(5 IN FULLm

TN
A Babani Computer Gui@ebo% Suitable for All Ages

"\ ABeginner’s
' Guide to

Coding on iPads
\ gﬂnd IPhones _

Jim Gatenby

A pegiNiies S
Guide to Coding
on 1Pads

& 1Phones

Jim Gatenby

ety
BERNARD BABAthhmg) LTQ
The Grampians_— ‘w&

ShepherdsBush Road
London W6"7NF

www.babanibooks.com

SWANSEA LIBRARIES

AT

6000292271

W

Please Note

Although every care has been taken with the production of
this book to ensure that all information is correct at the time
of writing and that any projects, designs, modifications and/
or programs, etc., contained herewith, operate in a correct
and safe manner and also that any components specified are
normally available in Great Britain, the Publishers and
Author do not accept responsibility in any way for the
failure (including fault in design) of any project, design,
modification or program to work correctly or to cause
damage to any equipment that it may be connected to or
used in conjunction with, or in respect of any other damage
or injury that may be so caused, nor do the Publishers
accept responsibility in any way for the failure to obtain
specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

© 2015 BERNARD BABANI (publishing) LTD

First Published — October 2015

British Library Cataloguing
A catalogue record for this b{ CITY AND COUNTY OF
SWANSEA LIBRARIES

ISBN 978-0-85934-756-3 6000292
Cover Design by Gregor Art 271

Printed and bound in Great | ASkews & Holts |02-Mar-2017

005.252 £7.99

{PE

About this Book

Coding, or computer programming as it was formerly
known, can be a daunting task for the beginner, dominated
by jargon and complex new technology. Ideally, everyone
in this digital age should at least have an understanding of
how computers work and what they can achieve. To this
end, the National Curriculum in English schools makes it
compulsory for all children to study computers and coding.
My aim in this book is to explain in plain, simple English,
the basic skills needed to start coding. This draws on many
years experience of teaching and writing about computers.
The work is based on the Python programming language,
which is easy to learn yet powerful enough for demanding
professional and scientific applications. Python is also one
of the languages used in a new BBC project, which aims to
introduce coding to millions of children via a small,
programmable circuit board known as the micro:bit.

Many people of all ages will do coding at work or in
education using laptop or desktop computers; this book
shows how the best-selling iPads and iPhones, now
available in many homes, can be used as a valuable tool to
continue learning and practising coding.

After discussing the basic components common to all
computers, the book explains how to set up an iPad or
iPhone to start coding. All of the major Python
programming features are then described in small, simple
steps with clear examples and lots of practice exercises.

Saving and managing programs is also discussed together
with copying program files between different types of
computer using the “clouds” and e-mail. This allows you to
continue developing a program in different locations.

About the Author

Jim Gatenby trained as a Chartered Mechanical Engineer
and initially worked at Rolls-Royce Ltd., using computers
in the analysis of jet engine performance. He then obtained
a Master of Philosophy degree in Mathematical Education
and taught maths and computing for many years to students
of all ages and abilities, in school and in adult education.

The author has written over forty books in the fields of
educational computing, Microsoft Windows and more
recently, tablet computers. His most recent books have
included “An Introduction to the Nexus 77, “Android
Tablets Explained For All Ages”, “An Introduction to the
hudl 2” and “An Introduction to Android 5 Lollipop”, all of
which have been very well received.
Acknowledgements

I would like to thank my wife Jill for her support during the
preparation of this book and our son David for the artwork
on page 2. Also Michael Babani for making the project
possible.

Trademarks

iPad and iPhone are trademarks or registered trademarks of
Apple Inc. Python is a trademark or registered trademark of
2001-2015 Python Software Foundation. Pythonista is a
trademark or registered trademark of omz:software. QPython is a
trademark or registered trademark of Quseit Lab. Dropbox is a
trademark or registered trademark of Dropbox Inc. Google Drive
is a trademark or registered trademark of Google Inc. Microsoft
Windows and Microsoft OneDrive are trademarks or registered
trademarks of Microsoft Corporation. All other brand and
product names used in this book are recognized as trademarks or
registered trademarks, of their respective companies.

Vi

Contents

1
Introducing Computers 1
What is a Computer? I
Why Learn Coding? 1
Types of Computer)
Coding on an iPad or iPhone g
The Input Stage 4
The Process Stage 4
The Output Stage 5
Storage of Programs and Data 6
Internal Storage (Not the Same as Memory) 6
The Memory or RAM Vi
Hardware 8
2
Computer Software 9
What is Software? 9
Systems Software 9
The Operating System 9
Applications Software (Apps) 10
The App Store 10
Pythonista 11
Planning a Program 12
Algorithms 13
Decisions and Branching 13
Loops 13
if and else 13
while 13
A Maths Algorithm 14
Inside the Computer 15
High Level Languages 16
Python Scripts 16
The Interpreter 16
The Compiler 16

Coding and Running Programs 17
Installing Pythonista from the App Store 18
Starting to Use Python 19
Introduction 19
The Pythonista Screens 20
The Script Library 21
The Console 23
Using the print Command in the Console 24
Lower Case Letters 24
Spelling 24
Speech Marks or Quotes 24
Triple Quotes 25
Spacing 26
Repeating a print Command Using* 26
Splitting a String of Text Using \n 27
Variables 28
String Variables or Strings 29
Numeric Variables 30
Calculations and Decisions 31
Introduction 31
Using the Console as a Calculator 32
BOMDAS 33
Integers and Floating Point Numbers 34
Remainder or Modulus 35
Exponent 35
Including Text With Calculations 35
Making Decisions 36
Equalities and Inequalities 37
Mixing Text and Arithmetic 38
Using the Python raw_input() Function 39
Using raw_input() with Numbers 40
Using int() to Convert Strings to Numbers 41

Vi

Key Points: Console/Interactive Mode 42
Code Completion 42
Using the Editor 43
Introduction 43
Launching the Editor 44
Line Numbers 45
Reserved Words 45
Settings 46
Indentation 47
Coding and Saving a Program 48

Hints for Avoiding Coding Errors 49

Saving a Program 49
Displaying a New File in the Script Library 50
Executing a Program 51
Managing Your Scripts 51
Adding a Comment o3
Improving the Readability of the Output 53

Adding Blank Lines Using print 53

Adding Spaces to the Output 53
for Loops and Lists 55
Introduction &5
Printing Text on the Same Line 57
Printing Numbers in a Range 58
Displaying a Multiplication Table 60
Nested Loops 62
Storing Data in Lists 64
Iterating Over a List Using a for Loop 65
Changing an Item in a List 66
Printing the Last Item in a List 66
Adding an Item to a List 67
Removing an Item from a List 67
Tuples 68

.bc

69

while and if Statements
Introduction 69
The Program Statements in English 71
Comments 71
True and False 71
The Infinite Loop 72
The if Statement 73
Correcting Errors — Debugging 74
Understanding the Program 75
The while Loop in More Detail 76
while number <= 84: 76
if number % 7 == 0: 76
Formatting the Output on the Screen 76
A Flowchart for the Tables Program 77
Summary: while and if 78
Further Branching With if, else and elif 79
Introduction 79
Using the if and else Conditions 80
Extending the Program 82
Assigning an Initial Value to a Variable 83
Running the Extended Program 84
A Bank Account Program 85
Using raw_input() and int() 86
A Flowchart for the Bank Account Program 88
Overdrawn? 89
Using Strings with raw_input() 90

10

Functions and Modules
Introduction
Functions in Python
Built-in Functions
Library Functions
User-defined Functions
Examples of Functions
Modules
Importing Functions into a Program
The round() Function
Random Numbers Using randint()
Advantages of Functions and Modules
Defining Your Own Functions
Returning Values from a Function

91
91
92
92
93
93
94
98
98
29
101
102
103
104

Working With .py Files Across Platforms 105

Introduction
Sharing Files Using the Clouds
Installing Cloud Storage from the App Store
Installing Cloud Storage from the Web
Copying .py Files to Dropbox
Saving to Dropbox
Dropbox on Different Platforms
Creating a Dropbox Folder on an iPad
Setting Up a PC to Use Python .py Files
Installing Python 2.7 on a Windows PC
Running an iPad/iPhone Script on a PC
Copying a .py File to an Android Device
Method 1: Connect the Android to a PC
Method 2: Using an Android File Manager
Running the iPad Script on an Android
Copying .py Files to an iPad or iPhone

105
106
106
107
108
108
110
111
112
112
113
115
115
116
117
118

%<

The Pythonista App

This book is based on Pythonista 1.5, from omz:software.
This app, currently available in the App Store, is based on
version 2.7 of the Python language.

Pythonista 1.5 can be used on iPads and iPhones running
the operating systems 10S 7.0 or later.

Any notes in this book referring only to the iPad can
safely be assumed to apply also to the iPhone.

Cross Platform Compatibility

Coding or programs developed using Pythonista are
compatible with other devices such as PC computers
running Python 2.7 and Android tablets and smartphones
using the QPython app (but not the QPython3 app).

Screen Output

For the purpose of clarity, instead of actual screen “dumps”,
some listings and output have been transcribed using
different background colours and text fonts.

Welcome to Python.org
This is the official Python Language Web site at:
https:www.python.org/

The Web site contains Python downloads, tutorials,
documentation and library listings.

Introducing Computers

What is a Computer?

Mostly we may think of computers as laptops, desktops,
tablets and smartphones but many other machines such as
cars and household appliances also have computers built in.

All of these computers have certain features in common:

e They cannot think like human beings do.

o They follow instructions written by people.

o The instructions are stored inside the computer.

o They carry out millions of instructions per second.

Why Learn Coding?

Coding is the writing of sets of instructions for a computer.
These are known as programs and are written in a special
language using words from the English language. This
book uses a version of the popular Python 2.7 language,
delivered via an app called Pythonista, designed for iPads
and iPhones. Learning coding is a good idea because:

»

It’s an important part of the school curriculum.

It should help you to understand computers better.

You will learn useful problem solving skills.

You might take up coding as a job or as a hobby.

|—

1 Introducing Computers

Types of Computer

This book is mainly about coding on iPads and iPhones. If
you’re not too familiar with computers, the next few pages
explain the main parts of all computer systems. This should
help you to understand the work later in this book which
involves writing your own code.

Tablet

Types of Personal Computer

Coding on an iPad or iPhone

Handheld iPads and iPhones are actually powerful
computers and can be used for many of the tasks done by
much larger machines. iPads and iPhones can easily be
used for coding, anywhere and at any time.

N

Introducing Computers

The images on the previous page show the main types of
computer in use today at home, at work and in schools and
colleges. An iPhone is very similar to an iPad tablet in most
respects but a little smaller.

Although the various computers on page 2 look very
different in size and in their layout, they all fit the basic
definition of a computer, as shown below:

Computer

A machine which can store instructions, enabling it to
carry out various tasks or processes, such as editing text,
drawing, calculating, playing games or music, etc.

No matter what task you are doing, all computers go
through the same main stages, as shown below.

INPUT

PROCESS |——»| OUTPUT

v

STORAGE

The above four stages are described in more detail on the
next few pages.

lw

1

Introducing Computers

B8

The Input Stage

This is the entry of text and numbers into the computer. It
may also include spoken words and data downloaded from
the Internet to your computer. Common input devices are
the keyboard, mouse and microphone. iPads and iPhones
have their own on-screen keyboard as shown below.

L.'nza. @ ‘ n23 @@

An iPad Mini on-screen keyboard

Separate physical keyboards are also available. Some
people may prefer these for more lengthy coding tasks.

The Process Stage

All computers have a CPU or Central Processing Unit. On
small computers and tablets, etc., this is a single microchip,
as shown below. The CPU or microprocessor is often
called the “brains” of a computer because it carries out all
the instructions, calculations, etc. The CPU carries out
millions of instructions per second, measured in GigaHertz
or GHz for short. The latest iPads and iPhones have CPU
speeds of around 1.3-1.5 GHz, so they can work just as fast
as many bigger computers, such as laptops and desktops.

A CPU chip or microprocessor

Introducing Computers

1

The Output Stage

This presents the results of the program currently being
run or executed. The output is commonly displayed on the
screen in the form of text or a game or a photograph, as
shown below. Output may also be printed on paper, such
as an essay, magazine or newsletter. Other forms of output
include music, video and TV and radio programmes.

A photo as output on an iPad

;]

1

Introducing Computers

o2}

Storage of Programs and Data
Programs

As mentioned earlier, programs or code are the instructions
in the Python language, telling the computer what to do.

Data

Data, often called raw data, are the recently collected facts
and figures you input into a program such as names and
addresses, ages, weights, heights, temperatures, etc.

Information

After processing raw data in the computer, you should
produce meaningful information as output, such as
average temperatures in summer or graphs to show rainfall.

Internal Storage (Not the Same as Memory)

Programs and data are recorded permanently on the
Internal Storage, also known as backing storage. This has
a similar role to the hard drives on laptop and desktop
computers. Once you’ve saved programs and data on the
backing storage you can retrieve and use them whenever
you need to. Otherwise you would need to keep repeatedly
typing in all the same words and numbers.

The Internal Storage inside an iPad or iPhone, is a form of
flash memory similar to the technology used in a
removable flash drive. Unlike the hard drive, which rotates
at high speed, the flash memory has no moving parts. The
flash memory is soldered to the circuit board on an iPad or
iPhone and cannot easily be upgraded. This differs from
the SSDs (Solid State Drives) used in many tablets and
smartphones.

Introducing Computers

1

The SSD also uses flash memory but is enclosed in a case
and connected by cables, so it can be upgraded if needed.

When you switch the computer off, programs and data will
remain on the backing or Internal Storage. However, you
can also delete from the backing storage any programs and
data you no longer need.

Depending on the model, iPads and iPhones can have
Internal Storage ranging from 16GB to 128GB, compared
with 500GB or 1000GB in a laptop or desktop computer.
(Terms such as GB are discussed on the next page.)

The fact that an iPad or iPhone has much less Internal
Storage than a laptop or desktop machine is not a serious
problem. Tablets and smartphones can store most of their
files such as photos and documents in the clouds on the
Internet. (The clouds are really big Internet computers
provided by Apple, Google and Dropbox, etc.)

You can also connect external storage media such as SD
cards from cameras, to import photos to the iPad or iPhone
and save them on the Internal Storage.

The Memory or RAM

This is temporary storage which is cleared or wiped when
the computer is switched off. Programs and data which you
currently wish to use have to be fetched from the backing
store and placed in the memory or RAM (Random Access
Memory), from where they are run or executed.

The RAM is sometimes called volatile storage, while the
permanent backing storage is said to be non-volatile.

1iPads and iPhones typically have 1GB of memory or RAM,
while the latest iPad Air has a more generous 2GB.

I~

1

Introducing Computers

[ee]

Units of Storage

Both backing store and the memory can hold billions of
letters and numbers. The main units of storage are:

Byte: For example, the space needed for one letter.
Kilobyte: 1024 bytes.

Megabyte: 1024 kilobytes or about a million bytes.
Gigabyte: 1024 megabytes or about a billion bytes.
Terabyte: 1024 gigabytes or about a trillion bytes.

Hardware

This means all the physical parts of a computer system,
including the screen or monitor, the casing, the processor
and all the circuits and microchips and other electronic
components. The hardware also includes any printers and
other peripheral devices such as separate keyboards and
mice, which can be used with tablets as well as laptop and
desktop computers.

Small hand-held computers like iPads and iPhones don’t
have the bulky hardware found on bigger computers.
However, very small versions of these components, such as
speakers and microphones, are still present, in an iPad or
iPhone.

Various adapters are available which enable external
devices such as USB flash drives and SD camera cards to
be connected to an iPad or iPhone, e.g. for the importing of
photographs.

2

Computer Software

What is Software?

Unlike the hardware just discussed, software is not made
up of physical parts that you can touch. Software means all
the programs or sets of instructions consisting of words
and numbers, saved on the Internal Storage, i.e. flash
memory, of an iPad or iPhone. There are two types of
software, systems software and applications.

Systems Software

The Operating System

This controls the overall running of a computer, managing
tasks such as the screen display, the saving of programs and
data and providing the Graphical User Interface (GUI).
The GUI is the system of icons or small pictures and
buttons on the screen used to launch apps, etc. The
operating system used on iPads and iPhones at the time of
writing is i0S 8.4, with iOS 9 due to be launched shortly.
Android, produced by Google, Inc., is another major
operating system used on many tablets and smartphones.

Larger Apple computers such as the MacBook and iMac
currently use OS X Yosemite while Microsoft Windows is
the operating system used on most laptop and desktop PCs.

The operating system is normally already installed on the
Internal Storage of a brand new computer. New versions of
an OS can usually be freely downloaded to a tablet or
smartphone from the Internet.

1©

2 Computer Software

Device Drivers

Device drivers are small programs used to enable
accessories, such as printers, etc., to work with your
particular operating system, such as iOS or Windows.
Utilities

These are programs used to help with the running,
maintenance and security of the computer, such as a virus
checker or a debugging utility for correcting errors in
programs. Some utilities are built into the operating system.

Applications Software (Apps)

The systems software just described is needed whatever you
are using a computer for. The programs you want to run for
your own work or entertainment are known as Applications
software. These might include a game, a drawing program,
photo editor or a word processor, for example. Some apps
are usually already installed on a new computer but you can
obtain more apps and install them, i.e. save them on the
Internal Storage. On laptop and desktop computers, new
applications software is often supplied on a CD/DVD or
downloaded from the Internet. Then it must be
permanently saved on the Internal Storage such as a hard
disc drive. On tablets and smartphones new apps are usually
downloaded from Internet storage such as the App Store.

The App Store

There are millions of apps to choose from, to
download and install to your iPad or iPhone.

business and photo editors as shown in the @

These include games, videos, music,
small sample at top of the next page.

Computer Software 2

Best New Apps

o @ 24

Tiny Builders - Rookie Cam - Laundrapp - Bee - Email
Digger, Crane... Photo Editor... Your Dry Clea... Smart and Fast
Entertainment Photo & Video Utilities Business
£1.99
.
Pythonista

If you type Python into the Search bar in the App Store, a
number of apps are displayed, including notes on the
Python language and also an eBook on the Monty Python
comedy series and films, after which the Python
programming language is named.

One of the apps displayed,
Pythonista, is a complete .*--«ew-
programming system for the Python
2.7 language. Pythonista is used
throughout the rest of this book to
demonstrate the basic skills of
programming in the Python 2.7
language.

Once installed on your iPad or iPhone you will be able to:

e Use the Console to test short Python 2.7 commands
interactively.

o Use the Editor to code, save, run or execute and edit
programs in the Python 2.7 language..

e View and run sample programs from the scripts
library.

2 Computer Software

Planning a Program

Many tasks can be broken down into a number of tasks to
be carried out in a certain order. For example, take a simple
task like watching a television programme. The steps might
be as follows:

Switch on the TV
Select the programme
Watch the programme
Switch off

Normally you might want to watch another programme
before switching off, so we can represent this better with a
flowchart, as shown below:

Switch on the TV
|

Select a programme

Watch the programme

Watch another
programme

h 4

Switch off

Computer Software 2

Algorithms

The flowchart on the previous page is a simple example of
an algorithm. This is a sequence of steps to solve a
problem. A computer program may be made up of many
algorithms to tackle different problems.

Decisions and Branching

The flowchart on page 12 introduces another important
feature of many programs. This is a decision, shown here
in the red diamond with a question mark. It is also known
as a branch, because we can proceed in one of two
directions, depending on the answer to the question.

Loops

If the answer is Yes, then we loop back and select another
TV programme. If the answer is NO, we continue down and
switch off. This example introduces three important
reserved words used in Python coding, if, else and while.

if and else

The decision on the flowchart on page 12 is really saying if
something is True then do one thing, else if not true, i.e.
false, do something different.

while

The procedure branches back if you want to watch another
program and you could do this many times if you wish.
This is a loap which allows the repetition of a task over and
over again. You would do this while you still wanted to
watch television. while is another important reserved word
in the Python language and allows you to keep repeating
some steps as long as something is True.

2 Computer Software

A Maths Algorithm

The example below shows you the steps to display the
numbers up to 50 in the form of a simple algorithm.

Set the number to 1
+—> While the number is less than 50
Display the number
<+<— Add 1 to the number

This would be coded in the Python language as follows:

number=1
g while nuRDE=60; An algorithm in the
print number Python coding
language

<+«—— number=number+1

(print in Python causes the output to appear on the screen).

Chapter 3 starts coding in detail, so don’t worry if you
don’t yet understand the Python code above. If you do
understand, perhaps you could rewrite the algorithm to
print only the odd numbers from 1 up to 100.

Exercise

Write some simple algorithms in ordinary English for
some common tasks. Try to include a decision and a
loop. Here are a few examples to get you started:

¢ Mending a puncture on your bike.
e Preparing a meal.
o Preparing for a trip or holiday.

Computer Software

2

Inside the Computer

The digital computer, being an electronic device is a two-
state system. This can be thought of as, say, an electronic
pulse flowing or not flowing or a row of light bulbs
switched ON or OFF, as shown below.

4

) -?:J\ g 3 ‘ % A two-state
W

W A
o |1] o] 1

- system

The two-state system can be used represent the two digits 0
and 1, as shown above. So everything at the very inside of
the computer has to be represented by a pattern of 0’s and
1’s, known as the binary code. These 0’s and 1’s are known
as binary digits or bits for short. They are normally
arranged in groups of 8 bits known as a byte (whereas a
group of 4 bits is called a nibble).

lol1fol1fof1 1] 1]
One byte = 8 bits

The byte can be thought of as a set of storage boxes which
can represent :

o A keyboard character such as a letter, digit 0-9, etc.
e An instruction, e.g. to add two numbers.

e A number such as 19,567.

e An address of a storage location in the memory.

2 Computer Software

High Level Languages

The computer, being an incredibly high speed device, has
no problem in manipulating the long strings of binary
digits. Humans, however, don’t have the time or patience to
feed the computer with long strings of 0’s and 1’s. So
computer scientists invented high level languages. These
are much closer to English, using words such as print, if,
else, while, input and many more.

Python 2.7 is one of the most popular high level languages
because it’s powerful yet easy to learn. Pythonista, used
throughout this book, is an app which allows you to run the
Python 2.7 high level language on iPads and iPhones.

Python Scripts

Python is known as a scripting language and the programs
you write, known as scripfs, are saved as files with the .py
extension, such as mygame.py. Pythonista scripts can be
written and saved using the built in Editor.

The Interpreter

To run or execute a Python script, it has to be translated
line by line, into the machine’s own binary or machine
code. This translation process must be done every time you
run the program. Translating a Python script, which uses
words like print and while, for example, is done by a
program called an interpreter. Pythonista has a built-in
interpreter.

The Compiler

Unlike the scripting languages such as Python, some high
level languages, for example Fortran, take the code or
program written by the user and translate it all into a
standalone file in the machine’s own binary code. This file
can be run whenever needed without any further translation.

Computer Software 2

Coding and Running Programs

Instead of installing and using programs that other people
have written, the following pages show how you can
download Pythonista and start coding your own apps. To
begin with you can type in the commands, such as print, at
the keyboard. These can be run in interactive or immediate
mode and produce output straightaway, for example, to
print your name on the screen. However, for longer
programs you need to:

o Type in the code, i.e. instructions.

o Save the instructions permanently on the Internal
Storage, i.e. flash memory on the iPad or iPhone.

o Fetch i.e. retrieve the instructions from the backing
store to the memory or RAM whenever needed.

e Run or execute the program from the RAM.

o When finished, close the program and shut down.

When the computer is switched off, the program, i.e.
instructions, will be wiped from the memory or RAM but
will still be permanently saved on the Internal Storage, i.e.
backing store. So the program can be reloaded from the
backing store and run whenever you want to in the future.

This book uses the Pythonista app to introduce basic
skills for the Python 2.7 language on an iPad or iPhone.
You might also wish to use Python 2.7 via a different
app or on a different computer system altogether. If so,
the rules and syntax of the Python 2.7 language which
you learn from this book will still apply.

2 Computer Software

Installing Pythonista from the App Store

Tap the App Store icon shown on the right and g
then search for Pythonista. You will then see the |
Pythonista icon, price, etc., as shown below. '

Tap the price (currently £4.99)
and then tap BUY. Next enter . 5 e Feass |
your Apple ID and password b ==
and tap INSTALL. After a short

time, Pythonista will be
installed on your device and

the icon shown below on the |
right will appear on your Apps |
screen. |

You are now ready to start coding using the
Python language, as discussed in Chapter 3
onwards. You can launch, i.e. open, Pythonista
at any time by tapping its icon, shown on the
right, on your Apps screen. Eihais

>0

Please Note:

Pythonista 1.5 (the current version in the App Store)
requires 10S 7.0 or later. You can check your iOS
version by tapping Settings, General, About and looking
at Version. If you have an earlier version of i10S you
may be able to update it with a free download “over the
air”. (Tap Settings, General and Software Update).

3

Starting to Use Python

Introduction

Chapters 1 and 2 described the main hardware and software
features of all computers. Chapter 2 also showed how to
install the Pythonista app on an iPad or iPhone. In this
chapter you will learn how to launch the Pythonista app
and start writing simple Python code.

As described earlier, Python uses English words like print,
while, if and else and these are the same when using
Python 2.7 on other types of computer. This means the
skills you learn for coding on an iPad or iPhone will also be
useful when using, say, a laptop or desktop PC or an
Android device. So you will be able to transfer your code
and continue developing and running programs at home, at
work or at school or college. All high level languages like
Python use a fixed set of keywords or reserved words such
as print, for, while, if, else, etc.

In this book, “Python” refers to version 2.7 of the Python
coding language. Pythonista is the name of an app which
implements Python 2.7 on an iPad or iPhone. Pythonista
has a built-in interpreter, which translates instructions in
the Python code into the machine’s own binary code of
0’s and 1’s. Pythonista also includes a script editor for
coding (i.e. writing), saving, executing, (i.e. running)
and editing Python programs, also known as scripts.

3 Starting to Use Python

The Pythonista Screens

With the Pythonista app installed as described
on page 18, tap the icon shown on the right on
the Apps screen. This opens Pythonista, with
four alternative screens — the Script Library,
the Documentation, the Console and the Editor.
Each of these screens can be viewed after swiping
horizontally inwards from the left or right of the screen.

Pythonista

Byscms = . L =]

TR Using Pythonista
T
The Script Library The Documentation
(Explains the various screens)
== -

- <« > r 1 t) - [t LI B S | b |

o w € L} T Y u 1 o L '] w E L} T Y u] o »
fldesaaws: B8 TIPS,

@ % 4 w @ e 4 - :£

The Console The Editor

The Script Library

Starting to Use Python 3

iPad 09:13 § 70% W
Pythonista Edit ® MPL Piot v
Image Effects.py
1mport
J console. clesr()
T B e, e, e priat . !
Aot Tosge
» mport
tmport 2% plt
Image Warp.py Lpnn
s b Com plt,grid{True)
= plt.title(tlib Oe
. % = numpy, linspace(@.9, 2 * math,pi)
pl = plt.plot{x, numpy.sin{x), tws2, g='r"})
ST B temptils, codots p2 = plt.plot{x, numpy.cos{x}, lwe2, gu'b')
P R plt.legend({p1{6), p2(8]}, | sin(x}’, 'cosix
ofmo plt.show()
Markdown Conversion.py print t je b
8w et
2 A rinple dato of vnimp.maiplottih i Mytonbeis.
teoort cansote
;é'“ﬁ‘\%mmm o nik way tase & LiFla
smpert N
it 11k prolut o8 pit
seort

MPL Plot.py

Python code for
script highlighted
in left-hand panel.

Left-hand panel lists

Particles.py. all your scripts plus
: ‘'some sample scripts.
.y (Thumbnail views
S shown here).
Ml

The left-hand panel above lists the scripts you’ve written
and also some sample scripts provided in Pythonista.

The Edit button at the top above is used to Delete and Move

highlighted scripts and also to create a New Folder, as

discussed in more detail in Chapter 5.

Delete... Move... New Folder...

3 Starting to Use Python

The Script Library screen has a small menu bar at the

bottom left, as shown below and on page 21.

Tl [I= 1 -})—I

The icon on the left above and on the right is used
to start a new script in the Editor. There are several
advanced options for new scripts, but beginners
new to coding should choose Empty Script.

The gear icon allows you to change various
settings on the Editor screen, such as 6 alternative
Color Themes, the text Font and Font Size and
Indentation (discussed in more detail in Chapter 5).

K}
i

0O

from import sample
det main():
name e« r 1
for 1 in ge(168) :
int tn{sample(name, len(name)))

if name 25
ng >"()

Alternative Color Themes for the Editor

The icon on the right and on the menu bar above
allows you to sort the list of scripts in the left-hand
panel shown on page 21, into date or alphabetical
order.

The icon shown here on the right and on the menu
bar above, allows you to switch between
Thumbnail Previews of the scripts as shown on
page 21 and a List of just the names of the scripts.

Y

Starting to Use Python

3

The Console

Swipe left twice from the Script Library to display the
Console. As discussed on the following pages, the Console
is used for entering single commands such as print “hello”.

Code
Type your completion
commands R suggests
here \ likely words

N a
|4-—>¢)"~11:

1 2 3 4 5 6 7 B 8 0 ’ " = I

cillwl ol dim Pl N2
-
-

R
Tap in the bar at the bottom of the screen to bring up the
keyboard. Then start typing a command, such as print
“hello”, in the bar above the keyboard. To run or execute
the command tap return on the on-screen keyboard. The
output from this simple command is shown below.

[Pag = 10:29 % 95% W]
b >>> print "hello® \ I
hello
Tap here to
\ _— Command display the
/ >>> print "hello" 4 Pythonista
hello e— Output documentation

3

Starting to Use Python

Using the print Command in the Console

This 1s a Python command which displays output on the
screen. Text must be enclosed in quotes, as in:

Output >>> print “hello” <= Command
™~ hello

Lower Case Letters

Python commands such as print always use lower case, not
capital letters. So PRINT or Print will cause the command
to fail and a syntax error message will appear, such as:

‘Print’ is not defined
Spelling
Words like print and other Python keywords, must always
be spelt correctly. Otherwise the command will fail and an
error message will appear such as:

‘plint’ is not defined

Speech Marks or Quotes

Words to be displayed on the screen must be enclosed in
speech or quotation marks. Either single or double quotes
can be used, so both “hello” and ‘hello’ are correct in
Python, as shown below:

>>> print “hello” >>> print ‘hello’
hello hello

However, you can’t mix double and single quotes around
words to be displayed. As shown below, this results in a
Syntax Error, i.e. a mistake in the Python grammar.

>>> print “hello’
Syntax Error

Starting to Use Python

Triple Quotes

By enclosing a string of text in triple quotation marks, you
can display several lines on the screen in any layout you
choose.

It doesn’t matter whether you have 3 double quotes or 3
single quotes as long as they are the same at both ends of
the piece of text.

13y

>>> print

He followed her to school one day
Which was against the rule

It made the children laugh and play
To see a lamb at school

66999y

This produces the following output on the screen. (The
print command used throughout this book, in this context
really means “display on the screen”).

He followed her to school one day
Which was against the rule

It made the children laugh and play
To see a lamb at school

Exercise: Copy and run the print command above,
using triple single or triple double quotes, the same at
both ends. Then repeat with a few lines of your own.
Don’t put spaces within each set of triple quotes.

3 Starting to Use Python

Spacing

Adding an extra space before print will give an error with
the message unexpected indent. As discussed in Chapter
S, indentation, i.e. spaces at the beginning of a line, have a
special purpose in Python. You can, however, add spacing
within lines of code to make it more readable, as shown

below.
>7prmt r heIIo

Don't add spaces here You can add spaces here

Repeating a print Command Using *

Enter the following at the command prompt in the Console.
Again it will help if you put some spaces within the line.
This separates the 4 hellos shown below.

>>> print “hello " * 4
After you tap return, the output appears as shown below:

>>> print “hello " * 4
hello hello helio helio

As shown above, * 4 means repeat the print 4 times.

Exercise:

Use the above method to print your name 6 times. Put
some spaces before the closing speech marks to separate
each display of your name. Make sure you type print in
lower case letters.

Starting to Use Python

3

Splitting a String of Text Using \n

\n is known as an escape sequence and can be used with
print to display part of a string of text on the next line, as in:

>>> print “ The rain in Spain \n stays mainly in the
plain”

The rain in Spain
stays mainly in the plain

Now enter \n before hello inside the speech marks, as
shown below. This displays each word on a new line:

>>> print “\n hello ” * 4
hello
hello
hello
hello

The backslash “\” appears on the symbols [
keyboard which is displayed after tapping the #+=
key shown on the right. This key is found near
the bottom left and right of the numeric keyboard.

Exercise

¢ Seclect the Console and enter a command to
display some text such as ‘Welcome to Python’.

o Tap return to output the message on the screen.
« Use \n to split a long sentence into two lines.

» Use print and \n to display your name 8 times,
using a new line for each display of your name.

3

Starting to Use Python

Variables

Data is held in the computer’s memory in store locations,
Just like small boxes with labels on the outside, such as.

first_name Christopher,\Variaue
Variable name ' Store location data

The data in a store location can be overwritten, e.g. by
entering a new first_name, so the store is called a variable.

Variable Names

We make up our own names for variables, such as
first_name above.

» Variable names are usually mostly letters.

e You can include digits 0-9 within a variable name.
» A variable name can’t start with a digit.

e You can’t include spaces or Python keywords.

e You can include underscores to improve
readability, as in first_ name.

e A variable name can include upper and lower case
letters as in myAddress, to improve readability.

Meaningful Variable Names

You can use a single letter as a variable name such as a
shown on the left below, but more meaningful names such
as age make it easier for other people to understand.

>>> =17 >>> age = 17
>>> print a >>> print age
17 17

Starting to Use Python

3

String Variables or Strings

String vartables or strings contain letters and keyboard
characters and must be enclosed in quotes, such as:

surname = “Jones”

This line assigns the data “Jones” to a store called
surname. Type the following at the command prompt, but
insert your own name in the quotation marks:

>>> surname= “Jones”
>>> print surname
Jones

Now, without clearing the above commands, enter the
following at the command prompt:

>>> surname =“Walker”
>>> print surname
Walker

The store called surname now contains Walker. You
normally assign an initial value or contents to a variable,
such as Jones above. This remains in the store until it’s
overwritten by the input of fresh contents.

You can also assign multiple variables in a single
command, as in:

>>> npame1, name2, name3 = “Tim”, “Sue”, “Pat”
>>> print name1, name2, name3
Tim Sue Pat

Note the commas and quotes above. You can insert spaces
within the commands but not at the very beginning.

3 Starting to Use Python

Numeric Variables

The = sign is used in computing to assign an initial value to

a store, as in:
number=1

In computing, the = sign does not mean “equal to” or “the
same as”, as it does in normal arithmetic, such as 6=4+2.

Computers often use lines like:

number=number+1 or number+=1

The above lines both mean: “Let the store we have called
number now contain the initial value of number plus 1.”

You can easily check this by typing a few commands in the
Console, as shown below.

>>> number = 1 >>>number = 1
>>> number = number + 3 >>>number +=3
>>> print number >>>print number
4 4

>>> number = number + 5 >>>number+=5
>>> print number >>>print number
9 9

Exercise:

Type the commands shown above into the Console,
tapping return at the end of every line. You should see
that the variable number which originally contained 1,
now contains 9.

Now make up 3 different examples of your own. Make
up a different name for the variable store, instead of
number and add or subtract various numbers.

4

Calculations and Decisions

Introduction

The previous chapters showed how you can enter one-line
commands straight into the Console and get the results on
the screen immediately. Chapter 5 shows how you can use
the Pythonista Editor to create a program by entering and
saving a list of commands, available for future use.

This chapter shows how the Python language can be used
to do arithmetic. Although the basic calculations are done
in a similar way to our everyday arithmetic, computers
generally use some different signs for certain operations
such as multiplication and division.

As discussed on the next page, computers also make use of
some operands which we don’t use in everyday arithmetic.
These include the modulus or remainder and the integer or
whole number, where the part to the right of the decimal
point is ignored. So for example, 7.534 in integer form
would just be 7 without a decimal point.

This chapter also discusses some important conditions such
as greater than and less than and True and False. These
can be used to make decisions, such as:

o If your age is greater than 17 years (True) you can
learn to drive a car on the roads.
o Ifit’s a nice day (True) you might go for a bike ride.

o Else if it’s not (False) you might do some coding.

Calculations and Decisions

Using the Console as a Calculator

If you enter a simple sum such as 9+11 at the command
prompt as shown below, the answer immediately appears
when you press return.

>>> 9+11

20

Computers use . for multiply and / for divide
So we could enter, say, 9+7*8 and get the answer 65.

>>> 947*8
65

Or enter (9+7)*8 and get the answer 128.

>>> (9+7)*8
128

The different answers 65 and 128 obtained above are both

correct. This is because the brackets above in (9+7)*8
change the order in which the steps are carried out. The
computer carries out the steps in the same order as used in
normal arithmetic. One way of remembering the sequence
of steps is BOMDAS. This is explained on the next page.

Exercise: Type in the two examples below and note
the answers. Make up 3 similar examples of your own.

>>> 12-7+ 8*12/4 >>> (12-7+ 8)*12/4

Calculations and Decisions

4

BOMDAS

B: Brackets, also known as parentheses

O: Orders (squares, cubes, square roots, etc.)
MD: Multiplication and Division

AS: Addition and Subtraction

The above list means any brackets are worked out first,
followed by any orders, then any multiplication and
division, then finally any addition and subtraction.
Multiplication and division are equal in status, so if both
occur on a line, work from left to right. Similarly for
addition and subtraction.

Some of the common arithmetic signs or operators used on
computers are :

+ addition 7+5 ==12
| = subtraction 9-6 ==
*multiplication 56 ==30
[divide 18.0/4.0 ==45
/l divide (integer) 18//4 ==
% remainder 21%5 ==
** exponent 2**3 ==

Computing mathematical operators

As shown above, computers use some different signs
compared with those used in everyday arithmetic. These
differences are explained on the next page.

4 Calculations and Decisions

Computers use the following signs:

* means multiply and / means divide.

== means equals or the same as, instead of = .

= is used to assign numbers, words and characters to a
variable, i.e. or memory store, as discussed on page 28.

In addition to the common maths operations of addition,
subtraction, multiplication and division, the table on the
previous page also includes the following:

/I divide (integer) 18//4 ==4
% remainder 21%5 ==1
** exponent B3 ==

Integers and Floating Point Numbers

An integer is the whole number part of the answer to a
division sum, such as 3 in the example below. You can
check these by typing a few examples into the Console in
interactive mode, as discussed below and earlier.

>>>19.0/6.0 >>> 19//6
3.166666...... 3
Normal division using / Integer division using //

A number with figures to the right of the decimal point
such as 3.166666... above is known as a floating point
number or simply as a float.

Calculations and Decisions 4

Remainder or Modulus

The remainder is the whole number left over after a division
involving two whole numbers, e.g. 14 divided by 5 goes
twice remainder 4.

Type % after

>>> 14%5 tapping this

4 key on the
numeric
keyboard

Exponent
The exponent is the same as the orders on page 33.
In everyday arithmetic 2° means 2x2x2 or 8.

In this example, 3 is the exponent and tells you that 2 has to
be written down 3 times and multiplied by itself.

So 2° means 2x2x2x2x2, for example.

In Python this would be written as 2**5.

Typing this into the Console in interactive mode produces
the following:

>>> 2**H
82

Including Text With Calculations

Enter the following into the Console:

>>> print “Otimes 5 =", 9*5,“ 9 plus 5=/,9+5

9 times 5 =45 9 plus 5 = 14 tt
Insert space

Please note in the above example, the use of speech
marks and commas. You can insert spaces, e.g. around
= within the speech marks, to improve readability.

4 _Calculations and Decisions

Making Decisions
These involve the greater than (>) and less than (<)
signs shown on the next page.

When you enter, for example, 5>3 and 6<2 into the
Console and tap Enter, the following results appear:

>>> 5>3 >>> 6<2
True False
Is 5 is greater than 3? Is 6 less than 2?
Yes No

You can see that when asking the simple questions above,
the computer answers either True or False, whereas we

might answer Yes or No.

True and False are used a lot in programs. Although the
computer can only use 1 and O, this is enough for it to make
a decision because 1 can be used to represent True and O

can represent False.

For example, we might decide that if the weather is fine, to

go for a bike ride, else if not we might do some coding.

v
| Do some coding | Go for a bike ride

As discussed later, these Yes/No or True/False decisions
can be coded using the Python reserved words if, else and

elif.

Calculations and Decisions 4

Equalities and Inequalities
The following signs are used by Python:

> greater than
>= greater than or equal to

< less than
<= less than or equal to
1= not equal to

== equalto
' Please note that = and ==have
special meanings in Python, as
discussed on page 34.

As shown at the top of the previous page, you can test these
conditional operators using interactive mode in the
Console.

For example:

>>>7>=6 >>> 8 >= 6+2
True True
>>>5<=3 >>> 5 <=3+4
False True

>>> 6 1= 3+4 >>> 6 1= 442
True False

>>> 7*4==28 >>> 18//7==
True False

4 Calculations and Decisions

Mixing Text and Arithmetic

You can mix text and calculations in one command, as
shown below. Type the following command into the
Console.

>>> print “9 divided by 2 = “, 9//2, “remainder “, 9%2

The output is:

9 divided by 2 = 4 remainder 1

In this example we use =, not ==, within the speech marks
above as it’s not being used in a computer calculation.

e 9//2 gives the integer quotient when 9 is divided by 2.

e 9%2 gives the remainder when 9 is divided by 2.

e You can include extra spaces within the speech marks
to make the output easier to read.

o Note the commas in the top command between the text
in speech marks and the calculations.

Exercise:

¢« Make up 12 examples of your own like those on the
bottom of page 37. For each of the six signs (greater
than, etc., at the top of page 37) make up one True
example and one False.

e Write and test, in the Console, a print command, as
shown at the top of this page, to divide 17 by 3 and
output on the screen the integer quotient (i.e. answer)
and the remainder, also known as the modulus.

Calculations and Decisions 4

Using the Python raw_input() Function
This function is used to ask a user to enter some
information. You can practise using raw_input() in
interactive mode, i.e. using the Console. To start with, a
simple text example is given, as shown below. Enter the
commands shown in the blue boxes. The text prompts in the
cream boxes below appear on the screen automatically.

firstName = raw_input (“Please enter your first name: ”)

The above line causes the text in quotes to be displayed, as
shown below. Insert a space between first name: and ”).

Please enter your first name:

The computer waits for the user to enter their first name and
tap return. This assigns whatever is typed, such as
Christine in this example, to the variable store firstName.

The next line, shown in blue below, prints the text in the
quotes, followed by the contents of the store firstName.

print “Pleased to meet you ”, firstName

The output that appears on the screen is shown below.

Pleased to meet you Christine

firstName or first_ name can be used for readability.
If you miss any of the brackets or quotes shown above,
the commands will fail and the message syntax error
will be displayed. You must place a comma in the line
print “Pleased to meet you 7, firstName. Insert
spaces within the quotes to improve readability.

4 Calculations and Decisions

Using raw_input() with Numbers
There is a snag when using raw_input()with numbers.

Enter the following into the Console:

>>>numi=raw_input (“Enter first number *)
>>>num2=raw_input (“Enter second number “)

print “Total = *, num1 + num2

After entering the first line above, tap return. Then type in a
number in response to the prompt “Enter first number”.
Then repeat for the second number. Then enter the print
statement. So if we entered, say, 17 and 21 we should see:

Total = 38

Instead we see the wrong answer:

Total = 1721

The reason this is wrong is because the raw_input()
function on its own treats numbers as strings of characters,
not mathematical numbers. For example, a telephone
number such as 07954321 is just a string of characters, not
a mathematical number such as 347, which means 3
hundreds, 4 tens and 7 units.

So treating 17 and 21 as strings we get the following:

Total = 17+21 = 1721

Here the computer has wrongly used concatenation, which
is used to join together strings consisting of letters.

Calculations and Decisions 4

Using int() to Convert Strings to Numbers
This can be used, as shown below, to convert the strings
produced by the raw-input() function to numbers.

>>>pum1=int(raw_input (“Enter first number “))
>>>num2=int(raw_input (“Enter second number *))

print “Total = “, num1 + num2

Using the int() function as shown above prevents the string
concatenation problem discussed on page 40. This allows
the user to use raw-input() for calculations with numbers.

Spacing

Adding spacing can make the commands and output on the
screen easier to read. For example, in the above code you
could add one or more spaces between the word number
and the quotes. You might also add some spaces around =
in “Total = “. Similarly you can add spaces around the +
sign in num1 + numz2.

Exercise:

o Enter the above code into the Console in
interactive mode. Make sure all the brackets and
the speech marks are copied exactly, plus the
comma in print “Total = “, num1 + num2. Make
sure the total is correct.

e Using the Console in interactive mode, make up a
similar set of commands to add 4 numbers. Make
up your own variable names instead of num1, etc.
and your own prompts within the quotes.

4 Calculations and Decisions

Key Points: Console/Interactive Mode
o Allows you to enter one-line commands.

o The interpreter translates the commands and
returns the output or answers immediately.

o Displays error messages if commands are incorrect.

e Interactive mode helps you to learn Python, test
new ideas and check grammar or syntax.

» When typing quite complex commands into the
Console like those on the previous page, it’s quite
easy to make a mistake. Then you have to type the
whole line into the Console again.

e As discussed in Chapter 5, when using the Editor in
script mode, it’s very easy to correct any mistakes
and save the program, without re-typing the whole
command, unlike interactive mode in the Console.

Code Completion

This feature suggests possible words when you start typing
in the Console. For example, if you’ve just used a raw-
input() command, this will be displayed if you start typing
the same command again. Select the suggestion to save
typing time.

Code Completion must be switched On in
Settings in the Script Library as discussed on 0

page 22. Tap the gear icon to open Settings.

raw_input(@ Suggestions or code
_ completion can save
raw input(“Please enter y.. typing commands again
> raw

8

Using the Editor

Introduction

Chapters 3 and 4 showed how you can use the Pythonista
Console to enter one-line commands in interactive or
immediate mode. These are useful to test your ideas and to
learn what works in Python. The built-in debugging feature
helps you to find and correct any mistakes.

In contrast to the Console, the Editor is used for creating
programs or scripts which can contain a large number of
instructions or statements. Obviously you wouldn’t wish to
type in a large program every time you wanted to run or
execute it. So the Editor allows you to save the program as
a .py file on the Internal Storage of the tablet. The
commands in the Python language are the same on different
platforms, i.e. types of computer. This allows Python files
to be transferred between computers or a copy given to
someone else, as discussed in Chapter 10. This chapter
shows how to:

e Launch or open the Pythonista Editor.

e Write a script consisting of several lines of code.

e Save the program as a .py file.

e Open or retrieve the file from the Internal Storage.
e Run or execute the program.

o Edit or correct the program to debug any errors.

5 Using the Editor

Launching the Editor

Tap the icon shown on the right on the Apps
screen, then swipe in from the left or right to SS9
display the Scripts Library as shown on page 21.

Pythonista

From the menu at the bottom left of the Scripts
Library tap the icon shown on the right and on
page 22. From the menu which appears, tap
Empty Script to open a blank Editor screen,
shown partly below.

iPad = 1239

= Q H Untitled 8 v @ &
I, |

Tap anywhere on the screen to display the on-screen
keyboard. You are now ready to start entering and saving
your first program, as discussed on the next few pages.

Some of the most important icons at the top of the Editor
screen shown above are as follows:

Switch or “toggle” between the Editor and
the Scripts Library. For example, to go to the
Scripts Library to change some Settings.

Tap here to save a script as a file with a
suitable name. In Pythonista the .py file
name extension is added automatically.

Untitled 8 v

Display the Pythonista Documentation as
shown on page 20.

Run or execute the script which is currently
open in the Editor.

v@li!!

Using the Editor 5

Line Numbers

The left of the screenshot shown on page 44, shows line
number 1, instead of the command prompt shown

on the right, which is used in the Console. When
you tap to start entering some code, the on-screen
keyboard appears, as shown on page 23.

After you start entering lines of code and pressing the return
key, the lines are automatically numbered, as shown below.
Don’t worry if you don’t yet understand the meaning of this
particular piece of code — it will be explained shortly.

iPad - - 14:28
o Untitled 9 v
number=1
while number<30:
print number

number=number+1
| 5. print "Finished!"

Reserved Words

The screenshot above is just meant to show that a program
is a list of code or instructions. Pythonista automatically
puts words like while and print in a different colour. These
are two of the 31 keywords or reserved words shown
below, which are used in the Python 2.7 language.

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

Python 2.7 reserved words

5

Using the Editor

Settings

After you start using the Editor you might want to change
some of the Settings such as the Editor Font, Editor Font
Size or the Color Theme. Switch to the Scripts Library, as
discussed on page 44 and tap the gear icon at the bottom of
the screen, as discussed on page 22, to display the Settings
menu shown below.

Settings Done

EDITOR

Color Theme
Editor Font
Editor Font Size

Line Spacing

Indentation
Code Completion
Extended Code Compiletion

| @)
| @)
Auto-Pair Characters O
| @)

Highlight Matching ()

interpreter Options

Tap anywhere on a line to

change a setting such as number=1

Color Theme. Select the while number<30:
setting you want then tap print number
Done. One of the alternative M 7
Color Themes for a script is rint_ Finished
shown here on the right.

Using the Editor 5

Indentation

Notice that lines 3 and 4 on
the right are indented by a while number<3o:
numbgr of spaces .(usually 4) orint number |
and this has a special purpose. numbe r=number+1
The indentation is inserted |5 print "Finished!"
automatically when you tap

return after a colon (:) in a while statement. The amount of
Indentation can be changed as shown below, in the Settings
in the Script Library, as discussed on page 46.

number=1

¢ Settings Indentation Done
TAB WIDTH

2 Spaces

3 Spaces

4 Spaces v

Tap to tick the required amount of Indentation as shown
above then tap Done.

As discussed in detail later, the indented lines, i.e. lines 3
and 4 at the top of this page, are repeated in a loop as
mentioned on page 13. After the indented lines have been
repeated the required number of times, program execution
continues downwards to the next line which is not indented,
i.e. line 5 in the small program at the top of this page.

A colon followed by a block of indented lines is also used
after a for statement and an if statement, as discussed later.

$

Using the Editor

Coding and Saving a Program
This section shows how to enter and save a simple program

or script. Open a new, blank script in the Pythonista Editor,
as described on page 44.

Type the following script into the Editor, although you may
wish to type your own name instead of “John Brown”.
Press return at the end of every line. The “less than” (<)

and “greater than” (>) keys appear in the top row on the on
-screen keyboard.

- | # < > { }

T 1203888518 .15%
iPad = 09:40 |
1= B Untitled 6 +

myname="John Brown"

counter=1

while counter<5:
print myname
counter=counter+l

print "Goodbye"

n

-

When entering lines after an indented block, i.c. *
that are not to be indented, such as line 6 above,
you need to physically remove the automatic
indent using the backspace key shown on the right.

Notice how Python displays keywords such as while and
your own words such as “Goodbye” in different colours.

Using the Editor 5

Hints for Avoiding Coding Errors

e Make sure all of the quotes and the
brackets (or parentheses) are present.

o If you prefer you can use single speech
marks as in ‘John Brown' rather than
double, as in “John Brown”.

e The colon (3) must be present at the end of
line 3.

e Lines 4 and 5 must be indented by the
same amount (normally 4 spaces),

e Lines 1, 2, 3 and 6 should not be indented
at all.

If in doubt about the correct syntax or grammar of a line
you can quickly test various alternatives in inferactive mode
in the Console, as discussed in Chapter 3.

Saving a Program
Until you save a program as a .py file, a default name, such
as Untitled 6 appears on the Editor screen, as
shown on the program listing on page 48. Tap over ’*
the Untitled name then tap the pencil icon shown | #ese
on the right and below.

Untitled 6 v £

Then type the required file name, such as myname, in this
example, into the bar as show below. There’s no need to
add the .py extension in Pythonista — it’s done
automatically. Press Done to complete saving the file.

iPad = 10:21 89% W -

Q = myname v @ &

5 Using the Editor

Displaying a New File in the Script Library

After you’ve tapped Done to save the file you can see
it listed in the Scripts Library. From the Editor, tap |
the icon shown on the right to switch to the Scripts L———
Library, as shown below. You may need to scroll up or
down in the lefi-hand panel to see your particular file

amongst the many sample scripts provided in Pythonista.

¢ Back jimv Done = C 3 myname2 v
LS. ir tame several tises
=2

2 myname="John Brown"

- counter=l
while counter<5:
print " ",myname
myname2.py print
tor s tn Tt 0181 ‘ counter=counter+l
oervage e print

print Goodbye"

wages.py

from wain import sart

nusher = amput ("Enter 5 number”)

import.py

vaport math
nuaber = ianut ("Eater a aumbert)!
answer= math.sart {number)

print answer

import2.py
det total{x.y):
return ay
xainout{“Enter f1rst mmbert)
yeinpu {“Enter second number®)
answer=totst (x,y}

prant “Total is*, answer

sumBReturn.py
o

Delete... Move. New Folder,

Using the Editor 5

Executing a Program

After you’ve viewed the script you can return to the
main Editor screen by tapping the icon shown on the
right. In the Editor you can execute the program by
tapping the Run icon shown on the right and on the
menu bar on page 44. The output from running the D
little program shown on page 48 is displayed below.

John Brown
John Brown
John Brown
John Brown
Goodbye

Managing Your Scripts

With the Scripts Library displayed as discussed on page 50 ,
tap, Edit shown below at the top of the screen near the
centre.

Pad = 1007 G|
< Back jimv table v
_' d n - -4
{ables7.py table=int(raw input("which t
= "::'3::1:"‘555;;::5’ e for number in range(l,13):
rate,*wage = . hours-rate, print 'number' X ,
__table," = ",number*table

Please note that the Edit button shown above in the
Scripts Library is used for managing files, i.e. deleting,
moving, etc. This not to be confused with the main
Editor screen described on page 44 in which you #ype,
edit and save the text of the script before running it.

5 Using the Editor

After tapping Edit as shown on the previous page, the
Delete..., Move... and New Folder... options appear at the
bottom of the left-hand panel in the Script Library, as
shown below and on page 50.

@ attempt=raw input{"\n Enter the password:

if attempt == password:
print "\n Welcome: Pleasc come in®

else:

password.py

Delete... Move New Folder..

You can select one or more scripts to be deleted or moved
by tapping the name of the script or its

thumbnail. As mentioned on page 22, you can k!j
switch between List view or Thumbnail

Previews after tapping the icon shown on the right.

With one or more scripts selected you can then Delete them
or Move them to another folder. In the example below,
some of the scripts used in this book are shown in a New
Folder called Jim which has been created. Tap Done shown
below when you’ve finished managing your files.

£ Back jimv Done < Back jimv Done
Q h table.py
table.py cotnis
while number <= 84:
if number % 7 == 9;
& tables7.py 4 Rt e (ttnegi Bt
Q aumber ,* AR
numbe rmnusber + 1
print “Finished!*
wages.py
& myname2.py tables7.py
import.py R a i T pae e
— print * hours*,hours, “rate *,\
List view Thumbnail Previews

Using the Editor 5

Adding a Comment

A Comment is just a note in a program intended to help
someone else to understand the program.

A comment always starts with the # sign and 1s ignored by
the computer, e.g.
This prints your name several times

Improving the Readability of the Output
Adding Blank Lines Using print

To make the output more readable you can add the word
print on its own on a new line, as shown in line 6 below.
This “prints” blank lines, as shown on the next page.

Adding Spaces to the Output

You could add some spaces, within speech marks, to the
text in the print statements as shown in lines 5 and 9 below.
You must put a comma in line 5, before myname.

1012 98%

= B

[2 myname="John Brown"

counter=1

while counter<5:
print " ",myname
print
counter=counter+l

print

9 print " Goodbye"

Save and run this modified program, The new output with
more spacing than the original on page 48 is shown on the
next page .

5 Using the Editor

John Brown
John Brown
John Brown
John Brown

Goodbye

Exercise

1.

PRSI

Open the myname program shown on page 53.
Edit the program to print the name of a pet.
Change the script to print the name 8 times.
Enter a different message instead of “Goodbye”.

Use print to print 2 blank lines after every line of
output.

Experiment with a different number of spaces in
quotes before the comma in line 5.

Save the program with a new name such as
mypet.py. (Pythonista adds the .py file extension
automatically).

Run the program and check for any errors.

. If necessary, debug the program and save it again.

6

for Loops and Lists

Introduction

Loops are used to harness the power of computers,
including tablets and smartphones, to repeat operations at
great speed. The while loop, discussed in Chapter 7, keeps
repeating a block of commands while something is True.

The for loop is used to repeat a block of commands a
specified number of times. This number may be specified
directly in the for command. Alternatively, as discussed
shortly, the for loop may pass over a list containing a fixed
number of objects.

A simple example would be to display your name on the

screen 3 times.
for loop

1 name = “Jill”
E 2 foriinrange (3):
3 print name

Please note in the above example:

e The colon (:) is essential.

e Lines under the for statement which are to be
repeated in the loop must be indented by the same
amount, usually 4 spaces.

e Each journey round the loop is known as a pass or
an iteration.

o It’s standard practice to use i and j as variables in a
loop.

6 for Loops and Lists

When you run the program on page 55, the output on the
screen is as follows:

Jill
Jill
Jill

You can improve the output by adding some spaces before
the name and by inserting the new line characters \n, as in:

1 name = “Jack”
2 foriinrange (3):

3 / print “\n\{\n ,“,na\me
Indent 4 spaces 3 newlines Spaces before name

(please see page 46)

When you run the modified program, the screen display is
as shown below:

Jack

Jack

Jack

for Loops and Lists

6

Please also note that a comma is needed between separate
items in a print statement.

3 print “\n\n\n , hame

comma (essential)

Printing Text on the Same Line
In the previous example, the names were printed
underneath one another. In the top example on the previous
page, on each pass through the loop “Jill” is printed on a
new line. In the bottom example on page 56, the new line
characters \n are inserted to give extra spacing. If you want
to display data from the loop on the same line, you need to
remove the \n characters and insert a comma at the very end
of the line, as shown below. . :
print on the same line
3 print “ “, name,

The effect of this comma at the end of the line is to display
the names on the same line as shown below. To increase or
decrease the separation between the names, adjust the
number of spaces between the quotes shown above.

Jack Jack Jack

Exercise: Write a program to display your own
name 10 times, down the screen. Experiment with
spacing. Save the program then edit it to display your
name along the screen, horizontally.

6 for Loops and Lists

Printing Numbers in a Range
The numbers in the range can be displayed using the code
shown below:

1 foriin range (10):

2 print i, ,

The output from the two lines of code above is shown
below. Please note above that, unless otherwise stated, the
for loop always starts from O and finishes .at 1 below the
number in the range.

We can also specify a starting value for the loop, as in:

1 foriin range (1,11):

This displays the following:

The comma at the end of line 2 above ensures that the
numbers are displayed across not down the screen.

for Loops and Lists

6

To specify a step up or down in the series of numbers
displayed, enter a third number in the brackets in the for
loop:

1 foriin range (1, 20, 3):

I

2 print i, “ g

The output is as follows:

i 4 & 10 B 18 18

Similarly, you could step down by inserting a negative
number in the bracket:

1 foriin range (30, 0, -3):

2 print i, “ ,

As shown below, although a finishing value of 0 was
specified, the screen display stops at 3.

30 27 24 219 18 15 12 9 6 3

This is because the loop is terminated as soon as variable |
contains the number 0 and before displaying 0 on the
screen. To ensure that 0 is displayed on the screen, as
shown below, change line | as shown below.

1 for i in range (30, -1, -3):

2 print i, 3

6 _for Loops and Lists

Displaying a Multiplication Table

The small program below allows the user to choose a
multiplication table to display on the screen.

1 table=int(raw input("Which table? "))

3 for number in range(1,13):
print “ ", number," x ",\
table," ", number*table

In line 1 raw_input stops the execution of the program
until the user types some data and taps return. “Which
table? “ is a prompt asking the user to enter a
multiplication table, such as 9. This is assigned to a variable
called table. In line 1 int ensures that the data entered is
treated by Python as a number and not a string.

The for loop needs to work out the table for the numbers 1
to 12, so it’s necessary to enter 13 as the top of the range, as
discussed on page 58.

In lines 4 and 5 above, the "
text inside of the quotes is Which table? 9
displayed literally on the 1x9=29
screen. number is the pass or

” X 2x9 =18
iteration around the loop

ranging from 1 to 12. Note 3x9 =27

the commas between items in 4 x 9 = 36
lines 4 and 5. £ g o= 4t

In line 4 the backslash 6 x 9 =54
character \ allows a long N
statement to be split between R

two lines. 8 x 9 = 72 etc,

for Loops and Lists

6

The program on the previous page can be represented by a
flowchart, as shown below.

Zj Input/Output

v
[] Process/Action
Enter multiplication

‘ Decision table e.g. 9 times

¥

number = 1

.
>
Y !

Display next line
of times table

|

number = number + 1

number <13

A Flowchart to Display Any Multiplication Table

6 for Loops and Lists

Nested Loops

Sometimes it’s necessary to have nested loops or loops
within loops. This would occur if you have two ranges for
two variables. For example, to calculate a weeks wages for
different hours worked and different rates of pay.

In the example below, we have a range of hours worked
from 30 to 40 in steps of 5, i.e. 30, 35 and 40. As discussed
on page 58, to use a value of 40 we need to specify 41 in
the hours range. Similarly, the rates of pay are 6, 7 and 8, so
we need to specify 9 pounds as our upper hourly pay rate.

1 for hours in range(30,41,5):
for rate in range(6,9):
print " hours",hours,"rate ",\
rate,"wage = ", hours*rate,"\n\n"

As shown above, there is an outer loop for the hours
worked and an inner loop for the rate of pay per hour. The
inner loop is indented by four spaces, as is the block of
commands shown in lines 3 and 4 above.

First the outer loop is executed with 30 assigned to the
hours. The inner loop is repeated 3 times for the range of
pay rates 6, 7 and 8 pounds per hour, as shown at the top of
the next page.

Next the outer loop is executed again with the hours set at
35 and the whole of the inner loop executed with a total of

3 passes or iterations. Finally the inner loop is executed 3
times with the outer loop set at 40 hours.

for Loops and Lists

6

hours 30 rate6 wage = 180
hours 30 rate7 wage = 210
hours 30 rate 8 wage = 240
hours 35 rate 6 wage = 210
hours 35 rate7 wage = 245
hours 35 rate 8 wage = 280
hours 40 rate 6 wage = 240
hours 40 rate7 wage = 280
hours 40 rate 8 wage = 320

Please note in the program on page 62:

The upper value in the range must be set at | higher
than the actual value required; so to have an upper
value of 40 hours we need to specify 41.

for statements must end with a colon ().

Each statement in the block of text under the for
statement must be indented by the same amount.

It’s usual to indent each line of a block of text by four
spaces as discussed in Chapter 5.

The backslash \ character at the end of line 3 on page
62 allows a long statement to be split between two
lines.

Exercise: Copy, save and run the wages program on
page 62. Then edit the program to change the hours
worked and the rates of pay to your own values.

6 for Loops and Lists

Storing Data in Lists

So far we have assigned individual pieces of data to one
variable, such as:

catsName = “Serina”

A list allows you to use a single variable name to assign
multiple items of data, as shown below:

ourCats=["Serina”, “Coco”, “Crisp”, “Halebop”,"Meadow”)]

Please note that the list is enclosed by square brackets,
which appear on the top row of the on-screen keyboard (as
shown on page 4).

A list can also include numbers as well as the strings
shown above, or a mixture of strings and numbers.

So for example we could have the following short program
listing sales figures for representatives in the UK.

salesNorth=["Smith",23,"Jones",31]
salesSouth=["Scot", 38, "Brown",17]

salesUK=salesNorth + salesSouth

print salesUK

Line 5 links or concatenates the two lists to produce the
single list, salesUK printed by line 7 as shown below.

[‘Smith’, 23, ‘Jones’, 31, ‘Scot’ 38, ‘Brown’, 17]

for Loops and Lists

6

Each of the individual items in a list is indexed, starting
with [0]. So, the first four items in the ourCats list on the
previous page are :
ourCats [0] = “Serina” ourCats [1] = “Coco”
ourCats [2] = “Crisp” ourCats [3] = “Halebop”
Please note that in a list of 5 items, since the first item has

an index of 0 the fifth item has an index of 4. The full list
can be displayed using a for loop, as shown below:

SN

1 print"\n\n\n"

3 ourCats = ["Serina", "Coco",\
4 "Crisp","Halebop", "Meadow"]

5 for cat in ourCats:

6 print " ", cat,

In the above example, print “\n\n\n” is used to put some
blank lines above the output on the screen.

The backslash \ character at the end of line 3 above allows
a long program statement to be split between two lines.

Iterating Over a List Using a for Loop

In the statement below, cat is a variable name made up for
use in the for loop. ourCats is the name of the list.

5 for cat in ourCats:

The indented block (just the print statement in line 6 in this
example) produces the screen output shown below.

Serina Coco Crisp Halebop Meadow

6 for Loops and Lists

In the output at the bottom of the previous page, space at
the top of the screen is created by print “\n\n\n” in line 1.
Space between each name is achieved using * “in line 6.
The comma at the end of line 6 displays the output
horizontally, across the screen. Without the comma, by
default, the cats’ names would be printed underneath one
another.

Changing an Item in a List

You might need to change a piece of data in a list. For
example, in the ourCats list on the previous page, we
might want to replace Coco with Claud.

In the previous list:

ourCats[1] = “Coco”

To change Coco to Claud we would add this extra line:
ourCats[1] = “Claud”

Printing the Last Item in a List

The last item in a list is always indexed [-1], so to print the
last name in the ourCats list we can add the line:

print ourCats|[-1]

The modified lines to be added to the program on page 65
are shown below.

3 ourCats[1]="Claud"
print “\n\n\n"
for cat in ourCats:
print *“ *,cat,

-

Z_~pr,int “\n\n\n ", ourCats[-1]

for Loops and Lists

6

When you run the modified program, the output is as
follows:

Serina Coco Crisp Halebop Meadow
Serina Claud Crisp Halebop Meadow

Meadow

The first line above was the original ourCats list. In line 2
above Coco has been replaced by Claud. Line 3 above
shows the output from the item indexed [-1], i.e. Meadow,
the last cat in the list.

Adding an Item to a List
To add another name to the cats list add something like :

ourCats.append (“Charlie”)

Removing an Item from a List

To remove the third item from the list, add the statement:
del ourCats[2]

(Remembering that the first item is ourCats[0].)

The append and del statements can be added to the end of
the cats program as shown on the next page.

6 for Loops and Lists

15 ourCats.append("Charlie")
del ourCats[2]

for cat in ourCats:
print " ", cat,

Line 15 above adds Charlie to the end of the list as shown
below. Line 17 deletes item 3, indexed as ourCats[2], i.e.,
Crisp, from the list. The for loop at line 19 produces the
following modified output:

Serina Claud Halebop Meadow Charlie

Tuples

A tuple is similar to a list but the tuple can’t be modified,
unlike the ourCats list just described. Tuples are used for
items which don’t change, such as the months of the year,
star signs, dates of birth, etc. A tuple is enclosed in round
brackets () rather than the square brackets [] used in lists.

Exercise: Copy, save and run the program shown on
page 65. If necessary, debug the program and save it
again. Then edit or rewrite a program to create and
display a list of your own, with ten items of data and
your own variable names instead of ourCats and cat.
Replace, delete and append items using the methods
described on the previous pages.

7

while and if Statements

Introduction

One of the great advantages of computers, including hand-
held devices such as the iPad and the iPhone, is their ability
to rapidly repeat a task a large number of times. So, for
example, it’s just as easy to display the numbers from 1 to a
1000 as it is to display the numbers from | to 5.

Shown below 1s a small while loop which prints the
numbers from | to 5 inclusive.

number=1
while number<=5:
print number
number=number+1
6 print "The loop is finished"

After saving and running the program, the output on the
screen is as follows.

BN -

7 while and if Statements

To change the program to print the first 1000 numbers (or
even 10,000 or 1,000,000) numbers it’s simply a case of
changing line 3 shown below. (Line 1 is only a comment for
information purposes.)

number=1

while number<=1000:
| print number

number=number+1
LE print “The loop is finished"

When you save and run this modified program, as described
on pages 49 to 51, the new screen output is as shown in the
small sample below. The computer displays all 1000
numbers almost instantly.

996
997
998
999
1000
The loop is finished

This small example is just intended to illustrate the
awesome power of a computer — imagine writing out the
first 1000 numbers by hand!

Exercise: Copy, save and run the above program.
Then change 1000 in line 3 to 10,000 and save and run
the program, as discussed on page 49 and 51.

while and if Statements

7

The Program Statements in English

1 | This line is a comment, ignored by the computer
2 | Assign an initial value of 1 to the variable store we
have called number.

3 | While this statement is True, execute the indented
lines below it. If not branch to the next line which is
not indented, i.e. line 6.

4 | Display on the screen the value or number in the
variable store number.

5 | Add 1 to the value of variable store number.

6 | This line is not indented so it is only executed when
the loop has finished i.e. when the while statement is
no longer True.

Comments

Comment statements, as mentioned above, are simply notes
to help people understand a program listing.

True and False

<= in line 3 means “less than or equal to” as discussed on
page 37. The while statement is a condition which is either
True or False. So, for example, if number contained, say,
578 or 1000, the condition would be True. If number
contained 1001 the condition would be False.

The indented lines 4 and 5 are repeated as long as the while
condition is True. When the condition is False the program
leaves the loop and jumps to the next line which is not
indented, in this case line 6.

Indentation is usually 4 spaces (or 8 spaces for a “nested”
loop) or after an if statement as shown on page 73.

7 while and if Statements

The Infinite Loop

All being well, the conditions for a loop are met and the
program finishes as discussed on the previous page.
However sometimes you might make a mistake which
prevents the loop from being completed. For example, if
you fail to indent line 5 as shown below.

number=1
[-: while number<=1000:
- print number
umber=number+1
f prigt "The loop is finished"

Line 5 should be
indented here by
4 spaces

The loop should
include line 5

In this case, line 5 will not be repeated in the loop and the
store called number will not be increased by 1 with each
passage through the loop. The loop will continue but
number will remain at 1. So line 3, which says “while
number is less than or equal to 1000” will always be True.
So the loop will continue, with 1 being repeatedly displayed
on the screen until you quit the Console, close Pythonista or
in the last resort, switch off the iPad or iPhone.

number = number + 1 can be written as number += 1

while and if Statements

7

The if Statement

“If” is used a lot in coding as it is in everyday life., i.e. if
something is true do one thing, else if it’s not true, i.e. false,
do something else. In computing these conditional
expressions cause the flow of a program to branch in
different directions. The keywords used in Python for
decisions and branching are if, elif and else.

The following program uses if within a while loop. Enter
this exactly, making sure you use commas, spaces, etc., as
shown in the example. Also the colon in line 4 and extra
indentation of another 4 spaces in lines 6, 7 and 8.

The backslash \ at the end of line 7 is used to split the long
print statement into two lines.

number=1
counter=0
while number <= 84:
if number % 7 == 0:
counter = counter + 1
print "\n", counter,\
" times 7 =", number ," \n
number=number + 1
print "Finished!"

After entering this program, save it with a name such as
times7. (Pythonista adds the .py extension automatically.)
As you may have guessed, this program displays the 7
times table. Saving your programs is discussed in
more detail on page 49. To run the program, tap the
icon shown on the right. Your output should be as
shown in the small extract on the next page.

NS
V’

7 while and if Statements

8 times 7= 56
9 times 7= 63
10 times 7= 70
11 times 7= 77
12 times 7= 84
Finished!

Correcting Errors —Debugging

If your output is not the same as the extract above, you need
to use the Editor to correct any mistakes. When a program
fails, the error messages on the screen should help. For
example, if you miss the second quotes off line 10, as in:

10 print “Finished! |

When you try to run the program, the following red and
white Syntax Error message is displayed, pointing to the
missing quotes in line 10.

o)

" times 7 =", number ," \n l
number=number + 1

10 print “Finished!

Correct the error using the Editor then save and run the
program again. Synfax errors include mistakes such as
missing off a bracket, quotation marks or a spelling mistake
in a reserved word as discussed on page 45.

while and if Statements

7

Understanding the Program

number=1
counter=0
while number <= 84:
if number % 7 == 0:
counter = counter + 1
print “\n", counter,\
“ times 7 =", number ," \n"
number=number + 1
print "Finished!"

The meanings of the above lines in English are:

2 | Assign | to the variable or store called number.
3 | Assign 0 to the variable called counter.

4 | Repeat the indented lines below as long as the value
of number is less than or equal to 84, i.e. True.
Otherwise, if line 4 is False go to the next line which
is not indented (i.e. line 10).

5 | If the remainder equals 0 when number is divided by
| 7, carry out the indented lines 6, 7 and 8 below.
Otherwise go to line 9 and continue in the while loop.

6 | Add 1 to the value in the variable store called
counter.

Display the first part of the next line of the table.
Display the rest of the line of the table.

Add 1 to the value in the store called number and
loop back to line 4.

10 | This line is not indented so the program executes it if
| the while loop is False, i.e. the loop has finished.

7 while and if Statements

The while Loop in More Detail

while number <= 84:
This loop increases the value in store number from 1 to 84.

Everything which is indented below while is repeated.

if number % 7 == 0:

This means “if the remainder equals 0 when the value in
number is divided by 7, execute the indented lines
below.” (== in Python means equals or the same as and
corresponds to = in normal arithmetic). This displays the
next line of the table as shown in the output on page 74.

If the remainder is not 0, number is not part of the 7 times
table and the program carries on to the next number. This
continues in the while loop until all the numbers from 1 to
84 have been tested.

Please note that the lines under if are indented by a further 4
spaces in addition to the indentation for the while loop.
Formatting the Output on the Screen

In the print statement on lines 7 and 8 on page 75:

. is used to separate items displayed across the
screen.

e Commas must be used between different items in a
print statement.

o \is used to spread a long statement over two lines.

o \n or\n\n, etc., can be used to give vertical spacing of
one or more blank lines on the screen.

A

while and if Statements

7

number = 1

Assign initial values
to variables number

and counter

| divide number by 7 |

Remainder

equalto 0
?

counter = counter + 1

A

y

While
loop

Display next line
of times table

J

T

Inumber = number + 1

Number less
than or equal
to 84
?

No

A Flowchart for the Tables Program

7 while and if Statements

Summary: while and if

Although there are simpler ways to “print”, i.e. display on
the screen, the multiplication tables, the previous example
was intended to show the use of the while statement for
repetition and the if statement for branching. Both of these
statements rely on a condition to be True or False, both
end with a colon and use indentation to create a block of
statements which are only executed if the condition is True.

while the condition is True :

Keep repeating the

execution of this block
of indented statements
until condition is False.

if the condition is True :

Execute this block of
indented statements
then carry on to the
next statement below.

Execute this part of the| |[Branch straightto thisline,
program when the while missing out the indented
condition is False. block when the if condition
is False.
while loop if condition statement

Exercise:

Use the program on page 75 as a template for a
program to display the 14 times table up to 252.
Replace number and counter with variable names of
your own and put your own message in line 10. Save
and run the program. If there are any errors, make sure

your syntax, i.e.

spacing,

indentation, commas,

quotation marks, colons, etc., are the same as page 75.

3

Further Branching With
If, else and elif

Introduction

In the previous chapter, if was used with a single condition
statement which was either True or False, as follows:

if number % 7 == 0:
counter = counter + 1

The if statement above is testing to see if the remainder is 0
when the contents of the store called number are divided
by 7. The above if condition statement has only two
possible results.

However, it’s not unusual to have more than two possible
outcomes to a situation, such as:

if you have enough money:
— GO away on holiday
Indented lines elif cash is a bit tight:
(4 spaces) \—> Have a day trip
elif cash is extremely tight:
— Stop at home

Each of the three condition statements above can be True
or False. If a condition is True, the indented lines which
follow are carried out or executed. Otherwise, if False, the
program jumps to the next line which is not indented.

8 Further Branching With if, else and elif

Using the if and else Conditions

In the example below, a password is required, perhaps to be
entered before being allowed to use a Web site or enter a
building. The person attempting to enter the password
would not see this program listing and so would not know
the password. In this example the password is python and
this has been assigned to a variable called password,
shown in line 1 below.

password="python"
attempt=raw input(“\n Enter the password: ")

if attempt == password:
print "\n Welcome: Please come in"

else:
print "\n Sorry:Please try again'

i
—

Blank lines are inserted to make the program easier to read.
Python uses different colours for keywords, variable names
made up by the programmer and text in quotes which is to
be displayed on the screen.

Line 3 uses raw_input() to ask the user to enter the
password. This is assigned to a variable store which has
been called attempt. In line 3, 6, and 9, \n causes a new
blank line to be inserted, to improve the layout and
readability. For the same reason a colon (:) and spaces have
been inserted at the end of line 3, as shown below.

(“\n Enter the password: “)

Further Branching With if, else and elif

5 if attempt ==password:

This statement tests to see if the password entered by the
user and stored in the variable attempt is the same as the
actual password in the variable store called password.

== means “is the same as” or “equal to”.

It’s easy to forget to include the colon (:) on the end of the
ifand else statements in lines 5 and 8. This will cause a
program to fail. The colon is essential as it causes the next
line(s) to be indented automatically as required.

When you run this program, if the correct password is
entered, the if condition in line 5 is True. So the indented
code, line 6, under the if statement, is executed. This
displays the following output on the screen.

Enter your password: python
Welcome: Please come in
If the wrong password is entered, line 5 is not True, so the

else statement is executed instead and the following
appears on the screen.

Enter your password: pyhton

Sorry: Please try again

8 Further Branching With if, else and elif

Extending the Program

The listing on page 80 does not allow a user to have another
attempt at entering the correct password if their first attempt
fails. In practice you are normally allowed several attempts.

So somehow we need to repeat the process of entering and
testing a password. This suggests using a while loop as
discussed in Chapter 7 and elsewhere.

What we need is to keep giving the user the opportunity to
enter another password until they enter the correct one.

This might be achieved by preceding the attempts by the
statement :
while attempt = password:

The above statement means “while the user’s password
attempt is not the same as the actual password, keep
repeating the indented lines which follow”.

So we could insert the while condition in the listing on page
80, as shown below. Unfortunately the program below fails.

password="python"
while attempt != password:
attempt=raw input{"\n Enter the password: ")

if attempt == password:
print "\n Welcome: Please come in"

i else:
11 print "\n Sorry:Please try again"

Reminder:

= means “not equal to” or “not the same as”

Further Branching With if, else and elif

8

Line 5 on the program on the previous page cannot be
executed because no value has yet been assigned to the
variable attempt. So the condition True or False cannot be
evaluated in line 5 and the error message ‘attempt’ is not
defined appears. This problem can be overcome by
assigning an arbitrary initial value to the variable attempt,
as shown in line 3 below.

Assigning an Initial Value to a Variable

In order for the while loop (line 5 below) to work, you need
an initial value in the store called attempt.

So line 3 assigns a “dummy” password to the variable
attempt, e.g., attempt = “rubbish”.

In this case rubbish is used as the dummy but any word
would suffice as long as it made the while condition True,
1.e. “while the password entered by the user is not the same
as the actual password”.

1 password="python"
2

3 attempt = "rubbish"”
» while attempt != password:
attempt=raw input(“\n Enter the password: ")

if attempt == password:
print “\n Welcome: Please come in"

else:
3 print "\n Sorry:Please try again"
4

16 print "\n \n Have a nice day"

L4/

8 Further Branching With if, else and elif

Running the Extended Program

Now when you run the program on page 83, if the wrong
password is entered, the program prints the Sorry message.

Enter your password: pyhton

Sorry: Please try again

The program then continues in the while loop (lines 5 to
13) on the previous page and allows the user to try again.

When the correct password is entered, the while condition
is no longer True. So the program leaves the while loop
and prints the WWelcome message, followed by the next line
which is not indented, i.e. line 16. This displays Have a
nice day, as shown below.

Enter your password: python
Welcome: Please come in

Have a nice day

Exercise:

Copy, save and run the program on page 83, but make
up your own password and variable names instead of
password and attempt. Debug any errors until it works
with both correct and incorrect passwords. Experiment
with spaces and \n to improve the display on the screen.

Further Branching With if, else and elif 8

A Bank Account Program

The next program shows how you might use Python to
manage your bank account. The following terms are used in
everyday life and also as the names of variables in the
program.

balance: the amount of money in your account.
credit: a single payment into the account.
debit: a single withdrawal from the account.

The listing for the program is shown below:

print "\n 1. Paying in

print "\n 2. Withdraw cash"
print "\n 3. Get advice"

print "\n 4. View your balance"

balance = 100
choice = int(raw_input\
3 ("\n Enter 1,2,3 or 4\n ")}

if choice == 1:
credit = int(raw input("\n Enter amount "))
balance = balance + credit

elif choice == 2:
debit = int{raw_input("\n Enter amount "))
balance = balance - debit
if balance < 0O:
print " \n You are overdrawn again!

elif choice ==
print "\n Please call in for a chat"

else:
print "\n Your Balance is shown below"

print "\n\n Current Balance ",balance

8 Further Branching With if, else and elif

The first four lines of the program shown on the previous
page display a menu of options on the screen, as shown
below.

1. Paying in

2. Withdraw cash

3. Get advice

4. View your balance

Enter 1,2, 3, 0r4

Using raw_input() and int()
8 choice = int(raw_input\(\n Enter 1, 2, 3, or 4 \n"))

raw_input() (line 8 shown above and on the previous
page) causes the program to wait until the user enters
something and then presses return. Without int() and the
outer brackets () shown above, the user’s input would be
treated as a sfring not a number. Using int() causes the
user’s input to be treated as a number.

The user enters an option 1, 2, 3 or 4 and taps return. The
option number is placed in the store called choice.

Depending on the choice, the program branches to one of
the lines starting with if, elif, and else shown on page 85.

The use of raw_input() to enter strings and integers is
discussed in more detail on pages 39-41.

Further Branching With if, else and elif

In line 12, int(raw_input (* “)) is used for the entry of the
amount of money to be paid in and credited to the account.

In line 13 the new balance is calculated using:
balance = balance + credit

After line 13 if choice ==1, none of the elif conditions and
the else condition are True. So the program branches to the
next line which is not indented, line 27. This displays the
current balance, as shown below.

Enter amount 65

Current Balance 165

Line 17 works out the new balance when the user enters
option 2 to withdraw cash, before printing the balance, in
a similar way to the credit option described above. The
program continues down carrying out the indented lines
when the elif or else statements are true. Finally all of the
conditions if, elif and else lead to line 27 which prints the
balance after whatever choice was selected.

After an If statement you can have as many elif statements
as you like. You can only have one else statement. The
else statement is optional but may be used to make the
code easier to understand.

8 Further Branching With if, else and elif

balance = 100 1. Credit

2. Debit
3. Advice
4. Balance

Input
choice

choice =1
?

Input
credit

choice =2
?

v

[balance = balance+credit]

No

balance = balance-debit

Yes

Make an appointment

L J
Print
balance

A Flowchart for the Bank Account Program

Further Branching With if, else and elif

As shown on the previous page, the diamond-shaped
decision boxes correspond to the if and elif statements on
the program on page 85. Each decision box has only two
possible results, Yes or No. These correspond to the
conditions True or False. As mentioned earlier, a
computer, being a two-state or binary system can represent
the conditions True or False using a system of logic gates.

In the bank program, there is no need for a decision box for
the fourth option to print the balance. This corresponds to
line 27 in the program on page 85. As this line is not
indented, it’s executed after all of the conditional
statements, if and elif have been tested and executed where
necessary. The else statement is not essential since the line
which follows will be executed anyway.

Overdrawn?

If you try to take out more than you have in your account,
you will be overdrawn and may be charged interest. This
can be checked by inserting lines such as:

if balance < 0:
1 print " \n You are overdrawn again!"

This is inserted after line 17 on the program on page 85. On
the flowchart on the opposite page, this would be after the
action box balance = balance-debit. If the condition is
True, i.e. the balance is less than 0, the indented print
statement shown above is displayed on the screen. The
program then continues and “prints” the balance, i.e.
displays the balance on the screen.

8 Further Branching With if, else and elif

Exercise

Copy and save the program on listed page 85. Test all of
the options 1, 2, 3 and 4 on the menu, using various
amounts of money for credits and debits.

Test the overdraft code by selecting option 2 and
entering a large cash withdrawal or debit.

If there are any errors, check the code with the version
on page 85. Then correct and save the program.

Using Strings with raw_input()

As discussed on pages 39-41 and page 86, the raw_input()
function can be used to prompt the user to enter data as
strings or numbers. As discussed on page 86, for numerical
input, raw_input() is preceded by int and enclosed within
an outer set of brackets, as shown below.

choice = int(raw_input\(\n Enter 1, 2, 3, or 4 \n"))

If you omit int and the outer brackets, in line 8 and 9 on

page 85, Python will treat the user’s input as string data. So
lines 11, 15 and 21 on page 85 will need the choices 1, 2
and 3 to be enclosed in quotes, i.e. “17, “2” and “3".

Exercise
Use the Editor to modify your copy of the program
shown on page 85.

Change lines 8 and 9 to remove int and the outer
brackets.

Change line 11 to: if choice == “1":
Change 2 and 3 in lines 15 and 21 to “2” and “3".
Run the program and debug if necessary.

9

Functions and Modules

Introduction

Anyone who’s used a calculator has most certainly

used a function. For example, to find the square \/_
root of a number, simply enter the number and tap

the square root key, usually marked as shown on the right.
So if we enter 25 into the calculator and press the square
root key, the answer 5 will pop up straightaway. In fact, the
process of finding a square root can be quite complex
without a calculator or a computer program.

For example, to find the square root of 40 we need to find a
number which, when multiplied by itself, gives 40 as the
answer. One method is to keep guessing, until we get very
close, if not exactly, to 40, as shown below.

6.5x6.5=42.25 6.4 x 6.4 =40.96
6.35x6.35=40.3225 6.3x6.3=239.69

Fortunately this laborious iferation process is reduced to a
single press of the square root key, because routines or
algorithms have been written to find square roots. This is
very similar to the use of functions in programming.

A function is a set of program statements representing a
frequently used process. The function can be called and
executed by simply entering its name into a program.

9

Functions and Modules

Functions in Python

There are many functions available in Python and you can
also write your own. Some of the reasons for using
functions are :

o As stated earlier, a function is a block of program
statements which is used regularly. It would be
inefficient if you had to type in the block of
statements every time you used them.

e A widely used function may be saved as a file and
inserted into lots of different programs.

e You can utilise functions which other people have
written.

o Functions allow a long program to be divided up
into manageable ‘“chunks”, making it easier to
understand and develop the program.

Built-in Functions

Some functions are built into Python and can be called by
simply typing the function name into a program. You can
experiment with functions in interactive mode by typing
the function name into the Console.

We’ve already used some of the built-in functions earlier in
this book. These included int(), raw_input() and range().
The brackets contain the numbers or strings (known as
parameters or arguments) which the function is going to
operate on. These are the input to the function. After the
function is executed, any resulting numbers or strings, i.e.
output, are returned to the main program.

Functions and Modules

9

Library Functions

Python has many functions stored in a library of modules.
A module is a .py file similar to a program file and contains
a list of function definitions, usually on the same subject.
You can look at the lists of modules and the functions they
contain after searching the Internet for “Python Standard
Library”.

For example, the math module has a long list of
mathematical functions in a format such as math.sqrt(x),
math.log(x) and math.sin(x).

Unlike the built-in functions, which can be called by simply
typing their name into a program, the library functions have
to be imported into a program, as discussed shortly.

(The Python Standard Library also includes a complete
listing of the built-in functions mentioned on page 92.)

User-defined Functions

As well as using Python’s built-in and library functions that
other people have written, you can also write your own, as
discussed shortly. For example, a piece of code which is to
be used frequently in a long program could be defined once
as a function. Then to use the function throughout the rest
of the program it would simply be called by inserting the
function name.

Alternatively, if you want to employ a user-defined
function in other programs, the function would be saved in
a module and then imported into other programs as
required.

Defining your own functions is discussed later in this
chapter.

9

Functions and Modules

Examples of Functions
range()

The range function can be used with one, two or three
arguments, as shown below:

range(x) range (x,y) range(x,y,z)
The range function is often used in a for loop, as shown
below. ‘

for num in range(12):
print num,

In the above small program, range(12) produces the output:

0,1,23,4,5,6,7,8,9, 10, 11

(0 is assumed as the starting value and by default the
increment or step is 1)

Similarly using range(2,13) in the for loop above, returns:

2,3,4,5,6,7,8,9,10, 11,12
Finally range(2,15,2) displays:

2,4,6,8,10,12, 14

The range function with 3 arguments, as shown above in
range (2,15, 2), in general takes the form:

range(start, finish, step)

Functions and Modules

9

int()

A floating point number (also known as a float), is a
number with figures to the right of the decimal point. The
int() function can be used to convert the floating point
number to an infeger (a whole number). You can check this
in interactive mode in the Console, as shown below.

>>> int (3.7)
output =—3 input

Passing Parameters

To use a function in a program you would enter its name as
a program statement. When the program reaches the line
calling the function, the lines of the function are carried out.

In a numeric function like int() shown above, you have to
supply or pass numbers, i.e. parameters, between the
brackets as input. The function then performs an operation
on the parameters and refurns an answer. So in a program,
using the int() example, 3.7 is passed to the function and
3 would be refurned to the main program.

As shown on page 97, int() is also used to convert

numbers, returned as string characters, to integers.

Parameters and Arguments

The words parameter and argument are both used to
describe the contents within a function’s brackets. One
definition is that a parameter is a variable such as x and y in
range (X,y), for example, while arguments are the actual
numerical values input to a function such as 2 and 10 as in
range (2, 10).

9 Functions and Modules

raw_input()
You can use raw_input() to give a prompt to the user to

type something. The user enters some data before tapping
return. The program then moves on to the next line.

name = raw_input (“Enter your name”)
print “ Welcome”, name

In the above example, when you type your name and press
return, your name is returned from the raw_input()
function to the main program where the print statement
displays it on the screen.

raw_input() and Numbers

Anything the user enters in response to a prompt from
raw_input() is returned to the main program as a string.
In the example below, a wage is calculated from the rate of
pay (£9 an hour) after the user enters the hours worked.

hoursWorked = raw_input (“Enter your hours”)
print “ Your wage is ", 9*hoursWorked

This gives a ridiculous answer when you enter, e.g. 18
hours, as shown below.

Your wage is 181818181818181818

The reason this answer is wrong is because raw_input()
has returned the string “18”, i.e. just the two keyboard
characters, “1” and “8”, not the mathematical number 18
made up of a 10 and an 8.

Functions and Modules

9

So when 18 is passed to hoursWorked as shown on the
previous page, instead of multiplying 9x18 (from
9*hoursWorked) and getting 162, the print statement has
simply displayed the string “18” a total of 9 times.

Fortunately this error can be corrected using the int()
function as shown below. This converts the string produced
by raw_input() to the integer value required by the wages
calculation. To input numbers using raw_input(), enclose
the entire raw_input() statement in parenthesis (brackets)
and precede the statement by int(), as shown below.

hoursWorked = int(raw_input (“Enter your hours”))
print “ Your wage is ", 9*hoursWorked, “pounds”

Please note: It’s very easy to forget the outer bracket on the
extreme right above.

So now the number 18, not the string “18”, is returned from
raw_input(), to give the correct wage calculation shown
below.

Your wage is 162 pounds

Exercise

Use the above example to write a program to work out the
wages for a different hourly rate of pay. Modify the
program to input both hourly rate and hours worked and
print out the wage.

The use of raw_input() and int() to enter strings and
integers is also discussed on pages 39-41.

9 Functions and Modules

Modules

So far we’ve looked at a few built-in functions that can be
used directly by simply typing their name into the program
you are creating. Many other functions are stored in a
library of modules. As stated before, a module 1s itself a .py
file containing the definitions for a number of functions. So
for example, in the math module there are functions such
as sqrt(x), factorial(x) and many others.

sqrt(x)

As stated earlier, the square root (sqrt) of a number is
another number which, when multiplied by itself, gives the
first number. For example:

sqrti(4)=2 sqrt(9)=3

factorial(x)
The factorial of a number takes the number and multiplies it
by every other number below it, down to 1. For example:
factorial(3)=3x2x1=6
factorial(4) =4 x3x2x1 =24

Functions saved in modules are identified using the module
name followed by a full stop and the function name, such
as: Module name Function name
P
\r‘nath.sqrt(x)
Importing Functions into a Program

To use a function (other than a built-in function) in a
program, it must be imported into the program from the
module (.py file) in which it is saved. It’s usual to put the
import statements at the start of the program listing.

Functions and Modules

Method 1. Using the from....import Statement

1 from h import ————— .

[mat P sqrt | iiieering
3 number = ("Enter a number") function sqrt
4

5 | answer= sqrt (number) <= Calling

4 function sqrt
|7 print answer

Method 2. Using the import Statement

1 MIPEIA VEIEI T Importing
3

modul h
3 number = ("Enter a number") odule mat
4
5 answer= math.sqrt (number)e——————_ Calling
g function sqrt
7 print answer

When the above programs are run and the number 20 is
entered as the number, both methods yield the same result,
for the square root, as shown below.

4.472135955

The round() Function

The round(x,y) function discussed on the next page allows
you to round a floating point number such as 4.472135955
down to a specified number of places.

input() versus int(raw_input()) in Python 2.7
For simplicity above, the function input(), rather than int

(raw_input()) has been used. However, Python
documentation recommends raw_input()for general use.

)

Functions and Modules

10

round(x,y)

This function allows you to correct a number, X, to a

number of places, v, after the point. So for example,
round(5.391732, 2) would yield 5.39.

As round() is a built-in Python function there’s no need to
import it and so it can be inserted directly into a program,
as shown below.

| i math J.IIIPU|;. sqrt
number = 1ir ("Enter a number")

answer= sqrt (number)

s

nd(answer,2)

N\

Correct the number stored in variable answer to two
decimal places, i.e. to the right of the decimal point.

When the above modified program is run and the number
20 is entered as input, the answer is as follows:

4.47

Exercise

1. Write programs to find the square root of 30, correct to 3
decimal places, using methods 1 and 2 on page 99.

2. Write a program to import the function math.factorial
and use it to calculate and display factorial (20), i.e.

20 x19x18x17x16...... ... x3x2x1.
How long would this take using pencil and paper?

0

Functions and Modules

9

Random Numbers Using randint()

There are several functions for generating random numbers
within the random module in the Python Library.

For example, randint(1,6) generates random whole
numbers from 1 to 6 inclusive. You can experiment with
randint() using interactive mode in the Console. First you
have to import the module, random, as shown below.

>>> import random

Then call the function using the module name, random
followed by the function name, randint() complete with
the required arguments, i.e. values in brackets.

Input
utput —_ >>> random randin(Ol

So for example, we could simulate throwing a dice and get
the result 4, for example, as shown above.

Or we could write a little program using a while loop to
simulate throwing the dice 20 times, for example.

Import random

import random se————— e

throws =0 Calling the function

while throws<20: / ’

number=random. randint(1,6) ‘
print number,"” ",
throws=throws+1 I

—

9 Functions and Modules

The output from the first two runs of the program on page
101 was as follows:

5162335615246 1545262

23115462661626334262

As can be seen above, the algorithm or routine that was
devised for the randint() function has done a good job in
producing two different sets of 20 random numbers
between 1 and 6.

Advantages of Functions and Modules

The previous examples show how useful it is to have ready-
made functions, ecither built-in or available in modules.
Many of these functions would be difficult and time-
consuming for users to code for themselves. Built-in
functions reduce complex tasks to one simple statement to
call the function using its name. Functions stored within
modules are also called using their name after importing
the module to the program, as described on page 98.

Exercise

Rewrite the program on page 101 to display 10 random
numbers between 2 and 9 inclusive. Run the program five
times to produce 5 sets of results. (Remember to put the
comma at the end of the print statement shown in line 7).

If line 3 was changed to throws=1, try to work out how line
5 would have to change to make sure 10 random numbers
were displayed.

102

Functions and Modules

9

Defining Your Own Functions

In this example a simple function, total(x,y), is created to
add two numbers. The function is defined and called as
shown below. After defining a function it can be used again
and again in a program just by entering its name. Or the
function could be saved in a module and called after
importing from the module into the main program.

definition /
def total(x,y):%*
answer=x+y

print “Total is ",answer

x=input("Enter first number ")
y=input("Enter second number ")

9 total(x,y)
Calling the \ Arguments passed to
function Function name the function

Please note above that the statements which are part of a
function definition must be indented by the same amount,
usually four spaces. After the function has been completed,
program execution returns to the main program and carries
on to the next line after the line which calls the function, i.e.
after line 9 in the example above.

Variables declared within a function definition such as
answer above cannot be used outside of the function and
are known as local variables. Global variables are variables
declared outside of functions. These can be used
everywhere including within functions.

w

9 Functions and Modules

Returning Values from a Function

As stated earlier, variables declared within a function do not
apply outside of the function. So in the example on the
previous page, answer is a local variable and its value
does not apply in the main program. (Although you could
use the variable name answer for a different purpose in the
main program with new values assigned to it).

You can use the return statement to send values output
from a function back to the main program, as shown below.

def total(x,y):
return x+y

x=input("Enter first number ")
y=input("Enter second number ")

answer=total(x,y)

T

11 print "Total is ",answer

In this example the function name is total(x,y) with the
arguments X and Yy, input by the user, being passed to the
function. The function adds the two numbers and the return
statement sends the result back to the caller, answer above.
The call command has been assigned to the variable store
answer in this example.

Exercise

Write a function to find the average of four numbers using
def and return as shown above.

10

Working With .py Files
Across Platforms

Introduction

Python (.py) files are created on all types of computer
platform, as well as the iPads and iPhones discussed in this
book. You might do your coding in different places on
various machines, such as PCs at school, college or work
and a tablet or smartphone at home. Or you might want to
send a copy of your latest program to a friend.

You can transfer and run .py files on computers running
different operating systems such as 10S (iPads and
iPhones), Microsoft Windows (PCs) and also the Android
operating system used on many tablets and smartphones.

This book is based on the Pythonista app for iPads and
iPhones. Files coded in Pythonista are compatible with the
.py files created in Python 2.7 on PC computers. They are
also compatible with .py files written using the QPython
(but not QPython3) app on Android devices.

Some methods of transferring .py files between the
different computer operating systems are listed below.

e Upload the files from an iPad or iPhone to the
“clouds” using Dropbox or Google Drive, etc.

o Use a file manager to copy the .py files from
Dropbox to a PC or an Android device.

o Use copy and paste and e-mail to transfer files from
a PC or Android device to an iPad or iPhone.

N
[63]

10 Working With .py Files Across Platforms

s
(o]

Sharing Files Using the Clouds

Dropbox and Google Drive are “cloud” storage systems, in
which your files, including .py files, are saved on Internet
server computers, so they can be accessed from other
computers having an Internet connection. When you save a
file in the clouds, it is synced, i.e. automatically copied, to
all of the other computers on which you have an account
with a cloud storage service such as Dropbox or Google
Drive, etc.

Although there are other cloud storage systems, such as
iCloud and Microsoft OneDrive, I’ve found Dropbox and
Google Drive perform well for the transfer of Python .py
files created on different types of computer.

Installing Cloud Storage from the App Store

To share files in the clouds, all computers, including iPads
and iPhones, need to have an app such as Dropbox or
Google Drive installed, together with a user account.
Dropbox and Google Drive are free, although business
users can pay more for extra storage space. You can install
a copy of Dropbox or Google Drive on an iPad or iPhone
from the App Store, as shown below. The icons for
Dropbox and Google Drive, shown below in the App Store,
are also copied to the Apps screen during the installation.

Google Drive -

Dropbox *
Dropbox OPEN free online stora... [0
L L]

EhhE (1S Googe, tnc.
oo {155)

e

d
—
= =

Working With .py Files Across Platforms 10

Installing Cloud Storage from the Web

If you have other computers such as a laptop or a desktop
PC you can download Dropbox or Google Drive after
opening the websites at:

www.dropbox.com or google.co.uk/drive/download

On a Windows PC machine this will place a Dropbox
folder or a Google Drive folder in the left-hand panel of
the Windows Explorer/File Explorer, as shown below.

o« Dropbox

Favourites\

& GoogleDrive +_ Cloud storage
@ iCloud Drive +—" folders on a

F Links Windows PC

D Music

OneDrive”’

As shown above, this particular Windows PC also had the
iCloud Drive and OneDrive cloud storage systems
installed, in addition to Dropbox and Google Drive.
However, for simplicity, the very popular and well-
established Dropbox will be used in the rest of this chapter.

As discussed shortly, you can export your scripts to
Dropbox or Google Drive from the Pythonista Editor. Then
they can be copied to the Python Editor on a PC or
Android device, perhaps so that you can continue working
in a different situation. Or a you could send a copy of a
script to a friend via a link to your Dropbox folder.

]

10

Working With .py Files Across Platforms

N
(0]

Copying .py Files to Dropbox

This section shows how you can copy or upload .py files
from an iPad or iPhone to Dropbox in the clouds. Then you
can copy the files to the Python 2.7 Editor in a PC or the
QPython Editor in an Android tablet or smartphone. As
discussed earlier, any PC or Android device must have
Dropbox installed and a valid Dropbox account.

Open the Pythonista Editor on your iPad or iPhone and
enter or open the .py script you wish to copy to Dropbox,
as shown below. As an example, the small random number
program, dice.py, discussed on page 101, will be used.

iPad - 11:54 ¢ 88% W)

= Q # dice v ® &
import
throws =0

while throws<20:
number=random.randint(1,6)
print number,” "
throws=throws+1

!

Saving to Dropbox

Tap the small spanner icon shown on the right and
in the top right-hand corner of the Pythonista Editor é’
above. From the Actions menu which appears, tap
Export... as shown below.

Actions Edit

=

Copy Text

Convert Indentation...

g

Export...

Working With .pv Files Across Platforms 10

The Export window then opens, as shown on the left

below, from which you tap Open in....
displays some destinations in the clouds to which
you can upload the file, as shown on the right
below. Tap Save to Dropbox as shown on the

right and on the right below.

(Actions Export

Script - dice.py v

Folder - fjim

| B4 Sernd Email....

[T] Open in...

You may be asked to Sign in to
Dropbox with your Email
address and Password as shown
on the right. Or you may need to
tap Create Account to sign up
for a new Dropbox account.
Finally tap Save, as shown on
the right, to copy the file, in this
example dice.py, to the main
Dropbox folder. To save the file
in a personal folder you’ve
created in Dropbox (see page
111), tap Choose a Different
Folder.... Then tap Save after
selecting your own folder.

This
3

Sava to Dropbox

@ AlsDrop. Share with pafinie nearby If you dont ses them
AirDrop m Finder on, .

Email \

Password |

Create Account ‘

Cance! Save to Dropbox Save
FILE
dice.py
SAVE LOCATION
<3 Dropbox v

Choose a Different Folder...

10

Working With .py Files Across Platforms

Dropbox on Different Platforms

Once the dice.py file has been saved, the file name can be
displayed in Dropbox in your Python folder on different
types of computer, as shown below.

iPad =

(Jims Python files |'T_'| coo

dice.py
107 B, modified 1 hour ago

The file dice.py in Dropbox on an iPad or iPhone

<= Jims Python files
Home Share View
€ T » Jim Gatenby > Dropbox > Jims Python files
 Jims Python files ~ Name
« Lollipop Bucice

The file dice.py in Dropbox on a Windows PC

Jims Python files

Up to Dropbox

dice.py
107 Bytes, modified 1 hour ago

The file dice.py in Dropbox on an Android device

For Python .py files to be compatible across the three
platforms shown above, these must all be running the
same version of Python. Pythonista and QPython are
both based on Python 2.7, also used in PC computers.

Working With .pv Files Across Platforms 10

To summarise the previous example:

e A file, dice.py, was created in Pythonista on an
iPad tablet.

o The file was then uploaded to Dropbox and saved in
a folder, Jims Python files, which I had created.

e As shown on the previous page, any file you save in
Dropbox on one computer is automatically copied
or synced to your other computers. You must be
signed in to Dropbox to view the files and folders.

Creating a Dropbox Folder on an iPad

You can manage your files (including .py files) in
Dropbox on an iPad or iPhone, after tapping the
icon shown on the right and at the top right of the
previous page.

000

iPad &

< Jims Python files ﬂ] 299

(4 Create New File
D Upload File
3 Create Folder

M Select

Z| Sort by Date

Use Create Folder above to make a folder in which to save
all of your Pythonista .py files, as discussed earlier. A new
folder you create on any of your machines is automatically
synced across to all of the other computers on which you
have access to Dropbox.

10

Working With .py Files Across Platforms

Setting Up a PC to Use Python .py Files
This section assumes you’ve created a .py file using
Pythonista on an iPad or iPhone and copied it to the
clouds, using Dropbox, for example. To use a
Pythonista .py file on a PC, the PC must be set up with the
Python 2.7 interpreter, as discussed below.

Python 2.7 was chosen for the work in this book because
Python 3 is relatively new and some modules and functions
are still under development. All of the programs in this
book have been successfully tested using Python 2.7 with
the computer operating systems shown on page 110.

Installing Python 2.7 on a Windows PC

You can install the Python 2.7 app on the PC, after visiting
the Web site at:

www.python.org/downloads/.

After tapping the Download Python 2.7.10 button shown
above, select Run and follow the instructions on the screen.
You can either accept the recommended folder
C:\Python27\ for the Python files or select a new folder.

| Select Destination Directory

Piease select 3 drectory for the Python 2.7.10 files.

rY | Python27 v Up HNew
DLs

_)Doc

Lnclude _ | %

Working With .py Files Across Platforms

10

Running an iPad/iPhone Script on a PC

Icons for the two main Python modes of operation are
placed on the All apps menu in Windows 10, on the All
Apps screen in Windows 8/8.1 and on the Start/All
Programs menu in Windows 7.

Python (command line) IDLE (Python GUI}

Browsing in Dropbox Using Windows File Explorer
Click the icon shown above right to open the IDLE window
then select File as shown on the next page followed by
Open from the drop-down menu. Then from the Open
window shown below, browse to find Dropbox and select
the required file, in this case dice.py, shown below.

L& Open
Look m: | £2 Dropbox = o :| & & c% Fov
* Name Date modified Type
| Guokaccess @ Jims Python files 23/08/2015 1H32 Fite fel
o bank 1170672015 1&:55 Pythor
- & dice 23/08/2015 10:47 Pythor
Desitop & diceshare 22/087201512:16 Pythor
& il /04201520602 Pythor
L & Meadow 23/64/201517:16 Pythor
Libranes
This PC
v
< >
File name: [; - S | Open]
Files of type: {Python fles {"oy.” pyw) g vl Cancel

This opens the file dice.py, in the IDLE Python 2.7 Editor
on the PC, as shown at the top of the next page. From here
it can be saved in a folder of your choice on the PC using
File and Save As.... The Windows File Explorer/Manager
greatly simplifies the copying of .py files from Dropbox.

10 Working With .py Files Across Platforms

The iPad/iPhone Code Listed in the Editor on a PC

After selecting Open, as shown on the previous page, the
code created in Pythonista on an iPad or iPhone is listed as
shown below in the Windows IDLE Editor on a PC.

File Edit Format Run Options Windows Help
| impoxrt random

throws=1

while throwa<=20:
number=random.randint {1, 6)
print number,
throws=throwa+l

The Windows Python IDLE Editor

Running the Program in the Python Shell

To run this small program in the PC Shell as shown below,
select Run shown above and then Run Module.

File Edit Shell Debug Options Windows Help
Python 2.7.8 (default, Jun 30 2014, 16:08:48) [MSC
32

@ Type "copyright”, “credits” or "license()" for mor
>>> RESTART

. >>>

54622643135241554615

The Windows Python Shell

As shown above, the program has generated 20 random
numbers between 1 and 6, as discussed on page 101 and
102.

—
—

Working With .py Files Across Platforms 10

Copying a .py File to an Android Device

Install a Cloud Storage System

This section assumes you have copied the
required .py file from an iPad or iPhone to z:
Dropbox or a similar cloud storage system. The @
Android device may need to have Dropbox or

Google Drive, etc., installed from the Play | ooreox
Store and be signed into an account.

Install QPython

You also need to install the QPython app from

the Play Store. For compatibility with '
Pythonista, you need to use QPython rather
than QPython3. Both QPython and Pythonista | aeyhen-
are based on the Python 2.7 interpreter. i

Method 1:Connect the Android to a PC

Use the battery charger cable to connect the Android to a
USB port on a PC. The PC detects the Android like a
removable drive and displays the Android Python folder
com.hipipal.qpyplus in the File Explorer, as shown below.

T <& » ThisPC » XT1068 > Internal storage >

- Quick access Android device

- Android com.hipipal.qpyplus
Desktop

‘ Downloads d :
- Drophor4— Dropbox folder on PC .. Android QPython folder i

The file dice.py, created on the iPad/iPhone, can now be
copied from Dropbox, shown above, to the QPython folder
on the Android (com.hipipal.qpyplus shown above) using
drag and drop or Copy and Paste.

—_
N
(6]

10 Working With .py Files Across Platforms

Method 2: Using an Android File Manager

This example again uses the file dice.py, created on an
iPad and uploaded to Dropbox. We need to copy it from
Dropbox to the QPython folder, com.hipipal.qpyplus, on the
Internal Storage of the Android.

This can be done after installing the ES File "=
Explorer app from the Play Store. Then, with
the file displayed in Dropbox as discussed

earlier, tap the small, very faint arrow in a circle, | tyoere
to the right of the file name, as illustrated (much ‘
darker) on the right.

dice.py
107 Bytes, modified 2 days ago

This opens the menu bar shown in
part on the right, from which you
select Export. From the next menu
which appears, select ES Save to... R Drive
shown on the right. Then select the
QPython folder com.hipipal.qpyplus
shown on the left below. If you
wish, select a sub-folder, such as
projects, shown on the right below.

"‘ ES Save to...

Tap Select to save the file in the required folder.

Choose path
i Android
/storage/emulated/G/com.hipipal.qpyplus
g | backups = T— - B
[projects
ﬁ beam “I—“‘ projects3
[. com.hipipal.qpyplus J scripts

JEN
=%
(o]

Working With .py Files Across Platforms 10

Running the iPad Script on an Android
Open QPython by tapping the icon shown ﬁ

on the right (QPython not QPython3), then
swipe left and tap the Editor icon to open
the QEdit screen shown below. Then tap
the Open icon shown on the right and browse for |
the required file, in this example dice.py. Tap
the file name to open it on the QEdit screen
shown below.

QPython QPython3

& QEdit - dice.py

random

throws=0

throws<20:
number=random. randint(1,6)
t number,
throws=throws+1

— ——c e

<> -5 b Q= =
e ——
Finally tap the Run icon shown on the right and ’

above. The output produced by running this
program on a Motorola Android smartphone is
shown below.

é No. 2 SPECIAL KEYS

ge/emulated/0/com. hipipal.gpyplus/.last_tmp.py && exit
P

G025 8 55 G 4 6 3 4 4 5

6 4

P[QPython] Press enter to exit

If you run a program on an Android device and there is

no output on the screen and no error message, enter the

following as the first line of all your programs.
#qpy:console

10 Working With .py Files Across Platforms

Copying .py Files to an iPad or iPhone

The strong security on the iPad and iPhone make it difficult
to import .py files from other types of computer. However,
the following method works well and is easy to use.

Open the .py script from Dropbox into the Python 2.7
Editor on a PC as discussed on page 113. (An
Android script can be copied to Dropbox using Share
and Add to Dropbox). For more information on
Androids please see the note at the foot of this page.

Select the script on the PC or laptop using the mouse
and click Copy, as shown below.

B fie Edn Format Run Options Windows Hep
: rumbexr=)

H counter=0

l while nurber <= B4:

- if number & 7 == 0%

counter = counter + 1

print Cut F;ms 7 =, number ," \n
| ‘
“T’ — Paste

Paste the script into an e-mail and send it to yourself
(or perhaps to a friend).

Open the e-mail message on an iPad or iPhone.

Tap and hold over the e-mail page and tap Select All
followed by Copy.

Open the Pythonista Editor on the iPad or iPhone and
tap and hold then Paste the script onto the page.

The script can now be checked, then Saved as a .py
file and Run on the iPad or iPhone.

You may also be interested in “A Beginner’s Guide to
Coding on Android Tablets and Smartphones” ISBN 978
0 85934 755 6 from Bernard Babani (publishing) Ltd.

118

X

N

" BP 756

A Babani Computer Guidebook S_L!it_a}ble for All Ages ,

\\ A Beginner's Guide to Coding on iPads and iPhones

Coding or writing your own computer programs is considered a huge help in
understanding computers and is now a compulsory part of the National Curriculum in
English schools. It can also be a path to a rewarding career or a stimulating hobby
which helps te develop thinking, ptanning and problem solving skills. Tablet
computers and smartphones allow you to easily practise your programming skills
anywhere.

This book is aimed at complete beginners of any age from children to grandparents! It
is written in plain English and avaids technical jargan wherever possible. It will
quickly and easily introduce you to coding and is specifically written for use with
iPads and iPhanes.

Among the many topics covered are:

e The functions of the main components of a computer such as memary, storage and
the processor.

o The need for a high level language. such as Python, to write instructions which can
be interpreted and executed by the computer.

 Programs as sets of instructions, collectively known as software.

e Installing the free and widely used Pythonista app and starting to write short
instructions or code in interactive mode.

¢ Understanding the various types of data such as numbers and strings of keyboard
characters.

e Using the Pythonista Editor to write, save and execute programs.

o Writing longer code or scripts involving major program features such as
decisions, branching and repefition.

e |mporting into your programs ready-made blocks of code known as modules and

1 functions and writing your own functions.

e Transferring your Pythan programs between work. school, college or home so you
can carry on coding wherever you are and also easily share your ideas.

There is also a companion book available:
A Beginner’s Guide to Coding on Android Tablets and Smartphanes

AT ‘ ” 00799
£799 R
\ 5 7808591347563 I
N FULLm

