of the Ballastron is an ingeniously-arranged metal strip (see Fig. 1A) which short-circuits 3 sections of the resistance unit inside the metal envelope. By snipping or filing this metal shunt all the way through at one or more of the 3 locations, between prongs § and 6, indicated by dois of colored pairm, the shortcircuit between any 2 prongs is thus removed and the respective resistance section cut into circuit.

A second ingenious arrangement is found in base prongs 2 and 8 which may be unscrewed and removed if they are not required. Here is where the difference exists between the type numbers (A and B) of these metal-envelope ballasts: removable terminals 2 and 8 tap onto the internal resistance unit (see Fig. 1B) to provide ballast operation of a pilot light as described in the caption of Fig. 1.

Terminal 1 is the connection ordinarily used on metal tubes to ground the shell. The resistance element of the Ballastrons, which is made by winding helical-wound resistance wire lengthwise on a mica strip as shown in Fig. B, is tapped-off to terminals 2 to 8 as shown in Fig. 1B. The drops across the various taps of this voltage divider are shown here for the first time in any radio magazine. The drop across the pilot light section of the divider is the same for either current rating (that is, for either the A or B type ballast "tube").

Ballastrons may be "matched" to the requirements of ballast resistors, carrying R.M.A.-code numbers, in accordance with the directions in the chart, Table III. Also, they may be adjusted to auit the characteristics embodied in various factory-coded units, some of which are listed in Table IV.

NOTE:--If a ballast tube has a first letter "B", disregard it (Example: Ballast' tube No. BK-55-D is K-55-D on chart). If the first letter is "M," substitute "K" for it (Example: Ballast tube No. M-65-D is K-55-D on chart). To replace an I--C tube, follow directions for a K--C tube but change pilot lamps to 150 ma. (Type No. 40, brown bead.)

		TABLE	11	
Type No.	Current Rating	Voltage Drop	+Normal Use	Exchange with
1-1 1A1	0.120	0.3-1.2 0.3-1.2	a 5-1	. 5E1, 6AA
1A2	(0.120 (0.320	0.3-1.2		30

Type No.	Current Rating	Voltage Drop	+ Norma Use	l Exchange with
1-A-5	0.1	5-25	b	
1B1	0.360	0.8-1.2	0.8	3H-1
1B2	(0.260			
	(0.360	0.3-1.2	21.810	01 31. Co.
101	0.750	0.3-1.2	8	7H-1
1C2	(0.120			
	(0.250	0.3-1.2	8	52 00.
1D1	0.250	0.3-1.2	012	2H-1
1E1	0.480	0.3-1.2	B	
1F1	0.720	0.3-1.2	a	7-1 01-1
1G1	0.420	0.8-1.2	a	4-1 0
1J1	0.620	0.3-1.2	a	6-1
LH-1	0.180	0.3-1.2	a	
GM-1		Anton		
.2	0.30	9.0	g	
2-A-5	0.20	5-25	b	1. 08.0 LAS
2H-1	0.240	0.3-1.2	2	1D1
2H-5	0.250	5-25	b	
3	0.30	128	d.	
3-1	0.300	0.8-1.2	8	95.0 1200
3-40	0.30	45-80	C	300*, 50X3*, 5B*
8-150	0.30	30-60	e	
3-220	0.30	130-170) d	
3-A-5	0.30	5-25	ь	10.12.0 X
3H-1	0.860	0.3-1.2	S.(- A)	1B1
3H-22	0 0.35	70-180	1.1	
4	0.40	115	b	05,0 · DAN
4-1	0.420	0.3-1.2	a	IGI
4-220	0.40	70-130	1.0.1	
4-A-5	0.40	5-25	0 0	
4H-5	0.45	5-25	D	
4H-22	0 0.45	70-130	I	
5	0.46	115	b	
5-1	0.500	0.3-1.2	a	IAI, SEI, SAA
5-16	0.500	0.3-1.2	R	
5-150	0.50	30-60		
5-220	0.50	70-130	I.	
5-A-0	0.50	5-25	0	
5E1	0.500	0.3-1.2	B	1AI, 5-1, 6AA
5H-1	0.550	0.3-1.2		10AB, 181
DH-D	0.55	0-25	0	
DH-20	0.00	70-130	100	
0	0.090	0.3-1.2		
0-1	0.620	0.3-1.2	ha	
0-20	0.500	20-40	13	141 6.1 SE1
C.A.S	0.60	E. 05	h	101, 0-1, -01
6H-1	0.660	0 2-1 9	1.10	
11 4 4 4 4		11.071.16		

Type No.	Current Rating	Voltage Drop	+Normal Use	Exchange	Type No.	Current Rating	Veltage Drop	+Normal Use	Exchange with
7	0.80	0.8-1.2	a contra a contra a		185R8	0.30	54.9	m -2	
7-1	0.720	0 8-1 2	a	1171	218	12	20		19 00
7-20	0.70	20-40	ha	IFI	314	1.0	30		13-20
7-150	0.70	30-60	e		315	1.5	30		19-20
7-A-5	0.70	5-25	b		415		and the second		11-10
7H-1	0.760	0.3-1.2	8	1C1	425			16 4 900 1 11	and the Denieda
8	0.30	132	9		449		T. MARKED W.		
0-12-0	0.00	5-25	6		460	al a set it in	a batterare		
9-20	0.90	20-40	h2 0g	100 105 904	000	1.05	88		
9-150	0.90	30-60	e	100, 103, 100	874	0.01-0.05	90	tivistical whi	
9-A-5	0.90	5-25	b		876	0.70	40-60	h 4	
9V10	0.80	5-25	b		886	2.05	40-60	h	
10-10	1.00	10-30	h2	125	*Lin	e Resistor	not a tul	C.	
10 A F	0.000	0.3-1.2	a	5H-1	4-Se	e notes fo	llowing fo	r explanati	07.
10-A-5	1.00	5-25	0		10	Lencine and	a birthings	e enplander	GAT.
10110	1.00	10-20	hl				TARIE	y lasts mathe	
11-10	1.10	10-30	h2	118-415	The	hallest. an	d register	Hanha't amo	the shares
11-20	1.10	20-40	h 3	110	at the	top of p	ares 412 a	nd 418 are	identified
11-150	1.10	80-60 E.9E	e	038	with	their rest	ective tul	es in Ta	ble II as
12-20	1.20	20-40	ba	190	follows		And the second	COLUMN DUTIN	ter And solding
13-10	1.30	10-20	h2	180	[A]-	-1-A-5. 2-	A-5. 2H-5.	3-150. 3-2	20. 3-A-5.
13-20	1.30	20-40	h 3	313	3H-220	. 4-220, 4	A-5, 4H-5	4H-220, 5	-16, 5-150,
13-A-5	1.30	5-25	b		5-220,	5-A-5, 5H	I-5, 5H-22	0, 6-20, 6-	A-5, 7-20,
14-20	1.40	20-40	hS	* 314	7-150,	7-A-5, 8-	A-5, 9-20,	9-150, 9-4	1-5, 10-10,
14-A-0	1.40	0-20	b	AND AND ADD	10-A-D	19 10 12	11-10, 11	-20, 11-15	0, 11-A-5,
15-20	1.50	20-40	h2	100	15-20,	18-10 . 20-	A-5 22-10	14-20, 14-	A-D, 10-10,
18-10	1.80	10-20	hi	010	ID1	1 1 1 4 1	171 4		
20-A-5	2.00	5-25	b		161 1	JI TH-1	GM-1 2	9H.1 9	1EL, IF1,
22-10	2.20	10-30	h2		3H-1.	4. 4-1. 5.	5-1. 5E1.	5H-1, 6,	6-1. 6AA.
30	(0.120	14 M 180		The second second	6H-1,	D6-1, 7, 7	-1. 7H-1.	8. 9. 10AE	. 160.03 Cheven
23	(0.320	0.3-1.2	S.J. 8.0	1A2	[C]-	-1A2, 1B2	. 1C2. 30.	31. 52.	
31	(0.360	0 3-1 2	a serie de la company	100	[E]-	-46A1. 46	B1.		
038	1.10	28		11-150	IFI-	-9110 70	90		
42A1	0.30	42.3	m		(0)	-42 41 49	10 1000	1041 10	
42A2	0.30	42.3	m-1		55A1	55A2 55R	AG 9402,	43AI, 63	A2, 4902,
42B2	0.30	42.3	m -2		THI.	-1408 14	RA 140P8	165P 165	DA 1CEDO
46R1	0.40	30-60	k		185R.	185R4. 185	R8.	, 10010, 100	te, Itoro,
49A1	0.30	48.6	K		-111-	-038 98 1	00 105 10	6 110 119	195 195
49A2	0.30	48.6	m -1		130. 1	50. 155. 15	8, 218, 31	3. 314. 315.	415, 425,
49B2	0.30	48.6	m -2	DE THEIR STREET	449, 4	60, 538, 88	18.	1	LUD UNA
52	(0.120	1 18 Weber		tellas in Bullet	[J]-	-874.			
	(0.250	0.3-1.2	17.14 a	1C2	Scret	w-876. 88	6.		
55A2	0.30	54.9	m		1.0	AND ADAL	TODO MAL		
65B2	0.30	54.9	m-1 m-2						
70	0.90	80-60	k1		NOTE	S ON NO	DRMAL U	SE	area build and
90	1.40	30-60	k1		(a)	For use in	n operating	g 2.9-volt t	ubes from
98	0.98	80	h 3	9-20	Air-Ce	ll or 3-vol	t drycell	batteries. V	Vhen used
105	1.0	20		0.00	this w	ay, no oth	ier resistor	is necessa	ry in the
106	1.06	30		9-20	operati	ng from	and none i	torage cell	the hel
110	1.10	80		11-20	last tu	be should	be shorted	d out of th	he circuit.
118				11-10	The vo	ltage drop	of this g	roup of ba	llast tubes
125				10-10	is som	etimes she	own as 1.	0 volt, alth	hough the
126		00		12-20	actual	drop is as	shown in	this table;	depending
140P	0.80	42.8	0.0-0.0-0.00	13-10	on the	voltage of	t the batte	ry.	and the second second
140-R4	0.30	42.3	m al		(b)	For use in	" receivers	designed f	for opera-
140R8	0.30	42.3	m -2		tion or	with the ne	imary of th	usually con	inected in
150	1.5	20	St-2 0 020	15-10	Berres V	For the pr	mary of th	the power the	a tupo -
155					line co	rd in A C	DC rock	ivers one	r type of
1650	0.30	10 0	To-Vernantes		110-vol	t lines.		and open	and aroun
165R4	0.80	48.6	m	ALL ALL	(4)	Used to ou	nerate A C	D.C. recai	vers from
165R8	0.30	48.6	m -2		a 220-v	olt line.	Perato 28.0		the month
185R	0.80	54.9	m		(e)	Used in nl	ace of those	e in group	(b) when
185R4	0.30	54.9	m -1		operati	ng 110-vol	t receivers	from 150-	volt lines.

(f) For use when operating 110-volt receivers from 220-volt lines.

(g) For use with sets designed to operate from 32-volt lighting plants.

(h) For use in the primary circuit of receivers designed for use with a ballast in series with the transformer primary. The primary of the transformer should be designed for the following voltages ---

h1 .	.100	volts	h3	85	volts	
h2		volts	h4	65	volts	

(k-k1) These types are for use in Majestic receivers. Types marked (**) are manufactured by several manufacturers of tubes. The types marked k1 are designed to replace the fixedresistor type line ballasts used as original equipment in Majestic receivers.

(m) To replace the resistor cord in A.C.-D.C. receivers and do not have tap on resistor shown in diagram.

(m-1) Same as above except that they have a tap for operating one 6-8 volt pilot light.

(me2) Same as group (m) except tap for operating two 6-8 volt pilot lamps.

(n) This type is a voltage regulator rather than a ballast; and is used in some of the older receivers to provide constant voltage from a 90-volt tap of the power supply

		Table	111	1.11			
1.1.1		CI	rt St	rip at	Un	screw Pir	19
R.M.A.	Ballastron	Col B.RI	075	(R-Red,	and) S	Cilp Of	
85-A	Type B		R.P	-Y	No	2 and	8
79-A	Type B		R-B	100.000	No.	2 and	8
73-A	Type B		R-Y	v	No.	2 and	8
61-1	Type A		R-E	3	No.	2 and	8
55-A	Type A		R-Y		No.	2 and	8
42-A	Type A Type A		B.T	-	No.	2 and 2 and	8
36-A	Type A		B		No.	2 and	8
30-A	Type A		Y		No.	2 and	8
¥.87.D	Tune A		D.D	v	No.		"Val
K-61-B	Type A		R-H	3	No.	2	
K-55-B	Type A		R-3	C III	No.	2 1000	
K-49-B K-42-B	Type A Type A		R-S	e de las	No.	29	
K-36-B	Type A		B	NRUS	No.	2	
K-80-B	Type A		x		No.	2	
T. 70. D	Thing H		DB	v	310.	-	
L-67-B	Type B		R-E	1-1	No.	2	
L-61-B	Type B		R-Y		No.	2	
L-53-B	Type B		R	-	No.	2	
L-42-B	Type B		B	1161212	No.	2	
L-38-B	Type B		X		No.	2	
L-30-B	.13.ре в			1.1.1.1.	NO.	*	
K-79-C	Type B		R.I	5-1	No.	20	
K-67-C	Type B		R-1		No.	2	
K-61-C	Type B		R		No.	2	
K-49-C	Type B Type B		B-1	1 200	No.	2 2	
K-42-C	Type B		Y		No.	1 28	
K-36-C	Type B				No.	2	
K-67-D	Type A		R-J	B-Y	Non	e	
K-53-D	Type A		R-)	P. C.	Non	e	
K-49-D	Туре А		R		Non	e	
K-42-D	Type A		B-R	Y	Nop	e	
K-30-D	Type A		Ŷ		Non		
K-24-D	Trpe A				Non		
L-67-D	Type B		R-I	B-Y	Non	9	
L-55-D	Type B		R-1	S .	Non	186684	
L-49-D	Type B		R	111111	Non		
1.42.D	Type B		B-J	r	Non	8	
L-30-D	Type B.		Y		Non	C	
L-24-D	Type B				Non		
		Tabl	. 11	1 30.			
Maker	Part			Cheose	Remeve	tut a	
er Set	NO.			Tube	Pins	Strip	11
Edierson	2UR2	19		B	Z	R-X	
Emerson	2UR2	13		B	NON	R	
Charley	SUHA	18		4	NUNE	R	
BCA	BC901	12577		A	-	R	
RCA	RC300 01	95169	184	B	*	T	
RCA	RC345 or	190K		Ă	248	R.V	
DeWald	839	R	(man R	B	2	R	
Fada	115	4			248	R	
		The loss				100 mm	

269

-

COLUMN 1	COLUMN 2	Careford Co		CH	AN	GES	SR	EOI	JIR	ED		
Туре	Use to Replace	No Change	Fil. Volts	Fil. Current	Rewire Socket	Change Socket	Realign	Vdd Top Cap	temove Top	Reduce Blas	ncrease Blas	Change Oper. Voltg.
		A	B	C	D	E	F	G	H	K	L	M
1A5GT/G	AA5G IA5GT IF4 IF5G. 'ILA4 'ILA4 IA7G IB7G IB7GT IC7G ID7G IA6 IC6 ILA6	A A , A A 	B B B B B B B B B B B B B B B B B B B	. : : : : : : : : : : : : : : : : : : :		EEE					L L	
1C5GT/G	*1LC6 1C5G 1C5GT 1G5G 1G5GT	 A A	B B-		••••	E	F	00 : : : :				 M M
1H5GT/G	1G5GT/G 1H5G 1H5GT 1B5/25S 1H6G	····	B B B	0 : :00	· · · · · · · · · · · · · · · · · · ·	E		 G				M M M
1LA4	*1LH4. 1A5G 1A5GT *1A5GT/G 1F4. 1F5G	••••	 В В	:::::::::::::::::::::::::::::::::::::::			••••	G	H H H H H H		 L L	· · · · · · · · · · · ·
1LB4	*1LB4 *1LA4 1A5G 1A5GT	••••	· · · · · · · ·				••••	••••		к 	LLL	
1LB4	*1A5GT/G 1F4 1F5G *1T5GT	••••	B B	:00		EEEE		••••			LLL	M M
1LC6	1LA6 1A7G 1A7GT 1B7G 1B7G 1B7G 1C7G 1D7G 1A6 1C6 1F6	••••		:::::::::::::::::::::::::::::::::::::::	· · · · · · · · · · · · · · · · · · ·	EREFEREE	*********	••••	нининини			M M M M M M M M M M
1LE3	1F7G 1E4G 1G4G 1G4GT list.		B	C		EEEE	HHHH		H 	KK		M M

AMERICAN BATTERY VALVE SUBSTITUTION CHART.

DUDREY

1

BY COURTESY RADIO-CRAFT PUBLISHING CO,

U.S.A.

AMERICAN BATTERY VALVE SUBSTITUTION CHART.

COLUMN I	COLUMN 2 CHANGES REQUIRED											
Туре	Use to Replace	No Change	Fil. Volts	Fil. Current	Rewire Socket	Changa Socket	Realign	Add Top Cap Connection	Remove Top Cap. Conn.	Reduce Blas	Increase Blas	Change Oper. Voltg.
		٨	B	C	D	E	F	G	н	ĸ	L	M
1LH4	1G4GT/G 1H4G. *30 1H5G. 1H5GT. 1H5GT/G. 1B5/25S. 1H6G. 1LC5 1N5GT. 1N5GT. *1N5GT/G 1A4P. 1A4P. 1B4P. 1D5G.		B B B B B B B B B B B B B B B B B B B				FFF FFFFFFFF		н н н н н н н н н н н н н н н н н н н	K K K		M M M M M M
1N5GT/G	1D5GT. 1E5G. 1E5GP. 1E5GP. 1N5G. 1N5GT. 1A4T. 1A4T. 1B4P. 1D5G. 1D5GP. 1D5GP. 1D5GF. 1E5G. 1E5GT. *1LN5. ************************************	A A	8888 · · · · · · · · · · · · · · · · ·						H H H H ····			M M M M M M M M M M M M M M
IP5GT/G	1P5G	 A	:::	:::		E	F	G				M
1Q5GT/G	105G 105G 105GT 305G 305GT	A A A			 D D		F					
1T5GT	1A5G 1F4		BB	 c c	D	 E			••••			M M
3Q5GT/G	305G 305GT 105GT	A A 	••••			E	••••		· · · · · · · · · · · · · · · · · · ·	K		
30	1G4G 1G4GT 1G4GT/G 1H4G 1E4G. *1LE3.		B B B B B B B B	:000 :00	D					K K K	···· ···· ···	
34*On	32 list.	A										

CORRELATION OF AMERICAN VALVE TYPES FOR SUBSTITUTION

The data supplied by courtesy of CLAUDE LYONS LTD., and

SYLVANIA ELECTRIC PRODUCTS INC., EMPORIUM, PENNA.

This correlation of Sylvania valve types is made available as a guide for simplifying valve substitution. In order to make the selection for substitution as large as possible two reference columns are given for each listed type—valves having "Equivalent" characteristics and tubes having "Similar" characteristics.

Equivalent Types—Valves listed as "Equivalent" are those which have electrical characteristics and circuit applications equivalent to the listed types.

Similar Types—Valves listed as "Similar" are those which have electrical characteristics and circuit applications similar to the listed types.

It is not implied that valves listed as "Equivalents" are interchangeable; however, many of them are directly interchangeable or interchangeable by a slight change in circuit constants. Such valves are marked with an asterisk (*). Types not marked with an asterisk in the "Equivalent" column may be made interchangeable by changing the base or filament rating.

The "Similar" valves are not interchangeable unless marked with an asterisk, but as the circuit applications and characteristics are similar these types can be made to function as substitutes, thus giving a wide selection of valves types from which to choose.

When making any substitution changes it will be necessary to refer to the operating characteristics and basing diagrams shown in "Bernards" Valve Manual No. 30, price 3/6, so that full benefit of the changes will be realized and no valve will be used in such a way that it will be abused.

In some cases realignment of tuned circuits may be necessary, particularly where capacitances differ. Also external shielding may be required, especially when replacing metal valves with glass types.

Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
0A4G	G	Rectifier		
0Z4	Metal	Rectifier	0Z4G*	6X5GT/G
0Z4G	G	Rectlher	074*	6X5GT/G
01A§	Glass	Amplifier		30
1A4P	Glass	R-F Amplifier	1A41*	1D5GP
1A4T	Glass	R-F Amplifer	1A4P*	
1A5G	Gĩ	Power Amplifier	1A5GT/G*	1C5GT,/G 1G5G
1A5GT§	GT	Power Amplifier	1A5GT/G*	1C5GT/G, 1G5G
1A5GT/G	GT	Power Amplifier	1A5G*,1A5GT*	1C5GT/G, 1G5G
1A6	Glass	Pentagrid Converter	1D7G	106
1A7G	G	Pentagrid Converter	1A7GT/G*	1C7G, 1D7G, 1A6
ATGT	GT	Pentagrid Converter	1A7GT/G*	1A6, 1C7G, 107G

This chart is a war time expedient to be consulted when exact replacements arc not available.

a second and the second se				
Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
1A7GT/G	Gĭ	Pentagrid Converter	1A7G*,1A7GT*	1A6, 1C7G, 1D7G
1B4P§	Glass	R-F Amplifier	1E5GP	32
185/255	Glass	Duodiode Detector	1H6G	
187G §	G	Pentagrid Converter	1B7GT/G*	1C6.1C7G
1B7GT§	GT	Pentagrid Converter	187GT/G*	1C6.1C7G
1B7GT/G	GI	Pentagrid Converter	187G*, 187GT*	
1C5G§	G	Power Output Amp.	1C5GT/G*	1A5GT/G.1G5G
1C5GT§	GT	Power Amplifier	1C5GT/G*	1A5GT/G.1G5G
1C5GT/G	GI	Power Amplifier	1C5G*, 1C5GT*	1A5GT/G.1G5G
106	Cilass	Pentagrid Converter	1C7G	1.46
1C7G	G	Pentagrid Converter	100	1A6, 1A7GT/G, 1D7G
1D5GP	G	R-F Amplifier	1A4P	1N5GT/G. 34
1D5GT	G	R-F Amplifer	1A4P	34 200 21 21
1D7G§	G	Pentagrid Converter	1A6	1A7GT/G, 1C6, 1C7G
1D8GT	GI	Diode Trl. Pent.	1LB4 and 1LH4	fit
1E4G	G	Triode	1LE3	ASMONICATION COMPANY
1ESGP§	G	R-F Amplifier	184P	32 32 30 30 30
1E7G \$	G	Power Output Pent.	the manager of the	(Two 1F4's)
1F4	Glass	Power Output Pent.	1F5G	33, 1G5G,-1J5G
1F5G	G	Power Output Pent.	1F4	33, 1G5G, 1J5G
1F6	Glass	Duodiode Pentode	1F7G	1B5/255, 1H6G
1F7G	G	Duodiode Pentode	1F6	185/25S, 1H6G
1G4G§	G	Triode	1G4GT/G*	30, 1H4G
1G4GT§	GT	Triode	1G4GT/G*	30, 1H4G
1G4GT/G	GT	Triode	1G4G*,1G4GT*	30, 1H4G
1G5G§	G	Power Output Pent.	CLOSED LAURENAUEL, AN	1F4, 1F5G
1G6G §	G	Power, Amplifier	1G6GT/G*	19, 1J6G
1G6GT	GT	Power Amplifer	1G6GT/G*	19, 1J6G
1G6GT/G	GT	Power Amplifier	1G6G*, 1G6GT*	19,1J6G
1H4G	G	Amplifiet	30	Leiner and the start
1H5G§	G	Diode Triode Amp.	1H5GT/G*	185/255
1H5GT§	GT	Dlode Triode	1H5GT/G*	185/255
1H5GT/G	GT	Diode Triode	1H5G*.1H5GT*	1B5/25S
1H6G	G	Duodlode Detector	185/255	1F6
1J5G§	G	Power Output Pent.		1F4, 1F5G, 1G5G, 33
1J6G	G	Power Output Amp.	19#	(Two 31's)
1LA4	Lock-In	Power-Amplifier	1A5GT/G	1C5GT/G
1LA6	Lock-in	Pentagrid Converter	1A7GT/G	1.46
1LB4	Lock-In	Power Amplifier	THE REPORT OF THE REAL	1T5GT
1LC56	Lock-la	R-F Amplifier	1LN5*	1N5GT/G
1LC6	Lock-In	Pentegrid Converter	1LA6*,	1A6
1LD5	Lock-In	Diode Pentode		155
1LE3	Lock-In	Triode	1E4G	ASCH
1LH4 DOG	Lock-In	Diode Triode	1H5GT/G	185/255
1LN5	Lock-in	R-F Amplifier	1LC5*	1N5GT/G
1N5G§	G	R-F Amplifier	1N5GT/G*	1A4P, 1D5GP

NAMES OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	T		And the second	
Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
INSGT §	GT	R-F Amplifier	1N5GT/G*	1LN5, 1LC5
IN5GT/G	GT	R-F Amplifier	1N5G*, 1N5GT*	1LN5, 1LC5
1N6G §	G	Diode Pentode	0	
1P5G §	G	R-F Amplifier	1P5GT/G*	1N5GT/G
1P5GT§	GT	R-F Amplifier	1P5GT/G*	1N5GT/G
1P5GT/G	GT	R-F Amplifier	1P5G*, 1P5GT*	1N5GT/G
1Q5G1	G	Power Amplifier	1Q5GT/G*	1C5GT/G
1Q5GT§	GT	Power Amplifier	1Q5GT/G*	1C5GT/G
1Q5GT/G	GT	Power Amplifier	1Q5G*, 1Q5GT*	1C5GT/G
1R5	Miniature	Converter		1A6, 1A7GT/G
154	Miniature	Power Amplifier	A.u.(0)	1Q5GT/G, 1C5GT/G
1\$5	Miniature	Diode Pentode	1LD5	
114	Minature	R-F Amplifler	1N5GT/G,1LN5	
1T5G1	GT	Power Amplifier		1C5GT/G, 1LB4
11	Glass	Rectifier		12Z3
2A3	Glass	Power Output Trl.	6A34, 6B4G4	45
2A4G	G	Gas Triode		2051
8A5	Glass	Power Output Pent.	6F6G #, 42 #	47
2A6	Glass	Duodiode Detector	6Q7G #, 75 #	
2A7, 2A755	Glass	Pentagrid Converter	6A74, 6A75	
287 5, 2875 §	Glass	Duodiode Pentode	6B7 #, 6B75 #	
9E5 §	Glass	Tuning Indicator	6E54	
25/455	Glass	Duodiode Detector		
8W36	Glass	Rectifier		80
222/G845	Glass	Rectifier	OR	
3A8GT	GT	Diode Triode Pent.	1H5GT/G, and 1N5GT/G	
3LF4	Lock-In	Power Amplifier	3Q5GT/G	
3Q5G§	G	Power Amplifier	3Q5GT/G*	3LF4
3Q5GT§	GT	Power Amplifier	3Q5GT/G*	3LF4
3Q5GT/G	GT	Power Amplifier	3Q5G*, 3Q5G1*	3LF4
354	Miniature	Power Amplifier	· · · · · · · · · · · · · · · · · · ·	3Q5GT/G
5T45 ·	Metal	Rectifier	5U4G*	5V4G*, 83V
5U4G	G	Rectifier	5Z3, 5X4G	5T4
5V4G	G	Rectifier	83V	5T4
5W4§	Metal	Rectifier	5W4GT/G*	5Y3GT/G*, 5Z4, 80
5W4G§	G	Rectifier	5W4GT/G*	5Y3GT/G*
5W4GT5	GT	Rectifier	5W4GT/G*	5Y3GT/G*
5W4GT/G	GT	Rectifier	5W4*, 5W4G*, 5W4GT*	5Y3GT/G*
5X4G	G	Rectifier	5Z3, 5U4G	
573G	G	Rectifier	5Y3GT/G*	5Z4*
5Y3GT§	GT	Rectifier	5Y3GT/G*, 80, 5Y4G	5Z4*
SY3GT/G	GT	Rectifier	5Y3G*, 5Y3GT*	5Z4*
SY4GA	G	Rectifier	5Y3GT/G*, 80	5Z4
5Z3	Glass	Rectifier	5U4G, 5X4G	83

and an entering of the second states of the second se	Station of the state of the sta	An other statements and the second	the Long of the Advantage	Construction of the second sec
Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
5Z4	Metal	Rectifier		5Y3GT/G*. 5Y4G
6A3	Glass	Power Output Trl.	2A34, 684G	45
6A4/LAS	Glass	Power Output Pent.		41
6A5G§	G	Power Output Trl.		6A3, 6B4G*
6A6	Glass	Power Output Amp.	6N7, 6N7G. 53	
6A7, 6A75	Glass	Pentagrid Converter	6A81, 6A8G, 2A71, 2A75	
6A8	Metal	Pentagrid Converter	6A71,6A8Gt*	6D8G
6A8G	G	Pentagrid Converter	6A7, 6A81*	6D8G
6A8GT	GI	Pentagrid Converter	6A8*, 6A8G*	6A7
6AB5/6N5	Glass	Tuning Indicator	N. V. States and States	6E5
6AB7/1853	Metal	Pentode Amplifier		7H7.7L7
6AC5G§	G	Power Amplifier	6ACSGT/G*	
6AC5GT	GT	Power Amplifier	6ACSGT/G*	
6AC5GT/G	GT	Power Amplifier	6AC5G*	
6AC7/1852	Metal	Pentode Amplifier		7V7
6AD6G§	G	Tuning Indicator	64F6G*	6E5
6AD7G	G	Triode Pentode		
GAE5G&	G	Amplifier	AAESGT/G#	
6AESGI 6	GT	Amplifier	6AESGT/G*	AISGT/G
6AESGT/G	GT	Amplifier	6AE5G*,	6J5GT/G
6AE6G	G	Double Triode	UNEDOI	
6AE7GT	GI	Twin Triode		
6AF5GS	G	Amplifier		
6AF6GS	G	Tuning Indicator	64066*	
6AG7	Metal	Pentode Amplifiét		
6B4G	G	Power Output T:	602 0028	AASG AF
685	Glass	Power Output Amo	ANAG	10
6BT 6BTSS	Glass	Duodiode Pantada	6090	ADO
688	Antal	Duodiode Pentode	400G	407
6B8G	G	Duodiode Pentode	4004	407
ACK	Matel	Tilada A mall@as	OBST CT	OD/
ACECI	metal	Tiode Ampliner	6C5G1/G*	6P5GT/G, 37, 76
00503	G	Inode Ampliner	oCST, oCSG1/G*	6P5GT/G, 37, 76
ocsers	GI	Irlode Amplifier	6C5GT/G*	
6C5GT/G	GI	Triode Amplifier	6C5*, 6C5G*, 6C5GT*	
6C6	Glass	R-F Amplifier	6D7, 1221, 1223	6J7, 6J7G, 6W7G, 77*
6075	Glass	Duodlode Tri. Det.	6R7GT/G	75, 85
6C8G	G	Duotriode Amplifier		6F8G
6D6	Glass	R-F Amplifier	6E7, 6U7G	6K7,6K7G,6S7G 78*
6D7 §	Glass	R-F Amplifier	6C6, 1221, 1223	6J7,6J7G, 6W7G,77
6D8G	G	Pentagrid Converter		6A7,6A8,6A8G
6E5	Glass	Tuning Indicator	2E5 j	6G5, 6T5, 6U5/6G5
6E6 §	Glass	Power Output Amp.	·······	

		การสารที่สุดให้สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่ สู่สำนักและหมายการสารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สารที่สา	A TELEVISION AND A DRAW DOWN AND A DRAW AND A	new week water and the second state of the sec
Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
6E7 §	Glass	R-F Amplifier	6D6, 6U7G	6K7, 6K7G, 6S7G, 78
6F5	Metal	Triode Amplifier	6F5GT/G*	6K5GT/G
6F5G§	G	Triode Amplifier	6F5GT/G*	6K5GT/G
6F5GT§	GT	High My Trlode	6F5GT/G*	6K5GT/G
6F5GT/G	GT	Triode Amplifier	6F5*, 6F5G*, 6F5GT*	6K5GT/G
6F6	Metal	Power Output Pent.	6F6G*	42, 2A5#
6F6G	G	Power Output Pent.	6F6*	42, 2A54
6F7, 6F75§	Glass	Triode Pent, Amp.	6P7G	
6F8G	G	Twin Triode	6F8*, 7N7	6C8G (two 6J5GT/G's)
6G6G	G	Power Output Pent.		
6H4GT	GT	Rectifier		
6H6	Metal	Duodiode	6H6GT/Gt*	7A6
6H6G §	G	Duodlode	6H6GT/G*	7A6
6H6GTS	GT	Double Diode	6H6GT/G*	7A6
6H6GT/G	GI	Double Diode	6H6*, 6H6G*, 6H6GT*	7A6
615	Metal	Triode Amplifier	6J5GT/Gt*	6C5GT/G, 6L5G, 37, 76
6J5G§	G	Triode Amplifier	6J5GT/G*	6C5GT/G, 6L5G, 6P5GT/G, 37, 76
6J5GT§	GT	Triode	6C5GT/G*, 6J5GT/G*	Pier
6J5GT/G	GT	Triode	6J5*, 6J5G*, 6J5GT*	6C5GT/G*, 6P5GT/G
6J7	Metal	R-F Amplifier	6J7GTt*, 77t	6C6, 6W7G
6J7G	G	R-F Amplifier	6J7GT†*, 77	6C6, 6₩7G
6J7GT	GT	Pentode Amplifier	6J7G*, 7C7	1
6J8G	G	Triode Hep. Con.		6K8
6K5G§	G	Triode Amplifier	6K5GT/G*	6F5GT/G
6K5GT§	GT	Amplifier	6K5GT/G*	6F5GT/G
6K5GT/G	GT	Amplifier	6K5G*, 6K5GT*	6F5GT/G
6K6G §	G	Power Output Pent.	6K6GT/G*, 41	6F6GT/G, 42
6K6GT6	GĨ	Power Amplifiet	6K6GT/G*, 41	6F6GT/G, 42
6K6GT/G	GT	Power Amplifier	6K6G*, 6K6GT*	6F6GT/G, 42
6K7	Metal	R-F Amplifier	6K7Gt*, 78t	6D6, 657G, 6U7G
6K7G	G	R-F Amplifier	6K7†*, 78	6D6, 657G, 6U7G
6K7GT	GT	Pentode Amplifiet	6K7G*, 77, 7A7	
6K8	Metal	Triode Hex. Con.	- 6K8GT, 6K8G*	6J8G '
6K8G	G	Triode Hex. Con.	6K8*, 6K8GT*	
6K8GT	GT	Triode Hex. Con.	6K8G*	
éL5G	G	Triode Amplifier	Notoshiel and	6C5GT/G, 6J5GT/G, 6P5GT/G, 76
6L6	Metal	Power Output Amp.	6L6G*	i
6L6G	G	Power Output Amp.	6L6*	
6L7	Metal	Pentagrid Mixer	6L7Gt*, 1612	A
6L7G	G	Pentagrid Mixer	6L7t*, 1612	
6N6G	G	Power Output Amp.	685	6F6G, 42
6N7	Metal	Power Output Amp.	6A6, 6N7G*	53#
6N7G1	G	Power Output Amp.	6A6, 6N7*	534

Type	Style	Service	Characteristics Equivalent To	Characteristics Similar To
6P5G §	G	Triode Amplifier	56#, 76, 6P5GT/G*	37, 6C5GT/G, 6J5GT/G, 6L5G
6P5GT§	Gĩ	Triode Amplifier	76, 6P5GT/G*	37, 6C5GT/G, 6J5GT/G, 6L5G
6P5GT/G	GT	Triode Amplifier	6P5G*, 6P5GT*	37, 6C5GT/G, 6J5GT/G, 6L5G
6P7G §	G	Triode Pent. Amp.	6F7, 6F7S	
6Q7	Metal	Duodiode Triode	6Q7Gt*	6T7G. 75
6Q7G	G	Duodiode Triode	6071*	6T7G. 75
6Q7GT	GT	Duodiode Triode	6Q7G*	617G. 75
5R7	Metal	Duodiode Triode	6R7GT/Gt*	6V7G. 85
SR7G §	G	Duodiode Triode	6R7GT/Gt*	6V7G. 85
SR7GT§	GT	Duodiode Triode	6R7GT/G*	6V7G. 85
SR7GT/G	GT	Duodiode Triode	6R7*, 6R7G*, 6R7GT*	6V7G, 85
557	Metal	Pentode Amplifier	657G*	
557G §	G	Pentode Amplifier	657*	6D6, 6J7, 6K7G, 6U7G, 78
55A7	Metal	Pentagrid Converter	65A7GT/G*, 7Q7	
SA7GT§	GI	Pentagrid Converter	65A7GT/G*, 7Q7	
SA7GT/G	GT	Pentagrid Converter	65A7*, 65A7GT*	
SC7	Metal	Twin Triode	7F7	
SD7GT	GT	Pentade Amplifier		7H7, 7L7
SF5	Metal	High Mu Triode	6SF5GT*, 7B4	6F5GT/G
SF5GT	GT	High Mu Triode	6SF5G*, 7B4	
SF7	Metal	Diode-Pentode	7E7	688G. 687
SG7	Metal	R-F Pentode	7₩7	
SH7	Metal	R-F Pentode	7₩7	D/6
SJ7	Metal	Pentode Amplifier	6SJ7GT*, 7C7	Total and total
SJ7GT	GT	Pentode Amplifier	6SJ7*, 7C7	
SK7	Metal	Pentode Amplifier	65K7GT/G*, 7A7	
SK7GT	GT	Pentode Amplifier	6SK7GT/G*, 7A7	
SK7GT/G	GT	Pentode Amplifier	65K7*, 65K7GT*	
SL7GT	GT	Duo-Triode	7F7	6SC7
SN7GT	GT	Duo-Triode	7N7, 6F8G	Two 6J5GT/G's
SQ7 0100 0	Metal	Duodiode Triode	6SQ7GT/G*, 7B6	
SO7GTS	GT	Duodiode Triode	65Q7GT/G*, 786	
SQ7GT/G	GT	Duodiode Triode	65Q7*, 65Q7GT*	
SR7	Metal	Duodiode Triode	6R7GT/G, 7E6	
SS7	Metal	R-F Pentode	6SK7GT/G	7A7
ST7	Metal	Duodiode Tri.	6SR7, 6R7GT	6SQ7GT/G
156 -	Glass	Tuning Indicator	6U5/6G5*	6E5
17G §	G	Duodiode Tri, Amp.		6Q7, 6Q7G, 75
U5/6G5	Glass	Tuning Indicator	6G5*, 6T5*	6E5
U7G	G	R-F Amplifier	6D6, 6E7	6K7, 6K7G*, 6S7G
V6	Metal	Power Output'Amp.	6V6GT/G*	
VOGI	G	Power Output Amp.	6V6GT/G*	

CT.L.				
Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
6V6GT§	GT	Power Amplifier	6V6GT/G*,7C5	1
6V6GT/G	GI	Power Amplifier	6V6*, 6V6G*, 6V6GT*	
6V7G1	G	Duodiode Triode	554,85	6R7GT/G
6₩7G	G	R-F Amplifier		6C6, 6J7, 6J7G, 77
6X5 §	Metal	Rectifier	6X5GT/G*, 84	0Z4G
8x5G§	G	Rectifier	6X5GT/G*, 84	0Z4G
6X5GT§	GI	Rectifier	6X5GT/G* 84	0Z4G
6X5GT/G	GT	Rectifier	6X5*, 6X5G*, 6X5GT*	0Z4G
675:	Glass	Rectifier		6X5GT/G, 84
676G \$	G	Power Output Amp.		and the second s
677G	G	Power Output Amp.	79	6Z7G
6Z5 §	Glass	Rectifier		
6275G	G	Rectifier		
677G	G	Power Output Amp	shellocard IS 13	677G. 79
764	Lock-In	Telode	615GI/G	
745	Lock-In	Power Amplifier		35A5.785
746	Lock-In	Duodiode	6H6GT/G	CONTRACTOR OF A
747	Lock-In	Peniode Amplifier	65K7GI/G	THE REPORT OF THE PARTY OF THE
748	Lockaln	Octode Converter	6A8GT	
784	Lock-In	Tilode	AESGI/G	
785	Lock In	Power Amplifier	AKAGI/G A1	
786	Lockala	Duodiode Tilode	75 6507GT/G	And a second sec
787	Lock-In	Pentode Amplifier	747* 78	65K7GT/G
788	Lock-In	Pantageld Converter	748* 648GT	
7C5	Lock-la	Power Amplifier	AVAGI/G	
7C6	Lock-In	Duodiode Triode	786* 6SOTGT/G	The second
707	Lock-In	Peniode Amplifier	6SITGT	
766	Lockala	Duodlode Triode	6SR7	The second secon
767	Lock-In	Duodiode Pentode	688G	
777	Lock-la	Twin Triode	6507	
767/1932	Lock-In	Pentode Amplifier		777
7H7	Lock-In	Pentode Amplifiet	Contraction of the local division of the loc	71.7
717	Lock-In	Triode Hen Con	618G	
717	Lock-In	Pentode Amplifier		7H7
7N7	Lock-In	Twin Triode	6F8G	
707	Lock-In	Pentagrid Converter	65A7GT/G	
757	Lock-la	Triode Hen Con	- CORTOTIO	717
777	Lock-In	Pentode Amplifier	71/7*	
7₩7	Lock-In	Pentode Amplifier	7\7*	
774	Lock-In	Rectifier	6X5GI/G	1. S. S. C. S.
774	Lock-In	Pactifier		774
10	Glass	Power Output Itl	9107*	50
19A	Glass	Power Output Itl		01A.71A
18A55	Glass	Power Output Pent		
12A7	Glass	Rectifer & Amolifer		85A7GL/G
12A8G5	G	Pentageld Converter	19A8GT/G*	
18A8GT	GI	Pentagrid Converter	19A8GT/G*	
12A8GT,G	GT	Pentagrid Converter	12A8G*, 12A8GT*	

the part of the second s	promutice delay mente del consciente de	and the second of the second se	the same of the local distance of the local	And the second
Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
12B8GT	GT	Triode-Pent.		Self Services States
12C8	Metal	Duodiode Pentode	6B8 (Pentode Section)	
12F5GT	GT	High Mu Triode	6F5GT/G	
12J5GT	GT	Triode	6J5GT/G	
12J7GT§	GT	Pentode Amplifiet	12J7GT/G*	
12J7GT/G	GI	Pentode Amplifier	12J7GT*	STRUCTURE ADDRESS
12K7G§	G	Pentode Amplifier	6K7G, 1 12K7GT/G*	
12K7GT §	GT	Pentode Amplifier	6K7G, 12K7GT/G*	
12K7GT/G	GI	Pentode Amplifier	12K7G*, 12K7GT*	
12K8	Metal	Tri-Hexode Con.	6K8#	
12Q7G §	G	Duo-Diode Triode	12Q7GT/G*	6Q7G
12Q7GT§	GĨ	Duodiode Trlode	12Q7GT/G*	6Q7GT
12Q7GT/G	GT	Duodiode Triode	12Q7G*, 12Q7GT*	6Q7GT
125A7	Metal	Pentagrid Converter	12SA7GT/G*	6SA7
12SA7GT	GT	Pentagrid Converter	12SA7GT/G*	6SA7GT
12SA7GT/G	GT	Pentagrid Converter	125A7*, 125A7GT*	6SA7GT
12SC7	Metal	Twin-Triode Amp.		6SC7, 7F7
12SF5	Metal	High Mu Triode	12F5GT, 125F5GT*	
12SF5GT	GI	High Mu Triode	12F5GT, 12SF5G*	
12SF7	Metal	Diode-Pentode	767	6B8G, 6B7
125G7	Metal	R-F Pentode	14W7	
12SH7	Metal	R-F Pentode	14W7	
12SJ7	Metal	R-F Amplifier	12SJ7GT*	6SJ7GT
12SJ7GT	GT	R-F Amplifier	12SJ7*	6SJ7GT
12SK7	Metal	R-F Amplifier	12SK7GT/G*	6SK7GT/G
12SK7GT§	GT	R-F Amplifier	12SK7GT/G*	6SK7GT/G
12SK7GT/G	GJ	R-F Amplifier	125K7*, 125K7GT*	6SK7GT/G
12SL7GT	GT	Duottlode	14F7	
12SN7GT	GT	Duotriode	14N7	Two 12J5GT's
12507	Metal	Duodiode Tricele	12SQ7GT/G*	6SQ7GT/G
125Q7GT§	GT	Duodiode Triode	12SQ7GT/G*	6SQ7GT/G
125Q7GT/G	GT	Duodiode Triode	125Q7*, 125Q7GT*	6SQ7GT/G
12SR7	Metal	Duodiode Triode	· · · · · · · · · · · · · · · · · · ·	6SR7GT
12Z3	Glass	Rectifier		1V
14A4§	Lock-In	Triode Amplifier	7A4	6J5GT/G
14A7/1987	Lock-In	Pentode Amplifier	7A7	65K7GT/G
14865	Lock-In	Duodiode Triode	7.86	6SQ7GT/G
1488 \$	Lock-In	Pentagrid Converter	788	6A8GT
1405 \$	Lock-In	Power Amplifier	7C5	6V6GT/G
14C7	Lock-In	Pentode Amplifier	7C7	6SJ7GT
14E6§	Lock-In	Duodiode Trlode	7E6	6SR7GT
14F7§	Lock-In	Twin Triode Amp.	7F7	6SL7GT
14H7	Lock-In	Pentode Amplifer	7H7	
14J7	Lock-In	Triode Hex. Con.	717	6J8G
14N75	Lock-In	Twin Triode	7N7	6F8G
1407	Lock-In	Pentagrid Converter	707	6SA7GT/G

Туре	Style	Service	Characteristics Equivalent To	Cherecteristics Similar To
1457	Lock-In	Triode Hex. Con.	757	6J8G
14W7	Lock-In	Pentode Amplifier	7₩7	
14745	Lock-In	Rectifier	774	6X5GT/G
155	Glass	R-F Pentode		\$4A
185	Glass	Power Output Amp		8A5.42
19	Glass	Power Output Amp.	116G#	(Two 31's)
205	Glass	Power Output Amp.		X99
996	Glass	R.F. Amplifier		184P. 39
94A 9456	Glass	R.F. Amplifler		35/51, 355/515
95465	Metal	Power Output Amp	95A6GT/G* 43	
950666	G	Power Output Amp	95A6GT/G* 43	
25 A 6 GT 6	GI	Pantada Amplifat	95 A 6GT/G* 43	
25A6GT/G	GT	Pentode Amplifier	25A6*, 25A6G*, 25A6GI*	
95A7G	G	Rectifier & Amplifier	25A7GT/G*	12A7
85ATGT	GI	Pentode-Rectifier	25A7GI/G*	
25A7GT/G	GT	Pentode-Rectifier	25A7G*, 25A7GT*	
25AC5G	G	Power Triode	25AC5GT/G*	
25AC5GT	GI	Power Triode	25AC5GT/G*	
25AC5GT/G	GT	Power Triode	25AC5G*, 25AC5GT*	6
25B5 §	Glass	Power Amplifier	25N6G	
25B6G §	G	Power Outout Amp.		25A6G, 43
25B8GT§	GI	Pentode Triode		
85C6G	G	Power Amplifiet	676G	
25165	Metal	Power Output Amp.	25L6GT/G*	
25L6G §	G	Power Output Amp.	25L6GT/G*	
25L6GT	GI	Power Amplifier	25L6GT/G*	
25L6GT/G	GT	Power Amplißer	25L6*, 25L6G*, 25L6GT*	a
25Y5 §	Glass	Rectifier	25Z5	
25Z5	Glass	Rectifier	25Z6GT/G	
2526	Metal	Rectifier	25Z3, 25Z6GT/G*	
25Z6G§	G	Rectifier	25Z5, 25Z6GT/G*	······
25Z6GT§	GT	Rectifier	25Z5, 25Z6GT/G*	
2526GT/G	GT	Rectifier	25Z6*, 25Z6G*, 25Z6GT*	
26	Glass	Amplifier		
27, 2755	Glass	Amplifier		56*, 565
30	Glass	Amplifiet	1H4G	
31 §	Glass	Power Output Amp.		
32	Glass	R-F Amplifier		1A4T, 1D5GT
32L7GT	GT	Tetrode, Rectifier		70L7GT
33	Glass	Power Output Amp.		1F4, 1F5G, 1G5G, 1J5G
34	Glass	R-F Amp!ifier	A.1.3	1D5GT, 1A4P, 1A4T, 1D5GP, 1N5GT/G
35/51	Glass	R-F Amplifier	355, 515	24A

Туре	Style	Service	Characteristics - Equivalent To	Characteristics Similar To
355/5155	Glass	R-F Amplifier	35/51	24 S
35A5	Lock-In	Power Amplifier	35L6GT/G	
35L6G§	G	Power Amplifier	35L6GT/G*	25L6G1/G
35L6GT§	GT	Power Amplifier	35L6GT/G*	251.6GT/G
35L6GT/G	GT	Power Amplifier	35L6G*, - 35L6GT*	25L6GT/G 50L6GT
3574	Lock-In	Rectifier	35Z5GT/G	
35Z3 :	Lock-In	Rectifier	35Z4GT	
35Z4GT	GT	Rectifier	35Z3	
35Z5G§	G	Rectifier	35Z5GT/G*, 35Y4	·······································
35Z5GT§	GT	Rectifier	35Z5GT/G*, 35Y4	
35Z5GT/G	GT	Rectifier	35Z5G*, 35Z5GT*	
36	Glass	R-F Amplifier		666,617
37	Glass	Triode Amplifier		6C5GT/G, 6J5GT/G, 6P5GT/G, 76*
38	Glass	Power Output Amp.	· · · · · · · · · · · · · · · · · · ·	6K6GT/G, 41
39/44	Glass	R-F Amplifier		6D6, 6K7, 6K7G, 6S7G, 78
40 §	Glass	Amplifier		
40Z5/45Z5GT	GI	Rectifier	35Z5GT/G	
41	Glass	Power Output Pent.	6K6G	38 40
42	Glass	Power Output Pent.	2451 6F6G	6F6
43	Glass	Power Output Pent.	25A6GI/G	48
45	Glass	Power Output Trl.		843
46	Gless	Power Output Amp.	Contraction of the second second	
47	Glass	Power Output Pent.	A STREET STREET, STREE	8A5
485	Glass	Power Output Tet.		43
496	Glass	Power Output Tet.		and the second second
50	Glass	Power Output Trl.		10
50A5	Lock-In	Power Amplifier	501.6GT	
50C6G §	G	Power Amplifier		95666
50L6GT	GT	Pawer Amplifier		25L6GT/G
50Y6G §	G	Rectifier	50Y6GT/G*	3574
SOY6GTS	GT	Rectifier	5076GT/G*	3574
50Y6GT/G	GT	Rectifier	50Y6G*, 50Y6GT*	3574
50Z7G §	G	Rectifier		ON ST CLEAR
53	Gless	Power Output Amp.	6A64, 6N74, 6N764	
55 \$, 555 \$	Glass	Duodiode Triode	6V7G+, 85+	
56, 565 \$	Glass	Triode Amplifier	764	27. 275
56AS§	Glass	Triode Amplifer	764	Contraction of the second s
57, 575§	Glass	R-F Amplifier	6064	77
57AS§	Glass	R-F Amplifier	666	The second second second
58, 585§	Glass	R-F Amplifier	6D67,6E77, 6U7G7	••••••
58AS§	Glass	R-F Amplifer	6D7#, 6E7#.	78
59	Glass	Power Outout Amo		

and the second se	and the second se		and the second sec	
Туре	Style	Service	Characteristics Equivalent To	Characteristics Similar To
70A7GT	GI	Rect. Pentode	PROPERTY AND ALLEY	70L7GT
70L7GT	GI	Tetrode, Rectifier	39L7GT	ALLING. OF
71A	Glass	Power Output Tri.	The second second	12A
75, 755	Glass	Duodiode Triode	2A6f	607, 607G, 617G
76	Glass	Triode Amplifier	6P5GT/G, 56#	6L5G, 6C5GT/G, 6J5GT/G, 37*
77	Glass	R-F Amplifier	6J7t, 6J7G	6C6*, 6W7G
78	Glass	R-F Amplifier	6K71, 6K7G	6D6*, 657G
79	Glass	Power Output Amp.	6Y7G	
80	Glass	Rectifier	573GT/G, 574G	14
81	Glass	Rectifier		Comparison and State
82	Glass	Rectifier		· · · · · · · · · · · · · · · · · · ·
83	Gless	Rectifier		83V, 5U4G, 5X4G, 5Z3, 5Z4G
83V	Glass	Rectifier	5Z4G	83 1975 1
84/6Z4	Glass	Rectifier	6X5GT/G	1
85	Glass	Duodlode Triode	6V7G, 55#	6R7GT/G
85AS	Glass	Duodiode Triode	152	6R7G1/G, 85
895	Glass	Power Output Amp.	Ster	1 Carrow
V991	Glass	Triode Amplifier	1. C	X99, 304
X99§	Glass	Triode Amplifier	A	V99, 20, 30#
182B/482B§	Glass	Power Output Amp.	Alexandre and	183/483*, 71A
183/4835	Glass	Power Output Amp.	1 Marian Contractor	1828/4828*,71A
117L7GT	GT	Tetrode, Rectifier	117L7/M7GT*	32L7GT, 70L7GT
117M7GT§	GT	Tetrode, Rectifier	117L7/M7GT*	32L7GT, 70L7GT
117L7/M7GT	GT	Tetrode, Rectifier	117L7GT*, 117M7GT*	32L7G1, 70L7GT
117N7G1	GT	Tetrode, Rectifier	ar ar an	32L7GT, 70L7GT
117P7GT	GT	Rect. Pentode	S	117L7/M7GT
117Z6G§	G	Rectifier	117Z6GT/G*	5 VELC
117Z6GT§	GT	Rectifier	117Z6GT/G*	
117Z6GT/G	GT	Rectifier	117Z6G*, 117Z6GT*	- 6744
210-T	Glass	Power Output Amp.	10*	STREETS
485 §	Glass	Triode Amplifier		27
864	Glass	Triode Amplifier		ANT MANDAMALA
1221	Glass	Non-mic. Amplifier	1223, 6C6	6J7, 6J7G, 6W7G, 77
1223	G	Non-mic. Amplifier	1221, 6C6	6J7, 6J7G, 6W7G, 77
1231	Special	Triple Grid Amp.		P
1612	Metal	Non-mic. Amplifier	6L7, 6L7G#	
2051	G	Ges Tetrode		2A4G
XXD	Lock-In	Twin Triode	14AF7*	14N7
XXFM	Lock-In	Dyodiode Triode		
XXL	Lock-In	Triode		7A4

SYMBOLS: *-Indicates direct interchangeability. In some cases sealignment of tuned circuits may be necessary particularly where capacitances differ. #-Equivalent Characteristics except for filament rating.

t-Cheracteristics same as listed type except capacitances. 5-Types no longer manufactured.

INTERCHANGEABLE TUBES

All types of Sylvania Tubes listed in the Table of Contents and not referred to hereafter, are interchangeable with competitive tubes bearing identical designation. Example—Sylvania 01A replaces any 01, 01A, or 01AA, and 6A7 replaces any 6A7, etc. Metal and "G" tubes having corresponding tube numbers may be interchanged, but realignment of any tuned circuit may be necessary to obtain maximum performance. An external shield may be required on "G" tubes when used to ruplace corresponding metal types, and the shield should be grounded. All other types which are interchangeable, but have different type designations, follow:

Туре	Sylvania	Туре	Sylvania	Type	Sylvania
No.	No.	No.	No.	No.	No.
0Z3		6Q6G/6T7G	6T7G	80M	83
0Z4	0Z4	6Q7MG	6Q7G+	81M	81
1A4	1A4T	6R7MG	6R7G+	82V	82
1A4P	1A4P	6T5	6U5/6G5	84	84/674
1A4T	1A4T	6T7G/6Q6G	6T7G	G84	272/684
1,KRI	iv	6W5G	6X5G	G84/272	27.2/G84
1B4	1B4P	6Y5V	6Y5	88	894
1B4T	1B4P	6Z3	IV	95	245
1B4/951	1B4P	6Z4	84/6Z4	96	11
1D5G	1D5GT	6Z4/84	84/6Z4	98	84
1D5GP	1D5GP	6Z5/,12Z5	6Z5	143D	2X2/879
1D5GT	1D5GT	7A7LM	7A7	182B	182B/482B
1E5G	1E5GP	7B5LT	7B5	183	183/483
1E5GP	1E5GP	7B6LM	7B6	288	83V
1E5GT	1E5GP	7B8LM	7B8	401	401
2A3H	2A3	7C5LT	7C5	482A	714
2Z2	2Z2/G84	12Z5	6Z5	482B	182B/482B
G2, 2S	2S/4S	13	80	483	183/483
G4, 4S	2S/4S	14Z3	12Z3	484	485
5T4	5T4 or 5U4G	16, 16B	81	585	50
KR5	6A4/LA	22AC	24A	586	50
5W4G	5W4 or 5Y3G	255	1B5/25S	P-861	84
5Y3	- 5Y3G	KR25	2A5	951	1B4P
5Y4	5Y4G	25Z5MG	25Z6G+	985	^
5Z4G	5V4G or 5Z4	27HM	56	986	831
5Z4MG	5Z4 or 5V4G	KR-28	84	AD	17
6A4	6A4/LA	35	35/51	AF	82
6A8MG	6A8G+	35A5LT	. 35A5	AG	. 83
6AB6G	6N6G	35S million	35S/51S	AX	01A
6B6	6Q7G+	35Z3LT	35Z3	B	V99
6B6G	6Q7G+	36A	36	BA	Δ
6C5MG	6C5G+	37A	37	BH	Δ
6D5	. Δ	38A	38	BR	Δ
6D5G	Δ	39A	39/44	D1/2	81
6F5MG	6F5G+	43MG	25A6+	DI	80
6F6MG	6F6G+	44	39/44	DE1	27
6G5/6H5	6U5/6G5	45A	45	E	20
6H5	6U5/6G5	HZ50	12Z3	G	40
6H6MG	6H6G+	51	35/51	H	00A
6J7MG	6J7G+	51S	35S/51S	H2-10	2X2/879
6K7MG	6K7G+	59B	Δ	LA	6A4/LA
6L7MG	6L7G+	64, 64A	36‡	PZ	47

INTERCHANGEABLE TUBES (continued)

TYPE	SYLVANIA	TYPE No.	SYLVANIA No.	TYPE No.	SYLVANIA No.
6N6MG	6N6G	65, 65A	39/441	PZH	Δ
6P7	6P7G	67, 67A	37‡	RE-1	80
6Q6	6T7G	68, 68A	38‡	RE-2	81
6Q6G	6T7G	71, 71B	71A	SO-2	50

GT TUBE REPLACEMENTS—"GT" tubes may be directly replaced with Sylvania "GT" tubes having like type numbers. Example: Sylvania 6A8GT will replace any 6A8GT. The Sylvania "GT" tubes available are listed on current price literature.

When no Sylvania like type number is available, a Sylvania metal tube of like type number (Example: Sylvania 12SA7 will replace any 12SA7GT) or a Sylvamia "G" tube of like type number may be used if space in the receiver permits. In such cases a slight realignment of the circuit may be necessary for some types.

ASpecial information regarding the replacement of these tubes or any tubes not listed will be furnished upon request.

When receiver's transformer will stand one ampere additional filament current.

tOnly when used in auto receivers or AC receivers not having series filament.

+Indicates that Metal or "G" types may be interchanged, but realignment of the circuit may be necessary. In some cases an external shield may be required on the "G" tubes when replacing metal tubes.

VALVE BIAS RESISTOR CHART

(For push-pull operation use 1/2 R and double the wattage rating)

Note: Less the voltage drop through indicated coupling resistor in megohms:

	0.00	TURNE	A CAL				
Туре	Use	Plate Volts	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating Watts
01A	Amp	135 90 135 90	-9 -4.5 -13.5 -7.5		3.0 2.5 0.2 0.2	3000 2000 65000 40000	xxxx
144	Amp	180	-3	67.5	3.0	1000	35
IA5G	Power Amp. Pentode	90	-4.5	90	4.8	950	35
1A6	Pent. Conv	180 135	-3 -3	67.5 67.5	5.5 5.9	500 500	Ki Xa
1B4	Amp	180 180 135	-3 -6 -4.5	67.5	2.1 0.2 0.2	1500 30000 22500	****
1B5/25S	Res.Coup.Volt Amp.	135	-3		0.8	3750	15
1C5G	Power Amp. Pent	90	-7.5	90	9.1	800	35
1C6	Pent. Conv	180 135	-3 -3	67.5 67.5	7.7 7.1	400 425	XX
1C7G	See Type 1C6					mason!	22.27
1D5G	See Type 1A4						
ID7G	See Type 1A6					·····	Ores.
1E5G	See Type 1B4						
1E7G	Power Amp	135	-7.5	135	8.5	900	35
	and the second se	and the second se		· · · · · · · · · · · · · · · · · · ·	· ····································		
VALVE BIAS RESISTOR CHART-Continued

(For push-pull operation use 1/3 R and double the wattage rating)

Туре	Use	Plate Volts	Grid Volts	Screen Volta	Cathode Current Ma.	Bias Resistor Ohms	Rating
1F4	Power Amp	135	-4.5	135	10.4	430 600	13
1F5G	See Type 1F4						
1F6	Res. Coup. A-F Amp.	135† 135† 135†	-1.0 -1.5 -2.0	1359 1359 1359	0.4	2500 3750 5000	XXX
	R.F., I.F.	180	-1.5	67.5	2.9	500	*
IF7G	See Type 1F6				•••••		
1G5G	Power Amp	90	-6.0	90	11.2	525	35
1H4G	See Type 30					·····	
1H6G	See Type 1B5/25S.						
1J5G	Power Amp. Pent	135	-16.5	135	9.0	1800	35
1LA4	See Type 1A5G					Percenter	
1Q5G	Power Amplifier	90	-4.5	90	11.1	400	35
2A3	Power Amp. (1) P.P. (2)	250 300	-45 -62		.60 80	750 780	8 5
245	See Type 42		helev				·
246	See Type 75						
2A7	See Type 6A7	.1.	1		:.e.:.	Q:0.A	
2B7	See Type 6B7					PRIE	
6A3	Power Triode Push-Pull	250 325	-45 -68	::::	60 80	750 850	8 10
674/LA	Power Amp Pentode Single	180 165 135 100	-12 -11 -9 -6.5	180 165 135 100	25.9 22.9 15.8 9.1	450 500 600 700	REEK
6A5G	Power Amp Push-Pull, 2 Tubes .	250 325	-45 -68		60 80	750 850	3 10
6A6	Power Amp. Class A	294 250	-6 -5		7.0	850 850	XX
6A7	Pent. Conv	250 100	-3 -1.5	100 50	10.6 4.6	280 325	X
6A8	See Type 6A7	• • • • •					
6A8G	See Type 6A7			,	·Al pare	900 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6A8GT	See Type 6A8	••••			·	e	
6AB7/ 1853	Telev. Amp. Pent. :	300	-3	200	15,7	-190	¥\$.,

VALVE BIAS RESISTOR CHART-Continued

(For push-pull operation use 1/2 R and double the wattage rating)

Туре	Use	Plate Volts	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating Watts
6AC7/ }	Telev. Amp. Pent	300	-2	150	12.5	160	3/5
6B4G	See Type 6A3				C. Server		2400
6B7	Volt Amp. Pent R.F., I.F	250 250	-3	125 100	11.3	250 400	1/2/20
and a	Volt Amp. Pent	100 180 135 100	-3 -2.1 -1.95 -2.15	100 25 20 20	7.5 0.6 0.4 0.23	400 4000 5000 10000	externary
6 B 8	See Type 6B7		11.12				
6B8G	See Type 6B7						
6C5	Amp	250	-8		8.0	1000	1/3
6C5G	See Type 6C5						
6C6	Biased Det	250 △ 250† 100†	-4.8 -1.95 -1.83	100 50 30	0.43 0.65 0.183	10000 3000 10000	1/3/3
	Amp. Res. Coup.	1009 250 180† 135† 100†	-1.16 -3 -1.3 -1.25 -1.05	12 100 30 25 20	0.063 2.5 0.5 0.33 0.31	18000 1200 2500 3500 3500	exercises.
6C8G	Phase Inverter Twin Triode Amp	250 250 250 250*	-3.0 -3 -3		2.0 2.0 Totl. 3.4 Totl	1500 1500 900	K.K.K.
6D6	Amp	250 250	-3	100 100	10.2 3.5	300 3000	1/3
6D8G	Pent. Conv	250 135	-3.0 -3.0	100 67.5	10.8 6.4	280 470	1/3
6E6	Power Amp	250 180	-27.5 -20	::::	36 23	750 850	21
6F5	Volt Amp	250 250†	-2 -1.35		1.1 0.4	1800 3500	1/8
6F5G	See Type 6F5		1				
6F5GT	See Type 6F5						
6 F6	See Type 42				1.1	C unt	
6F6G	See Type 42						S.4.
6F7	Superhet.Conv.Pent. Triode	250 250*	-10 0.1Me	100 g.Leak	3.4 2.4	1700	35
	A-F Amp	250*	-3	100	0.6	5000	1 35

287

-

VALVE

BIAS RESISTOR CHART-Continued

(For push-pull operation use 1/2 R and double the wattage rating)

Туре	Use	Plate Volts	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating Watts
6F8G	Volt. Amp	250 #	-5.5		4.8	1150	1/5
6G6G	Power Amp. Pent	180 135	-9 ·-6	180 135	17.5 13.5	500 450	1/3
6J5G	Amp	250	-8.0		9.0	900	15
6J5GT	See Type 6J5G			·			
637	Biased Det	250 △ 250†	-4.3 -2	100 50	0.43 0.65	10000 3000	XX
inere.	Amp	250 △ 250 100	-1.7 -3 -1.5	33 100 100	0.21 2.5 2.5	8000 1200 600	***
6J7G	See Type 77				y ke 687		
6J7GT	See Type 6J7						
6J8G	Triode Hept. Conv.	250	-3	100	9.6	310	36
6K5G	See Type 6Q7						
6K6G	See Type 41						
6K6GT	See Type 41			1	100.008	WTA.	
6K7	Amp	250	-3	125	13.1	250	X
. Mail	that here's	180 90	-3 -3	75 90	5.0 6.7	600 450	arer.
6K7G	See Type 6K7*.						
6K7GT	See Type 6K7				1.1.5		
6K8	Triode Hex. Canv	250	-3	100	12.45	240	36
6K8G	See Type 6K8		1.10.18				
6K8GT	See Type 6K8		1008		1,0010	will.	
6L5G	Amp	250 100	-9.0 -3.0		8.0	1125 750	3/8
6L6	Power Amp	350 300 250	-18.0	250 200 250	56.5 50.5 77	320 250 180	219
	Push-Puli 2 Tubes . Push-Puli 2 Tubes . Push-Puli 2 Tubes .	360 270 250	-22.5 -17.5 -16.0	270 270 250	93 145 130	240 120 120	1000
6L6G	See Type 61.6						
6L7	Mixer	250 250	-6 -3	150	14.9 11 10.8	500 350 300	Taxes.
61.70	See Type 617	200	0 00	100	VINGE TOP	000	23
6N7	See Type 646	Nor o	Hanz	en line	Det and	Disid	1
ata.	bee Type ono	1	I	1	1	1	1

VALVE

BIAS RESISTOR CHART-Continued

(For push-pull operation use ½ R and double the wattage rating)

Туре	Use	Plate Volts	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating
6N7G	See Type 6A6			Sec.	. 5		280.
6P5G	See Type 76						
6P7G	See Type 6F7				29989 6697C	·	1.695.
607	Res.Coup.Volt Amp.	250†	-2.5		0.37	7000	35
6Q7G	See Type 6Q7				· appress		1995
6Q7GT	See Type 6Q7	0.03		abdi	DE-MOT	Cart.	
6R7	Res.Coup.Volt Amp.	250†	-6.5		0.65	10000	35
6R7G	See Type 6R7				See see		
687G	Amp. Superbet. Mixer	250 250	-3.0	100 100	10.2 3.5	300 3000	XX
6SA7	Pent. Converter	250 100	-2 -2	100 100	12.5 12.3	160 160	KX
6SC7	Twin Triode Amp	250 250†	-2 -1.4		4.0 Tot'l 0.9 Tot'l	500 1500	XX
6SF5	See Type 6F5						0.0
6SJ7 [°]	Amplifier	250 100	-3 -3	100 100	3.8 3.8	800 800	XX
6SK7	Amplifier	250 100	-3 -3	100	11.6	260 260	XX
6SQ7	See Type 75						
6T7G	Res.Coup.Volt Amp.	250†	-2.5		0.31	8000	15
6U7G	See Type 6D6				Terreter		case.
6V6	Power Amp	315	-13.0	225	36.2	360	111
	Push-Puill 2 Tubes	180	-12.5	180	49.5 32 75	260	bain
6¥6G	See Type 6V6		-15.0		15		2
677G	See Type 85				-	·	core."
6W7G	Amplifier	250	-3	100	2.5	1200	15
6Y6G	Power Amp:	200	-14	135	63.2	220	1.0
6Y7G	See Type 79				123		Drice
784	Amplifier	250	-8		9	900	35
7A5	Power Amp. Pent .	125 110	-9 -7.5	125 110	40.7 38.0	220 200	1/21/2
747	Amplifier	250	-3	100	10.6	-2300	3/5
748	Octode Conv	250	-3	100	10.7	300	35

VALVE BIAS RESISTOR CHART-Continued

(For push-pull operation use 1/2 R and double the wattage rating)

Туре	Use.	Plate Volts	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating
7B5	See Type 41						
7B6	See Type 75						pesse f
7B7	See Type 6S7G	See.					
788	See Type 6A7			.9004	de V.ono		·
705	Power Amp	250	-12.5	250	49.5	240	1.0
-proved by	Push-Pull, 2 Tubes .	250	-15.0	250	75	200	2.0
707	See Type 6W7G	1.17					
7E6	See Type 6R7				Ppe BR7	·	YOTA"
7E7	R.F.,I.F.Amp.Pent.	250	-3	100	9.1	330	35
7F7	Twin Triode Amp	250‡ 250†	-1.5 -1.5		1.6 Tot'l 0.9 Tot'l	930 1700	XX
737	Triode Hex. Conv	250	-3	100	10.3	290	3/5
7L7	See Type 6SA7	1.0					
10	Class A Amp	425 350 250	-40 -32 -23.5		18 16 10	2000 2000 2250	1
12-A	Class A Amp	180	-135		7.7	2000	35
alla	Biased Det	135 90 180 135 *	-9 -4.5 -20 -15		6.2 5.0 0.2 0.2	1500 1000 100000 65000	XXXX
1245	Power Amp. Pent	180 100	-27 -15	180 100	42 20	650 750	2
12A7	Power Amp. Pent	135	-13.5	135	10.8	1250	15
12A8G	See Type 6A8	2.0			Amp.	Powe	·
12A8GT	See Type 6A8						,
12B8GT	R.F.,I.F.Amp.Pent.	90	-3	90	9.0	330	1/3
12C8	See Type 6B7			2	State of the		
12F5GT	See Type 6F5	···.			·····	question .	
12J5GT	See Type 6J5				·····		
12J7GT	See Type 6J7						
12K7G	See Type 6K7	4.8					
12K7GT	See Type 6K7	e	1				
12Q7G	See Type 6Q7						teres -
1207GT	See Type 6Q7	1.10		19.19		0100	11-12+
		The second se					

VALVE

BIAS RESISTOR CHART-Continued (For push-pull operation use ½ R and double the wattage rating)

Туре	Use	Plate Volts	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating Watts
12SA7	See Type 6SA7						
12SC7	See Type 6SC7						
12SJ7	See Type 6SJ7						
12SK7	See Type 6SK7					·	
12SQ7	See Type 75						
15	Det. Osc	135	-1.5	67.5	2.15	700	34
18	See Type 42						
20	Power Amp	135 90	-22.5	1111	6.0 2.8	3750 6000	**
22	Amp. R.F	135	-1.5	67.5	5.	800 600	X
24A	Amp	250	-3	90	5.7	500	1 Xa
	Biased Det	275†	-5	20-45	0.15	33000	X
25A6	See Type 43						
25A6G	See Type 43						
25A7G	Power Amp	100	-15.0	100	24.5	600	15
25A7GT	See Type 25A7G .						
25B6G	Power Amp	200 135 105	-23.0	135 135 105	63.8 63.5 50	360 350 320	221
25B8GT	See Type 12B8GT .						
25C6G	See Type 6Y6G						
25L6	Power Amp	110	-7.5	110	53	140	1
25L6G	See Type 25L6						
25L4GT	See Type 25L6						
25	Amp	180 135 90	-14.5 -10 -7		6.2 5.5 2.9	2500 2000 2500	****
27	Amp	250 180 135	-21 -13.5 -9		5.2 5.0 4.5	4000 2700 2000	XXX
	Biased Det	90 275 250	-6 -33 -30		2.7 0.2 0.2	2200 150000 150000	Xexe
30	Amp	180 135 90 180 135	-13.5 -9 -4.5 -18 -13.5		3.1 3.0 2.5 0.2 0.2	4000 3000 2000 75000 65000	XXXXX
	1005 14 P 15 1	.90	-9		0.2	40000	1 36

VALVE BIAS RESISTOR CHART-Continued

For push-pull operation use 1/3 R and double the wattage rating)

Туре	Use	Plate Volts	Grid Volts	Screen Volta	Cathode Current Ma.	Bias Resistor Ohms	Rating Watts
31	Power Amp	180 185	-30 -22.5	1	12.3 8.0	2500 2500	X
32	Amp Biased Det	180 135 180† 180‡ 135‡	-3 -3 -1 -6 -4.5	67.5 67.5 30	2.1 2.1 0.36 0.25 0.25	1500 1500 • 3000 25000 20000	XXXXX
32L7GT	Power Amp	90 90	-7 • -5	90 90	29.0 41.0	240 120	X
33	Power Amp. Pent	180 135	-18 -13.5	180 135	27 17.5	650 750	1/2
-34	Amp. R.F	180 135 67.5 180 135 67.5	1222000	67.5 67.5 67.5 67.5 67.5 67.5	3.8 3.8 3.8 2.8 2.8 2.8 2.8	850 850 2000 2000 2000	אמאנאיאיאיא
35/51	Amp. R.F	250 180 250	-3 -3 -7	90 90 90	9.0 8.8 6.2	350 350 1250	Max a
35A5	Power Amp.	110	-7.5	110	37.8	-200	35
35L6G	Power Amp	110	-7.5	110	43.0	175	3/2
35L6GT	See Type 35L6G						
36	Amp	250 180 135 100	-3 -3 -1.5 -1.5	90 90 67.5 55	3.6 3.5 3.2 2,2	850 850 500 750	arakar
37	Amp Biased Det	250 180 135 90 250 180 135 90	-18 -13.5 -9 -6 -28 -20 -15 -10	· · · · · · · · · · · · · · · · · · ·	7.5 4.3 4.1 2.5 0.2 0.2 0.2 0.2	2400 3000 2200 2400 100000 100000 75000 50000	KK K K K K K K K K
38	Power Amp. Pent.	250 180 135 100	-25 -18 -13.5 -9	250 180 185 100	25.8 16.4 10.5 8.2	1000 1100 1300 1100	1 1/2 1/3
39/44	Amp	250 180 90 250 180 90	-3 -3 -3 -7 -7 -7	90 90 90 90 90 90	7.2 7.2 3.5 3.4 3.4	400 400 2000 2000 2000	K.K.K.K.K.K
41	Power Amp. Pent.	250 180 185 190	-18 -13.5 -10 -7	250 180 125 100	37.5 21.5 14.7 10.6	500 650 700 650	1

VALVE

BIAS RESISTOR CHART-Continued

(For push-pull operation use 1/2 R and double the wattage rating)

Type	Use	Plate Volts	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating Watts
42	Power Amp. {Pent. Class A Class AB ₂ {Pent. Triode Class AB ₂ {Pent. Push-Pull {Triode	285 250 250 375 350	-20 -16.5 -20 -26 -38	285 250 250	45 40 5 31 78 48	450 400 650 385 800	22132
43	Power Amp. Pent	160 135 95	-18 -20 -15	120 135 .95	39.5 45 24	450 450 625	21
45	Power Amp.	275 250 180	-56 -50 -31.5		36 34 31	1500 1500 1000	5 8 2
46	Class A Driver	250	-33		22	1500	1 1
47	Power Amp. Pent	250	-16.5	250	37	450	1
48	Power Amp. Tet	125	-22.5	100	64 64	350	2
49	Power Amp. Class A	135	-20	30	6.0	3500	12
50	Power Amp	450	-84		55	1500	-78
		400	-70		55	1250	5
C. C. L	22. 20	300	-54 0		35.000	1500	2
53	See Type 6A6					a.main	TPET
55	See Type 85			1		ster.e.	13h.
56	See Type 76					acity	228.
57	See Type 6C6					beertin	
58	See Type 6D6						
59	Power Amp. Class A	250	-28		26	1000	1.
	Power Amp. Class A Pent.	250	-18	250	4408 ag	400	1
70L7GT	See Type 35L6G .			Che elas	g		
71A	Power Amp	180 135 90	-40.5 -27 -16.5		20 17.3 10	2000 1500 1500	1
75	Res.Coup.Volt Amp.	250† 180† 135†	-1.38		0.4 0.24 0.09	3500 5000 11000	KXX
	Impedance Coup.	250	-2	1	0.8	2500	X
76	Amp. Biased Det.	250 250	-13.5 -20	· · · · ·	5.0 0.2	2700	XX
77	Amp	250	-3	100	2.9	1000	Xex
Irons,	Biased Det	250 L 250† 250†	-4.3 -1.9	100 50 50 36	0.43 0.65 0.155	10000 3000 12500	XXX

VALVE BIAS RESISTOR CHART-Continued

(For push-pull operation use 1/5 R and double the wattage rating)

Туре	Use	Plate Volta	Grid Volts	Screen Volts	Cathode Current Ma.	Bias Resistor Ohms	Rating
78	Amp	. 250 250 180	2222	125 100 75	13.1 8.7 5.0	250 350 600	and a
79	Power Amp. Class Tri.	A 250†	-3	90	0.5	450 3000	1/3
85	Amp. (Trans. Coup	.) 250 180	-20	••••	8.0	2506 2250	XX
	Amp. (Res. Coup.)	135 180† 135† 100†	-10.5 -7 -7 -5		3.7 0.47 0.31 0.23	2800 15000 20000	LXXX
89	Power Amp. Class Tri.	A 250 180	-31		32 20	1000	2
	Class A Pent	. 160 250 180 135	-20 -25 -18 -13.5	250 180 135	17 37.5 28 16.2	1250 750 750 850	Ker wy.
99	Amp	90 90	-4.5	ent	2.2	2000 50000	1/3
482B	Power Amp.	. 250	-35		20	1750	1
183/483	Power Amp	. 250	-65	** : *	20	3250	2
210T	See Type 10				.3/10.00	T. 296	
485	Amp	. 180	-9		5.8	1600	35
864	Amp Biased Det	- 135 90 - 135 90	-9 -4.5 -15 -10.5		3.5 2.9 0.2 0.2	2500 1500 75000 50000	Kerer K
950	See Type 1J5G .				Walife and		
1221	See Type 6C6						
1223	See Type 6C6						
1231	Telev. Amp. { Pent Tet. Trio	300 300 250	-2.5 -2.5 -5.2	150 150	12.5 12.5 13	200 200 400	arax.
7/1232	Amplifier	. 250	-2	100	8.0	250	35
1612	See Type 6L7						

NOTE: Less the voltage drop through igdicated coupling resistor in megohns: #0.05 \$0.1 \$0.25 *0.3 \$0.5 \$1.0

70

The information in this section is supplied by courtesy of CLAUDE LYONS, LTD., Liverpool and London, and SYLVANIA CORP., U.S.A.

VALUE	PADIO AND ELI	CTRICITY.	UBLD IN
	Measure	Alphabetical	Equation for
Unit Name.	of Unit.	Symbol of	finding value of
	1. Par 1. 1.	Unit.	Unit.
Acceleration	cm/sec ²	a	a = v - 1.
Admittance	Mho.	у, Ү.	$Y = 1 \div Z$
Angular Velocity	Radians/ Second.	w	$w = 6.28321 = 2\pi i$
Capacitance	Farad. F.	C.	$C = Q \div E. C = Q \div V.$
Capacitive Reactance.	Ohm. N	Xc.	$\begin{array}{l} \mathrm{Xc} = -1 \div 6.2832\mathrm{fC} \\ \mathrm{Y} = -1 \div 2 \pi\mathrm{fC}. \end{array}$
Charge-Quantity	Coulomb	q. Q.	Q = 1T.
Conductance	Mho.	g. G.	$\begin{cases} G = R \div (X^2 + R^2) \\ \text{or } 1 \div R. \end{cases}$
Conductivity	Mho. cm.	Y III	$Y = 1 \div p$
Current	Ampere A.	i. I.	$ \begin{cases} I = Q \div T, & I = E \div Z, \\ I = E \div R, \end{cases} $
Elastance	Daraf	S ba	$S = 1 \div C.$
Electromotive Force (E.M.F.).	Volt V.	e. E.	E = RI.
Field Intensity	Gauss	H.	
Flux Density	Gauss	B1	$B_1 = \emptyset \div \lambda.$
Force	Dvne	F	F = ma.
Frequency	Cycles per second	f	$\mathbf{f}=1\div\mathbf{T}.$
Impedance	Ohm Q	Z	$L = \sqrt{X^2 + R^2}$
Impedance	Ohm Q	XL	XL = 6.2832 fL
Reactance.	01111. 00	The second	2π fL.
Length	Centimeter	SIM1	- ALAN
Magnetic Flux	Maxwell or Weber	Ø	$\emptyset = B_1 \lambda = H \mu \lambda.$
Magnetising Force	e Oersted or	H	$H = M \div 1 \text{ or}$
11100-00-00-00-00-00-00-00-00-00-00-00-0	Gilbert \div cm.		$4\pi \mathfrak{m} \mathfrak{G} \div (10\Lambda).$
Magnetic Inductio	on Weber/cm ₂	B_2	$B_2 = \mu H.$
Magnetomotive	Gilbert or	M	$M=4\pi\mathrm{co}\varnothing.$
Force.	$(1 \div 4 \pi \text{amp. turn})$	A STREET STOL	ALCON TANK
Mass	. Gram.	m	SUPPO TATA
Mutual Inductance.	Henry H.	М.	
Permeability	. interest	μ	$\mu = B_1 \div H.$
Permeance	. Weber ÷	P	$P=1\div R$
	$(1 - 4 \pi \text{amp. turn})$) V	$V_{i} = W \div q_{i}$
Potential	. Voit	V1 D	P - FI P = W - T.
Power	. Watt W.	r	(X = [6 2832f])
			$-(1 \div 6.2832 \text{fC})$].
Reactance	Ohm. S.	X	$X = [2\pi fL]$
	AN REOFFICIENT		$-(1 \div 2\pi fC)].$
			$(X = [XL - (1 \div wC].$

TOPD

DULTATIO

TN

VALUE	AND DEFINITION RADIO AND ELECT	OF UNITS	USED IN
Unit Name.	Measure of Unit.	Alphabetical Symbol of Unit.	Equation for finding value of Unit.
Reluctance	$\begin{array}{c} (1 \div 4 \pi \text{amp. turn}) \\ \div \text{ Weber} \end{array}$	R	$R = M \div \emptyset = \Lambda \div \mu \lambda.$
Reluctivity		υ	$v=1\div\mu$.
Resistance	. Ohm. N	r. R.	$R = E \div I$. $R = V_1 \div I$.
Resistivity	Ohm. cm.	Þ	
Self Inductance	. Henry H.	Ĺ	$L = XL \div 2\pi f.$
Susceptance	. Mho.	b. B.	$\mathbf{B} = \mathbf{X} \div (\mathbf{X}^2 + \mathbf{R}^2).$
Time	. Second	t. T.	$T = 1 \div f.$
Velocity	. Cm./Second	v	$v = 1 \div T$,
Work or Energy	Joule J.	w	W = Fl.

 λ = Area in sq. cms. ω = Number of turns. Λ = Length of path in cms. \emptyset = Electric current in amps.

BRITISH TYPE VALVE EQUIVALENTS. Where there is a standard American type number which is included in the British range, the British valve may always be used as a replacement for the American Valve.

MULLARD—BRIMAR.							
Brimar.	Mullard.	Brimar.	Mullard.				
DDA1	2D4A	7C6	and the second sec				
HLA1	- 904V	7C7	Force				
HL2A	354V	7D3 '	Frequency				
HLB1	PM1HL	7D5					
PA1		7D6	Pen 36C				
Pen A1	Pen 4VA	7D7	-Harrisonnal				
Pen B1	PM22A	7D8	isternationali				
R1	IW2	7V4	Length Adams. I				
R2 A Sec	IW3	8A1	SP4				
R3	IW4	8D2	white and the second				
VL5-61		9A1	VP4				
VSGA1	MM4V	9A3	VP4B				
1A7	IW3	9D2	Magne <u>ne in</u> induce				
1D4	UR3C	10D1	2D13C				
1D5	5 Pro - 1000 1 44	11A1	TDD4				
1LH4		11A2	TDD4				
1LA4E		11D3	TDD13C				
1LA6E		11D5	in the second				
1LN5E		15A2	FC4				
4D1	HL13C	15D1	FC13C				
5B1	PM12A	15D2	Parmonace				
7A2	Pen 4VA	16D1					
7A3	Pen A4	20A1	TH4B				
7A7	and the second s	20D2					
7A8E	Sector	4033A	and the second sec				
7B5E		4043A					
786	S That The second	4215A	and the second second second				
7B7E		4205D	STOR TROUGHORON				
788		4205E					
705							

BRITISH VALVE EQUIVALENTS-contd. MULLARD-COSSOR.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cossor	Mullard	Cossor	Mullard	Cossor	Mullard
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AG8	1.1.5	41MHL	354V	220OT	PM22A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DD/Pen	1403	41MLF	154V	220P	PM2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DD4	2D4A	41MP	TT4	220PA	PM2A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DDL4	2D4A	41MPG	FC4	220RC	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DDT	TDD4	41MPT	and the start	220SG	PM12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DDT16	and the second s	41MXP	ACO64	220TH	TH2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DHL	11750	41MXPA	ACO44	220VS	PM12M
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DP	A LONG THE REAL	41MRC	354V	220VSG	A DEPARTMENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DP/10	Lington and a second	41MSG	S4V	225DU	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DVSG		41MTB	904V	230HPT	PM22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DVS/Pen	· //	41MTL	354V	230PT	PM22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MP/Pen	Pen4VA	41MTS	Part and	230XP	PM252
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MP/PenA	Pen4VA	41PGD	FC4	240B	PM2B
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MS/Pen	SP4	41STH	TH4	2400P	OP22B
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MS/PenA	SP4	41XP	TT4	302THA	TH30C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MS/PenB	SP4B	41MP/Pen	PenA4	402OT	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MSVG/HA	S4VA	41MPT	States and a state of the state	402P	Clock
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MSG/LA	S4VB	420T	PenA4	402Pen	1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MVSG	MM4V	420T/DD		405BU	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MVS/Pen	VP4	42PTB	A Contraction .	408BU	DW2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MVS/PenB	The second se	42SPT	C. 02.0	410HF	PM4DX
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M41/SG	S4VA	431U	IW4/350	410LF	PM4DX
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OM3	EB34	44IU	IW4	410P	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OM4	EBC33	45LU	FW4/500	410RC	0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OM5	EF36	44SU		410SG	PM14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OM6	EF39	202DDT	TDD13C	412BU	DW2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OM8		202MPG	FC13C	412SU	
OM10 — 202STH TH21C 415XP — PT41 PM24M 202VP — 425XP — PT41B PM24B 202VPB — 442BU DW4/3500 PT220 PM22 203THA — 460BU DW4/500 TP410 PM24 206PT — 506BU DW2 SU2130 — 210Det PM2DX 600T — SU2150 — 210DDT TDD2A 610HF — SU2150 — 210DG — 610LF — 2XP ACO42 210DG — 610LF — 4THA TH4B 210HF PM1HF 610RC — 4TPB TSP4 210LF PM1LF 610SG — 4TSA — 210PGA FC2A 612BU — 4XP ACO44 210SF — 643DU — 13PGA FC13C 210VPA VP2	OM9	EL32	202SPB	888	415PT	PM24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OM10	100000	202STH	TH21C	415XP	a state of the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PT41	PM24M	202VP		425XP	A COLOR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PT41B	PM24B	202VPB		442BU	DW4/350
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PT220	PM22	203THA		460BU	DW4/500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TP410	PM24	206PT	The state of the	506BU	DW2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SU2130		210Det	PM2DX	600T	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SU2150	The second	210DDT	TDD2A	610HF	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2XP	ACO42	210DG	ing and a state	610LF	iterstore T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4THA	TH4B	210HF	PM1HF	610P	PM256
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4TP	ATTA	210HL	PM2HL	610RC	and the second second
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4TPB	TSP4	210LF	PM1LF	610SG	
4TSP — 210PGA FC2A 612BU — 4XP ACO44 210RC PM1A 615PT PM25 4/100BU FW4/500 210SPG FC2 620T — 13DHA TDD13C 210SPT — 624BU — 13PGA FC13C 210VPA VP2 625P PM256 13SPA — 210VPA VP2 625P PM256 13VPA — 215P PM2 660T — 40PPA — 215SG PM12 680HF — 41MDG — 220BD PM2B 680P — 41MDG — 220DD 2D2 680XP — 41MHF 354V 220IPT — 845BU DW30	4TSA	A STATE OF A STATE	210PG	FC2	610XP	PM256
4XP ACO44 210RC PM1A 615PT PM25 4/100BU FW4/500 210SPG FC2 620T 13DHA TDD13C 210SPT 624BU 13PGA FC13C 210VPA VP2 625P PM256 13SPA 210VPT 660SU 13VPA 215SG PM12 680HF 40PPA 215SG PM12 680P 41MDG 220DD 2D2 680XP 41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT 845BU DW30	4TSP	ASTIN	210PGA	FC2A	612BU	10-11
4/100BU FW4/500 210SPG FC2 620T 13DHA TDD13C 210SPT 624BU 13PGA FC13C 210VPA VP2 625P PM256 13SPA 210VPT 660SU 13VPA 215F PM2 660T 40PPA 215SG PM12 680HF 40SUA 220B PM2B 680P 41MDG 220DD 2D2 680XP 41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT 845BU DW30	4XP	ACO44	210RC -	PM1A	615PT	PM25
13DHA TDD13C 210SPT — 624BU — 13PGA FC13C 210VPA VP2 625P PM256 13SPA — 210VPT — 660SU — 13VPA — 215P PM2 660T — 40PPA — 215SG PM12 680HF — 40SUA — 220B PM2B 680P — 41MDG — 220DD 2D2 680XP — 41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT — 845BU DW30	4/100BU	FW4/500	210SPG	FC2	620T	021
13PGA FC13C 210VPA VP2 625P PM256 13SPA 210VPT 660SU 13VPA 215P PM2 660T 40PPA 215SG PM12 680HF 40SUA 220B PM2B 680P 41MDG 220DD 2D2 680XP 41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT 845BU DW30	13DHA	TDD13C	210SPT	A State	624BU	Start.
13SPA 210VPT 660SU 13VPA 215P PM2 660T 40PPA 215SG PM12 680HF 40SUA 220B PM2B 680P 41MDG 220DD 2D2 680XP 41MHF 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT 845BU DW30	13PGA	FC13C	210VPA	VP2	625P	PM256
13VPA — 215P PM2 660T — 40PPA — 215SG PM12 680HF — 40SUA — 220B PM2B 680P — 41MDG — 220DD 2D2 680XP — 41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT — 845BU DW30	13SPA	WIT .	210VPT	MAN .	660SU	
40PPA 215SG PM12 680HF 40SUA 220B PM2B 680P 41MDG 220DD 2D2 680XP 41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT 845BU DW30	13VPA	VALLEN.	215P	PM2	660T	
40SUA — 220B PM2B 680P — 41MDG — 220DD 2D2 680XP — 41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT — 845BU DW30	40PPA	EL POT STATE	215SG	PM12	680HF	1 1 1 1 1 1 1
41MDG	40SUA	A BEN	220B	PM2B	680P	and the
41MH 904V 220HPT PM22A 825BU DW30 41MHF 354V 220IPT — 845BU DW30	41MDG	THE MENT	220DD	2D2	680XP	and the second second
41MHF 354V 2201PT - 845BU DW30	41MH	904V	220HPT	PM22A	825BU	DW30
	41MHF	354V	220IPT	and the second	845BU	DW30

	BRITISH	VALVE H	EQUIVALENT	S-contd.	- me - 115
Fires	Mullard	MULLA	RD-EKCO.	These	Malland
ERCO	munard	EKCO	munard	ERCO	Mullard
DT41	TDD4	OP41	Pen B4	R41	DW4/500
VP41	VP4B	OP42	Pen A4	2041	2D4B
DTUI	TDD13C	TX41	THAR	TAI	254V
VPUI	VP13C	DO42	Pen 4DD	TI	OUTV
Loc erman		2011		- Alteration	
Trees	MU	LLARD-	EVER-READ	Y	Tes Autor
Ever-	Malland	Ever-	35.11.1	Ever-	36 13 14
Ready	Mullard	Ready	Mullard	Ready	Mullard
AZ1	A7.1	C70F	Pen36C	K23A	TDD9
ALLB	TW3	C80B	FC13	K23B	TDD24
ALIC	TW4	DK1	DKI	K30A	PM1HF
AllD	TW4/350	DF1	DFI	K30B	PMILE
A27D	Pen4DD	DAC1	DAC1	K30C	PMIHI
A23A	TDD4	DL1	DL1	K30D	PM2DX
A30B	904V	DL2	DL2	K30E	PM2DI
A30D	354V	EB4	EB4	K30G	PM2A
A36A	TH4	EBC3	EBC3	K30K	PM2HI
A36B	TH4B	EBC33	EBC33	K33A	PM2B
A36C	TH4B	EBLI	EBL1	K33B	PM2BA
A40M	MM4V	C23B	TDD13C	+K40B	PM12A
A50A	SP4	C30B	HL13C	K40N	PM19M
A50B	SP4B	C36A	TH21C	K50M	VP2
A50M	VP4	C36C	TH30C	K50N	VP2R
A50N	VP4A	C50B	SP13C	K70B	PM22A
A50P	VP4B	C50N	VP13C	K70D	PM22D
A70B	Pen4VA	ECH2	ECH2	K77A	OP22A
A70C	PenA4	ECH3	ECH3	K80A	FC2
A70D	PenA4	ECH33	ECH33	K80B	FC2A
A70E	PenB4	EF8	EF8	S11D	DW4/350
A80A	FC4	EF9	EF9	S30C	ACO44
CY31	CY31	EF39	EF39	S30D	ACO42
C10B	UR1C	EL3	EL3	PRER	THE PARTY
C20C	2D13C	EL32	EL32		
CARTAGE	MI	TLLAPD	FFDD A NITT	and the second	
Ferranti	Mullard	Ferranti	Mullard	Ferranti	Mullard
		1 01101101	Al	I CITAIILI	munard
DA	HL13C	PT2	PM22A	VHTA	FC13A
D4	354V	PT4	PenA4	VHTZ	
ER4	HVR2	PT4D		VHT2	FC2
HAD	TDD13C	P4	A Street State	VHT2A	FC2
HP2	PM2B	RA	- 37- 1810	VHT4	FC4
HSD	20 23.11	RS	Decentra n	VPTA	1151
H2D	TDD2	RZ	UR1C	VPTS	A THES
H4D	TDD4	R4	DW4/350	VPTSB	1 83
LP4	ACO44	R4A	DW4	VPT4	VP4
12	PM2A	R5	Ster 18	VPT4A	VP4A
PTA	AL SO SA	R13A	()	VPT4B	VP4A
PTAD	Be rne st	SD	art	VS2	PM12M
PTS	Mitteres a	SPTS	g ctto	VS4	VM4V
PISD	111-18	SPT4A	SP4	ZD	2D13C
PIZ	and the second s	SP4	SP4		

MULLARD-MARCONI-OSRAM							
Marconi	Mullard	Marconi	Mullard	Marconi	Mullard		
A537	····· <u>211</u> X	HD23	TDD2A	MH40	Sale		
A748	Xat	HD24	TDD2A	MH41	904V		
A831	X 22	HL2	PMIHI.	MH42	3044		
B21	PM2B	HL2/C	PMIHE	MHD4	TDDA		
B30	AT 24 THE	HL8		MHI4	244V		
B63	6A6	HL21	PM2HI	MHI A/C	164V		
BL62	TENC	HL210	PM2HI	MKT4	104 V		
D8	TEX	HL410	PM4DX	MI4	TT4		
D41	2D4A	HL610		MPT4	117		
D42	STR.	GU5	497794	MPT41	0182+		
D43	N 42 94	KT2	PM22A	MPT42	2033		
D63	6H6G	KT21	PM22D	MS4B	SAVB		
DA30	DO30	KT24	PM22D	MS4/C	S4V		
DA60	<u>28</u> 2	KT30	10017	MSP4	SP4		
DE5	PM256	KT32	251.6G	MSP4C			
DE5A	25%	KT33C		MSP41	DIV		
DE5B	LAS	KT35	1077	MU12	IW3		
DEH612	CALL OF	KT41	PenA4	MU14	TW4		
DEL612	1017 P12-	KT42	Pen4VA	MX40	FC4		
DET5	721 04	KT44		N14	104		
DET8	REAL DRYS	KT61	2500000	N30	The section		
DG2	280_00	KT63	6F6G	N31	No. of the second second		
DH	2630	KT66	61.6G	N40	Pon4VA		
DHD		KT72		N41	PonAd		
DHL		KT73	CISTA.LIVIM	N42	Pen4VA		
DH30	and the second	KTW61(M)	Andrew Charles	N43	I CHTVIN		
DH42	TDD4	KTW63	6K7G	N63	6F6G		
DH63 (M)	607G	KTW73(M)		N66	6I 6G		
DH73 (M)		KTZ41		P2	PM2		
DL		KTZ63	617G	P2/B	PM2		
DL63	6R7G	KTZ73 (M)		P8			
DN30	1 - a g	L2/B	PM2DX	P215	PM2		
DN41	and the second	LII	also	P240	PM202		
DPT		L12	DA2	P410			
DS	<u> </u>	L21	PM2DX	P415	GARDER A		
DSB	and the second second	L30		P425	CITCLER COLORIS		
DSP1	(c.)	L63	616G	P610	PM256		
H2	PM1A	L210	PM1LF	P625	PM256		
H8	and the state of the	L410	PM4DX	P625A	PM256		
H11		L610	- ALE FOR	PT2	PM22A		
H12	DA1	LP2	PM2A	PT4	PM24M		
H30		LP2/C	PM2	PT16	Tables N		
H42	the spectrum to	LS5	the state of the s	PT25H	DO30		
H63	6F5G	LS5A	- OFFICE	PT240	PM22		
H210	PM1A	LS5B		PT425	PM24		
H410	CV+-	LS6A	ANT	PT625	PM25		
H610		LS7		PX2	ACO42		
HA1	AT4	LS7B	1. (S S)	PX4	ACO44		
HA2	4671	LS8	1-1 194	PX4/C	CO.C.		
HD14	E - 1	LS9D		PX25	DO24		
HD21	TDD2A	MH4	354V	PX25A	DO26		
HD22	TDD2A	MH4/C	354V	OP21	TOPLET		

DDIMIGT

	BRITISH VALVE SUBSTITUTES. MULLARD-MARCONI-OSRAMcontd.						
Marconi	Mullard	Marconi	Mullard	Marconi	Mullard		
S2/C	PM12	U30	OT OT	X14	1 Store A		
S8	1	U31	THE PARTY	X21	FC2		
S12	DAS1	U50	5Y3G	X22	FC2A		
S21	PM12	U52	5U4G	X23	TH2		
S22	PM12A	U70		X24	* TH2		
S23	PM12	U71	TT ILL	X30			
S24	PM12A	U134	OT THE	X31	Contraction of the second		
S215	PM12	VDP1	010 (33.)	X32			
S410	1	VDS	0	X41	TH4B		
S610	1	VMP4	VP4	X41C			
S625	State Street	VMP4G	VP4A	X42	FC4		
U4		VMS4	MM4V	X63 (M)	6A6G		
U5	Cathorn Coll 1	VMS4B	MM4V	X64	6L7G		
U6	James Vik	VP21		X65	0		
U8	DW30	VS2	PM12M	X73 (M)			
U9	DW2	VS24	PM12M	X75	1		
U9/C	DW2	W21	VP2	ZA1	AP4		
U10	DW4/350	W30		ZA2	4672		
U12	DW3	W31		Z14	Stere and		
U14	DW4	W42		Z21	SP2		
U16	HVR1	W63	6K7G	Z30	2		
U17		WD30		Z62			
U18	FW4/500	WD40	E PHILIP	Z63	6J7G		

'MULLARD-MAZDA.

Mazda	Mullard	Mazda	Mullard	
P650	and some line	PenDD4020	9 (<u>10</u> 33)	0
PA20	ACO42	PenDD4021		
PA40	DO30	PD220	PM2B	
Pen24		PD220A	PM2B	
Pen25	E TURNET	PP3/250	ACO44	
Pen44		PP3/425	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Pen45		PP5/400	DO24	
PenDD45	S. S. STREET	PP3521		
Pen46		QP25		
PenDD61		QP230	QP22B	
Pen141		QP240	QP22A	
Pen220	PM22A	RH1	DW30	
Pen220A	PM22	S215A	PM12	
Pen230	PM22	S215B	PM12A	
Pen231	PM22D	S215VM	PM12M	
Pem383		SG215	PM12	
Pen425	PM24	SP22		
PenDD453	TTT V	SP41		
Pen1330		SP42	ALL STREET	
Pen1340		SP141		
PenDD1340		SP210	SP2	
Pen2020	State Providence	SP215	SP2	
PenDD2530		SP1320		
Pen3530	Pen36C	SP1330	C COURTS	
Pen3820	Pen36C	SP2020	and the second	

BRITISH VALVE SUBSTITUTES.

MULLARD-MAZDA-contd.

Mazda	Mullard	Mazda	Mullard	
SP2220	and Charles and Charles	UU120/250	DW3	10.00
TH41	12 main and the state	UU120/350	DW3	
TH233	Townson .	UU120/500	DW4	
TH2320	TH21C	UU2	IW3	
TH2321	TH30C	UU3	IW3	
TP22	-	UU4	IW3	
TP23		UU5	IW4	
TP25	· · · ·	UU6		
TP26		UU7	a -	
TP1340	" - g had	UU8		
TP2620	an atomatic bleade	UU4020	UR3C	
TV250	sil ararado minoria	V312	Palat TV A M	
UD41		V914	2D4A	
U21	INCE REFE BAT	VP22		
U22	are available.	VP23		
U403	is valve may be	VP41	Millaria	
U4020	is also equilibre bran	VP133	ave and and	
U30/250	DW2	VP210	VP2	
U60/500	DW3	VP215	di Diss el (2) a	
U65/550	DW30	VP1320	dea det	
U75/300	DW3	VP1321	(3) om xeg	
UU60/250	DW2 bas	VP1322	VP13C)	

MULLARD VALVE SUBSTITUTES FOR EMERGENCIES. SUBSTITUTION OF TDD4 FOR THE SD4.

Connections for SD4 Pin Number.	Change connections as below :	in the first of the second sec	Connections for TDD4 Pin Number.
1	Not used with SD4		1
2	Disconnect and take this lead to		TOP CAP
3' 8.10 8.14	Disconnect and insulate end of lead	NO ARY	
4 5 6	These connections remain as they are a present.		$\begin{cases} 4\\5\\6 \end{cases}$
7	Disconnect and take wire to	·merican.	3 0
TOP CAP	Bitton no no no no no no	deitig	7

Join together pins 1 and 6.

In some cases the lead to top cap may have to be screened.

BASE PIN NUMBERING VIEWED FROM FREE END OF PINS.

MULLARD VALVE SUBSTITUTES—contd. SUBSTITUTION OF EB34 FOR THE EAB1. In Phillips Receiver Type 753A and 895X, also Mullard MAS 17, MAS 109 and MAS 112. Circuit Alterations.

1.	Change valve holder to octal type.	2. Change con	nections as below.
	Contact EAB1 holder.	Contact on	EB34 holder
	No. 1.	to	1
	2.	OLANT TANK	* 2
	3.	· 000117 "	1282197
	4	"	. P22
	5	***	4.
	7. Insulate end of lead	l. ""	2013.
	8.		5.
	oin together pins 4 an	d 8	

Under these conditions the set should operate as before, but without the A.V.C. delay characteristic.

MULLARD VALVE TYPE EPM1.

No supplies are available.

- (1) Lead to contact 5 disconnected and insulated.
- (2) Lead to contact 6 disconnected and extended, and fitted with top cap adaptor to reach the top cap of the EF9.
- (3) Join together contact 4 and 5.
- (4) Reduce the anode coupling and resistances from approximately 130,000 ohms. to 50,000 ohms. It may be necessary to continue the screening on the lead formerly to contact 6 as far as the top cap, though in many cases this will not be necessary. Should the top cap of the EF9 touch the tuning scale it may be necessary to bend the platform for the EFMI slightly so as to give a small clearance. Under these conditions the set should operate as before but without the tuning.

EMERGENCY REPLACEMENT AND SUBSTITUTE TYPES FOR MULLARD RECEIVING VALVES.

Explanation of Symbols.

	TYPE OF BASE :	ELECTR	ODE SYMBOLS :
A	 British 4-pin.	A, A1, A2	Anodes.
В	 Continental 6 -pin.	Ao	Oscillator Anode.
С	 Continental 7-pin.	D, D1, D2	Diode Anodes
E	 American 7-pin.	F	Filament.
G	 American 4-pin.	Η	Heater.
H	 British 3-pin.	G	Grid (Grids marked
Hiv	 Midget deaf-aid.		G1, G2, etc., G1
J	 American 6-pin.	even services up	being nearest the
K	 American Octal.		cathode).
M	 British 7-pin.	Go	Oscillator grid.
N	 American 5-pin.	K, K1, K2	Cathode.
0	 British 5-pin	M	Metallising.
P	 British 8 side-contact.	S	Screen.
R	 British 9-pin.		
V	 British 5 side-contact.		
W	 Special 4-pin.		
ES	 Edison Screw.		

MULLARD EMERGENCY REPLACEMENTS .-- contd.

The symbol "TC" shown in the base connections is used to indicate the top cap.

Where marked with * there is no recommended substitute.

A radio set may not perform with the same degree of efficiency when the original valve is substituted by an emergency equivalent. The purpose of this information is to assist in keeping sets in operation under difficult conditions.

BASE DIAGRAMS AND PIN NUMBERING.

The A, O, P, M and K bases only have been shown, as these are the only types which occur as standard bases under REMARKS, where the holder connections are to be changed.

Original Type	Base	Substitute Type	Base	Com.j	Remarks
ACO54	A	ACO44	A	Redesign circuit	There is no valve which
ACO64	A	ACO44	A	ditto	will directly replace these valves and full
ACO84	A	ACO44	A	ditto	working conditions of
ACO84N	A	ACO44	A	ditto	studied before substitu-
AC104	A	ACO44	A	ditto	
AZ2	Р	DW4/500	A 0	DW4/500—Va Pin No. : I Connection : Ā	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
AZ3	Р	IW4/350	A	No circuit chan Pin No. : 1 Connection : A	ge. 1 2 3 4 1 A F F

Original Type	Base	Substitute Type	Base	Remarks
AZ32	K	DW4/500	A	Pin No.: 1 2 3 4
				Connection : Al A F F
AZ33	K	IW4/350	Α	No circuit change.
				Pin No.: 1 2 3 4
CIE	P	CI 4	D	Connection: Al A F F
CLO	r	CLA	r	Raise Vg2 to 200 v.
CL36 ·	K	CL4	Р	As above. ' Pin No. : 1 2 3 4 5 6 7 8 TC
				Conn.: - H H K&G3 G2 A G1
CY2	P	UR3C	М	No circuit change. Pin No. : 1 2 3 4 5 6 7
				Conn.: - A1 K1 H H K2 A2
CY32	K	UR3C	M	No circuit change. Pin No. : 1 2 3 4 5 6 7
				Conn.: - A1 K1 H H K2 A2
*DO20	A	inder - de des	-	
DO25	Α	DO26	A	Add series filament resistance 1 ohms, 10 watts, no further change.
DW3	A	DW4/350	A	No change.
DW4	A	DW4/500	A	No change.
DW30	Α	DW4/500	A	Add series filament resistance of approx. 1.7 ohms, 10 watts, no further change.
EAB1	P	EB34	K ·	Redesign circuit. See Service Sheet.
EB4	Р	EB34	K	No circuit change.
			Section of the sectio	Pin No. : 1 2 3 4 5 6 7 8
*FRF1	D			Conn.: M&S H D1 K1 D2 - H K2
*FRF2	P	R. C. C. C. C. C.		Table 1 states of 512 and 51
*EBF32	K	and the state	and the second	ACOSA A A ACOAL A A ACOA
ECH2	P	ECH3	P	No change ECH3 if 0.24
ECH33	K	CCH35	K	For AC/DC Receivers—CCH35.
EFM1	Р	EF9	Р	Redesign circuit
EH2	Р	ECH3	Р	Use Heyode section only in extreme cases
EK3	P	EK2	P	Raise screen volts to 200.
EL5	P	EL35	K	FI.35 Vg2 250 v max
			an the b	Change bias resistance to 180 ohms. Pin No. : 1 2 3 4 5 6 7 8
				Conn.: - H A G2 G1 - H G3&K

MULLARD EMERGENCY REPLACEMENTS-contd.

MULLARD EMERGENCY REPLACEMENTS-conid.

Original Type	Base	Substitute Type	Base	Remarks	
EL6	P	EL35	K	EL35 Vg2 250 v. max. Change bias resistance to 180 ohms. Pin No.: 1 2 3 4 5 6 7 8	1
				Conn.: - H A G2 G1 - H G3&)	K
EL36	к	EL35	K	EL35 Vg2 250 v. max. Change bias resistance to 180 ohms.	
EM1	P	(<u>0</u> 1 (:	No longer available for domestic receiver	s.
EM2	Р	G Li A	ic <u>ur</u>)i	Connel	
EM3	Р		uo do a	No longer available for Domestic Receivers.	
EM4	P	- , 3	a ch ren	NIGHC D. FM24M O Medex	
EM35	K		= -		
*E.7.2	Р			- ma and a super some	
*EZ3	P	and the second second		- constitut_ AL IS IS A HERE	
*HL20	0	Sant-		Menderice, Vehicle, States, will State	
IW3	А	IW4/350	A	No change.	
IW4	A	IW4/500	Α	No change.	
MM4V	0	S4VB or VP4(5)	0	No change. Volume control will not be so gradual in operation.	be
Pen4V	0	Pen4VA	0	Change Grid Bias to—22 volts. No change with automatic bias.	
Pen4VB	M	PenA4	М	No change.	
*Pen13	Р	- 28	contin d	in the second state of the second of the	
*Pen13C	M	1 2 8		"OVI OF THE DO DOD WARD	
*Pen20	O/M	N. 80 A		Langel .	
Pen26	P	CL4	Р	Change bias resistance to 170 ohms. C14 Vg2-200 volts.	
PM1A	A	PM2HL	Α	No change.	
PM1HF	Α	PM2HL	Α	No change.	
PM1HL	А	PM2HL	A	No change.	
PM1LF	Α	PM2HL	Α	Change grid bias to-1.5 volts.	
PM2	A	PM2A	A	Change grid bias to-6.0 volts.	
*PM2BA	M	A. 4- 2	1-	· - Hill compared the lower standards	
PM2DL	A	PM2HL	A	No change.	
PM2DX	. A	PM2HL	Α	No change.	
*PM4	A	ani-		ap-12 M Reput 14 At	
*PM4DX	. A				
PM12	A	PM12M	A	Raise Vg2 to 90 volts.	

Original Type	Base	Substitute Type	Base	Remarks
PM12A	A	PM12M	A	Raise Vg2 to 90 volts.
*PM13	A/O	esistance to	r enid	Change
PM22	A/O	PM22A	A/O	Change grid bias at $\tilde{V}a = Vg2 = 135$ volts to 4.5 volts, and anode load to approx. 19,000 ohms.
*PM22C	0	osistance to	a sure	and the second sec
PM24	A/O	PM24A	0	Pin No. :12345Connection : \overline{A} $G1$ \overline{F} \overline{F} $G2$ No circuit change.
PM24B	0	PM24M	0	Redesign circuit. PM24M, $Va = Vg2 = 250 v. max.$
PM24C	0	PM24M	0	Redesign circuit. PM24M, $Va = Vg2 = 250 v. max.$
*PM24D	0		-	
*PM25	A/O		-	1822 married Providence and
*PM26	0	-	-	The second secon
PM202 PM252 }	A	PM2A	A	Anode load = $7,000$ ohms. Change bias to— 6.0 v.
*QP22A	R			IMA NO. INA DOG. N . NO.
SD4	M	TDD4	M	Redesign circuit. See Service Sheet.
*SD20	M	u openimon	ALL PROPERTY	
*SG20	0	STREET OF BER	CALLO -	- oracio O Alburg O Vices
*SP20	0	10 TBO		-contraction in the Station of the burgers
SP4C	Р	SP4B	Μ	No circuit change. Pin. No. : 1 2 3 4 5 6 7 TC
				Conn.: M A G3 H H K G2 G1
S4V	A/O	S4VB or SP4(5)	0	No circuit change. Pin No. : 1 2 3 4 5 TC
				Connection: G2 G1 H H K A
S4VA	0	S4VB or SP4(5)	0	No change.
TDD2	0	TDD2A	0	Change grid bias to—1.5 volts. Not suitable as Class B driver,
TDD13	P	TDD13C	Ņ	No circuit change. Pin No. : 1 2 3 4 5 6 7 TC
				Conn.: D1 M D2 H H K A G1
*TDD25	M			PRODY A PRISHL CA. NOVER
TH4A	М	TH4B	M	No change.
*TH13C	М	-	20	Physics binagenistares (180 Alas ZOAMAS
TH22C	м	TH30C	M	No change.

MULLARD EMERGENCY REPLACEMENTS-contd.

Original Type	Base	Substitute Type	Base	Remarks
TH62	K	CCH35 ECH35	K	For AC/DC Receivers CCH35. For A.C. Receivers ECH35. No change.
*TT4	0	10-40	1-1	- 0/1 10.4 9/4 10.4 0/10 1
*TT4A	0	200	-	20 100 100
TV4	P		-	VO ST OF SO
TV4A	Р	100	-	No longer available for Domestic Receivers.
TV6	P	120 %	-	10,2 1202 1202
UR1	P	CY1	P	No change.
UR2	P	UR3C	M	No circuit change. Pin No. : 1 2 3 4 5 6 7
	-		20.0	Connection : - Al KI H H KZ A2
UR3	Р	UR3C	M	No circuit change. Pin No 1 2 3 4 5 6 7
				Connection : - A1 K1 H H K2 A2
VM4V	0	S4VB or VP4(5)	0	No change. Volume control will not be so gradual in operation.
*VM20	0	_	_	
*VP20	0	38 23 4 6		UBL TO ANOITOZAMAN ZEAN
54V	0	ACO44	A	Redesign circuit.
*2D2	0		-	- Valve
2D4	0	2D4A	0	No circuit change.
				Connection : D2 D1 H H K 2D4A has no top cap.
*2D4B	М	CTRO-RES	8.12 0	EF39 Server The Synnols Dan
2D13	v	2D13C	0	No circuit change. Pin. No. : 1 2 3 4 5
				Connection: D2 D1 H H K
104V	0	TT4	0	Anode load 10,000 ohms.
154V	A	164V	0	No circuit change. Pin No. : 1 2 3 4 5
		···· ·		Connection : A G1 H H K Cathode connected to side terminal.
244V	0	354V	0	No change.
484V	0	354V	0	Change grid bias to-4.5 volts or bias resistance to 700 ohms.
944V	0	904V	0	No change.

MULLARD EMERGENCY REPLACEMENTS-contd.

BASE CONNECTIONS OF MULLARD "E' SERIES OCTAL BASES

BASE CONNECTIONS OF MULLARD "E" SERIES OCTAL BASES.

Type of Valve.		Base No. on Diagram
CCH35	SIMM O NO CHORIE CDADAS.	1 10
ECH35	A A A A A A A A A A A A A A A A A A A	i i
ECH33		î
EF36		2
EF39	THE SYMBOLS DENOTING ELECTRODES	2
EBC33	, DEROTING DESCIRODES.	2
EB34	Anode	1
EC31	Diode-anode d	4
ECC31	In the case of double and multiple diodes :	6
EL32	d1 d2 etc d1 being nearest to the base	. 0
CL33	of the valve	0
EL33	Filament (directly heated)	0
EL35	Filament (indirectly heated)	0
EL36	Grid	0
EBL31	For multiple grid volves g	8
CBL31	al an att all boing persent to the	9
AZ31	si, ga, eut., gi being nearest to the	9
A732	Indirectly bested as the la	0 10 VA8
CV31	Motollisation k	10
TIV91 '	Flootrodes of idential m	O IIVED
CV90	Liectrodes of identical assemblies are	11
0104	distinguished by accents, thus : a, a', a"	12

CHIPPLEVILLE, M. MANARA SALAR STREET			
To Convert 1A7G to DK1	To Convert 1N5G to DF1	To Convert 1H5G to DAC1	To Convert 1C5G to DL2
Octal 1 to 'P'- " 2 to " 2 " 3 to " 8 " 4 to " 7 " 5 to " 6 " 6 to " 5 " 7 to " 3 " 8 to " -	Octal 1 to 'P'- " 2 to " 2 " 3 to " 8 " 4 to " 7 " 5 to " - " 6 to " - " 7 to " 3 " 8 to " -	Octal 1 to 'P'- , 2 to , 2 , 3 to	Octal 1 to 'P'- , 2 to , 2 , 3 to 8 , 4 to , 7 , 5 to , 6 , 6 to , - , 7 to 3 , 8 to , -

TO SUBSTITUTE FROM AMERICAN 1.4 V. BATTERY VALVES TO MULLARD VALVES.

To convert octal base 1.4 volt valves for use in side contact sockets, first attach wires to octal pins, as indicated in the above table and illustration A. Next thread on salvaged 'P' valve base, illustration B, and finally cut off wires and solder to 'P' base, illustration C.

RADIO VALVES and their applications with explanation of characteristics and testing.

By courtesy of R. C. A. Harrison, N.J., U.S.A. Electrons and Electrodes

The radio tube is a marvelous device. It makes possible the performing of operations, amazing in conception, with a precision and a certainty that are astounding. It is an exceedingly sensitive and accurate instrument—the product of coordinated efforts of engineers and craftsmen. Its construction requires materials from every corner of the earth. Its use is world-wide. Its future possibilities, even in the light of present-day accomplishments, are but dimly foreseen; for each development opens new fields of design and application.

The importance of the radio tube lies in its ability to control almost instantly the flight of the millions of electrons supplied by the cathode. It accomplishes this with a minimum of control energy. Because it is almost instantaneous in its action, the radio tube can operate efficiently and accurately at electrical frequencies much higher than those attainable with rotating machines.

ELECTRONS

All matter exists in the solid, liquid, or gaseous state. These three forms consist entirely of minute divisions known as molecules. Molecules are assumed to be composed of atoms. According to a present accepted theory, atoms have a nucleus which is a positive charge of electricity. Around this nucleus revolve tiny charges of negative electricity known as electrons. Scientists have estimated that these invisible bits of electricity weigh only 1/46 billion, billion, billion, billionths of an ounce, and that they may travel at speeds of thousands of miles per second.

Electron movement may be accelerated by the addition of energy. Heat is one form of energy which can be conveniently used to speed up the electron. For example, if the temperature of a metal is gradually raised, the electrons in the metal gain velocity. When the metal becomes hot enough to glow, some electrons may acquire sufficient speed to break away from the surface of the metal. This action, which is accelerated when the metal is heated in a vacuum, is utilized in most radio tubes to produce the necessary electron supply.

A radio tube consists of a cathode, which supplies electrons, and one or more additional electrodes, which control and collect these electrons, mounted in an evacuated envelope. The envelope may be a glass bulb, or it may be the more compact and efficient metal shell.

CATHODES

A cathode is an essential part of a radio tube because it supplies the electrons necessary for tube operation. Electrons are released from the cathode by means of some form of energy applied to it. Generally, heat is used. The method of heating the cathode may be used to distinguish between the different forms of cathodes. For example, a directly heated cathode, or filament-cathode, is a wire heated by the passage of an electric current. An indirectly heated cathode, or heater-cathode, consists of a filament, or heater, enclosed in a metal sleeve. The sleeve carries the electron-emitting material on its outside surface and is heated by A filament, or directly heated cathode, may be further classified by identifying the filament or electron-emitting material. The materials in regular use are tung-sten, thoriated-tungsten, and metals which have been coated with alkaline-earth oxides. Tungsten filaments are made from the pure metal. Since they must operate at high temperatures (a dazzling white) to emit sufficient electrons, a relatively large amount of filament power is required. Thoriated-tungsten fila-ments are made from tungsten impregnated with thoria. Due to the presence of thorium, these filaments liberate electrons at a more moderate temperature of about 1700°C (a bright yellow) and are, therefore, much more economical of filament power than are pure tungsten filaments. Alkaline earths are usually applied as a coating on a nickel alloy wire or ribbon. This coating, which is dried in a relatively thick layer on the filament, requires only a very low temperature of about 700-750°C (a dull red) to produce a copious supply of electrons. Coated filaments operate very efficiently and require relatively little filament power. However, each of these cathode materials has special advantages which de-

termine the choice for a particular application.

Directly heated filament cathodes require comparatively little heating power. They are used in almost all of the tube types designed for battery operation because it is, of course, desirable to impose as small a drain as possible on the batteries. Examples of battery-operated filament types are the 1A7-GT, 1F5-G, 1H4-G. 1H5-G, and 31. A-c operated types having directly heated fila-ment-cathodes are the 2A3 and 45. CATHODE-

HEATER

Fig. 2

An indirectly heated cathode, or heater-cathode, consists of a thin metal sleeve coated with electron-emitting material. With-INSULATED in the sleeve is a heater which is insulated from the sleeve. The heater is made of tungsten or tungsten-alloy wire and is used only for the purpose of heating the cathode sleeve and sleeve coating to an electron-emitting temperature. Useful emission does not take place from the heater wire.

The heater-cathode construction is well adapted for use in radio tubes intended for operation from a-c power lines and from automobile batteries. The use of separate parts for emitter and heater functions, the electrical insulation of the heater from the emitter, and the shielding effect of the sleeve may all be utilized in the design of the tube to prevent the introduction of hum from the a-c heater supply and to minimize electrical interference which might enter the tube circuit through the heater-supply line. From the viewpoint of circuit design, the heatercathode construction offers advantages in connection flexibility, due to the electrical separation of the heater from the cathode. Another advantage of the heatercathode construction is that it makes practical the design of a rectifier tube with close spacing between its cathode and plate, and of an amplifier tube with close spacing between its cathode and grid. In a close-spaced rectifier tube the voltage drop in the tube is low and the regulation is, therefore, improved. In an amplifier tube, the close spacing increases the gain obtainable from the tube. Because of the advantages of the heater-cathode construction, almost all present-day receiving tubes designed for a-c operation have heater cathodes.

GENERIC TUBE TYPES

Electrons are of no value in a radio tube unless they can be put to work. A tube is, therefore, designed with the necessary parts to utilize electrons as well as as to produce them. These parts consist of a cathode and one or more supple-mentary electrodes. The electrodes are enclosed in an evacuated envelope with the necessary connections brought out through air-tight seals. The air is removed from the envelope to allow free movement of the electrons and to prevent injury to the emitting surface of the cathode. When the cathode is heated, electrons leave the cathode surface and form an invisible cloud in the space around it. Any positive electric potential within the evacuated envelope will offer a strong attraction to the electrons (unlike electric charges attract; like charges repel).

DIODES

The simplest form of radio tube contains two electrodes, a cathode and an anode (plate) and is often called a "diode", the family name for a two-electrode

tube. In a diode, the positive potential is supplied by a suitable electrical source connected between the plate terminal and a cathode terminal. Under the influence of the positive plate potential, electrons flow from the cathode to the plate and return through the external plate-battery circuit to the cathode, thus completing the circuit. This flow of electrons is known as the plate current and may be measured by a sensitive current meter

If a negative potential is applied to the plate, the free electrons in the space surrounding the cathode will be forced back to the cathode and no plate current

will flow Thus, the tube permits electrons to flow from the cathode to the plate but not from the plate to the cathode. If an alternating voltage is applied to the plate, the plate is alternately made positive and negative. Plate current flows only during the time when the plate is positive. Hence the current through the tube flows in one direction and is said to be rectified See Fig. 4. Diode rectifiers are used in a-c receivers to convert a.c. to d.c. for supplying "B." "C." and screen voltages to the other tubes in the receiver. Rectifier tubes may have one plate and one cathode. The 1-v and 12Z3 are of this form and are called half-wave rectifiers, since current can flow only during one-half of the alternating-current cycle. When two plates and one or more cathodes are used in the same tube, current may be obtained on both halves of the a-c cycle. The 5T4, 5Y3-G and 5Z3 are examples of this type and are called full-wave rectifiers.

Not all of the electrons emitted by the cathode reach the plate. Some return to the cathode while others remain in the space between the cathode and plate for a brief period to form an effect known as space-charge. This charge has a repelling action on other electrons which leave the cathode surface and impedes their passage to the plate. The extent of this action and the amount of space-charge depend on the cathode temperature and the plate potential. The higher the plate potential, the lease is the tendency for electrons to remain in the space-charge region and repel others. This effect may be noted by applying increasingly higher plate voltages to a tube operating at a fixed heater or filament voltage. Under these conditions, the maximum number of available electrons is fixed, but increasingly higher plate voltages will succeed in attracting a greater proportion of the free electrons.

Beyond a certain plate voltage, however, additional plate voltage has little effect in increasing the plate current. The reason is that all of the electrons emitted by the cathode are already being drawn to the plate. This maximum current is called saturation current (see Fig 5) and because it is an indication of the total number of electrons emitted, it is also known as the emission current, or, simply

emission. Tubes are sometimes tested by measurement of their emission current. However, in this test it is generally not feasible to measure the full value of emission because this value would be sufficiently large to cause change in the tube's characteristics, or to damage the tube. For that reason, the test value of current in an emission test is less than the full emission current. However, this test value is larger than the maximum value which will be required from the cathode in the use of the tube. The emission test, therefore, indicates whether the tube's cathode can supply a sufficiently large number of electrons for satisfactory operation of the tube.

If space charge were not present to repel electrons coming from the cathode. it follows that the same plate current could be produced at a lower plate voltage. One way to make the effect of space charge small is to make the distance between plate and cathode small. This means is used in rectifier types, such as the 83-v and the 2525, having heater-cathodes. In these types the radial distance between cathode and plate is only about two hundredths of an inch. Another means for reducing space-charge effect is utilized in the mercury-vapor rectifier tubes, such as the 83. This tube contains a small amount of mercury, which is partially vaporized when the tube is operated. The mercury vapor consists of mercury atoms permeating the space inside the bulb. These atoms are bombarded by the electrons on their way to the plate. If the electrons are moving at a sufficiently high speed the collisions will tear off electrons from the mercury atoms. When this happens, the mercury atom is said to be "ionized," that is, it has lost one or more electrons and. therefore, is charged positive. Ionization, in the case of mercury vapor, is made evident by a bluish-green glow between the cathode and plate. When ionization evident by a bluish-green glow between the cathode and plate. When ionization due to bombardment of mercury atoms by electrons leaving the filament occurs, the space-charge is neutralized by the positive mercury ions so that increased numbers of electrons are made available. A mercury-vapor rectifier has a small voltage drop between cathode and plate (about 15 volts). This drop is practically independent of current requirements up to the limit of emission of electrons from the filament, but is dependent to some degree on bulb temperature.

An ionic-heated exthode rectifier tube is another type which depends for its operation on gas ionization. The 0Z4 and 0Z4-G are tubes in this classification. They are of the full-wave design and contain two inodes and a coated cathode scaled in a bulb under a reduced pressure of inert gas. The cathode in each of these types becomes hot during tube operation but the heating effect is caused by bombardment of the cathode by the ions from within the tube rather than by heater or filament current from an external source. The internal structure of the tube is designed so that when sufficient voltage is applied to the tube, ionization of the gas occurs between the anode which is instantaneously positive and the cathode. Under normal operating voltages, ionization does not take place between the anode that is negative and the cathode. This, of course, satisfies the principle of rectification. The initial small flow of current through the tube is sufficient to raise the cathode temperature quickly to incandescence whereupon the cathode emits electrons. The voltage drop in such tubes is slightly higher than that of the usual hot-cathode as rectifiers because energy is taken from the ionization discharge to keep the cathode at operating temperature. Proper operation of these rectifiers requires that a minimum load current always flow in order to maintain the cathode at the temperature required to supply suficient emission

TRIODES

When a third electrode, called the grid, is placed between the cathode and plate, the tube is known as a triode, the family name for a three-electrode tube. The grid usually is a winding of wire extending the length of the cathode. The spaces between turns are comparatively large so that the passage of electrons from cathode to plate is practically unobstructed by the turns of the grid. The purpose of the grid is to control the flow of plate current. When a tube is used as an amplifier, a negative d-c voltage is usually applied to the grid. Under this condition the grid does not draw appreciable current.

The number of electrons attracted to the plate depends on the combined effect of the grid and plate polarities. When the plate is positive, as is normal, and the d-c grid voltage is made more and more negative, the plate is less able to attract electrons to it and plate current decreases. When the grid is made less and less negative the plate more readily attracts electrons to it and plate current increases. Hence, when the voltage on the grid is varied in accordance with a signal, the plate

current varies with the signal. Because a small voltage applied to the grid can control a comparatively large amount of plate current, the signal is amplified by the tube. Typical three-electrode tube types are the 6C5, 76, and 2A3

The grid, plate, and cathode of a triode form an electrostatic system, each electrode acting as one plate of a small condenser. The capacitances are those existing between grid and plate, plate and cathode, and grid and cathode. These capacitances are known as interelectrode capacitances. Generally, the capacitance between grid and plate is of the most importance. In high-gain radio-frequency amplifier circuits, this capacitance may act to produce undesired coupling between the input elecuit, the circuit between grid and cathode, and the output circuit, the circuit between plate and cathode. This coupling is undesirable in an amplifier because it may cause instability, and unsatisfactory performance

TETRODES

The capacitance between grid and plate can be made small by mounting an additional electrode, called the screen, in the tube. With the addition of the screen.

the tube has four electrodes and is, accordingly, called a tetrode. The screen is mounted between the grid and the plate and acts as an electrostatic shield between them, thus reducing the grid-to-plate capacitance. The effectiveness of this shielding action is increased by connecting a by-pass condenser between screen and this by-pass condenser, the grid-plate capacitance of a tetrode is made very small. In practice, the grid-plate capacitance is reduced from an average of 8.0

micromicrofarads (µµf) for a triode to 0.01 µµf or less for a screen-grid tube.

The screen has another desirable effect in that it makes plate current practically independent of plate voltage over a certain range. The screen is operated at a positive voltage and, therefore, attracts electrons from the cathode. But because of the comparatively large space between wires of the screen, most of the electrons drawn to the screen pass through it to the plate. Hence the screen supplies an electrostatic force pulling electrons from the cathode to the plate. At the same time the screen shields the electrons between cathode and screen from the plate so that the plate exerts very little electrostatic force on electrons near the cathode. Hence, as long as the plate voltage is higher than the screen voltage, plate current in a screen-grid tube depends to a great degree on the screen voltage and very little on the plate voltage makes it possible to obtain much higher amplification with a tetrode than with a triode. The low grid-plate capacitance makes it possible to obtain this high amplification without plate-to-grid feedback and resultant instability. Representative screen-grid types are the 32 and 24-A.

PENTODES

In all radio tubes, electrons striking the plate may, if moving at sufficient speed, dislodge other electrons. In two- and three-electrode types, these dislodged electrons usually do not cause trouble because no positive electrode other than the plate itself is present to attract them. These electrons, therefore, are drawn back to the plate. Emission caused by bombardment of an electrode by electrons from the cathode is called secondary emission because the effect is secondary to the original cathode emission. In the case of screen-grid tubes, the proximity of the positive screen to the plate offers a strong attraction to these secondary electrons and particularly so if the plate voltage swings lower than the screen voltage. This effect lowers the plate current and limits the permissible plate-voltage swing for tetrodes. The plate-current limitation is removed when a fifth electrode is placed within the tube between the screen and plate. This fifth electrode is known as the suppressor and is usually connected to the cathode. Because of its negative potential

with respect to the plate, the suppressor retards the flight of secondary electrons and diverts them back to the plate where they cannot cause trouble. The family name for a five-electrode tube is "pentode." In power-output pentodes the suppressor makes possible higher power output with lower grid-driving voltage in radio-frequency amplifier pentodes the suppressor permits of obtaining high voltage amplification at moderate values of plate voltage. These desirable features are due to the fact that the plate-voltage swing can be made very large as compared with that of tetrodes. In fact, the plate voltage may be as low as, or lower than, the screen voltage without serious loss in signal gain capability. Representative power-amplifier pentodes are the 1A5-G, 6F6 and 25A6 representative r-f amplifier pentodes are the 1N5-G, 6J7, and 12SJ7.

BEAM POWER TUBES

A beam power tube is a tetrode or pentode in which use is made of directed electron beams to contribute substantially to its power-handling capability Such a tube contains a cathode, a control-grid, a screen, a plate, and, optionally, a suppressor grid When a beam power tube is designed without an actual suppressor, the electrodes are so spaced that secondary emission from the plate is suppressed by space-charge effects between screen and plate The space charge is produced by the slowing up of electrons traveling from a high-potential screen to a lower potential plate. In this low-velocity region, the space charge produced is sufficient to repel secondary electrons emitted from the plate and to cause them to return to the plate. Beam power tubes of this design employ beam-forming plates at cathode potential to assist in producing the desired beam effects and to prevent stray electrons from the plate from returning to the screen outside of the beam A feature of a beam power tube is its low screen current The screen and the grid are spiral wires wound so that each turn of the screen is shaded from the cathode by a grid turn. This alignment of the screen and grid causes the electrons to travel in sheets between the turns of the screen so that very few of them flow to the screen Because of the effective suppressor action provided by space charge and because of the low current drawn by the screen, the beam power tube has the advantages of high power output, high power sensitivity, and high efficiency

Fig. 9 shows the structure of a beam power tube employing space-charge suppression and illustrates how the electrons are confined to beams. The beam condition illustrated is that for a plate potential less than the screen potential. The high-density space-charge region is indicated by the heavily dashed lines in the beam. Note that the edges of the beam-forming plates coincide with the dashed portion of the beam and thus extend the space-charge potential region beyond the beam boundaries to prevent stray secondary electrons from returning to the screen outside of the beam. The 6L6 and 6L6-G are examples of beam power tubes utilizing this construction

In place of the space-charge effect just described, it is also feasible to use an actual suppressor to repel the secondary electrons. Examples of beam power tubes using an actual suppressor are the 6V6 and 6G6-G

INTERNAL STRUCTURE OF TYPE 6L6 BEAM POWER TUBE

MULTI-ELECTRODE and MULTI-UNIT TUBES

Early in the history of tube development and application, tubes were designed for general service; that is, a single tube type—a triode— was used as a radiofrequency amplifier, an intermediate-frequency amplifier, an audio-frequency amplifier, an oscillator or as a detector. Obviously, with this diversity of application, one tube did not meet all requirements to the best advantage.

Later and present trends of tube design are the development of "specialty" types. These types are intended either to give optimum performance in a particular application or to combine in one bulb functions which formerly required two or more tubes. The first class of tubes includes such examples of specialty types as the 6F6, 12SJ7, 6L7, and 6K8. Types of this class generally require more than three electrodes to obtain the desired special characteristics and may be broadly classed as multi-electrode types. The 6L7 is an especially interesting type in this class. This tube has an unusually large number of electrodes, namely seven, exclusive of the heater. Plate current in the tube is varied at two different frequencies at the same time. The tube is designed primarily for use as a mixer in superheterodyne receivers. In this use, the tube mixes the signal frequency with the oscillator frequency to give an intermediate-frequency output.

Tubes of the multi-electrode class often present interesting possibilities of application besides the one for which they are primarily designed. The 6L7. for instance, can also be used as a variable-gain audio amplifier in volume-expander and compressor application. The 6F6, besides its use as a power output pentode, can also be connected as a triode and used as a driver for a pair of 6L6's.

The second class includes multi-unit tubes such as the duplex-diode triodes 1H6-G and 6SQ7, as well as the duplex-diode pentodes 1F7-GV and 12C8 and the twin class A and class B types, 6C8-G and 6B8, respectively. In this class also is included the multi-unit type 1D8-GT This tube combines in one bulb three units—a diode for use as detector and avc. a triode for use as the first audio-frequency amplifier, and a power-output pentode. Related to multi-unit tubes are the electron-ray types 6E5 and 6N5. These combine a triode amplifier with a fluorescent target. Full-wave rectifiers are also multi-unit types.

A third class of tubes combines features of each of the other two classes. Typical of this third class are the pentagrid-converter types 1A7-G and 12SA7 These tubes are similar to the multi-electrode types in that they have seven electrodes. all of which affect the electron stream; and they are similar to the multiunit tubes in that they perform simultaneously the double function of oscillator and mixer in superheterodyne receivers.

Radio Tube Characteristics

The term "CHARACTERISTICS" is used to identify the distinguishing electrical features and values of a radio tube. These values may be shown in curve form or they may be tabulated. When given in curve form, they are called characteristic curves and may be used for the determination of tube performance and the calculation of additional tube factors.

Tube characteristics are obtained from electrical measurements of a tube in various circuits under certain definite conditions of voltages. Characteristics may be further described by denoting the conditions of measurements. For example, Static Characteristics are the values obtained with different d-c potentials applied to the tube electrodes, while Dynamic Characteristics are the values obtained with an a-c voltage on the control grid under various conditions of d-c potentials on the electrodes. The dynamic characteristics, therefore, are indicative of the performance capabilities of a tube under actual working conditions.

Static characteristics may be shown by plate characteristics curves and transfer (mutual) characteristics curves. These curves present the same information, but in two different forms to increase its usefulness. The plate characteristic curve is obtained by varying plate voltage and measuring plate current for different control-grid bias voltages, while the transfer-characteristic curve is obtained by varying control-grid bias voltage and measuring plate current for different plate voltages. A plate-characteristic family of curves is illustrated by Fig. 10. Fig. 11 gives the transfer characteristic family of curves for the same tube.

Dynamic characteristics include amplification factor, plate resistance, controlgrid—plate transconductance and certain detector characteristics, and may be shown in curve form for variations in tube operating conditions.

The amplification factor, or μ , is the ratio of the change in plate voltage to a change in control-electrode voltage in the opposite direction, under the condition that the plate current remains unchanged, and that all other electrode voltages are maintained constant. For example, if, when the plate voltage is made 1 volt more positive, the grid voltage must be made 0.1 volt more negative to hold plate current unchanged, the amplification factor is 1 divided by 0.1, or 10. In other words, a small voltage variation in the grid circuit of a tube has the same effect on the plate current as a large plate voltage (change—the latter-equal to the product of the grid voltage gain as discussed on page 320

Plate resistance (rp) of a radio tube is the resistance of the path between cathode and plate to the flow of alternating current. It is the quotient of a small change in plate voltage by the corresponding change in plate current and is expressed in ohms, the unit of resistance. Thus, if a change of 0.1 milliampere (0.0001 ampere) is produced by a plate voltage variation of 1 volt, the plate resistance is 1 divided by 0.0001, or 10000 ohms.

Control-grid—plate transconductance, or simply transconductance (gm), is a factor which combines in one term the amplification factor and the plate resistance, and is the quotient of the first by the second. This term is also known as mutual conductance. Transconductance may be more strictly defined as the ratio of a small change in plate current (amperes) to the small change in the control-grid voltage producing it, under the condition that all other voltages remain unchanged. Thus, if a grid-voltage change of 0.5 volt causes a plate-current change of 1 milliampere (0.001 ampere), with all other voltages constant, the transconductance is named by spelling ohm backwards. For convenience, a millionth of a mho or a micromho, is used to express transconductance. So, in the example, 0.002 mho.

Conversion transconductance (g_c) is a characteristic associated with the mixer (first detector) function of tubes and may be defined as the quotient of the intermediate-frequency (i-f) current in the primary of the i-f transformer by the applied radio-frequency (r-f) voltage producing it: or more precisely, it is the limiting value of this quotient as the r-f voltage and i-f current approach zero. When the performance of a frequency converter is determined, conversion transconductance is used in the same way as control-grid—plate transconductance is used in singlefrequency amplifier computations.

Maximum peak inverse voltage characteristic of a rectifier tube is the highest peak voltage that a rectifier tube can safely stand in the direction opposite to that in which it is designed to pass current. In other words, it is the safe arc-back limit with the tube operating within the specified temperature range Referring to Fig. 12.

when plate A of a full-wave rectifier tube is positive, current flows from A to C, but not from B to C, because B is negative. At the instant plate A is positive, the filament is positive (at high voltage) with respect to plate B. The voltage between the positive filament and the negative plate B is in inverse relation to that causing current flow The peak value of this voltage is limited by the resistance and nature of the path between plate B and filament. The maximum value of this voltage at which there is no danger of breakdown of the tube is known as maximum peak-inverse voltage. The relations between peak inverse voltage, and d-c output voltage.

individual characteristics of the rectifier circuit and the power supply The presence of line surges or any other transient, or wave-form distortion may raise the actual peak voltage to a value higher than that calculated for sine-wave voltages. Therefor, the actual inverse voltage and not the calculated value, should be such as not to exceed the rated maximum peak inverse voltage for the rectifier tube. A cathoderay oscillograph or a spark gap connected across the tube is useful in determining the actual peak inverse voltage. In single-phase, full-wave circuits with sinewave input and with no condenser across the output, the peak inverse voltage applied to the tube. In single-phase, half-wave circuits with sine-wave input and with condenser input to the filter the peak inverse voltage may be as high as 2.8 times the rms value of the applied plate voltage. In polyphase circuits, mathematical determination of peak inverse voltage requires the use of vectors.

Maximum peak plate current is the highest steady-state peak current that a rectifier tube can safely stand in the direction in which it is designed to pass current. The safe value of this peak current in hot-cathode types of rectifiers is a

function of the available emission and the duration of the pulsating current flow from the rectifier tube during each half cycle. In a given circuit, the actual value of peak plate current is largely determined by filter constants. If a large choke is used in the filter circuit next to the rectifier tubes, the peak plate current is not much greater than the load current, but if a large condenser is used in the filter next to the rectifier tubes, the peak current is often many times the load current. In order to determine accurately the peak current in any circuit, the best procedure usually is to measure it with a peak-indicating meter or to use an oscillograph.

Plate dissipation is the power dissipated in the form of heat by the plate as a result of electron bombardment. It is the difference between the power supplied to the plate of the tube and the power delivered by the tube to the load.

Screen dissipation is the power dissipated in the form of heat by the screen as a result of electron bombardment. With tetrodes and pentodes, the power dissipated in the screen circuit is added to the power in the plate circuit to obtain the total B-supply input power.

The plate efficiency of a power amplifier tube is the ratio of the a-c power output to the product of the average d-c plate voltage and d-c plate current at full signal, or

Plate efficiency $(\%) = \frac{power output watts}{average d-c plate volts \times average d-c plate amperes} \times 100$

The power sensitivity of a tube is the ratio of the power output to the square of the input signal voltage (RMS) and is expressed in mhos as follows:

Power sensitivity (mhos) = $\frac{\text{power output watts}}{(\text{input signal volts, RMS})^2}$

Radio Tube Applications

The diversified applications of a radio tube may, within the scope of this chapter, be grouped broadly into five kinds of operation. These are: Amplification, rectification, detection, oscillation, and frequency conversion. Although these operations may take place at either radio or audio frequencies and may involve the use of different circuits and different supplemental parts, the general considerations of each kind of operation are basic.

AMPLIFICATION

The amplifying action of a radio tube was mentioned under TRIODES, page 7. This action can be utilized in radio circuits in a number of ways, depending upon the results to be achieved. Four classes of amplifier service recognized by engineers are covered by definitions standardized by the institute of Radio Engineers. This classification depends primarily on the fraction of input cycle during which plate current is expected to flow under rated full-load conditions. The classes are class A, class B, and class C. The term, cut-off bias, used in these definitions is the value of grid bias at which plate current is some very small value.

Class A Amplifier. A class A amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows at all times.

Class AB Amplifier. A class AB amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle.

Class B Amplifier. A class B amplifier is an amplifier in which the grid bias is approximately equal to the cut-off value so that the plate current is approximately zero when no exciting grid voltage is applied, and so that plate current in a specific tube flows for approximately one-half of each cycle when an alternating grid voltage is applied.

Class C Amplifier. A class C amplifier is an amplifier in which the grid bias is appreciably greater than the cut-off value so that the plate current in each tube is zero when no alternating grid voltage is applied, and so that plate current flows in a specific tube for appreciably less than one-half of each cycle when an alternating grid voltage is applied

NOTE:—To denote that grid current does not flow during any part of the nput cycle, the suffix 1 may be added to the letter or letters of the class identification. The suffix 2 may be used to denote that grid current flows during some part of the cycle.

For radio-frequency amplifiers which operate into a selective tuned circuit as in radio transmitter applications, or under requirements where distortion is not an important factor, any of the above classes of amplifiers may be used, either with a single tube or a push-pull stage. For audio-frequency amplifiers in which distortion is an important factor, only class A amplifiers permit single-tube operation. In this case, operating conditions are usually chosen so that distortion is kept below the conventional 5% for triodes and the conventional 7 to 10% for tetrodes or pentodes. Distortion can be reduced below these figures by means of special circuit arrangements such as that discussed under inverse feedback. With class A amplifiers, reduced distortion with improved power performance can be obtained by using a push-pull stage for audio service. With class AB and class B amplifiers, a balanced amplifier stage using two tubes is required for audio service

As a class A voltage amplifier, a radio tube is used to reproduce grid voltage variations across an impedance or a resistance in the plate circuit. These variations are essentially of the same form as the input signal voltage impressed on the grid but of increased amplitude. This is accomplished by operating the tube at a suitable grid bias so that the applied grid-input voltage produces plate-current variations proportional to the signal swings. Since the voltage variation obtained in the plate circuit is much larger than that required to swing the grid, amplification of the signal is obtained. Fig 13 gives a graphical illustration of this method of amplification and shows, by mearis of the grid-voltage vs. plate-current characteristics curve the effect of an input signal (S) applied to the grid of a tube. O is the resulting amplified plate-current variation.

The plate current flowing through the load resistance (R) of Fig. 14 causes a voltage drop which varies directly with the plate current. The ratio of this voltage variation produced in the load resistance to the input signal voltage is the voltage.

amplification or gain, provided by the tube. The voltage amplification due to the tube is expressed by the following convenient formulas

Voltage amplification = $\frac{\text{amplification factor } \times \text{ load resistance}}{\text{ load resistance + plate resistance}}$, or

transconductance in micromhos × plate resistance × load resistance 1000000 × (plate resistance + load resistance)

From the first formula, it can be seen that the gain actually obtainable from the tube is less than the tube's amplification factor but that the gain approaches the amplification factor when the load resistance is large compared to the tube's plate resistance. Fig. 15 shows graphically how the gain approaches the mu of the tube as load resistance is increased. From the curve it can be seen that to obtain high gain in a voltage amplifier, a high value of load resistance should be used. In a resistance-coupled amplifier, the load resistance of the tube is approximately equal to the resistance of the plate resistor in parallel with the grid resistor of the following stage. Hence, to obtain a large value of load resistance, it is necessary

to use a plate resistor and a grid resistor of large resistance. However, the plate resistor should not be too large because the flow of plate current through the plate resistor produces a voltage drop which reduces the plate voltage applied to the tube. If the plate resistor is too large, this drop will be too large the plate voltage on the tube will be too small and the voltage output of the tube will be too small. Also, the grid resistor of the following stage should not be too large, the actual maximum value being dependent on the particular tube type. A higher value of grid resistance is permissible when cathode bias is used than when fixed bias is used. When cathode bias is used a loss in bias due to grid-emission effects is nearly completely offset by an increase in bias due to the voltage drop across the cathode resistor The recommended values of plate resistor and grid resistor for the tube types used in resistance-coupled circuits, and the values of gain obtainable, are shown in the RESISTANCE-COUPLED AMPLIFIER SECTION

The input impedance of a radio tube that is, the impedance between grid and cathode, consists of (1) the capacitance between grid and cathode, (2) a resistance component resulting from the time of transit of electrons between cathode and grid, and (3) a resistance component developed by the part of the cathode lead inductance which is common to both the input and output circuits. Components (2) and (3) are dependent on the frequency of the incoming signal. The input impedance is very high at audio frequencies when a tube is operated with its grid biased negative Hence, in a class A, or class AB, transformer-coupled audio amplifier the loading imposed by the grid on the input transformer is negligible The secondary impedance of a class A, or class AB, input transformer can, therefore, be made very high since the choice is not limited by the input impedance of the tube however transformer design considerations may fimit the choice. At the higher radio frequencies the input impedance may become very low even when the At the grid is negative, due to the finite time of passage of electrons between cathode and plate and to the appreciable lead reactance This impedance drops very rapidly as the frequency is raised and increases input-circuit loading. In fact, the input impedance may become low enough at very high radio frequencies to affect appreciably the gain and selectivity of a preceding stage. Tubes such as the Acom* types have been developed to have low input capacitances, low electron transit time and low lead inductance so that their input impedance is high even at the ultra-high radio frequencies.

A super-control amplifier tube is a modified construction of a pentode or a tetrode type and is designed to reduce modulation-distortion and cross-modulation in radio-frequency stages. Cross-modulation is the effect produced in a radio receiver by an interfering station "riding through" on the carrier of the station to which the receiver is tuned. Modulation-distortion is a distortion of the modulated carrier and appears as audio-frequency distortion in the output. This effect is produced by a radio-frequency amplifier stage operating on an excessively curved

· Registered Trademerk
characteristic when the grid bias has been increased to reduce volume. The offending stage for cross-modulation is usually the first radio-frequency amplifier, while for modulation-distortion, the cause is usually the last intermediate-frequency stage.

The characteristics of super-control types are such as to enable the tube to handle both large and small input signals with minimum distortion over a wide range A cross-section of the structure of a 6K7, a typical super-control pentode, is shown in Fig. 16. The super-control action is due to the structure of the grid which provides a variation in amplification factor with change in grid bias The grid is wound with coarse spacing at the middle and with close spacing at the ends When weak signals and low grid bias are applied to the tube, the effect of the non-uniform turn spacing of the grid on cathode emission and tube characteristics is essentially the same as for uniform spacing. As the grid bias is made more negative to handle larger input signals the electron flow from the sections of the cathode enclosed by the ends of the grid is cut off. The plate current and other tube characteristics are then dependent on the electron flow through the coarse section of the grid. This action changes the gain of the tube so that large signals may be handled with minimum distortion due to cross-modulation and modulation distortion Fig 17 shows a typical plate-current vs. grid-voltage curve for a super-control type compared with the curve for a type having a uniformly spaced grid It will be noted that while the curves are similar at small grid-bias voltages. The plate current of the super-control tube drops quite slowly with large values of bias voltage. This slow change makes it possible for the tube to handle large signals satisfactorily. Since super-control types can accommodate large and small signals, they are particularly suitable for use in sets having automatic volume control Super-control tubes also are known as remote cut-off types.

As a class A power amplifier, a radio tube is used in the output stage of radio receivers to supply relatively large amounts of power to the loudspeaker. For this application, large power output is of much greater importance than high-voltage amplification, so that gain possibilities are sacrificed in the design of power tubes to obtain power-handling capability. Power tubes of the triode type in class A service are characterized by low power sensitivity, low plate-power efficiency, and low distortion. Power tubes of the pentode type are characterized by high power sensitivity, high plate-power efficiency, and relatively high distortion. Beam power tubes such as the 6L6 have a still higher power sensitivity and efficiency and have a higher power output capability than triode or conventional pentode types.

A class A power amplifier is also used as a driver to supply power to a class AB or a class B output stage. It is usually advisable to use a triode type, rather than a pentode, in a driver stage because of the lower distortion of the triode.

322

Either push-pull of parallel operation of power tubes may be employed with class A amplifiers to obtain increased output. The parallel connection (Fig. 18) provides twice the output of a single tube with the same value of grid-signal voltage. The push-pull connection (Fig. 19) requires twice the input-signal voltage, but has, in addition to an increase in power, a number of important advantages.over single-tube operation. Distortion due to even-order harmonics and hum due to plate-supply-voltage fluctuations are either eliminated or decidedly reduced through cancellation. Since distortion is less than for single-tube operation, appreciably more than twice single-tube output can be obtained by decreasing the load resistance. Should oscillations occur in the push-pull or parallel stages, they can often be eliminated by connecting a non-inductive resistor of approximately 500 ohms in series with beach grid lead at the tube socket.

Operation of power tubes so that the grids run-positive is inadvisable except under conditions such as are discussed later in this section for class AB and class B amplifiers.

Power output for triodes as single-tube class A amplifiers can be-calculated without serious error from the plate family of curves by assuming a resistance load. The proper plate current, grid bias, and optimum load resistance as well as the per cent second-harmonic distortion, can also be determined The calculations are made graphically and are illustrated by Fig. 20 for given conditions. The procedure is as follows: Draw a straight line XY through the points P and X on the plate family of curves. P is known as the zero-signal bias point and may readily be located by determining the zero-signal bias. Ece, from the following formula

Zero signal bias (P) = $\frac{0.68 \times E_s}{100}$

where Eb is the chosen value of d-c plate voltage at which the tube is to be operated and μ is the amplification factor of the tube X is a point on the d-c bias curve at zero volts and is determined by the value of the maximum-signal plate current. I max., which is equal to twice the zero-signal plate current, or 21o. In the case of filament types of tubes, the calculations are given on the basis of a d-c operated filament. When, however the filament is a-c operated the calculated value of d-c bias should be increased by approximately one half the filament-voltage rating of the tube.

Line XY is known as the load resistance line. Its slope corresponds to the value of the load resistance. The load resistance in ohms is equal to (E max.-E min.) divided by (I max.-I min.), where E is in volts and I in amperes.

For power output calculations. it is assumed that the peak alternating grid voltage is sufficient (1) to swing the grid from the zero-signal bias value to zero bias on the positive swing and (2) to a value twice the zero-signal bias value on the negative swing. During the positive swing, the plate voltage and plate current reach values of E min. and I max., during the negative swing, they reach values of E max. and I min. Since power is the product of voltage and current, the average power output, as indicated by a wattmeter, is given by

Power output = (I max. - I min.) (E max. - E min.)

where E is in volts, I in amperes, and power output in watts.

In the output of a power amplifier triode, some distortion is present. This distortion is predominately second-harmonic in single-tube amplifiers. The percentage of second-harmonic distortion may be calculated by the following formula:

% 2nd harmonic distortion =
$$\frac{I \max + I \min}{I \max 2} - I_{\bullet} \times 100$$

where Io is the zero-signal plate current in amperes.

Example: Determine the load resistance and undistorted power output.0.1 a triode operated at 250 volts on the plate, given its amplification factor of 3.5 and its plate characteristics curves as shown in Fig. 20.

Procedure: Draw the load line XY through the operating point (P) and the zero d-c grid bias point (X)

$$P = \frac{0.68 \times 250}{3.5}$$
, or -48.5 volts

X = 2 × 0.0335, or 0.067 ampere

By substituting the curve values in the power output formula, we find

Power output = $\frac{(0.067 - 0.006)(357 - 118)}{1.8 \text{ watta}} = 1.8 \text{ watta}$

The resistance of the load line XY is

$$\frac{357 - 118}{0.067 - 0.006}$$
, or 3920 ohms

If now, the values from the curves are substituted in the distortion formula, we have

2nd harmonic distortion = $\frac{0.067 + 0.008}{2} = \frac{0.0335}{0.067 - 0.006} \times 100 = 4.9\%$

It is customary to make the selection of load resistance such that the distortion as calculated from the above equation does not exceed 5 per cent. When the method shown above is used to determine the above of the load resistance line. 2nd harmonic distortion in the output of a trigde power amplifier is generally less than 5 per cent. Ordinarily, the plate load resistance for a single-tube amplifier is approximately equal to twice the plate resistance.

Fig. 21

Power output for triodes in push-pull power amplifiers may be determined by means of the plate family, given Eo as the desired operating plate voltage. The method is to erect a vertical line at E = 0.6 Eo (see Fig. 21), intersecting the Ec = 0 curve 'at the point I max. This establishes I max , Then,

Power output = $\frac{I \max \times Eo}{5}$

If I max. is expressed in amperes and Eo in volts, power output is in watts.

Fig. 21 illustrates the application of this method to the case of two type 45's operated at Eo = 250 volts

Power output =
$$\frac{0.096 \times 250}{5}$$
 = 4.8 watts

The method for determining the proper load resistance for triodes in push-pull is as follows: Draw a load line through I max, and through the Eo point on the zero-current axis. Four times the resistance represented by this load line is the plate-to-plate load for two triodes in a class A push-pull amplifier. From the curves in Fig. 21, we have

Plate-to-plate load = $\frac{20-0.6}{1} \frac{1}{1} \frac$

This simple formula is applicable to all power output triodes, in push-pull. The operating grid-bias voltage can be anywhere between that specified for single-tube operation and that equal to one-half the grid-bias voltage required to produce plate-current cut-off at a plate voltage of 1.4 Eo. Thus, for single-tube operation of the type 45, the grid-bias voltage is recommended as -50 volts for 250 volts on the plate. Plate-current cut-off at 1.4 Eo, or 350 volts, occurs at -110 volts on the grid. One-half of this value is -55 volts, which is the most negative value permissible without departing from class A conditions. Operation beyond this point will be accompanied by rectification and will no longer be-representative of a class A amplifier

Power output for pen-tode and for beam power tubes as class A amplifiers can be calculated in much the same way as for triodes The calculations can be made graphically from a special plate family, as illustrated in Fig 22 From a point A just above the knee of the zerobias curve, draw arbitrarily selected load lines to the zero plate-current axis. These lines should be on both sides of the operating point P whose position is determined by the desired operating plate voltage. Eo. and one half the maximum-signal plate current. Along any load line, say AA1.

measure the distance AO_1 . On the same line, lay off any equal distance O_1A_1 . For optimum operation, the change in bias from A to O_1 should nearly equal the change in bias from O_1 to A_1 . If this condition cannot be met with one line, then another line should be selected. When the most satisfactory line has been chosen, its resistance may then be determined by the following formula

Load resistance (Rp) =
$$\frac{E \max - E \min}{I \max - I \min}$$

The value of Rp may then be substituted in the following formula for calculating power output

Power output =
$$\frac{[I \text{ max.} - I \text{ min } + 1.41 (Ix - Iy)]^2 \text{ Rp}}{32}$$

For both of these formulas, if I is in amperes and E in volts, R_p is in ohms and power output is in watts

Calculations for distortion may be made by means of the following formulas The terms used have already been defined

$$\% 2nd harmonic distortion = \frac{1 \max + 1 \min - 2 \log 1}{1 \max - 1 \min + 1 4l (Ix - Iy)} \times 100$$

% 3rd harmonic distortion = $\frac{1}{1} \frac{\text{max.} - 1}{1} \frac{\text{min.} - 1.41}{1} \frac{(\text{Ix} - \text{Iy})}{(\text{Ix} - 1)} \times 100$

Total (2nd and 3rd) harmonic distortion = 1 (% 2nd har dist.)3 + (% 3rd har dist.)2

The conversion curves given in Fig. 23 apply to radio tubes in general but are particularly useful for power tubes. These curves can be used for calculating approximate operating conditions for a plate voltage which is not included in the published data on operating conditions. For instance, suppose it is desired to operate two 6L6's in class A₁ push-pull, fixed bias, with a plate voltage of 200 volts. The nearest published operating conditions for this class of service are for a plate voltage of 250 volts. The operating conditions for the new plate voltage can be determined as follows: First compute the ratio of the new plate voltage to the plate voltage of the published data. In the example this ratio is 200/250 = 0.8. This figure is the Voltage Conversion Factor, Fe. Multiply by this factor to obtain the new values of grid bias and screen voltage. This gives a grid bias of $-16 \times 0.8 = -12.8$ volts, and a screen voltage of '250 $\times 0.8 = 200$ volts for the new conditions

Fig. 23

To obtain the rest of the new conditions, multiply the published values by factors shown on the chart as corresponding to a voltage conversion factor of 0.8. In this chart,

Fi applies to plate current and to screen current,

- Fp applies to power output,
- Fr applies to load resistance and plate resistance,
- Fgm applies to transconductance.

Thus, to find the power output for the new conditions, determine the value of F_P for a voltage conversion factor of 0.8. The chart shows that this value of F_P is 0.6. Multiplying the published value of power output by 0.6. the power output for the new conditions is $14.5 \times 0.6 = 8.7$ watts.

A class, AB power amplifier employs two tubes connected in push-pull with a higher negative grid bias than is used in a class A stage. With this higher negative bias, the plate and screen voltages can usually be made higher than for class A because the increased negative bias holds plate current within the limit of the tube's plate dissipation rating. As a result of these higher voltages, more power output can be obtained from class AB operation.

Class AB amplifiers are subdivided into class AB, and class AB. In class AB, there is no flow of grid current. That is, the peak signal voltage applied to each grid is not greater than the negative grid-bias voltage. The grids therefore are not driven to a positive potential and do not draw grid current. In class AB, the peak signal voltage is greater than the bias so that the grids are driven positive and draw grid current.

Because of the flow of grid current in a class AB₂ stage there is a loss of power in the grid circuit. The sum of this loss and the loss in the input transformer is the total driving power required by the grid circuit. The driver stage should be capable of a power output considerably larger than this required power in order that distortion introduced in the grid circuit be kept low. The input transformer used in a class AB₂ amplifier usually has a step-down turns ratio.

Because of the large fluctuations of plate current in a class AB₁ stage, it is important that the power supply should have good regulation. Otherwise the fluctuations in plate current cause fluctuations in the voltage output of the power supply, with the result that power output is decreased and distortion is increased. To obtain satisfactory regulation it is usually advisable to use a choke-input filter. It is sometimes advisable to use a mercury-vapor rectifier tube rather than a vacuum type because of the better regulation of the mercury-vapor type. In all cases, the resistance of the filter chokes and power transformer should be as low as possible.

A class B power amplifier employs two tubes connected in push-pull, so biased that plate current is almost zero when no signal voltage is applied to the grids Because of this low value of no-signal plate current, class B amplification has the same advantage as class AB, that large power output can be obtained without excessive plate dissipation. The difference between class B and class AB is that, in class B, plate current is cut off for a larger portion of the negative grid swing.

There are several tube types designed especially for class B amplification. The characteristic common to all these types is high amplification factor. With this high amplification factor, plate current is small when grid voltage is zero. These tubes, therefore, can be operated in class B at a bias of zero volts so that a bias supply is not required A number of the class B amplifier tube types consist of two triode units mounted in one tube. The two triode units can be connected in push-pull so that only one tube is required for a class B stage. Examples of class B twin triode types are the 6N7 6A6, and 1G6-G.

Because a class B amplifier is usually operated at zero bias, each grid is at a positive potential during the positive half-cycle of its signal swing and consequently draws considerable grid current There is, therefore, a loss of power in the grid circuit. This imposes the same requirement on the driver stage as in a class AB, stage, that is, the driver should be capable of considerably more power output than the power required for the class B grid circuit in order that distortion be low The unterstage transformer between the driver and class B stage usually has a step-down turns ratio

The fluctuations in plate current in a class B stage are large so that it is important that the power supply have good regulation. The discussion of the power supply for a class AB, stage therefore, also applies to the power supply for a class B amplifier

An inverse-feedback circuit, sometimes called a degenerative circuit, is one in which a portion of the output voltage of a tube is applied to the input of the same or a preceding tube in opposite phase to the signal applied to the tube. Two important advantages of feedback are: (1) reduced distortion from each stage included in the feedback circuit and (2) reduction in the variations in gain due to changes in line voltage, possible differences between tubes of the same type, or variations in the values of circuit constants included in the feedback circuit.

Inverse feedback is used in audio amplifiers to reduce distortion in the output stage where the load impedance on the tube is a loudspeaker. Because the impedance of a loudspeaker is not constant for all audio frequencies, the load impedance on the output tube varies with frequency When the output tube is a pentode or beam power tube having high plate resistance, this variation in plate load impedance can, if not corrected, produce considerable frequency distortion. Such frequency distortion can be reduced by means of inverse feedback. Inverse feedback circuits are of the constant voltage type and the constant-current type.

The application of the constant voltage type of inverse feedback to a power output stage using a single beam power tube is illustrated by Fig 24. In this circuit, R_i , R_a , and C are connected across the output of the 6L6 as a voltage divider. The secondary of the grid-input transformer is returned to a point on this voltage divider. Condenser C blocks the d-c plate voltage from the grid. However, a portion of the tube's a-f output voltage, approximately equal to the output voltage multiplied by the fraction $R_d/(R_i + R_b)$, is applied

to the grid. There results a decrease in distortion which can be explained by the curves of Fig. 25

Consider first the amplifier without the use of inverse feedback. Suppose that when a signal voltage e, is applied to the grid the a-f plate current i', has an irregularity in its positive half-cycle. This irregularity represents a departure from the waveform of the input signal and is, therefore, distortion. For this plate-current waveform, the a-f plate voltage has a waveform shown by e, p. The plate-voltage waveform is inverted compared to the plate-current waveform because a platecurrent increase produces an increase in the drop across the plate load. The voltage at the plate is the difference between the drop across the load and the supply voltage; thus, when plate current goes up, plate-voltage goes down when plate current goes down, plate voltage goes up.

Fig. 25

Now suppose that inverse feedback is applied to the amplifier. The distortion irregularity in plate current is corrected in the following manner With an inverse feedback arrangement, the voltage feed back to the grid has the same waveform and phase as the plate voltage, but is smaller in magnitude. Hence, with a plate voltage of waveform shown by $e_{\rm pl}$, the feedback voltage appearing on the grid is as shown by $e'_{\rm pl}$. This voltage applied to the grid produces a component of plate current $i'_{\rm pl}$. It is evident that the irregularity in the waveform of this component of plate current would act to cancel the original irregularity and thus reduce distortion.

After the correction of distortion has been applied by inverse feedback, the relations are as shown in the curve for $i_{\rm b}$. The dotted curve shown by $i_{\rm pt}$ is the component of plate current due to the feedback voltage on the grid. The dotted curve shown by i'_p is the component of plate current due to the signal voltage on the grid. The algebraic sum of these two components gives the resultant plate current shown by the solid curve of $i_{\rm p}$. Since i , is the plate current that would flow without inverse feedback, it can be seen that the application of inverse feedback has reduced the irregularity in the output current. In this mainter inverse feedback acts to correct any component of plate current that does not correspond to the input signal voltage, and thus reduces distortion

From the curve for i_p , it can be seen that, besides reducing distortion inverse feedback also reduces the amplitude of the output current. Consequently, when inverse feedback is applied to an amplifier there is a decrease in power output as well as a decrease in distortion. However, by means of an increase in signal voltage, the power output can be brought back to its full value. Hence, the application of inverse feedback to an amplifier requires that more driving voltage be applied to obtain full power output but this output is obtained with less distortion.

Inverse feedback may also be applied to resistance-coupled stages as shown in Fig. 26. The circuit is conventional except that a feedback resistor, R_a , is connected between the plates of tubes T_1 and T_2 . The output signal voltage of T_1 and a portion of the output signal voltage of T_2 appears across R_2 . Because the distortion generated in the plate circuit of T_2 is applied to its grid out of plase with the input signal, the distortion in the output of T_2 is comparatively low. With sufficient inverse feedback of the constant-voltage type in a power-output stage, it is not necessary to employ a network of resistance and capacitance in the

output circuit to reduce response at high audio fregencies. Inverse feedback circuits can also be applied to push-pull class A and class ABi, amplifiers. When the circult in Fig. 24 is used in push-pull, the input transformer must have a separate secondary for each grid. Inverse feedback is not recommended for use in amplifiers drawing grid power because of the resistance introduced in the grid circuit.

Constant-current inverse feedback is usually obtained by omitting the by-pass condenser across a cathode resistor. This method decreases the gain and the distortion but increases the plate resistance of the tube. When the plate resistance of an output tube is increased, the output voltage rises at the resonant frequency of the loudspeaker and accentuates hang-over effects.

Inverse feedback is not generally ap-

plied to a triode power amplifier such as the 2A3 because the variation in speaker impedance with frequency does not produce much distortion in a triode stage having low plate resistance. It is some-times applied in a pentode stage but is not always convenient. As has been shown, when inverse feedback is used in an amplifier, the driving voltage must be increased when inverse reconack is used in an amplifier, the driving voitage must be increased in order to give full power output. When inverse feedback is used with a pentode, the total driving voltage required for full power output may be inconveniently large. Because a beam power tube gives full power output on a comparatively small driving voltage, inverse feedback is especially applicable to beam power tubes. tubes. By means of inverse feedback, the high efficiency and high power output of beam power tubes can be combined with freedom from the effects of varying speaker impedance

A corrective filter can be used to unprove the frequency characteristic of an output stage, using a beam power tube or a pentode, when inverse feedback is not applicable. The filter consists of a resistor and a condenser connected in series across the primary of the output transformer Connected in this way the filter is in parallel with the plate-load impedance reflected from the voice-coil by the output transformer. The magnitude of this reflected impedance increases with increasing frequency in the middle and upper audio range. The impedance of the filter, however, decreases with increasing frequency. It follows that by use of the proper values for the resistance and the capacitance in the filter, the effective load impedance on the output tubes can be made practically constant for all frequencies in the middle and upper audio range. The result is an improvement in the frequency characteristic of the output stage

The resistance to be used in the filter for a push-pull stage is 1.3 times the recommended plate-to-plate load resistance; or, for a single-tube stage, is 1.3 times the recommended plate load resistance The capacitance in the filter should have a value such that the voltage gain of the output stage at a frequency of 1000 cycles or higher is equal to the voltage gain at 400 cycles. A method of determining the proper value of capacitance for the filter is to make two measurements on the

output voltage across the primary of the output transformer: first when a 400-cycle signal is applied to the input, and second. when a 1000-cycle signal of the same voltage as the 400-cycle signal is applied to the input. The correct value of capacitance is the one which gives equal output voltages for the two signal inputs In practice, this value is usually found to be on the order of 0.05 41

A volume expander can be used in a phonograph amplifier to make more natural the reproduction of music which has a very large volume range. For instance, in the music of a symphony orchestra the sound intensity of the loud passages is very much higher than that of the soft passages. When this music is recorded, it is not feasible to make the ratio of maximum amplitude to minimum amplitude as large on the record as it is in the original music. The recording process is therefore monitored so that the volume range of the original is compressed on the record. To compensate for this compression, a volume-expander amplifier has a variable gain which is greater for a high-amplitude signal than for a low-amplitude signal. The volume expander therefore amplifies loud passages more than soft passages and thus can restore to the music reproduced from the record the volume range of the original.

A volume expander circuit is shown in Fig. 27 The action of this circuit depends on the fact that the gain of the 6L7 as an audio amplifier can be varied by variation of the bias on the No. 3 grid. When the bias on the No. 3 grid is made less negative, the gain of the 6L7 increases. In the circuit, the signal to be amplified is applied to the No. 1 grid of the 6L7 and is amplified by the 6L7. The signal is also applied to the grid of the 6C5, is amplified by the 6L7. The signal is applied to the grid of the 6C5, as amplified by the 6C5, and is rectified by the 6H6. The rectified voltage developed across R8, the load resistor of the 6H6, is applied as a positive bias voltage to the No. 3 grid of the 6L7. Then, when the bias on the No. 3 grid of the 6L7 is made less negative. Because this increases the gain of the 6L7, the gain of the amplifier increases with increase in signal amplitude and thus produces volume expansion of the signal.

The No. 1 grid of the 6L7 is a variable-mu grid and therefore will produce distortion if the input signal voltage is too large. For that reason, the signal input to the 6L7 should not exceed a peak value of 1 volt. This value is of the same order as the voltage obtainable from the usual magnetic phonograph pick-up. The no-signal bias voltage on the No. 3 grid is controlled by adjustment of contact P. This contact should be adjusted initially to give a no-signal plate current of 0.15 milliampere in the 6L7. No further adjustment of contact P is required if the same 6L7 is always used. If it is desired to delay, volume expansion until the signal input reaches a certain amplitude, the delay voltage can be inserted as a negative bias on the 6H6 plates at the point marked X in the diagram.

Another circuit using volume expansion is shown in CIRCUIT SECTION. This circuit can also be used to provide volume compression for microphone operation. Volume compression prevents overloading and blasting and compensates for differences in voice level produced by movements of the speaker at the microphone. In this circuit the 6H6 is connected as a voltage doubler. The d-c output is applied across potentiometer R_{14} . The arm and one side of R_{18} is connected to the d.p.d.t. switch S₁ to permit reversing of the polarity of the voltage taken from R_{14} . The amount of d-c voltage across R_{14} is dependent on the average signal level. When the level tends to increase, the voltage taken from R_{14} is applied in series with the control-bias of the master mixer tube. When the switch is set to "expand." the voltage becomes opposite in polarity to the bias of the tube. This lowers the bias and increases the amplification factor of the tube. When the switch is set to "compress," the two voltages are additive The negative bias is, therefore. increased and the amplification factor is decreased.

A phase inverter is a circuit used to provide resistance coupling between the output of a single-tube stage and the input of a push-pull stage. The necessity for a phase inverter arises because the signal-voltage inputs to the grids of a pushpull stage must be 180 degrees out of phase and approximately equal in amplitude with respect to each other. Thus, when the signal voltage input to a push-pull stage swigs the control grid of one tube in a positive direction, it should swing the other grid in a negative direction by a similar amount. With transformer coupling between stages, the out-of-phase input voltage to the push-pull stage is supplied by means of the center-tapped secondary with resistance coupling, the out-of-phase input voltage is obtained by means of the inverter action of a tube

Fig. 28 shows a push-pull power amplifier, resistance-coupled by means of a phase-inverter circuit to a single-stage triode T.. Phase inversion in this circuit

is provided by triode T_3 . The output voltage of T_1 is applied to the grid of T_3 . A portion of the output voltage of T_1 is also applied through the resistors R_1 and R_3 to the grid of T_4 . The output voltage of T_1 is applied to the grid of T_4 . When the output voltage of T_1 swings in the

positive direction, the plate current of T₁ increases. This action inof T₁ increases. creases the voltage drop across the plate resistor R, and swings the plate of T: in the negative direction. Thus, when the output voltage of T₁ swings positive, the output voltage of T₁ swings negative and is, therefore, 180° out of phase with the output voltage of T1. In order to obtain equal voltages at E, and Eb, the signal applied to the grid of T1 should be less than the voltage at Eb in the ratio of the voltage gain of T₂. Under the conditions where a twin-type tube or two tubes hav-

ing the same characteristics are used at T_1 and T_2 , R_4 should be equal to the sum of R_4 and R_6 . The ratio of R_4 to R_4 plus R_4 should be the same as the voltage gain ratio of T_4 in order to apply the correct value of signal voltage to T_2 . The value of R_4 is, therefore, equal to R_4 divided by the voltage gain of T_2 ; R_4 is equal to R_4 minus R_6 .

Values of R_1 , R_2 , R_4 plus R_4 , and R_4 may be taken from the chart in the RESISTANCE-COUPLED AMPLIFIER SECTION. In the practical application of this circuit, it is convenient to use a twin-triode tube combining T_1 and T_4 .

RECTIFICATION

The rectifying action of a diode finds an important application in supplying a receiver with d-c power from an a-c line. A typical arrangement for this application includes a rectifier tube, a filter, and a voltage divider. The rectifying action of the tube is explained briefly under DIODES, page 312 The function of a filter is to smooth out the ripple of the tube output, as indicated in Fig 29. The action of the filter is explained on page 347 The voltage divider is used to cut down the output voltage to the values required by the plates, screens, and grids of the tubes in the receiver.

Fig. 29

A half-wave rectifier and a full-wave rectifier circuit are shown in Fig. 30. In the half-wave circuit, current flows through the rectifier tube to the filter on every other half-cycle of the a-c input voltage when the plate is positive with respect to the cathode. In the full-wave circuit, current flows to the filter on every half-cycle, through plate No. 1 on one half-cycle when plate No. 1 is positive with respect to the cathode, and through plate No. 2 on the next half-cycle when plate No. 2 is positive with respect to the cathode. Because the current flow to the filter is more uniform in the full-wave circuit than in the half-wave circuit, the output of the full-wave circuit requires less filtering.

Parallel operation of rectifier tubes permits of obtaining correspondingly increased output current over that obtainable with the use of one tube. For example, when two full-wave rectifier tubes are connected in parallel, the plates of each tube are connected together and each tube acts as a half-wave rectifier. The allowable voltage and load conditions per tube are the same as for full-wave

service but the total load handling capability of the complete rectifier is approximately doubled. When mercury-vapor rectifier tubes are connected in parallel, a stabilizing resistor of 50 to 100 ohms should be connected in series with each plate lead in order that each tube will carry an equal share of the load. The value of the resistor to be used will depend on the amount of plate current that passes through the rectifier. Low plate current requires a high value, high plate current, a low value. When the plates of mercury-vapor rectifier tubes are connected in parallel, the corresponding filament leads should be similarly connected. Otherwise the tube drops will be considerably unbalanced and larger stabilizing resistors will be required. Two or more high-vacuum rectifier tubes can also be connected in parallel to give correspondingly higher output current and, as a result, of paralleling their internal resistances, give somewhat increased voltage output. With highvacuum types stabilizing resistors may or may not be necessary depending on the tube type and the curcuit.

A voltage-doubler circuit of simple form is shown in Fig. 31. The circuit derives its name from the fact that its d-c voltage output can be as high as twice the peak

value of a-c input. Basically, a voltage doubler is a rectifier circuit arranged so that the output voltages of two half-wave rectifiers are in series. The action of a voltage doubler is briefly as follows. On the positive half-cycle of the a-c input, that is, when the upper side of the a-c input line is positive with respect to the lower side, the upper diode passes current and feeds a positive charge into the upper condenser. As positive charge accumulates on the upper plate of the condenser. On the next half-cycle of

the a-c input, when the upper side of the line is negative with respect to the lower side, the lower diode passes current so that a negative voltage builds up across the lower condenser. As long as no current is drawn at the output terminals from the condensers, each condenser can charge up to a voltage of magnitude E, the peak value of the a-c input. It can be seen from the diagram that with a voltage of + zeo noise condenser and -E on the other, the total voltage across the condensers is 2E. Thus the voltage doubler supplies a no-load d-c output voltage twice as large as the peak a-c input voltage. When current is drawn at the output terminals by the load, the output voltage drops below 2E by an amount that depends on the magnitude of the load current and the capacitance of the condensers. The arrangement shown in Fig. 31 is called a full-wave voltage doubler because each rectifier passes current to the load on each half of the a-c input cycle.

Two rectifier types especially designed for use as voltage doublers are the metal 25Z6 and the glass 25Z5. These tubes combine two separate diodes in one As voltage doublers, the tubes are used in "transformerless" receivers. In these receivers the heaters of all tubes in the set are connected in senes with a

voltage-dropping resistor across the line. The connections for the heater supply and the voltage-doubling circuit are shown in Figs. 32 and 33

With the full-wave voltage-doubler circuit in Fig. 32, it will be noted that the d-c load circuit can not be connected to ground or to one side of the a-c supply line. This presents certain disadvantages when the heaters of all the tubes in the set are connected in series with a resistance across the a-c line. Such a circuit arrangement may cause hum because of the high a-c potential between the heaters and cathodes of the tubes. The 'circuit in Fig. 33 overcomes this difficulty by making one side of the a-c line common with the negative side of the d-c load circuit. In this circuit, one half of the tube is used to charge a condenser which, on the following half cycle, discharges in series with the line voltage through the other half of the tube. This circuit is called a half-wave voltage doubler because rectified current flows to the load only on alternate halves of the a-c input cycle. The voltage regulation of this arrangement is somewhat poorer than that of the full-wave voltage doubler

DETECTION

When speech or music is transmitted from a radio station, the station radiates a radio-frequency wave whose amplitude varies in accordance with the audiofrequency signal being transmitted The r-f wave is said to be modulated by the a-f wave The effect of modulation on the waveform of the r-f wave is shown in Fig 34

In the receiver it is desired to reproduce the original a-f modulating wave from the modulating r-f wave. In other words, it is desired to demodulate the r-f wave. The receiver stage which performs this demodulation is called the demodulator or detector stage. There are three different detector circuits in general use, the diode detector, the grid-bias detector, and the grid-leak detector. These detector circuits are alike in that they eliminate, either partially or completely, alternate half-cycles of the r-f wave. With the alternate half-cycles eliminated, the audio variations of the other half of the r-f wave can be amplified to drive a loudspeaker or headphones.

A diode-detector circuit is shown in Fig. 35 The action of this circuit when a modulated r-f wave is applied is illustrated by Fig. 36. The r-f voltage applied to the circuit is shown in light line; the output voltage across condenser C is shown in heavy line Between points (a) and (b) on the first positive half-cycle of the applied r-f voltage. condenser C charges up to the peak value of the r-f voltage.

Then as the applied r-l voltage falls away from its peak value, the condenser holds the cathode at a potential more positive than the voltage applied to the anode. The condenser thus temporarily cuts off current through the diode. While the diode current is cut off, the condenser discharges from (b) to (c) through the diode load resistor R. When the r-l voltage on the anode rises high enough to exceed the potential at which the condenser holds the cathode; current flows again and

the condenser charges up to the peak value of the second positive half-cycle at (d) In this way, the voltage across the condenser follows the peak value of the applied r-f voltage and reproduces the a-f modulation. The curve for voltage across the condenser, as drawn in Fig 36, is somewhat jagged. However, this jaggedness, which represents an r-f component in the voltage across the condenser, is exaggerated in the drawing. In an actual circuit the r-f component of the voltage across the condenser is negligible. Hence, when the voltage across the condenser is amplified, the output of the amplifier reproduces the speech or music originating at the transmitting station.

Another way of understanding the action of a diode detector is to consider the circuit as a half-wave rectifier When the r-f signal on the plate swings positive, the tube conducts and the rectified current flows through the load resistance R Because the d-c output voltage of a rectifier depends on the voltage of the a-c input, the d-c voltage across C varies in accordance with the amplitude of the r-f carrier and thus reproduces the a-f signal. Condenser C should be large enough to smooth out r-f or i-f variations but should not be so large as to affect the audio variations. Two diodes can be connected in a circuit similar to a full-wave rectifier to give full-wave detection. However, in practice, the advantages of this connection generally do not justify the extra circuit complication.

The diode method of detection has the advantage over other methods in that it produces less distortion. The reason is that its dynamic characteristic can be made more linear than that of other detecfors. It has the disadvantages that it does not amplify the signal, and that it draws current from the input circuit and therefore reduces the selectivity of the input circuit. However, because the diode method of detection produces less distortion and because it permits the use of simple avc circuits without the necessity for an additional voltage supply, the diode method of detection is most widely used in broadcast receivers.

A typical diode-detector circuit using a duplex-diode triode tube is shown in Fig. 37. Both diodes are connected together. R₁ is the diode load resistor. A

portion of the a-f voltage developed across this resistor is applied to the triode grid through the volume control R_s . In a typical circuit, resistor R_t may be tapped so that five-sixths of the total a-f voltage across R_t is applied to the volume control

This tapped connection reduces the a-f voltage output of the detector curcuit slightly but it reduces, audio distortion and improves the r-f filtering. D-c bias for the triode section is provided by the cathode-bias resistor R, and the audio by-pass condenser C. The function of condenser C₁ is to block the d-c bias of the cathode from the grid. The function of condenser C₁ is to by-pass any r-f voltage on the grid to cathode. A duplex-diode pentode may also be used in this circuit. With a pentode, the a-f output should be resistance-coupled rather than transformer-coupled.

Another diode detector circuit, called a doode-biased circuit, is shown in Fig. 38 In this circuit, the triode grid is connected directly to a tap on the diode load resistor When an r-f signal voltage is applied to the diode, the d-c voltage at the tap supplies bias to the triode grid. When the r-f signal is modulated, the a-f voltage at the tap is applied to the grid and is amplified by the triode. The advantage of this circuit does not employ a condenser between the grid and the diode load resistor, and consequently does not produce as much distortion of a signal having a high percentage of modulation

However, there are restrictions on the use of the diode-biased circuit Because the bias voltage on the triode depends on the average amplitude of the r-f voltage applied to the diode, the average amplitude of the voltage applied to the diode should be constant for all values of signal strength at the antenna. Otherwise there will be different values of bias on the triode grid for different signal strengths and the triode will produce distortion Since there is no bias applied to the diode biased triode when no r-f voltage is applied to the diode, sufficient resistance should be included in the plate circuit of the triode to limit its zero-bias plate current to a safe value' These restrictions mean, in practice, that the receiver should have a separate-channel ave system. With such an ave system, the average amplitude of the signal voltage applied to the diode can be held within very close limits for all values of signal strength at the antenna. The tube used in a diode-biased circuit should be one which operates at a fairly large value of bias voltage. The variations in bias voltage are then a small percentage of the total bias and hence produce small distortion. Tubes taking a fairly large bias voltage are types such as the 6R7 or 1H6-G having a medium-mu triode Tube types having a high-mu triode or a pentode should not be used in a diode-biased circuit.

A grid-bias detector circuit is shown in Fig. 39. In this circuit, the grid is biased almost to cut-off i.e., operated so that the plate/current with zero signal is practically zero. The bias voltage can be obtained from a cathode-bias registor, a C battery or a bleeder tap. Because of the high negative bias, only the positive half cycles of the r-f signal are amplified by the tube. The signal is, therefore, detected in the plate circuit. The advantages of this method of detection are that it amplifies the signal, besides detecting it, and that it does not draw current from the input circuit and therefore does not lower the selectivity of the input circuit

The grid-leak and condenser method, illustrated by Fig. 40, is somewhat more sensitive than the grid-bias method and gives its best results or weak signals. In this circuit, there is no negative d-c bias voltage applied to the grid. Hence, on the positive half-cycles of the r-f signal, current flows from grid to cathode The grid and cathode thus act as a diode detector, with the grid-leak resistor as the diode load resistor and the grid condenser as the r-f by-pass condenser. The voltage across the condenser then reproduces the a-f modulation in the same manner as has been explained for the diode detector. This voltage appears between the grid and cathode and is therefore amplified in the plate circuit. The output voltage thus reproduces the original a-f signal.

In this detector circuit, the use of a high-resistance grid leak increases selectivity and sensitivity. However, improved a-f response and stability are obtained with lower values of grid-leak resistance. This detector circuit has the advantage that it amplifies the signal but has the disadvantage that it draws current from the input circuit and therefore lowers the selectivity of the input circuit.

AUTOMATIC VOLUME CONTROL

The chief purposes of automatic volume control in a receiver are to prevent fluctuations in loudspeaker volume when the signal at the antenna is fading in and out, and to prevent an unpleasant blast of loud volume when the set is tuned from

a weak signal, for which the volume control has been turned up high, to a strong signal. To accomplish these purposes, an automatic volume control circuit regulates the receiver's r-f and i-f gain so that this gain is less for a strong signal than for a weak signal. In this way, when the signal strength at the antenna changes, the avc circuit reduces the resultant change in the voltage output of the lest i-f stage and consequently reduces the change in the speaker's output volume.

The avc circuit reduces the r-f and i-f gain for a strong signal usually by increasing the negative bias of the r-f, i-f, and frequency-mixer stages when the signal increases. A simple avc circuit is shown in Fig. 41. On each positive half-cycle of the signal voltage, when the diode plate is positive with respect to the cathode, the diode passes current. Because of the flow of diode current through R, there is a voltage drop across R, which makes the left end of R, negative with respect to ground. This voltage drop across R_1 is applied, through the filter R_1 and C, as negative bias on the grids of the preceding stages. Then, when the signal strength at the antenna increases, the signal applied to the avc diode increases, the voltage drop across R1 increases, the negative bias voltage applied to the r-f and i-f stages increases, and the gain of the r-f and i-f stages is decreased. Thus the increase in signal strength at the antenna does not produce as much increase in the output of the last i-f stage as it would produce without avc. When the signal strength at the antenna decreases from a previous steady value, the avc circuit acts, of course, in the reverse direction, applying less negative bias, permitting the r-f and i-f gain to increase, and thus reducing the decrease in the signal output of the last i-f stage. In this way, when the signal strength at the antenna changes, the avc circuit acts to prevent change in the output of the last'i-f stage, and thus acts to prevent change in loudspeaker volume.

The filter, C and R₁, prevents the avc voltage from varying at audio frequency. The filter is necessary because the voltage drop across R₁ varies with the modulation of the carrier being received. If avc voltage were taken directly from R₁ without filtering, the audio variations in avc voltage would vary the receiver's gain so as to smooth out the modulation of the carrier. To avoid this effect, the avc voltage is taken from the condenser C. Because of the resistance R₁ in series with C, the condenser C can charge and discharge at only a comparatively slow rate. The avc voltage therefore cannot vary at frequencies

as high as the audio range but can vary at frequencies high enough to compensate for most fading. Thus the filter permits the avc circuit to smooth out variations in signal due to fading, but prevents the circuit from smoothing out audio modulation.

It will be seen that an avc circuit and a diode detector circuit are much alike It is therefore convenient in a receiver to combine the detector and the avc diode in a single stage.

In the circuit shown in Fig. 41, a certain amount of ave negative bias is applied to the preceding stages on a weak signal. Since it may be desirable to maintain the receiver's r-f and i f gain at the maximum possible value for a weak signal, aveircuits are designed in some cases to apply no ave bias until the signal strength ucceeds a certain value. These ave circuits are known as delayed ave, or. dave credits. A dave circuit is shown in Fig. 42. In this circuit, the diode section D, of the 6H6 acts as detector and ave diode. R₁ is the diode load resistor and R₈ and C₂ are the ave filter. Because the cathode of diode D₁ is returned through R₁ and C₂ are the ave filter. Because the cathode of diode D₂ is returned through R₁ and C₂ are the ave filter. Because the cathode of diode D₂ is returned through R₁ and C₂ are the ave filter. Because the cathode of diverse the ave lead at approximately -3 volts to the cathode of cases R₁ des not exceed 3 volts, the ave lead remains at -3 volts. Hence, for signals not strong enough to develop 3 volts across R₁, the bias applied to the controlled tubes stays constant at a value giving high sensitivity. However, when the average amplitude of rectified signal voltage across R₁, exceeds 3 volts, the plate of diode D₃ becomes more negative than the cathode of D₃ and current flow in diode D₄ becomes more negative than the cathode of D₃ and current flow in diode D₄ becomes more negative than the cathode of stages. In this way, the circuit regulates the receiver's gain for strong signals, but permits the gain to stay constant at a maximum value for weak signals.

It can be seen in Fig. 42 that a portion of the -3 volts delay voltage is applied to the plate of the detector diode D_1 , this portion being approximately equal to $R_1/(R_1 + R_2)$ times -3 volts. Hence, with the circuit constants as shown, the detector plate is made negative with respect to its cathode by approximately one-half volt. However, this voltage does not interfere with detection because it is not large enough to prevent current flow in the tube.

TUNING INDICATION WITH ELECTRON-RAY TUBES

Electron-ray tubes are designed to indicate visually by means of a fluorescent target the effects of a change in controlling voltage. They are widely used as tuning indicators in radio receivers. Types such as the 6U5/6G5 and the 6N5 contain

two main parts: (1) a triode which operates as a d-c amplifier and (2) an electron-ray indicator which is located in the bulb as shown in Fig. 43. The target is operated at a positive voltage and therefore attracts electrons from the cathode. When the electrons strike the target they produce a glow on the fluorescent coating of the target. Under these conditions, the target appears as a ring of light.

A ray-control electrode is mounted between the cathode and target. When the potential of this

electrode is less positive than the target, electrons flowing to the target are repelled by the electrostatic field of the electrode, and do not reach that portion of the target behind the electrode. Because the target does not glow where it is shielded from electrons, the control electrode casts a shadow on the glowing target. The extent of this shadow varies from approximately 100° of the target when the control electrode is much more negative than the target to 0° when the control electrode is at approximately the same potential as the target

In the application of the electron-ray tube, the potential of the control electrode is determined by the voltage on the grid of the triode section, as can be seen in Fig. 44. The flow of the triode plate current through resistor R produces a voltage drop which determines the potential of the control electrode. When the voltage of the triode grid changes in the positive direction, plate current increases, the potential of the control electrode goes down because of the increased drop across R, and the shadow angle widens. When the potential of the triode grid changes in the negative direction, the shadow angle narrows

Another type of indicator tube is the 6AF6-G This tube contains only an indicator unit but employs two ray-control electrodes mounted on opposite sides of the cathode and connected to individual base pins. It employs an external d-c amplifier. See Fig 45. Thus, two symmetrically opposite shadow angles may be obtained by connecting the two ray-control electrodes together or two unlike patterns may be obtained by individual connection of each ray-control electrode to its respective amplifier

In radio-receivers, ave voltage is applied to the grid of the d-c amplifier. Since ave voltage is at maximum when the set is tuned to give maximum response to a station, the shadow angle is at minimum when the receiver is tuned to resonance

Fig 46

when the receiver is tuned to resonance with the desired station. The choice between electron-ray tubes depends on the avc characteristic of the receiver. The 6E5 contains a sharp cut-off triode which closes the shadow angle on a comparatively low value of avc voltage. The 6N5 and 6U5/6G5 each have a remote cut-off triode which closes the shadow on a larger value of avc voltage than the 6E5. The 6AF6-G may be used in conjunction with d-c amplifier tubes having either remote or sharp cut-off characteristics

The sensitivity indication of electronray tubes can be increased by using a

separate d-c amplifier to control the action of the ray-control electrode in the tuning indicator tube. This arrangement increases the maximum shadow angle from the usual 100° to approximately 180° A circuit for obtaining wide-angle tuning is shown in Fig. 46

OSCILLATION

As an oscillator, a radio tube can be employed to generate a continuously alternating voltage. In present-day radio broadcast receivers, this application is limited practically to superheterodyne receivers for supplying the heterodyning frequency. Several circuits (represented in Figs. 47 and 48) may be utilized, but they all depend on feeding more energy from the plate circuit to the grid circuit than is required to equal the power loss in the grid circuit. Feed-back may be

produced by electrostatic or electromagnetic coupling between the grid and plate circuits. When sufficient energy is fed back to more than equal the loss in the grid circuit, the tube will oscillate. The action consists of regular surges of power between the plate and the grid circuit at a frequency dependent on the circuit constants of inductance and capacity. By proper choice of these values, the frequency may be adjusted over a very wide range

FREQUENCY CONVERSION

Frequency conversion is used in superheterodyne receivers to change the frequency of the r-1 signal to an intermediate frequency. To perform this change in frequency, a frequency-converting device consisting of an oscillator and a frequency mixer is employed. In such a device, shown diagrammatically in Fig. 49.

two voltages of different frequency, the r-f signal voltage and the voltage generated by the oscillator, are applied to the input of the frequency mixer. These voltages beat, or heterodyne, within the mixer tube to produce a plate current having, in addition to the frequencies of the input voltages, numerous sum and difference frequen-

cies The output circuit of the mixer stage is provided with a tuned circuit which is adjusted to select only one beat frequency.i.e., the frequency equal to the difference between the signal frequency and the oscillator frequency. The selected output frequency is known as the intermediate/frequency, or i.f. The output frequency of the mixer tube is kept constant for all values of signal frequency by tuning the oscillator to the proper frequency.

Important advantages gained in a receiver by the conversion of signal frequency to a fixed intermediate frequency are high selectivity with few tuning stages and a high, as well as stable, overall gain for the receiver.

Three methods of frequency conversion for superheterodyne receivers are of interest. These methods are alike in that they employ a frequency-mixer tube in which plate current is varied at a combination of the signal frequency and the oscillator frequency. These variations in plate current produce across the tuned plate load a voltage of the desired intermediate frequency. The three methods differ in the types of tubes employed and in the means of supplying input voltages to the mixer tube

A method widely used before the availability of tubes especially designed for frequency-conversion service, employs as mixer tube either a triode, a tetrode, or a pentode, in which oscillator voltage and signal voltage are applied to the same grid. In this method, coupling between the oscillator and mixer circuits is obtained by means of inductance or capacitance. The second method employs a tube having an oscillator and frequency mixer combined in the same envelope. In one form of such a tube, coupling between the two units is obtained by means of the electron stream within the tube. One arrangement of the electrodes for this type is shown in Fig. 50. Since five grids are used, the tube is called a pentagrid converter. Grids No. 1, No. 2 and the cathode are connected to an external circuit to act as a triode oscillator. Grid No. 1 is the grid of the oscillator and grid No. 2 is the anode. These and the cathode

can be considered as a composite cathode which supplies to the rest of the tube an electron stream that varies at the oscillator frequency. This varying electron stream is further controlled by the r-f signal voltage on grid No. 4. Thus, the variations in plate current are due to the combination of the oscillator and the signal frequencies. The purpose of grids No. 3 and No. 5. which are connected together within the tube, is to accelerate the electron stream and to shield grid No. 4 electrostatically from the other electrodes. The 6A8 is an example of a pentagrid-converter type.

Pentagrid-converter tubes of this design are good frequency-converting devices at medium frequencies but their performance is better at the lower frequencies than at the high ones. This is because the output of the oscillator drops off as the frequency is raised and because certain undesirable effects produced by interaction between oscillator and signal sections of the tube increase with frequency. To minimize these effects, several of the pentagrid converter tubes are designed so that no electrode functions alone as the oscillator anode. In these tubes, grid No. 1 functions as the oscillator grid, and grid No. 2 is connected within the tube to the screen (grid No. 4). The combined two grids No. 2 and 4 shield the signal grid (grid No. 3) and act as the composite anode of the oscillator inode. Grid No. 5 acts as the suppressor. Converter tubes of this type are designed so that the space charge around the cathode is unaffected by electrons from the signal grid. Furthermore, the electrostatic field of the signal grid also has little effect on the space charges. The result is that r-f voltage on the signal grid produces little effect on the scato de current. There is, therefore, little detuning of the oscillator by ave bias because changes in ave bias produce little change in oscillator transconductance or in the input capacitance of grid No. 1. Examples of the pentagrid converters discussed in this.paragraph are the single-ended types IR5 and 6SA7.

Another method of frequency conversion utilizes a separate oscillator having its grid connected to the No. 1 grid of a mixer hexode. A tube utilizing this construction is the 6K8 and a top view of its electrode arrangement is shown in Fig 51. The cathode, triode grid No. 1, and triode plate form the oscillator unit of the tube.

The cathode, hexode mixer grid (grid No. 1), hexode doublescreen (grids No. 2 and 4), hexode mixer grid (grid No. 3) and hexode plate constitute the mixer unit. The internal shields are connected to the shell of the tube and act as a suppressor for the hexode unit. The action of the 6K8 in converting a radiofrequency signal to an inter-

mediate frequency depends on (1) the generation of a local frequency by the triode unit, (2) the transferring of this frequency to the hexode grid No. 1, and (3) the mixing in the hexode unit of this frequency with that of the r-f signal applied to the hexode grid No. 3. The 6KS is not critical to changes in oscillator-plate voltage or signal-grid bias and, therefore, finds important use in all-wave receivers to minimize frequency-shift effects at the higher frequencies.

The third method of frequency conversion employs a tube particularly designed for short-wave reception. This tube, called a pentagrid mixer, has two independent control grids and is used with a separate oscillator tube. R-F signal voltage is

applied to one of the control grids and oscillator voltage is applied to the other. It follows, therefore, that the variations in plate current are due to the combination of the oscillator and signal frequencies. The arrangement of electrodes in a pentagrid-mixer tube is shown in Fig. 52. The tube contains a heater cathode, five grids, and a plate. Grids No. 1 and 3 are control grids. The r-f signal voltage is applied to grid No. 1. This grid has a remote cut-off characteristic and is suited for control by avc bias voltage. The oscillator voltage is applied to grid No. 3. This grid has a sharp cut-off characteristic and

produces a comparatively large effect on plate current for a small amount of oscillator voltage. Grids No. 2 and 4 are connected together within the tube. They accelerate the electron stream and shield grid No. 3 electrostatically from the other electrodes. Grid No. 5, connected within the tube to the cathode, functions similarly to the suppressor in a pentode. The 6L7 and 6L7-G are pentagrid-mixer tubes.

Radio Tube Installation

The installation of radio tubes requires care if high-quality performance is to be obtained from the associated radio circuits. Installation suggestions and precautions which are generally common to all types of tubes are covered in this section. Careful observance of these suggestions will do much in helping the experimenter and radio technician to obtain the full performance capabilities of radio tubes and circuits.

FILAMENT AND HEATER POWER SUPPLY

The design of radio tubes allows for some variation in the voltage and current supplied to the filament or heater, but most satisfactory, results are obtained from operation at the rated values. When the voltage is low, the temperature of the cathode is below normal, with the result that electron emission is limited. This may cause unsatisfactory operation and reduced tube life. On the other hand, high cathode voltage causes rapid evaporation of cathode material and shortens life. To insure proper tube operation, the filament or heater voltage should be checked at the socket terminals by means of an accurate voltmeter while the receiver is in operation. In the case of series operation of heaters or filaments, correct adjustment can be checked by means of an ammeter in the heater or filament circuit.

The filament or heater voltage supply may be a direct-current source (a battery or a d-c power line) or an alternating-current power line, depending on the type of service and type of tube. Frequently, a resistor (either variable or fixed) is used with a d-c supply to permit compensation for battery voltage variations or to adjust the tube voltage at the socket terminals to the correct value. Ordinarily, a stepdown transformer is used with an a-c supply to provide the proper filament or heater voltage. Receivers intended for operation on both d-c and a-c power lines have the heaters connected in series with a suitable resistor and are supplied directly from the power line. D-c filament or heater operation should be considered on the basis of the source of power In the case of the battery supply for the new 1.4-volt filament and a single dry-cell the filaments of these tubes are designed to operate satisfactorily over the range of voltage-dropping resistor in series with the filament ga a dry-cell. Likewise, no series, resistor is required when the 2-volt filament type tubes are operated from a single storage cell or when the 6.3-volt series are operated from a 6-volt storage battery In the case of dry-battery supply for 2-volt filament tubes, a variable resistor in series with the filament and the battery is required to compensate for battery variations. It is also recommended that an accurate, volt-meter or milliammetre be permanently installed in the receiver to insure operation of the tubes at their rated filament voltage. Turning the set on and off by means of the resistor is used to prevent over-voltage conditions after an off-period, for the voltage of dry-cells. It is well to check initial operating conditions, and thus the resistor value, by means of a voltmeter or ammeter

The filament or heater resistor required when filaments and/or heaters are operated in parallel can be determined easily by a simple formula derived from Ohm's law

> Required resistance (ohms) = supply volts - rated volts of tube. type total rated filament current (amperes)

Thus, if a receiver using three 32's, two 30's, and two 31's is to be operated from dry batteries, the series resistor is equal to 3 volts (the voltage from two dry cells in series) minus 2 volts (voltage rating for these tubes) divided by 0.56 ampere (the sum of 5×0.060 ampere $+ 2 \times 0.130$ ampere), i.e., approximately 1.8 ohms. Since this resistor should be variable to allow adjustment for battery depreciation, it is advisable to obtain the next larger commercial size, although any value between 2 and 3 ohms will be quite satisfactory. Where much power is dissipated in the resistor, the wattage rating should be sufficiently large to prevent overheating. The power dissipation in watts is equal to the voltage drop in the resistor multiplied by the total filament current in amperes. Thus, for the example above $1 \times 0.56 =$ 0.56 watt. In this case, the value is so small that any commercial rheostat with suitable resistance will be adequate.

For the case where the heaters and/or filaments of several tubes are operated in series, the resistor value is calculated by the following formula, also derived from Ohm's law

Required resistance (ohms) = $\frac{\text{supply volts} - \text{total rated volts of tubes}}{\text{rated amperes of tubes}}$

Thus, if a receiver having one 6SA7, one 6SK7, one 6B8, one 25A6, and one 25Z6 is to be operated from a 117-volt power line, the series resistor is equal to 117 volts (the supply voltage) minus 68.9 volts (the sum of 3×6.3 volts $+ 2 \times 25$ volts) divided by 0.3 ampere (current rating of these tubes), i.e., approximately 160 ohms. The wattage dissipation in the resistor will be 117 volts minus 68.9 volts times 0.3 ampere, or approximately 14.4 watts. A resistor having a wattage rating in excess of this value should be chosen.

It will be noted in the example for series operation that all tubes have the same current rating. If it is desired to connect in series tubes having different heateror filament-current, ratings, each tube of the lower rating should have a shunt resistor placed across its heater or filament.terminals to pass the excess current. The value of this shunt resistor can be calculated from the following formula, where tube A is the tube in the series connection having the highest heater current rating and tube B is any tube having a heater current rating lower than tube A.

Heater shunt resistance (ohms), tube B = beater volta, tube B • rated heater amperes, tube A -- rated heater amperes, tube B

For example, if a 6A6 having a 6.3-volt, 0.8-ampere heater is to be operated in a series-heater circuit employing several 6.3-volt tubes having heater ratings of 0.3

ampere the required shunt resistance for each of the latter types would be

Heater shunt resistance =
$$\frac{0.3}{0.8 - 0.3}$$
 or 12.6 ohms.

The value of a series voltage-dropping resistor for a sequence of tubes having one or more shunt resistors should be calculated on the basis of the tube having the highest heater current rating.

When the series-heater connection is used in a-c/d-c receivers, it is usually advisable to arrange the heaters in the circuit so that the tubes most sensitive to hum disturbances are at or near the ground potential of the circuit. This arrangement reduces the amount of a-c voltage between the heaters and cathodes of these tubes and minimizes the hum output of the receiver. The order of heater connection, by tube function, from chassis to the rectifier-cathode side of the a-c line is shown in Fig. 53

Fig. 53

A-c filament or heater operation should be considered on the basis of either a parallel or a series arrangement of filaments and/or heaters. In the case of the parallel arrangement, a step-down transformer is employed. Precautions should be taken to see that the line voltage is the same as that for which the primary of the transformer is designed. The line voltage may be determined by measurement with an a-c voltmeter (0-150 volts).

If the line voltage measures in excess of that for which the transformer is designed, a resistor should be placed in series with the primary to reduce the line voltage to the rated value of the transformer primary. Unless this is done, the excess input voltage will cause proportionally excessive voltage to be applied to the tubes. Any radio tube may be damaged or made inoperative by excessive operating voltages.

If the line voltage is consistently below that for which the primary of the transformer is designed, it may be necessary to install a booster transformer between the a-c outlet and the transformer primary. Before such a transformer is installed, the a-c line fluctuations should be very carefully noted. Some radio sets are equipped with a line-voltage switch which permits adjustment of the power transformer primary to the line voltage. When this switch is properly adjusted, the seriesresistor or booster-transformer method of controlling line voltage is seldom required.

In the case of the series arrangements of filaments and/or heaters, a voltagedropping resistance in series with the heaters and the supply line is usually required. This resistance should be of such value that, for normal line voltage, tubes will operate at their rated heater or filament current. The method for calculating the resistor value is given above.

HEATER-TO-CATHODE CONNECTION

The cathodes of heater-type tubes, when operated from a.c., should be connected either to the mid-tap on the heater-supply winding or to the mid-tap of a 50-ohm (approximate) resistor shunted across the winding. This practice follows the general recommendation that the potential difference between heater and cathode be kept low. In high-gain resistance-coupled circuits, it is suggested that the heater be made 10 volts positive with respect to the cathode in order to prevent emission from taking place from heater to cathode and producing hum. If a large resistor is used between heater and cathode, it should be by-passed by a suitable filter metwork or objectionable hum may develop. The hum is due to the fact that even a minute pulsating leakage current flowing between the heater and cathode will develop a small voltage across any resistance in the circuit. This hum voltage is amplified by succeeding stages. When 6.3-volt heater-cathode types are operated from a storage battery, the cathodes are connected either directly or through biasing resistors to the negative battery terminal When a series-heater arrangement is used, the cathode circuits should be connected either directly or through biasing resistors to the negative side of the d-c plate supply, which is furnished either by the d-c power line or by the a-c power line through a rectifier

PLATE VOLTAGE SUPPLY

The plate voltage for radio tubes is obtained from batterles, devices for rectifying a.c., direct-current power lines, and small local generators. Auto radios have caused the commercial development of a number of devices for obtaining a highvoltage d-c supply either from the car storage-battery or from a generator driven by the car engine.

The maximum plate voltage value for any tube type should not be exceeded if most satisfactory performance is to be obtained. Plate voltage should not be applied to a tube unless the corresponding recommended grid voltage is also supplied to the grid.

It is recommended that the primary circuit of the power transformer be fused to protect the rectifier tube(s), the power transformer, filter condenser, and chokes in case a rectifier tube fails

GRID VOLTAGE SUPPLY

The recommended grid voltages for different operating conditions have been carefully determined to give the most satisfactory performance. Grid voltage may be obtained from a separate C-battery, a tap on the voltage divider of the highvoltage d-c supply, or from the voltage drop across a resistor in the cathode circuit. This last is called the "cathode-bias," or "self-bias" method. In any case, the object is to make the grid negative with respect to the cathode by the specified voltage. When a C battery is used, the negative terminal is connected to the grid return and the positive terminal is connected to the negative filament socket terminal, or to the cathode terminal if the tube is of the heater-cathode type. If the filament is supplied with alternating current, this connection is usually made to the center-tap of a low resistance (20-50 ohms) shunted across the filament terminals. This method reduces hum disturbances caused by the a-c supply. If bias voltages are obtained from the voltage divider of a high-voltage d-c supply, the grid return is connected to a more negative tap than the cathode.

The cathode-biasing method utilizes the voltage drop produced by the cathode current flowing through a resistor connected between the cathode and the negative terminal of the B-supply. See Fig. 54. The cathode current is, of course, equal

to the plate current in the case of a triode, or to the sum of the plate and screen currents in the case of a tetrode, pentode, or beam power tube. Since the voltage drop along the resistance is increasingly negative with respect to the cathode, the required negative grid-bias voltage can be obtained by connecting the grid return to the negative end of the resistance. The size of the resistance for cathode-biasing a single tube can be determined from the following formula:

Resistance (ohms) = $\frac{\text{desired grid-bias voltage } \times 1000}{\text{rated cathode current in milliamperes}}$

Thus, the resistance required to produce 9 volts bias for a triode which operates at 3 milliamperes plate current is $9 \times 1000/3 = 3000$ ohms. If the cathode current of more than one tube passes through the resistor, or if the tube or tubes employ more than three electrodes, the size of the resistor will be determined by the total current.

By-passing of the cathode-bias resistor depends on circuit design requirements. In r-f circuits the cathode resistor should always be by-passed. In a-f circuits the use of an unby-passed resistor will reduce distortion by introducing degeneration into the circuit. However, the use of an unby-passed resistor decreases power sensitivity. When by-passing is used, it is important that the by-pass condenser esuficiently large to have negligible reactance at the lowest frequency to be amplified. In the case of power output tubes of high transconductance such as the beam power tubes, it may be necessary to shunt the bias resistor with a small mica condenser (approximately 0.001 μ f) in order to prevent oscillations. The usual a-f by-pass may or may not be used, depending on whether or not degeneration is desired. In tubes such as the 6AB7/1853 and 6AC7/1852 having a very high value of transconductance, there are appreciable changes of input capacitance and input conductance with plate current. In order to minimize such changes when a tube of this type is used as an r-f or i-f amplifier, a portion of the cathodebias resistor may be left unby-passed.

Grid-bias variation for the r-f and i-f amplifier stages is a convenient and frequently used method for controlling receiver volume. The variable voltage supplied to the grid may be obtained \cdot (1) from a variable cathode resistor as shown in Figs. 55 and 56; (2) from a bleeder circuit by means of a potentiometer as shown in Fig. 57 or (3) from a bleeder circuit in which the bleeder current is varied by a tube used for automatic volume control. The latter circuit is shown in Fig. 1. In all cases it is important that the control be arranged so that at no time will the bias be less than the recommended grid-bias voltage for the particular tubes used. This requirement can be met by providing a fixed stop on the potentiometer, by connecting a fixed cathode resistance in series with the variable resistance, or by connecting a fixed cathode for regulation.

Where receiver gain is controlled by grid-bias variation, it is advisable to have the control voltages extend over a wide range in order to minimize cross-modulation and modulation-distortion. A remote cut-off type of tube should, therefore, be used in the controlled stages

SCREEN VOLTAGE SUPPLY

The positive screen voltage for pentodes and beam power tubes may conveniently be obtained from a high-voltage supply through a series resistor because tubes having suppressor action provide high uniformity of the screen-current characteristic. Fig. 58 shows a pentode with its screen voltage supplied through a series resistor. The positive screen voltage for tetrodes (screen grid tubes) should be obtained from a proper voltage tap or from a potentiometer connected across the B supply. It should not be obtained from a high-voltage supply through a series resistor because of the characteristic screen-current variations in fetrodes. Fig. 59 shows a tetrode with its screen voltage obtained from a potentiometer. It is important to note that the plate voltage for tetrodes or pentodes should be applied before or with the screen voltage. Otherwise, with voltage on the screen only the screen cluster of the cause excessive screen dissipation.

Screen-voltage variation for the r-f. amplifier stages has sometimes been used for volume control in older type receivers. Reduced screen voltage lowers the transconductance of the tube and results in decreased gain per stage. The voltage variation is obtained by means of a potentiometer shunted across the screen voltage supply. See Fig. 59. When the screen voltage is varied, it is essential that the screen voltage never exceed the rating of the tube. This requirement can be met by providing a fixed stop on the potentiometer.

SHIELDING

In high-frequency stages having high gain, the output circuit of each stage must be shielded from the input circuit of that stage. Each high-frequency stage also must be shielded from the other high-frequency stages. Unless shielding is employed, undesired feedback may occur and may produce many harmful effects on receiver performance. To prevent this feedback, it is a widely followed practice to shield separately each unit of the high-frequency stages. For instance, in a superheterodyne receiver, each i-f and r-f coil may be mounted in a separate shield can. Baffle plates may be mounted on the ganged tuning condenser to shield each section of the condenser from the other sections. The oscillator coil may be especially well-shielded by being mounted under the chassis. The shielding precautions required in a receiver depend on the design of the receiver and the hayout of the parts. In all receivers having high-gain high-frequency stages, it is necessary to shield separately each tube in the high-frequency stages. When metal tubes and in particular the single-ended types, are used, complete shielding of each tube is provided by the metal shell which is grounded through its grounding pin at the socket terminal. The grounding connection should be short and heavy.

FILTERS

Feed-back effects also are caused in radio receivers by coupling between stages through common voltage-supply circuits. Filters find an important use in minimizing such effects. They should be placed in voltage-supply leads to each tube in order to return the signal current through a low-impedance path direct to the tube cathode rather than by way of the voltage-supply circuit. Fig. 60 illustrates several forms of filter circuits. Condenser C forms the low-impedance path, while the choke or resistor assists in diverting the signal through the condenser by offering a high-impedance to the power-supply circuit.

The choice between a resistor and a choke depends chiefly upon the permissible d-c voltage drop through the filter In circuits where the current is small (a few milliamperes) resistors are practical: where the current is large, or regulation important, chokes are more suitable.

Fig. 60

The minimum practical size of the condensers may be estimated in most cases by the following rule: The impedance of the condenser at the lowest frequency amplified should not be more than one-fifth of the impedance of the filter choke or resistor at that frequency. Better results will be obtained in special cases if the ratio is not more than one-tenth. Radio-frequency circuits, particularly at high frequencies, require high-quality condensers. Mica condensers are preferable. Where stage shields are employed, filters should be placed within the shield.

Another important application of filters is to smooth the output of a rectifier tube. See RECTIFICATION. A smoothing filter usually consists of condensers and iron-core chokes. In any filter-design problem, the load impedance must be considered as an integral part of the filter because the load is an important factor in filter performance. Smoothing effect is obtained from the chokes because they are in series with the load and offer a high impedance to the ripple voltage. Smoothing effect is obtained from the condensers because they are in parallel with the load and store energy on the voltage peaks: this energy is released on the voltage dips and serves to maintain the voltage at the load substantially constant. Smoothing filters are classified as choke-input or condenser-input according to whether a choke or condenser is placed next to the rectifier tube. See Fig. 61.

Fig. 61

If an input condenser is used, consideration must be given to the instantaneous peak value of the a-c input voltage. This peak value is about 1.4 times the RMS value as measured by an a-c voltmeter. Filter condensers, therefore, especially the input condenser should have a rating high enough to withstand the instantaneous peak value if breakdown is to be avoided. When the input-choke method is used, the available d-c output voltage will be somewhat lower than with the inputcondenser method for a given a-c plate voltage. However, improved regulation together with lower peak current will be obtained.

Mercury-vapor and gas-filled rectifier tubes occasionally produce a form of local interference in radio receivers, through direct radiation or through the power line. This interference is generally identified in the receiver as a broadly tunable 120-cycle buzz (100 cycles for 50-cycle supply line, etc.). It is usually caused by the formation of a steep wave front when plate current within the tube begins to flow on the positive half of each cycle of the a-c supply voltage. There are several ways of eliminating this type of interference. One is to shield the tube. Another is to insert an r-f choke having an inductance of one millihenry or more between each plate and transformer winding and to connect high-voltage, r-f by-pass condensers between the outside ends of the transformer winding and the center tap. See Fig. 62. The r-f chokes should be placed within the shielding of the tube. The r-f by-pass condensers should have a voltage rating high enough to withstand the peak voltage of each half of the secondary, which is approximately 1.4 times the RMS value. Transformers having electrostatic shielding between primary and secondary are not likely to transmit r-f disturbances to the line. Often the interference may be eliminated simply by making the plate leads of the rectifier extremely short. In general, the particular method of interference elimination must be selected by experiment for each installation.

OUTPUT-COUPLING DEVICES

An output-coupling device is used in the plate circuit of a power output tube to keep the comparatively high d-c plate current from the winding of an electromagnetic speaker and also to transfer power efficiently from the output stage to a loudspeaker of either the electro-magnetic or dynamic type.

Output-coupling devices are of two types. (1) choke-condenser and (2) transformer The choke-condenser type consists of an iron-core choke with an inductance of not less than 10 henrys which is placed in series with the plate and B-supply. The choke offers a very low resistance to the d-c plate current component of the signal voltage but opposes the flow of the fluctuating component. A by-pass condenser of 2 to 6 μ f supplies a path to the speaker winding a primary and a secondary wound on an iron core. This construction permits of designing each winding to meet the requirements of its position in the circuit. Typical arrangements of each type of coupling device are shown in Fig. 63

Radio Tube Testing

The radio tube user — service man, experimenter, and non-technical radio listener — is interested in knowing the condition of his tubes, since they govern the performance of the device in which they are used. In order to determine the condition of a tube, some method of test is necessary. Because the operating capabilities and design features of a tube are indicated and described by its electrical characteristics, a tube is tested by measuring its characteristics and comparing them with representative values established as standard for that type. Tubes which read abnormally high with respect to the standard for the type are subject to criticism just the same as tubes which are too low.

Certain practical limitations are placed on the accuracy with which a tube test can be correlated with actual tube performance. These limitations make it unnecessary for the service man and dealer to employ complex and costly testing equipment having laboratory accuracy. Because the accuracy of the tube-testing device need be no greater than the accuracy of the correlation between test results and receiver performance, and since certain fundamental characteristics are virtually fixed by the manufacturing technique of leading tube manufacturers, it is possible to employ a relatively simple test in order to determine the serviceability of a tube

In view of these factors, dealers and service men will find it economically expedient to obtain adequate accuracy and simplicity of operation by employing a device which indicates the status of a single characteristic. Whether the tube is satisfactory or unsatisfactory is judged from the test result of this single characteristic. Consequently, it is very desirable that the characteristic selected for the test be one which is truly representative of the tube's overall condition.

SHORT CIRCUIT TEST

The fundamental circuit of a short-circuit tester is shown in Fig. 64. While this circuit is suitable for tetrodes and types having less than four electrodes, tubes of more electrodes may be tested by adding more indicator lamps to the circuit. Voltages are applied between the various electrodes with lamps in series with the electrode leads. Any two shorted electrodes complete a circuit and light one or more lamps. Since two electrodes may be just touching to give a high-resistance short, it is desirable that the indicating lamps operate on very low current. It is also desirable to maintain the filament or heater of the tube at its₃operating temperature during the short-circuit test, because short-circuits in a tube may sometimes occur only when the electrodes are heated.

SELECTION OF A SUITABLE CHARACTERISTIC FOR TEST

Some characteristics of a tube are far more important in determining its operating worth than are others. The cost of building a device to measure any one of the more important characteristics may be considerably higher than that of a device which measures a less representative characteristic. Consequently, threemethods of test will be discussed, ranging from relatively simple and inexpensive equipment to more elaborate more accurate, and more costly devices.

An emission test is perhaps the simplest method of indicating a tube's condition. (Refer to DIODES, Page312 for a discussion of electronic emission.) Since emission falls off as the tube wears out, low emission is indicative of the end of tube serviceability. However, the emission test is subject to limitations because it tests the tube under static conditions and does not take into account the actual operation of the tube. On the one hand, coated filaments, or cathodes, often develop active spots from which the emission is so great that the relatively small grid area adjacent to these spots cannot control the electron stream. Under these conditions, the total emission may indicate the tube to be normal although the tube is unsatisfactory On the other hand, coated types of filaments are capable of such large emission that the tube will often operate satisfactorily after the emission has fallen far below the original value. Fig. 65 shows the fundamental circuit diagram for an emission test. All of the electrodes of the tube, except the cathode, are connected to the plate. The filament, or heater, is operated at rated voltage; after the tube has reached constant temperature, a low positive voltage is applied to the plate and the electronic emission is read on the meter. Readings which are well below the average for a particular tube type indicate that the total number of available electrons has been so reduced that the tube is no longer able to function properly.

A transconductance test takes into account a fundamental operating principle of the tube. (This will be seen from the definition of transconductance on page 11) It follows that transconductance tests when properly made, permit better correlation between test results and actual performance than does a straight emission test

There are two forms of transconductance test which can be utilized in a tube tester In the first form (illustrated by Fig. 66 giving a fundamental circuit with a tetrode under test), appropriate operating voltages are applied to the electrodes of the tube. A plate current depending upon the electrode voltages, will then be indicated by the meter. If the bias on the grid is then shifted by the application of a different grid voltage, a new plate-current reading is obtained. The difference between the two plate-current readings is indicative of the transconductance of the tube. This method of transconductance testing is commonly called the "grid-shift" method, and depends on readings under static conditions. The fact that this form of test is made under static conditions imposes limitations not encountered in the second form of test made under dynamic.conditions.

The dynamic transconductance test illustrated in Fig. 67 gives a fundamental circuit with a tetrode under test. This method is superior to the static transconductance test in that a-c voltage is applied to the grid. Thus, the tube is tested

under conditions which approximate actual operating conditions. The alternating component of the plate current is read by means of an a-c ammeter of the dynamometer type. The transconductance of the tube is equal to the a-c plate current divided by the input-signal voltage. If a one-volt RMS signal is applied to the grid, the plate-current-meter reading in milliamperes multiplied by one thousand is the value of transconductance in micromhos

The power output test probably gives the best correlation between test results and actual operating performance of a tube. In the case of voltage amplifiers, the power output is indicative of the amplification and output voltages obtainable from the tube. In the case of power output tubes, the performance of the tube is closely checked. Consequently, although more complicated to set up the power output test will give closer correlation with actual performance than any other single test

Fig. 68 shows the fundamental circuit of a power output test for class A operation of tubes. The diagram illustrates the method for a pentode. The a-c output voltage developed across the plate-load impedance (L) is indicated by the current meter. The current meter is isolated as far as the d-c plate current is concerned by the condenser (C). The power output can be calculated from the current reading and known load resistance. In this way, it is possible to determine the operating condition of the tube quite accurately.

Fig. 69 shows the fundamental circuit of a power output test for class B operation of tubes. With a-c voltage applied to the grid of the tube, the current in the plate circuit is read on a d-c milliammeter The power output of the tube is approximately equal to:

ESSENTIAL TUBE TESTER REQUIREMENTS

 It is desirable that the tester provide for a short-circuit test to be made prior to measurement of the tube's characteristics.

 It is important that some means of controlling the voltages applied to the electrodes of the tube be provided. If the tester is a c operated, a line-voltage control will permit of supplying proper electrode voltages.

It is essential that the rated voltage applied to the filament or heater be maintained accurately.

4. It is suggested that the characteristics test follow one of the methods described. The method selected and the quality of the parts used in the test will depend upon the requirements of the user

TUBE TESTER LIMITATIONS

A tube testing device can only indicate the difference between a given tube's characteristics and those which are standard for that particular type. Since the operating conditions imposed upon a tube of a given type may vary within wide limits, it is impossible for a tube testing device to evaluate tubes in terms of performance capabilities for all applications. The tube tester, therefore, cannot be looked upon as a final authority in determining whether or not a tube is always satisfactory. Actual operating test in the equipment in which the tube is to be used will give the best possible indication of a tube's worth. Nevertheless, the tube tester is a most helpful device for indicating the serviceability of a tube.

RESISTANCE-COUPLED AMPLIFIER CHART

С	-	Blocking Condenser (uf)	Rc	-	Cathode Resistor (Ohms)
Cc		Cathode By-Pass Condenser (uf)	Ŕd	-	Screen Resistor (Megohms
Cd	-	Screen By-Pass Condenser (uf)	Rg	200	Grid Resistor (Megohms)
Ерр	303	Plate-Supply Voltage (Volts)	RL	-	Plate Resistor (Megohms)
Eo	-	Voltage Output (Peak Volts)	V.G.	-	Voltage Gain

2A6, **2B7**: See 6SQ7 and 6B8, respectively. **6A6**, **6B6**-G, **6B7**: See 6N7, 6SQ7, and 6B3, respectively. **6B8**, **6B8**-G, **12C8**, **6B7**, **2B7**:

Ebbi	-	90	Tranking	abur Talu	Proprieta	180	The first of	New 12	Initian)	300	in sect
RL	0.1	0.25	0.5	0.1		0.25		0.5	0.1	0.25	0.5
Rg ²	0.25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1
Rd	0.5	1.1	2.8	0.5	1.18	1.2	1.5	2.8	0 55	12	2.9
Rc	2200	3500	6000	1200	1900	2100	2200	3500	1100	1600	2500
Cd	0.07	0.04	0.04	0.08	0.05	0.06	0.05	0.04	0.09	0.06	0.05
Ce	3	2.1	1.55	4.4	2.7	3.2	3	2	5	3.5	2.3
C	0.01	0.007	0.003	0.015	0.01	0.007	0.003	0.003	0.015	0.008	0.003
Eos	28	33	29	52	39	55	53 *	55	89	100	120
V.G.4	33	55	85	41	55	69	83	115	47	79	150

6C5, 6C5-G, (6C6, 6J7, 6J7-G, 6J7-GT, 6W7-G, 12J7-GT, 57 as triodes):

Ebb1	1.000	90		pin bi	Sec. Sec.	180	TRACTOR	Name of Street		300	
RL	0.05	0.1	0.25	0.05		01		0.25	0 05	0.1	0.25
Rg3	0.1	0.25	0.5	0.1	0.1	0.25	0 5	0.5	0.1	0.25	0.5
Rc	3400	6400	14500	2700	3900	5300	6200	12300	2600	5300	12300
Cc	1.62	0.84	0.4	2.1	1.7	1.25	1.2	0 55	2.3	1.3	0.59
С	0.025	0.01	0.006	0.03	0.035	0.015	0.008	0.008	0.04	0.015	0.008
Eos	17	22	23	45	41	54	55	52	70	84	85
V.G.4.	9	11	12	11	1 12	12	13	13	11	1 13	1 14

6C6: As pentode see 6J7; as triode see 6C5. 6C8-G (one triode unit)[‡];

Ebbi	-	90	1 - Carlos	1		130		121812	300			
RL	0.1	0.25	0.5	0.1		0.25		0.5	0.1	0.25	0.5	
Rg ²	0.25	0.5	1	0.25	0 25	0.5	1	1	0.25	0.5	1	
Rc	3700	7870	15000	3080	5170	6560	7550	12500	2840	6100	11500	
Cc	1.48	0 81	0.43	1.84	1 25	0.95	0.85	0.5	2.01	0.96	0.48	
C	0.0115	0.0065	0.0035	0.012	0.012	0.007	0.0035	0.004	0.013	0 0065	0 604	
Eo	17	19	20	40	35	45	50	44	73	80	83	
V.G 4	20	23	24	22	24	25	26	26	23	26	27	

II The cathodes of the two units have separate terminals

For other notes, see page 357

6F5. 6F5-G, 6F5-GT: See 6SF5. 6F8-G (one triode unit) tt, 6J5. 6J5-G, 6J5-GT, 12J5-GT:

Ebb1	1 miles	90	Mar Ch			180	1 100 1	1944	300			
RL	0.05	0.1	0.25	0.05	there a	0.1		0.25	0.05	0.1	0 25	
RgI	0.1	0.25	0.5	0.1	0.1	0.25	0.5	0.5	0.1	0.25	0.5	
Re	2070	3940	9760	1490	2330	2830	3230	7000	1270	2440	5770	
Ce	2 66	1.29	0.55	286	2.19	1.35	1.15	0.62	2.96	1 42	0.64	
C	0.029	0012	0 007	0.032	0.038	0.012	0.006	0.007	0.034	0.0125	0.0075	
Eo	14	17	18	30	26	. 34	38	36	51	56	57	
V.G.*	12	13	13	13	14	14	14	14	14	14	14	

6 J5, 6 J5-G, 6 J5-GT: See 6F8-G. 6 J7, 6 J7-G, 6 J7-GT, 6 W7-G, 12 J7-GT, 6 C6, 57: As triodes, see 6 C5:

Ebb1	1000	90	10.00		1000	180	136	1000 A - 1 - 1	15-12-13	300	10
RL	0.1	0.25	0.5	0.1	1 10	0.25	I an is l	0.5	0.1	0.25	0.5
Rgi	0.25	05	1	0 25	0.25	0.5	1	1	0 25	0.5	1
Rd	0.44	1.18	2.6	0.5	1.1	1.18	1.4	2.9	0.5	1 18	2.9
Rc	1100	2600	5500	750	1200	1600	2000	3100	450	1200	2200
Cd	0 05	0.03	0.05	0.05	0.04	0.04	0.04	0.025	0.07	0.04	0 04
Cc ~	5.3	3.2	2	6.7	5.2 .	4.3	3.8	2.5	83	54	41
C	0.01	0.005	0.0025	001	0.008	0.005	0.0035	0.0025	0.01	0.005	0.003
Eos	22	32	29	52	41	60	60	56	81	104	97
V.G.4	55	85	120	69	93	118	140	165	82	140	350

6L5-G:

Ebb1		90			- Enter	180	all soots	100.1	12 Million	300	march
RL	0.05	0.1	0 25	0 05	- 194	0.1	10013	0.25	0 05	0.1	0 25
Rg ³	0.1	0.25	0.5	0.1	0.1	0.25	0.5	0.5	0.1	0.25	0.5
Rc	2500	4620	10300	2240	3180	4200	4790	9290	2160	4140	9100
Cc	1 86	1 08	0.49	22	1.46	1.1	1	0.54	218	1.1	0.46
C	0.03	0.015	0.0085	0 03	0.03	0.0145	0.009	0.009	0.032	0 0 1 4	0 0075
Fo	18	22	22	41	36	46	50	46	68	79	80
V.G.4	10°	12°	12°	110	12°	12°	12°	12c	12¢	13¢	13°

6N7:, 6N7-G;, 6A6, 53:

Ebb ¹	and and	90				180	1311 San B	and the second second		300	Link
RL	01	0.25	05	0.1	20	0.25	1.200	0.5	0.1	0 25	0.5
Rg ²	0 25	0.5	1	0 25	0 25	05	1	1	0.25	0.5	1
Rc° C	0.01	4950	8500	0.015	2950	3800	4300	6600	1500	3400	6100
Eos	19	20	23	46	40	50	57	54	83	87	94
V.G.4	19	22	23	21	23	24	24	25	22	24	24

II The cathodes of the two units have separate terminals.

For other notes, see page 357

6P5-G, 76, 56:

Ebb1		90				180		Winds.	300		
RL	0.25	0.1	0.25	0.05	1941	0.1		0.25	0.05	0.1	0.25
Rg ²	0.1	0.25	0.5	0.1	0.1	0.25	0.5	0.5	0.1	0.25	0.5
Rc	3200	6500	15100	3000	4500	6500	7600	14700	3100	6400	15200
Cc	16	0.82	0.36	1.9	1.45	0.97	0.8	0.45	22	1.2	0.5
C	0.03	0.015	0.007	0.035	0.035	0.015	0.008	0.007	0 045	0.02	0 009
Eos	21	23	24	48	45	55	57	59	80	95	96
V.G.4	7.7	8.9	9.7	8.2	93	9.5	9.8	10	8.9	10	10

6Q7, 6Q7-G, 6Q7-GT, 12Q7-GT:

EPP1		90			(All and a second	160				300	
RL	0.1	0.25	0.5	0.1		0.25		0.5	0.1	0.25	0.5
Rg ²	0.25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1
Rc	4200	7600	12300	1900	3400	4000	4500	7100	1500	3000	5500
Cc	1.7	1.2	0.6	2.5	1.6	1.3	1.05	0.76	3.6	1.66	0.9
C	0.01	0.006	0.003	0.01	0.01	0 005	0.003	0.003	0.015	0.007	0.004
Eos	8	11	13	26	25	31	37	36	52	52	60
V.G.4	280	32	33	33	36	38	40 4	40	39	45	46

6R7, 6R7-G:

Epp1	and the second	90	1.0.1.1.2	180						300			
RL	0.05	0.1	0.25	0.05	the state of the	0.1	and so an	0.25	0.05	0.1	0.25		
Rg1	0.1	0.25	0.5	0.1	0.1	0.25	0.5	0.5	0.1	0.25	0.5		
Rc	2600	4400	9800	2100	3000	4100	4600	8800	2000	3800	8400		
Cc	1.7	0.9	0.42	1.9	1.3	0.9	0.8	0.4	2	1.1	0.5		
C	0.03	0.01	0.007	0 03	0.03	0.01	0.006	0.006	0.03	0.015	0.007		
Eo	18	19	18	40	35	43	46	40	62	68	62		
V.G.4	9	10	11	9	. 10	10	10	10	9	10	11		

697, 697-G:

Epp1	A series	90	No. Cal			180	21 10 142	12 March	1.10	300	65.725
RL	0.1	0.25	0.5	0.1	Sec.	0.25		0.5	0.1	0 25	0.5
Rg ²	0.25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1
Rd	0.65	1.6	35	0.68	1.6	1.8	1.9	3.6	0 67	1.95	3.9
Rc	900	1520	2800	540	850	890	950	1520	440	650	1080
Cd	0.061	0.044	0.03	0.07	0.05	0.044	0.046	0.037	0.071	0.057	0.041
Cc	5	3.23	1.95	6.9	4.6	4.7	4.4	3	8	5.8	3.9
C	0.01	0.0055	0.0026	0.01	0.0071	0.006	0.0037	0.003	0.01	0.005	0.0029
Eo3	21	18	15	43	33	40	44	38	75	66	66
V.G.4	47¢	66°	84°	66¢	79¢	104°	118°	134°	78°	122°	162*

For notes, see page 357

6SC7 :. 12SC7 ::

Ebb*	100	90		- Lat	-	300					
RL	0.1	0.25	0.5	0.1		0.25	- sector	0.5	0.1	0.25	0.5
Rg3	0 25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1
Rc*	1960	3750	6300	1070	1850	2150	2400	3420	930	1680	2980
C	0.012	0.006	0.003	0.012	0.011	0 006	0.003	0.003	0 0 1 4	0.006	0 003
Eu*	5.9	8.6	10	24	21	28	32	32	50	55	62
VG 4	230	30	33	29	35	39	41	43	34	42	48

68F5, 128F5, 6F5, 6F5-G, 6F5-GT, 12F5-GT:

EOD.		90	1000		1	300					
RL	0.1	0.25	0.5	0.1		0.25		0.5	0.1	0 25	0.5
Rg ³ Rc Cc C Eo ³	0.25 4800 2.1 0.01 5	0.5 8800 1.18 0.005 7	1 13500 0 67 0.003 10	0 25 2000 3 3 0.015 23	0.25 3500 2.3 0.01 21	0.5 4100 1.8 0 006 26	1 4500 1.7 0.004 32	1 6900 0.9 0.003 33	0.25 1600 3.7 0.01 43	0.5 3200 21 0.007 54	1 5400 1.2 0.004 62

69J7, 129J7:

Ebbi		90			L. Chevel	.300					
RL	0.1	0 25	0.5	0.1	Start Suid St	0.25	1. 101	0.5	0.1	0 25	0.5
Rg ³	0.25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1
Rd	0.29	0.92	1.7	0.31	0.83	0.94	0.94	2.2	0 37	1.10	2.2
Rc	880	1700	3800	800	1050	1060	1100	2180	530	860	1410
Cd	0.085	0.045	0.03	0.09	0.06	0.06	0.07	0.04	0 09	0.06	0.05
Cc	7.4	4.5	2.4	8	6.8	6.6	6.1	3.8	10.9	7.4	5.8
C	0.016	0.005	0.002	0.015	0.001	0.004	0.003	0.002	0.016	0 004	0.002
Eo	23	18	22	60	38	47	54	44	96	88	79
V.G 4	68	93	119	82	109	131	161	192	98	167	238

68Q7, 128Q7, 2A6, 6B6-G, 75:

Ebb1	FUR	90	1. 1.	180						300			
RL	0.1	0.25	0.5	0.1		0.25	- feeling	0.5	0.1	0.25	0.5		
Rg ³ Rc Cc C Eo ³ V G ⁴	0.25 6600 1.7 0.01 5 20b	0.5 11000 1.07 0.006 7 40°	1 16600 0.7 0.003 10 44	0.25 2900 2.9 0.015 22 36	0.25 4300 2.1 0 015 21 43	0.5 4800 1.8 0.007 28 50	1 5300 1.5 0.004 33 53	1 8000 1.1 0.004 33 57	0.25 2200 3.5 0.015 41 39	0.5 3900 2 0.007 51 53	1 6100 1.3 0.004 62 60		

For notes, see page 357

6T7-G:

Ebb1	1	90	- Martine	in same	STONA STON	300						
RL	0.1	0.25	0.5	0.1		0.25		0.5	0.1	0.25	0.5	
Rg ²	0.25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1	
Rc	4750	8300	14200	2830	4410	5220	5920	9440	2400	4580	8200	
Cc	1.5	/1	0.6	2.25	1.5	1.25	1.11	0.74	2.55	1.35	0.82	
C	0.012	0.0075	0.0045	0.0135	0.012	0.008	0.005	0.0045	0.0135	0.0075	0.0055	
Eo	7.8	10	12	29	27	34	39	39	58	69	77	
V.G.4	240	30°	33¢	28°	34¢	36¢	38¢	41¢	32¢	40°	43¢	

6W7-G: See 6J7 and 6C5. 6Z7-G::

Ebb1	1	90	5	1		180		300			
RL	0.1	0.25	0.5	0.1	the second	0.25		0.5	0.1	0.25	0.5
Rg ³	0.25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1
Rc*	1760	3390	6050	1100	1820	2110	2400	3890	950	1680	3110
Cc	2.02	1.1	0.61	2.6	1.71	1.38	1.1	0.703	2.63	1.46	0 72
C	0.0115	0.006	0.003	0.0115	0 012	0.007	0.0035	0.0035	0.012	0 006	0.0035
Eo	11 -	15	18	28	28	34	41	38	52	59	70
VG.4	25	30	33	31	35	38	39	40	34	40	44

12C8, 12F5-GT, 12J5-GT: See 6B8, 6SF5, and 6F8-G, respectively.
12J7-GT, 12Q7-GT: See 6J7 and 6C5, and 6Q7, respectively.
12SC7, 12SF5, 12SJ7, 12SQ7: See 6SC7, 6SF5, 6SJ7, and 6SQ7, respectively.
53, 55, 56: See 6N7, 85, and 6P5-G, respectively.
57, 75, 76: See 6J7 and 6C5, 6SQ7, and 6P5-G, respectively.
79::

Ebb1	1211/16	90	11-2-11			300					
RL	0.1	0.25	0.5	0.1	0110	0.25		05	0.1	0.25	0.5
Rg ²	0.25	0.5	1	0.25	0.25	0.5	1	1	0.25	0.5	1
Rc*	2200	4250	6850	1250	2050	2450	2750	4100	1000	2050	3600
C	0 015	0.006	0.004	0.02	0.02	0.01	0.005	0.0035	0.01	0.0055	0.003
Eo3	8.4	9.7	12	27	26	34	40	39	57	66	75
V.G.4	29°	33	38	31	37	41	42.	44	34	42	46

85, 55:

Ebb1	- Service of	180							300			
RL	0.05	0.1	0.25	0.05	1	h all and a	01	nitra	0.25	0.05	0.1	0.25
Rg ² Rc	0 1 4600	0.25 9000	0.5 20500	0.1 4100		0.1 6200	0.25 8700	0.5 10000	0.5 20000	0.1 4100	0.25 8300	0.5 19400
Cc	1.1	0.55	0.25	1.6	3	0.9	0.7	0.57	0.29	1.5	0.54	0.22
Eo ³ V.G.4	19 4.9	22 5.4	23 5.5	44	4	37 5.3	47.	50 5.5	48	74	82 5 7	84

For notes, see page 357

Voltage at plate equals Plate-Supply Voltage minus voltage drop in Rt and Rc. For other supply voltages differing by as much as 50% from those listed, the values of resistors, condensers, and gain are approximately correct. The value of voltage output, however, for any of these other supply voltages equals the listed voltage output multiplied by the new plate-supply voltage divided by the plate-supply voltage corresponding to the listed voltage output.

For following stage (see Circuit Diagrams).

³ Voltage across Rg at grid-current point

Voltage Gain at 5 volts (RMS) output unless index letter indicates otherwise. At 3 volts (RMS) output At 4 volts (RMS) output.

Values are for phase-inverter service: See NOTES under RESISTANCE-COUPLED PHASE-INVERTER diagram.

The cathodes of the two units have a common terminal.

In the discussions which follow, fo is the fre-In the discussions which tokow, is in the tre-guency at which the high-frequency response begins to fail of. If is the frequency at which the low-frequency response drops below a suisfactory value, as discussed below. Decoupling filters are not neces-ary for two stages or less. The highest permissible value of Rg should always be used. A variation of 10% in values of resistors and condensers has only slight effect on performance.

RESISTANCE-COUPLED TRIODE AMPLIFIER

Condensers C and Cc have been chosen to give output voltages equal to 0.8 ± 0 for f₁ of 100 cycles. For any other value of f₁, multiply values of C and Cc by 100/f₁. In the case of condenser Cc, the values shown in the table are for an case of condenser Cc, the values shown in the table are for an amplifier with d-c heater excitation: when a.c. is used, depending on the character of the associated circuit, the gain, and the value of $f_{\rm ci}$ it may be necessary to increase the value of Cc to minimize hum disturbances. It may also be desirable to have a d-c potential difference of approximately 10 volts between beater and cathode.

The voltage output at f1 of n like stages equals (0.8 Eo)n. For an amplifier of typical construction, the value of f, is well above the audio-frequency range for any value of RL.

RESISTANCE-COUPLED PENTODE AMPLIFIER

Information given for triode amplifiers, in general, applies also to this case. Condensers C have been chosen to give output voltages equal to 0.9 Fo for fi of 100 cycles For other values, multiply values of C by 100/fi.

The signal input is supplied to grid of triode unit A. Grid of triode unit B obtains its signal from a tap (P) on the grid resistor (Rg) in the output circuit of unit The tap is chosen so as to make the voltage output A. A. The tap is chosen so an to that c the vortage output of the unit B equal to that of unit A. If a location is determined by the voltage gain values given in the chart. For example, if V G, is 20 (from the chart), P is chosen so as to supply 1/20 of the voltage across Rg to the grid of unit B

RESISTANCE-COUPLED PHASE INVERTER C RL EO Ra Eos Rg P R Rc

Ebb

Ebb

Rd

Ebb

Eo

Rg
The following section is reprinted by courtesy of R. C. A. HARRISON, N.J., U.S.A.

This Directory

lists over 2000 tube substitutions having replacement possibilities for emergency servicing of civilian receivers. Including all RCA Receiving Tubes and arranged for easy reference, the list will greatly assist radio service men in quickly selecting a suitable substitute type.

Information contained herein is based on our best engineering experience, but no responsibility is accepted for errors or unsatisfactory results.

EXPLANATION OF NUMBERS INDICATING CHANGES

In making such substitutions, it may be necessary to make certain basic changes in every receiver. Such changes are indicated by numbers shown in the "change" column of the list. Their significance is explained below.

Some substitutions will require circuit changes or adjustments additional to those indicated in the "change" column. Before making any substitutions, the service man should, therefore, check the ratings and characteristics of the proposed substitute against the operating conditions of the circuit. Convenient reference for tube ratings and characteristics" is Bernards' Radio Valve

Manual (No. 30). Price 3/6 *

Many of the suggested substitutions may cause lowered receiver sensitivity and lowered power output with increased distortion, but such substitutions may be desirable on the basis that they provide the only method by which broadcast receivers can be put in useable condition under existing circumstances.

L signifies that **space limitations** must be considered, because the substitute type is appreciably larger in size than the type to be replaced. Small differences in overall length or diameter have been disregarded since, ordinarily, such differences do not in themselves affect interchangeability. They may, however, affect some shielding changes.

A indicates that **wiring changes** will be required. Such changes may include any of the following items: (1) lengthening of top-cap lead; (2) changing from topcap connection to a socket-terminal connection, or vice

^{*} Available from all Wireless Dealers, Newsagents, Bookstalls, etc. If unable to obtain please get in touch with the Publishers direct, who will advise you of your nearest supplier.

versa (if change is from single-ended metal type to a top-cap type, it may be necessary to use a suitably shielded lead to the top-cap); or (3) rewiring of socket (except for filament- or heater-circuit changes which are considered under "change number" 3). CAUTION: When wiring changes are made, it may also be necessary to remove wiring connections utilizing spare terminals of the socket. Special attention should also be given to the pin No. 1 connection of octal-base types, because in different circuits this pin may be used to ground the shield, left floating, or made a high-potential common tie. The particular arrangement used in the receiver and its relation to the substitute tube will determine what has to be changed in order that proper connections for the substitute type can be made.

3 indicates that filament- or heater-circuit changes will be required to provide the proper voltage or current for the substitute type. When heaters are connected in parallel, a substitute type with lower heater voltage than the type to be replaced may be used if a series resistor of proper value is inserted in one of the heater leads. When heaters are operated in series, a substitute type with different heater rating than the type to be replaced may be used by adding series and/or shunt resistors to the heater string. Sample calculations of series- and shunt-resistor values are shown.

When shunt or series resistors are added to the heater circuit, leave ample space around them for adequate ventilation. The practice of using shunt resistors is suggested only as an emergency measure, because the heater-string current during the warm-up period does not always divide proportionately between the heater and its shunt resistor. As a result, the heater may be temporarily but seriously overloaded.

indicates that **socket changes** will be required unless suitable adaptors can be procured. The use of adaptors may be restricted in some receivers by lack of space or other considerations such as alignment difficulties caused by capacitances added to the input and output circuits by the adaptor.

Supplemental Notes

In making substitutions for Power Output Types, the service man may find that the load resistance for the tube to be replaced is not suitable for use with the substitute type. When it is impractical to change the load resistance to the required value, some benefit may be obtained by adjusting the grid bias to give lowest distortion, but in so doing, care should be taken to not exceed the dissipation ratings of the tube. Also, if the substitute type has greater power-handling capability than the tube to be replaced, the current drain of the substitute tube must be kept within the currentdelivering ability of the power supply in the receiver. When substitutions are to be made for R-F Amplifier. I-F Amplifier, Converter, Oscillator, and Mixer Types, the substitute type may have a lower or a higher value of transconductance than that of the type to be replaced. If the substitute type has a lower value, it may cause some loss in receiver sensitivity and possibly impaired frequency conversion. In areas relatively close to broadcast stations, satisfactory reception should be obtained, but in remote areas, the diminished receiver sensitivity may be unsatisfactory. If the substitute type has a higher value of transconductance than the type to be replaced, oscillation difficulties may be experienced. These can sometimes be corrected by additional shielding, filtering, or reduction in the screen voltage. In all such substitutions, realignment of the receiver is recommended.

Substitutions for Audio Voltage Amplifier Types can generally be made with satisfactory results because a wide variation in gain is usually permissible. If necessary, the gain obtained with the substitute type can be changed by choosing the right combination of B-supply voltage, bias, grid resistor, and plate load.

TUBE SUBSTITUTION DIRECTORY

To Replac These RCA	e Use These RCA	With Changes Indicated Below	To Repla Those RCA	the Use	With Cl Indic Bek	hanges ated ow	To Replace Those RCA	Use These RCA	With Changes Indicated Below
Types	Types		Types	The	3		a ypes	Types	
OZ4	OZ4-G		1D7-G-Co	ntinucd			ILB4-Continu	ued	
1.1.1.1.1.1.2.2	6X5	1, 2, 3	B.M. A.	1C7-G	Key 20		30	S-GT/G	
- 6107S	774	1234	1.1.1.1.1.1.1	200	Key 20		30 Se		Key 12 14 17
- Mail March Co	See K	ay 2, 4	IDS-GT	See	Key 17.31				
074.6	074		1ES-GP	1B4-P	4		ILH4IH	IS-GI/G	Kay 39
	6X5	1. 2. 3	Lista In	15	3.4				
1 5 S C	6X5-GT/G	1, 2, 3	466601	See	Key 42-44.	50	ILNSIL	S.GT/G	234
-19/14	744	1, 2, 3, 4	DETA	Can	Ver 10	al mar	15	5	4
	500 M	ry 2. 4	107.0	000	Key 15		3A	8-GT	2. 3. 4
1A3	See K	ey 6	184	IE/G	3. 4		Se	e	Key 44, 50-52
1A4-P	1D5-GP		12. 1. 5. 17.	1G5-G	4		INS-GT/G. IL	4	2.4
1.	105-61		- Charles	115-G	4		IL	NS	2, 4
1100	See K	ey 42.44, 50	DOLE	See	Key 14, 19	Sec.	34	8-GT	2.3
IAS-GT/G	11.44		1F5-G	.1E7-G	2, 3		Se	0	Key 44. 50-52
	1N6-G	1.2	0.022.03	IF4	4		INA.C Se		Key 16
11-0.19 M.	See Ke	y 12, 14, 16	and the second second	115-G					
1.8.	1C6	3	22.9301	See	Key 14, 19		1P5-GT 11	• ••••••	Key 44 50.52
1.2.6.6.2.1	1C7-G	3, 4	1F6	1F7-G	4		1010210 10	CT/C	
CODONE	ID7-G		COL 3-3V	See	Key 53		105-01/0. 10	B.GT	2
	See N	ey 20	1F7-G	1F6	4		IL	B4	3. 4
IAT-GT/G.	1B/-GI		YN OLL	See	Key 53	1000	4 15	4	4
1 Martin	1R5	2.4	IG4-GT/G.	See	Key 28. 31,	38, 39	17	5-GT	3
6841	See K	ley 20	IGSG	IF7.G	23		30	A	3.4
184-P	1E5-GP			IF4	4	2.2	35	4	3.4
1242	15	3, 4	10.025.5	IFS-G	1000		Se	0	Key 12, 14, 17
No. Caller	32	1 12 14 50	S. 1. 2. 37	115-G			1R5 1A	7-GT/G	1,2,4
1. ND 000	See K	ey 42.44, 30	TATALIST	260	Key 14		1 1B	7.GT	1. 2. 3. 4
185	1H6 G		IGE-GT/G.	See	Key 10		11	A6	1,4
	See M	17 32	1H4-G	30	4	No star	50	•	Key 20
187-GI	1A/GI/G	3	- interior	See	Key 28	12.2	154 10	S-GT/G	
2629	1R5	2.3.4	IHS-GT/G.	1LH4	2.4	2714	11	R4 -	134
N. T. T. Y.	See K	ey 20		See	Key 39	10.00	10	5-GT/G	1,4
ICS-GT/G.	1D8-GT	2	1H9-G	1B5	4	Stor .	IT	5-GT	1.3.4
1. 1. 1993	1LB4	, 3.4		500 4	Key 32		30	4	
Dec 1	IQS-GT/G	- BUD- 010	1J5-G	1E7-G	2.3	entrating S	.30	S-GT/G	
	ITS CT		1.20 P. 0.20	IF5.G			Se	•	Key 12, 14, 17
1 2305	304		STO 1	1G5-G		and the	108 24	ACT	1224
No. and	3Q5-GT/G	3		See	Key 14	120.0	Se		Key 51. 52
A PALIER	354	3.4	1/6-G	19	3.4	in the	174 10	CT	124
100	Ke Ke	17 12, 14, 10, 17	and the second	See	Key 10, 19	15.00	Se	0	Key 44, 50-52
100	162.G		114	1LNS	1.4	TEN CAL	ITS GT IC	SCTIC	3
No. States	1D7-G	3.4	201	INS-GT/G	1. 2. 4	(and a	ID	8-GT	2,3
-	See Ke	ey 20	PH ROY	3A8-GT	123	1	ILI	B4	4 .
1C7-G	1A6	3.4		See	Key 44, 50	-52	10	5-GT/G	3
10.00	1C6		12.84	LAS.GT/G	11.11	1100 94	15	4	3, 4
A CAR	1D7-G	3		IN6-G	1.4	all and	30	S.GT/C	
	500 K	ey 20		See	Key 12. 14.	16	35	4	3.4
1D5-GP	IA4-P	···· 4	1LA6	1A7-GT/G	2.4	A ROAD	Se	•	Key 12, 14, 17
1. 1. 1.	34	14		187-GT	2, 3, 4	1. 1. 1. 1	1-v	9	Key 1, 2
No. of the	See K	ey 42-44, 50		See	Kay 20	Star 1	283 45		Sel Children
IDS-GT	1A4.P	and the statements	17.94	ICE CT IC	2.4	All a	Se	•	Key 8
	1D5-GP	- An I Stor Int	11.84	IDB GT	3.4	1214	285 46	Set 2 M	1.4
	34	1,4		1Q5-GT/G	3, 4	ada la	47		1.4
	See K	ey 42-44, 50		154	3, 4	1×777	59		1. 3. 4
1D7-G	146			175-GT	4	1412.0	Se	•	Key 14
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	106	3, 4		3Q4	3, 4	1999	2A8		Key 32, 40
A Marian	1. Spac 2. Wirls	e limitations. ng changes.	(piak	3. Film 4. Sock	nent voltage et change.	and/o	r current chang	10s. 9.	Pollog .

362

To Replac These RCA Types	te Use These RCA Types	With Changes Indicated Bolow	To Replace These RCA Types	Use These RCA Types	With Changes Indicated Below	To Replace Those RCA Types	Use These RCA Types	With Changes Indicated Below
2A7	See	Key 20	5X4-G 5T		2	6A78-Conti	nued	
287	See	Key 49	50	4-G	2	2.4.4	6A8	2.4
285	See	Key 26	523	3	4	- COLOR OF BESSEE	6A8-G	
358 07	000	Noy 20 51	'Sei	e k	сөү 2	1. St. P	CAS-GI	24
348-01	266	Key 38, 51	SY3-GT/G ST		1	al sur stell	748	2.3.4
394	ICS-GT/G		50	4-G	1, 3		7B8	2, 4
No Person	ILB4	1.3.4	5%	4.G	123		12A8-GT/C	2.3.4
10.00	IQS-GT/G	1, 3, 4	57	1 G	1.2	10.00	200	Key ZU-Z4
1. 1. 2.	154	3	52.	3	1, 3. 4	5A8	2A7	1. 2. 3. 4
196.81	175-GT	1. 3. 4	SZ	•		2010 8233	6A7S	1.2.4
1.1.1.2.13	305-01/0		80	······		1.10	6A8-G	1.2
1. 200	See	Key 12, 14, 17	Se		Cey 2	(La Martin	6A8-GT	
3QS-GT/G	ICS-GT/G		574-G ST.				6D8-G	1.2.3
	1D8-GT	2, 3	50	4.G	1.2.3	the state	788	2.4
1 1 1 2 3	1LB4	3.4	5V	4-G	2	The Fill	12A8-GT/C	
1.5 12	105-61/6		57	AGT/G	1.3		See	Key 20-24
	154	3.4	57		134	6A8-GT	,2A7	1, 2, 3, 4
1213	304	4	- 52	1	2		6A7	1, 2, 4
1 2 2 2	354		80		4	ALC: NO	6A75	1, 2, 4
S.R.S.	See	Key 12, 14, 17	63-	v	4	10 100	6A8-G	1.2
354	IC5-GT/G	1.3.4			LCY Z	1028	6D8-G	1, 2, 3
1. 月月 3.4	ID8-GT	1, 3, 4	363	AG	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	7A8	2. 3. 4
	105-GT/G	1.3.4	5X	4-G		124200	788	2,4
1 1 1 3	154	3	Se	o)	Cey 2	1. 8.0.4	See	Key 20.24
01.56.4	'ITS-GT	1, 3, 4	524 5T4		1	BABS/ANS	6115/605	3
A DECK C	304	alter and and	50	1.G	1, 3		See	Key 25, 26
ALL ALL BUS	See	Key 12 14 17	SV SV	4·G	1 2 2	6487	6SG7	2
1.74	ETTA C	1 2	5Y	3-GT/G	1, 6, 9		7H7	4
514	5X4.G	123	54	4-G	1.2	STALL NO	See	Key 44, 48, 50
1.1.1.1.1.1.1	523	1, 3, 4	52:	3	1, 3, 4	SACS-GT/G.	25ACS-GT	/G 3
1 1 2 3	See	Key 2	80		1.4		See	Key 10
SU4-G	574		Se Se		(ev 2	SAC7		
	5X4-G	2	883 28	2	2		6SH7	2
122 228	523 See	Koy 2	6B	1-G	4		See	Key 44, 48, 50
		NOT D	45		3	SADS-G	SAF6.G	
544-0	514	13	Se	• • •	toy 8		See	Key 27 .
1 2.89	5X4-G	1, 2, 3	6A4 6G	6-G	3. 4	SADT-G	See	Key 15
	523	1,	6K 6V	6-GT/G	3,4	ARES.GT/G	*6C5	
	83-v	You 2	6V	6-GT/G	3, 4	1	6C5-GT/G	
		KOY &	7B	5	3, 4	10.00	6F8-G	1, 2, 3
0W4	5114.G	1.3	70	5	3, 4	1	615 GT/C	
anne	5V4-G	1,3	41		3, 4	A Part of	61.5-G	1.3
The second	5W4-GT/0	3	89		2, 3, 4	1 2 1	6P5-GT/G	
	5X4-G	1, 2, 3	Se	e k	ley 12, 14	1 3.4	6SN7-GT .	2,3
N. C. Stra	SY3-GT/G	3	6A6 6N	7		1 - AN	1215.GT	
1.1.1.1	5Z3	1.3.4	6N	7-GT/G	1	A LAND W	125N7.C7	23
	524	3	67	7-G	4		27	1, 3, 4
4-1	80	1, 3, 4	53		3	then of	37	1.4
1. 2.2.6	83-v	1,3,4	79		2.4	A States	56	
	000	Ney 2	Se	e	Key 10	S Manager	See	Key 28-41
SW4-GT/G	ST4	1.3	SA7 2A	7	3	SAFEC	See	Key 35
1. Billion	5V4-G	1.3	6A	8	24		Can	Kou 24
and the second second	5W4		6A	8-G	4	OALT-GI	. 200	NOY 34
E.F.	5X4-G	1, 2, 3	6A	8-GT	2, 4	FAFS-G	. 6AD6-G	Koy 27
1 1 1 1 1 1	5Y3-GT/G	3	6D	8-G	3.4		0107	101
0	574-G	1, 2, 3	74	8	2.4	0AG3	6SH7	1, 3, 4
1	574	3	12	A8-GT	2, 3, 4	N. R.	7G7	1, 3, 4
1	80	1, 3, 4	12.	A8-GT/G	2, 3, 4	S. Dark	12SH7	1.3.4
	83-v	1, 3, 4	6A78 2A	7	3	1210 -	200	Key 44, 48, 50
and the second second	See	Key 2	6A	.7	the second	8AG7	See	Kay 14
* Pentodes substitute	under Typ for this typ	e 6C6 may also be be when they are	used as a 1.	Space lim	itations. 3. F	ilament volta	ige and/or o	current changes.

To Replay These RCA Types	re Use With Changes These Indicated RCA Below	To Replace Use With Changes These These Indicated RCA RCA BCA Below Types Types	To Replace Use With Changes These These Indicated BCA BCA Indicated Types Types Below
684-G.	282 24	SC5-GT/G*-Continued	6D8-G-Continued
Contraction of the	6A3	37 1, 4	6A8-G 3
ALC: AND	45 3. 4	56 1. 3, 4	6A8-GT 2, 3
NI STREET.	See Key 8	76 1.4	7A8 2,4
6B5	6N6-G	See Key 28-41	788 2, 3, 4
	See Key 11, 12, 14	SC8 6D7 4	12A8-GT/G 2, 3
6B6-G	246 3.4	617 2, 4	500 Key 20-24
10 400	607	6]7-G 4	SES
TURNER P	6Q7-G	6517 2.4	See Key 25, 26
162 24	6Q7-GT 2	6CI2/CT 24	628 See Key 9, 10
ANNE STATE	6SQ7 2	6W7.G 3.4	SET SD6
1. 1. 2. 19.	6SQ7-GT/G 2	707 2.3.4	6K7 24
A LA Had	617-G 3	1217-GT/G 2, 3, 4	6K7-G
	706 234	125]7 2, 3, 4	6K7-GT 2,4
人的。<#121.23	1207.GT/G 2.3	12SJ7-GT 2, 3, 4	6S7 2, 3, 4
「「「「	12507 2.3	57 3	657-G 3, 4
	12SO7-GT/G 2.3	77	6SK7 2,4
	75	See Key 44.50	6SK7-GT/G 2, 4
	See Key 32, 40	6C7 6R7 2, 4	6557 2, 3, 4
SB7	287 3	6R7-GT/G 2, 4	007-0
RANDER	6875	6SR7 2, 4	747 2,4
Die Pressie	688 2, 4	6ST7 2, 3, 4	107
N. Right	6B8-G 4	6V7-G 4	125K7 2.3.4
Sec. and a lot	12C8 2, 3, 4	766 2.4	125K7-GT/G 2.3.4
1.1.1.1. P. 1.	See Key 49	125H7 2, 3, 4	1447 234
6875	287 3	85 4	39/44
115 16 11 20 1	6B7	Sen Key 32 40	58 3, 4
ALC - DECEMPTOR	6B8 2, 4		* 78
Children and	6B8-G 4	6617 CT 3	Seo Key 44.50
· · · · · · · · · · · · · · · · · · ·	1208 2, 3, 4 See Ver 49	124H7.CT 2.3	6F5.GT/G
684	000 K6Y 43	12SN7-GT 2.3	6SF5 2
	287 1. 2. 3. 4	See Key 10, 33, 41	6SF5-GT 2
ALL AR BAL	687 1, 2, 4	804 657	6K5-GT/G 2
1.11993 (55.13	689.C 1.2	6K7 24	/ /84 2, 4
OW STAR	1208 3	6K7-G 4	12F5-GT
Contraction of	See Key 49	6K7-GT	12SF5 2, 3
688-G	287 3.4	657 2, 3, 4	12513-01
	687	6S7-G 3, 4	AND
205 334 200	6B7S 4	6SK7 2, 4	WFS-GT/G. 6F5
	6B8 2*	6SK7-GT/G 2.4	S C160
MP-1	12C8 2.3	6SS7 2, 3, 4	6K5GT/G 2
	See Key 49	607.6 4	7B4
BC3	6AE5-GT/G	7A7	12F5-GT 3
10020201-6	6C5-GT/G	12K7.CT/C 2.2.4	12SF5 2.3
PERSONAL SPACE	6F8-G 1. 2, 3	125K7 2.3.4	12SF5-GT 2. 3
IL SHAD	EIS CT/C	12SK7-GT/G 2.3.4	See Key 28-41
1.144.154	615C 12	1447 2.3.4	GFS 6AD7-G 1.2.3
200	6PS-GT/G	39/44	6F6-G 1
A DEPOSIT	65N7-GT 2.3	• 58 3	6K6-GT/G
	7.44	78	616 1, 3
	12/5-GT 3	.500 Key 44-50	6L6-G 1, 3
	12SN7-GT 2, 3	eD7	6V6
「「「「「「「	27 1. 3. 4	617 2, 4	6V6-GT/G
	56 1.4	617-G	705
	76 1.4	6/7-GI	1245 1.4
	See Key 28.41	1007	29 1.2.4
SCS-GT/G*	CLES CELO	6W7.C 2.4	41 14
	605	707 234	42 1.4
MIS LOTTE!	6F8-G 123	1217-GT/G 2. 3. 4	89 1, 2, 4
	615	12SJ7 2, 3, 4	See Key 12, 14, 15
	6JS-GT/G	12SI7-GT/G 2.3.4	6F6-G 6AD7-G 2 3
	6L5-G 1, 3	57 3.4	6F6
	6PS-GT/G	77	6K6-GT/G
	6SN7-GT 2, 3	See Key 44-50	61.6
	7.44	SD3-G 2A7	, 6L6-G 1, 3
	12)5-GT 3	6A7 3, 4	6V6
	12SN7-GT 2,3	6A7S	6V6-GT/G
100 Mar 100 Mar 10	·27 1. 3. 4	6A8 2, 3	785 4
* Pentodes	under Type 6C6 may also be	used as a 1. Space limitations 3 Fi	lament voltage and/or current changes
Pentodes u aubstitute fo as triodes (or this type 6C6 may also be screen and suppressor tied	used as a 1. Space limitations. 3. Fi connected 2. Wiring changes. 4. So to plate).	lament voltage and/or current changes. scket change.

To Replace These RCA Types	Use With Changes These Indicated RCA Below	To Replace Use These These With Changes RCA RCA Indicated Types Types Below	To Replace Use With Changes These These Indicated RCA RCA Indicated Types Types
6F6-G-Conti	beur	517-Continued	SK7-Continued
	7C5 4	6W7-G 1, 2, 3	7A7 2,4
111110.5	12A5 4	7C7 2, 3, 4	787 2, 3, 4
	38 2, 4	12]7-GT/G 3	12K7-GT/G 3
West P	41	12017 2,3	125K7 2, 3
inder a	42	125)/·GI	125K7-G1/G 2,3
Elite a Back	See Key 12, 14, 15	77 1, 2, 4	39/44 1.2.4
SF7	ED7 C A	See Key 44-50	58 1, 2, 3, 4
	See Key 29, 45	\$77-G 6C6 4	78 1, 2, 4
AFR C	6C9 C	6D7 4	See Key 44-50
01 0.0	6SN7-GT 2	617 2	6E7-G 6D6 4
	12AH7-GT 2.3	6SI7 2	6E7 4
	12SN7-GT 2, 3	6517.GT 2	6K7-GT 2
1 1 1 1 2	See Key 33, 41	6W7-G 3	657 2, 3
5G6-G	6A4 1, 3, 4	707 2, 3, 4	657-G 3
1000 1114	6K6-GT/G 3	12J7-GT/G 2,3	6SK7 2
10000	SVECT/C 3	125/7	6SK7-GT/G 2
1	7B5	125)7-GT	6U7.G
12	7C5	77	747 24
1 Day	38 2. 3. 4	See Key 44-50	787
12. house the	41 3.4	STT.GT 5C6 1.2.4	12K7-GT/G 2, 3
1 Standard	89	6D7 1, 2, 4	12SK7 2, 3
C. Angel	See Key 12, 14	6]7	12SK7-GT/G 2,3
6H5	6H6-GT/G 1	6]7-G 1, 2	14A7/1287 2, 3, 4
A CONTRACTOR OF	12H6 3	COLT CT 2	58 3.4
all all all a	See Key 7	6W7.G 1.2.3	78 4
SHE CT/C	SHE	707 2, 3, 4	See Key 44-50
eno-01/0	746 3.4	12]7-GT/G 3	6K7-GT 6D6 1, 2, 4
A STATION	12H6	125]7 2, 3	6E7 1, 2, 4
1 California	See pp. 14- Key 6	125/7-GT 2, 3	6K7.G 12
875*	6AES-GT/G	57 1.2, 3, 4 77 1.2 A	6S7
	6C5	See Key 44-50	657-G 1, 2, 3
No. Mar	6CS-GT/G	1678.73 717 2.4	6SK7 2
10000	615 CT/C	See Key 20-24	6SK7-GT/G 2
Distant States	615.G 13	STACT G SES 2	60007 2, 5 6U7-G 1.2
the second	6P5-GT/G	6F5-GT/G 2	7A7
Jail Calat	6SN7-GT 2, 3	6SF5 2	787 2, 3, 4
Carlo Carlo	784	6SF5-GT/G 2	12K7-GT/G 3
Contra Polly	1213-GI	10FE CT 2.3	125K7
a marcal	27 1.3.4	12555 2.3	1467/1287 2.3.4
ALC: NOT	37 1,4	12SF5-GT 2, 3	39/44 1, 2, 4
A Manager	56 1. 3. 4	See Key 28-41	58 1, 2, 3, 4
	76 1.4	ske-GT/G. 6AD7-G 1. 2. 3	78 1, 2, 4
	5001 Ney 20-41	6F6 3	500 Key 44-50
sis-GT/G*	6AES-GT/G	6F6-G 1,3	SKR.CT
	6CS-GT/G	6L6-G 1.3	12K8
1	6F8-G 1, 2, 3	GV6	See Key 20-24
1	6]5	EVE-GT/G	SK8-G 6K8 2
The second second	6L5-G 1, 3	7B5 4	6K8-GT 2
Carl Solore	6PS-GT/G	705	12K8 2.3
A AND	744 4	41 14	508 Key 20-24
S. S. S. B.	1215-GT 3	42	6Y8C 12
	12SN7-GT 2.3	89 1, 2, 4	12K8
A CALL PROPERTY	27 1. 3. 4	See Key 12, 14, 15	See Key 20-24
A COLOR	56 1.3.4	SK7 6D6 1, 2, 4	6L5-G* 6AES-GT/G 3
A STAT	76 1,4	667 1, 2, 4	6C5
1	See Key 28-41	6K7.G 1,2 6K7.GT	6C5-GT/G 3
817	6C6	657	615
	6D7 1, 2, 4	687-G 1, 2, 3	615-GT/G 3
1 CLOSE	617-G 1, 2	65K7 2	6P5-GT/G 3
A Stantes	6J7-GT	65K7-GT/G 2	6SN7-GT 2, 3
	5017	6557	7A4
-	00/1-01	0.7.7	1413-01
*Pentodes substitute f	under Type 6C6 may also be t or this type when they are c	onnected 1. Space limitations 3. File 2. Wiring changes, 4. Sou	ament voltage and/or current changes. thet change.
qs triodes	tecreen and suppressor tied	o picie).	The state of the second s

To Replace These RCA Types	Use These RCA Types	With Changes Indicated Below	To Replac These BCA Types	e Use These RCA Types	With Changes Indicated Below	To Boplan These RCA Types	te Use These BCA Types	With Change Indicated Below
615-G*-Continu	bea		807-GT	2A6	1.2.3.4	EST-G-Cos	Gaued	1 August
1251	N7-GT	2, 3		686-G	1.2	and the second second	78	3,4
27 -		3.4	6.5.1.3	6Q7			See	Key 44-50
56		3.4	1. 1. 1.	6507		3EA7	6SA7-GT/G	
76 ,		3, 4	11/2000	SOT OT /C	2	AN ARES	707	4
See		Key 28-41	and the second	6T7-G	123	1.2624 19	12SA7	
ELS 616-	G	1	1.1.1.1.1.1.1	7B6	2,4	1001 2.023	Seo	Key 20.24
See		Key 12, 14, 15	a start and	7C6	2, 3, 4	STAT.CT/C	CC 8 7	
SLE-G 6L6			02 44 1	12Q7-GT/G		00111-01/0	707	
See		Key 12, 14, 15	1 10 100	12SQ7	2.3	ANT SALAS	125A7	
61.7 6L.7-	G	12	1	75	124		12SA7-GT/G	
See	CTELLE .	Key 20-24		See	Key 32, 40		See	Key 20-24
ST.7.0 617		2	0.2.7	207	104	6SC7;	6SL7-GT	2
See		Key 20-24		BR7.GT/G	······ 4. 4. 9		7F7	
ANE C SES				6SR7	2		12SL7.GT	23
See		Key 11, 12, 14	No. S	6ST7	2, 3		See	Key 33, 41
	1.1		1/83	6V7-G	1, 2	6975	EFS	2
SNT.GT/CL SNT	6N7.CT	/G 1.4	1.1.1	7E6	2,4		EFS-GT/G	2
6Y7.	-G		1947 B.S. 1	125H7	1 2 3 4		6SFS-GT	100
627-	G	1	2 3 4 1	85	124		6K5-GT/G	2
53		1, 3, 4	A CARLER	Sea	Key 32, 40		784	4
79		1.2.4	10000	107	124		12F5-GT	2, 3
See		Key 10	sar-us/u	6R7			125F5.GT	
SPS-GT/G* 6AE	S-GT/G		1000	SR7			See	Key 28-41
6CS	-		1.5 8.5	5ST7	2, 3.	ASTS-GT	655	2
BC3-	GI/G	122	A DO REAL	6V7-G	1,2		6FS-GT/G	2
615	G	1, 2, 3	11.11.1	7E6	2,4	4	6SF5	
615-0	GT/G		ALL ALL A	125R/	1224		6K5 GT/G	2
6L.5-4	G	1,3	11.200	85	1.2.4		784	
6SN	7-GT	2, 3		See	Key 32, 40		12F5-GT	2, 3
744			887	DE	1234		125F5.CT	
12/5	-GI			SE7	1.2.3.4		See	Key 29-41
1250	N/-GI		A REAL	5K7		8577	12557	2
37		1.4	and the second	5K7-G	1, 2, 3		See	Key 46
56		1, 3, 4	1000	5K7-GT		85G7	SAR7	23
76		1,4	1 - 10 - 20 - 20	S7-G	1.2		7H7	4
000		Key 28-41		SK7-GT/G	2.3		12SG7	
6P7-G 6F7	*******	4	1. 19 1. 18 4	6SS7	2		See	Key 44-50
200		Key 29, 45	100	5U7-G	1, 2, 3	6SH7	6AC7	2, 3
6Q7 2A6		1, 2, 3, 4	11 14 15	7A7	2, 3, 4		6AG5	
6B64	G	1.2	1.1. 1. 100	787	2.4		12547	
607	GT	1, 2	The Party	2K/GT/G			See	Key 44-50
6SQ:	7	2	1	2SK7-GT/G	2.3		ACTE	124
6SQ	7-GT/G	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4A7/12B7	234	•	6D7	124
6T7-0	G	1, 2, 3	a like -	39/44	1, 2, 3, 4		6.17	2
7B6		2,4		88	1, 2, 3, 4		6]7-G	1.2
1201	GT/C	2, 3, 4			1. 2, 3, 4		6)7-GT	2
1250	07	22		944	Yeh 44-20		6SJ7-GT	100
1250	D7-GT/G	2.3	887-G	D6			707	3.4
75		1. 2. 4	100P	E7	3,4		1217-GT/G	2.3
See	ALL TA	Key 32, 40	1.	K7.G	3		12SJ7	3
6Q7-G 2A6		3.4	1. 1. 1. 1.	K7-GT	2, 3		12SJ7-GT	3
6B6-0	G		6	SS7	2		57	1. 2, 3, 4
6Q7		2		SK7	2,3		77	1.2.4
607	7	2	1 ADL	SK7-GT/G	2,3		000	Ney 44-50
ESO3	CT/C	2	THE ANY ARE	117.G	3	\$317.GT	606	1. 2. 4
617-0	Gille	3	The March	147	234		617	1, 2, 4
7B6	*********	2.4	1 4 11 1	B7	2.4	Sec. Sec.	617-G	1.2
7C6		2, 3, 4	112 8.85	2K7-GT/G	2.3	C TRUNK	6J7-GT	2
1207	GT/G	2,3		2SK7	2.3	1 6 3 3 1	ESJ7	
1250	7	2,3	2 5 4 1	ZSX7-GT/G	2, 3		6W7-G	1, 2, 3
12SQ	/-GT/G		No. L. D. Prove	4A7/12B7	2.3.4		707	3, 4
See.		Key 32. 40		8	3.4		12]7-GT/G .	2, 3
	-					-		
Pentodes under substitute for this	Type 60 s type v	then they are	used as a connected	1. Space li 2. Wiring	mitations. 3. Fi changes. 4. So	lament volta ocket change	ge and/or cu	trent changes.

-

To Replace Use With Char These These Indicate RCA RCA Indicate Types Types Below	d To Replace Uso With Changes These These With Changes BCA RCA Indicated RCA BCA Below	To Replace Use With Changes These These Indicated BCA RCA Indicated Types Types Below
6SI7-GT-Continued	8SO7-GT/G-Continued	BUT.C. Continued
12S17-GT 3	6SQ7	657 2 3
57 1, 2, 3,	4 6T7-G 1, 2, 3	6S7-G 3
77 1, 2, 4	786 4	6SK7 2
See Key 44-50	706	6SK7-GT/G 2
6SE7 6D6 1, 2, 4	120/01/0 2,3	6557 2,3
6E7 1, 2, 4	12SQ7	7A7 2,4
6K7	75 124	12K7-GT/G 2.3
6K7.GT 2	See Key 32, 40	12SK7 2, 3
657 2.3	ESR7 6C7 124	12SK7-GT/G 2, 3
6S7-G 1, 2, 3	6R7	14A7/12B7 2. 3. 4
6SK7-GT/G	6R7-GT/G 2	39/44 4
6SS7	6ST7	58 3, 4
607.6 1,2	6V7-G 1,2	See Key 44.50
7A7	7E6	eve capacity and
12K7.GT/G 2 3	12SR/	GEC 2,3
12SK7	85 124	6F6-G 1.3
12SK7-GT/G 3	See Key 32, 40	6K6-GT/G
14A7/12B7 3, 4	68.87 606 10.04	61.6 1, 3
39/44 1. 2. 4	6E7	6L6-G 1, 3
58 1, 2, 3,	6K7	6V6-GT/G
See Key 44.50	6K7.G 1. 2. 3	6Y6-G 1, 3
	6K7-GT 2, 3	765
6517-GT/G. 6D6 1. 2. 4	657 2	1015
6K7 2	657-G 1, 2	38 1.2.4
6K7-G	65K7	41
6K7.GT 2	6U7-G	42 1, 3, 4
6S7 2,3	747 34	89 1, 2, 4
6S7-G 1, 2, 3	787	See . Key 12, 14, 15
6SK7	12K7-GT/G 2, 3	SV8-GT/G. 6AD7-G J. 2. 3
6117.0 1 2	12SK7	6F6 3
747 4	12SK7-GT/G 3	6F6-G 1, 3
787	14A7/12B7 3, 4	616 1 3
12K7-GT/G 2, 3	39/44 1, 2, 3, 4	616.0 1.2
12SK7	78 1.2.3.4	6V6
125K7-GT/G 3	See Key 44-50	6Y6-G 1, 3
14A7/12B7 3,4	1224 1224	7B5 4
58 1.2.3	6R7 2.3	705 4
78 1.2.4	6R7-GT/G 2, 3	12A5 1, 3, 4
See Key 44-50	6SR7	38 1, 2, 4
65L7-GT 7F7	6V7-G 1, 2, 3	42
12SL7-GT	12577 3	89 1, 2, 4
See Key 33, 41	55 1.2.3.4	See Key 12, 14, 15
68N7-GT 6C8-G 1,2	85 1, 2, 3, 4	6V7-G 6C7
6F6-G 1, 2	See Key 32, 40	6R7 2
12AH7-GT 2, 3	877-G 2A6 3.4	6R7-GT/G 2
See Key 33 41	686-G 3	65H7 2 6CT7 2.2
000 A07 00, 41	6Q7 2,3	6517 2, 3
63Q7	6Q7-G 3	12587 2.3
607 2	60/-61 2,3	55
6Q7-G 1, 2	6SQ7	85 4
6Q7-GT 2	786 2.3 4	See Key 32, 40
6SQ7-GT/G	7C6	6W7-G
6T7-G 1, 2, 3	12Q7-GT/G 2,3	6D7 3, 4
756	12507 2.3	6]7 2, 3
1207.GT/G 2.3	12SQ7-GT/G 2, 3	617-G
12507 3	75 3, 4	6517 2.3
12SQ7-GT/G 3	See Key 32, 40	6SI7-GT 2 3
75 1, 2, 4	SUS/8GS. 6AB5/6N5 3	707 2,4
See Key 32, 40	See Key 25, 26	12J7-GT/G 2,3
58Q7-GT/G 2A6 1, 2, 3, 4	607-G 6D6	125)7 2, 3
686-G 1,2	627 4	12SJ7-GT 2, 3
6Q7	6K7 2	77 3.4
607-GT 2	6K7-GT 2	See Key 44-50
	Chiros manana 2	
1. Space limitatio 2. Wiring change	ns. 3. Filament voltage and/ s. 4. Socket change.	or current changes.

To Repla These RCA Types	ce Use These RCA Types	With Changes Indicated Below	To Re Th RO	place ese CA	Use These RCA	With Changes Indicated Below	To	Replace These BCA	Use These RCA	With Change: Indicated Balance
eve				Pes.	Types			Types	Types	below
PA3	8X5-GT/G		7A8_C	ontinued	1	State and	7B7-	Continues	a	
	See	Key 2	11 2.0	12H5	······	3,4	Lat.	6K7		2. 3. 4
EXS.CT/C	eve	well -		264	K01		1.23	5K7-G		1.2.3.4
01001/0	0A5 84/674		1121	- 6D6 .		1.2.4	1-126	OK/-G		2. 3, 4
the second	See	Kay 2	PER SE	EKT .		1.2.4	1. 41.4	657		2.4
CYS .	eve		100.00	6K7.G		124	1.8.	65K7		1. 2. 4
013	EXS CT/C		1000	6K7-G	Τ	2.4	chester	6SK74	GT/G	3.4
TT ST	675		11016	6S7		234	Silve.	6SS7 .		4
1.	7Y4		1 1.2	657-G		1.2.3.4	266.4	6U7-G		1.2.3.4
State and	84/624	4	CO. P.S.	6SK7		4	Seally.	7A7 .		3
	See	Key 2	1.175.22	6SK7-0	ST/G	4	1.1.1.1.1.1	12K7-0	GT/G	2, 3, 4
6Y6-G	6L6		1.10 203	6557		3.4	121.75	125K7	07/0	3. 4
	6L6-G		1 1 2	607-G	******* ******	1.2.4	31.6	12SK/	GI/G	3, 4
Singler and	6V6		(Brailet)	1287	T/C	3	4. 1. 1	14A//	1287	
1 (6V6-GT/G		Rade	125K7		2.3.4	2035	58	********	1234
the second	7C5		「日本語	12SK7-	GT/G	3.4	1.27.5	78		1.2.3.4
1 - 12 - 13	12A5		3.2	1447/	1287	3	102.0	See	K	ey 44-50
	266	Key 12, 14, 15	U.S.	39/44		1.2.4	72.8	247		1234
SY7-G	6A6	1, 3, 4	1 2.2 2	58		1, 2, 3, 4		6A7		1.2.4
	6N7	3	1 4 8 2	78		1.2.4		6A7S	******	1, 2, 4
10000	EN7-GT/G	3	1.11.14	See	Key	44-50	1.29	6A8 .		2. 4
L'OLE ST	627-G		7 R8	.2A7		1.2.3.4	125	6A8-G		1, 2, 4
Arts Interview	53	1. 3. 4	1200108	6A7		1.2.3.4	11.125	6A8-G	T	2. 4
1 2		2,4	1.1.1.1.1.1	6A75		1. 2. 3. 4		6D8-G		1, 2, 3, 4
	000	YeA IN	1. U.S. C.S.	6A8		2, 3, 4	311118	748 .		3
623	6X5	41	1.12.2.2.2.2.1	DA8-G	**************	1. 2, 3, 4		12A84	31/G	2, 3, 4
1.4.1.8	XS-GT/G		1.1.1	6A8-G	·····	2.3.4		200		ay 20-24
	R4/674		19 million	608-G	**********	1. 2, 4	705	6AD7-	G	1. 3. 4
E PERCE	See	Key 2	1. 12 1.	1248.0	T/C	3 2 2 4	di mi	010	***********	3.4
877.0		101	1 State	See	Key	20.24		EK6-G	T/G	4
641·0	N7	1.3,4	784	ere	-			6L6		1.3.4
	N7-GT/G	3	126	. C10	10	2.4		61.6-G		1.3.4
	SY7.C	2	C COM	6SF5	/	2.4		EV6		4
	53	134	1. 1. 1. 1.	6SF5-G	T			6V6-G	T/G	4
	79	2.3.4	19.60	6KS-GT	/G	2,4	1.1.1	6Y6-G		1. 3, 4
	See	Key 10	19.60	12F5-G	T	2.3.4	1000	785	14 A. S.	
SZYS-G.	SX5	3	STAT MO	12SF5		3, 4		12A5		1, 3, 4
	XS-GT/G	3	1. 化品牌	12SF54	GT	3.4		38		1. 2. 4
	6Y5	3, 4		500	Koy	28-41	10 33	42		134
Des Sch (325	3, 4	785	6AD7-0		1, 3, 4	12enka	89		1.2.4
14. 1. (CP)	Y4	3, 4	The second	676		3,4	1.1.1.1	See	X	ey 12, 14, 15
	34/624	3, 4	211	6F6-G		1.3.4	+7-2	286		1224
1 2 5 1 1	500	Key 2		6K6-GT	/G	4	1.00	686-G		1234
784"	AES-GT/G.	time 4	2.2.9	010		1. 3. 4		6Q7 .		2, 3, 4
	5C5		4.97	EVE	*******	1, 3, 4		6Q7-G		1. 2, 3, 4
Be the second second	CS-GT/G			6V6-CT	VG			6Q7-G	T	2, 3, 4
	515	4	. 6	705		E Lo Didatral		6SQ7		3, 4
	IS GT/G			38		1. 2. 4		6SQ7-	GT/G	3.4
	SLS-G	1.3.4	1000	41		1.4		617-G		3
	PS-GT/G	4		42		1, 3, 4		12074	GT/G	234
	SN7-GT	3, 4	-11200	89		1, 2, 4		12507		34
	12J5-GT	3, 4	MATRIA	See	Key	12, 14, 15		12507	GT/G	3.4
1000	25N7-GT	3.4	735	2A6		1.2.3.4		75		1. 2. 3. 4
		1, 3, 4		696-G		1.2.4		See	K	ey 32, 40
PULL STORE			1.200	507		2.4	107	606		1.2.3.4
	16	1.4		607-G		2.4		6D7 .		1, 2, 3, 4
	See	Key 28-41		007-01		2. 2		617		2, 3, 4
785				ESOT C	710			6]7-G		1, 2, 3, 4
	LG	134	Sec. Rek	6T7-G		1.2.3.4	1.11	617-GT	*******	2. 3. 4
A SUCCESSION	V6	4	En al a set	706		3		6SJ7 .		3. 4
6	V6-GT/G	1	-	1207-G	T/G	2.3.4		6517-G	T	3.4
	YEG	134	14/10	12507		3.4	1.37	BW7-0	T/2	224
1	C5			125Q7-	GT/G	3.4	P.C.	12517		3.4
1	2A5	1.4	DOUND S	75		1.2.4		12017	CT	3.4
5	iea 1	Cey 12, 14, 15;		See	Key	32, 40		57		1.2.3.4
7A6	H6	3.4	787	6D6		1.2.3.4	1221	77		1, 2, 3, 4
e	H6-GT/G	3, 4	1	8E7		1.2.3.4	- Carlos	See	K	ey 44-50
* Dantoules	under Ture	CE may also be	und on	7 0	anna lla la			maline	11	
Fornodes t	inder Type	www.may also ba l	mad as a	1. 5	pare unit	auone 3. Fi	ament	volidde o	may or er	arent changes.

substitute for this type when they are connected as tricdes (acreen and suppressor tied to plate).

To Replay These RCA Types	ce Use These RCA Types	With Changes Indicated Below	To Baplas These BCA Types	to Use These RCA Types	With Changes Indicated Below	To Roplace These RCA Types	Uso These RCA Types	With Changes Indicated Below
728	6C7	124	INFLOT C	matterned	and the second second			
	6R7	2.4		125F5-GT	2	133A7-COLL	202	
	6R7-GT/G	2.4	Dis Ban par	See	Key 28:41	12.2.9.266	See	Key 20-24
1 P2E 815	65R7	4	1286	6H6	2	12SAT.GT/G	RSA7	1
See 22	6V7.G	124	10	6H6-GT/G	1, 3		6SA7-GT/G	3 3
a law	12SR7	3, 4	1.2 of 37. 4	7A6	1. 3. 4		7Q7	
1.	55	1, 2, 3, 4	The second	See	Key 7	Call Land	See	Key 20-24
Sugar in	85	1.2.4	12J5-GT*	6AES-GT/G	3	125C7	6SC7	
	500 1	WY 32, 40	A starting and	ACS CT/C		A CONTRACTOR	SLT-GT	2,3
767	260 1	(ey 47, 48	the second	6F8-G	1.2.3	Letter AV. D	12SL7-GT	2
787	6SL7.GT		A State of the	6]5		C. C. C. Lando	See	Key 33, 41
1.	See 1	ev 33. 41	Children and State	615-GT/G		125F5	6F5	2.3
707	6807	The Parcel	136.20 19.31	6PS.GT/G	1,3	Bank Links	6FS-GT/G	2.3
	6AG5		1 Particular	6SN7-GT	2,3	1.0.0.0	6KS-GT/G	
and the second	6SH7	4	A state	7A4		Photo Internet	SFS GT	
	See	Key 44-50	常たという	12SN7-GT	2.3	1	7B4	
7H7	6AB7	3. 4	11/2 4 7/21	76	1.3,4	The Aburdes	12F5-GT	2
	12567	2.4		See	Key 28-41		See	Key 28.41
in Frank Statis	See 1	Key 44-50	1217.GT/G.	6C6	1234	12855 CT	ere	2.2
717	618-G	124	ALC: HERE	6D7	1, 2, 3, 4	1401 5 61	8F5-GT/G	2.3
	See	Key 20-24	A State State	617-G	1, 2, 3	· 15月1日 · 1999	6KS-GT/G	2,3
797	65A7	4		6C17			6SF5	
	6SA7-GT/G.	4	Control Links	6SI7-GT	2.3	1 6 8 3 6 6	784	
	See 1	Key 20.24	A. Barriston and S.	6W7-G	1, 2, 3	1 . A. M. Salah	12FS-GT	
7¥4	6X5	3.4	A Distance of the	7C7	2, 3, 4	A STATE	12SF5	
States and a	675 GT/G	3, 4	1.2	125/7		- Charles	See	Key 28-41
	84/624	1.4	12.2	77	1.2.3.4	12SF7	6SF7	
- Palanta	See	Key 2	CALLS AND	See	Key 44-50	A CORE LA CARGO	See	Key 46
12A5	6L6	3.4	12X7-GT/G.	6D6	1.2.3.4	125G7	6AB7	2.3
E PLY AR	6L6-G	1. 3. 4	1918	6E7	1, 2, 3, 4		6SG7	
	SVB		A REAL PROPERTY	6K7		and all the	See	Key 44-50
	6Y6-G	134		6K7-GT	3	12537	FACT	2.2
17 BUT BE	7C5	4	an and	657			6AG5	3,4
•	See 1	Key 12, 14, 15		6S7-G	1, 2, 3		6SH7	
12A7	25A7-GT/G.	2. 3. 4	and water	6SK7	2.3	A CARLER OF	7G7	
	See	Key 18		6SS7	2.3		000	NOY 44-50
12AB-GT/G	6A7	1, 2, 3, 4	1000	6U7-G	1.2.3	12317	6C5	1.2.3.4
	6A8	1, 2, 3, 4	LOF mild	7A7	2, 3, 4	A STATE OF STATE	617-G	1, 2, 3
1.1.5.124	6A8-G	1, 2, 3	the state of the	787	2. 3. 4	1 6 1 1 1 1 1 1 1	6J7-GT	2, 3
146.25 (0.3	6A8-GT	3		125K7-GT/G	2	The states	6SJ7	
	6D8-G	1.2.3	12 2 1211	14A7/12B7	2.4	1	EWT.G	123
- Internet	788	2.3.4	a the second	39/44	1, 2, 3, 4		707	3, 4
12. 1. 1. 1.	See	Key 20-24	P Stall	78	Xay 44 50	The second	1217-GT/C	2 2
12AH7-GT	6C8-G	1, 2, 3	Same Lines		107 44.00	1	12SJ7-GT	1.0.2 4
	6F8-G	1. 2, 3	1380	SK8	123	a sure a sure and	See	Key 44-50
1 18 12 - 19	65N7-GT	2,3		6K8-GT		12817.GT	606	1224
	See 1	(ev 33, 41	T ICTR	See	Key 20-24		6D7	1.2.3.4
1280.07	2588.07	2	1207-GT/G	686-G	1, 2, 3	Trick I was	617-G	1.2.3
1000.01	See	Key 45		6Q7		I after a fish	617-GT	
1900	EDO	2	15 22	607-GT	3	1 Part man	6SJ7	
3400	6B7	1, 2, 3, 4		6SO7	2.3		6W7-G	1. 2. 3
	6B75	1, 2, 3, 4	刘晓 二级法	6SQ7-GT/G	2.3	The state of the state	707	
A STAR	688-G	1. 2. 3	1 States	6T7-G	1. 2. 3	A BURGER	1217-GT/C	3 2
S. Cali	000	vey 49		786		A Particular	12SJ7	1224
12F5-GT	6F5	3	200 302	12507	2, 3, 4	Ber All	See	Key 44-50
	EKS-GT/G	2.3	2.8 1.9	12507-GT/C	3 2	12517	6706	1994
- Chilling	6SF5	2.3	53	75	1, 2, 3, 4	I ADRY	6E7	1.2.3.4
	6SF5-GT	2, 3	ALL STORY	500	Key 32, 40	1. 1. 8 1.	6K7	2, 3
Section of	7B4	2, 3, 4	128A7	8SA7		De Car	5K7-G	1.2.3
1. Call to and	12515	2	1000	bSA7-GT/G	3		oh/GT	
* Pentodes	under Type 6	C6 may also be u	used as a	1. Space lin	nitations. 3.1	Filament volta	and/or	current changes.
substitute f	factoen and	when they are a	to pictel	2. Wiring cl	hanges. 4.	Socket change.	1. 1. 240.	
The process	Dun need and		- Protest.	A DECKINE AND	and the second se	and the second second	at the second	

To Replace These RCA Types	Use These RCA Types	With Changes Indicated Below	To Replace These RCA Types	Use These RCA Types	With Changes Indicated Below	To Beplace These BCA Types	Use These RCA Types	With Changes Indicated Below
12SK7-Cont	nued	STREET, STREET, ST	12SR7-Conti	beun		25B5 2	5N6-G	4
35403	6S7	2.3	HAR MELSE	6ST7	3	S	60	Key 11
A CLEAN	6S7-G	1, 2, 3	112011	6V7-G	1, 2, 3	25B6-G 1	2AS	
The March R.V.	6SK7		1	7E6		2	5A6	
6 Palle	6SS7		A PARTY AND	500	Key 32 40	2	SAB-GT/G	
A CONTRACTOR	6U7.G	1.2.3	1000		101 00, 10	2	51.6	
1 and a state	7A7	3. 4	1223	1.7		2	SLE-GT/G	
A ST HORNER	787	3, 4	ALL A	3524-GT	3.4	3	SA5	3. 4
111112	12K7-GT/G		and the second	3575.GT/G	3.4	3	SL6-GT/G	3
1111626	1258/01/0		E ADESTRON	4523	3. 4	4	3	
Sector States	39/44	1.2.3.4	A STATE	4525-GT	3.4	S		Key 12 14
May Beer	78	1. 2. 3. 4	A STATE	See	Key 1	SERACT 1	TRACT	2
Ser Barris	See	Key 44-50	14A7/12E7	6D6	1.2.3.4	S	eo	Key 45
12SK7-GT/G	6D6	1. 2, 3, 4	C. G. R. R. P.	6E7	1.2.3.4	25000 1	245	24
1510	6E7	1. 2. 3. 4		6K7	2, 3, 4	2	546	
	6K7	2,3	1.044.440	6K7.GT	234	2	SA6-GT/G	
A STATE AND	6K7.GT	2.3	The second second	657	234	2	SB6-G	
10.00.00	657	2.3	ALTER CALL	6S7-G	1. 2. 3. 4	2	5L6	
and the second	657-G	1, 2, 3	O D F VILLON	6SK7	3.4	2	SL6-GT/G	24
1.51	6SK7		Statisticana	6SK7-GT/G		3	SL6-GT/G	3
1 10 10 10	6SK7-GT/G		Drest miner	6557		4	3	4
11.11.11.12	6117 0	1 9 9	NINE STOR	507-G		5	OL6-GT	
	7A7	3.4	1. Patricken	787		S	00	Key 12, 14
122 1276	7B7	3.4	The second second	12K7-GT/G	2.4 *	25L6 1	2A5	1. 3, 4
Children Marth	12K7-GT/G	2	4 542 Jan	12SK7		2	SA6	100
15.82 (3)	12SK7	and and the second second	ASARL!	12SK7-GT/G	·	2	SR6-C	
A SIL AND	14A7/12B7		Contraction of the	39/44	1, 2, 3, 4	2	5C6-G	i
Belgas	78	1234	A.S. Contractor	/8	Key 44.50	2	SL6-GT/G	
Ser Carlos	See	Key 44-50	and the second			3	SA5	
12817.67	6SIZ.GT	3	15	184-P		3	SL6-GT/G	
	7F7	3.4	A PART PRAY	32	1.3.4	1	TD.410	
Contraction of the	See	Key 33, 41	PES PRINT	See	Key 44, 50	s	000.01	Key 12, 14
125N7-GT	6C8-G	1.2.3	19	116-G	3.4	ANTE CT/C 1	245	124
1000	6F8-G			See	Key 10	2	SA6	
and a state	6SN7-GT		24.B	35		2	SA6-GT/C	
00.00.00	IZAH/GT .	Key 33 41		See	Key 42-44, 50	2	5B6-G	
		101 00, 41	25.88	1245	134	2	5CD-G	
12597	607			25A6-GT/G		3	SAS	3.4
R.L. Bal	607-G	1.2.3	DA Simon	2586-G	1	3	SL6-GT/G	
A CONTRACTOR	6Q7-GT		A PARTICIPA	25C6-G		4	3	1, 4
Same Same	6SQ7		4	ZSL6		51	0L6-GT	
1 1 1 1 1 1 1	6SQ7-GT/G		1.	25L0-G1/G	34	9	100.	Key 12, 14
1	617-G	1.2,3		35L6-GT/G	3	25N6-G 2	5B5	4 -
A CONTRACT	706	3.4	A. S. S. S. S.	43	1.4	2	60	Key II
1.201.201.3	1207-GT/G	2	Carl States	50L6-GT	3	25Y5 2	525	Contraction of the
1 1 1 2 2 4 1 2 3	12SQ7-GT/	G	and a second	266	KOY 12, 14	2	576 GT/G	
1	75	1.2.3.4	25A8-GT/G	12A5	1. 3, 4	5	OY6.GT/G	3.4
24.4.102	266	Key 32, 40	same in	25R6.G	1	5	0Z7-G	3, 4
125Q7-GT/G	6B6-G	1, 2, 3	A STARSTIC	25C6-G	1	1	1726-GT/0	3 3, 4
1 2 2 1 1	607	123	1 7 20 20	25L6		S	00	Key S
1	607-GT	2.3	E P COLLE	25L6-GT/G		2525 2	5Y5	
1 Pinto	6SO7		- apalica	35A5		2	526	4
A PROMISE	6SQ7-GT/G		110 210	35L0-G1/G		2	526-GI/G	
and the second	6T7-G	1, 2, 3	C. C. Starting	50L6-GT	3	2	077-6	3.4
Lan Andrea	786		1 States	See	Key 12, 14	1	1726-GT/0	G 3. 4
1145115	1207.GT/G	3.4	25A7-GT/G	32L7-GT		S	iee	Key 5
CAR -	12507-GT/	G	1	701.7-GT	2, 3	2528	SYS	1.4
1 1 1 2 2 20	75	1, 2, 3, 4	A STATE OF THE STATE	117L7/M7-G	T 2, 3	2	5Z5	1, 4
a hick it will	See	Key 32, 40	The states	117N7-GT .	2.3	2	526-GT/G	
123R7	6C7	1, 2, 3, 4	and the second	See	Key 13 18	5	OY6-GT/G	3
1	6R7	2.3		ELCE OT IO	2	5	1776 CT /	1, 2, 3
Same and	BRT-GT/G		ISACS-GI/G	See	Key 10	1	See	Key 5
March Z all the	00N/			-				
-	1. Sp 2. Wi	ace limitations. iring changes.		4. Socket cl	vollage and/or hange.	current chang	65.	

To Repla These RCA Types	rce Us The RCI Type	With Changes Indicated Below	To Replace These RCA Types	Use These BCA Types	With Changes Indicated Below	To Replace These RCA Types	Use These RCA Types	With Changes Indicated Below
25ZS-GT/G	25Y5		37*	AFS CT/C	a la serie de la s	12 Carthere		
	2525	1. 4	6	C5	······································	-conunue	245	
	2526		6	CS-GT/G	4	3	8	2.4
Sec. 4	5076-GI/G	122	6	F8-G			1	
	11726-GT/	'G 3	0	E CT/C		8	9	X 12 14 15
12.23	See	Key 5	6	5-G1/G	3.4			Key 12, 14, 15
27	56		61	PS-GT/G		43 1	2A5	
	See	Key 28-41	6	SN7-GT		2	SA6-GT/G	1
30	1H4 G	4	7.	A4	4	2	5B6-G	
	See	Key 28, 32	1	LIS-GT		2	5C6-G	
31	See	Key 8	2	SHI-GI	3	2	5L6	
33	184.P		56			2	SLD-GI/G	
25 8	1E5-GP		71	5		3	SL6-GT/G	3.4
	15	3, 4	S	90	Key 28-41	5	DL6-GT	3. 4
in the second	See	Key 42-44, 50	128 61	LD7-G		S	00	Key 12, 14
3217-GT	25A7-GT/	G 3	61	Б	2, 3, 4	45 2	A3	1.3
	7017-GT	2,3	10	16.G	234	S	00	Key 8
	117L//M7	2,3	61	6-GT/G	234	4523 3	5Z3	1, 3, 4
	117P7-GT	2.3	61	/6	2, 3, 4	3	5Z4-GT	1.3.4
	See	Key 13, 18	67	6-GT/G	2.3.4	3	SZS-GT/G	1, 3, 4
33	See	Key 14 19	78		2. 3. 4		19-63	Key 1
34	1440	1.01 14, 15	70		2.3.4	1575 (77	270	1011
	IDS-GP	4		•••••	2.3.4	3	573	
	IDS-GT	4	89	*********		3	5Z4-GT	2.3
	See	Key 42-44, 50	Se	0	Key 12, 14, 15	3	5Z5-GT/G	3
35	24-A		39/44	A		4	5Z3	3, 4
Lui ann	See	Key 42-44, 50	GE	7		5	69	Key I
35.5.5	12A5	1.3.4	68	7	2, 4	48 2.	AS	
	25A6		6K	7-G		4		
1.1.1	25A6-GT/	G 3, 4	DK.	7-GT	2, 4	S	0-0	Key 10-14
	2586-G		60	10	2, 3, 4	47 2		
123102210	2500-0		65	K7	2.4	4		2
11/1/201	251.6-GT/C	3.4	65	K7-GT/G	2, 4	5		3, 4
1 10 15 1 S	3516-GT/C	3 4	65	S7	2, 3, 4	S	00	Key 10, 14
1105 251	43	1, 3, 4	60	7-G		19 S		Key 10
1112 144	SOL6-GT		77	7	2.4	50L6-GT 1	2A5	1.3.4
	200	Key 12, 14	12	K7-GT/G	2.3.4	2	5A6	3
3518-GI/G.	12A5	1, 3, 4	12	SK7	2, 3, 4	2	SA6-GT/G	3
	25A6-GT/0	3 3	12	SK7-GT/G	2. 3. 4	2	B6-G	1,3
Contraction of	25B6-G	1,3	14	A7/12B7	2, 3, 4	21		3
	25C6-G	1, 3	58			2	L6-GT/G	3
	25L6		Se	•	Key 44-50	3	A5	3.4
	25L6-GT/C	3	41 64	DZC	1.2.4	3	L6-GT/G	
	43	134	6F	5	3.4	4		Kay 12 14
	SOL6-GT		6F	6-G	1, 3, 4	SAVE CE IO	VE	1.0.1
	See	Key 12, 14	6K	GGT/G		3019-GI/G 2	75	134
3523	1223	1, 3, 4	6L			2	Z6	
	35Z4-GT .		6L EV	5-G	1, 3, 4	2	Z6-GT/G	3
	3525-GT/G		6V	6-GT/G		50	27-G	1,2
	4525-GT	3.4	7B	5		11	726-GT/G	
	See	Key 1, 5	70	5	4	24		Key 5
3524-GT	1273	134	38		2.4	5027-G 25	YS	
	3523		42	••••••	1, 3	21	76	
	3525-GT/G	2 2	Se		Key 12, 14, 15	25	Z6-GT/G	2.3
	4575 CT		42 04	DIC	24	50	Y6-GT/G	2
	See	Key 1.5	6F	5	4	11	726-GT/G	2.3
3575.GT/G	1273	124	6FI	5-G		S		Key 5
······································	3523	4	6K	6-GT/G		53 6/		
	3524-GT	2	GLI			61	TCT/C	
	4523	3.4	610	-G	3,4	61	noi/G	3.4
	4525-GT .	3	6V 6V	6-GT/G	4	67	7.G	3.4
-	000	Key 1. 5	78	5	4	79		2.3.4
30	500	Key 43, 50	70	5	4	Se	10	Key 10
			the second se		and the second se			

To Repl Thes RCA Type	ace Us e' The RC s Typ	With Changes A Indicated Below	To Replace These RCA Types	Use Those RCA Types	With Changes Indicated Below	To Replace These RCA Types	Use These RCA Types	With Changes Indicated Below
55	See	Kon 22 40	78Continu	bed		117P7-GT/G-	Continued	Contraction of the
		107 02, 40	and the state	7B7			117L7/M7-0	ST 2
30	Soo	Kov 28.41		12K7-GT/G	2. 3. 4	1. 20 1. 20 1.	117N7-GT	
		wel 10.41		12SK7	2.3.4	18 77 18 5.57	See	Key 13, 18
37	50!	Key 44-50		12SK7-GT/G	2, 3, 4	11728-GT/G	. 25Y5	1. 3. 4
58	See	Key 44-50	APRILLES INTE	39/44	2, 3, 4		2525	1. 3. 4
59	2A5		- Although	58		- miles	2526	
	46	4	the fact that is	See	Key 44-50		50Y6-GT/G	
	See	You IO 14	78	6A6	1.2.3.4	and a love that	5027-G	1.2.3
1012 07		NOT 10, 14		6N7	2.3.4		See	Key S
1041-011.	25A7-G1	23	1	6N7-GT/G .		103/483	. See	Key 8
-	117L7/M	17-GT 2, 3	Contraction of the	6Y7-G		485	See	Key 28
N. Calen	117N7-G	T 2.3		53	1, 2, 3, 4	A CONTRACTOR OF T		
Contrar 1951	See	Kay 13 19	A RAL MARIN	See	Key 10	C. B. GARD		
74	0.00	101 10, 10	80	5T4		The search in		
13	SR6.C			SU4-G	1. 3. 4	2.8		
	6Q7	2.4		SV4-G				
	6Q7.G .	4	Contraction of the	SW4 GT/G	1	LUN STR		
1 1 1 2 2	6Q7-GT	2, 4	1 12 152	5X4-G	1, 3, 4	A STATE MODEL		
Sector Sector	6SQ7	2.4		5Y3-GT/G .		Sell Balling		
13.17 3.13	6T7-G	3.4	and the factor	5Y4-G		A DAY HARDERS		
	7B6	2.4	1 5 年代	5Z3		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Section Section	7C6	2. 3, 4	A CREAK AND	83-v		A STATE OF		
A MARINE	1207.GT	/G 2, 3, 4	A REPORT	See	Key 2	A DECEMBER OF		
	12507-G	T/G 234	32	See	Key 3	The second second		
	See	Key 32, 40		C	Kau 2 4		a start	
78*	6AES-GT	r/G 4	63	. 500	Yal 2	Par a state		
1.1.1.1.1	6C5	4	83-v		124	The second	boo	
	6C5-GT/	'G 4	1. 1. 1. 1. 1. 1.	SUAG		Company and		
First State	615 ····		A State of the	5X4-G	1.3.4		ert	
10000	615-GT/0	G	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	523	1, 3	118.000	c	
	6LS-G		1 19 1 Hak	See	Key 2		see	
ALL ALL ALL	6PS-GT/	G 4	84			in marked a	Wind States	
State Frank	7A4	4	1081 2	6X5-GT/G			23	
	1215-GT	3.4	A Barbard W.S.	675	3.4		-	
1 Statte	12SN7-G	ST 3, 4	A COLORADO	6ZYS-G	4	ALC: NOT THE	s.	
11111	27		The second state	7Y4			Ke	
Juli Kardin	56	3		See .	Key 2	A A SEAT	:te	
	See	Key 28-41	85.		4	ALC: NO SAL	u	
77	6C6		A MARKED PR	6R7			atic	
151.24	6D7		A Star Star	6SR7		ALL STORES	6	
	617.0			6ST7		A Dara Berlins	dx	
11.35	617-GT .	2.4	100 h 11 h 11	6V7.G	4	Mr. Lee Br		
1	6S17		1	766	4	Banan	ä	
10 2 2	6SJ7-GT	2,4	1. 1. 1. 1. 1.	55	3.4	1 in the		
1	6W7.G		The Income	See	Key 32. 40			
1	1217-GT	/G 2.3.4	89	See	Key 14	1 Participation	1	
1 Parties	12517	2.3.4	11177 2/107 0	705 17 07 10	2.2			
1	12517-G	T 2. 3. 4	TTTTT-G	32L7-GT	2.3	1		CAN A CANA
	See	Key 44-50	1 1 1 2	7017-GT	2, 3	A BARRIER		
78	6D6		1 1.88 42	117N7-GT	2			
A AUGUS	6E7			See	Key 13, 18	1		
1000	6K7.G				0.0	10000		
L	6K7.GT	2,4	117N7-GT.	3217-GT/G	2.3	1		
The Sa	6S7		The second second	7017-GT				
	657-G .	3.4		117L7/M7-0	ST 2	A starter		
1. 2	SKT	T/G 2.4		117P7-GT	Key 13 18 *	A CONTRACTOR		
1	6SS7	2,3,4	N. N.		Ney 13, 10	1 10 3		
ANC IN S	6U7-G		11797-GT/G	25A7-GT/G	2.3	1		
And surger	7A7	2. 4	- the surveyor	70L7-GT	2,3	A State of the state of the		
RD		Turn ECE man al	haunder			1		
Pentode	tos thus	type oco may also	are connected	1. Spa	e limitations. 3	. Filament volto	age and/or c	urrent changes,
as triode	s (screer	and suppressor	tied to plate).	2, Wiri	ng changes. 4	. Socket change		

CLASSIFICATION CHART OF RECEIVING TUBES

This chart classifies RCA Receiving Tubes according to their functions and their cathode voltages. It is so arranged as to permit quick determination by the equipment designer or tube user of the type designations of tubes applicable to specific design requirements. Types having similar characteristics and in the same cathode-voltage group are bracketed.

1. m. 1.	Co	Node Volts	1.4	2.0	2.5-5.0	6.3	12.6-117	Key No.
RECTIFIER	S (for rectition	s with amplifie	er units, see P	OWER AN	MPLIFIERS).			
Holf- Wave	high-vacuum	Sant Sannag	A LAT			1.v	1223 3523 [3524-GT [3525-GT/G] 4525-GT 4523	1
Full- Wave	high-vacuum				5T4 (5U4.G 5X4.G 523 5W4 (3W4.GT/G 5Y4.G 5Y4.G 80 5Z4 (5V4.C 83.v	[6X3, 6X3-GT/G, 84/624] 874 875 8775-G 774	625	2
	mercury-vapor	· · · · · · · · · · · · · · · · · · ·	61161		82 83			3
	901		Cold Catheo	ie Types (024, 024-G	A CARLES AND	1 and the	4
Daupler	high-vacuum		1			And Andrews Property of	25Y5 2525 2526 2526-GT/G 50Y6-GT/G 5027-G 11726-GT/G	5
DIODE D	ETECTORS (Fe	r diode detec	tors with amp	lifier units,	Sec VOLTA	GE AMPLIFIERS and also POWER	AMPLIFIERS).	
One Dio	de		143			CARLENCE CONTRACTOR		6
Two Dies	des	where on the	man land and an			[6H6.6H6-GT/G] 7A6	12H6	7
POWER	AMPLIFIERS .	ith and witho	ut Rectifiers, D	liode Dete	ctors, and V	oltage Amplifiers		1.2.5
186 ()	low-mu	single unit		31	2A3 45 183/483	6A3 684-G	anoloit	8
- Trail		twin unit			1	6E6		9
Triodes	P later .	single unit	12 2 2 2 2	49	46	6ACS-CT/C	25ACS-GT/G	
	high-mu	twin unit	IC6-CT/G	[1]6-G]	53	6N7.6A6 6N7.GT/G 6Z7.G 79		10
	direct-coupled	arrangement			- Aller	685 6N6-G	[2583 25N6-G]	11
Beam	single unit		[105-GT/G [305-GT/G*] 1T5-GT			6L6 6V6 6L6-G 6V6-GT/G 6Y6-G 7A5	25C&-G 25L& 25L>/G 35A5 35L&-GT/G 50L&-GT	12
luces	with rectifier	1				And	32L7-GT 70L7-GT [117L/M7-GT 117P7-GT 117N7-GT] 13
199 1990) 1990)	single unit		1A3-GT/G [154, 354*] 1C3-GT/G 1LA4 1LB4, 3Q4*	[1F4 [1F5.G] 1G5.G 1J5.G 33	2A5 47 59	[6F6, 6F6-G, 42] 6A4 7B5 6G6-G 12A5 38 6AC7 89 [6K6-GT/G, 41]	12A5 25A6 25A6-GT/G 43 25B6-G	14
Pentodes	with medium-r	mu triode	1111 0			6AD7-G		15
	with diode	and the second second	IN6-G					16
	with diode &	triode	ID8G1			PROJACE PROPERTY	174.7	17
	with rectifier	harris				and a start of the start of the	BAJ-GT/G	18
1 25	twin unit	1000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1E7-G*		Carl States	12000	19

* Filament arranged for either 1.4 or 2.8-volt operation. . * Two IF5.G's in one bulb.

CLASSIFICATION CHART OF RCA RECEIVING TUBES

B-	(Cathode Volts	1.4	2.0	2.5-5.0	6.3	126-117	Key No
CONVER	TERS & MIXE	ERS (For other	types used a	s Mixers se	VOLTAGE	AMPLIFIERS).	1 11.0 -111	110 140
Convort-	pentagrid		IA7-GT/G IB7-GT ILA6 IR5	[1C6 1C7-G] [1A6 1D7-G]	247	648.648.G 788 707 648.GT.647 648.GT.647 6547 6475.608.G 6547 6547.GT/G	12A8-GT/G [12SA7 [12SA7-GT/G]	20
urs	triode-hexode	•				[6K8.6K8-G.6K8-GT]	12K8	21
	hiode-heptod	•	Survey of the second			6J8-G 7J7		22
Mixers	pentoquid		101			7A8		23
ELECTRO	ON-RAY TUB	ES		1			And the second second	29
	with remote c	ut-off triode	1			6ABS/6NS 6US/6CS	T	25
Dingle	with sharp cut	I-off triode	1000		2E.5	6E5	1	26
Twin	without triode	,				6AD6-G 6AF6-G		27
TRIODE,	TETRODE & PI	ENTODE DETE	hout Diado D CTORS, OS	Detectors,	RS			
		single unit	IG4-CT/G	[1H4-G] 30	27 56 485	[6C5, 6C5-GT/G] 7A4 37 [6J5, 6J5-GT/G] 6L5-G [6P5-GT/G, 76] 6AE5-GT/G	12J5-GT	28
	N. SON	with r-f			A CALLER	[6F7.6P7.G]	NY STATE	29
1		with power pentode	-			6AD7-G	and a share	30
	medium-mu	with power pentode & diode	ID8-GT		1000		Inc	31
Triodes		with two diodes		[185 [186-G]	55	[6R7, 6R7-GT/G] 6C7 [85 6SR7, 6ST7 7E6 6V7-G] 12SR7	32
		twin unit		100	Sec. Con	[6F&-C. 6SN7-CT]	12AH7-GT 12SN7-GT	33
		twin input				6AE7-GT		34
1102		twin plate				1 GAE6-G		35
		single unit				[6F5, 6F3-GT/G] 7B4 [6SF5, 6SF3-GT] 6K3-GT/G	[125F5 125F5-GT 12F5-GT	36
	- Andreas	with r-f pentode	In The S	Ser. Vi	A AND AND	had a she which are t	12E8-GT 25B8-GT	37
	high-mu	with diode &	3A8-GT*			and the states		38
12		with diode	IHS-GT/G	4				39
-	S. Sancalik Marin	with two diodes	" Tak		2A6	6T7-C, 7B6, 7C6 [6B6-G, 6SQ7 [6SQ7-GT/G, 75] [6Q7-G] 6Q7-GT]	1207-GT/G [12507 [12507-GT/G]	40
1.1	Those is	twin unit	101 1 1.			65C7 7F7 65L7-GT	12SC7 12SL7-GT	41
Tring	remote cut-of	f		IDS-GT	35			42
remodes	sharp cut-off	27 24/2 73		32	24-A	36		43
2	remote	single unit	IT4 IP5-GT	34 [1D5-GP] [1A4-P]	58	[6K7.6K7.G] 7A7 [6D6 6K7.GT, 78 7B7 6D7 6AB7 7H7 [6U7.G] [6SK7 39/44 6S7 (6SK7-GT/G) 6SS7 (6S7-G)	[125K7 [125K7-GT/G] 12K7-GT/G 14A7/12B7	44
	cut-off	with triode	-	Desine.		[6F7. 6P7-G]	12B8-GT 25B8-GT	45
	Tater]	with diode	the second		Rogerster	6SF7	12SF7	46
	A Stateman	with two diodes	E		0	767		47
Pentoder	semi-remote	single unit				6SG7	12SG7	48
- Children	cut-off	with two dicdes	141		287	688, 688-G 687, 6875	12C8	49
		single unit	INS-GT/G IL4 ILNS	[1E3-GP] [184-P] 15	57	617. 617.C. 617.CT 7C7 6C6. 6D7. 6W7.C. 77 7G7 6S17 6AC7 6S17.CT 6AC7	125H7 [125J7-GT] [12J7-GT/G	50
	sharp cut-off	with triode	3A8-GT*			State Production of the	a second deal	51
	and here	with diode	155			States and Second		52
		with two	A State	[1F6]	- 1925	THE R. L. C. D. LANS		53
	and the second	Giodes	and an other start of the	[ITTA]	the second second	and the second se		

Filament arranged for either 1.4 or 2.8-volt operation.

Two 635-GT/G's in one bulb.

TYPICAL CALCULATIONS

for Adding Series & Shunt Resistors to a Heater String

In order to determine the proper value of series and shunt resistors in heater strings, use is made of the following formulas in which E = voltage in volts, I = current in amperes, R = resistance in ohms, and W = power in watts.

$$R = \frac{E}{I}$$
 (which may also be written as $E = I R$ or as $I = \frac{E}{R}$)

W=EI (which may also be written as W=I²R or as W= $\frac{E^2}{R}$)

When the calculated value of resistance is not available in standard fixed-resistor sizes, it is suggested that an adjustable resistor be used in order to obtain the proper value. The wattage rating of either shunt or series resistors should be chosen at about twice the calculated value in order to provide an adequate safety factor under conditions of free circulation of air. A higher factor of safety may be required in compact receivers where air circulation is poor.

As a guide for calculating series- and shunt-resistor values, several examples applying to tube substitutions in 150-milliampere and 300-milliampere heater strings follow.

FIG. 1—To substitute a 6.3 v. 150 ma. type for a 12.6 v. 150 ma. type, calculate value of the resistor to be added in series with the 6.3-volt heater. Using the formula R = E/I, we have

$$\frac{12.6-6.3}{0.150} = 42$$
 ohms.

The calculated wattage is W = E I or $6.3 \times 0.150 = 1$ watt, but to provide an adequate factor of safety use at least a 2-watt size.

FIG. 2—To substitute a 6.3 v. 300 ma. type for a 12.6 v. 150 ma. type in string position as indicated, calculate value of resistor R which must shunt all components in the heater string except the substitute type. Using the formula R = E/I, we have

$$\frac{117-6.3}{0.150} = 738$$
 ohms.

The calculated wattage is W = E I or $(117 - 6.3) \times 0.150 = 17$ watts, but to provide an adequate factor of safety use a 50-watt size. The resistance to be added in series with the 6.3-volt heater is

$$\frac{12.6-6.3}{0.150} = 42$$
 ohms,

and the calculated wattage is $6.3 \times 0.150 = 1$ watt, but to provide an adequate factor of safety use at least a 2-watt size.

FIG. 3-To substitute a 35 v. 150 n.a. type for a 50 v. 150 ma. type, proceed as in discussion for Fig. 1. Value of series resistor is

$$\frac{50-35}{0.150} = 100$$
 ohms,

and the calculated wattage is $(50-35) \times 0.150 = 2.3$ watts, but to provide an adequate factor of safety use at least a 5-watt size.

FIG. 4—To substitute a 6.3 v. 150 mc. type for a 6.3 v. 300 mc. type, calculate value of shunt resistor to be added across the 0.150-ampere heater. Using the formula R = E/I, we have

$$\frac{6.3}{0.150} = 42$$
 ohms.

The calculated wattage is W = E/I or $6.3 \times 0.150 = 1$ watt, but to provide an adequate factor of safety use at least a 2-watt size.

FIG. 5—To substitute a 25 v. 300 ma. type for a 50 v. 150 ma. type in string position as indicated, proceed as in discussion for Fig. 2. Value of shunt resistor R is

$$\frac{117-25}{0.150} = 613$$
 ohms.

The calculated wattage is $(117-25) \ge 0.150 = 14$ watts, but to provide an adequate factor of safety use a 50-watt size. The resistance to be added in series with the 25-volt heater is

$$\frac{50-25}{0.150} = 166$$
 ohms,

and the calculated wattage is $25 \times 0.150 = 3.8$ watts, but to provide an adequate factor of safety use a 10-watt size.

FIG. 6—To substitute a 12.6 v. 150 ma. type for a 6.3 v. 300 ma. type, proceed as in discussion for Fig. 4. Value of shunt resistor is

 $\frac{12.6}{0.150} = 84$ ohms,

and the calculated wattage is $12.6 \times 0.150 = 2$ watts, but to provide an adequate factor of safety use a 5-watt size. Since the substitute type increases the total voltage drop of the string by 6.3 volts, it will be necessary to decrease the voltage drop, and hence the resistance, through the line-voltage dropping device (such as line cord or ballast tube) by 6.3 volts, or 6.3/0.3 = 21 ohms. To effect this decrease, the practical solution will usually be found in the use of a new line-voltage dropping device whose resistance is 21 ohms less than that of the original component.

powilling warmaker water in the providence

INDEX.

		-	No.							Page
Abbreviations-	Ham and No	on-Comm	orcial					***	•••	99
A.C. Current,	rower rormi	ulas						•••		17
A.C. Current,	Userul Forme	lias (Gene	sral)					•••		14
Angiale Dimens	ion Table fo	r Specific	Frequen	ries						26
Directo	r and Reflect	tor Half V	Vave Ae	rial F	ormula	or Re	sonant	Freque	nev	24
Half W	ave Delta M	atched Fo	rmula fo	or Res	conant F	reque	DCV	meque	incy	25
Half W	ave. Formula	a for Reso	nant Fr	equen	CY	reque				24
Half W	ave Q. Mate	hed. Forn	nula for	Reso	nant Fre	quend	Y			25
J. Type	for very H	igh Freque	encies. F	ormu	a for R	esonal	nt Free	quency	100	24
Long V	Vave, Formu	la for Res	ionant Fi	reque	ncy					25
. Long V	Vire, Multiba	and Zeppe	lin, For	mula	for Reso	nant	Freque	ency		24
" Marcon	i Type, 1 W	ave, Forn	nula for	Resor	nant Fre	quenc	y			24
" Zeppeli	in, Formula	for Reson	ant Freq	uency						25
Alternating Cur	rent Amper	age Formi	ula							10
Alternating Cur	rents .									13
Alphabet, Gree	k									253
Anti Logarithm	s							•••		257
Cables, Current	Kating .						•••			50
Capacity Formu	la	•• •••				•••	••••	•••	•••	102
" Isolate	ed Disc .	•• •••								103
" Isolate	of Horiza	antal Win	as in Pa	Fallel						106
" Parall	el Plate Con	densers	cs in ra	anci	i fin o					102
Single	Long Wire	Genacia	Contra la					1		104
" Two	Co-Axial Cyl	linders					0			103
Two	Concentric S	pheres			1000	00.000	of the	1111111	19.10	103
Two	Parallel Wire	es. above	one ano	ther	Stell Tr.	1.0		1		105
Two	Parallel Wire	es. Horizo	ntal							105
Two	Parallel Wire	es, Joined								105
Varial	ole Condense	er, Semi-C	ircular	Plate						103
" Vertie	cal Wire .									104
Cathode Ray O	scillographs,	Amplifier	Design							209
		Applicatio	on							230
		Definition	n and Te	erms		•••				228
	**	General	Descript	ion			•••			201
		High Vol	tage Sup	oplies			•••			208
	**	Installatio	on			•••				229
	**	Introduct	ion				•••			200
		Theory	applies		•••					200
"	"	Time Bas								215
Cells "Current	in a simple	circuit					a bob	1111		10
Chokes, Low F	requency, Al	ternating	Current	only			1000	Sirgian.		195
Circular Mil.					1 1 1 1	1				37
Codes, Arabic	Morse			1.1	0.000	1.00	10.10 %			91
Greek I	Morse									92
" Internat	ional Morse.									91
" Japanese	Morse .									92
" Russian	Morse .									92
" Turkish	Morse .									92
U.S.A. I	Morse .									91
Coil Forms, W	ire Calculatio	ons								69
Colour Code-	A.F. Transfor	mers, U.	.A.							6
**	Battery Cord	is, British					•••			2
**	Fixed Conde	nser Lead	s, Britis	h and	U.S.A.					3
"	Fusar Brisis	and lie	A DEITIS	and	0.5.A.					2
111 ···	GEC Winin	and U.S								37
"	Loud Speake	r Field C	ails US	A						4
R. C. Martines	Loud Speake	r Leads	U.S.A.					1118		4
310 Car 200 Car	Loud Speake	r Voice C	oils. U.S	S.A.			1 Marth			6
	Mains Transf	ormer Le	ads. Brit	ish						7
The second second	Moving Coil	Speaker.	British							8
Colour Code-	Multiple Batt	tery Cable	es, U.S.A							7
	Power Trans	formers,	U.S.A.							6
	Radio Gramo	ophone El	ectric M	otors,	U.S.A.					6
	Resistance, B	British and	U.S.A.							1
A CONTRACTOR OF THE PARTY OF TH	Wander Plug	s. British	and U.S	S.A.						3

condensers, Ceramic										240
	***			***			***	***	***	240
" EIECTFOIYLIC		····	***			***	***			291
" Measurement	to	Capacity	····		***	•••	***	***		251
" Measurement	ot	Leakage	Current		***					253
" Measurement	of	Power F	actor			***				252
" Mica …										240
" Paper Dielect	ric									235
Conductivity, Definition					4+4					10
Conversion Tables			· ···							254
Copper Wire Winding Da	ta								- **	198
Cords, Flexible										50
Decibel Conversation Table	es									16
Decibels-Power and Press	sure	Ratios								18
Decibel Relations										17
Definitions, Electrical										10
Design for Flat Spiral Coil	5					CHARLES CONTRACT	1912 13	1998	1991	163
Design of Multiple Layer (Coil	s					1.00			159
Design for Single Layer In	duc	tance Co	oils			1000	12000	10235		153
Dielectric Constant			1 President 1	1	Section Sec	ALCONS)			1000	11
Electric Cable Sizes	18			1				11111	30100	50
Electromotive Force, Induc	ed				100000		1100		G. Again	11
English-German Dictionary	R	adio		1.000				100.04	A STATISTICS	75
Equivalent Conductivity	100	adio	A CONTRACTOR				A COME		10.2	10
Faraday's Law		100					100		101 101	11
Formulas Radio Mintelland		(Including)	CP 1578 344		Charles	1.11		la training		190
Frequency and Wavelength	C	onversion	Tables	10	and the			1.1.		71
Frequency Inductive React	tanc	and C	apacitive	Re		Table		19924		67
Frequency of Tuned Circuit	r L	E Erecu	apacitive	molif	ication	Tranefo	rmer	couple	h	15
Frequency Banger of Source	de	ominoqu	ucincy A	mpin	reaction	I I anon	Amer	coupie	· · · ·	42
Frequency Construm Radia	us							0.1100		50
Euros Amportan Capacity	scioi		***							50
Fuse Wise Date			and day	***	1.1.1					40
Calumenter Terrer					1	144	1.444 (10)	***		47
Galvanometer, Tangent	•••				1.11			***		13
High Enect	***	Call	10		Chattan B.	***				174
Figh Frequency Resistance	01	Colls	- ····		***					1/1
High Frequency Resistance	to	Simple 9	Conducto	ors	***		4			165
High Frequency Resistance	of	Stranded	d Wire					•••		173
Hysteresis										11
impedance										85
Inductance, Calculations										85 109
Inductance, Calculations ,, Coil of Round	 Wii	e in Cha	annel of	Rect	angular	Cross	Sectio	 n		85 109 125
Inductance, Calculations Coil of Round	Win of C	e in Cha	annel of Section	Rect	angular	Cross	Sectio	n		85 109 125 117
Inductance, Calculations Coil of Round 1 Circular Ring of Double Flat Re	Win of C	re in Cha Circular S ngular C	annel of Section	Rect	angular	Cross	Sectio	n		85 109 125 117 134
Inductance, Calculations "Coil of Round Circular Ring of "Double Flat Re "Flat Rectangula	Win of C ecta	re in Cha Circular S ngular C Coil	annel of Section Soil	Rect	angular	Cross	 Sectio	n		85 109 125 117 134 133
Inductance, Calculations , Coil of Round , Circular Ring of , Double Flat Re , Flat Rectangula , Flat Square Co	Win of C ecta ar C	re in Cha Circular S ngular C Coil	annel of Section Coil	Rect	angular	Cross	Sectio	n		85 109 125 117 134 133 133
Inductance, Calculations , Coil of Round , Circular Ring of , Double Flat Re Flat Rectangula , Flat Square Co , Grounded Hor	Win of C ecta ar C oil izor	re in Cha Circular S ngular C Coil	annel of Section Coil	Rect	angular	Cross	Sectio	n 		85 109 125 117 134 133 133 133
Impedance Inductance, Calculations Coil of Round Circular Ring of Double Flat Re Flat Rectangula Flat Square Co Grounded Hor Grounded Wir	Win of C ecta ar C oil izor	re in Cha Circular S Ingular C Coil Intal Wird	annel of Section coil e el	Rect	angular 	Cross	Sectio	n		85 109 125 117 134 133 133 114 116
Impedance Inductance, Calculations Coil of Round Circular Ring of Double Flat Re Flat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer	Win of C ecta izor izor co	re in Cha Circular S ngular C Coil Intal Wird in Parallo ils	annel of Section coil e el	Rect	angular	Cross	Sectio	n		85 109 125 117 134 133 133 114 116 123
Inductance, Calculations Coll of Round Circular Ring of Double Flat Re Flat Rectangula Flat Square Co Grounded Hor Grownded Wir Multiple Layer Multiple Layer	Win of Co izor izor Squ	re in Cha Circular S Ingular C Coil Intal Winin Parallo ils uare Coi	annel of Section coil e el I	Rect	angular	Cross	Sectio	n		85 109 125 117 134 133 133 114 116 123 130
Impedance Calculations Coll of Round J Circular Ring of Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Multiple Layer	Win of C ecta izor izor Squ nce	re in Cha Circular S ngular C Coil Intal Wind in Parallo ils uare Coi	annel of Section oil e el I	Rect	angular	Cross	Sectio	n		85 109 125 117 134 133 133 114 116 123 130 136
Inductance, Calculations Coil of Round Circular Ring of Circular Ring of Flat Square Co Grounded Hor Grounded Hor Multiple Layer Multiple Layer Multiple Layer Multiple Layer Multiple Layer Mutual Inducta	Win of Co cta izor izor co Squ nce	tal Winin Jare Coil Tal Winin In Paralle ils uare Coi	annel of Section coil e el I Vires with	 Rect	angular 	Cross 	Sectio lines	n		85 109 125 117 134 133 133 114 116 123 130 136 138
Impedance Inductance, Calculations Coil of Round Circular Ring of Double Flat Re Hat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Multiple Layer Multual Inducta of Flat Spiral	Win of C izor izor Squ nce	re in Cha Circular S Coil Intal Wird in Parallo ils uare Coi , Two M	annel of Section coil e el I Vires win	 Rect	angular kes in p	Cross arallel	Sectio lines	n 		85 109 125 117 134 133 133 114 116 123 130 136 138 127
Impedance Calculations Coll of Round J Giodance Calculations Giodance Calculations Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Multiple Layer Mutual Inducta Mutual Inducta of Flat Spiral of Polygonal C	Win of Contraction izor es in contraction square nce	re in Cha ircular S ingular C coil tral Wird in Paralle ils uare Coi Two W	annel of Section oil e e e e i Vires wit	Rect	angular kes in p	Cross arallel	Sectio lines	n		85 109 125 117 134 133 133 114 116 123 130 136 138 127 122
Impedance Calculations Inductance, Calculations Coil of Round J Grouble Flat Re Flat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Square Coil	Winof Co scta ar Co ill izor Squ nce nce	e in Cha Circular S ngular C Coil Intal Wind in Paralle ils uare Coi , Two W	annel of Section ioil e e e I Vires with 	Rect	angular kes in p	Cross	Sectio lines	n		85 109 125 117 134 133 133 114 116 123 130 136 138 127 122 129
Inductance, Calculations Coll of Round) Giodi of Round) Coll of Round) Giodi of Round) Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Polygonal C of Square Coll Rectangle of R	Winof Co scta ar Co ill izor Squ nce oil	re in Cha Circular S ngular C Coil ntal Wirin Parallo ils yare Coi , Two W d Wire	vinnel of Section coil el l Vires with 	Rect	angular 	Cross	Sectio lines	n		85 109 125 117 134 133 133 133 133 134 114 116 123 130 136 138 127 122 129 114
Impedance Calculations Coil of Round Circular Ring of Double Flat Re Hat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Polygonal C Gogane Coil Rectangle of R	Winof Co ecta ar Co ill izor co Squ nce oun ecta	re in Cha Circular S ngular C Coil in Paralle ils yare Coi , Two W d Wire ungular N	vires with the section solution solutita solutita solutita solutita solutita solutit	Rect	angular 	Cross	Sectio	n		85 109 125 117 134 133 133 133 134 133 133 134 123 130 136 138 127 122 129 114 114
Inductance, Calculations Coil of Round) Groube Flat Re Hat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Mutual Inducta Mutual Inducta of Flat Spiral Grospane Coil Rectangle of R Rectangle of R Rectangle of R	Win of Co cta izor Co Squ nce nce nce nce nce	re in Cha Circular S Ingular C Coil tal Wirrin, Paralle ils uare Coi , Two W d Wire ungular N of Rectar	winnel of Section coil e e Vires win Wire gular C	Rect	angular Section	Cross arallel	Sectio lines 	n		85 109 125 117 134 133 133 133 114 116 123 130 136 138 127 122 129 114 114 132
Inductance, Calculations Coll of Round ' Gircular Ring of Double Flat Re Flat Reurance Co Grounded Hor Grounded Hor Grounded Wir Multiple Layer Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Polygonal C Grounde of R Rectangle of R Rectangle of R Rectangle of R	Win of Co cta izor Co Squ nce nce nce nce nce iii oil co oun ecta of	e in Cha Circular S Ingular C Coil tal Wirr in Paralle 18 uare Coi Two V d Wire ngular V of Rectar Circular	in annel of Section ioil i e e e i Vires with i Vires with i Wire ngular C Coil	Rect	angular kes in p Section	Cross 	Sectio	n		85 109 125 117 134 133 133 133 114 116 123 130 136 138 127 122 129 114 132 117
Impedance Calculations Coil of Round J Gircular Ring of Barbon States States Hat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Mutual Inducta Mutual Inducta of Flat Spiral of Flat Spiral of Flat Spiral Rectangle of R Rectangular Co Self Inductance Self Inductance Single Layer R	Winof Co cta in Co il izor co Squ nce nce oun ectra of co f co f co f co f co squ nce	e in Cha Circular S ngular C coil htal Winn in Paralle uare Coi , Two W d Wire ungular M of Rectar Circular ungular C	Wire Coil		angular Section	Cross arallel	Sectio	n		85 109 125 117 134 133 133 134 114 116 123 130 136 138 127 129 114 114 132 117 132
Inductance, Calculations Coil of Round) Giodi of Round) Giodi of Round) Giodi of Round) Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Flat Spiral of Flat Spiral Rectangle of R Rectangle of R Rectangle of R Rectangle of R Self Inductance Single Layer St	Winof Co cta in Co il izor co squares co co co co co co co squares co co co co co co co co co co co co co	tin Cha Circular S ngular C Coll tal Wirrin Paralle ils yare Col yare Col yare Col ware Col ware Col yare Col ya Col yare Col yare Col yare Col yare	innel of Section ioil innel ioil inne e e inne inne inne inne innel inne inne	Rect	angular Section	Cross arallel	Sectio	n		85 109 125 117 134 133 133 114 116 123 130 136 138 127 122 129 114 114 132 117 132 33
Impedance Calculations Inductance, Calculations Coil of Round J Gircular Ring of Plat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Polygonal C Self Inductance Self Inductance Single Layer R Single Layer R Single Layer R Single Layer R	Winof C ecta in C oil izor res Co Squ nce oil co oun ecta olen qua	te in Cha Circular S ngular Co Coll Maralle ils yare Coi d Wire ungular No of Rectar Circular ngular Co cold, Cha e Coil	Vires wire Wires wire Coil Coil Coil Coil	Rect 	angular Section lating	Cross arallel	Sectio	n		85 109 125 117 134 133 133 134 134 133 130 136 138 127 132 129 114 132 117 132 130
Impedance Calculations Coil of Round) Giodi of Round) Giodi of Round) Giodi of Round) Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Flat Spiral Gogane Coil Rectangle of R Rectangle of R Single Layer Sc Single Layer Sc Single Layer Sc Single Layer Sc Single Layer Sc Single Layer Sc Single Layer Sc	Winof C ecta in C oil izor oil conce oil conce ecta oil of ecta olen quar	tin Cha Circular S Coil tal Wirrin Paralle ils Two W d Wire Mire More Carl oid, Cha e Coil Wire	Wires wire Wires wire Wires coil Coil Coil Coil Coil	Rect	angular kes in p Section lating	Cross 	Sectio	n		85 109 125 117 134 133 133 114 116 123 136 138 127 129 114 114 132 137 132 33 130
Impedance Calculations Galculations Coil of Round Circular Ring of Double Flat Re Hat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Polygonal Rectangle of R Rectangle of R Rectangle of Rour Single Layer Sc Square of Rour Straight Rectar	Wind of Ca cata ar coil coil coil coil coil coil coil coil	tin Cha circular S coil htal Wine mare Coi d Wire uare Coi d Wire circular circular coid, Cha e Coil Wire ar Bar	Vires wir Source of the second secon	Rect	angular Section lating	Cross arallel	Sectio	n		85 109 125 117 134 133 114 116 123 130 136 138 127 122 129 114 132 132 133 130 113 133
Impedance Calculations Inductance, Calculations Coil of Round J Grouble Flat Re Hat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Mutual Inducta Mutual Inducta of Flat Spiral Mutual Inducta Grounded Wir Mutual Inducta Groupe Coil Rectangle of R Rectangle of R Rectangle of R Single Layer So Single Layer So Square of Rou Straight Wire	Wind of Co bill izor Co Squ nce oil co squ out of ecta of ecta of ecta of for for for for for for for for for	re in Cha circular S ngular C coil tral Wirrin Paralle ils trauare Coi d Wire Yo f Rectar Circular ngular V of Rectar Circular ngular C coid, Cha e Coil Wire ar Bar 	Vires with Wires with Wires with Wires coll Coll	Rect	angular Section lating	Cross arallel	Sectio	n		85 109 125 117 134 133 113 133 114 116 123 130 138 127 1229 114 114 132 117 132 33 110
Impedance Calculations Galculations Coil of Round Circular Ring of Double Flat Re Hat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Polygonal C Gogane Coil Rectangle of R Rectangle of R Rectangle of R Single Layer S Single Layer S Single Layer S Sugare of Rou Straight Rectar Straight Rectar Tube been inco	Wind of the wind wind wind wind wind wind wind wind	re in Cha circular S coil tal Wine mare Coil d Wire tangular N of Rectar Circular d Wire ar Bar wire coid, Cha 	Vires wir Wires wir Wires wir Coil Wires control Wires wir Wires wir W	Rect	es in p	Cross 	Sectio	n		85 109 125 117 134 133 113 133 114 116 138 130 136 138 137 127 122 129 129 129 114 114 132 33 130 113 113 113 113 113
Impedance Calculations Inductance, Calculations Coil of Round J Coil of Round J Couble Flat Re Flat Square Co Grounded Hor Grounded Wir Multiple Layer Mutual Inducta Mutual Inducta of Flat Spiral of Flat Spiral of Flat Spiral of Flat Spiral Rectangle of R Rectangle of R Rectangle of R Rectangle of R Rectangle of R Rectangle of R Single Layer St Single Layer St Single Layer f Single Layer St Single Layer f Single Layer St Single Layer St Suguare of Rour Straight Wire Tube bent into Two Parallel V	Wind of Collizor izor Square oil izor Square oil izor square oil i i i oil i i i i i i i i i i i i i	e in Cha Circular S ngular Co Coil tal Wirrin, Paralle ils are Coi d Wire cingular V of Rectar G Rectar Circular ngular Coi d Wire ar Bar circular scircle s	vinnel of Section oil e l Vires with Vires with Wire Goil Coil Coil Coil Vire for C	Rect	angular Section 	Cross 	Sectio	n	112-	85 109 125 117 134 133 133 134 146 123 130 136 127 122 114 132 137 132 137 132 131 133 130 113 113 113 113 113 113 113
Impedance Calculations Inductance, Calculations Coil of Round ' "Coul of Round ' "Circular Ring of "Plat Square Co "Grounded Hor "Grounded Wir "Multiple Layer "Multiple Layer "Mutual Inducta "of Flat Spiral "of Flat Spiral "of Flat Spiral "of Flat Spiral "Square Coil "Rectangle of R "Rectangle of R "Rectangle of R "Single Layer Sc "Single Layer Sc "Single Layer of Rour "Single Layer of Rour "Straight Rectar "Straight Rectar "Straight Rectar "Straight Rectar "Straight Rectar	Wind of Control of Con	re in Cha circular S ngular Co coil tal Wine mare Coi d Wire ngular Vo f Rectar Circular d Wire ar Bar circle s circle s circle	Vires win Wires win Wires win Wires win Coil Coil Coil Coil Coil Coil L Coil L Coil Coil L Coil L Coil L Coil L Coil L L L L L L L L L L L L L	th as Calcu	es in p	Cross 	Section	n	112-	85 109 125 117 134 133 133 114 116 123 130 136 138 122 129 114 132 130 113 113 113 113 113 113 113 113 113
Impedance Calculations Inductance, Calculations Coil of Round Coil of Round Flat Rectangula Flat Square Co Grounded Hor Grounded Wir Multiple Layer Mutual Inducta Mutual Inducta of Flat Spiral of Flat Spiral of Flat Spiral of Square Coil Rectangle of R Rectangle of R Rectangle of R Rectangle of R Single Layer S Single Layer S Single Layer f Single Layer f Straight Rectan Straight Wire Tube bent into Two Parallel Y Inductances, Series, In Seri	Wind of Coll izor coll izor coll coll coll coll coll coll coll co	e in Cha circular : ngular Co coil tal Wirrin, Paralle ils uare Coi d Wire ngular V of Rectar circular ngular Co of Rectar circular coid, Cha e Coil Wire ar Bar circular so f Sectar circular so f Sectar circular coid, Cha e Coil Wire ar Bar circular so f Sectar circular so f Sectar circular circular so f Sectar circular circular so f Sectar circular so f Sectar circular circular so f Sectar circular circular so f Sectar circular so f Sectar circular so f Sectar circular circular so f Sectar circular so f Sectar circular so f Sectar circular circular so f Sectar circular so f Sectar circular circu	winnel of Section oil e l Vires with Vires with Wire Goil Coil Coil Coil art for C	Rect	angular 	Cross 	Section Section Innes	n	112-	85 109 125 117 134 133 133 134 116 123 136 136 138 127 129 114 132 129 114 132 117 132 133 130 113 113 113 113 113 113 129 114 129 129 129 125 125 125 125 125 125 125 125 125 125
Impedance Calculations Inductance, Calculations Coil of Round J Gircular Ring of Pouble Flat Re Flat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Flat Spiral Grownded Wir Mutual Inducta Rectangle of R Rectangle of R Rectangle of R Rectangle Layer Sc Single Layer Sc Single Layer Sc Single Layer Sc Single Layer Sc Straight Wire Tube bent iato Two Parallel Wire Tube bent iato Two Parallel P	Wind of Costa il izor costa co	re in Cha circular S ngular Co coil tal Wirin paralle ils tar Coil wire ngular Vo of Rectar circular ngular Co of Rectar coil Coil Wire ar Bar circle s s of Solid	Vires wi Wires wi Wires wi Wires wi Wires wi Wires wi Wire Coil Coil Coil Coil Hel ds	Rect	es in p	Cross 	Sectio	n		85 109 125 117 134 133 133 114 116 127 122 129 129 122 129 122 129 130 138 130 138 137 130 137 130 113 113 113 110 117 130 137 130 138 139 139 139 139 139 139 139 139 139 139
Impedance Inductance, Calculations Coil of Round Circular Ring of Plat Square Co Grounded Hor Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Polygonal Rectangle of R Rectangle of R Rectangle of R Self Inductance Self Inductance Single Layer S Single Layer S Square of Rou Straight Rectar Straight Wire Tube bent into Two Parallel V Inductances, Series, In Seri Insulating Materials, Proper Kirchoff's Law	Wind scta izor Square our cos Square our counce sil co square our counce sil co square our co square sil co square sil co square si square si so squar si s square si so s	tal Wire an Earling of the tal marked wire are Coil tal Wire are Coil d Wire angular More d Wire are Coil Wire are coil wire coil	Vires will Wires	Rect	angular Section lating	erallel	Sectio	n	112- 112-	85 109 125 117 134 133 133 133 134 114 116 123 130 136 136 137 122 114 114 114 114 117 132 113 133 130 113 113 113 113 113 113 113
Impedance Inductance, Calculations Coil of Round ' Gircular Ring of Plat Square Co Grounded Hor , Grownded Wir , Multiple Layer , Mutual Inducta , Single Layer R , Rectangle of R , Rectangle of R , Rectangle of R , Single Layer S , Straight Wire , Tube bent into , Two Parallel V Inductances, Series, In Seri Insulating Materials, Proper Logarithms	wind of Contractions of Contra	re in Cha Circular Singular Co Coil In Paralle Its Jare Coi Mire Coi Mire Coil Wire ar Bar Coid, Cha es Coil Wire ar Bar circular sof Solit 	winnel of Section ioil e e e e e e e e e e e e e e Vires with Vires with Coil Coil Coil Coil Coil Coil Coil Coil	Rect Rect ross Zalcu	es in p section	arallel	Sectio	n	112-	85 109 125 117 134 133 133 133 134 134 136 136 137 138 127 129 114 132 137 138 137 138 137 138 138 127 117 129 114 138 138 138 138 127 117 129 138 138 138 138 138 138 138 138 138 138
Impedance Calculations Inductance, Calculations Coil of Round Circular Ring of Plat Rectangula Flat Square Co Grounded Wir Hat Square Co Grounded Wir Multiple Layer Multiple Layer Mutual Inducta of Flat Spiral of Flat Spiral of Square Coil Rectangle of R Rectangle of R Rectangle of R Single Layer S Single Layer S Sugare of Rour Straight Rectar Tube bent into Two Parallel W Inductances, Series, In Seri Insulating Materials, Proper Kirchoff's Law Logarithms Multiple Additional Materials, Proper Source Amplification Series	wind of Contractions of Contra	re in Cha circular S ngular Co coil tal Wine mare Coi d Wire ar Bar circular S d Wire ar Bar circle s of Solis Resiston	Vires wir Vires wir Wires wir Coil Coil Coil Coil Coil Coil Coil Coil	ross	Angular ess in p Section lating Stage 6	arallel	Section	n	112-	85 109 125 117 134 133 133 133 134 114 116 123 136 129 114 113 132 113 130 129 114 113 132 113 133 130 117 122 117 117 122 117 117 122 117 117

										rage
Low Frequency	with Stage Gair	15						***		15
Magnet Field due	e to a Current								o	12
Magnetic Field, I	Definition and I	Formula								12
Magnetic Field d	ue to a Magne	t								12
Magnetic Pulling	Effect									13
Magnetic Poles,	Force between	two								11
Magnetic Vibratio	ons, Time and	Frequer	ncy						***	13
Mass Conductivit	y									10
Meters-Formula	s for Direct C	urrent	Measu	rement						30
Metric-Decimal	Equivalents, D	rills, Ta	pping	Equiva	lients,	8.S.F.		+++ -	***	90
Mileage, World	Wide Chart									9
Mixed Currents,	Chokes for									196
Multiples and Su	b-Multiples									261
Mutual Inductand	e of Co-axial (Concent	tric Se	plenoids	(Out	er Coil	the Lo	onger)	A	14/
	of Co-axial	Solenoi	ds, Co	oncentri	ic (Ou	ter Co	il the s	shorte	r)	149
	of Co-axial	Solenoi	ds no	t Conce	entric					145
	of two para	llel Syn	netrica	illy plac	ed W	ires			100	140
	Two Co-axi	al Circi	ular C	oils of	Recta	igular :	section			142
	Two Equal	Parallel	Recta	ingles		1.44203				140
12.11	Two Equal	Parallel	Squar	res	.e+10	Salette Sign			***	141
	Two Paralle	I Co-ax	ial Ci	rcles		- · · · · · · · · · · · · · · · · · · ·				141
· · · · · ·	Two Rectan	gies in	the s	ame pla	ice	•••	12			127
	Two Wires	end to	end							130
	Two Wires	with a	xes in	paralle	el line	· · · · · ·				130
Nepers				1	1.444		•••			12
Ohm's Law, A.C.				1. ***					***	70
Ohms. Law, A.C.					***			•••		70
Ohms. Law, D.C.										52
Output Transfor	mers, Formulas	and K	atios							33
Piano Scale, Fred	quency lable									20
Power or Pressu	ire Ratios-Dec	ibels					•••			12
Power, Watts di	eveloped by an	Electri	c Cur	rent	1.121		00.000			250
Powers and Roo	cs						111000			100
Prefixes, Interna	tional Amateur							***		100
"Q" Signals							***	***		95
"Q" Signals, A	eronautical			•••				***		15
Radio Formulas	and Laws									51
Reactance Chart	, Value Finding		•••							21
Reactance formu	ilas					***	***			35
Resistance, Bias	Calculations									43
Resistance of Va	rious materials			***						70
Resistances (Para	allel)	•••	***	100.000 00						89
Resistances, Pow	or Katings)				70
Resistances (Ser	Parallal Car		·	ior Par	allela	nd Seri	ec Par	allel		71
Resistances, Seri	es, Parallel Col	ndenser	s, ser	ies, rar	anei a	na seri	(C3, 1 A)	anci		44
Resistance, Wire	Data			***						61
Resistors										88
Resistors, Calcul	ation of		···· M	incelland		2000	10.444			179
Resonance, way	e Length and I	rrequen	icy, Pi	iscenan	eous L	Jala				24
Resonant Freque	Eormulas									8
Resonant Freque	ency Formulas								198.	14
Salf laductores	Call wound with	h Wind	Rect	angular	Cross	Sectio	0			121
Sen inductance	Con wound with	i vvire	e necc	angulai	Cros:	Jeccio			1999	117
	or Toroidal Co	il Rect	angula	r Cros	s Sect	ion Sin	sle La	ver		118
	of Toroidal Co	II, Nect	Wind	ting	s sece	1011, 511	1610 mm			118
	Single Laver Sc	lenoid		3111.5						119
Signal Scrength	Raports	renord				10000			11111	98
Soldar (Padio) (Composition an	d Melti	ng Po	ints						54
Solder (Kaulo) (composition an	u Tierri	ing i c	mes						40
Stroboscope Tat	ical Radio									263
Symbols, Graphi Mathai	matical									261
" Prather	matical									262
Tables for Indu	Calculati								-	149
Table of Musical	Scalas with th	air Vil	aration				19 10 10			41
Tamparature C	onversion Table	Cen	riarad	e and F	ahren	heir	1			55
Threads B A	unversion Table	us, cen	ergi au	and I	amon		1			90
Threads, D.A										90
Time CMT	Conversion									36
Time Zone Man	conversion				1	1				38
Torque between	Two Magnate									13
Transformers H	ligh Voltage									194
	THE PARTY OF THE P									

A Distant												Page
Transf	ormers, Pov	Ner		***		640		***				184
Transr	nission Line	Formula	for	2-way L	ine	***						28
	,	.,		Concent	tric L	ine						28
		Carlos and a	-	Double	Twin	Line					HI STAR	28
1.51	A FEET STREAM PROVIDENT	10 10 10 10 10 10 10 10 10 10 10 10 10 1		Square	Conc	entric	Line	· · · · · · · · · · · · · · · · · · ·			19 50 m	29
1.2.3.7.1.	A PARA	and a second		Shielded	Twi	in Line	and the		1 10 10		69.9.0.3	28
E.	and play south	Second Second		Single V	Vire	Line	Supposed of	these stores	11. 100		IV SAS	29
181-114	No. Consider			Parallel	Thin	Strip	Foil Li	ne			Standing 1	30
1. 682 (and a principal of			Twin Si	ngle	Line		J. Standard	l selle	1.00	109 81	29
Triang	les. Right A	Angle, So	lutio	n of		-		The states of	And the second		S	199
Units	Electrical			a hard mind				C Contractor	S SERVI	1.14	*	261
Useful	Mathemati	cal Const	ante									15
Valve	Formulas							in the second	Minute			47
Valver	American	Battery	Sube	ritution	Char					***		271
TAITES	American	Substitu	tion	Data	Cilar							273
.,	American,	Substitu	tion	and Ren	lacen	nente						358
	Applicatio	ne	cion	and hep	acci	ine in es			·			319
	Applicatio	Amoli	ficati									310
	33	Datas	tion	011								222
**	**	Petec	tion				•••	•••			***	333
	Automatic	Value	Catic	in		•••			•••	•••		244
**	Ralloss and	Paniate	Con	itroi				•••				266
**	Danast and	Resisto				•••		***	•••			200
	Bian Pow	er					•••	***	***			315
	Dias, resis	tor Char	E.						***		***	205
**	British Mi	Illard-Bi	rimai	Equival	ents						***	296
**			ossor	Equival	ents	***				***	•••	297
		" El	(00		•••		***	•••			***	298
**	23	., EV	ver h	leady					•••			298
**		" Fe	erran	ti								298
1 31.		,, M	arco	ni						***		299
**		" M	azda								***	300
	Calculation	n of Serie	s an	d Shunt	Resis	tors for	· A.C./	D.C. H	eaters			375
	Characteri	stics										317
	Diodes											312
	Essential 7	lester Re	quir	ements			***					351
	Filament a	ind Heat	Pow	er Suppl	ly							341
	Filters											346
19	Frequency	Convers	ion									339
	Generic T	ypes, Ap	plica	tion					10			311
18.8	Grid Volta	age Supp	y									344
	Installation	1										341
	Installation	. Heater	to	Cathode	Con	nection				-	Section E.	343
	Interchang	eability									he had worked	284
-0	Miscellane	ous-Eme	ergen	cy Repla	ceme	ents-B	ritish			1100	and the second	301
	Mullard E.	Series.	Octa	Bases (Conn	ections		and left				308
	Multi Elec	trode an	d Mi	Iti Unit						1.0.1	-	316
	Oscillation											338
100	Output C	oupling		-					al de tals		0	348
9	Pentodes			The Barriston		The second	C. Constant					314
	Place Volt	age Supp	ly								1. Sec. 1.	344
	Radio, An	plication	Cha	racterist	ics. T	esting		1 2 2 2 4 4	Carl State		and the second	310
1	Resistance	Coupled	Am	plifier D	ata						Stall 2	352
15	Receiving	Classifica	tion	Chart		Stall &	1 1 1	See brain				373
1	Screen Vo	Itage Sur	vla					10 Junit	121531			345
8410	Shielding	and sub	1	Sur- and		C. C. A.	-	al al al				346
100	Short Cire	uit Test	Sele	ection of	Suira	ble Ch	aracter	istic		-		349
	Substitutio	on from	Ame	rican 1.4	Type	es to N	fullard	Types				309
3.9	Tester Lin	nitations			. 1 10		u	., pes				351
"	Testing						1	10.1000				349
	Tetrodes										40000	314
"	Theoretics	Diagra	ms									264
	Triodes	Diagrai										313
18."	Tuning In	dicators		and a state								337
1949	Unit Rad	io and El	ectri	cal Value	and	Defini	tions					295
Vibrat	ions and M	usical Ser	la	cal value	and	Denni	cions					40
Wire	Abbrevistic	usical Sca	ie			***						56
Wire,	Copper To	blee										86
Wine,	Gauger Ca	moarican	her	Weer R-	rich	and IL	A 2				2	54
Wave	Length and	Frequer	CV C	onversio	n Ta	ble						71
Wave	Length End	riequen	and	C Tabl	ac lac	DIE						63
Wing	Sectional D	quency a	E DIN	Tabl	163	***						57
11 7 H	Signala Ca	ower Da	Lal								•••	94
-	signals, Co	mmercial										20