16. JAHRGANG MÄRZ 1943

FUNKSCHAU

HEFT 3

Frequenzschallplatten und ihre Anwendung

Die Schallplattenindustrie stellt eine Reihe von Schallträgern mit bestimmten technischen Frequenzen her, die für viele Meß- und Prüfzwecke hervorragend geeignet sind. Frequenzplatten werden unter Verwendung meßtechnisch hochwertiger Tongeneratoren aufgenommen, und der heutige Stand der Schallplattenaufnahme bietet die Gewähr, daß mit diesen Platten eine für Messungen ausreichende sinusförmige, in Frequenz und Amplitude gleichmäßige Tonfrequenz erzeugt werden kann. Die Meßschallplatten wurden größtenteils in Zusammenarbeit mit dem Reichspostzentralamt und dem Institut für Schwingungsforschung herausgebracht. Sie werden überall dort mit besonderem Vorteil eingesetzt, wo die Beschaffung eines Meßgenerators zu kostspielig wäre und die geplanten Prüfungen nur selten vorkommen.

Die verschiedenen Arten von Frequenzschallplatten

Für die verschiedenen Anwendungsgebiete sind mehrere Ausführungen von Frequenzschallplatten') vorgesehen, deren wichtigste Merkmale die Bilder 1 bis 4 an dem Inhalt und dessen Verteilung auf eine Schallplattenlaufzeit zeigen sollen. Bild 1 stellt die Frequenzverteilung von vier konstanten Tönen von 400, 200, 100 und 50 Hz dar, von denen jede Frequenz ¼ des Schallträgers einnimmt. Die Rückseite enthält eine andere Stufung. Diese Art Frequenzplatten eignet sich zur Untersuchung von Verstärkern, an denen in gewissen Abständen die Übertragung

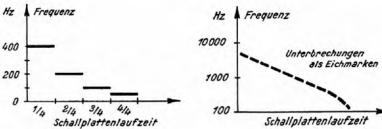


Bild 1. Schallplatte mit mehreren konstanten Tönen.

Bild 2. Schallplatte mit gleitender Frequenz.

einer Frequenz gemessen werden soll. Die zur Verfügung stehende Zeit reicht selbst für den Vergleich während der Messung unternommener Versuche aus. Meist sind die Rillen der Frequenzbänder äußerlich so aufgeteilt, daß man den Tonabnehmer stets auf das gewünschte Band aufgetzen kann

bänder äußerlich so aufgeteilt, daß man den Tonabnehmer stets auf das gewünschte Band aufsetzen kann. Mehr für die Eichung einfacher Tongeneratoren und zur Prüfung eines Verstärkers auf seine Frequenzkurve sind Platten mit einem Inhalt nach Bild 2 geeignet. Hierin gleitet eine Frequenz allmählich von oben nach unten oder umgekehrt, wobei kurzzeitige Unterbrechungen Eichmarken für bestimmte, auf der Platte angegebene Frequenzen bilden. Andere Schallträger, die keine Eichmarken enthalten, sind mit einer Kurve versehen, aus der in Abhängigkeit von der Entfernung von der Anfangsrille aus gerechnet bzw. nach der Zahl der Umdrehungen die Frequenz abgelesen werden kann.

für akustische Messungen sind Schallplatten mit einer Heulfrequenz üblich. Nach Bild 3 besitzt eine solche Platte eine oder mehrere feste Tonfrequenzen, die sich während einer Sekunde etwa zehnmal um den Betrag von 50 Hz nach oben und unten verändern. Hierdurch erreicht man eine Verschiebung der Luftschwinzung der L

gungen im Raum, die bei ungünstigen Räumlichkeiten leicht stehende Wellen verursachen könnten. Eine Messung von Schallwellen, z. B. durch ein Kondensatormikrophon, würde bei stehenden Wellen an verschiedenen Punkten dadurch verfälscht werden, daß einmal im Schwingungsbauch, ein anderes Mal im Schwingungsknoten eine den tatsächlichen Verhältnissen gar nicht entsprechende Spannung ermittelt wird. Durch einen Heulton bleibt das System der Schwingungsknoten und Schwingungsbäuche ständig im Wandern. Ganz ähnlich liegen die Verhältnisse bei der in Bild 4 dargestellten Heulfrequenzplatte, die jedoch über einen

absteigenden, gleitenden Heulton verfügt, wie er ebenfalls für akustische Messungen benötigt wird.

Die verschiedenen Arten von Frequenzschallplatten sollen weiter nicht erörtert werden. Eine Auswahl mit den wichtigsten Eigenschaften der Platten ist in einer Tabelle gegeben. Bei der Anwendung der Platten ist zu beachten, daß einige von der genormten Drehzahl von 78 Umdrehungen je Minute abweichen. Die Platten des Reichspostzentralamtes und Institutes für Schwingungsforschung besitzen 80 Umdrehungen; zur Wiedergabe der vorschriftsmäßigen Frequenz ist auf die richtige Einregelung dieser Drehzahl zu achten. Zweckmäßig dient hierzu eine Glimmlampe in Verbindung mit der auf den Schallplatten aufgeklebten stroboskopischen Scheibe, die bei richtiger Drehzahl zum scheinbaren Stillstand kommt. Das Laufwerk muß sich daher in gewissen Grenzen regeln lassen; ein Synchronmotor ist nur für die Platten mit 78 Umdrehungen geeignet.

Die Abtastung der Frequenzschallplatten

Bevor einige Anwendungsgebiete der Frequenzschallplatten behandelt werden, noch ein Wort zum Tonabnehmer. Der aus einer Frequenzschallplatte gebildete Tongenerator umfaßt natürlich den Tonabnehmer, einen Regler für die gelieferte Tonfrequenzspannung und gegebenenfalls einen anschließenden Verstärker Von allen ist nach Möglichkeit zu fordern daß sie die

Töne weder durch lineare noch durch nichtlineare Verzerrungen beeinträchtigen. Während man beim Verstärker lineare Verzerrungen im Bereich einer Frequenzschallplatte kaum zu befürchten hat und nichtlineare Verzerrungen durch eine frequenzunabhängige Gegenkopplung beheben kann, besteht die größte Gefahr in der technischen Unzulänglichkeit des Tonabnehmers. Am zweckmäßigsten ist ein guter Kristalltonabnehmer, der ein breites Frequenzband mit geringen Verzerrungen zu übertragen imstande ist. Der Regler soll dabei möglichst nicht kleiner als 100 kΩ sein und eine Massewiderstandsbahn enthalten.

Die Anwendung der Frequenzschallplatten

Zum Vergleich eines einfachen Tongenerators mit festen oder durch Unterbrechungen gekennzeichnete Frequenzen eines gleitenden Tones eignet sich Schaltung Bild 5. Ein Hörer mit zwei getrennten Hörmuscheln wird einerseits an den Tonabnehmer, andererseits an den zu eichenden Tongenerator gelegt Natürlich müssen die Lautstärken einigermaßen aufeinander abgeglichen werden. Annähernde Übereinstimmung beider Frequenzen besteht, wenn man den Eindruck ein er sehr langsam verlaufenden Schwebung zwischen den Hörmuscheln wahrnimmt, bis schließlich bei voller Übereinstimmung ein Schwebungsnull erreicht ist. Ein genaueres Verfahren für den Vergleich bietet der Kathodenstrahloszillograph, wobei einem Plattenpaar über den Oszillographenverstärker die unbekannte Frequenz, dem zweiten Plattenpaar nach Abschaltung des Kippgerätes die Schallplattenfrequenz über den später noch zu beschreibenden Verstärker bzw. den Niederfrequenzteil eines Rundfunkempfangers zugeführt wird Verfügt der zu vergleichende Tongenerator über größere Verstärkung, so kann der Tonabnehmer unmittelbar an den Oszillographenverstärker und der Tongenerator an die Platten für horizontale Ablenkung gehen. Die

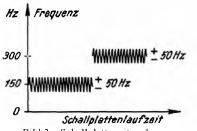


Bild 3. Schallplatte mit mehreren festen Heulfrequenzen.

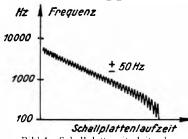


Bild 4. Schallplatte mit gleitender Heulfrequenz.

¹⁾ Hersteller: C. Lindström A.G., Berlin SO 36.

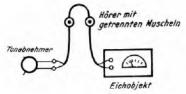


Bild 5. Einfache Eichschaltung für Bestimmung der Frequenz icher Tongeneratoren unter Verwendung von Frequenzplatten.

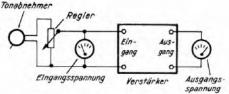


Bild 6. Bestimmung der Verstärkung aus dem Verhältnis der Ausgangsspannung Eingangsspannung mit zwei geeichten Tonfrequenzspannungsmessern

Regler (Widerstand oder Verhältnis 🙎 geeicht) Tonabnehmer Tonfrequenzanzeigen (ungeeicht)

Rechts: Bild 7. Bestimmung der Verstärkung aus dem Verhältnis der Spannungsteilung $\frac{R}{R_1}$ bei Übereinstimmung der Tonfrequenzspannung während der Umschaltung von Tonabnehmer auf Verstärkerausgang

Übereinstimmung beider Frequenzen zeigt eine schrägliegende Gerade bzw. eine Ellipse oder ein Kreis auf dem Bildschirm an. Bild 6 zeigt als ein weiteres Anwendungsbeispiel von Frequenz-schallplatten die Bestimmung des Verstärkungsfaktors. Mit einem Tonfrequenzspannungsmesser, d. h. einem Drehspulinstrument mit Trockengleichrichtern oder einem Thermokreuz, wird die Eingangsspannung hinter dem Lautstärkeregler des Tonabnehmers bestimmt, die dem Verstärker als Eingangsspannung zugeführt wird. Ein zweiter Tonfrequenzspannungsmesser im Ausgang²) zeigt die verstärkte Tonfrequenzspannung an Das Verhältnis Ausgangsspannung/Eingangsspannung enterricht dem Verhältnis Ausgangsspannung/Eingangsspannung entspricht dem Verstärkungsfaktor. Liegt z.B. am Eingang eine Spannung von 0.2 Volt, am Ausgang eine verstärkte Spannung von 30 Volt, dann findet $\frac{30}{0.2} = 150 \text{fache Verstärkung statt. Da die Frequenz-$

kurve des Tonabnehmers nicht geradlinig verläuft, muß bei der Aufnahme einer Frequenzkurve des Verstärkers jedesmal die Eingangsspannung und Ausgangsspannung zu der betreffenden Frequenz notiert werden. Man kann auch so vorgehen, die Eingangspannung mit dem Bescher auf einem kanntachten West gangsspannung mit dem Regler auf einem konstanten Wert zu halten; dann ist selbstverständlich nur eine Bezeichnung der einzelnen Frequenzen mit den entsprechenden Ausgangsspannungen nötig. Zweckmäßig bildet man durch Division der verschiedenen Ausgangsspannungen durch die Eingangsspannung den Verstärkungsfaktor und stellt die Werte in Abhängigkeit von der Frequenz zu einer Kurve zusammen. Man gewinnt auf diese Weise einen guten Einblick in die Wirksamkeit von Tonblenden, Gegenkopplungen und sonstigen Maßnahmen zur willkürlichen Beeinflussung des Frequenzbandes von Verstärkern.

²) Beide Spannungsmesser, hauptsächlich aber der Ausgangsspannungsmesser, sollen einen so hohen Innenwiderstand besitzen, daß die Anpassung hierdurch nicht verändert wird

DIE GEDÄCHTNISSTÜTZE

6. Phasenverschiebung zwischen Strom und Spannung im Wechselstromkreis durch Induktivität oder Kapazität

Schaltet man in einen Wechselstromkreis eine Induktivität (Selbstinduktion; Spule), so eilt — Verlus freiheit angenommen — die Spannung bekanntlich dem Strom um 90° voraus; liegt dagegen eine Kapazität (Kondensator) im Wechselstromkreis, so eilt — Verlus freiheit angenommen — die Spannung dem Strom um 90° nach. Viele bleiben nun immer unsicher, in welchem Falle die Spannung vorbzw. nacheilt. Man kann sich dies jedoch eindeutig merken, wenn man folgendes überlegt:

Der elektrische Strom ist ein Mengenbegruf, er wird meist mit der in einem Röhrensystem fließenden Wassermenge verglichen. Span-nung (Spannungsunterschiea) ist dagegen etwas Gewichts- und Körnung (spannungsanterschied) ist dagegen etwas Gewichts- und Kor-perloses, sie wird oft begriflich durch den in einem Röhrensystem herrschenden Druck bzw. durch den Höhenunterschied veran-schaulicht, der zwischen Arfang und Ende eines geneigten, mit Wasser gefüllten Rohres besteht. Wissen wir also, daß Strom einem Mengenbegrif gleichkommt, Spannung dagegen gewichts- und körperlos ist, so prägt sich folgende Überlegung dem Gedächtnis unverwischbar ein:

1. Induktivität im Wechselstromkreis:

Eine Induktivität (oder Selbstinduktion) ist im allgemeinen eine Spule. Eine Spule hat cft viele Windungen dünnen Drahtes. Stellen wir uns den Draht als Rohr vor, durch das sich der Strom zwängen muβ, so ist leicht einzusehen, daß die gewichts- und körperlose Spannung (der Druck) dem Strom stets vor auseilen muß.

2. Kapazität im Wechselstromkreis.

Einen Kondensator (Kapazitäi) kann man sich dagegen als Faß oder Flasche (denken wir dabei an die Leydener Flasche, die ja auch nur ein Kondensator isi) vorstellen. Liegt er in einem Stromkreis, dann stürzt sich der Strom (die Wassermenge) zunächst in dieses Faβ, die Spannung steigt dagegen in dem Maße an, wie sich der Kondensator (das Faβ) mit Strom (Wasser) füllt. Man kann die Spannung hier gut mit dem steigenden Wasserspiegel eines Fasses vergleichen, in das durch ein Rohr Wasser zuläuft. Der Strom muß hier also der Spannung vor eilen.

Eine andere Schaltung zur Bestimmung des Verstärkungsfaktors geht aus Bild 7 hervor. Ihr Vorteil besteht darin, daß nur ein Tonfrequenzanzeiger erforderlich ist, der noch dazu ungeeicht sein kann. Mit Hilfe des Umschalters wird einmal die Spannung am Tonabnehmer, das andere Mal die Spannung am Ausgang des am Tonabnehmer, das andere Mal die Spannung am Ausgang des Verstärkers bestimmt. Am Regler wird daraufhin das Widerstandsverhältnis ermittelt zwischen dem Gesamtwiderstand R und dem am Eingang des Verstärkers liegenden Teilwiderstand R₁ bei dem trotz Umschaltung der Tonfrequenzanzeiger übereinstimmenden Ausschlag besitzt. In diesem Fall ist die Spannung am Tonabnehmer gleich der Ausgangsspannung des Verstärkers; um dieses Gleichgewicht herzustellen, mußte am Regler ein Bruchteil der Tonabnehmerspannung dem Eingang des Verstärkers zugeführt werden. Dieser Bruchteil entspricht dem Verstärkungsfaktor der geprüften Einrichtung. Der Regler wird zweckmäßig in Verstärkungsfaktor der geprüften Einrichtung. Der Regler wird zweckmäßig in Verhältnissen von R zu R₁ geeicht. Besitzt z. B. R 20 k Ω , und der Schleifer greift einen Widerstand R₁ von 0,2 k Ω ab, dann ergibt sich $\frac{20}{0.2}$ = 100fache Verstärkung. — Solange der Eingang des Verstärkers einen hehen Ohrwest besitzt, wird der Spannungs

Verstärkers einen hohen Ohmwert besitzt, wird der Spannungsteiler nicht nennenswert belastet. Bei niederohmigem Eingang ist Schaltung Bild 6 genauer. Für beide Schaltungen gilt, daß die

Schaltung Bild 6 genauer. Für beide Schaltungen gilt, daß die Eingangsspannung nur so hoch bemessen werden darf, daß keine Übersteuerung des Verstärkers stattfindet.
Die oszillographische Untersuchung von Verzerrungen ist ein besonders dankbares Gebiet und mit Frequenzschallplatten auf einfachstem Wege durchführbar. In Bild 8 ist eine solche Prüfschaltung aufgezeichnet, in der ein Kathodenstrahl-Oszillograph mit Verstärker und Kippgerät vorausgesetzt wird. Zweckmäßig stellt man vor dem Anschluß des zu untersuchenden Objektes (Verstärker, Tonfrequenzübertrager u. ä.) eine Prüfung der hinter dem Regler vom Tonabnehmer gelieferten Frequenz an, um sich von der guten Sinusform der Spannungsquelle zu überzeugen. Am Kippgerät wird eine Frequenz eingestellt, die den Verlauf von zwei bis drei Schwingungen auf dem Schirm des Oszillographen abbildet. Je nach der Größe des zu untersuchenden Verstärkers richtet sich die Abschwächung der vom Tonden Verstärkers richtet sich die Abschwächung der vom Ton-abnehmer gelieferten Spannung am Regler, denn unter allen Umabnehmer gelieferten Spannung am Regler, denn unter allen Umständen muß jede Übersteuerung vermieden werden. Reicht die Spannung hinter dem Verstärker zur direkten Ablenkung der Kathodenstrahlröhre aus, so empfiehlt sich die Abschaltung des Oszillographenverstärkers. Mit einer Platte gleitender Frequenz lassen sich auch frequenzabhängige Verzerrungen auf dem gesamten Tonfrequenzbereich des Verstärkers untersuchen. Nicht für alle Zwecke ist die Frequenzplatte in Verbindung mit einem Tonabnehmer allein ausreichend; werden größere Spannungen benötigt, dann ist ein Verstärker notwendig. Die von diesem Verstärker geforderten Bedingungen sind gleichmäßige diesem Verstärker geforderten Bedingungen sind gleichmäßige Übertragung eines Frequenzbandes von etwa 30 bis 10 000 Hz und geringe nichtlineare Verzerrungen. Im allgemeinen erfüllt schon der Niederfrequenzteil jedes neueren Rundfunkempfängers diese Forderungen. In Bild 9 ist ein geeigneter Verstärker für Wechselstrombetrieb gezeichnet, der mit verhältnismäßig großen Koppelund Ableitkondensatoren bis zu tiefen Frequenzen herab arbeitet und dessen größte Parallelkapazität von 1000 pF im Ausgang noch keine merkliche Beschneidung der hohen Tonfrequenz darstellt Die Gegenkopplung findet frequenzunabhängig über einen zwischen den beiden Verstärkerstufen befindlichen Widerstand von 3 M Ω statt. Die Ausgangsspannung kann einmal niederohmig bis zu 6 Ω herab, ein anderes Mal hochohmig bis zu 7 k Ω herab an zwei verschiedenen Anschlüssen entnommen werden Mehrere Spannungen, die gleichzeitig zur Messung benutzt werden (Oszillo-

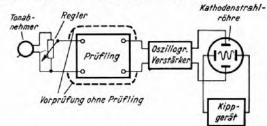


Bild 8. Oszillographische Untersuchung der Übertragungsgüte von Verstärkern.

Bild 9. Verstärker für Frequenzplatten.

graph), sind stets dem gleichen Anschluß zu entnehmen, um gegenseitige Phasenunterschiede zu verhindern.

gegenseitige Phasenunterschiede zu vermituern. Hierfür sei in Bild 10 ein Anwendungsbeispiel gebracht, das noch besser als das Verfahren nach Bild 8 zur Untersuchung von Verstärkern geeignet ist. Hinter dem Schallplattenverstärker wird eine Tonfrequenzspannung parallel zu den Ausgangsklemmen von 7 k Ω einem Kathodenstrahl-Oszillographen zur horizontalen Ablenkung zugeführt und an einem 10-kΩ-Masseregler die Eingangsspannung für einen Verstärker abgegriffen. Der Ausgang des Verstärkers lenkt, sofern die Spannung ausreicht, direkt, anderenfalls über den eingebauten Oszillographenverstärker den Elektronenstrahl über das vertikale Plattenpaar ab. Bei entsprechender Bemessung der Eingangsspannung erscheint auf dem Bildschirm eine schrägliegende Gerade bzw. eine mehr oder weniger flache Ellipse (Kennzeichnung der Phasenverschiebung des Verstärkers), deren geometrisch gleichmäßige Form einen Maßstab für die Übertragungsgüte bildet. Zeigt die Gerade oder die Ellipse inchesondere an den Enden einen mehr oder weniger Ellipse insbesondere an den Enden einen mehr oder weniger ausgeprägten Knick, so sind Verzerrungen bzw. Übersteuerungen vorhanden.

Für akustische Messungen an Lautsprechern eignet sich eine Schaltung nach Bild 11. Der Lautsprecher wird über den in Bild 9 gezeigten Verstärker von einer Heulfrequenzschallplatte in Bild 9 gezeigten Verstarker von einer Heulfrequenzschallplatte erregt; in einem Abstand von etwa 1 m werden die Schallwellen mit einem Kondensatormikrophon³) aufgefangen, verstärkt und mit einem Tonfrequenzspannungsmesser die Spannung ermittelt. Dabei läßt sich der Frequenzgang des Lautsprechers mit einer Platte gleitender Heulfrequenz bestimmen und nach der vom Kondensatormikrophon gelieferten Spannung zu einer Kurve zusammenstellen. Schließlich kann man die Messungen bei verschiedenen Lautstärken und verschiedenen Abständen zwischen Lautstärken und verschiedenen Lautstärken und verschiedenen Abständen zwischen Lautstärken und verschiedenen Lautstärken und verschiedenen Abständen zwischen Lautständen zwischen Lauts denen Lautstärken und verschiedenen Abständen zwischen Lautsprecher und Mikrophon vornehmen. In der gleichen Weise werden Messungen in Räumen z. B. zur Feststellung der Schallisolation vorgenommen

Schließlich eignen sich Platten mit einer gewöhnlichen gleitenden Tonfrequenz zur rein subjektiven Untersuchung von Laufsprechern (Fachausdruck "Durchheulen"), vor allem, um Resonanzlagen oder Klirren bei bestimmten Frequenzen zu ermitteln.

Die Übersicht über die zahlreichen Anwendungsgebiete der Frequenzschallplatten zeigt, welche Bedeutung ihr auch in der Funk-werkstatt zukommt. Allerdings bleibt die Schallplatte immer ein kurzzeitiges Prüfmittel, denn im allgemeinen soll ihre Abspieldauer 20 Wechsel je Seite nicht übersteigen. Bei längerer Anwendung werden zuerst die hohen Töne benachteiligt, dann erscheinen die tiefen Frequenzen mit Nebengeräuschen. Rudolf Schadow.

³) Zur genauen Messung des Schalldruckes ist ein besonders geeichtes Mikrophon notwendig.

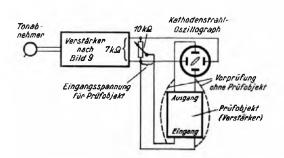


Bild 10. Schaltung zur Prüfung der Übertragungsgüte von Verstärkern unter gleichzeitiger Darstellung des Phasenmaßes

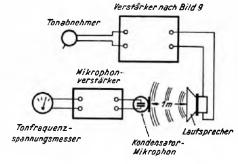


Bild 11. Akustische Prüfung von Lautsprechern mit Heulfrequenzplatten

Frequenzschallplatten

FabrNr.	Tonart	Frequenzen	Dreh. zahl
09797	Reiner Ton	256/128/64/32/4096/2048 1024/512 Hz	80
09798	Reiner Ton	6400/3200/1600/800/400 200/100/50 Hz	80
09799	Reiner Ton	4000/3000/2000/1000 Hz	80
04790	Normalton A Rückseite:	435 Hz konstante Lautstärke	78
	Normalton A	435 Hz Lautstärke in Stufen von ca. 1,5 Phon; je 1 Min. an- und abschwellend, da- zwischen 20 Sek. konstant	1
04791	Gleitender Ton Rückseite: Gleitender Ton	507000 Hz Tonunterbrechung 100/200/300/400/600/1000/ 2000/3000/4000/5000/6000 Hz 700050 Hz Tonunterbrechung 6000/5000/4000/3000/2000/ 1000/600/400/300/200/100 Hz	78
04792	Gleitender Ton	508000 Hz Tonunterbrechung 300/1000/5000 Hz	78
09794	Gleitender Ton Rückseite: Gleitender Heulton	6000 100 Hz 6000 150±50 Hz	80
09795	Heulton Rückseite: Heulton	150 ±50 Hz u. 300 ±50 Hz 600±50 Hz und 1200 ±50 Hz	80
09796	Heulton Rückseite: Heulton	4800±50Hz und 2400±50 Hz 950 ± 650 Hz und 1800±1600 Hz	80

CHER, die wir empfehlen

Funktechnisches Ringbuch. Ein Sammelwerk der Funktechnik, herausgegeben von Rudolf S c h a d o w Erscheint in Lieferungen Leinenmappe mit Sammel-Mechanik. Reher-Verlag, Berlin.

von Rudolf S c h a d o w Erscheint in Lieferungen Leinenmappe mit Sammel-Mechanik. Reher-Verlag, Berlin.

Auf dem Funkgebiet vollzieht sich die technische Weiterentwicklung in besonders schnellem Tempo Gerade hier sind es deshalb in erster Linie die Zeitschriften-Veröffentlichungen, die zur Unterrichtung und fachlichen Fortbildung dienen, die eigentlichen Lehrbücher treten demgegenüber in den Hintergrund Da die Zeitschrift aber nicht in der Lage ist, die Unterlagen systematisch darzubieten, sondern sich stets, auch wenn sie in Rubriken aufgeteilt ist, durch eine bunte Aufsatzfolge auszeichnet, entstand frühzeitig das Bedürfnis, funktechnische Sammelwerke in Kartei-bzw. Ringbuchform herauszugeben. Ein Beispiel für ein Sammelwerk dieser Art ist die unseren Lesern bekannte "Kartei für Funktechnik" des FUNKSCHAU-Verlages, ein weiteres funktechnisches Sammelwerk liegt nunmehr in dem Schadowschen "Funktechnischen Ringbuch" vor. Obgleich es sich in beiden Fallen um funktechnische Veröffentlichungen handelt, die laufend in Form von Erganzungslieferungen erscheinen, die somit in ihrer Vollstandigkeit wachsen und außerdem jeweils an die Jüngsten Fortschritte der Technik angepaßt werden können, unterscheiden sie sich dorch im wesentlichen Punkten: bei der KFI steht die straffe, bis in die kleinste Themen-Einheit fortgeführte Gliederung im Vordergrund, verbunden mit einer knappen, prägnanten Fassung des Textes, Herausschalung des Wesentlichen, vielfach Beschrankung auf die erwünschten Zahlen-, Daten- und Kurvenzusammenstellungen; das Ringbuch dagegen zeichnet sich durch größeren Umfang der den einzelnen Themen gewidmeten Veröffentlichungen (bis zu 22 Druckseiten), infolgedessen eine weniger straffe Gliederung, und eine breitere Art der Darstellung aus, es stellt gewissermaßen ein Mittelding zwischen KFT und Zeitschrift dar Im Vergleich zur KFT mit ihren 17 Abteilungen gewissermaßen ein Mittelding geglie-

gewissermaßen ein Mittelding zwischen KFI und Zeitschrift dar Im Vergleich zur KFT mit ihren 17 Abteilungen ist das FR in 8 Abteilungen gegliedert, die mit lateinischen Zahlen gekennzeichnet sind, innerhalb jeder dieser acht Abteilungen gibt es dann eine Reihe von mit fortlaufenden arabischen Zahlen bezeichneten Themenfolgen, wahrend innerhalb einer jeden Themenfolge die Beitrage mit Seitenzahlen durchnumeriert sind. Die Bearbeitung des FR ist ohne Tadel, der Verfasser kennt genau die praktischen Bedürfnisse der Bezieher, er versucht, den Technikern und Werkstätten oft gebrauchte Unterlagen zu übermitteln und er versteht es vor allem, aus den in den Fachzeitschriften behandelten Themen diejenigen für sein FR auszuwählen, die von größerem Interesse und bleibendem Wert sind.

Die absoluten Maßsysteme der Elektrotechnik

Messen und Rechnen sind die Grundlagen jeder funktechnischen Arbeit. Beides hat die genaue Kenntnis des gebräuchlichen elektrischen Maßsystems zur Voraussetzung. Da nun in der elektrotechnischen und funktechnischen Literatur keineswegs nur ein einziges Maßsystem benutzt wird, sondern man nebeneinander Angaben findet, die sich auf verschiedene Maßsysteme stützen, und da sich aus dieser Übung schließlich Widersprüche ergeben, die sich vom Leser nicht immer klären lassen, bringen wir nachstehend eine größere Arbeit über die absoluten Maßsysteme der Elektrotechnik, in die auch eine entsprechende Vergleichstabelle eingeschaltet ist. Wir hoffen, unseren auch an theoretischen Abhandlungen interessierten Lesern hierdurch eine wesentliche Stütze für ihre Arbeiten zu bieten.

Jedem Leser ist das "technische" oder "praktische" Maßsystem bekannt, dessen Einheiten gesetzlich festgelegt wurden, und zwar für das Deutsche Reich erstmalig durch das "Gesetz, betr. die elektrischen Maßeinheiten" vom 1. Juni 1898 sowie durch die nicht ganz drei Jahre später herausgegebenen "Bestimmungen zur Ausführung" obigen Gesetzes. Auch die Namen für die Einheiten, wenn auch nicht für alle wurden darin festgelegt.

Ausführung" obigen Gesetzes. Auch die Namen für die Einheiten, wenn auch nicht für alle, wurden darin festgelegt.

Allgemein bekannt ist z.B. das Coulomb als Einheit der Elektrizitätsmenge. Sie ist gegeben, wenn der Strom beim Durchgang durch eine wässerige Silbernitratlösung 0,001118 g Silber niederschlägt. Die Einheit der Stromstärke, das Ampere, ergibt sich, wenn diese Silbermenge in einer Sekunde abgeschieden wird. Das obige "internationale Coulomb" ist seit dem 1. Januar 1940 ersetzt durch das "absolute Coulomb", welches gleich dem 3·10° fachen der absoluten (cgs)-Einheit für die Elektrizitätsmenge im Maxwellschen elektrostatischen Maßsystem ist. Die Einheit der Elektrizitätsmenge im elektrostatischen Maßsystem besitzt jede von zwei Elektrizitätsmengen, die sich im Vakuum im Abstande von 1 cm mit der Kraft 1 Dyn abstoßen. Diese Einheit ist sehr klein. Durch kurzes Reiben einer Hartgummistange kann man leicht Hunderte von Einheiten erzeugen. Das Coulomb ist 3 Milliarden mal so groß und stellt also bereits eine beachtliche Elektrizitätsmenge dar. Zur Veranschaulichung sei gesagt, daß 1 Coulomb negativer Elektrizität etwa 6,37·10¹8 (6,37 Trillionen) Elektronen enthält. Ein noch überraschenderes Ergebnis gibt die Berechnung der abstoßenden bzw. anziehenden Kräfte zwischen zwei Ladungen von je 1 Coulomb in einem Kilometer Entfernung. Diese Kraft beträgt nach dem Coulombschen Gesetz

$$P = \frac{3 \cdot 10^9 \cdot 3 \cdot 10^9}{10^5 \cdot 10^5} = 9 \cdot 10^8 \,\text{Dyn},$$

das sind rund 900 kg, also fast eine Tonne!

Das Volt des praktischen Maßsystems war vorgegeben durch die Klemmenspannung des sog. "Westonschen Normalelements" bei 20° C, die 1,0183 internationale Volt beträgt. Auch dieses "internationale Volt" ist seit dem 1.1.1940 ersetzt durch das "absolute Volt" (V_{abs}), eine praktische Maßeinheit, die mit der Spannungseinheit des absoluten elektrostatischen Maßsystems in Beziehung steht".

$$1V_{(abs)} = \frac{1}{300}$$
 elektrostatische Einheiten.

Das $V_{(abs)}$ steht mit dem "internationalen Volt" in Beziehung: 1 $V_{(int)} = 1,00047 \ V_{(abs)}$

Nach der Definition soll nämlich das Produkt von 1 C_(abs) und

$$1V_{(abs)}$$
 gleich 10^7 Erg ($3 \cdot 10^9 \cdot \frac{1}{300}$ Erg) = 1 Joule sein. (1 Erg

ist die absolute Einheit der Arbeit. Sie wird geleistet, wenn die, Krafteinheit 1 Dyn ihr Angriffsobjekt um die Längeneinheit 1 cm verschiebt. Die dazu nötige Zeit spielt keine Rolle.) Es hat sich jedoch ergeben, daß das $V_{(int)}$ etwas zu groß ist, da das Produkt der internationalen Einheiten gleich $1,0004 \cdot 10^7$ Erg ist. Daher hat man seit dem 1. Januar 1940 das erwähnte "absolute Volt" eingeführt. Im allgemeinen wird ja das "praktische" oder "technische" Maßsystem den Lesern genügend bekannt sein, so daß sich ein weiteres Eingehen darauf erübrigt. Erwähnt sei noch, daß in manchen Tabellen nicht die speziellen Namen der Einheiten, z.B. "Ohm, Oersted, Maxwell", sondern nur die internationalen Grundeinheiten Zentimeter, g-Masse, Sekunde, Volt und Ampere benützt werden. Die Tabelle 1 gibt einen Überblick über das praktische Maßsystem und enthält zum Vergleich sowohl die Namen (soweit vorhanden) der wichtigsten elektrischen und magnetischen Größen, als auch die Bezeichnungen durch die internationalen Grundeinheiten.

Die Tatsache, daß neben den elektrischen Einheiten Volt und Ampere noch mechanische Größen in den Maßeinheiten vorkommen, ist nicht weiter verwunderlich, wenn man sich überlegt, daß bei den elektrischen Vorgängen, die durch die betreffende Einheit erfaßt werden, doch auch mechanische Vorgänge eine Rolle spielen. Wenn z. B. eine Ladung eine Bewegung ausführt, sprechen wir vom elektrischen Strom. Eine Bewegung ist aber doch nur durch ein mechanisches Maß ausdrückbar.

Hin und wieder findet man jedoch in Tabellen oder besonders in Physikbüchern und Abhandlungen rein theoretischen Inhaltes elektrische Größen, wie z. B. die Elektrizitätsmenge, die Feldstärke oder die Stromstärke lediglich in den Dimensionen Länge (Zentimeter), Masse (Gramm) und Zeit (Sekunde) ausgedrückt,

die meist gemeinsam und in irgendeiner merkwürdigen Potenz vorkommen. Man findet da zum Beispiel für den elektrischen

Strom den Ausdruck cm³g ¹g - Wenn man in einer anderen Abhandlung nachliest, so findet man unter Umständen für dieselbe Größe einen ganz anderen Zahlenwert und eventuell sogar eine ganz andere Dimension. Man wird daraus schließen, daß es verschiedene "absolute" Maßsysteme gibt. Zunächst scheint das etwas verwirrend und unsinnig, doch werden wir einsehen lernen, daß die Frage, welche sich leicht aus obigem scheinbaren Widerspruch ergibt, nämlich wie nun wohl die "wirkliche" Dimension der betreffenden Größe lautet, nicht mehr Sinn hat als die Frage nach dem "wirklichen" Namen eines Gegenstandes.

Zunächst sei etwas rein Mathematisches vorausgeschickt für die hierin weniger geübten Leser. Es bedeuten:

$$a^{-1} = \frac{1}{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$\frac{1}{a^2} = \sqrt{a}$$

$$\frac{1}{a^n} = \sqrt[n]{a}$$

$$\frac{1}{a^n} = \sqrt[n]{a^m}$$

Wem die Potenzschreibweise also unanschaulich ist, kann sich die Sache umrechnen. Wegen des Wegfallens der Bruchstriche und der Wurzelzeichen ist die Potenzschreibweise jedoch die bequemste, und ein wird deshelb hier benutzt

und sie wird deshalb hier benutzt.

Manchem Leser wird es merkwürdig erscheinen, daß man überhaupt elektrische Größen mit Metermaß, Waage und Stoppuhr ausmessen kann. Aber dennoch ist dies im Anfange der Forschung auf dem Gebiete der Elektrizität und des Magnetismus die einzige Möglichkeit gewesen infolge des Fehlens konstanter elektrischer Vergleichsgrößen. Wir können doch das Vorhandensein von Elektrizität und Magnetismus nicht unmittelbar nachweisen, sondern lediglich durch mittelbare Wirkungen, die z.B. in dem Freiwerden von mechanischen Kräften (Anziehung, Abstoßung, Drehung) sich äußern. Die Größen der mechanischen Kräfte können dann ohne weiteres als Maßstab für die sie hervorrufenden elektrischen Größen dienen, wenn man die gesetzmäßigen Beziehungen zwischen den ursächlichen Elektrizitätsmengen und den mechanischen Wirkungen kennt.

Die Aufdeckung dieser Gesetzmäßigkeiten verdanken wir dem aus Südfrankreich stammenden Naturwissenschaftler Charles Augustin Coulomb (1736—1806), der in den beiden Coulombschen Gesetzen den Grundstein legte für die quantitative Beherrschung aller elektrischen und magnetischen Größen, die in der Errichtung der hier zu besprechenden absoluten Maßsysteme ihren Ausdruck findet. Die zweifelsfreie Erkennung der an sich einfachen und inhaltlich nicht neuen Gesetze ist damals ein Meisterstück der Experimentierkunst gewesen. Inhaltlich waren die Gesetze deshalb nicht neu, weil sie weitgehend mit den schon hundert Jahre früher durch Newton erkannten Gravitationsgesetzen übereinstimmen. Zur Messung der auftretenden kleinen Kräfte mußte Coulomb erst das besondere Verfahren der Drehwaage ausarbeiten, wozu erst die Gesetze der Drillkraft von Fäden und Drähten abgeleitet werden mußten.

Fäden und Drähten abgeleitet werden mußten. Den ersten Schritt zur Begründung des Systems der absoluten Einheiten, das nachher auch für alle magnetischen und elektrischen Größen durchgeführt wurde, tat der in Braunschweig geborene Mathematiker und Naturforscher Karl Friedrich Gauß (1777—1855) mit seinen Untersuchungen über die "Intensität der erdmagnetischen Kraft auf absolutes Maß zurückgeführt" (1832). Gauß beschränkte sich auf die Grundlegung von Seite des Magnetismus her, wobei er sich auf Coulombs Gesetz stützte, nachdem eine Nachprüfung desselben bestätigend ausgefällen war. Bei den experimentellen Arbeiten war Wilhelm Weber (1804—1890) beteiligt, dessen Hauptlebenswerk der Ausbau des Systems für die elektrischen Größen mit sämtlichen noch zu leistenden Vorarbeiten wurde. Er machte dabei die Entdeckung, daß, indem er die beiden Coulombschen Gesetze für elektrische und magnetische Kräfte miteinander in Verbindung brachte, in dieser Verbindung eine Geschwindigkeit eine Rolle spielt, deren Größe er experi-

mentell ermittelte und gleich der Lichtgeschwindigkeit fand Weber legte die Stromeinheit im absoluten Maßsystem fest. Und um sie leicht reproduzierbar zu haben, wandte er unter Benützung des ersten Faradayschen Gesetzes der Elektrolyse das Voltameter an. Diese Festhaltungsweise ist in von Friedrich Kohl-rausch (1840—1910) verfeinerter Durchführung (Silberelektro-lyse) noch heute gültig. Auch die absolute Einheit der elektrischen Spannung wurde von Weber mittels Faradays Induktionsgesetz abgeleitet.

Ein noch zu Webers Lebzeiten (1881) in Paris zusammengetretener Kongreß befaßte sich mit der internationalen Einführung der neuen Einheiten sowie mit der Namengebung und der Einführung der für den praktischen Gebrauch nötigen Vervielfältigungszahlen. Leider wurden damals bei der Benennung der praktischen Einheiten die Namen der Urheber des ganzen Einheitssystems, Gauß und Weber, gänzlich unberücksichtigt, obwohl vorher in England die heute unter dem Namen "Ampere" bekannte Stromeinheit schon unter dem Namen "Weber" in Gebrauch genommen

Das System der absoluten Einheiten hat seinen Ursprung bei den drei willkürlich angenommenen Grundeinheiten: Der Längeneinheit (cm), der Masseneinheit (g) und der Zeiteinheit (sec); alle anderen Größen der Physik hat man ausschließlich mittels Naturgesetzen, also ohne andere Willkür, als sie etwa in der Auswahl dieser Gesetze liegt, von diesen drei Grundeinheiten hergeleitet. Die Beziehung einer beliebigen Größe zu den drei Grundeinheiten der Grundeinheiten der Grundeiner beliebigen Größe zu den drei Grundeinheiten der Grundeinheiten der Grundeinheiten der Grundeinheiten der Gründeinheiten de einheiten nennt man ihre Dimension. Die Dimension einer Größe sowie die Gleichungen zur Berechnung von Dimensionen sollen im folgenden in eckige Klammern gesetzt werden, zum Zeichen, daß es sich nicht um quantitative, sondern nur um qualitative Gleichungen handelt. Reine Zahlen (z. B. π) spielen bei der Ermittlung der Dimension einer Größe keine Rolle und können

Die Dimension mechanischer Größen im absoluten Maßsystem wird den Lesern wohl im allgemeinen bekannt sein. Hier soll daher nur auf die Ableitung einiger für das Folgende wichtiger Größen aus der Mechanik eingegangen werden, um den Gang einer solchen Ableitung zu zeigen.

Die Längeneinheit ist das Zentimeter, der 100ste Teil eines in Sèvres bei Paris aufbewahrten, aus Platin gefertigten Maßstabes (mètre des archives), dessen Länge mit dem 40009100sten Teil des über die Pole gemessenen Erdumfanges übereinstimmt. Die Masseneinheit ist das Gramm, der 1000ste Teil des Platinstückes (kilogramme des archives), das ebenfalls an dem oben erwähnten Ort aufbewahrt wird und nahezu gleich der Masse von 1 Liter Wasser bei 4° C unter dem Druck von 760 mm Hg ist. Die Zeiteinheit ist die Sekunde, der 86164ste Teil des Sterntages. Als technische Einheiten werden häufig Vielfache dieser physikalischen Einheiten benutzt, wie das m, km, kg, die Tonnen, Minute, Stunde und davon abgeleitete Maßgrößen. Stunde und davon abgeleitete Maßgrößen.

Die Fläche geht aus der Länge durch Quadrieren hervor, der Raum durch nochmaliges Multiplizieren der Fläche mit der Länge. Nach diesem Gesetz bauen sich auch die Dimensionen von Raum und Fläche aus der Längendimension auf.

[Fläche = cm²] (Name der Einheit: Quadratzentimeter) [Raum = cm³] (Name der Einheit: Kubikzentimeter)

Wenn ein Körper sich gleichförmig bewegt, so ist der in der Zeiteinheit zurückgelegte Weg die Geschwindigkeit des Körpers.

[Geschwindigkeit =
$$\frac{\text{cm}}{\text{sec}}$$
 = cm·sec⁻¹]

(Name: Zentimeter je Sekunde)

Die gewöhnliche Einheit der Kraft, das Gramm-Gewicht, ist im absoluten Maßsystem vermieden, da sie nur für eine bestimmte geographische Breite und Meereshöhe eine bestimmte Größe hat, außerhalb der Erde sogar jede beliebige Größe annähme. Sie wird daher mittels Newtons 2. Bewegungsgesetz aus der Massen- und Beschleunigungseinheit (letztere folgt aus der Längen- und Zeiteinheit zu cm · sec⁻²) hergeleitet. Die mechanische Kraft ist gleich dem Produkt aus der Masse des von der Kraft angegriffenen Körpers und der ihm hiervon erteilten Beschleunigung.

[Kraft = cm sec⁻² · g = cm g sec⁻²]
(Name: Dyn; technische Einheit: Joule/cm =
$$10^7$$
 Dyn)

Die Arbeit (Energie) einer mechanischen Kraft ist gleich dem Produkt aus ihr und dem Weg, über den sie einen Körper in ihrer Richtung bewegt hat. Die dazu nötige Zeit ist dabei ohne Bedeutung.

[Arbeit = cm g sec⁻² · cm = cm²g sec⁻²]
(Name: Erg; technische Einheit: Joule =
$$10^7$$
 Erg)

Die Arbeit, die je Zeiteinheit verrichtet wird, heißt die Leistung oder die sekundliche Arbeit oder der Effekt.

[Leistung =
$$\frac{\text{cm}^2 \text{g sec}^{-2}}{\text{sec}}$$
 = $\text{cm}^2 \text{g sec}^{-3}$]

(Name: Erg je Sekunde; technische Einheit: Watt = 10^7 Erg/sec)

Nachdem wir nun einen kurzen Einblick in die Rolle des absoluten Maßsystems in der Mechanik getan haben, können wir mit dem Versuch beginnen, es auch bei den elektrischen und magnetischen Größen in Anwendung zu bringen.

Das Coulombsche Gesetz schafft uns eine Handhabe, die "Elektrizitätsmenge" und die "Magnetismusmenge" mit unseren Hilfsmitteln der Mechanik (andere standen ja im Anfange der Erforschung der Elektrizität nicht zur Verfügung) zu messen. Coulomb fand durch sorgfältige Versuche, daß zwei mit der Elektrizitätsmenge e₁ bzw. e₂ aufgeladene Körper, die man im Abstand a voneinander aufstellt, sich mit einer Kraft abstoßen, die sich nach der Formel

$$P_e = k_e \frac{e_1 \cdot e_2}{a^2}$$

berechnen läßt. In dieser Formel bedeutet ke einen Faktor, dessen Bedeutung wir noch kennenlernen werden. Dessen Größe hängt von dem Medium ab, in welchem der Vorgang sich abspielt. Übrigens gilt die Formel nur dann, wenn die Körper sehr klein sind, oder vielmehr, wenn ihre Ausdehnung im Verhältnis zu ihrem Abstand a sehr klein ist. Ein ähnliches Gesetz fand Coulomb für die magnetischen Kraftwirkungen zwischen zwei mit den Magnetismusmengen m₁ und m₂ behafteten Körpern. Es war hier

$$P_{\rm m} = k_{\rm m} \frac{m_1 \cdot m_2}{a^2}$$

wobei k_m hier auch ein Faktor analog dem Faktor k_e ist. Auch dessen Zahlenwert ist vom Medium abhängig. Eine Vereinfachung ergibt sich, wenn wir die Größen e_1 und e_2 bzw. m_1 und m_2 als gleich groß annehmen, was ja für die Dimensionsbetrachtung keine Rolle spielt. Wir erhalten dann die Formeln für die Kräfte:

$$P_e = k_e \frac{e^2}{a^2}$$
 und $P_m = k_m \frac{m^2}{a^2}$

Nun könnten wir einen weiteren Schritt zur Vereinfachung tun und einmal die Konstanten k_e und k_m als dimensionslos betrachten. Diese willkürliche Festsetzung führt uns dann zu den Dimensionen des "Gaußschen absoluten Maßsystems". Wir werden zuerst die wichtigsten Größen in diesem Maßsystem ableiten, da es infolge der einfachen Festsetzung von ke und km besonders übersichtlich ist. Auch eine dritte, noch zu besprechende Konstante hat im Gaußsystem eine anschauliche Dimension. Nunmehr haben sich also unsere Formeln dimensionsmäßig vereinfacht zu

$$\left[P_e = \frac{e^2}{a^2} \text{ und } P_m = \frac{m^2}{a^2}\right]$$

Daraus können wir durch einige Umformung die Dimension der "Elektrizitätsmenge e" und der "Magnetismusmenge m" ermitteln.

$$[e^2 = P_e \cdot a^2]_g$$
, $[e = \sqrt{P_e \cdot a^2}]_g$

Die Dimension von Kraft und Länge kennen wir aus der Mechanik und setzen sie ein:

$$[e = \sqrt{\text{cm g sec}^{-2} \cdot \text{cm}^{2}}]_{g}$$

$$[e = \sqrt{\text{cm}^{3} \text{g sec}^{-2}}]_{g}$$

$$e = \text{cm}^{\frac{3}{2}} \text{g}^{\frac{1}{2}} \text{sec}^{-1}$$

Der Index g soll bedeuten, daß das Gaußsystem gemeint ist. Die Ermittlung der Dimension der Magnetismusmenge geht genau so vor sich. Es ergibt sich auch hier:

$$m = cm^{\frac{3}{2}} g^{\frac{1}{2}} sec^{-1}$$

Befindet sich ein elektrisch geladener Körper im Raume, so sind im ganzen Raume um ihn herum elektrische Wirkungen nachzuweisen. Nach dem Grundsatz der Nahwirkung, welcher im Vordergrunde der Maxwellschen Theorie der Elektrizität steht, sind keine unmittelbaren Wirkungen in die Ferne möglich, sondern jedes örtliche Ereignis pflanzt sich mit endlicher Geschwindigkeit von Punkt zu benachbartem Punkte fort. Diese willkürliche Anvon Punkt zu benachbartem Punkte fort. Diese willkürliche Annahme ermöglicht uns eine einfache und sichere Berechnung aller elektrischen Vorgänge. Dasselbe gilt natürlich für magnetische Vorgänge. Wir nennen den Raum, in dem die Wirkung des elektrischen bzw. magnetischen Körpers nachzuweisen ist, das "elektrische" bzw. "magnetische Feld" des Körpers. Für die in jedem Punkte desselben ausgeübte Kraft hat man ein Maß in der "elektrischen Feldstärke" und der "magnetischen Feldstärke". Die elektrische Feldstärke in jedem Punkte des Feldes ist definiert durch die mechanische Kraft, die auf eine in diesem Punkte befindliche Ladung (Elektrizitätsmenge) ausgeübt wird. Es ist also:

wird. Es ist also:

Feldstärke (**E**) = Kraft (P) pro Ladungseinheit (e).

Genau gilt dies jedoch nur, wenn die Ladung sehr klein ist, und zwar um so genauer, je kleiner die Ladung ist. Mathematisch:

$$\mathfrak{E} = \lim_{e \to 0} \frac{P}{e} \text{ gesprochen: } \mathfrak{E} \text{ ist gleich dem Grenzwert von } \frac{P}{e} \text{ ,}$$
 wenn e immer kleiner wird (nach Null strebt).

Tabelle 1 Namen und Dimensionen der elektrischen und magnetischen Größen im praktischen Maßsystem

Physikalische Größe oder Eigenschaft	Abkürzung	Name oder Bezeichnung	Bezeichnung bei Be- nutzung der interna- tionalen Grund- einheiten cm, g, sec, Volt, Ampere	Beziehungs- Gleichung	Physikalische Größe oder Eigenschaft	Abkürzung	Name oder Bezeichnung	Bezeichnung bei Be- nutzung der interna- tionalen Grund- einheiten cm, g, sec, Volt, Ampere	Beziehungs- Gleichung
Elektrizitätsmenge (Ladung)	Q	Coulomb	Amperesekunden	Q=I·t			Watt, Joule		
Elektrische Feldstärke	Œ	Volt	Volt	$\mathfrak{E} = \frac{\mathbf{u}}{1}$	Elektrische Leistung	N	Valtcoulomb	Voltampere	N = E·]
Dielektrizitätskonstante	ε	Farad	Amperesekunden Voltzentimeter	$\epsilon = \frac{D}{\mathscr{E}}$	Kapazität	С	sec Farad	Amperesekunden Volt	$C = \frac{Q}{F}$
Elektrische Stromstärke	1	Ampere	Ampere	$I = \frac{E}{R}$	Dielektr. Verschiebung	D	Coulomb cm²	Amperesekunden Quadratzentimeter	D = ε ⑤
Elektrische Spannung Elektromot, Kraft	E	Volt	Volt	$E, U = I \cdot R$ $U = V_1 - V_2$	Elektr. Verschiebungsfluß	Фе	Volt cm	Voltzentimeter	Фе = (5 · F
Potential	\ \		Volt		Elektrisches Moment	-	Amp. sec · cm	Amperesekunden · cm	Q·I
Widersland	R	Ohm		$R = \frac{E}{I} = \varrho \frac{1}{q}$	Induktivität	L	Henry Ohmsekunden	Voltsekunden Ampere	$L = \frac{\Phi m}{I}$
Leitwert	G	Siemens	Ampere Volt	$G = \frac{1}{R}$	Magnetische Feldstärke	ũ	Oersted	Ampere (Windungen) Zentimeter	$\mathfrak{H} = \frac{\mathfrak{B}}{\mathfrak{A}}$
Spezifischer Widerstand	5	Ohm · cm	Volt Zentimeter Ampere	$\varrho = \mathbf{R} \cdot \frac{\mathbf{q}}{1}$	Kraftflußdichte, magnet.	29	Gauß	Voltsekunde Quadratzentimeter	$\mathfrak{B} = \mu \cdot \mathfrak{H}$
Spezifische Leitfähigkeit	×	Siemens cm	Ampere Volt Zentimeter	$x = G \cdot \frac{1}{q}$	Magnet. Kraftfluß (Induk- tionsfluß, Polstärke,	фт	Weber	Voltsekunde	
Elektrische Stromdichte	i	Ampere	Ampere Quadratzentimeter	$\frac{1}{a} = i$	Magnetismusmenge)	Фи	(Maxwell)		
Durchflutung	H	Ampere	Ampere (-Windung)	H = w·I	Magnet. Moment	-	-	Voltsekundenzentim.	-
	_	Joule oder	Voltamperesekunden		Magnet. Durchlässigkeit (Permeabilität)	ĺπ	Henry	Voltsekunde Amperezentimeter	$\mu = \frac{28}{5}$
Elektrische Kraft	P	Wattsekunden	Zentimeter	-	Magnetische Spannung	Vm	(Ampere) Gilbert	Ampere (Windungen)	$Vm = 1 \cdot \mathfrak{H}$ $= 4 \pi \mathbf{w} \cdot \mathbf{I}$
		Joule			Magnetischer Leitwert	Λ	Henry	Voltsekunden Ampere	$\gamma = \frac{1}{\pi \cdot d}$
Elektrische Arbeit	A	Wattsekunde Voltcoulomb	Voltamperesekunde	A = Q · E	Magnet. Widerstand	Rm	-	Ampere Voltsekunden	$Rm = \frac{1}{\mu \cdot a}$

L = Länge, q = Querschnitt, F = Fläche, w = Windungszahl, t = Zeit.

Dimensionsmäßig ergibt sich € dann zu:

$$Feldstärke \mathfrak{E} = \frac{Kraft P}{Elektrizitätsmenge e}$$

Wir setzen die Dimensionen ein:

$$\[\mathfrak{C} = \frac{\text{cm g s}^{-2}}{\text{cm}^{\frac{3}{2}} \text{ g}^{\frac{1}{2}} \text{ sec}^{-1} } \]_{\nu}$$

$$\boxed{ \left[\mathfrak{G} \right]_{\varrho} = cm^{-\frac{1}{2}} g^{\frac{1}{2}} sec^{-1} }$$

Genau so ergibt sich die magnetische Feldstärke dimensionsmäßig zu:

$$[\mathfrak{H}]_{g} = \text{cm}^{-\frac{1}{2}} g^{\frac{1}{2}} \text{sec}^{-1}$$

Die ganze Kraft, die in einem Feld, sei es nun ein elektrisches oder ein magnetisches, aufgespeichert ist, nennt man die "Energiedichte" des Feldes. Sie ist proportional dem Quadrat der Feld stärke und einem Faktor ähnlich ke bzw. km. Es gilt, wenn die Energiedichte mit E bezeichnet wird:

$$E_e = \frac{\epsilon}{4\pi \cdot 2} \, \mathfrak{E}^2 \text{ und } E_m = \frac{\mu}{4\pi \cdot 2} \, \mathfrak{H}^2$$

Über den Faktor 4π , der dem Leser sicher schon oft begegnet ist (Berechnung von Induktivitäten), sei gesagt, daß er aus dem Gaußschen Satz stammt, der besagt:

"Der Kraftfluß durch eine geschlossene Oberfläche ist gleich 4π mal der Summe aller eingeschlossenen Elektrizitätsmengen."

 $4~\pi$ ist also der ganze räumliche Winkel. Die beiden Faktoren ϵ und μ sind im Gaußschen Maßsystem dimensionslos, so daß die Dimension der Energiedichte lautet:

$$[E_e = E^2 = (cm^{-\frac{1}{2}}g^{\frac{1}{2}}sec^{-1})^2] = cm^{-1}gsec^{-2}$$

Ebenso ergibt sich die Energiedichte des magnetischen Feldes zu

 $E_m = cm^{-1} \ g \ sec^{-2}$. Die Dimension der Energiedichte ist auch als mechanische Dimension anschaulich, wenn wir uns einmal die Entstehung ins Gedächtnis rufen:

Es war die Dimension von e bzw. m hergeleitet aus rein mechanischen Größen, nämlich aus Kraft und Länge nach dem Coulomb-

$$m = e = \sqrt{Kraft \cdot cm^2}$$
.

Die Feldstärke & (5) war gleich Kraft Ladung (Kraft Magn. Menge), also

 $\frac{\kappa_{1}a_{11}}{\sqrt{Kraft \cdot cm^{2}}}$ und die Energiedichte gleich dem Quadrat davon, also

$$\frac{Kraft^2}{Kraft \cdot cm^2} = \frac{Kraft}{cm^2}$$

"Kraft pro Quadratzentimeter" wird wohl jeder als das Maß für den (mechanischen) Druck erkennen.

Man kann elektrische Felder in allen Stoffen (Medien), auch in flüssigen und festen Körpern, erzeugen. Die elektrische Feld-stärke ist bei bestimmter Energiedichte abhängig vom Medium. Dieser Einfluß wird ausgedrückt durch die "Dielektrizitäts-konstante" (ε), die von der Beschaffenheit des Mediums abhängt. Auch die magnetische Feldstärke ist bei gegebener Energiedichte des Feldes abhängig von dem Material, in dem es aufgebaut ist. Die magnetische "Permeabilität" oder "Durchlässigkeit" (μ), eine Materialkonstante ähnlich ϵ , bringt diese Abhängigkeit zum Australik druck

Nun kann man es in einem Raume sowohl mit elektrischen als auch mit magnetischen Wirkungen zu tun haben. Wenn dieses der Fall ist, sprechen wir von einem "elektromagnetischen Feld" Betrachten wir ein Stück eines solchen elektromagnetischen Feldes: es kann eine Änderung der Energiedichte nur dann auftreten, wenn entweder eine bestimmte Energiemenge von außen treten, wenn entweder eine bestimmte Energiemenge von außen hineingelangt, oder aber Energie nach außen abgegeben wird. Denn auch in der Elektrizitätslehre gilt natürlich der Satz von der Erhaltung der Energie. Nach dem Nahwirkungsprinzip kann ein solcher Energieaustausch jedoch nur in Form einer stetigen Energieströmung durch die Oberflächen des betreffenden Feldstückes hindurch vor sich gehen. Diese elektromagnetische Energieströmung ist nur abhängig von der Feldstärke Ebzw. San den betreffenden Stellen. Die gesetzmäßige Abhängigkeit der Energieströmung von den Feldstärken Eund Sanußte aus der Erfahrung gefunden werden und ergab sich im "Poyntingschen Gesetz" zu Gesetz" zu

$$\mathfrak{S} = \frac{c}{4\pi} \{ \mathfrak{H}, \mathfrak{E} \}$$

{\$\delta_{\circ}\$}\$ bedeutet das Vektorprodukt aus elektrischer und magnetischer Feldstärke. ("Vektor" heißt "gerichtete Größe". Das Rechnen mit solchen Größen geschieht nach besonderen Regeln. Man kann sie z. B. nicht wie gewöhnliche Größen addieren oder multi-plizieren. Wir brauchen hier nicht näher darauf einzugehen.)

c ist eine Verhältniszahl, die konstant ist. Das Poyntingsche Gesetz hat zwar keinen anschaulichen Inhalt, jedoch lassen sich damit ohne Einführung irgendwelcher weiterer Erfahrungen für sämt-liche elektrischen und magnetischen Vorgänge Gesetzmäßigkeiten ableiten.

Tabelle 2
Dimensionen einiger elektrischer und magnetischer Größen in den drei absoluten Maßsystemen

Physikalische Größe	G	außsyst Dg	em		mensia lektrost Systen Ds	at.	Di El	mension ektromo Systen Dm	agn.	Dimensions- verhältnis Dm Ds =	Gaußsystems ist gleich:	1 Cgs-Einheit des Elektrostatischen Systems	Elektromagnet. Systems
a) Elektrische Größen	cm	g	sec	cm	g	sec	cm	9	sec				
Feldstärke	$-\frac{1}{2}$	1 2	-1	$-\frac{1}{2}$	1 2	-1	1 2	1 2	-2	cm sec—1 = v	-	-	_
Dielektrizitätskonstante	0	0	0	-2	0	2	-2	_	2	cm ⁻² sec ² = $\frac{1}{v^2}$	_	-	-
Elektrizitätsmenge	3 2	1 2	-1	$\frac{3}{2}$	1 2	-1	$\frac{1}{2}$	1 2	0	$cm^{-1}sec = \frac{1}{v}$	1/3 · 10 - Coulomb	$\frac{1}{3} \cdot 10^{-4}$ Coul.	10 Coulomb
Flächenladungsdichte	$-\frac{1}{2}$	$\frac{1}{2}$	-1	$-\frac{1}{2}$	1 2	-1	$-\frac{3}{2}$	1 2	0	$cm^{-1}sec = \frac{1}{v}$	1/3 · 10 - • Coul./cm 2	1 · 10 - • Coul./cm *	10 Coul./cm²
Räuml. Ladungsdichte	$-\frac{3}{2}$	1 2	-1	$-\frac{3}{2}$	$\frac{1}{2}$	-1	$-\frac{5}{2}$	1 2	0	$cm^{-1}sec = \frac{1}{v}$	$\left[\frac{1}{3}\cdot 10^{-9}\text{Coul./cm}^3\right]$	$\frac{1}{3} \cdot 10^{-9}$ Coul./cm ⁹	10 Coul./cm³
Kapazität	1	0	0	1	0	0	-1	0	2	$cm^{-2}sec^2 = \frac{1}{v^2}$	1 - 10 11 Farad	1 · 10 — 11 Farad	10° Farad
Dielektr. Verschiebung	$-\frac{1}{2}$	1 2	-1	$-\frac{1}{2}$	1 2	-1	$-\frac{3}{2}$	$\frac{1}{2}$	0	$cm^{-1} sec = \frac{1}{v}$	-	- 1	_
Potential, Spannung, EMK.	$\frac{1}{2}$	1 2	-1	$\frac{1}{2}$	1 2	-1	3 2	$\frac{1}{2}$	-2	cm sec=1 = v	300 Volt	300 Volt	10-8 Volt
Verschiebungsfluß	3 2	1 2	-1	3 2	1 2	-1	$\frac{5}{2}$	$\frac{1}{2}$	-2	cm sec — 1 = v	-	-	-
Stromstärke	3 2	1 2	-2	$\frac{3}{2}$	1 2	-2	1 2	1/2	-1	$cm^{-1}sec = \frac{1}{v}$	$\frac{1}{3} \cdot 10^{-9}$ Ampere	1 · 10 - • Amp	10 Ampere
Stromdichte	$-\frac{1}{2}$	1 2	-2	$-\frac{1}{2}$	1 2	-2	$-\frac{3}{2}$	1 2	-1	$cm^{-1}sec = \frac{1}{v}$	-	_ 1	_
Durchflutung	$\frac{3}{2}$	1 2	-2	$\frac{3}{2}$	1 2	-2	1 2	$\frac{1}{2}$	-1	$cm^{-1}sec = \frac{1}{v}$	-	-	-
Elektrische Arbeit	2	1	-2	2	1	-2	2	1	- 2	1	10 ' Joule	10= , Joule	10 Joule
Elektrische Leistung	2	1	-3	2	1	-3	2	1	-3	1	10 , Walt	10-7 Watt	10 - 7 Watt
Elektrisches Moment	5 2	1 2	-1	5 2	$\frac{1}{2}$	-1	3 2	1 2	0	$cm^{-1}sec = \frac{1}{v}$	_	_	_
Widerstand	— 1	0	1	-1	0	1	1	0	-1	cm² sec - 2 = v2	9 · 10 n g	9 - 10 11 Ω	10•Ω
Leitwert	1	0	-1	1	0	-1	-1	0	1	$cm^{-1}sec^2 = \frac{1}{v^2}$	_	_	_
Spezifischer Widerstand	0	0	1	0	0	1	2	0	-1	cm² sec - 2 = v2	9·10 ¹¹ Ω·cm	9·10 ¹¹ Ω·cm	10 , Ω · cm
Spezifische Leitfähigkeit	0	0	-1	0	0	-1	-2	0	1	$cm^{-\frac{1}{2}}sec^{2}=\frac{1}{v^{2}}$	_	_	-
	cm	g	sec	cm	g	sec	cm	g	sec				
b) Magnetische GrößenFeldstärke	$-\frac{1}{2}$	1 2	-1	1 2	1 2	-2	$-\frac{1}{2}$	1 2	-1	$cm^{-1}sec = \frac{1}{u}$	1 Oersted	$\frac{1}{3} \cdot 10^{-10}$ Oersted	1 Oersted
Kraftfluß	3 2	$\frac{1}{2}$	-1	1 2	1 2	0	3 2	$\frac{1}{2}$	-1	cm sec — 1 = v	1 Maxwell	3 · 10 ¹⁰ Maxwell	1 Maxwell
(Polstärke, Magn. Menge) Magnetisches Moment	5 2	1 2	-1	$\frac{2}{3}$	1 2	0	5 2	$\frac{1}{2}$	-1	cm sec = 1 = v	(4)	_	_
Permeabilität	0	0	0	-2	0	2	0	0	0	cm² sec-2 = v²	_	_	_
Induktion, Kraftflußdichte	$-\frac{1}{2}$	1 2	-1	$-\frac{3}{2}$	1 2	0	$-\frac{1}{2}$	1 2	-1	cm sec — 1 = v	1 Gauß	3 · 10 ¹⁴ Gauß	1 Gauß
Magnetische Spannung	$\frac{1}{2}$	1 2	-1	$\frac{3}{2}$	1 2	-2	$\frac{1}{2}$	1 2	-1	$cm^{-1}sec = \frac{1}{v}$			_
Magnetischer Leitwert	1	0	0	-1	0	2	1	0	0	cm² sec - 2 = v!	_	_	_
Magnetischer Widerstand	1	0	0	1	0	-2	-1	0	0	$cm^{-2}sec^2 = \frac{1}{v^2}$	_	_	_
Magnetisierung der	$-\frac{1}{2}$	1 2	-1	$-\frac{3}{2}$	1 2	0	$-\frac{1}{2}$	1 2	-1	cm sec 1 = v	_	_	_
Võlumeneinheit Induktivität	1	0	0	-1	0	2	1	0	0	cm² sec - ² = v²	10 , Henry	9 · 10 ¹¹ Henry	10 ⁻⁹ Henry

Bemerkungen zu Tabelle 2: Unter den Bezeichnungen "cm, g, sec" ist der entsprechende Potenzexponent angegeben, "cm" ist bekanntlich gleich 1 und bedeutet, daß diese Dimension nicht vorkommt, v = Lichtgeschwindigkeit = $3 \cdot 10^{10}$ cm sec $^{-1}$.

Die "Energieströmung" hat ebenfalls eine Dimension, die wir uns folgendermaßen deutlich machen können: Eine Energieströmung ist die Arbeit, die pro Zeiteinheit und pro Flächeneinheit durch eine Fläche hindurchströmt, in Formel:

Energieströmung =
$$\frac{\text{Arbeit}}{\text{Fläche} \cdot \text{Zeit}}$$

 $\mathfrak{S} = \frac{\text{cm}^2 \text{ g sec}^{-2}}{\text{cm}^2 \text{ sec}} = \text{g sec}^{-3}$

Nun bleibt in der Poyntingschen Formel noch eine Größe zu untersuchen, und zwar die Verhältniszahl c. Zunächst fragen wir uns, ob wir es hier wieder wie bei ϵ und μ mit einer Größe zu tun haben, deren Zahlenwert vom Medium abhängt, oder ob eine

immer gleich bleibende Größe, eine Konstante, vorliegt. Dazu denken wir uns die Oberflächen zweier verschiedener Medien eng aneinander liegend, und überlegen was geschieht, wenn Energie von einem Medium in das andere hinüberströmt. Die Energieströmung € muß dann doch wohl auf beiden Seiten der Trennungsflächen denselben Wert haben, sonst würde sich ja an der Trennungsfläche entweder Energie anstauen, oder es müßte Energie verlorengehen. Das ergibt sich aus dem Satze von der Erhaltung der Energie. Hat aber die Energieströmung in beiden Medien den gleichen Wert, dann ist auch der Faktor c unabhängig von der Art des Mediums und eine konstante Größe. Die Frage nach einer eventuellen Dimension von c ist berechtigt und kann offenbar dann beantwortet werden, wenn die Dimensionen für ε und μ festgelegt sind, denn die Dimensionen

dieser Faktoren sind von Einfluß auf die Dimensionen von & bzw. 5.

Wir können dann [S] und [\{\dagger}, \mathbb{E}\}] in Beziehung setzen und die Dimension von c daraus errechnen. Das soll später geschehen. Hier zunächst noch eine Betrachtung der Maßgrößen von ϵ und μ . Zum Messen von irgendwelchen Größen sind Vergleichsgrößen nötig, und so müssen wir ein Medium festlegen, für welches wir die Werte von ε und μ als Einheit annehmen. Als Bezugsmedium hat man den absolut materielosen Raum (das Vakuum) gewählt. Nun scheint das eine sehr unglückliche Wahl gewesen zu sein, denn in der Natur gibt es kein Vakuum (selbst der Weltenraum enthält immer Spuren von Materie), und künstlich erzeugen kann man es noch weniger.

noch weniger.

Aber so genau brauchen wir es hier nicht zu nehmen. Man hat nämlich festgestellt, daß sich die elektromagnetischen Eigenschaften eines nach und nach evakuierten Raumes immer mehr einer Grenze nähern, wo die Eigenschaften nicht mehr von der Beschaffenheit und Art der im Räume verbliebenen Materie abhängen, und einen Raum mit solchen Grenzeigenschaften hat man als Bezugsmedium festgelegt.

Wir können nun von den drei Faktoren c, μ und ε dimensionsmäßig zwei beliebig festsetzen und z. B. auch dimensionslas an-

mäßig zwei beliebig festsetzen und z. B. auch dimensionslos annehmen. Damit legen wir dann auch die dritte Größe dimensionsmäßig fest. Je nach der getroffenen Wahl gelangen wir so zu einem der drei grundlegenden Maßsysteme, denn drei Faktoren haben wir zur Auswahl. Ein Maßsystem kennen wir bereits und haben darin schon die Dimension von elektrischer und magnetischer Feldstärke abgeleitet.

1. Das Gaußsche Maßsystem

Es wurde bereits gesagt, daß das Gaußsche Maßsystem besonders einfach und anschaulich ist, weil darin die Dielektrizitäts-konstante ε und die magnetische Permeabilität μ dimensionslos sind. Die Feldstärken ergaben sich darin zu

$$\mathfrak{G} = \mathbf{cm}^{-\frac{1}{2}} \mathbf{g}^{\frac{1}{2}} \mathbf{sec}^{-1}$$
$$\mathfrak{H} = \mathbf{cm}^{-\frac{1}{2}} \mathbf{g}^{\frac{1}{2}} \mathbf{sec}^{-1}$$

und die Energiedichten

$$\mathbf{E}_{\mathrm{e}} = \mathbf{E}_{\mathrm{m}} = \mathbf{cm}^{-1} \,\mathbf{g} \,\mathbf{sec}^{-2}$$

 $\mathbf{E}_e = \mathbf{E}_m = \mathbf{cm}^{-1}\,\mathbf{g}\,\mathbf{sec}^{-2}$ Die Dimension der Energieströmung ist natürlich in jedem Maßsystem g sec 3, da bei der Ableitung weder μ , ϵ noch c vorkamen, sondern rein mechanische Größen vorlagen (Arbeit, Fläche, Zeit). Nun können wir auch für das Gaußsystem die Dimension von c bestimmen. Es war:

von c bestimmen. Es war:

$$[\mathfrak{S}] = [c] \cdot [\mathfrak{H}] \cdot [\mathfrak{S}] \text{ und daher } [c] = \left[\frac{\mathfrak{S}}{\mathfrak{H} \cdot \mathfrak{E}}\right] = \frac{g \cdot \sec^{-3}}{(cm^{-\frac{1}{2}} g^{\frac{1}{2}} s^{-1})^2}$$

$$[c]_{\cdot \cdot \cdot} = cm \ sec^{-1}$$

Diese Dimension "Zentimeter pro Sekunde" ist uns jedenfalls allen in der größeren praktischen Einheit "Kilometer pro Stunde" als Dimension für die Geschwindigkeit bekannt; und so besteht wohl die weiter vorn gemachte Bemerkung, daß im Gaußsystem der Faktor c eine besonders anschauliche Dimension hat, zu Recht. Diese Geschwindigkeit wird auch als "kritische Geschwindigkeit" bezeichnet und hat den Wert von etwa 3 · 10¹⁰ cm sec⁻¹ (300 000 km/sec).

2. Das Maxwellsche elektrostatische Maßsystem

Als zweite Möglichkeit ergibt sich für uns, ε und c dimensionslos zu wählen. Dann muß sich natürlich für µ eine Dimension ergeben und daher bekommen die magnetische Feldstärke sowie alle daraus abgeleiteten Größen andere Dimensionen als im Gaußsystem. Die Dimension der elektrischen Feldstärke bleibt

$$\mathfrak{E} = \text{cm}^{-\frac{1}{2}} \, \text{g}^{\frac{1}{2}} \, \text{sec}^{-1},$$

da ε dimensionslos ist, wie im Gaußsystem. Die Dimension der magnetischen Feldstärke errechnen wir aus der Energieströmung, deren Dimension ja immer gleich cm g⁻³ bleibt. Wir erinnern uns der Formel

[Energieströmung] =
$$\frac{c}{4\pi} [\mathfrak{H} \cdot \mathfrak{E}]$$

und formen um in $\boxed{\mathfrak{H} = \frac{\text{Energieströmung}}{\mathfrak{E}}}$

Wir haben $\frac{c}{4\pi}$ weggelassen, da ja voraussetzungsgemäß c dimensionslos und auch 4π eine reine Zahl ist. Wir setzen ein: $[\mathfrak{H}] = \frac{g \sec^{-3}}{\text{cm}^{-\frac{1}{2}} g^{\frac{1}{2}} \sec^{-1}} = \text{cm}^{\frac{1}{2}} g^{\frac{1}{2}} \sec^{-2}$

$$[\mathfrak{J}] = \frac{g \sec^{-3}}{\text{cm}^{-\frac{1}{2}} g^{\frac{1}{2}} \sec^{-1}} = \text{cm}^{\frac{1}{2}} g^{\frac{1}{2}} \sec^{-2}$$

Die magnetische Feldstärke hat also in diesem Maßsystem die Dimension

$$[\mathfrak{S}]_{s} = \mathbf{cm}^{\frac{1}{2}} \mathbf{g}^{\frac{1}{2}} \mathbf{sec}^{-2},$$

Nun können wir auch die Dimension von µ in diesem Maßsystem mit Hilfe der Formel für die Energiedichte ermitteln. Es war

$$E_m = \frac{\mu}{4\pi \cdot 2} \, \mathfrak{H}^2 \quad \text{and damit } \left[\mu = \frac{E_m}{\mathfrak{H}^2} \right]$$

 $(4\pi \cdot 2 \text{ ist als reine Zahl fortgefallen})$. Für $\mathfrak H$ muß jetzt natürlich die neue Dimension eingesetzt werden, wovon das Quadrat cm g sec⁻⁴ ist.

$$[\textbf{Permeabilität}]_s = \frac{cm^{-1} g sec^{-2}}{cm g sec^{-4}} = cm^{-2} sec^2$$

Die Permeabilität im elektrostatischen Maßsystem hat also die Dimension des Quadrates einer reziproken Geschwindigkeit $\left(\frac{1}{v^2}\right)$.

3. Das Maxwellsche elektromagnetische Maßsystem

Wir nutzen nun die letzte Umstellungsmöglichkeit und nehmen c und μ dimensionslos an, wobei dann die Größe ε eine Dimension erhalten muß, die wir ähnlich wie vorhin diejenige für μ ermitteln. Das magnetische Feld hat hier, wie im Gaußsystem, die Dimension

$$[\mathfrak{S}]_{\mathrm{m}} = \mathbf{cm}^{-\frac{1}{2}} \mathbf{g}^{\frac{1}{2}} \mathbf{sec}^{-1},$$

Aus der Energieströmung ergibt sich die Dimension für das

$$[\mathfrak{E}]_{m} = \left[\frac{\text{Energieströmung}}{\mathfrak{P}}\right] = \frac{g \sec^{-3}}{cm^{-\frac{1}{2}} g^{\frac{1}{2}} \sec^{-1}}$$

Die Dimension des elektrischen Feldes im elektromagnetischen Maßsystem ist also gleich der Dimension der magnetischen Feldstärke im elektrostatischen Maßsystem. Die Dimension von ϵ gibt uns die Formel der Energiedichte des elektrischen Feldes:

$$E_e = \frac{\epsilon}{4\pi \cdot 2} \, \mathfrak{E}^2 \ .$$

Nach Umformung und Beiseitelassen der reinen Zahlen

$$\left[\epsilon\right]_{m} = \frac{\text{Energiedichte}}{(\text{el. Feldstärke})^{2}} = \frac{\text{cm}^{-1} \text{ g sec}^{-2}}{\text{cm} \text{ g sec}^{-4}}, \ \left[\epsilon\right]_{m} = \text{ cm}^{-2} \text{ sec}^{2}.$$

Aus dem elektromagnetischen Maßsystem ist das praktische Maßsystem einfach durch Multiplizieren mit verschiedenen Verhältniszahlen hervorgegangen. Die drei besprochenen Maßsysteme stehen untereinander durch die Konstante c in Beziehung. Man kann z. B. aus der im elektrostatischen Maßsystem gegebenen Dimension für die magnetische Faldstärke die Dimension derselben im elektromagnetischen Maß Feldstärke die Dimension derselben im elektromagnetischen Maß-

system dadurch ermitteln, daß man sie mit der Dimension von $rac{1}{2}$

multipliziert. Zu beachten ist, daß bei der Umrechnung der Dimensionen mit Hilfe von c die Dimension von c immer als Geschwindigkeit (cm sec $^{-1}$) angenommen wird. Aus den Begriffen Feldstärke, μ , c und ϵ und den Dimensionen dafür können wir nun die Dimensionen aller anderen elektrichen Größen bei Großen bei Größen bei Größen bei Großen bei Gr

schen und magnetischen Größen ableiten, wenn wir aus der Physik den formelmäßigen Zusammenhang zwischen diesen Größen kennen. Es sind für die wichtigsten elektrischen und magnetischen Größen die Dimensionen in den drei besprochenen Maßsystemen und die Beziehung mit c in der Tabelle 2 zusammengestellt.

Außer dem Gaußschen, dem elektrostatischen und dem elektromagnetischen Maßsystem wäre vielleicht noch das "Lorentzsche rationelle Maßsystem" zu erwähnen, welches sich dimensionsmäßig nicht vom Gaußsystem unterscheidet. Nur der Zahlenwert der einzelnen Größen ist anders. Das liegt daran, daß in den Ausgreichen für die elektrische und magnetische Energiedichte sowie für die Energieströmung im Nenner jeweils der Faktor 4π fehlt. Es ist also im Lorentzschen rationellen Maßsystem:

$$E_e = \frac{\varepsilon}{2} \mathfrak{G}^2$$
, $E_m = \frac{\mu}{2} \mathfrak{H}^2$, $\mathfrak{S} = c \{ \mathfrak{H}, \mathfrak{G} \}$

 $E_e = \frac{\epsilon}{2} \, \mathfrak{E}^2 \, , \ E_m = \frac{\mu}{2} \, \mathfrak{H}^2 \, , \ \mathfrak{S} = c \, \big\{ \mathfrak{H}, \mathfrak{E} \big\}$ Die Dielektrizitätskonstante und die magnetische Permeabilität sind genau wie im Gaußschen Maßsystem definiert. Wenn der Leser hin und wieder auf Widersprüche in anderen Tabell der Leser hin und wieder auf Widersprüche in anderen Tabell der Leser hin und wieder auf Widersprüche in Anderen Tabell der Leser hin und wieder auf Widersprüche in Anderen Tabell der Leser hin und wieder auf Widersprüche in Anderen Tabell der Leser hin und wieder auf Widersprüche in Anderen Tabell der Leser hin und wieder auf Widersprüche in Anderen Tabell der Leser hin und wieder auf Widersprüche in Anderen Tabell der Leser hin und wieder auf Widersprüche in Anderen Tabell der Leser hin und Wieder auf Widersprüche in Anderen Tabell der Leser hin und Wieder auf Widersprüche in Anderen Tabell der Leser hin und Wieder auf Widersprüche in Anderen Tabell der Leser hin und Wieder auf Widersprüche wieder der Wiedersprüche der Leser hin und Wieder auf Widersprüche in Anderen Tabell der Leser hin und Wieder auf Widersprüche der Wiedersprüche der

Wenn der Leser hin und wieder auf Widersprüche in anderen Tabellen stößt, so möge ihn dies nicht weiter verwirren. Häufig wird z. B. das elektrostatische mit dem Gauß-System verwechselt. In einer bekannten funktechnischen Formelsammlung ist sogar das praktische Maßsystem mit dem elektrostatischen insofern verwechselt, als dort I Coulomb als diejenige Elektrizitätsmenge definiert ist, die im Vakuum eine gleich große im Abstande von I cm mit der Kraft I Dyn abstößt. Wie groß diese Kraft selbst noch in I km Entfernung ist, sahen wir bereits. Eben weil nicht überall Klarheit über die absoluten Maßsysteme herrscht sollte darüber einmal eingehender berichtet werden

herrscht, sollte darüber einmal eingehender berichtet werden.

Artur Köhler

Hochwertige Selbstbau-Spulen für den Einbereich-Super

Anläßlich des Überblicks, den der Aufsatz "Kritik und Praxis des Einbereich-Superhet" in Heft 4/1942 dieser Zeitschrift gab, wurde schon darauf hingewiesen, daß der Spulenfrage bei diesem Typ besondere Aufmerksamkeit gewidmet werden muß, da ein Teil der gebräuchlich gewordenen Anordnungen nicht vollkommen den zu stellenden Anforderungen entspricht. Aus diesem Grund wurde auch früher vom Verfasser im allgemeinen vom Selbstbau der betreffenden Spulen abgeraten und auf ein bewährtes Fabrikat verwiesen. Heute ist man jedoch meist ausschließlich auf Selbstbau angewiesen, und auch hier wird man je nach den örtlich verschiedenen Beschaffungsmöglichkeiten bald diese, bald jene Materialien verwenden müssen. Es wurden daher eigens für die heutigen Verhältnisse Selbstbau-Spulensätze geschaffen, die zwar zum Teil räumlich größer sind als die käuflichen Fertigteile, so daß sie nicht immer einen idealen Ersatz für das Bisherige bieten können, die aber zuverlässig den elektrischen Anforderungen genügen und die einfach und mit verhältnismäßig leicht beschaffbaren, zum Teil austauschfähigen Materialien gebaut werden können.

Das Eingangsfilter

Ein gutes Filter ist das nach Schaltbild 2, S. 109 in Heft 7/1941 der FUNKSCHAU; ein Ausführungsbeispiel dafür sei daher hier nochmals im Lichtbild gezeigt (Bild 4). Es hat nur den einen Nachteil, viel Platz zu beanspruchen. Wo dies stört, wird man daher nach den Angaben in Bild 1 ein Filter mit drei kleinen, wild gewickelten Holzkörper-Spulen anfertigen, die am besten

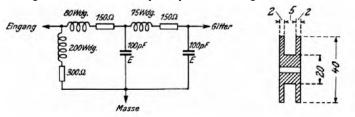


Bild 1. Schaltung und Daten des Eingangsfilters, dessen 3 Spulen mit CuLSS-Draht 0,15—0,2 mm auf je einen hölzernen Körper gewickelt werden. Kann statt dessen Konstantan-Draht 0,15—0,18 mm, doppelt seidenumsponnen, verwendet werden, so fallen die 3 Widerstande des Schaltbildes fort.

Rechts der hölzerne Wickelkörper im Schnitt.

senkrecht zueinander, ähnlich wie bei dem mit abgebildeten Original-Allei-Filter, montiert werden. Steht keine Drehbank zur Verfügung, so können die Wickelkörper natürlich auch aus je drei oder mehr auszuschneidenden Rundscheiben aus irgendeinem Isoliermaterial angefertigt werden. Zur Montage verwenden wir Schrauben und kleine Winkel, dürfen aber niemals eine der Spulen flach auf eine größere Blechfläche schrauben. Sehr angenehm ist, daß man die drei im Schaltbild zu findenden Widerstände einsparen kann, wenn für die Spulenbewicklung Widerstandsdraht zur Verfügung steht. Die beiden Kondensatoren können Papier-Rollblocks (induktionsfrei) sein. Diese wie alle übrigen Kondensatorenpole man jedoch richtig, d.h. die mit "E" gekennzeichnete Erdseite (bei keramischen Rohr-Blocks ist das der Außenbelag, bei Trimmern der bewegliche Belag) muß auch wirklich, wie auch in den Schaltbildern angegeben, auf der hochfrequenzfreien Seite, also "unten", liegen. Daß ein guter Sperrkreis mit Anzapfung mehr oder weniger zu den festen Bestandteilen jeder VS-Eingangsschaltung gehört, daran sei nebenbei nochmals erinnert.

Die Oszillatorspule

Diese nach Bild 2 anzufertigende Spule wird wohl die wenigsten Schwierigkeiten machen, und sie bietet auch wieder erfreuliche Ausweichmöglichkeiten. Sollte z. B. kein Spulenkörper aus Per-

tinax oder Keramik erhältlich sein, so kleben wir aus steifem Papier eine Rolle gleichen Durchmessers zusammen, und sollte keine Litze 20×0,05 erhältlich sein, so ist auch 10×0,07, 30×0,05 oder dergleichen verwendbar, oder auch Kupfer-Volldraht 0,4 bis 0,6 mm Lack-Seide-Seide. Eine allzu dämpfungsreiche Behelfsausführung der Oszillatorspule erkennen wir ja sofort daran, daß der Empfänger keinen von der Stellung des Drehkondensators abhängigen Empfang liefert. In diesem Fall könnte man die Rückkopplungsspule von 15 etwa auf 20 Windungen vergrößern, oder man muß sich eben um eine bessere Ausführung der Spule bemühen. Jedenfalls steht fest, daß gute Hf-Litze schlechter ist als Volldraht, wenn nicht alle ihre Einzeläderchen sauber abisoliert und verlötet werden!

Auch beim Oszillator-Parallelblock von 180pF, der verlustarm, also mindestens ein guter Glimmerblock, besser ein keramischer sein muß, sind wir nicht starr an diesen im Handel wenig gebräuchlichen Wert gebunden. Der findige Leser wird sich vielmehr den Wert von 180 pF jederzeit durch Parallel-Hinterinanderoder Gemischtschaltung mehrerer handelsüblicher Größen zusammenzusetzen wissen, oder er versucht von vornherein sein Glück mit 200 pF, was ja höchstens zur Folge haben kann, daß er unter Umständen — dies hängt vom Drehkondensator und den Anfangskapazitäten ab — einen nicht ganz bis 1500 kHz reichenden Abstimmbereich bekommt, was meist belanglos ist.

Das Zwischenfrequenzfilter

Dieses Filter muß sehr dämpfungsarm ausgeführt sein, wenn wir die erwünschte Trennschärfe und Empfindlichkeit erreichen wollen. Dazu werden in den bekannten Allei-Filtern besonders ausgesuchte Spezial-Eisenkernspulen verwendet, die natürlich den Vorteil kleinsten Raumbedarfs haben. Die handelsüblichen Hf-Eisenkerne zum Selbstbau von Spulen sind jedoch bei unserer Zwischenfrequenz von 1600 kHz meist wenig für unseren Zweck geeignet, und vor allem kann man ja beim Kauf einem Kern nicht seine Zusammensetzung ansehen. Deshalb verbürgen beim Selbstbau Luftspulen eine viel größere Erfolgssicherheit. Sehr gute, den besten Eisenfiltern gleichwertige Ergebnisse lieferte das im Lichtbild gezeigte Filter mit litzengewickelten Spulen (Litze 20×0,05) auf zylindrischen Frequenta-Körpern (Allei). Man achte jedoch, dies kann nicht oft genug gesagt werden, auf sauberes Abisolieren und Verlöten sämtlicher Litzenadern. Wer keine Litze und keine Keramik-Körper auftreiben kann, behelfe sich vorläufig mit Volldraht 0,4 mm Durchmesser CuLSS und mit Pertinax- oder Papier-Zylindern und kann ja dann diese Materialien bei der nächsten sich bietenden Gelegenheit durch bessere ersetzen.

Auch bei den Kondensatoren des Filters wäre an sich Luft als Dielektrikum sicherer als irgendein beim Kauf kaum zu beurteilendes Festmaterial. Da jedoch Drehkondensatoren sehr schwer zu beschaffen sind und in normaler Ausführung auch zu unhaltbaren Filterabmessungen führen würden, wurden bei der Versuchsausführung gute keramische Kondensatoren vorgesehen. Sind die Spulen genau nach Angabe gewickelt, so genügt primärseitig ein Festblock 100 pF ± 10 % ohne Trimmer, da es ja auf eine ganz genaue Einhaltung der Zwischenfrequenz von 1600 kHz nicht ankommt (vgl. Schaltung Bild 3); am besten legt man diesen Block unmittelbar an die Anoden-Lötfahne der Röhrenfassung und läßt die Spulenenden so lang, daß sie bis dorthin reichen, denn ein einzelner Block hat ja keine eigenen Befestigungslöcher. Einen primärseitigen Trimmer wird also nur einbauen, wer aus irgendwelchen Gründen die Zf auf einen ganz bestimmten Wert hintrimmen will (vgl. hierzu in Bild 3 den Grundriß und die Lichbilder). Normalerweise wird also nur audionseitig auf Resonanz mit dem Primärkreis nachgetrimmt, und zwar ohne Meßsender einfach so, daß wir die Rückkopplung gerade bis zum Einsetzen von Schwingungen anziehen und nun diese schwachen

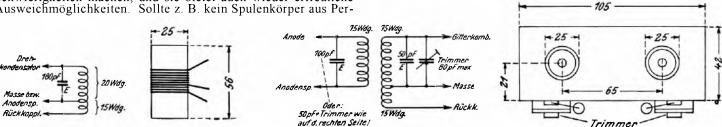


Bild 2. Auch die Oszillatorspule bietet materialmäßig erfreuliche Ausweichmöglichkeiten, wie im Text näher ausgeführt ist. Rechts der Aufriß.

Bild 3. Das Zwischenfrequenzfilter kann, wie im Schaltbild gezeigt, ohne weiteres mit nur einem Trimmer ausgeführt werden. Rechts der Grundriß.

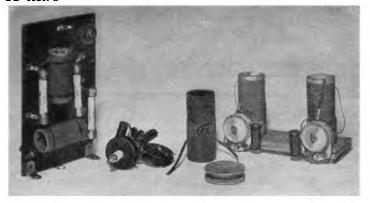


Bild 4. Hier sehen wir alle in Betracht kommenden Spulen versammelt: Ganz Bild 4. Hier sehen wir alle in Betracht kommenden Spuien versammeit. Gailz links ein Ausführungsbeispiel für die sehr zuverlassige, aber verhaltnismaßig viel Platz beanspruchende Form des Eingangsfilters nach Schaltbild 2 in Heft 7/1941, S. 109, dieser Zeitschrift, daneben das gedrangt aufgebaute Original-Allei-Eingangsfilter, vor demselben eine unbewickelte Holzspule zur Selbstanfertigung ähnlicher Filter, rechts anschließend eine zylindrische Oszillatorspule für 500-cm-Drehkondensator, ganz r e c h t s das neue Selbstbau-Zf-Filter.

Schwingungen durch Verstellen des Trimmers zum Aussetzen bringen. Dies wiederholen wir nach erneutem, leichten Anziehen der Rückkopplung so oft, bis die Rückkopplungsschwingungen — ganz leicht angezogene Rückkopplung vorausgesetzt — durch Trimmerverstellung nicht mehr zum Aussetzen zu bringen sind bzw. bis eine winzige, kaum sichtbare Verdrehung des Trimmers nach rechts oder links genügt, um die ausgesetzte "Schwingerei" wieder in Gang zu bringen.

Das Filter wird man im allgemeinen unabgeschirmt verwenden; was nachteilfrei durchführbar ist, wenn man nur dafür sorgt, daß seine Spulen nicht unmittelbar auf die anderen Spulen des Empfängers koppeln. Sein 10 mm starkes Sperrholz-Grundbrett kann flach aufliegend, hochkant oder längskant auf das Blech des Emp-

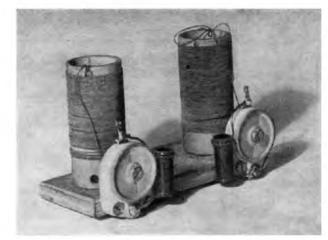
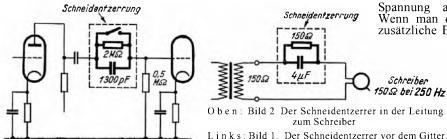


Bild 5. Das 1600-kHz-Zf-Bandfilter, das Herz des Einbereich-Superhet, erfordert besondere Sorgfalt in der Materialauswahl und Anfertigung. Es kann jedoch, wie das Bild zeigt, sehr einfach gebaut werden. Ein haarscharfer Abgleich dieses Filters gelingt ohne weiteres ohne Meßsender

fängergestells geschraubt werden. Die angegebenen Abmessungen von 105×42 mm gelten für flach aufliegende Montage und wurden passend für seitliche Anbringung am VE-Gestell gewählt. Für Hochkant-Aufstellung wird man in der Länge 15 mm zugeben, damit die Wicklung der unteren Spule nicht näher als etwa 20 mm an das Blech herankommt, und sinngemäß bei Längskant-Aufstellung dasselbe in der Breite. Wer eine Abschirmung anzubringen wünscht, muß sie so weit halten, daß sie nirgends näher als 20 mm an die Spulenwicklung herankommt. So ergibt sich bei Hochkant-Aufstellung des Filters eine Abschirmhaube von etwa 80×80×130 mm, woraus schon hervorgeht, daß man lieber versuchen wird, unabgeschirmt auszukommen. H.-J. Wilhelmy.

Die Schallplatten-Selbstaufnahme

Die Schneidentzerrung


Wenn man im Rahmen der Plattenkritik der FUNKSCHAU laufend Schallfolien unserer Leser zu hören bekommt, macht man immer wieder die Feststellung, daß ein großer Teil dieser Aufnahmen zu dumpf klingt, und es liegt die Vermutung nahe, daß für manchen Leser die Schneidentzerrung noch immer ein Buch mit sieben Siegeln ist. Es dürfte als bekannt vorausgesetzt werden, daß — aus Gründen einer ausreichenden Plattenspieldauer — bei der Aufnahme die tiefen Töne abgeschwächt werden müssen, damit der Rillenabstand nicht zu größ gewählt werden mußen, damit der Kilienabstand nicht zu groß gewählt werden muß, was natürlich die Spieldauer einer Platte verkürzen müßte. Die tiefen Töne verursachen nämlich die größten Nadelauslenkungen, und wenn man keine Überschneidung der Rillen bekommen will, muß man entweder die Tiefen abschwächen oder den Rillenabstand vergrößern. Man hat sich daher allgemein für den ersten Ausweg entschieden. Während nämlich gewöhnliche Voffersprachungschienen die fen Tähe abnehin esgent wie ger Koffersprechmaschinen die tiefen Töne ohnehin so gut wie gar nicht wiedergeben, kann man bei der elektrischen Wiedergabe mit verhältnismäßig einfachen Entzerrerschaltungen die bei der Aufnahme vernachlässigten tiefen Töne wieder anheben, so daß als Endeffekt die völlig lineare Wiedergabe aller Töne sichergestellt ist. Man hat sich nun dahingehend festgelegt, daß man, von den hohen Frequenzen beginnend, bis zu 250 Hertz herunter ungeschwächt aufzeichnet und dann eine nach unten immer stärker

ungeschwacht aufzeichnet und dann eine nach unten immer starker werdende Dämpfung der tiefen Töne vornimmt. Man schneidet nämlich bis 250 Hz mit "konstanter Geschwindigkeitsamplitude" und darunter mit "konstanter Amplitude". Uns interessieren nun die Maßnahmen, mit denen man bei der Aufnahme die tiefen Töne abschwächen kann. Das einfachste Verfahren ist das, den Schreiber unteranzupassen, wodurch bekanntlich eine Benachteiligung der tiefen Frequenzen eintritt. Man paßt dann so an, daß die Impedanz des Schreibers bei 800 Hz

gemessen wird und hierbei der vorgeschriebenen Ausgangsimpedanz des Verstärkers entspricht. Tatsächlich sind die meisten der frei verkäuflichen Schreiber so bemessen, so daß dadurch viele Amateure ohne eine besondere Schneidentzerrung auskommen. So bestechend einfach diese Maßnahme erscheint, so hat sie doch gewisse Nachteile. Ganz abgesehen davon, daß sich der scharfe Knick der Spannungskurve am Schreiber bei 250 Hz so noch am wenigsten annäherungsweise herstellen läßt, ist noch folgendes zu bedenken: Die größte Leistung wird einem Verstärker bei der Aufnahme der Bässe entzogen; also ist auch die Übersteuerungsgefehr bei diesen tiefen Tennen und die Ubersteuerungsgefehr bei der Aufnahme der Bässe entzogen; also ist auch die Übersteuerungsgefehr bei der Aufnahme der Bässe entzogen; also ist auch die Ubersteuerungsgefehr bei der Aufnahme der Bässe entzogen; also ist auch die Übersteuerungsgefehr bei der Aufnahme der Bässe entzogen; also ist auch die Ubersteuerungsgefehr bei der Aufnahme der Bässe entzogen; also ist auch die Ubersteuerungsgefehr bei der Aufnahme der Bässe entzogen; also ist auch die Ubersteuerungsgefehr bei der Aufnahme der Bässe entzogen; also ist auch die Ubersteuerungsgefehr bei der Aufnahme der Bässe entzogen bei der Aufnahme der Bässe entzeilen bei der Bäs gefahr bei diesen tiefen Tönen am größten. Durch die Unter-anpassung wird aber der Verstärker nun gerade bei den Bässen am meisten belastet, und obwohl dies direkt unerwünscht ist, wird gerade hierbei der Verstärker am leichtesten übersteuert. Man kann nun nach Bild I so verfahren, daß man bei der Auf-ach meinen Schneidentzerzung der Gitter einer Böhre schaltet. nahme einen Schneidentzerrer vor das Gitter einer Röhre schaltet. Hierdurch gelangen die Tiefen schon entsprechend geschwächt an das Gitter der Endröhre. Da nun aber die Gefahr der Übersteuerung besonders durch die Tiefen besteht, wird diese Gefahr jetzt weit geringer sein, da ja schon der Endröhre entsprechend weniger Bässe zugeführt werden. Praktisch äußert sich das aber so, daß man jetzt ohne Gefahr der leichten Übersteuerung den Verstärker weiter "aufdrehen" kann und somit lautere Aufnahmen erzielt. Das ist aber erst recht erwünscht, da man so das Verhältnis zwischen Nadelgeräusch und Nutzlautstärke günstiger gestaltet. So einfach und billig diese Schaltung ist, hat sie allerdings den kleinen Nachteil, daß man den Entzerrer bei der Wiedergabe durch einen besonderen Schalter kurzschließen muß. Während das für den Liebhaber kaum von Bedeutung ist, wird man jedoch im Studiobetrieb immer bestrebt sein, jeden überflüssigen Schalter aus Gründen der Betriebssicherheit und zum Schutz gegen die nur allzumenschliche Vergeßlichkeit zu vermeiden. Wo daher ein größerer Aufwand gerechtfertigt erscheint, entzerrt man so, daß man den Schreiber selbst in Serie mit einem Entzerrer nach Bild 2 schaltet. Der Schreiber wird dann so bemessen, daß seine Impedanz bei 250 Hz mit der Nennimpedanz des Verstärkerausganges übereinstimmt. Durch den Entzerrer wird jetzt der Ausgang des Verstärkers mit abnehmender Frequenz immer weniger belastet, die Übersteuerungsgefahr durch die Bässe wird geringer und die Spannung am Schreiber nimmt nach den Tiefen zu ab. Wenn man den Entzerrer in das Schneidgerät einbaut, ist eine zusätzliche Bedienung unnötig. Ohne Umschaltung im Verstärker

können also an dessen Ausgang wahlweise der Wiedergabelautsprecher oder das Schneid gerät angeschaltet werden. Es kann jetzt auch während der Aufnahme ein Lautsprecher zur Abhörkontrolle mitlaufen, ohne daß dessen Klangbild durch eine im Verstärker eingebaute Schneidentzerrung verfälscht würde, was sonst leicht zu einer Fehlbeurteilung der Übertragungsqualität führen könnte. Fritz Kühne.

Schreiber

II. Prüfung von Kondensatoren

Sämtliche Kondensatoren aus Funkempfängern lassen sich in zwei Gruppen einteilen: A. Ableit-, Kopp-lungs- und Filterkondensatoren von 5000 pF bis über 30 µF, B. Hochfrequenzabstimm- und Kopplungs-kondensatoren von ungefähr 10 bis 1000 pF. Wir beschäftigen uns zunächst mit Gruppe A

A. Prüfung von Kondensatoren über 5000 pF (einschließlich Elektrolytkondensatoren,)

Kapazitätsmessung:

Große Meßgenauigkeit ist bei dieser Gruppe nicht notwendig. Wenn keine Meßbrücke vorhanden ist, wird der Kondensator als Wechselstromwiderstand betrachtet und mit 50 Hz Netzfrequenz gemessen. Der Widerstand eines Kondensators ist bekanntlich:

$$R = \frac{1}{6,28 \cdot f \cdot C}$$

- Vorschaltkondensator = 40 000 pF Meßbereich 5000...500000 pF
- II. Vorschaltkondensator = 2,4 μF Meßbereich 0,3...30 μF.

Der 40000-pF-Vorschaltkondensator für Meßbereich I ist in 200 000 und 50 000 pF aufgeteilt, weil diese

Bild 11. Ermittlung von Kapazitatswerten zwischen 5000 und 500 000 pF (Bereich I nach der Schaltung Bild 10).

Bild 12. Ermittlung von Kapazitätswerten zwischen 0,3 und 100 μF (Bereich II nach der Schaltung Bild 10.)

Werte leichter zu beschaffen und dadurch beide Netzpole gegen direkte Berührung abgeriegelt sind. Die Vorschaltkondensatoren müssen einigermaßen stimmen, sie werden daher zweckmaßig in einer nahestehenden Werkstatt mit der Meßbrücke überkleineren Werkstatt im der Meinsteke über-prüft und nötigenfalls durch Zusammensetzen aus kleineren Werten abgeglichen. Das Milliamperemeter ist beliebiger Ausführung und muß noch 0,3 mA an-zeigen. Der innere Widerstand darf höchstens ¼ des Wechselstromwiderstandes des Vorschaltkondensators Wechselstromwiderstandes des Vorschaltkondensators sein, um die Anzeige nicht zu verfalschen (für 2,4 μF und 50 Hz rund 300 Ω). Besonders geeignet sind Multavi II oder Multizett. Die Zahlenleitern Bild 11 und 12 geben die Umrechnung des Stromwertes in Kapazitatswerte an. Besonders einfache Auswertung ergibt sich durch die bereits in der 2. Folge dieser Aufsatzreihe vorgeschlagene Anfertigung von Hilfsskalen. Bild 13 zeigt die Hilfsskala für ein Multavi II 1).

Der Meßbereich II von 0,3...30 µF dient zur Kapazitätsmessung von Elektrolytkondensatoren.

Isolationsprüfung:

Papierkondensatoren werden nach dem bekannten Glimmlampenverfahren geprüft. Der Kondensator wird über eine Glimmlampe an Gleichspannung an-geschlossen, sie leuchtet bei guten Kondensatoren durch den Aufladestoß kurz auf und erlischt. Bei schadhaften Kondensatoren flackert die Lampe oder brennt dauernd.

prennt dauernd. Bei Elektrolytkondensatoren gilt als Gutemaßstab der Reststrom. Durch jeden Elektrolytkondensator fließt auch bei richtiger Polung ein geringer Strom. Je schlechter der Kondensator ist, desto größer ist der Strom. Der Reststrom sinkt in den ersten Minuten nach Anlegen der Prufspannung, deshalb bei scheinbar schlechten Kondensatore einige Zeit warten! Bei der Reststrommessung darf die aufgedruckte Betriebssnannung nicht überren einige Zeit warten! Bei der Reststrommessung darf die aufgedruckte Betriebsspannung nicht überschritten werden. Wir unterscheiden zwei Hauptgruppen: Niedervolt- und Hochvoltkondensatoren, und prüfen einheitlich Niedervoltkondensatoren mit etwa 4...10 Volt, Hochvoltkondensatoren mit 250 Volt. Ein Kondensator mit Reststrom kann auch als Gleichstromwiderstand aufgefaßt werden. Je geringer der Widerstand ist meßbar mit der Anordnung Bild 5b oder 5c aus der 2. Folge dieser Aufsatzreihe. Niedervoltkondensatoren werden mit 4 V Meßspannung Hochvoltkondensatoren mit 300 V geprüft. Als. Restwiderstand lassen wir zu: 3 MΩ/μF bei Niedervoltkondensatoren, 1 MΩ/μF bei Hochvoltkondensatoren. Aus Kurvenbild 14 lassen sich die zulässigen

Aus Kurvenbild 14 lassen sich die zulassigen Widerstande ablesen. Bei dieser Prüfschaltung kann infolge des vorhandenen Vorschaltwiderstandes keine Überlastung des Prüflings eintreten, da ein zu hoher Strom einen Spannungsabfall am Vorschaltwiderstand hervorschaltwiderstand bervorschaltwiderstand bei die eine bei die nungsabtall am Vorschaltwiderstand hervor-ruft und die eigentliche Spannung am Prüfling herabsetzt. — Beim Anschluß des Prüflings wird das Milliamperemeter zunächst auf den höch-sten Strommeßbereich geschaltet, sonst wird es durch den Ladestromstoß überlastet.

> ¹) Es ist beabsichtigt, von den Hilfsskalen später Sonderdrucke anfertigen zu lassen und unseren Lesern diese zur Verfügung zu stellen. In-folgedessen braucht also niemand sein FUNKSCHAU - Heft zu zer-schneiden. Alles Nähere wird zu gegebener Zeit in der FUNKSCHAU bekanntgemacht.

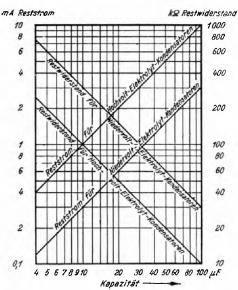


Bild 14. Zulässige Restströme und Restwiderstände für die Prüfung von Elektrolytkondensatoren.

Einzelteil-Prüfung

schnell und einfach

Kondensatoren (A)

Genauer und eindeutiger ist die direkte Reststrommessung. Im einfachsten Fall wird dazu ein Milliamperemeter z. B. nach Bild 15 dort eingeschaltet, wo der verdachtige Kondensator sitzt. Die Höchstwerte für den Reststrom sind gleichfalls in Bild 14 dargestellt.

Eine besondere Meßanordnung zeigt Bild 16. Sie wird für Niedervoltkondensatoren mit etwa 4...8V wird für Niedervoltkondensatoren mit etwa 4...8V Gleichspannung, für Hochvoltkondensatoren mit 220 bis 250 V Gleichspannung (Lichtnetz oder Anodenspannung eines Empfangers) betrieben. Die Polung ist zu beachten! Der Schalter steht in Stellung 0. Seine Kontakte müssen so eng stehen, daß der Schalterarm beim Durchdrehen zwei benachbarte Kontakte kurzschließt. Der Prüfling wird bei C angeschlossen und der Schalter langsam nach rechts gedreht. In Stellung 2 wird der Kondensator aufgeladen. Das Milliamperemeter ist kurzgeschlossen, um es nicht zu überlasten. Beim Weiterdrehen wird die Empfindlichkeit des Milliamperemeteres stufenweise heraufgesetzt

überlasten. Beim Weiterdrehen wird die Empfindlich-keit des Milliamperemeters stufenweise heraufgesetzt und in der letzten Stellung der Reststrom abgelesen. Auch hier gelten die Höchstwerte von Bild 14. Nach beendeter Prüfung wird der Schalter auf 0 zu-rückgestellt und dadurch der Kondensator über den 50-Ω-Widerstand funkenfrei entladen, sonst erteilt die aufgespeicherte Elektrizitätsmenge von Hoch-voltkondensatoren kraftige Schlage bei Berührung.

Durchschlagsprüfung:

Verdachtige Papierkondensatoren und Hochvoltelek-trolytkondensatoren werden bei richtiger Polung über eine 25-Watt-Lampe unmittelbar an 220 Volt Gleichstrom angeschlossen. Aufleuchten der Lampe zeigt an, daß der Kondensator durchgeschlagen ist

Ingenieur Otto Limann

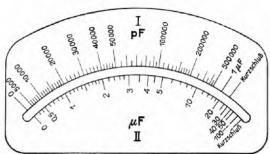


Bild 13. Hilfsskala für direkte Kapazitätsmessungen mit dem Multavi II. Die Skala wird ausgeschnitten und auf die Glasscheibe des Meßgerates gelegt. Durch den Schlitz wird der Zeigerausschlag beobachtet.

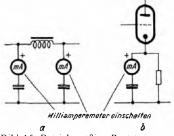
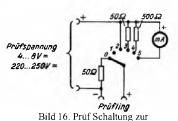



Bild 15. Betriebsmaßige Reststrommessung von Elektrolytkondensatoren im Empfanger: a) Reststrommessung bei Netz-Siebkondensatoren, b) Reststrommessung bei Kathodenkondensatoren.

IE WISSENSCHAFTLICHE SEI

Berichte aus den Zeitschriften der Hochfrequenztechnik und Elektroakustik

Der Frequenzgang von Widerstandsverstärkern bei tiefen Frequenzen

W. Kleen in Die Telefunkenröhre, Heft 21/22 (August 1941).

Im Bereiche der tiefen Frequenzen kann bei genügend großem Aufwand eine beliebig weitgehende Frequenzunabhangigkeit erzielt werden, während dieses bei hohen Frequenzen wegen der unvermeidlichen inneren Rohrenkapazitaten, die hier schon eine merkliche Rolle spielen, nicht möglich ist. Drei Ursachen sind für den Frequenzgang eines widerstandsgekoppelten Verstarkers verantwortlich.

1. Spannungsabfall an der Kopplungskapazität zwischen zwei Stufen

Das Ersatzschaltbild des Kopplungsgliedes stellt einen Spannungsteiler dar (Bild 1), der aus dem Kopp-

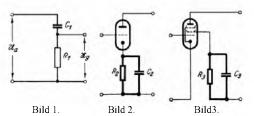
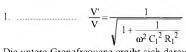


Bild 1: Gitterkondensator C₁ und Gitterableitwiderstand R₁ bilden einen Spannungsteiler, an dem Ilg abgegriffen wird. — Bild 2: Der Kathodenwiderstand R₂ mit dem Überbrückungskondensator für Tonfrequenz C₂ stellt einen Wechselstromwiderstand dar, an dem eine Gegenkopplungsspannung abfallt.

Bild 3: Der Schirmgittervorwiderstand R₃ ist für Tonfrequenz mit dem Kondensator C₃ überbrückt, jedoch tritt an dieser Kombination noch ein Wechselspannungsabfall auf, der über den Schirmgitterdurchgriff eine Gegenkopplung bewirkt.


lungskondensator C_1 und dem Gitterableitwiderstand R_1 gebildet wird. Das Verhaltnis der übertragenen, an R_1 auftretenden Wechselspannung I_0 zur Anodenwechselspannung I_0 der Vorröhre ist gleich dem Verhaltnis der entsprechenden Widerstande, also

$$\frac{\text{llg}}{\text{lla}} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 C_1^2 R_1^2}}}$$

dabei wird die Verstärkung (V') bei gegebenem ω

$$\frac{1}{\sqrt{1 + \frac{1}{\omega^2 C_1^2 R_1^2}}}$$
 mal so gro.

wie die Verstarkung (V) der mittleren Frequenz. Das Verhältnis der Verstarkungen wird.

Die untere Grenzfrequenz ergibt sich daraus zu:

2.
$$\omega_{\rm u} = \frac{1}{C_{\rm l}R_{\rm l}}$$

(Als "Grenzfrequenz" bezeichnet man diejenige Frequenz, für die die Verstärkung auf den $\frac{1}{\sqrt{2}}$ ten Teil der Verstärkung der mittleren Frequenz absinkt, $\frac{V'}{V} = \frac{1}{\sqrt{2}}$. Der Referent.)

v $\sqrt{2}$ (Für die Errechnung von C_1 oder R_1 bei gegebener Kreisfrequenz ω [zu übertragende Frequenz mal 2π] und vorgegebenem maximalen Verstarkungsabfall bedient man sich zweckmaßig folgender Formeln:

3.
$$C_{l} = \frac{1}{\omega R_{l}} \cdot \frac{a}{\sqrt{1-a^{2}}}$$
4.
$$R_{l} = \frac{1}{\omega C_{l}} \cdot \frac{a}{\sqrt{1-a^{2}}}$$
wenn mit a der Verstarkungsabfall $\frac{V}{V}$ bezeichnet

wird. Der Referent.)

2. Gegenkopplung durch den mit nicht unendlich großer Kapazität überbrückten Kathodenwiderstand

In der Kathodenleitung der Verstarkerröhre liegt der Widerstand R_2 zur Erzeugung der Gittervorspannung, der mit einer Kapazitat C_2 für Wechselspannung überbrückt ist (Bild 2). Wenn C_2 nicht unendlich groß ist, liegt in der Kathodenleitung ein Wechselstromwiderstand von der Große

$$Z_k = \frac{R_2}{1 + j\omega C_2 R_2} ,$$

an dem eine Gegenkopplungsspannung von der Große $\Im_a \cdot Z_k$ abfallt, welche eine frequenzabhangige Stromgegenkopplung der Röhre bewirkt. Es ergibt sich eine Steilheitsverminderung und eine Innenwiderstandserhöhung, daraus resultiert eine Verstarkungsverminderung auf den

$$\frac{1}{1+V\,\frac{Z_k}{R_a}} \mbox{ fachen Wert der Verstarkung}$$
 bei mittlerer Frequenz. Es ist dann:

$$V' = V \frac{1}{1 + \frac{Z_k}{R_a} V}$$

und wenn man zur Vereinfachung

$$\omega C_2 R_2 = x \text{ und } V \frac{R_2}{R_a} = a$$

Da die Gegenkopplungsspannung aus Z_k und \Im_a resultiert, gilt die vorstehende Formel nur für Dreipolrohren, für Mehrgitterrohren muß für a der Wert S_k . R_2 eingesetzt werden, wobei S_k die Kathodenstromsteilheit bedeutet. Die untere Grenzfrequenz wird erreicht für

6.
$$x = \sqrt{(a+1)^2 - 2}, a > 0.4$$

3. Schirmgittergegenkopplung durch die begrenzte Überbrückungskapazität des Schirmgittervorwiderstandes

In der Schirmgitterzuleitung liegt der Vorwiderstand R₃ zur Spannungsverkleinerung, der durch eine Kapazität C₃ überbrückt wird, um das Schirmgitter wechselspannungsmäßig auf Erdpotential zu legen (Bild 3). Da diese Kapazität in der Praxis nicht unendlich groß gemacht werden kann, liegt in der Schirmgitterzuleitung die Impedanz

$$Z_{S} = \frac{R_3}{1 + j\omega C_3 R_3}$$

an der eine Wechselspannung $3g_2 \cdot Z_S$ abfallt, die über den Durchgriff des Schirmgitters durch das Steuergitter als Gegenkopplungsspannung wirkt. Die Schirmgittergegenkopplung bewirkt eine Steilheitsverminderung und eine Innenwiderstandsverkleinerung; die letztere ist jedoch bei Fünfpol-Schirmröhren infolge des hohen Innenwiderstandes nicht wesentlich, so daß für die Verstärkung die Formel $V=S'\cdot R_a \ (S'=Steilheit der gegengekoppelten Rohre) gultig bleibt. Unter dieser Voraussetzung ergibt sich$

Für die untere Grenzfrequenz wird

$$x = \sqrt{(a+1)^2 - 2}$$

Die Errechnung des Gesamtverstärkungsabfalles geschieht nach der Formel:

$$V'_{ges} = \frac{V'_1 \cdot V'_2 \cdot V'_3}{V^3}$$

 $V_{ges}^{-} = \frac{V_{1} \cdot V_{2} \cdot V_{3}}{V^{3}}$ V ist die Verstärkung für die mittlere Frequenz, bei der untersuchten tiefen Frequenz ω fällt die Verstärkung von V auf V'. Zur Erleichterung der Rechnungen dient die graphische Darstellung der Funktionen

$$\frac{V}{V} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 C_1^2 R_1^2}}}$$

phische Darstellung der Funktionen $\frac{V'}{V} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 C_1^2 R_1^2}}}$ für den Einfluß des RC-Kopplungsgliedes (Bild 4) und für den Einfluß der Kathodenimpedanz:

$$\frac{V'}{V} = \sqrt{\frac{1+x^2}{(1+a)^2 + x^2}}$$

 $\frac{V'}{V} = \sqrt{\frac{1+x^2}{(1+a)^2 + x^2}}$ $x = \omega C_2 R_2$, $a = V \frac{R_2}{R_a}$ bzw. $a = S_k \cdot Ra$ bei Mehrgitterohren.

Für die Berechnung des Einflusses der Schirmgitter-impedanz auf den Verstärkungsgang dient dieselbe Kurvenschar, hier ist jedoch

, hier ist jedoch
$$x = \omega C_3 R_3$$
 und $a = S_2D R_3$. (Bild 5) Artur Köhler.

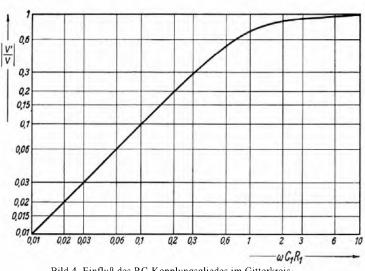
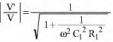



Bild 4. Einfluß des RC-Kopplungsgliedes im Gitterkreis. $\left| \frac{V'}{V} \right| = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 C_1^{1/2} R_1^{1/2}}}}$

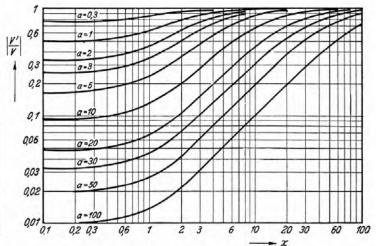


Bild 5. Einfluß eines RC-Gliedes

$$x = \omega C_2 R_2$$

$$a = V \cdot \frac{R_2}{R_2}$$

im $Schirmgitter: x = \omega C_3 R_3, a = S_2 D R_3,$

in der Kathode: $\left| \frac{V'}{V} \right| = \sqrt{\frac{1+x^2}{(1+a)^2 + x^2}}$

PRAKTISCHE FUNKTECHNIK

Zum Thema: Kriechströme

Flußmittel (Lötfett usw.), Schmierfett oder Öl können, auch wenn ursprünglich höchste Isolationswerte vorhanden waren, Kriechströme begünstigen. Staub und winzige Metallspäne geben ihren Beitrag zur Entstehung eines Kriechstroms. Entsteht der Kriechweg zwischen zwei Polen der Stromversorgung im Gerät, z. B. auf Preßzell (Pertinax), so erhitzt sich letzteres so stark, daß sein Isolationswiderstand verringert wird. Bis zum Brand oder wenigstens zur Verkohlung des Kriechweges ist es dann nicht mehr weit. Preßzell-Röhrenfassungen, besonders solche für Gleichrichterröhren, desgleichen Lötleisten an Netztransformatoren zeigen öfters diesen Mangel. Solche Fehler im Rundfunkgerät haben aber wenigstens den Vorteil, daß sie meist leicht zu finden sind. "Verbotene Wege" für Hochfrequenz gibt es auch: Ein Sieben-kreis-Super stotterte. Die Antenne wurde versuchsweise an den zweiten Kreis des Eingangs-Bandfilters gesteckt, wodurch, entsprechend guter Empfang erzielt wurde. Schalter, Spulen, Drehkondensator, Trimmer wurden geprüft, gemessen, bis der Fehler im ersten Kreis lokalisiert war. Nun wurde der Fall interessant. Vorsichtshalber wurde noch die ECH11 im Betrieb gemessen und Vorsichtshalber wurde noch die ECH11 im Betrieb gemessen und in Ordnung befunden. Es wurde weiter getastet. Meist beschränkt man sich bei der Fehlersuche auf den Betrieb "Mittelwelle". Bei der Schaltung "Kurzwelle" war der Empfang sehr zufriedenstellend — warum aber auf MW und LW nicht? Stoßweise, so alle 10 bis 15 Minuten einmal, ist volle Leistung am Magischen Auge zu erkennen — wenn auch nur während Bruchteilen einer Sekunde. Schlechte und schlechteste Leistung wechselten ständig. Verdacht: Kriechströme. Prüfmittel: Starkstrom 450 V über zwei Glühlampen 220 V/40 W an die Prüftasten gelegt.

Nun wurden der Antennenkreis und der erste Abstimmkreis getastet. Der Abstimmdrehkondensator hatte Funkenbildung, und zwar vom Stator zur Wanne über die Calit-Isolierstäbehen. Nach anfänglich geringstem Funkenüberschlag entstand ein direkter Kurzschluß. Die in Reihe geschalteten Glühlampen leuchteten hell auf. Etwa eine Sekunde dauerte der Verbrennungsprozeß, und der Kurzschluß war behoben, d. h. der Kriechweg mit 0,2 A ausgebrannt. Auf Calit konnte diese Gewaltkur vorgenommen werden; Preßzell-Isolation wäre aber unweigerlich verkohlt und der Kurzschluß wäre dann nur durch Drehkondensatorersatz zu beseitigen gewesen. Leider war nach der Prozedur nicht festzustellen, weshalb der Kriechweg entstanden war. Vielleicht hätte man die Kriechströme mittels Benzin, Alkohol, Äther, Azeton oder mit einem Messer, einer Feile usw. beseitigen können. Wie man's macht, ist's meistens falsch. Die Hauptsache bleibt jedoch, daß das Rundfunkgerät wieder einwandfrei arbeitet.

Franz Fousek

Nicht alltägliche Röhrenreparatur

Es kommt vor, daß eine an sich völlig einwandfreie Röhre dadurch unbrauchbar wird, daß ein Zuleitungsdraht am Glasfuß abbricht. Der Austausch der Röhre ist manchmal so schwierig bzw. ganz unmöglich, daß der Praktiker gern eine zeitraubende und umständliche Arbeit aufwenden würde, um die Röhre wieder verwenden zu können. Der nachstehende Bericht zeigt einen Weg dazu.

Vor einiger Zeit gelang mir an einem EU-Widerstand eine nicht alltägliche Reparatur. Mittlerweile ist sie mit Erfolg auch bei anderen Röhren angewendet worden, und ich nehme deshalb die Gelegenheit wahr, den Lesern der FUNK-SCHAU den Hergang der Reparatur mitzuteilen:

Der Bakelitfuß eines EU-Widerstandes hatte sich gelockert. Bei dem Versuch, ihn wieder festzukitten, riß einer der in den Glasquetschfuß führenden Zuleitungsdrähte kurz unterhalb der Einführung in den Kolben ab, so daß ein nur etwa 2 mm langes Drahtstück stehen blieb.

nur etwa 2 mm langes Drahtstück stehen blieb.

Mit dem Lötkolben direkt an diese Stelle zu gelangen war unmöglich. So wurde der EU-Widerstand auf folgendem Umweg repariert: Der EU wurde mit Lappen umwickelt und dann in vertikaler Richtung eingespannt. Nun mußte ein Versuchsständer einen recht dicken versilberten Kupferdraht derart halten, daß sich die beiden Drahtenden in inniger Berührung befanden. Der versilberte Draht war vorher gut verzinnt worden. Als nächstes hatte ein Bunsenbrenner die Aufgabe, den Draht tüchtig zu erhitzen. Es gelang nach einigen Versuchen, eine dauerhafte Lötverbindung zwischen den beiden Drähten herzustellen. — Zwecklos war der Versuch, den Draht mit Hilfe eines Lötkolbens auf die richtige Temperatur bringen zu wollen, denn dazu war die Wärmeleitfähigkeit des Kupfers relativ zu gering. Auf keinen Fall darf aber dem Bunsenbrenner bei diesem Unterfangen zu viel Sauerstoff zugeführt werden, da sonst die Temperatur dazu angetan ist, das Lötzinn verbrennen zu lassen. Die Anregung zu diesem Versuch gab mir ein Hinweis in der FUNK-SCHAU 1941, Heft 2 (Schliche und Kniffe) von N. v. Jindelt.

Von alten Becherkondensatoren ist nicht allein das Gehäuse noch zu verwenden, Von alten Becherkondensatoren ist nicht allein das Gehäuse noch zu verwenden, wie kürzlich beschrieben wurde. Seit Jahren schon entferne ich insbesondere von größeren durchgeschlagenen Blocks vorsichtig Deckel und Vergußmasse, löte die Verbindungen der parallel geschalteten Einzelwickel ab und prüfe jeden dieser, meist etwa 1 μF großen Teile. Von dem defekten Wickel kneife ich die Anschlüsse ab, setze alles andere wieder zusammen, und von beispielsweise 4 μF sind etwa 3 wieder gebrauchsfähig. Heute, wo es besonders gilt, sparsam zu wirtschaften, mache ich mir auch die Mühe, diesen durchgeschlagenen Wickel oder selbst einen Rollblock von 10 000 pF instandzusetzen. Dazu wird er vorsichtig abgewickelt, bis sich die

Auswertung durchgeschlagener Becherkondensatoren

Durchschlagstelle zeigt. Liegt sie nur wenig vom Ende entfernt, so wird das ganze Stück abgeschnitten, die beiden Metallfolien etwas gekürzt, noch einige Lagen Papier aufgewickelt und mit säurefreiem Klebstoff festgehalten. Liegt der Schluß weiter innen oder ist die Beschädigung nur geringfügig, so wird auf beiden Seiten der Aluminiumfolien je ein Stückchen des dünnen Kondensator-Papiers zwischengeschoben und das Ganze wieder straff aufgewickelt. Man kann auch ein abgeschnittenes Stück zu einem neuen Rollblock verarbeiten, indem man es auf einen Streifen Pappe oder Hartpapier aufwickelt. Die Anschlüsse werden durch eingelegte dünne Kupferblechstreifen hergestellt. Sie müssen jedoch völlig graffrei sein, da sonst an diesen Stellen der Durchschlag zuerst erfolgt.

zuerst erfolgt.

Benötigt man induktionsfreie Blocks, so legt man die Papier- und Metallfolien so übereinander, daß letztere an den Seiten einige Millimeter überstehen. Nach dem Wickeln werden diese durch Blechstreifen und Schrauben zusammengeklemmt und bilden so die Anschlüsse. Auf diese Weise stelle ich z. B. die derzeit schwer erhältlichen Überbrückungsblocks für Netzgleichrichter her (zirka 5 000 pF), wobei zur Erhöhung der Spannungsfestigkeit die Papierlagen verdoppelt werden. Noch widerstandsfähiger in elektrischer wie mechanischer Hinsicht werden die Kondensatoren, wenn man sie in reinem Paraffin so lange erhitzen kann, bis keine Luftbläschen mehr aufsteigen.

Freischwinger-Lautsprecher GFR 341 wird niederohmig

Freischwinger-Lautsprecher Gr R 341 wird mieueruming

Die schwierige Beschaffung eines dynamischen 4-Watt-Lautsprechers zwang zu Versuchen mit einem zufällig vorhandenen Freischwinger GFR 341. Der Spulenwiderstand war nicht passend; die Spule wurde durch den hohen Anodenstrom zu heiß und die Vormagnetisierung verstellte den Schwingsteg so weit, daß der Lautsprecher fast keinen Wirkungsgrad mehr besaß. Das Zuschalten eines Parallelwiderstandes verbot sich der allzugroßen Unteranpassung wegen, auch durfte keine Leistungseinbuße auftreten. Ein passender Ausgangstransformator war nicht vorhanden.

Die Durchmessung eines Heiztransformators 220/6 Volt ergab ein Übersetzungsverhältnis von 1 : 37 bei 3500 Ω Widerstand für 50 Hz. Eine hochohmige Wicklung aufzubringen, war wegen Platzmangels nicht möglich. Außerdem hätte der Zeitaufwand in keinem Verhältnis zu dem erzielten Erfolge gestanden, wie ein späterer Versuch ergab, da die Schwingspule die Leistungsabgabe begrenzte.

Also wickelte ich die Spule des Lautsprechers um! Sie wurde sorgfältig ausgebaut und für Reparaturzwecke aufgehoben. Nach Maß der ausgebauten Spule klebte ich den neuen Wickelkörper. Etwa 25 Windungen 0,7 CuL von Resten

begrenzte. Also wickelte ich die Spule des Lautsprechers um! Sie wurde sorgfältig ausgebaut und für Reparaturzwecke aufgehoben. Nach Maß der ausgebauten Spule klebte ich den neuen Wickelkörper. Etwa 25 Windungen 0,7 CuL von Resten eines Transformators wurden aufgebracht und an gleicher Stelle wie die hochohmige Spule eingebaut. Der Erfolg: Über den ganzen Tonfrequenzbereich wurde eine einwandfreie Wiedergabe erzielt, besonders die tiefen Töne kamen in einer für einen Freischwinger ungeahnten Fülle. An der Schallwand war der Lautsprecher als Freischwinger kaum wiederzuerkennen. Als Endröhre lief erst eine EL 11, dann (mit noch besserem Ergebnis) eine EL 12 mit $U_{\rm A}$ =200 V, $U_{\rm Sz}$ = 180 V bei einem Kathodenwiderstand von 120 Ω (Allstrombetrieb). Das Fehlen aller Verzerrungserscheinungen wurde bedingt durch das gleichstromvorbelastungsfreie Arbeiten sowie die niederohmige Spule. Die an sich erwartete Überlastung blieb aus. Wolfgang Zimmermann.

Akustisches Prüfgerät mit Röhrensummer

Bei Prüfungen in dem "Drahtverhau" eines modernen Gerätes mit Hilfe eines Schauzeichens oder einer Glimmlampe hat sich wohl jeder schon einmal gewünscht, die Augen von den Prüfspitzen nicht abwenden zu müssen. Wie einfach wäre es, wenn man hören könnte, ob irgendwelche Fehler vorhanden sind! Es gibt eine sehr bequeme Vorrichtung, die das ermöglicht. Wir brauchen dazu nur einen der in dieser Zeitschrift in vielen Ausführungen veröffentlichten Röhrensummer ein wenig zu verändern:
Wir unterbrechen die Heizleitung der Schwingröhre und führen die Anschlüsse an zwei Buchsen. An diese Buchsen kommen die Prüfspitzen. Zum Prüfen schließen wir den Tastkreis mit einem Kurzschlüßstecker. Auf diese Art können wir viele niederohmige Teile wie Verbindungen, kleine Widerstände, Spulen, Schalter usw. prüfen. Dabei machen sich Wackelkontakte sehr deutlich im Kopfhörer bemerkbar.
Wir unterbrechen den Anodenkreis (meistens schon für Tastanschluß vorhanden). Hiermit können wir auch größere Widerstände (Transformatoren, Drosseln) prüfen. Bei einiger Übung läßt sich aus Tonstärke und -höhe auch auf den Widerstand schließen. Die Grenzgröße der noch sicher angezeigten Widerstandswerte ist stark von der verwendeten Röhre und der Betriebsspannung abhängig; daher ist die Angabe von Zahlenwerten nicht möglich.

Versilbern von Kupferflächen

Versilbern von Kupferflächen

Versilbern von Kupternacnen

Etwas Höllenstein wird in destilliertem Wasser gelöst (Silbernitrat), dazu gießt man einige Tropfen Salzsäure. Es bildet sich ein flockiger Niederschlag von weißem Chlorsilber, der bald zu Boden sinkt. Die über dem Niederschlag stehende Flüssigkeit wird abgegossen und der Niederschlag gründlich ausgewaschen. Diese Arbeit soll möglichst nicht bei hellem Licht geschehen, da das Chlorsilber sonst schwarz wird. Darauf wird der Niederschlag in Natriumthiosulfat (Fixiersalz) gelöst und es werden nun noch einige Tropfen Salmiakgeist hinzugegeben. Zum Versilbern wird diese Lösung mit einem wollenen (!) Lappen auf das Kupfer aufgetragen, das sich sofort mit einer feinen Silberhaut überzieht. Nach dem Versilbern ist das Kupfer mit Seifenlauge abzuwaschen.

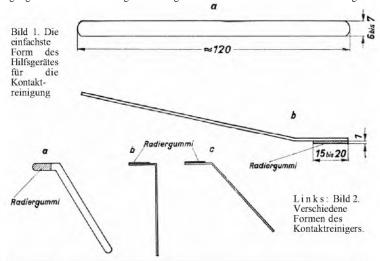
Wer kennt seltenere xussische Amerikaröhren? Die Mitarbeit der Leser erwünscht!

Neben den normalen Amerikaröhren mit lateinischer oder russischer Beschriftung gibt es in Rußland noch eine Anzahl amerikanischer Röhren, die in Amerika selbst gar nicht bekannt sind. Eine davon wurde in der Aufstellung der FÜNKSCHAU in Heft 10/1942 gebracht: die 2K2. Daneben gibt es aber noch einige andere: 2K3, 2\Gamma_2 6H7, 15A6, 30\Gamma_6 u. a. m., über die wir keinerlei Unterlagen besitzen. Wer kennt diese Röhren? Wer kann uns Unterlagen über diese Röhren oder die Röhren selbst zur Aufnahme der Daten übersenden? Wer kennt noch weitere russische Amerikaröhren die mit den normalen Amerikaröhren nicht übersenden? Amerikaröhren, die mit den normalen Amerikaröhren nicht übereinstimmen oder nicht in der Broschüre "Amerikanische Röhren - Russische Röhren" verzeichnet sind?

Als wir die Leser zur Feststellung der Identität der $6\Gamma7$ aufriefen, erhielten wir zahlreiche Zuschriften und Zusendungen aus dem Leserkreise, wofür wir an dieser Stelle nochmals danken, so daß die Erwartung berechtigt ist, daß auch dieser neuerliche Appell nicht vergebens ist. Anschrift für die Zusendungen: Schriftleitung FUNKSCHAU, Potsdam, Straßburger Straße 8.

WERKZEUGE, mit denen wir arbeiten

Die Taschenlampe als einfacher Leitungsprüfer


Eine Taschenlampe kann leicht so ausgestaltet werden, daß ihr die Batteriespannung für Prüfzwecke entnommen werden kann, ohne daß man die Batterie erst aus der Hülle herausnehmen muß, was ja im Felde und bei Kälte oft lästig ist. Ja, man kann sie sogar als einfaches Prüfgerät verwenden, ohne erst

erst aus der Hune nehausichnen hier, hier haben erst umständlich Anschlusse herstellen zu müssen. Benötigt werden lediglich zwei isolierte und eine blanke Buchse, außerdem allerdings ein 6,5-mm-Bohrer und Lötwerkzeug. Wie es gemacht wird, soll an der weit verbreiteten Lampe Pertrix Nr. 679 gezeigt werden. Die Buchsen werden an der linken Schmalseite des Gehäuses oberhalb der Batterie so eingesetzt, daß die mittlere etwa in Höhe der Klemme für die Ersatzbirne kommt, die zweite in Normalsteckerabstand (19 mm) darunter, während die blanke Buchse oberhalb eingesetzt wird, ohne daß ein bestimmter Abstand eingehalten zu werden braucht. Verbunden wird die untere Buchse mit dem Minus-Pol — also mit dem Leichtmetallstreifen der Schraubenfassung, die mittlere mit dem Plus-Pol, also mit dem Messingkontaktstreifen rechts. Will ich 4,5 Volt Spannung entnehmen, so kommt ein Doppelstecker in diese beiden

Soll nun geprüft werden, ob ein Stromkreis oder eine Spule Kontakt hat 'soweit sich das natürlich mit 4 Volt machen läßt), dann wird die blanke Büchse in Verbindung mit der mittleren benutzt. Wenn diese nämlich leitend verbunden werden, ist der Effekt derselbe wie beim Betätigen des Druckschalters. die Birne leuchtet auf. Aus der Intensität des Lichtes kann man sogar auf den ohmseben Widerstand der Spule usw. schließen. H. Klein.

Praktisches Hilfsgerät zur Kontaktreinigung

Seit altersher ist der Radiergummi als einfaches und wohl auch bestes Reinigungsmittel für oxydierte Kontakte bei Wellenschaltern usw. bekannt. Meist ist es allerdings so, daß man mit dem Gummi an die Kontakte des eingebauten Schalters schlecht oder gar nicht herankommt. Bei einem russischen Empfänger, den der Verfasser zur Reparatur hatte, war es besonders schlimm. Verfasser hat deshalb ein einfaches Hilfsgerät gebaut, mit dem wohl auch wenig gut zugängliche Kontaktstellen ohne Ausbau des Schalters gereinigt werden können. Auf einen Metallstreifen von etwa 12 cm Länge und 6 mm Breite wird mittels eines "Allesklebers" (z.B. Metallfix) ein dünner Streifen Radiergummi aufgeklebt. Bild la zeigt den Metallstreifen von oben, Bild lb zeigt ihn von der Art des zur Verwendung kommenden Metalls. Als am besten hat sich etwa 1 mm starker Federstahl erwiesen, der sich auch nicht so leicht durchbiegt. Holzstäbe sind wenig dauerhaft. — Am besten baut man sich zwei bis drei solcher kleiner "Bürsten" in verschiedenen Formen, wie Bild 2 zeigt. Mit diesem kleinen Werkzeug ist es nun leicht möglich, auch fast unzugängliche Kontaktstellen gut zu reinigen.

6 Punkte, um deren Beachtung wir bitten

- **Bei Geldeinsendungen** muß stets der Verwendungszweck angegeben sein, und zwar in deutlicher Schrift unmittelbar auf dem Abschnitt der Zahlkarte oder Postanweisung. Absender nicht vergessen! Fehlt der Verwendungszweck, so können wir trotz zeitraubenden Suchens eine Verbuchung nicht vornehmen.
- Alle Hefte der Jahrgänge 1940 bis 1943 sind vergriffen. Infolge der Papierknappheit können wir von jedem Heft nur eine begrenzte Auflage herstellen; sie reicht nicht einmal, um alle uns zugehenden laufenden Bestellungen auszuführen. Damit ist aber jedes Heft im Augenblick des Erscheinens vergriffen, so daß Nachlieferungen nicht erfolgen können.
- Der Verlag sucht dauernd gut erhaltene Hefte der Jahrgänge 1940 bis 1943 zurückzukaufen; er bittet die Leser um Angebote und ist auf Wunsch auch bereit, das jeweils neueste Heft dafür kostenlos zu liefern
- Reichskreditkassenscheine können zur Zahlung im Reichsgebiet nicht verwendet werden; die Einlösung solcher Scheine macht uns große Schwie-rigkeiten. Wir bitten unsere Leser an der Front deshalb dringend, Zahlungen nur noch durch Feldpostanweisung vorzunehmen.
- nur noch durch Feldpostanweisung vorzunehmen.

 Bestellungen von Wehrmachtangehörigen, die unter Nachnahme an die Heimatanschrift gesandt werden sollen, kommen oft zurück, weil der Besteller die Benachrichtigung seiner Angehörigen unterlassen hat; daraus ergibt sich für uns doppelte Arbeit, für den Besteller ergeben sich erhöhte Kosten durch die nochmalige Zusendung. Es ist also unbedingt notwendig, bei einer solchen Bestellung die Angehörigen gleichzeitig zu unterrichten, damit sie die vom FUNKSCHAU-Verlag eingehende Nachnahme auch einlösen.

 Bei Bestellung von Photokopien, die wir von interessierenden Aufsätzen, Schaltungen usw. aus vergriffenen Heften gern herstellen lassen, müssen Jahr, Heft und Seite genau angegeben werden, außerdem ist Voreinsendung des Betrages nötig (je Druckseite 1.20 RM., Porto für 1—5 Seiten 8 Pfg.).

 Bitte beachten Sie diese sechs Punkte recht genau, Sie ersparen uns viel unnötige Arbeit, und Sie selbst haben den Vorteil prompter Erledigung Ihrer Bestellung.

FUNKSCHAU-VERLAG, MÜNCHEN 2, LUISENSTRASSE 17

Technischer Schallplattenbrief

An großen Tonwerken ist diesmal vor allem eine Telefunken-Aufnahme zu nennen: Wilhelm Furtwängler spielt mit den Berliner Philharmonikern Telefunken (Sk 3230/32) das Adagio aus Bruckners 7. Symphonie E-dur, und wie immer bereitet Furtwänglers Musizieren einen absoluten Genuß. In weitem Bogen spannt er diese Heldenklage, die bewußt Wagnersche Motive verarbeitet, und der Name der Aufnahmefirma bürgt dafür, daß alle Feinheiten des Orchesters, das breite und mitunter fast schwelgerische Aufblühen des Klanges und die großartige Steigerung in der Überwindung voll zur Geltung kommen. Gleichfalls auf Telefunken (SK 3222/4) ist G. Cassadó ein berufener Interpret des Violoncellos auf Telefunken (SK 3222/4) ist G. Cassadó ein berufener Interpret des Violoncellos ein berufener Interpret des Violoncellos ein berufener Interpret des Violoncellos und Telefunken (SK 3222/4) ist G. Cassadó ein berufener Interpret des Violoncellos ein Berliner Philharmoniker unter Schmidt-Isserstedt) herzuzeigen. Wuchtig und zart im Allegro moderato und von atemberaubender Verhaltenheit im Mittelsatz wird die Solostimme von einem Orchester emporgetragen, das immer plastische Stütze, nie Hintergrundgeräusch ist. Technisch ist die Aufnahme ausgezeichnet bei großer Dynamik kommen die Tiefen außerordentlich klar und sauber, während gleichzeitig die nirgends merklich abgeschnittenen Formantbereiche für eine sehr natürlich klingende Wiedergabe sorgen.

zeitig die nirgends merklich abgeschnittenen Formantbereiche für eine sehr natürlich klingende Wiedergabe sorgen.

Für den musikalisch interessierten Elektroakustiker sind die großen Electrola-Aufnahmen immer eine Quelle reinster Freude. Das gilt auch wieder ganz besonders von der Aufnahme "Siegfrieds Rheinfahrt" aus Wagners "Götterdämmerung" (Electrola DB 5699), die die Wiener Philharmoniker unter Knappertsbuschs Leitung in der leuchtenden Farbenpracht der breit angelegten Tonmalerei zu Gehör bringen. Wunderschön, wie die verschiedenen Instrumente sich gegenseitig abheben und doch zusammenklingen, und technisch ganz ausgezeichnet die Dynamik der Steigerung im ersten Drittel, die charakteristischen Hornrufe und die zauberischen Höhen der Violinen. Auch die "Salzburger Hof- und Barockmusik" von W. Jerger (Electrola E.H. 1325) ist eine technisch sehr gut gelungene Aufnahme, die die vielfarbige Barockmusik und den funkelnden Glanz des Orchesters besonders auch in den Höhen voll zur Geltung kommen läßt. Das Kammerorch ester der Wiener Philharmoniker unter Leitung des Komponisten spielt die Intrada mit großer Dynamik und sehr echt in ihrem flirrenden Pomp trotz aller Einfachheit der musikalischen Linie, spielt verhalten und innerlich das Domkonzert und verhilft auch den etwas farblosen Wasserspielen zu Buntheit und Klangfülle. Schließlich sei der Musikfreund noch auf Hugo Wolfs "Italienische Serenade" (Odeon 0-3604) hingewiesen, die F. Lehmann mit dem Orchester des Deutschen Opernhauses Berlin und mit Rudolf Nel als sehr sauberer Solobratsche zart und lyrisch stimmungsvoll wie ein pointillistisches Bild hintupft.

ein pointillistisches Bild hintupft.

Unter den Instrumentalaufnahmen ist diesmal vor allem das Violinkonzert Nr. 1 in D-dur von Paganini zu nennen (auf Columbia
LWX 354/5), Guila Bustabo mit dem Berliner Städtischen Orchester unter Fritz Zaun spielt es mit überragender und hinreißender
Virtuosität und mit süßem, weichem Ton in den lyrischen Stellen. Eine technisch
vorzügliche Aufnahme großer Brillanz, an der besonders die überraschende
Klarheit der Höhen auffällt, so daß die Formantgebiete schön herauskommen
und die Violine auch tatsächlich als Streichinstrument empfunden wird. Virtuos
und meisterhaft ist auch das Klavierspiel von Geza Anda, der auf Grammophon (LM 67934/5) den Mephisto-Walzer von Liszt-d'Albert und "La
Campanella" von Liszt-Busoni zu Gehör bringt: die vollendete Spieltechnik
und die große Dynamik (die bei der Aufnahme nur wenig geregelt wurde)
lassen die Platte für Freunde der einwandfreien Interpretation schwieriger
Instrumentalmusik geeignet erscheinen.
Für besinnliche Stunden sei auf das gepflegte Chopinspiel von Cor de Groot

Für besinnliche Stunden sei auf das gepflegte Chopinspiel von Cor de Groot hingewiesen, der auf Odeon (0-8776) sehr zart und behutsam wie etwas Zerbrechliches die Berceuse Des-dur (op. 57) und Valse Cis-moll (op. 64, Nr. 2) zu Gehör bringt.

orecnicnes die Berceuse Des-dur (op. 5/) und Valse Cis-moll (op. 64, Nr. 2) zu Gehör bringt.

Ein musikalisch und schallplattentechnisch interessantes Musikstück ist das Ballett "Der Dreispitz" von M. de Falla, auf Odeon (0-9140/41) vom Großen Radio-Sinfonieorchester Brüssel, unter F. Lehmann außerordentlich sauber und pointiert gespielt. Diese technisch selten gut gelungene Aufnahme großer Brillanz bringt eine farbig instrumentierte Musik mit schönen Entladungen und Entspannungen und kann jedem empfohlen werden, der zeitgenössische Musik, etwa im Stil R. Strauß', liebt (Rückseite von 0-9141: "Der Liebeswalzer", Pantomime von M. de Falla).

Wer Freude an guter, unalltäglicher Unterhaltungsmusik hat, sei auf die Heitere Bläser-Sinfonie von Höffer hingewiesen, die auf Grammophon (EM 15362) von Bläsern des Rundfunk-Orchesters Berlin unter Schulz-Dornburg recht kapriziös gespielt wird, und vor allem auf die Ouvertüre "Spanische Nacht" von Bodart (Rückseite, "Olafs Tanz" aus der Piccolo-Suite von Pick-Manglagalli), eine sehr schöne und plastische Aufnahme von Electrola (EH 1312), die das bei aller Beschwingtheit sehr saubere Spiel des Orchesters des Reichssenders Leipzig zur vollen Geltung bringt.

H.-W.P.

Neue deutsche Schallplattenmarke

Neue deutsche Schallplattenmarke

Ab Januar werden die Neuerscheinungen der Deutschen Grammophon GmbH., die bisher die bekannte Marke mit dem Hund vor dem Trichter "Die Stimme seines Herrn" führte, unter der Siemens-Marke herausgebracht. Wer die großen Leistungen des Hauses Siemens auf elektroakustischem Gebiet kennt, wird sofort sehen, daß es sich hierbei um eine Maßnahme von größter Bedeutung handelt. Damit beginnt nun auch der zweite große deutsche Elektrokonzern eine Betätigung auf dem Schallplattengebiet, nachdem der andere — die AEG bzw. die zum AEG-Konzern gehörende Telefunken-Gesellschaft — bereits seit einer Reihe von Jahren Schallplatten produziert. Wir erleben damit zum zweitenmal, daß eine in der ganzen Welt bekannte. Elektro- bzw. Rundfunk-Marke ihren Weg auf das Schallplatten-Etikett findet.
Wie die Deutsche Grammophon GmbH, mitteilt, haben die elektroakustischen Laboratorien des Hauses Siemens nach langjährigen Versuchsarbeiten ein neues "Silberverfahren" für die Herstellung besonders hochwertiger Schallplatten entwickelt. Diese erscheinen in Zukunft unter der Marke "Siemens-Spezial" mit der zusätzlichen Bezeichnung "Nach dem Silberverfahren des elektroakustischen Forschungslaboratoriums" und unter der Marke "Siemens-Polydor", "hergestellt nach dem elektroakustischen Verfahren für Tonreinheit und großen Tonumfang". Außerdem werden noch Platten unter der Marke "Polyfar" herausgebracht. Der Marke "Siemens-Spezial" sind die repräsentativen Groß-Aufnahmen vorbehalten (man kann sie also als eine Fortsetzung der Grammophon-Meisterklasse ansehen), so bietet die erste Liste bereits Beethovens Symphonie Nr. 7 unter Herbert v. Karajan (Mitglieder des Orchesters der Staatsoper Berlin), Don Quixote von Richard Strauß unter Stabführung des Komponisten (Bayerisches Staatsorchester), das Forellen-Quintett von Schubert, von Adrian Aeschbacher gespielt, sämtlich Aufnahmen, aus vier und mehr 30-cm-Platten bestehend. Unter der Marke "Siemens-Polydor" erscheinen dagegen die volkstümlichen Aufnahmen. Original-Italien

Wer hat? Wer braucht?

und ROHREN-VERMITTLUNG

Vermittlung von Einzelteilen, Geräten, Röhren usw. für FUNKSCHAU-Leser

Gesuche — bis höchstens drei — und Angebote unter Beifügung von 12 Pfg. Kostenbeitrag an die

Schriftleitung FUNKSCHAU, Potsdam, Straßburger Straße 8

richten! Für Röhren gesondertes Blatt nehmen und weitere 12 Pfg. beifügen! Wehrmachtangehörige müssen eine. Heimatanschrift angeben. Gesuche und Angebote, die bis zum 1. eines Monats eingehen, werden mit Kennziffer im Heft vom nächsten 1. abgedruckt. Bei Angeboten gebrauchter Gegenstände muß Hett vom nachsten 1. abgedruckt. Bei Angeboten gebrauchter Gegenstande muß jeweils der Verkaufspreis angegeben werden, neue Gegenstände sind ausdrücklich als "neu" zu bezeichnen. — Anschriften zu den Kennziffern werden im laufenden Anschriftenbezug oder einzeln abgegeben. Einzelne Anschriften gegen Einsendung von 12 Pfg. Kostenbeitrag von der Schriftleitung FUNKSCHAU, Potsdam, Straßburger Straße 8. Laufender Anschriftenbezug für 6 Monate gegen Einzahlung von 1.50 RM. auf Postscheckkonto München 5758 (Bayer. Radio-Ztg.). Auf Abschnitt vermerken "Funkschau-Anschriftenbezug". Auf Bestellung bis 15. eine jeden Monate gefolgt Lieferung erst vom übernächsten Monate ab 15. eines jeden Monats erfolgt Lieferung erst vom übernächsten Monat ab.

3 Grundsätze der FUNKSCHAU-Vermittlung

- Die Teilnahme erfolgt nach dem Grundsatz der Gegenseitigkeit wer Gesuche aufgibt, soll stets auch Angebote einsenden. Nur für Wehrmachtangehörige sind Ausnahmen zulässig.
- Tauschgesuche sind ausgeschlossen es werden nur Kauf- und Verkaufsgesuche vermittelt. Wer Teile zum Verkauf anbietet und auf Tausch bestellt, wird von unseren Listen gestrichen.
- Angebotene Teile dürfen nicht vorzeitig verkauft werden, sondern sie gelten durch das der FUNKSCHAU gemeldete Angebot für FUNKSCHAU-Leser reserviert, die sich auf Grund dieses Angebotes melden.

Diese 3 Grundsätze sind streng zu beachten — Verstöße führen zur Streichung von unseren Listen. Gesuche werden nur noch bearbeitet, wenn gleichzeitig Angebote eingereicht werden!

Gesuche (Nr. 4583 bis 4634)

Drehkondensatoren, Skalen

4583. Drehk. Hara CF 600 m. Raste 4584. Trimmer 4...40 pF

Spulen, Hf-Drosseln

4585. Spule AKE 1300 4586. Spule Gorler F42 4587. Alte Korbbodensteckspulen 50, 75, 100, 200 Wdg.

Widerstände

4588. Log. Pot. Hochohm m. Sch.

Festkondensatoren

4589. 2 EL-Kond. 8 μF, 350 V 4590. Kond. 2 μF, 750 V Arb.-Sp. 4591. Kond. 4 μF, 750 V Arb.-Sp.

Transformatoren, Drosseln

4592. VE-Netztr. f. 354 4593. Netztransf. aller Art 4594. Netztr. f. AZ 11 4595. Transf. Görler AKT 1.76

Lautsprecher

4596. Dyn. Kleinlautspr. 4597. Lautspr. bis 15 cm Durchm. 4598. Kleinlautspr. f. Koffer 4599. Lautspr. GPM 391 od. 366 auch def.

Schallplattengeräte

4600. Tonfolien-Schneidkoffer 4601. Neue oder gebr. Schallpl. 4602. Schallpl.-Motor 4603. Alte und neue Schallpl. 4604. Abspielmotor 220 V ≃ 4605. Schneidmotor 220 V ≃

Meßgeräte

4606. mA-Meter 10 mA Drehspul 80...100 mm Skal.-Durchm. Einbau 4607. Meßbrücke m. mA-Meter 4608. Mavometer, Multizettt od. Multavi

Stromversorgungsgerätc

4609. Trockengleichr. 4 V, 0,5...2 A 4610. Gleichr. 110/220 V

Empfänger

4611. Kleinsuper Philips
4612. Gebr. Empf. = od. ≃
4613. VE alt od. neu Chassis
4614. Kleinsuper od. Empf. auch def.
4615. KW-Gerät DASD
4616. Taschenempf. kompl. ev. o. Röhr.

Fachliteratur

4617. Strutt, Moderne KW-Empfängertechnik4618. Behn - Monn, Der Kurzwellen-

sender 4619. Klein, Transformatoren und Drosseln

4620. Bücher über Tonfilmtechnik 4621. Ratheiser, Rundfunkröhren

Verschiedenes

Verschiedenes
4622. Postvorwähler o. Drehhebwähler
4623. Eisenkern-Sperrkreis
4624. Fassung f. VY2
4625. Funkeninduktor mit 10... 15 cm

4626. Kopfhörer 4627. Elektr. Lötkolben 4628. Kleiner Einbaukoffer leer 4629. Lautsprechergehäuse leer 4630. Anodensummer Jahre

4630. Anodensummer Jahre 4631. Lötkolben 220 V 4632. Wobbler-Morsetaste 4633. Lötkolben 220 V, 80...120W 4634. Wobbler und Bugtaste

Angebote (Nr. 6911 bis 6961)

Drehkondensatoren, Skalen

Drehkondensatoren, Skalen
6911. KW-Drehk. 150 cm 5.6912. 2 Drehk. Hartpap. je —45
6913. KW-Drehk. 25 cm neu
6914. Drehk. 2X500 cm neu 8.—
6915. VE-Drehk. 320 cm neu
6916. VE-Drehk. 320 cm neu
6917. Drehk. 500 cm Luft Nora 1.50
6918. Drehk. 500 cm Luft 1.—
6919. 3 Drehk. Radione je 500 cm 7.50
6920. Drehk. Radione 220 cm 2.−5
6921. Drehk. 250 cm 2.—
6922. Luft-Drehk. 500 cm 2.—
6923. Drehk. Philips 4445 neu
Widerstände

Widerstände

6926. Pot. 1 M Ω Dral. Inevol neu 6927. 4 Reostate 60 Ω 2.—

Festkondensatoren

6928. El.-Kond. $50~\mu F$, 25~V~neu 6929. Kond. $10~\mu F$ /700 V Wego 3.50 6930. 8~El.-Kond. $8~\mu F$, 450/500~V~Wegoneu 3.-

Transformatoren, Drosseln

6931. Geg.-Ausg.-Tr. hoch u. nieder 7.-6932. DKE-Netzdrossel neu

6933. Nf-Transf. 1:2,5 4.-

Mikrophone

6934. Krist.-Mikr. Garantie-Elektro 155.-6935. Mikr. Steinitz Baby m. Regiepult

und Batterie neu

Schallplattengeräte 6936. Vorschubeinrichtung AEG 2.50 6937. Tonabn. m. Arm ü. Regler Reiß

28.-6938. Kristalltonabn. neu .25.— 6939. Aufsteckdose Loewe 6.50 6940. Plattenteller 30 cm m. Schraub-befestigung neu 4.—

Meßgeräte

6941. Amp.-Meter 5 A Drehsp. 180 mm Skalen-Durchm. Aufbau 35.— 6942. Voltmeter 10 V, Aufbau 110 Durchm. 9.50 6943. Amperemeter 20 A, Aufbau 110 Durchm. 9.50

Stromversorgungsgeräte

6944. Pendelgleichr. 4.-

Empfänger

6945. 3-Röhr.-Batt.-Empf. Seibt m. R. 20.-

6946. DKE ~ 20.-

Betreff: Adressenänderungen!

r bitten alle Bezieher, uns bei Bekanntgabe von Adressenänderungen auch nochmals die vorher gültige Anschrift mitzuteilen. Sie ersparen uns damit zeitraubendes Suchen. Dafür dankt herzlichst der

FUNKSCHAU-Verlag, München 2, Luisenstraße 17

Fachliteratur

6947. Behn-Diefenbach. Die Kurzwellen

2.50

6948. Bergtold, Meßbuch 4.50 6949. Bergtold, Hilfsbuch 3.50 6950. Bergtold, Röhrenbuch 2.

6951. Kollmann, Kleines Lexikon der Technik 2.—

6952. Wagenführ, Weltrundfunkatlas

6953. ETZ 60 Hefte neu

6954. Verst.-Endstufe Siemens RF 12~220 V, 50 W 160 -6955. Topffass. neu —.45 6956. Einbau-Sperrkreis MW, LW 3.50 6957. Magnettopf mit Erregerspule 60 mA 5

6958. Kupferdraht 0,2 u. 0,5 mm BW

u. L neu 6959. Widerstandsdraht 0,5 mm neu 6960. Mechanikerwerkzeuge

6961. Morse-Übungstelegraph 3.—

Gesuchte Röhren

Gesuc	THE MOTHER				
ACH1	860	EF11	847	RENS1264	840
AF7	840, 857	EF13	839	RENS1274	840
AL4	844, 85C, 857,	EL12	865	RENS1284	836
AL5	856, 860 [860	KBC1	838	RENS1374d	865
AZl	857	KDD1	853	RENS1823d.	855
BL2	855	KF4	841,863	RES 164	836, 848, 849.
CF3	834, 866	KK2	863	RGN354	836 [865
CF7	S34, 846, 866	KL1	863	UCH11	837
CL2	850	KL2	841	UCL11	837, 849, 850.
CL4	846, 856	RE034	848	UY11	837, 849.
CY1	834, 846	RE034S	851		
CY2	850, 866	RE084S	851	l	
EBF11	847, 853	RE134	854	Amerikanisc	che Röhren:
ECH11	839,847	RE134S	851	6A8, 6F7, 6K	.7 835
ECL11	843, 853	REN904	855	0.10, 017, 01	., 655

Angebotene Röhren

AB1 AB2 AC2 AF3	860 852, 867 860, 864 860		7) 7, 839	RES094 RGN 354 RGN1064 RGN 2004	853, 855 840, 846 867 858	, 849, [861
AL1 AZ11 BO CB1	860 853 866 846	RE084 866 RE114 840 RE134 839 REN804 840)	954 Amerikanisa	864 che Röhre	n:
CCH1 CK1 EB11	837 846 853	REN914 866 REN1004 860)	2A5, 2A6, 2A 6C6, 6D6, 12 6K7		858 845 864
EBC3 EBF11	836 860	REN2204 860 RENS1214	842 860	24A, 45, 80, Ge Co 210	CA247,	859

Der Rest der Gesuche und Angebote befindet sich in der gleichzeitig erscheinenden Anschriftenliste.

Achtung! Wehrmachtangehörige müssen bei allen Angeboten und Gesuchen die Heimatanschrift angeben, da Wehrmachtanschriften nicht veröffentlicht werden können!

Dex FUNKSCHAU-Verlag teilt mit:

Liste der lieferbaren Verlagserzeugnisse:

Von Bestellungen auf hier nicht aufgeführte Werke bitten wir abzusehen

FUNKSCHAU-Abgleichtabelle. 8 S. (Doppeltabelle) 1.- RM. FUNKSCHAU-Spulentabelle 4. Aufl. 4 S. 0.50 RM. FUNKSCHAU-Netztransformatorentabelle. 3. Aufl. 4 S. 0.50 RM.

Porto für Tabellen: 1 bis 3 Stück 15 Pfg.. 4 Stck. 30 Pfg.

FUNKSCHAU-Anpassungstabelle, 3. Aufl. 4 S. 0.50 RM. **Baupläne:** M1 Leistungs-Röhrenprüfer mit Drucktasten. 1.-RM. u. 8 Pfg. Porto. M2 Universal-Reparaturgerät 1.- RM. u. 8 Pfg. Porto.

Kartei für Funktechnik. Lieferung 1: 96 Karten mit Leitkarten und Kasten 9.50 RM. u. 40 Pfg. Porto. (Kasten erst nach dem Kriege wieder lieferbar!) **Z. Zt. vergriffen!** — Lieferung 2, 3 und 4. je 32 Karten je 3.— RM. u. 15 Pfg. Porto. — Leere Karteikarten: 100 Stück 2.— RM. u. 30 Pfg. Porto.

Alle vorstehend nicht aufgeführten Werke sind vergriffen und zur Zeit nidit lieferbar. Ankündigungen von Neuerscheinungen und Neuauflagen erfolgen an dieser Stelle. — Liefermöglichkeit aller Verlagswerke vorbehalten!

FUNKSCHAU-Verlag, München 2, Luisenstraße 17

Postscheckkonto: München 5758 (Bayerische Radio-Zeitung)

Taschenkalender für Ründfünktechniker 1943 bereits restlos vergeiffen!

Wir bitten von Bestellungen abzusehen.

Verantwortlich für die Schriftleitung: Ing. Erich Schwandt, Potsdam, Straßburger Straße 8, für den Anzeigenteil: Johanna Wagner, München. Druck und Verlag der G Franz'schen Buchdruckerei G Emil Mayer, München 2, Luisenstr 17. Fernruf München Nr. 53621. Postscheck-Konto 5758 (Bayer Radio-Ztg.) - Neu zu beziehen zur Zeit nur direkt vom Verlag in Form des Jahresbezuges. Einzelpreis 30 Pfg., Jahresbezugspreis RM. 3 60 (einschl. 26,76 Pfg. Postzeitungsgeb.) zuzügl. 36 Pfg. Zustelligeb Lieferungsmöglichkeit vorbehalten. - Beaufit Anzeigen-Annahme Waibel & Co., Anzeigen-Ges. Munchen-Berlin Munchener Anschifft: Munchen 23, Leopoldstr. 4, Ruf-Nr. 3 56 53, 3 4872. - Zur Zeit ist Preisliste Nr. 6 gultig. - Nachdruck sämtlicher Aufsatze auch auszugsweise nur mit ausdrucklicher Genehmigung des Verlags.