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TO MY COLLEAGUES AND STUDENTS 



PREFACE 

This book is the outgrowth of a course in vacuum-tube design given 
for many years at Stanford University to senior and graduate students in 
electrical engineering and physics. It is concerned with the determina­
tion of vacuum-tube characteristics in terms of the electron action within 
the tube. The book attempts to bridge the gap between the physical 
laws that lie behind the electron behavior and the external characteristics 
of the tubes themselves. 

It is hoped that the point of view taken will be acceptable to both 
physicists and engineers. The development of the physical laws involved 
is indicated, after which emphasis is placed upon their description and 
utilization. Although this book cannot pretend to give much design 
information, the attempt has been to include enough of the basic relations, 
physical data, and significant references to make it a useful reference 
source to vacuum experimenters and tube designers. 

Vacuum tubes may seem a rather special subject to which to restrict 
the material in a book. Actually this is not so. In preparing the book 
so much material was collected that the contents had to be restricted to 
first-order effects. It is felt that although engineers and physicists work­
ing with vacuum tubes are primarily concerned with the utilization of 
already developed tubes, the successful application of these tubes is 
greatly enhanced by a knowledge of their limitations and an understand­
ing of the origin of their characteristics. This is particularly true since 
there are many occasions when it is desired to use tubes under conditions 
different from those specified by the manufacturer. Under these condi­
tions it is imperative to know how far one may depart from recommended 
operating conditions without exceeding some design limitation of the 
tube. This, in turn, requires a knowledge of how the tube operates. 

Circuits and tube applications are so completely covered in the text­
book and periodical literature that no effort has been made to include 
information on these subjects. Only in the case of ultra-high-frequency 
tubes where the tube cannot be completely separated from the circuit 
have circuit considerations been included. 

The author is indebted to many people for assistance rendered in the 
preparation of this book. He is particularly indebted to Dr. F. E. Ter-
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man, dean of the Stanford School of Engineering, who was a constant 
source of inspiration and encouragement, and who made many valuable 
suggestions and gave much direct assistance in checking the work. The 
author is also indebted to Prof. Paul Kirkpatrick, head of the Physics 
Department at Stanford, for suggestions on the material of Chaps. 3 to 
6 and 9; to Prof. L. Marton for suggestions on the material of Chaps. 13 
to 15 and 20; and to C. V. Litton for much information and suggestions 
relative to Chap. 21. He is indebted to Evelyn G. Sarson, who typed a 
large part of the manuscript in its final form. 0. 0. Pardee and Will 
Harman assisted in the correction. of the entire work. Lastly, the author 
is more than a little indebted to his wife, who personally typed much of 
the manuscript and was a source of constant assistance. 

K.\.RL R. SPANGENBERG 

PALO ALTO, CALIF. 
Januarv, 1948 
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CHAPTER 1 

INTRODUCTION 

VACUUM tubes are found as basic or auxiliary elements in numerous 
technical devices now in use. They are indispensable in communication 
systems and industrial control. Their development has facilitated 
advances in the fields of power and transportation. Without the 
vacuum tube we should be back in the days of the gravity-cell telegraph 
and the ringer telephone. 

In the United States the number of vacuum tubes in use is several 
times the number of human beings and household pets. The 50,000,000 
radio sets manufactured in the United States in the year 1947, alone 
contained more vacuum tubes than the adult population of the country. 
Associated with the 25,000,000 telephones and 120,000,000 miles of tele­
phone and telegraph wire in the United States are many more vacuum 
tubes. Various industrial devices include almost as many more. The 
United States uses nearly half the world's total of vacuum tubes. 

One may conclude that there are many vacuum tubes in use. They 
must be of some importance. They are. 

1.1. Devices Using Vacuum Tubes. This book is more concerned 
with the properties and functions of vacuum tubes than with the systems 
utilizing these properties. However, it is well to be reminded of the 
extent of vacuum-tube applications and the degree to which we are 
dependent upon them. The following devices are totally dependent 
upon vaccum tubes. 

Radio Receivers. These are too well known to require much descrip­
tion. They range from portable receivers the size of a brick and capable 
of receiving local broadcast stations to large-size all-wave receivers 
capable of picking up a signal stronger than the noise level from any 
point on the globe. Even the smallest receivers use 4 or 5 vacuum tubes. 
The average home receiver has about 7 tubes. An all-wave receiver may 
have 20 or more tubes. 

Radio Transmitters. Transmitters range from portable walkie-talkie 
sets to large power-broadcast and short-wave stations. In output power 
they vary from 0.1 watt to hundreds of kilowatts. In frequency they 
may range from 100 kc to 60,000 me. The short-wave transmitters are 
capable of producing an audible signal at any point on the earth's surface. 

1 
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Transmitters may use voice or code. They may incorporate static­
elimination or secrecy features in their operation. A small transmitter 
may use only a few vacuum tubes. The largest transmitters may use 
50 or more tubes. 

Long-distance Wire Telephones. The connections between telephone 
stations on the same continent are effected by wire transmission lines 
rather than by radio. When the distance between telephone stations is 
large, it is necessary to amplify the speech energy about every 16 miles 
for cables and every 50 miles for open-wire lines. Each speech amplifier 
contains several vacuum tubes and amplifies the speech power from about 
10 microwatts to about 1 milliwatt, a power amplification of 100. Thus 
a telephone call from San Francisco to New York passes through 30 or 
more speech amplifiers. 

Television Systems. Television systems achieve the modern miracle of 
reproducing a visual scene at a point remote from the original. This is 
done entirely with vacuum tubes and electrical-circuit elements. No me­
chanical devices are needed. In its present stage of development the 
reproduced picture as viewed from 6 ft on an 8-in. cathode-ray-tube 
screen is as good as a motion picture seen from the first row of the balcony. 
Each television transmitter contains hundreds of vacuum tubes, including 
a special camera tube. Every television receiver contains 20 or more 
tubes, including a special viewing tube. 

Measurement Devices. Electronic measurement devices are too 
numerous to mention. Quantities that can be measured, besides all the 
electrical quantities, are color, weight, light intensity, odor, time interval, 
and many others. In fact, it can be said that any quantity which can 
be measured at all can probably be measured by electronic means. 

Industrial Control. The number of electronic industrial-control 
devices is legion. They include counting circuits, sorting systems, illu­
mination-control systems, welding-control devices, and liquid- and 
gaseous-flow regulators. Typical devices are those which automatically 
regulate temperature or humidity. All these devices have their primary 
dependence upon the vacuum tubes in them. 

In addition to the above devices, which are totally dependent upon 
vacuum tubes, there are many others that have acquired a strong depend­
ence upon electronic devices. Thus all commercial flying makes constant 
use of radio communications to keep posted on the weather and on 
terminal traffic and to keep ground stations posted on plane positions 
as well as to guide the planes directly. The invasion of other fields by 
electronics has already been considerable and is bound to be greater in 
time to come. 

1.2. Functions of Vacuum Tubes. Although the applications of 
vacuum tubes are almost infinite, the specific functions that vacuum tubes 
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can perform by virtue of their own properties are relatively few. It is 
these few fundamental functions and their combinations that give rise 
to the numerous applications. 

A list of the functions of vacuum tubes is bound to be an arbitrary 
one since the tube cannot function by itself without an associated circuit. 
However, some of the jobs that vacuum tubes can perform are so funda­
mental that they may be considered properties of the tube itself, inde­
pendent of the associated circuits. 

The principal functions that may be performed by vacuum tubes are 
listed below. 

Rectification. Vacuum tubes are able to convert alternating currents 
to direct currents. This is known as "rectification." Rectification is a!!. 
inherent property of vacuum tubes because current can flow in only one 
direction from a source of electrons. 

If a sinusoidal wave of voltage is applied to a vacuum tube of the 
right type, current will flow in only one direction, giving rise to a succes­
sion of half-wave pulses all of the same polarity. It is possible to connect 
another like tube to insert half-wave pulses of the same polarity between 
the pulses of the first tube. The average of these pulses constitutes a 
direct current; the other frequency components are rejected by a tilter 
circuit. 

Rectification is important because electronic devices operate best on 
direct current, while power is usually generated and transmitted in alter­
nating form. It is thus necessary to convert, or rectify, the a-c power to 
d-c power. 

Amplification. The amplification of voltage or power is the outsti>nd­
ing function that vacuum tubes are able to perform. With the exception 
of the mechanical torque amplifier, no other device can do anything 
li.ke it. Strictly speaking, the vacuum tube does not amplify power but 
rather controls the flow of a relatively large amount of power from one 
source with a small amount of power from another source. The British 
use the expression "electric valve" for certain types of electron tubes. 
This term is really better than ours, for it indicates the nature of the 
amplifying action. 

Oscillation. The generation of high-frequency alternating currents, 
or oscillation, is another remarkable function that vacuum tubes can 
perform. Oscillation is obtained by causing part of the output of an 
amplifier to excite the amplifier and thus make the device self-excited 
and self-sustaining. Tubes can be built that will produce oscillations 
at frequencies as low as 1 cycle per sec, while other tubes can be built 
that will oscillate at frequencies as high as 60,000 me per sec. 

Frequency Conversion. Vacuum tubes are able to shift the frequency 
of a wave. This they are able to do by an electrical "beat" action. 
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Thus a wave of a given frequency can be mixed with a wave of another 
frequency in a vacuum tube, and among the products of the interaction 
is found the difference of the two frequencies. If one of the original 
waves had certain effects associated with it, these same effects are 
associated with the difference frequency. The beat action results from 
the nonlinear characteristics of the vacuum tube. 

Modulation. The transmission of intelligence by radio waves or by 
certain types of wire telephony requires the use of frequencies higher than 
those audible. It is necessary to superimpose the audible frequencies 
upon the higher transmitted frequency. This superimposition is known 
as "modulation." Modulation is best performed by vacuum tubes. 

Basically, modulation takes the form of varying some property of the 
r-f wave at the audible rate. The commonest form of modulation varies 
the amplitude of the r-f wave in accordance with the intelligence to be 
transmitted. This is known ai:; "amplitude modulation." Frequency 
modulation is also common. 

Detection. Detection is the inverse of modulation and is sometimes 
known as "demodulation." It is the process of extracting the intelligence 
from the modulated wave. In the case of amplitude modulation the 
detection may be effected by rectifying the r-f wave and then utilizing 
the average value of the rectified wave, since it follows the amplitude varia­
tions in magnitude. Detection of modulated radio signals is best per­
formed by vacuum tubes over most of the range of radio frequencies. 

Light-image Production. It is possible for vacuum tubes to convert 
part of their output energy into visible light. This is done in cathode­
ray tubes in which a stream of electrons is caused to hit a fluorescent 
screen, causing light to be emitted. The cathode-ray tube can be used 
for viewing wave forms and for doing many other wonderful things, 
including the reproduction of visual scenes. The fundamental property 
involved here is the conversion of electrical energy into visual energy. 

Photoelectric Action. Vacuum tubes can be made that will convert 
light energy into electrical energy. This is possible by virtue of the 
photoelectric effect, which is the emission of electrons from certain sur­
faces when illuminated with visual energy. The liberated electrons con­
stitute an electric current whose measure is related to the frequency and 
intensity of the exciting light. Tubes making use of this principle are 
known as "photoelectric tubes." The photoelectric tube is one of the 
tubes most extensively used in industrial-control systems. 

The above paragraphs have given a bird's-eye view of the functions 
of vacuum tubes. The reader is probably familiar with all the above 
functions, which are now commonly encountered in everyday life. The 
rest of the book is devoted to the description and explanation of the 
characteristics of the vacuum tubes themselves. 



CHAPTER 2 

BASIC TUBE TYPES 

T mJ electronic engineer has about a dozen types of vacuum tube he 
can call upon for his high-frequency and industrial-control circuits. 
This is a surprisingly small number of distinct tube types. The small 
number of types is balanced, however, by the large number of forms in 
which each type may appear, as determined by the required power 
capacity and frequency range. 

The purpose of this chapter is to list the basic types and their funda­
mental characteristics as a prelude to a detailed study of their charac­
teristics and the physical laws from which these are derived. 

2.1. Vacuum Diode. The vacuum diode is a two-electrode vacuum 
tube. One electrode acts as an 
emitter of electrons and is called 
the "cathode." The other elec­
trode acts as a collector of elec­
trons and is called the "anode " 
or "plate." The emitter may be 
either directly or indirectly 
heated. In physical form the 
vacuum diode may vary from a 
small metal tube to a large glass 
rectifier tube. 

The current-voltage charac­
teristics of a typical diode are 
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of voltage over the normal range characteristics of a diode. 
of operation. At high values of 
plate voltage or at low values of heater current the plate current tends 
to be limited by the cathode emission and to increase only very slowly 
with plate voltage. 

The most useful property of the diode is that it passes current only 
in one direction. This property makes the diode useful as a detector 
.::md as a rectifier for d-c power supplies. 
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2.2. Vacuum Triode. A vacuum triode is a three-electrode tube con­
taining an emitting electrode called the "cathode," a control electrode 
called the "grid," and a current-collecting electrode called the "anode " 
or "plate." 

The emitting electrode may be an indirectly heated oxide cathode, 
an oxide-coated filament, or a filament of tungsten or thoriated tungsten. 

The control electrode, usually in the form of a grid of fine wire, sur•• 
rounds the emitter and is in turn surrounded by the plate in the common•• 
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Fm. 2.2.-Plate-current-plate-voltage characteristics of a triode. 

est form of triode. By virtue of its proximity to the cathode the grid is 
able to influence the electrostatic field at the cathode to a greater extent 
than can the plate, and thus it is able to control the flow of current from 
the cathode. The grid is usually operated on a slight negative potential 
so that the electrons will pass between the grid wires without hitting the 
wires themselves. 

Some typical characteristics of a triode illustrating the variation of 
plate current with plate voltage for various fixed values of grid voltage 
are shown in Fig. 2.2. The plate current increases if either grid or plate 
voltage is increased. The increase in plate current for a given increase 
in grid voltage is always much larger than the increase in plate current 
for the same increase in plate voltage. 
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The relative effectiveness of the plate and grid potentials in controlling 
the plate current is known as the amplification factor of the tube (mu; 
symbolµ,). The amplification factor is the maximum amplification that 
can be obtained by using the tube as an amplifier. With triodes the 
useful amplification is about two-thirds of the amplification factor. 

Study of the family of curves of Fig. 2.2 shows that all the curves 
are alike in shape and further are somewhat similar to the characteristic 
of a diode. This is true in that the plate current of a triode is found to 
vary nearly as the three-halves power of an equivalent voltage which is 
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the sum of the plate voltage divided by mu and the grid voltage. 
Triodes have their greatest use as power amplifiers. They are also 

used extensively in control applications wherever a small voltage is 
wanted to control an appreciable amount of current. 

2.3. Screen-grid Tube. The screen-grid tube is a four-element 
vacuum tube. The four elements are cathode, control grid, screen grid, 
and plate. The electrode construction is similar to that of the triode 
except that an extra grid of mesh a little coarser than that of the control 
grid is inserted between the control grid and the plate. 

The screen-grid tube is the historical predecessor of the pentode. 
Its invention was the result of an effort to overcome a limitation of the 
triode. Triodes do not work well as amplifiers of high frequencies, for 
the high interelectrode capacity between plate and grid causes the tube 
to regenerate and oscillate. In the screen-grid tube the capacity between 
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the control grid and plate is reduced by inserting the extra grid, known 
as the "screen grid," between these elements. The insertion of the 
screen grid and its operation at a constant potential succeeded in produc­
ing the low control-grid-plate capacity desired but caused distortions in 
the plate-current-plate-voltage characteristics, for the new electrode 
arrangement permitted secondary electron flow between plate and screen 
grid. This detrimental effect was overcome in the pentode by the addi­
tion of a coarse-mesh suppressor grid between screen grid and plate. 

The screen-grid tube is usually operated with cathode near ground 
potential, control grid at a small negative potential, and screen grid and 
plate at a medium and high positive potential, respectively. Some 
typical screen-grid-tube plate-current-plate-voltage characteristics are 
shown in Fig. 2.3. The dips in the low-voltage portion of the curves are 
the result of secondary electron current flowing from plate to screen. 
The low slope of the high-voltage portion of the curves results from the 
fact that the cathode is screened from the plate by the screen grid as 
well as by the control grid, and hence the magnitude of the plate current 
is increased only a little by an increase in plate voltage. Screen-grid 
tubes have been rendered virtually obsolete by the development of the 
pentode and some special tetrodes not subject to the tremendous dis­
tortions of current characteristics by secondary emission. Screen-grid 
tubes may be used as a-f and r-f amplifiers. They are also occasionally 
used in laboratory apparatus in which it is desirable to utilize the negative 
resistance characteristic which is available at the points on the current 
characteristics where the slope is negative. 

2.4. Pentode. The pentode is a five-element high-vacuum tube. 
The five electrodes, in the order in which they occur in the tube, are 
cathode, control grid, screen grid, suppressor grid, and plate. In normal 
operation the cathode is operated near ground potential, the control grid 
at a small negative potential, the screen grid at a relatively large positive 
potential, the suppressor grid at cathode potential, and the plate at the 
screen potential or a more positive potential. 

Some typical plate-current-plate-voltage curves of a pentode are 
shown in Fig. 2.4. In these it is seen that the insertion of the suppressor 
grid at cathode potential between screen grid and plate has eliminated the 
distortions in the characteristic observed in the case of the screen-grid 
tube. This it does by causing a negative potential gradient at both the 
screen grid and plate, which suppresses the secondary electrons from these 
electrodes. The slope of the plate-current characteristic for high plate 
voltages is even less than in the screen-grid tube, for there is another 
screening grid between plate and cathode in the pentode. The result of 
this high screening action is to make the amplification factor of the 
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pentode extremely high, of the order of 1,000 or more, and to give the 
tube a high effective resistance in the plate circuit. The pentode is, 
in fact, very nearly a constant-current device. The variation of plate 
current with grid voltage, which is measured by a factor known as the 
"grid-plate transconductance" or, more commonly, the "mutual con­
ductance" of the tube, is about the same as in the triode. Only about 
one-tenth of the high amplification factor of the pentode can be realized 
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in amplifier operation. However, the reduced plate-control-grid 
capacity makes the pentode a better tube in voltage-amplifier applications. 

The pentode is a versatile tube. It can be connected to give diode, 
triode, and screen-grid as well as pentode action. It is available in 
constant- and variable-mu forms. It is probably the most extensively 
used tube in low-power applications. There are probably more pentodes 
in use today than any other type of electron tube. A cutaway drawing 
of a pentode showing the electrode structure is given in Fig. 2.5. 

2.5. Beam-power Tube. The beam-power tube is a special type of 
tetrode. It is designed so that the electrons move from cathode to 
plate in dense sheets. This effect is achieved by making the control 
grid and screen grid of the same pitch and aligning the grid wires. The 
electrode structure of the tube is shown in Fig. 2.6. 
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The effect of the dense current sheets between the screen grid and 
plate is to depress the potential between these two electrodes within the 
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FIG. 2.5.-Cutaway picture of a single-ended metal-envelope pentode. 

tube because of the high concentration of negative charge. The poten­
tial between screen grid and plate is depressed enough so that secondary 
electron flow from plate to grid is suppressed without the aid of a sup-
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pressor grid. Thus the tube represents another solution to the problem 
of overcoming the distortions in the current characteristics of the ordi­
nary screen-grid tube. 

The plate-current-plate-voltage characteristics of a beam-power tube 
are shown in Fig. 2. 7. It is seen that these characteristics are free of the 
dip in the shoulder due to secondary electron flow. The distinctive 
features of the beam-power tube's characteristics as contrasted with the 
pentode characteristics are that the plate current rises much more rapidly 
at low plate potentials and the condition of complete transmission of 

Beam-form/ng plate ... 

Cathode. ·-.. 
Gr/d----- -............... .. 

Screen-·---~-~~~~::.~-~-----

--.. 
-.P/e,fe 

Frn. 2.6.-Cutaway view of the electrode arrangement in a 
beam-power tube. (Courtesy of RCA.) 

current to the plate is reached at a lower plate potential. The plate 
current rises rapidly because the high space-charge density blocks the 
flow of electrons to the plate at low plate potentials, and this blocking 
action stops quite abruptly as the plate potential is increased. In the 
beam-power tube, complete transmission of current passed by the screen 
grid to the plate occurs when the plate potential has risen to about 
20 per cent of the screen-grid potential, whereas in the pentode the trans­
mission is not complete until the plate potential has risen to about 50 per 
cent of the screen-grid potential. This results from the behavior of the 
individual electrons, which, in the beam-power tube, are more uniform in 
direction and velocity than in the pentode, in which the electrons are 
strongly deflected by the suppressor grid. 

The beam-power tube is made in small and medium-size metal tubes 
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and in a medium-size glass tube. The beam-power tube is used in many 
ways. It is extensively employed as an audio-power amplifier tube and 
also as a r-f amplifier and oscillator tube. 

2.6. Cathode-ray Tubes. The cathode-ray tube is in a class by itself 
among the vacuum tubes. It makes use of the geometrical form rather 
than the intensity of its electron stream and converts the energy of its 
electron stream into a visual indication. In its commonest application 
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the cathode-ray tube uses its electron beam to show the shape of an 
applied voltage wave as a light trace upon a fluorescent screen. The 
cathode-ray tube is an electronic oscilloscope that produces on a screen 
a light spot that can be deflected in two dimensions. 

The cathode-ray tube is generally housed in a large glass envelope 
shaped like an Erlenmeyer flask. In the neck of the glass envelope is 
located a set of electrodes known as the "electron gun." This gun servos 
to produce a circular beam of electrons that is fired at the large end of 
the envelope, which is covered with a fluorescent material. Also housed 
in the neck of the envelope are deflecting devices that serve to bend the 
beam in horizontal and vertical directions. The fluorescent screen on 
the inside of the large end of the envelope gives off light at the point at 
which the electron beam strikes. 
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In physical size the ordinary cathode-ray tubes range from 10 to 
20 in. in length and have fluorescent screens from 3 to 5 in. in diameter. 
The tubes operate ~-ith a beam-accelerating potential between 800 and 
10,000 volts. The electrode arrangement in a typical cathode-ray tube 
is shown in Fig. 2.8. 

Cathode-ray tubes are principally used to observe electrical wave 
forms. They may also be used to compare frequencies, plot the B-H 
curves of iron, and plot the current-voltage characteristics of vacuum 
tubes. They are extensively employed as indicators of elapsed-time 
intervals in ionosphere height-measuring devices and radar sets. They 
are built in a special form known as the "kinescope" for use as television 

Fm. 2.8.-Typical electrode arrangement in a cathode-ray tube. K, cathode; G, 
control grid ; H, accelerating electrode; F, focusing electrode ; A, final accelerating 
electrode; 0, limiting apertures; B, vertical deflecting plates; C, horizor,tal deflecting 
plates. 

viewing tubes. They have so many uses as measuring and testing devices 
that no radio or electronic laboratory worthy of the name is without 
one. 

2.7. Klystron. The klystron is a newcomer to the group of vacuum 
tubes in use today. It is a special ultra-high-frequency tube that is capa­
ble of generating, detecting, and amplifying radio waves ranging in fre­
quency from 600 to 30,000 me (50 to 1 cm). 

The principle of operation of the klystron amplifier differs from that 
of other vacuum tubes. It makes use of a velocity-modulation principle 
that causes a stream of electrons, which initially has a uniform current 
density, to form in bunches. It is the periodic bunch impact that excites 
the output resonator, from which energy is extracted. This use of a beam 
passing through gaps in closed cavity resonators built into the tube made 
it possible for the klystron to overcome the transit-time limitations that 
the conventional negative-grid tubes encounter at high frequencies. 

A cutaway drawing of an early type of klystron is shown in Fig. 2.9. 
The beam of electrons used in the tube is generated in a catl)ode at one 
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end of the tube. The electrons liberated from this cathode are acceler­
ated toward the main body of the tube, where they pass through a tube 
and then through a set of grids in a cavity resonator. In passing through 
this first resonator some of the electrons arc speeded up and some slowed 
down by an alternating axial electric field. This action, called "velocity 
modulation," causes the electrons to form in bunches by the time they 
pass through the grids of the second resonator, and it is the bunch 

Fm. 2.9.-Cutaway view of a two-resonator klystron oscillator. 

impact here that converts the kinetic energy of the electrons into high­
frequency electromagnetic energy of the second, or catching, resonator. 

A klystron tube may be used as an oscillator by feeding part of the 
output from the output resonator back to the input resonator. The 
tube will oscillate when the total phase shift around the circuit compoStE! 
of the input resonator, the electron beam, the output resonator, and the 
coupling line back to the input resonator is some integral multiple of 
360 deg. Because of this phase requirement it is found that the oscillating 
action is voltage selective; i.e., the tube will oscillate at certain voltages 
but not at others since the phase-angle equivalent of the transit time of 
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the electrons along the beam is involved. In Fig. 2.10 is shown a curve 
of klystron output versus beam voltage. This shows how the tube 
oscillates at certain select bands 
of voltage. The maximum power 
output that can be obtained from 
a klystron is nearly inversely pro­
portional to the frequency for 
which the tube is designed, being 
about 200 watts at 40 cm. 

2.8. Magnetron. The magne­
tron is a vacuum tube whose 
current may be influenced by a 
magnetic field. In certain special Fm. 2.10.-Power output-beam voltage 

characteristics of a two-resonator klystroit 
forms it is useful as an ultra-high- oscillator. This is a picture of an oscillo-
frequency oscillator. As such it scope trace, which shows that oscillations 
may oscillate at wave lengths are selective with beam voltage. 
from 100 to 1 cm. It is capable 
of a continuous power output of several hundred watts and instantane­
ous powers of several thousand kilowatts. 

..... 
C 

~ 
L 
:::, 
I.) 

~0.5 
0.. 
Q) 
> 

Early forms of the tube were 
of the split-anode type. The 
important parts of this type of 
magnetron are the cathode, fre­
quently in the form of a straight 
wire filament, and the anode, in 
the form of a circular plate con­
centric with the cathode and split 
into an even number of similar 
segments. The segments of the 

O 
0
~-i.-----,c-'-::-----'-----,-J,-_..:,,__,__-:-!. plate are operated at the same 

0.5 1.0 1.5 
Relative magnetic field positive d-c potential relative to 

Fm. 2.11.-Cutoff characteristic of a split­
anode magnetron. The curve shows that 
as the axial magnetic field is increased the 
plate current is at first constant and then 
suddenly drops rapidly to zero. This 
results from the electrons becoming pro­
gressively more curved in their paths until 
they finally are unable to reach the plate. 

the cathode, and a magnetic field 
is applied parallel to the tube 
axis. This combination of elec­
tric and magnetic fields causes the 
electronsemittedfrom the cathode 
to move in nearly circular paths 
in the region between cathode and 
anode. 

The radii of the nearly circular electron paths in a magnetron 
depend upon the strength of the radial electric field and the axial mag­
netic field. The radii of the paths decrease as the elect,ric fie.Id i'> 
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decreased or as the magnetic field is increased. Thus if a magnetron 
has its circular plate segments maintained at a constant d-c potential 
and the strength of the axial magnetic field is increased from zero strength 
to a large value, the electrons in the tube will at first move radially from 
the cathode to the plate and then move in paths which are more and more 
strongly curved until finally the magnetic-field strength is reached at 
which the electrons miss the plate entirely. This action is shown in 
Fig. 2.11, in which there is given a plate-current-magnetic-field charac­
teristic and sketches of the associated electron paths. It is seen that 

SYMBOL 
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Fm. 2.12.-Electrode structure of a multianode cavity-resonator magne­
tron. The outer electrode serves as the anode. Each of the hole-and-slot 
combinations acts like a parallel resonant L-C circuit. 

the magnetic field is capable of entirely cutting off the current from the 
plate. 

For operation as a high-frequency oscillator the plate segments are 
made part of resonant circuits, and the magnetic field is adjusted to 
approximately the value that causes the electrons just to graze the plate. 
If any small disturbance occurs, a complex electronic action results 
in which the damped oscillation of the resonant circuit affects the electron 
paths so that some electrons extract energy from the system while others 
give up part of their kinetic energy to the oscillating system. The tube 
can be adjusted so that energy is extracted from the majority of the 
electrons as they graze the plates, and thus powerful oscillations are 
maintained. 

Modern super-high-frequency magnetrons are made in the form of a 
multianode cavity. The basic structure of such magnetrons is shown in 
Fig. 2.12. The cathode is in the form of a cylinder of appreciable diam­
eter located in the center of the structure. The anodes are cut out of 
one piece of metal and have the form of a large circular hole in a block 
with radial slots leading out to smaller circular holes. Electrically, 
each slot and terminating hole are equivalent to a tuned resonant circuit, 
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the slot having a predominantly capacitive action and the terminating 
hole having a predominantly inductive action. One of the resonant 
conditions possible in this equivalent circuit is one in which alternate 
segments of the anode exhibit the same electrical polarity and thus give 
the same action as a split multisegment anode, with the advantage that 
the fields associated with this resonance are confined. Under proper 
conditions of voltage and magnetic-field strength parallel to the long axis 
of the cathode, energy will be transferred from the swarm of gyrating 
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Fm. 2.13.-Current-illumination curves of a typical vacuum 
phot.otubc. The current is linear with the illumination. Al­
though actual currents are quite small, the voltage developed 
across the large series resistors used is ample for operating 
vacuum-tube devices. 

electrons around the anode to the resonant circuit and powerful oscilla­
tions will be sustained. 

2.9. Phototubes. The phototuhe is a vacuum tube that permits 
current to pass through it when light falls upon one of its electrodes. The 
tubes are generally small and contain an electrode in the form of a half 
cylinder coated with some photosensitive material such as caesium oxide. 
Various other light-sensitive materials enable the phototube to respond 
to light of different colors or even to irrnisible radiations. 
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Phototubes are extensively used for counting and sorting devices, 
They may be used to operate doors and drinking fountains, to tum on 
lights, and to provide safety devices for machine operators. They may 
be employed anywhere where the interruption or detection of a beam of 
light is to be correlated with some operation. 

Phototubes are able to operate by virtue of an effect known as 
"photoemission." Certain materials exhibit the property of emitting 
electrons when exposed to light. The number of electrons emitted is 
directly proportional to the intensity of the illumination so that a variable 
light intensity may be translated into a variable electric current or 
potential. Use is made of this linear property in the recording and 
reproduction of sound on film. The sensitivity of a phototube in con­
junction with a voltage amplifier is so great it may be used to study the 
light from stars. A typical set of current-illumination curves of a vacuum 
phototube is given in Fig. 2.13. 



CHAPTER 3 

ELECTRONS AND IONS 

3.1. The Electron. It is the electron that makes vacuum tubes possi­
ble and endows them with their remarkable properties. The electron 
is one of the fundamental particles of matter. It is the lightest particle 
known. It cannot be subdivided into anything smaller than itself. It 
is so small that it cannot be observed directly; all observations of its 
properties must be made in terms of the effects associated with it, such 
effects as the heat generated upon impact of an electron with a stationary 
object or the magnetic field surrounding an electron in motion. 

For most of the purposes of electronics the electron may be considered 
to be a small, dense particle carrying a negative charge of electricity. 
However, it should be borne in mind that this picture of the electron is 
far from adequate. There are some applications in which the electron 
displays more of a "wave" aspect than a "particle" aspect. This is 
the case with the electron microscope, where a high-velocity beam of 
electrons acts as though it were a light ray of very short wave length. 

In the majority of applications the particle aspect of the electron 
predominates, with the following characteristics: 

Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 1066 X 10-31 kg 
Negative charge ........ . ..... .. .. .. .. . . . . 1.6020 X 10-1• coulomb 
Apparent radius .. . ......... . .. . . . . . . ..... 1. 9 X 10-13 cm 

It is seen that the efoctron is very dense and is highly charged. It 
has an apparent density of 0.50 X 1011 g per cm3, which is millions of 
times greater than that of our heaviest metals (the density of iron is 
7.86 g per cm 8

) . Further, if the classic concepts of electrostatics be 
applied t') the electron, it may be thought of as being charged to a 
potential of about 750 kv. 

Electrons are a basic constituent of all matter, being the planetary 
unit of all atoms. No matter can exist without electrons, but electrons 
may exist by themselves. It is the free electrons that are responsible 
for most electrical phenomena. They are the units that carry the cur­
rent in vacuum tubes. They constitute currents in conductors when in 
motion. Their motion in special conductors such as antennas gives rise 
to electromagnetic radiations. They constitute cathode rays and beta 
rays and are emitted from hot bodies. 

19 
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3.2. The Proton. The proton is the companion piece to the electron. 
It is the fundamental particle carrying a positive charge of electricity. 
It, too, is a constituent of all matter, existing as it does in the nucleus 
of all atoms. The vital statistics of the proton are that its charge is the 
same in magnitude as that of the electron but with a positive sign, that 
its mass is 1,845 times that of the electron, and that its apparent diameter 
is a little less than 10-13 cm. The proton is not nearly so much in 
evidence as is the electron in vacuum tubes. It rarely exists as an isolated 
particle. Because of its great mass it has a smaller effect than does the 
electron in determining the characteristics of materials and in constituting 
a current flow. 

3.3. Other Fundamental Particles. Until 1932 the electron and the 
proton were the only fundamental particles known. Then there were 
found a number of other fundamental particles whose rarity and short 
life had hitherto precluded their discovery. 

Among these new particles is the neutron, which is basically a proton 
with no charge. There is also a positron, which is an electron with a 
positive charge. There is some evidence of a neutrino, which is a particle 
of small mass and with no charge. Strangest of all is the mesotron, often 
abbreviated as "meson," which is a particle with about one-tenth the 
mass of the proton and carrying either a positive or a negative charge. 
These particles, however, are of no concern to the electronic engineer since 
they seldom make their appearance in ordinary vacuum tubes. 

Another "particle" that has been known for some time is the photon. 
The photon, though classed as a particle, exhibits a wave nature most of 
the time and is the one particle whose dual nature is most evident. 
It is a packet of electromagnetic energy whose apparent mass is directly 
proportional to the frequency of its wave aspect. It carries no charge. 

3.4. Atoms and Molecules. Electrically neutral combinations of 
electrons and protons constitute atoms according to the atomic theory 
of Rutherford, Bohr, and subsequent workers. The word "atom" is 
derived from the Greek word meaning "indivisible." Atoms are indi­
visible in the sense that they are the smallest bits of matter which main­
tain the properties of the several elements of materials of which they are 
part. There are 92 types of atoms, corresponding to 92 materials 
known as "elements." Combinations of the different atoms form mole­
cules, which are the smallest constituent parts of all other materials 
composing the physical world. 

The basic structure of the atom is believed to be a kind of planetary 
system consisting of a nucleus, which is a group of neutrons and protons, 
and having a group of planetary electrons equal to the number of protons 
in the nucleus. 
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The simplest atom is that of hydrogen. It has 1 nuclear proton 
and 1 planetary electron. To get an idea of the size of such an atom, 
if the proton were 1 cm in radius, the electron would normally be spaced 
a distance of 5 km. The helium atom is the next simplest atom. Its 
nucleus consists of 2 protons and 2 neutrons. It has 2 planetary 
electrons. Other atoms are relatively more complicated. The oxygen 
atom has 8 nuclear protons and 8 nuclear neutrons, whose charge is 
balanced by that of 8 planetary electrons. 

The weight of an atom is determined almost entirely by the sum of 
the number of protons and neutrons in its nucleus. The physical prop­
erties of the atom are determined by the number and arrangement of its 
planetary electrons. The number of the planetary electrons of an atom 
of an element is known as the "atomic number" of that element. The 
order of the elements when listed according to their atomic number is 
very nearly but not exactly the same as the order according to the atomic 
weights. If the elements are arranged in a periodic table according to 
their atomic weights and chemical affinity (valence), as was done by 
Mendelyeev, it is found that elements with similar characteristics are 
grouped in columns of equal valence (see Appendix I for a periodic table 
of the elements). 

The planetary electrons of an atom were shown by Bohr to lie in 
restricted orbits. They were further found to lie in shells about the 
nucleus, each shell having a maximum capacity for electrons. The 
maximum capacity of the successive shells from the nucleus out is 2, 
8, 18, 32, 18, 18, 2. Thus the atom of neon, whose atomic number is 
10 and whose atomic weight is 20.183, has 10 planetary electrons arranged 
with 2 electrons in the first shell and 8 in the second. These 10 electrons 
balance the electrical charge of the nucleus, which consists of 10 protons 
and 12 neutrons. 

The number of electrons in the outermost shell of an atom determines 
its valence and is the principal factor in determining the physical prop­
erties of the atom. Atoms with an outer shell filled to its capacity are 
relatively inactive, while atoms with only 1 electron in their outer 
shell are most active. 

The atomic weights of the elements are taken as relative to that of 
oxygen, which is chosen to be 16. The fact that the atomic weights are 
not integers is due in most cases to the fact that then~ exist atoms of the 
same element with different numbers of neutrons in the nucleus. The 
atomic weight of a sample of an element is then determined by the rela­
tive number of these different atoms. Atoms with the same number of 
planetary electrons but with different numbers of nuclear neutrons are 
known as "isotopes" of the same element. Neon has isotopes with 20, 
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21, and 22 nuclear particles mixed in such a way that the atomic weight 
is 20.183. Hydrogen has isotopes with 0, 1, and 2 nuclear neutrons. 
The first isotope is the common one. The others are the relatively rare 
"heavy hydrogen" isotopes. 

Combinations of the atoms of the elements form molecules. The 
molecule is the smallest particle of a compound which can exist without 
losing the characteristics of that compound. Molecules range in size 
from those of atomic size to a few large enough to be seen with an elec­
tron microscope. The molecules of some elements are not just single 
atoms but groups of two identical atoms. 

3.5. Ions. An ion is a molecule or atom with a charge of electricity 
acquired by the loss or gain of one or more electrons. Electrons in the 
outer shell of an atom are rather loosely bound to the atom and so may 
be dislodged by impact of a particle or by exposure to X rays. Ioniza­
tion of an atom c,f an element does not change it from one element to 
another. This is because the nucleus of the atom is unchanged and the 
form of the nucleus determines the arrangement of the electrons in 
neutral form. 

Ions are important in vacuum tubes because they constitute a cur­
rent when in motion and thus affect the characteristics of tubes, if they 
exist in sufficient number. Since even the most completely evacuated 
tubes contain billions of molecules per cubic centimeter, ions are always 
created by the impact of electrons and depending upon the type of tube 
may be a large factor in determining the tube characteristics. 

Ions are of most importance in certain special tubes that contain 
considerable amounts of a definite gaseous element deliberately introduced 
in great quantities and are an important factor in the tube operation. 



CHAPTER 4 

ELECTRONIC EMISSION 

EvERY vacuum tube depends for its action upon a stream of electrons 
that acts as a carrier of current. As necessary as the stream of electrons 
is the electrode that emits them. Whatever the nature of the tube and 
the arrangement of electrodes, an emitting electrode cannot be dispensed 
with. Even in cold-cathode tubes, one of the electrodes is treated with 
a low-work-function material to facilitate the production of some elec­
trons that will initiate the action. 

In general, the excellence of performance of a given tube depends 
upon the efficiency with which free electrons are produced. When the 
emission fails, the tube is useless. We infer correctly then, that the 
subject of electron emission is worthy of considerable study. 

The types of electronic emission may be listed as follows: 

1. Thermionic, or primary, emission. 
2. Secondary emission. 
3. Photoelectric emission. 
4. Field emission. 

The common feature of all types of emission is that energy is imparted 
to the free electrons in a solid in an amount sufficient to enable them to 
overcome the restraining forces at its surface and thus escape from the 
solid. 

The types of emission differ only in the way in which the escape 
energy is imparted to the free electrons. Thermionic emission occurs 
when a material is heated to incandescence in a vacuum. In this case 
the escape energy is imparted by heating the material. Secondary emis­
sion occurs when a high-velocity electron or ion strikes a material in a 
vacuum and knocks out one or more electrons. In this case the energy 
that enables the free electrons to escape comes from the striking particle. 
Photoelectric emission occurs when energy in the form of light falls upon 
a surface. Field emission occurs at cold surfaces under the influence of 
extremely strong fields. 

All types of emission are most effective in vacuum. If the emission 
did occur in air, the emitted electrons would not get very far through 
the relatively dense surrounding atmosphere. Most metals would burn 
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up in air at the temperatures to which they must be raised to emit sat­
isfactorily. Only primary and secondary emission will be discussed in 
this chapter. Photoelectric emission will be discussed in a separate 
chapter. Field emission is not yet of much practical importance. 

4.1. Theory of Thermionic Emission. Every metal has a crystalline 
structure of its atoms, i.e., the atoms have an orderly arrangement in 
some sort of lattice pattern. The atoms in this lattice structure have 
certain of their outer electrons loosely bound. These loosely bound 
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FIG. 4.1.-Maxwellian and Fermi-Dirac distribution of velocities in 
1 cu mm of solid tungsten. The abscissa gives the relative number 
of electrons in a velocity increment of 10-3 meters per sec in units of 
1010 electrons. 

electrons may move from atom to atom in a relatively unresi:,ricted 
fashion. Such electrons are known as the "free electrons" in the metal 
in that they are not bound to any one atom. The free electrons in a 
metal act much like the molecules in a gas. An increase in temperature 
increases their activity and average velocity. A potential gradient in 
the metal causes them to move progressively in one direction, giving 
rise to a conduction-current flow. 

Because of the atomic restraints it is not expected that the velocity 
distribution in a metal is Mauvellian, as is almost exactly the case for 
gases. The true distribution was found by Fermi and Dirac from quan­
tum-mechanical statistical considerations. For comparison there are 
shown in Fig. 4.1 the Maxwellian and Fermi-Dirac distribution of veloci­
ties. The distinctive feature of the Fermi-Dirac distribution of velocities 
is that at zero temperature only a small fraction of the electrons have 
zero velocity. As temperature increases, the velocity and corresponding 
energy distribution change so that more electrons have higher velocities. 
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The high-velocity electrons that escape from the metal constitute the 
emitted current. 

The Maxwellian distribution of velocities referred to above and 
shown in Fig. 4.1 is one given by the equation 

4x2 

Y = -- ~-z' 
✓,;: 

(4.1) 

This is the general form of the probability y that a particle will have a 
velocity x times the most probable velocity. It applies perfectly for 
most gases but does not give the true picture for electrons in metals. 
For large velocities, however, the Maxwellian and Fermi-Dirac distribu­
tions differ only by a constant. Thus the electrons emitted from an 
incandescent surface do have a Maxwellian distribution, but the energies 
of the electrons are (at 3000°K) about 1,000 times those predicted from 
the simple Maxwellian theory. Upon converting Eq. (4.1) to a form 
involving energy instead of velocity and taking the derivative properly, 

the fraction !!.. of the emitted electrons that can move against a retarding 
no 

field of V volts is given by 

where - e is charge of the electron, 1.602 X 10-19 coulomb 
k is Boltzmann's constant, 1.380 X 10-23 watt-sec per °K 
Tis absolute temperature, 273+ °C 

(4.2) 

A nomographic chart of Eq. (4.2) is given in Fig. 4.2. From this it is 
seen that about 50 per cent of the electrons emitted from a cathode at 
1500°K, typical oxide operating temperature, have velocities greater 
than 0.09 volt. 

Work Function. The surface restraints that prevent the majority 
of the free electrons in a metal from leaving it are the electrostatic forces 
produced by the charges in the atoms. These come not only from the 
residual positive charges but also from a rearrangement of the negative 
charges. A free electron must have a certain minimum kinetic energy 
before it can tear itself free from these forces. The work per unit charge 
required to free an electron from the influence of the charges in the metal 
and thus to escape from it is known as the work function of the metal. 
The work function is usually expressed in volts. 

The electrostatic forces within a metal are rather complex and not 
completely understood. Indications are that the forces are small within 
the metal, reach a maximum several atomic diameters outside the metal, 
and then decrease according to an inverse-Bquare law at greater dis-
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tances, where an image action manifests itself. It would be expected 
that the work function would decrease as the distance between the 
atoms in the crystalline structure increased. This turns out to be the 
case, and experimentally, a curve of the work function of the alkali 
metals of the first column of the periodic table plotted against their 
atomic spacing is a smooth one, nearly inversely proportional to the 
square root of the atomic spacing, as may be seen in Fig. 4.3. Conclusions 
for other metals can hardly be drawn, for there are so few having the 
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FIG. 4.3.-Work function of the alkali metals as a func­
tion of atomic spacing . The curve shows that for a 
given crystal structure, the furth er the atoms are apart 
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same valence and crystalline structure. Since the atomic spacing is a 
periodic function of the atomic number, the work function is also a 
periodic function of the atomic number. 

No completely successful theoretical determination of the work func­
tion has apparently as yet been made. The general nature of the restrain­
ing forces is probably very much like that shown in Fig. 4.4. Within 
the metal the force has an average value of zero. Near the surface there 
a.re the attractive forces of atoms that have lost an electron by emission 
and forces due to rearrangement of residual charges. The forces are 
undoubtedly greatest near the surface, where the force-producing 
charges are closest and yet not symmetrically disposed with respect to 
the surface. Well outside the surface the force is probably one that 
varies with the inverse square of the distance from the metal, for in this 
rP,g:ion the charges in the metal arrange themselves so as to give the effect 
of an image charge of the electron escaping from the metal. The force 
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cannot be inverse-square law all the way out from the surface, for then 
an infinite energy would be needed for escape. It may be concluded that 
the work function depends in some complex way upon the atomic spac­
ing, crystal structure, and valence of the metal. 

The work function of materials is most accurately determined experi­
mentally from observations of the photoele~tric emission of the material , 
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but it may also be deduced from the thermionic-emission characteristics. 
A list of the work functions of the metal emitters most often used is 
given in Table l,1, 2 

1 Humrns, A. L., and L. A. DuBRIDGE, "Photoelectric Emission Phenomena," 
McGraw-Hill, New York, 1932. 

1 "BECKER, J. A., Thermionic Emission and Adsorption, Rev. Modern Phys., vol 
-;, pp. 95-128, April, 1935. 



Ag 
Al 
Au 
Ba 
Bi 
C 
Ca 
Cd 
Cs 
Cu 
Fe 
Hg 
K 
Li 
Mg 
Mo 
Na 
Ni 
Pb 
Pt 
Rb 
Sr 
Ta 
Th 
w 
Zn 
Zr 

ELECTHONIC EMISSION 

TABLE I 
EMISSION CONSTANTS OF THE METALS 

Probable c/>r, * Average c/>P, t Melting temp., 
volts volts oc 

-········- - ·-

4.7 4.6 960.5 
3.0 3.0 659.7 
4.8 4.78 1063 
2.52 850 
4.1 4.2 271.3 
4.7 4.77 >3500 
3.2 3.0 810 
4.1 4.0 320.9 
1.8 1.67 28.5 
4.1 4.3 1083 
4.7 4.74 1535 
4.5 4.53 -38.87 
1.8 1.90 62.3 
2.2 2.21 186.0 
2.4 2.43 651.0 
4.3 4.15 2620 
1.9 2.0 97.5 
5.0 5.01 1455 
4.0 3.9 327.4 
6.0 6.3 1773.5 
1.8 1.82 38.5 
2.1 2.06 800 
4.1 4.13 3269 
3.4 3.50 1845 
4.52 4.61 3370 
8.3 3.44 419 .47 
4.1 3.73 1900 

* Work function as determined by thermionic measurements. 
t Work function as determined by photoelectric measurements. 

29 

Lattice const, 
angstrom units 

4.08 
4.04 
4.07 
5.015 
4.75 
2.455 
5.56 
2.97 
6.05 
3.61 
2.90 

5.33 
3.46 
3.20 
3.14 
4.24 
2.66 
4.94 
3.91 
5.62 
6.05 
3.28 
5.07 
3.16 
2.66 
3.22 

The Emission Equation. In view of the foregoing discussion it woulc 
be expected that the emission from a metal would depend upon its tempera­
ture and upon the work function. Richardson 1 and Dushman2 haw 

1 RICHARDSON, 0. W., The Distribution of the Molecules of a Gas in a Field of 
Force, Phil. Mag., vol. 28 (No. 5), pp. 633-647, 1914. 

'l. DusHMAN, S., Electron Emission from Metals as a Function of Temperature, 
Phys. Rev., vol. 21 (No. 6), pp. 623-636, 1923. See also the summarizing source 
article, S. Dushman, Thermionic Emission, Rev. Modern Phys., vol. 2, pp. 381-476, 
October, 1930, which gives a comprehensive survey of the subject as developed to tha~ 
date. See also the book, A. L. Riemann, "Thermionic Emission," Wiley, New York, 
1934. 
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shown this to be the case and have shown specifically that the thermionic: 
emission from a metal is given by 
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Fm. 4.5.-Characteristics of the common emitters shown 
as a curve of log J / T• against 1 / T- This type of plot 
demonstrates the validity of the Richardson-Dushman 
equation (4.3). The y-axis intercepts give the emission 
constant A. The slope of the lines is proportional to 
the work function of the emitter. 

where J is current density, amperes per cm2 

(4.3) 

A is 120.4 amperes per cm1 per deg2, a universal theoretical constant 
T is absolute temperature, °K (273 + °C) 
bo is temperature equivalent of the work function, ll,600</>o,°K 

</>o is work function of the metal, volts 
Equation ( 4.3) may be derived froIP ~ither thermodynamic or quantum-
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mechanical considerations. The resulting equation is the same in either 
case. 

From the form of the emission equation (4.3) it is seen that if the 

logarithm of ;
2 

be plotted against the reciprocal of T there will result a 

straight line whose slope is -bo and whose y-axis intercept is ln., A. The 
correctness of the emission equation has been verified by so plotting 
experimentally determined results. It is found in all cases that the 
results produce a straight line. A group of such curves for common 
emitters is given in Fig. 4.5. In this figure those lines with the lowest 
slope correspond to metals with the lowest work function. Theoretically, 
the intercept should be 2.08, corresponding to the log 10120.4. Actually, 
it is about 1. 78, corresponding to a value of A of 60 instead of 120.4 for 
most of the pure metals. Values of A are found higher as well as lower 
than the theoretical values so that the theory is not discredited by this 
discrepancy. There is some evidence that the work function is not 
entirely independent of temperature as has been assumed in the deriva­
tion of the emission equation. The differences in the value of the work 
function as determined by thermionic and photoelectric methods may 
possibly be due to temperature. A decrease in the work function of 6 
parts per 100,000 per degree would cause the observed discrepancy in 
the constant A. 

The exponential term in the emission equation accounts for most of 
the variation of emission with temperature. The variation with the T 2 

term is so small that the correctness of the exponent 2 can hardly be 
verified experimentally. In the case of tungsten at 2500°K a 1 per ceat 
change in temperature changes the T 2 term by 2 per cent but changes the 
exponential term by 20 per cent. This causes the emission-temperature 
function to be one of the most rapidly varying functions found in 
nature. Doubling the temperature may increase the emission by a factor 
of 107• Halving the work function will have nearly the same effect as 
doubling. 

The quantities of the curves of Fig. 4.5 are not in very convenient 
form for ordinary use, and therefore a better method of representing the 
emission characteristics of materials is sought. It is possible to plot 
emission current against temperature directly as in Fig. 4.6, but the 
variation of current with temperature is so rapid that such a curve is not 
very satisfactory. It would also be possible to plot emission against 
heating power by making use of the fact that at the high temperatures 
required for emission most of the power is lost through radiation accord­
ing to the Stefan-Boltzmann law. 
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P = KeR1'4 (4.4) 

where Pis radiated power, watts per cm2 

K is 5.73 X 10-12 watt per cm2 per deg4, a universal constant 
known as the "Stefan-Boltzmann constant" 

eR is radiation efficiency as fractional radiation of a black body or 
perfect radiator 

Such a plot gives curves that are nearly but not quite straight lines because 
of the two temperature factors in the thermionic-emission equation. It 
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Fm. 4.6.-The emission-current density of a tungsten 
emitter as a function of temperature. 

is possible, however, to warp the lines of the emission scale to take account 
of the nonuniform temperature variation and get a straight-line plot as 
shown in Fig. 4.7. The coordinate paper used in Fig. 4.7 is known as 
"power-emission paper." On it curves of emission against heating 
power are straight lines to the extent that the radiation efficiency of the 
emitter remains constant with temperature. Contours of emission effi­
ciency in milliamperes per watt are also readily drawn. Since heat-
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radiation efficiency varies rather slowly with temperature, as shown in 
Fig. 4.8, the emission-power curves can be extrapolated as straight lines 
with considerable assurance. Radiation efficiency is defined as the per 
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cent of black-body, or perfect, radiation. Black-body radiation as given 
by Eq. (4.4) is shown in Fig. 4.9. Power-emission paper is manufactured 
and sold by the Keuffel and Esser Company. 
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Types of Emitter.-Because of the dependence of emission upon 
temperature and the work function it is not necessarily true that the 
metal with the lowest work function is the best emitter. This is shown 
by the case of caesium, which has the lowest work function of all the 
metals, 1.8 volts. It cannot be made to give much thermionic emission 
because it can be raised only to 300°K, slightly over average room tem­
perature, before it melts. On the other hand, tungsten, which has a 
rather high work function, 4.52 volts, has the highest melting temperature 
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FIG. 4.8.-The radiation efficiency of various metals used in vacuum­
tube construction as a function of temperature. Efficiency is given 
as a fraction of black-body radia tion, which is shown in Fig. 4.9. 

of all the metals, 3655°K, and as a result gives the highest emission of all 
the pure metals just below its melting temperature. Caesium, however, 
is preferred for photoelectric emission and secondary emission where 
temperature is not a factor. 

It has been found that it is possible to raise some metals to tempera­
tures higher than their melting temperatures in the pure state by using 
them in various chemical and physical combinations. Thus a monatomic 
layer of thorium on tungsten can be operated at or above the melting 
temperature of thorium itself. Also, it has been found that small bits 
of the pure metal can be made to diffuse out of an oxide in the case of 
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the rare-earth metals so that advantage can be taken of the low work 
function of these metals, which would otherwise melt at low temperatures. 

From the above remarks it is seen that three classes of emitters exist. 
They are 

1. Pure metals. 
2. Atomic-film emitters. 
3. Oxide emitters. 
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FIG. 4.9.-Thc thermal radiation of a black body or ideal radiator as a function 
of temperature as given by the Stefan-Boltzmann law of Eq. (4.4). 

These different types of thermionic emitters will now be discussed 
separately. 

4.2. Emission of Pure Metals. Tungsten. The pure metals follow 
the Richardson-Dushman emission equation as closely as can be deter­
mined experimentally. In general, the metals with suitable, physical 
characteristics for emission have a relatively high work function and 
so even at best are not very good emitters. Of all the metals tungsten 
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is the most extensively used because it can be raised to a higher tempera­
ture without melting than any other metal. Although tungsten has a 
desirable high melting temperature, its other physical characteristics are 
less desirable. It is a hard metal to work because of its crystalline 
structure. It was not until 1908, when Coolidge discovered that tung­
sten becomes ductile when extensively worked, that it became practical 
to use the metal at all. Tungsten cannot be drawn into wire form as 
can most metals but must be hammered into shape, a process known 
&s "swaging." 

The emission characteristics of tungsten have been extensively 
studied, and more is known of its thermionic behavior than is known of 
any other metal. 1

•
2 

The principal characteristics of tungsten as given by Jones and 
Langmuir are recorded in Table II. The data in this table are for a wire 
of unit length and unit diameter. The characteristics for any other 
diameter and length are readily determined by the dimensional equations 
given. The principal features of tungsten emission are given in the 
curves of Fig. 4.10. An example of the use of Table II is given in Prob. 
4.3. 

Because of its relatively low emission, tungsten is not used as an 
emitter unless the application is such that other emitters cannot be used. 
Tungsten is used almost exclusively for filaments of tubes with plate 
potentials higher than 4,QOO volts. This is because other emitters can­
not stand the positive-ion bombardment at energies corresponding to 
this high potential. The positive ions referred to have their origin in 
residual gases in the tube. All other emitters have their emission 
impaired when subjected to bombardment by these high-energy particles. 
Except for the brittleness caused by crystallization at high temperatures, 
tungsten filaments are more rugged than any other. Like all emitters, 
tungsten is subject to reduction of emission from contamination by 
various gases. Tungsten cleans up more readily by heating or bombard­
ment than any other material. 

Tantalum. The only other pure-metal emitter of any importance is 
tantalum. Tantalum cannot be heated to as high a temperature as 
tungsten because its melting temperature is 3300°K. However, the 
work function of tantalum is relatively low, being 4.1 volts against 4.53 
volts for tungsten, so that its emission is at least ten times that from 

1 JoNES, H. A., and I. LANGMUIR, The Characteristics of Tungsten Filaments as 
Functions of Temperature, Gen. Elec. Rev., vol. 30, Part I, pp. 310--319, .Tune; 
Part II, pp. 354-361, July; Part III, pp. 408-412, August, 1927. 

2 FORSYTHE, W. E., and A. G. WORTHING, The Properties of Tungsten and the 
Characteristics of Tungsten Lamps, Astrophys. Jour., vol. 61, pp. 146-185. 
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T ABLE II 
SPECIFIC CHARACTEH.ISTICS OF IDEAL TUNGSTEN FILAME NTS* 

(For a wire 1 cm in length and 1 cm in diameter) 

V' X 10•, 
M' M R'r 

W' ~ 
R' X IO•, I' Ir v v'iI I' I, Rtx 101, 

1 aH ' -·y-- X I O', 'zit' R '2 p~O' 
T , °K ' Id e,za' 

g per cm2 per Rr a mps per watts per cm 2 
ohm-cm cm% 

Yol ts per amp per cmz sec, Rua0 

cm>2 eva poration 

- - -

273 .. . .... ..... 6 . 37 · · · ···· · · . . . . . . . . . ... ...... .. ... . . . ... .... 0. 911 

293 0 .0 6 .99 0. 0 0. 0 ·· ·· ······· ··· .... ...... 1.00 

300 0 .000100 7 .20 3. 727 0. 02683 ···· ·· ·· ····· · ······ ···· 1.03 

400 0 .00624 10 . 26 24.67 0.2530 ·· ·· ·· ··· ·· ··· ... .... ... 1 . 467 

500 0 .0305 13 .45 47 .62 0. 6404 ..... ..... .... . .... ..... 1. 924 

600 0 .0954 16 .85 75.25 1.268 ··· ·· ··· · ·· ··· . . ... . . . . . 2 . 41 

700 0. 240 20 .49 108. 2 2. 218 · · · · ·· · · · ·· · · · ·· ···· · ·· · 4. 93 

800 0 .530 24 . 19 148.0 3.581 · ··· · · · ·· · · ·· · ·· ·· · · · ·· · 3. 46 

900 l. 04 1 27.94 193 . 1 5.393 · ··· ·· ··· · ·· · · . . .. . . . ... 4.00 

1,000 1. 891 3 1. 74 244. 1 7 . 749 3 . 36 X JO - " I . 16 X 10 - 83 4.54 

l , 100 3 .223 35 .58 301.0 10. 71 4. 77 X 10- 13 6 .81 X 10 - ao 5. 08 

1 ,200 5.2 10 39.46 363.4 
! 

14 . 34 3 . 06 X 10-11 1.01 X 10-20 5 .65 

1 ,300 8.060 43.40 430 .9 18. 70 1. 01 X 10- • 4 . 22x 10 - u 6.22 

1 ,400 12 .01 47 .37 503 .5 23. 85 2 .08 X 10- • 7 .88 X 10 · 22 6. 78 

1 ,500 17 .33 51. 40 580. 6 29. 85 2 .87 X 10·-1 7 .42 X 10· 20 7 . 36 

1 ,600 24 .32 55 .46 662. 2 36. 73 2.91 X 10-• 3 .92X l O-l8 7 .93 

1,700 33.28 59 . 58 747 .3 44.52 2 . 22 X 10- , 1 .31 X 10-" 8.52 

1, 800 44. 54 63. 74 836.0 53. 28 1.40 X 10-• 2 .97 X 10-15 9. 12 

l ,9JO 58 . 45 67.94 927 . 4 63 . 02 7 . 15 X 10-·• 4.62 X 10- 14 9 . 72 

2 ,000 75 .37 72 . 19 1 ,022 73. 75 3 . 15 X 10- a 5 . 51 X 10-13 10 . 33 

2 , 100 95.69 76 . 49 1 ,119 85.57 1 .23 X 10- • 4 .95 X 10-n 10 .93 

2, 200 119. 8 80 .83 1 ,217 98. 40 4. 17 X 10-• 3 .92 X 10-11 11.57 

2,300 148.2 8.5 . 22 1 , 3 19 11 2. 4 1. 28 X 10-1 2 . 45 X 10-IO 12 . 19 

2 ,400 181 .2 89 .65 1 , 422 127. 5 0 ,364 1 .37 X 10·-• 12. 83 

2 , 500 219. 3 94. 13 1 ,526 143.6 0 .935 6.36 X 10-• 13.47 

2, 600 263.0 98. 66 1 ,632 161.1 2.25 2 . 76 X 10-, 14 .12 

2 ,700 3 12 . 7 103 . 22 1 ,741 179. 7 5. 12 9 .95 X 10-7 14. 76 

2 ,800 368 .9 107. 85 1 , 849 199.5 11.11 3 .51 X 10-7 15. 43 

2 ,900 432.4 112 . 51 1,961 220. 6 22 . 95 1 .08 X 10- • 16. 10 

3, 000 503. 5 117 .21 2 ,072 243. 0 44.40 3.04 X 10-, 16 . 77 

3 , 100 583 .0 121 . 95 2, 187 266. 7 83. 0 8 . 35 X 10·-• 17 . 46 

3 ,200 671 .5 126. 76 2 , 301 291. 7 150 .2 2.09 X 10- 5 18. 15 

3 ,300 769 . 7 131. 60 2 , 418 318. 3 265.2 5 .02 X 10-• 18. 83 

ll , 400 878.3 136.49 2,537 346.2 446 . 0 1 . 12 X 10-• 19 .53 

3 ,500 998 .0 141. 42 2 ,657 375. 7 732. 0 2 .38 X 10- • 20. 24 

3 ,600 l , 130 146. 40 2 ,777 406.7 1 , 173 4.86 X 10-1 20.95 

3 ,655 1, 202 149 . 15 2 ,838 423. 4 1 , 505 7 . 15 X 10-• ! 21. 34 
i 

• The values given are taken from II. A. Jones and I. Langmuir. The Characteris t ics of Tungsten 
Filaments, Gen. Eloc. Rev., vol. 30, pp. 3 12-313, 1927 , T able I . T he notation of Jones and La ngmuir is 
retained in this t able. 
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tungsten at any temperature less than 2500°K. Tantalum has the advan­
tage over tungsten that it can be worked in sheet form to produce 
specially shaped cathodes, and the like. A disadvantage is that it is 
easily contaminated by residual gases, which form oxides that greatly 
reduce the emission. 

4.3. Atomic-film Emitters. It is possible to get emission higher than 
that from pure metals from an atomic film of one metal on another. 
Of the various combinations that are possible, the most extensively used 
is that of thorium on tungsten. It was discovered by Langmuir and 
Rogers that the small amount of thorium put into tungsten to reduce 
the crystallization gave rise to very high emission under certain conditions. 
What apparently happens is that a certain amount of thorium in the 
metal diffuses to the surface, where it emits much as thorium would, 
with the advantage that the thorium can be heated above its own melting 
temperature and that the work function is reduced by the redistribution 
of charges in the tungsten and surface layer of thorium. 

Thorium was originally added to tungsten to reduce crystallization. 
As now added to increase the emission, the amount is about 1½ per cent, 
and this amount is quite critical. If more than this amount is added, 
the tungsten wire is too hard to work. If less is added, there may not 
be enough to produce high emission. The thorium is added in the form 
of thoria (thorium oxide, Th02). 

A rather intricate schedule of operations is required to produce and 
activate a film of thorium on tungsten. The process includes the fol­
lowing steps: 

l. Reduction of Thoria to M etallic Thorium. This is achieved by 
heating the filament to 2800°K for 1 or 2 min. During this time, most 
of the thorium oxide is reduced to thorium, and such thorium as reaches 
the surf ace evaporates. If the emission is measured at this point, it 
will be found to be very nearly the emission of pure tungsten. 

2. Diffusion of Metallic Thorium to the Surf ace. This takes place as 
the filament is held at a temperature of 2100°K for a period of 15 to 
30 min. During this time the emission increases by a factor of about 
1,000. The explanation of this behavior is that metallic thorium dif­
fuses to the surface, where it builds up a monatomic layer of thorium. 
Studies with the electron microscope1 show that the thorium arrives at 
the surface both through pores in the tungsten and at the grain boundaries, 
from which places it spreads over the surf ace. At this reduced tempera­
ture the evaporation is not very large. In the range of temperatures 
between 2100 and 2300°K the thorium diffuses to the surface faster than 

1 BRUCHE, E., and H. MAHL, Ueber das Emissions bild von thorierten Volfram und 
thoriertem Molybdii.n, Zeit. fur Tech. Phya., vol. 16, pp. 623-627, December, 1935. 
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it evaporates, so that this is a suitable range for activation. In this 
range of temperature the percentage of the surface covered varies from 
20 to 85 per cent, decreasing as temperature increases as shown in Fig. 
4.11. The final layer of thorium that forms is believed to be monatomic. 

3. Operation. After the above treatment the filament temperature is 
reduced to 1900°K, where it may be operated for long periods of time in 
a very stable fashion. At this temperature, both the diffusion and 
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PIG. 4.11 .-The emission of thoriated tungsten as a 
function of temperature. 0 indicates operating range 
of t emperatures ; A, activation range; D, diffusion 
range, and R, reduction range. 

evaporation are low, but there is a sufficient preponderance of diffusion 
to maintain a good emitting surface. Any temperature below 1900°K 
is suitable for operation. At this temperature, the tungsten surface is 
about 85 per cent covered by thorium, and the life of the coating is 
several thousand hours. If the temperature is reduced, the effective 
work function is decreased, the life is increased, the percentage surface 
coverage is increased, but the emission is decreased. 

It is interesting to note that the thoriated tungsten filaments are 
usually operated at 1900°K, which is nearly the melting temperature of 
thorium, something that could not be done with the pure metal because 
of its softness at this high temperature. Also, the work function of 
thoriated tungsten filaments is 2.6 volts for a 100 per cent covered sur­
face, and this work function is lower than the work function either of 
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tungsten, 4.51 volts, or of thorium, 3.4 volts. The work function of 
thoriated tungsten is a linear function of the surface coverage given by 
cf, = 4.51 - 1.96 volts, where 6 is the fraction of the tungsten surface 
covered by thorium. The reason why the work function is reduced by 
having the metals in combination is that most of the electrons in the 
thorium layer are drawn toward the tungsten base. This produces a 
dipole layer on the surface, with its positive end outward. This means 
that in most of the surface region the electrostatic forces are outward, 
opposing the image forces and thus reducing the work function. 

Thoriated tungsten surfaces are always carbonized to increase the 
life. It has been found that if some of the tungsten is converted to 
tungsten carbide (W2C) the evaporation of thorium from its surface is 
greatly reduced.1 The rate of evaporation of thorium from a tungsten 
carbide surface at 2200°K is only about one-sixth of that from an uncar­
bonized surface at this temperature. Carbonization may be achieved 
by heating the filament to a temperature of 1600°K in a vapor of some 
hydrocarbon such as naphthalene or acetylene. It may also be achieved 
by heating the filament to red heat in an atmosphere of hydrogen while 
in contact with a carbon surface. As the filament is converted to tung­
sten carbide, its electrical conductance decreases until when totally con­
verted it is about 6 per cent of the original value. The electrical resist­
ance is therefore an excellent index of the degree of conversion. In prac­
tice, it is found that the conversion cannot be carried beyond the point 
where the conductance is reduced to 80 per cent of its original value, for 
the tungsten carbide is so brittle that the filament would be dangerously 
weakened by further action. 

The fact that the layer of thorium on tungsten is monatomic is evi­
denced by at least two aspects of the behavior of the composite emitter 
surface. (1) If the filament is deactivated by heating to a higher tem­
perature after having been activated, the manner in which the emission 
reduces with time is independent of the length of time the film has been 
activated. This indicates that the activation beyond a certain point 
does not add any more emitting material to the surface, which can be the 
case only if the layer is monatomic and surplus atoms are lost by evapora­
tion. (2) There is no discontinuity in the emission characteristics during 
the activation process. 

Monatomic films other than thorium on tungsten may be used. It is 
found that they are not as stable as a thorium layer because of more 
rapid diffusion and evaporation, and hence they are not much used. 
Curves showing the emission characteristics of various combinations are 

1 KOLLER, L. R. , "The Physics of Electron Tubes," 1st ed., McGraw-Hill, New 
York, 1934. 
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shown in Fig. 4.12. In this figure the notation 0-W means that the 
emitting metal is on an oxidized tungsten surface. 

4.4. Oxide Emitters. In 1904, W ehnelt discovered that copious 
electron emission could be obtained from alkaline-earth oxide coatings. 
The entire development of small vacuum tubes is based upon this dis­
covery, for oxide coatings are used almost exclusively as a source of 
emission in them. The alkaline-earth metals that are readily available 
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Frn. 4.12.-The emission of monatomic films on tungsten. (After 
Dushman.) 

are barium, strontium, and calcium, and it is their oxides that have been 
found to give such high emission. Modern oxide coatings are usually 
a half-and-half mixture of the oxides of barium and strontium. Such a 
coating will give high emission at low temperatures with a high thermal 
efficiency; thus at 1000°K an emission of 100 ma per cm2 at an efficiency 
of 20 ma per watt input is readily obtained. This is about the same 
emission ae is given by a tungsten filament at 2300°K, but the emission 
efficiency here is only 1 ma per watt. The oxide coatings may be applied 
either to an indirectly heated cathode surface or directly to a filament. 
They are particularly well adapted to making specially shaped unipo­
tential cathodes. 

Theory of Oxide Emission. Oxide emission has been the subject of 
extensive study for the last 30 years though it has not been until recently 
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that an explanation of the action has been available in fairly complete 
form. 1- 5 

The accumulated evidence ~ndicates that the emission takes place from 
particles of free metal on the surface of the oxide coating. The free 
metal is made available by the following mechanisms: 

I. Chemical reaction of the oxide with the core metal. 
2. Electrolytic reduction by the gradient of potential through the 

oxide coating. 
3. Reduction of the oxide by positive-ion bombardment. 

It was discovered early that the core metal played a part in the elec­
tron emission. It was even believed that electrons were liberated at the 
core. This was disproved by showing that there was no emission from 
the core metal when the coating was removed by mechanical shock. 
Further, the emission was shown to be independent of the size and shape 
of the core. Also, the photoelectric work function of the oxide surf ace 
was the same as the thermionic work function. However, the most 
conclusive evidence that the emission is from the surface is that the same 
emission characteristics are obtained from an oxide coating if metal is 
vaporized onto the surface as is obtained by the normal process of activa­
tion. Different core metals do, however, exhibit different effects upon 
the emission. In the order of their reaction titanium, tantulum, nickel, 
and molybdenum will react with the alkaline-earth oxides to produce 
core-metal oxide and free alkaline earth. The action is evidenced by the 
fact that oxides can be activated by heating alone. The titanium reac­
tion is probably responsible for the excellent performance obtained with 
cores of "Konel" metal, which is an alloy of nickel, iron, cobalt, and 
titanium. The metal most used for core metals is nickel, which is pre­
ferred because of its excellent physical properties and low cost. 

Free alkaline-earth metal is also made available by the electrolytic 
action associated with the passage of current through the coating. The 
earth oxides dissociate under the usual condition of polarity. The metal 
ion goes to the core, and the oxygen ion is liberated. This action can 
be detected by the liberation of oxygen. 

Dissociation of the oxides is also caused by positive-ion bombardment. 
1 BLEWETT, J.P., Properties of Oxide Coated Cathodes, Jour. Appl. Phys., vol. 10, 

Part I, October, 1939, pp. 668-679; Part II, pp. 831- 848, December, 1939. 
2 DusHMAN, S., Thermionic Emission, Rev. Modern Phys., vol. 2, pp. 381-476, 

October, 1930. 
3 RIEMANN, op. cit. 
4 BECKER, op. cit, 
5 BLEWETT, J . P., Oxide Coated Cathode Literature, 1940-1945, Jour. Appl. Phys., 

vol. 17, pp. 643-647, August, 1946. 
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Even in the best vacuums there are enough ions present to give an appre­
ciable action. The fact that activation is greatly facilitated by applica­
tion of a positive potential to the tube in processing is considered sufficient 
evidence of the existence of this action. 

As with the atomic-film emitters the resultant work function is lower 
than that of the pure metals alone, and these are already very low. 
Reported values of the work function of oxides have shown a tremendous 
variation until recently, when improved vacuum techniques and a better 
understanding of the mechanism have given rise to some fairly consistent 
values. The work functions of the oxides are now believed to lie within 
25 per cent of the following values: 

BaO 
SrO 
CaO 

BaO + SrO 

1.1 volts 
1.4 volts 
1.9 volts 
1.0 volts 

Emission from the combination of barium and strontium oxides is 
seen to be better than from either one alone. The reduction in work 
function over that of the pure metals is again probably due to an elec­
trical double layer formed by a monatomic coating of the pure metal on 
the oxide. Values of the emission constant A also show a great range of 
variation as reported by various observers. It has been found that both 
the emission constant and the work function change with the degree of 
activation of the oxide coatings. Both decrease with activation, and 
experimentally it is found that the work function is a linear function 
of the logarithm of the emission constant. Properly speaking, it is not 
correct to ascribe an emission constant to oxide coatings, for the emission 
law in this case is slightly different from the Richardson-Dushman law. 1 

An equivalent emission constant is of the order of 0.01 amperes per cm2 

per deg. 
Electron-microscope studies of oxide emission show that there is no 

relation between surface irregularities and emission. 2 Variations in 
work function are observed with orientation of crystal faces. The 
emission surface does not change much with degree of activation though 
the emission may change greatly. Emission is improved by reducing 
oxide particle size, as may be done by using colloidal particles. 

In operation, an oxide cathode has to establish an equilibrium between 
rate of production of free emitting metal and evaporation of the same, 
This means the establishment of an equilibrium between electrolysis, 
diffusion, and evaporation. This latter will be disturbed if the tempera­
ture of the oxide or the amount of current is changed. Under normal 

1 BuiWETT, Properties of Oxide Coated Cathodes, Part I, op. cit. 
2 HEINZE, W., and S. WAGENER, Vorgange bei Aktivierung von Oxydkathoden, 

Zeit.jur Tech. Phys., vol. 17 (No, 12), pp, (\45-653, 1936. 
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conditions the equilibrium adjusts itself to the current drawn so quickly 
that no change is evident. If, however, the cathode temperature is low 
or if the emission is partly contaminated or partly exhausted, there will 
be evident an adjustment of emission over a period of seconds or even 
minutes as the current drawn is suddenly changed. 

The adjustment is of the following nature: If the voltage on a tube is 
increased, the current immediately increases and then drops slowly, 
coming to rest at a value between the previous and initial value. If the 
voltage is decreased, the current will immediately decrease and then 
slowly rise to a value between the previous and initial value. 

Activation of Oxide Emitters. Since the alkaline-earth oxides are not 
stable in air, the coating must be applied to the cathode or filament in 
the form of a carbonate or hydroxide. The carbonates are most exten­
sively used, being held to the surface with an organic binder. Coatings 
of a thickness of 0.010 to 0.020 in. work well. When a coating has been 
applied and the tube evacuated, the coating is activated by first heating 
it to a temperature of about 1500°K for a few minutes. This reduces the 
carbonates to oxides, and during this time copious CO 2 is evolved. 
Considerable thermal reduction also occurs, with attendant evaporation 
of liberated metal. The oxide coating is then operated at a temperature 
of about 1000°K with a potential of about 100 volts applied to an adjacent 
electrode through a protective resistor. Electrolysis and positive-ion 
bombardment then occur, and the emission will build up slowly to a 
final value, when the filament will be ready for use. 

Various other methods of applying coatings may be used. Heating 
in air is recommended to eliminate the organic binder. For a water 
paste the coating should be baked in an inactive gas to get good adherence. 
Hydroxides, which are very good for coating tungsten, may be dipped 
and then baked in air to get a so-called "combined coating." 

Specific Emission Characteristics. The lines of Fig. 4.5 show the 
behavior of oxide coatings in comparison with other emitters. The low 
work function is evident from the small negative slope of the curve. 
Emission as a function of power is shown in Fig. 4.7 in contrast with 
other emitters. The higher emission efficiencies are evident. The 
emission obtainable from oxide coatings has increased with the years. 
This may continue, though an increase over present values by more than 
a factor of 10 is not probable. Some comparative emission efficiencies 
are 

Ma per Cm1 per Watt 
Pure tungsten filament........................ 2-10 
Thoriated tungsten filaments. . . . . . . . . . . . . . . . . . 5--100 
Oxide-coated indirectly heated cathodes....... . . 10-200 
Oxide-coated filaments. . . . . . . . . . . . . . . . . . . . . . . . 200-1,000 
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Under normal conditions the life of an oxide coating should be several 
thousand hours. Cessation of emission is due to exhaustion of free metal 
in the oxide. In mixed coatings there is a preferential evaporation of the 
barium, which finally leaves the relatively less efficient strontium to give 
a greatly reduced emission. 

Oxide coatings are more easily damaged or poisoned than any other 
type of coating. They are particularly susceptible to poisoning by 
oxygen. Emission may be reduced by several powers of 10 by the pres­
ence of oxygen at a pressure of 10-4 mm of mercury, while a pressure of 
10-3 mm will inhibit emission completely. Oxide coatings are seldom 
used on tubes where they will be subjected to bombardment of more than 
1,000 volts. Bombardment by particles of higher energy will disintegrate 
an oxide coating completely. 

Transient Emission. The monatomic layer of barium of the oxide 
coating has tremendous instantaneous-emission potentialities. Such a 
layer may yield instantaneous emission as great as 100 amperes per 
cm2• When short-time high voltages are applied, such large emission 
may be realized. 1•2 The high voltage exhausts the available emission in a 
time of the order of milliseconds. When this happens, the supply of 
free barium must be resupplied through processes of reduction and dif­
fusion. Since this takes an appreciable time, a current-voltage plot of a 
diode operated under these conditions at 60 cycles exhibits pronounced 
exhaustion effects, giving rise to a loop in the retrace characteristic. 
When a very sharp pulse of voltage is applied to an emitting surface, the 
emitted current consists of a capacitive displacement component as well 
as the conduction component. As a result, the current pulse will gener­
ally have an initial peak with a subsequent rapid decay. 

4.5. Schottky Effect. A departure from the Richardson-Dushman 
emission equation occurs when the emitting surface is subjected to a 
strong positive potential gradient. Effectively the field reduces the work 
function. As a result, the current from an emitter increases with the 
potential applied even though the temperature is kept constant and the 
emission is not affected by the space charge of the electrons. 

The action may be understood by referring to Fig. 4.13, in which the 
effect of a constant gradient of potential upon the normal potential 
barrier at the surface of the emitter is shown. The combination of the 
constant gradient and the normal potential barrier is seen to give a new 
potential barrier, which has a maximum at a certain distance de from 

1 SCHADE, 0. H., Analysis of Rectifier Operation. Proc. I.R.E., vol. 31 (No. 7), 
pp. 341-361, 1943. 

1 CooMBES, E. A., Pulsed Properties of Oxide Cathodes, Jour. Appl. Phys., vol. 17, 
pp. 647-654, August, 1946. 



ELECTRONIC EMISSION 47 

the surface. This distance is known as the "critical escape distance" 
because once an electron gets beyond this distance the electrostatic 
forces are outward rather than restraining and thus an electron keeps on 
moving. Upon equating the image field with the gradient, the maximum 
of the restraining potential is found to occur at a distance 

d - ! / e 
c - 2 \J41rtoE (4.5) 

where e is the charge on the electron, E is the potential gradient, and to 

is the dielectric constant of free space of value 8.85 X 10-12 for rational-

Pofenf,crl wtfh 
extern,,/ field 

Distance 
FIG. 4 13.-Diagram of the potential barrier associated 
with the Schottky effect. 

ized mks units. The crest of the potential barrier has been reduced by 
the work the electron would have to do to overcome the image force 

from the surface from de to infinity. This amount of work is ; ✓ ;!_
0 

volts. The work function is further reduced the same amount owing to 
the fact that the potential at the distanced, is reduced by the amount dcE. 

The total reduction in the effective work function is thus e ~ 
volts. When this correction is made for the work function in the Rich­
a.rdson-Dushman equation, it is found that the ratio of the emitted current 
in the presence of the strong electric field to the normal emission current 
is given by 

(4.6) 
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where J E is the emission-current density in the presence of the strong 
electric field, J is the normal emission-current density, e is the Napierian 
base 2.718, E is now the negative gradient of potential in volts per centi­
meter, and Tis the temperature in degrees Kelvin. This equation may 
be verified experimentally by plotting the logarithm of J E against the 
square root of E. The experimental results are found to give a good 
straight line for all but low values of gradient at which the current drops 
more rapidly than this simple theory predicts. The slope of the line is, of 

4.403 log10 e 
course, T • 

4.6. Contact Difference of Potential. Another factor that occasion­
ally enters the emission picture is "contact difference of potential." 
This term is given to the effect observed when two dissimilar metals are 
put in good electrical contact. It is found that a small potential differ­
ence will exist between the free surfaces of the two different metals. 
This difference of potential turns out to be the difference between the 
work functions of the metals and arises from the fact that electrons can 
move more readily from the metal of low work function to the metal of 
high work function than vice versa. The differential action results in 
an equilibrium that leaves the metal of low work function positively 
charged relatively to the metal of high work function by just the differ­
ence of the work functions. In ordinary vacuum tubes contact differ­
ences of potential are usually less than Yi o volt and so do not cause 
serious trouble except in special cases. Such differences of potential 
as may arise from contact of dissimilar metals will be most serious in 
such places as the cathode-control-grid circuit. 

4. 7. Secondary Emission. Another form of emission that plays an 
important role in vacuum tubes is secondary emission. This occurs 
when a surface is struck by electrons or ions of appreciable velocity. 
Secondary emission caused by the bombardmtnt of electrons is the more 
important case and occurs whenever the striking electrons have energies 
corresponding to a few volts or more. When this happens, the striking 
electrons may knock one or more electrons out of the material, giving rise to 
a reverse component of current. The electrons knocked out of a material, 
known as "secondary" electrons, may number more than the" striking," 
or "primary," electrons. There is no violation of the conservation of 
energy law when this happens, for the velocity of the secondary electrons 
is for the most part very low. Secondary emission is commonly encoun­
tered in multiple-electrode tubes, where it has the effect of altering some­
what the normal primary-electron current characteristics. It occurs in 
cathode-ray tubes where the beam electrons hit the fluorescent screen, 
and is necessary there to complete the circuit for the current flow. It 
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is deliberately used in a number of types of dectron-multiplier tubes, 
where it makes possible a high amplification of current by a purely elec­
tronic action. 

Secondary-emission characteristics of materials are measured by 
means of the apparatus shown schematically in Fig. 4.14. In the arrange­
ment shown a beam of electrons is directed at a target inside of a sphere 
at a higher potential, which attracts the secondary electrons liberated 
at the target. The ratio of secondary- to primary-electron current can 
be read for any primary-electron potential. 1 For a long time there were 
great discrepancies in the reported secondary-emission characteristics of 

Co/lecfor 
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Fm. 4.14.-Apparatus for the measurement of secondary­
emission characteristics. 

the various metals. It was evident that small traces of jmpurities or 
surface contaminations made a great difference in the secondary-emission 
characteristics. Techniques have now been refined to the point where 
the values reported by various investigators are fairly consistent. The 
average secondary-emission characteristics of the materials commonly 
used in vacuum tubes when only the ordinary precautions against con­
tamination are taken are shown in Fig. 4.15. 2 

Variation of Secondary Emission with Primary-electron Potential. In 
Fig. 4.16 are shown the secondary characteristics of the common metals 
presented in curve form, giving the ratio of secondary- to primary-elec-

1 See KoLLATH, R., Sekundarelcktronemission fester Korper, Physik. Zeit., vol. 38, 
pp. 202--224, Mar. 15, 1937, for an excellent discussion of methods of measurement 
and results obtained up to that date. 

2 HARRIES, J. H. OwEN, Secondary Electron Radiation, Electronics, vol. 17, pp. 
100-108, 180, September, 1944. 
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tron current as a function of the primary-electron potential as reported 
by Bruining and DeBoer. 1 These results probably are more reliable 
than any previously reported, for the investigators used a special appara­
tus in which the metal to be tested was evaporated onto the target in 
a vacuum just before the measurement was made. The results presented 
show lower ratios of secondary- to primary-electron current than those 
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FIG. 4.15.-Secondary-emission characteristics of the metals under ordinary 
conditions. The curve shows the ratio of the number of secondary to pri­
mary electrons for va1 ious primary-electron impact velocities expressed in 
volts. (After Harries.) 

previously reported. This is probably due to the fact that with previous 
handling the metals became partly oxidized and oxidized surfaces are 

1 BRUINING, H., and J. H. DEBOER, Secondary Emission, Part I, Secondary Emis­
sion of Metals, Physica, vol. 5, pp. 17-30, January, 1938; Part II, Absorption of 
Secondary Electrons, Physica, vol. 5, pp. 901-912, December, 1938; Part III, Second­
ary Electron Emissi,1n Caused by Bombardment with Slow Primary Electrons, 
Physica, vol. 5, pp. 913-917, December, 1938; Part IV, Compounds with a High 
Capacity for Secondary Electron Emission, Physica, vol. 6, pp. 823-833, August, 1939; 
.Part V, Mechanism of Secondary Electron Emission, Physica, vol. 6, pp. 834-839, 
August, 1939; Part VI, Influence of Externally Adsorbed Ions and Atoms, on the 
Secondary Electron Emission of Metals, Physica, vol. 6, pp. 941-950, October, 1939. 
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known to have higher secondary emission than those which are not. 
The curves of Fig. 4.15 show that all the metals have a low secondary 
emission at low primary-electron potentials. Most of the metals have 
a maximum secondary emission between 200 and 400 volts of primary 
potential, which then decreases slowly, becoming constant at a value 
between 50 and 95 per cent of the maximum value. Most of the uncon­
taminated metals have a maximum ratio of secondary- to primary-elec­
tron currents less than 1 though it should be remembered that metals 
as encountered in tubes are seldom uncontaminated and will have 
maximum ratios of the order of 1 to 5. 

Although the complete theory of secondary-electron emission is as 
yet not worked out, a great deal is known of the mechanism.1•2 When 
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FIG. 4.16.-Secondary-emission characteristics of metals with 
inappreciable surface contamination. (After Bruining and 
DeBoer.) 

primary electrons strike a surface at right angles, they may knock electrons 
out of the atoms near the surface and those with velocity components 
directed toward the surface may be able to overcome the surface-poten­
tial restraints and escape from the metal. Each primary electron may 
shake up several atoms, thus giving rise to several electrons emitted per 
primary electron. It should be noted that the source of secondary elec­
trons lies almost entirely in the electrons of the surface atoms and not in the 
free electrons of the metal. If a normally directed primary electron strikes 
a free electron, it cannot give it a component of velocity directed toward 
the surface. Electrons knocked out of atoms, however, may have such 

1 Jbid., Part V. 
2 WooLDRIDGE, D. E., Theory of Secondary Emission, Phys. Rev., vol. 56, pp. 

562-578, Sept. 15, 1939. 
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a component. As the potential of the primary electron is increased, it 
will at first knock out more and more secondary electrons. However, 
as the potential is further increased, the surface atoms are exposed to 
the primary-electron forces for a shorter time, i.e., the so-called "col 
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lision diameter" decreases, and the pri­
mary electron will first knock electrons 
out of atoms when it has slowed down 
upon penetration into the metal. Thus 
at the maximum of emission it is 
believed that the majority of the sec­
ondary electrons are liberated a depth 
of several atoms into the met a 1. 1 

Beyond this potential the primaries 
penetrate still farther into th':l metal, 
and the probability that the electrons 
knocked out of the atoms at this depth 
will reach the surface decreases, with 
the result that the secondary emission 
decreases. 

Velocity Distribution of Secondary 
distribution of secondary electrons. 
About 90 per cent of the secondary 
electrons will have velocities in Electrons. In Fig. 4.17 is shown a 
range I, 7 per cent in range II, typical curve of the distribution of 
and 3 per cent in range III. velocities in the secondary electrons 
emitted from a metal. Most of the electrons, about 90 per cent, have 
velocities below 20 volts. The electrons naturally fall into three groups 
as indicated in the figure. These are as follows: 

Group I--0 w 20 volts. This group comprises about 90 per cent of 
all the secondaries for primary potentials of 50 volts or more. 
There is a pronounced maximum in this group at about 10 volts. 
These are the electrons which are shaken out of the atoms as a 
result of the passage of the primary electrons and do not have much 
energy. 

Group II-20 volts to 98 per cent of the primary-electron potential. 
These comprise about 7 per cent of the total secondary current. 
They represent high-energy electrons knocked out of atoms and 
elastic reflections of the primary electrons at a considerable depth 
in the metal. 

Group III-98 to 100 per cent of primary-electron potential. This 
group comprises only about 3 per cent of the secondary current 

1 BRUINING, H., Depth at Which Secondary Electrons Are Liberated, Physica, 
vol. 3, pp. 1046--1052, September, 1936. 
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and has a maximum at about 99 per cent of the primary-electron 
potential. This group arises from elastic reflections of primary 
electrons from atoms near the surface of the metal, not really 
secondary electrons at all. 

Another representation of the secondary-electron velocity distribu­
tion is obtained if potential between sphere and target of the apparatus 
of Fig. 4.14 is made negative instead of positive and the current of the 
sphere is measured against the retarding potential. The resultant curve 
is shown in Fig. 4.18. This curve is an average for measurements on 
various metals with primary-electron 

~ i:::100 
potentials in the range of 275 to 1,000 £tJ 
volts. Curves like those in Fig. 4.17 e ~ ao 

- IS are obtained by taking the negative ]\ ~ 
., L. 

derivative of curves such as those in r ~ 60 
~§ Fig. 4.18. o :;: 
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strike a surface at right angles, it is §] 
found that secondary electrons are if a O 
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secondary electrons seems to follow of primary impact energy 
very nearly a cosine law of distribution Frn. 4.18.-Collector current as a 
under all conditions. function of retarding potential of the 

When the primary electrons strike secondary-emission measuring appa­

a metal surface at an angle, it is ratus of Fig. 4.14. 

found that the distribution of the angle on the secondaries is still nearly 
a cosine-law variation. More important than this is the fact that the 
secondary- to primary-emission ratio increases as the primary electrons 
strike more nearly parallel to the surface. Some typical curves showing 
the variation of the secondary- to primary-emission ratio are given in 
Fig. 4.19. The increase in secondary emission with angle is largely due 
to the fact that at angles other than normal the primary electron may 
knock free electrons out of the metal as well as electrons out of atoms. 
The variation of emission is given quite closely by1 

Re = Rof:p(l-cose) 

where 0 is angle between normal and direction of primary electrons 
Re is ratio of secondary to primary electrons at angle 0 

Ro is ratio of secondary to primary electrons at angle zero 
" is N apierian base 2. 718 

1 BRUINING and DEBOER, op. cit., Part II. 

(4.7) 
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p is a coefficient that increases with primary potential and is pro-­
portional to the primary-electron penetration 

Secondary Emission of Composite Layers. Certain combination sur­
faces have been found to have pronouncedly higher secondary emission 
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2.0 

0.5 

lp=400v. 

-qo -60 -30 o 30 60 qo 
Angle of incidence of primary electrons, deg. 

12 

2.5 

2.0 

1.5 

I1 1.0 

0.5 

00 

---- '-90°exfr. 

,,,/ 
,70° 

--:::. - ,50• l,4J!• 

/~ 
~ -- o· 

~ 1/ Nick e I 
I I , 

100 200 300 400 500 600 700 800 900 1000 
Jp. Primary volmge, volts 

Fm. 4.19.-Variation of secondary-emission ratio with 
angle of primary impact. Note that the secondary-emis­
sion ratio increases as the angle of incidence becomes 
more nearly grazing. (After Bruining and DeBoer.) 

than the pure metals. Such surfaces are the alkalihalides on a base of 
the alkali metal and alkali oxides on various metal bases. All these 
combinations show the same general secondary-emission characteristics 
as do the pure metals except that the current ratios instead of being 
in the vicinity of unity may be as high as 8 to 11. The velocity distribu-
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tion for composite surfaces is much narrower than for the pure metals, 
i.e., a given percentage of the total electrons are included in a lower 
range of velocities, 85 per cent in the first 3 volts. Below are given data 
on some of the alkali halides. 1 

TABLE III 
MAXIMUM SECONDARY-EMISSION RATIOS OF ALKALI HALIDES 

Compound 
LiF 
NaF 
CaF, 
NaCl 
KCl 
RbCl 
CsCl 
NaBr 
Nal 
KI 

Maximum Ratio 
5.6 
5 .7 
3 . 15 
6 .8 
7 .5 
5 .8 
6 .5 
6 .25 
5 .5 
5 .6 

Of the alkali oxides, by far the best emitter is caesium oxide, 
partly reduced, on a base of silver. Some typical curves for alkali 
oxides are shown in Fig. 4.20. This same combination gives very 
high photoemission. Photoemissive surfaces are prepared in the same 
way. 

In connection with composite surf aces it should be noted that a com­
bination with a low work function does not necessarily have a high 
secondary- to primary-electron ratio, and vice versa. Thus tungsten 
with a work function of 4.52 volts has a maximum ratio of 1.5. Con­
tamination with oxygen increases the work function to 9.25 volts but 
increases rather than decreases th£.. maximum ratio.2 This probably 
means that electrons are more readily knocked out of the surface atoms 
and so give increased secondary emission even though they require more 
energy to escape from the surface. For a given combination of elements, 
however, the secondary emission usually increases with decreasing work 
function. Thus, if caesium on caesium oxide on silver is contaminated 
with oxygen, the work function increases and the secondary emission 
decreases. Also, in the case of molybdenum partly coated with barium 
the work function passes through a maximum with a given percentage 
of the surface covered, as is evidenced by the photoelectric emission. 
The secondary emission passes through a maximum with the same 

1 BRUINING and DEBOER, op. cit., Part V. 
1 ZwoRYKIN, V. K., and G, A. MORTON, "Television," p. 32, Wiley, New York, 

1940. 
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percentage of surface coverage though the maximum is not nearly so 
pronounced. 1 

Secondary Emission of Insulators. Insulators as well as conductors 
may emit secondary electrons. Measurements on insulators are more 
difficult to make because the potential of the insulator cannot be meas­
ured directly. The characteristics can, however, be deduced from the 
potential that the insulator assumes relative to a spherical collect.or 

12~--~--~-----~--~---

200 400 600 800 1000 1200 
Prim01ry be01m volfoge, volts 

FIG. 4.20.-Secondary emission of the alkali oxides. (Reprinted 
by permission from "Television" by V. K. Zworykin and G. A. 
Morton, Wiley, New York, 1940.) 

electrode when bombarded with electrons of different potentials. The 
general features of the secondary emission of insulators may be summed 
as follows :2 Insulators exhibit curves of ratio of secondary- to primary­
electron current versus primary-electron potential that are similar to 
those of the metals. Ratios usually exceed 1 over a considerable range 
of potentials, a maximum occurring between 300 and 800 volts. As with 
the metals, the ratio rises rapidly to a maximum and then drops slowly. 
As with the metals, most of the secondary electrons are emitted perpen­
dicularly to the surface, following very nearly a cosine law of distribution 

1 BRUINING and DEBOER, op. cit., Part VI. 
1 KoLLATH, '!'JI. cit. 
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regardless of the direction of the primary electrons. Upon bombard­
ment at an angle the secondary- to primary-electron ratio increases as 
the primary electrons strike more nearly parallel to the surface up to a 
critical angle, beyond which the ratio drops to a small value less than 
unity and remains nearly constant. The critical angle depends upon the 
material and is a function of temperature, the angle with the normal 
increasing with temperature. The explanation of the sudden drop in 
emission with increased angle with the normal of primary-electron bom­
bardment seems to be that a layer of negative charge forms on the sur­
face which traps, by a space-charge action, the primary electrons and 
the secondary electrons they would have freed. 

in n0rmal action an insulator will have its potential influenced by its 
secondary-emission characteristics. The action will depend upon the 
primary-electron energy relative to the secondary-emission characteris­
tics. Action can be divided into three cases as follows: 

1. Primary-electron potential below that at which secondary­
to primary-current ratio is unity. Here the number of secondary 
electrons emitted is less than the number of primaries, and so the 
insulator acquires a negative potential that is large enough to repel 
most of the primaries. This constitutes a blocking action. The 
insulator is finally in stable equilibrium at zero potential. 

2. Secondary- to primary-current ratio greater than unity. Under 
this condition the insulator gives off more electrons than it acquires 
and so becomes more positive than its surroundings. When this 
happens, the insulator reattracts the slow secondaries and so 
remains a few volts more positive than the potential through which 
the primary electrons have been accelerated. 

3. Primary-electron potential greater than that at which secondary­
to primary-current ratio has dropped to unity. In such cases the 
insulator will gain more electrons than it loses and so will become 
more negative in potential until the primary electrons are retarded 
to the point where the ratio of secondary to primary current is unity. 
At this potential, the primary- and secondary-electron currents 
are equal, and the insulator is in stable equilibrium. 



CHAPTER 5 

DETERMINATION OF POTENTIAL FIELDS 

THE fundamental theoretical technique necessary for the study of the 
internal behavior of a vacuum tube is that of determining the distribution 
of the electric potential within the tube. From the determination of the 
electric potential within a tube can be deduced the amplification factor 
of the tube, the focusing properties of the electrodes, and the current­
voltage characteristics. In short, the determination of the distribution 
of the electric potential within a tube is the point of departure for the 
study of almost all its characteristics. 

The methods of determining the potential fields of vacuum tubes are 
rather special. The most extensive information is obtained from con­
formal transformations and from solutions of the Laplace differential 
equation. The particular transformations and functional forms most 
frequently encountered in tubes are ordinarily given only a fraction of 
the total space allotted to the entire subject of electrostatics in books 
devoted to this subject. For this reason a brief review will be given of 
all the standard methods of determining potential fields, including some 
numerical and graphical methods, so that the elegance of the special 
methods mentioned will be appreciated. 

6.1. Units and Dimensions. In this book there will be used the 
system of rationalized mks units. For this system the units of length, 
mass, and time are the meter, kilogram, and second, respectively and the 
electrical units are the usual practical ones-the volt, the ampere, the 
coulomb, etc. The term "rationalized" indicates that the factor 411" 
has been incorporated into the arbitrary constants in such a way that 
the greatest over-all simplicity of all relations is obtained. This is done 
in such a way that the factor 411" does not appear in relations involving 
plane geometry and rectangular coordinates but does appear in relations 
involving spherical geometry. A further feature of the rationalized mks 
system of units is that the equivalent dielectric constant of free space and 
the equjvalent permeability of free space are not unity but have some 
specific values. These are the only two values that need to be known 
in this system to work practical problems, whereas in some of the other 
systems a whole table of conversion factors has to be invoked every time 
a practical problem is solved. 

58 
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6.2. Fundamental Quantities and Definitions: Forces between 
Charges. All electrostatic relations are based upon the application of the 
observed effects of charges upon one another. Qualitatively, the obser­
vations are that there are two kinds of charges, that like repel and unlike 
attract, that the force between charges decreases as the distance between 
them increases. Quantitatively, all this is expressed by Coulomb's law, 

(5.1) 

where F is the radially directed force in newtons (1 newton equals 105 

dynes) between charges qi and q2 in coulombs, r is the distance between 
r;harges in meters, and t is the so-called "dielectric constant" of the 
medium. The dielectric constant is equal to the product of the relative 
dielectric constant and the dielectric constant of free space, 

t = t,.t:o (5.2) 

where tr is the relative dielectric constant as would be determined by the 
ratio of capacity of a condenser using the medium and free space as 
dielectric and to is the equivalent dielectric constant of free space whose 
value turns out to be 8.85 X 10-12 farad per meter in rationalized mks 
units. 

The region in the vicinity of electric charges is referred to as the 
electric fiel,d. The electric intensity E at any point in such a field is 
the J orce per unit charge on a small test charge placed at the point. The 
intensity, which will also be shown to be the negative gradient of the 
electric potential, is a vector quantity in that it has both magnitude and 
direction. 

Intensity at a distance r from a charge q is, by Coulomb's law, 

'

El= _q_ 
4m:r2 (5.3) 

Where more than one charge is concerned, 

.l q,. cos (x,r,.) 

E"'= -"-----4-nr,.2 (5.4) 

_l q,. cos (y,r,.) 

Eu=-"-----,---,,---
4nr,.2 (5.5) 

The summation must be taken by a summation of component"! where 
(x,r,.) is the angle between a line parallel to the x axis and the vector 
from the charge q,. to the point at which the intensity is being determined. 
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A line of force, or a line of flux, is a line drawn so that it has every­
where the direction of the electric intensity. Lines of flux originate on 
positive charges and terminate on negative charges. In the rationalized 
mks system of units one line of flux emanates from every unit positive 
charge. The density of the flux lines is known as the displacement or 
flux density. Displacement and intensity are related by the expression 

D = tE* (5.6) 

where Dis the displacement, or number of flux lines per square meter, 
and e is the dielectric constant of the medium. Equation (5.6) is, for 
homogeneous isotropic dielectrics, strictly analogous to the expression 
B = µ.H, which applies for magnetic fields. 

The potential at i:my point in an electric field is defined as the work 
per unit charge required to bring a small positive test charge from infinity 
to the point in question (symbol V). Potential is a scalar quantity, i.e., 
completely specified when its magnitude alone is given. Applying this 
definition to obtain the potential at a distance r from a charge q, 

V = F dr = - -- dr = __!j__ f r fr q 
.., .., 4nr2 4n:r 

(5.7) 

The minus sign appears because the work is being done against the force. 
The potential obtained above is in volts if q is in coulombs and r is in 
meters. The work is independent of the path. The potential at a 
point due to a number of charges is equal to the sum of the potentials 
due to the separate charges, 

(5.8) 
n 

For a continuous distribution of charge over a surface, 

V=4~1~da (5.9a) 

where u is the surface density of charge, da is the element of area, and 
the integration is taken over the a.rea of the surface. For a co"\tinuous 
distribution of charge throughout a volume, 

V = -
1
- / !!.dv 

4n r 
(5.9b) 

* Bold-faced capitals will be employed to designate vector quantities when used 
in the vector sense. Components of vectors are themselves vectors but may usually 
be treated as scalar quantities when dealt with separately. 
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where p is the volume density of charge, dv is an element of volume, and 
the integration is taken over the volume. 

The difference of potential between two points in a1. electric field is 
defined as the work per unit charge required to bring a small positive 
test charge from one point to the other. This difference is independent 
of the path by which it is evaluated. 

From the definition of potential it is seen that the intensity is the 
negative gradient of potential, the negative sign indicating that the force 
is exerted in a direction opposite to that of increasing potential. The 
gradient of the potential is a vector having the magnitude and direction 
of the maximum variation of potential. Thus 

IEI = - av as 

The force per unit charge in any general direction is given by 

av 
E cos a= - al 

(5.10) 

(5.11) 

where a is the angle between the direction considered and the gradient 
of potential. Components of intensity are conveniently related to 
potential by 

(5.12a) E,, = 
av 
ax 

(5.12b) Ell= 
av 
ay 

The form that components of intensity have in terms of derivatives 
of potential depends upon the coordinates in which the potential and 
distances are expressed. In all cases the component expressions cor­
responding to Eq. (5.10) have the form of the limiting value of the ratio 
of an increment of potential to an increment of length in the direction of 
the variable considered. Expressions for the intensity as a negative 
gradient of potential are given in Appendix II for the coordinate systems 
most commonly used. 

5.3. Solution of Potential Fields by Summation of Intensities. The 
electric field around any distribution of charges may be found by sum­
ming the forces due to the charges by means of Eq. (5.4) . Forces are 
best summed one component at a time. The procedure can usually be 
simplified by choosing the axes to take advantage of any symmetries. 
When an expression for each of the components of intensity has been 
found, the resultant intensity has a magnitude that is the square root 
of the sum of the squares of the components. The direction cosines of 
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the resultant vector are given by the ratio of the respective components 
to the magnitude of the resultant. 

Example: Find the electric intensity on the axis of a right-circular cylinder of 
radius a and length h at a distance Xo from the end of the cylinder if the cylinder 
has a charge uniformly distributed throughout its volume of density p. In the 
configuration of Fig. 5.1 let x be the distance from the point P to the point on 
the axis corresponding to an element of volume in the cylinder. The elementary 
volume is given by 

dv = r dr d(J dx 

and the corresponding element of charge is given by 

dq = p dv 

\ 
\ 

a 
\ 

--+--

flv 

r----------- X - -----------------, 

-----+- ------ -

~--------- h --------+---------x0 -- ------

Fm. 5.1.-Notation for the evaluation of the axial intensity due 
to a cylindrical distribution of charge. 

By symmetry there will be only an x component of intensity at the point P on 
the axis to which the element of charge will contribute 

dE _ pr dr d(J dx x _1_ 
~,. - r2 + x2 (r2 + x2)~• 4n: 

which will be recognized as being of the form 

dq cos a 
- -R,2-

This differential expression must be integrated with respect to its three variables, 
(J from O to 211", r from O to a, and x from xo to xo + h. When this triple inte­
gration has been performed, the resulting expression for the intensity on the 
axis is 

E,. = 2'/l"p [ h - v'(xo + h) 2 + a2 + v'xo2 + a2J ~ 
6.4. Summation of Potentials. The potential at any point in a field 

may similarly be obtained by application of Eq. (5.7). This procedure 
is in general easier to apply than the direct evaluation of the intensity, 
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for the summation for potentials is algebraic, whereas that for intensities 
niust be vectorial. The expression for the components of intensity is, 
of course, derivable from the expression for potential. 

Example: Find the potential at a distance c from the center of a spherical 
shell with inner and outer radii r1 and r2 and with a charge uniformly distributed 
throughout its volume of charge density p. 

The element of volume in spherical coordinates is 

dv = r 2 sin (J dr dfJ dq, 

where the symbols have the significance indicated in Fig. 5.2 and q, is the azimuth-

p 

-- C ______ ,-.:::::::::-~ 

------- y 

FIG. 5.2.-Notation for the evaluation of the potential due 
to a charge uniformly distributed throughout a spherical 
shell. 

al angle. Then the potential at the point P due to the element of charge 
associated with the above element of volume is 

dV = pr
2 

sin 0/r dfJ dq, ~ 

It is convenient to use the distance y instead of the angle fJ as a variable. The 
two quantities are related by the law of cosines 

y ..,. (c2 + r 2 - 2cr cos fJ)H 

so that, for constant r, 

dy = er sin fJ d(J 
y 

Making this substitution into the expression for the element of volume, 

dV = .a; dy dq, dr ~ 
so that 

V = !!. (" f 2 .. fc+r r dy dq, dr _l_ 
c }ri Jo }c-r ¼£ 



64 VACUUM TUBES 

The result of this integration gives 

From this it is seen that the potential at the point P is the same as though the 
entire charge of the shell were concentrated at its center. 

6.6. Gauss's Law. Gauss's law is one of the most useful relations in 
electrostatics. It enables one to 
determine quickly the field and 
potential around any symmetrical 
distributions of charge. The law 
may be stated as follows: The 
integral of the normal outward com­
p<ment of electric flux over any closed 
surface is equal to a constant times 
the total charge enclosed by the sur­
f ace. For rationalized mks units, 
the constant is unity. 

FIG. 5.3.-Notation for the evaluation 
Consider a closed surface S of Gauss's law, Eq. (5.17). 

enclosing a single point charge q as 
shown in Fig. 5.3. Then the outward component of electric flux for the 
element of area dS is 

D,. dS = D cos a dS 

D,. dS = 4:r2 cos a dS 

(5.13a) 

(5.13b) 

It will be recognized that d~ cos a is the element of solid angle about the 
r 

point charge intercepted by the area dS, since solid angle is measured by 
area intercepted on a unit sphere just as linear angle may be measured 
by arc length on a unit circle. Thus 

drl = dS cos a 
r2 

where drl is an element of solid angle. Then 

D,.dS = q:: 

(5.14) 

(5.15) 

If this is integrated over the entire surface surrounding the point charge, 

JD,.dS = q (5.16) 

since there are 4-ir units of solid angle around a point. 



DETERMINATION OF POT EN fIAL FIELDS 65 

Since the law of superposition holds for the potentials due to charges, 
the integral of the outward normal component of flux is equal to the 
total charge enclosed when the closed surface contains more than a single 
charge. 

For a volume distribution of charge the law can be written 

JD cos a dS = fpdv (5.17) 

where p is the volume charge density, v indicates volume, and the other 
symbols have the previous significance. 

Example: Consider the case of a uniform distribution ot charge on a circular 
wire of infinite length. From considerations of symmetry it is evident that the 

D 

FIG. 5.4.-The flux associated with a linear distri­
bution of charge. 

electric field will everywhere be radial and will be constant along the length of the 
wire. The equipotential surfaces will be cylinders concentric abnut the wire, 
and the flux lines will be straight radial lines. 

Let the charge be uniformly distributed along the wire with a density of X 
units per unit length. Draw a cylinder of radius r about the wire of radius a. 
Then the electric flux D = .:E is everywhere outwardly directed as shown in 
Fig. 5.4. The integral of normal component of flux per unit length of this wire 
is equal to the product of the displacement and the area of the cylinder per 
unit length. This product must be equal to the linear charge density, so that 
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'!'his gives the intensity at any distance r from a wire with a linear charge density. 
The potential at any distance r from the wire is found by integrating the 

negative of the field with respect tor, giving 

>,. 
V= -2-nlnr+C 

The constant is necessary to adjust the potential to a prescribed value at some 
particular distance since the potential about a cylindrical wire, unlike that about 
a point charge, does not vanish at an infinite value of the radius. 

In the case of two concentric cylinders of radii r2 and r1 having potentials 
V 2 and V1, respectively, the potential between them is 

If 

From Gauss's hw it may also be deduced that the field adjacent to a 

plane with a surface charge density u is given by ~ and is normal to the 
£ 

plane. It may also be verified that a charge uniformly distributed 
throughout a sphere or over the surface of a sphere looks to an observer 
outside the sphere as though the charge were all concentrated at the center 
of the sphere so that the laws for point charges hold. 

The above results are summarized in the following table: 

Plane Cylindrical Spherical 

Geometry 

~ @J @ 
---,»x 

Total positive charge ..... . ....... u X area X X length q 
Charge density .................. u per unit area X per unit axial _IJ,_ 

length area 

Intensity E . .................... 
q X q - ~ 

4nr' £ 2nr 

Potential V . ........... . ......... -~+c X q --Inr+C her £ 2n 

-
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6.6. Poisson's and Laplace's Equations. Poisson's and Laplace's 
equations are differential expressions of Gauss's law applied to an ele­
ment of volume. Poisson's equation applies to regions containing charge. 

+z 

+y 

+x 
Fm. 5.5.-Nota.tion used in the derivation of Laplace's 
equation in rectangular coordinates, Eq. (5.24). 

Laplace's equation is the same equation for the case of no charge. The 
equations are derived as follows: 

Consider an element of volume in an electric field as shown in Fig. 5.5. If 
the intensity at the origin is E, then 

Flux into back face = eEs 6.y 6.z 
' oE 

Flux out of front face = e (Es + oxs 6.x) 6.y 6.z 

Net outward flux through front and back faces = e 
0
0~' 6.x 6.y t:.z 

Similarly 

Net outward flux through left and right faces = e 
0!" 6.x 6.y t:i.z 

and 

Net outward flux through bottom and top faces = c 
0!• 6.x 6.y t:i.z 

Upon combining these, the outward flux through all faces is 

(5.18) 

by Gauss's law where p is the volume charge density. The above equality is 
abbreviated 

Divergence E = V · E = !!. 
E 

(5.19) 

in which the element of volume has been cancelled and the term "divergence" has 
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been applied to the limiting value of the net outward flux per element of volume 
as the element of volume approaches zero. 

But 
E = negative gradient of V 

frequently abbreviated 
E = -VV 

or in component form 

Making these substitutions into Eq. (5.18), 

iPV i12V i.12V _ !!. 
ax2 + ay1 + az2 = t 

which is Poisson's equation. This is abbreviated 

In a region free of charge, p = 0 so that 

a2v a2v a2v 
iJx2 + lJij2 + az2 = o 

which is Laplace's equation. This is abbreviated 

v2v = o 

(5.20a) 

(5.20b) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25a) 

If the derivation is made in terms of general coordinates u 1, u2, and u 3 

with scale factors h1, h2, and h3, respectively, so that an element of arc 
length is related to the coordinates and scale factors by 

ds2 = h12 du12 + h22 du22 + ha2 dua2 

then Laplace's equation assumes the general form 

v 2V _ 1 [ a (h2ha aV) + a (h1h 8 aV) 
h1h2h1 au1 h1 au1 au2 h2 au2 

+ __i_ (h1h2 av)] (5.25b) 
au3 h3 au3 

Interpretations of Laplace's Equation. As has been mentioned before 
and as is evident from the development of the equation, Laplace's equa­
tion is a differential expression of Gauss's law for an element of volume. 

• See Appendix II. 
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In the language of differential equations it says that the net electric flux 
emerging from an element of volume in a region free of charge is zero. 

Another interpretation that can be given to Laplace's equation in the 
two-dimensional case is that it is an equivalent way of saying that the 
potential at any point in a field is the average of the potentials at four 
equaUy spaced surrounding points. Thus if there is given a set of curves 
of equal potentials in the vicinity of some electrodes, known as a "con­
tour representation of potentials," then the potential at any point, say 
the point (2,2), is the average of the potentials at the four surrounding 
coordinate points, for the case assumed, the average of the potentials 
at the points (2,1), (3,2), (2,3), and (1,2). This property will be proved 
in a subsequent section. 

Laplace's equation can also be interpreted in terms of the curvature 
of the potential profiles of a field configuration. Two-dimensional fields 
can be represented either by contours of equipotential or by potential 
profiles just as we can draw either a contour map or a set of profiles for 
a topographic representation of terrain. In the profile representation 
we draw potential as an ordinate against distance along some line as 
abscissa. It will be remembered from elementary calculus that the 
curvature of any curve is given by 

(5.26) 

from which it is seen that the sign of the curvature is determined by the 
sign of the second derivative in the numerator since the denominator is 
always positive. If we now examine Laplace's equation in two dimensions, 

a2~ + a2v = o 
ax2 a2y (5.27) 

we see that the two terms may be interpreted as giving the sign of the 
curvature of the profiles in the x and y directions. By Eq. ( 5.27) the 
curvatures must be of opposite nature since the sum of the terms is 
zero; and hence if the profile in the x cut at some point in the field is 
concave upward, then the profile in they cut at the same point must be 
concave downward. 

Examination of a simple case will illustrate the property described 
above. In Fig. 5.6a is shown the contour representation for the case 
of a concentric line with a circular inner conductor and a rectangular 
outer conductor. The solid lines represent the equipotential lines or 
contours. In Fig. 5.6b is shown the potential profile along the line ah, 
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and it will be seen that the profile is curved away from the axis at the 
point e. In Fig. 5.6c is shown the potential profile along the line cd, 
and it will be seen that the profile is curved toward the axis at the point e. 

Solutions of Laplace's Equation in Two Dimensions. The form which 
the solutions of Laplace's equation take depends upon the coordinates 
in which the equation is expressed. For rectangular coordinates Laplace's 

C 
I 

•-----~--• 
I 
I 
I 

d 
(a) 
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Fm. 5.6.-Example showing the relation between the 
curvatures of the profiles of a potential field. 

equation has the form of Eq. (5.27). The solutions of this equation have 
the form 

V = (A cos kx + B sin kx)(C cosh ky + D sinh ky) (5.28a) 

or 
V = (A cos ky + B sin ky)(C cosh kx + D sinh kx) (5.28b) 

The above results are arrived at by assuming that V has a solution of the 
form XY where Xis a function of x alone and Y is a function of y alone. 
If the product XY is substituted for Vin Eq. (5.27), there results upon 
differentiation and rearrangement 

1 d2X 
X dx2 = - Y dy2 (5.29) 

It is seen that the left-hand member is a function of x alone and that the 
right-hand member is a function of y alone. These can be equal only 
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if each equals the same constant. If this constant is taken as -k2, then 
we may write two component equations in the place of Eq. (5.29), 

and 

The solution of Eq. (5.30) is 

X = A cos kx + B sin kx 

and the solution of Eq. (5.31) is 

Y = C cash ky + D sinh ky 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

Thus V is given by the product of X and Y, resulting in the solution of 
Eq. (5.28a) where multiple values of k as 
determined by imposed conditions are 
allowed. If the separation constant is chosen 
as +k2 instead of - k2, then the solution of 
Eq. (5.28b) results. 

For the polar coordinates of Fig. 5. 7 
Laplace's equation has the form 

1 a ( av) + 1 a2v _ 0 T ar r iJr r2 ao2 -
(5.34) 

when the problem is one of axial symmetry. 
This has a solution in the form 

Fm. 5.7.-Polar coordinate 
notation. 

V = (a cos no+ b sin nO)(cr" + dr-") (5.35) 

as may be shown by the method demonstrated &,hove using n 2 as the 
separation constant. When n equals zero the second factor in Eq. (5.35) 
is c + d In r. 

For the cylindrical coordinates of Fig. 5.8 Laplace's equation, for cases 
of axial symmetry, has the form 

! i (r av) + a2v = o (5.36) Tar or az2 

This has a solution of the form 

V = [aJo(kr) + bNo(kr)](c sinh kz + d cash kz) (5.37) 

where Jo and No are the zero-order Bessel and Neumann functions. 
Since the Neumann function of zero is infinite, this term is not often 
encountered in electronics problems. Most potential configurations have 
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a finite potential along the axis of symmetry, as in electrostatic electron 
lenses where there is no conductor along the axis. 

In order to apply the above solutions to definite problems it is neces-
2ary to evaluate the constants in such a way that the potential function 

fits the prescribed boundary condi­
tions. If the constants can be selected 
so that the function fits all the bound­
aries (electrodes), then it will define 
the potential at all points in the field. 
The potential solutions frequently 
appear as a series summation of terms 
of the form indicated above. 

Fm. 5.8.-Cylindrical coordinate no-

Difference Form of Laplace's Equa­
tion. We may write Laplace's equa­
tion in the form of a difference equa­
tion of which the differential equation 
is the limiting form. To do this 

tation. 
we shall assume that the potential is 

known at a number of points whose spacing is finite though small. 
We shall assume that the points are at the intersections of a rectangular 
lattice as shown in Fig. 5. 9 and that the spacing between the points is 
h, 1- 3• The conclusions that we shall draw from the difference equation 
set up on this basis will apply also to the differential equation and its 
solution. 

Consider the first derivative of potential at the point (O) in the xy 
plane. The difference operators corresponding to the partial derivatives 
are given by 

av 1 -- = - (V 1 - Vo) ax h 
av 1 -- = - (Vo - Va) ax h 
av 1 -- = -(V2 - Vo) 
ay h 
av 1 - = -(Vo - V4) 
ay h 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

1 MoRsE, P. M., and HERMAN FEsHBACH, "Methods of Theoretical PhysicE," 

Massachusetts Institute of Technology, 1946, pp. 139-147. 
2 8HORTLEY, G. H., and R. WELLER, The Numerical Solution of LaPlaee's Equa­

tion, Jour. Appl. Phys., vol. 9, pp. 334-348, May, 1938. Probably the best single 
reference on this subject. 

3 FROCHT, M. M., and M. M. LEVIN, A Rational Approach to the Numerical Solu­
tion of LaPlace's Equation, Jour. Appl. Phys., vol. 12, pp. 596-604, August, 1941. 
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The difference operators corresponding to the second derivatives are 
given by 

Upon substituting these values in Laplace's equa­
tion there results 

(5.44) 

which states that the potential at the center of a 
square is the average of the potentials at the cor­
ners of the square. 

(5.42) 

(5.43) 

2 

3 
0 J 

4 _ _. h -<-• 

Fm. 5.9.-Arrange ­
ment of net points for 
the difference form of 

It is possible to obtain numerical values of 
potential for various electrode configurations by 
means of Eq. (5.44). The procedure is to break 
up the field whose potential is desired into a suit­
able lattice, assume reasonable values of potential Laplace's equation in 

two-dimensional rec­at each point in the lattice, and then apply Eq. 
tangular coordinates, 

(5.44) successively to each of the points, always Eq. (5.44). 
using any new values of potential obtained. 
Successive applications of this procedure will correct any errors in the 
original assumptions, and the values of potential at any point will con­
verge quite rapidly to the correct value. It is well to start with a coarse 
network and then make it finer. 

Fm. 5.10.-Arrangement of net points for the difference 
form of Laplace's equation in two-dimensional cylindrical 
coordinates, Eqs. (5.45) and (5.46). 

The expression given in Eq. (5.44) was derived for two-dimensional 
rectangular coordinates. For two-dimensional problems of axial sym­
metry expressed in terms of the cylindrical coordinates of Fig. 5.8 that 
hold for electrostatic electron lenses, and the like; the corresponding 
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expression for the lattice of Fig. 5.10 is 

(5.45} 

in which the points 1 and 2 are on a line parallel to the axis and point 3 
is closer to the axis than point 4. The expres­
sion [Eq. (5.45)] works for all parts of the field 

90 except points on the axis for which 
I 
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V., = .¼(V,.. + V. + 4V11) (5.46) 

It will be noticed that Eq. (5.45) reduces to 
Eq. (5.44) for large values of r. 

The above manipulations for the cylin­
drical case can be simplified by a change of 
variable. If as a new variable there be taken 

y = r¼l' (5.47) 

then the Laplace equation reduces to 

a2y a2y Y 
ar2 + az2 + 4r2 = 0 (5.48) 

The corresponding net-point equation is 

Yo = Yi + Y2 + Ya + Y4 (5.49) 

( 4- ~) 
4r2 

which is much simpler to apply than Eq. (5.45). 
The case of two-dimensional polar coordi­

nates can be reduced to the rectangular coordi­
nate treatment by changing the variables 
according to 

u = In. r 
and 

V=8 

t5.50) 

(5.51) 

FIG. 5.11.-The potential 
field of a triode, calculated 
from the difference form of 
Laplace's equation, Eq. 
(5.44). 

For a lattice of equal increments of u and v, 
Eq. (5.44) applies directly. The reasons for 

this will become evident when the transformation W = ln. Z has been 
studied. 

In Fig. 5.11 is shown the potential field inside a half section of a 
plane-electrode triode as calculated from repeated application of the 
difference form of Laplace's equation, Eq. (5.44). 
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6.7. Elastic-membrane Models of Potential. It is possible to repre­
sent two-dimensional potential problems having a z-axis symmetry by 
the elevation of a deformed elastic membrane. If an elastic membrane 
is uniformly stretched in all directions and leveled when suspended in a 
plane frame and is then deformed from its original plane by displacing 
the membrane distances proportional to electrode voltages with blocks 
shaped like the electrodes to be studied, then the displacement of the 
membrane at any point from the original plane is proprotional to the 
potential at that point in the field. In other words, the membrane is a 
topographic model of the potential field with vertical displacement pro­
portional to potential. The deformed surface that is obtained is a very 
good representation of the potential field. This is because the surface 
will deform itself so that its area will be a minimum. Analytically this 
is expressed by making 

S =ff ✓1 + (~=r + (~;rdxdy = min (5.52) 

where z is the elevation and x and y are the coordinates in the horizontal 
plane. This is a problem in the calculus of variations that is converted 
into a problem in differential equations by applying to the equation for 
S that is in the form 

(5.53) 

The Euler differential equation 

a a 
ax F •• + ay F •• + F. = o (5.54) 

where the subscripts indicate differentiation with respect to the following 
factors: 

az 
z,, = ax 

az 
z=-

11 ay 
aF 

F •• =-;­uz,, 
aF 

F •• = a­
z11 

F = aF • az 
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Application of the Euler equation yields as the differential equation of 
the deformed surface1- 3 

[
1 + (az)2] a2z + [1 + (az)2] a2z + 2 a2z a:; az = 0 (5.55) 

ay ay2 ax ax2 ax ay ax ay 

which reduces to Laplace's equation, 

a2z + a2z = 0 
ax2 ay2 (5.56) 

~ ~ . 
for - « 1 and ,.--- « 1. If the angles of all lmes on the surface are kept 

ax oy 
below 6 deg with the horizontal, the departure in deformation from that 
representing the true potential at any point will be less than 1 per cent. 
Some practical considerations are of importance. A No. 30 rubber 
surgical dam makes a good membrane. It should be stretched enough 
so that it will be tight and not sag and yet not be too close to the rubber's 
elastic limit. A linear stretch of about H works well. It helps in 
obtaining a uniform stretch to mark coordinate lines on the sheet before 
stretching and then stretch so that these are straight and of the proper 
spacing. 

The applications of the elastic-membrane model of potential are 
somewhat limited, for it is accurate only for small deformations, it can 
be used to represent only two-dimensional problems with a z-axis (stack­
ing) symmetry-it cannot exactly represent problems with a rotational 
symmetry about an axis-and it cannot be modified to include space­
charge effects. In spite of these limitations, models of this sort have 
been used extensively by various laboratories in their studies of potential 
fields and electron paths; in the latter regard it yields much information 
in a short time. The use of the membrane in determining electron 
paths will be mentioned in a later section. Figure 5.12 shows the elastic 
membrane model used in the Electrical Engineering Department of 
Stanford University. 

5.8. Current-flow Models of Potential. The laws which govern the 
flow of current in a uniformly conducting medium are the same as those 
which govern the "flow" of electrostatic-flux lines in a vacuum. This 

1 KLEYNEN, P. H. J. A., Motion of an Electron in Two Dimensional Electrostatic 
Field, Philips Tech. Rev., vol. 2 (No. 11), pp. 338-345, 1937. Original article on this 
subject. 

2 STRUTT, M. J. 0., "Moderne Mehrgitter-Elektronenroehren," pp. 3- 6, Springer, 
Berlin, 1938. 

3 ZwoRYKIN, V. K., and J. A. RAJCHMAN, The Electrostatic Electron Multiplier, 
Proc. l.R.E., vol. 27, pp. 558--565, September, 1939. 
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makes it possible to set up current-flow models of electrode systems and 
to measure the potential at any point. 

The equations for the components of current density in a continuous 
and uniform medium such as some electrolyte are given by Ohm's law in 
terms of the gradient of potential as 

J,. = av 
-g ax 

av 
-g­ay 

(5.57a) 

(5.57b) 

for the two-dimensional case, where J is current density and g is the 
specific conductivity of the medium. 

Fm. 5.12.-Elastic-membrane model of potential. 

Since the flow of current in a medium of constant conductivity corre­
sponds to an irrotational flow of an incompressible fluid, as much current 
will flow into any element of volume as flows out of it. This condition 
is sometimes expressed by saying that the divergence of the current is 
zero, which may be expressed mathematically as 

• (5.58) 
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Substitution of the components of Eq. (5.57) into Eq. (5.58) yields 
Laplace's equation in the form 

a2v + a2v = 0 ax2 iJy2 (5.59) 

Upon comparing the above equations with those developed for the elec­
trostatic field it is seen that an exact correspondence can be established. 
The relations may be tabulated in one-to-one correspondence as follows: 

Currents 

J Current density 
g Specific conductivity 

V Potential 

Quantities 

Relations 

Electrostatic Fields 

D Displacement flmt 
e, Dielectric constant 
V Potential 

av 
D~ = -e-

ily 

From the above tabulation it is seen that the correspondence between 
the current flow and electrostatic field is quite complete. It is thus 

FIG. 5.13.-Current-flow model of a cylindrical triode. 

necessary only to set up a current-flow model with electrodes geometrically 
similar to those of the electrostatic problem whose solution is desired and 
to measure the potential contours. The model is easily set up for two­
dimensional problems by means of a flat tank. A weak solution of 
copper sulphate may be used as an electrolyte. This has a fairly good 
conductivity and has no polarizing action with copper electrodes. The 
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equipotential contours can be traced with a probe connected to two 
resistances forming two arms of a bridge. The other arms of the bridge 
are in the electrolyte. By setting the external resistances any equipo­
tential contour can be traced by observing the points at which a null 
indication is received. Tanks may be made of wood cemented to a glass 
plate. A large sheet of coordinate paper may be put under the glass to 
identify the location of points and thus facilitate their transfer to another 
sheet for plotting. It is also possible to use a pantograph for plotting 
directly. In using a flat tank it is absolutely necessary that the liquid 
be of the same depth at all points. Placing the tank upon a board with 
leveling screws makes it easy to level. 
Figure 5.13 shows a tank of the type 
describeu. This particular tank rep­
resents a section of a cylindrical elec­
trode triode. 

Rz 

Rp 

Fm. 5.14.-Circuit arrangement ror 
measuring potential contours on a 
current-flow model of a plane-elec-

The arrangement of resistors 
used with triode current-flow models 
is shown in Fig. 5.14. The resistors 
RP and R0 are used to set the rela­
tive positive plate and negative grid 
potentials. The resistors R1 and 
R2 in the bridge arms are used to deter­
mine the potential of the contour 
to be traced. If the resistors R2 and 
R1 are set in the ratio of 2 to 8, 
the probe will trace out the contour 
having 80 per cent of the plate­
cathode potential, since the percent-

trode triode section. 
age voltage of the contour is given 

R2 
by Ri + Rz· Headphones are conveniently used as balance detect0rs. 

It is also possible to use a cathode-ray oscilloscope. Il the probe and 
R1,R2 junction are connected to the vertical plates and a voltage in 
phase with the electrode potentials is connected to the horizontal plates, 
there will result a straight-line Lissajous figure whose slope will be zero 
when the probe is in the proper position. The advantage of this arrange­
ment is that the slope of the line will be negative or positive according 
to whether the probe is to one side or the other of the proper position. 
A low frequency of the order of 50 to 100 cycles should be used. Il the 
frequency is too low, it is difficult to detect a null. If it is too high, the 
distributed capacities affect the balance. 

It should be observed in the model of Fig. 5.14 that the proper 
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conditions of symmetry are obtained along the nonconducting boundaries 
which are indicated by dotted lines. Here the current flow must be 
parallel to the boundary, which ensures that the potential contours are 
at right angles to the nonconducting boundaries, since the equipotentials 
are perpendicular to the flow lines. It will also be true that the equipo­
tentials will be perpendicular to all lines of symmetry running in the 
direction of the flow. Flow lines will be perpendicular to conducting 

surfaces. The flow will also be parallel to 
the top and bottom of the Jiquid layer 
since the air above and the glass below 

~ 
are nonconducting. 

For problems involving axial symme­
try such as are encountered in electron 
optics, a slightly different arrangement 

F10. 5.15.-Arrangement for 
measuring potential contours on 
a current-flow model of an elec­
tron lens. The lens electrodes 
are cylinders of revolution that 
require a tilted tank to represent 
a wedge-shaped portion of the 
potential field. The edge of the 
wedge-shaped portion of electro­
lyte corresponds to the axis of the 
electrodes. 

of electrodes must be used. Here it is 
necessary to reproduce conditions of axial 
symmetry and it is not correct to use a 
uniform depth of electrolyte as in Fif;. 5.14 
without special electrodes. To obtain 
correct results, either the electrodes or 
the volumetric shape of the electrolyte 
must be changed. It is possible to use a 
deep flat tank if the electrodes are shaped 
like portions of half cylinders with their 
edges at the surface of the electrolyte. 
For such an arrangement the probe should 
be kept at the surface of the electrolyte. 
A more convenient arrangement is to use 
a wedge-shaped electrolyte. Use of such 
a section corresponds to a pie-shaped 
section of small angle cut out of the field 
of revolution as shown in Fig. 5.15. The 

wedge-shaped volume of electrolyte is obtained by simply tilting 
a flat tank. Properly speaking the electrodes should be portions of 
cylinders, but if the angle of the electrolyte wedge is small enough, say 
less than 5 deg, they may be portions of planes without introducing any 
appreciable error. 

5.9. Sketching of Flux and Potential Fields. The properties of 
electrostatic fields are such that, with a little practice, it is possible to 
sketch fields with considerable accuracy without recourse to mathematical 
methods. It is known, for instance, that flux and potential lines are 
everywhere at right angles to each other. Flux lines emerge at right 
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angles from conducting surfaces. Potential lines near conductors tend 
to have the same shape as the conductor. These and other useful prop­
erties may be summarized as follows: 

PROPERTIES USEFUL IN SKETCHING FIELDS 

1. Flux and potential lines form orthogonal families of curves. 
2. Flux lines are perpendicular to conductors at conductor surface. 
3. Potential contours close to conductors tend to have the same forrr:. 

as the conductors. 

Conducror .surf'ace 
Frn. 5.16.-Sketch of flux and potential lines in an inside 
right-angled corner. This sketch was made by the method of 
Sec. 5.9 without mechanical or nuffierical aids. 

4. Potential lines are parallel or perpendicular to lines of symmetry; 
constructional bisectors may exist. 

5. Flux-potential patterns should be drawn with curvilinear squares, 
i.e., a four-sided figure, with right angles at the corners and with 
equal average lengths of opposite sides, which maintains these 
properties upon infinite subdivision. 

a. Same potential difference exists across each square. 
b. Same flux passes through each square. 
c. Each square has the same attraction for the conductor face. 
d. Each square has the same energy storage. 
e. Each flux line represents the same increment of capacity between 

electrodes. 

Most of the above properties are self-evident. In Fig. 5.16 is shown 
a plot of the flux and potential inside of a right-angled corn~r. This 
plot was sketched, not calculated. It will be observed that all the curvi-
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linear squares upon infinite subdivision will still be curvilinear squares. 
The principal line of symmetry is shown by the center line. The con­
structional bisectors are shown by dotted lines. 

A flux plot to be of value should include 

1. Shape of fields at large distances as well as small distances from 
the charges (conductors). 

2. Location of all conductors and. charges. 
3. Geometrical symmetries of any kind. 
4. All singular points, i.e., "saddle" points, giving rise to a crossing 

of equipotential contours. 

The above enumeration is actually quite general, and all these inclu­
sions are not always necessary in electronic problems. Singular points 
occur where there is an apparent intersection of potential contours. 
This occurs only where the equipotential surface is saddle-shaped. 1•2 

6.10. Method of Conformal Transformations. The method of con­
formal transformation is based upon solutions of Laplace's equation in 
two-dimensional rectangular coordinates and functions of the complex 
variable z = x + iy. Most functions of the complex variable of the 
form 

W = f(z) 

are separable into real and imaginary parts 

W = E(x,y) + iF(x,y) 

(5.60) 

(5.61) 

in which each part is a solution of Laplace's equation. The two parts 
of the complex function, E(x,y) and F(x,y), further represent orthogonal 
families of curves. They may hence be taken as representing flux and 
equipotential lines. The functions having the above properties are 
known as analytic functions (to be defined more explicitly). 

Every analytic function of the complex variable may thus be con­
sidered to represent the flux and potential field of some set of electrodes. 
Fields may further be transformed by means of analytic functions from 
one form to another. Thus, given a function that gives the field cor­
responding to one set of electrodes, the application of another function 
will transform this field into one corresponding to another set of elec­
trodes. In the course of this transformation all the properties of flux 
and potential fields are preserved. 

Analytic functions when used for making transformations have the 
property of preserving the angles between lines and of making corre-

1 MoonE, A. D., Mapping of Magnetic and Electric Fields, Elec. Jour., vol. 23, 
pp. 355-362, July, 1926. 

2 STEVENSON, A. R., and R. H. PARK, Graphical Determination of Magnetic 
Fields, Tram. A .l.E.E., vol. 46, pp. 112-135, February, 1927. 
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sponding incremental areas similar in shape. It is for these reasons 
that the transformations are called "conformal." 

Application of the method of conformal transformations usually 
takes the form of finding a transformation which converts the electrodes 
(equipotentials) of some simple field to the structure of which the field 
is desired. The field of the simple electrodes can usually be determined, 
and then the transformation converts the entire field to that of the more 
complex arrangement. 

Conformal transformations are familiar to everyone in the form of 
maps. The surface of the earth may be mapped in many ways, which 
give apparently different shapes to the land masses. The different shapes 
are, however, merely different representations of the same thing. Most 
maps could be transformed from one form to another by means of con­
formal transformations, since the transformations would preserve the 
angles between river tributaries and keep the shape of small areas the 
same. An example of this idea is found in the logarithmic transformation, 
which, as will be shown, is capable of transforming a polar azimuthal 
equidistant projection of the Northern Hemisphere into what is approxi­
mately a Mercator projection of this hemisphere. 

Complex Functions Satisfy Laplace's Equation. In studying conformal 
transformations it will first be shown that functions of the complex 
variable z = x + iy are solutions of Laplace's equation in two-dimensional 
r,oordinates, 

where 
f(x,y) = f(x + iy) = f(z) 

This follows since 

Similarly 
of df az . df 
-=--=i-
vy dz iJy dz 
iJ2f d2f 
a1/1- = - dz 2 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

It is evident that these partial derivatives are such as to satisfy Laplace's 
equation in the form of Eq. (5.62). The converse of this property is 
also true, viz., that solutions of Laplace's equation in two-dimensional 
rectangular coordinates are expressible as functions of the complex 
v11,riable. 
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Example: Let 

Then 

And 
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f(z) = Az2 + Bz 
= Ax2 + 2Aixy - Ay2 + Bx + iBy 

;; = 2Ax + 2Aiy + 0 + B + 0 

a2f = 2A 
ax2 

:i = 0 + 2Aix - 2Ay + 0 + iB 

a21 - = -2A ay2 

Laplace's equation is seen to be satisfied. 
It is also true that the real and imaginary parts of the function are solutions 

of Laplace's equation. 
f(z) = E(x,y) + iF (x,y) 

where 
E(x,y) = Ax2 - Ay2 + Bx 

and 
F(x,y) = 2Axy + By 

It is evident that 
a2E a2E - + - = 2A - 2A = 0 ax2 ay2 

and that 
a2F a2F 
ax2 + ay2 = 0 - 0 = 0 

Definition of Analytic Functions. The properties of functions of the 
complex variable will now be considered. It was mentioned above that 
a large group of functions had the desired properties, and such functions 
were referred to as "analytic functions." It will be remembered that, 
in the study of functions of the real variable, attention is usually restricted 
to functions which are continuous and functions of which the derivatiYe 
at any point is independent of the direction in which we approach the 
point as we take the limit of the ratio of the increment of the function 
to the increment of the variable. Similarly in studying functions of the 
complex variable we shall restrict attention to functions having a deriva­
tive that is independent of the direction of approach to the point in 
question. This is necessary because only functions having this property 
also have the desired properties of potential functions. Mathematicians 
use the term analytic to describe such functions. 

Consider 
W = f(z) = f(x + iy) (5.68) 
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Such a function is said to be analytic if it has a derivative that is 
independent of the direction of the increment of the variable !:i.z as it 
approaches zero. 

For a single real variable 

f'(x) = lim f(x + !:i.x) - f(x) = lim !:i.f 
Ax-->O !:i.x Ax-->O !:i.x 

For the complex variable z = x + iy 

f'(z) = lim J(z + !:i.z) - f(z) = lim !:i.f 
, ....... o Az az ..... o !:i.z 

Let 
W = u + iv = f(x + iy) 

If the function is analytic, 

Iim t:i.W = lim !:i.W = lim ~W 
az ..... o Az Ax-+O Ax Ay-+O i !:i.y 

Llz=Ax+i Ay Llz=Ax+iO Llz=O+i Ay 

In derivative form 

But 

Therefore 

and 

Hence 

.aw 
-i­ay 

W = u + iv 

-i aw = -i (au+ i av) ay ay ay 
. aw av . au 

-1,-- = - - i-ay ay ay 

au + i av = av _ i au 
ax ax ay ay 

Equating real and imaginary parts, 

au av 
i:Jx = ay 
av au 
ax= - ay 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

(5.77) 

(5.78) 

These equations are known as the "Cauchy-Riemann conditions" and 
serve to identify analytic functions. 
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Dividing Eq. (5.77) By Eq. (5.78), 

au av 
ax ay 
au = -a;-
ay ax 

(5.79) 

which is the orthogonality condition for two functions since the deriva­
tive of a function of x and y is 

af 
dy ax 
dx = - af 

ay 

(5.80) 

and curves fLre perpendicular if the derivative of one curve is the negative 
redprocal of the derivative of the other. If we take derivatives of the 
Cauchy-Riemann equations with respect to x and y, respectively, then 

a2u o2v 
ox2 = ax ay 

a2v a2u 
1ix ay - - oy2 

Subtracting these gives 
a2u a2u 
ax2 + ay2 = o 

(5.81) 

(5.82) 

(5.83) 

or Laplace's equation holds for the real part of the function. Similarly. 
Laplace's equation holds for the imaginary part. 

To summarize, an analytic function is one whose derivative is inde­
pendent of the direction of the increment of the variable as the increment 
approaches zero. For such a function the Cauchy-Riemann conditions 
hold. Analytic functions have real and imaginary parts which are orthog­
onal to each other and each one of which is a solution of Laplace's 
equation. 

It will be recognized that functions may be analytic except at certain 
points just as functions of a real variable may be continuous except at 
certain points. Such points are frequently those at which the function 
has a pole, i.e., assumes an infinite value. It is possible to use such func­
tions if the regions in which the function is not analytic are excluded 
from consideration. 

A serious limitation of the method of conformal transformations is 
that it is not always possible to find the transformation which will con­
vert one set of electrodes to another. In general, there is no definite 
method by which the transformation which fits a set of electrodes can be 
found. An exception to this remark is the Schwartz-Christoffel trans-
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formation, which transforms the real axis in the W plane into any poly­
gon in the Z plane, but this transformation does not find much use in the 
field of electronics. However, it is also possible to use methods of 
successive approximations and series expansions. Fortunately, the trans­
formations necessary for the most important vacuum-tube problems are known. 

The Logarithmic Transformation. The transformation that solves the 
problem of determining fields in the plane-electrode triode is known. It 
is the logarithmic transformation 

W = ln. Z (5.84) 

where E = 2.718 is the Napierian base. 
This is analytic for all finite values of x and y other than zero. 

The nature of the logarithmic transformation can best be understood 
by studying its component relations. It is most convenient to use polar 
coordinates in the Z plane and rectangular coordinates in the W plane. 
Thus let 

and 
W=u+iv 

In these coordinates 
u + iv = ln. r + iO 

(5.85) 

(5.86) 

(5.87) 

so that the component equations relating the real and imaginary parts 
are 

or, solved for r and 0, 

u = ln. r 
V = 0 

r = E" 

0 = V 

(5.88) 
(5.89) 

(5.90) 
(5.91) 

This function is readily proved to be analytic for finite values of the argu­
ment by application of the Cauchy-Riemann equations. 

Examination of the v component of W shows that it is multiple­
valued, in fact infinitely so. This occurs 'because any angle in the Z 
plane can be written as an angle less than 21r plus any integral multiple 
of 2-ir-. The angle O can be written as O + 21rn, where n is any positive 
or negative integer. Thus, corresponding to any point in the Z plane 
there are an infinite number of points in the W plane evenly spaced by a 
distance 2,r along a vertical line. 

From Eq. (5.88) it is seen that any circle about the origin in the Z 
plane, r = k, transforms into a line parallel to the v axis in the W plane, 
u = Ink.* Circles with radii less than 1 give lines in the left half of the 

• Hereafter, the notation Jn r will be used to designate the natural log&ritbm of r, 
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W plane since the logarithms of numbers less than 1 are negative, and 
circles with radii greater than 1 give lines in the right half of the W plane 
since the fogarithms of numbers greater than 1 are positive. Any radial 
line through the origin, 8 = k, transforms into a set of lines in the W 
plane parallel tb the u axis and spaced a distance 2-ir, v + 27m = k. 
These relations are shown in Fig. 5.17. From this it is seen that a single 

point in the Z plane such as r = 1.5, 8 = ;f transforms into a series of 

points u = ln 1.5, v = ;f + 2n1r in the W plane. Thus a single point in 

the Z plane that may be taken as representing a line charge transforms 

~ Ii 
I ,, 

(t, 

Z PLANE 

9 =-Tr/4+2rr ----------------
(}= +lT/2 

(J=+lT/4 

- -µ (}:-TT/4 +µ-

0=-rrh 

__ (J=Tr/4-2rr ____ · -----

l-v 

WPLANE 
FIG. 5.17.-The logarithmic transformation, W = In, Z. 

into a row of line charges evenly spaced in the W plane. This gives the 
arrangement corresponding to a grid of evenly spaced parallel wires and 
is the basis for the plane-electrode representation. 

The nature of the logarithmic transformation is better understood if 
the transformation be effected in a series of steps. Imagine the Z-coordi­
nate plane to be a stretched elastic memb,rane. If the polar-coordinate 
diagram of the Z plane shown in Fig. 5.18a be split along the negative :r 
axis and the upper and lower edges be rotated clockwise and counter­
clockwise·, respectively, the pie-shaped section of Fig. 5.18b will result. 
If now the point on the pie is stretched to the left and the outer edge is 
compressed, the configuration shown in Fig. 5.18c results. Finally the 
left and right edges are made the same length and are stretched to nega­
tive an·d positive infinity, respectively, to give a strip of the W plane as 
shown in Fig. 5, 18d. , · · 
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The nature of the logarithmic transformation is also well illustrated 
by relationship between certain types of maps. Thus, if the Northern 
Hemisphere on a polar azimuthal equidistant projection be taken as the 
Z plane, then the Northern Hemisphere on a Mercator projection corre­
sponds very closely to the W = In. Z plane. It will be recognized that 
each of these two common maps is but a different representation of a 
part of the earth's surface. In Fig. 5.19 is shown a polar azimuthal 
projection of the Northern Hemisphere. In Fig. 5.20 is shown a Mer­
cator projection of the Northern Hemisphere. 

The polar azimuthal equidistant projection is made by unfolding 
the earth's surface and stretching it out until it is a plane tangent to the 

(a) tbJ 

WPLANE 
(cJ (d) 

FIG. 5.18.-Steps ill a progressive transformation from the Z to the In, Z plane. 

pole with distances from the pole made equal to the great-circle distances 
on the actual sphere. This is indicated in Fig. 5.21. The longitude lines 
become straight lines through the pole, and the latitude circles remain 
circles. 

Mercator's projection is approximated by surrounding the earth with a 
circular cylinder tangent to the earth at the equator as in Fig. 5.22 and 
extending to infinity in both directions. Points on the earth's surface 
are then projected onto this cylinder by drawing a line from the earth's 
center through the point in question and extending it until it hits the 
cylinder. The cylinder is then cut and unfolded to give a plane surface. 
The latitude circles on the sphere become a series of parallel straight 
lines on the Mercator projection. The longitude circles become another 
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set of equidistant parallel straight lines perpendicular to the latitude 
lines. 

It is easily seen that the latitude <.ircles, r = k, in the polar azimuthal 
equidistant projection become straight lines parallel to the equator, 
u = Ink, in the Mercator projection. The longitude lines through the 
pole in the polar azimuthal equidistant projection, (} = K, become a set 
of evenly spaced lines perpendicular to the equator in the Mercator 

Fm. 5.19.-The polar azimuthal equidistant proiection of the North­
ern Hemisphere. This may be considered as a polar-coordinate 
representation of the Z plane. 

projection, v = K. The pole, which is the center of things in the polar 
azimuthal equidistant projection, recedes to infinity in the Mercator 
projection. Distortions in the different representations are evident. 
The polar azimuthal equidistant projection gives its most accurate repre­
sentation near the pole but stretches out the equator disproportionately, 
causing Africa to be too wide. The Mercator projection is most accurate 
in the band around the equator but causes areas near the poles to be 
disproportionately large. Greenland on a Mercator projection looks 
larger than South America but is actually only one-tenth as large. 
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polar azimuthal equidistant projection of Fig. 5.19. 

This map results from applying the transformation W = In, Z to the 
\0 .... 
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Observe, however, that angles and the similarity of small areas are 
preserved. 

The Function W = zi1n. The simple power function given by raising 
Z to some rational fractional power is the function that gives the fields 
inside of a cylindrical triode. As usually written, this function is 

It may also be written 

or 

w = zvn 

lnZ 
W = E-,;-

1 
ln W = - In Z 

n 

(5.92) 

(5.93) 

(5.94) 

but the form of Eq. (5.92) is preferred. 

FIG. 5.21.-Construction of 
the polar azimuthal equi­
distant projection. 

Making these substitutions, 

The nature of the power function may 
best be understood by examining the form 
of the function for a specific value of n. 
Consider the case of n = 2. Then 

w = v, 
or 

z = w2 

(5.95) 

(5.96) 

Using rectangular components for both Z 
and W, 

and 
Z = X + iy 

W = u + iv 

(5.97) 

(5.98) 

x + iy = u2 + i2uv - v2 (5.99) 

from which, by equating real and imaginary parts, the component equa­
tions are 

x = u 2 - v2 

and 
y = 2uv 

(5.100) 

(5.101) 

These component equations satisfy the Cauchy-Riemann conditions 
. ax ay ~x ay 

smce - = - = 2u and - = - - = - 2v. Letting x and y assume au av av au 
various constant values, it is seen that the component equations (5.100) 
and (5.101) represent two families of orthogonal hyperbolas previously 
shown in Fig. 5.16. For a better comparison the Z and W planes are 
shown in Fig. 5.23, in which corresponding flux and potential lines are 
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indicated. It will be seen from this figure that the upper half of the Z 
plane transforms into the first quadrant of the W plane. The trans­
formation is double-valued, i.e., one point in the Z plane transforms into 
two points in the W plane. For example, the point (0,4) in the Z plane 

Frn. 5.22.-Construction of the Mercator projection. 

transforms into the point (1.414,1.414) and also the point ( -1.414, -1.414) 
in the W plane. For most purposes only the first, or "principal," value 
of the multiple values is used, though all of them have the correct mathe­
matical properties. It can further be seen that if the polar representa-

"' ..... <::, .... "' I I II 

" " " ~ ~ ~ !,( 8 
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y=I 
.._ ___ _,_I --,i---y=O 

I I 
\ _.l-- y=-1 

.....-< l 
/'' \ \ 

W PLANE 
FIG. 5.23.-The transformation W = Z~'i. 

tion of points is used the angle of the point in the W plane is half the 
angle of the corresponding point in the Z plane and the radius vector 
of a point in the W plane is the square root of the radius vector of the 
corresponding point in the Z plane. 
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In the general case of the function W = zi1n, the function is n-valued 
if n is an integer. As a result, the upper half of the Z plane transforms 

into a segment of the W plane having an angle !. Angles in the W plane 
n 

are !th the corresponding values in the Z plane (principal values), and 
n 

radius vectors have a magnitude in the W plane that is the nth root of 
the radius vector of the corresponding points in the Z plane. 

FIG. 5.24-Polar azimuthal equidistant projection of the North­
ern Hemisphere transformed by W = Z½. 

The component relations are not readily written in rectangular com­
ponents for any general integral value of n. In polar form, however, 
they are quite simple. Let 

Z = rLO = TE'e 

as before; and let 

Then the component equations in polar form are 

R = r11" 

(5.85) 

(5.102) 

(5.103) 



and 
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8 "'= -n 
(5.104) 

The nature of the transformation W = zi;n may be indicated as a 
kinr:l of deformation of the Z plane. Upon comparing the W- and Z-plane 
representations in Fig. 5.23, it is seen that if the upper half of the Z 
plane be cut along the negative x axis and if the upper edge of the nega­
tive x axis be swung clockwise 90 deg and the lower half of the negative 

FIG. 5.25-Polar azimuthal equidistant projection of the North­
ern Hemisphere transformed by W = Z¼. 

:i: axis be swung counterclockwise 90 deg then the W-plane representation 
will result if the intermediate regions are allowed to deform accordingly. 
A set of polar maps can also be drawn to illustrate the nature of the 
transformation. In Fig. 5.24 are shown maps illustrating the nature of 
the transformation W = Z½. It is seen that the representation is 
double-valued and that the scale of distances from the pole in the W-plane 
representation is quadratic rather than linear; the land areas are pushed 
out from the pole toward the equator though the map as a whole differs 
surprisingly little from the usual representation. 
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In Fig. 5.25 are shown maps illustrating the nature of the trans­
formation W = Z¼. This transformation is quadruple-valued, i.e., 
every point in the Northern Hemisphere is repeated four times in the 
W-plane representation. The scale of distances from the pole is quartic 
in the W plane, with the result that the land masses are compressed 
strongly near the equator. 

An inkling of how this transformation is used is obtained if we con­
sider that in the polar azimuthal equidistant or Z-plane representation 
a cathode wire be located at the North Pole, a grid wire be located at 
Iceland, and the equator be a circular plate surrounding both. Then 
we have a simple tube structure with one cathode "\\ire, one grid wire, 
and one plate. If then the transformation W = Z¼ be used, the corre­
sponding W-plane representation has one cathode wire at the pole as 
before, a surrounding plate at the equator as before, but four grid wires 
located at the four Icelands, which are evenly spaced around the 66° 
latitude circle. If the potential field can be found in the Z plane, then 
it can be transformed into the W plane just as the land outlines have 
been transformed. This is what Chap. 7 is mostly about. 



CHAPTER 6 

LAWS OF ELECTRON MOTION 

ALL ekctronic devices depend for their action upon the effect of applied 
electric or magnetic fields upon electron flow within the device. The 
applied fields may control the direction or the magnitude of the current 
flow or both. In this chapter there will be studied the effect of fields 
upon the electron paths when the electrons are present in small enough 
number so that their presence does not change the applied fields . In a 
subsequent chapter there will be studied the effect of fields upon electron 
flow when the electrons are present in sufficiently large numbers to 
influence the fields. 

6.1. Electron in a Uniform Electric Field. An electron in a uniform 
electrostatic field experiences a constant force in the direction of increas­
ing potential. As a result, the laws governing an electron starting from 
rest are the same as those which apply to a body falling freely under the 
influence of gravity until very high velocities are reached. From New­
ton's second law, 

d2x 
m dt2 = -Ee 

where mis mass of the electron, 9.107 X 10-31 kg 
x is distance, meters 
t is time, sec 

-E = !: is gradient of potential, volts per meter 

e is magnitude of the charge of the electron, 

1.602 X 10-19 coulomb 

A first integration of Eq. (6.1) gives 

v = dx = - .!!_ Et 
dt m 

meters per sec 

(6.1) 

(6.2) 

the constant being zero because the velocity is taken as zero when time 
is zero. A second integration gives 

X = - !~Et2 

2m 
97 

meters (6.3) 
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in which the constant is again zero for an electron starting from rest at a 
point of zero potential. 

If time is eliminated between Eqs. (6.2) and (6.3), there results 

½mv2 = eV (6.4a) 

where V = - Ex is the potential through which the electron has fallen. 
Equation (6.4a) states that the kinetic energy acquired by an electron 
starting from rest is equal to the potential energy which it has lost. 
Solving for v, 

meters per sec (6.4b) 

The relation between Eqs. (6.2), (6.3), and (6.4a) and the correspond­
ing equations for a falling body is evident. It is seen that the quantity 

eE. h . 1 f h . . l - - 1s t e eqmva ent o t e grav1tat10na constant. 
m 
If the values for charge and mass be substituted and all quantities 

be expressed in practical units, then 

v = 1.758 X l0 11Et 
x = 0.879 X l011Et2 

v = 5. 93 X 105 y'V 
where v is velocity, meters per sec 

E is gradient, volts per meter 
Vis potential, volts 

meters per sec 
meters 
meters per sec 

(6.5) 
(6.6) 

(6.7a) 

x is distance through which the electron has been accelerated 
The above expressions are not accurate for potentials exceeding 30,000 
volts. 

The ratio of the charge to the mass of the electron is so high that a 
small voltage will impart a tremendous velocity to the electron. It 
takes only three-tenths of a microvolt to give an electron a velocity of 700 
mph which is approximately the velocity of sound. Although the speeds 
of electrons are very high, their energy is low because of their minute 
mass. 

Electron speeds are frequently expressed in terms of the corresponding 
voltage. Energies are also designated in terms of electron volts, 1 elec­
tron volt being equal to 1.602 X 10-19 watt-sec. An electron that has 
"fallen" through 1 volt of potential is said to have acquired an energy 
of 1 electron volt. 

If an electron enters a region of uniform field at a poiqt xo with an 
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initial velocity Vo parallel to the field, then 

e 
v = - - Et+ Vo 

m 
meters per sec 

e 
x = - 2m Et2 + v0t + Xo meters 

where xo is the initial distance in meters. 
Eliminating t between Eqs. (6.8) and (6.9), 

½m(v2 
- Vo2) = e(V - Vo) 

or 
V = 5.93 X 105 VV - Vo meters per sec 

99 

(6.8) 

(6.9) 

(6.10a) 

(6.10b) 

Equations (6.4), (6.7), and (6.10b), which give velocity in terms of 
potential, are not restricted to uniform fields or to one-dimensional fields. 
This is due to the fact that these equations express the conservation of 
energy and hence are independent of the electron path and the nature 
of the potential field. 

G.2. Initial Velocity Not Parallel to Field. When an electron enters 
a region of a uniform field with an initial velocity that is at an angle with 
the gradient of potential, the electron follows a parabolic trajectory. 
This is because it experiences a constant force in the direction of the 
gradient and no force at right angles to this. The case is analogous to 
the mechanical case of a projectile fired from a gun in the absence of 
friction. The projectile is subjected to a constant downward force but 
has no force affecting the component of velocity parallel to the earth's 
surface. 

The differential equations for the components of electron motion when 
the electron meets a retarding component of field are 

and 

d2y _ e --E di,2 - m 

d 2x 
-=0 
dt 2 

(6.11) 

(6.12) 

The initial conditions that determine the solution of these equations 
are as follows : 
When t = 0, 

dy = Vo cos 8 
dt 
dx . 

8 dl = Vo sm 

y=O 

x=O 
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where 8 is the angle that the initial velocity makes with the gradient 
of potential and Vo is the initial velocity. 

A first integration gives 

dy _ e 
dt - - m Et + Vo cos 8 

and 
dx . - = Vo Sln 8 
dt 

A second integration gives 

and 

e 
y = - 2m Et2 + Vo cos 8 t 

x = Vo sin 8 t 

~,,,,~ V=Vo+E;t ,"-. 
'::, \ >> 

I I 
: I 
: I 
: I 
: I 
d I 
: I 
: I 
: I 
: ko 
i I 
l I 

Elecfron 
gun 

-E1=dV dS 

FIG. 6.1.-Parabolic electron trajectory in a uniform elec­
tric field. This case results from the injection of an elec­
tron with an initial velocity into a region where the electric 
field has a uniform retarding action. 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

Elimination of the time factor between Eqs. (6.15) and (6.16) gives 
the equation of the parabolic trajectory 

-Ex2 x y=---+--
4Vo sin2 8 tan 8 

(6.17) 

where Vo is the potential corresponding to the initial velocity. This is 
observed to be the equation of a parabola in x and y and to be independent 
of the system of electrical units used. The notation used in all the above 
equations corresponds to that shown in Fig. 6.1, 
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The slope of the trajectory at any point is given by 

-Ex 1 
tan a = _,.--,-c-- + --

2Vo sin 2 fJ tan fJ 
(6.18) 

where a is the angle that the tangent to the parabola makes with the 
horizontal axis. 

The maximum height to which the electron rises is 

Ym = 
Vo cos2 fJ 

E 

and the horizontal displacement corresponding to this is 

2Vo sin 8 cos 8 
Xm = E 

(6.19) 

(6.20) 

6.3. Electrostatic Deflection of Cathode-ray Beams. An application 
of the situation analyzed in the last section is found in the deflecting plates 

r--b ---1 
~ <' ~~:_;;>-=-=---------------1~ 
:i -- ------------------- --- _J_ 

I _L_,,C ____ .,,;;> 

i-----------------------l----------------------

Fra. 6.2.-Electrostatic deflection of an electron beam. The electron enters t:ne 
region of deflecting field at right angles to the field. The trajectory is parabolic 
between the plates. 

of the ordinary cathode-ray tube. Here a stream of electrons enters a 
region of a uniform field, traverses a parabolic path while under the 
influence of this field, and leaves the region between the plates at a 
different angle from that at which it enters. It then travels in a straight 
line until it hits the fluorescent screen. 

In this case, as may be seen by reference to Fig. 6.2, the electron 
enters the deflecting field at right angles, making the angle 8 equal to 
90 deg. The potential gradient is Vd/a. For this condition the slope 
of the trajectory upon emerging from the plates after a distance of travel 
bin the horizontal direction is, by Eq. (6.18) 

tan a = vd b + _!_ (6.21) 
2aVQ OQ 
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where Vd is the potential between plates and Vo is the potential corre­
sponding to the initial velocity. But 

tan a~ Yd -z (6.22) 

so that 
l bVa 

(6.23) Ya= - -
2aVo 

This expression is only an approximate one, for it neglects the fringing 
effect of the flux lines around the end of the deflecting plates. 

In most cathode-ray tubes the deflecting plates are not parallel but 
slope apart so that the electron in passing between them is subjected 
to a constantly decreasing gradient. When this is the case, the expres­
sions obtained previously cannot be used and the problem must be 
solved anew. This is readily done by setting the gradient between the 
plates equal to 

(6.24) 

where a1 and a2 are the separations of the ends of the deflecting plates 
where the beam enters and leaves, respectively. Other symbols have 
their previous significance. The expression for the crosswise acceleration 
involving this factor is then integrated to obtain the crosswise component 
of velocity at the point where the beam emerges from between the 
deflecting plates. The ratio of the crosswise to the axial velocity multi­
plied by the distance to the fluorescent screen is then equal to the screen 
displacement. This has the form 

z (a2) blVa n ai 
y=--

2Voa1 (~ _ i) (6.2-5) 

which reduces to Eq. (6.23) when a1 = a2. From this it is seen that the 
effect of spreading the deflecting plates at one end is to decrease the 
deflection. If the separation of the plates is increased 50 per cent at 
the far end, the deflection is decreased to 81.2 per cent of its value for the 
parallel plates having the near-end spacing. The deflection for divergent. 
plates is, however, slightly greater than for parallel plates having theh 
spacing equal to the average spacing of the divergent plates. Equatior. 
(6.25) is still in error because it takes no account of the flux fringing at 
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the ends of the deflecting plates. 1•2 The effect of the fringing is to 
increase the effective length of the plates. 

6.4. Relativity Correction for Velocity. The general expression 
developed in Sec. 6.1 giving electron velocity as proportional to the square 
root of potential is valid only for velocities low compared with the 
velocity of light. This is due to the fact that according to the theory of 
relativity the mass of a particle changes with its velocity, and in the 
derivation of the expressions of Sec. 6.1 the mass was assumed constant. 

One of the postulates of the theory of relativity is that nothing can 
move with a speed greater than the velocity of light. As a consequence of 
this upper limit on velocity, it is seen that a body subjected to a constant 
force must have its mass increase as it is accelerated, or otherwise its 
velocity would increase indefinitely and finally violate the postulate by 
exceeding the velocity of light. If, however, the mass of the particle 
increases as its velocity increases, a constant force produces an accelera­
tion that decreases with velocity and permits the possibility of an upper 
limit to velocity. 

Another conclusion of the theory of relativity is that matter and energy 
are equivalent. Mass may be considered a manifestation of energy. To 
relate this to the remarks of the previous paragraph, the energy expended 
in accelerating an electron manifests itself as an increase in its mass. 
From this idea, the law for the change of mass with velocity and the cor­
responding law for velocity in terms of potential are readily deduced. 

Mass and energy are related by a factor c2, where c is the velocity of 
light. 

(6.26) 

where w is energy in watt-seconds, c is the velocity of light, 3 X 108 

meters per sec, and m is mass in kilograms. 
Consider the increase in mass that an electron experiences as it is 

accelerated. Then 
c2 dm = dw = F ds (6.27) 

where dm is the increase in mass, dw is the energy expended in accelerating 
the particle, Fis the applied force, ands is the distance factor. 

According to Newton's second law, 

d 
F = - (mv) 

dt 
(6.28) 

1 See also BENHAM, W., Inclined Deflecting Plates, Wireless Eng., vol. 13 (No. 148) 
pp. 10-13, 1936. 

1 HINTERBERGER, 0., Cor,·ection for End Effects in Oscilloscope Deflecting Plates, 
'teit. fur Phys., vol. 105, pp. 501-512, July, August, 1937. 



104 VACUUM TUBES 

this being the general statement of the law when a variation in mass is 
encountered. Making this substitution into Eq. (6.27), and integrating 

c2 f dm = f d(:v) ds = f vd(mv) 

Equating the integrands and separating variables, 

dm vdv m = c2 - p2 

which integrates to give 

[ln m];:: = [1n ( 2 

1 
2) 1,]' 

• C - V · o 

giving the result sought, 

mo 
m= ✓-v2 

1-­
c2 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

where mo is the rest mass of the electron. 1 It is seen that at low velocities 
the mass is practically the rest mass. As the velocity increases, the mass 
increases, slowly at first and then quite rapidly. At one-tenth the 
velocity of light (2,600 volts) the mass has only increased by ½ of 1 per 
cent. The mass tends to become infinite as the velocity of light is 
approached. · 

The expression for mass as determined by the velocity can now be 
applied to obtain an expression for velocity as a function of potential. 
This is best done by equating the expressions for potential and kinetic 
energy, the latter involving the general expression for the mass as a 
function of the velocity. 

Potential energy, Ve = kinetic energy, -e J Eds (6.33) 

But 

f E ds = f Ed:s dt = f Ev dt (6.34) 

1 Th.is is what is known as the "transverse mass" of the electron because it is the 
effective mass of the electron to transverse deflection where the magnitude of the 
velocity is not changed appreciably. It should be distinguished from the "longitu-

dinal mass," which has the value mo 
2 

½' which is the effective mass that an 

(1 - ~) 
electron presents to longitudinal acceleration where the mass as well as the velocity 
changer,. 
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In this expression 
d dv dm 

-eE = dt (mv) = m dt + v dt 
Hence 

Ve= f m ~ v dt + f v d:;: v dt 

Ve= fmvdv + Jv 2 dm 

105 

(6.35) 

(6.36) 

(6.37) 

If now the general expression form as a function of velocity be sub­
stituted and the integrals be evaluated between the limits of 0 and v on 
the variable v, there results 

This is readily solved for velocity. 

The corresponding expression for mass as a function of potential is 

m = mo(l + 1.965 X 10-6V) 

(6.38) 

(6.39) 

(6.40a) 

The results of the above analysis deserve considerable study. Con­
sider first the way in which the mass varies. Referring to Eq. (6.32), it is 
seen that at very small velocities the mass is practically the rest mass. 
As the velocity is increased, the mass at first increases parabolically with 
the velocity, 

( 
1 y2) 

m = mo 1 +--2 c2 (6.40b) 

This expression is approximately correct until the velocity reaches one­
tenth the velocity of light. At this velocity the mass has increased only 
½ of 1 per cent. 

From Eq. (6.40a) it is seen that the mass increases linearly with the 
potential. This happens because of the energy relation, which requires 
that the potential energy acquired manifest itself as an increase in mass. 
At about 500,000 volts the mass of the electron has doubled. Thi~. 
voltage is not ordinarily reached in ordinary tubes. At 5,000 volts the 
mass has incrnased by 1 per cent. 

The velocity of the electron follows the low-voltage law of Eq. (6. 7) 
until very large voltages are reached. Even at 100,000 volts the velocity 
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has dropped only 7½ per cent from the low-voltage value given by Eq. 
(6.7a), which may be written 

(6.7b) 

By 1,000,000 volts, however, the velocity has reached 93 per cent of the 
velocity of light. Above 1,000,000 volts the velocity becomes closer and 
closer to the velocity of light but experiences no rapid change with voltage. 

The above relations are shown in Fig. 6.3. On this log-log plot it is 
seen that velocity follows the half-power law of potential well up to about 
100,000 volts. Between 100,000 and 1,000,000 volts the change from the 
half-power law occurs, and above 1,000,000 volts the velocity is practi­
cally constant. Several convenient reference points may be taken from 
this curve. An electron reaches one-tenth the velocity of light at about 
2,600 volts. If there were no change of mass with velocity, the electron 
would reach the velocity of light at about 260,000 volts. 

6.5. Two-dimensional Electric Fields. Electrons are frequently 
exposed to fields that are not uniform but that are two-dimensional or 
more. It is generally quite difficult to determine exactly what the elec­
tron path is by analytical methods. 

The fundamental differential equations involved are quite simple, 
but they are usually difficult if not impossible to solve. In rectangular 
coordinates the differential equations are 

d2x e 
dt2 = - m E.,(x,y) (6.41) 

and 
a2y e (6.42) -= - -Eu(x,y) 
dt2 m 

where 

E,, = av (x,y) 
(6.43) 

ax 
and 

Ev= 
av (x,y) (6.44} 

ay 

When these equations can be solved, they give the components of electron 
displacement parametrically in terms of t. 

When the potentials are given in two-dimensional circular-cylinder 
coordinates with an axial symmetry, as is the case in most electron­
optical problems, the equations have the same form as those above. It 
is necessary only to substitute r for x and z for y to get the corresponding 
equations for this case. 
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For two-dimensional polar coordinates, such as itre used for the 
cylindrical triode, the equations are quite different and still more difficult 
to solve. In terms of a radial variable r and an angular variable () the 
differential equations of motion are 

d
2r (d8) 2 

= e av 
dt2 - r dt m i)r 

d 28 + 2 dr d8 = ! __l:_ a V 
r dt 2 dt dt r m i)() 

(6.45) 

(6.46) 

These equations are most readily obtained by applying the Lagrangian 
operator to the energy equation, which in these coordinates has the form 

m dr 
2 

d() _ [( )2 ( )2] 2 dt + r dt - eV (6.47) 

The difficulty in solving these two-dimensional problems arises from 
the fact that the variables in the component equations are rarely separable. 

Example: One of the few two-dimensional problems that can be solved exactly 
is that of an electron released from a point on the side of an interior right-angled 
conducting corner at zero potential. The potential configuration is shown in 
Fig. 5.16. The equation for the potential is V = kxy so that the components 
of electric intensity are E, = -ky and Eu = -kx. The differential equations 
of motion are then 

d2x e 
dt2 = m ky (6.48) 

and 
d2y e 

(6.49) - =-kx 
dt 2 m 

It is convenient to make the substitution !!___ k = w2• If each equation is differ­
m 

entiated twice and the relations from the original equations substituted, there 
result 

(6.50) 

and 
d•y 
dt 4 = w2y (6.51) 

in which a separation of the variables has been achieved. When these equations 
are solved subject to the initial conditions that when 

t = 0 
x=O 
y=a 



there results 

and 
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dx _ O 
dt -

dy - 0 
dt -

a 
x = 2 (cosh wt - cos wt) 

a 
y = 2 (cosh wt + cos wt) 

109 

(6.52) 

(6.53) 

The above solutions may be obtained either by standard meth0ds or by the 
operational calculus. The nature of the solution is more apparent if the com­
ponent displacements are referred to the line y = x, that is, if the system be 
rotated 45 deg clockwise. When this is done, 

a 
X1 = V2 cosh wt 

a 
Y1 = y2 cos wt 

(6.54) 

(6.55) 

This same result may be obtained more quickly if the original potential field 
be rotated 45 deg clockwise before formulating the differential equations. When 
this is done, the field has the form shown in Fig. 6.4 and the potential is 

k 
V = 2 (x12 - Y1 2) and 

The differential equations are then 

d2x1 
dt}=wX1 

d 2
y1 dt2 = -wy, 

(6.56) 

(6.57) 

Here the variables are already separated in equations of lower order; and when 
these are solved subject to the conditions that when 

t = 0 
a 

X1 = y2 

a 
Y1 = y2 

dx:. = O 
dt 

dy, - 0 
dt -

the same solution as was obtained above results. 
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Examination of the solution shows that the electron oscillates about the line of 
symmetry while moving outward at a constantly increasing rate. It is also seen 
that the shape of the trajectory is independent of the strength of the field and 
also of the charge and mass of the electron. This is a general characteristic of 
such problems. The transit time, however, does depend upon all three of these 
factors. This means that a heavier particle starting under the same conditions 
will trace out the same path but be slower in doing so. 

X 

Elecfron afh 

Fm. 6.4.-Path of an electron released from a point on the wall of a right-angled 
corner. Note that the electron does not follow a flux line but, because of it8 
finite mass, overshoots the line of symmetry and subsequently oscillates about 
it. 

If the general differential equations (6.41) and (6.42) are combined 
with the energy equation 

~ [ (!~Y + (~;)2] = eV (6.58) 

and the factor t be eliminated between them, there results a differential 
equation in the coordinates x and y alone, 

d
2
y [ dy ] [ (dy) 2

] 2V(x,y) dx2 = E,, dx - Eu 1 + dx (6.59) 

This equation is no easier to solve than those previously given, but several 
important properties of electron trajectories can be deduced from it. 
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1. The mass and charge of the electron do not appear in the equation. 
This means that the path taken will be independent of these factors. 

2. The equation is not changed if either voltage or distance is changed 
by a constant factor. This means that the path will be the same 
for all magnitudes of voltage as long as the form of the field is 
not changed. 

3. If the tube structure is enlarged by any factor, then the trajectory 
will be enlarged by the same factor. 

6.6. Electron in a Uniform Magnetic Field. An electron in motion 
constitutes a minute electric current of magnitude -ev, where e is the 
magnitude of the charge on the electron and B~ 
v is its velocity. As such, an electron in a ~ 

magnetic field experiences a sidewise force 
just as does a wire carrying current. The 
magnitude of this force in newtons is B ev sin 8, 
where B is the magnetic-flux density in 
webers per square meter (1 weber per meter2 

equals 104 gausses) and 8 is the angle 
between the vectors representing the field 
and the velocity, the latter being in unitli of 
meters per second. When the electron enters Fm. 6.S.-The direction of 

the field at right angles to it, the force is the force on an electron rela­
simply Bev directed at right angles to the tive to the velocity and mag­
velocity. The relative directions of field, netic field that produce it. 

velocity, and force are shown in Fig. 6.5. The force is the vector prod­
The force changes the direction but not the uct of the m agnetic-flux 
magnitude of the velocity and in this case is density and the velocity. If 

continuously exerted at right angles to the B is turned into v, then F 
instantaneous velocity because the direction advances like a right-hand 

of the force changes with the direction of the screw. 

velocity. This fulfills the conditions necessary for a circular motion of 
the electron in a plane normal to the magnetic field. 

The force developed by the magnetic field may be considered as a 
centripetal force that must equal the centrifugal force developed by the 
circular motion of the electron. Equating these forces, 

mv2 

Bev = R newtons (6.60) 

where R is the radius of the circular electron path. From this the radius 
Qf the circular path is 

R = m!!._ 
e B 

meters (6.61) 
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It is more convenient for application of this formula to express the 
physical quantities in numerical form and to use the potential correspond­
ing to the velocity. With these changes the expression for the radius of 
the circular path becomes 

ITT 

R = 3.37 X 10-6 VBV meters (6.62) 

where Vis the electron velocity in equivalent volts and Bis the magnetic­
flux density in webers per square meter (104 gausses). This relation 
shows that, the stronger the field and the smaller the velocity of the 
electron, the smaller the circle in which it moves. The results of this 
relation are compactly presented in the nomogram of Fig. 6.6. 

If the particle is not an electron but an ion of mass mp and with n times 
the charge of the electron, the radius is given by 

R = 3·37 X 10-6 {m;:y_ meters (6.63) 
p B '\Jmen 

where m. is the mass of an electron and B is magnetic-flux density in 
webers per square meter. 

Since the radius of the circle followed by the particle is proportional 
to the velocity, the period corresponding to one loop is independent of 
the initial velocity and depends only upon the magnetic field. The 
period is given by the circumference of the circle divided by the velocity, 

In practical units this is 

T = 21rm ]:__ 
e B sec 

T = 35.5 
B 

m.icromicroseconds 

(6.64) 

(6.65) 

The value of the period can be obtained from the nomogram of Fig. 6.6 
by observing that the period in microseconds is the same as the radius in 
centimeters when the potential is 11.22 mv. 

For particles with a mass mp and having n times the charge of the 
electron the period is 

T = 35.5 mp 
nB m. 

micromicroseconds (6.66) 

The fact that the period is independent of the velocity is significant 
and useful. If a number of electrons of different velocities be injected 
into a uniform magnetic field, they will trace out circles of different size 
but they will all return to the starting point at the same time. Use 1s 
made of this property in magnetic focusing of electron beams. 
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Fm. 6.6.-Nomographic chart giving the radius of the circular path of an 
electron in a uniform magnetic field as a function of the magnetic field strength 
and the electron energy in volts, Eq. (6.62). The chart also gives the period 
of a single rotation as a function of magnetic field strength, Eq. (6.65). 
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If an electron enters a magnetic field at an angle (J with the field, 
then there is a component of velocity parallel to the field, v cos 9, that is 
unaffected by the magnetic field. The other component of velocity, 
that normal to the field, v sin 9, produces a circular motion which com­
bines with the parallel motion to give a helical path. The radius of the 
helix is given by 

R = 3.37 X 10-6 -vV sin fJ 
B 

meters (6.67) 

where V is in volts and B is in units of webers per square m~ter (10 4 

gausses). The pitch of the helix is given by the product of the parallel 
component of velocity and the period as determined from Eq. (6.65). 

21.2 X 10-6 yV cos fJ 
p= B meters (6.68) 

It will be observed that for small angles the pitch does not vary much 
with the angle. Hence, if a magnetic field is placed parallel to a beam of 
electrons in a cathode-ray tube, the electrons will return to positions cor­
responding to their original relative position in a distance p along the 
beam. This is the principle of magnetic focusing, which is used to keep 
electron beams from spreading. All the electrons trace out helical paths 
of different radii but of the same pitch. Magnetic focusing cannot do 
more than reproduce the original beam diameter, and the field must be 
adjusted to produce this effect at the point desired. 

6.7. Behavior of Electrons in Nonuniform Magnetic Fields. The 
paths followed by electrons in nonuniform magnetic fields are extremely 
complex. Little can be said about them except in certain simple limiting 
cases. In all cases the magnitude of the velocity will be unchanged because 
no energy is added to or taken from the electron when subjected to the influence 
of a steady magnetic field alone. In contrast, the direction of the velocity 
can experience very involved changes. The general form of the force 
equation depends upon the components of field and velocity. An x 
component of force results from a y component of field and a z component 
of velocity and also from a z component of field and a y component of 
velocity. Upon writing the components of force in terms of components 
of acceleration the general differential equations for three-dimensional 
rectangular components are 

m d2x dz dy e dt 2 = Bu dt - B. dt 

m d2y dx dz e dt2 = B, dt - Bz dt (6.69) 

~ d2z = B dy _ B dx 
e d/,2 z di, II di 
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When the components of field vary from point to point, these equa­
tions are practically insoluble. 

In electron-optics work, circular cylindrical coordinates r, 8, and z 
are used where the coordinates specify radial distance, angle, and axial 
distance, respectively. Here the equations have the same general form 
as Eqs. (6.69) but are quite different in their specific appearance. They 
are 

m [d
2
r (d8) 2

] dz r d8 e dt 2 - r dt = B 8 dt - B. dt 

m[!i( 2 d8)] = B dr _ B dz 
e rdt r dt 'dt 'dt 

~ [d
2
z] = B r d8 _ B dr 

e dt 2 ' dt 8 dt 

(6.70) 

where the terms in the brackets on the left-hand side of the equations are 
the components of a0celeration in the r, 8, and z directions, respectively. 

Example: It is a known property that low-velocity electrons in a strong 
magnetic field will describe a tightly coiled spiral path which wraps itself around 
one of the flux lines and will thus follow the magnetic field. This property will 
be proved in the case of the magnetic field around a long, straight wire carrying 
current. 

In this case there is only a 8 component of field of magnitude ;;, where I is 

the wire current. The r and z components of field are zero. For this condition, 
neglecting constants, Eqs. (6.70) become 

d2r (d8) 2 J dz 
dt2 - r dt = r dt 

,! ~ (r 2 d8) = O 
r dt dt 

d2z I dr 
dt2 = - r dt 

(6.71) 

(6.72) 

(6.73) 

These equations cannot be solved exactly, but the nature of the path can be 
closely determined by some judicious approximations and observations. Inte­
grating Eq. (6.73) with respect to time, 

:- -Iln (fo) 
where r0 is a constant of integration. Integrating Eq. (6.72) 

d8 
T2 

- = c8 
dt 

(6.74) 

(6.75) 
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where Co is a constant of integration. Substituting Eqs. (6.74) and (6.75) into 
Eq. (6.71), 

d2r = !_ [-1 ln (!_)] + Ce
2 

dt 2 r ro r 3 
(6.76) 

This expression would be difficult to integrate exactly, but the form of the varia­
tion in r can be determined. It is seen that there is a value of r for which the 
acceleration is zero and that for values of r slightly less than this the acceleration 
is positive, while for values of r slightly greater than this the acceleration is 
negative. This means that, if the initial r component of velocity is small, the 

electron will oscillate about the value of r for 
which the acceleration is zero. Hence the 
expression for the r component of position is of 
the form 

r = r1 - a sin kt (6.77) 

With this variation of r the z component of 
velocity is also seen to be periodic of small varia­
tion from Eq. (6.74), and hence z oscillates 
about its original value. Similarly the (J com­
ponent of velocity is periodic and of small varia-

tion from Eq. (6.75) so that the value of ti is a 

constant with a superimposed periodic variation. 
The net result of these component displace­
ments is that the electron will spiral around a 
flux line in some fashion, keeping a constant 
average value of r and z, and progress in the (J 

direction with a constant average velocity as 
FIG. 6.7.-The motion of a low- shown in Fig. 6.7. Use of this property is made 
velocity electron about a mag­
netic flux line. In the absence 
of strong electric fields, low­
velocity electrons will spiral 
about magnetic flux lines. 

in television pickup tubes of the Orthicon type. 1 

6.8. Combined Electric and Magnetic 
Fields. When an electron is subjected to 
the combined action of both electric and 
magnetic fields, the paths tend to become 

quite complex. Some simple cases can be studied, however. 
When an electron starts from rest under the influence of parallel 

electric and magnetic fields, the electron moves in the direction of the 
electric field and is unaffected by the magnetic field. The path in this 
case is a straight line, and the electron behaves as though the magnetic 
field did not exist. 

If an electron with a given velocity is injected into a region containing 
electric and magnetic fields at right angles to each other and each at right 

1 RosE, A., and H. IAMS, Television Pickup Tubes Using Low-velocity Electron 
Beam Scanning, Proc. I.R.E., vol. 27, pp. 547-555, September, 1939. 
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angles to the initial velocity, then there is a certain ratio of electric- to 
magnetic-field strength for which the electron is not deflected in its path. 
This occurs when the force due to the electric field is equal and opposite 
to that produced by the magnetic field. For this condition 

E -B = 5. 93 X 105 V Vo = V meters per sec (6.78) 

where v is the original velocity and Vo the potential that produced it. 
As long as the above relation holds, the electron moves in a straight line. 
If any of the quantities involved is changed, the electron will be deflected 
from the straight-line path. 

If an electron starts from rest in the presence of uniform electric and 
magnetic fields that are mutually perpendicular, it first experiences a 
force in the direction of the electric field and is unaffected by the magnetic 
field because of the low velocity. As it acquires velocity, it is deflected 
sidewise by the magnetic field . This action turns it around and brings 
it to rest at a point corresponding to its original position but displaced 
to one side. If the electron is then free to move, the action is repeated 
and the resulting path is a cycloid. The cycloidal nature of the path can 
be seen by considering that, if the magnetic field were moving in a direc­
tion mutually perpendicular to the electric field and to itself at a velocity 
given by Eq. (6.78), then to an observer moving with the magnetic field 
the effects of the two fields would cancel as far as forces parallel to the 
electric field were concerned. To this same observer the electron would 
behave as though it were injected into a magnetic field alone with a 
velocity given by Eq. (6.78) in a direction opposite to that of the observ­
er's motion, and the resulting path would be a circle to this observer. To 
someone standing still relative to the fields the motion would be a circular 
motion combined with a translational motion, which in this case because 
of the equality of the velocity components gives rise to a cycloidal path. 

For the relative position of the fields shown in Fig. 6.8, where B is in 
the negative z direction, the differential equations of motion are 

and 

d 2y e dV B e dx 
dt2 = m dy - m dt 

d 2x Be dy 
dt 2 = m dt 

These equations are more simply written in the form 

y = (a - wx) 
i = wy 

(6.79) 

(6.80) 

(6.81) 
(6.82) 
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h h d . d" d . . . h t· d e dV w ere t e ots m 1cate envat1ves wit respect to 1me an a = - -d 
m y 

Be 
and w = -· The initial conditions are that, when tis zero, y, x, ii, and 

m 

:i; are also zero. 
Integrating Eq. (6.82) with respect to time, 

:i; = wy 

dV 

i r 
------------ ------ - Xo-- --------- --- -- - _j 

,,,"' 
/ , 

I 
I 

Fm. 6.8.-The cycloidal path resulting when an electron is 
liberated at zero velocity in crossed uniform electric and mag­
netic fields. The electron progresses in the positive x direction 
when the gradient of the electric field is in the positive y direc­
tion and the magnetic field is in the negative z direction. 

(6.83) 

since, when t equals zero, i; and y are also zero. When this value of i; is 
substituted in Eq. (6.81), there results 

'fi = a - w 2y (6.84) 

This can be solved either by standard methods or by the operational 
calculus to give 

a 
y = 2 (1 - cos wt) 

w 
(6.85) 

and the corresponding expression for xis from an integration of Eq. (6.83), 

x = !!._ (wt - sin wt) w2 (6.86) 

The last two equations above give the motion of the electron para­
metrically in terms of t. The motion is seen to consist of a uniform trans­
lation in the x direction with a superimposed circular motion. 
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The maximum displacement in the y direction is 
dV 

= 2a = 1 138 X 10-11 dy Ym w2 · B2 

119 

(6.87) 

The displacement in the x direction corresponding to one cycle of the 
motion is found by substituting the value of time that restores the value 
of y to zero. This occurs for wt equal to Zir so that 

Xo = 7rYm (6.88) 

which is also to be expected from the ratio of the circumference to the 
radius of the generating circle that produces the cycloidal motion. 

When an electron is injected into a region with uniform electric and 
magnetic fields at right angles to each other but with a finite initial 
velocity normal to the magnetic field, it will follow a trochoidal path in a 
plane normal to the magnetic field. Geometrically the trochoidal path is 
generated by a point on the rim of a wheel that is rolling along a straight 
line on a smaller diameter hub. The cycloid is the special case of the 
trochoid for which the diameters of the rolling and tracing circles are 
the same. 

The differential equations for the case of an initial velocity are the 
same as for the cycloidal case [Eqs. (6.81) and (6.82)]; but in this case 
the initial conditions are different, and the form of the solution is hence 
different. When t is zero, y and x are zero, but y = V0y, x = v0.,. Hence 
the first integration of Eq. (6.83) for the configuration of Fig. 6.8 gives 

i; = wy - Vo,, (6.89) 

When this substitution is made in Eq. (6.81) and this expression inte­
grated twice to obtain the value for y, there results 

(a - wvo,,)(1 - cos wt) + V0y • Y = -'--------'---'-,---------'- - Slll wt 
w2 w 

(6.90) 

Substituting this in Eq. (6.89) and integrating to get the corresponding 
expression for x, 

at + (l ) V0y a - WVoz • 
X = - - cos wt - - ---- Slll wt 

w w w2 (6.91) 

The two equations (6.90) and (6.91) determine completely the nature 
of the trochoidal path. The corresponding expressions for the com­
ponents of velocity are 

. a - wvo., . 
y = V0y cos wt - --- Slll wt 

w 

. a+ . a - wvo., 
x = - voi, sm wt - --- cos w, 

w w 

(6.92) 

(6.93) 
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From the velocity-component equations it is seen that there is a constant 

x component of velocity of magnitude !!.. This corresponds to the 
w 

translational velocity of the circles that generate the trochoidal motion. 
To achieve this translational velocity the radius of the rolling circle must 

be a
2 

since the angular velocity of the velocity vectors is w. The initial 
w 

conditions also require that the instantaneous velocity of rotation of a 
point on the tracing circle be equal to the vector difference of the initial 

y 

I \ \ ____ .__ .... ____________ _1 __ --

\ J ,_ Rol!in9surFace ... _, 
\ -.Rollin9circle(vtfw) 
Tracin(J circle (vr/w) 

Fm. 6.9.-Trochoidal electron path resulting when an electron is 
injected with a finite velocity into a region of uniform crossed electric 
and magnetic fields. The electron will progress in the positive x 
direction when the gradient of the electric potential is in the positive 
y direction and the magnetic field is in the negative z direction. 

velocity and the translational velocity. This relation is shown by the 
vector diagram of Fig. 6.9. 

If the scale of the velocity-vector diagram be taken the same as that 
of the diagram showing the generating circles and the resulting path, 
the electron path can be constructed graphically in quite a simple manner. 
It will be observed that the terms in Eqs. (6.90) and (6.91) giving the 
instantaneous displacements are the same as those in Eqs. (6.92) and 
(6.93) for the component velocities except for thew factors. The center 
of the generating circles in the initial position is given by rotating the 
rotational vector Vr, 90 deg in a clockwise direction. The radius of 
the tracing circle is then given by the length of the rotational vector 
Vr, and the radius of the rolling circle is given by the length of the vector 
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v1, the translational velocity. With the rolling and tracing circles and 
their initial position given, the path is readily constructed geometrically 
for any case. This construction is also illustrated in Fig. 6.9. 

6.9. Approximate Numerical and Graphical Methods for Determining 
Electron Paths. The number of cases in which the motion of an electron 
under the influence of applied fields can be determined exactly is actually 
quite small and restricted to very simple cases. Hence the need exists 
for methods that will give an approximate answer when the fields are 
more complex, as they usually are. 

Method of Joined Circular S egments. When an electron is moving 
through a potential field, the instantaneous radius of curvature of its 
path is determined by its velocity and by the sidewise force that is 
exerted on it by the field. 1 The sidewise force exerted on the electron 
depends upon the component of the gradient of potential normal to the 
instantaneous direction. This component of the gradient will be desig­
nated by v,. V. The actual sidewise force is evn V. This force must 
equal the centrifugal force of the electron in its instantaneous circular 

2 

motion, and this is given by 7'; , where R is the instantaneous radius of 

curvature. Equating these two forces and substituting 2e V for mv2, 

from which 

2eV 
R = ev,.V 

R = 2V 
v,.V 

(6.94) 

(6.95) 

This is the instantaneous radius of curvature of the electron path at 
•my point in the field, as shown in Fig. 6.10, on the assumption that the 
electron started from rest at a point of zero potential. It will be observed 
that the radius of curvature is independent of the mass and charge of the 
electron and also of the scale of potential, checking the conclusions drawn 
from the differential equations of the electron path. 

By calculating the radius of curvature at a point in the field by Eq. 
(6.95), drawing a small segment of arc, and then applying this process 
repeatedly a good approximation to the actual curve traced by the elec­
tron is obtained. The potential at any point in the field is easily obtained, 
and the normal component of gradient is the projection of the vector 
giving the magnitude and direction of the greatest variation of potential 
upon a line normal to the electron's path. The method is subject to 
cumulative error unless the average potential and average normal 

1 SALINGER, H ., Tracing Electron Paths in Electric Fields, Electronics, vol. 10, 
pp. 50-54, October, 1937. 
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gradient over each segment of arc is used. If the segment of arc drawn 
at each step is kept a constant fraction of the radius of curvature, say 
one-twentieth, the error will not be great. It is also possible to derive 
simple expressions for the position of the next step in terms of the dis­
placement and change of angle when the radius of curvature is so large 
ihat the arc segment is not easily drawn, as is frequently the case. 

Fm. 6.10.-The instantaneous radius of cur­
vature of an electron path in a region of 
varying potential. The instantaneous radius 
of curvature is equal to twice the potential at 
the point in question divided by the compo­
nent of the gradient of potential perpendic­
ular to the path. 

Several ingenious gadgets have been devised that make the applica­
tion of the principle outlined above purely a mechanical one. 1•2 These 
make use of a double probe in a current-flow model that has been set up 
to give the electric field involved. The double probe picks up a voltage 
proportional to the component of gradient in the direction of its align­
ment, and the average potential of the probes gives the potential at the 
point. The probe is connected to a small cart attached to a pantograph. 
The cart is steered in such a way that the instantaneous curvature of 
path which it is tracing is determined by the relation Eq. (6.95). Adjust-

1 GABOR, D., Mechanical Tracer for Electron Trajectories, Nature, vol. 139, p. 373, 
February, 1937. 

2 LANGMUIR, D., Automatic Plotting of Electron Trajectories, Nature, vol. 139, 
pp. 1066-1067, June 19, l937. 
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ments on the steering are made as continuously as possible from the 
information picked up by the double probe as it traces out the path. 
These de•,ices are capable of considerable accuracy. 

Use of Elastic-membrane Model of Potential to Determine Electron 
Paths. In a previous chapter it was pointed out that the elevation of the 
surface of a stretched elastic membrane approximated closely the solu­
tion of Laplace's equation when the deformations were small. Actually 
such a model of potential fields is of more use in determining electron 
paths than in solving potential problems. This is because it is found 
that the laws governing the motion of a small sphere rolling on the mem­
brane are strictly analogous to the laws governing the motion of an elec­
tron in an electric field, and hence the path of such a sphere is a good 
approximation of the path of an electron in the corresponding electric 
field. 

Except for frictional effects the kinetic energy picked up by a small 
sphere, say a ~16-in. ball bearing, is equal to the potential energy it has 
lost owing to its change in elevation. This is exactly what happens to 
the electron. In the case of the mechanical model, however, the kinetic 
energy is divided between translational and rotational components. As 
long as the sphere rolls with a given circle of contact, the proportionality 
between these two components of the kinetic energy is constant and the 
path of the sphere will be similar to that of the electron. Although it is 
difficult to prove mathematically, it can readily be shown by experiments 
with a large sphere on a hard, curved surface that the sphere will turn 
relatively sharp corners and finish with the same rolling circle of contact 
as it had initially. The sphere can actually change its direction by about 
300 deg without losing its original circle of rolling contact. If the angle 
is more than 300 deg, the turn introduces a spinning action that spoils 
the energy relations indicated above. Actually, it is the radius of curva­
ture of the path rather than the angle that matters. Roughly, the 
limiting radius of the path is five times the radius of the sphere. 

Application of the Principle of Least Action. In many electron­
trajectory problems use can be made of the principle of least action. 
This principle states that in a potential field of the type encountered in 
vacuum-tube problems a particle will move between two points by such 
a path that the action, defined as the integral of momentum with distance, 
will have a minimum value. This means that, if the paths are known and 
conditions are such that only one electron goes through each point, con­
tours of constant action calculated from the defining integral will be 
everywhere perpendicular to the electron paths. Hence, if the electron 
paths a1e known, contours of constant action can be found that give the 
path of all electrons. If the electron paths are not known, as is generally 
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the case, it is still possible to calculate the contours of constant action by 
methods involving successive approximation. 

This is done by assuming a path of the electrons that is known to be 
close to the true path and then calculating the action along the assumed 
path. The process is easy, for the square root of potential can be sub­
stituted for velocity so that action is given by 

A = J mv ds = y"2em J -vV ds (6.96) 

When the action along the assumed paths has been calculated, a first 
'lJ:·proximation to the action function has been obtained and correspond­
ing contours of constant action can be drawn. If now curves be drawn 
normal to these contours of constant action, these will give a more accurate 
representation of the electron paths than those originally assumed. The 
second approximation to the action function can then be calculated along 
the improved paths and the process repeated to give any desired degree 
of accuracy. This is seen to be a perturbation process between action 
and potential. 

In actual application in cases where the electron deflections are slight 
the first step of the process gives results that are sufficiently accurate. 1•2 

The errors involved compensate because of the fact that, when the 
assumed path is shorter than the actual path, the potentials involved are 
smaller. In the determination of electron paths in tubes the assumption 
of straight-line paths initially is usually sufficiently good for cases in 
which the electron deflections are slight. The method is not accurate in 
the vicinity of any line of symmetry. 

1 LANGE, H., Current Division in Triodes and Its Significance in the Determination 
of Contact Potential, Zeit. fur Hochfrequenz., vol. 31, pp. 105-109, 133-140, HJl-196, 
1928. 

2 SPANGENBERG, KARL, Current Division in Plane-electrode Triodes, Proc. I.R.E., 
vol. 28, pp. 226-236, May, 1940. 



CHAPTER 7 

ELECTROSTATIC FIELD OF A TRIODE 

7.1. Method of Solution. The electrostatic fields within tubes are 
most readily obtained by means of the conformal transformations given 
in a previous chapter. These transformations give potential configura­
tions that represent closely the fields encountered in tubes, whose elec­
trode configuration is somewhat idealized. The cathode is assumed to be 
a plane or cylindrical surface, which it rarely is in practice. The elec­
trodes are assumed to be infinite in length and breadth so that tube con­
stants per unit area evaluated on this assumption do not include end 
effects. 

It should be pointed out that, since the solutions obtained are not 
mathematically exact, various degrees of approximation are possible. 
In general, the more accurate the solution, the more complex and cum­
bersome the expressions obtained. Where extreme accuracy is desired, 
the method of conformal transformations is used as a starting point for 
series representations. Imaging or series procedures may also be used, 
but these have not proved of great value as a general method. 

In spite of the above-mentioned departures from exactness the for­
mulas obtained by the applica tion of the method of conformal trans­
formations meet the accuracy requirements of modern engineering. 

7.2. Electrostatic Field of a Plane-electrode Low-mu Triode. The 
field of a low-mu triode may be determined by a method outlined by 
Maxwell.1 Vacuum tubes had not yet been invented in Maxwell's time, 
but his analysis of the electrostatic field about a shielding screen of parallel 
wires is readily applied to the problem of the triode field. 

The field analysis is based upon the Z-plane configuration shown in 
Fig. 7. la. This consists of two line charges located within a large cylin­
der. One line charge is located at the origin and has a linear-charge 
density of +qc. The other is located at the point (1,0) and has a linear­
charge density of +q0 • The field at great distances from these lines is 
nearly circular and may be fitted to that of a circular electrode whose 
radius is large compared with the distance between the line charges. It 
may be seen that the Z-plane representation represents a simple tube 

1 MAXWELL, J. C LE RK, "Electricity and Magnetism," 3d ed., Vol. I, Sec. 203, 
Cambridge, London, 1904. 
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with a cathode wire at the origin and a single grid wire at the point (1,0) 
surrounded by a circular plate. This simple tube has electrical charac­
teristics the same as those of the plane-electrode and cylindrical-electrode 
structures that may be derived from it. 

To obtain the field within the plane-electrode tube it is necessary 
to obtain an expression for the field in the Z plane of Fig. 7.la and then 
transform this expression by the logarithmic transformation to fit that 
of the electrode configuration of Fig. 7.lb, which closely represents 
the structure of a practical tube. The potential at any point in the Z 
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FIG. 7.1.-Elementary triode and equivalent plane-electrode triode. 

plane is given by the sum of the potentials resulting from each of the line 
charges. Polar coordinates will be used in the Z-plane relations. 

The potential at any point (p,B) is given by 

Vz = - ~ ln Pl - _!k___ ln p + C 
2-n-co 2-n-co 

(7.1) 

where P1 is the distance from the point in question to the grid-wire charge 
at the point (1,0) and C is a constant that adjusts the level of potential, 
and ln will be used hereafter to denote the natural logarithm. Making 
use of the law of cosines, 

V. = - A'!:_ ln (p 2 + 1 - 2p cos B) - A~c ln p2 + C (7.2) 
':t7rt:O 'tlrt:o 

The logarithmic transformation with a suitable coefficient will be 
used. The coefficient is selected so that in the plane-electrode structure 
of Fig. 7. lb the grid wires are spaced a distance a. 
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a 
,,W = 2?r In Z (7.3) 

The component parts of this equation are 

a 
u = 2?r In p 

a8 
V = 2,r or 

or 

8 = 2,rv 
a 

(7.4) 

(7.5) 

in which u and v are the real and imaginary parts of W, respectively, and p 

and 8 are the polar coordinates in the Z plane. Making the above sub­
stitutions in Eq. (7.2), 

V w = - _!h_ In E a + 1 - 2E a COS ~ - __!b__ ln E a + C ( 

4ru 2.-u 2,rv) 4.-u 

41rr.o a 41rr.o 
(7.6) 

The above expression gives very closely the potential inside of a plane 
triode. Examination of its form will show that the equipotential lines in 
the vicinity of the origin and the points (0, ±na) are circles, one set of 
which may be fitted to the grid wires. For large positive and negative 
values of u the equipotentials are almost planes that may be fitted to the 
plate and cathode planes, respectively. The general potential expression 
of Eq. (7.6) gives potential in terms of the chargesq0 , qc, and the constant 
C. For application it is also necessary to evaluate these constants in 
terms of the electrode potentials. 

To evaluate the constants of Eq. (7.6) let the plate plane be located 
at u = +dap where d0 P ~ a. When this relation between d0 p and a 
holds, the second and third terms of the argument of the first logarithm 
will be less than 1 per cent of the first term and may thus be neglected. 
Making the substitution u = +daP into Eq. (7.6), 

VP= _ dqpqu _ dupqc + C 
ar.o ar.o 

(7.7) 

Let the cathode plane be located at - dcu, where dca ~ a. In this 
case the first and third terms of the first logarithm argument will be small 
compared with 1 so that the first term is substantially zero. Making 
the substitution v. = -dca into Eq. (7.6), 

Ve = 0 + dcuqc + C 
ato 

(7.8) 

Let the grid wires be located at the points (0, ± na) and be of radius 

r 0 and potential V 0 • If r 0 ~ ;,, the potentials at points (0,r0) and (r0 ,0) 
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differ by only a few per cent. Into Eq. (7.6) substitute the values u = 0, 
V = r0 • 

V0 = - ~:
0 

In (2 sin 71":a) + C (7.9) 

If the cathode potential is set at a reference level of potential of 
zero, then 

C = _ dcgqc 
aro 

from which Eqs. (7.7) and (7.9) become 

VP = _ dgpqg _ (dcu + dop)qc 
ato ato 

and 

In (2 sin ~aro) q0 _ <j__coqc 
27!"to ato 

(7.10) 

(7.11) 

(7.12) 

It is already possible to obtain the amplification factor of the tube 
from Eqs. (7.11) and (7.12). The amplification factor of a tube is the 
ratio of the plate voltage to the negative of grid voltage for a condition 
of cutoff. 1 In terms of the electric field within the tube, cutoff exists 
when the gradient of potential at the cathode is zero, which in turn 
occurs when the cathode charge is zero. If qc is made zero in the above 
two equations and the ratio taken as indicated, 

(7.13) 

If Eqs. (7.11) and (7.12) are solved for qc and q0 in terms of VP and V 0 

and the expressions simplified by use of Eq. (7.13), 

and 

qc = toa(VP + µVg) 

(dop + dca + µdco) 

£oaµ[(d 0 p + dc0 )V0 - dc0 Vp] 
qg = 

dgp(d.11 + deg + µdeg) 

(7.14a) 

(7.14b) 

The expression for µ of Eq. (7 .13) given above is the simplest expres­
sion that adequately gives the amplification factor of a plane-electrode 
triode. Examination of this expression shows that the amplification 
factor increases as the grid-plate distance increases. This is in accord 

1 For a more general definition of the amplification factor see the chapter on 

Triode Characteristics. 
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with physical reasoning since the more remote the plate is the more 
influence the grid has. Amplification factor is also increased if the grid­
wire spacing is decreased since this makes the grid more effective in 
controlling the off-cathode gradient of potential. Amplification is also 
increased if the grid-wire radius is increased, as would be expected. It 
will be observed that according to Eq. (7.13) the amplification factor is 
independent ;of the cathode-grid distance. This is approximately true 
as long as the approximations made in deriving the expression are not 
exceeded, i.e., as long as the cathode-grid distance is not less than the 
grid-wire spacing. This may be understood by considering that the 
cathode charge is zero at cutoff. Thus for a cutoff condition all the flux 
lines originating on the grid terminate on the plate, and though some of 
them start toward the cathode they turn and end on the plate so that 
as long as the cathode is not too close to the grid the field pattern is not 
disturbed and the amplification factor is independent of cathode-grid 
distance. This interpretation will be discussed further in connection 
with equipotential contours and potential-profue plots. 

Contour Representation of Potential Field. The form of the potential 
field resulting from the equations developed above may be best studied 
by examining the plots of the equipotential lines. A group of these 
equipotential contour plots of a typical plane triode are shown in Fig. 
7.2 for various potentials. The contours of Fig. 7.2a show the field 
configuration for the case of the grid biased beyond cutoff. It will be 
observed that the gradient of potential at the cathode is negative. In 
the line of the grids the potential is increasingly negative in moving from 
cathode to grid. Along this same line the potential is increasingly posi­
tive in moving from grid to plate. Along the line from cathode to plate 
midway between grid wires the potential is at first negative and then 
positive. The dotted lines shown represent the boundary between the 
various types of equipotential lines. In the area within the dotted lines 
including the grid wires the equipotential lines aie closed curves about 
the grid wires. In the other areas the equipotential lines run continu­
ously from one section of the triode to adjoining sections, always on one 
side of the grid plane. 

The other equipotential plots may be interpreted in a similar fashion. 
It will be observed that all the plots have some features in common. 
The equipotential lines close to the grid wires are nearly circular in all 
cases. The equipotential lines close to the plate and cathode are nearly 
straight lines. The equipotential lines may be divided into two groups, 
those which completely enclose the grid and those which run along from 
section to section. It will be observed that in some cases the equipo­
tential lines of the second type listed above cross the grid plane between 
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FIG. 7.2.-Equipotential contours in the plane-electrode triode: (a) grid beyond 
cutoff potential; (b) grid at cutoff potential; (c) grid negative at half eutoff 
value; (d) grid at zero potential; (e) grid positive. 
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grid wires but always pass the grid wires on the same side in moving 
from section to section. This behavior is observed in the case of the 
10 per cent contour for Vu = 0. In all the cases shown the equipotentials 
are bowed toward the cathode through the grid plane. Only if the grid 
is more positive than the potential that gives a uniform positive potential 
gradient from plate to grid will the contours 
that cross the grid plane be bowed toward 
the plate. The equipotential plots shown in 
Fig. 7.2 were obtained with an electrolytic-
trough model of potential. The equipoten-
tials calculated from Eq. (7 .6) would be 
almost the same in shape. For comparison 
a contour plot calculated by Eq. (7.6) is 
shown in Fig. 7.3. This plot represents an 
extreme condition of potential and dimen­
sions. The grid-wire radius is %0 of the 
grid-wire spacing. It will be observed that 
the grid-wire contour is not quite circular. 
It is of proper width in the plane of the grid 
wires but is longer in the direction at right 
angles to this. Because of this distortion 
of shape, which increases as the ratio of grid­
wire diameter to grid-wire spacing increases, 
the formula for the amplification factor of 
Eq. (7.13) becomes inaccurate when the 
above ratio, known as the screening fraction, 
becomes greater than ½o. In the following 
section a more accurate formula is given, 
which is good up to screening fractions of }f 

Profile Representation of Potential Field. 
The potential fields of a low-mu triode may 
also be studied by reference to profile repre­
sentations of potential. These curves show 
how the potential varies along certain lines 
within the tube. The most common profile 

PLATE 
100 

------------1'95 

~========•=========!so i--------t------;40 

t========j=========l30· -----------;20 
1---------4------410 

0 
CATHODE 

Frn. 7.3.-Equipotentia.l con­
tours in a plane-electrode triode 
with equal positive grid and 
plate potentials. 

representations are shown along lines running from cathode to plate. 
In particular, two profiles are particularly informative. These are the 
profiles through the grid wire in a line running from cathode to plate at 
right angles to each of the latter, and in a line midway between grid 
wires. Such profiles are shown in Fig. 7.4. 

In Fig. 7.4a are shown the profiles for a condition of a tube biased 
beyond cutoff. Here it is seen that the gradient of potential at the 
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cathode is negative, thus making it impossible for electrons to leave the 
cathode. This is true because most electrons that do succeed in getting 
away because of some initial velocity are driven back by the negative 
gradient of potential. In the line of the grids the potential goes strongly 
negative until it reaches the negative grid potential. Beyond the grid 
the gradient is positive. In the line between the grid wires the potential 
is pulled negative at first by the presence of the negative grid, and it 
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FIG. 7.4a.-Potential profiles of a plane-electrode triode, with 
grid at twice the cutoff value of potential. 

then becomes positive. It will be observed that the potential profiles 
are straight lines near the cathode and also near the plate. Further, it 
is only in the vicinity of the grid that there is a great variation in the 
value of potential in moving parallel to the cathode and plate planes. 

In Fig. 7.4b are shown the potential profiles for the case of the grid 
biased to approximately cutoff. Here it is seen that the gradient at the 
cathode is zero. In the line of the grid wires the potential first goes 
negative to the value of grid potential and then positive. In the line 
between the grid wires the potential becomes increasingly positive in 
moving from cathode to plate. In this representation the amplification 
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factor of the tube is given by the ratio of positive plate to negative grid 
µotential. It is evident from these profiles why the amplification factor 
is independent of the cathode-grid distance provided that this is not too 
small. Up to a distance of about half the cathode-grid spacing the poten­
tial on both profiles is substantially zero for the particular dimensions 
shown. Hence in this particular case a cathode at zero potential 
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FIG. 7.4b.-Potential profiles of a plane-electrode triode, with 
grid at the cutoff value of potential. 

could be put at any distance greater than half the cathode-grid distance 
shown without changing the shape or position of the potential profiles 
to the right of the profiles. The curves of Fig. 7.4b show the potential 
conditions that will just allow current to flow. 

In Fig. 7 .4c are shown profiles for a negative grid potential greater 
than that which gives the cutoff condition. Here the gradient of poten­
tial at the cathode is positive even though the grid is negative. The 
curves shown represent the potentials that would exist in the absence 
of current, say in a cold tube. Although this condition of potential 
would permit current to flow, the actual flow would depress the profiles 
m the vicinity of the cathode, as will be described in a later chapter. 
In Fig. 7.4d the grid is at zero potential, and it is now possible for elec­
~rons to reach the grid, which has not previously been possible for nega-
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Fm. 7.4c.-Potential profiles in a plane-electrode triode, with grid 
negative at half the cutoff value of potential, which is the usual 
Class A operating condition. 
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tive grid potentials. In Fig. 7.4e is shown an extreme condition of 
positive grid potential. Here the grid is as positive as the plate. This 
condition may be reached at the peak of the cycle in Class C power 
amplifiers. 

In all cases the profiles are straight lines in the vicinity of the cathode 
and plate. For a condition of grid potential more negative than that 
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Fm. 7.4e.-Potential profiles in a plane-electrode triode, with 
grid and plate at the same positive potential. This condition 
may exist at the peak of the current pulse in a Class C amplifier. 

of cutoff the slope of the straight-line portion at the cathode is negative. 
Above cutoff it is positive. The general form of the profiles corresponds 
to that which one would expect from a deformed elastic membrane. 
In each case the grid pushes a hole in what would otherwise be a straight­
line profile from cathode to plate. Curvature requirements are met here. 
It will be observed that when one profile is concave upward the other is 
concave downward. 

7.3. Electrostatic Field of a Low-mu Cylindrical-electrode Triode. 
The same fundamental tube configuration as was used for the plane­
electrode triode in Fig. 7. la can be used to develop the cylindrical-electrode 
triode. In this case, however, the transformation equation takes the 
form 

W = SgZllN (7.15) 

to give the electrode arrangement of a cylindrical triode with N grid 
wires as shown in Fig. 7.5b. Let the coordinates in the Z plane be , 
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and 0 and in the W plane s and cf,; let s0 be the radius of the grid-wire 
circle. Then the components of the transformation equation in polar 
coordinates are 

p = (tt (7.16) 

and 

lS 

ZPLANE 
(aJ 

0 = Net, 

p 

Plate 

WPLANE 
(I,) 

(7.17) 

Frn. 7.5.-Elementary triode and equivalent cylindrical-electrode triode. 

As before, the equation for the potential at any point in the Z plane 

V, = -
4

qu ln (p 2 + 1 - 2p cos 0) -
4

qc In p 2 + C (7.2) 
7r£o 7r£o 

Substitution of the component transformation equations gives 

Vw = - 4;:0 
In [ (tYN + 1 - 2 (t)N COS N cf,] 

- 2qc In (!__)N + C (7.18) 
41r1:o S0 

This gives the equation of a potential field in which the contours are 
circles close to the origin and at great distances from the origin. The 

contours are also circles about the points (s = s0 ,cf, = 
2
;/), where k 

assumes integral values from zero to N. 
The three sets of circles can be fitted to the cathode, plate, and grid 
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wires, respectively. To fit the cathode to one of the circles close to 
and about the origin lets = Sc« s0 • Then 

Ve = 0 -
2qcN In (~) + C 
4no s0 

(7.19) 

To fit the large circles centered at the origin to the plate electrode 
lets = Sp» s0 • Then Eq. (7.18) becomes 

VP = _ 2Nq0 ln (Sp) _ 2Nqc In (Sp)+ C 
4no s0 4no S0 

(7.20) 

To fit one of the small circles about the point (s0 ,0) to one of the 

grid wires let s = s0 and q, = Ra, where R 0 is the grid-wire radius. Then 
Sg 

V _ 2qa I (2 . NRo) + C - - -- n sin--
" 41rEo 2s0 

(7.21) 

The three equations (7.19), (7.20), and (7.21) express the elec­
trode potentials in terms of the cathode and grid-wire charges. For 
the W-plane representation the charges are those of one pie-shaped 

section of angle '; · 

As before, the amplification factor may be found by setting the 
cathode charge and potential zero and taking the ratio of plate to nega­
tive grid potential. From this operation 

µ= 

1n (2 sin NRa) 
2s0 

(7.22) 

The way in which the amplification factor of a cylindrical triode varies 
with the various electrode dimensions can be seen by inspection of Eq. 
(7. 22). As the number of grid wires is increased, the amplification factor 
increases since N appears as a linear factor in the numerator and as a 
logarithmic factor in the denominator. This is to be expected from 
physical reasoning since an increase in the number of grid wires increases 
the effectiveness of the grid in controlling the off-cathode gradient and 
hence in controlling the current. The amplification factor increases as 
the plate radius is increased, also to be expected since this makes the 
plate less effective in controlling the current. The amplification factor 
increases as the radius of the grid-wire cylinder decreases since the factor 
in the numerator is more effective than that in the denominator. The 
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amplification factor also increases as the grid-wire radius is increased. 
Because of the way in which the factors combine, high amplification 
factors may be obtained more readily with cylindrical-electrode structures 
than with plane-electrode structures. 

Fm. 7.6.-Equipotential Jontours in the cylindrical-electrode triode: 
(a) grid beyond cutoff potential; fb) grid at cutoff potential; (c) 
grid negative but above cutoff potential; (d) grid at zero potential; 
(e) grid at "natural" potential; (f) grid at positive plate potential. 

As in the case of the parallel-electrode tube it is desirable to express 
the charges in terms of the electrode potentials. This is done by setting 
the cathode potential equal to zero and solving for qc and q(/. 

2no [ Vv In(::)- ;in (2 sin ~~u)] 
qc = N [in(::) ln (~) + t In(::) In ( 2 sin ~~u)] 

2no [ VP In(~)+ V0 In(::)] 

(7.23) 

(7.24) 
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Potential Contours of a Cylindrical Triode. Contour representations 
of potential are shown in Fig. 7 .6 for various relative electrode potentials. 
The contours of the cylindrical triode exhibit the same general charac­
teristics as those of the plane-electrode triode. In each case the con­
tours near any electrode have the same shape as the electrode. This 
means that the contours about the cathode and just inside the plate are 

100,-----v--..r--'""T"----,------,._ 

-20.__ __ ...._..,.._ __ __,....._ ___ __._ __ _, 
0 100 200 300 315 

R111ciial clistance,rnils 
Fm. 7.7a.-Potential profiles in a cylindrical triode, 
with grid at twice the cutoff value of potential. 

circles concentric about the center of the tube. There are also circles 
about each of the grid wires. The circles inside the plate have a non­
linear spacing in the case of the cylindrical triode. This is better under­
stood by reference to the potential profiles. 

Potential Profiles of a Cylindrical Triode. Reference to the potential 
profiles of Fig. 7. 7 reveals several striking differences between the plane­
electrode and cylindrical-electrode cases. Although the profiles have the 
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same general trend, they are characterized by different curvature char­
acteristics. In the plane-electrode case the profiles through and between 
the grid wires coincided near the cathode and plate and were nearly 
straight lines there. In the case of the cylindrical triode they do again 
coincide but are curved instead of straight. The coincident profiles 
near the plate tend to be logarithmic in shape, as would be the case in a 

I00r--~r-rr-..----....----..----. 

Cb ..... 
--1--+-----+-----l'~ 

q_ 

-20.__ _ __,__, ___ ___,, ___ _._ __ ____, 
0 100 200 300 375 

Roidioil olistoince,mils 
FIG. 7.7b.-Potential profiles in a cylindrical triode, 
with grid at the cutoff value of potential. 

cylindrical diode. The same is true for the profiles near the cathode, 
though in the particular case of the relatively high-mu tube shown, the 
region in which the profiles coincide near the cathode is small because of 
the short cathode-grid distance. 

Below cutoff in Fig. 7.7a the cathode gradient of potential is negative. 
At cutoff as in Fig. 7.7b it is zero, and it can again be seen that this 
condition of zero cathode gradient is independent of the grid-cathode 
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distance provided that the distance is not too small. In the particular 
figure shown any larger cathode-grid distance would not change the 
amplification factor of the tube. The remaining figures show the profiles 
for a grid negative, but above cutoff in Fig. 7.7c, for a grid at zero poten­
tial in Fig. 7.7d, and for an extreme condition of positive grid potential 
in Fig. 7.7e. 

-zoo._ _ __.._, .... 00 ____ 20~0---3 ...... 00--'C':'375 

RcicliC1I clistance, mils 
FIG. 7.7c.-Potential profiles in a cylindrical triode, 
with grid at half the cutoff value of potential. 

The curvature conditions that were noted in the case of the plane­
electrode triode are no longer valid in the case of the cylindrical triode. 
It is no longer true that if one profile is concave upward the other is 
concave downward. This follows from the fact that the Laplace equa­
tion for polar coordinates can no longer be interpreted so simply in 
terms of curvatures. If the coordinates were changed so that the profiles 
were plotted agains\ the logarithm of r, then the curvature conditions 
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that held for the plane-electrode case would be fulfilled. This follows 
because with this change of variables the Laplace equation becomes iden­
tical with that for Cartesian coordinates. In Fig. 7.8 are shown the 
potential profiles of Fig. 7.7a plotted with a logarithmic scale of radius. 
It is seen that the profiles become straight lines in the vicinity of the 

V) 

-+-

100.---.....,-r--rrr-----r----.-----,, 

-20_.__ __ ..__..__ ___ ....__ ___ ....,_ _ __, 
0 100 200 300 315 

Raclial cilistC11nce,mils 
Flo. 7.7d.-Potential profiles in a cylindrical triode, 
with grid at zero potential. 

cathode and plate and thus resemble the plane-triode profiles in this type 
of plot. 

7.4. Analysis of the High-mu Triode. Potential Contours and Profiles. 
The method of Maxwell discussed in the previous sections has some 
limitations that make the results inaccurate when the attempt is made 
to apply them to a high-mu triode. In the previous analysis it was 
assumed that the equipotentials about the grid line charge in the funda­
mental tube of the Z-plane representation were circles concentric about 
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the line. This is very nearly true provided that the circles are not too 
large. But if we examine the shape the grid wire in the Z plane must 
have as determined by circles in Fig. 7. lb transformed back to the Z 
plane, it is found that departures from small circles centered about the 
point (1,o) are soon encountered as the grid-wire radius is increased. 
Consider the grid wires of Fig. 7.lb, and let the grid-wire radius be 
increased from a small value to a fairly large value without changing the 
other dimensions. This is equivalent to increasing the screening frac-

oo,..._ _ __,.__ ....... .._ __ _.__ ___ _._ __ ...s._ 

100 200 300 375 
R01die;1I distance, mils 

Fm. 7.7e.-Potential profiles in a cylindrical triode, 
with grid and plate at equal positive potentials. 

tion and increases the mu of the tube. As the grid-wire radii are increased, 
the corresponding contours in the Z plane, which are at first small 
circles with centers at the point ( 1,0), become larger curves that are nearly 
circular in shape but that are shifted in position so that their centers are 
not at the point (1,0) but to the right of this point. This applies as the 
screening fraction is increased from 0.1 to 0.2. The progressive changes 
in shape encountered are shown in Fig. 7.9. In the analysis indicated in 
this section another line charge is introduced to take account of the shift 
in position of the circular grid-potential contour. As the screening frac-
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tion is increased beyond 0.3, the transformed contour of the grid wire 
lases its circular shape, becoming dented on one side, and the improved 
analysis is no longer valid. The accuracy of the formulas developed can 
be extended, however, so that they may be used for tubes having screen-
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FIG. 7.8.-Potential profiles of a cylin­
drical triode plotted with a logarithmic 
scale of radius. On such a plot the 
profiles are straight lines in the vicinity 
of the cathode and plate. Also shown 
is the graphical construction for deter­
mining the equivalent diode radius. 

X 

FIG. 7.9.-The shape of large transformed 
grid wires in the Z-plane representation 
of Fig. 7.1. The transformed grid wires 
are nearly circular for screening fractions 
as large as 0.2. Beyond this value, the 
grid contour is noncircular and cannot 
be represented by two line charges. 

ing fractions as low as ¾ instead of merely ½o- The resulting expres­
sions are considered the most accurate simple expressions available. 1•2 

As before, use the plane-electrode transformation equations, 

a a i8a 
W = 2ir ln Z = 271' ln p + 2ir (7.3) 

1 VonGEs, F. B., and F. R. ELDER, Formulas for the Amplification Constant for 
Three-element Tubes, Phys. Rev., vol. 24, pp. 683-689, December, 1924. 

'Dow, W. G., "Engineering Electronics," pp. 24-53, Wiley, New York, 1937. 
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which have the component transformation equations given by Eqs. 
(7.4) and (7.5), p being Z-plane radius. Then the points a and b_ in Fig. 
7.10b which have the coordinates (r0 ,0) and ( -r0 ,0) respectively, trans­
form into the points a and {3, which in Fig. 7.10a have the coordinates 

2'1"To 2rra 

(e a ,0) and (e - 0 ,0). If the screening fraction is less than 0.16, the 
transformed grid wire is nearly a circle through these two points. The 

Z PLANE 
{a) 

-u 

¢ 
¥" 

b a 

-v 

WPLANE 
(l>) 

+u 

Fm. 7.10.· -W- and Z-plane representations of a high-mu plane-electrode triode. 
This is the hasis of the analysis of Vodges and Elder. 

radius of the grid wire in the Z plane is half the difference of the p com­
ponents of a and (3 and is given by 

R . h 2?rru = Sln -­
a 

(7.25) 

The location of the center of the grid-wire circle is given by the average 
of the values of a and f3 and is given by 

h 2?rro 
Pu= cos -­a 

(7.26) 

It is now necessary to locate line charges so that this circle will be an 
equipotential contour for all combinations of cathode, grid, and ple,te 
potential. 

In the analysis given for the low-mu triodes a single line charge was 
placed within the circle at its center. When the analysis is extended so 
that the circle is no longer small, this is not adequate. A line charge at 
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the center of the circle will still give an equipotential contour that will 
fit the circle if this charge is the only one present, which is not the case. 
However, it is also possible to find another position within the circle such 
that a line charge placed there together with a line charge at the origin 
with an equal charge of opposite sign will give an equipotential contour on 
the transformed grid-wire circle. 1 This follows from the well-known con­
figuration of potentials about a two-wire transmission line, which if; 
equivalent to these two line charges. Here the equipotential contours 
are all circles, enclosing the charges, but with their centers successively 
displaced. 

If a line charge with a linear-charge density - qc is placed at a point 
(b,O) within the circle having its center at (p0 ,0), then the potential at any 
point C on the circle due to it and to a linear charge with density q, 
located at the origin is given by 

V = _ _!b_ Jn [ Pi + R2 + 2pR cos 1" ] 
c 41r£0 (p0 - b) 2 + R 2 - 2(p - b)R COS if; 

(7.27) 

where 1" is the angle between the line joining C and (p0 ,0) and the axis. 
It is required that this expression be independent of the angle V'· It is 

easily shown by substitution that if b has the value _!_ this condition is 
Po 

fulfilled. The two line charges with the above positions take care of the 
charge on the cathode and part of the charge on the grid. If now a 
charge of magnitude -qv be placed at the center of the transformed grid­
wire circle, it will be the source of flux lines that will extend in all directions, 
becoming radial at great distances and terminating on a large plate circle. 
Since any value of either q0 or qv gives rise to an equipotential circle of 
radius R with center at Po, this circle can be made the grid-wire circle 
for any combination of charges and hence of potentials. With this 
location of line charges it is easy to write the potential at any point in 
the tube. 

At any point (p,8) within the tube the potential is given by 

V = - A~ [qc In p2 
- qc ln (p2 + ~ - 2

P cos o) 
~o Po Po 

- qp ln (p2 + p/ - 2pp0 cos 8) + C] (7.28) 

in which the constant C is introduced to adjust the level of the potential. 
In most tubes the cathode can be fitted to a small circle about the origin. 

1 This attack on the problem was first successfully applied.by W. G. Dow. 
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Let p = Pc, 0 = 0; then 

1 [ ( 1 )
2 

7 Ve = - 41r£0 qc In Pc 2 
- qc In Pc - Pu - qp In (pc - Po) 2 +CJ (7.29) 

If the cathode potential be taken as zero and the value of C then obtained 
from Eq. (7.29) be substituted into Eq. (7.28), the expression for the 
potential along the axis through the grid wire simplifies to 

V = _I lqc ln l(p -:0
) f!::j

2 

+ qp ln (p -=- Po)
2l 

411"£0 1 P Pc Po 
Pc - -

Po 

(7.30) 

This has been obtained by setting 0 equal to zero and gives the potential 
along the axis through the grid wire and also through the grid wires in 
the plane- and cylindrical-electrode tubes, which may be derived from the 
simple fundamental tube. To get the potential between the grid wires, 
(J is set equal to 1r, and the resulting expression is like Eq. (7.30) except 
that the negative signs within the brackets become positive. 

To find the potential of the grid wire let p = Po - R. Then making 
use of the fact that pg2 = 1 + R 2 from the hyperbolic relations, and that 
Pc is much smaller than Po or its reciprocal, 

(7.31) 

Similarly, to find the plate potential let p = PP, and make use of the fact 
that Pc is much less than 1, which in turn is much less than PP· Then 

VP = 4~
0 

[ qc ln (pcp0 )
2 + qp ln (::Y] (7.32) 

Equations (7.31) and (7.32) give the grid and plate potential in terme 
of cathode and grid charges. In order to calculate potential profiles it is 
desirable to know the charges in terms of the potentials. The above 
equations are readily rearranged to give this form. 

q _ 2n Po Po 

[ 

Voln(PP)-vp1n(R) ] 

c -
0 

ln (Rpc) ln G:) - ln (~) ln (p,p0 ) 

(7.33) 

qp = .:ni-£0 R 0 _ [ Vpln (Rpc) - V0 ln (PcPo) ] 

In (Rpc) ln (::) - ln (Po) ln (Pc.Do) 

(7.34) 
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Amplification Factor of a High-mu Plane-electrode Triode. Again the 
amplification factor is given by the ratio of plate to negative grid potential 
for zero cathode charge. It will be noticed that the cathode charge is a 
linear function of plate and grid potentials. In multielectrode tubes the 
cathode charge is a linear function of all the electrode potentials. In 
the case of a pentode, for instance, the cathode charge can be written 

Vu+ V1 + V2 + Va 
µ1 µ2 µ3 

'1.c = D 
(7.35) 

in which the various µ's indicate the relative effectiveness of the control 
grid and the electrode in question in controlling the off-cathode potential 
gradient. In the case of the triode considered here, the amplification 
factor is 

µ= 
ln(~) 

ln (~) 

(7.36) 

Substitution of values from Eqs. (7.3), (7.25), and (7.26) gives the ampli­
fication factor of a plane-electrode triode as 

(~)- ln cosh (~) 
µ= 

ln coth (2;u) (7.37) 

Making use of the definition of the screening fraction as the percentage 
of the area in the grid-wire plane occupied by the grid wires, numerically 

·equal to Zra, and denoting the screening fraction by S, the expression for 
a 

the amplification factor can also be written 

_ (~)- ln cosh1rS 

µ - ln coth 1rS (7.38) 

From this it is seen that the amplification factor depends upon only two 
factors, the screening fraction and the ratio of grid-plate distance to 
~id-wire spacing. The way in which the amplification factor varies 
with these two factors is shown in Fig. 7 .11. It is seen that the amplifica­
tion factor increases with the screening fraction and increases as the ratio 
of grid-plate to grid-wire spacing increases. The upper solid curve 
represents the limit of accuracy of the formula given by Eq. (7.38). 
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If the screening fraction is small, then Eqs. (7.37) and (7.38) reduce 
to the same expression that results from Eq. (7.13) so that these two dif-
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Frn. 7.11.-Chart giving the amplification factor of a plane-electrode triode. The 
solid curves were obtained from Eq. (7.38), which is accurate up to screening frac­
tions of 0.16. Dotted curves were obtained from Eq. (7.71), which is accurate up to 
screening fractions of 0.4. 

ferent expressions give substantially the same numerical result when the 
screening fraction is less than ½ o-

Amplification Factor of a High-mu Cylindrical Triode. When the 
transformation relations of Eqs. (7.16) and (7.17) are applied to Eq. (7.36), 
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the expression for the amplification factor of a cylindrical triode is 
obtained. This development requires some intermediate justification 
because for the cylindrical triode the transformation is that of Eq. 
(7.15) instead of Eq. (7.3). It is readily shown, however, that expres­
sions similar to Eqs. (7.25) and (7.26) are obtained. 

In the notation of Figs. 7.10a and 7.5b the points a and fJ are given by 

(1 + Ru)N and (1 - Ru)N· Usually the factor Ru is much smaller than 
811 811 811 

l so that series expansions for these expressions can be used to simplify the 
development. Great care must be used in approximating these expres· 
sions by terms of the series expansions; for the difference between the 
expressions is desired, and two terms of the series are not sufficient. The 

expressions for a and fJ are given very closely by exp (~:a) and exp 

( -N8nR11)• h • • f h • "d • . T e series expans10ns or t ese exponential terms are 1 ent1cal 

with those for the binomials given above for the first two terms and differ 

only by a factor of 1 - ! in the third term. Using the difference of the 

exponential terms to get the radius of the transformed grid wire, 

R . hNR0 = Sln --
811 

and, using the average to get the location of the grid-wire center, 

h
NR11 p11 = cos --

811 

(7.39) 

(7.40) 

It is seen that Eqs. (7.39) and (7.40) are the exact counterparts of 
Eqs. (7.25) and Eq. (7.26). 

If now Eqs. (7.39), (7.40), and (7.15) are substituted into Eq. (7.36), 
the expression for the amplification factor of the cylindrical triode results. 

_ N In (~) - In cosh (¥.°) 
µ - (NR.) 

ln coth --;! 
(7.41) 

Since the screening fraction for the cylindrical triode is S = NRa, the 
1r8g 
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above expression may be written 

N In (~) - In cosh 1rS 
µ= 

In coth 1rS 
(7.42) 

The amplification factor is seen to depend upon three factors, the 
screening fraction, the ratio of plate to grid-wire circle radii, and the 

I.I 1.3 2 
V01lue& of 411/ ag 

3 

Fm. 7.12.-Amplification factor of a cylindrical triode. 

number of grid wires. This is much more difficult to plot but may be 
done by using a number of axes each corresponding to a different number 
of grid wires. Such a plot of the amplification factor of the cylindrical 
triode is shown in Fig. 7 .12. It is seen that the amplification factor 
increases with the screening fraction, with the number of grid wires, and 

with the ratio 
8

v. The upper solid curve represents the limit of an 
Sg 

accuracy of about 2 per cent. The formulas of Vodges and Elder given 
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in Eqs. (7 .38) and (7 .42) are considered the best practical formulas avail­
able for the amplification factor of triodes from the standpoint of sim, 
plicity and accuracy . 

. 7.6. The Equivalent Electrostatic Circuit of a Triode. Examination 
of Eqs. (7.33) and (7.34) shows that these expressions have the form of 

equations for a delta of capacities. A delta of capacities 
G p such as could be used to represent a triode is shown in 

C 

FIG. 7.13.-Delta 
of triode inter­
electrode capac­
ities. 

Fig. 7.13. If the cathode is considered to be at zero 
potential, then the relations between the potentials and 
charges are 

(7.43) 
and 

(7.44) 

which can be arranged into the simpler form 

qp = - VuCuv + Vv(C0v + Ccv) (7.45) 

Equations (7.43) and (7.45) are the exact counter­
parts of Eqs. (7.33) and (7.34). Equation (7.43) can 

be rearranged to give 

-q. = Ccg (vii+ VP) 
Cea 
C.v 

(7.46) 

from which, by comparison with Eq. (7.35), it is evident that the ampli­
fication factor is given by the ratio of the grid-cathode to plate-cathode 
capacity. 

µ = CCcu (7.47) 
cp 

This is physically reasonable since the ratio of these two capacities is a 
measure of the extent to which the cathode is electrostatically shielded 
from the plate by the grid. The capacities involved can be evaluated by 
reference to Eqs. (7.33) and (7.34) if it is desired to know them in terms 
of the geometry of the tube. The capacities in the above expressions are 
in farads per unit length (meter) per grid-wire section of the elementary 
tube in the Z plane of Fig. 7 .10. When the dimensions are transformed to 
other planes, the capacities of the corresponding tubes result. 

Reference to any tube manual will show that the numerical ratio of 
the grid-cathode to grid-plate capacities listed there differs considerably 
from the amplification factor of the tube. This is because the capacities 
listed in the manual include the capacities of the leads and supports as 
well as those of the parts of the tube in which the electrons are effective. 
Jn most triodes the capacities between the leads and supports may be as 
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large as those of the active portions of the tube or larger, the apparent 
discrepancy being thus accounted for. 

7.6. Equivalent-diode Spacing of a Triode. In the case of the plane­
electrode triode, examination of the potential profiles showed that the 
profiles were straight lines in the vicinity of the cathode for all conditions 
of potential. This means that the potential distribution in a triode as 
seen from the cathode is the same as that in a diode. The cathode has 
no data by which it can tell whether it is part of a diode or triode. It 
was further shown in Eq. (7.14a) that the off-cathode gradient of potential 

depended upon an equivalent voltage, Vu+ VP. It would be expected, 
µ 

therefore, that for every triode there would exist an equivalent diode 
which would have the same off-cathode gradient when the equivalent­
triode voltage is applied to its plate. To find such an equivalent diode 
it is necessary only to find the equivalent-diode spacing. 

The equivalent-diode spacing of any triode may be found graphically 
by extending the straight-line portion of the potential profile in the vicin­
ity of the cathode until it reaches a potential equal to the equivalent-

triode potential, Vu+ VP. The distance from the cathode at which this 
µ 

potential is reached is the equivalent-diode spacing. This construction is 
shown in Fig. 7.4c. Once this equivalent-diode spacing is found it can 
be used for all combinations of plate and grid potential. 

The concept of the equivalent diode and the equivalent-diode spac­
ing is useful in the study of the current characteristics of triodes. Since 
the current law for space-charge-limited diodes is known, the current law 
for a triode can be approximated from the equivalent diode. Triodes 
with equal equivalent-diode spacings and equal amplification factors 
have approximately the same mutual conductance and plate resistance. 
Actually, the triode and its equivalent diode are truly equivalent only 
for a condition of no current flow, which means cutoff or beyond for the 
triode since the flow of current changes the potential distribution. The 
concept is, however, sufficiently useful to justify its inclusion here. 
The subject of current flow and mutual conductance will be discussed in 
the chapter on Space-charge Effects. 

Diode Equivalent to a Plane-electrode Triode. An analytical expression 
for the equivalent-diode spacing can be found from the expression for 
cathode charge in terms of the equivalent-triode potential and the geome­
try of the tube. Since the cathode charge was taken as +q0 per grid-wire 
section, the off-cathode gradient of potential is given by 

(dV) = -qc 
dx c aEo 

(7.48) 
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or 

(dV) = -[Vu+~)]_!_ 
dx c D 11£0 

(7.49) 

in which all the symbols have the previous significance and D is the 
denominator of Eq. (7.33) or (7.35) when the equivalent-voltage factor is 
extracted. 

For a plane-electrode diode the electrode spacing is the ratio of the 
potential difference to the gradient. For the triode the equivalent-diode 
spacing is the ratio of the equivalent-triode potential to the off-cathode 
gradient. Thus, from Eq. (7.33) 

(7.50) 

where d, is the equivalent-diode spacing in terms of the Z-plane dimen­
sions. It is desirable to express d, in terms of the cathode-grid distance, 
the grid-plate distance, and the amplification factor. If the expression 
for the amplification factor [Eq. (7.36)] is used to eliminate R, then 

d, = ~a [ G + 1) In (PcPu) - ~ In (~)] (7.51) 

If now the plane-electrode transformation is applied to insert the triode 
dimensions, 

(7.52) 

For tubes in which the screening fraction is less than ½ 0, the last term of 
Eq. (7.52) is negligible so that the expression reduces to 

d, ,..., deg [] + deg µtgdgp] (7.53) 

Examination of Eq. (7.53) shows that the plate of the equivalent diode 
always lies beyond the actual grid of the triode. 'rhe distance beyond is 
relatively less if the amplification factor and cathode-grid distance are 
large and relatively more if the grid-plate distance is large. The mutual 
conductance of a tube is an inverse function of the equivalent-diode 
spacing so that the influence of the various tube dimensions is readily 
determined from Eq. (7.53). 

Diode Equivalent to a Cylindrical-electrode Triode. The procedure that 
was used to find the equivalent-diode spacing of a plane-electrode triode 
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is quite general and may be applied to cylindrical triodes as well, though 
the form of the resulting expressions is quite different, as may be expected 
from the fact that the potential profile for the plane-electrode diode is a 
straight line, while for the cylindrical diode it is a logarithmic curve. 
For a cylindrical diode the relation between cathode and plate radius, 
potential difference, and electrode charge per unit length of outer elec­
trode is 

ln (:.E) = 2m:oV 
re q 

(7.54) 

For the cylindrical triode the equivalent-diode radius is given by 

(7.55) 

where s. is the equivalent-diode radius and qc is the cathode charge per 
unit length for each of N grid-wire sections. Substitution of the value of 
q0 from Eq. (7.33) and using Eq. (7.36) gives 

ln (ic) = - [ln (=cPo) + ln (pcR)] t (7.56) 

Eliminating R by means of Eq. (7.39) and making the substitutions of 
Eqs. (7.16), (7.40), and Eq. (7.42), 

ln (~) = [! (1n Sp - _!_ ln cosh 1rs) 
Sc µ S0 N 

- (1 + D (1n ~ + t ln cosh 1rS)] (7.57) 

For tubes with screening fractions less than ½ 0 the terms involving the 
hyperbolic cosine can be neglected so that the expression takes the form 

(7.58) 

'fhe same remarks that applied to the diode spacing for plane electrodes 
apply here. The equivalent-diode plate lies outside of the grid-wire 
circle. The equivalent-diode radius for the cylindrical triode is readily 
obtained by graphical construction. If the profiles of Fig. 7. 7 are plotted 
against a logarithmic abscissa as in Fig. 7.8, then the profiles are straight 
lines in the vicinity of the cathode and plate. The equivalent-diode 
radius can be found by projectmg the straight-line portion of the potential 
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profile at the cathode until it reaches a potential equal to the equivalent­
grid potential. 

7.7. Application of Amplification-factor Formulas to Actual Triodes. 
The amplification-factor formulas previously developed have been derived 
for simple idealized structures not always encountered in actual tubes. 
It is, however, possible in most cases to interpret these formulas so that 
they will apply to tubes whose structure departs somewhat from that for 
which the formulas were derived. 

The formula for the amplification factor of the cylindrical triode 
[Eq. (7.42)] was given for a grid in which the wires had a squirrel­
cage structure of evenly spaced wires parallel to the axis of the tube. 
In this expression the quantity N is the number of grid wires and 
is also the active length of grid wire per unit axial length of the tube. 
The expression may therefore be generalized by letting 

N = L0 (7.59) 

where L0 is the active length of grid wire per unit axial length of the 
tube. 1 

In case the grid structure differs from that postulated in the deriva­
tion of the amplification-factor formula, the screening fraction S may 
always be interpreted as the ratio of the actual area of the grid structure 
to the total area of the surface containing the grid. 

If the cylindrical grid consists of a square mesh of fine wires, then 

(7.60) 

where d is the spacing of the square mesh and s0 is the radius of the grid­
wire circle. If the diameter of the wires in the square mesh is appreciable, 
then 

£ 0 = ~ 80 
(1 - ~) (7.61) 

where r0 is the radius of the grid wires as shown in Fig. 7.14a. For a 
cylindrical grid of parallel rings having supports parallel to the axis, 

L = 21rso + N, - 2N,r. (7.62) 
u s s 

where N, is the number of supports and r, is the radius of the support 
wires and s is the spacing of the grid wires as shown in Fig. 7. l 4b. 

If the grid is a helix of diameter 2s0 and of pitch d as in Fig. 7.14c, 
1 KusUNosE, Y., Design of Triodes, Proc. I.R.E., vol. 17, pp. 1706-1749, October, 

1929. 
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(7.63) 

The screening fractions for the cases listed above are readily evaluated. 
In general if all the wires have the same radius, 

(7.64) 

For parallel grid rings with supports, 

1rS = 2ru(L, - N.) + 2N,r, (7_65) 
2su 

in which the symbols have the same significance as in Eq. (7.62). Equa-

(aJ 
Squc:ire mesh 

fbJ 
Supported parallel 

grid rings 

r 
I 
I 

d 
I 

_L 

(cJ 
He/icc:i/ grid 

FIG. 7.14.-Practical grid structures: (a) square mesh; (b) grid rings with 
supports parallel to the axis; (c) helical grid. 

tion (7.64) also holds for a helical grid. Equation (7.65) reduces to 
Eq. (7.64) for ru = r,. 

The generalized amplification-factor formula for the cylindrical­
electrode triode is 

s 
L, ln ...!!. - ln cosh 1rS 

s, 
µc = ln coth 1rS (7.66) 

The generalized amplification-factor formula for the plane-electrode 
triode is 

27rd,pL/ - ln cosh 1rS 
µp = ln coth 1rS (7.67) 
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The relation of this to Eq. (7.38) is evident. Lo' is the length of grid wire 

per unit area of the grid plane. For parallel grid wires, Lu' = !. 
a 

In many tubes the structure is neither plane nor cylindrical but some­
thing intermediate. In such cases it has been found empirically that a 
combination of the plane and cylindrical amplification-factor formulas 
gives very nearly the amplification factor of the tube. 1 The combination 
formula is 

(7.68) 

where µp is the amplification factor as calculated by the plane-electrode 
formula, µc is the amplification factor as calculated by the cylindrical­
electrode formula, K is a constant depending upon the tube structure, 
and µ is the amplification factor of the actual tube. The constant K 
for a number of tube types ranging progressively from a plane to a cylin­
drical structure is given by the following table: 

TABLE IV 

CONSTANT OF EQ. (7.68) FOR THE CALCULATION OF THE AMPLIF1-
CATION FACTOR OF TUBES OF NONIDEAL FORM 

Tube Type K 

2A3 

26 
76 
75 
6K5 
6B5 
lOOTL 

0 . 00 plane electrode 
0 . 11 
0 .22 
0 .33 
0 .44 
0 .55 
0.66 
0.77 
0.88 
1 . 00 cylindrical electrode 

The results of Table IV are shown graphically in Fig. 7.15. The 
empirical constant K given here includes the effect of the grid supports. 

7.8. More Accurate Amplification-factor Formulas. The amplifica­
tion-factor formula of Vodges and Elder given in Eq. (7.38) is accurate 
only for certain ranges of electrode dimensions. Specifically, the formula 
breaks down if 

(a) duP < a 
(b) S > 0.16 
(c) deg < a 

In general, the formula breaks down if any of the electrodes are too 
close together. Since many modern tubes are built with very close-

1 JERVIS, E. R., Amplification Factor Chart, Electronics, vol. 12, p. 45, June, 1%9. 
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spaced electrodes, it is desirable to extend the range of the above rela­
tions. Various formulas have been worked out that extend the range of 
any of the three limitations listed above, but as yet no formula has 
appeared that is valid over the complete range of all variables. 

Formula for Small Grid-plate Spacings. When the grid-plate spacing is 
small, an improved amplification-factor formula may be worked out by 

1.0 

0.8 

~ 0.6 
,._ 
2 
u 
J: 0.4 

0.2 

0 

/ 
v 

/ 
V 

V 
/ 

/ 

V 
/ 

V 
V 

m ~ ~ ~@] ®®®t® 
2A3 26 76 75 6KS 685 27 

Tube type 
Fm. 7.15.-Value of the constant K of Eq. (7.68) for calculating the amplifi­
cation factor of tubes with geometries t:bat are intermediate between plane 
and cylindrical geometries. 

placing an image set of grids outside of the plate position and then fitting 
the plate to the equipotential curve midway between. 1 The resulting 
expression is 

1n cosh 1rS - 2-ir daP 
a µ=---------------~---~ 

ln tanh 1rS - ln [ 1 - cosh 2 1rS exp ( -
4
:dap)] 

(7.69) 

This expression is valid for grid-plate spacings as low as one-quarter of 
the spacing between grid wires but still assumes that the cathode-grid 
spacing and the screening fraction are large. 

1 SALZBERG, BERNARD, Formulas for the Amplification Factor of Triodes, Proc. 
I.R.E., vol. 30, pp. 134-138, March, 1942. 
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Formulas for Laroe Screening Fraction. Perhaps the most serioc3 
limitation to the amplification formula of Vodges and Elder is that it 
begins to be in error for a screening fraction of 7'6 and is 10 per cent low 
for a screening fraction of½- Many modern tubes are built with very 
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Fm. 7.16.-A comparison of the values of amplification 
factor of a plane-electrode triode as a function of screening 
fraction as indicated by various formulas. The extension 
of the region of validity by the successive refinements in 
formulas is evident. (See discussion on page 161.) 

large screening fractions, and it therefore is desirable to have a formula 
valid in this range. 

Such a formula has been evaluated1•2 by an analysis based upon the 
1 0LLENDORF, FRANZ, Berechnung des Durchgriffes <lurch enge Steggitter, Elek­

trotech. u. Maschineribau, vol. 52, pp. 585--591, Dec. 16, 1934. 
2 See also HERNE, H., Valve Amplification Factors, Wireless Engr., vol. 21, pp. 

59-64, February, 1944. 
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express.ion W = In sin Z, which gives the potential due to a row of evenly 
spaced line charges positioned along a straight line. Derivatives of this 
expression give the potential fields due to a row of dipoles, quadripoles, 
and so on. By combining in series form such a succession of fields and 
fitting the resultant field to the circular grid wires, some highly accurate 
formulas for amplification factor are obtained. 

The first approximation using the expression for the row of line charges 
alone gives a formula which is virtually the same as that of Eq. (7.13) 
based upon Maxwell's grating theory. The second approximation is 
obtained by using the field due to a row of line charges and a row of dipole · 
line charges. This gives 

2-rrd0 v _ ½(,rS) 2 

a I + H 2 (7rS) 2 
LI = --- ---...c..,...=c,=,...;.-'-------% ( 7r 8) 2 

- In (7rS) + 1 + H2(7rS)2 

(7.70) 

A third approximation may be obtained by including the field corre­
sponding to the next derivative of the field of a row of line charges. This 
yields 

2-rrd0v _ ½(7rS) 2 

a I + H 2(7rS) 2 
µ=------~~~-- -~-~~-

%(7rS) 2 >2ss(7rS) 4 

- ln (7rS) + 1 + H2(7rS) 2 1 + >240(7rS) 4 

(7. 71) 

Equations (7.70) and (7.71) apply to plane-electrode triodes. The 
corresponding expressions for cylindrical electrodes may be obtained by 

substituting s0 In (t) for d0 p provided that the grid-wire radius is small 

compared with the radius of the grid-wire circle. 
A comparison of the values of amplification factor given by the various 

formulas presented is shown in Fig. 7 .16. In this figure the notation is as 
follows : 

µ1, Eq. (7.13), Maxwell. 
µ2, Eq. (7.38), Vodges and Elder. 
µ 3 , Eq. (7.70), Ollendorf second approximation. 
µ4, Eq. (7.71) Ollendorf third approximation. 

From Fig. 7 .16 it is seen that the range of validity of the various formulas 
within a 2 per cent error is 

µ1, Eq. (7.13), S less than 0.1. 
µ2, Eq. (7.38), S less than 0.16. 
µ3, Eq. (7.70), S less than 0.325. 
µ4, Eq. (7.71), S less than 0.4. 
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In the chart of Fig. 7.11 giving the amplification factor of a plane 
triode, the solid lines were obtained from the formula of Vodges and Elder, 
while the dotted lines were obtained from the Ollendorf approximations. 

Formula for Small Cathode-grid Spacings. All the amplification-factor 
formulas previously given are restricted to electrode configurations in 
which the cathode-grid spacing is equal to or larger than the grid-wire 
spacing. Many modern tubes have grid-cathode spacings that are less 
than the grid-wire spacing. When this is true, it is really no longer 
proper to speak of the amplification factor, for the gradient of potential is 
not constant along the cathode but varies with position relative to the 
grid wires. Such a tube exhibits no true cutoff condition since as the grid 
is made more and more negative the cathode gradient opposite the 
grid wires will become negative while the cathode gradient between the 
wires is yet positive. This gives rise to a condition, sometimes referred 
to as Insel Bildung, in which little island strips of the cathode are emitting 
while other parts are not. Such a tube acts as a variable-mu tube in 
that every part of the cathode surface has a different amplification factor. 

It is possible to find the effective amplification factor of a tube with 
small cathode-grid spacing if this effective amplification factor is under­
stood to be dependent upon position on the cathode. When the cathode 
gradient is not uniform, as is the case with small cathode-grid spacings, 
the field's configuration can still be found if use is made of the theory of 
images. 1 The true field that exists is the same that would result from a 
line of grid wires of one charge and an image line of wires located as 
though mirrored in the cathode but having charge of opposite sign. The 
field can therefore be obtained by studying the potential within a fic­
titious tube consisting of two parallel plates of opposite charge and 
potential, between which there are two sets of identical grids of opposite 
charge and potential, symmetrically disposed with respect to the center 
plane. Under the conditions stated the mid-plane will be a surface of 
zero potential and can be identified as the cathode. 

The potential due to a grid of equally charged parallel wires, equally 
spaced, a distance a along the y axis of the Z plane is 

V(x,y) = - ~
0 

ln [ 2 ( cosh 2:x - cos 
2
:Y)] + C (7.72) 

where q is the charge per unit length of each grid wire. This expression 
may be obtained by considering the potential due to a line charge of 

density q located at the point (1,0) and one of density - I located at the 

1 FREMLIN, J. H., Calculation of Triode Constants, Phil. Mag., vol. 27, pp. 709--
741, June, 1939. Also published in Elec. Commun., July, 1939. 
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point (0,0) in the Z plane and then transforming this potential to the W 

plane by means of the transformation W = ~ ln Z. Equation (7.72) 

can also be shown to be the real part of the expression In (sin i~)­
A plot of Eq. (7.72) is given in Fig. 7.17. 

y 

Frn. 7.17.-The potential field in the vicinity of a 
row of line charges as given by Eq. (7.72). 

Upon using Eq. (7.72) to obtain the field due to grids of opposite 
charge located a distance dco from the cathode and adding a linear com­
ponent of field to account for the effect of the plate the expression for the 
potential within the tube is obtained. It is 

[ 

271" 2,r ] cosh - (x + dca) - cos - y 
q a a 

V = + 4- ln 2 2 + Bx no ,r ,r 
cosh a (x - dc0 ) - cos a y 

(7.73) 
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in which q and Bare related to the electrode potentials by 

and 

[ 

sinh 2
(~)] 

41n:o • 2 1rro + _q_ ln 1 + ( a) + Bdc11 

sm -
a 

V = dcoq + Bd 
p aEo cp, 

(7.74) 

(7.75) 

If -Ec(O,y) is the gradient of potential at the cathode-a quantity 
that varies with y-then the effective amplification factor may be defined 
as 

1 
µ 

aEc 

+ avv 
aEc 
aV0 

The resultant expression for amplification factor is given by 

r 
sinh 2 (2-rrdco) 1 

_a_ ln 1 + a 
1 41rdcp sin2 (:g) 
-=------~-~~----

. h (21rdco) sm --
a 

µ 

h (
2-rrdcg) (2-rry) cos -a- - cos a 

(7.76) 

(7.77) 

This expression is properly independent of grid and plate potential and 
reduces to the low-mu amplification-factor formula for large values of 

dco and ddcp • This formula is reasonably accurate for values of deg as low 
a q a 

as 0.4. For small values of the ratio deg the reciprocal of the amplifica-
a 

tion factor, sometimes referred to as the penetration factor or Durchgrijf 
since it is a measure of the shielding effect of the grid, exhibits what is 
nearly a sinusoidal variation with distance parallel to the grid. For the 
case in which the grid-cathode distance is 0.4 of the grid-wire spacing, 
the relative amplification factor may vary between 0.7 and 1.4 times the 
average value, the average value being very nearly equal to that given 
by Eq. (7.13). 

Expressions for the amplification factor of a plane triode have now 
been given that cover nearly the entire range of practical electrode 
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dimensions. All the expressions given are limited, however, to some 
definite range of electrode dimensions. The expressions given in this 
subsection, for instance, are limited to screening fractions of 0.1 or Jess. 
The region of validity of the various amplification-factor formulas is 
shown in Fig. 7.18. Here it is seen that formulas are good for either large 
screening fractions or large ratio of grid-wire spacing to cathode-grid 
distance but not both. 1 
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FIG. 7.18.-The region of validity of various amplifica­
tion-factor formulas. 

7.9. Amplification Factor of Unconventional Tubes. The methods 
that have been studied in this chapter may be applied to numerous struc­
tures other than the idealized plane and cylindrical structures so far 
treated. Where simple geometries are involved, it is usually possible to 
find a correspondingly simple arrangement of line charges that can be 
transformed into the desired structure. In Fig. 7 .19 are shown some 
sample unconventional tube structures along with their elementary forms 
and the corresponding amplification-factor formula. 

1 See FREMLIN, J. H., R. N. HALL, and P. A. SHAFFORD, Triode Amplification 

Factors, Elec. Commun., vol. 23, no. 4, pp. 426-435, 1946, for a semiempirical formula 

good for both small screening fraction and small cathode-grid distance. 
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In Fig. 7.19a is shown the famous gammatron "gridless wonder." 
This consists of a row of filament wires between grid and plate planes. 
The tube has an inherently low amplification factor whose value is 

G 

0 
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p 

W=!!tnz 
21T 

d a 2,rrc 
cp-"iirlncosh~ 

µ= 2'1Tr, 
deg-;,. l!l coshT 

Z Plane 

FIG. 7.19a.-The amplification factor of a triode with a 
cathode in the form of a row of filament wires located 
between a grid and a plate plane. 

approximately equal to :cp as may be seen from consideration of inter-
cu 

electrode capacities. The formula given is valid for screening fractions 
of 0.1 or less and is based upon the same sort of analysis as was used to 

W Plane Z Plane 
1-- d --+1 W= 2':,. ln Z 

CO 'flP 

GO P 
co p 

Wdgp-ln(2cos~ 
µ = 1/T, ,rr, 
· Jncos~-lnsin ac 

FIG. 7.19b.-The amplification factor of a plane-elec­
trode triode with a cathode consisting of a row of 
filament wires spaced midway between the grid wires 
and having a single plate. 

treat the low-mu triode. It is seen that the amplification factor has a 
second-order dependence upon the cathode radius. 

In Figs. 7.19b, c, and dare shown tubes in which filament wires are 
placed between the i;rid wires. The formulas are not greatly different 
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from those for tubes which have a grid between cathode and plate except 
that they exhibit a second-order dependence upon cathode radius. 

The question arises as to what the effect of having a filamentary 

WP/ane Z Plane 

Nln sp_ln(2cosNrc) 
= Sg 2Sg 

µ ln(2cosM
2

rg)-zn(2sin'!rcJ 
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Fm. 7.19c.-The amplification factor of a cylindrical 
triode whose cathode is a group of wires located between 
the wires of a squirrel-cage grid. 

emitter rather than a solid cathode would be. In general, if the filament­
grid spacing is large compared with the grid-wire spacing, the amplifica­
tion factor will be the same as for the case of a solid cathode. The 
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Fm. 7.19d.-The amplification factor of a plane­
electrode triode whose grid and cathode wires are 
alternate and equally spaced in a plane between two 
equidistant plate planes. 

equipotential lines around the filament will be circles very near to it but 
become nearly straight lines, the same as for the solid cathode, between 
the filament and grid. The current-voltage characteristics may, how­
ever, be considerably different. 



CHAPTER 8 

SPACE-CHARGE EFFECTS 

8.1. Effects of Current Flow. In the previous chapter a study was 
made of the potential fields inside of tubes in the absence of current flow. 
Such studies can give only a partial picture of the true condition within a 
vacuum tube; for ordinarily currents will flow, and the presence of the 
electrons constituting the current introduces a distribution of charge 
known as "space charge," which changes the tube behavior. The 
previous studies are perfectly valid in determining such things as the 
amplification factor of tubes, for they can be applied to a condition of 
cutoff at which no current flows and yet at which the relative influence 
of the various electrodes is the same as for current flow. For studies of 
such subjects as the variation of current with potential and the determina­
tion of mutual conductance it is necessary to take into account the effect 
of currents and the corresponding space charge. 

The effect of space charge is most readily studied in the case of the 
diode, and the results obtained from this study can then be extended to 
give the relations existing in triodes and multielectrode tubes. Actually, 
this extension can be made only approximately, but enough information 
can be obtained to answer most purposes. The most striking effects 
of space charge in a diode are to limit the current to a value determined by 
the three-halves power of plate voltage and to cause the potential distribu­
tion within the tube to be nonlinear. 

In the plane-electrode diode the potential distribution in the absence 
of space charge is a straight line from one electrode to the other as shown 
in Fig. 8. la. In this case all the flux lines emanating from positive 
charges on the positive plate terminate on negative charges on the other 
plate, as shown in the same figure. 

If now one of the electrodes is a cathode capable of emitting a small 
number of electrons and the other electrode is positive with respect to 
this, there will be some electrons in the field between the two electrodes 
moving toward the plate and some of the flux lines will terminate on 
electrons in the field as shown in Fig. 8.lb. The drawing has been con­
ventionalized and the unit of flux density chosen so that there is only one 
flux line to each electron. Because of the negative charge in the field, the 
potential at any point will be less than in the previous case. Accordingly 

168 
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the potential profile will be pulled down and will be a curve concave 
upward at every point below the straight line, with the same initial and 
final values. If instead of negative electrons there had been positive 
ions in the field, the profile would have been moved up and would have 
formed a continuous curve concave downward at every point above the 
straight-line charge-free potential 

profile. :--+++ v1 If the cathode is capable of emit-
ting an unlimited number of elec­
trons, the current will limit itself to a 
definite value because of the mutual 
repulsion between the electrons and 
because of the fact that the potential 
contour can be depressed only until 
its slope at the cathode is zero. 
There is an equilibrium here; for, as 
shown in Fig. 8. lc, if in some manner 
the slope could be made less than zero 
at the cathode, the electrons starting 
out would be forced to return to the 
cathode, no current would flow, the 
space charge would be reduced, and 
the potential contour would lift until 
its slope was zero at the cathode, at 
which point an equilibrium would be 
reached. If in some manner the 
slope were greater than zero at the 
cathode, more electrons would be 
encouraged to leave the vicinity of 
the cathode, the space charge would 
be increased, the potential-distribu­
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tion curve would be depres.5ed, and Fm. 8.1.-Electric flux lines and poten­
this action would continue until the tial distribution in a plane-electrode 
slope at the cathode again became diode for various degrees of space charge. 

zero. The zero slope at the cathode indicates that the charge on the 
cathode is zero, which means that the flux lines emanating from charges 
on the positive plate all terminate on electrons in the field and that none 
of them get through to the cathode. In the case of the current limited by 
space charge, the potential distribution is a four-thirds-power law, as will 
be shown presently. In this case also, the current varies as the three­
halves power of the potential on the plate. 

The reason for the three-halves-power variation of current with poten-
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tial can be shown from simple theoretical considerations. In Fig. 8.lc 
it is seen that the space-charge-limited diode is roughly equivalent to a 
condenser. As is the case in a condenser, charge on the plate and hence 
also in the interelectrode space is proportional to the potential. The 
current density is the product of the space-charge density and the 
velocity of the electrons at that point. The velocity of the electrons is 
proportional to the square root of potential so that the current density, 
which is the product of charge and velocity, is proportional to the three­
halves power of potential. Although the above is not a very rigorous 
demonstration of the validity of the three-halves-power law of current, 
it will at least make the relation seem reasonable. A more rigorous 
demonstration will be undertaken in the next section. 

8.2. Plane-electrode Space-charge Flow. The relations between 
potential, distance, and current in the plane-electrode case can be 
obtained from Poisson's equation, the energy equation, and the relation 
between current, charge, and velocity. 

Poisson's equation in the one-dimensional case reduces to 

(8.1) 

where V is potential, p is volumetric space-charge density, and to is the 
dielectric constant of free space in rationalized mks units. 

The energy equation has the form 

½mv2 = Ve (8.2) 

where m and e are the mass and charge of the electron and vis the velocity 
at any potential V. Electrical quantities are in practical units, and 
physical quantities are in mks units. This assumes that the electron has 
started from rest at a point of zero potential. 

The relation between current density, charge, and velocity is 

J = pV (8.3) 

The three equations above suffice for a determination of all the rela­
tions involved in a parallel-electrode space-charge flow. If pis expressed 
in terms of J and V from Eqs. (8.2) and (8.3) and the resulting expression 
substituted into Eq. (8.1), 

d2V = !_ fm y-½ 
dx2 to '\J2e (8.4) 

where J is now the magnitude of the current density, actually electronic 
flow in the positive x direction is negative. A first integration is achieved 

by multiplying both sides of Eq. (8.4) by 2 :: and integrating, 
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( dV)
2 

= 4J fm V½ + Ci 
dx to '\)2e 

(8.5) 

The constant of integration is zero because the gradient is zero when the 
potential is zero. 

A second integration gives 

4V¾ = ✓4J /m x + c
2 3 to "\/2e 

(8.6) 

in which the constant is again zero because the potential is taken l1S zero 
when the distance is zero. Solving for current density, 

amperes per unit area. 

Numerically this is equal to 

J 
__ 2.335 X I0-6V¾ 

· amperes per unit area x2 

(8.7) 

(8.8) 

If xis in centimeters, the current density is in amperes per square centi­
meter. 

From the above equations it is seen that the current varies as the 
three-halves power of potential and inversely as the square of the distance. 
The last two equations constitute the Child-Langmuir space-charge law. 
It has been verified experimentally. 1- 3 If the equations be solved for 
potential, there results 

V = 5,680J¼x¾ (8.9) 

showing that the potential varies as the four-thirds power of distance 
between cathode and plate. 

Values of current density in terms of distance and potential are given 
in the curves of Fig. 8.2. 

It is of interest to note how various other factors vary with distance. 
The gradient of potential is given by the derivative of potential with 
distance. Hence 

(8.10) 

1 CHILD, D. C., Discharge from Hot CaO, Phys. Rev., vol. 32, pp. 492-511, May, 
1911. 

2 LANGMUIR, I., The Effect of Space Charge and Residual Gases on Thern.ionic 
Currents in High Vacuum, Phys. Rev., Ser. 2, vol. 2, pp. 450-486, December, 1913. 

3 LANGMUIR, I., and K. B. BLODGE'IT, Currents Limited by Space Charge between 
Coaxial Cylinders, Phys. Rev., Ser. 2, vol. 22, pp. 347-357, October, 1923. 
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Velocity varies as the square root of potential, and therefore 

v = k2x½ (8.11) 

Space-charge density varies inversely as velocity, from Eq. (8.3), since 
the current density is constant; thus 

(8.12) 

Curves showing the variation of these various factors are shown in 
Figs. 8.3a and b. Here it is seen that the potential and gradient are zero 

E .., 

100 

50 

20 

IO 

5 

g- 2 
\... 
Q) 
a. .,, 
Q) ,._ 
Q) 

a. 

-~ 0.5 

~ 

0.2 

0.1 

0.05 

O.D2 

I 

I I 

I 

f--~ 
-\c;/ / 

17==-r.f. w 
~J <;:)-
/ 

I I 
I 

I 

/ 

/ 

/ I 

I / 

I I I 

J I 

2 5 

/ 
'/ 

!/ I II' 

I V / 
I I I I 

I I I I I l/ 

I 

/ I 

/ / 
/ / / / 

I / I I I 

!/ / 

I 
I I V 

I V 
I 

/ / 
/ / / 

/ I/ I 

/ \y / 
~ 

~~ s~ ~ 

I / I/ I / I 

I 

/ 

/ 
/ / 

/ / 
I / I 

I I 

/1 V 
10 20 50 100 200 500 1000 

Volts 
FIG. 8.2.-Current density in a plane-electrode diode as a func­
tion of voltage and electrode spacing, Eq. (8.8). 

at the cathode. Since the velocity was assumed zero at this point, the 
space-charge density is theoretically infinite here. Actually, the elec­
trons start with a small finite ',elocity rather than with zero velocity so 
that the gradient is initially :aeg:~tive for a small distance, passes through a 
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minimum at a small negative potential, and then increases. In spite of 
this difference, the Child-Langmuir law is quite accurate except for very 
low values of potential corresponding to the average velocity of emission, 
which is of the order of a few volts. 

8.3. Cylindrical-electrode Space-charge Flow. When the electrode 
structure consists of two concentric cylinders the inner of ·which is capable 
of emitting electrons, the space-charge-limited current still varies with the 
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FIG. 8.3a.-Curves of potential, gradient, space-charge den­
sity, and velocity as a function of interelectrode distance in 
a space-charge-saturated plane diode, linear scales. 

three-halves power of the voltage but the effect of the electrode dimen­
sions is a little more complex. 

The behavior of the cylindrical diode can be studied in just the same 
way as the plane-electrode diode, but in this case it is necessary to use 
cylindrical coordinates. Actually, this does not complicate the problem 
too much, for the conditions of symmetry are such that, at any fixed 
radial distance, conditions are the same regardless of angle. The problem 
is thus still a one-dimensional one. 

For this case Poisson's equation reduces to 

~ ~ (r dV) - - E. (8,13) 
r dr dr - to 

The same energy equation as for the plane-electrode case holds, 

½mv2 = e V (8.2) 
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Current density at any radial distance r is given by 

J(r) = pV (8.14) 

Since the current density varies with radial distance, it is more convenient 
to express the space-charge density in terms of total current per unit 
length of axis. 

I l = 2-irrJ(r) 

= 2-irrpv 

(8.lfi) 

(8.16) 

where I is the total current passing at right angles through an imaginary 
cylinder of radius r and length l. 
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Expressing the right side of Eq. (8.13) in terms of I and V from Eqs, 
(8.2) and (8.16), 

(8.17) 
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which way also be written as 

d2V + 1 dV _ J /m 
dr2 r dr - to '\J2eV 

175 

(8.18) 

An approximate solution of Eq. (8.18) can be obtained by observing 
that for large values of r the second term of the left member of the equa­
tion is negligible. If this term is dropped, the resulting equation is the 
same as Eq. (8.4) for the plane-electrode case so that the solution for 
large values of r would be expected to be the same in both cases. Thus 

J = 2.335 X 10-6V¾ 
r2 amperes per unit area (8.19) 

or 

I 27r X 2.335 X 10-6V~i 
1 = r amperes per unit length of axis (8.20) 

These approximate equations hold within 10 per cent for values of r 
greater than ten times the cathode radius. 

A more exact solution is obtained by assuming that the expression for 
current is of the form 

I KV¾ 
I = r/32 (8.21) 

where {3 2 is a function of the ratio of the radius at any point to the cathode 
radius. 1 Substituting Eq. (8.21) into Eq. (8.17) gives 

3{3r2 d213 + r2 (d/3)2 + 7{3r d/3 + 132 - 1 = 0 
dr2 dr dr 

(8.22) 

This can be simplified slightly by letting u = In (~), a logical substitu­

tion because the space-charge-free potential is expressible in this form. 
With this change of variable, 

3/3 d213 + (d/3)2 + 4/3 d/3 + 132 - 1 = 0 
du2 du du 

This may be solved by series, the solution being 

2u2 llu3 47u4 

{3 = u - 5 + 120 - 3 300 + 
' 

Thi.s expression is valid for either an internal or an external cathode. 

1 LANGMUIR, op. cit. 

(8.23) 

(8.24) 
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Values of 132 have been calculated by Langmuir by means of this series 
and other equivalent expressions which are more convenient for large 
values of u. In Table V are tabulated the values of /32 and in Fig. 8.4 

is shown a curve of {32 as a function of !:._, It is seen that for ratios of !. 
~ ~ 

greater than 7 the value of 132 differs from 1 by less than 10 per cent, thm 
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FIG. 8.4.-Curve of {32 as a function of(~)-

substantiating the approximate form of the equa.tion for current, previ­
ously given. In the chart of Fig. 8.5 is given the current per unit length 
of axis for various voltages and various values of plate radius for the case 
in which 132 has the value of 1. For other values of 132 the current obtained 
from this chart must be divided by the value of 13 2 as obtained from Fig. 
8.4. 

In practical units the expression for current is 

I 14.66 X 10-6V~• 
l = r13 2 amperes per unit length of axis (8.25) 

Since the current per unit length of axis is a constant, for a constant 
plate voltage, the variation of potential with radial distance r is given by 

(8.26) 

in which it must be recognized that {32 is not a constant but a function of 
the radial distance r. Velocity of the electron is given by the square 
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Fm. 8.5.-Nomographic chart of linear current density as a function of potential 
and plate radius in a cylindrical diode (/j2 = 1). 

root of potential, and thus 
(8.27) 

From Eq. (8.16), space-charge density is the reciprocal of the product of 
velocity and radial distance r, 

ks 
P = r(r/32)½ (8.28) 
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TABLE V 

VALUES OF {J2 AS A FUNCTION OF :!.. AS GIVEN BY EQ. (8.24) 
Tc 

T Tc - or-
Tc T 

1.00 
1.01 
1.02 

1.04 
1.06 
1.08 

1.10 
1.15 
1.20 

1.30 
1.40 
1.50 

1.60 
1. 70 
1.80 

1.90 
2.0 
2.1 

2 .2 
2.3 
2.4 

2.5 
2 .6 
2.7 

2 .8 
2 .9 
3.0 

3.2 
3.4 
3.6 

For small u 

.,. 
where u = In -· 

Tc 

(,62 applies where r > re; -132 applies where r < Tc) 

r re 
132 -(J2 - or- 132 

Tc r 

0.0000 0.0000 3.8 0.6420 
0.00010 0.00010 4.0 0.6671 
0 .00039 0.00040 4.2 0.6902 

0.00149 0.00159 4.4 0.7115 
0.00324 0.00356 4.6 0.7313 
0 .00557 0.00630 4 .8 0.7496 

0 .00842 0.00980 5.0 0.7666 
0 .01747 0.02186 5.2 0.7825 
0 .02815 0.03849 5.4 0 .7973 

0.05589 0.08504 5.6 0.8111 
0.08672 0.14856 5.8 0.8241 
0 .11934 0.2282 6.0 0.8362 

0.1525 0.3233 6.5 0.8635 
0.1854 0.4332 7.0 0.8870 
0.2177 0.5572 7.5 0.9074 

0 .2491 0.6947 8 .0 0.9253 
0 .2793 0.8454 8 .5 0. 9410 
0 .3083 1.0086 9.0 0 9548 

0 .3361 1.1840 9.i 0.9672 
0 .3626 1.3712 10.0 0.9782 
0.3879 1.5697 12.0 1.0122 

0 .4121 1.7792 16.0 1.0513 
0.4351 1.9995 20.0 1.0715 
0.4571 2.2301 40.0 1.0946 

0.4780 2.4708 80.0 1.0845 
0.4980 2.7214 100.0 1.0782 
0.5170 2.9814 200.0 10562 

0 .5526 3.5293 500 .0 1.0307 
0 .5851 4.1126 00 1.000 
0 .6148 4.7298 

{J2 = u2(1 - 0.8u + 0.344u2 +. · · · ) 
d{J' 
du = 2u - 2.4u2 + l.374u3 - C.509u4 + 

-
-132 

5.3795 
6.0601 
6.7705 

7.5096 
8 .2763 
9 .0696 

9 .887 
10.733 
11.601 

12.493 
13.407 
14.343 

16.777 
19.337 
22.015 

24 .805 
27.701 
30.698 

33.791 
36.976 
50.559 

81.203 
115.64 
327 .01 

867.11 
1174 .9 
2946 .1 

9502.2 
00 
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Gradient of potential is given by the negative derivative of potential; 

-k4 d(r/32) 
dT E = --,-c-=-.,.,---

(T/32) ¼ 
(8.29) 

For radial distance T equal to Tc both the numerator and the denominator 
of the expression for E are zero. However, the numerator is a zero of 
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FIG. 8.6a.-Curves of potential, gradient, space-charge density, 
and velocity as a function of radial distance in a space-charge-

saturated cylindrical diode, (~) = 5. 

higher order, as may be checked by referring to the series for {3, and there­
fore the gradient is zero for T equal to Tc. In plotting a curve of th;:­
gradient the derivative of T/3 2 must be evaluated numerically from th~ 
table of values of /32

• Curves of V, E, v, and p for a typical cylindrical 
triode are shown in Fig. 8.6 for two ratios of plate to cathode radii. 
Curves for other radii have forms similar to those shown. Although 
not evident from the appearance of the curves, the potential profile 
leaves the cathode with zero slope, having a consideraHe change of 
slope in a short distance. This can also be seen from the series expan­
sion of the expression for potential near the cathode, the first term of 
which is 

(8.30) 
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From this it can also be seen that the gradient has the value of zero at 
the cathode. 

In all the foregoing it has been assumed that the cathode cylinder is 
smaller than the plate cylinder. The formulas are also valid if the 
cathode is the outer cylinder, though tubes are rarely built this way. 
It might be thought that if the cathode were the outer cylinder a greater 
current would flow for a given voltage than if it were the inner cylinder 
because the same current would be distributed through a greater volume 
where its velocity is lowest. Examination of the numerical values shows 
that this is not so, however. When the cathode is the outer cylinder, the 
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Fm. 8.6b.-Same as Fig. 8.6a, (~) = 2. 

functon /32 increases very rapidly as the ratio of plate to cathode radim; 
decreases. As a result, the current is actually less when the cathode is 
the outer cylinder; for although the factor r in Eq. (8.21) is decreased, 
the factor {3 2 has increased more than enough to offset this. 

It is of interest to compare Eqs. (8.8) and (8.25) for the plane and 
cylinder case. If Eq. (8.25) is divided by Zm-, it then resembles Eq. 
(8.8) except that x is replaced by r/3. When r is very large, {3 approaches 
unity and the expressions become identical. When r is only slightly 

larger than re, /3 is approximately equal to In (!:..) and hence to r - re, 
Tc Tc 

with the result that the factor r{J nearly equals r - re and the expres-
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sions for current density again approach identity with x replaced by 

r - r.. This identity is expected for values of !_ near unit.y; for here 
Tc 

the electrode spacing is small compared with the radii, and a plane struc­
ture is approximated. The fact that Eqs. (8.8) and (8.25) are identical 

for limiting values of the ratio !_ does not mean that they are nearly 
re 

equal for all intermediate values. For values of !_ between 4 and 20 
Tc 

the value of current density as calculated from the plane-electrode 
formula exceeds that obtained from the cylindrical-electrode formula 
by nearly 20 per cent. This is the maximum discrepancy that can occur. 

8.4. Space-charge Flow for Other Geometries. Spherical Electrodes. 
The equations for space-charge flow of current can also be derived for 
concentric spherical electrodes. 1 For this case it is found that the cur­
rent varies as the three-halves power of potential and is inversely pro­
portional to a dimensionless function of the ratio of plate and cathode 
radius. The total current is given by 

I = 29.34 V¾ X 10_6 
a2 amperes (8.31) 

where V is the potential difference between the spherical electrodes in 

volts and a is a function of u = ln (f), given by 

a = u - 0.3u2 + 0.075u3 
- 0.00143u4 + 0.00216u5 - (8.32) 

This expression for a is valid whether the cathode is external or internal. 
Values of a for the spherical case and of {3 for the cylindrical case are 

equal within 2 per cent for values of !_ between 0.65 and 1.35. For 
Tc 

values of!.. less than 1, a differs not more than 10 per cent from the larger 
Tc 

value of {3. 2 For values of '!__ very nearly equal to 1 the current density 
Tc 

approaches that for plane electrodes. 
The General Case. The observation that the current varies with the 

three-halves power of potential for plane, cylindrical, and spherical 
electrodes leads one to believe that this is the case for electrodes of any 
shape. Actually this is so, but the conclusion must be examined care­
fully, for the three cases enumerated are special cases in which the elec-

1 LANGMUIR, I., and K. T. CoMPTON, Electrical Discharges in Gases, Part II, 
Rev. Modern Phys., vol. 13, pp. 191-257, April, 1931. 

2 See Appendix VII for values of a 2• 
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trons move in straight lines perpendicular to the equipotential surfaces. 
For other geometries this is not necessarily so. For electrodes of other 
shapes the electrons will in general cut across the lines of electric force 
and move in curved paths. 

The validity of the three-halves-power law of potential can however 
be shown by a simple dimensional analysis of the basic equations from 
which the current laws were developed. These are Poisson's equations, 

(8.33) 

the energy equation 

½mv2 = eV (8.34) 

and the current-density expression 

J = pV (8.35) 

In previous cases the quantities in the last equation above have been 
treated as scalar quantities, but in the general case current density and 
velocity must be treated as vector quantities because they do not neces­

. sarily have the direction of the gradient of potential. 
Consider now what happens if the potential is increased by a factor k. 

mv2 

If the electrons move in a curved path, their centrifugal force I[' 

where R is the instantaneous radius of curvature, must equal the force 
due to the component of the gradient of potential normal to the path, 
eV n V. From Eq. (8.34) the centrifugal force will have increased by a 
factor k, and likewise the gradient will have increased by the same factor, 
so that the shape of the electron paths will be unchanged. This is the 
same conclusion that was reached in the case of the space-charge-free 
fields. Once this is established, the final conclusion follows immediately. 
From Eq. (8.33) the space-charge density is increased by a factor k, 
and from Eq. (8.34) the velocity is increased by a factor kF,. Hence, by 
Eq. (8.35), the current density is increased by a factor k~", and the gen­
eral validity of the three-halves-power law of potential for electrons 
starting from rest is established. 

It can also be shown by the same type of reasoning that, if an elec­
trode structure is enlarged by a factor n maintaining geometrical similarity 
and voltages are kept unchanged, then if the current is space-charge­
limited, the current is also unchanged. From Eq. (8.33) space-charge 
density is decreased by a factor n 2, and hence current density is decreased 
by a factor of n 2 from Eq. (8.35), velocity at corresponding points in the 
original ':l.nd enlarged structure being the same. However, since the total 
area over which the current density is summed is increased by a factor of 
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n2, it is seen that the total current is unchanged if the voltages are 
unchanged. 

8.5. Current Law for Plane Triodes. It is found experimentally in 
triodes that the total current released from the emitter is very nearly 

proportional to the three-halves power of the equivalent voltage, Vu + VP -
µ, 

This is most readily shown by plotting curves of constant space current, 
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210 triode. 

i.e., the sum of plate and grid current, against equivalent voltage on 
logarithmic paper. All points and curves so plotted tend to fall on the 
same straight line, which has a slope of nearly%- Slight departures from 
the slope of % are sometimes encountered because of initial electron 
velocity, the Schottky effect, and because of potential drop along the 
emitter. The relation holds whether the grid is negative or positive even 
though the space current in the first case is all plate current and in the 
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second case is the sum of grid and plate current. This is in accord with 
the reasoning presented in the previous section. 

The correlation between the theory and experiment is sufficiently good 
so that in general it is a very good approximation to write 

J=Jv+Jg=k(vg+ :Py· (8.36) 

in which k is a constant to be determined later. 
The equivalent voltage referred to here is the same as the equivalent 

voltage encountered in the study of the space-charge-free potential dis­
tributions in tubes. There it was found that the off-cathode gradient 
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was a linear function of the equivalent voltage just as the cathode gradi­
ent of the space-charge-free diode is directly proportional to the plate 
potential. Here the space current depends upon the three-halves power 
of the equivalent potential just as the saturated diode current is pro­
portional to the three-halves power of the plate potential. This is 
strictly true only when the space charge in the grid-plate region is 
negligible. A curve showing how the space current varies with equivalent 
voltage in a typical triode is given in Fig. 8. 7. 

The fact that the relative effectiveness of the plate and grid in con­
trolling current flow is the same for a great range of current is shown by 
plotting contours of constant space current against axes of grid and plate 
voltage. Such a set of curves is shown in Fig. 8.8. It is seen that the 
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curves are substantially straight lines whose slope by definition is 

185 

1 
µ, 

The constancy of the slope of these straight-line curves attests to the 
constancy of the amplification factor. It will be observed that for very 
small currents the slope decreases, indicating a lower amplification factor. 
This is explained by the fact that the amplification factor of all parts of 
the electrode structure is not the same, with the result that the parts 
with the highest µ.cutoff first, leaving current to pass through the parts 
of lower µ.. Variations in the magnitude of the amplification factor, 
which actually is an equivalent amplification factor of a number of areas 
with slightly different factors connected in parallel, also account for 
slight departures of the current 
law from a strict three-halves +lp .-------------~ 
power law. 

Current Law in Terms of Elec­
trode Dimensions. The coefficient 
of the current law given in Eq. 
(8.36) can be evalu.ated by fitting 
the triode electrode potentials to 
the diode law for a particular com­
bination of potentials and then 
assuming that the relation which 
holds for this particular case holds + lg 
for all combinations by virtue of 

I 
I 
I 
I 

the experimental observations. 1 0!£'-----!--------___J 
t---dcg __ J ____ dcp _______________ _j Consider a plane-electrode tri­

ode, and imagine first that the 
grid is not present and that there 
is a space-charge-limited current 
flow from cathode to plate. Then 

Fm. 8.9.-Potential distribution in a posi­
tive-grid triode with gri~ at its natural 
potential. 

if the grid were inserted at a positive potential corresponding to that. 
which existed at its location before its insertion, its presence would not 
disturb the existing potential distribution and would not change the 
magnitude of the plate current. Since the equivalent voltage can now 
be determined for a given current, the constant of Eq. (8.36) can be 
evaluated. When this constant is known for one combination of poten­
tials, our experimental observations show that it is the same for all com­
binations of potentials and thus the current law for triodes is determined 
in terms of the electrode dimensions. 

The distribution of potentials referred to above is shown in Fig. 8.9. 
Here it is seen that the potential distribution from cathode to plate is a 

1 FREMLIN, J. H., Calculation of Triode Constants, Elec. Commun., July, 1939. 
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four-thirds-power-law curve as in the case of the diode. On this basis, 
the relation between the current density, the diode plate potential V ,,, 
and the cathode-plate distance is 

J = KVP½ 
dcp2 amperes per unit area (8.37) 

where K is 2.335 X 10-s_ Let this be written in the form 

V = J¾dc/1.i 
p K¾ (8.38) 

The grid is inserted with the potential that would exist in the diode at 
the location of the grid plane as shown in the figure. The relation for 
current density, positive grid potential, and cathode-grid distance is 

V = J¾dcu¾ 
u K'H (8.39) 

But the experimental observation in keeping with theoretical con­
siderations is that 

J = k ( Vu + :PY' 
Substitutions from Eqs. (8.38) and (8.39) give 

so that 

or, numerically, 

J = k (J¾dcu¾ + ~)* 
K 

k = 2.335 X 10-6 

(dcu~i + d:Y')* 
As a result, the expression for current is 

2.335 X 10-s (Vu+ J.: )½ 
J = de/ [ 1 + ~ ( !::Yi r amperes per 

unit area 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

(8.44) 

This is the expression that has been sought and that has been the object 
of the above development. It is seen to be of the same form as the expres-
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sion for the diode current density of Eq. (8.8). There is good experi­
mental verification of Eq. (8.44). 

It may also be seen that the space-charge-saturatedequivalent-diode 
spacing of the triode is 

[ 
1 (dcp)¾]H d., = dco 1 + µ, dco (8.45) 

A nomograph giving the space-charge-saturated equivalent-diode spacinr. 
of a triode in terms of the cathode-grid distance, the cathode-plate dis-
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Fm. 8.10.-Nomographic chart of equivalent-diode spacing of a space-charge-satu­
rated plane-electrode triode. 

tance, and the amplification factor is given in Fig. 8.10. It should be 
noted that the space-charge-saturated equivalent-diode spacing of a 
triode given here is somewhat different from the space-charge-free 
equivalent-diode spacing given in Eq. (7.53) of the chapter on Electro­
static Field of a Triode. Each is slightly greater than the cathode­
grid distance. For a µ of 10 and a ratio of cathode-plate to cathode-grid 
spacing of 5 the value of diode spacing from Eq. (8.45) is only 6 per cent 
greater than that from Eq. (7.53). For large values ofµ the difference 
is even less. Various attempts have been made to devise expressions for 
the triode current and mutual conductance in terms of the space-charge-
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free equivalent-diode spacing, but all these are subject to an inescapable 
error. 1 

8.6. Mutual Conductance of a Plane Triode. The mutual conduct­
ance is easily obtained from the expression for current density of Eq. 
(8.44). By definition, 

al (dlp) 
Ym = avg = dVg v,- k 

Performing this operation on Eq. (8.44), 

3.51 X I0-6 
( V0 + ~ y• 

Ym = dci [ 1 + ~ (!::)¾r• 
This can also be written in the form 

2.64 X 10-4J½ 

amperes per volt 
per unit area 

amperes per volt 
per unit area 

(8.46) 

(8.47) 

(8.48) 

As far as tube geometry is concerned, the mutual conductance of a 
triode depends primarily upon the cathode-grid spacing. The smaller 
the cathode-grid spacing, the larger the mutual conductance. The 
mutual conductance also increases, though to a smaller extent, as the 
ratio of cathode-plate to cathode-grid spacing is decreased and as 
the amplification factor is increased. 

It will be observed further that the mutual conductance increases as 
both the equivalent voltage and the current are increased. A specifica­
tion of mutual conductance is really meaningless unless the corresponding 
voltages are also indicated. The variation of mutual conductance with 
the one-third power of current is a general law that holds well for all 
types of tubes, including pentodes as well as triodes. 

8.7. Mutual Conductance of a Cylindrical Triode. The current law 
and mutual conductance of cylindrical triodes are readily evaluated by 
an analysis similar to that used for the plane-electrode triode. The 
current is given by 

14.66 X I0-6 ( V0 + Y: )½ 
[./ 2 r 1 + ! (rpf3cp2)¼]~" 

Tg/Jcg L f.l 2 µ r g/Jcg 

amperes per 
unit length 

(8.49) 

• WALKER, G. B., Theory of the Equivalent Diode, Wireless Engr., vol. 24, pp. 
5--7, Je.nuary, 1947. 



SPACE-CHARGE EFFECTS 189 

where r9 and Tp are grid and plate radii and the combination subscripts 
indicate that /3 2 is to be determined by the ratio of the radii of the elec­
trodes indicated by the subscripts. 

The mutual conductance is 

22.0 X 10-6 (Vu+ Y; )y, 
Tg/3c0

2 [J_ +; (~:::::)'"r Ym = 
amperes per volt 
per unit length (8.50) 

8.8. Effect of Filameutary Emitters. When tubes have filaments 
instead of solid cathodes, a number of effects contribute to making the 
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100 

behavior different from that of tubes with solid cathodes. Foremost 
among these is the voltage drop along the filament, which may cause 
considerable divergence from the simple three-halves power of current 
with voltage. If the plate current is returned to the negative filament 
lead, the current is at all times less than that for a uni potential cathode 
but becomes nearly equal to that value for large values of the ratio of 
plate to filament voltage. The ratio of the current without to that with a 
unipotential filament is shown in Fig. 8.11. This is essentially a cor­
rection factor for the fact that the filament potential is not uniform. 
The ratio of currents is 0.4 for a plate- to filament-voltage ratio of 1, 
dropping linearly to O with this ratio for plate voltages less than the 
filament voltage. When the plate voltage exceeds the filament voltage 
by more than a factor of 15, the current ratio is within 5 per cent of unity. 

The above results are arrived at by integrating the emission effect 
along the filament, taking into account the different potential differences 
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to the plate at each point. Every element of length of the filament 
contributes a current 

dl = 14.66 X 10-6[V(x)]¾ dx (S.5l) 
rp/32 

which may be written more simply as 

dl = G[V(x)]H dx (8.52) 

in which G is the so-called "perveance" of the tube. The perveance 
is simply the coefficient of the voltage factor in the Child-Langmuir law. 
It contains the geometrical factors of the tube and has dimensions of 
current per unit length per volt¾. 

It is necessary to introduce the potential difference between the fila­
ment and plate as a function of distance along the filament. This is 

(8.53) 

where VP is the plate potential relative to the negative filament lead, x 
is the distance from the negative end of the filament, l is the length of 
the filament, and V1 is the potential drop along the filament. With this 
substitution, Eq. (8.52) must be integrated from O to l. The results of 
this operation fall into two parts. 

Case I. VP < Vi leads to 

I = ~GVPH (~;) l. 

Case II. VP > V, leads to 

I = ~ Gl [Vp* - (VP - V,)¾) 
5 v, 

(8.54) 

(8.55) 

For purposes of computation Eq. (8.55) is best put in the form of the 
senes 

I = GZVPH [1 - 3v, + _! (v1)
2 

+ _!_ (v')a + ... ] (8.56) 
4Vp 24 Vp 192 VP 

All the above equations for current can be put into the form 

I= GlVp~•F (~;) (8.57) 

in which F (~;) is the current ratio plotted in Fig. 8.11. 

Some difficulty is occasionally encountered in calculating currents 
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in tubes with filaments and plane electrodes. Neither the plane- nor 
the cylindrical-electrode formulas will fit directly here. Experimentally 
it is found that there is an equivalent filament area which may be 
applied. This equivalent area is obtained by projecting the filament onto 
the filament plane and surrounding it by a band twice as wide as the dis­
tance from the filament to the nearest electrode. This equivalent area 
may be used either to obtain current in diodes or to obtain current or 
mutual conductance in triodes. The same concept may be applied to 
helical filaments in cylindrical-electrode tubes. 

8.9. Effect of Initial Electron Velocity. In all the foregoing analyses 
it has been assumed that the electrons start with zero velocity from a 
point of zero potential. This is not 
quite correct because of the mecha- vp 

nism of electron emission. Actually, 
electrons having zero velocity would 
never get started from a cathode in 
the presence of space-charge satura­
tion. The electrons come off from 
the emitter with a Maxwellian distri- V 
bution of velocities ranging from zero 
to infinity. The distribution is such 
that 90 per cent of the electrons have 
velocities below ½ volt at usual 
cathode temperatures, and fewer and 
fewer have successively higher 
velocities. 

X A good idea of what the actual 
FIG. 8.12.-Potential distribution in 

potential distribution is when the a plane-electrode diode for the case of 
initial velocities are considered may uniform initial velocity of emission . 
be obtained by assuming that all 
electrons leave the cathode with the same normal velocity. Because of 
the initial velocity, the gradient at the cathode may and does become 
negative, and the potential curve moves down until it has a minimum 
somewhere close to the cathode at which the potential is negative and 
corresponds to the velocity of emission. For this condition the electrons 
are slowed down until they all come to rest at the potential minimum. 
From this point, which acts like an ideal cathode and which is called a 
"virtual" cathode, the electrons may start in either direction, either 
being returned to the cathode or going to the plate. 

For a condition of space-charge saturation the potential distribution 
on either side of the virtual cathode will follow the four-thirds-power law. 
The location of the potential minimum will be determined by the fraction 
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of the current that goes on to the plate. A typical potential distribution 
is shown in Fig. 8.12. 

Let it be assumed that the fraction of the emitted current which 
continues on to the plate is given by P. Then if the emitted current per 
unit area is J., the current to the right of the potential minimum is PJ. 
and that to the left is (2 - P)J.. The current to the left of the mini­
mum is made up of the emitted current J , going in one direction and the 
returning current (1 - P)J, going in the other. As far as the space­
charge effects are concerned, the directions of these current components 
are immaterial because the charge densities add regardless of sign. 

The relation between current, potential, and distance to the right 
of the minimum is given by 

PJ _ 2.335 X 10-6(V + V m)¾ 
• - (x - Xm) 2 

amperes per 
unit area 

(8.58) 

where V is potential with cathode potential taken as zero, V m is the 
magnitude of the negative potential at the minimum, x is the distance 
measured from the cathode, and Xm is the distance from the cathode to 
the minimum. 

Similarly the relation to the left of the minimum is 

(2 _ P)J. = 2.335 X 10-6(V m + VP• 
(xm - x) 2 

amperes per 
unit area 

(8.59) 

where V and V m are magnitudes of potential. Equations (8.58) and 
(8.59) give the potential distribution if the magnitude and the location 
of the potential minimum and the fraction of the transmitted current are 
known. 

To determine the factors in terms of which Eqs. (8.58) and (8.59) 
are expressed let these two equations be evaluated at the plate and 
cathode, respectively. Then 

PJ = 2.335 X 10-6(Vv + Vm)~ 
• (Xcp - Xm) 2 

and 
(2 _ P)J, = 2.335 X 1~-6(V mP' 

Xm 

amperes per 
unit area 

amperes per 
unit area 

Taking the ratio of these two expressions and solving for x,,., 

Xcp 
Xm = -----~~- ---

1 + ( :~ + 1 y· (; - 1 )" 

(8.60) 

(8.61) 

(8.62) 

from which the location of the potential minimum can be determined 



SPACE-CHARGE EFFECTS 193 

for any assumed fraction of transmitted current. The magnitude of the 
potential at the minimum is known from the initial velocity. 

The results of the above analysis are not exact because in the actual 
case there is a distribution of velocities, with the result that the position 
e.nd magnitude of the potential minimum and also the fraction of the 
transmitted current are uniquely determined from the potential and 
cathode temperature. An exact analysis considering the velocity dis­
tribution is given by Langmuir. 1 The exact expressions are quite 
involved, but some approximate expressions which are accurate to within 
about 2 per cent take the following form: 

PJ = 2.335 X 10-6(V p - V m)¾ [ 1 _ 0.0247T~• ] (8_63) 
• (Xcp - Xm) 2 (Vp - Vm)» 

where J. is emitted current per unit area 
PJ. is current per unit area passing potential minimum 

VP is plate potential 
V mis magnitude of minimum potential relative to cathode 
Xcp is cathode-plate distance 
Xm is cathode-potential-minimum distance 
T is cathode temperature, °K 

The location of the potential minimum is given by 

Xm = 0.0156(1,000J)-~• C,~y• 
The corresponding magnitude of potential minimum is 

(8.64) 

(8.65) 

where P is the fraction of the emitted current transmitted to the plate. 
The exact relations for space-charge-saturated flow with initial 

electron velocity are given by Langmuir in the form of the universal 
curve I of Fig. 8.13. This curve gives potential as a function of distance 
with the origin arbitrarily taken at the potential minimum. For com­
parison there are also shown the potential-distribution curves of Eqs. 
(8.63) and (8.8) as curves II and III, respectively. It is seen that the 
actual potential distribution is considerably different from that of the 
Child-Langmuir law beyond the potential minimum and is totally differ­
ent from a four-thirds-power law to the left of the potential minimum 
except in its immediate vicinity. 

A study of the approximate relations given above and of the universal 
potential-distribution curve reveals the following effects of initial velocity 

1 LANGMUIR and COMPTON, op. cit., Part II. o. 241. 
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upon space-charge flow: The larger the emitted current and the cathode 
temperature, the greater the magnitude of the potential minimum. The 
lower the cathode temperature and the larger the plate potential, the 
closer the potential minimum <1,pproaches the cathode and the lower it 
becomes. The plate current considering initial velocity is larger than 
that obtained from the Child-Langmuir law because the potential differ­
ence between the virtual cathode at the potential minimum and the plate 
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Fro. 8.13.-Universal diode potential-distribution curve including effect of Max­
wellian distribution of emission velocity (Langmuir). (See discussion on page 193.) 

is greater than the actual plate potential, because the distance from the 
virtual cathode to the plate is less than the actual cathode-plate distance, 
and because the electrons leave the virtual cathode with an average 
velocity that is greater than zero. 

The distance of the virtual cathode from the actual cathode may be 
appreciable. For a cathode temperature of 1000°K and a transmitted 
current density of 1 ma per cm2, the distance from the cathode to the 
virtual cathode is approximately 0.006 in. In modern close-spaced 
electrode tubes, this distance is by no means inappreciable. 

When the fraction of the emitted current transmitted beyond the 
virttial cathode is not known, it is necessarv to solve Eqs. (8.63) to (8.65) 
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by trial to determine the transmitted current for a given electrode 
spacing, plate potential, and cathode temperature. 

8.10. Effect of Space Charge upon Transit Time in Diodes. In 
general, the transit time in an electric field is given by the integral of the 
reciprocal of velocity ,vith respect to distance. 

Jx' dx 
T= -

X I V 
(8.66) 

For the plane-electrode diode the transit time with and without space 
charge is easily determined. Without space charge the potential profile 
is a straight line so that 

X 
V(x) = - VP d,p 

(8.67) 

where V(x) is the potential at any distance x from the cathode, VP is 
the plate potential, and dcp is the cathode-plate distance. The velocity 
at any point, assuming zero initial velocity, is then given by 

so that the transit time is 

with the result that 

v(x) = (d:J½ Vp 

T = 2d,p 
Vp 

(8.68) 

(8.69) 

{8.70) 

When space charge is present in the plane-electrode diode, then the 
potential follows a four-thirds-power law so that 

( 
X )~i 

V(x) = dcp VP 

The velocity at any point is then given by 

so that the transit time is 

with the result that 

v(x) = C:J,. vp 

d % ld,9 
T=~ · x-¼dx 

Vp O 

T = 3d,p 
Vp 

(8.71) 

(8.72) 

(8.73) 

(8.74) 
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This is seen to be of the same form as for the space-charge-free case, 
the only difference being that the time is 50 per cent greater. 

For the cylindrical-diode case in the absence of space charge the 
potential profile is a logarithmic function. 

ln (~) 
V = __ r_e Vp 

ln (;:) 

(8.75) 

where r is the radial distance to any point and re and rp are cathode and 
plate radius, respectively. The velocity at any point is 

-Jin(~) 

l 
rp V- - ()Vp 

n -
re 

The transit time for this case is 

T = ✓l~ {'• dr 

Vp },, ✓-(r) In -
re 

lf the substitution 

be made, then the transit time is 

_ ✓ln (~)!In(~) E" 
T - re - ~- . r du 

Vp O VU 

(8.76) 

(8.77) 

(8.78) 

(8.79) 

This is now in a form which can readily be evaluated by series integration 
and in which it is apparent that the integral is not infinite. The results 
may be expressed in the form 

T=!!:._B(:!!) 
Vp re 

(8.80) 

where d is the distance between plate and cathode and B (~) is a 

function of the ratio of plate to cathode radius given in Fig. 8.14. It 
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is seen that when the cathode is inside the transit time is less than that 
in the plane-electrode case for the same distance and potential. 

When there is space charge present in the cylindrical diode, the 
potential profile is given by 

(8.81) 

where T is the radius to any point and {3 2 is the function given in Fig. 8.4, 
the subscripts indicating the distances determining the ratio for which 
the function is evaluated. The velocity is 

( 
T/3,c2 )¼ 

V = R2 Vp 
Tp,-,cp 

The integral for the transit time is now 

T = (Tpf3.p2)¼ fr (Tf3,c2)-¼ dr 
Vp Jr, 

If again the substitution of Eq. (8.78) be made, 

T = (Tp/3ci)¼T}i [1n (~) { E" )¾ du 
Vp } O \ft,c 

(8.82) 

(8.83) 

(8.84) 

This is readily evaluated numerically for small values of !:__. For large 
Tc 

values of !.. the form 
Tc 

(8.85) 

is more suitable for computation. The results of the computation can 
be put into the form 1 

T = !i_A (Tp) 
Vp Tc 

(8.86) 

in which the function A(;:) is that shown in Fig. 8.14. In this figure 

it is seen that in the cylindrical diode with space charge and an internal 
cathode the transit time is less than for the corresponding plane electrode 
but more than for the same case not space-charge-limited. In the 

1 FERRis, W. R., Input Resistance of Vacuum Tubes as Ultra-high-frequency 
Amplifiers, Proc. I.R.E., vol. 24, pp. 82-107, January, 1936. 
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curves of Fig. 8.14 are also included the values for cylindrical diodes 
with the cathode outside. These are seen to have larger transit times 
than the plane-electrode diode, ,Yhich in turn has larger transit times 
than the cylindrical diode with the cathode inside. 

8.11. Summary. The primary effect of space charge in a tube is to 
make the transmitted current follow a three-halves-power law of plate 
voltage. In addition, it makes the plate current virtually independent 
of the filament voltage. Modern tubes are designed so that the emission 
at rated voltages is more than sufficient to supply the current required 
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Fm. 8.14.-Transit-time curves of a cylindrical diode (Ferris). The parallel-plane 

case is given by rp/rc = 1. 

by the Child-Langmuir law. Under these conditions the emission 1s 
said to be space-charge-limited. The nature of this saturation is shown 
in Fig. 8.15. Here is shown the variation of the plate current in a diode 
with cathode heating power for different voltages. If the cathode 
emission is not very great, a departure from the three-halves-power 
law of voltage occurs at relatively low voltage. This occurs when the 
plate is collecting all the current emitted from the cathode and gives 
rise to what is known as temperature saturation. This effect is shown 
in Fig. 8.16. Here is shown the plate current in a diode as a function of 
plate voltage for various cathode powers. For low voltages the curve 
follows the three-halves-power law, and then at some point determined 
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by the cathode emission the current becomes nearly independent of the 
plate voltage. The nature of the saturation in this case depends upon 
the type of emitter. With tungsten as an emitter, the emission is very 
nearly independent of plate voltage in the saturation range. With 
thoriated tungsten and even more so with oxide emitters the emission 
increases slowly with plate voltage in the saturation range. This is 
because the emission depends upon the gradient at the cathode (Schottky 
effect). In the case of oxide emitters the increasing gradient through the 
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FIG. 8.15.-Diode plate current as a function of cathode 
power. 

emitter increases the liberation of emitting material in addition. In a 
well-designed tube, temperature-saturation effects will not occur at 
rated voltages. 

In addition to the three-halves-power law of voltage and the satura­
tion effects mentioned above, space charge has the effect of reducing the 
capacity between electrodes. The capacity between the cathode and 
plate of a space-charge-saturated diode is three-fifths of that of the cold 
diode. 1 Further, transit times are in general increased over the diode 

1 LLEWELLYN, F. B., "Electron Inertia Effects," p. 50, Cambridge, London, 1941. 
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without space charge, being 50 per cent greater in the space-charge­
saturated diode with plane electrodes. 

Power relations are unchanged. Although the voltage and gradient 
distribution are different in the presence of space charge and in its 
absence, the velocity of an electron is always the same relative to the 
potential, as is required by the energy equation (6.4). The power put 
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Frn. 8.16.-Diode plate current as a function of plate voltage. 

into the tube, as evidenced by the product of the voltage across it and 
the current through it, appears in the form of heat at the plate. The 
energy of impact of each electron is ½mv2, and the number of electrons 

striking the plate per unit area per second is pv_ The product of these 
e 

is recognized as JV per unit area. 



CHAPTER 9 

TRIODE CHARACTERISTICS 

9.1. Control Action of the Grid. The triode in its commonest form 
consists of an emitter surrounded by a grid, which in turn is surrounded 
by a plate. The grid is usually a mesh of fine wires supported quite close 
to the cathode. The plate is spaced several times as far away. The entire 
structure is supported in an evacuated glass or metal envelope with leads 
to the electrodes coming out through glass on the bottom of the tube. 

The outstanding feature of the triode is the ability of the grid to 
control the flow of current to the plate without itself drawing any current. 
As a result of this property, a small voltage on the grid is capable of 
producing a large voltage drop in the plate circuit. Because of the fact 
that the grid draws no current, the triode, at all but very high frequencies, 
is a voltage-operated device in that virtually no power is required to 
operate the tube. The term "electric valve" for a vacuum tube is 
particularly expressive because the grid has an electrical valve action. 
Vacuum tubes do not really amplify power. Actually, the grid controls 
the flow of power from the plate power supply. 

In the chapter on Electrostatic Field of a Triode it was shown that 
both the plate and the grid electrodes were able to control the gradient 
of potential in front of the cathode. It was also shown that the grid was 
much more effective in so controlling the off-cathode gradient, in fact, 
µ times as effective. When a tube is conducting, the negative charge 
of the electrons passing through the tube produces a space charge that 
alters the potential distribution in the tube, particularly in the vicinity 
of the cathode, but the control property of the grid is not impaired. 
The potential distribution between the cathode and grid, for usual 
combinations of potentials, is now a curve that is concave upward 
(for plane electrodes) instead of being nearly a straight line. The 
positive plate potential reaches through the grid and causes the potential 
on the cathode side of the grid to be positive. Electrons are drawn off 
the cathode into this region of positive potential and are drawn to the 
positive plate between the negative-grid wires from whose immediate 
vicinity, however, they are strongly repelled. The negative control 
grid easily regulates the degree of positiveness of the potential before 
the cathode. This the grid is able to do primarily because of its greater 
proximity to_ the cathode. 

201 
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9.2. Current-voltage Characteristics of the Triode. The plate cur­
rent in a triode depends upon both the plate and the grid voltage. It 
also depends upon the filament voltage, but this is usually held at some 
suitable fixed value. Hence it is usual to describe the current charac­
teristics of a triode in terms of grid and plate potential alone. 
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Frn. 9.1.-Plate-current-grid-voltage characteristics of a 
triode. 

Plate-current--(}rid-voltage Characteristics. As mentioned in the previ­
ous chapter, the space current in a triode is given approximately by 

where I. is space current 
IP is plate current 
Iu is g1id current 

(9.1) 
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G is perveance 
V0 is grid voltage 
VP is plate voltage 

µ is amplification factor 
a is a constant, approximately % 

203 

When the grid voltage is negative, the entire space current goes to the 
plate. Even when the grid is positive, the fraction of the space current 
going to the grid is small so that Eq. (9.1) is a reasonably good approxima­
tion for plate current under all conditions except the combination of 
very small plate voltage and rather large positive grid voltage. An actual 
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Frn. 9.2.-Plate-current-plate-voltage characteristics of a triode. 

plot of plate current as a function of grid voltage is shown in Fig. 9.1. 
The principal characteristics are quite evident and consistent with 
expectations. The plate current is seen to increase with both grid and 
plate voltage but more rapidly with grid voltage. Considering the varia­
tion with grid voltage alone, the current increases slowly at first and then 
more rapidly. In the region of negative grid voltages the curves for the 
different plate voltages are seen to be of nearly the same shape but merely 
displaced horizontally. This is consistent with the form of Eq. (9.1). 
For positive grid voltages the rate of increase of current with grid voltage 
shows a slight decrease. This is due to two factors. (1) The grid is 
beginning to draw a fraction of the total, or space, current. (2) There is 
a tendency for the current to saturate at large plate voltages. 
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Plate-current-Plate-voltage Characteristics. A typical set of plate­
current-plate-voltage characteristics of a triode is shown in Fig. 9.2. 
The same general properties observed in the plate-current-grid-voltage 
characteristics are observable here. For negative grid voltages, however, 
the curves are not similar in this representation. This is because for 
large negative grid voltages the tube is operating near cutoff and here 
the amplification factor of the tube is appreciably lower than for grid 
voltages near zero. The change in shape of the curves for positive grid 
voltages from concave upward to concave downward is due to the diver­
sion of part of the space current to the grid. The actual space current 
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Fm. 9.3.-Contours of constant plate current. 

still has an upward curvature with plate voltage, but the fraction of 
space current taken by the grid decreases as the plate voltage increases. 

Contours of Constant Plate Current. In Fig. 9.3 are shown contours 
of constant plate current plotted along axes of plate voltage and grid 
voltage. These curves show the combinations of grid and plate potential 
for which the plate current is constant. Over a large part of their range 
these contours are parallel straight lines. The significance of this is 
that the amplification factor of the tube is very nearly constant. For 
small values of plate voltage and positive grid voltages the curves are 
curved strongly upward. This is due to the diversion of part of the space 
current to the grid. If contours of constant space current are plotted 
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(one is shown dashed in the figure), they are found to be nearly straight 
lines. 

The Plate-current Surf ace. Inasmuch as plate current is a function 
of two variables, it may be represented as a surface. The height of this 
surface above a reference plane is given by thli magnitude of the plate 
current. Position on the reference plane and on the corresponding 
point on the surface above is given by the plate and grid voltage. A 
sketch of the plate-current surface is shown in Fig. 9.4. The relation 
of the surface to the three representations of plate current previously 
given is evident from the figure. The plate-current-grid-voltage curves 

Fm. 9.4.-The plate-current surface. 

are the intersections of planes parallel to the plate-current and grid­
voltage axes with the surface. 

Only a part of the surface is shown, to avoid confusion due to too many 
lines. The surface becomes a horizontal plateau for large values of 
current due to voltage saturation, i.e., insufficient emission. Since there 
can be no plate current for negative plate voltages, the surface turns a 
corner as it approaches zero values of plate voltage. 

9.3! Definition of Triode Constants. Amplification Fact-0r. Although 
the characteristics of a triode are completely specified only by a set of 
voltage-current curves, an index of the tube's operation is ordinarily 
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given in terms of the so-called tube "constants." These so-called con­
stants suffice to describe the operation of a tube in the vicinity of a given 
set of electrode potentials. The three so-called tube constants are the 
amplification factor, the mutual conductance, and the plate resistance. 

The amplification factor is a function of the electrode geometry and 
has already been given in terms of the dimensions. It has previously been 
given for a cold tube as the relative effectiveness of the plate and grid 
potentials in controlling the off-cathode gradient of potential. Another 
definition and the one generally accepted is that amplification factor 
is the relative effectiveness of the plate and grid potentials in controlling the 
plate current. Mathematically this is given by 

alp 
avg (dVp) 

µ = - al!'. = - dVg Ip Const 

avp 
(9.2) 

If a tube is conducting current under a given condition of potentials and 
the plate voltage is then increased by a small amount, the plate current 
will increase by a small amount. If then the grid voltage is made more 
negative by the proper amount, the current will be restored to its original 
value. The limit of the ratio of the change in plate voltage to the change 
in grid voltage necessary to keep the plate current constant as these 
changes are made vanishingly small is the amplification factor of the 
tube. This is the significance of Eq. (9.2). The amplification factor of a 
tube whether a triode or multielectrode tube is always taken with respect 
to the control-grid voltage unless otherwise specified. In triodes the 
amplification factor is a measure of the voltage-amplifying capabilities 
of the tube. In multielectrode tubes it has no great significance and is 
usually not even listed. Amplification factor is a dimensionless constant. 
Practical values of amplification factor run from 2.5 to 200 in ordinary 
triodes. 

Mutual Conductance. The mutual conductance (sometimes called 
the "transconductance") of a triode has already been referred to in the 
chapter on Space-charge Effects. The mutual conductance of a tube is 
the rate of change of plate current with control-grid voltage. Mathematically 
this is given by 

G _ alp _ (dlp) 
m - aVa - dVa Vpcons• 

(9.3) 

An increase in the grid voltage of a tube effects an increase in the plate 
current. The limit of the ratio of the changes as the change in grid 
voltage is made vanishingly small is the mutual conductance. It will 
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be remembered that the mutual conductance of a triode is directly 
proportional to the square root of the equivalent voltage of the tube. 
It is also proportional to the cube root of the space current. As the 
name implies, the dimensions of this constant are those of conductance. 
Mutual conductance is usually expressed in units of micromhos or micro­
amperes per volt. Practical values of mutual conductance are between 
100 and 10,000 micromhos. 

Plate Resistance. Another tube constant that is commonly used is 
the plate resistance, also known as the "variational plate resistance" 
or the "dynamic plate resistance." The plate resistance of a tube is 
the reciprocal of the rate of change of plate current with plate voltage. 
Mathematically it is given by 

R _ 1 _ avp _ (dVp) 
- alp - alp - dlp Vo cons, (9.4 ) 

avp 

The plate resistance of a tube is the a-c resistance of the plate circuit 
to a small alternating voltage superimposed upon the direct voltage. 
The dimensions of this constant are those of resistance, and the magni­
tude is usually expressed in ohms. The plate resistance of a triode may 
vary from 1,000 to 50,000 ohms. A typical value is of the order of 
5,000 ohms. 

Relation between Tube Constants . The three tube constants express 
relations between the quantities that determine triode operation, viz ., 
plate current, plate voltage, and grid voltage. Since the three constants 
are expressed in terms of only three variables, it is expected that there 
is a relation between them. This is the case. If plate and grid voltage 
are changed by small amounts, the corresponding change in plate current 
IS 

(9.5) 

or 

(9.6) 

If the change in plate current is held to zero, then 

(9.7) 

This relation, viz., that the product of the mutual conductance and the 
plate resistance is equal to the amplification factor, holds exactly for any 
tnbe for any combination of electrode potentials. 



208 VACUUM TUBES 

Variation of Tube "Constants." The rather paradoxical heading 
of this subsection is justified by the fact that the so-called tube constants 
are not constants at all except approximately so in the vicinity of some 
operating condition. Actually, the constants may vary considerably 
over the entire range of voltages and currents in a tube. Of the so-called 
tube constants, the amplification factor varies the least. This is because 
it is basically dependent upon the geometrical structure of the tube. If 
the tube were perfect in that there were no end effects and no asymmetries 
and if no other electrode but the plate drew current, the amplification 
factor would not vary at all. 
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Fm. 9.5.-Contours of constant amplification factor of a triode. 

From the definition of amplification factor it is seen that it is given 
by the negative reciprocal of the slope of the contours of constant plate 
current in Fig. 9.3. Inspection of the plate-current contours with this 
in mind reveals that for the most part the amplification factor is fairly 
constant. It tends to be somewhat low in the vicinity of very low plate 
currents and even more so in the vicinity of very low plate voltages. 
A better idea of the nature of the variation of the amplification factor is 
given in Fig. 9.5, in which there are shown contours of constant amplifica­
tion factor superimposed upon the plate-current-grid-voltage curves of 
a triode. 1 The amplification factor is seen to be fairly constant over the 
entire working range of the tube. Variations in magnitude do not exceed 

1 TERMAN, F. E., and A. L. CooK, Variation in the Amplification Factor of Triodes, 
Proc. I.R.E., vol. 18, pp. 1044-1047, JunP, 1930 
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15 per cent of the mean value. The drop in amplification factor near 
cutoff is due to end effects in the tube. Because of stray electrostatic 
fields near the edges of the electrodes, these edges constitute a region 
of low amplification factor. Thus the actual tube consists of a large 
electrode area of constant mu in parallel with a small area of much smaller 
mu. As cutoff is approached, the low-mu portion of the tube cuts off 
last, giving the effect of a lower amplification factor. The reason why 
the amplification factor is lower for low plate voltages in the positive­
grid region is that here the grid takes a very large portion of the space 
current. Since, as will be shown later in this chapter, the fraction of the 
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space current going to the plate increases with plate voltage, a smaller 
increase in plate voltage relative to a decrease in grid voltage is needed 
to maintain the plate current constant when the grid voltage is positive 
than when it is not. This means that the amplification factor is lower 
for the conditions stated above. 

From the definition, mutual conductance is seen to be equal to 
the slope of the plate-current-grid-voltage curves. Reference to these 
curves confirms that the mutual conductance is an increasing function 
of plate current in the region of negative grid voltages. 

The mutual conductance of a triode has been shown in the chaoter 
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on Space-charge Effects to increase with the equivalent voltage and with 
the plate current. The nature of the variation is shown in Fig. 9.6. 
The variation is quite in accord with expectations as may be shown by 
plotting the variation of mutual conductance with plate current on 
logarithmic paper. Such a plot is given in Fig. 9. 7 for the same tube. 
Here it is seen that, since the curve of mutual conductance as a function 
of plate current is nearly a straight line with a slope of one-third, the 
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mutual conductance follows very closely a one-third-power law of varia­
tion with plate current as was predicted in Eq. (8.48). The correspond­
ence between the predicted and actual behavior is best at high currents. 
At low currents the variation departs somewhat from the one-third­
power law because of the reduction in amplification factor. 

Since the product of the mutual conductance and the plate resistance 
is equal to the amplification factor and since the amplification is almost 
constant, the plate resistance may be expected to vary with plate current 
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in a fashion reciprocal to that in which the mutual conductance does. 
This is seen to be the case in Fig. 9.6. Examining the variation more 
critically, Fig. 9.7 shows that the plate resistance varies nearly as 
the negative one-third power of plate current. The plate resistance 
is the reciprocal of the slope of the plate-current-plate-voltage charac­
teristics of a tube. Reference to Fig. 9.2 shows that the plate resistance 
decreases with increasing plate current in the negative-grid region. 
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Fw. 9.8.-Constants of typical triodes. 

For positive grid voltage the plate resistance may increase again. The 
plate resistance is lowest at high currents and low plate voltages. 

The total range of all the tube constants within a single tube may be 
c::msiderable. The amplification factor may vary over a range of 20 
per cent. The plate resistance and the mutual conductance may vary 
over a range of three to one. The range of values of the constants 
encountered from triode to triode is even more considerable. In Fig. 
9.8 are shown the tube constants for conditions of recommended opera-
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tion of a number of triodes. The representation is such that the location 
of the point corresponding to each tube gives the three tube constants. 
High amplification factors, of the order of 100 or so, may be obtained, 
but at the expense of a low mutual conductance and a correspondingly 
high plate resistance. 

9.4. Effective Tube Constants of Combinations of Tubes. It is of 
interest to consider what the effective tube constants are when two or 
more tubes are connected in parallel. Consider first the case of identical 
tubes connected in parallel. The effect of this is to double the mutual 
conductance, halve the plate resistance, and leave the amplification factor 
unchanged. This is logical, for with two tubes contributing current 
an increase in grid voltage produces twice as much of an increase in plate 
current as does a single tube. This explains the doubling of the mutual­
conductance value. Since the variations in plate current for a given 
change in plate voltage are twice as great as for a single tube, the plate 
resistance is half as great. The amplification factor is unchanged because 
the product of mutual conductance and plate resistance is the same as 
for a single tube. 

If tubes with different characteristics are connected in parallel, the 
combination characteristics are still readily determined. The effective 
mutual conductance is simply the sum of the individual mutual con­
ductances since the plate currents add directly. 

Gmequiv = Gml + Gm2 + • • • + Gmn. (9.8) 

The equivalent plate resistance is obtained by adding the individual 
plate resistances as one adds resistances in parallel. 

(9.9) 

In other words, the equivalent plate conductance, reciprocal of plate 
resistance, is the sum of the individual plate conductances. 

The equivalent amplification factor is given by the product of the 
equivalent mutual conductance and the equivalent plate resistance as 
given by Eqs. (9.8) and (9.9). For the special case of two tubes in 
parallel the expression for the equivalent amplification factor reduces to 

µ1Rp2 + µ2Rp1 
Ile<, . = 

wv Rp1 + Rp2 
(9.10) 

The equivalent amplification factor of tubes in parallel may be higher 
or lower than one of the individual values but will lie within the extreme 
values. The equivalent amplification factor will generally decrease as 
the grid is made more negative. This is because the hjgh-mu tubes 
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will cut off first, leaving the low-mu tubes to carry current alone. The 
a3tion may be illustrated in the case of two tubes by studying the rate 
of change of the equivalent mu with respect to grid voltage. Holding 
the individual mu's constant in Eq. (9.10), 
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oµoqwv 
ava = (9.11) 

The nature of the rate of change of the equivalent mu with respect to 
grid voltage is, assuming µ2 > µ1, determined only by the sign of 

_i__ (Rpi)· If, further, the mutual conductances of tubes are the 
dV0 Rp2 

same, then the slope of RRpi will be positive. As a result, the equiva­
p2 

lent amplification factor will increase as grid voltage is increased. 
The above type of analysis may be extended to the case of more 

tubes in parallel. It may also be extended to tubes in which the amplifi­
cation factor is not constant along the cathode surface. Tubes having 
grids wound with a variable pitch are often used to obtain an amplifica­
tion factor that decreases with increasing bias. Such tubes are exten­
sively used in r-f amplifiers for automatic volume control. 1 Such tubes, 
also known as "remote-cutoff tubes" or "supercontrol tubes," have the 
characteristics of a low-mu tube at low plate currents and of a high-mu 
tube at large currents. 

Such tubes have a tremendous variation of mutual conductance as 
well as the variation in amplification factor. This large variation results 
from the combination of the normal increase in mutual conductance with 
current and the increase in amplification factor with equivalent voltage. 
In Fig. 9.9 are compared the plate-current-plate-voltage characteristics 
of triodes which are identical except for the fact that one has a constant­
pitch grid, whereas the other has a variable-pitch grid. The reason for 
the designation "remote cutoff" as contrasted with "sharp cutoff" 
is apparent. 

9.6. Electron Paths. In the previous discussion, tube characteristics 
have been studied without reference to the electron paths. This has 
been possible because from space-charge considerations it is possible to 
determine the number of electrons transmitted past the virtual cathode 
in front of the actual cathode. For negative grid voltages, all the 
electrons leaving the cathode will be transmitted to the plate. For 
positive grid voltages, however, part of the emitted current is intercepted 
by the grid, and here the actual electron paths are of interest. Electron 
paths are also of interest in multielectrode tubes, where they have a 
considerable part in determining the tube characteristics. 2 

1 BALLANTINE, STUART, and H. A. SNow, Reduction of Distortion and Cross-talk 
in Radio Receivers by Means of Variable-mu Tetrodes, Proc. I.R.E., vol. 18, pp. 2102-
2127, December, 1930. 

2 THOMPSON, A. C., Electron Beams and Their Application in Low Voltage Devices, 
Proe. I.R.E., vol. 24, pp. 1276--1297, October, 1936. 
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In Fig. 9.10 are shown electron paths in a triode operating with a 
negative grid. These curves were obtained by photographing the motion 
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(d) 
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• 

FIG. 9.10.-Electron paths in a negative-grid triode (Kleynen). 

C 

p 

of small balls rolled upon a suitably deformed elastic membrane. Such 
a model of potential takes no account of space-charge effects. It may 
be expected that in this case the presence or absence of space cbarg~ will 
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make no great difference in the electron paths. The space charge is 
most pronounced close to the cathode. Here the gradient of potential 
is normal to the cathode, and the electrons will move in straight lines 
away from it, it being assumed that it is plane. Deflecting components 
of field are not encountered by the electron until it approaches the grid 
plane. Here, however, the velocity of electrons passing midway between 

Vg 10 
Jj,=2 

b. 

a. 

Fm. 9.11.-Electron paths in 

the grid wires will be considerable and the space-charge effects will be 
less. In contra'lt, electrons approaching a grid wire directly and there 
turned back ,,ill be most affected by the space charge because the 
velocity will be low near the wires. 

The successive parts of Fig. 9.10 show the effect of making the grid 
more and more negative until cutoff is reached. The sidewise deflecting 
forces become greater as the grid is made more negative until some of the 
~lectrons are, turned back. Up to that condition the ele~trons are passed 
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through the grid wires in a bunch that is focused beyond the gnd plane. 
Coupled with the condition of more electrons being turned back as the 
grid voltage becomes more negative is the fact that fewer electrons get 
by the virtual cathode. Both factors contribute to the reduction in 
current, though the latter predominates greatly. 

When the control grid is positive, it may attract electrons. The 
normal interception of current by the grid is roughly proportional to the 
projected area of the grid, though there is a strong dependence upon 

g. 

~t 10 
Jj, 100 

a positive-grid triode (Lange). 

d. 

Vg /0 
Ip =Jo 

the relative voltages of the grid and plate. In Fig. 9.11 are shown some 
electron paths for a positive-grid triode.1 These paths were calculated 
by the use of the action function, as described in the chapter on Laws of 
Electron Motion. The solid contours are equipotentials, the broken-dash 
contours are surfaces of constant action, and the electron paths are drawn 

1 LANGE, H., Current Division in Triodes and Its Significance in the D etermination 
of Contact Potential, Zeit. Hochfrequenz, vol. 31, pp. 105---109, 133-140, 191-196, 
1928. 
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perpendicular to these. When the grid is positive but less than its 
"natural potential," i.e., that which would give the diode potential 
distribution in the tube, the action of the potential field causes these 
electrons, which initially miss the grids, to converge beyond, as was 
the case with the negative-grid triode. This situation is shown in part g 
of Fig. 9.11. When the grid is more positive than its natural potential 
and also more positive than the plate, as in a and b of Fig. 9.11, the 
potential field has a divergent action and the electrons are pulled into 
the grid wires. In a of Fig. 9.11 is shown the case of a positive grid 
with a plate at zero potential. Electrons that missed the grid initially 
will just barely graze the plate and then be pulled back toward the posi­
tive grids. Individual paths in this case will differ greatly, but in general 
the electrons will oscillate around the grid wires a few times before finally 
falling into them. This is the action encountered in a Barkhausen-Kurz 
oscillator. 

9.6. Grid Current. Voltage amplifiers are operated with negative 
grid voltages, which means that grid current cannot flow. Power 
amplifiers of the Class B and C type are operated with the grid positive 
over an appreciable portion of the cycle during which grid current does flow. 
The grid current that does flow determines the power that is necessary 
to drive such amplifiers, and thus the matter of grid current is one of 
considerable importance. 

Grid-current-Grid-voltage Characteristics. Qualitatively, the current 
to the grid of a triode is expected to increase as the grid voltage increases. 
This occUJ"s because a more positive grid attracts electrons more strongly. 
Some typical grid-current-grid-voltage curves are shown in Fig. 9.12. 
These have the expected shape. The increase in grid current with grid 
voltage is more rapid than is the case for plate current. The curves for 
successively higher plate voltage fall below those for lower plate voltages. 
Thus in contrast to the grid-voltage variation, the grid current decreases 
with increasing plate voltage at a fixed grid voltage. This is logical, 
however; for as the plate is made more positive, the electrons are pulled 
past the grid more rapidly. They thus move in straighter lines, and 
therefore fewer of them are pulled into the grid. The current charac­
teristics in the presence of secondary emission may be greatly different 
and will be treated separately later. 

Grid-current-Plate-voltage Characteristics. Eome typical grid-current­
plate-voltage curves are shown in Fig. 9.13. For positive plate voltage 
the primary grid current decreases with increasing plate voltages as just 
noted. Curves for high positive grid voltage are shown above those 
for lower grid voltage. Grid current may flow when the plate voltage 
is negative, though such an operating condition is rarely encountered 
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in practice. For this condition all the emitted current is taken by the 
grid. The grid current drops slightly as the negative plate voltage is 
made more negative. This is because the space current itself is reduced 
owing to the reduction in the equivalent voltage in the triode. 

Constant-grid-current Contours. Contours of constant grid current 
are shown along with contours of constant plate current in Fig. 9.3. 
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Fm. 9.12.-Grid-current-grid-voltage characteristics of a 
type 35T triode. 

Grid current flows orl!y when the grid is positive. The positive-grid-­
negative-plate quadrant is not shown because it is of little practical 
value. In the absence of secondary emission the contours present an 
orderly appearance. The contours foilow no simple law as do the plate­
current contours in the negative-grid region. The increase in grid 
current with grid voltage is much more rapid than the decrease with plate 
voltage. 
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The Grid-current Surface. Just as it was possible to draw a surface 
for the plate current as a function of grid and plate voltage, so is it 
possible to draw one for grid current. A sketch of such a surface is 
shown in Fig. 9.14. The previous representations of grid current will 
be recognized as part of this picture. The grid-current-grid-voltage 
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Frn. 9.13.-Grid-current-plate-voltage char­
acteristics of a type 826 triode. 

curves are the intersections of the grid-current surface with a plane 
parallel to the grid-current and grid-voltage axes. The grid-current­
plate-voltage curves are intersections of the surface with a plane parallel 
to the grid-current and plate-voltage axes. The constant-grid-current 
contours are intersections of the grid-current surface with planes parallel 
to the grid-voltage and plate-voltage axes. 

It i.s possible to define constants to describe the grid-current action, 
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but this has no great value. It is of interest to note a few relations, 
however. The grid-current-plate-voltage transconductance is negative. 
The equivalent amplification factor for the inverted triode, i .e., one whose 
grid is positive and whose plate is negative, is the reciprocal of the normal 
amplification factor of the tube. 

Effect of Secondary Electrons. Secondary electrons are created 
whenever an electrode is struck with primary electrons that have been 
accelerated through more than a few volts. Triode characteristics are 
not affected much by secondary electrons as long as the grid is negative, 
for the secondary electrons that are formed at the plate are attracted 
back into the plate because there is no electrode more positive for them 
to go to. When the grid is positive, however, the secondary electrons 
formed by primaries striking the grid usually have a more positive plate 

+lp 
Frn. 9.14.-The grid-current surface. 

to go to. As a result, the net grid current becomes the difference between 
the primary- and secondary-electron current. The magnitude of the 
secondary-electron current may be sufficient to distort the primary­
grid-current curves almost beyond recognition. 

When both grid and plate potentials are positive, secondary electrons 
are formed by primaries striking both. When the plate is more positive 
than the grid, the secondary electrons from the grid will be attracted 
to the plate but those formed at the plate will be attracted back into the 
plate. When the grid is more positive than the plate, the situation is 
reversed and secondaries from the piate will be attracted to the grid 
but those created at the grid will be attracted back into the grid itself. 
The result of this action upon the grid-current-grid-voltage charac­
teristics is shown in Fig. 9.15. In this figure is shown a typical grid­
current-grid-voltage curve in the presence of secondary emission 
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compared with the primary-grid-current curve. For small grid voltages 
very few secondaries are created, and hence the currents with and without 
secondary emission are almost equal. As the grid voltage is increased, 
more secondaries are created and attracted to the plate. The grid 
current is therefore reduced by the amount of the secondary current to 
the plate. The grid current may be reduced enough to become negative. 
As the grid becomes more positive, more secondaries are likely to be 
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Fm. 9.15.-Influence of secondary emission upon the grid-cur­
rent-grid-voltage characteristics of a triode. 

created but the gradient of potential driving them to the plate becomes 
smaller, until finally it becomes negative when the grid potential exceeds 
the plate potential. As this occurs, the primary grid current exceeds 
the net grid current by less and less until when the grid potential and 
plate potential are equal the net grid current is nearly equal to the primary 
current. As the grid voltage is increased still further, the number of 
secondary electrons created at the grid surface becomes still greater but 
these electrons are confronted by a neiative gradient of potential on all 
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sides and so are attracted back into the grid. Now, ho#ever, secondary 
electrons liberated from the plate are confronted by a positive gradient 
of potential that attracts them to the grid. The grid current is now 
greater than the primary grid current. 

An action similar to that described above shows itself on the grid­
current-plate-voltage curves. When the plate is less positive than the 
grid, secondary electrons from the plate are attracted to the grid and 
hence the actual grid current is greater than the primary grid current 
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Frc:. 9.16.-Influence of secondary emission upon the grid-current­
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When the plate voltage is more positive than the grid voltage, secondary 
electrons from the grid are attracted to the plate and the grid current is 
less than the primary value. This action is shown in Fig. 9.16. Points 
of equal grid and plate voltage are crossover points of net and primary 
grid current. These points are marked by circles. 

The effect of secondary emission upon the contours of constant grid 
current may also be considerable, especially if the secondary emission 
is great enough to make the grid current negative. In Fig. 9.17 are shown 
some constant-grid-current contours of a water-cooled tube with a high 
degree of secondary emission. The effect of secondary emission is to 
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raise all the large p0sitive-current contours. It is as though a wedge of 
negative-current contours had been driven under the positive-current con­
tours from the right. Contours of constant plate current are also 
distorted by secondary emission, though to a lesser degree. 
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9.7. Primary-grid-current Law. The complications introduced by 
secondary emission make it very difficult to treat grid current analytically. 
A considerable impression can, however, be made upon the subject 
of primary grid current. The analytical treatment of primary grid 
current is simplified by the observation made in Sec. 6.5 that, for a given 
ratio of plate to grid voltage, the electron paths within the tube are not 
altered by a change in the magnitude of these voltages. Since the 
electron paths are not changed, the division of current between the plate 
and grid is not changed and hence the ratio of plate to grid current should 
be a function of the ratio of plate voltage to grid voltage alone and be independent 
of the magnitude of these voltages. Were it not for secondary emission 
and some other effects such as the change in the position of the virtual 
cathode, this would be exactly true. Actually, the correspondence with 
expectations is quite good, as is shown in Fig. 9.18, in which there are 



TRIODE CHARACTERISTICS 225 

plotted cu. ves of the ratio of currents as a function of the ratio of volt­
ages. The characteristics in this figure are for a small high-mu trans­
mitting triode with tantalum electrodes. Such a tube is relatively free 
of secondary-emission effects. It is seen that the curves for different 
potentials superimpose reasonably well. If more curves were given, 
they would form a bundle within the limits of the curves shown. 
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Examination of many tubes shows their primary-current-division 
characteristics to have the general form shown in Fig. 9.18. On such 
a log-log plot the curves are nearly straight lines with a slope of ½ above 
a voltage ratio of 0.8 and with a slope of 2 below a voltage ratio of 0.8. 
Accordingly the primary current division may be expressed by 

lp 
0 ✓VP for i: > 0.8 (9.12) lu = Vu 

and 
lp 

= 1.3920 (~:Y for~:< 0.8 (9.13) 
lg 
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where o is a constant known as the current-division factor 1- 3 and defined 
as the ratio of plate to grid current for equal positive grid and plate 
voltages. 

Since triodes are seldom operated with the plate less positive than 
the grid the form of Eq. (9.12) will be of more concern than that of Eq. 
(9.13). The reason for the change of slope, and hence of exponent, 
at the voltage ratio of 0.8 is that whereas all the electrons initially 
missing the grid go to the plate when the plate is more positive than the 
grid some of these will be returned to the grid when the latter is the more 
positive. This occurs because electrons that just barely miss the grid 
initially are strongly deflected and hence have not a sufficiently large 
component of velocity directed toward the plate to reach it, part of the 
electron energy now being in the form of a crosswise component of 
velocity. Thus, in addition to the grid intercepting a greater fraction of 
the primary space current directly as the grid voltage is made more 
positive relative to the plate, an increasingly greater fraction of the 
current that initially misses the grid returns to it. 

Current-division Factor. A check upon the validity of the empirical 
Eq. (9.12) is given by an examination of the constancy of the coefficient 
of proportionality o. This factor o is logically called the "current­
division factor" since it measures the ratio of plate to grid current for 
equal positive grid and plate voltage. It is a convenient reference 
point because it refers to a condition that is easy to measure. To 
measure the current-division factor it is necessary only to put current 
meters in the grid and plate leads of a triode and then connect the leads 
to a common voltage source and determine the ratio of currents. The 
current-division factor is also a good reference figure because it cor­
responds to the condition of peak current in typical Class C amplifier 
operation. If the ratio of plate to grid current in a triode is measured 
as a function of equal positive plate and grid voltages, variations of the 
sort shown in Fig. 9.19 result. For all the triodes shown, the current 
ratio rises sharply with voltage and then assumes a nearly constant value. 
The change in the current ratio with low voltages is caused primarily 
by the change in the position of the virtual cathode in front of the actual 
cathode. At low voltages the virtual cathode is located a considerable 
distance out from the actual cathode. As will be shown later, a small 

1 Tank, F., Zur Kentniss der Vorgiinge in Elektrodenrohren, Jahr. draht. Tel. u . 
Tel. vol. 20, p. 80, 1922. 

2 See also LANGE, op. cit. 
3 EvERITl', W. L ., and KARL R. SPANGENBERG, Grid-current Flow as a Factor in 

the Design of Vacuum-tube Power Amplifiers, Proc. l.R.E., vol. 26, pp. 612-639, 
May, 1938. 
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cathode-grid distance leads to a small current-division factor. As 
the electrode voltages and correspondingly the current are increased, the 
virtual cathode moves back toward the actual cathode, causing the 
current ratio first to rise and then quickly to level off. The important 
observation about Fig. 9.19 is that the ratio of plate to grid current for 
equal grid and plate voltages is constant enough to make it eligible for a 
position as a fourth tube constant. The current-division factor in a 
tube free of secondary emission is as constant as the mu of the tube. 
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voltage. 

Even when a triode has considerable secondary emission, the meas­
ured current ratio for equal positive grid and plate voltages is nearly 
equal to the primary current ratio because the interchange of secondary 
electrons between grid and plate is small when their voltages are equal. 

Approximate Primary-grid-current Law. Since the total space 
current in a positive-grid triode is the sum of the grid. and plate current, 

(9.14) 
this can be written 

(9.15) 
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Then, substituting the relation of Eq. (9.12), 

I - I. 
u- l+o {V;, 

\JV"a 
The space current itself is given by 
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FIG. 9.20.-Comparison of actual and theo­
retical grid current. 

(9.16) 

(9.17) 

where G is the perveance and a is a constant, approximately %- The 
resulting expression for primary grid current is given by 

a(v0 + :PY 
I O = -'---------===- (9 .18) 

1 + o /Vp 
\J Vu 

An idea of the accuracy of this approximation is given by Fig. 9.20, 
in which actual and theoretical grid-current curves are compared. 
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The expression for primary plate current for positive grid voltages 
corresponding to Eq. (9.18) is 

a(vo + :PY 
Iv= l 

1+--
5 rv;, 
\}Vi, 

(9.19) 

Current-division-factor Formula. A formula for the current-division 
factor may be developed by solving for the point of origin on the 
cathode of a limiting electron that grazes the grid for a condition 
of equal grid and plate voltages. 1·2 The distance between the points 
of origin on the cathode of the two limiting electrons that strike a grid wire 
gives what may be called the "effective grid diameter." This is always 
larger than the actual grid diameter by a matter of 5 to 50 per cent, in 
typical cases. When the effective grid diameter or radius is known, the 
current-division factor b is given by 

5=-a--l 
2rueff 

where a is grid-wire spacing and r0 .11 is effective grid radius. 

(9.20) 

The effective grid radius may be solved for in terms of the sidewise 
displacement of the electron grazing the edge of a grid wire. The 
component of gradient accelerating the electron toward the grid plane is 
virtually constant at the cathode value of 

(9.21) 

The component of gradient giving the electron its sidewise deflection is 

q0 sin (2;) 
E~ = 2aEo [ cosh (:x) - cos (2:y)] (9.22) 

where x and y are measured from a grid-wire center as in Fig. 7.17, q0 

is given by Eq. (7.14a), and q0 is given by Eq. (7.14b). The sidewise 
deflection of the grazing electron is very nearly that which is obtained 

1 TELLEOEN, B. D. H., De Groote van der Roosterstroom in een Triode, Physica, 
vol. 6, pp. 113--116, March, 1926. 

2 SPANGENBERG, K. R., Current Division in Plane Electrode Triodes, Proc. l.R.E., 
vol. 28, pp. 226--236, May, 1940. 
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by assuming that the sidewise force on the grazing electron is the same 
as that which exists along a line starting on the cathode at a point 
opposite the edge of a grid wire and passing tangent to the grid wire. 
This assumed force is correct at the point of contact on the grid, at which 
point the force is greatest. 

Making the small-value approximation for x and taking y as ru in 
Eq. (9.22) above, 

E = quru 
11 Zirto(x2 + ri) (9.23) 

(Note that this has the correct value when x = 0.) 
Upon substituting the approximate values of E,, and E 11 from the 

above into the acceleration equations (6.41) and (6.42), eliminating time, 
and equating grid and plate voltage, the expression for the sidewise 
displacement of the grazing electron is found to be 

_ aµ r O l (4tdcu) 
Yo - 2-ir (µ + 1) 2dcq n ---;:; (9.24) 

The effective grid radius is equal to Yo + ru. When the expression for 
the effective grid radius is applied to Eq. (9.20), it is found that the 
current-division factor is 

o = a 
aµ r O l 4Edcq + 2 ---- -- n -- r 

1r(µ + 1) 2d,q Tq 0 

in which a = distance between grid wires 
µ = amplification factor 

ru = grid-wire radius 
dcu = cathode-grid distance 

E = N apierian base, 2. 718 

1 (9.25) 

The magnitude of the current-division factor is given by the nomographs 
of Fig. 9.21 and 9.22. In Fig. 9.21 is a nomographic chart from which 
the effective grid radius is given in terms of the grid-wire spacing, the 
cathode-grid distance, and the amplification factor. This chart is read 
by means of two perpendicular lines ruled upon a transparent sheet. 
The construction cross shown on the chart gives the effective radius of a 
type 210 tube. The nomograph of Fig. 9.22 is a graphical representation 
of Eq. (9.20) and gives the current-division factor from the effective 
grid-wire radius and grid-wire spacing. Examination of Figs. 9.21 
and 9.22 shows that the current-division factor increases with both 
grid-wire spacing and grid-cathode spacing. The current-division factor 
11,lso increases with amplification factor, but only slightly. Typical 
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values of the effective grid-wire radius will be 105 to 150 per cent of the 
actual grid-wire radius. 

Current-division Law in the Presence of Secondary Emission. When 
the analysis that led to the current-division factor is generalized by 
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Fm. 9.21.-Nomograph of effective grid radius. 

allowing the grid and plate voltage to assume general values, the sidewise 
deflection of the electron grazing the grid is found to be 

_ aµ[(dco + d0 p)V0 - dcoVP] r0 l (4Edco) Yi - -- n --
2-n-dop(Vp + V 0 ) 2dco r0 

(9.26) 

Equation (9.26) has been arrived at by solving for the sidewise displace­
ment of the electrons grazing the grid as a function of electrode-voltage 
ratio. The corresponding current ratio is then rea<lily determined. The 
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electrode-current ratio is 

(9.27) 
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Fm. 9.22.-Nomograph of current-division factor. 

Upon substituting the value of Yi from Eq. (9.26), the current ratio is 

lp = a _ l * 

lo 
2 

~aµ [ (deo + d0 p) - deo ~] D + r} 
( 21rd0 p (~: + µ) ~ 

(9.28a) 

* A somewhat more accurate formula has since been developed by J. H. L. Jonker 
and B. D. H. Tellegen, Current to a Positive Grid in Electron Tubes, Philips Research 
Reprints, vol. I, pp. 13-32, October, 1945. 
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or 
lp LV0 + MVP 
I 0 = PV~ +QVp 

(9.28b) 

where L = 1radgpµ - aµ(dap + dco)D - 2-irdopTgJJ, 
M = 1rad0 p - 2-ird0 pru + adc0 Dµ 
p = a(dgp + dco)µ + 2-irdgpTgµ 
Q = adc~Dµ - 2-irdgpTg 

D = _!_.E_ ln 4t:dco 
2dc0 r0 

40 

Type 45 

/ 30 

25 
,,V 

20 
/v 

/ / 
V 

~ / 
y· 

' V 
o.," 

>.," ,,.. 
,P _, 

I/ _.P 

I 
V Vg=SOv 

I/ Vg=-/Ov 

,, 

10 
q V-,-0 --Measured, includinq 

.secondary currenfs 8 

1 

6 

5 

4 
0.7 0.8 0.9 1.0 1.5 

o o o Deduced primary rafio 
---- lheomftca/ nrimar)(..£Pffii, 

2 2.5 3 4 5 6 7 
Tj,/~ 

FIG. 9.23.-Primary-current division in a 45 triode. 

A plot of Eq. (9.28a) in a typical case shows the curve to be concave 
upward as in the dotted curve of Fig. 9.23. In such a plot, the slope 
of the true current ratio is between ¼ and ¾ so that the assumption of a 
one-half-power law when this curve is slightly modified by space-charge 
and secondary-emission effects is a reasonable one. 
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To check the correctness of the above equation in actual tubes it is 
necessary to correct measured curves for the effect of secondary emis­
sion, which is always present to a degree. This is done by an extension 
of methods developed for screen-grid tubes. 1 

The curves from which the deduction of the true primary distribution 
are made are taken as follows: Filament emission is first reduced to the 
point where the current is temperature-limited rather than space-charge-

40.....--.---,.-.------.------.---~-~---.-----~-

_/!!!!_ __ - ---- --- .:_ ~ /' l-g_:=k=!~-1-----1--' 30 

/ k.,>k2 >k3 251---1---+--,1------1-----+-c~-A---+----,1--''--4---"-+--' 
dhz t:,7' ---------r- -7~ Vg=.k2 

201---1--1---+--ila1---~-~J_,~,,, / Vg=13 
,f ,.. / 

da2 G cy 
.... I)) ------ --/ ~ .,,,,, 

'- 15 -----~-=-
~ c.,i1'r,iJde .,,.-•-:s{fitiul' 

.f!1L/-/ -- "'(11 o' 
.... Cl, P.:79~'1, 3 .l /'·oP 

'ij ............. curre 
10 1---1----i-1--,-,,,'---,,,£--__,..:"°1"1i,.d_ --1---1-1-.---+---i-----'--1 

/~_../p(I 12 ~ q r-o-... ... ~-------<~---1-----1---l---l 

~ ~ i:: a a--1----1 a--+---+--+--1 

1 1:1 ,..ti_....,__,(:) ,..,t::, __ _,__ _ _,_ _ __., _ _. 

~ ~~ 
I? !::: ·"" ~ 6 --+---1------+---.~ Is_ ...... _ u _ __, __ _,__....._ ........ 
o t! .., ~ 
.tj~ ~~ 

51---1---+-1------+---~½--+--~">--+---+----4-~ 
~ ~ 
i l 

4~.,-L:---'-c--'------'----'---..L...--'---....1...--L--..__....J 
0.7 0.8 0.9 1.0 1.5 2 2.5 4 5 6 1 

Tf,/Jg 
3 

Frn. 9.24.-Effect of secondary emission on current division. 

limited. The grid voltage is then set at some value, and the ratio of 
plate to grid current is observed as a function of the ratio of plate to grid 
voltage by varying the plate voltage only. The grid voltage is then set 
at another positive value, and another similar run is made. The two 
solid curves of Fig. 9.23 were made by this method. 

Because of the various factors that have been held constant and 
1 DE LA SABLONIERE, C. J. L., Die Sekundii.remission in Schrimgitterrohren, 

Hochfreq. u . Audio., • : 1 41. pp. 195-202, June, 1933. 
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relations between the various cunent components a number of relations 
exist that must be borne in mind. Before summarizing these relations 
the notation to be used must be indicated in detail. Let lp and 10 he 
total plate and grid current, respectively, including secondaries. Let 
I pI and 10 1 be those parts of the plate and grid currents which are duel to 
primary electrons, i.e., the primary plate and grid currents. Let lp2 

and I 0 2 be the currents corresponding to all the secondary electrons that 
are knocked out of the plate and grid, respectively. This includes not 
only those secondary electrons which succeed in getting from one elec­
trode to another but also those which are knocked out of one electrode 
and fall back into that same electrode. Let lgp be that fraction of / 02 

which does succeed in getting from grid to plate. Similarly, let I pg be 
that fraction of lp2 which is able to get from plate to grid. Obviously, 
if the plate is much more positive than the grid, lgp will be a large fraction 
of I 0 2, while I pg will not exist as a component of I p2 because all the 
secondary electrons knocked from the plate will be drawn back into the 
strongly positive plate. 

Lets = 
1
102 • The quantity sis a secondary-emission factor measuring 

ol 

the ratio of the number of secondary to primary el13ctrons. Physical 
studies have shown that s depends only upon the velocity of the striking 
primary electrons for any given surface. Hence, along any curve such 
as those in Fig. 9.24, swill be constant since each curve is taken with a 
constant value of grid voltage. 

Let p = 
1
1

P
1

• This gives the division of primary current that from 
gl 

theoretical considerations is a function of the ratio of plate to grid 

voltage alcne. Hence, for any particular value of ~:, p is a constant. 

Let d = IP. This is the ratio of plate to grid current, including the 
lu 

secondary-emission effects . 
. t VP agams -· 

Vu 

The curves of Fig. 9.24 are curves of d 

L 
lup et t = -• 
lg2 

This is a kind of transmission factor for secondary 

electrons. It measures the fraction of secondaries liberated that succeeds 
in getting to the plate. Some secondary electrons from the grid have 
such a low velocity that they are unable to climb the small potential 
hill between the grid and the plate. De la Sabloniere has assumed that 

for any value of the abscissa ~P the value of t is constant. That is, for 
D 
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any value of ~: the same fraction of the secondary electrons knocked 

from the grid succeeds in getting to the plate. This is perhaps the only 
assumption which is questiona.ble. The matter is complicated by the 
velocity distribution of the secondary electrons, which changes as the 
striking voltage of the primary electrons changes. For the assumption 
to be strictly true the velocity-distribution curve of the secondary 
electrons must expand uniformly as the striking potential of the primary 
electrons increases. This is not strictly true but for small ranges of 
primary-electron velocity is approximately so. In the curves of Fig. 
9.24 the primary-electron velocities are 10 and 50 volts. It was not 
found possible to get a good , check for velocities of 10 and 200 volts, 
this being too great a range of primary velocities. 

It will be noted further that the space current for each of the experi­
mentally determined curves is approximately constant. 

Consider the ratio 
IP lp1 + lap 

Ia = Ia1 - lap 

Dividing both numerator and denominator by Ia 1 there results 

lp1 + lap 
la1 la1 

1 - lop 
Id 

But 

fo r> = l op 10 2 = ts 
Iu1 la2I0 1 

so that the above ratio of net currents can be written as 

d = p + ts 
1 - ts 

Solving this for is, 
d-p 

ts=d+l 

(9.29) 

(9.30) 

(9.31) 

(9.32) 

(9.33) 

Let the various curves of d against i; be numbered 1. 2, and so on, 

as shown in Fig. 9.24. Let the various values of i: have letters correspond­

ing to them. Thus the abscissa of i; = 2 might be lettered a, that 

o:i ~; = 3 might be lettered b, and so on. If we consider the four points 
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formed by the intersection of the upper two curves of Fig. 9.24 and any 
two abscissas denoted by a and b, then it is possible to write four equa­
tions of the form of that last given. These will be 

and 
da2 - Pa 

tas2 = da2 + l 

for the intersections of the curves 1 and 2 with the abscissa a and 

t - dbl - Pb 
bSl - dbl + 1 

db2 - Pb 
tbS2 = db2 + l 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

for the other intersections. Since t and p are presumed constant for 

any particular value of ;!, they are given only a lettered subscript. 

Dividing the two pairs of equations and equating them gives 

dal - Pa _ dbl - Pb 
da2 - Pa - db2 - Pb 

(9.38) 

which is the relation that has been sought. 
Pb to give 

This may be solved for 

d d (
dal - Pa) 

bl - b2 d 
a2 - Pa 

pb=-
1
-_-(~da~l-_-P-a~)~ 

da2 - Pa 

(9.39) 

From this last equation it may be seen that if one point, Pa, on the true 
primary distribution curve is known, then points at any other abscissa 
b may be found from a pair of curves giving the net current division in 
the presence of secondary emission. The above treatment has been given 
for the case of VP greater than V01 but a similar treatment can be applied 
when this is not so. In this particular instance the primary-current 
distribution that was taken as known was that corresponding to the 
condition of the grid being at its "natural potential" relative to the 
plate. For this case, the electrons move in substantially parallel straight 
lines from filament to grid and plate, and the ratio of plate to grid current 
1s determined by the ratio of intergrid to grid area. For the 45 tube 
this ratio of currents is 14.3 when the ratio of voltages is 2.81. 



CHAPTER 10 

TETRODES 

10.1. Types of Tetrode. A tetrode, as its name implies, is a four­
electrode tube. The four electrodes are invariably, in the order of their 
arrangement, the cathode, the control grid, the screen grid, and the plate. 
There are two types of tetrode. These are the so-called "screen-grid 
tube" and the "beam-power tube." 

The screen-grid tube was the successor to the triode and the prede­
cessor of the pentode, though, as indicated in the chapter on Basic Tube 
Types, it is now virtually obsolete and seldom used because of unfavorable 
current-voltage characteristics. The ordinary screen-grid tube has a 
fine control grid surrounding the emitter, which in turn is surrounded 
by a coarser screen grid a considerably greater distance out. The screen 
grid is in turn surrounded by a plate. The intended function of the screen 
grid was to shield the control grid electrostatically from the plate and 
so reduce the tendency toward oscillation that existed in r-f amplifiers. 
The screen grid performed this function, but it also introduced some other 
characteristics that were not desirable. Specifically, it introduced 
secondary emission, which distorts the current-voltage characteristics. 

The beam-power tube is a special tetrode with aligned control and 
screen grids. It was the historical successor to the pentode. The 
pentode was developed to eliminate the secondary-emission action that 
appears in the screen-grid tube. The beam-power tube was later found 
capable of doing the same thing without an extra grid if proper attention 
were paid to grid alignment and to dimensioning. 

10.2. Current-voltage Characteristics of the Screen-grid Tube. The 
screen-grid tube is usually operated with its screen at a fixed direct 
potential and by-passed with a large condenser to ground so that no 
alternating components of potential appear on it. The screen grid acts 
as a shield between the plate and control grid. Electrostatic lines from 
the plate terminate for the most part on the screen grid. This electro­
static behavior does not interfere with electronic action. An electron 
stream of varying intensity can still pass between the screen-grid wires. 

The current-voltage characteristics of the screen-grid tube are deter­
mined by two principal effects that are at work. (1) The relative screen-
1;trid and plate potentials determine how the space current will divide 

238 
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between these two electrodes. (2) The relative positiveness of plate and 
screen grid determines how secondary electrons will be interchanged 
between these two electrodes. In general, the behavior with regard to 
both factors is similar to that which exists in the positive-grid triode. 

As far as space-current effects are concerned, the control grid and 
screen grid have the principal influence. With respect to first-order 
effects, it may be said that the screen grid plays the same role in the 
screen-grid tube as the plate does in the triode. The plate has only a 
very small influence in modifying space current in the screen-grid tube 
because of the shielding effect of the screen grid. The space current is 
given by 

where V I is control-grid potential 
V 2 is screen-grid potential 
G is perveance 

VP is plate potential 

(10.1) 

µ,g is equivalent amplification factor of the screen grid, 

(
dV2) 
dV I f pcone\ 

µpis plate amplification factor, - (ddVVP)I 
1 pconst 

a is a constant, nearly % 
In this expression, µ,g is considerably smaller than µP. The equivalent 
screen-grid amplification factor may be calculated quite accurately from 
the triode mu formulas by treating the screen grid as though it were the 
plate. The accuracy of this approximation decreases as the shielding 
effect of the screen grid decreases. The plate amplification factor may 
be calculated from some special formulas, which will be developed subse, 
quently. It may be determined approximately by calculating a triode 
amplification factor, considering the control grid as the cathode, the 
screen grid as the control grid, and the _plate as the plate, and then 
multiplying this amplification factor by the screen-grid amplification 
factor. This relation holds because the fictitious amplification factor 
cited first above measures the screening effect of the screen grid upon the 
control-grid plane just as the screen-grid amplification factor measures 
the screening effect of the control grid upon the cathode. The product 
of these two amplification factors, which are reciprocal screening factors, 
gives the over-all amplification factor. Thus, if the screen-grid amplifica­
tion factor were 20 and the triode amplification factor obtained by 
considering the control grid as the cathode were 10, the plate amplification 
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factor would be approximately 200. If the cold cathode were at zero 
potential and all the other electrodes were at the same positive potential, 
then one-twentieth of the electrostatic flux lines from the cathode would 
penetrate the control grid into the space beyond (actually, the ratio would 
be 1 in 21). Of the lines that passed through the control grid, one-tenth 
would pass on to the plate, and the rest would terminate on the screen 
grid. The over-all screening effect would be such that only 1 line would 
reach the plate for every 200 that reached the control grid. The resulting 
plate amplification factor is 200. 
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FIG. 10.1.-Plate and space current of a screen-grid tube as a function of control­
grid voltage. 

The plate-current-control-grid characteristics of the screen-grid 
h,be are almost the same as the triode characteristics that result if the 
&creen grid and plate are connected together. The only difference is 
that a small part of the space current is taken by the screen grid. Some 
typical plate-current and spacP.-current characteristics as a function of 
control-grid voltage are shown in Fig. 10.1. Because of the usually high 
value of the plate amplification factor the plate potential has only a 
small effect upon the plate and space current compared with tbe screen­
grid potential. This in turn has much less influence than the control-grid 
potential. 
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Plate-current-Plate-voltage Characteristics of the Screen-grid Tube. 
With a negative control-grid voltage and a positive screen-grid voltage, 
the plate-current-plate-voltage characteristics of a screen-grid tube have 
the form shown in Fig. 10.2. The shape of the plate-current curve 
departs considerably from the shape of the primary plate-current curve 
because of secondary emission. The probable shape of the primary 
plate-current curve has been sketched for V0 = 0. The primary plate 
current is not readily measured directly. It is seen to be an increasing 
fraction of the approximately constant space current I.. The division 
of space current between screen grid and plate follows approximately 
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Fm. 10.2.-Plate-current-plate-voltage characteristics of a screen-grid tube. 

the same law as does the division of the space current between grid and 
plate in a triode. When the plate voltage is zero, the plate gets none 
of the space current. As the plate is ma4e positive, it rapidly acquires 
a major portion of the space current. When the plate is as positive as 
the screen grid, it gets a slightly smaller fraction of the total space current 
than the ratio of the area between the screen-grid wires to the total area 
of the screen-grid plane. As the plate potential is made still more posi­
tive, the plate acquires still more of the space current until at very large 
voltages the plate is getting nearly all the space current. 

The difference between the primary plate-current curves and the 
actual plate-current curves is obviously due to secondary-emission 
effects. The effects are the same as in the positive-grid triode. When 
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the plate is less positive than the screen grid, secondary electrons liberated 
at the plate surface are attracted to the screen grid, thus reducing the 
plate current. This accounts for the pronounced dip in the plate-current 
characteristic. When the plate potential is equal to the screen-grid 
potential, the interchange of secondary electrons between plate and 
screen grid nearly balances and the actual plate current is nearly equal 
to the primary plate current. As the plate becomes more positive, it 
collects secondary electrons that are liberated from the screen grid, and, 
as a result, the actual plate current exceeds the primary plate current. 
The variation of plate current with control-grid voltage follows the 
high-mu-triode law. 

Also shown in Fig. 10.2 are curves of space current as a function of 
plate voltage. If the plate amplification factor of the tube were 
extremely high, the space current would be completely independent of 
plate voltage. As it is, the space current tends to be fairly constant. 
Departures from constancy are observed, however, at zero plate potential 
and at the plate potential equal to the screen potential. The changes 
in the space current observed in these places are due to changes in the 
space-charge condition around the screen-grid wires. When the plate 
potential is negative, the electrons that initially miss the screen grid are 
reflected back from the plate and in general will oscillate around the 
wires a few times before being drawn in. The presence of these oscillating 
electrons constitutes an addition to the space charge and depresses the 
potential before the screen grid and even reaches back through the 
control grid to reduce the emitted current. When the plate potential 
becomes slightly positive, part of the electrons that initially miss the 
screen grid are received by the plate. This means that the current 
reflected back toward the screen grid is suddenly reduced, the space 
charge around the screen grid is correspondingly reduced, as is also its 
depressing effect upon the potential before the cathode, and as a result 
the emitted current suddenly increases. The nature of the change in 
the potential distribution within the screen-grid tube as the plate potential 
is changed from negative to positive is sketched in Fig. 10.3. The dotted 
lines in this figure show potential profiles for a negative plate potential, 
while the solid lines show potential profiles for a positive plate potential. 
The manner in which the plate potential controls the off-cathode gradient 
through the medium of the oscillating space charge about the screen 
grid may also be seen. 

When the plate potential becomes more positive than the screen-grid 
potential, there is a change from a condition of partial reflection of 
electrons from the plate to one of no reflection, for all electrons reach 
the plate, no matter how strongly deflected by the screen grid. Here the 
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space charge around the screen grid is again suddenly reduced, and the 
space current increases. Thus the space current is influenced most by 
the condition of current transmission to the plate and is hardly affected 
by secondary emission. 
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Screen-current-Plate-voltage Characteristics of the Screen-grid Tube. 
The screen-grid current is the difference between the space current and 
the plate current in Fig. 10.2. This difference is plotted as screen current 
in Fig. 10.4 as a function of plate voltage. The screen-current-plate­
voltage curves are like the positive-grid-current-plate-voltage curves 
of a triode. Exactly the same factors enter into its composition. The 
primary distribution is such that the screen current decreases uniformly 
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with increasing plate voltage exactly as is the case for the triode grid. 
When the plate voltage is less positive than the screen-grid voltage, 
the screen grid acquires current from the pla te and hence rises above the 
primary-current value. If the secondary emission is sufficient, the net 
screen-grid current ,Yill rise with voltage until it falls as the plate potential 
becomes more positive than the screen potential. When this happens, 
the screen loses secondary electrons to the plate and as a result the net 
screen-grid current drops below the primary value and may even go 
negative in some cases. 

General Characteristics of Screen-grid Tubes. Because of the distor­
tions in the plate-current curves caused by secondary emission, the screen­
grid tube has rather restricted' ranges of potentials in which it operates 
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FIG. 10.4.-Screen-current-plate-voltage characteristics of a screen-grid tube. 

satisfactorily. For very high plate potentials relative to the screen-grid 
potential, the current characteristics are very uniform. The range of 
uniform current characteristics is necessarily quite limited. The screen­
grid potential must be relatively high to d raw sufficient current. The 
plate potential must be at least this positive to avoid secondary-emission 
distortions and yet cannot be too much more positive because then the 
plate dissipation becomes excessive. In this operating region the plate 
resistance of the tube is very high. The amplification factor is also 
high, but the mutual conductance is of the same order as in a triode. 

Use is sometimes made of the negative plate-resistance characteristic 
that the screen-grid tube displays at low plate potentials. It will be 
recalled that the plate resistance of a tube is given by the reciprocal 
of t,he slope of the plate-current-plate-voltage_ characteristic. Hence 
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the plate resistance is negative whenever the slope of this characteristic 
is negative. The negative resistance that can be realized from a screen­
grid tube has a limited amplitude of current and voltage to which it can 
be subjected. It is further not very stable because secondary-emission 
characteristics are extremely variable. The negative resistance that can 
be realized will be different from tube to tube and will even change in 
+,he same tube with time. 

10.3. Beam-power Tubes. The beam-power tube is a special tetrode 
designed to eliminate the interchange of secondary electrons between 
screen grid and plate. Historically, it was developed later than the 
pentode. Its development followed the discovery that when the screen­
grid-plate distance in a tube was made rather long there was a maximum 
current which could be transmitted to the plate. This led to a study 
of the space-charge effects within the tube, which in turn led to the 
development of the final form of the beam-power tube. 

The internal electrode arrangement of the beam-power tube is shown 
in Fig. 2.6. The distinctive features of the construction of this tube 
are the aligned control and screen grids of the same pitch. This is 
coupled with a flat cathode and side deflecting plates to keep the current 
sheets, which are formed by the aligned grids, from spreading. The 
screen-grid-plate spacing is made rather large, and the successive 
electrodes are curved so that they are at right angles to the electron flow. 

The resulting plate-current-plate-voltage characteristics are shown 
in Fig. 2.7. It is seen that the dips in the current curves due to second­
ary emission have been eliminated at all but the very lowest control-grid 
voltages, and even here the dips are not very pronounced. The reason 
for this improvement in behavior is found in the space-charge effects 
that occur in the screen-grid-anode region. Before examining this 
subject in detail it is desirable to investigate briefly the electrostatic 
field of a beam-power tube. 

10.4. The Electrostatic Field of a Beam-power Tube. The same 
general methods that have been described in the chapter on Triode 
Characteristics can be applied to multielectrode tubes in some cases. 
For tube structures in which the grid wires have a regular pattern the 
method of conformal transformations is easily applied. This is the case 
for the tetrode with aligned grids, the structure of the beam-power tube, 
which will be treated here by an extension of the method employed 
with the triode. 

The line-charge configuration of Fig. 10.5a gives rise to the configura-

tion of Fig. 10.5b upon application of the transformation W = ~ In Z. 

The relation between the parts in the two planes is apparent from the 
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previous study of triodes. The small circle about the origin in the Z 
plane goes into a cathode line in the W plane. The control-grid-wire 
circle at (1,0) in the Z plane goes into the series of equally spaced control-

2rdu• 

grid wires in the W plane. The screen-grid wire at (E-0-, 0) in the 
Z plane goes into the line of screen-grid wires in the W plane. A large 
plate circle about the origin in the Z plane goes into the plate line in the 
W plane. 

Z PLANE WPLANE 
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(a) (bJ 
Fm. 10.5.-(a) Transformed beam-power tube, (b) beam-power-tube elec­
trode arrangement. 

It is necessary only to write an expression for the potential at any 
point P in the Z plane, transform it by the logarithmic transformation, 
and then evaluate the electrode potentials in terms of the charges and 
potentials. This is the procedure that was used for the triode, though 
the form of the resulting expressions may be expected to be more com­
plicated because of the introduction of another electrode. In the 
treatment that follows the small-grid-wire approximations will be made. 

The potential at any point P in the Z plane is given by 

V = - ~ ln r - __<j_r,_ ln r' - _!l_s___ ln r" + C 
211"to 211"to 211"to 

(10.2) 
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but 

(T') 2 = (1 + T2 - 2r cos 8) (10.3) 

and 
4 ... d11, 2rdo, 

(r") 2 = (E_"_ + T 2 - 2E ,;-r cos 8) (10.4) 

Substitution of Eqs. (10.3) and (10.4) into Eq. (10.2) and application 
of the logarithmic-transformation coordinate equations gives 

V= ( 
2.-u ~- 4.-u) U qa - .&nrV -

- - qc - - In 1 - 2E " cos - + E " 
ato 41rto a 

- _!l_s__ ln E " - 2E " cos - + E a + C ( 

4.-d,, 2.-(u +d,,) 21fv 4.-u) 
411"to a 

(10.5) 

To determine the electrode potentials in terms of the charges and 
dimensions, let u = -dcu, v = 0, where dca » a, and set the cathode 
potential equal to zero. This gives an expression for the constant C 
that can be put into subsequent expressions. 

1 
C = - ( - qcdcg + q,das) 

ato 
(10.6) 

To find the control-grid potential let u = 0, v = Ta, where Ta < ;
0

. 

Then 

V = _ dc0qc _ ..!l!!._. ln 21rro 
" ato 211"1:o a 

(10.7) 

To find the screen potential let u = d0 ., v = T, where d0 , > a. Then 

V, = _ d,0 + deg qc _ do, qg _ ~ In 2m-, 
ato ato 21r1:o a 

(10.8) 

To find the plate potential let u = d0 P, v = 0, where d0 P » 2a. Then 

V 
dgp + dco dap . dgp - dg, 

P = - ato qc - ato qa - ato q. (10.9) 

The last three equations give three electrode potentials in terms of 
three charges. The system can, of course, be solw~d for the charges in 
terms of the potentials. Solving for the cathode charge, 

qc = ~a!to2 {[da,dsp - ~dupln (2:')] V 0 - V.~ln (2;0
)d,p 

+ VP (;,.)2 ln 
2
';;0 ln 

2
';;•} (10.10) 
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where t::. is the determinant of the coefficients of the q's in Eqs. (10.7), 
(10.8), and (10.9). From Eq. 10.10 the grid-plate amplification factor 
is given by the ratio of the coefficients of VO and VP as 

(10.11) 

This expression is accurate to within a few per cent provided that the 
spacings between the various ,electrode planes are all greater than the 
grid-wire spacing and provided that the screening fraction of the grids 
(ratio of grid-wire diameter to grid-wire spacing) is less than 0.1. 

It should be pointed out that the amplification factor derived above 
gives the relative effectiveness of the control grid and plate in con­
trolling the total space current and not the plate current so that the above 
constant will not correspond exactly with that given in the tube manuals. 
That given in the tube manuals gives the relative effectiveness of the 
control grid and plate in controlling the plate current, and this depends 
upon the factor of Eq. (10.11) and also upon the way the space current 
divides between screen and plate. However, since the current-division 
function of a beam-power tube does not vary greatly with electrode 
potentials, the above expression for amplification factor is accurate 
enough for most purposes. 

10.5. Space-charge Effects in the Screen-grid-Anode Region of Beam­
power Tubes. In Sec. 8. 9 of the chapter on Space-charge Effects it was 
shown that the effect of initial velocities in a diode was to create a 
virtual cathode between the actual cathode and the plate. Similarly, 
in tetrodes of proper design it is possible to get a virtual cathode or 
potential minimum between the screen grid and plate. If a satisfactory 
potential minimum can be achieved, it will suppress secondary electrons 
from the plate and do away with the need for a suppressor grid. Such a 
tetrode is the beam-power tube. It is in many respects superior to the 
conventional pentode. 

In order that space-charge effects be appreciable, it is necessary that 
there be a very nearly parallel flow of electrons. This is not the case in 
the ordinary tetrode, for the use of control and screen grids with different 
pitches breaks up the electron flow. It is, however, possible to get what 
is nearly a parallel flow in a tetrode by making the control and screen 
grid have equal pitch and aligning the grid wires so that electrons which 
pass through the spaces of the control grid will also pass through the 
spaces in the screen grid. In Fig. 10.6 are shown some typical electron 
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paths in a beam-power tube. 1 The paths give a sufficiently close approxi­
mation to a parallel flow in the screen-grid-plate region so that observed 
tube characteristics correlate well with theoretical properties deduced 
from this assumption. 

Assuming a parallel flow of electrons starting at a high positive poten­
tial at the screen, a number of different potential distributions are 
possible depending upon the plate potential and the magnitude of the 
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Fm. 10.6.-Electron paths in a beam-power tube. 
(Jonker.) 

current injected into the screen-grid-anode region. Associated operating 
conditions are correspondingly different. The types of distributions 
encountered are shown in Fig. 10.7. The tharacteristics associated with 
these various distributions are best listed in tabular form. They are 
essentially determined by the sign of the constant which appears after 
the first integration of Poisson's equation as in Eq. (8.5) which may be 
written 

(dV)2 = 16J cv~1 + C ) 
dx 9a2 1 (10.12) 

1 From JONKER, J. H. L., Pentode and Tetrode Output Valves, Wireless Engr., 
vol. 26, [No. 189], pp. 274-286. 
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a2V?li 
where J = ~ and a2 has the value 2.335 X 10-s amperes per volt¾. 

The properties of the distributions as determined by the sign of the con­
stant C 1 are as follows: 

I dV 
Current 

Type VP c, 
dx 

transmission V 
to plate 

A - + - None +,o,(-) 

(Virtual cathode) 
B 0 or+ 0 I -,0, + I Partial +,o, + 

(Potential minimum) 
C + -

I 
-,0, + 

I 
Complete + 

D + - + Complete + 

In types A and B there is a virtual cathode at the point of zero 
potential. In type C there is a potential minimum but no virtual cathode 
at the point of zero gradient of potential. It is seen that the current 
transmission is complete only when no virtual cathode exists. The 
various types of distribution will be analyzed in some detail in the 
following paragraphs. A number of extensive analyses of the space­
charge effects in the grid-anode region of tubes have been published. 1- 5 

The treatment given here makes use of dimensionless parameters giving 
rise to universal characteristics as proposed by Fay, Samuel, and 
Shockley. 

Type A Distribution. This type of distribution corresponds to that 
of a temperature-limited diode and is encountered when the plate is 
negative. The electrons injected into the screen-grid-plate space 
encounter a retarding field and are thus slowed down until they finally 
reach a zero velocity at some point before the plate, reverse, and return 

1 HARRIES, J. H. 0., The Anode to Accelerating Electrode Space in Thermionic 
Valves, Wireless Engr., vol. 13, pp. 190--199, April, 1936. 

2 PLATO, G., W. KLEEN, and H. ROTHE, The Space Charge Equations for Electrons 
with Initial Velocity, Part I, Zeit. fur Phys., vol. 101 [No. 5], pp. 509-520, 1936. 

3 KLEEN, W., and H. RoTHE, The Space Charge Equations for Electrons with 
Initial Velocity, Part II, Zeit. fur Phys., vol. 104 [Nos. 11, 12], pp. 711-723, 1937. 

• SALZBERG, B., and A. V. HAEFF, Effects of Space Charge in the Grid-anode 
Region of Vacuum Tubes, RCA Rev., vol. 2, pp. 336-374, January, 1938. Excellent 
discussion of dynamic characteristics. 

6 FAY, C. E., A. L. SAMUEL, and W. SHOCKLEY, On the Theory of Space Charge 
between Parallel Plane Electrodes, Bell Sys. Tech. Jour., vol. 17, pp. 49-79, January, 
1938. 
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to the screen. There is thus a virtual cathode at the point of zero 
potential. The potential distribution from the virtual cathode to the 
negative plate is linear. 

The equations for the relations between potential, distance, and 
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Fm. 10.7.-Types of potential distributions in the 
screen-grid-plate region of a beam-power tube. 

current are obtained by letting the constant in Eq. (10.12) assume the 
positive value of m~• V 1~\ where mis related to the slope of the potential­
distribution curve as will be shown and VI is the screen potential. The 
differential equation then has the form 

(10.13) 

or 

(10.14) 



252 VACUUM TUBES 

Let the following changes in variables be introduced: 

cf> = .f_ 
Vi 
X 

u = -
Xo 

(10.15) 

(10.16) 

V¾ 
where x0 = a J~~ is the distance over which a potential V 1 will produce 
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Fm. 10.8.-Potential-distribution curves of the 
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a current density Jin a space-charge-saturated diode. The Eq. (10.14) 
becomes 

This may be written as 
def> -4-2½ 

(cf>~'+ m½)}i = - 3- du (10.18) 

for convenience of integration. Let def> = 2ct>;" d(cf>~"), and then, upon 
integration, 

(10.19) 
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Si.nee q, = 1 when <T = 0, 

2l•q = (1 - 2m>•)(l + m~•)~• - (q,V• - 2m½)(q,~• + m~•)!·• (10.20) 

The factor 2~i has been introduced because the reversal of current at the 
virtual cathode has required that J be replaced by 2J in the above 
derivation. Curves of the type A obtained from Eq. (10.20) are shown 
in Fig. 10.8. If the slope of the curves be evaluated it is seen that 

and 

d</> 
d<1 

for q, ~ 0 

for <1 = 0 

(10.21) 

(10.22) 

It will be recognized that the potential distributions resulting in 
this case are the same as those encountered in the temperature-limited 
diode, the only difference being that the current is flowing in equal 
amounts in both directions and is in this case injected at a positive rather 
than at a zero potential. 

Type B Distribution. This occurs when the integration constant 
C1 is zero and as can be seen from simple physical considerations gives 
rise to a Child's law distribution on each side of a virtual cathode that exists 
at the point of zero potential and zero gradient. Let it be assumed that, of 
the injected current, a fraction P is transmitted beyond the virtual 
cathode. Then the net current on the screen-grid side of the virtual 
cathode, as far as its space-charge effects are concerned, is (2 - P)J. 
Child's law then assumes the form 

2y% 
(2-P)J = a_ 

X1
2 

a2V 1~2 
but since J = --

2
-, then in terms of the factors q, and <1 

Xo 

(10.23) 

(10.24) 

Since the actual potential factor is q, = 1 when <1 is zero and the potential 
decreases with increasing <1, the relation must be put into the form 

1 - q,~• 
<TL= (2 - pp2 (10.25) 

in which the subscript L indicates that the relation holds to the left 
of the virtual cathode for values of <f, between O and 1 and <T is measured 
from the point of current injection. 
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To the right of the virtual cathode the current density is PJ so that 

a2V~• 
PJ = -- (10.26) x2 

where x is now measured from the virtual cathode. Combining this with 
the Child's law relation, 

cp¾ 
o-2 = - (10.27) 

P_ 

1 
Actually, the potential factor is zero when u has a value of (Z _ P)l'> 

as may be seen from Eq. (10.25), so that the desired relation is 

(10.28) 

where the subscript R indicates that the expression holds only to the 
right of the virtual cathode and u is again measured from the point 
of current injection. Curves of the type B as determined from Eqs. 
(10.25) and (10.26) are shown in Fig. 10.9. It will be recognized that 
these are all three-halves-power-law curves drawn with different scales 
from both sides of the virtual cathode. 

A curve of considerable importance in the family (Fig. 10.9) is the 
limiting curve that gives the maximum value of cp for a fixed value of u 

to the right of the virtual cathode. This is an envelope to the family of 
type B curves. If the expression of Eq. (10.28) be solved for cp and 
maximized with respect to P, there results 

When this is substituted in Eq. (10.28), there is obtained 

2cp~~ 
p = 1 + cpl• 

(10.29) 

(10.30) 

The factor P can be eliminated between Eqs. (10.29) and (10.30) to give 
the relation between cp and u. 

(10.31) 

This curve is shown dotted in Fig. 10.9. Equation (10.30) tells what the 
maximum transmitted current for any plate potential is. If the attempt 
is made to increase the transmitted current beyond this value, the 
distribution will jump from a type B to a type C or D distribution. 
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Type C Distribution. This type of distribution is characterized by 
the existence of a potential minimum that is not at zero potential. The 
distributions are obtained by letting C1 = -(aV1pi in Eq. (10.12). 
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FIG. 10.9.-Potential-distribution curves of the type B. 

This gives a positive value of V, equal to aV1, when!: equals zero. 

Integration of Eq. (10.12) with the above value of the constant gives 

(10.32) 
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in which the negative sign goes with a negative slope at the screen and 
the positive sign gives a distribution of the type D. Since q, is unity 
when <T is zero, 

<TL = -(q,H + 2aH)(q,~2 - a~')~'+ (1 + 2a~2)(1 - aH)H (10.33) 

which holds to the left of the potential minimum with <T measured from 
the point of current injection. The distance at which the potential 
minimum exists is found by setting q, = a. 

(10.34) 

To the right of the potential minimum the potential distribution is 
given by 

<TR = (q,~'z + 2a~2) (q,~2 - a~2p2 + (1 + 2a~•)(l - a~2p2 (10.35) 

<T being measured from the screen grid. The slope of the potential­
distribution curves at the screen is given by 

dq, = - i (1 - a~2p2 
d<T 3 

(10.36) 

Curves of the C type are shown in Figs. 10.lOa and b. Various limiting 
curves are of interest. By letting q, equal a there is obtained the curve 
which passes through all the minima and of which the equation is 

(10.37) 

This curve is shown dotted in Fig. 10. lOa. 
By setting a equal to zero, another limiting curve is obtained, 

(10.38) 

which is the boundary between the B and C type of curve. This curve 
runs through the field of the type C curves because of the way in which 
the curves overlap. The significance of the overlap curves of Fig. 
10. lOb is that two potential distributions are possible for one set of 
electrode potentials. 

By setting a equal to unity, 

<T = (cf,~' + 2)(cf,~' - 1)~2 (10.39) 

which sets an upper limit to the type C curves. 
Another limiting curve is obtained by making <lR a maximum with 

respect to a and holding cf, constant. This gives 

(10.40) 
and 

(10.41a) 
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In these expressions u and ct, are coordinates of a lower-limit envelope 
that is tangent to the type C curves. The parameter a determines which 
curve is tangent to the envelope at the point in question. Type C dis-
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tributions cannot exist beyond this condition. If current or voltage is 
changed beyond this boundary, the distribution jumps to a type B curve_ 

From Eq. (10.41a) is obtained the expression that gives the maximum 
current that can be transmitted between electrodes at potentials V 1 
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and V 2 separated by a distance x. The limiting current density is 

Jmax = 2.335 X 10-6 ~V1½ + V2~•)
3 

X 
amperes per unit area (10.41b) 
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FIG. 10.lOb.-Potential-distribution curves of the type C overlap. 

If the injected current exceeds this amount, the potential distribution will 
jump from a type C to a type B distribution, with an attendant reduction 
in transmitted current. 

Examination of the curves of Fig. 10.10 and their equations showb 
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that the curves are all of the same form but differ only in scale and posi­
tion. Hence the upper limiting curve for which a equals 1 is a universal 
curve showing how the potential varies on either side of the potential 
mm1mum. The universal form of this curve is obtained by setting a 
equal to 1 in Eq. (10.35), giving the universal form 

Uu = (cpH + 2)(g,~• - I)½ (10.42) 

which holds on either side of the minimum at which the potential value is 
now V1 and u,. is measured from the minimum. Current is introduced 
. . . . a2111'½ X 
mto this expression by the relation J = --, and u,. = -· 

Xu• Xu 

Type D Distributions. These include curves of the C type restricted 
to the region of the curve before the potential minimum is reached. 
They also include curves that start with a positive gradient and increase. 
This latter type is given by using the positive sign in Eq. (10.32). It is 
not of much practical importance. Since the curves of the D type are 
included in the other types previously discussed, they will not be dis­
cussed in detail. 

10.6. Dynamic Characteristics of Beam-power Tubes. In the above 
discussion of the different types of potential distribution possible it has 
been indicated that there are limiting conditions under which the separate 
types could exist. It is also true that several potential distributions are 
possible for a given set of externally imposed conditions. In actual tube 
operation this means that there may be discontinuities in the current­
voltage characteristics; for as potential conditions are changed, the inter­
nal distributions may jump from one form to another and these changes 
are sometimes accompanied by changes in the fraction of the current 
transmitted to the plate. Furthermore, it sometimes happens that there 
may be hysteresis effects as a cycle of voltages is impressed upon a tube in 
that the current cycle produced does not retrace itself exactly. 

The beam-power tube makes use of a potential minimum produced by 
a type C distribution to reduce the secondary emission from the plate. 
As long as the potential minimum is 20 or more volts more negative than 
the plate, very effective suppression of secondary electrons is achieved 
This expedient dispenses with the need for a suppressor grid but may cause 
the dynamic characteristics to be different from those of other tubes. 

Two of the most important dynamic characteristics will be discussed 
in a qualitative fashion. Quantitative analyses have been given, 1 but 
these are somewhat limited in value in that the ideal conditions of parallel 
electron flow cannot be realized exactly in any actual tube. 

Injected Current Varied, Potentials Constant. One case that is of 
1 SALZBERG and HAEFF, Zoe. cit. 
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considerable interest is that in which the screen and plate of a beam­
power tube are maintained at the same potential and the current injected 
into the screen-grid-anode region is increased from zero to a large value 
and then decreased. The changes in the potential distribution encount­
ered in the tube are shown in Fig. 10.11. Initially, for no injected cur­
rent, the potential distribution from screen grid to plate is a straight 
horizontal line as shown at a. As the injected current is increased, the 
potential-distribution curve is depressed, assuming the form of the type C 
distributions as shown at b, in this case symmetrical with respect to a 
potential minimum at the center. As the injected current is further 

FIG. 10.11.-Potential distributions in a 
beam-power tube as the injected current is 
varied. 

increased, the potential-distribution curve is depressed still further, 
maintaining its symmetry. The physical reasons for the action are 
quite apparent. As the current is increased, the space charge is increased, 
which reduces the potential, which decreases the electron velocity, which 
increases the space charge still further and thus depresses the potential 
still more. Thus an increase in injected current starts a cycle of action 
that is very sensitive to changes in current, so much so that an equi­
librium may not always be reached. This occurs in this case when the 
potential curve has been moved about three-quarters of the way down to a 
zero potential, as at c, at which point any further increase in current 
causes the potential curve to drop as far as it will go because of the 
instability in the sequence of actions described above. The potential 
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curve can drop only to zero, at which point a virtual cathode is formed 
half way between grid and plate. When this occurs, part of the current, 
which has previously all been going to the plate, is turned back toward 
the grid, thus increasing the space charge or effective current to the left 
of the virtual cathode. Child's law demands that when the current is 
increased without a change in potential the distance must be decreased 
so that the virtual cathode moves toward the screen, finally coming to rest 
at some position, as shown at d. Thus the distribution changes immedi­
a,tely from that at c to that at d, with an abrupt reduction in current to 
the plate. Any further increase in injected current increases the space 
charge and current on the screen side of the virtual cathode and causes 
it to move closer to the screen, with a further reduction in transmitted 
current. 

If now the current is decreased, the sequence of operations will not be 
exactly the same, for the initial conditions are different. For a given set 
of voltages and current, two potential distributions may be possible but 
only one can exist at a time, of course, and the physical choice between 
the possible distributions is determined by the order in which limiting 
conditions are established. If the current is decreased, the virtual 
cathode moves toward the plate, an increasing fraction of the current 
going to the plate. Finally the virtual cathode reaches the mid-point, 
all the current going to the plate. The virtual cathode is now "satu­
rated." The potential field and electron paths for such a condition are 
shown in Fig. 10.12. The type B distribution cannot exist with any 
smaller injected current, and thus a further decrease causes the potential 
distribution to jump to the type C distribution, jumping from the distri­
bution at e to that at f. Any further decrease in current now maintains 
the same type of symmetrical distribution, the potential minimum rising 
until finally it is flat, with no current. Because of the fact that there 
is a maximum value of plate current for any set of screen and plate 
voltages in a beam-power tube, difficulties may sometimes be encountered 
with pulsed operation. 

Although the above discussion has been given for equal screen and 
plate voltages, the same sort of behavior results if the electrode potentials 
are not the same. In general, specific limiting conditions will be different 
for different cases. 

The associated current behavior is shown in Fig. 10.13, which shows 
the relation between the plate current and the injected current. As the 
injected current is increased, at first all the current is transmitted tc 
the plate, giving the straight-line characteristic shown. When the 
potential distribution jumps from c to d, the plate current suddenly 
drops iu value and then decreases uniformly, as shown, as the injected 
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current is increased. When the injected current is then decreased, the 
transmitted current is increased uniformly until the distribution shown 
at e in Fig. 10.11 is reached. In this case the jump in distribution from e 
to f produces no change in current, though it will be observed that the 
highest current reached on the retrace of the cycle is less than that 
obtained as the injected current was increased. All the injected current 
now goes to the plate again; and as the injected current is decreased 
further, the plate current decreases correspondingly, moving down the 
straight-line portion of the curve of Fig. 10.13. The portion at the 
extreme right of the current characteristic is seen to exhibit a negative 
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Fm. 10.13.-Transmitted current in a 
beam-power tube as a function of 
injected current. 

transconductance since the injected current is a continuous function of 
the control-grid voltage. Oscillators have been built utilizing this 
property. The characteristic shown in Fig. 10.13 can actually be 
observed on an oscilloscope if a beam-power tube is connected so that the 
vertical deflection is proportional to plate current and the horizontal 
deflection proportional to space current _as the control-grid voltage is 
varied sinusoidally. 

Plate Potential Varied, Screen Potential and Injected Current Constant. 
Another case of operation which is of particular importance is that which 
occurs when the plate potential alone is varied. Consider the case in 
which the injected current is quite high, corresponding to a positive con­
trol-grid voltage on a beam-power tube. Starting with a negative plate 
potential, the potential distribution is of the type A (temperature­
limited), as shown at a in Fig. 10.14. When the plate potential reaches 
a value of zero, a distribution of the type B (space-charge-limited) exists 
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as shown at b. Then, as the potential is further increased, a three­
halves-power-law distribution holds on each side of the virtual cathode, 
which moves toward the plate. Finally, a limiting type B curve is 
reached, and even though all the current is not being transmitted to the 
plate the distribution jumps from that at c to that at c', giving a type C 
(potential minimum) distribution with a complete instead of a partial 
transmission of current. As the potential is further increased, the poten­
tial minimum moves toward the screen as the curve moves up. Then, 
as the cycle is reversed and the potential is decreased, the curve moves 

FIG. 10.14.-Potential distributions in 
a beam-power tube as plate voltage is 
varied. 
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FIG. 10.15.-Plate current in an ideal 
beam-power tube as a function of plate 
voltage. 

down through the stages indicated by e and f. At g there is reached a 
limiting curve of the type C, and the distribution jumps to that at g', 
giving a partial transmission of current. From this the virtual cathode 
moves toward the screen as the potential and plate current decrease to 
zero. The curve a is obtained again as the plate voltage is made negative. 

The corresponding current behavior is shown in Fig. 10.15, in which 
is shown the variation of plate current with plate potential. Plate 
current begins to flow at b and continues to increase until c because of 
the partial transmission of current. If the position of the virtual cathode 
remained fixed, the current would increase as the three-halves power of 
the plate potential in this region. Since it moves toward the plate, the 
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current increases faster than the three-halves power, giving a very 
steep characteristic and accounting for the sharp shoulder of the plate­
current-plate-voltage curves of the beam-power tube. At c the current 
jumps to that at c', at which the transmission is complete and the current 
remains constant for further increases in potential. When the cycle is 
reversed, the current remains constant as the potential is decreased until 
g is reached, at which it drops to the value on the curve between b and c. 
It will be noted that the jump in current on the retrace occurs at a lower 
value of potential than when the potential is increasing. 

The type of behavior described above occurs for other values of cur­
rent, though the effects are most pronounced when the current is high. 
At lower values of current, potential minima may not be formed. The 
area of the hysteresis loop is in all cases quite small and becomes smaller 
as the current is decreased. In an actual tube such as the 6L6, having 
the characteristics shown in Fig. 2. 7, the distribution of initial velocities 
and more particularly the spreading of the beam sheets cause the current 
characteristic to depart from the idealized behavior indicated here. 1 

Sometimes at high currents, instead of the jumps indicated, the curve will 
run through a small s giving rise to a small region with a negative plate 
resistance. The kinks are observed only for high currents. At lower 
currents there is a sharp shoulder. At very low currents, potential 
minima are not formed; and as a result secondary electrons from the plate 
are not suppressed, and the curves have the characteristic depressions 
associated with this effect. It is also not true that the current is com­
pletely independent of the plate potential when the current transmission 
is complete, for the cathode region is not completely shielded from the 
plate. 

1 ScHADE, 0. H., Beam Power Tubes, Proc. I.R.E., vol. 26, pp. 137-181, February, 
1938. 



CHAPTER 11 

PENTODES 

11.1. Electrode Arrangement in a Pentode. The pentode, as its 
name implies, is a five-electrode tube. The five electrodes, in order, are 
cathode, control grid, screen grid, suppressor grid, and plate. The effects 
of all these electrodes except the suppressor grid have been studied. 

The suppressor grid was aclded to the screen-grid tube to eliminate 
the exchange of secondary electrons between screen grid and plate. 
It is invariably a coarse-mesh grid placed between the screen grid and 
plate and operated at cathode potential. At this potential it is able to 
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'.'l:I suppress secondary electrons by causing 
~ a deep dip in the potential between 
~ screen grid and plate while at the same 
~ time its coarse mesh allows electrons to 
R ~ pass on through it to the plate. The 
~ ~ potential profiles of a pentode are 
I I shown in Fig. 11.1. From these it is 
I l seen that both the plate and the grid 
I I present negative gradients of potential 
I to secondary electrons created at their 
I surface. This eliminates the exchange 
I of secondary electrons between screen 
I grid and plate and results in current­

voltage characteristics which are almost 
exactly those which would occur in a 
perfect screen-grid tube having no sec-

I ondary emission. 
p Of all the various types of vacuum 

Fm. ll.1.-Potential profiles in a tube, the pentode is probably the one 
pentode. in most extensive use. For voltage 
amplification whether at audio or radio frequencies it is the invariable 
choice. It is used at audio frequencies because a higher gain per stage 
can be realized than with a triode. It is used at radio frequencies 
because the extremely low control-grid-to-plate capacity virtually elimi­
nates the possibility of regeneration. Even as a power tube, it finds 
considerable use because its control-grid current and hence the power 
necessary to drive it are lower than for the corresponding triode. 
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11.2. Current-voltage Characteristics of the Pentode. As stated 
above, the suppression of secondary electrons in the pentode gives it 
the characteristics of a screen-grid tube that is free of secondary emission. 
The addition of the extra grid increases the extent to which the control 
grid is shielded from the plate and results in a somewhat higher amplifica­
tion factor and a somewhat higher plate resistance. 

Plate-current-Control-grid Voltage Characteristics. The plate-current­
control-grid characteristics of a pentode are similar to those of a tetrode 
and not greatly different from those of a triode. The plate current is 
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Fm. 11.2.-Plate-current-control-grid voltage characteristics of a type 6J7 pentode. 

most easily influenced by the control grid, less so by the screen grid, and 
hardly at all by the plate. Some typical plate-current-control-grid 
voltage characteristics of a pentode are shown in Fig. 11.2. Here there 
is shown a group of curves for different screen-grid voltages. These 
curves are almost identical with the corresponding curves in a triode. If 
a group of curves for different plate voltages were shown, they would be 
very closely grouped and, for the same screen-grid potential, would have 
the same cutoff potential. 

Plate-current-Plate-voltage Characteristics of a Pentode. The plate­
current-plate-voltage characteristics of a pentode are shown in Fig. 
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11.3a. In a well-designed pentode the plate current varies only slightly 
with plate potential for all plate voltages greater than 50 per cent of the 
screen-grid voltage. Below this value of voltage the current falls rapidly 
to zero. The magitude of the space current in a pentode is determined 
almost entirely by the control-g-id and screen-grid potentials. The 
plate potential determines only what fraction of the space current is 
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Fm. 11.3a.-Plate-current-plate-voltage characteristics 
of a type 6J7 pentode. 

transmitted to the plate. It does, of course, have a second-order influ­
ence upon the plate current, with the result that the plate current rises 
slowly as the plate voltage is increased, but this rise is even slower than 
in the screen-grid tube, where there is only one shielding grid between the 
plate and the control grid. As a result of the action of the plate voltage 
in determining the fraction of the space current that is transmitted to 
the plate, all the plate-current-plate-voltage curves are similar in 
shape and differ only in scale. 
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Space-current-Plate-voltage Characteristics of the Pentode. Also shown 
in Fig. 11.3a are the space-current-plate-voltage characteristics of a pen­
tode. The space current is even more constant with plate voltage than 
is the plate current. The only departure from near constancy occurs 
near zero plate potential. Here the space current increases by about 
20 to 40 per cent as the plate potential is increased to about half of 
the screen-grid potential. This increase in space current occurs because 
there is a change in the space-charge condition around the screen grid as 
the condition of reflection of electrons from the plate changes to one of 
transmission. The action is exactly the same as that which was encount­
ered in screen-grid tubes (see Fig. 10.2). 
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Fm. ll.3b.-Screen-current-plate-voltage characteristics of 
a type 6J7 pentode. 

Screen-grid-current-Plate-voltage Characteristics of a Pentode. The 
screen-grid· current in a pentode is the difference between the space cur­
rent and the plate current, provided that the other grids in the tube are 
drawing no current. The nature of the screen-grid-current variation 
with plate voltage is shown in Fig. 11.3b. The screen-grid current is 
seen to have a uniformly decreasing characteristic with plate voltage. 
The screen current will generally lie between one-fifth and one-third of 
the plate current at large plate voltages. The effectiveness of the sup­
pressor grid in suppressing secondary electrons is so complete that the 
screen current rarely shows even a trace of distortion due to this cause. 

Suppressor-grid Effects. With small pentodes such as are used for 
-volt.aqe amplification the suppressor grid is operated at cathode potential 
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and is not used to influence the plate current. In power-output pentodes, 
however, the suppressor grid may be used as an active electrode. It can 
be used to modulate the plate current in amplifiers or oscillators. 1 Use is 
here made of the fact that the suppressor grid is able to control the 
fraction of the current transmitted past the plane of the screen grid that 
goes on to the plate. When the suppressor grid is at a low potential 
relative to plate and screen grid, as it usually is, it can sort out the elec­
trons having a large component of energy directed toward the plate 
from those which, because of deflection on passing close to a screen-grid 
wire, have a lower component of plate-directed energy. Some typical 
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Fm. 11.4.-Plate-current-suppressor-grid 
characteristics of a type 6J7 pentode. 

curves showing the current transmitted to the plate as a function of sup­
pressor-grid voltage are shown in Fig. 11.4. It is seen that the plate 
current is moderately sensitive to suppressor-grid voltage and that the 
suppressor grid is readily capable of completely cutting off the plate 
current. The action of the suppressor grid in controlling the plate cur­
rent is a combination of its action as a velocity sorter and a direct con­
trol on the gradient of potential before the suppressor grid. At voltages 
near zero the first action predominates. As the suppressor grid is made 
more negative, the second action becomes predominant. As the sup­
pressor grid approaches cutoff, there is a strong tendency for a virtual 

1 GREEN, C. B., Suppressor Grid Modulation, Bell Lab. Rec., vol. 17, pp. 41-44, 
October, 1938. 
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cathode to form before the suppressor grid owing to the space charge of 
the approaching electrons, which have been reduced to a very low 
velocity. The suppressor grid then has an action very similar to that of 
the control grid in front of an actual cathode, as in a triode. 

An alternative representation of the effect of the suppressor grid is 
shown in Fig. 11.5. Here the control-grid action of the suppressor grid is 
evident at large negative values of suppressor-grid potential. Power 
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FIG. 11.5.-Effect of suppressor-grid voltage upon 
the plate and screen-grid-current characteristics of 
a pentode. 

pentodes are frequently operated with slightly positive suppressor grids 
in order to get a sharper shoulder on the plate-current-plate-voltage 
characteristics. Some typical power-pentode characteristics are shown 
in Fig. 11.6. The use of a positive suppressor-grid potential is seen to 
give a considerable sharpness to the shoulder of the characteristics. The 
reason why this is necessary in the power tubes is twofold. (1) The 
current densities involved are greater, increasing the tendency for a. 
virtual cathode to form in front of the suppressor grid and hence requir­
ing a more positive value of suppressor-grid voltage to pass the major 
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portion of the space current on to the plate. (2) The screen-grid pitch is 
made relatively large to reduce the total current and power taken by the 
screen. As this is done, the deflection imparted to the electrons passing 
through the screen grid is increased and hence a smaller fraction of them 
have enough plate-directed velocity to pass through the positive potential 
spaces between the suppressor-grid wires. 
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FIG. 11.6.-Plate-current-plate-voltage characteristics of a power pentode for zero 
and positive suppressor-grid potentials. 

11.3. Current Division in Pentodes. The pentode is often oper­
ated with a suppressor grid at cathode potential and with screen grid 
and plate at the same positive potential. With this arrangement of 
electrode potentials the screen grid will always intercept an appreciable 
fraction of the space current. Some of this current is intercepted directly 
on the first passage of the electrons. Some of the screen-grid current 
consists of electrons which were so strongly deflected by the screen-grid 
wires that they did not have enough plate-directed velocity to pass 
between the suppressor-grid wires. All electrons that fail to penetrate 
the suppressor grid upon their first attempt may be expected to return 
to the screen grid. 

The fraction of the total current transmitted to the plate is expected 
to be a function of the ratio of plate to screen-grid voltages. So also is 
the ratio of plate to screen-grid current. In Fig. 11.7 are shown curves 
of these current ratios as a function of the electrode-voltage ratio. Both 
current ratios are seen to vary rather slowly with the electrode-voltage 



PENTODES 273 

ratio. The ratio of plate to space current in the vicinity of equal plate 
and screen-grid voltages varies something like the one-tenth power of the 
ratio of plate to screen-grid voltage. The ratio of plate to screen cur­
rent varies approximately as the one-fifth power of the ratio of plate to 
screen-grid voltage. No simple theoretical analysis is available to give 
the current-division law directly in either case. 
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Fm. 11.7.-Pentode current ratios as a function of electrode-voltage ratios. 

Just as it was possible to define a current-division factor for positive­
grid triodes, so is it possible to define a current-divison factor for pen­
todes. Let 

(11.1) 

Here :I) is a current-division factor that measures the ratio of plate to 
screen-grid current when the plate and screen grid have the same voltage, 
other grids being presumed to draw no current. This pentode current-



274 VACUUM TUBES 

division factor may be determined quite closely from the considerations 
that applied to the positive-grid triode. 

Figure 11.11 shows the general nature of the potential field and elec­
tron paths within a pentode. The control grid has a slight focusing 
action upon the electrons that pass between its wires. The screen grid 
intercepts a fraction of the current that passes through its plane and has a 
dispersing action on the rest. The suppressor grid will for the most part 
pass the electrons that approach it, with the exception of some electrons 
that fall into two groups. (1) The electrons that are aimed directly at a 
suppressor wire. These are naturally reflected and collected eventually 
by the screen grid. In general, all the electrons that are aimed at a 
suppressor-grid wire within half a radius of the center of the wire will be 
deflected back into the screen grid. This group comprises the great 
majority of the electrons initially passed by the screen grid that are 
returned to it. (2) The electrons that just barely miss a screen-grid wire 
and are so strongly deflected that they do not have enough plate-directed 
velocity to reach the suppressor-grid plane. This group of electrons is 
distinctly in the minority and may not even exist in some tubes if the 
screen-grid wires are large enough. 

The same factors that determined the current division in a positive­
grid triode also determine the fraction of the space current transmitted 
and intercepted by the screen grid of a pentode. The following identifica­
tion of the elements of a triode gives approximately the conditions 
existing in a pentode: 

Triode Pentode 
Cathode ......................................... Control grid 
Control grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Screen grid 
Plate ............................................ Suppressor grid 

When this correspondence of the electrodes is used, then Eq. (9.28) 
for current division in triodes may be applied directly provided that the 
mean suppressor-plane potential is used as the triode plate voltage and 
the equivalent triode cathode-plate distance is recognized as being some­
what larger than the pentode control-grid-screen-grid distance. When 
these considerations are applied, a transmission factor for the screen 
grid is determined. It is then necessary only to correct this for the 
additional electrons reflected from elastic collisions with the suppressor­
grid wires. 

For the condition of equal plate and screen-grid voltages prescribed 
for the pentode current-division factor, the mean suppressor-plane 
potential is a very small fraction of the plate and screen-grid potential. 
In terms of the equivalent-triode current division this means that interest 
is centered on the region of very small voltage ratios, far to the left on the 
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true primary-current-division curve of Fig. 9.18. The value of the cur­
rent ratio will not be a great deal less than the triode current-division 
factor because the current-ratio curve is concave upward. The true 
primary-division cnrve rather than the measured triode division law may 
be expected to apply in the case of the pentode because there is no modi­
fication of the electrode currents by sec­
ondary emission and because reflection 
of electrons from the plate of a triode at 
low potentials may be considerable, 
whereas in a pentode suppressor grid of 
the same mean potential the electrons 
will, for the most part, be able to pene­
trate in the spaces between the wires. 

In order to apply the above ideas it is 
necessary to evaluate the mean sup­
pressor-plane potential. Consider the 
configuration of electrodes shown in Fig. 
11.8. In this somewhat idealized config­
uration the screen grid is replaced by a 

FIG. 11.8.-Electrode dimension& 
plane. Since the suppressor grid is 

in the suppressor-grid region. 
usually of a coarse mesh, the field approx-
imation of Eq. (7.72) is sufficiently accurate. If a linear potential term 
1s included to account for the effect of the screen grid and plate, the expres­
sion for potential becomes 

V(x,y) = - 4;£o [1n 2 (cosh 2;:x - cos 2:y)] +Bx+ C (11.2) 

where q is the charge per unit length of a single grid wire, xis measured 
in a direction perpendicular to the grid plane and has a zero value in the 
grid plane, and y is measured in the grid plane relative to a grid-wire 
center in a direction perpendicular to the wires themselves. Upon 
setting the potential equal to V2 at the screen grid at which x = -d23 

and y = 0, then approximately 

V q dn C 
2 = - - - - Bd23 + 

2£o aa 
(11.3) 

Upon setting the potential equal to zero at the suppressor at which 
x = 0 and y = r 3, then approximately 

0 = - _!L In [2 sin (1rra)l + C 
ZirEo aa .J 

(11.4) 
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Upon setting the plate potential also equal to V2 at x = dap, y = 0, 
there results, approximately, 

V 2 = -
2
q dap + Bdap + C 
to aa 

(11.5) 

The same approximations apply above as do in the case of the low-mu 
triode. The expressions are valid only for screening fractions less than 
one-tenth and interelectrode spacings greater than the distance between 
suppressor-grid wires. 

The three equations above may be solved for the three unknowns 
q, B, and C and these values,substituted in Eq. (11.2). When this is 
done and the general expression for potential resulting is restricted to 

the point x = 0, y = ~' there is obtained an expression for the maximum 

potential between the suppressor-grid wires, 

Vama, = [ ( )] 
1 2 . 11"1"3 2ir d2adap nsm-----

as as d2p 

(11.6) 

The mean value of the suppressor-grid-plane potential is just half this. 

( 11. 7) 

When this mean value of the suppressor-plane potential is known, Eq. 
(9.28a), which is repeated here, can be applied with the electrode cor• 
respondence previously mentioned to obtain the ratio of the current 
transmitted by the screen grid to the current intercepted on the initial 
passage. 

(9.28a) 

Upon substituting equivalent factors to suit the pentode problem this 
expression becomes 
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- 1 (11 3) 

h D 
r2 

1 
4Ed12 

were = -- n - -
2d12 r2 

T 2 = ratio of current transmitted by screen grid upon initial 
passage of electrons to current intercepted 

µ 23 = geometrical amplification factor of control grid relative to 
screen grid 

It is necessary only to modify the factor T2 by the transmission 
factor of the suppressor grid to obtain the screen current-division factor D 

The transmission through the suppressor plane will generally be so 
large that it will affect the over-all result by only a small fraction. The 
transmission of the suppressor plane is given approximately by 

a3 Ta= - - 1 
T3 

(11.9) 

since membrane-model studies show that only those electrons aimed at 
the center half of a suppressor-grid wire will strike it. The over-all 
current ratio is then given approximately by 

1 1 1 -=-+­D T2 Ta 
(11.10) 

Exampl,e: Consider the 6J7 pentode, which has the following dimensions: 

for 

and 

dc1 = 8 . 65 mils 
du = 56.8 mils 
d2a = 109 . 5 mils 
dap = llO mils 

a1 = 21 . 1 mils 
a2 = 15.9 mils 
aa = 50 mils 

r1 = 1 .1 mils 
r2 = 1.25 mils 
ra = 2.25 mils 

Vaav In [sin(½~)] 
y;- = 2 {i [2 . (1r X 2.25) r _ 21r 109.5 X 110} 

n Slll 50 j 50 219.5 
= 0.12 from Eq. (11.7) 

µ23 = 56 from Fig. 7 .11 

d2a = 109.5 = 6 89 a2 15.9 · 

S = 
272 

= 
2

·
5 

= 0.1572 a2 15.9 
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15.9 
T ---------------------- - l 2 = {15.9 X 56[(56.8 + 109.5) - 56.8 X 0.12]0.0683 + l 

25
1_ 

2 21r X 109.5(0.12 + 56) . J 
= 4.3 from Eq. (11.8) 

Note that this value of current transmission is only slightly less than the 
o factor of 4.63 calculated from Eq. (9.25), considering the screen grid of the 
pentode as the control grid of a triode. 

50 
Ta = 2_25 - 1 = 21.2 

1 
:o = l 1 = 3.57 

-+-4.3 21.2 

from Eq. (11.9) 

from Eq. (11.10) 

This calculated value of :D agrees well with a measured value of 3.65. The 
agreement is, in fact, better than there is any reason to expect in view of the fact 
that the 6J7 does not have a plane-electrode structure at al_l but has a circular 
cathode and suppressor grid, elliptical control and screen grids, and a plane plate. 

11.4. Amplification Factor of a Pentode. The design of a pentode 
presents a rather complex problem. Relatively little has been published 
on this important subject. Most of the design equations exist in the 
private notebooks of a few workers in the field and are largely empirical 
modifications of simple theoretical relations. In this and subsequent 
sections there is given a sketch of the factors involved in the determina­
tion of pentode tube constants. The results that are given can serve 
only as a rough guide to the fundamental relations and should not be 
taken as anything more than approximate design equations. 

The amplification-factor formulas of a pentode may be expected to 
be considerably more complicated than those of a triode for two reasons. 
(1) There are three grids instead of one. (2) The division of current 
between the various electrodes is a function of the relative electrode 
potentials. If the amplification factor is calculated from electrostatic 
considerations as was done for the triode, there results an expression that 
gives the relative influence of the plate and control grid in keeping the 
space current constant. This is not the true amplification factor but what 
will be referred to as the "electrostatic amplification factor" since it 
gives the relative influence of the plate and control grid in controlling 
the off-cathode gradient of potential in a cold tube (or space current in a 
hot tube). The true amplification factor is a modification of this value 
that gives the relative influence of plate and control grid in controlling the 
pl,ate current. The subject will be treated by first studying the field in a 
pentode, deducing the electrostatic amplification factor from it, and then 
modifying this to obtain the true amplification factor. 
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Electrostatic Field of a Pentode. The method of conformal transforma­
tions is not readily applied to tubes having several grids of different 
pitches. It is, however, possible to construct the field from the expres­
sion for the potential due to a single row of grid wires given in Eq. (7.72), 

V(x,y) = - 4;to ln [2 (cash 2:x - cos 
2
:Y)] + C (7.72) 

where the wires are spaced a distance a apart upon the y axis and q is 
the charge per unit length of wire. If three terms like the function in 
Eq. (7.72) are combined properly with a linearly varying component of 
potential, the resultant expression is a satisfactory representation of the 
field of a pentode. 

First consider some of the properties of Eq. (7.72). In the first 
place the constant has the value 

C = V + _L ln (2?tT a) 
0 2-no a 

(11.11) 

where V 0 is the potential of the isolated grid and r0 is the radius of the 
grid wires. Near the grid wires the equipotential contours are circles con­
centric with the grid wire. In this vicinity the potential is given approxi­
mately by 

V(x,y) = V 0 - io ln (~) (11.12} 

At a considerable distance from the grid the equipotential contours are 
straight lines parallel to the grid-wire plane whose approximate potential 
is given by 

V(x) = Vo+ io In (2?r:a) + (l:C) (11.13) 

where the upper sign is associated with p~tentials to the right of the grid 
plane and the lower with potentials to the left. It is seen that the 
potential varies linearly with distance from the grid-wire plane, just as 

it would from a plane with a surface-charge density of ia• The second 

term above gives the difference between the actual grid-wire potential and 
the equivalent potential of the grid plane, found by extending the straight­
line portions of the potential profiles back to an intersection, as.shown in 
Fig. 11.9. The depth of the fillet about the grid wires is given by Iettin~ 
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x = 0 and y = ; in Eq. (7.72). This substitution gives for the maximum 

Jeviation from grid-wire potential in the grid plane 

V - V (o ~) = - _!J_ In (?r1"0
) 0 '2 2-no a 

(11.14) 

It is therefore always true that the potential difference between the grid 
wire and the equivalent potential of the grid plane is 0.693 ( = In. 2) of the 

dV 
dx 

I 

..=!I_ 
2a{0 

FIG. 11.9.-Potential profiles of a single row of grid 
wires. 

maximum difference of potential encountered in the grid plane. Also 
shown in Fig. 11.9 is the gradient of potential about a row of grid wires. 

Provided that the distance between electrodes is greater than the 
distA.nce between grid wires, which is a good approximation with the 
exception that the suppressor-grid-plate distance is often less than 
the suppressor-grid pitch, the field of a pentode is given by the sum of 
three expressions like the right-hand side of Eq. (7.72) plus a linear com­
ponent of field plus a constant, 
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3 

V(x,y) = 1 -to ln { 2 [ cosh 2,r (x -:,.den) - cos 2,r (y :,. b,.)] } 
n=l 

- qcX + C (11.15) 
to 

in which the subscript n assumes the values 1,2,3 to correspond to each 
of the three grids, den is the distance from the cathode to the nth grid, 
b,. gives the relative location of the grid wires along a reference line normal 
to the cathode, a,. is the pitch of the nth grid, qe is the cathode charge 
per unit area, and q,. is the charge per unit length of grid wire on the nth 
grid. 

Upon making the usual approximations for large values of x and small 
values of y, it is possible to write the equations relating the potential at 
each electrode to the electrode charges. These equations are 

Ve = 0 = _ q1de1 _ q2dc2 _ qade3 + 0 + C (ll.l6) 
a1to a2to a3to 

V1 = - ...!Q_ ln (2 sin ,rr1
)- q2d 12 

- q3d 13 
- qcdei + C (11.17) 

2rto a1 a2to aato to 

V2 = - q1d12 - ---'E_ ln (2 sin 1rT2) - qad2a - qcde2 + C (11.18) 
a1to 2no a2 aato to 

Va= _ q1d1a _ q2d2a _ ..!l!.__ln ( 2 sin 111"a)- qedca + C (ll.lg) 
a1to a2to 2no a3 to 

VP = _ q1d1p _ qad2v _ qadap _ qcdep + C (ll.20) 
a1to a2£0 aato to 

The above expressions may be solved for the charges in terms of the 
electrode potentials and then applied to Eq. (11.15) for the potential 
field. This process is somewhat involved, however; for ordinary pur­
poses a simpler procedure that yields results accurate enough for most 
purposes is recommended. This simplified procedure consists in sketch­
ing the potential profiles and then corr--ecting the originally assumed 
values. Ordinarily only one correction is necessary. 

The simplified procedure for determining potential fields in pentodes 
is applied as follows: Ordinarily a complete plot of the potential field is 
not required, and potential profiles are sufficient. The procedure first 
calls for a sketch of the potential profiles within the tube. For conveni­
ence the profiles will be drawn through a wire of each grid and midway 
between the grid wires and the segments of such profiles joined. Actu­
ally, there may be no actual straight line in the tube that goes through a 
wire of each grid, but this makes no difference. Such a sketch is shown 
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in Fig. 11.10. The specified electrode potentials are marked, fillets of 
reasonable size are attached, and the fillets are then joined by straight 
lines. The next step in the procedure is to draw a curve of the gradient 
of potential between electrodes as taken from the slope of the straight­
line portions of the profiles joining the electrodes. Such a curve of 
gradients is also shown in Fig. 11.10. If the gradients are taken from 
the profiles in units of volts per meter, then the gradients will have the 
values indicated on the figure in terms of the charges. From the four 

:;:: 
C 
cu 

£ 

C 

FIG. 
in a pentode. 

I 

I 

f 
I 

values of the gradient between the 
electrodes, the four electrode charges 
in units of coulombs per square 
meter can be calculated. When the 
electrode charges are known, 

then the factor - ;:
0 

ln ( 2: ") 
applied to each grid, as shown in Fig. 
11.9, to see how good the original 
guess on the size of the fillet of poten­
tial around the wires was. Gener­
ally, the original guesses are not 
exact, and some values of electrode 
potentials different from those 
desired are found to fit the straight­
line portions of the potential profiles. 
Correcting these values is a simple 
matter, and usually the first correc­
tion will be close enough to the 
exact one for ordinary purposes. 

A plot of the complete field 
within a pentode is shown in Fig. 

and gradients 
11.11. The figure shows some typi-
cal electrode dimensions and elec-

trode potentials and gradients in a pentode. 
Electrostatic Amplification Factor of a Pentode. 1 From work on the 

triode it is possible to find an expression giving the potential of a grid in 
terms of its charge and the charge to the left of it. By combining such 
expressions for all the grids of a pentode there is obtained an expression 
for the cathode charge in terms of the electrode potentials. From this 
the relative effectiveness of the various electrodes in controlling the off-

1 See also Dow, W. G., Equivalent Electrostatic Circuits for Vacuum Tubes, 
Proc. l.R.E., vol. 28, pp. 548-556, December, 1\)40. 
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cathode gradient can be determined. This gives the electrostatic ampli­
fication factor. 

If the component logarithmic-transformation equations are applied to 
Eq. (7.31), there results 

V
0 

= ~ In sinh 2m"o - qcdc + _!l_JJ_ In sinh 2m"o 
Zno a at:o Zn:o a 

- .!l_.!!._ In cosh 2m"o (11.21) 
Zno a 

The last term in the above equation rarely exceeds 1 per cent of the 
second last term and so will be, dropped. The remaining terms can be 
arranged to give 

V1 = - qLdL - _!l!__ ln sinh 21rri (11.22) 
a1£0 Zn:o a1 

in which qL is the total charge per grid-wire section to the left of the grid, 
dL is the distance from the grid to the next electrode to the left of the grid 
in question (the cathode in the case of the triode), and the subscript 1 
means that the particular symbol applies only to grid 1. 

The first term of Eq. (11.22) establishes the average level of the grid• 
plane potential since it is the gradient of the straight-line portion of the 
potential profile to the left of the grid. The second term gives the rest 
of the potential necessary to make up the actual grid potential. There 
are no restrictions on Eq. (11.22) that confine it to a triode; it can just 
as well be applied to any grid of a tube as long as the symbols are given 
the proper interpretation. Since in summing potential expressions like 
Eq. (11.22) it is necessary to take account of the fact that the various 
grids may have different pitches, the charge per unit area instead of the 
charge per unit length of grid wire will be used. The charge per unit 
area is given by 

Q - qn 
n-

an 
(11.23) 

where an is the grid-wire spacing. 
To apply the summation procedure indicated above to a pentode, the 

three grids will be referred to by numbered subscripts and the distance 
between electrodes will be given by the symbol d with a double subscript, 
corresponding to the electrodes involved. The following equations are 
thus obtained: 

(11.24) 

(11.25) 
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Va - V2 = - (Qc + Q1 + Q2)d2a - Qaaa ln sinh Zirra 
t:o 2no aa 

(Qc +Qi+ Q2 + Qa)dap 
£0 

285 

(11.26) 

(11.27) 

It will be recognized that the first term of each of the above equations 
establishes the average potential of an electrode in terms of the charge 
and distance to its left. The second term takes account of the deforma­
tion introduced by the presence of the grid. In the case of Eq. (11.27) 
there is no second term because the potential of the plate is constant. 
The above set of equations gives the electrode potentials in terms of the 
charges. The system can, of course, be solved for the charges in terms of 
potentials by Cramer's rule. 

The determinant of the coefficients is 

dc1 ( a1 . h Zirr1) 2?rlnsm ai 0 0 

A= d12 d12 (;; In sinh 2;:2
) 0 

d2a d2a d2a ( aa 1 . h 21!"Ta) - nsm --
211" aa 

dav dav dap dav 

This can be simplified by the introduction of the symbols 

and 

B a,. l . h Zirr,. ,. = ..,_d n sin --
u,r (n-l)n a,. 

when n = 1, n - 1 = c. 
After substituting the above, the determinant assumes the form 

1 B1 0 
1 

A= K ! 
1 

1 
1 

0 

The value of this determinant has the simple form 

A = K(l - B1)(l - B2)(l - B3) 

(11.28) 

(11.29) 

(11.30) 

(11.31) 

(11.32) 
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The cathode charge is given by 

Reference to Eq. (7.35) shows that the electrostatic amplification factor 
is given by the ratio of the coe!]icients of the first and last terms. 

(1 - B2)(l - B3) + B1(l - B3) 
dc1 d12 (11.34) 

Substitution of the values of the various B's shows that the above 
expression for amplification factor is independent of dc1• In general, the 
electrostatic amplification factor of the pentode will have a value approxi­
mately equal to that given by the product of three triode mu's calculated 
by considering the plate, the suppressor grid, and the screen grid as plates 
of a triode and the next two electrodes in order toward the cathode as 
grid and cathode.' 

Also available from Eq. (11.33) is the electrostatic amplification 
factor giving the relative effectiveness of the control grid and screen grid 
in controlling space current. It is 

(1 - B2)(l - B3) + B,(1 - B3) 
de, d12 

-B,(1 - B3) B1B2 (11.35) 

d,2 d2z 

The above expressions for amplification factor have some small inherent 
inaccuracies due to the fact that the filleting of potentials about some of 
the grids has been neglected. The inaccuracy is probably not more than a 
few per cent. More accurate expressions for electrostatic amplification 
factor may be derived from Eqs. (11.16) to (11.20), but these are so 
cumbersome as to be almost totally useless. 

True Amplification Factor of a Pentode. The true amplification factor 
of a pentode must take into account not only the electrostatic action 

1 THOMPSON, B. J., Space Current Flow in Vacuum Tube Structures, Proc. I .R.E., 
vol. 31, pp. 485-491, September, 1943. 
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within the tube but also the division of current between the electrodes. 
Let the true amplification factor of the pentode be defined by 

(

alp) 
(
dVp) av1 

µp = - dV1 Ipconst = - alp 

avp 

(11.36) 

In deriving the true amplification factor, use will be made of the following 
relation, 

(11.37) 

where n is a constant of approximate value 1.5, the µ's are electrostatic 
amplification factors measuring the relative effectiveness of the electrode 
in question and the control grid in controlling the space current, G is 

2.335 X 10-5 • 
perveance of value d2 amperes per umt area per volt", and d 

is the equivalent control-grid-cathode spacing as calculated from Eq. 
(8.45) but with the screen grid considered as the triode plate. 

Let the ratio of plate to screen-grid current be given by 

lp = g (VP) (11.38) 
l2 V2 

and let the functional relation be indicated subsequently by the symbol g. 

The ratio of plate to space current is given by 

and hence 

lp 
_ l2 

- 1 + lp 
l2 

(11.39) 

(11.40) 

where V"" is the equivalent voltage V1 + i\ + V3 + VP_ 
µ12 µ13 µ1p 

The partial derivatives that enter into the determination of the true 
amplification factor can now be evaluated. 

i1-J, = nG(V )n-1 _g_ 
av1 "" 1 + u 

dg 

alp _ nG (V )n-i g G(V ) dVp 
avp-µlp eq l+g+ ..,"c1+g) 2 

(11.41) 

(11.42) 
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Upon combining these last two expressions, the resulting expression 
for the true amplification factor is 

µ1p 
µp = -----'-"---dg-

µ1p V eq dV 
1 + p 

ng(l + g) 

(11.43) 

If the ratio of plate to screen-grid current is assumed to have the form 
previously given 

(11.1) 

then 

(11.44) 

From this it is seen that the true amplification factor is less than the 
electrostatic amplification factor by a considerable factor. 

11.6. Transconductance of a Pentode. The transconductance of a 
pentode is readily obtained. Let 

Gm= G1p = :~: (11.45) 

but 

lp = I, t (11.46) 

and so 
G - aJ. Ip 

lp - av. 1. (11.47) 

since the ratio of plate to space current is independent of control­

grid voltage. The quantity :} may be designated as Gi. and may be 

obtained from the triode mutual-conductance formula [Eq. (8.47)] by 
considering the screen grid of the pentode as the plate of a triode. Equa­
tion (11.47) states that the control-grid-plate transconductance of a 
pentode is equal to the triode mutual conductance of the first three elec­
trodes, reduced by the ratio of the plate current to the screen current. 

11.6. Plate Resistance of a Pentode. The plate resistance of a 
pentode is the reciprocal of the plate conductance defined by 

(11.48) 
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Utilizing Eq. (11.40), 

I dg 
G aJ, g + 'JV;, 

p=avpI+g (I+g) 2 (11.49) 

The first term in this last expression results from the variation of the 
emitted current with plate voltage. The second term results from the 
change in plate current occasioned by the variation in current division 
with plate voltage. When the current-division function of the pentode 
has the form of Eq. ( 11.1), the above expression reduces to 

(11.50) 

11.7. Design Considerations. In a pentode the ordinary constants 
are readily made to assume satisfactory values. Prime interest is cen­
tered in the transconductance. Here the same considerations apply as 
in the triode, and no greater difficulty is encountered. The amplification 
factor and plate resistance are naturally high and require no particu­
lar attention. Thus interest is focused upon some of the other character­
istics of the tube that affect its operation. These other characteristics 
are 

1. Suppression of secondary electrons. 
2. Sharpness of the shoulder of the plate-current-plate-voltage 

characteristic. 
3. Plate-current to screen-grid-current ratio. 

The above factors are controlled by some factors that have not appeared 
before in this study of vacuum-tube design. These are 

1. Shape of the potential field before the plate. 
2. Electron deflection by the grids. 

In previous considerations of tube characteristics the principal con­
cern has been with the potential field and with the space-charge flow. 
In the pentode, in addition, the electron paths are critical. 

The suppression of secondary electrons from the plate is not a difficult 
problem, though some attention must be paid to the electrode dimensions. 
The critical factors are the pitch of the suppressor grid and its distant:!e 
from the plate. In Fig. 11.12 is shown the effect of different suppressor­
grid pitches upon the retarding potential offered to secondary electrons 
cre1o1,ted at the plate as a function of plate voltage as calculated from Eq. 
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(11.6). The minimum potential referred to in the figure is the minimum 
of potential on a line normal to the plate passing midway between grid 

Fm. 11.12.-Retarding increment of 
potential before the plate of a pentode 
as a function of plate voltage for 
various suppressor-grid pitches. 

wires. As the suppressor-grid pitch 
is decreased, this minimum potential 
is decreased and the retarding poten­
tial offered to the secondaries thus 
increased. The effects are linear 
with the various potentials involved, 
provided that space-charge effects 
do not distort the potentials appreci­
ably. In Fig. 11.13 is shown the 
effect of putting the suppressor grid 
in different positions between the 
screen grid and plate, as calculated 
from Eq. (11.6). This changes both 
the magnitude and the rate of change 
of the retarding potential. For sup­
pressing plate secondaries it is de­
sirable to have a fixed retarding 
potential. This cannot be realized, 
and therefore the arrangement of 

electrodes that gives the most retarding potential at low plate potentials 
is desired. This means that a small 
suppressor-grid-plate distance is 
indicated. So also is a small sup­
pressor-grid pitch. Some other con­
siderations, as we shall see, limit the 
degree to which the suppressor pitch 
can be reduced, but both the above 
factors should be considered to ensure 
secondary suppression. 1 

The other new factor in pentode 
design, viz., the deflection of electrons 
by the grids, is probably more impor­
tant than the secondary suppression, 
since the latter is usually achieved 
without too much difficulty. The 
electron deflection by the grids will 
affect strongly both the sharpness of 
the plate-current-plate-voltage char­
acteristic and the ratio of plate to 

0 ,-~, , 
/ 

/ ,, , 

Fm. 11.13.-Retarding increment of 
potential before the plate of a pentode 
as a function of plate voltage for 
various suppressor-grid locations. 

1 JoNKER, J . H. L., Pentode and T etrode Output Valves, Parts I, II, Wireless Bngr., 
vol. 16, pp. 274-286, 344-349, July, 1939. 
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screen-grid current. The more the electrons are deflected by the grids, 
the fewer will reach the plate at ordinary plate voltages and the less rapid 
will be the increase of plate current with plate voltage. 

An exact study of electron deflection by the grid wires is rather dif­
ficult, but an excellent approximate analysis of the deflections can be 
made by using the fact that the potential field between the grid wires 
acts like a cylindrical lens and may have the effect of either focusing or 
dispersing the electrons which pass between them. Thus in Fig. 9.10a 
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Fm. 11.14.-Scattering action of a srnall­
pitch suppressor grid far frorn the plate of a 
pentode. 

it is seen that the control grid gives the focusing action of a convergent 
lens. This lens, however, has some very pronounced aberrations. The 
focal length for parts of the lens near the grid wires is less than for the 
center of the space. In the language of optics, the lens has a positive 
spherical aberration. In Fig. 10.6 the focusing action of the control grid 
may again be seen. It is also seen that the screen grid exhibits the charac­
teristics of a divergent lens. In Figs. 11.14 and 11.15 it is seen that the 
suppressor grid has a convergent-lens action. The nature of the lens 
caused by the potential field between grid wires depends upon the gradient 
of potential on the two sides of the grid and is, to first order, independent 
vi such things as the grid radius and pitch. 
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The focal length of the lenses formed by the grid wires will be shown 
in the chapter on Electrostatic Electron Optics to be given by 

(11.51) 

where Vn is the potential midway between the wires of grid n, (~:)R is 
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FIG. 11.15.-Focusing action of a large-pitch 
suppressor grid close to the plate of a 
pentode. 

the gradient of potential to the right of the grid, and ( ~:) L is the gradient 

of potential profile to the left of the grid plane. It is seen that when the 
gradient of potential increases upon passing through the grid, f is positive 
and the lens is convergent. When the opposite is true, the lens is 
divergent. The focal distance as given by the above formula will be 
modified somewhat in actual cases when the gradient of potential is 
not zero on the side where the focus occurs, for the electron trajectories 
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will tend to be sections of parabolic curves instead of straight lines. The 
formula does, however, give a fairly exact indication of the principal 
effects and the correct value of sidewise components of velocity. 

The nature of the focusing of a set of grid wires is shown schematically 
in Fig. 11.16. An electron passing midway between grid wires suffers 
no sidewise deflection whatever. As the distance from the midplane 
increases, the electrons receive more and more deflection, by a linear law, 
so that they all cross over at the same point. This holds true almost 
exactly for the center half of the space between the grid wires. The 

FIG. 11.16.-Focal action of a grid. 

initial offset from the midplane, the focal length, and the tangent of the 
angle of deflection are related by 

tan a= Yo 
f 

(11.52) 

where y 0 is the offset from the midplane along the line of the grid wires 
of the electron's initial position, f is the focal length, and a is the angle 
of deflection. In terms of velocity components, 

(11.53) 

where v., and v11 are the forward and sidewise components of velocity 
possessed by the electron shortly after passing through the grid plane 
and vis the total velocity. 

The experimental agreement between this formula and the actual 
behavior is quite good, as shown in Fig. 11.17. Here is shown the actual 
deflection as measured on an elastic membrane ( curve a) and the deflec­
tion calculated on the assumption of a constant grid-plane potential 
equal to the mean potential of the grid plane (curve b). The measured 
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deflection is seen to become greater than the linear value as the electrons 
first approach the grid wires. This is due to lens aberration. The 
deflection then decreases. This is because, as may be seen in Fig. 9.10, 
those electrons which come very close to the grid wires are so strongly 
deflected that they come within the influence of the next grid wire and 
suffer a deflection in the opposite direction. 

_ _q 
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-0.30 

Y-

Fm. 11.17.-Deflection angle of an electron as a 
function of the offset from the mid-point !:>etween 
grid wires. 

Introducing the value off from Eq. (11.51) and the expression for 
velocity in terms of potential, 

= 2.96 X 10
5 [(dV) _ (dV) ] 

V11n • ITTV Yo dx dx 
V Yn R L 

(11.54) 

in which Vyn is the sidewise component of velocity acquired, in meters 
per second, from the nth grid, V n is the mean grid poteutial of the nth 

grid, in volts, and ( !:) R and ( !:) L are the gradients of potential to 

the right and left of the nth grid plane, respectively, in volts per meter. 
The corresponding expressions for the three grids of a pentode become 

_ 2.96 X 105 (V2 - V1 _ V1) 
V111 - • 1- Yo d d 

V V1 12 cl 
(11.55) 

_ 2.96 X 105 (Va - V2 _ V2 - V1) 
Vy2 - • 1- Yo d d 

V V2 23 12 
(11.56) 

_ 2.96 X 105 (VP - Va_ Va - V2) 
Vya - A;- Yo d d v Va ap 2a 

(11.57) 
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in which the sidewise components of velocity are in meters per second, 
grid potentials are understood to be mean grid-plane potentials in volts, 
and distances are in meters. 

The sidewise components of velocity are additive in the form shown 
in Fig. 11.18. Curve a of this figure shows the distribution of the side­
wise components of velocity after passing through one grid. The side­
wise components of velocity are uniformly distributed between plus and 
minus v1 where this is the maximum component of this tangential velocity. 
After passing through two grids the distribution of velocities has the 
form shown in b of Fig. 11.18. This is a trapezoidal figure with velocities 

(a) 

(bJ 

(c,J~ 

-(v1~-tv2+v, 

(c,:~ 
! v1-u2+vj v1 +vz+v, 

Vz.-tvrv, v,-i-'vz-tv3 

FIG. 11.18.-Distribution of sidewise component of 
velocity in a beam of electrons scattered by one, two, or 
_three grids. 

reaching from Vi + V2 to the negative of ,the same quantity. In this 
particular figure it has been assumed that v2 is less than vi. The dis­
tribution given is arrived at by sliding a rectangular aperture of width 
2v2 and of the same height as the rectangle of part a of the figure over the 
rectangle of part a and plotting the exposed area as a function of the 
displacement of the aperture. Upon repeating the prncess with an 
aperture of width 2va, the distributions of c1 and c2 result. The distribu­
tion of c1 results from the assumption that va is less than Vi - v2, whereas 
the distribution of c2 results when Va is greater than v1 - v2. 1 Both 

1 JoNKER, J. L. H., Electron Trajectories in Multigrid Valves, Philips Tech. Rev .• 
vol. 5, pp. 131-139, May, 1940. 
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these distributions consist of parabolic and straight-line sections with 
the same over-all span. The difference is that the distribution of c1 

has a straight-line center section, while that of c2 has a parabolic center 
section of large curvature. Both these distributions already show 
approximately the form of a Gauss error curve, which they would obtain 
from the random deflection of a large number of grids. 

If the distribution of tangential velocities as given above is known, 
the plate-current-plate-voltage characteristic can be calculated. It is 
necessary only to remember that at every plate voltage VP only those 
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Frn. 11.19.-Plate-current-plate-voltage characteristic of a 
tube with electrons scattered by one, two, or three grids. 

electrons will reach the plate whose tangential velocity after being 
deflected by all grids is less than a maximum value given by 

VII max = 5.93 X 105 v1v;, (11.58) 

This follows from the fact that an electron reaching the plate will have 
the value of velocity given by Eq. (11.58), and if all this velocity exists 
in a sidewise component then the electron will graze the plate and fall 
back through more positive spaces in the suppressor grid. If the plate­
current-plate-voltage characteristic be calculated on this basis, the curves 
of Fig. 11.19 result. The curves shown are for the corresponding 
velocity diagrams of Fig. 11.18. Curve a is similar to that which occurs 
in a beam-power tube. This is a tetrode with aligned grids in which 
the net effect of deflection by two grids is not very different from that 
of one grid as seen in Fig. 10.6. This effect undoubtedly contributes to 
the sharpness of the shoulder of the beam-power tube. The effect of 
two grids is shown at b. This would correspond to the curve of an ordi-
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nary tetrode free from secondary emission. The curve c is a typical 
pentode characteristic resulting from the random action of three grids. 
It is evident that it is necessary to keep the total sidewise velocity compo­
nent of the electrons low in order to achieve a sharp shoulder to the 
characteristic. Since all three grids contribute to this in approximately 
the same amount, it is necessary to study the effect of each of the grids 
to see what can be done to reduce the resulting sidewise component of 
velocity. Examination of Eq. (11.54) shows that, in general, the side­
wise component of velocity introduced by 5rid deflection may be reduced 
by either reducing the grid pitch or decreasing the change in the gradient 
of potential on passing through the grid. 

Deflections Due to the Control Grid. The same factors that give rise 
to a large mutual conductance abo give rise to small deflection. These 
factors are small grid pitch and a small value of cathode-grid spacing. 
It might be thought that a small cathode-grid spacing would give rise 
to a large change in the slope of the potential curves on the two sides of 
the control grid, but this is not the case, for the mean grid-plane potential 
increases as the cathode-grid distance decreases. Nothing much can 
therefore ordinarily be done with the control grid to decrease the electron 
deflection. 

Deflections Due to the Screen Grid. The electron deflections due to 
the screen grid may be reduced by increasing the distances d12 and d23 
in cases in which transit time is not a consideration. They can also be 
reduced by decreasing the grid pitch, though there is a limit to this 
method, for the current intercepted by the screen grid increases as this 
is done. 

Deflections Due to the Suppressor Grid. The suppressor pitch cannot 
be made too small, for then the mean suppressor-plane potential becomes 
too small and offsets the effect of the small grid-wire spacing as far as 
electron deflections are concerned. It is, however, possible to make the 
suppressor-grid-plate distance quite small, with resulting improvement 
in the deflection characteristics. This has the added advantage, as is 
apparent in Fig. 11.15, that the current is concentrated in front of the 
plate, giving rise to considerable space charge, which aids in increasing 
the retarding potential presented to the secondary electrons originating 
at the plate. The bad deflection situation that results from the use of a 
large suppressor-grid-plate distance is shown in Fig. 11.14. 

By making use of the possibilities indicated in the above outline it is 
possible to make pentode tubes with shoulders of the plate-current­
plate-voltage characteristic nearly as sharp as those of the beam-power 
tube. 



CHAPTER 12 

NOISE IN VACUUM TUBES 

12.1. Noise as a Limiting Factor in the IDtimate Sensitivity of Elec­
tronic Devices. Vacuum-tube amplifiers making use of triodes and 
pentodes are capable of giving extremely large amplification of power 
aud voltage. In fact, it may be said that an amplification of any desired 
magnitude may be achieved by the use of vacuum tubes. At first 
glance this would seem to imply that arbitrarily small signals could be 
detected. Ultimately, however, it is found that there is a limit deter­
mined by the noise generated by the random motion of electrons at the 
input of the circuit. Any signal whose level is appreciably less than 
that of the electron noise will be masked by it. The order of the equiva­
lent voltage of the electron noise is extremely small, of the order of 
millimicrovolts, but many electronic devices have enough amplification 
to bring this up to a detectable level. 

Electron noise shows up in both resistors and in vacuum tubes. Even 
in a passive resistor, the molecular and the electronic agitation is 
evident with sufficient amplification. Here the noise is referred to 
as "thermal-agitation noise." In vacuum tubes the random emission 
and fluctuation of space-charge-limited currents contribute a similar 
noise. In temperature-limited tubes this noise is called "shot noise" 
and is due to random emission. In space-charge-limited emission tubes 
the noise is much less and is called "reduced shot noise." Both types 
of noise are characterized by a uniform distribution of energy over the 
frequency spectrum. Depending upon the application, the noise from 
either the tubes or the resistors at the input of an electronic device may 
predominate. 

Needless to say, resistor and tube noise is an exclusive concern of 
electronic devices. No other type of device can have sufficient sensitivity 
to be limited by random electron motion. Resistor and tube noise set 
the ultimate sensitivity of high-gain amplifiers, receivers, phototube 
input circuits, and television pickup tubes. Although resistor and 
tube noise can never be avoided, much can be done by circuit design and 
selection of tubes to approach the minimum attainable noise. 

Although the formulas for various types of electron noise and their 
application are quite simple, their derivation is dependent upon some 

298 
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intima,te aspects of thermodynamics and the kinetic theory of gases that 
have not been developed in this book. For this reason, only the basis 
of the development will be given, and emphasis will be upon the inter­
pretation and application of the formulas. 

12.2. Noise in Resistors. Noise in resistors is due to the random 
motion of electrons within them. The noise energy is proportional 
to the resistance, the absolute temperature, and the frequency band 
width over which the noise is observed and is independent of the material 
of which the resistor is made. The noise energy increases with absolute 
temperature because the molecular agitation is proportional to this. The 
noise is probably made up of extremely short and sharp pulses resulting 
from the impact of the electrons with the molecules. These pulses are 
probably so short and sharp that they are made up of a continuous distri­
bution of frequency components of equal amplitude up to the highest 
frequencies in use today. As a result, the noise energy is uniformly 
distributed over the useful r-f spectrum. 

The mean-square thermal-agitation noise voltage e2 across the ter­
minals of a resistor R at an absolute temperature T, associated with a 
frequency band width B, is 

e2 = 4kTrRB (12.1) 

where e is rms value of the noise voltage, volts 
k is Boltzmann's constant, 1.3805 X 10-23 watt-second per °K 
R is resistance, ohms 
Tr is room temperature, °K (°C + 273) 
B is frequency band width, cycles per sec1 •2 

If room temperature is taken as 290°K (63°F), the expression for the 
rms noise voltage becomes 

e,ms = 126.0 -VRB micromicrovolts (12.2) 

A nomograph of this equation is shown in Fig. 12.1. For the sample 
construction line shown, the rms value of the noise voltage across a 
1,000-ohm resistor in a frequency band of 10 me is 12.6 microvolts. 

The effect of thermal-agitation noise can be expressed either as an 
emf in series with the resistor considered noiseless or as a constant­
current generator in parallel with the resistor considered noiseless. This 
follows from application of Thevenin's and Norton's theorems. The two 
equivalent circuits of a noisy resistor are shown in Fig. 12.2. The circle 
in the figure indicates a zero-impedance constant-voltage generator 

1 JoHNSON, J. B., Thermal Agitation of Electricity in Conductors, Phys. Rev., 
vol. 32, pp. 97-109, ,July, 1928. 

1 NYQUIST, H., Thermal Agitation of Electric Charge in Conductors, Phys. Re,,., 
vol. 32, pp. 110-113, July, 1928. 
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of the value given by Eq. (12.2). The square in the figure indicates an 
infinite-impedance constant-current generator whose output is 

i,_ = 126.0 ✓: micromicroamperes (12.3) 

at room temperature. This is obtained by dividing the expression for 
the rms noise voltage by the resistance. The general form of the above 
equation is 

irmA=/EP amperes (12.4) 

where all the symbols have their previous significance. A nomograph of 
therms noise-current equivalent of a noisy resistor to fit the right circuit of 

lnr/111/e impedance 
cons/ant current 

ge_nercdor 

' j 
I 
i 

j 
irms=V4k 'IJ,.B/R 

Fm. 12.2.-Equivalent circuits of a noisy resistor. 

Fig. 12.2 is given in Fig. 12.3. For the sample construction line shown, 
the equivalent rms noise current of a 1,000-ohm resistor is 4 milli­
microamperes for a frequency band width of 1 me. 

The noise power associated with thermal-agitation noise in a resistor 
is i 2R, or 

N = 4kTB watts (12.5) 

Note that this is independent of the value of resistance. The available 
noise power that can be obtained from a resistor by perfect matching is 
just one-fourth of this value. This follows immediately from maximizing 
the power obtainable from the middle circuit of Fig. 12.2 by varying 
the resistance load on such a generator. Maximum output power 
is obtained when the load resistance equals the generator resistance and 

e2 
has a value of 

4
R . Thus the available noise power is 

N,, = kTB watts (12.6) 
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At room temperature of 290°K this has a value of 

Na= 4.0 X lQ-21B watts (12.7) 

A nomograph of this equation is shown in Fig. 12.4. A temperature of 
300°K and a frequency band width of 10 kc is seen to give an available 
noise power of 4.1 X 10-16 watt. It is convenient to remember that at 
room temperature the available noise power for a I-me band width is 144 db 
below l watt. 

When two resistances at different temperatures are connected in 
parallel, the mean-square noise voltage becomes 

e2 = 4k R1R2~R2T1 + R1T2) B 
(R1 + R2) 2 volts2 (12.8) 

where the resistances are in ohms and the temperatures in degrees Kelvin, 
and Boltzmann's constant is 1.3805 X 10-23 watt-sec. When several 

~---- B -----~ 
Area under recfcmqle ,:S same as that 

under power qain curve 

Fm. 12.5.-Definition of equivalent band 
width. 

resistances are connected in parallel, the results are better expressed in 
terms of conductances. Let conductances G1, G2, Ga, ... , G,,. at tem­
peratures T 1, T 2, . • • , T ,,., respectively, be connected in parallel. The 
resulting .i;nean-square noise voltage is 

volts2 (12.9) 

Some care must be used in determining the band width to fit the 
above expressions. Since the concepts involved are basically those 
concerned with power, the equivalent band width of any device must be 
defined in terms of the power-frequency curve. In the case of an 
amplifier the band width is defined as that frequency interval for whicl: 
a power gain equal to the gain at mid-band would transmit the same noise 
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energy as does the actual power-gain-frequency curve. 
this becomes 

305 

Analytically, 

(12.10a) 

where GP is the power gain. All this amounts to is finding the width of a 
rectangular power-gain-frequency curve of height equal to the mid­
frequency power gain of the actual curve as shown in Fig. 12.5. In 
terms of voltage amplification, the equivalent band width is 

(12.lOb) 

where Gv is the voltage gain. 
12.3. Sources of Noise in Tubes. Noise can occur in vacuum tubes 

from a rather imposing list of sources. The principal sources of noise 
in tubes are 

1. Shot effect (temperature-limited emission). 
2. Reduced shot effect. 
3. Flicker effect. 
4. Collision ionization. 
5. Random division of current between electrodes. 
6. Induced noise at ultra-high frequencies. 
7. Faulty tube construction. 

a. Hum. 
b. Poor insulation. 
c. Vibration. 
d. Varying wall charges. 

Shot effect is the noise associated with random emission in a tube 
whose emission is temperature-limited. This is probably the loudest 
of the electronic tube noises but not the most serious, for tubes are seldom 
operated so that their emission is temperature-limited. 

The so-called "reduced shot effect" is observed in tubes whose 
emission is space-charge-limited. The magnitude of the noise is much 
less than in tubes whose emission is temperature-limited. In this case 
the space charge exerts a smoothing action upon the true shot effect, 
and the noise is principally due to variations in the space-charge currents. 

Flicker effect is observed with oxide cathodes. This effect is asso­
ciated with variations in the activity of the emitting surface. The effect 
is much more noisy than the true shot effect. for temperature-limited 
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emission. When the emission is space-charge-limited, the magnitude 
of the noise is greatly reduced. 

Noise in tubes is raised by the presence of an appreciable amount of 
gas. This is due to the fact that gas molecules are ionized by collision 
with emitted electrons and the positive ions formed subsequently 
liberate little bursts of electrons as they penetrate the virtual cathode 
in front of the emitting surface. Gas noise is inappreciable unless the 
positive-ion gas current is more than a few hundredths of a microampere. 
Such gas noise appears mostly below 10 me. 

Random division of current between electrodes contributes to the 
noise of multielectrode tubes and makes pentodes three to five times as 
noisy as the same tube connected as a triode. It may be said that 
multielectrode tubes will always be noisier than triodes because of this 
additional factor contributing to the tube noise. 

The ultra-high-frequency components of the random fluctuations of 
space charge in a tube will induce voltages in the grid circuit, which in 
turn will react back upon the space-charge flow. This effect is important 
only for frequency components above 30 me. 

Noise due to faulty tube construction is always present to a degree. 
If the filament is not sufficiently noninductive, hum will result. If 
insulation is poor at any point in the tube, there will be leakage currents, 
which will generally create noise because of nonconstant leakage resist­
ance. Vibration may be a factor in an electromechanical feedback 
circuit. Dirt on the glass inside of a tube may give rise to varying wall 
charges, which will influence the tube current in a noisy manner. All 
these items can, however, with sufficient care in construction be held to a 
very low level. 

Items 1, 2, 4, 5, and 6 listed above can never be removed entirely. 
They are, however, subject to an analysis that shows how their effects 
may be minimized. These items will be the subject of the subsequent 
sections. It has been found in most cases that it is convenient to 
express tube-noise effects in terms of equivalent noisy resistors. These 
resistors in turn are considered to have internal-noise emfs. 

12.4. Shot Noise in Diodes with Temperature-limited Emission. 
Noise in diodes was probably the first form of tube noise ever detected. 
It is generally referred to as shot noise but also as "Schrot noise" 
and "Schottky noise," after the scientist who first analyzed the 
effect. 1•2 The noise is due to the random emission and arrival of electrons 

1 ScHOTTKY, W., Spontaneous Current Fluctuations in Electron Streams, Ann. 
Physik, vol. 57, pp. 541-567, Dec. 20, 1918. 

2 See also FRY, T. C., The Theory of the Schroteffekt, Jour. Franklin Inst., vol. 
199, February, 1925. 
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at the plate. It cannot be explained in terms of individual electron 
emission or arrival alone, for if the electrons were emitted at a uniform 
rate the lowest frequency component of noise would be above the highest 
frequency that vacuum tubes can handle. Thus a current of 1 ma cor­
responds to a flow of approximately 1016 electrons per sec. If these 
did flow at a uniform rate, there would be no noise components below 
1016 cycles per sec. The electron stream evidently exhibits rather 
pronounced variations in density caused by the electrons arriving in 
groups. The mean square of the fluctuation components of current is 

kmperafure 
limited 
cvrrenf 

lnfin,re impeelPfnCe 
cons~nf current 
9enen;rfor 

F10. 12.6.-Constant-current-generator equivalent of a diode with temperature. 
limited current. 

found to depend only upon the magnitude of the emitted current and the 
frequency band width 
where e is electronic charge, 1.6020 X 10-19 coulomb 

i2 = 2e[0B amperes2 (12.11) 

I O is emission current, amperes 
B is band width, cycles per sec 

This expression may more conveniently be written 

? = 3.2041 X 10-19J0B amperes2 (12.12) 

If the current from a diode with temperature-limited emission is put 
through a resistor R, the diode effectively puts a noise power of value 
?R into the resistor. 

The above relations have been verified experimentally and they are 
reproducible to a high degree of accuracy. This property makes 
the diode with temperature-limited emission valuable as a standard 
noise source for such purposes as receiver and amplifier sensitivity 
measurement. 

The diode with temperature-limited emission acts like a conetant-
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current generator as far as noise energy is concerned and will put a noise 
current given by the above equations through a resistor of any size. 
The equivalent circuit of the diode with t emperature-limited emission is 
shown in Fig. 12.6. 

12.5. Reduced Shot Effect in Diodes with Space-charge-limited 
Emission. In diodes in which the emission is space-charge-limited, the 
shot noise is much less than in the same diode passing the same current 
when its emission is temperature-limited. 1- 4 The noise power is of the 
order of 10 per cent of that encountered for the same current when the 
emission is temperature-limited. The space charge thus has a very 
definite "smoothing" action upon the shot effect, giving rise to what may 
be called the "reduced shot effect." The mechanism of the smoothing 
action of the space charge is something like this: The virtual cathode in 
front of the emitting surface has a potential lower than that of the emitter 
by a value determined by the mean velocity of emission. Electrons 
with all velocities are storming this potential hill, and those with velocities 
greater than the mean velocity will on the average get past the virtual 
cathode and go on to the plate. Occasionally there will come a group of 
electrons with a velocity slightly in excess of that needed to get past the 
virtual cathode. When this occurs, the potential minimum at the virtual 
cathode is momentarily depressed by the additional space charge and as 
a result a few electrons that normally would have got past the potential 
minimum fail to do so and are returned to the emitter. This means that 
for every burst of electrons which might give rise to noise there is a 
compensating current set up in the opposite direction which tends to 
cancel the noise produced by the burst. The net result is an over-all 
reduction in noise that is considerable. The resulting noise levels are, 
however, high enough still to be of concern in the design of electronic 
equipment. 

By considering the action of each increment of the velocities encoun­
tered in the process of emission some fairly good theoretical expressions 
for the reduced shot noise may be obtained. If the ratio of the noise 

1 RAcK, A. J., Effect of Space Charge and Transit Time on the Shot Noise in 
Diodes, Bell Sys. Tech. Jour., vol. 17, pp. 1-28, October, 1938. 

2 NORTH, D. 0., Fluctuations in Space-charge-limited Currents at Moderately High 
Frequencies, RCA Rev., vol. 4, Part II, pp. 441-473, April, 1940; vol. 5, pp. 244- 260, 
July, 1940. 

3 WILLIAMS, F. C., Fluctuations of Space Cha rge Limited Currents in Diodes, 
Jour. I.E.E., vol. 89, Part III, pp. 219-229, December, 1941. 

• BELL, D. A., Fluctuations in Space Charge Limited Currents, Jour. I.E.E., vol. 
89, Part III, pp. 207-212, December, 1942. 

See also ScHO'ITKY, W., Wiss. Vcroffenl. Siemens-Werken, vol. 14, p . 15, 1937. 
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power of a diode passing a given current with and without space-charge 
limitation of current be designated by r2, then, for a plane-electrode 
diode with a large ratio of plate voltage VP to average emission voltage 
(velocity equivalent) v., 

(12.13) 

seems to be functionally correct. 1•2 The mean-square noise current can 
be expressed by an equation similar to that for the diode with tempera­
ture-limited emission as 

amperes2 (12.14) 

by analogy to Eq. (12.11). The mean-square noise current can also 
be written in the form 

z2 = 0 4kTcB 
Ri 

amperes2 (12.15) 

by analogy to Eq. (12.4). In this form, 0 is a dimensionless parameter 
that has an asymptotic value of 0.644 for large ratios of plate to minimum 
potential, Tc is the absolute cathode temperature, and R1 is the a-c 
diode resistance. Theoretically, the parameter O is within a fraction 
of a per cent of the asymptotic value as long as the plate current is 
less than 80 per cent of the emission current and the plate voltage is 
greater than 2 volts for normal oxide operating temperatures. 3-• Experi­
mentally determined values of diode noise are 50 per cent higher than 
predicted by the theoretical expressions of Eqs. (12.13) and (12.15), 
so that O assumes a value of unity for diodes. The significance of Eq. 
(12.15) is that the noise power from a diode whose emission is space-charge­
limited is the same as that from a resistor at the cathode temperature equal to 
the a-c diode resistance. 6 The equivalent circuit for this case is given in 
Fig. 12.7. 

1 WILLIAMS, op. cit. 
2 BELL, op. cit. 
3 PEARSON, G. L., Shot Effect and Thermal Agitation in an Electron Current 

Limited by Space Charge, Physics, vol. 6, pp. o--9, January, 1935. 
' R.~cK, op. cit. 
6 NORTH, op. cit. 

8 Combination of Eqs. (12.14) and (12.15) and the use of the fact that R, = : i: 
for the diode with space charge suggests that r 2 has the value (0.644) akVTC, which is 

e P 

consistant with the observed relation of Eq. (12.13). 



310 VACUUM TUBES 

12.G. Reduced Shot Effect in Triodes with Space-charge-limited 
Current. Triodes, too, are noisy. In fact, the noise in triodes, as pointed 
out before, may be a limiting factor in the sensitivity of an electronic 
device. The noise is due to the effects just observed in diodes and shows 
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Fm. 12.7.-Resistor equivalent to a diode with space-charge­
limited current. 

as a fluctuation in plate current. It is convenient to interpret the noiso 
in a triode as being due to a noisy resistor in series with the grid of the 
tube considered free from noise. The value of this noisy resistor in 
series with the grid is 

OT!] 
R.,. = G,,.T.Gm ohms (12.16) 

where 8 is the effective cathode-temperature ratio of approximate value 
two-thirds, Gm is the mutual conductance of the triode, G is the a-c 
conductance of the diode equivalent of the triode, Tc is absolute cathode 
temperature, and T, is absolute room temperature. The ratio of equiva-
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lent-diode conductance to triode mutual conductance is the inverse-square 
ratio of equivalent-diode spacing to the cathode-grid spacing as discussed 
in Chaps. 7 and 8. For the plane-electrode diode, from Eq. (8.45), this 
ratio is 

Q_ = [ l + ! (dcp)¾]¾ 
G.. µ. dcu 

(12.17) 

The corresponding ratio for cylindrical triodes is difficult to express 

Input 
circuit 
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c/rcuit 
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R =0644 GT,, ~ 2.S 
eq . G;,,.7;.-Gm 

2.5 Ipr 8I2/ rorpenfodeReq='i;L 1+0 :zn s m 

Output 
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Oufpuf 
circuit 

Output 
circuif 

Frn. 12.8.-Equivalent circuit of a noisy triode. 

exactly but is given approximately by 

Q_ = 1 + ! [ 1 + ~ ln ~] 
G.. µ 3 r0 

(12.18) 

The value of this ratio will generally lie between 1 and 2. Assuming 
that a typical value of the conductance ratio is 1.25 and that the cathodP. 
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temperature is 3.33 times the room temperature, Eq. (12.16) reduces to 

ohms (12.19) 

which is sufficiently accurate for a good many purposes. 1 The value 
of equivalent resistance thus given is that resistance which if inserted in 
series with the grid of the triode considered noise-free would cause as 
much noise current in the plate circuit of the tube as does the reduced 
shot effect. The equivalent circuits of triode in terms of a noise-generat­
ing resistor and a noise-free tube is given in Fig. 12.8. Observed values 
of noise in a triode agree very closely with the values predicted by the 
above equations, much more so than was the case with diodes. 

12.7. Noise Due to Gas in Tubes. When there is gas in tubes, there 
is an extra component of noise due to the electrons and ions liberated by 
collision ionization. The electrons passed by the grid will collide with 
some of the gas molecules, forming positive ions and liberating more 
electrons. The liberated electrons will pass on to the plate and give rise 
to some extra noise. The positive ions will be attracted to the negative 
grid and flowing through the external impedance will cause a voltage 
in the grid that will also give rise to noise. The noise is proportional to 
the number of ions formed, which in turn is proportional to the normal 
space current and to the number of gas molecules, or gas pressure. 
Fortunately, the positive-ion grid current is a measure of the number of 
ions formed per second and can be used to determine the noise without 
knowing the gas pressure. 2 ·3 As with other components of noise, the 
noise can be described in terms of a resistor in series with the control 
grid of the tube considered noise-free. The equivalent noise-generating 
grid resistor is 

ohms 

where Ru is shunt resistance of the grid circuit, ohms 
Gm is mutual conductance, mhos 
IP is plate current, amperes 
I 1 is control-grid current, amperes 

(12.20) 

1 HARRIS, W. A., Space Charge Limited Current Fluctuations in Vacuum Tube 
Amplifiers and Input Systems, RCA Rev., vol. 5, pp. 505-524, April, 1941; vol. 6, 
pp. 114--124, July, 1941. 

'Ibid. 
3 THOMPSON, B. J ., and D. 0. NORTH, Fluctuations in Space-charge-limited Cur­

rents Ca.used by Collision Ionization, RCA Rev., vol. 5, pp. 371-388, January, 1941. 



NOISE IN VACUUM TUBES 313 

The first term in this expression is due to the flow of positive-ion current 
through the external grid impedance. The second term is due to the 
electrons liberated upon ionization that are attracted to the plate. 

As an example, consider the case of a gassy tube for which the positive-ion 
control-grid current is 0.01 microampere. Let the mutual conductance of the 
tube be 5,000 X 10-s mho, the plate current 1 ma, and the shunt resistance of 
the grid circuit 100,000 ohms. Then the first term of Eq. (12.20) contributes a 
noise resistance of 2,000 ohms, and the second term contributes a noise resistance 
of 3.20 ohms. The second term of Eq. (12.20) is usually much smaller than the 
first term, as in this example, and can ordinarily be neglected. 

12.8. Reduced Shot Effect in Multielectrode Tubes with Space­
charge-limited Currents. Pentodes are even noisier than triodes-by a 
considerable factor. In fact, by comparison, triodes are relatively quiet. 
The additional noise in pentodes is due to the random division of the 
fluctuation noise between the electrodes. The individual groups of 
electrons that burst through the virtual cathode are quite local in their 
impingement upon electrodes in their subsequent travel, but the com­
pensating currents due to the displacement of the virtual cathode are 
more or less uniformly distributed between the electrodes in the ratio of 
the direct currents. As a result, the smoothing, or compensating, action 
in a pentode is much less pronounced than in a triode. 

As with the triode, the noise of a pentode can be expressed as being 
due to a noisy resistor in series with the control grid of the tube con­
sidered noise-free. The equivalent resistor in this case is1•2 

(12.21) 

where all the symbols have their customary significance. Currents must 
be expressed in amperes and conductances in mhos to yield equivalent 
resistance in ohms. The first factor of Eq. (12.21) is seen to be the 
equivalent resistance for a triode. The remainder of the expression 
generally increases the value of the trioq,e equivalent resistance by a 
factor of three to five. For screen currents much smaller than the plate 
current the noise in both the plate and screen circuits is approximately 
equal to the true shot effect for a current equal to the screen current. 
The value of the mean-square noise current in the plate circuit is readily 
obtained from this by means of Eq. (12.12) and converted to an equivalent 
noisy resistor in the plate circuit by means of the nomograph of Fig. 12.3. 

1 NORTH, D. 0., Fluctuations in Space Charge Limited Currents in Multi-collec­
tors, RCA Rev., vol. 5, pp. 244-260, October, 1940. 

2 HARRIS, op. cit. 
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12.9. Noise in Mixer Tubes. Mixers are also noisy. The factors 
that contribute to the noise of triodes and pentodes also contribute to 
mixer noise. In a mixer a large voltage from the local oscillator is applied 
to the tube so that the current and the mutual conductance swing over a 
large value. Since the noise of tubes is known as a function of current 
and mutual conductance, it is not too difficult to evaluate the mixer noise. 

In a mixer it is the noise in the intermediate-frequency band that is of 
importance. The noise in this band will vary periodically over the local 
bscillator cycle as the mutual conductance and current vary with the 
voltage applied at the local oscillator frequency. The total intermediate­
frequency noise can be obtai!)-ed by summing the plate noise over the 
local oscillator cycle. 

i r2 .. 
i;_/ = 2ir } 

0 
ip,.2 d(wt) (12.22) 

where ip,.2 is the mean-square noise current in the plate at any insta'tlt 
t and w is 2ir times the local oscillator frequency. It is convenient (except 
in the case of the diode mixer) to express the mixer noise in terms of an 
equivalent noise resistance in series with the control grid of the tube 
considered as noise-free. Thus 

- 2 
- 2 _ i;_r 
e,. - Gc2 (12.23) 

where Ge is the conversion transconductance of the tube. Corresponding 
to this value of input noise, the equivalent input noisy resistor is 

R 
e,.2 

•q = 4kT,B (12.24) 

R 
'i;_J2 

eq = 4kT,Gc2B (12.25) 

Upon applying the above ideas there are obtained the results shown in 
Fig. 12.9 for a fictitious pentode tube connected in accordance with the 
four most common mixer connections. 1 In this figure, Go is the maximum 
value which the mutual conductance assumes over the local oscillator 
cycle, generally that corresponding to zero grid voltage. The quantity 
G"' is the maximum value of the screen-plate transconductance. The 
quantity L is the maximum value of plate current when the signal is 

1 HEROLD, E. W., Superheterodyne Converter Considerations in Television 
Receivers, RCA Rev., vol. 4, pp. 324-337, January, 1940. 

See also the summarizing articles by HEROLD, E. W., and L. MALTER, Some 
Aspects of Radio Reception at Ultra-high Frequency, Proc. l.R.E., vol. 31, pp. 423-
438, 491-510, 567-582. 
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injected into the screen circuit and the local oscillator into the control­
grid circuit. 

It is seen that the triode is the best converter and the pentode with 
signal and local oscillator applied to the control grid is the next best. 
The others are too noisy for high-sensitivity applications. 
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Fm. 12.9.-Comparison of fictitious modulators presumed to have similar cathode and 
first-grid structures. (Herold.) 

When the values required in the tabulation of Fig. 12.9 are not 
available, the following formulas will be found sufficiently accurate for 
most purposes: 

For triode mixers, 
4 

R.., = G. (12.26) 

or 

ROQ = 2.5Gm 
0.2 (12.27) 
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For pentode mixers 

(12.28) 

or 

(12.29) 

where currents must be expressed in amperes and conductances in mhos. 
Gm is the mean transconductance over the local oscillator cycle, and Ge 
is the conversion transconductance of the local oscillator. In addition, 
the following rules of thumb may be applied, 

Ge (as converter) = ¼Gm (as amplifier) 
IP (as converter) = ¼IP (as amplifier) 
I 2 ( as converter) = ¼I 2 ( as amplifier) 

and, for pentodes only, 

Req (as converter) = 4Req (as amplifier) 

(12.30) 
(12.31) 
(12.32) 

(12.33) 

in which the values "as amplifier" refer to the peak of the local oscillator 
cycle. 1 

12.10. Noise Induced at mtra-high Frequencies by Random Emis­
sion. At ultra-high frequencies there is a conductive component to the 
input admittance of a tube. The finite transit time of the electrons 
makes it possible for the grid to transfer energy to the electrons as they are 
accelerated. 2 There is a separate component of noise associated with 
this effect. 3 •4 The high-frequency components in the tube noise induce 
currents on the grid, which in turn influence the electron current, thus 
giving rise to an extra component of noise. The equivalent input noise 
conductance is found to be the same as the input conductance, but at 
approximately five times room temperature. This extra component of 
noise may be represented as a constant-current generator across the 
electronic component of grid conductance across the input circuit. 
To a first order of approximation the induced noise is independent of the 
normal noise component, which may be added in series with the grid as 

l HARRIS, op. cit. 
See also articles by HEROLD, Proc. l.R.E., for some typical values. 
2 FERRIS, W. R., Input Resistance of Tubes as Ultra-high Frequency Amplifiers, 

Proc. l.R.E., vol. 24, pp. 82-107, January, 1936. 
3 NORTH, D. 0., and W.R. FERRIS, Fluctuations Induced in Vacuum Tube Grids 

at High Frequencies, Proc. I.R.E., vol. 29, pp. 49-50, February, 1941. 
4 BALLANTINE, STUART, Schrot Effect in High Frequency Circuits, Jour. Franklin 

Inst., vol. 206, pp. 159-168 August, 1928. 
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has been done before. The equivalent circuit for this effect is shown 
in Fig. 12.10. At ultra-high frequencies there is a component of grid­
input conductance due to feedback through the cathode-lead inductance, 
as well as the component due to electron-transit-time effects. Both 
components vary as the square of frequency and thus are hard to separate. 
The feedback component has noise associated with it too, but as a resistor 
at room temperature. 
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Frn. 12.10.-Equivalent circuit for induced noise in a tube 
at ultra-high frequencies. 

In general, the noise of amplifiers does not change much with feed­
back. This is because the amplification and input impedance are 
ordinarily changed by the same factor. 

12.11. Noise i.1. Velocity-modulation Tubes. In a velocity-modula­
tion tube a beam of electrons passes through the two grids of a resonator, 
between which there appears a high shunt resistance. Noise is gener­
ated, but there is evidently very little space-charge smoothing action in 
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this case. This is expected from the fact that there is no virtual cathode 
between the grids of the resonator. As a result, the noise is nearly the 
full shot noise of the beam, and therefore the noise power delivered to 
the resonator is given closely by 

N = 2eloBR,,. watts 

where e is charge of the electron, 1.6020 X 10-19 coulomb 
/ 0 is beam current, amperes 
B is frequency band width, cycles per sec 

R,,. is shunt resistance of the resonator, ohms 

(12.34) 

The equivalent circuit is shown in Fig. 12.11. In many cases the 
electron transit time across the grids is an appreciable fraction of a cycle, 

lnf'inife imped()lnce 
conslunf current 

'=Djo rffiE 
irms•YA2eioLJ t1mperes 

Fm. 12.11.-Noise-equivalent circuit of a veloc­
ity-modulated tube. 

in which case the transfer of energy from the electrons to the resonator is 
not perfect and the noise power delivered above is reduced by the factor 

A =s _in----'----'--(;) 
8 
2 

(12.35) 

where 8 is the transit angle of the electrons. This expression gives the 
efficiency of energy transfer between the electrons and the resonator and 
is developed in Chap. 17. It applies only to tubes with fine grids. 

12.12. Noise in Phototubes. High-vacuum phototubes produce the 
same noise as do hot-cathode tubes with temperature-limited emission. 
This is true shot effect, giving rise to a mean-square fluctuation current 
of the value 

in2 = 2eloB = 3.2040 X 10-19/oB amperes2 (12.36) 

This is the same value of current as is produced by a resistance at room 
temperature of value 

R.., = ½olo ohms (12.37) 
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The noise may be represented by a constant-current generator in parallel 
with the tube considered noise-free. The noise from the tube will often 
be of the same order as that produced by the large-value resistor used to 
develop voltage. Thus, if a 10-megohm resistor is used to develop 
voltage, the noise from the tube will be the same as the noise from the 
resistor when the current is 0.005 microampere. At higher currents the 
phototube noise predominates. The equivalent circuit of a typical 
phototube input circuit is shown in Fig. 12.12. 

Gas is sometimes used in phototubes to increase the plate current 
by cumulative ionization. When this is done, the noise is increased by 

4flf Lt)AmpJ,,et 
Actucd circuit 

irms=li4k:I;_B/R
1 1

erms=V4k:l;_RegB ,. 
Amplifier 

Equivalent noise circuit(Noise free) elements 
0 =Zero 1inpedance, consmnf voltage generator 

0= fnfin/fe 1inpeclcmce, consfanf current gener«for 

Fm. 12.12.-Noise-equivalent circuit of a phototube 
input circuit. 

about the same amount as the signal but the signal-to-noise ratio is in 
general improved because the contributions of noise from other sources 
becomes relatively less. 

12.13. Noise in Secondary-emission Multipliers. Another type of 
electronic amplifier in which noise may be a consideration is the second­
ary-emissi-0n multiplier. In such a tube there is a series of electrodes at 
successively higher potentials, each coated with a material that emits a 
large ratio of secondary to primary electrons. Electrons that strike the 
first anode give rise to S times as many electrons, which are attracted 
to the second anode, where they give rise to S times as many as the 
striking electrons, or S 2 times as many as struck the first anode. After n 
such impacts the current is S" times as great as it was originally, S being 
the ratio of secondary to primary electrons-a number that can be 
made as high as 9 or 10. It might be thought that with such a system 
tremendous amplifications could be obtained. True, they can, but no 
improvement in signal-to-noise ratio can be achieved. 
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Experimental results indicate that the following laws govern the 
noise associated with secondary emission in such a device: 

1. Secondary emission from any anode follows the shot-effect law, 
in2 = 2eBI 0, where I O is the emitted secondary current. 

2. Shot noise from any anode is multiplied by subsequent stages in 
the same way as the signal is. 1 

Consider the action in a few successive stages of secondary-emission 
amplification. Let the current from a first anode be I 0 ; then the mean­
square noise current associated with this is 

(n = 0) (12.38) 

When the direct current Io strikes the next diode, it gives rise to a direct 
current SI O and the corresponding mean-square noise current is multiplied 
by S 2, so that the mean-square noise current associated with the current 
Sio is 

(n = 1) (12.39) 

in which the first term is the amplifier noise power from the previous 
anode and the second is that associated with the liberated secondary 
current. The above expression is more simply written 

in2 = 2eBio(S2 + S) (n = 2) (12.40) 

At the next anode the liberated secondary current is S 2I 0 , and the mean­
square noise current is 

tn2 = S 22eBio(S2 + S) + 2eBS2I 0 (n = 2) (12.41) 
which is equal to 

tn 2 = 2eBio(S4 + S 3 + S 2
) 

Extension of this process to n stages yields 

- 2 - 2 BI S"(S"+i - 1) 
i,.-e o S-I 

(n = 2) 

(n = n) 

This means that the ratio of output to input noise power is 

Noise power out 
Noise power in 

(12.42) 

(12.43) 

(12.44) 

Correspondingly, the ratio of signal power out to signal power in is 

Signal power out = 82,. 
Signal power in (12.45) 

1 ZwoRYKIN, V. K., G. A. MORTON, and L. MALTER, The Secondary Emission 
Multiplier, Proc. I.R.E., vol. 24, pp. 351-375, March, 1936. 
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Upon taking the quotient of the last two equations, the relative change in 
the ratio of signal to noise power is 

Signal-power-to-noise ratio in 
Signal-power-to-noise ratio out 

Sn(Sn+i - 1) 
S 2n(S - 1) 

(12.46) 

This ratio is slightly greater than 1 but approaches this value as the 
secondary-emission ratio S is increased. This simply means that signal 
and noise are amplified about the same amount in a secondary-emission 
multiplier, and as a result there is no gain on the signal-to-noise ratio. 
There is, however, an advantage to using secondary-emission multiplica­
tion in that resistor noises are virtually eliminated. Thus a phototube 
with secondary-emission multiplication has a lower signal-to-noise ratio 
than a phototube-resistor-amplifier combination at low levels of illumina­
tion. A further discussion of this specific case is given in Sec. 19.20. 

12.14. Definition of Noise Figure. From all the preceding sections 
it is seen that there are inherent limitations to electronic devices deter­
mined by unavoidable noise. Most electronic devices will, in fact, be 
noisier than simple theory predicts because of an accumulation of various 
effects. The smallest amount of noise that an electronic device can 
possibly exhibit is the available noise power from the thermal agitation 
of a resistor in the frequency band considered, as given by Eq. (12.6). 
Usually the noise will be more than this. It is therefore convenient to 
use as a figure of merit for an electronic device the ratio of the actual 
noise power at its output terminals to that which it would have if the 
noise were limited to the minimum noise from thermal agitation. This 
figure of merit is called the noise figure of the device. Basically, the 
noise figure is an excess noise ratio. 

A rigorous definition of noise figure involves a consideration of the 
gain of the device and the available input noise power and the output 
power. The gain of a device, invariably a four-terminal network, is 
defined as the ratio of the available signal power at the output to the 
available signal power at the output of the signal generator, 

P • Bout G ower gain = sin = (12.47) 

This definition of gain is independent of the output impedance of the 
device, but it does depend upon the impedance of the signal generator, 
which is taken as the nominal input impedance of the device. In many 
applications there is no difficulty in using a signal-generator impedance 
that is equal to the input impedance of the device under consideration, 
but in some applications, such as extremely broad-band devices, it is 
extremely difficult to maintain a constant input impedance. Hence. 
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it is logical that the figure of merit should include nonconstancy of the 
input impedance. The available noise power between two terminals is 
defined as the noise power that would be absorbed by a matched output 
circuit. The available input noise power is .simply that given from the 
Johnson noise formula of Eq. (12.6), 

Nin= kTB (12.48) 

The noise figure is defined in terms of the factor of most importance 
in the ultimate sensitivity of an electronic device, the ratio of output 
signal to noise power. The maximum value this can have is the ratio of 
available input signal to noise p9wer if there are no other noise sources in 
the device and if all impedances are properly matched. Some four­
terminal networks that consist of passive elements only, say a trans­
former or a transmission line, have no noise sources present in them, but 
electronic devices always have some extra sources of noise. The noise 
figure F of the device is defined as the ratio of the avail,able signal-to-noise 
ratio at the signal-generator (input) terminals to the available signalrto­
noise ratio at the output terminals1•2 

(12.49) 

The noise figure of an electronic device is always greater than unity. 
The reference temperature is invariably taken as 290°K (63°F). 

Some rearrangements of Eq. (12.49) are useful. Upon utilizing the 
power-gain definition of Eq. (12.47) the noise figure may be written 

F = Nout 

GkTB 
(12.50) 

From this the available noise output power is 

Nou, = FGkTB watts (12.51) 

The available output noise due only to noise sources in the network is 

Nout - GkTB = (F - l)GkTB watts (12.52) 

Exampl,e: It is desired to calculate the noise figure of a 250-ohm-input 30-mc 
intermediate-frequency amplifier having a band width of 2 me and using 6AC7 

1 Fnns, H. T., Noise Figures of Radio Receivers, Proc. I.R.E., vol. 32, pp. 419-422, 
July, 1944. 

2 NonTH, D. 0., Absolute Sensitivity of Radio Receivers, RCA Rev., vol. 6, pp. 
332-343, January, 1942. 



NOISE IN VACUUM TUBES 323 

pentodes. Coupling between stages is provided with two inductively coupled 
tuned circuits. Let the tube constants be 

I,,= 10 X 10-3 

I2 = 2.5 X 10-3 

Gm= 9 X 10-3 

ampere 
ampere 
mho 

Then, from Eq. (12.21), the equivalent noisy resistor in series with the control 
grid is 

R _ 2.5 10 X I0-3 (l 8 X 2.5 X I0-3
) 

"" - 9 X I0-3 12.5 X I0-3 + 9 X 10-3 

= 715 ohms 

From Fig. 12.1 this corresponds to an rms noise voltage of 4.85 microvolts. 
Since the noise is developed across the input impedance in series with the equiva­
lent noise resistor, while the signal is developed only across the input impedance, 
the noise figure is 

F _ 715 + 250 = 3 86 
- 250 . 

In cases in which the stage amplification is low the effect of the noise from the 
following stage must be considered. In this case consider that the coupling 
network is a unity-ratio impedance transformer with an input impedance of 
50,000 ohms. If the second stage is identical to the first in operating charac­
teristics, then there is a noise voltage of 4.85 microvolts developed in series with 
its grid. This voltage corresponds to a current of 97.0 micromicroamperes 
through the plate load of the first stage. Upon referring this current back to the 

97 X 10-12 

control grid of the first stage, it corresponds to a voltage of 
9 

X 10_3 , or 0.0107 5 

microvolt. This is small compared with the 4.85 microvolts due to the first 
tube and so can be neglected in this case. 

Noise Figure for Two Networks in Cascade. Usually the sources 
contributing to the excess noise in an electronic device are principally 
in the input circuit of the device. However, when the first stage of 
amplification has insufficient gain, the noise sources effectively located 
in the input circuit of the second stage of amplification contribute 
appreciably to the over-all noise as well. Noise from subsequent stages 
is generally so small compared with the amplified noise from the earlier 
extra sources that it may be neglected. When the condition cited above 
is the case, then the following relations hold: Let the first and second 
stages of amplification be designated by subscripts 1 and 2, respectively. 
Let over-all characteristics be designated by the subscript 12. The over­
all power gain Ga is equal to the product of the gains of the first and 
RP.<>0nd stages, G1G2. Let the band width be that of the over-all charac-
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teristic as defined by Eq. (12.9). The available n01se power at the 
output of the first stage of amplification is 

watts (12.53) 

from Eq. (12.51). The noise power in the output of the second stage due 
only to sources in that stage is, from Eq. (12.52), 

(12.54) 

The total available noise power at the output of the second stage is G~ 
times the quantity in Eq. (12.53) plus the quantity in Eq. (12.54), 

N12 = GJi'l1·1kTB + (F2 - l)G2kTB (12.55) 
or 

N12 = [F1 + (F
2
G~ 

1
)] G1G2kTB (12.56) 

Now, upon applying the general formula [Eq. (12.51)1 to the over-all 
situation, 

(12.57) 

The values of available output noise over-all, from Eqs. (12.56) and 
(12.57), must be equal; therefore 

F2 - 1 
F12 = F1 +---G1 

(12.58) 

This is the important relation that has been sought. It gives the over-all 
noise figure of two amplifiers in terms of the separate noise figures and 
the gain of the first amplifier. Needless to say, the expression is not 
limited to amplifiers but may be applied to mixers and networks in 
general. 

Sometimes noise figures of circuit elements are expressed in terms of 
equivalent temperatures, simply the room temperature multiplied by the 
noise figure. The symbol t is often used to designate the ratio of the 
actual noise to the available thermal-agitation noise of Eq. (12.6). 
This is most frequently done with passive elements that produce noise, 
such as crystal detectors. The noise figure of a crystal input receiver is 

(12.59) 

where Lx is the conversion loss of the crystal detector corresponding to 
the reciprocal of the conversion gain of a tube mixer, Ix is the equivalent 
temperature ratio of the crystal, and Fa is the noise figure of the amplifier 
into which the output of the crystal detector is fed. If the crystal were 
noiseless, fx would equal unity. 
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The design of electronic equipment with regard to obtaining a low 
noise figure is a rather complex problem, which will only be touched 
upon here. 1 The problem is a combination one, involving consideration 
of circuits and noise sources. It is possible in some cases that the mini­
mum noise figure will be obtained with a condition of mismatched imped­
ances owing to the fact that a mismatch will reduce the noise more than 
it will the signal. With receivers it is found practical to use r-f amplifica­
tion before the mixer only up to a certain frequency. This frequency 
is of the order of 600 me at this time. Beyond this frequency the noise 
figure of amplifiers is so great that the signal-to-noise ratio is increased 
rather than reduced upon amplification. There is also an upper fre­
quency limit at which vacuum-tube mixers are practical. At present, 
this limit occurs at about 1,000 me. It is quite possible that these 
frequency limits will be extended with time. The limits occur because 
the effective mutual conductance of all tubes decreases with increasing 
frequency owing to transit-time effects, thus raising the noise. The 
ultra-high- frequency induced noise effect also contributes to increasing 
nms~. 

12.16. Measurement of Noise and Noise Figure. It is not difficult to 
measure the noise and noise figure of an electronic device when its gain 
is sufficiently high so that an appreciable output noise power is obtained. 
Square-law devices such as thermocouples are preferred in noise measure­
ments because the output indication is directly proportional to power. 
Crystal detectors may also be used at low levels of power. If the rectified 
crystal current is kept below a few microamperes, the crystal is almost 
certain to be a square-law device and as such is extremely sensitive. In 
this case the rectified crystal current is proportional to the input power. 
If a satisfactory power-output indicating device is used, the noise figure 
of a device ca,n be measured by simply introducing signal input power 
until the output indication from the noise alone is doubled. The input 
power is then equal to that generated by the internal noise sources, and 
the noise figure is given by 

F = Sm , 
kTB 

(12.60) 

\\·here S;n is the signal power in. For any other adjustment of signal 
input power the noise figure is given directly from the defining relation 
of Eq. (12.49), it being remembered that the output-power indication is 
the sum of the noise and signal power out. 

Diodes operating with temperature-limited emission may be used as a 
standard source of noise. Such diodes preferably have either a tungsten 

1 See the survey articles by HEROLD and MALTER, op. dt. 



326 VACUUM TUBES 

or a thoriated tungsten filament. It is difficult to keep the emitted 
current from an oxide-emitting surface constant under temperature­
limited conditions of emission. The noise, of course, is due to shot effect, 
with the mean-square noise current given by Eq. (12.12). Diodes may 
successfully be operated as a standard noise source up to 100 me. Beyond 
that frequency the impedance transformation introduced by the leads 
cannot be determined very accurately. Undoubtedly, special diodes 
can be built for noise measurements at higher frequencies. A standard 
noise source for measurements of the noise figure of an intermediate­
frequency amplifier would consist of the diode in a shielded can with leads 
brought in through properly by-passed chokes. Across the diode there 
can be placed a coil that tunes the capacity of the diode to the center 
of the band of interest. The tuned circuit thus formed should be shunted 
by the nominal input resistance of the amplifier to be tested. Output 
leads are then brought from across the tuned circuit to the amplifier under 
test. Let the nominal input resistance of the amplifier be R; then the 
noise power delivered to the resistor of value R shunted across the diode 
is 2el0RB, and the available power into the receiver is one-fourth of this. 
Let the diode current I O be adjusted until the normal noise output power 
of the receiver is doubled when the standard diode noise is connected to 
its input. Under these conditions the noise figure, from Eq. (12.60), 

· · b el oRB · e h th . l l f 20 h . 1s given y 2kTB; or smce 2kT as e numenca va ue o , t e n01se 

figure is given simply by 

F = 20IoR (12.61) 

where I O is the diode current in amperes and R is the nominal resistance 
of the receiver in ohms. 

12.16. Typical Tube-noise Values. In the table on the next page are 
given some typical operating conditions and associated noise values of 
representative triodes, pentodes, and mixers. 
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Type Application 
Plate 
volts 

--
6SK7 Pentode amplifier 250 
6SJ7 Pentode amplifier 250 
6SG7 Pentode ;.mplifier 250 
6AC7/1852 Pentode amplifier 300 
956 Pentode amplifier 250 
1T4 Pentode amplifier 90 
6SA7 Frequency converter 250 
6K8 Frequency converter 250 
1R5 Frequency converter 90 
6L7 Pentagrid mixer 250 
6J5 Triode amplifier 250 
955 Triode amplifier 180 
6AC7/1852 Triode amplifier 150 
6AC7/1852 Pentode mixer 300 
6SG7 Pentode mixer 250 
956 Pentode mixer 250 
6J5 Triode mixer 100 
6AC7 /1852 Triode mixer 150 
955 Triode mixer 150 

TABLE VI 
TUBE-NOISE VALUES* 

Voltages Currents 

Screen Bias Plate Screen Cathode 
volts volts ma ma ma 

--- --------
100 -3 9.2 2.4 11.6 
100 -3 3 0.8 3.8 
125 -1 11.8 4.4 16.2 
150 -2 10 2.5 12.5 
100 -3 5.5 1.8 7.3 
45 0 2.0 0.65 2.65 

100 0 3.4 8.0 11.9 
100 -3 2.5 6.0 8.5t 
45 0 0.8 1.8 2.75 

100 -3 2.4 7.1 9.5 
. . . -8 9.0 . . . ..... 
. . . -5 4.5 ... . .... 
150 -2 ... . .. 12.5 
150 -1 t 5.2 1.3 6.5 
125 -It 3.0 1.1 4.1 
100 -1 t 2.3 0.8 3.1 
. . . -1 t 2.1 ... . .... 
150 -It ... . .. 6.5 
. . . -1 t 2.8 ... . .... 

Trans-
Noise-equivalent 

Noise-
conduct-

resistance 
equivalent 

ance, Calcu-
Measured 

input, 
micro- lated voltage** 
mhos I ohms 

ohms microvolts 
I 

2,000 10,500 9 ,400-11,500 0.94 
1,650 5,800 5,800 0.70 
4,700 3,300 ............ 0.53 
9,000 720 600-760 0.25 
1,800 9,400 ............ 0.90 

750 20,000 . . . . . . . . . . . ' 1.3 
450§ 240,000 210,000 4.5 
350§ 290,000 ............ 4.9 
250§ 170,000 . . . . . . . . . . . . 3.8 
375§ 255,000 210,000 4.6 

2,600 960 1,250 0.28 
2,000 1,250 ............ 0.32 

11,200 220 200 0.14 
3,400§ 2,750 3,000 0.48 
l,180t 13,000 ............ 1.0 

650t 33,000 ......... . . . 1. 7 
620§ 6,500 . . . . . . . . . . . . 0.74 

4,200§ 950 ............ 0.28 
660§ 6,100 ......... ' .. 0.72 

• Reproduced from HARRIS, W. A., Space Charge Limited Current Fluctuations in Vacuum Tube Amplifiers and Input Systems, 
RCA Rev., vol. 5, pp. 505-524, 6, pp. 114-124, April, July, 1941. 

t At peak of oscillator cycle. t Hexode section only. Triode section takes its current from a separate part of the cathode. 
§ Conversion transconductance value. ** For effective bandwith of 5,000 cycles. 
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CHAPTER 13 

ELECTROSTATIC ELECTRON OPTICS 

13.1. Introduction. The term "electron optics" as applied to the 
behavior of electrons under the influence of electric and magnetic fields 
has been in use for some time. As the term implies, there is a close 
analogy between the behavior" of light rays and electron beams, particu­
larly when the fields through which the electron moves are purely electro­
static. Electrons move through an electric field just as do light rays 
through a medium of continuously variable index of refraction. Elec­
trons can be reflected, refracted, and focused very much as can light rays. 

Electron optics is a relatively new field of science, but already its 
study has led to the development of the cathode-ray tube, the high­
intensity kinescope, the image-dissector tube, the iconoscope, the 
orthicon, the various forms of electron multiplier tubes, the electron 
microscope, and many other devices. The groundwork for the new 
science was laid more than a hundred years ago by Lagrange, Maupertius, 
and Hamilton, who recognized that the principle of least action as applied 
to particles was strictly analogous to the Fermat principle of least time, 
which holds for light rays. The modern phase of the subject was 
ushered in by Busch, who showed in 1926 that the action of a short 
axially symmetrical magnetic field on electron beams was similar to that 
of a glass lens on light rays. The science was given a firm foundation 
by the early workers in the field, among whom Davisson, Calbick, 
Brueche, Glaser, Knoll, Ruska, and Scherzer were outstanding. At this 
writing, the total literature includes hundreds of technical articles, and 
already a number of books completely devoted to the subject have been 
written. 1- 5 Because of the extensive nature of the subject, it cannot 

1 BRUECHE, E., and 0 . SCHERZER, " Geometrische Elektronenoptik," Springer, 
Berlin, 1934. 

2 M ALOFF, I. G., and D. W. EPSTEIN, " Electron Optics in Television, " McGraw­
Hill, New York, 1938. 

3 MYERS, L. M., "Electron Optics," Van Nostrand, New York, 1939. Contains 
excellent bibliography complete to 1939. 

4 KLEMPERER, 0., "Electron Optics," Cambridge, London, 1939. 
For other, more compact summaries see ZWORYKIN, V. K., and G. A. MORTON, 

"Television," McGraw-Hill, New York, 1940, and GRAY, F., Electrostatic Electron 
328 
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be hoped that the present chapter will be more than an abstract of the 
most important aspects of the subject. 

It has already been indicated that the electrostatic field between the 
wires of a grid constitutes a cylindrical lens which is capable of focusing 
electrons. A more useful type of lens is produced by any axially sym­
metric field, whether electric or magnetic. An example is the electrostatic 
field about a circular aperture. All the laws that exist for the lenses 
of physical optics apply as well to the lenses of electron optics. An 
analogy can be developed between the quantities of geometrical optics 
and the corresponding quantities of electron optics. In the treat­
ment given here, the laws of electron optics will be developed from the 
mechanics of electron motion, and the analogy with those of geometrical 
optics will then be shown. 

Snell's Law. The basic law of geometrical optics is Snell's law of 
refraction, from which all the properties of physical lenses can be deduced. 
This law has its exact counterpart in electron optics. Snell's law for 
optics is 

(13.1) 

where n1 and n2 are the indices of refraction on two sides of a plane 
boundary and 81 and 82 are the angles of incidence and refraction of a 
light ray as measured from a normal to the boundary. The corresponding 
situation for electron optics is shown in Fig. 13.1. This shows the 
behavior of an electron moving in a region with a uniform potential V1 

and suddenly crossing into a region with a uniform potential V 2• This is 
approximately the situation that exists at the junction of the D's of a 
cyclotron, except that the region in which the potential changes from 
one value to the other has a small but finite dimension. In going from 
the region of one potential to the other, the component of velocity 
normal to the boundary is increased if the potential is increased, but 
the tangential component of velocity is unchanged. Equating the initial 
and final tangential components of velocity, 

(13.2) 

where v = 5.93 X 105 -v'V meters per sec when the potential is given 
in volts. Comparing Eqs. (13.1) and (13.2) it is seen that the quantity 
in electron optics corresponding to index of refraction is eleciron velocity. 

Optics, Bell Sys. Tech. Jour., vol. 18, pp. 1-31, January, 1939; Zeit. fur Tech. Phys., 
vol. 17 (No. 12), 1936. 

6 ZWORYKIN, V. K., and others, "Electron Optics and the Electron Microscope," 
McGraw-Hill, New York, 1946. 



330 VACUUM TUBES 

This in turn is proportional to the square root of potential if the electron 
starts from rest at a point of zero potential. 

The Principle of Least Action. A further correspondence between 
electron and geometrical optics lies in the principle of least time and the 
principle of least action. The principle of least time states that a light 
ray will assume a path such that the time between any two points of its 

Fm. 13.1.-Electron refraction. 

path will be a minimum compared with that for all other possible paths 
between the same two points. Thus 

T = f ~s = } f n ds = min (13.3) 

where s is distance, T is time, v is the velocity of light in a medium of 
index of refraction n, and c is the velocity of light in vacuum. In particle 
dynamics the corresponding law is that the integral of momentum with 
distance assumes a minimum value. The integral of momentum with 
distance is defined as action. The principle states that 

Action = j mv ds = min (13.4) 

The correspondence between the two principles is quite evident. Again 
it is seen that the counterpart of index of refraction is electron velocity. 
Note, however, that light velocity does not correspond to electron velocity. 

Simp"le Lenses. The lenses encountered in electron optics are gener­
ally of a more complex type than the simple lenses of geometrical optics. 
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Ia general, it is more difficult to analyze and to represent their charac­
teristics, on three distinct counts, as follows: 

l. In light lenses a discrete number of refractions occur at surfaces 
between materials of different indices of refraction, whereas in 
electron lenses the refraction occurs continuously through the 
equivalent of a material of variable index of refraction. 

2. The thin lenses of geometrical 
optics, i.e., lenses whose axial 
dimension is short compared 
with their focal length, are 
often operated in air, i.e., the 
light rays start and finish in a 
medium with the same index 
of refraction, with the result 
that the lens characteristic can 
be expressed in terms of a 
single parameter, the focal 
length. Electrostatic electron 
lenses on the other hand more 
often have initial and final 
potentials that are different, 
so that the equivalent initial 
and final indices of refraction 
are different, with the result 
that it takes two focal lengths, 
one for each direction, to 
describe the lens. 

3. The lenses of electron optics 
are usually thick lenses, i.e., 
the axial dimension of the lens 
is not short compared with the 

__ n _ __.n ____ _ 
Fm. 13.2.-Electronlensequivalent ofa 
thin physical lens. 

focal length. In such a lens it is not correct to measure the focal 
length from the center of the lens; rather, it must be measured from 
a reference plane known as the "principal plane," which may be 
outside the lens. This introduces another parameter for the thick 
lens. If in addition the initial and final potentials are different, 
four parameters are required to describe the lens: a focal length 
and a reference plane for each direction. 

Although the electron-optical equivalent of thin light lenses is 
seldom used, it is interesting for a first consideration to describe the 
1:Jquivalent of such thin lenses. In Fig. 13.2 is shown a simple, thin, 
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convex lens and its approximate electrostatic equivalent. This latter 
consists of two concentric electrodes of revolution, as shown, with the 
inner electrode at a higher potential than the outer. The corresponding 
axial variation of the index of refraction is shown for both cases. The 
focusing property of the lenses is derived from the combination of the 
variation of the index of refraction and the curvature of the bounding 
surface. In the case of the light lens the bounding surface is sharply 
defined, while for the electrostatic lens it is not so sharply defined. Both 
lenses have a convergent action. In the case of the electrostatic lens 
the convergent action results because the radial component of the 
gradient of potential pushes the electron toward the axis on both sides 
of the lens. The electron path shown in the figure may be used to define 
the term "focal length." An electron entering the lens parallel to the 
axis is deflected toward the axis while passing through the lens and 
emerges headed toward it. The subsequent path is a straight line because 
the electron is in a field-free region after passing through the lens. If 
the initial and final straight-line portions of the path be extended so 
that they intersect in the lens, then the axial distance between the plane 
of this intersection and the plane at which the electron crosses the axis 
is known as the focal length. The point at which the electron crosses 
the axis is known as the focal point, and the plane through this point 
normal to the axis is known as the focal plane. For the lenses of Fig. 
13.2 the focal lengths in the two directions are the same since the initial 
and final indices of refraction are the same. Further, any electron ray 
entering the lens parallel to the one shown will cross the axis at the focal 
point in the absence of aberrations. 

The case in which the initial and final indices of refraction are not 
equal seldom occurs in geometrical optics, but it is the most common 
case in electron optics. A fictitious example to illustrate the light case 
may be assumed to consist of a thin, convex glass lens in the side of a 
tank of oil, so that the light rays start in air and end in oil. (It is further 
assumed that the index of refraction of glass lies between those of oil 
and air.) This situation is shown in Fig. 13.3 along with the equivalent 
electrostatic lens. The equivalent electron lens in this case consists of 
circular apertures in two parallel-plane conductors maintained at different 
potentials. It is interesting to note that the focusing action of the 
electron lens is derived from the curvature of the equipotential surfaces 
shown rather than from the shape of the electrodes-this is usually the 
case. Also shown are the electron and light rays entering the lenses from 
both directions parallel to the axis. These rays are known as the 
principal rays of the lens, and their intersection with the axis defines 
the focal lengths as indicated above. The ray passing from right to left 
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is known as the "first principal ray," while that passing from left to 
right is known as the ":;;econd principal ray." In this case the focal 
lengths in the two directions are not equal. It will be shown later that 
the two focal lengths are in the ratio of the initial and final indices of 

------ -~1 

__ w_/ 

_n ____.~ 

Double 
aperture 
lens 

Fm. 13.3.-Double-aperture lel)s and physical 
equivalent. 

refraction, the larger index of refraction being associated with the longer 
focal length. 

The lens action in the case of Fig. 13.3 is more subtle than it appears 
at first glance. Referring to the light lens and considering a ray passing 
through it from left to right, it is seen that the action at the left face 
of the lens is convergent while that at the right face of the lens is diver­
gent. The net action for the assumed indices of refraction is, how-



334 VACUUM TUBES 

ever, always convergent, as will presently be shown. The ray passing 
from right to left, the first principal ray, experiences first a divergent and 
then a convergent action. The same type of action occura in the electro­
static lens except that the electron path is smoothly curved instead of 
consisting of straight-line segments. The second principal ray, originat­
ing at the left, experiences a convergent action in passing through the 
left part of the lens because the gradient of potential has a radial compo­
nent that is directed toward the axis. In passing through the right part 
of the lens the second principal ray experiences a divergent action because 

·------fHV------

vv __ / 
Equal diamefer 

Two cylinder lens 

Physical eqvivalenf 

_n -----~ 

FIG. 13.4.-Two-cylinder lens and physical equivalent. 

the gradient of potential has a radial component that is directed outward 
from the axis. It may be noticed that when the electron is traveling 
in the direction of increasing potential the curvature of the equipotential 
surfaces corresponds to the curvature of the equivalent optical-lens 
system. Thus, when the equipotential surface as approached by the 
electron is convex, the action is convergent and the equivalent physical 
lens surface is also convex. When the equipotential surface approached 
by the electron moving in the direction of increasing potential is concave, 
then the equivalent optical surface is also concave and the lens action is 
divergent. When the electron is moving in the direction of decreasing 
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potential, then a convex equipotential corresponds to a divergent action 
and a concave equipotential corresponds to a convergent action (as on 
the right face of the lens of Fig. 13.2). 

It remains only to consider the case of a thick lens. Such a lens is 
produced by the field of two equal-diameter coaxial cylinders at different 
potentials as shown in Fig. 13.4. Such a lens is characterized by having a 
long region in which the potential variation occurs. The corresponding 
lens dimensions will generally not be short compared with the focal length. 
Also shown in Fig. 13.4 is the equivalent physical lens. Principal rays 
for this case have the form shown later in Fig. 13.20. The action here 
is very similar to that in the preceding example except that the region in 
which the lens action occurs is longer. In all the examples given the 
electron-lens action has been shown for only one set of potentials. If 
the electrode-potential ratio is increased, then the difference between the 
initial and final index of refraction is increased and the lens becomes 
stronger and the focal lengths become shorter. Thus, in effect, every 
electron lens corresponds to a whole set of physical lenses, one for every 
possible voltage ratio. This property makes the electron lens a much 
more versatile instrument than the physical lens because the lens strength 
can be changed by simply changing electrode potentials instead of having 
to move lens components relative to one another. 

Lens Formulas. For the simple thin lens of Fig. 13.2 having the same 
initial and final index of refraction the formula relating distance from 
the lens to object and image and the focal length is 

-1 1 1 -+-=-l1 l2 f 

where 11 = distance from lens center to object 
Z2 = distance from lens center to image 
f = focal length 

(13.5) 

and the minus sign occurs because l1 is measured to the left from the lens 
center. This is well known to photographers and students of physical 
optics and will not be proved here. The general lens formula, of which 
this is a special case, will be developed for electron lenses from the differ­
ential equation of the electron paths. The geometry of the arrangement 
is shown in Fig. 13.5. 

For the thin Jens of Fig. 13.3, which operates between two different 
indices of refraction, there are two focal lengths, and the lens formula is 
given by 

(13.6) 

where /1 is the so-called "first focal length" associated with a ray entering 
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the lens parallel to the axis from the right and f 2 is the "second foca 
distance" associated with a ray entering the lens parallel to the axiE 
from the left, object distance is Zr, and image distance is Z2• The geo-

FIG. 13.5.-Focal relations in a thin lens. 

metrical relations for this lens are shown in Fig. 13.6. Note that a ray 
passing through the center of the lens does not make equal angles with 
the axis before and after passage in this case. Note, however, that the 
principal rays can still be used to construct an image; in fact, principa1 

rays can so be used to construct the image in general. 

Fro. 13.6.-Focal relations in a lens operating 
between two different media. 

For the thick lens of Fig. 13.4 the situation is somewhat more com­
plicated. The lens formula in this case has the form 

/1 + /2 = 1 
l1 - Pi l2 - P2 

(13.7) 

where the symbols have the significance shown in Fig. 13.7. Distances 
measured to the right are positive, to the left negative. The focal 
lengths fr and /2 are measured from reference planes H 1 and H 2, which 
are designated as first and second principal planes, respectively. These 
are located at the intersection of the extension of the initial and final 
straight-line portions of the respective principal rays. The distances 
Pr and P2 measure the distance from the lens center to the principal 
planes in the direction of the principal rays. The distance P 2 is negative 
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in this case. The focal lengths f 1 and !2 are measured from the principal 
planes to the intersection of the principal ray with the ax.is, f 1 being 
negative. These intersections of the principal rays with the ax.is are 
known as "focal points" and are located at a distance F1 and F 2 from the 
lens center. The significance of Eq. (13.7) is that the object and image 
distances must be measured with respect to the principal planes rather 
than with respect to the lens center. In effect, the behavior of a thick 
lens is the same as if the space between the principal planes did not exist, 
making them coincident, and a thin lens were located at the plane of 
coincidence. 

The method of constructing an image from an object is evident from 
Fig. 13.7. To find the point on the image corresponding to any point 
on the object, draw a first principal ray through that point on the object 

Hz 
i------ --- --- f2 ---------~ i+·P ---- ------.F'f,--------

~-------;•i--::::=--i2'---- ---------·-- - l2 -- ------------, 

FIG. 13.7.-Thick-Iens terminology. 

and through the first focal point until it intersects the first principal 
plane. From this point of intersection draw a ray parall~l to the axis 
extending to the right. Through the same point of the object draw a 
second principal ray parallel to the axis, and extend it until it intersects 
the second principal plane. From this point of intersection draw a ray 
through the second focal point, and extend it until it intersects the ray 
first constructed. The intersection of the~two principal rays gives the 
point on the image corresponding to the point on the object. Thus, if 
the two focal lengths and the location of the two principal planes of a 
thick lens are known, the image corresponding to any object can easily 
be constructed. 

13.2. Electrostatic-lens Fields. The analytical treatment of electron 
lenses has not been very completely developed. Ideally, it would be 
possible to obtain expressions for the potential fields associated with any 
given set of electrodes and then solve for the path of an electron through 
this field. Actually, the fields of electron lenses are not simple of deter-
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mination, and the solution of electron trajectories through them is 
even less so. However, by studying all aspects of lens fields and electron 
paths it is possible to accumulate enough fragments of information about 
electron lenses so that the whole picture can be pieced together rather 
well. The sum total of information that can be gathered is still small 
enough so that frequent recourse is had to model determination of fields 
and numerical solution of path equations. Even this procedure has 
its limitations and in the end gives way to experimental determination of 
lens characteristics. Nevertheless, no complete understanding of electro­
static lenses is possible without a fairly complete examination of the 
nature of the fields of electron lenses. 

Virtually all the electron-lens fields are two-dimensional fields having 
a symmetry about an axis of rotation. Cylindrical coordinates are best 
suited for describing such fields, radial distance being indicated by the 
symbol r and axial distance by the symbol z. Because of the symmetry of 
rotation the angular coordinate O is not involved. Laplace's equation in 
the above two-dimensional cylindrical coordinates takes the form 

.! i (r av) + a2v = o (13.8) 
r ar ar az2 

All expressions for fields of rotational symmetry must be solutions of 
this equation. 

General Form of Fields with Rotational Symmetry. One solution of 
Laplace's equation as given above is 

., 

V(r,z) = ,l (a,.ek•• + b,.e- k••)J0(k,.r) (13.9) 
n=l 

where the k's are values of the separation constant encountered in solving 
the Laplace equation, the a's and b's result from fitting the potential 
to the electrodes, and Jo is the zero-order Bessel function of the first 
kind. The second kind of Bessel function, No(knr), does not appear 
because the potential along the axis is finite. The k's can be either real 
or imaginary . If imaginary values of k are used, then an integral form 
of the expression for the potential field may be written 

V(r,z) = lo 00 

[A(k) cos kz + B(k) sin kz]J0 (ikr) dk (13.10) 

where A and Bare functions of k that are determined from the shape of 
the electrodes. The function Jo(ikr) has real values and is something 
like the function E'. The parameter k disappears in the integration. 

Probably the most useful form of the solution of Laplace's equation 
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in cylindrical coordinates is obtained by expressing the potential as a 
power series in r. This is done by assuming that the solution is of the 
form .. 

V(r,z) = 1 an(z)r" ~13.11) 
n=0,1,2,. 

If this expression is substituted in Eq. (13.8), the values of the coeffi­
cients a,., functions of z, may be determined and the series is thus 
established. Consider the step-by-step operations upon the nth term 
of the series in this determination. 

av - = na (z)r-1 
ar " 
av r ar = na,.(z)r" 

a ( av) - r - = n2a,.(z)r-1 
ar ar 

1 a ( av) - - r - = n 2a,.(z)rn-z r ar ar 

(13.12) 

(13.13) 

(13.14) 

(13.15) 

The corresponding term for the nth power of r is (n + 2)2a,.+2r". The 
other term of Laplace's equation yields 

a2v - = a "(z)r" az2 " (13.16) 

where the primes indicate derivatives with respect to z. Adding terms 
involving the nth power of r, a process that takes care of all powers 
because Eq. (13.8) is an identity, 

which gives 
a,." (z) 

an+2 = - (n + 2)2 

(13.17a) 

(13.17b) 

This is a recurrence formula that gives the coefficient of any power of 
r in terms of the coefficient of the second term proceeding. 

The symmetry of the field about the axis allows only even powers 
of r since values of the field for any positive and negative value of r 
must be the same. This requires that 

(13.18) 

With this restriction the entire series can be expressed in terms of the 
coefficient a0• 
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V(r,z) 
ao''(z)r2 a 0<4)(z)r4 

= aoro - -w- + 22 . 42 

( - l)n (r)2n + ... + -- - ao<2nl(z) + 
(n!) 2 2 

(13.19) 

where the superscripts in parentheses indicate the order of the derivative 
and n is no longer then of Eqs. (13.11) to (13.17) but assumes integral 
values as before. If now the value of a0 can be determined in terms of 
the potential, the series will be given in its simplest form. The value 
of a0 is fixed by the fact that, when r = 0, 

V(O,_;Z) = ao(z) = Vo(z) (13.20) 

In other words, a0 is the value of the potential along the .axis. This 
axial potential will be denoted by the function Vo(z) hereafter, to simplify 
the notation and to indicate that it is a function of a single variable. 
The subscript zero will further serve as a constant reminder that the 
potential along the axis only is involved. Expressing the coefficients 
of Eq. (13.19) in terms of the axial potential, 

V(r,z) = Vo(z) -
Vo"(z)r 2 Vo< 4l(z)r4 

22 + 22. 42 

(-l)nVo<2•l(z) (r)2n 
+ · · · + (n!) 2 2 + (13.21) 

This is the expression that has been sought. It is one of the most useful 
and most extensively used relations in electrostatic electron optics. 
The significance of this expression is that if the variation of potential 
along the axis of a field of rotational symmetry is known then the potential 
at any point in the field can be calculated. It follows that if the axial 
variation of potential is known then the derivatives of the axial potential 
with axial distance are determined. The derivatives can always be 
determined numerically or graphically if not analytically. In fact, the 
axial potential need not be and frequently is not capable of analytical 
expression. 1 

1 Scherzer has given another expression by which the potential at any point in a 
field of rotational symmetry may be determined from the axial potential. The value 

of V(r,z) is given by the real part of the integral_!_/.- Vo(z + irsin a) da, in which 
2,,. -.-

the expression in the integral is the axial potential function of the argument 
(z + ir sin a), a being a parameter that disappears upon integration. This expres­
sion converts to the series of Eq. (13.21) upon series expansion and term-by-term 
integration. It is of somewhat limited use because it generally requires that the 
axial potential be capable of analytical expression. 

See SCHERZER, 0 ., Zur Theorie der Elektronenoptischen Linsen Fehler, Zeit fur 
Ph;;s., vol. 8, pp. 183-202, January, 1933. 
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Many important properties of rotational fields can be deduced from 
the series of Eq. (13.21). Let the series be expanded further in terms 
of z1 = z - z0 in the vicinity of z0• Then 

V o(z1) = Vo(zo) + Vo'(zo)Z1 + ½Vo''(zo)z12 + · (13:22) 

by Maclaurin series. The corresponding expression for potential, by 
Eq. (13.21), becomes 

V( ) V ( ) V '( ) + 1 2 y "( ) r
2
Vo"(z0) + , r,z = o Zo + Z1 o Zo 2 Z1 o Zo -. 

4 
· · · (13.23) 

The equipotential V(r,z) = Vo(zo) in the vicinity of the axis reduces to 
the hyperbola 

r2Vo" , Z1 2Vo'1 

-
4

- = Z1Vo + -
2
- (13.24) 

Upon applying Eq. (5.26), the radius of curvature of an equipotential 
at the axis is found to be 

R = 2Vo' 
Vo" 

(13.25) 

The radius of curvature generally assumes its smallest value. when the 
second derivative of the axial potential is greatest. 

At a saddle point of potential as shown in Fig. 13.14 at the ap¢rture 
center Vo' = 0, the radius of curvature tends to become zero, and the 
equipotentials are straight lines intersecting and forming a branch 
point at the axis. From Eq. (13.24), for the conditions stated it is 
seen that 

r2 
tan2 'Y = - = 2 

z1
2 'Y = 54°44' (13.26) 

where 'Y is the angle between one of the equipotential branch lines and 
the axis. Equipotential lines at a saddle point will always intersect the 
axis as straight lines, making an angle of 54°44' with it. 1 

1 It is of interest to record the properties of two-dimensional fields expressible in 
the rectangular coordinates x and y and having no variation in the z direction. Let 
the x axis coincide with a line of symmetry; then 

. y2Vo"(x) y•Vol•>(x) (-l)ny2nVo(2nl(x) 
V(x,y) = Vo(x) - 21 + 41 + · · · + (2n)! + · · 

The radius of curvature of an equipotential at a point along the line of symmetry is 
V' , 

given by R = V :,,· At a saddle point on a line of symmetry the equipotentials ~i~ 

straight lines making an angle of 90 deg with each other and 45 deg with the axis. 
These relations apply in cases sueh as the line of symmetry midway bttween the grid 
wires of an ideal plane triode. 



342 VACUUM TUBES 

The Equal-diameter Two-cylinder Lens. The equal-diameter two­
cylinder lens is very extensively used in electron optics. The field of 
such a lens is shown in Fig. 13.8. Here are shown the equipotential 
lines within the coaxial cylinders. All the equipotential lines pass 
through the gap between the two cylinders. They also all intersect the 
axis at right angles. The plot is further seen to be symmetrical about the 
axis and about the midplane. The shape of the field is nearly inde­
pendent of the gap spacing, provided that this is small. 

Fm. 13.8.-Field plot of an equal-diameter two-cylinder lens. 

The axial-potential distribution of the equal-diameter two-cylinder 
lens with small gap spacing has been found to be 

1.32z 
Vo(z) = V 1 tanh ~ (13.27) 

when the two cylinders have potentials of - V1 and + V1, respectively, 
and R is the radius of the cylinders. 1•2 If the cylinder potentials are not 

1 GRAY, op. cit., p. 25. 
2 BERTRAM, S., Determination of Axial Potential Distribution in Axially Symmetric 

Fields, Proc. I.R.E., vol. 28, pp. 418-421, September, 1940. See also BERTRAM, S., 
Calculation of Axially Symmetric Fields, Jour. App. Phys., vol. 13, pp. 496--502; 
August, 1942, for general material on this subject, 
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equal, then the axial potential takes the form 

(13.28) 

where V 1 is the first-cylinder potential and V 2 is the second-cylinder 
potential. The derivatives of the axial potential are readily found to be 

Vo'(z) = 1.32 (V2 - V1) 1 
R 2 h 2 (1.32z) cos --

R 

(13.29) 

and 

Vo" (z) 
(

1.32z) 
-3.48 V: - V, tanh -r 

=--w- 2 ( ) h 2 1.32z 
cos --

R 

(13.30) 

14 · ,,,........ R 2V,/(z) 
,......-r-,.... ' \. 
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FIG. 13.9.-Axial potential and its derivatives-equal-diameter two-cylinder lens. 

The axial potential and its first two derivatives for the case in which 
V1 = - V 2 and R = I are plotted in Fig. 13.9. Examination of the 
curve for the axial potential shows that, at a distance of one radius 
from the midplane, the potential is within 8 per cent of its final value. 
At a distance of one diameter from the midplane, the potential is within 
1 per cent of its final value. The entire region of variation of potential 
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is therefore virtually confined to a region within one diameter of the 
mid plane. 

Equal-diameter Spaced Cylinders. Another electrostatic lens fre­
quently encountered is that of two coaxial equal-diameter cylinders 
spaced, an appreciable distance. A simple approximate formula for the 
axial potential in this case takes the form 

Vo(z) = V1 + V2 + V2 - V1 In l cosh (~) l (13.31) 
2 2.64s [l.32(z - s)] 

R cosh R 

' .- •.f'". I 

r ; ~. .t' • . 

where s is the axial spacing between the cylinders. 1 This expression 
reduces properly to Eq. (13.28) for s = 0. The expression given was 
derived on the assumption that the potential variation between the two 
cylinders at a radial di'stance equal to the cylinder radius is linear. This 
is a moderately good approximation, but not exact. 

For -this same case, an empirical approximation to measured axial­
potential distributions takes the form 

Vo(z) = V1 t V2 + V2 ~ V1 !oz e -~•' dz (13.32) 

where bis an experimental parameter equal to the reciprocal of the slope 
Jf the potential curve at z = 0 and having the value2 

b = 2R [ 0.73 + 0.53 C~) 2 ] (13.33) 

For large values of z the value of axial potential assumes the correct 
value of the electrode potential by virtue of the fact that the integral 

b 
assumes the value 2 for z = ± oo The formula is also approximately 

correct for small values of z as may be seen by settings = O and expanding 
the integral in series. The first few terms give 

Vo(z) = V1 t V2 + V2 i V1[1.37i- 0.673(iY + .. ·] (13.34) 

whereas the expression of Eq. (13.28) involving the hyperbolic tangent 
gives 

Vo(z) = V1 t V2 + V2 ; V1 [ 1.32 i - 0.790 (iY + .. ·] (13.35) 

1 BERTJ\AM, S., Determination of Axial Potential Distribution in Axially Sym­
metric Fielas, Proc. I.R.E., vol. 28, p. 420, September, 1940. 

1 KIRKPATRICK, PAUL, and J. G. BEcKERLY, Ion Optics of Equal Coaxial Cylinders, 
/lev. Sci. Imtr., vol. 7, pp, 24-,261 January, 1936. 



ELECTROSTATIC ELECTRON OPTlCS 345 

The slope of the empirical function thus agrees within 5 per cent with 
the correct value for z = 0. The general formula is probably well within 
10 per cent as long as the cylinder spacing is less than 1.75 cylinder 
diameters. The integral form of Eq. (13.32) is very convenient for some· 
lens calculations because of the fact that the function is readily differ­
entiated and integrated and because numerical evaluations of the func­
tions involved are extensively tabulated. The formula given applies 
strictly to the case of electrodes that have toroidal corona rings attached 
to the edge of the cylinders that are tangent to the cylinder edges at their 
outside diameter and have a radius one-tenth of the cylinder radius. 

FIG. 13.10.-Potential field of a two-cylinder lens, D 2/ D 1 = 1.25. 

Two-diameter-cylinder Lenses. No exact analytical expressions are 
available for electrostatic lens made of coaxial cylinders of different 
diameters. The fields for such lenses are easily measured by means of an 
electrolytic tank. Results of such measurements are given in Figs. 
13.10 to 13.12 for diameter ratios of 1.25, 1.50, and 2.0, respectively. 
All these electrode arrangements perforrr{ about equally well as lenses so 
that there is not much choice between them. A comparison of their 
characteristics is hs.d by plotting their axial-potential variations on the 
same graph, as is done in Fig. 13.13. The differences between these 
curves are not of great practical interest. All exhibit the same general 
characteristics. They differ only in the amounts and position of their 
maximum slopes and curvatures. 

Aperture Lenses. Another lens of great interest is that associated 
with a circular aperture in a plate perpendicular to an applied field. 
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5 

Fm. 13.11.-Potential field of a two-cylinder lens, D2/D1 = 1.5. 

0 

5 

F10. 13.12.-Potential field of a two-cylinder lens, D2/D1 = 2.0. 
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Such a lens will have potential variations that are essentially the same 
as those between parallel plates except in the immediate vicinity of the 

-2.0 -1,5 -1.0 -0.5 
-~ R, 

0 0 0.5 1.0 

+i~ 
1.5 2.0 2.5 

FIG. 13.13.-Axial potentials of two-cylinder lenses for different diameter ratios. 

aperture. The potential expressions for this case have been worked out 
by fitting equipotential surfaces which are hyperboloids of revolution to 
the circular aperture, the edges of which in any 
plane through the axis are the foci of the hyper­
boloids.1 For the case of a plane electrode con­
taining a circular aperture of radius R and 
operated at zero potential midway between two 
planes at potential V and spaced a distance d 
large compared with R, the expression for the 
axial potential is 

lzl R 2 [ z (R) ] Vo(z) = V - - V - - - arctan - - 1 
d d1r R z ~ 

(13.36) 

where z is the distance measured from the center 
plate containing the circular aperture. The FIG. 13.14.-Aperture 
resulting potential field is shown in Fig. 13.14. midway between plates 
This is a case that exhibits a saddle point at the at the same potential. 

center of the aperture. Here the potential pro-
files parallel to the axis and to the center plate curve in opposite direc-

1 0LLENDORF, F., "Potential Felder der Elektrotechnik," pp. 295-297, Springer, 
Berlin, 1932. 
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tions. The equipotentials through this point are seen to be straight lines 
making an angle of 54°44' with the axis. 

A case of more general interest is that of a circular aperture in a plate 
between two plates of different potentials and at different spacings. 
Let the plates and their potentials be numbered in order from left to 

FIG. 13.15.-Potential 
fi~ld of a single-aper­
ture lens. 

Fm. 13.16.-Potcntial field 
of an Einzel lens. 

right, the circular aperture being in plate 2. The axial potential is then 
given by 

V ( ) ·- (V1 - V2)d2a + (Va - V2)d12 {I I 2R[z t (R) i]} o z - ----~~ - - ---- z - - - arc an - -
2d12d2a 1r R z 

+ (Va - V2)d12 - (V1 - V2)d2a z + y
2 

(l3_37) 
2d12d23 

w};lere V 1 is potential of first plate 
V 2 is potential of plate containing aperture, the second plate 

. . Va is potential of third plate 
d12 is distance from first to second plate 
d23 is distance from second to third plate 

z is axial distance measured from plate containing aperture 
R is aperture radius 

The resultant potential field for the case of V I and V 2 having a value of 
zero is shown in Fig. 13.15. The penetration of the equipotential lines 
into the region of zero potential gradient is seen to be quite small. At 
one aperture diameter the potential gradient falls to about 5 per cent 
of the gradient on the other side of the aperture. 
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A type of electrostatic lens using apertures that has proved very 
useful in some electron microscopes is shown in Fig. 13.16. This lens 
is called an "Einzel lens" (single lens) because it initiates and terminates 
in a single value of potential. It has the advantage that it may be placed 
anywhere along an electron stream without disturbing adjacent potential 
relations. The electrons leave this lens at the same potential at which 
they enter. The axial potential forms a symmetrical hill with a saddle 
point at the center. 

13.3. Electron Paths. The general differential equation for the path 
of an electron in an electrostatic field of rotational symmetry is a little 
too complex to be generally useful. If, however, the considerations are 
restricted to electrons that move close to the axis and make a small 
angle with it, the so-called "paraxial rays," then the differential equation 
of motion becomes relatively simple. In electron optics as in physical 
optics it is found that most of the properties of lenses can be determined 
from the behavior of the paraxial rays. 

The general differential equation in two-dimensional cylindrical 
coordinates is the same as that for two-dimensional rectangular coordi­
nates as given in Eq. (6.59), with z and r substituted for x and y, 

2V ::: = (~: - ~: ::) [ 1 + (::)2] (13.38) 

where the potential V is understood to be a function of r and z. If 
attention is restricted to paraxial electrons, then the angle that these 

make with the axis is small and hence the term (::) 
2 

is small compared 

with unity and can be dropped. Further, if the radial distance of an 
electron from the axis is small, use can be made of the small value approxi­
mations derived from the series expansion for potential as given in Eq. 
(13.21). Thus 

av 2rVo" 4 Vo< 4>r3 

ar = 0 - -4- + 64 + 
or, for small r, approximately 

Likewise, 
av 
az 

av,.._, rVo" a;= - -2-

r2v ,,, 
Vo' - --0

- + 
4 

or, for small r, approximately 

av~ Va' az -

(13.39) 

(13.40) 

(13.41) 

(13.42) 
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Upon making these substitutions into Eq. (13.38) and letting V = Vo 
for the conditions of small radial distance imposed, the differential 
~quation of motion of a paraxial electron becomes 

d2r + Vo' dr + Vo" r = 0 
dz2 2Vo dz 4 Vo 

(13.43) 

In all the above, the argument z has been understood to be associated 
with axial potential Vo. Equations (13.43) and (13.21) are probably 
the two most important equations in electrostatic electron optics. From 
these all the important relations regarding lenses may be derived. The 
above equation may be redqced to several alternative forms that are 
sometimes more useful. By combining the first and second derivatives 
there results 

vVo i. (vVo dr) = _ Vo"r 
dz dz 4 

(13.44) 

The first-derivative terms may be eliminated from Eq. (13.43) by m2.kiug 
the substitution: 

p = rVo¾ (13.45) 

The differential equation of motion then becomes 

!~ + t6 e;:r p = 0 (13.46) 

All the above differential equations confirm the observations previ­
ously made on the properties of the electron paths. The path is seen 
to be independent of the charge and mass of the electron. The path depends 
only upon the shape of the potential field and not upon the magnitude of 
the potential. If the electrode configuration is enlarged, the electron path 
is correspondingly enlarged. 

In general, the expressions for axial potential are sufficiently complex 
in even the simplest cases so that it is not possible to solve explicitly 
for the electron paths. It is, however, possible to solve the differential 
ec,_u.ation of the electron path numerically in all cases. In spite of the 
fact that the differential equations of motion are in general insoluble, 
most of the important properties of lenses may be deduced from them. 

13.4. General Lens Properties. Thin Lenses. A thin lens is one in 
which the lens dimensions are short compared with the focal length. 
The focal length of such a lens may be determined from Eq. (13.44) 
by studying the path of an electron that enters a region of potential 
variation parallel to the axis. If the angle at which this electron emerges 
from the lens can be determined, the focal length will be known without 
solving for the path completely. Let the lens under consideration be ono 
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similar to that shown in Fig. 13.3. Let the initial and final values of 
potential relative to a path from left to right be V1 and V2, respectively. 
A first integration of Eq. (13.44) gives 

v Vo- - - - --dz 
[

- fir dr]
2 

_ 1 /." rVo" 
dzl 4 z,v'Vo (13.47) 

If the lens is very short, then the value of r will not be greatly changed 
in passing through the region of potential variation though the direction 

of the electron and hence the value of :: will be. The coordinate r 

may accordingly be treated as a constant and removed from within the 
integral sign. If, in addition, attention be restricted to the second 
principal ray, i.e., the ray entering the lens parallel to the axis from the 
left, then the lower limit of the left-hand term of the equation is zero and 
the equation reduces to 

y1'V; (dr) = -r rz•I.{__ dz 
dz 2 4 } z, vVo 

(13.48) 

In passing through the lens the electron is bent toward the axis. 
As soon as the electron is a short distance beyond the lens, it is in a field­
free region and hence its path is subsequently a straight line. From 
simple geometry 

/2 = (-;;)r 
dz 2 

(13.49) 

where r is the radial position of the electron on passing through the lens. 
From this the formula for focal length becomes 

1 1 {z' Vo" 
h = 4 ~ }z, vVodz (13.50) 

A similar treatment of the case of an electron entering the lens parallel 
to the axis from the right yields 

1 -1 [z• Vo" 
Ji= 4 v'V1 }z, v'Vo dz 

(13.51) 

When the axial potential of a lens is known, it is necessary only to 
VII 

measure the area under the curve of _ ~ and then multiply by the 
v Vo 

reciprocal of four times the square root of external potential. Com­
paring Eqs. (13.50) and (13.51), it is seen that the two focal lengths 
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of the lens are in the ratio of the square root of the limiting values cf 
potential, 

ii_ -y'v; 
J;. - v'Vi (13.52) 

This is exactly analogous to the law for light lenses, which says 
that the focal lengths are in the ratio of the indices of refraction on the 
two sides of the lens. 

FIG. 13.17.-Axial potential functions of a double-aperture lens. 

Some typical curves of axial potential and the integrand of Eqs. 
(13.50) and (13.51) for the lens of Fig. 13.3 are shown in Fig. 13.17. 
The first part of the lens has a convergent action, and this is associated 
with a positive value of the second derivative of the axial potential. 
The second part of the lens has a divergent action, which is, however, 
weaker because of the higher velocity of the electron, and this is asso­
ciated with a negative value of the second derivative of the axial poten~ 
tial. The reason for the association of the sign is evident from Eq. 
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(13.40), from which it is seen that the radial component of the gradient 
of potential is directly proportional to the second derivative of the axial 
potential as long as the distance from the axis is not too great. As a 
result oi this, the radial force on an electron is directed toward the axis 
when the second derivative of the axial potential is positive, and vice 
versa. It may be stated as a general rule that the action of a lens segment 
is convergent whenever the second derivative of the axial potential is positive 
and divergent whenever the second derivative of the axial potential is negative. 
In the case of a symmetrical lens such as is shown in Fig. 13.3, the con­
vergent and divergent forces in the two halves of the lens are the same, 
but the deflection that results is always greater on the low potential 
side; for here the velocity of the electron is less, and the deflection for a 
given force is greater. 

An alternative form of Eqs. (13.50) and (13.51) that yields much 
useful information is obtained by evaluating the integral by parts. Let 

Then 
and 

du = -½Vo-*Vo' dz and 

dv = Vo" dz 

v = Vo' 

Making use of these substitutions in the well-known formula for integra­
tion by parts, 

f u dv = uv - f v du (13.53) 

there results 

_! = Vo'(z2) - Vo'(z1) + 1 {" (Vo') 2 dz 
/2 4Vo(z2) 8VVo(z2)},, Vo }• 

(13.54) 

where Z1 refers to a point to the left of the lens just outside of the region 
of appreciable potential variation and z2 refers to a corresponding point 
to the right of the lens. The corresponding formula for the fin,t focal 
length is had by simply interchanging the subscripts 1 and 2 in the above 
equation. _ 

For the case of lenses whose initial and final gradients of potential 
are zero, the first term of the right-hand ~ide above becomes zero, and 
the integral alone gives the focal length. 

1 1 (" (V0')
2 

h = 8 -vVo(zJ },. Vo* dz (13.55) 

The form of the integral in this case is particularly revealing. It is 
apparent that the integrand is always positive because the first derivative 
of the axial potential, which may be negative, is squared and hence the 
focal length is positive. The_ interpretation 0f this is that the len8 fa 
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convergent in aU cases in which the initial and final gradients of potential 
are zero. 

When the initial and final gradients of potential are not zero, as is 
the case with most single-aperture lens, the first term of Eq. (13.54) 
will usually make the major contribution to the focal length. 

1 Vo' (z2) - Vo' (z1) (l3_56) 
h = 4 Vo(z2) 

This formula is generally accepted as a sufficiently accurate one for 
single apertures. The lens action of such an aperture may either be 
convergent, f positive, or divergent, f negative. In the simple case of an 
aperture at a positive potential in front of a plane cathode a.nd having 
a field-free region beyond, the lens action is divergent and the focal 

,\ 

I-=--=---===--- --1--+- -------- - ✓ 

l------------ -f --- --- - - -i v,; (z 0 ) 

Fro. 13.18.-Divergent action of a single-aperture lens. 

length is four times the cathode-aperture spacing, as may be seen by 
substitution into Eq. (13.56). 1 

The focusing properties of single apertures are illustrated in Figs. 13.18 
and 13.19. Figure 13.18 shows the case of an apert.ure with a positive 
gradient of potential on its left and a zero potential gradient on its right. 
The difference of the gradients is therefore negative, and the lens is 
divergent. Figure 13.19 shows the case of an aperture with a zero 
gradient of potential on its left and a positive one on its right. The 
difference of gradients in this case is positive, and the lens is convergent. 

1 The corresponding formula for the focal length of a lens consisting of a straight 
slit in a plane electrode is 

1 Vo'(z2) - Vo'(z1) 
h = 2Vo(z2) 

This means that the cylindrical lens of a slot is twice as strong as the circular lens of an 
aperture. 
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Because of the positive gradient to the right of the lens the electron 
paths upon emergence from the aperture are slightly curved, being 
parabolic rather than straight. This results because the aperture imparts 
a crosswise component of velocity which is proportional to the distance 
from the axis at which the electron crosses the aperture plane. The 
subsequent field adds a constant axial component of acceleration to this 
constant crosswise component of velocity. 

Thick Lenses. No simple formulas exist for the parameters of thick 
lenses. In order to treat this subject it is first necessary to define the 
lens parameters. Then a number of basic relations between the param­
eters can be pointed out. It can later be shown how the lens parameters 
may be calculated or measured. After that it is desirable to present 
the resultant lens characteristics in some simple compact form. These 

Fm. 13.19.-Convergent action of a single-aperture 
lens. 

steps will now be taken up one at a time. Attention will be restricted 
to those lenses whose initial and final gradients of potential are zero. 

The differential equation of motion of the paraxial electron given in 
Eq. (13.43) is a second-order linear differential equation. As such, it 
has two linearly independent solutions, and any general solution can 
be expressed as a linear combination of thes~ two independent solutions. 
It is convenient to take as the independent solutions of the equation the 
ray that leaves the lens parallel to the axis and the ray that enters the lens 
parallel to the axis. The two rays that leave and enter the lens parallel 
to the axis, respectively, are known as the "principal rays" of the lens. The 
ray that is parallel to the axis to the right of the lens is known as the 
"first principal ray." It is usually considered to be moving from right 
to left, but it may just as well be considered as moving from left to right. 
The ray that is parallel to the axis on the left side of the lens is known as 
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the "second principal ray." For lenses with initial and final gradients 
of potential that are zero the initial and final portions of the rays will 
be straight lines. The principal rays of an equal-diameter two-cylinder 
lens are shown in Fig. 13.20. Any general ray may be expressed as a 
combination of these two rays. 

As mentioned before, the left portion of a lens such as that of Fig. 
13.20 has a convergent action, while the right portion has divergent 
action. The strength of these two portions is such that the convergent 
action always dominates. The first principal ray, taken as moving from 
right to left, first experiences divergent action and then a stronger 

Hz , r~1' 
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M= Reference plane of lens Hj= rir.sf principal plane 
ra= first princi°pal ray H 2 =Second principt:1/ plane 
r1, = Second principal ray ~ = /'ii-sf focal len9fh 
~/l{>I f2=Second focal lenr:flh 

Frn. 13.20.-Thick-lens terminology. 

convergent action. The second principal ray, taken as moving from 
left to right, first experiences a convergent action and then a weaker 
divergent action. 

The principal rays serve to define the four thick-lens parameters. 
lj the initial and final straight-line portions of the principal rays are extended 
until they intersect, the intersections locate what are known as the "principal 
planes." The principal planes are shown as H1 and H2 in Fig. 13.20. 
The location of the principal planes relative to the reference plane, usually 
the midplane or electrode junction, is given by the distances P 1 and P 2• 

Almost without exception, the relative location of the principal planes 
is as shown in Fig. 13.20. Both principal planes lie on the foreside of the 
lens. Furthermore, the principal planes are crossed, i.e., the secon<;i 
principal plane lies before the first principal plane. Although this is 
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the usual relative disposition for electrostatic electron lenses, it is not 
for light lenses. A thick double-convex light lens, for instance, has 
its two principal planes on opposite side of the lens center and not 
crossed. 

A focal, length of a thick lens is defined as the distance from the principal, 
plane of the lens to the point at which the corresponding principal ray crosses 
the axis of the lens. There are two focal lengths, one associated with each 
axis. These are designated by the symbol f as shown in Fig. 13.20. 

The intersections of the principal rays with the lens axis are known as 
"focal points." The distance from the lens center to a focal point is 
indicated by the symbol F. The above definitions are sufficient to 
describe completely the characteristics of a thick lens. 

Let the two principal rays of a lens be ra(z), the first principal ray, 
and rb(z), the second principal ray. Then any general ray may be 
expressed as a linear combination of these two principal rays, 

(13.57) 

Although it is not ordinarily possible to write the expressions for the 
complete principal rays, it is possible to write expressions for the initial 
and final straight-line portions and the general lens formula can be derived 
from these partial expressions. 

Let the radial offset of the portion of the principal rays parallel to 
the axis be unity. Then, to the left of the lens, as in Fig. 13.20 the 
straight-line portions of the principal rays are given by 

Zt - P1 -Ji 
Ta(z1) = Ji (13.58) 

and 
(13.59) 

Assume that the general ray starts at a point on the axis of the lens to 
the left of the first focal point. The general ray will then pass through 
the lens, be deflected toward it, and cross the axis again at a point to the 
right of the second focal point. At the point where the general ray 
crosses the axis to the left of the lens, from Eq. (13.57), 

To the right of the lens the principal rays are given by 

ra(z2) = -1 
and 

(13.60) 

(13.61) 

(13.62) 
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At the point on the right of the lens where the general ray crosses the 
axis, r is zero, and from Eq. (13.57) 

~ = - ~ = -z, + P2 + /2 (13.63) 
Cb Ta /z 

Equating the ratio of constants at the two axial crossings of the general 
ray, 

-fd2 = (z1 - Pi - /i)(P2 + /2 - z2) 

This is readily rearranged to give 

-/1 + fz = 1 
Z1 - Pi Z2 - P2 

(13.64) 

(13.65) 

This is the lens formula of a thick lens of the type shown in Fig. 13.20. 
It is the counterpart of Eq. (13.7) for light lenses. The sign conven­
tion used here has been that all quantities measured to the right from a 

ra 
------------------- Q-Z2 _______________ _ ___ ,,,_ 

FIG. 13.21.-Graphical construction of a thick-lens image. 

reference plane are positive, while those measured to the left from a 
reference plane are negative. 

The significance of Eq. (13.65) is that the focal lengths are measured 
not from the lens center but from the corresponding principal planes. 

The lens parameters defined above are known as the "cardinal 
characteristics" of the lens. It takes four of these to describe the thick 
lens. The quantities that are usually given are the two focal lengths and 
the distance of the focal points from the reference plane. In electron 
lenses the parameters change with voltage ratio so that it is necessary 
to present curves of these four quantities as a function of the voltage 
ratio. 

Knowing the focal lengths and the position of the principal planes 
makes it possible to construct an image corresponding to any object. 
The construction involved is shown in Fig. 13.21. Through a point 
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on the object draw a line through the first focal point until it intersects 
the first principal plane. From this point of intersection draw a line 
to the right parallel to the axis. These two segments of straight line 
correspond to the first principal ray. From the same point on the object 
draw a line parallel to the axis to the right until it intersects the second 
principal plane. From the point of intersection draw a straight line 
through the second focal point until it intersects the first principal ray. 
This last point of intersection defines the point on the image corresponding 
to the point on the object from which the two principal rays originated. 

From Fig. 13.21 the lateral magnification of the lens can be defined as 

M= Y2 
Yi 
X2 = -/2 

_Ii (13.66) 
X1 

where the y's are the radial coordinates of corresponding points on object 
and image and the x's are the distances from object and image to the 
nearest focal point. From the above relations there results N ewton's 
law, 

(13.67) 

From Fig. 13.21 it is also seen that object and image distances from 
the lens reference plane are given in terms of the cardinal lens parameters 
by 

(13.68) 

and 
(13.69) 

To determine the remaining laws of importance applying to thick 
lenses, re(erence is again made to the differential equation of motion of 
the paraxial electron [Eq. (13.44)). Consider the linearly independent 
principal rays ra(z) and rb(z). Substitute i,. into Eq. (13.44), and multiply 
by rb. Then substitute rb into the same equation, multiply by r 0 , and 
subtract from the first equation. Indicating derivatives with respect to 
z by primes, 

rb( y'V;; ra')' - ra( y'V;; r/)' = 0 

Add and subtract the quantity -vVor0 'r/; then 

tz (rb vVora' - r,, ~rb') = O 

(13.70) 

(13.71) 
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Integrate between limits z1 and Z2 far enough to the left and right of the 
lens so that the potential variation is negligible. This allows Ta'(z2) 
and Tb' (z1) to be considered zero, and the result of the integration reduces 
to 

(13.72) 

From this equation two very important conclusions may be drawn. 
Observe that 

and 
J; = Tb(z1) 

- Tb'(z2) 

Upon making these substitutions into Eq. (13.72), it follows that 

!2 ~ 
Ji = - '\1Vo(Z1) 

(13.73) 

(13.74) 

(13.75) 

This is a perfectly general proof that the ratio of the focal lengths of a 
lens is the same as the ratio of the corresponding indices of refraction. 
The relation is valid, however, only if the focal points of the lens lie 
outside of the region of appreciable potential variation. 

. E ( 7 ) . d "d t·f . h t· Ta(z2) Returnmg to q. 13. 2 agam an 1 en 1 ymg t e ra 10 - -( -) 
Tb Z1 

as the lateral magnification M, and - T< ((z 2
)) as the angular magnification 

Ta Z1 

M v'Vo(z2) = 1 m«-==== 
VVo(z1) 

(13.76) 

which is Lagrange's law. The angular magnification is the ratio of the 
tangents of the angles that the second and first principal rays make 
with the axis. For small angles, the tangent is approximately equal to 
the angle. The above law states that the product of the lateral magnifica­
tion, the angular magnification, and the ratio of the final and initial 
indices of refraction is unity. This law has its exact counterpart in 
geometrical optics. 

13.5. Calculation of Lens Characteristics. Since analytical methods 
fail in general in determining the characteristics of thick lenses, recourse 
is frequently had to numerical computation. From the previous dis­
cussion it is known that, if the potential along the axis of an electrostatic 
lens is known, then the potential anywhere in the lens is determined and 
can be calculated. Further, the differential equation for an electron 
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moving close to the axis and making a small angle with the axis, a so-called 
"paraxial electron," can be written in terms of the axial potential. It 
is necessary only to solve such an equation numerically for rays entering 
and leaving the lens parallel to the axis, the principal rays, to obtain the 
cardinal lens characteristics, i.e., the focal lengths and the location of the 
principal planes. 

Numerous methods for calculating the principal rays of electrostatic 
lenses have been proposed. The most important of these will be briefly 
described, and then two of the simplest methods will be given in more 
detail. 

Klemperer and Wright have proposed an application of the trigo­
nometric ray-tracing method of physical optics. 1 The electrostatic field 
is broken up into a succession of thin lenses having a constant ratio of 
equivalent index of refraction for adjacent lenses. Formulas are given 
for calculating the effect of every refraction at a lens surface upon the 
angle of a ray and the point at which it crosses the axis. Lens surfaces 
are assumed to be spherical, and their radius of curvature must be 
determined either graphically or from the axial potential. This method 
requires a large number of equivalent thin lenses, at least 20 for an 
accurate determination, and the results converge slowly as the number 
of segments taken is increased. 

Maloff and Epstein have proposed several methods based upon a 
step-by-step solution of the differential equation of motion of the paraxial 
electron. The methods give the electron path as an exponential of the 
axial distance in any increment and join the paths in successive increments 
both in magnitude and in slope. The methods are capable of good 
accuracy, but the tabulations are very numerous. 2 

A method of joined circular segments based upon Salinger's formula 
for the radius of curvature of an electron path has also been proposed. 
Increments of radial and axial displacement are expressed in terms of 
axial potential and associated factors. 3 This method likewise requires 
rather extensive tabulation. 

Method of Linear Axial-potential Segments. One of the simplest 
methods proposed is based upon the differential equation of motion of 

1 KLEMPERER, and W. D. WRIGHT, Investigations of Electron Lenses, Proc. Phys. 
Soc. (London), vol. 51, Part II, pp. 296-317, March, 1939. 

2 MALOFF and EPSTEIN, op. cit., pp. 81-89. 
See also ScHLESINGER, KunT, A Mechanical Theory of Electron-image Formation, 

Proc. I.R.E., vol. 32, pp. 483-493, August, 1944. 
3 SPANGENBERG, KARL, and L. M . FIELD, Some Simplified Methods of Determining 

the Optical Characteristics of Electron Lenses, Proc. I.R.E., vol. 3, pp. 138-144, 
March, 1942. 
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the paraxial electrons. 1 The axial potential is replaced by a number of 
straight-line segments that approximate it as closely as possible, as 
shown in Fig. 13.22. The differential equation is then solved for the 
successive regions in which the potential is linear and the gradient is 
constant. At each boundary between segments there is a jump in the 
slope of the electron path because of the jump in the gradient of potential. 
The final path as determined by this method consists of a number of 
curved segments of path connected together, giving a path that is con­
tinuous but that has discontinuities in slope at the corners of the seg­
mented approximation to the axial distribution of potential. Such a 

Vo(zJ 

-z O +z 
FIG. 13.22.-Approximation of axial potential by linear 
segments of potential. 

path cannot represent accurately the true nature of the path within 
the lens, but it can be used to obtain relations between initial and final 
values with considerable accuracy. The method is relatively easy 
to apply and gives fair accuracy for as few as six straight-line segments in 
the approximation to the axial-potential curve. 

If the axial potential is assumed to be made up of straight-line 
segments, then the second derivative of the axial potential is zero and the 
differential equation of motion of paraxial electrons of Eq. (13.43) 
reduces to 

"+ 1 r' V' - 0 r -- o -
2 Vo 

(13.77) 

where both r and Vo are functions of axial distance z and the primes 
denote derivatives with respect to z. A first integration of this equation 
gives 

(13.78) 

1 GANS, R., Electron Paths in Electron Optics, Zeit. fur Tech. Phy11., vol. 18, 
pp. 41-48, February, 1937. 
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A &econd integration gives 

(13.79) 

where subscripts 1 and 2 refer to the left and right extremities of a seg­
ment. These two general equations give the electron path along any 
segment of axis. At the junction of two segments there is a discontinuity 
in the slope of the axial-potential function. Upon integrating the first 
and last terms of Eq. (13.43), the difference of the slopes of the electron 
path on the two sides of the junction is proportional to the difference of 
the first derivative of axial potential on the two sides of the junction, 

r'(zb) - r'(z,.) = -r [Vo'(zb)4;oVo'(z,.)] (13.80) 

where subscripts a and b refer to values on the left and right side of the 
junction, respective]y. In the particuJar case where the derivative of 
the axia] potential is zero, integration of Eq. (13.77) gives 

(13.81) 

The above set of equations suffices to calcuJate approximate principal 
rays. By alternate use of Eqs. (13.80) and (13.79) and the occasional 
use of other equations where necessary, the focal lengths and focal points 
of a lens may be obtained. 

Method of Equivalent Thin Lenses. The usual electron lens has a 
convergent behavior on the low-potential side and a divergent behavior 
on the high-potential side, the net lens behavior being convergent. 
The behavior is convergent when the second derivative of the axial 
potential is positive and divergent when the second derivative is negative. 
It is reasonable, therefore, to consider that the lens is made up of two 
thin lenses, a convergent lens followed by a divergent lens. 1 If the 
strength and location of these lenses are known, the cardinal points of 
the equivalent thick lens may be determined. 

The focal lengths of the convergent lens as shown in Fig. 13.23 are 
given by 

- = dz 1 1.•m V" 
F •• 2y2V 

(13.82) 

and 
/1 = -F-y'Wi (13.83) 

!2 = -!1~ V1 
(13.84) 

1 MYERS, op. cit., p. 131. 
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where F is a focal term from which the focal lengths are derived, V 1 

is the lowest potential on the lens axis, and V m is the potential at the 
point at which the second derivative assumes a value of zero, changing 
sign. The integration of (13.82) is carried over the region in which the 
second derivative is positive. 

r-------+ --i;~=-}~;--._::._T-t-=-++lR-::!.l:H ---.----
1 

-----t;" ----
------- - -- -- f;' --

Fm. 13.23.-Thin-lens components of a thick lens. 

Similarly, the focal distances for the divergent component of the 
lens are given by 

_!_ = {" V" dz 
F' } ... 2 y2V 

and 

(13.85) 

(13.86) 

(13.87) 

where V 2 is the highest value of potential reached on the axis on passing 
through the lens. 

· When the focal lengths of the convergent and divergent components 
of the lens are known, the focal characteristics of the entire lens are 
readily determined, this being a simple problem in the combination of 
lenses. When the distance between the second focal point of the con­
vergent component and the first focal point of the divergent component 
is d12, then the focal lengths of the entire lens are1 

(13.88) 

(13.89) 

1 RosIN, S., and 0. H. CLARK, Combinations of Optical Systems, Jour. Opt. Soc. 
Amer., vol. 31, pp. 198-201, March, 1941. 
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The location of the first principal plane measured from the first focal 
point of the convergent component is 

X1 = (fii2
) + H' (13.90) 

d12 

and the location of the second principal plane as measured from the second 
focal point of the divergent component of the lens is 

- (! 1'!2') f,, X2 - -- - 2 
d12 

(13.91) 

The method is extremely rapid in application. The location of the 
lens components is best taken as being at the center of gravity of the 
area represented by the integrals of Eqs. (13.82) and (13.85), as shown 
in Fig. 13.23. 

13.6. Measurement of Lens Characteristic!>. All the computational 
methods referred to in the previous section are subject to some error that 
is difficult to determine except by extensive calculations. In general, 
it may be said that, although computational methods are adequate, 
experimental methods are preferable and usually more dependable. 

As with computation so with experimental determination, several 
methods are available. One method involves construction of a special 
electron gun, which generates filamentary rays parallel to the axis that 
are put through the lens being measured. 1 Lens characteristics are 
obtained from the voltages required to produce a focus. 

Another method makes use of an ordinary electron gun followed by a 
movable mesh grid and then by the lens under test. Data are taken on 
the voltage ratio necessary to apply to the lens to focus an image of the 
mesh on a fluorescent screen for all positions of the mesh. Magnifications 
are also noted and lens characteristics are deduced from these data. 2 

Another experimental method used in determining the lens charac­
teristics is based upon observed magnifications of measuring grids 
placed before and after the lens structure. 3 This method will be described 
in some detail. 

Double-grid Method of Measuring Lens, Characteristics. The experi­
mental method used in determining the lens characteristics is based upon 
observed magnifications of measuring grids placed before and after the 
lens structure. 

A grid of closely spaced parallel wires (for measurement purposes 
only and not for control of the beams) is placed in the fore part of the 
lens. This grid casts a shadow upon a fluorescent screen following the 

1 KLEMPERER and WRIGHT, op. cit. 
2 MALOFF and EPS~EIN, op. cit. 
1 SPANGENBERG and FIELD, op. cit. 
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lens. In order to avoid the need of a tube having parts that can be 
moved relative to one another while in a vacuum, another measuring 
grid is used between the end of the gun and the fluorescent screen. 
This arrangement is shown schematically in Fig. 13.24, in which the 
measuring grid in the fore part of the lens is indicated by a vertical 
row of dots. With this arrangement of measuring grids, it is necessary 
to make observations on the magnifications of two grids, as the voltage 
ratio of the main lens electrodes is varied for each of two distances 
of the lens from a point source of electrons. Hence two complete runs 

~~ ~ 
~·;g ~ 

"i5.1! u 
tJ-:i!, ~ ~ 
~ '- i::: 

~i ~t 
~:.§ li: <-> 

~{, 
FIG. 13.24.-Experimental determination of electrostatic lens characteristics. 

must be made to obtain the data from which the complete lens charac­
teristics can be measured. 

The details of the mathematical relations involved can be seen from 
Fig. 13.24. The cathode-lens structure gives the effect of a point source 
of electrons at a known point near the cathode. The location of thii, 
point and the constancy of its position under varying conditions of lem: 
voltage ratio are determined by placing two measuring grids in the fore 
part of the lens and observing the ratio of their magnifications. The 
constancy of the ratio of magnifications indicates that the location of 
the point source changes very little with lens voltage ratio and also over 
the normal range of control-grid voltages used. The location of the 
point source is very nearly at the control-grid aperture in front of th£, 
cathode. When these facts have been checked from a test run, it is no 
longer necessary to use two measuring grids in the fore part of the lens. 
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With the point source of electrons available the following general 
method is applied: The angular magnification of the bundle of rays is 
determined from screen patterns obtained on the fluorescent screen, 
such as that shown in Fig. 13.25. Here the lines in one direction are the 
shadows of one measuring grid, and the lines in the other direction 
are the shadow of the other measuring grid. When the angular magnifi­
cation is known, then for any given voltage ratio the lateral magnification 
can be determined from Lagrange's law, which states that the product 
of the internal magnification and the angular magnification is equal to 
the square root of the ratio of the final and initial potentials. Image 

FIG. 13.25.-Shadows of measuring grids on a 
fluorescent screen. 

distances at each of the two object distances used are given for various 
voltage ratios from magnifications of the second grid alone. The object 
distances are known from physical measurements on the gun assembly. 
When lateral magnification, object distance, and image distance are 
known as a function of voltage ratio for two different values of the object 
distance, then the cardinal quantities fi, /2, F 1, and F 2 of the lens may be 
calculated readily. 

The method by which this calculation is made will be briefly indicated. 
Object and image distances can be expressed in terms of the lateral 
magnification and focal distances as 

P = - fr+ Fi 
M 

Q = -M/2 + F2 

(13.92) 

(13.93) 
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These two equations involve the four quantities !1, !2, Fi, and F2 as 
unknowns. In order to determine them, it is necessary to know two 
sets of associated values of P, Q, and M for the same voltage ratio. 
When subscripts 1 and 2 are used to indicate values of P, Q, and M for 
two different values of P at a given voltage ratio, then there may be 
obtained from the above relations the following expressions for the 
cardinal focal distances: 

(13.94) 

(13.95) 

(13.96) 

(13.97) 

Up to this point the relations are the same as those used by Maloff and 
Epstein. It is now necessary only to show how the lateral magnification 
may be deduced from the screen patterns to complete the collection of 
:iecessary relations. In Fig. 13.24 it is seen that the angular magnifica­
tion is given by 

(}' 
Ma=-

0 
(13.98) 

For small angles such as are encountered in the gun the angular magnifica­
tion in terms of the dimensions is given very closely by 

(13.99) 

in which c is the distance beyond the fluorescent screen to the point at 
which the ray would focus. This distance is determined from the 
spacings of the grid images as follows: 

For focus beyond fluorescent screen, 

e 
c=--

1 - ~ 
g 

where the symbols have the significance given in Fig. 13.24. 

(13.100) 
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For focus between second measuring grid (crosses) and fluorescent 
screen 

e -c=--

When the angular magnification 
is known, then the lateral magni­
fication may be calculated from 
Lagrange's law as previously in­
dicated. 

With the above relations the 
cardinal quantities are readily cal­
culated. In practice, this is most 
easily done by plotting curves of 
the various quantities involved 
against voltage ratio, for the same 
voltage-ratio observations may 
not have been taken on one run as 
on the other. There is a small 
hole in each curve at the point 
where the beam focus is at the 
fluorescent screen, for the image 
becomes so small here that it is 

1+~ 
g 

r::::i'"' 
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16 

14 

12 

10 
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4 

r 2 
Cl) 

+-

E o 
"' not possible to measure the spac- ~ - 2 

ings of the wires on the images. 5 
However, there is no trouble in c.!)-

4 

drawing smooth and continuous 
curves through these holes if the 

I--

data are taken with care. 
The accuracy achieved by this 

method is of the order of 10 per 
cent for lenses with small open­
ings and 20 per cent for lenses 
with large spacings. 

-6 

-8 

-10 

-12 
, 

-14 

-16 

-1a 

-20 

(13.101) 

-
- ..... 

~ i,. 

~ - -

t=a666- --
OPTICAL CONSTANTS 

ELECTRON LENS- I- -
..... 

-
\ 
\"- ' ~ 

"" 
....... 

-.......... 
......__ 

..b -
~ - -

2 !'.l 4 6 8 10 I lE 

---- ij -
~ 

'/ 
, --~ V -

1/ t-

~ 

-
-
-

- -

-

13.7. Optical Characteristics 
of Lenses. By means of the 
method of double grids just 
described in the previous section 
it is possible to determine experi­
mentally the optical character- Fm. 13.26.-0ptical characteristics of a 
. two-cylinder lens, D./D1 = 2/3. 
IStics of lenses over a wide range 
of voltage ratios. The lens characteristics are completely prescribed 
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if the two focal lengths and the location of the two principal planes 
are given as a function of the voltage ratio. In Figs. 13.26 to 13.34 
there are plotted the focal lengths and location of the focal points of 
nine of the commonest electrostatic electron lenses. 1 

Examination of the lens-characteristic curves of Figs. 13.26 to 13.34 
reveals that all these lenses have the following characteristics in common: 

1. Focal lengths are always uniformly decreasing functions of voltage 
ratio. 

2. Principal planes always lie on the low-voltage side of the lens. 
3. Principal planes are crossed, with the exception of the large­

diameter aperture lens, i.e., the first principal plane lies between the 
second principal plane and the lens center on the low-voltage side 
of the lens. 

4. Focal length in the direction of increasing potential is always 
greater than the focal length in the other direction. 

5. The position of the principal planes does not change much with 
voltage ratio except at very low values. 

A comparison of the focal properties of the specific lenses yields the 
following observations: 

1. The focal length of two-diameter cylinder lenses increases, i.e., the 
lens grows weaker for all but the highest voltage ratios, as the ratio 
of second to first cylinder diameter increases. 

2. The focal length of equal-diameter cylinder lenses increases, i.e., 
the lens grows weaker, as the axial spacing of the cylinders increases. 
The change is small for small spacings but increases rapidly as the 
spacing is increased. 

3. The focal length of aperture lenses increases, i.e., the lens grows 
weaker, as the aperture diameter increases. The change is small 
for small diameters but increases rapidly as the diameter increases. 

4. Aperture lenses have for the most part shorter focal lengths than 
cylinder lenses if aperture spacing be taken equal to first cylinder 
diameter as a unit of length. 

5. The cylinder-aperture lens has the shortest focal length of all 
lenses tested. 

6. The equal-diameter lens with axial spacing of one diameter has the 
longest focal length of all the lenses in this collection. 

After all the comparisons between lenses have been made, it must be 
admitted that there is not much choice between them, for the focal 

1 SPANGENBERG, KARL, and L. M. FIELD, The Measured Characteristics of Some 
Electrostatic Electron Lenses, Elec. Commun., vol. 21 (No. 3), pp. 194-204, 1943. 
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length of any of the lenses can be adjusted at will by simply changing the 
voltage ratio applied to the electrodes. Cylinder lenses are usually 
preferred to aperture lenses as objective lenses because the electron beam 
is shielded from the effect of any charges that may accumulate on the 
glass walls of the vacuum envelope. They also permit the use of limiting 
apertures within the cylinders to reduce the beam diameter. 

13.8. Calculation of Lens Characteristics. In general, electrostatic 
lenses are not amenable to extensive analytical treatment. The lenses 
that can be calculated cannot readily be built, and vice versa. It is of 
interest, however, to confirm the results observed in the previous section 
by noting the results of such cases as have been completely solved. A 
complete solution of the lens for which the axial potential is of the form 

Vo(z) = A exp ( 
4 j 3 

R arctan ~) (13.102) 

has been given. 1 In this expression for axial potential the constants A 
and R are related to the initial and final values of potential by 

R = 3 - ln V2 
4v31r Vi 

(13.103) 

and 

A = VI exp ( 
2 f 1r) (13.104) 

This axial-potential distribution is not greatly different from that found 
in two-diameter cylinder lenses, as may be seen in Fig. 13.35, in which 
there is plotted the potential distribution V0(z) = exp (arctan z). 

The general solution of Eq. (13.46) with the axial-potential distribution 
of Eq. (13.102) is 

r(z) = ✓1 + (~Y exp ( - Vi R arctan ~) 

[ C1 sin ( w arc cot~) 
1

+ C2 ( w arc cot~)] (13.105) 

where w = -yl + R 2• From this the focal lengths are found to be 

"\,13R.-
, aE~ 

Ji =sin(;) 
(13.106) 

1 HUTTER, R . G. E., Rigorous Treatment of the Electrostatic Immersion Lens 
Whose Axial Potential Distribution Is Given by tf>(z) = t/>2 exp(acctan z), Jour. Appl, 
Phys., vol. 16, pp. 678-699, November, 1945. 
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Fm. 13.35.-Plot of the axial potential, V0(z) = exp (arctan). 

V3R.­
-aE~ 

12 
= -sin-( ~-w) 

(13.107) 

The focal lengths as a function of voltage ratio are given in Fig. 13.36. 
The position of the principal planes is given by 

E-1:R.- +COS(~) 
pi = a ---s-in-(~w_!!:_)__,_--'- (13.108) 

" v::-- - cos(~) 

P2 = a sin(~) 
(13.109) 

The position of these is also plotted in Fig. 13.36. All the properties of 
lenses observed experimentally are confirmed by this example. It is of 
interest to note that the ratio of focal lengths as given by the square root 
of the electrode potential ratio holds only to a ratio of about 6 in this case. 
At a voltage ratio of 16 the ratio of the focal lengths is 3.7 instead of 
4. This departure from the theoretical value occurs because the lens is 
a very strong one and for moderately large electrode-potential ratios the 
principal rays cross the axis within the region of potential variation, 
whereas in the derivation of Eq. (13.75) it was assumed that the rays 
crossed the axis outside the region of appreciable potential variation. 
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Fm. 13.36.-0ptical characteristics of the Hutter lens. 

13.9. P-Q Curves of Lenses. The optical characteristics of lenses 
presented in the previous section do not tell a great deal directly about 
the lens performance. These optical characteristics are parameters that 
enter into the calculation of image distance corresponding to object 
distance for any voltage ratio. The lens parameters disappear in the 
calculation, and only the associated object and image distance and 
corresponding magnification remain. It would therefore seem logical to 
present lens characteristics in such a way that the resultant properties 
and not the construction parameters were revealed. This has been done 
in a type of curve that will be referred to as the P-Q curves of a lens. The 
significance of the letters is that the curves present associated object 
distance P and image distance Q, as in Fig. 13.21, and corresponding 
lateral magnification M for any voltage ratio. The object distance, 
image distance, and lateral magnification are calculated by means of 
Eqs. (13.68) and (13.69). 
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The P-Q curves of the nine common lenses discussed before are shown 
in Figs. 13.37 to 13.45. In these curves there are shown contours of 
constant lateral magnification and constant voltage ratio against axes of 
object a.nd image distance. The P-Q curves are in effect a graphical 
presentation of the solution to all the first-order image problems asso­
ciated with the lens. The advantage of this presentation is that it gives 
design data immediately, without calculation. The presentation is 
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--

100 

further sufficiently explanatory so that it can be used without a complete 
understanding of the theory of electron optics. 

A study of the P-Q curves of Figs. 13.37 to 13.45 reveals the following 
characteristics as being common to all lenses: 

1. As object distance is increased at a given voltage ratio, the corre­
sponding image distance decreases, as does also the magnification. 

2. For a given object distance the image distance and magnification 
decrease as the voltage ratio is increased. 

3. In any lens there is a minimum object distance that can be used 
at any given voltage ratio. This minimum object distance is the 
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first focal length of the lens, plus the displacement of the first 
principal plane from the lens center. 

The outstanding magnification characteristics of electron lenses as 
observed from the P-Q curves are as follows: 

1. The contours of constant magnification are approximately straight 
lines, with a slope of 1. This is exactly the case for thin lenses. 

2. An approximate universal magnification formula that fits all lenses 
shown is 

(13.110) 

where P and Q are the object and image distance, respectively. 
Values of the constant for the lenses tested are 

Cylinder lens::: = 0.667 

d2 = 1 S = 0.1 
d1 

:: = 1.5 

d2 = 1 S = 0.5 
d1 

d2 = 1 S = 1 
d1 
a 

Aperture lens: d = 5 

a 
a=3 
a 
d = 1 

Cylinder-aperture lens: 

k = 0.82 

k = 0.78 

k = 0.76 

k = 0.80 

k = 0.60 

k = 0.95 

k = 0.80 

k = 0.78 

k = 0.82 

It is _seen that, with only two exceptions, the value of the constant 
is within a few per cent of 0.8. 

The observed magnification property is strictly in accordance with 
theoretical expectations, though the agreement is not at all apparent. 
From Lagrange's law [Eq. (13. 76)] it is expected that the lateral magnifica­
tion will equal the product of the ratio of image to object distance multi­
plied by the square root of the reciprocal of the voltage ratio, namely, 

M = j ~- This follows from the fact that the angular magnification 

is nearly equal to the ratio of object to image distance. The actual con-
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tours of constant lateral magnification do not seem to follow this law, but 
the discrepancy is only an apparent one, not a real one. The apparent 
discrepancy is due to the fact that the object and image distances are 
measured from an arbitrary point in the lens, whereas they should be 
measured from an equivalent thin lens located between the principal 
planes. If in the above modification of Lagrange's law the distances 
P and Q are measured from a point midway between the principal planes, 
then the calculated contours of constant lateral magnification are almost 
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FIG. 13.46.-Comparison of the P-Q curves of two-diameter lenses. 

indistinguishable from the measured ones in sample cases that have been 
tested. 

Comparison of L enses. An important feature of the P-Q curves is 
that they make possible a comparison of the focal lengths and magnifica­
tions of various types of lenses over the whole range of voltage ratios and 
object distances. In Figs. 13.46 to 13.48 are drawn, for comparison, 
parts of the complete curves of similar types of lenses. 

In Fig. 13.46 are shown the effects of changing the ratio of diameters 
in a two-diameter cylinder lens. The curves show that, for ratios of 
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diameters between 1 and 1.5, there is not much difference in magnifica­
tion. For the smaller ratio of diameters the magnification is distinctly 
more (object distance and voltage ratio held constant). In the vicinity 
of useful application, say P = 3 and Q = 20, the voltage ratio required 
for any ratio of cylinder diameters is about the same. 

In Fig. 13.47 is given a similar comparison of equal-diameter cylinder 
lenses for different spacings between cylinders. This comparison reveals 
that the magnification of such lenses is about the same for small axial 
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FIG. ·13.47.-Comparison of the P-Q curves of equal-diameter lenses. 

spacings up to about 0.5 diameter and then increases considerably as the 
spacing is increased (object distance and voltage ratio held constant). 
For the most part the lens becomes weaker as the axial spacing between 
cylinders increases. 

A comparison of aperture lenses is given in Fig. 13.48. It is a little 
hard to draw any general comparisons because of the pronounced cross­
overs in the P-Q characteristics for different lens dimensions. In the 
vicinity of a short object distance and a long image distance the magni­
fication is not greatly different for different ratios of aperture spacing to 
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diameter. For a fixed object and image distance the voltage ratio 
necessary to obtain a focus increases as the ratio of aperture spacing to 
diameter increases. 

The Einzel Lens. Another lens which is more or less in a class by 
itself is the so-called "Einzel lens" ( after the German word "single," 
indicating that there is a single value of the limiting potential). The 
Einzel lens consists of three apertures equally spaced, the outer two of 
which are maintained at the beam potential and the inner of which may 
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be at either a higher or a lower potential. The electrode arrangement 
and potential field of such a lens have already been shown in Fig. 13.16. 
Such a lens exhibits a convergent action whether the center electrode is 
more or less positive than the outer electrode. The nature of the focusing 
characteristics of a special type of Einzel lens are shown in Fig. 13.49. 

The lens exhibits a focal length which decreases as the ratio V 2 
;

1 
V 1 

increases, where V 2 is the inner-electrode potential and V 1 is the outer­
electrode potential. For negative values of the same potential ratio the 
focal length decreases until the center electrode is sufficiently negative 
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to make the saddle point at the center of the lens assume a negative 
potential. Beyond this point the electrons cannot penetrate the lens 
but are reflected back. The reflection is of such a nature that the action 
as the center-electrode potential is made still further negative is first 
that of a concave mirror and then that of a convex mirror. This change 
in the nature of the reflection occurs because at first the electrons can 
penetrate to a point within the lens where the equipotential lines are 
concave and then as the center electrode becomes more negative they are 
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Fm. 13.49.-Focal characteristics of an Einzel lens. 

only able to penetrate slightly into a region where the equipotential lines 
are convex. 1 

13.10. ~berrations. As is the case with physical lenses, electron 
lenses are not perfect image-forming devices but are subject to a number 
of distortions or lens errors known as "aberrations." Because of the 
almost exact analogy that exists between geometrical and electron optics, 
every one of the aberrations found in light lenses is also found in 
electrostatic lenses. Thus the terminology of light lenses is directly 
transferable to electron lenses. 

All the lens theory that has been given so far has been a first-order 
theory. This is the so-called "Gaussian optics." The differential 

1 JoHANNS0N, H., and 0. SCHERZER, Uber die elektrische Elektronen Sammellinse, 
Zeit. fur Phys., vol. 80 (No. 3, 4), pp. 183-192, 1933. 
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equation of the paraxial electron was obtained by dropping all terms in 

rand:: of order higher than the first. If the restrictions on the electron 

under consideration are made more liberal and only terms in r and :: 

higher than the third are neglected, then the theory of so-called "third­
order imagery" is obtained. This third-order theory reveals all the 
defects in image formation that are encountered. 

The differential equation of third-order imagery is obtained by start­
ing again with the general differential equation of motion of Eq. (13.38), 
then using the first two terms of Eqs. (13.21), (13.39), and (13.41), and 

11 H,~h velocify 

----- _-,:r:.#------;;:=;:;:::;::==--
1-11- v&oQ1y 

Fm. 13.50.-Chromatic aberration. 

then neglecting any terms of order higher than the third. The resulting 
differential equation of motion of an electron of third-order imagery is 

,, + Vo'r' [ 1 + 2 (Vo"_ Vo"')+ ,2 ] 
r 2Vo r 4Vo 4Vo' r 

+ Vo"r [ 1 + 2 (Vo"_ Vo<
4>) + ,2] = O 

4 V r 4 Vo 8 V 011 r (13.111) 

where the primes indicate derivatives with respect to z. 
A study of Eq. (13.111) reveals five distinct types of monochromatic 

aberration possible in electrostatic lenses. The five types are generally 
classified as coma, astigmatism, curvature of field, distortion of field, and 
spherical aberration. In addition to these types, chromatic aberration 
may be present. This makes six defects that are possible with perfect 
structures and low currents. Distortions due to space charge and 
imperfections in the electrode structure may also be present. Each of 
the above defects will now be briefly described. 
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Chromatic Aberration. This is the well-known effect in geometrical 
optics that causes light of different wave lengths to have different focal 
lengths as shown in Fig. 13.50. In electron optics the analogous effect is 
that electrons with different velocities will focus at different points. In 
electron lenses the velocity of the electrons varies only to the extent that 

Object 
Fw. 13.51.-Coma. 

the velocity of emission is different for different electrons. 
variation in emission velocity is generally small compared 
accelerating potentials used, the error is not a serious one. 

Fm. 13.52.-Astigmatism. 

Since this 
with the 

As an example of the effect of chromatic aberration, consider the case 
of a single-aperture lens for which the focal length is given by 

f = 4Vo 
Vo' (z2) - Vo' (z1) 

(13.56) 

If the different electrons have energies corresponding to different values 
of Vo, then 

(13.112) 
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which is really just another way of saying that the focal length depends 
upon the electron energy; the higher the energy, the lower the change in 
focal length. 

Coma. This is an extraaxial aberration, i.e., one that appears only 
for images and objects not lying on the axis of the lens system. The 

+----e---+ 
Objecf Image 

FIG. 13.53.-Curvature of field. 

effect is due to the fact that different circular zones about the_axis have 
different magnification. As a result, a set of concentric circles off the 
axis is imaged as a set of slightly distorted circles that are not concentric 
but that have a drop-shaped envelope with the tail pointed away from 

Object Positive 
distortion 

(Pin cushion) 

NegG1tive 
distortion 
(Barrell ' 

FIG. 13.54.-Distortion of field. 

the axis. The type of distortion resulting is shown in Fig. 13.51. The 
effect is lessened if a smaller portion of the lens center is used, but this 
reduces the amount of light or beam current and may not always be 
desirable. 

4 

1 
I 

I --= 
\.J 

FIG. 13.55.-Spherical aberration. 

Astigmatism. This is a well-known effect in geometrical optics. The 
effect is that, in any object off the axis, lines directed toward the axis 
have a different focal length from those at right angles to these. A 
compromise focus gives an image of least diffusion in which neither of the 
lines is clear. This effect is illustrated in Fig. 13.52. As focusing voltage 
is changed, a focus is first obtained at the center of the image, then along 
a radial line, and then along circumferential lines. This is another of 
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the extraaxial effects. In cylinder lenses, if the electrodes are slightly 
elliptical the beam focus will be a short line instead of a spot. As the 
focusing voltage is adjusted, the short line will become a fuzzy spot and 
then a sharp short line again, but at right angles to its former position. 

Curvature of Field. This lens defect usually accompanies but is more 
pronounced than astigmatism. The effect evidences itself by the fact 
that an object lying in a plane perpendicular to the axis has an image 
which does not lie on a plane but which lies on a slightly curved surface, a 
surface of revolution about the axis approximately spherical which is 
concave toward the lens. The result of this form of aberration is that an 
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object consisting of a set of circles concentric about the axis gives an 
image whigh is sharp at only one radial distance. If the image plane is 
adjusted to make the center sharp, then the outside circle will be fuzzy, 
and vice versa. This lens defect is illustrated in Fig. 13.53. 

Distortion of Field. This defect is due to variations of the linear 
magnification with radial distance in the lens. If the object is a small 
checkerboard, then the distortion evidences itself by giving rise to pin­
cushion- and barrel-shaped images shown in Fig. 13.54. If the magnifica­
tion increases with radial distance, it is considered positive and the 
pincushion-shaped image results. If the magnification decreases with 
radial distance, it is considered negative and the barrel-shaped image 
results. 
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Spherical Aberration. This is another lens defect well known in geo­
metrical optics. Basically the effect is that rays entering the lens parallel 
to the axis have a focal length which changes with the radial distance at 
which they pass through the lens, as shown in Fig. 13.55. The focal 
length as a function of radial position in the lens can be measured by any 
of the experimental methods previously described and yields curves such 
as those of Fig. 13.56. In the curves shown the focal length reduces 
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as the radial distance increases. This is known as "positive" spherical 
aberration and is the kind invariably encountered in electron lenses. The 
focal length is seen to decrease slowly at first and then more rapidly. 
This is an axial aberration that has the effect of giving a spot focus 
instead of a point focus. The minimum size of spot that can be obtained 
for any lens aperture increases with the radius of the aperture. A typical 
curve illustrating this effect is shown in Fig. 13.57. 

Spherical aberration is one of the most serious of the various aberra-
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tions. It is always present and in electron lenses is invariably positive. 
In physical lenses it is possible to combine elements with equal positive 
and negative spherical aberration to obtain a lens that is free of this 
effect. In electrostatic lenses it is possible only to reduce this effect, as, 
for instance, by using a two-diameter cylinder lens with the high-potential 
cylinder having a smaller radius than the lower. 1 It is also possible to 
reduce spherical aberration in aperture lenses by the use of specially 
shaped thick electrodes with curved surfaces corresponding to the 
equipotential2 

V(r,z) = (a sin kz + b cos kz)Jo(ikr) (13.113) 

It has also been shown that a symmetrical lens with an axial-potential 
variation given by3 

Vo(z) = V 1(1 + A1:-B•') (13.114) 

has minimum spherical aberration. Unfortunately, it is very difficult to 
build a lens having such an axial variation of potential since the electrode 
structure required is not a practical structure at all. In general, the 
spherical aberration associated with a given lens structure may be 
reduced by simply eliminating sharp corners and edges on the electrodes. 
A rounding of corners and edges eliminates large gradients, which seem 
to contribute considerably to the lens defects. 

Other Lens Defects. In addition to the above optical defects, electro­
static lenses are subject to a few ills to which physical lenses do not fall 
heir. The space-charge mutual repulsion between electrons prevents 
electron beams from coming to a point focus and in general exhibits the 
same effects as spherical aberration. This subject will be given an 
analytical treatment in the chapter on Cathode-ray Tubes. In addition, 
imperfections in the electrode structure will give rise to some remarkable 
distortions. In lenses with small apertures, if the plane of the apertures 
is not perpendicular to the axis, the beam will focus into a tadpole-shaped 
figure. M9dern techniques are, however, sufficiently good so that 
distortions resulting from electrode imperfections seldom appear in 
commercial tubes. • 

1 KLEMPERER and WRIGHT, op. cit. 
2 GRAY, op. cit. 
3 SCHERZER, 0., Die Schwache elektrische Einsellinse geringster spharischer Aber­

ration, Zeit. fur Phys., vol. 1, pp. 23-26, June, 1936. 



CHAPTER 14 

MAGNETIC LENSES 

14.1. Focusing Action of Axial Magnetic Fields. Electron beams can 
be focused with magnetic as well as with electric fields, though the analogy 
with optics is not so readily,established. Reference has already been 
made to one type of magnetic focusing In Sec. 6.6 there wa~ discussed 
the case of a long uniform magnetic field parallel to an axis. Electrons 
leaving a point on the axis with their principal component of velocity 
directed parallel to the axis move out with helical paths of approximately 
the same pitch and come to a focus farther along the axis. This action 
is shown in Fig. 14.1. The motion of the individual electrons is a com­
bination of a linear translation parallel to the axis and a circular motion 
in a plane perpendicular to the axis, giving rise to a helical path. The 

Side View End View 
FIG. 14.1.-Helical electron paths in a uniform magnetic field . 

radius of the circular component of travel is given by Eq. (6.67). It is 
proportional to the radial component of velocity and inversely to the 
magnetic-flux density at the starting point. The focal length (pitch 
of the helices) is given by Eq. (6 68). The focal length depends upon 
the axial component of velocity directly and upon the magnetic-flux 
density inversely. Thus the focal lengths of the different electrons are 
within 1½ per cent for initial angles with the axis that are less than 
10 deg, and a pretty good focus is obtained. The radial and angular dis­
placement associated with this motion is shown in Fig. 14.2. The radial 
displacement is sinusoidal in form. The angular displacement is uni­
formly increasing with distance. 

The action of the long field parallel to the axis is more or less typical 
of the action of all magnetic lenses. All magnetic lenses depend upon a 

394 
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component of magnetic field parallel to the axis. The electron paths 
start from a point on the axis and return to it at a later point. In doing 
so the electrons move in a plane through the axis, which rotates con­
tinuously as the electron passes 
through the magnetic field. 

The action of a short magnetic 
lens may be understood by consider- Bo 

ing a fictitious case in which the mag-
netic field is short but uniform and 
parallel to the axis, as shown in Fig. 
14.3. In this case an electron leav­
ing the axis will move in a straight 
line at a constant velocity until it 
enters the magnetic field. When 
this happens, from Eq. (6.70), the 
radial component of velocity will Frn. 14.2.-Radial and axial displace! 

ment of an electron in a uniform axia­
react with the axial component of field. 
magnetic flux to produce an angular 
component of force. This imparts a twist to the electron path, and at 
the same time the angular (0) component of velocity developed will react 
with the axial component of field to produce a radial component of force 

_____ ..r..1-H lines 

-•----------rt 

z-

Q 
End 
View 

Frn. 14.3.-Action of a short fictitious magnetic lens. 

directed toward the axis, that serves to focus the electron and bring it 
back to the axis. The radial and angular displacements along the axis 
for this case are shown in Fig. 14.3. 
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In an actual short magnetic lens the magnetic-flux lines cannot 
terminate abruptly as in the fictitious example above. A typical field, 
such as might be produced by a circular current coil, is shown in Fig. 
14.4. Fundamentally, the action here is the same as that described in 
the previous paragraph except that the action is more uniform. In parti­
cular, the angular displacement has no sharp corners but is continuous 
in slope. Note that the action in each of the three cases cited is appar­
ently a function of the axial component of magnetic flux. It will be 
shown in subsequent sections that this is indeed the case and that the 
entire action of a magnetic lens can be described in terms of its axial 

variation of its axial component 
· ~ ' of magnetic field. Note further ·Hline~ 

that if the magnetic-field strength 
in the last two cases cited is not 
of just the right value the electron 
may not hit the axis even though 
it is deflected back toward it. 
This is not the case with electro­
static lenses and means that mag-

-·-·-----· . I 

9 

netic lenses have an extra type of 
aberration to which the electro­
static lens is not subject. 

14.2. Magnetic Fields with 
Rotational Symmetry. In the 
case of electrostatic fields with 
rotational symmetry it was found 
that the potential at any point in 

Fm. 14.4.-Action of a short magnetic lens. the field could be expressed in 
terms of the axial potential and 

its derivatives by means of a series expansion. This series proved 
very useful in studying the behavior of paraxial electrons. A similar 
situation applies to magnetic fields. The z component of a magnetic 
field obeys Laplace's law provided that the region under considera­
tion does not include any current flow. If attention is restricted to 
the vicinity of the axis of a field produced by something like a circular 
coil, there is no current flow except that represented by the electron beam 
and this is so weak in terms of the magnetic field it produces that it can 
be neglected. The axial component of magnetic flux is of most impor­
tance; Laplace's equation for it is 

(14.1) 



MAGNETIC LENSES 397 

This can be solved for B, in the form of a power series in r by the technique 
used to obtain an expansion for electrostatic potential. The result is 

r2 r4 
B (r z) = Bo - - Bo" + -- Bo<4> + · · · • ' 22 22. 42 (14.2) 

where Bo = B,(O,z), the axial value of the axial component, and the 
primes indicate derivatives with respect to axial distance z. This series 
can also be written as the summation 

.. 
~ ( )2n-2 B (2n-2) 

B,(r,z) = ~ ( - l)»+i ~ [(n °_ l) !] 2 
(14.3) 

n=l 

Magnetic fields of rotational symmetry will not have an angular 
component of flux but will have radial and axial components of flux. 
The radial and axial components of flux are related by the fact that the 
net outward flux over any small volume not containing current is zero. 
Mathematically, this is stated by saying that the divergence of magnetic 
flux is zero, and this condition is expressed by 

V ·B = 0 (14.4) 
or 

~ ~ (rB,) + oB, = o 
r or oz 

(14.5) 

Equation (14.4) is simply a shorthand vector notation for the relation 
of Eq. (14.5). When the series of Eq. (14.2) is substituted 
into Eq. (14.5) and this solved for B,, there results 

- r , ra ,, , rs (5) 
B, - - 2 Bo + 4 . 22 Bo - 6 . 22 • 42 Bo + (14.6) 

in which the constant of integration has been set equal to zero because 
B, is an odd function of r. This series may also be written as the 
summation .. 

I ( -l)"r2»-1B0c2,,,_1, 
B,= 2n[ ( n - 1) !]222"-2 

n=l 

(14.7) 

14.3. Electron Motion in a Magnetic Field Expressed in Cylindrical 
Coordinates. The equations of motion of an electron in a magnetic 
field as expressed in cylindrical coordinates have previously been given 
in Eq. (6.70) but will be repeated here for convenience of reference. In 
general, the force on a charged particle moving in a magnetic field is 
given by 

F = qv X B (14.8) 
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where F, v, and B are vector quantities representing force, velocity, and 
magnetic-flux density, respectively, and q is the charge of the particle. 
The symbol X indicates the so-called "vector product," which is a short­
hand notation to indicate that the product lies at right angles to the plane 
of the vectors being multiplied and has the direction a right-handed screw 
would advance if the slot in its head were turned from alignment with the 
first to alignment with the second. Furthermore, the resultant vector 
has a magnitude equal to the product of the magnitude of the vectors 
being multiplied and the sine of the angle between them. Upon apply­
ing Newton's second law and the fact that the electron charge is -e, 
Eq. (14.8) becomes 

ma= eB Xv (14.9) 

since A X B = -B X A. In Eq. (14.9) a is acceleration and mis mass. 
Expanded in component form, this becomes three differential equations 
as follows: 

m [r - r8 2] = Bei - B,rO 
e 

m 1 d ( 2 .) B . B ." - -· - r fJ = ,r - ,.z 
e r dt 

m - z = B,rO - B 8r 
e 

(14.10) 

(14.11) 

(14.12) 

in which the dots above the component variables indicate derivatives 
with respect to time. 

14.4. Differential Equations of Motion of the Paraxial Electron. The 
set of component equations can be greatly simplified to yield the case 
of an electron in a magnetic field of rotational symmetry, moving close 
to the axis and making a small angle with it. In the first place, the rota­
tional symmetry of field means that the angular ( fJ) ·component of magnetic 
flux is zero. The first terms of the series expansions of Eqs. (14.2) and 
(14.6) can then be substituted for the other components of magnetic 
flux; and when terms of order r 2 and higher are neglected, tremendous 
simplification results. Equation (14.11) can be integrated once with the 
above substitutions to give 

• e Bo 
(J =-­

m 2 
(14.13) 

the constant of integration being zero since the angular velocity is zero 
when the magnetic field is zero. This rather remarkable equation states 
that the angular velocity is proportional only to the axial component of 
magnetic field. Applying these substitutions to Eq. (14.10), 

f = -r(; ~0)2 (14. li'. 
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Equation (14.12) reduces to 
z = 0 

399 

(14.15) 

which is approximate only to first order, of course, but is reasonable 
since there is no electric field contributing to the motion. 

Time may be eliminated from Eq. (14.14) by using the approximate 
relations 

V = Z 

and 
.. 2Ve d2r r~--

m dz2 

Substitution of these values into Eq. (14.14) yields 

Evaluating the constant of the second term numerically, 

::: + 2.20 X 1010 Bir = O 

(14.16) 

(14.17) 

(14 .18) 

(14.19) 

for rationalized mks units. This expression is similar to the reduced form 
[Eq. (13.46)] of the paraxial differential equation for the electrostatic 
case. By the procedures indicated above the electron motion has been 
separated into radial and angular components. In most focusing 
problems the radial component may be treated alone without regard for 
the angle. It need be remembered only that the plane of the electron 
rotates progressively as the electron moves through the lens. 

14.6. Focusing Properties of Magnetic Lenses. General. By exactly 
the same reasoning and process as that used in Sec. 13.4 the focal length 
of a thin magnetic lens can be deduced from Eq. (14.18). The result 
of this process is 

1 1 e 1.Z• - Ji = h = 8m V z, Bo
2 

dz (14.20) 

Evaluating the constant 

1 1 2.20 X 1010 /.z, - - = - = ---;--;--- Bo2 dz f1 b V z, 
meters-1 (14.21) 

where Z1 is a point to the left of appreciable field variation and z2 a cor­
responding point to the right and Bo is the axial component of magnetic­
flux density in webers per square meter (104 gausses). Two important 
conclusions are immediately available from the above equations for 
focal length. The first is that the focal length in the two directions is 
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the same. The second is that the lens is always convergent since the 
quantity in the integrand is always positive. 

The corresponding rotation of image is given directly from Eq. 
(14.13), making use of Eq. (14.16). It is 

8 = 2 ~ & 1:• Bo dz (14.22) 

Evaluating the constant, 

fJ = 1.480 X 105 j" 
,VV ,, Budz radians (14.23) 

The rotation has a clockwise direction in a magnetic field that has a 
component in the positive z direction. 

B, 
Glazer lens: B0 (z} · l+{z/R)2 
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FIG. 14.5.-Axial magnetic-field distribution of a circular turn of wire and of the 
Glazer lens. 

Magnetic Lens of a Circular Turn of Wire. A simple source of a 
magnetic field suitable for a magnetic lens is that of a circular turn of wire 
about the electron beam. Such a turn produces the necessary axial 
component of magnetic field having the desired rotational symmetry. 
The shape of the field is shown in Fig. 14.5. This is seen to approximate, 
roughly, a short uniform field parallel to the axis. The axial component 
of magnetic-flux density associated with a circular turn of wire is given by 

µJR2 
Bo = 2(R2 + z2)¾ (14.24) 
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where µ 0 is 1.257 X 10-5 henry per meter, the constant of proportionality 
between magnetic intensity and flux in rationalized mks units, and R is 
the radius of the turn of wire. Upon evaluating the coefficient, this 
becomes 

0.6285 X 10-5/R 2 

Bo = (R2 + z2):H, webers per meter2 (14.25) 

By using this expression for magnetic-flux density along the axis it 1s 
possible to evaluate the integral of Eq. (14.21), with the result 

f = 97.9VR 
/2 meters (14.26) 

It is not possible to get a sufficiently strong lens with a single turn 
of wire, and therefore a coil of many turns is ordinarily used. When this 
is the case, the focal length becomes 

f 97.9VR .1 f f t = (N/) 2 X cm orm ac or meters (14.27) 

where N is the number of turns and the coil form factor will generally 
assume a value between 1.00 and 1.25. The coil lens is weaker per 
ampere turn than the single-turn lens because the magnetic field is not 
so well concentrated. Where extremely strong lenses are desired, the 
field is further concentrated by means of iron pieces surrounding the 
coil. 

The Glazer Lens. 
of a magnetic lens 

It is possible to calculate exactly the characteristics 
having an axial-flux-density function of the form 

B1 
Bo = 

1 
+ ~y· This field form 1

•
2 is approximately that obtained 

from a large coil or from a coil with pole pieces. A brief study of this 
lens is valuable because it is possible to determine its optical charac­
teristics exactly and compare them with these obtained from the approxi­
mate formulas given before. The assumed field form is plotted in Fig. 
14.5. It is seen to be similar to that of a single turn of wire. The field 
of a circular turn of wire drops to 10 per cent of its peak value in 1.96 
radii, whereas the field of the Glazer lens drops to 10 per cent in 3 radii. 

1 GLAZER, W., Strenge Berechnung magnetischer Linsen der Feldform H = 
1 
+ (}) 2, 

Zeit. fur Phys, vol. 117, 285-315, 1941. 
2 MARTON, L., and R. G. E. HUTTER, Optical Constants of a Magnetic Type 

Electron Microscope, Proc. I.R.E., vol. 32, pp. 546-552, September, 1944. 
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Upon applying the approximate expression for focal length of Eq. 
(14.20) to the assumed field form the focal length is found to be 

16mV 
f = RB12e1r meters (14.28) 

The paraxial differential equation for the assumed field form is 

(14.29) 

By means of judicious substitutions this equation can be converted to a 
form that is directly integrabfe. 1 

This yields a general-ray solution in the form 

r(z) = R ✓I + (nY { C1 sin [ Vl + p 2 arc cot (n)] 
+ C2 cos [ Vl + p2 arc cot (n) ]} (14.30) 

where C1 and C2 are arbitrary constants and 2 eBi
2

R
2 

• a lens-p = 8mV is 

strength parameter. By proper choice of the constants C1 and C2 the 
general ray can be made to pass through any two points or meet any 
two conditions in general. 

Since the general-ray equation is known, the focal points, focal lengths, 
and location of the principal planes of the Glazer lens can be found. 

The first principal ray is found by letting ~: be zero and r finite at 

z = + oo • The second principal ray is found by letting the slope be zero 
and the displacement finite at z = - oo. The principal planes are 
located at the intersection of the initial and final straight-line portions 
of the principal rays. The focal points are found at the points at which 
the principal rays cross the axis. 

The focal length of the Glazer lens is 

R !1 = -J2 = ------
sin n (vi~ p2) 

(14.31) 

where n assumes integral values. The significance of the focal length 
being multiple-valued is that for very strong fields a principal ray enter-

1 Let y = R__:_, x = _Rz, and then make the further substitution y = ~(</>) and x = cot <f,. 
Sill</> 

This yields the differential equation v"(<i>) = -(1 + k2)v(<f>), which is readily solved. 
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ing the lens parallel to the axis will advance and oscillate transversely, 
crossing the axis several times. For normal applications the value of n 
is taken as 1. The above value of focal length has the same low-field 
value as given by the approximate formula of Eq. (14.28), that is, 
2R 

.,,.p2· For larger v::!ues of field there may be a considerable divergence 

from the appro::imate value. The divergence does not, however, occur 
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FIG. 14.G.-Focal lengths of the Glazer lens by exact and approximate formulas. 

until the lens is strong enough for the electron to cross the axis within 
the region of appreciable field. A comparison of the focal lengths as 
determined by the exact and approximate formulas is given in Fig. 14.6. 

The location of the focal points is given by 

F 1 = - F 2 = R cot n ( _1r __ ) yl +p2 
(14.32) 



404 VACUUM TUBES 

This has the same weak-field asymptotic value as the focal length, which 
means that for weak fields the principal planes are located at the lens 
center. As the lens field is increased, the focal length becomes greater 
than the distance from the lens center to the focal points. This means 
that the first principal planes move away from the focal points. The 
first principal plane is to the right of the lens center and the second 
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Frn. 14. 7.-Focal length and principal-plane location of the Glazer lens. 

to the left. A plot of the focal length and focal-point position is shown 
in Fig. 14.7. 

14.6. Practical Magnetic Lenses. A coil of fine wire, square or rec­
tangular in cross section, about the beam axis is a practical lens. Its 
strength is not very great, however, and its field is not very well confined. 
Both these features may be improved by partly shielding the coil with 
an iron shield but still maintaining a gap along which magnetic lines will 
pass parallel to the axis. In Fig. 14.8 are shown some practical lenses 
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and their approximate fields. For extremely strong lenses such as are 
needed in electron microscopes the gap is made very small and is brought 
as close to the axis as possible by extended pole pieces. Such a lens is 
shown in Fig. 14.8e. It is not possible to calculate the performance of 
such a lens because of nonuniform saturation of the pole pieces. In 

la) (b) (C) (d) re) 
Fm. 14.8.-Practical magnetic focusing coils. 

part d of the figure there is shown a double lens composed of two sections 
containing coils passing currents in opposite directions. This makes 
the net image rotation through the lens zero for equal currents in the 
halves and tends to reduce the distortion associated with the image 
rotation. 

14.7. Magnetic-lens Defects. Magnetic lenses are subject to all the 
aberrations encountered in electrostatic lenses, plus a type of distortion 

Object Image 
Fm. 14.9.-Spiral distortion in magnetic-lens 
images. 

associated with the image rotation. This type of distortion is known 
as "spiral distortion" and is illustrated in Fig. 14.9. It results fro~ 
the fact that the rotation of different parts of the image is a funqtion of 
the radial position. Its effect may be reduced by limiting the beam by 
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very small apertures, or it may be largely eliminated by using pairs of 
lenses giving rotation in opposite direction. 

In addition to spiral distortion there may be distortion from current 
ripple in the magnetic coils or from stray fields. The effect of current 
ripple is to cause a point focus to become a blurred spot. Stray alter­
nating fields will ca.use a. point focus to become a short line. 

14.8. The General Equations of Motion in Combined Electric and 
Magnetic Fields. In the previous work in this chapter there have been 
described the effects of a nonuniform magnetic field upon an electron 
presumed to be moving in a region of constant electrostatic potential. 
For completeness there will be outlined in this section the basic relations 
that apply to electrons moving in combined electric and magnetic fieldb 
of rotational symmetry. This involves considerable analysis the end 
point of which is the differential equation of motion of a paraxial electron 
in terms of the axial potential and the axial component of magnetic 
field. Although the yield for a great deal of work is quite small, the 
methods involved are fundamental and instructive enough to make the 
inclusion of this section worth while. 

The force on an electron in a combined electric and magnetic field is 
given by 

F =ma= e[VV +BX v] (14.33) 

where VY is the gradient of potential and the components of B X v 
have been given in Eqs. (14.10) to (14.12). Equation (14.33) is a com­
pact representation of three coordinate equations and needs to be 
expanded for any specific application. 

In the work with electrostatic fields it was found that the electric 
intensity and the corresponding forces on electrons were all derivable 
from the electric potential. Similarly, it is convenient to consider that 
the magnetic-flux vector Bis derivable from a vector potential A. The 
relations for the electrostatic case are similar but not exactly analogous 
to those for the magnetic case. Electrostatic potential fields are analo­
gous to the irrotational flow of an incompressible fluid. Magnetic fields 
are analogous to the sourceless rotational flow of an incompressible flow. 

The basic relations for electrostatic potentials are quickly listed. 
First the line integral of electric intensity around any closed path is 
always zero. 

fE · dl = 0 (14.34) 

where the dot indicates the so-called scalar product, which is equal to 
the product of the magnitude of the vectors by the cosine of the angle 
between them. An equivalent statement of this is that the curl of the 
electric intensity, i.e., the microscopic circulation, is always zero. 
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vxE=O 
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(14.35) 

Whenever the curl of a vector is zero, then that vector is the gradient of 
some scalar function. Specifically, 

E = -VV (14.36) 

or intensity is the negative gradient of potential. The electrostatic 
potential results from a summation of the effect of various electric 
charges by the relation 

l f pdv V=- -
41rto r (14.37) 

The corresponding relations for the magnetic field are also quickly 
given. The net outward flux through any closed surface is always 
zero. 

f B · ds = 0 (14.38) 

An equivalent statement of this is that the divergence of magnetic flux 
is zero. 

V ·B = 0 (14.39) 

When the divergence of a vector is zero, then that vector is the curl of 
some other vector. 

B=VxA (14.40) 

The vector A is called the "magnetic vector potential." Just as the 
electrostatic potential results from a summation of the effects of individual 
charges, so does the magnetic vector potential result from the summation 
of the effect of various currents. 

A= µof Jdv 
41r r (14.41) 

in which J is vector current density. The vector A is seen to have the 
same direction as the currents that create it. The divergence of A is taken 
as zero in the static case. 

When Eq. (14.40) is expanded and w;itten in component form using 
cylindrical coordinates, it becomes, first in determinant form, 

i, ri9 i, 
1 a a a 

(14.42) B = - ar i)() az r 
A, rAe A. 

where i,, i9, and i. are unit vectors in the r, 8, and z directions, respec­
tively. When this determinant is expanded, the component equl\tiQP.S 
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B = _!. aA, _ aAo 
r r ae az 

Bo = aAr _ aA, 
az or 

l O l oA, B, = - - (r Ao) - - -
r ar r 08 

(14.43) 

(14.44) 

(14.45) 

These are the general equations relating B and A for cylindrical 
coordinates. 

For the particular problems of electron optics most of the magnetic­
lens fields are like those of a -circular coil. In such there is only a 8 
component of current and hence only a 8 component of A. _ Further, 
the fJ component of either current or A does not vary with angle. Hence 
we may write 

Ar= A,= 0 
A = Aoio 

oAo = O 
00 

(14.46) 
(14.47) 

(14.48) 

With these restrictions the component relations between B and A become 

B = - aAo (14.49) 
r az 

Bo = 0 (14.50} 
1 o B, = - -,;- (rA 0) (14.51) 
r ur 

From the above set of equations and the fact that V X B = 0 it is possible 
to obtain a differential equation for A 6 alone. In subsequent work the 
fJ subscript for A will sometimes be dropped for simplification, though it 
will be remembered that the vector A has a 8 component only. Setting 
the curl of B equal to zero in terms of the 8 component of A, 

ir rio i, 
1 o o o 

V xB = - or oo oz r 
aA 

0 
1 a(rA) 

az 
---
r ar 

which expands into 

r component of V X B = 0 - 0 

a (1 a(rA)) a2A f} component of V X B = - - - -- - -ar r ar az2 

z component of V X B = 0 - 0 

(14.52) 

(14.53) 

(14.54) 

(14.55) 
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Upon setting the 8 component of curl B above equal to zero there is 
obtained the differential equation for the vector potential A, 

a2
A + a2

A + ~ (~) = 0 iJz2 iJr2 ar T 
(14.56) 

which, of course, applies only to magnetic fields having a rotational 
symmetry and produced by currents flowing exclusively in the 8 direction. 
This equation is similar to but not identical with Laplace's equation but 
serves the same function in defining A as Laplace's equation does in 
defining V. This equation may be solved by series exactly as was done 
for potential and magnetic flux. In this case the series is restricted to 
odd powers of r because the vector potential like the current that gener­
ates it is an odd function of r. The resultant series expansion for A 
lS 

B as" 6 
A ( ) = ~ - ~ + r Bo<4) + 

8 1 ,z 2 22 . 4 22 . 42 . 6 

+ (-l)n+1Bo<2n-2) (:.)2..-1 (14.57) 
n[(n-1)!] 2 2 

where Bo = B(O,z) is the value of the axial component of magnetic 
flux. 

By restricting Eq. (14.33) to fields of rotational symmetry and 
utilizing Eqs. (14.49) to (14.51) there result the component equations 
of motion 

~ (r - r82) = -8 ~ (rA 8) + av 
e ar ar 

~ ! <!:_ (r 20) = i iJAo + ~ a(rAo) 
e r dt oz r ar 

I d 
= r dt (rAo) 

'!!! z = -ro aAo + av 
e az az 

(14.58) 

(14.59) 

(14.60) 

(14.61) 

These are the basic equations from which now some simplified relations 
will be obtained. These equations are so far exact. 

Equation (14.60) integrates to 

2 er2Bo 
mr 8 = erAn = -

2
- (14.62) 

-

for the paraxial case. The constant of integration is zero since A 8 = 0 
for r = 0 as may be seen by reference to its series expansion. Sub­
stituting the v'l.lue of 8 from Eq. (14.62) into Eq. (14.58) yields 
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.. a (v 1 e A 2) mr=ear -2m 8 (14.63) 

A similar operation upon Eq. (14.61) yields 

mz = e i (v - ! ~ A82) oz 2 m 
(14.64) 

The energy equation is obtained from these last two equations by 
multiplying the first by rand the second by i, adding, and integrating. 
The result is 

~ [r 2 ~ (r8) 2 + i 2
] = eV 

2 
(14.65) 

Use has been made in obtaining this of Eq. (14.62). Note that the kinetic 
energy is independent of A and hence of the magnetic field. This is 
consistent with the idea previously propounded that a magnetic field 
can change only the direction of an electron and cannot change its energy 
because the force is always directed at right angles to the electron's 
velocity. 

From Eq. (14.62) the approximate rotation of an electron is given by 

(14.66) 

Inserting the series expansions for A and V into Eqs. (14.63) and 
(14.64) gives 

mi' = e {- !:. (vo" + ! ~ Bo2
) + ---2:.._ [v0<4l + 2e BoBo''] + · · } 2 2 m 22 • 4 m 

(14.67) 
and 

(14.68) 

The paraxial components of these last two equations are found by 
retaining only first-order terms, 

- - re (v II + 1 e B 2) 
T - - 2m o 2 m o 

.. e V' Z = - 0 
m 

(14.69) 

(14.70) 

Note that the radial component of acceleration due to the magnetic field 
is always convergent. The paraxial differential equation may now be 
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obtained by eliminating time from the last two equations by the use of 

and 

dr r 
dz= z 

•2 2e Vo 
z = -­

m 

With these substitutions the paraxial differential equation is 

d
2
r + Vo' dr + _!_ (vo" + eBi) = O 

dz2 2Vo dz 4Vo 2m 

This can also be written in the form 

yv;; ~ (vVo dr) = _ !._ (v o" + eBl) 
dz dz 4 2m 

(14.71) 

(14.72) 

(14.73) 

(14.74) 

(14.75) 

These equations are seen to be of proper form because the paraxial 
differential equation of either a varying electric or magnetic field alone 
is derivable from them. 

If in addition to the effect of the electric and magnetic fields there be 
considered the defocusing effect of the mutual radial repulsion of the 

electrons, then a factor of the form -
2
rp must be added within the paren-
£0 

theses of the last term of the above two equations, where p is the space­
charge density within the beam and £ 0 is the dielectric constant of free 
space. 

Note that the paraxial differential equations of Eqs. (14.74) and 
(14.75) are second-order linear differential equations. This means that 
even with combined electric magnetic fields a general ray can be expressed 
in terms of two independent principal rays. 



CHAPTER 15 

CATHODE-RAY TUBES 

16.1. The General Form of Cathode-ray Tubes. The external 
physical form of cathode-ray tubes is well known. They generally 
have a glass envelope shaped Jike an Erlenmeyer flask. The electrical 
leads to the tube come out through a base at the mouth of the flask. 
The inside of the flask is coated with aquadag. The bottom of the 
flask is coated inside with a fluorescent material. 

The internal parts of the cathode-ray tube include an electron gun, 
devices for horizontal and vertical deflection of the beam, and a fluores­
cent screen. The electron gun is a combination of electrodes for pro­
ducing and focusing a beam of electrons. It consists of a cathode, a 

H- Healer FE-Focusinq 
C-Cafhode electrode or 

1HS-Hectfshield .second anode 
.EO-Em/tfinq oxide EB-Electron beerm 
CE-Control e/ecfrode FS- fluo,.-est:ent scr~ 
AE-Acce/erafinq electrode on mside gltrs~ 

or first anode AC-Aqu(!da_q_ c0e7fmg 
LA-Limifinq aperture on ms,de q/ttss 

Frn. 15.1.-Schematic cathode-ray-tube structure. 

control electrode, and two or more electrodes forming an objective lens. 
One commonly used arrangement of these parts is shown in Fig. 15.1. 

The general description of the parts of the electron gun and their 
function is as follows: The cathode consists of a small capped cylinder 
of sheet nickel. The cap is coated with emitting material. The cathode 
is indirectly heated by an insulated filament wire inside the cylinder. 
The cathode is generally surrounded by a close-fitting but nontouching 
cylinder, which acts as a heat shield and increases the thermal efficiency 
of the cathode. The heat shield is supported at the nonemitting end of 
the cathode and projects slightly beyond the cap at the other end. This 

412 
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projection at the emitting end serves to keep the emitted electrons from 
spreading. Figure 15.2 shows this cathode construction. The control 
electrode takes the form of a cylindrical can completely surrounding 
the cathode and having a circular aperture in front of the emitting cap. 
It performs the same function as the control grid in a triode. The 
main focusing lens is in the form of one of the lenses described in the 
chapter on Electrostatic Electron Optics. The first part of this lens 
always has limiting apertures to keep the electrons from spreading too 
much by reducing the angle of the beam. With the arrangement shown 

FIG. 15.2.-Typical cathode structure. 

in Fig. 15.1 there is a crossover point of the electrons between the control 
electrode and the first electrode of the objective lens. The spot seen 
on the screen of the tube is an image of the crossover portion of the beam, 
which is the cross section of minimum diameter. In the two-cylinder 
objective lens shown in Fig. 15.1 the small cylinder is called the "first 
anode" or "accelerating electrode." The large cylinder is called the 
"second anode" or "focusing electrode." 

The relative potentials on the electrodes of the electron gun are quite 
important. For a typical tube with the electrode arrangement of Fig. 
15.1 the electrode potentials are as follows: 

Electrode 

Filament .. . . .. ....... . . . ... . ..... . 
Cathode . . . . . .. ......... . . . . .. .... . 
Heat shield ... . . . . ...... ..... .. . . . . 
Control electrode . . . .... . . . . . . . ... . . 
First anode .. . .... .. . .. ..... . .. .. . . 
Second anode ..... .... .. . ...... .. . . 
Aquadag coating .... . ...... .. . . ... . 

Potential 
relative to 

cathode, volts 

0 
0 
0 

-10 to +10 
+200 
+800 
+800 

Potential 
relative to 

ground, volts 

-800 
-800 
-800 

-790 to -810 
-600 

0 
0 

The physical construction of the electron gun requires a high degree 
of precision in the alignment of the electrodes. The electrodes are 
usually supported from glass or ceramic insulating rods, in turn sup-
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ported on a stem similar to that used in vacuum tubes. Mica spacers or 
metal springs serve to center the gun within the neck of the envelope. 
Extreme care must be used in aligning the electrodes axially. Such 
alignment is usually achieved by means of a mandrel, which is removed 
after the electrodes have been spotted or crimped into place. 

The beam-deflecting devices most commonly used are electrostatic 
deflecting plates or magnetic deflecting coils The deflecting plates 
are always placed inside the tube and are usually supported from the 
end of the electron gun. Some special-purpose tubes have the deflecting 
electrodes supported directly from the neck of the envelope, with leads 
brought out directly through the glass. Magnetic deflection, when used, 
is achieved by coils external 'to the tube. The coils are arranged so 
that they produce a component of magnetic field perpendicular to the 
axis of the tube. 

The fluorescent screen at the end of the tube serves to reveal the 
position of the electron beam and to translate electrical impulses into a 
visual picture. The screen consists of a thin layer of fluorescent material 
on the inside of the tube, which lights up when struck by electrons. The 
fluorescent_ coating is generally a fairly good insulator so that it is neces­
sary for the electrical circuit consisting of the power supply and the beam 
to be completed by means other than electrical conduction. The means 
in this case is secondary emission. As beam electrons strike the fluores­
cent screen, they liberate secondary electrons, which look for a more 
positive electrode to be drawn toward. This electrode is found in the 
aquadag coating, which is at beam, or ground, potential. The fluorescent 
screen will assume a negative potential because of an accumulation of 
beam electrons that are slow to leak off. This means that there exists a 
potential difference between the fluorescent screen and the aquadag 
coating that is in the right direction to attract the secondary electrons 
liberated by the beam impact. 

15.2. Electron-gun Design. The fields and electron paths in the 
vicinity of the cathode of an electron gun are extremely complex. This 
makes the exact design of electron guns necessarily at least partly 
empirical. Although it is not possible to give equations resulting in 
exact design relations, it is possible to indicate the nature and magnitude 
of the effects encountered. 

For low-current guns such as are used in ordinary cathode-ray 
tubes the electrostatic field in the vicinity of the cathode has the general 
shape shown in Fig. 15.3. The fields will be similar to those encountered 
in the vicinity of simple apertures, but modified by departures in the 
shape of the electrodes from that ideal configuration. Between the 
control electrode and the first anode the field will be approximately 
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linear. In the vicinity of the cathode the field will be strongly curved 
in such a way as to cause all electrons emitted from the cathode to be 
drawn strongly toward the axis. Only a limited portion of the center of 
the cathode emitting area will present a positive gradient of potential 
to the emitted electrons. At cutoff the gradient of potential will be zero 
at the cathode center and negative in other parts. As the control grid 
is made more positive, a region of positive gradient will grow from the 
center until at sufficiently positive control-ele<'trode potentials the entire 
surface of the cathode may emit. 

Cutoff Rel,ations in the Electron Gun. The control electrode has an 
action somewhat similar to that of the control grid in a vacuum tube 

+S00volts 

FIG. 15.3.-Ficld in the vicinity of the ca thode of an electron gun. 

except that in addition to controlling the gradient at the center of the 
cathode it controls the size of the emitting area. For this reason it is 
difficult to write a current-voltage relation, but it is possible to estimate 
the cutoff relation. Exact relations for the configuration of Fig. 15.3 
are almost impossible to write, but the field ~onfiguration is approximated 
by the idealized electrode configuration of Fig. 15.4. For this configura­
tion the aperture-field formula of Eq. (13 .37) will apply very closely. 
Here the axial potential is given by 

Vo(z) = - V-id2a + (Va - V2)d12 [izl - 2R (3.. arctan !!_ - 1)] 
2d12d2a 'If' R z 

when V1 = 0. 

+ (Va - V2)d12 + V2d2a z + y 2 (l 5_l) 
2d!'J<i2a 
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The gradient of potential at the cathode is found by taking the derivative 
of this expression with respect to z and then setting z = -di2• The 
resulting expression is 

t--·--· 

Jf=O 
Fm. 15.4.-Idealized cathode-electrode configuration. 

The cathode current will be cut off when the gradient at the cathode is 
zero. The equivaletlt amplification factor of the control structure is 

found by setting drzo at z = -d12 equal to zero and then taking the neg­

ative ratio of V 3 to V2. 
Va 

µ = -­
V2 

(15.3) 

This is an amplification factor that determines the current cutoff. 
The amplification factor has the specific value 

µ = 1rd~:
3 

[ t R 
1 

1 - ~ (::: + l )] 
arc an - - ~-~-

d12 .!!:_ + d12 

d12 R 

(15.4) 

A nomographic chart of equivalent amplification factor as a function of 
control-electrode-aperture radius and grid-first-anode distance, each 
expressed in units of cathode-grid distance, is given in Fig. 15.5. These 
values, while not exactly the same as those for the electrode structure 
of Fig. 15.3, will serve to indicate the order of magnitude and the nature 
of the variation of the equivalent amplification factor with the critical 
dimensions. Measured values of µ for the structure of Fig. 15.3 will 
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be considerably higher than those obtained from Eq. (15.4) because of 
the shielding effect of the control-electrode-cylinder extension. Meas­
ured data on some specific electrode structures are available in the 
literature. 1 

2 
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Fm. 15.5.-Nomographic chart of the equivalent amplification factor of an dectron 
gun as given by Eq. (15.4). 

Electron Paths in the Electron Gun. As may be seen from the equi­
potential plot of Fig. 15.3, the field in front of the gun cathode is strongly 
convergent. It is not easy to apply the methods described in the 
chapter on Electrostatic Electron Optics to this portion of the gun 
because the focusing field is so strong relative to the low-velocity electrons 
that a focus is obtained within the region of field variation. The type 

1 MALOFF, I . G., and D . W. EPSTEIN, "Electron Optics m Television," pp. 167-16\:), 
McGraw-Hill, New York, 1938. 
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of lens encountered here is sometimes referred to as an "immersion lens" 
because the object is immersed in the lens. 

Some typical electron paths in the vicinity of the cathode of an 
electron gun are shown in Fig. 15.3. Rays leaving the cathode are 
propelled forward and attracted toward the axis. As a result of this 
action, the rays cross the axis at a point not very far out in the field. 
After crossing the axis the rays are curved the other way and are again 
bent toward the axis, but the action in this portion of the field is so weak 
that the rays invariably retain their divergent characteristic. Shown 
in the figure are three rays. These rays differ by virtue of the direction 
of the velocity of emission of the electrons. The three rays show the 
effect of emission velocity diretted toward the axis, normal to the cathode, 
and away from the axis. All three rays are seen to come to -a focus on 
the plane a-a. This represents an image of the cathode. The minimum 
diameter of the cross section of the beam occurs at the plane b-b. This 
plane of minimum cross section is called the "crossover" of the beam. 
It is seen to be much smaller in diameter than either the cathode or its 
image. The best spot is obtained by focusing this crossover rather than 
the cathode or its image on the fluorescent screen. Actually, the cross­
over cannot serve as object, but rather its virtual image at c-c, as found 
by projecting back straight lines from the region of uniform field , serves 
as object. This virtual image of the crossover is slightly larger than the 
crossover itself but is still smaller than the cathode or its image. 

Since the beam crossover is used as the object whose image forms the 
working spot of the beam, its location and size are of considerable 
importance. These values are rather hard to determine exactly, but 
some good approximations can be given. The location of the crossover 
can be estimated by making use of the fact that the field in the vicinity 
of the cathode is approximately spherical. Hence, if the radius of 
curvature of the zero-potential contour can be found, it is to be expected 
that the crossover will occur at this radial distance from the cathode. 
It was shown in the chapter on Electrostatic Electron Optics that the 
radius of curvature of any equipotential surface in a field of rotational 
symmetry is given by 

2Vo' 
Ro = Vo" (15.5) 

where Vo' and Vo" are the first and second derivatives of the axial poten­
tial, respectively. The curvature radius can be obtained in a straight­
forward manner from Eq. (15.1), and at the cathode has the value 

Ro [ 1 1 ( R 1 )] [ (d 12
)

2

] ~ R =1r (V
3 

)d
12 

+; arctand12 - !i+d12 l+ R 
--1 --1 d v 
~ ~ 12 IL 

(15.6) 
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for V 1 = 0. As an example, if R = d12 = d23 and V 2 = 0, then the 
value of µ from Eq. (15.4) is 9.02 and the value of Ro from Eq. (15.6) 
is 1.14 :. The very low value ofµ results from the fact that the control­
electrode-aperture diameter is twice the cathode-control-electrode 
distance in this example. From the value of the zero-potential radius 
of curvature the crossover is expected to occur nearly in the plane of the 
control electrode. If the cathode is flat, Eq. (15.6) will predict a smaller 
radius of curvature than actually exists because of the influence of the 
flat cathode upon the field. Cathodes may, however, readily be curved 
to fit the normal aperture fields. 

The size of the crossover diameter may also be estimated by assuming 
that the field in the vicinity of the cathode is spherical. The finite size 

___ ,N•O 
' , ' , ' e ',, 

I r---- '--l----- r,3:;:,:>.1-c:::-:::~_2 ____ _ 

' ' ' Ic 

~ 
0 

~ 
~ 

' ' 2r0 

Fm. 15.6.-Idealized cathode with spherical field. This 
gives the notation for use in Eq. (15.7). 

of the crossover results from electrons being emitted at all angles from 
each point on the cathode, and with appreciable velocity. The larger 
the emission velocity, the larger the crossover diameter. The electron 
behavior encountered is like that shown for the idealized spherical 
electrodes of Fig. 15.6. For this situation the radius of the crossover is 
given by 

+2rc 
ro = {V; . 

2 '\JV. sm 8 

(15.7) 

where r, is the radius of the cathode, r0 is the radius of the crossover, 
V2 is the potential of the crossover, V, is the voltage equivalent of the 
velocity of emission, and 0 is the half angle of the cathode as viewed from 
the crossover. 1 

1 RusKA, E., Zur Fokusierbarkeit von Kathodenstrahlbiindeln grosser Ausgangs­
querschnitte, Zeit. fur Phys., vol. 83 (Nos. 9, 10), pp. 684-698, 1933. 
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This equation results from an analysis of the electron path in a 
spherical field. It is properly valid only for small values of 9, say less 
than 20 deg. Actually, electrons will be coming off the cathode with all 
possible velocities so that an average value of V. must be used. If a 
value of V., that is, the voltage equivalent of the velocity not exceeded 
by 80 per cent of the electrons is used, then the crossover radius of Eq. 
(15.7) will contain at least 80 per cent of the beam current and probably 
more, for not all electrons emitted with greater velocities will have 
tangential components greater than that corresponding to V •· The 
virtual image of the crossover will generally be larger than the actual 
crossover. An enlargement by a factor of two is, however, not often 
exceeded. The position of the virtual image of the crossover will be on 
the cathode side of the actual crossover and may even lie behind the 
actual cathode. It may generally be expected to lie within a distance 
equal to the cathode-control-electrode distance of the actual cathode, 
which is close enough for design of the subsequent lens system. 1 

Current-voltage relations for the electron gun are not readily specified 
analytically. If a low-mu gun structure is used and the control electrode 
is operated at zero potential, the cathode will come very close t,o being 
temperature-limited. Some specific measured data on gun current­
voltage relations are available in the literature. 2 

The concept of the screen spot as an image of the beam crossover 
in front of the cathode is largely one of convenience. There is evidence 
that the screen spot is actually an image of the cathode. The size of the 
crossover may be obtained from optical considerations of the field in 
front of the cathode. At low beam voltages, however, the thermal 
velocities of emission of the electrons from the cathode are large enough 
compared with the potential of the crossover so that they are an appre­
ciable factor in determining the spot size. At large beam voltages the 
thermal velocities may be expected to be low compared with the potential 
of the beam crossover so that they do not add appreciably to the size 
of the cathode image. An examination of the operation of tubes with 
beam potentials greater than 1,000 volts, from the viewpoint of straight­
forward cathode imaging, yields some useful information on the properties 
of beams. 3 

A rough optical approximation to the field action in front of the 

1 ZWORYKIN, V. K., and G. A. MORTON, "Television," pp. 368-383, Wiley, New 
York, 1940. 

2 MALOFF and EPSTEIN, op. cit., pp. 171-176. 
3 LIEBMANN, G., Image Formation in Cathode Ray Tubes and the Relation of 

Fluorescent Spot Size and Final Anode Voltage, Proc. I.R.E., vol. 33, pp. 381-389, 
June, 1945. 



CATHODE-RAY TUBES 421 

cathode may be had by considering the equivalent lens to be made up of 
two regions of constant index of refraction with a spherical refracting 
surface between them, as shown in Fig. 15.7. For this equivalent lens 
Lagrange's law will hold, 

(15.8) 

where n1 and n2 are equivalent indices of refraction, M1 = 1f'!. is the lateral 
Yi 

magnification, and Ma = a
2 is the angular magnification. The lens 

a1 

equation in this case is 

n2 + n1 = n2 - n1 (l5_9) 
Z; Zo R. 

FIG. 15. 7.-Spherical-surface refraction equivalent of cathode­
lens action. 

where zo and z, are object and image distance, respectively, and R. 
is the radius of curvature of the spherical refracting surface. 1 Solving 
Eq. (15.9) for z;, 

n2R,zo 
Z; = Zo(n2 - n1) - n

1
R. (l5.10) 

From EtJ.. (15.8) the linear magnification is 

M1 = ~ = n1z; (15.11) 
Yi n220 

Substituting the value for z, from Eq. (15.10) into Eq. (15.11), 

1 
M1=-------

(
n2 _ 1) zo _ 1 
n1 R. 

(15.12) 

1 A derivation of this expression is available in almost any book on geometrical 
optics. 
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If it is now considered that the object is located very close to the refract­
ing surface so that z0 is small compared with R., then approximately 

Mi= -1 (15.13) 

which says that the image is the same size as the object and is roughly 
independent of the indices of refraction. Further, 

(15.14) 

from Eq. (15.8), which says that the angle which a ray makes with 
the axis at the image is inversely proportional to the index of refraction 
n 2 if n1 is held constant. If the assumptions made here are approximated 
in a cathode-ray tube, then it is to be expected that the size of the 
cathode image is independent of the voltage of the first accelerating 
electrode. Then, since, as was shown in Figs. 13.37 to 13.45 of the 
chapter on Electrostatic Electron Optics, the magnification of the usual 
electrostatic objective lens is approximately eight-tenths of the ratio 
of image to object distance independent of voltage ratio, it is to be 
expected that the spot size is also independent of the beam voltage. 
It also follows from Eq. (15.14) that the product of the beam voltage 
and beam area in the fore part of the objective lens is a constant, 

(15.15) 

where r is the radius of the beam in an arbitrary plane. Measurements 
on actual tubes show that both these expectations are realized very 
closely for beam voltages above 1,000 volts. 1 The above performance 
applies only if the limiting apertures intercept a negligible amount 
current. 

Focusing System. The production of a beam crossover of small 
diameter and high current density is the principal problem in electron-gun 
design. The rest of the design problem is relatively simple. The beam 
crossover need only be followed by one of the types of objective lenses 
described in the chapter on Electrostatic Electron Optics. The cylinder 
lenses are found to be most suitable, and there is not much to choose 
between them. In fact, almost any kind of lens will do, for it is always 
possible to find a voltage ratio that will focus the beam crossover on the 
screen. When cylinder lenses are used, it is necessary to put limiting 
apertures within the first cylinder to limit the initial divergent action 
of the beam. This is illustrated in the schematic drawing of Fig. 15.1. 
A limiting aperture is often put at the end of the second cylinder as well. 

1 Ln,11MANN1 op. cit. 
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The data of Figs. 13.37 to 13.45 can be used directly to design the 
focusing system. The object distance is simply taken as the distance 
from the beam crossover to the reference point in the lens. The image 
distance is the distance from the reference point in the lens to the fluoresJ 
cent screen. Focusing, with the electrode arrangement of Fig. 15.1, is 
obtained by adjusting the first-anode voltage, all other voltages being 
kept fixed. Intensity of the beam is controlled by adjusting the control-

CE A2 A1 A 2 __ -£L 1 ,.--.-~,-7 __ 
=L,ll =t <aJ 

CE A2 A 1 A2 

__ c ,1 __ 1 _I _ T 7 __ 
=::::'..J ~I ...... , __ ._ J.. T ( b) 

A., CE A 2 A3 B~-' _I ___ --,_ 

::::::::'...11_1 I _J rcJ 

CE A_, A 2 Aa 
I!TI I 1·17 

---7-J_-j -,---, -, -_j-{d_J_ 

e-Cathode 
CE-Control 

e/ecfrocle 

Ar First anode 
A2 ~second anode 
A 3 -Third anode 

Fm. 15.8.-Typical electron-gun structures 
using electrostatic focusing. ~ 

electrode voltage. With this arrangement the two adjustments indicated 
will have a principal effect upon focus and beam intensity, respectively, 
but it will be noticed that the adjustment of the beam intensity affects 
the focus somewhat, and vice versa. While adjustment of the control 
electrode has the principal effect of changing the beam current, it also 
changes the location of the beam crossover and so affects the focus. 
Adjustment of the first-anode voltage has the principal effect of adjusting 
the focus, but the field of the first anode reaches back to the cathode and 



424 VACUUM TUBES 

changes the intensity somewhat. This interaction of controls can be 
improved by making use of a different electrode arrangement. 

Alternative Electrode Structures. In Fig. 15.8 are shown some alter­
native electron-gun structures that are extensively used. In the arrange­
ment of electrodes shown for gun a the cathode-control-electrode 
structure is about the same as that just discussed. The focusing action in 
this case, however, is divided into two parts so that there are really two 
objective lenses. Thus, the accelerating anode is split in two, with 
the focusing anode located between the two parts. The principal 

M 
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CE-Control electrode 
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A2·.Second anode 
M-Mcrq-net,c, f"oc1.1sin9 coil 

FIG. 15.9.-Electron guns with magnetic 
focusing. 

advantage of this electrode arrangement over that shown in Fig. 15.1 
is that the interaction between the intensity and focusing controls is 
greatly reduced. With this arrangement the electrodes adjacent to 
the control electrode are kept at a fixed potential. This means that any 
changes in the focusing field of the objective lenses are shielded from the 
control-grid region by the first part of the accelerating electrode. A 
better capture of secondary electrons liberated at the limiting apertures 
may also be effected. The action of the other guns is evident from their 
structure. 

Wh~re magnetic focusing is used, the simple arrangements of Fig. 
15.9 are adequate. The arrangement of gun a consists of only a cathode, 



CATHODE-RAY TUBES 425 

control electrode, accelerating electrode, and magnetic focusing coil. 
The magnetic coil can usually be put outside the tube. This arrange­
ment, while simpler of construction, requires that part of the power 
supplied to the tube must be regulated to give constant current for 
the magnetic focusing coils. The arrangement of gun b actually involves 
a combination electrostatic and magnetic focusing action. 

16.3. Deflection Devices. Electrostatic Deflecting Plates.-Electro­
static deflection plates have already been discussed in the chapter on 
Laws of Electron Motion. The deflection obtained from electrostatic 
deflecting plates is given by Eq. (6.23), which states that the deflection 
is equal to half the beam length multiplied by the ratio of the deflecting 
voltage to the beam voltage and by the ratio of the axial deflecting-plate 
length to the deflecting-plate spacing. 

lbVd 
y = -~ (6.23) 

• 2aVo 

where y, is the spot deflection at the fluorescent screen in any units 
of length, l is the beam length from plates to screen in the same units, b 
is the deflecting-plate length in the same units, a is the deflecting-plate 
spacing in the same units, V dis the deflecting potential, and Vo is the beam 
potential. Of principal significance is the fact that the spot deflection 
is proportional to the deflecting voltage and inversely proportional 
to the beam voltage. 

Magnetic Deflection. Magnetic deflection of a beam may be achieved 
by applying a magnetic field perpendicular to the beam for a short 
distance of its length. The electrons moving through this magnetic 
field will move in a short section of an arc of a circle if the field is constant, 
emerging at an angle with their original direction. The radius of curva­
ture of an electron moving at right angles to a constant field was given 
by Eq. (6.62) as 

R = 3.37 X 10-5 ~V meters (6.62) 

where Vis in volts equivalent to the velocity and Bis webers per square 
meter (10 4 gausses). Consider the deflecting arrangement of Fig. 15.10. 
The magm,tic field is shown by the dots in the rectangle astride the 
beam. If the field is constant within this rectangle, the beam will move 
in the arc of a circle of radius given by Eq. (6.62). Upon emerging 
from the magnetic field the electrons will move in straight lines at an 
angle 0 with the original path given hy 

(15.16) 



426 VACUUM TUBES 

Hence the deflection is given by 

lb lbB 
y, = R = 3.37 X 10-6 vV 

meters (15.17) 

for B in webers per square meter. To obtain deflection in centimeters, 
express B in gausses, and drop the factor 10-s in the denominator. 
Magnetic deflecting coils are invariably placed outside of the tube neck 
and take the form of a saddle-shaped coil. 

Relative Merits of Electrostatic and Magnetic Deflection. Both electro­
static and magnetic deflection are capable of giving linear deflection 
over the entire tube face. T~e differences in their operation lie only in 
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Fm. 15.10.-Magnetic deflection of an electron beam by a 
region of uniform magnetic field, as given by Eq. (15.17). 

their sensitivity and frequency characteristics. There is an advantage 
in using magnetic deflection at high beam voltages, for a relatively smaller 
increase in deflecting field is necessary. This results from the fact that 
electrostatic deflection is inversely proportional to beam voltage, whereas 
magnetic deflection is inversely proportional to the square root of the 
beam voltage. Hence, if beam voltage were raised from 1,000 to 4,000 
volts, four times the voltage would be necessary to give the same electro­
static deflection, whereas only twice the magnetic coil current would be 
necessary to give the same magnetic deflection. For this reason, mag­
netic deflection is commonly used in high-voltage television viewing tubes. 
A disadvantage of magnetic deflection is that a negative-ion spot forms 
in the middle of the screen, due to negative ions emitted from the cathode, 
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which, because of their great mass, are scarcely deflected by the magnetic 
fields. 1 With electrostatic deflection a negative-ion spot does not form 
because the negative ions are deflected the same as are the electrons. 
Electrostatic deflection has the advantage as far as frequency charac­
teristics go. With ordinary construction, electrostatic deflection can 
resolve frequencies as high as several hundred kilocycles. The practical 
upper limit of magnetic deflection is of the order of 10 kc. Magnetic 
deflecting coils are most suitably fed from a high-impedance source. 
Since the coil represents a fairly high inductance, the voltage appearing 
across it for the same current increases linearly with frequency. This 
means that excessive voltages are reached at relatively low frequencies. 

Frn. 15.11.-Brightness and luminescent effi­
ciency of willemite as a function of beam 
voltage. (Maloff and Epstein.) 

An advantage of magnetic deflection which electrostatic deflection does 
not possess is that it is more suitable for radial deflection and polar 
representation. Magnetic deflecting coils can be made to rotate about 
the tube ~nd so give polar representations where the frequency of rota­
tion required is not too high. 

Visual versus Deflection Sensitivity. Tlie light output from a spot on a 
fluorescent screen under beam excitation is found to be approximately 
linear with beam voltage in accordance with Lenard's equation, 

CP = Al(V - Vo) (15.18) 

where CP is the candle-power output, A is a constant of the material 
of the order of 2 candle power per watt, I is the beam current, V is 

1 BACHMAN, C. H., and C. W. CARNAHAN, Negative-ion Components of the 
Cathode Ray Beam, Proc. I.R.E., vol. 26, pp. 529-539, May, 1938. 
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the beam voltage, and Vo is the voltage at which fluorescence starts, 
somewhere between 500 and 1,000 volts. Curves of candle power 
and candle power per watt as a function of beam voltage for willemite 
are shown in Fig. 15.11. From this and Eq. (6.23) it is seen that if the 
attempt is made to increase the brightness of the trace by using a higher 
beam voltage a corresponding decrease in deflection is suffered. With 
the gun arrangement of Fig. 15.1 this sets a practical limit to the deflec­
tion sensitivity of the order of 0.1 mm per d-c volt with a beam volt­
age of 3,000 volts. The deflection sensitivity can be increased by 
reducing the beam voltage, but this correspondingly reduces the spot 
brightness . . 

Post,defiection Acceleration. The dilemma of having to sacrifice 
deflection sensitivity to achieve visual sensitivity, or vice versa, can be 

G-Glass envelope 
C·Cathode 
CE.- Control electrode 
AE·Accelen:dt"nq electrodes 
FE-F"ocu.rt"ng electrodes 
IE- Inknst"fier electrode-inside glass 
AC-Aquadag co«lt"nq-inside qlass 

G 

Fm. 15.12.-Structure of the postdeflection-acceleration tube. 

circumvented by making use of the principle of postdeflection accelera­
tion.1· 2 A schematic drawing of a tube making use of this principle is 
shown in Fig. 15.12. The principle that is used increases the deflection 
sensitivity by deflecting the electron beam at relatively low voltage and 
then subsequently accelerating it before the electrons hit the screen. 
With this arrangement the beam is deflected at relatively low velocity, 
giving a good deflection sensitivity, and then is subsequently accelerated, 
giving a good visual sensitivity. Part of the increase in deflection 

1 DE GEIER, J., A Cathode Ray Tube with Post Acceleration, Prilips Tech. Rev. 
vol. 5, pp. 245-252, September, 1940. 

2 PIERCE, J. R., After Acceleration and Deflection, Proc. I.R.E., vol. 29, pp. 28-31, 
January, 1941. 
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sensitivity gained by this arrangement is lost because the final accelerat­
ing field is somewhat convergent, thus reducing the deflection. 

The postdeflection-acceleration arrangement makes use of an ordinary 
electron gun supplemented by a so-called "intensifier electrode," which 
takes the form of a ring of conducting material inside the tube near the 
fluorescent screen and operated at about twice the voltage of the last 
previous electrode. 

Some typical voltages as used in this arrangement are as follows: 

Potential 
Electrode relative to 

cathode, volts 

Cathode..... . . .. ..... . . . ... .. . 0 
Control electrode. . . . . . . . . . . . . . . -10 to + 10 
Accelerating electrode. . . . . . . . . . . 1 , 500 
Focusing electrode. . . . . . . . . . . . . . 37 5 
Intensifier electrode. . . . . . . . . . . . . 3,000 

Potential 
relative to 

ground, volts 

-1,500 
-1,490 to -1,510 

0 
-1,125 
+1 ,500 

With this arrangement of electrodes the deflecting plates, which are 
situated between the second part of the accelerating electrode and the 
aquadag coating, are operated at zero direct voltage, as are also the 
adjacent electrodes. With the above operating conditions a deflection 
sensitivity of 0.3 mm per volt may be realized. In general, an improve­
ment of 3 to 5 times in deflection sensitivity may be obtained by this 
arrangement of electrodes. 

The amount of the beam intensification may be extended considerably 
even beyond that indicated above. By putting in a number of intensifier 
electrodes with potentials progressively greater, spot brightness may be 
increased by a factor of 10, and yet the deflection sensitivity may be 
increased slightly over that which would obtain if the final intensifier 
potential -were applied to the last gun electrode and the intensifier 
electrode were removed. Tubes with final intensifier-electrode potentials 
as high as 15,000 volts are considered commercially feasible. 1 

16.4. Fluorescent Materials. The characteristics of the fluorescent 
material used for a cathode-ray screen are critical factors in the successful 
operation of the tube. The various characteristics such as spot bright­
ness, spectral characteristics, trace persistence, secondary emission, and 
voltage characteristics are all controllable by the composition and pro-

1 CHRISTALDI, P . S., Cathode Ray Tubes and Their Applications, Proc. I.R.E., 
vol. 33, pp. 373-381, June, 1945. 
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cessing of the material. Hundreds of fluorescent materials have been 
studied, and by now the data on such materials are very numerous. 1- 5 

Definitions. Strictly speaking, the term "fluorescence" as applied to 
cathode-ray-tube screen operation is a misnomer, but it is so widely used 
that it will also be applied here. Properly, one should distinguish 
between the three terms "luminescence," "fluorescence," and "phospho­
rescence." These may be distinguished, briefly, as follows: 

Luminescence. This refers to visible and near-visible radiation in 
excess of black-body radiation due to some form of excitation. The term 
applies to the radiation both during and after excitation. It can be 
classified according to the means of excitation into many classes, such 
as cathode luminescence (the 1uminescence produced by the impact of 
electrons), photoluminescence (the luminescence caused by ex·posure to 
radiation), electroluminescence (the luminescence given off by ionized 
gases), and bioluminescence (the luminescence of living organisms). 
About 10 kinds of luminescence can be enumerated. 

Fluorescence. Fluorescence is luminescence during excitation. In 
the case of cathode luminescence this refers to the light emitted during 
the period of electron bombardment. 

Phosphorescence. Phosphorescence is the luminescence occurring 
after excitation. In a cathode-ray tube this is the radiation given off 
after the beam excitation has ceased. 

Phosphor. Materials that manifest cathode luminescence are known 
by the general name of phosphors. 6 

Since phosphorescence as well as fluorescence is involved in cathode­
ray-tube operation, it would be more suitable to refer to screen action 
as "cathode luminescence" than as "fluorescence." 

General Make-up of Phosphors. A great number of materials will 
exhibit luminescences when bombarded with electrons. Practically 
all nonmetallic inorganic crystals will exhibit this effect, as will also 
glasses and some organic materials. Most of these will, however., react so 

1 LEVERENZ, H. W., and F. SEITZ, Luminescent Materials, Jour. Appl. Phys., 
vol. 10, pp. 479-493, July, 1939. 

2 ZWORYKIN and MoR'ToN, op. cit., Chap. II. 
3 LEVERENZ, H. W., Cathode Luminescence as Applied in Television, RCA Rev., 

vol. 5, pp 131-175, October, 1940. 
'STAUFFER, L. H., Characteristics of Fluorescent Materials, Electronics, vol. 14, 

pp. 32-34, October, 1941. 
6 KusHEL, I., Phosphors and Their Behavior in Television, Electronic Ind., vol. 4, 

pp. 100--105, 132, 134, December, 1945 
8 PERKINS, T. B., Cathode Ray Terminology, Proc. I.R.E., vol. 23, pp. 1334-1343, 

November, 1935. 
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weakly as to be useless. To be suitable for practical purposes a material 
must produce a high brightness, be stable under electron bombardment, 
have a suitable color, and have a persistence that is not too great. 

The basic ingredients of a practical luminescent material are a base 
material, a flux, and an activator. The base material is generally a 
crystalline, colorless semiconductor. Good base materials are the oxides 
and sulphides of zinc, cadmium, magnesium, and silicon. Oxides of 
copper, iron, and nickel are not good bases. The flux is some material 
such as sodium chloride that is used to catalyze crystallization of the base 
and is subsequently removed. The activator is one of a group of metals 
~ncluding silver, copper, manganese, and chromium. The presence of 
10 to 100 parts per million of such metals may increase the light output 
of the base material by a factor of 10 to 100. Various other metals such 
as lead, iron, nickel, and cobalt will inhibit radiation to such an extent 
that the presence of one part per million of these metals will ruin the 
luminescence. The activator serves to furnish a material with additional 
energy levels for the excited electrons to jump between. The theory 
of luminescence is qualitatively understood, but so many anomalies 
exist that there is no direct procedure that can be applied to synthesizing 
a suitable phosphor. 1 

Phosphors are prepared by mixing the base material and flux, heating 
to crystallize, drying, and regrinding for application. Screens may be 
deposited from settling out of a liquid suspension or by spraying the 
material suspended in a volatile organic liquid such as acetone to which 
has been added a small amount of binder. In the settling process a mild 
electrolyte such as ammonium carbonate is used to prevent the particles 
from settling nonuniformly. 

Luminous Properties of Fluorescent Materials. One of the best 
and most widely used fluorescent materials is zinc orthosilicate, 
ZnO + Si02:Mn, with a manganese activator. In its natural form this 
is known as "willemite." The natural material is subject to great 
variations in performance due to impurities, and therefore only synthetic 
materials· are now used. Synthetic willemite gives the bright-green 
trace so well known to users of test oscilloscopes. 

The light output of synthetic willemite follows quite closely Lenard's 
law as previously given. Curves of light output in candle power and 
luminous efficiency in candle power per watt as a function of beam 
voltage were previously given in Fig. 15.11. Actually, Lenard's law 
does not hold exactly for the fluorescent material but does so only 
apparently in Fig. 15.11 because the output is plotted against beam 

1 LEVERENZ, H. W., Phosphors Versus the Periodic System of Elements, Proc. 
I.R.E., vol. 32, pp. 256---263, May, 1944. 
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potential, which is higher than the screen potential. When the output 
is plotted against screen potential, then it is found that the light output 
is given by 

CP = Al(V. - Vo)" (15.19) 

where A is a constant, I is the beam current, V. is the fluorescent-screen 
potential and Vo is the screen potential at which luminescence starts, 
and n is an exponent that is nearly 2 for synthetic willemite and in general 
has a value between 2 and 2.8. 1•2 

The spectral characteristics of willemite are compared with the 
sensitivity of the human eye in Fig. 15.13. This figure shows that most 
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Fm. 15.13.-Spectral characteristics of 
willemite. 

ot' the radiant energy from this material is concentrated in the green 
iegion of the spectrum. Phosphors are available giving almost any 
desired color response. A few of the most useful phosphors are listed in 
Table VII. A white luminescence may be obtained by mixing a yellow­
color-producing phosphor such as zinc cadmiwn sulphide with a green­
blue-color-producing phosphor such as zinc sulphide. Further specific 
characteristics of commercial phosphors are given in Appendix IV. 

The persistence characteristics of the luminescence are quite impor­
tant. In test oscilloscopes and television kinescopes a relatively short 
persistence time is desired. In some transient studies and most radar 
applications a long persistence is desired. Most of the phosphors have 
short-persistence characteristics, while a few of the yellow-green sulphides 
have long-persistence characteristics. Synthetic willemite will build 
up to 50 per cent of its maximum radiation in about 2.5 milliseconds. 

1 NELSON, H., Method of Measuring Luminescent Screen Potential, Jour. Appl. 
Phys., vol. 9, pp. 592-599, September, 1938. 

2 FONDA, G. R., Phosphorescence of Zinc Silicate Phosphors, Jour. Appl. Phys., 
vol. 10, pp. 408--420, June, 1939. 
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TABLE VII 
CHARACTERISTICS OF THE PRINCIPAL PHOSPHORS1 

Phosphor Chemical composition Color 
Spectral maximum, 

angstrom units 

Zinc oxide ..... . ........ . .......... . . . ... ZnO Violet Ultro.violet 
Zinc sulphide ........... . ... ... .. . ....... ZnS :Ag Blue-violet 4, 70Q-4, 500 
Calcium tungstate ....... . ........•... . ... CaWO, Blue 4,300 
Zinc silicate . .. ... ........ . .............. ZnO + Si02 Blue 4,200 
Zinc sulphide . ...............•.... .. ..... ZnS Light blue 4,700 

Zinc aluminate ....... ..... .. .......... ... (ZnO + AhO,):Mn Green-blue 5,130 
Zinc silicate (willemite) ............ . ...... (ZnO + SiO,):Mn Blue-green 5,230 
Zinc sulphide . ......... .. ........... . .... ZnS:Cu Green 4, 700-5,250 
Zinc germanate . .......... . .............. (ZnO + GeO,):Mn Yellow-green 5,370 
Beta zinc silicate . . ..... . . ... . ... . ........ (ZnO + SiO,) :Mn Green-yellow 5,600-5 ,700 

Zinc beryllium silicate ..... ' . .... . ... . . .. .. (ZnO + BeO + SiO,) :Mn Green to orange 5, 230-6, 500 
Zinc cadmium sulphide ............... . .. .. (ZnS + CdS) :Ag Blue to red 4, 700->7 ,000 
Calcium silicate ............ . ...... .. ... .. (CaO + SiO,) :Mn Green to orange 5 , 500-6 , 500 
Cadmium silicate ...... . . . ........ . ... . ... (CdO + SiO,) :Mn Orange yellow 5 ,850 
Magnesium silicate . ... .. . .. ....... .. ..... (MgO + SiO,) :Mn Orange-red 6,40o-6,700 

Zinc aluminate . ...................... . ... (ZnO + AhO,) :Cr Red >7.000 
Zinc beryllium zirconium silicate ... ... ..... [ZnO + BeO + (Ti - Zr - Th - O,) + SiO,]:Mn White 4 , 200 + 5,500-6,000 
Magnesium tungstate . ............ . . ... .. . MgO + WO, Very light blue 4,800 
Zinc borate ........... ...... ....... . ... . . (ZnO + B,O,) :Mn Yellow-orange 5,4oo-6 ,000 
Cadmium borate .. ..... .. ... ..... . . .. .... (CdO + B,Oa) :Mn Green-orange 5 , 300-6 , 300 

Cadmium tungstate ... ..... ....... .. ..... CdO + WO, Light blue 4,900 

1 Reprinted by permission from "Television" by V. K. Zworykin and G. A. Morton, published by John Wiley and Sons, Inc. 
* Used in t""llev;.sion. 
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The radiation will decay to 50 per cent of its maximum in 3 to 5 milli­
seconds. The decay is approximately logarithmic except for the first 
half millisecond, during which time it is more rapid than logarithmic. 1 

Electrical Characteristics of Phosphors. The potential that a fluores­
cent screen will assume will depend upon the beam potential, the second­
ary-emission characteristics of the screen, and the current-voltage 
transmission characteristics of the screen to the more positive adjacent 
electrodes. The secondary-emission characteristics of the screen have 
the form of the general characteristics described in the chapter on 
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Fm. 15.14.-Ratio of secondary- to primary-electron current as a function of screen 
voltage of a fluorescent screen. 

Electronic Emission. A typical secondary-emission characteristic show­
ing the ratio of secondary to primary current is shown in Fig. 15.14. 
The screen can function properly only over the range of voltages for 
which the ratio of secondary to primary currents is greater than unity. 
Below the voltage at which the ratio is first unity the screen will block 
and repel beam electrons. The screen will "stick" at the potential 
at which the ratio again drops to unity, and it will not be possible to 
raise the screen above this potential. The screen-voltage-beam-voltage 
characteristics can be estimated by combining the effect of the secondary­
current characteristic with the current-voltage transmission characteristic 
of the screen in conjunction with its adjacent electrode. The current 

1 NELSON, R. B., R. P. JOHNSON, and W. B. NOTTINGHAM, Luminescence during 
Intermittent Electron Bombardment, Jour. Appl. Phys., vol. 10, pp. 335-342, May, 
1939. 
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taken from the screen secondaries by the adjacent electrodes will depend 
upon the relative potential of the screen and the adjacent collector 
electrode. This function will have the general form shown in Fig. 15.15. 
When the collector is more than 20 volts more positive than the screen, it 
will collect virtually all the secondary electrons liberated by it. When 
the collector and the screen are at the same potential, the collector will 
still collect about half the secondary electrons. When the collector is 
more than 20 volts more negative than the screen, it will take virtually 
none of the secondary electrons. The relation between Figs. 4.18 

-20 0 +10 +20 
V o I ts 

Potentic:d difference between collector and screen 
FIG. 15.15.-Collector current of a cathode-ray tube as a 
function of the difference of collector and fluorescent­
screen potential. 

and 15.15 will be apparent. The difference is due to the difference in 
physical form of the electrodes corresponding to each curve. Let the 
collector current be indicated by 

(15.20) 

where le is the collector current, 12 is the secondary current liberated 
by primary-electron impact, Ve is the collector potential, V. is the screen 
potential, and T(Vc - V.) is the current-transmission function shown in 
Fig. 15.15. Let the secondary-ratio function of Fig. 15.15 be given by 

(15.21) 

where I 1 is the beam current striking the screen and S (V .) is the second­
ary-ratio function shown in Fig. 15.14. For cttrrent equilibrium the 
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collected current must equal the beam current. Equating the collected 
and beam current as given in the above two equations, 

1 
T(Vc - V.) = S(V,) (15.22~ 

This neglects conduction-current components, which are, however, 
ordinarily quite small. It is possible to find the screen-voltage-beam­
voltage (the latter being the same as the collector voltage) function 

:,. .,.,_ 
½ 

Ii 
(::l 
It 

I2 t? 
~ 
~ 
E: 
2 

Q'.i 

00 
I 

a {_!_ 
S{Ji} 

b 

2 3 4 5 
Screen potenti01I, kv 

--C 

6 7 8 

Fm. 15.16.-Graphical construction of the screen-potential- beam­
potential characteristic. 

graphically from Eq. (15.22). The method of construction is shown in 
Fig. 15.16. In this are plotted the reciprocal of the current-ratio function 
of Fig. 15.14 and the collector-current-voltage-difference function of 
Fig. 15.15 on a scale of screen voltage. 

From Eq. (15.22) the screen potential is given by the intersection 
of the two curves for any reference beam potential. The entire curve 
desired is constructed point by point by shifting the collector-current­
voltage-difference curve to correspond to different beam voltages and 
taking the corresponding intersections. 1• 2 Some shifted transmission 
curves are shown. The resulting screen-voltage-beam-voltage charac­
teristic is shown in Fig. 15.17. Points a, b, and c are taken from the 
similarly designated intersections in Fig. 15.16. It is seen that the screen 

1 NOTTINGHAM, W. B., Electrical and Luminescent Properties of Willemite under 
Electrical Bombardment, Jour. Appl. Phys., vol. 8, pp. 762-778, November, 1937. 

2 NO'ITINGHAM, W. B., Electrical and Luminescent Properties of Phosphor under 
Electron Bombardment, Jour. Appl. Phys., vol. 10, pp. 72-831 January, 1939, 
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potential never exceeds the beam potential. The curve confirms the 
conclusion that the screen will not accept electrons below the potential 
at which the secondary current ratio is unity, nor can the screen be raised 
to a higher potential than that at which the ratio again drops to unity. 
Sticking potentials for screens ordinarily lie between 5,000 and 8,000 
volts, though they can be raised to as high as 15,000 volts. 1 The critical 
blocking voltage will ordinarily lie in the vicinity of 200 volts. 
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Fm. 15.17.-Screen-poten tial-beam-potential 
characteristic of a fluorescent screen. 

8 

16.6. Limitations of Spot Size. Effect of Thermal Velocity of Emission. 
It has already been mentioned that the size of the beam crossover in 
front of the cathode which is subsequently imaged into the spot is deter­
mined by the thermal velocities of emission of the electrons. The 
approximate size of the crossover for any limiting velocity of emission 
is given- by Eq. (15.7). Actually, electrons are coming off the cathode 
with all velocities, as given by a Maxw.ellian distribution, so that there 
is no sharp edge to the beam; rather, it is found to have a cross section 
approximating the Gauss error curve 

J(r) = Ac0 r' (15.23) 

where J(r) is the current density at any radius r and A and B are con-

1 Beam pote!ltials may be raised to as high as 30 kv by the use of metallized screens. 

See EPSTEIN, D. W., and L. PENSAK, Improved Cathode Ray Tubes with Metal­

Backed Luminescent Screens, RCA Rev., vol. 7, pp. 5-10, March, 1946. 
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stants related to the total current and rate of decay of current with radius, 
respectively .1 

Associated with this effect, it is found from a consideration of the 
optics of thermally emitted electrons that the maximum current density 
with perfect focusing at a crossover of cathode image is given by 

J - 1 [ 1 ( 1 M2 . 2 ) Ve ( M2 sin 2 cf, ) ] 
J

O 
- M 2 - - sm cf, exp kT 1 - M 2 sin 2 ct, (15.24) 

where J is current density at the crossover or cathode image, Jo is cathode 
current density, M is the ratio of crossover or cathode-image diameter 
to cathode diameter, cf, is the half angle of the cone including all electron 
paths reaching the point in question, Tis cathode temperature in degrees 
Kelvin, k is Boltzmann's constant, and V is the potential at the point 
in question. 2- 4 

Limiting values of Eq. (15.24) are of interest. For M large, 

(15.25) 

For M small, 

J m _ (i + e V) . 2 ,1. - - - Sill 't' 
Jo kT 

(15.26) 

where the symbol J m is substituted for J because this is the largest pos­
sible value of current density that can be achieved under any conditions. 

A curve of Jm for various values of M and cf, is shown in Fig. 15.18 

for the case of :~ = 10,000 (this corresponds to a voltage of about 800 

volts since i has a value of 11,600 and Tis ab0ut 1000°K for an oxide 

emitter.) cf, in this case is understood to be the value determined by a 
stop or limiting aperture at, before, or after the crossover. As ct, is 
decreased, more and more electrons with high thermal-emission velocities 
are thrown away so that a greater fraction of the cathode current is 

1 LAw, R. R ., High Current Electron Gun for Projection Kinescopes, Proc. I.R.E., 
vol. 25, pp. 954--976, August, 1937. 

2 LANGMUIR, D. B., Theoretical Limitations of Cathode Ray Tubes, Proc. I .R.E., 
vol. 25, pp. 954-976, August, 1937. 

3 PIERCE, J. R., Limiting Current Densities in Electron Beams, Jour. Appl. Phys., 
vol. 10, pp. 715--724, October, 1939. 

• PIERCE, J. R., A Figure of Merit for Electron Concentrating Systems, Proc. 
I.R.E., vol. 33, pp. 476-478, July, 1945. 
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wasted and yet the more nearly the maximum possible current density 
is realized. 

Since the extent to which the limiting current density can be 
approached depends upon the fraction 
of current used, it is convenient to 
draw a curve relating these two quan­
tities. Let the ratio of the actual to 
the maximum current density be 
called the intensity efficiency. 

I . ffi" J ntens1ty e ciency = J m 

The value of this expression is readily 
obtained from the quotient of Eqs. 
(15.24) and (15.26). Let the fraction 
of cathode current used be called the 
current efficiency. 
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Fm. 15.18.-lntensity efficiency of an 
electron gun as a function of cathode 
magnification for various aperture 
sizes. 
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Current efficiency = Jo (15.28) 
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of M sin cJ, alone. It further 
turns out that the relation 
between the two efficiencies varies 
numerically only a few per cent 
for voltages above 10 volts. A 
curve showing the relation be­
tween the intensity efficiency and 
the fraction of the current used is 
given in Fig. 15.19. Also shown 
in the figure is the curve for the 
line-focus case. These curves 
snow that in order to approach 
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Fm. 15.19.-lntensity efficiency of an elec­
tron gun as a function of current efficiency. 

current density it is necessary to 
waste most of the current with 
limiting apertures. The above 
equations do not include the 

effects of electron collisions or lens aberrations but are limitations 
imposed by thermal velocities alone. A figure of merit for electron guns 
is the ratio of the area of the aperture that, in an equivalent ideal sys-
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tem, would pass as much cathode current as does the actual gun to the 
area of the actual aperture. 1 An equivalent figure of merit for television 
kinescopes in terms of the deflection angle and the number of scanning 
lines can be worked out by application of the above formulas. 2 

Space-charge Limitation of Spot Size. Another serious limiting 
factor in the production of small beam spots is the space-charge mutual 
repulsion between electrons in the beam, which prevents the electrons 
from coming together into a point focus. In a convergent beam, as 
the beam tends to come to a smaller diameter, the electrons get closer 
together, the space-charge density increases within the beam, and hence 
the mutual-repulsion forces become greater. This means that the radial 
components of velocity which the electrons have become less and less 
as the beam becomes more and more constricted, until finally theibecome 
zero at some finite beam diameter and then the beam begins to spread 
again.3---5 

This action may be pictured by considering the behavior of the 
electrons in a cross section of the beam as seen by an observer moving 
along with the electrons. To such an observer, there is no axial motion, 
and only radial effects can be observed. The action is actually inde­
pendent of the axial velocity. To make the problem soluble the following 
conditions will be assumed: 

1. Electrons are uniformly distributed throughout the cross section 
of the beam. 

2. Every electron has a radial component of velocity that is propor­
tional to its radial distance from the axis. 

These conditions are close enough to the actual conditions to make 
the answers based upon these assumptions useful. The first condition 
will hold if only a small fraction of the cathode current or if a high­
current-density cathode, to be described later, is used. The second 
condition is the assumption made in treating paraxial electrons and is 
the condition for uniform convergence of the beam when small angles 
are involved. The general picture encountered in a convergent beam 

1 Ibid. 
2 LAW, R . R., Factors Governing Performance of Electron Guns in Television 

Cathode-ray Tubes, Proc. I.R.E. , vol. 30, pp. 103-105, February, 1942. 
3 WATSON, E. E., The Dispersion of the Electron Beam, Phil. Mag., Ser. 7, vol. 3, 

pp. 849-853, April, 1927. 
'BoRRIEs, B. V., and J. DossE, Zerstreuung von Elektronenstrahlen durch eigene 

Raumladung, Arch. Elektrotech, vol. 32, pp. 221-232, 1938. 
6 THOMPSON, B . J., and L. B. HEADRICK, Space Charge Limitations on the Focus 

of Electron Beams, Proc. I.R.E .. vol. 28, pp. 318--324, July, 1940. 
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is shown in Fig. 15.20 (the radial scale in this figure is greatly exaggerated, 
and the axial scale is foreshortened). The beam is seen to decrease in 
diameter to a minimum cross section and then expand again. At any 
cross section as in a the radial velocity at any point in the cross section 
is given by 

Vr = kr (15.29) 

The outward force on any electron in the cross section is given by 

e>.. epr* 
F = eE = -- = -

2nor 2to 

)~ 
- I Beam 
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F10. 15.20.-Effect of space-charge repulsion on a convergent beam. 

where >.. is the charge per unit length of the beam. This follows from 
the expression for electric intensity about a linear distribution of charge 
and from the fact that 

(15.31.~ 

where p is the volumetric space-charge density within the beam. It is 
seen that the outward force on any electron is proportional to the radial 
distance also. As a result of this relation, the percentage change in radial 
velocity of any electron will be constant throughout the beam, and hence 

* In addition to the outwardly directed electrostatic force there is also an inwardly 

directed magnetic force. This magnetic force is only ~ times as big ag the electro­
c 

static force, where vis the electron velocity and c is the velocity of light, and thus it is 
negligible for beam voltages under 10,000 volts. See BoRRIES and DossE, op. cit. 
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the beam will constrict uniformly, maintaining the conditions that the 
electrons are distributed uniformly throughout the beam and that the 
radial velocity of any electron is proportional to its radial distance from 
the axis. At b the cross section of the beam is less than at a. At c the 
cross section of the beam assumes its minimum diameter. At this point 
the radial velocity of the electrons is zero. Beyond this point the beam 
expands to the larger diameter shown at d. In the region to the left 
of c the radial velocities of the electrons are directed inward, while to 
the right the radial velocities are directed outward. The behavior 
of the beam will be the same whether the electrons are moving to the 
left or to the right in Fig. 15.2(}. The shape of the beam envelope will 
not change with beam voltage or beam current, though the radial and 
axial scales will change. For purposes of analysis it is conv~nient to 
start at the cross section of minimum diameter and to study the beam's 
subsequent spread. This study yields a universal beam-spread curve, 
which can then be applied to any problem. 

From Eq. (15.30) the radial acceleration of any outer electron of an 
initially parallel beam is given by 

m d2!_ = F = 1rro2Po e 
dt 2 21rtor 

(15.32) 

in which the numerator is the charge per unit length in terms of the 
initial values of radius and space-charge density. If this equation is 
simplified by the substitutions 

then there results 

R=~ 
To 

R' = dR1 dz 
dz 

V = -
dt 

R" = d2R 
dz2 

2tomv
2 RR" _ - e- - Po 

This may be integrated by putting it into the form 

2 R' tomv 2R' R" = -
epo R 

with the result 
K(R') 2 = ln R 

(15.33) 

(15.34) 

(15.35) 

(15.36) 

(15.37) 

(15.38) 
2 

where K = tomv and the constant of integration is zero since R' = O, 
epo 

R = l, for z = 0. Extracting the square root, 
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R' = K-¼ y1nR 

which for purposes of integration is best put into the form 

K'l>dR 
dz= yln R 

This has the solution 

z = K'I> [R dR 
} 1 yln R 
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(15.39) 

(15.40) 

(15.41) 

This equation gives the envelope of the beam as an integral function 
of R for any position z. Not much can be done to simplify this expres­
sion, for it does not integrate into simple standard functions. The shape 
of the envelope of the beam is best presented in curve form. First 
observe that the constant can be converted into a simpler form, making 
use of the fact that 

and 

so that 

mv2 

V = --
2e 

!___ = 32 3 Vkv¾ r R~ 

ro · Imai/, } 1 yln R 

(15.42) 

{15.43) 

(15.44) 

where Vkv is the potential in kilovolts and Ima is the current in milli­
amperes. Although the integral cannot be expressed in terms of simple 
functions, one further change of variable is useful. If the substitution 
R = · E12 is made, then 

r R dR = 2 r -vfn7l Et' dt 
11 v'InR lo 

(15.45) 

Values of the right-hand integral above are tabulated on page 106 of 
Jahnke and Emde's Tables of Functions. 1 The plot of the values of 
Eq. (15.44) yields the universal beam-envelope curve of Fig. 15.21.2 

The universal beam-spread curve of Fig. 15.21 gives the shape of a 
beam of initially parallel electrons. The curve applies for electrons 
moving either to the right or to the left and is symmetrical about the value 
z = 0. To apply the curve to any problem it is necessary only to enter 

1 Teubner, Leipzig, 1933. 
2 The spread of a beam subjected to an axial gradient of potential can be analyzed 

by a similar method. See Moss, H., A Space Charge Problem. Wireless Eng., vol. 22, 
pp. 316--321, July, 1945. 
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the curve properly and then take numerical values from the curve. 
The curve will apply to low-current cathode-ray beams as well as to high­
current power-tube beams. The curvf' shows that the spread of a beam 
is increased as tht current is increased and the voltage is decreased. 
Considering the action of a convergent beam, the minimum spot diam­
eter is decreased as the current is decreased and the voltage is increased. 

An alternative representation of Fig. 15.21 is given in the nomographic 
chart of Fig. 15.22. This nomographic chart gives the spread of a beam 
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Fm. 15.21.-Universal beam-spread curve. This is a graphical representation of 
Eq. (15.44). 

with initially parallel electrons directly from the beam current, beam 
voltage, and beam length, without calculation. The diagonal line from 
lower left to upper right is a construction line. To use this graph draw 
a line from the left to the right scale through points corresponding to 
the voltage and current involved. Through the intersection of this line 
with the diagonal construction line draw a line through the proper 
point on the beam-length scale at the bottom, and extend it until it 
intersects the beam-spread scale at the top. The value from this scale 
will be the beam spread directly. 

The functional relations of Eq. (15.44) have been verified experi-
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mentally. 1 It is found that although the current and voltage dependence 
predicted is obeyed correctly the actual values of spread are about six­
tenths of the theoretical value (at pressures of 5 X 10-1 mm of mercury). 
This reduction is due to a partial neutralization of negative space 
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charge by the presence of positive ions, which are created by collision of 
beam electrons with gas molecules. Even at the highest vacuums 
obtainable, there are theoretically enough positive ions cre8.ted to 

1 See "The Production and Control of Electron Beams," by K. R. Spangenberg, 
L. M. Field, and R. Helm, published by Federal Telephone and Radio Corporatior.., 
New York, 1942. 



446 VACUUM TUBES 

neutralize the beam completely. This does not occur, however, for 
the positive ions drift down the beam from positive to negative electrodes 
and run out of the beam at the cathode end almost as fast as they are 
created. 1 

A number of important problems can be solved by the use of the 
universal beam-spread curves of Fig. 15.21. In the design of high-power 
klystron tubes there arises the practical problem of putting the maximum 
current down a cylinder of given dimensions with a given voltage. From 
the above discussion of space-charge spread it would be expected that the 
beam should be initially convergent, come to a minimum diameter some­
where in the cylinder, and then spread again until it just fills the end of 
the cylinder. From symmetry it may be predicted that the peam will 
have its minimum diameter at the middle of the cylinder. It therefore 
only remains to specify the initial angle of convergence and find the 
current that can be transmitted. If the beam enters the cylinder at a 
point on the curve of Fig. 15.21 having coordinates x and y, then for the 
minimum beam diameter to occur at the center of the cylinder of length 
l and diameter d 

where 

and 

Therefore 

l z 
a,= r 

(V k,)¾ 
Z = Xro32.3 (Ima)'/2 

r = yro 

l (Ima)¼ = 32 3 ~!!. 
(V k,)¾ . y 

(15.46) 

(15.47) 

(15.48) 

(15.49) 

Therefore, to transmit maximum current at minimum voltage, that is, 
to have the beam impedance a minimum, the beam must enter the 
cylinder at a point on the curve of Fig. 15.21 that has the maximum 
ratio of x to y or the minimum ratio of y to x. This is the point on the 
curve where a line through the origin is tangent to the curve. The 
coordinates of this point are 

1 (Ima)¼ Z 

x = 32.3 (V k,)¾ ro = 2·60 (15.50) 

and 
r 

y = - = 2.35 
ro 

(15.51) 

'Ibid. 
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Thus the initial angle is 

6 = arctan (~) 

441 

(15.52) 

since substitution of Eqs. (15.50) and (15.51) into Eq. (15.49) gives 
z l r = a: The maximum current is transmitted at a given voltage when 

the beam is so directed on entering the cylinder that in the absence of 
electrostatic repulsion between the electrons it would converge to a point 
at the center of the cylinder. Under these conditions the minimum 
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Frn. 15.23.-Diagram showing transmission of maxi­
m11m current through a cylinder. 

radius is 2_~
5 

= 0.425 times the cylinder radius. These relations 

are illustrated in Fig. 15.23. The value of 6 is not extremely critical, 
for the optimum is very broad. The minimum beam radius may be 
varied from 0.25 to 0.6 of the cylinder radius, with a loss of only 10 per 
cent of the maximum current. 

When the beam is directed into the cylinder as shown in Fig. 15.23, 
the maximum value of current that can be transmitted is 

ma* (15.53) 

* Even with a strong axial magnetic field t9 prevent beam-spreading there is a 
maximum current that can be transmitted along a beam. As current is increased, 
the potential at the beam center drops below the value at the edge by the amount 
V = 0.478 I ma(Vko)-¼ volts. This potential difference finally becomes so large that 
the beam is blocked by space-charge action at a value of I= = 1.025 (Vkv)% amperes 
for a beam completely filling a conducting tube, independent of the tube dimensions. 
If the beam does not completely fill the tube, then the blocking action will occur at a 
lower beam current. Greater current can be transmitted if the negative electron 
space charge is neutralized by positive ions, although even here there is a limit to the 
mrrent that can be transmitted. See HAEFF, A. V. Space Charge Effects in Elec-
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The beam impedance corresponding to this condition is 

Z = 813 G) 2 

(V kv)-½ ohms (15.54) 

and this is the minimum that can be achieved under the applied 
restrictions. 

As an example of the operation of the above equations, let it be desired to find 
the maximum current that can be transmitted through a cylinder ¼ in. in diam­
eter and 1 in. in length at 1,000 volts. Equation (15.53) gives Im .. = 77 ma. 
The corresponding beam impedance is 13,000 ohms. Actual currents may be 
slightly higher in practice becau;ie of a partial neutralization of the negative 
space charge by positive ions in the beam.1 

Higher values of current cannot be passed through a cylinder if it is 
permitted to waste current. Thus, consider the case of a beam of initially 
parallel electrons, and let the current be increased. As the current is 
increased the beam will spread. The current transmitted down a 
cylinder will increase at first as the effect of increasing the current 
predominates and then decrease as the effect of beam spread predomi­
nates. Maximum current will be transmitted when the cylinder area is 
18 per cent of the area of the beam if it has been permitted to spread. 
Under these conditions the transmitted current is 

fmu = 305 (~Y (Vkv)½ ma (15.55) 

which is about one-fourth of the value for a properly convergent beam 
with no current wasted. 

Effect of Secondary Emission. Beam spots will be enlarged slightly 
by the effect of stray secondary electrons liberated at the limiting 
apertures. This may or may not be serious depending upon the particu­
lar electrode configuration used. In general, secondaries from limiting 
apertures located near the cathode will give most trouble because these 

tron Beams, Proc. I.R.E., vol. 27, pp. 586---602, Eleptember, 1939 ; SMITH, L. P ., and 
P. L. HARn{AN, Formation and Maintenance of Electron Beam:,, Jour . Appl. Phys., 
vol. 11, pp. 220-229, l\farch, 1940; PETRIE, D . P. R., The Effect of Space Charge on 
Potential and Electron Paths of Electron Beams, Elec. Commun., vol. 20 (No. 2). 
pp. 100-111, 1941; PIERCE, J. R., Limiting Stable Current in the Presence of Ions, 
Jour. Appl. Phys., vol. 15, pp. 721-726, October, 1944. 

1 FIELD, L. l\L, K. R. SPANGENBERG, and R. HELM, Control of Electron-Beam 
Dispersion at High Vacuum by Ions, Elec. Commun. vol. 24 (No. 1), pp. 108-121, 
1947. 



CATHODE-RAY TUBES 449 

will be accelerated by almost the full potential of the system. The stray 
electrons show as a fuzzy edge to the beam and fairly widespread stray 
light. It is possible, however, to design electron guns so that stray sec­
ondary electrons hardly affect the spot size. 

Halation . "Halation" is a term well known in photography. It 
refers to the "halolike" rings that sometimes appear around bright 
points of light. The effect is due to light rays being reflected back and 
forth between the surfaces of a film or, in the case of the cathode-ray 
tube, back and forth between the faces of glass. When the electron beam 
strikes the willemite surface on the inside of the end of the tube, a bright 
spot is formed that radiates in all directions. Those rays which are 
emitted perpendicular to the glass and moderately close to the perpen­
dicular will pass through the glass and can be seen outside. Rays that 
are emitted from the spot at a large angle with the perpendicular to the 
glass will strike the air-glass surface at a low angle and be reflected back 
into the glass, where they will be reflected back and forth, with a gradual 
loss of energy due to scattering effects. For the usual glass (index of 
refraction of about 1.5) only about half the light emitted from the spot 
on the screen will pass through the glass without multiple reflection. 
The effect on an outside observer is that there is a bright spot surrounded 
by a ring of lower intensity. Studies of the effect on the various param­
eters show that halation is reduced if the fluorescent screen is in 
moderately poor optical contact with the glass, if it is moderately absorb­
ing, and if the glass is moderately thick. 1 

16.6. High-efficiency Cathodes. When it is desired to obtain high 
current from a cathode, then the design of the gun becomes complicated 
by considerations of space charge and the efficiency of the structure, 
i.e., the fraction of the cathode current that is utilized in the beam, 
becomes of importance. If the attempt is made to operate the type of 
gun already described at very high currents, difficulty is immediately 
encountered in that the space-charge repulsion of the electrons causes 
the beam.to spread so much that a large portion of the cathode current is 
lost to the various gun electrodes. , 

The general problem of determining electron paths under conditions 
of space-charge repulsion is very difficult to solve. 2 As yet no solutions 
for space-charge flow in cases where the electron paths are curved are 
known. This means that the design of high-current high-efficiency 

1 LAW, R. R ., Contrast in Kinescopes, Proc. I.R.E., vol. 27, pp. 511-524, August, 
1939. 

2 SPANGENBER.G, K. R., Use of the Action Function to Obtain the General Differen­
tial Equations of Space Charge Flow in More than One Dimension, J our . Franklin 
Inst., vol. 232, pp. 365-371, October, 1941. 
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cathodes is very difficult. The most successful high-efficiency cathodes 
are those designed upon a principle enunciated by J. R. Pierce. The 
laws of space-charge flow are known for a few simple geometries such as 
plane, cylindrical, and spherical. In each of these cases, the electrons 
move in straight lines, and the behavior of the electrons can be described 
in terms of a single parameter representing distance. Pierce has sug­
gested that the conditions of uniform space-charge flow can be achieved 
in a cathode if a segment of such flow is utilized and the cathode and 
accelerating electrodes be shaped so as to maintain along the edge of the 
beam the same potential variation which would exist if there were a 
uniform extensive space-charge flow. Cathodes designed on this 
principle are often referred to as "Pierce cathodes." 1 

Parallel Flow of a Rectangular Beam. The laws of space-charge flow 
of electrons between parallel planes are known (see Sec. 8.2). The 
potential variation along the direction of electron flow is as the four-thirds 
power of the distance from the cathode. Hence it would be expected 
that, if a beam in the form of a rectangular strip were cut out of such a 
flow and if electrode shapes were such that they would create a potential 
variation as x¾ along the edge of the beam, the beam would be subjected 
to the same conditions which exist in the extensive space-charge flow 
and hence would maintain its property of parallel flow. Specifically, 
the cathode electrodes must create a potential field with the following 
properties, 

V(x,0) = Ax¾ 

where A is merely a numerical constant and 

dV (x 0) = 0 
dy ' 

where the edge of the beam is along the line y = 0. 

(15.56) 

(15.57) 

The above conditions may be achieved by the electrode configuration 
of Fig. 15.24. The conditions expressed by the above two equations are 
achieved along the bisector of. a 135-deg inside corner (three-fourths of 
180 deg). This follows from the application of the transformation 

W = Z¾ (15.58) 

to the lines of constant u and v in the W plane. Hence, if an inside 
135-deg corner be split in two and each half be applied to one side of the 
rectangular strip beam, the conditions for plane-parallel space-charge 
flow are maintained. 

1 PIERCE, J. R., Rectilinear Electron Flow in Beams, Jour. Appl. Phys., vol. 11, 
pp. 548--554, August, 1940. 
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The conditions outside of the beam are shown in Fig. 15.25. The 
gun structure in this case is a unipotential one. A good beam is formed, 

Thermal 
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Fm. 15.24.-Pierce cathode structure for rec­
tangular-beam parallel flow. 

but it will diverge after passing through the anode because of the lens 
action of the slot aperture. This type of gun has the advantage that it 
draws current uniformly from the cathode. The laws of plane-parallel 

2.0 

1.8 

1.6 

...,1.4 

~ 1.2 
Q) 

;e I.O 
0 

~ 0.8 

~ 0.6 
E 
~ 0.4 
Q) 

g 0.2 
cs 
t; 0 
0 

-0.2 

-0.4 

Eaqeof 
beam• / 

,/ 
V k:: 

-6 ~---

I/ 1/J I I 
I Ill I I 7 

I/ A I I 
I /II I I I 

:::,_ 7J/ I ' ' ~ ~ j j 
I ~o 

.. {I,~ t§ I I I 
f\J• ~ l 7~·,1 

\J kJI/_.J I 
/ / 1t'l..l <::," <:::; <::: 

' V ~ '/61.S~ j 
J 

~ l./ 
, 

t:---"" 

-0.6 -0.8 -0.4 0 0.4 0.8 1.2 
Distance from CDtthode, x 

Fm. 15.25.-Potential field required to produce a 
parallel-flow rectangular beam. 

space-charge flow apply directly so that it is easy to design. The anode 
can be shaped like any of the equipotentials in the plot of Fig. 15.25. 
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Some difficulty would be encountered in properly restraining the strip 
beam at its ends. This case serves primarily as an example of the 
application of the Pierce principle. It also is about the only case for 
which the electrode shapes can be detenyh1ed exactly. The cathode 
electrode is given by 

y = x tan 67.5° (15.59) 
The anode is given by 

r¾ cos ( ~
0
) = const (15.60) 

In a practical case it is necessary to have a break in the zero-potential 
electrode where it joins the emitting portion of the surface in order to 
improve the thermal efficiency of the cathode. A small gap as shown 
in Fig. 15.24 will not disturb the flow conditions much. 

Parallel-flow Cylindrical Beam. If it is desired to build a unipotential 
cathode gun producing a parallel-flow cylindrical beam, it is necessary 
that the cathode and accelerating electrodes produce the following field 
conditions along the edge of the beam, 

V(ro, z) = Az¾ (15.61) 
and 

dV 
- (ro z) = 0 
dr ' 

(15.62) 

where ro is the radius of the beam. This problem has thus far defied 
analytical solution. Approximate electrode shapes may, however, be 
found with an electrolytic tank set up to represent this problem. A 
wedge-shaped piece of electrolyte is used by tilting a tray, placing an 
insulating strip of material in the tank to represent the edge of the electron 
beam, and then bending sheet electrodes until shapes are found such that 
the potential along the insulating strip follows a four-thirds-power law 
with distance. The insulating strip simulates the electron beam because 
it imposes the condition of Eq. (15.62). Since no current can flow into 
the insulator, there will be no component of gradient normal to the strip. 

The resulting fields and electrodes have the shape shown in Fig. 15.26. 
Close to the beam the zero-potential electrode will be a section of a cone 
with a half angle of 67.5 deg. This is expected from the results of the 
case studied in the previous subsection. Close to the edge of the beam 
the conditions are almost identical with the plane-rectangular-strip 
case, and hence a 67.5-deg angle with the zero-potential electrode is 
indicated. At great distances from the beam the zero-potential electrode 
will be a section of a cone with a half angle of 71 deg. A cone of this angle 
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FIG. 15.26.-Unipotential cathode structure required to 
produce a parallel-flow cylindrical beam, and the associ­
ated field. 
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will give a four-thirds-power variation of potential along its axis. The 
anode will be a surface of revolution curved in the direction of increasing 
potential. Such a set of electrodes will produce a parallel cylindrical 
beam. If the region beyond the anode is field-free, however, the beam 
will diverge owing to the lens action of the aperture in the anode. For 
this reason a better type of gun is sought. 

Convergent Radial Flow of a Conical Beam. The divergent effect of 
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Fm. 15.27.-Curves of a and a¾ as a 
function of r,/r. See Appendix VII for 
values of a 2• 

the aperture in the anode noted in 
the two cases studied above is 
unavoidable. Even if the aper­
ture is covered with a grid, the 
individual holes in the grid will 
each have an action similar to 
that of the large aperture and 
with the same focal length. The 
only difference will be that the 
grid will produce more scattering 
of the electrons and hence will 
produce a divergent beam with a 
less sharply defined edge. Be­
cause of the inescapable divergent 
action of the aperture it is desir­
able to produce a beam which is 
initially quite strongly convergent 

so that the divergent action of the aperture in the anode will leave the 
beam still convergent. 

A convergent beam may be had by utilizing a circular conical section 
of the radial flow between concentric spheres with the cathode outside 
(see Sec. 8.4). The radial current flow in a cone of semiangle 0 cut out 
of a sphere of radius rc is 

0.928(Vkv)¾ sin2 
(;) 

I = ----~--~-
a2 

amperes (15.63) 

where Vkv is the beam voltage in kilovolts and a is the function of !_ 
Tc 

given by Eq. (8.32). The factor sin2 (;) takes account of the fact 

that the current flow takes place not over the entire sphere but merely 
over a cone of semiangle 0 cut out of the sphere. The voltage as a 
function of radius is given by 
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(15.64) 

in which the significant relation is the dependence upon the four-thirds 
power of a. Curves of a and a ~3 as a function of the ratio of cathode to 
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FIG. 15.28.-Electrolytic ta nk a;-rangement for the 
determination of unipotential gun-electrode shapes. 

anode radius are given in Fig. 15.27. Numerical values are given in 
Appendix VII. Except for a proportionality constant, the curve of aH 

is a universal curve of voltage variation as a function of radius for 
spherical flow Equation (15.64) is therefore one of the conditions that 
applies along the edge of the conical beam. The other condition is 

dV = O 
dO 

(15.65) 
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where 8 is the polar angle of a spherical coordinate system. Equation 
(15.65) will apply inside the beam and at its edge, but not outside. 

Electrode shapes for a conical section of a spherical flow can be 
determined by means of an electrolytic tank, as described before. A 
specific arrangement suitable for this purpose is shown in Fig. 15.28. 
A tilted tank is used to obtain a wedge-shaped portion of electrolyte. 
The vacuum-tube voltmeters are conveniently made with adjustable 
sensitivities. These sensitivities should be adjusted so that when the 
desired potential distribution is achieved each voltmeter gives some 

Fm. 15.29.-Unipotential gun-electrode shapes 
for the production of a 5-deg convergent beam. 

convenient deflection, such as half scale. This procedure makes the 
determination of the electrode shapes relatively simple and rapid. Tl:i.e 
electrodes are conveniently made of thin copper sheet so that they can 
be bent into any shape. The cathode electrode should make an angle 
of 67 .5 deg with the beam edge simulated by the insulating strip. The 
oscilloscope shown serves to check the power factor of the electrolyte 
and the presence of contact potentials. It is connected to plot the 
Lissajous pattern of current against voltage. The pattern should show a 
straight line or at worst a long, thin ellipse, corresponding to a small 
phase angle. The voltmeter probes should be spaced to give equal 
increments of voltage rather than of distance. 

Some resultant electrode shapes for different angles of beam con-
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Fm. 15.30.-Unipotential gun-electrode shapes for 
the production of a 10-deg convergent beam. 

Fm. 15.31.-Unipotential gun-electrode shapes for the pro­
duction of a 20-deg convergent beam. 
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vergence are shown in Figs. 15.29 to 15.32. 1 These curves are universal 
in that they will hold for any magnitude of applied voltage and that the 
anode electrode can be any of the equipotential curves shown. 

The anode aperture in a unipotential Pierce cathode will always 
give rise to a divergent focusing action. This means that the beam on 

t----,--,---.--,------.---,--..---,,---,----.--,----,12 

---
...---- --- .30• 

2 4 10 

Frn. 15.32.-Unipotential gun-electrode shapes for the pro­
duction of a 30-deg convergent beam. 

leaving the anode will always be less convergent than on entering it. 
The focal length of the anode aperture lens will be given very closely by 

f = 4V 
E 

(15.66) 

from the aperture-lens formula of Eq. (13.56) on the assumption that the 

1 These electrode shapes were determined by Robert Helm and were first published 
by SPANGENBERG, FIELD, and HELM, op. cit. See also HELM, R., K. R. SPANGENBERG, 
and L . M. FIELD, Cathode-Design Procedure for Electron-Beam Tubes, Elec. 
Commun., vol. 24 (No. 1), pp. 101-107, 1947. 
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gradient of potential beyond the anode aperture is zero. Upon evaluating 
the focal length by means of Eq. (15.66), it is found that 

f _ -3a 
Tc - ~ 

dR 

(15.67) 

where R = !__ A curve of 1 as a function of!_ is given in Fig. 15.33. 
re re re 

The focal length of the aperture lens being known, it is possible to 
determine the exit angle 'Y of the beam for any entrance angle 0. The 
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Fw. 15.33.-Foc.al length of .a unipotential convergent-beam gun as a func­
tion of the ratio of anode to cathode radius. 

basic dimensions of the electron gun are shown in Fig. 15.34. For this 
structure the usual lens formula applies, 

1 1 1 
;:;; - b = - f (15.68) 

In this equation the lens has been assumed to be located at the inter­
section of the anode sphere with the axis rather than in the plane of the 
aperture. Equation (15.68) can be put into the form 

b 1 
(15.69) 
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This equation shows that the distance from the anode to the beam focal 
point (in the absence of space-charge spread) depends only upon the ratio 
of cathode to anode radius, since focal length, by Eq. (15.67), depends 
only upon this ratio. The distance from the anode to the beam focal 
point is independent of the entrance angle 8 of the beam because the 

_Cathode 

~ 
Fm. 15.34.-Diagram of a unipotential convergent­
beam gun. 

ratio of entrance to exit angle for any ray of the beam will be a constant. 
A curve of the distance from the anode to the beam focal point as a 
function of the ratio of cathode to anode radius is given in Fig. 15.35. 
The lens action is convergent only for ratios of cathode to anode radius 
greater than 1.455. Smaller ratios of cathode to anode radius approach 
the plane-electrode case, which is strongly divergent. 
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The relation between the entrance and exit angles in Fig. 15.34 is 
readily deduced from the geometry and has the form 

sin(} 
sin 'Y 

b b r, 
(15.70) 

in which the symbols have the significance given in Fig. 15.34. The 
above equation shows that the ratio of the sines of the entrance and 
exit angles depends only upon the ratio of cathode to anode radius, 

12 ,-------,---,----,-11-,--1 --.1--.-1 ---r-r"TI --r---,----,-11---r-l --,1---,-1 -,-------,-1--, 
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FIG. 15.35.-Location of the focal point of a unipotential convergent-beam gun in the 
absence of space-charge repulsion. 

since!!.. is a function of this ratio, also. The relation between the entrance 
r, 

angle 0, the exit angle 'Y, and the ratio of cathode to anode radius is given 
in Fig. 15.36. This representation has the advantage over the many 

others possible in that the curves of constant O, 'Y, and~ are straight lines. 
Ta 

The region of divergent lens action lies below the (} axis and so does not 
appear on the curve sheet. This curve sheet has been converted into a 
universal design chart by superimposing curves of constant beam per­
veance on the other curves. Beam perveance in this case is defined as 
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G=~ 
(Vkv)¼ 

which, from Eq. (15.63), has the value 

G = 0.928 sin2 
(;) 

a2 

(15.71) 

(15.72) 

25.0.-----,---~--~--~-~--~------

10.01----+----I--

2.5 

5 20 25 30 
8, degrees 

Fm. 15.36.-Unipotential convergent-beam gun chart for use in designing guns like 
that of Fig. 15.34. 

A nomographic chart of the relation of Eq. (15.71) giving perveance 
for any beam voltage and current is given in Fig. 15.37. 

By means of Figs. 15.37 and 15.36 it is a simple matter to select 
values of cathode to anode radius and entrance and exit angles for any 
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desired voltage and current. Figure 15.36 gives the relation between 

the four variables G, ~, 0, and -y. Any two may be taken as independent 
Ta 

variables. When their values are prescribed, the values of the other 
two variables are determined. Where the anode aperture has no grid, 
it is necessary only to make sure that the aperture is not too big so that 
it will not disturb the field in the cathode-anode region. Also shown 
in Fig. 15.36 are contours of anode aperture diameter equal to 50 per cent 
and 100 per cent of the cathode-anode distance. The value of the 
gradient of potential at the center of the cathode is reduced about 5 
per cent when the anode aperture diameter is 70 per cent of the cathode­
anode spacing. Aperture diameters larger than this should no_t be used 
without attempting to compensate for the reduced cathode gradient 
by changing the electrode shapes. When a spherical grid is used to 
cover the anode aperture, no such limitations are encountered. 1 

Guns designed from the chart of Fig. 15.36 have performed as theo­
retically predicted. It is not unreasonable to expect that 90 or possibly 
95 per cent of the cathode current will become useful beam current 
and that current densities as high as half the maximum theoretical value 
as limited by thermal-emission velocities will be attained. 

For determination of the beam action after leaving the anode aperture, 
reference is made to the universal beam-spread curve of Fig. 15.21. If 
this curve is entered at the right point, the subsequent beam envelope 
will be like that of the universal curve to the left of the point, it being 
assumed that the beam leaving the anode aperture is convergent. For 
convenience in entering the universal curve, its slope at any point is 
given, along with the universal curve replotted in Fig. 15.38. This 
slope is given by 

M = tan 'Y (15.73) 
]1/2 • 

and when divided by K = (Vkv) ¾ gtves the proper scale value for 

entering the slope curve. From the corresponding point on the envelope 
curve it can then be determined where the minimum diameter of the 
beam will occur and what the subsequent beam spread will be. Actual 
beam-spreading action is usually only about two-thirds of the values 
predicted here because of a partial neutralization of the negative space 
charge by positive ions in the beam. 

Example: Suppose it is desired to design a cathode that will put a beam of 
40 ma at a voltage of 1,000 volts through a cylinder 6 cm in length and 1 cm in 

1 For an alternative treatment of this subject see SAMUEL, A. L., Some Notes on 
the Design of Electron Guns, Proc. J.R.E ., vol. 33, pp. 233-240, April, 1945. This 
article also contains design data for the line-focus case. 
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diameter. Then the conditions of Fig. 15.23 apply, and tan 'Y will have the value 
of O. l 6i', which corresponds to a value of 'Y of 9.5 deg. Opposite this value of 
exit angle and the corresponding value of perveance on the design chart of Fig. 
15.37, it is found that a cathode-beam angle of 22.5 deg and a ratio of cathode to 
anode radius of 2.13 are required. The required electrode shapes may be found 
from a slight interpolation of the shapes given in Figs. 15.31 and 15.32. 
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FIG. 15.38.-Slope of universal beam-spread envelope. 
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15.7. ffitra-high-frequency Deflection Effects. There is a limit to 
the frequency of wave forms, which can be observed on a cathode-ray 
tube with electrostatic deflecting plates. The deflection equation [Eq. 
(6.23)] is evaluated for a direct potential and is valid for alternating 
potentials only if the beam electrons' transit time through the deflecting 
plates is so small a fraction of the cycle that the deflecting plate voltage 
does not change appreciably while any single electron is influenced by it. 
In a representative tube having, say, a beam voltage of 1,000 volts and a 
deflecting-plate length of 2 cm, the transit angle will not become appre­
ciable until the frequency is of the order of 50 me, at which frequency 
ordinary sweep circuits have failed and the problem of getting the 
voltage on the deflecting plates is considerable. However, there are an 
increasing number of applications in which it is desired to observe very 
high and ultra-high-frequency phenomena so that it is worth while to 
make a brief study of transit-time effects to determine the limitations of 
ordinary tubes and serve as a guide to the design of special tubes. 
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Let the notation of Fig. 6.2 be used and let the static-deflection case 
be reviewed for comparison. The crosswise acceleration of an electron 
entering the field between the plates is 

d2y eVa 
- - - (15.74) dt2 - ma 

where y is transverse displacement, e and mare charge and mass of the 
electron, respectively, Va is the deflecting potential, and a is the deflect­
ing-plate spacing. A first integration of this equation gives 

dy eVat 
dt = ma (15.75) 

in which the constant of integration is zero since ~f = 0 when t = 0. 

The transverse velocity at the end of deflecting plates of length b is 

dy eVab (l5_76) 
dt = mavo 

where v0 is the velocity of the beam electrons. From this equation the 
deflection y, of a spot on a screen a distance l from the end of the deflecting 
plates is 

y. 
T (15.77) 

dy 

since '!!.!. = dt_ The deflection sensitivity, or deflection per unit deflect-
z Vo 

ing voltage, is 

Ao= Jf.!__ = ~ 
Va mavo2 (15.78) 

The dynamic-deflection case can be handled in much the same manner. 1 

For this case let the instantaneous voltage between deflection plates 

1 Of the rather extensive periodical literature on this subject the following articles 
are the most fundamental: 

HOLLMANN, H. E., Die Braunsche Rohre bei sehr hohen Frequenzen, Hochfrequenz. 
und El,ektroakustik, vol. 40, pp. 97-103, September, 1932. 

LIBBY, L. L ., Cathode Rays for the Ultra-high Frequencies, Electronics, vol. 9, 
pp. 15-17, September, 1936. 

Bowrn, R. M., Cathode Ray Wave Form Distortion at Ultra-high Frequencies, 
Electronics, vol. 11, pp. 18-19, 29, February, 1938. 

HOLLMANN, H. E., Ultra-high Frequency Oscillography, Proc. I.R.E., vol. 28, 
pp. 213-219, May, 1940. 

HARRIES, J . H. OWEN, Deflected Electron Beams, Wireless Eng., vol. 21, pp. 267-
277, June, 1944. 
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be given by V d cos wt. Then the acceleration of an electron at any 
instant tis 

d2y eVd cos wt 
dt2 ma 

(15.79) 

where all the symbols have their previous significance. A first integration 
gives 

dy _ e Vd (sin wt - sin wlo) 
dt - maw (15.80) 

where lo is the time the electron enters the alternating field and the 
particular value of the constant of integration given results from the 

condition that ~l = 0 when t = to. For simplification in interpretation 

let the time the electron spends in the alternating field be represented by 

T = t - lo 
dy _ cVd [sin w(T + to) - sin wt0] 

dt - maw 

Integration of Eq. (15.80) gives 

y = eVd
2 

[cos wto - cos wt - w(t - to) sin wto] 
maw 

(15.81) 

(15.82) 

(15.83) 

where the particular value of the constant of integration results from the 
condition that y = 0 when t = t0 • The above equation is better written 
in terms of the time the electron is exposed to the alternating field as 

y = eV\ [cos wt0 - cos w(T + lo) - wT sin wto] 
maw 

(15.84) 

This equation gives the path of the electron when used parametrically 
with the expression 

x = voT (15.85) 

for the time the electron is exposed to the alternating field. A set of 
curves showing the path of electrons between the deflecting plates over a 
period of two complete cycles is shown in Fig. 15.39. It is seen that the 
path for any starting time is a straight line at some angle with the axis 
with a superimposed transverse sinusoidal motion. The angle of the 
straight-line component of the path depends upon the starting angle, 
being zero when the electron enters at a peak of the instantaneous 
alternating voltage and maximum when it enters at an instant of zero 
alternating voltage. The amplitude of the alternating component of 
transverse sinusoidal motion is the same for any starting time and is 
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proportional to the deflecting gradient of potential and inversely propor­
tional to the square of frequency. As an aid to visualization of the 
electron behavior, it may be stated that this path is the same as that of a 
ball rolled along a plank which rocks with a sinusoidal motion, the ball 
having an initial velocity parallel to the long dimension of the plank. 
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Fw. 15.39.-Path of an electron between deflecting 
plates when the transit time is large compared to the 
period of the deflecting voltage. 

The electron will move in a straight-line path in the field-free region 
beyond the end of the deflecting plates with a slope determined by 

dx 
Eq. (15.82) and dt = v0• As before, 

dy 
y, dt 
T = Vo 

(15.86) 

so that the dynamic-deflection sensitivity, or deflection per volt, is 

A(w) = ____!!}__ [sin w(T + lo) - sin wlo] (15.87) 
mawvo 

Upon invoking Eq. (15.78) and simplifying by trigonometric transforma­
tion, the ratio of the dynamic to the static deflection sensitivity is 

A (w) Vo • wT ( T) -- = 2 - sin - cos w lo + -
Ao bw 2 2 (15.88) 
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which by virtue of the fact that T = !!_ is readily writteri in the simpler 
Vo 

form 

1.0 

8\ 0. 

0.6 

0.4 
A{uJ) 

Ao 0.2 

0 
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-0.4 
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11' 

. wT 
A(w) sm 2 ( T) -- = ~~- cos w to + -

Ao wT 2 
2 

(15.89) 
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Fm. 15.40.-Ratio of dynamic to static sensitivity of deflecting plates as a 
function of transit angle. 

From this equation several important properties of deflection at the ultra­
high frequencies are evident. In the first place the deflection is sinusoidal 
with time so that there is no distortion of waves of a single frequency. 1 

In the second place the maximum value of the deflection varies as the 
ratio of the sine of half the transit angle through the deflecting plates 
to half the transit angle. A curve of deflection sensitivity as a function 
of transit angle wT is given in Fig.15.40. It is seen that the deflection is 
apparently zero whenever the transit angle through the deflecting 
plates is some integral multiple of 21r radians. This is consistent with 
the observation in Fig. 15.39 that the slope of the electron trajecfory is 
zero every 21r radians. The above has assumed that the deflection in 
passing through the deflecting plates is small compared with the subse­
quent deflection over the relatively long distance to the screen, l. The 
exact actual deflection will, of course, be the sum of the values giyen by 
Eqs. (15.84) and (15.86). This means that the deflection will not be 
quite zero even when the transit angle through the deflecting plates is a 

1 Bowrn, op. cit. 
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multiple of 211" but will be a minimum given by the value from Eq. (15.84) 
when T has the value 2nr, where n is a positive integer. 

It is of interest to record the values of deflecting-plate transit angles 
for which the dynamic deflection sensitivity drops to some arbitrary 
fractions of the static sensitivity. The dynamic deflection sensitivity 
will be 0.9 of the static sensitivity when the transit angle through the 
deflecting plates is 0.794 radian, or 45.5 deg. It will be 0.707 of the 
static sensitivity when the transit angle is 2.78 radians, or 159 deg. It 
will be a minimum when the transit angle is 21r radians, or 360 deg. 

When the same ultra-high-frequency voltage is applied to both 
horizontal and vertical deflecting plates, the resultant Lissajous figure 
will not be a straight line becal!se of the phase shift occurring between the 
two sets of deflecting plates. For a pure sine wave the resultant figure 
will be an ellipse. When the applied voltage contains harmonics, the 
resultant figures will have odd shapes not encountered at low frequencies. 1 

Harmonic analyses can be made from the resultant figures. They can 
also be made from the so-called "inversion spectrograms," which are 
obtained by applying the complex ultra-high-frequency wave to the 
vertical plates, allowing the beam voltage to vary sinusoidally over a 
suitable range, and applying a fixed magnetic field parallel to the vertical 
deflecting field. The transverse deflection of the beam will vary with the 
beam voltage because of the effect of the magnetic field, and the different 
harmonic components of the wave under observation will experience 
different vertical deflections at the different velocities, in accordance with 
Eq. (15.89). 

16.8. Photography of Cathode-ray Traces. In the observation of 
wave-form phenomena it is frequently important to obtain a permanent 
record. This is readily done by simply taking a picture of the screen 
trace. The science of photographing cathode-ray traces has now reached 
such a state of development that, except for special applications, it has 
rendered other methods of recording wave forms virtually obsolete. 2- 6 

1 HOLLMANN, H. E ., Ultra-high Frequency Oscillography, Proc. I.R.E., vol. 28, 
pp. 213-219, May, 1940. 

2 FELDT, R., Photographing Patterns on Cathode Ray Tubes, Electronics, vol. 17, 
pp. 130-137, 262, 264, 266, February, 1944. 

3 GRAY, C., Notes on Cathode Ray Photography, Radio Research Laboratory 
SemiTW,r Rept., Jan. 23, 1945. 

• Cathode Ray Tubes, RCA Manual TS2, pp. 86-93, 1935. 
6 "Photographic Papers for Recording Purposes," Eastman Kodak Company, 

Rochester, N. Y., 1942. 
• "Photographic Materials Available for Use with Oscillograph, Cathode Ray 

Tubes, and Similar Recording Instruments," Eastman Kodak Company, Rochester, 
N.Y., 1941. 
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In taking pictures of cathode-ray-tube traces the experimenter has 
under control at least nine different factors all of which will contribute 
to the contrast of the resulting picture. These are 

1. Cathode-ray-tube beam power. 
2. Type of fluorescent screen. 
3. Writing speed of the beam trace. 
4. Exposure time. 
5. Magnification of the camera lens. 
6. Lens speed, or stop. 
7. Film sensitivity. 
8. Developer. 
9. Development time. 

TABLE VIII 
PHOTOGRAPHIC PROPERTIES OF COMMON FLUORESCENT SERIES 

Type of screen* 

Pl P2 P5 
medium- long- short-

persistence persistence persistence 
green gree,1 blue 

Visual brightness, ft-lamberts ........... 7.5 1.55 0.9 
Relative brightness (Weston 603 meter, 

Viscor filter) ........................ 8.3 1. 7 1.0 
Relative film speed .......... . .......... 0.63 0.25 1.0 
Test film .............................. Agfa SSS Agfa SSS Agfa Fluorapid 

Ortho Ortho Blue 
Photographic efficiency ................. 0.076 0.15 1.0 
Ft-lamberts for equal photographic effect 13.2 6.7 1.0 

* See Appendix IV for specific characteristics. 

In the manipulation of the above factors the objectives sought are a 
dense negative trace with a high contrast. The effect of the separate 
factors listed above will now be briefly discussed. 

Beam Power. It has already been mentioned that the brightness of a 
beam trace is approximately linear with beam voltage at a fixed current. 
It is also approximately linear with beam power. Hence the greater the 
beam power for a given spot size, the greater the brightness of the spot 
and the easier it is to get a satisfactory picture. 

Screen Types. The three most commonly used screens today are the 
Pl medium-persistence green, P2 long-persistence green, and P5 short­
persistence blue. The principal characteristics of these screens are listed 
in Table VIII. 
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In the above table, visual brightness gives the relative response of 
the eye. Relative brightness is a standard meter reading. For each 
screen the type of film that gives the densest trace for a standard develop­
ing procedure is used. Photographic efficiency is the ratio of relative 
film speed to relative brightness. Data in the last row are obtained 
from the reciprocal of photographic efficiency. 

Writing Speed. The writing speed is simply the speed of the beam 
trace. Naturally, the greater the speed, the less the photographic 
effect. 

Time, Stop, and Magnification. These factors are interdependent. 
Although it is possible to giv,e specific coefficients that will determine 
exposure time for a given set of operating conditions, these 9onditions 
are subject to so much variation that it is almost necessary in all cases 
to obtain the correct exposure time by a trial set of pictures. When 
the best exposure time has been so determined for one set of operating 
conditions, times for other conditions are readily determined by simple 
formulas. 

In the photography of recurrent traces, the exposure time can be 
made as long as desired, subject only to the limitation of fogging due 
to stray light. The exposure time necessary will be determined by the 
beam power, the lens stop, and the image magnification according to 
the formula 

KF2(M + 1) 2 

t = - - -~ (15.90) 
w 

where tis exposure time (conveniently, sec) 
K is exposure constant (determined by experiment) 
Fis lens stop (ratio of lens focal length to aperture diameter) 

Mis image magnification (ratio of object to image size) 
w is beam-power density (watts per cm 2 of fluorescent area as 

determined from beam power and trace area) 
If the correct exposure time is experimentally determined for one set of 
operating conditions, it is a simple matter to evaluate the coefficient 
Kand the above formula then gives the exposure time for any other set 
of operating conditions. 

Iii the photography of transient phenomena where only a single trace 
of the pattern occurs the camera lens is left open and the beam-trace 
brightness is determined by the writing speed and the beam power. 
The corresponding photographic image density is determined by the 
lens stop and image magnification. The relation between writing speed 
~nd the other faytors is given by 

cw 
v. = F2(M + 1)2 . . (15.91) 
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where C is proportiortality constant 
v. is spot velocity (conveniently, km per sec) 
Wis beam power (conveniently, watts) 
F is lens stop 

Mis image magnification 
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When a suitable exposure is obtained by test, it is a simple matter to 
calculate the proportionality constant C. The above formula then 
gives the relation between the four parameters involved for any other 
set of operating conditions to obtain the same film-trace density. At 
ordinary potentials (2.5 kv), recordable writing speeds are of the order 
of 5 to 50 km per sec. With standard tubes and high accelerating poten­
tials (10 kv) writing speeds as high as 1,000 km per sec have been recorded. 

The maximum lens aperture that can be used is, of course, determined 
by the lens speed. Lenses with f ratings off /4.5 are usually available. 

TABLE IX 
PHOTOGRAPHIC-FILM SENSITIVITIES 

Weston Speed Rating 
Film 

Agfa, SSS Pan .......... . ........................ . 
Agfa SSS Ortho ................. . ...... . ........ . 
Eastman Ortho X ............ . ............... . .. . 
Eastman Superpan Press ........... . ............. . 
Eastman Super XX ......... . . ............. . .... . 
Defender Ortho X-F ...... . .. . ................... . 
Defender X-F Pan....... . .. . ............... . .. . 
Agfa Fluorapid Blue .... . ....................... . 
Eastman X-ray Blue ............................ . 

(Daylight) 
200 
100 
100 
100 
100 

50 
50 

Lenses with speeds as hign as f/1.5 are available for Leica and Contax 
cameras. 

Examination of Eqs. (15.90) and (15.91) shows that the film density 
may be increased, other factors being equal, by reducing the magnifica­
tion to get a smaller image. The gain that can be effected in this way 
is not large, however, and the maximum gain possible over a magnifica­
tion of 1 is a factor of 4 in writing speed or equivalent exposure time. 

Film Sensitivity. A number of speciai'and ordinary films are available 
for cathode-ray-trace photography. In Table IX is given a list of 
available films in the approximate order of their sensitivity. 

The Agfa SSS Ortho gives the best result of all films for the Pl and 
P2 screens. The Agfa Fluorapid Blue gives the best results of all films 
for the P5 screen. It should be noted, however, that the Eastman Super 
XX requires only about twice as much exposure as the best film in all 
cases to give an equivalent image. 

Film soeeds can be increased 50 to 100 per cent by hypersensitizing 
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the film with ammonia vapor. The well-known expedients of hyper­
sensitizing with mercury vapor or preexposing to get above the fog level 
do not seem to do much good in the photography of cathode-ray traces, 
where the work is often at minimal levels of exposure. 

Developers and Development. Standard developers and standard 
developing procedures with the usual precautions can be used. The 
commercial developers D19 (high contrast), D72, and Ansco 47 are satis­
factory. Development can be carried beyond the recommended time to 
increase contrast up to the point where fogging becomes excessive or the 
gelatin softens too much. 



CHAPTER 16 

ULTRA-HIGH-FREQUENCY EFFECTS IN 
CONVENTIONAL TUBES 

16.1. Introduction. It is well known that, as frequency is raised, 
tubes are progressively less effective as amplifiers and oscillators. Ampli­
fiers require greater driving power, and the output drops off correspond­
ingly. If the frequency is raised high enough, the gain of an amplifier 
will drop to unity or less. At the same time this is happening, the input 
impedance of the amplifier drops, as does also the maximum impedance 
that can be realized in the plate circuit. Oscillator output drops even 
more rapidly with frequency than does amplifier output. At the same 
time the limitations on output change. At low frequency the output 
for continuous operation is often limited by the plate dissipation. As 
the high-frequency limit of oscillation is reached, the grid dissipation 
commonly becomes the limiting factor while the plate hardly gets hot 
at all. 

All the above effects come about because of a combination of electronic 
and circuital phenomena. Depending upon the design of the tube, 
electronic considerations may limit the output before the circuit limita­
tions do as the frequency is raised, or vice versa. 

16.2. Causes of Decreased Output at IDtra-high Frequencies. 
Numerous factors contributing to a reduction of output at ultra-high 
frequencies can be listed. The total number of contributing factors can 
be divided into roughly three groups. These are 

1. Circuit-reactance limitations. 
2. Circuit- and tube-loss limitations. 
3. Electron-transit-time limitations. , 

At the ultra-high frequencies there exists a situation which is quite 
different from that which exists at low frequencies. At low frequencies 
the electrical circuits and the tube are quite distinct. As frequency 
increases, this ceases to be true and it is found that part of the resonant 
circuits exist inside of the tube. This comes about because electrode 
leads have a small but finite inductance. As frequency rises into the 
ultra-high classification, the reactance of this inductance becomes 
appreciable. This means that the voltage across the external terminals 

475 
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will not appear across the electrodes. In addition, while the inter­
electrode capacities may be small, at the ultra-high frequencies they may 
be a large fraction of the capacity required to give resonance in an 
external circuit. As such, they represent a limitation in terms of actual 
operation. The combination of the electrode-lead inductance and the 
interelectrode capacity may give rise to resonances in the ultra-high­
frequency region. Even if resonances do not occur, the combination of 
the reactances within the tube may constitute a network that mismatches 
the equivalent tube generator and the load. All in all, there are a number 
of respects in which the circuit reactances combine to limit tube per­
formance at the ultra-high freguencies. These detrimental effects can 
be combated in two ways, (1) by making the tube smaller, which reduces 
the inductances and capacities in direct proportion to the linear dimen­
sion, and (2) by making the tube structure such that the electrode leads 
can be incorporated into external concentric-line resonators. 

The power losses associated with a tube and circuit all tend to increase 
with frequency. At ultra-high frequencies all currents flow in thin 
surface layers because of skin effect. The associated resistance and 
losses increase with the square root of frequency because the thickness 
of the layer in which the current flows decreases in this manner as 
frequency increases. Glass and other insulating supports have losses 
associated with the molecular movements produced by the electric fields. 
These "dielectric hysteresis losses," as they are called, will usually vary 
approximately as the first power of frequency. In addition, there will 
be appreciable radiation from an exposed piece of wire such as an electrode 
lead. The power radiated from a short length of wire carrying current 
increases as the square of the frequency. All the above factors con­
tribute to a general reduction in tube efficiency as frequency is increased. 
Resistance losses may be made low by increasing the area of the surfaces 
carrying current. Dielectric losses may be reduced by proper positioning 
of glass with respect to points of low electric field. Radiation losses 
can be reduced by enclosing the tube and circuit or by using a concentric­
line construction so that the tube and circuit fields are entirely confined. 

Electron-transit-time effects can contribute to reduced tube output 
in many ways. If the transit times of the electron are appreciable 
fractions of the ultra-high-frequency cycle, then plate current will lag 
negative grid voltage and there will be a reduced output in an oscillator 
because plate current and voltage are out of phase. Associated with 
increased transit time there is a dispersal, or debunching, of electrons, 
which has the result that plate-current pulses are not so sharp as the 
pulses liberated from the cathode. In addition, there will be an energy 
interchange between the electric fields and the electrons in flight so that 
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as frequency increases the grid-input impedance will have a resistance 
component which decreases with frequency even though no electrons 
strike the grid. Furthermore, all the tube constants such as the amplifi­
cation factor will become complex instead of real numbers as a result of a 
shift in phase and what is generally a reduction in magnitude. There 
is not much that can be done about electron-transit-time effects except 
to raise the voltages and reduce the dimensions, both of which processes 
have definite limitations. In addition, certain tube types are less 
adversely affected by electron-transit-time effects than others. The 
tetrode, for instance, suffers less from the adverse effects of electron 
transit time than does the triode. 

In the subsequent sections there will be given a brief analytical 
treatment of all the above effects. No complete analysis that embraces 
all aspects of ultra-h~gh-frequency tube operation is available. Rather, 
the process of estimating the situation is that of looking through different 
windows, corresponding to different avenues of approach, and then 
trying to piece the complete picture together from the partial revelations 
obtained. 

16.3. Onset of Tube-reactance Limitations. The most important 
reactance encountered in a vacuum tube is that associated with the lead 
inductance. It is possible to speak of the inductance of a piece of straight 
wire or of an unclosed circuit in general. It must be borne in mind, 
however, that the inductance of the unclosed circuit is considered as part 
of some closed circuit the total inductance of which is equal to the sum 
of the self-inductances of all its parts plus the sum of the mutual induct­
ances of each one of the component parts relative to every other part. 
In cases where the mutual inductances between various parts of the same 
closed circuit are small the total inductance is simply the sum of the self­
inductances of the component parts. Taken in this sense, the induct­
ance of a straight piece of wire at very high frequencies is 

( 
4l d) L = 0.00508l 2.303 log10 7 - 1 + 'ii microhenrys (16.1) 

where l is the length of the wire in inches and d is the wire diameter in 
inches. The last term in the parentheses is negligible if l is more than 
100d. A family of curves giving the dependence of inductance upon wire 
length and diameter is shown in Fig. 16.1. The inducta,nce is seen to 
increase as the wire diameter is made smaller or as the wire length is 
increased. In tubes, therefore, leads should be as large as possible in 
diameter and as short as possible in length. As an example of how large 
lead reactances can be, consider the case of a lead that is 100 mils in 
diameter and 1 in. in length, as frequently occurs in small transmitting 
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tubes. This lead has an inductance of approximately 0.015 microhenry, 
as may be seen from Fig. 16.1. At 500 me this represents a reactance 
of 4 7 ohms, which is fairly high. 

Cathode-inductance-feedback Limitations. Since the tube lead react­
ances are internal to the tube, there will be coupling between the input 
and output circuits due to grid and plate currents flowing through the 
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FIG. 16.1.-Inductance of a round straight wire. 

common cathode lead inductance. This will have the effect of introduc­
ing feedback into the stage involving the tube and may cause the grid­
input impedance to be affected adversely. If all the tube lead induct­
ances and interelectrode capacities are considered, some rather complex 
relations are encountered.1.2 In general, the effect of the internal tube 

1 STRuTr, M. J. 0., and A. VAN DER ZIEL, The Causes for the Increase of the Admit­
tances of Modern High-frequency Amplifier Tubes on Short Waves, Proc. I.R.E., 
vol. 26, pp. 1011-1032, August, 1938. Contains good bibliography. 

2 SARBACHER, R. I., and W. I. EDSON, "Hyper and Ultra-high Frequency Engi­
neering," pp. 431-436, Wiley, New York, 1943. 
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reactanccs is to decrease the impedances presented at the tube input 
terminals. This may be seen by considering the onset of reactance 
effects in a triode at ultra-high frequencies. 

Consider the triode circuit of Fig. 16.2, in which there are considered 
only the effect of the cathode lead inductance and the cathode-grid 
capacity.1 Then the signal voltage V. differs from the voltage that 
appears between the grid and the 
cathode by the voltage drop in the 
cathode lead inductance. Thus 

(16.2) 

But the plate current will be approxi- j 
mately proportional to the negative of ~ 
the product of the grid input voltage 

_____ .... iip 
and the mutual conductance of the 
tube since at ultra-high frequencies 

+ 

the plate-load resistance will usually 
be small. 

Fm. 16.2.-The equivalent circuit of 
a triode amplifier at ultra-high 

(16.3) 
frequencies. 

The input current to the tube will produce a voltage drop across the grid­
cathode capacity that is equal to the tube input voltage 

V =~ u jwC,u 
(16.4) 

where I 1 is the input-circuit current. Making this substitution into 
Eq. (16.2) along with Eq. (16.3), 

(16.5) 

in which the second term in the numerator is numerically small compared 
with unity. Accordingly, the input admittance of the tube is approxi­
mately 

(16.6) 

since (1 + a)-1 is approximately equal to 1 - a when a is small com­
pared with unity. The first term of the input admittance will be recog­
nized as the normal capacitive susceptance of the tube. The second 
term is a real positive term representing a conductive component of input 
admittance and having the value 

(16.7) 
1 FREEMAN, R. L., Input Conductance Neutralization, Electronics, vol. 17, pp. 24-

25, October, 1939. 



480 VACUUM TUBE$ 

This input conductance corresponds to a resistance in parallel with 
the input capacity whose value decreases inversely as th,~ square of the 
frequency. This resistance consumes power, which increases as the 
square of the frequency for a given driving voltage. There is no real 
loss of power involved here. The driving power consumed in this 
fashion is simply transmitted to the plate circuit. The equivalent input 
resistance encountered here can be fairly low. For a tube with a cathode 
lead inductance of 10-s henry and a mutual conductance of 9,000 
micromhos operating at a frequency of 30 me the equivalent input 
resistance is of the order of 25,000 ohms. In addition to the input 
conductance due to cathode-inductance feedback there is a similar compo­
nent of conductance due to ele"ctron-transit-time effects, as will be seen. 
The transit-time conductance varies in the same fashion with frequency, 
i.e., as the square of frequency The equivalent resistances that are 
due to cathode-inductance feedback and electron transit time are in 
parallel, and any measurement will involve the effect of both. In 
triodes the equivalent resistance due to transit-time effects may be 
smaller than that due to cathode-inductance feedback. In multi­
electrode tubes the transit-time resistance will usually be much larger 
than the feedback resistance. The components of the input conductance 
can be separated by making measurements with and without a bit of 
external inductance inserted in series with the cathode lead. 

lnterelectrode-capacity Limitations. In additior. to the lead induct­
ance, the interelectrode capacitances play an important role in the 
operation of tubes in the ultra-high-frequency region. Interelectrode 
capacitances due to active parts of the tube structure are incapable of 
reduction beyond a certain point. However, in many tubes the inter­
electrode capacity results largely from capacity between the leads in 
parts of the tube where electrons do not flow. Thus the receiving-tube 
practice of bringing all the tube leads out through a single glass stem at 
the bottom of the tube is very bad from the standpoint of the inter­
electrode capacity. 

Arrangements that bring out the leads separately as much as possible 
are preferred from the standpoint of low interelectrode capacity. 
Examples of such arrangements are to be found in the acorn tube, the 
doorknob tube, and certain low-power radiation-cooled tubes (see Fig. 
16.3). In the acorn tube the leads are brought out radially in such 
a way that the capacity between them is greatly reduced. The leads of 
the doorknob tube likewise are brought out rather well spaced. In the 
radiation-cooled tubes the leads are brought out widely separated. In 
addition, in some forms there are double leads, which can be paralleled 
{,o reduce the inductance. When this is done, the interelectrode capacity 
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is almost entirely that found in the active portion of the tube where the 
electron flow is concentrated. Further reduction here is possfoie only 
by scaling down the size of the tube, which in turn limits the power the 
tube can develop because the heat-dissipation capacities are reduced. 

If the resonant circuits of the tubes are made of lumped rea~tance 
elements, then the lead inductance and interelectrode capacity determine 
the highest frequency at which the tube can be operated. This hii;hest 
frequency is the frequency at which the interelectrode capacity resonates 
with the shortest external connection between the tube electrodes. For 
the tubes shown in Fig. 16.3 this frequency will be of the order of 2,000 
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me for the acorn tube, 1,000 me for the doorknob tube, and 500 me for the 
radiation-cooled tube. These frequencies may be exceeded if a trans­
mission-line type of resonant circuit is used, for then the connecting link 
between electrodes may effectively be pushed inside the tube. 

The interelectrode capacity is an important factor in determining 
what plate-load resistance can be realized. This in turn determines the 
gain and power output that can be made available. The equivalent 
shunt resistance of a parallel resonant circuit can be written in a number 
of ways, among which there are 

1 
Rah= wo2RC 

R,h = _SL 
woC 

(16.8) 

(16.9) 

where R is the equivalent series resistance, C is the total capacity deter-
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mining the resonance, and w0 is the angular resonant frequency. For 
operation at a given frequency it is seen that in order to increase the shunt 
resistance it is necessary to decrease the capacity. This can be done up to 
a point by reducing the capacity and increasing the inductance to main­
tain the same freqcency of resonance. Eventually, this process is limited 
by the fact that t.he capacity external to the tube has been reduced to 
zero and the shunt resistance is determined by the tube interelectrode 
capacity. The larger the interelectrode capacity, the smaller the shunt 
resistance that can be realized. Accordingly, the power output tends 
to drop off as the load resistance or as the square of the frequency as 
frequency increases. 

For amplifier operation the gain-band-width product is of considerable 
importance. This product is one that depends upon the ratio of the 
tube mutual conductance to the circuit capacity, various numerical 
coefficients applying for different circuits. 1 Consider the case of a tube 
with a simple single tuned circuit as a coupling and frequency-deter­
mining element between it and the next stage. The gain of such a stage 
is approximately equal to the product of the tube mutual conductance 
and the circuit shunt resistance. 

(16.10) 

where A is the stage voltage gain. The corresponding band width 
depends upon the circuit Q and the operating frequency according to 

t,,j=~ 
Q 

Accordingly, the gain-b:md-width product is 

A t:.f = _!._ Gm 
21r C 

(16.11) 

(16.12) 

The gain-band-width product can be increased by reducing the circuit 
capacity up to the point where that capacity is the interelectrode capacity 
of the tubes involved. Accordingly, it is again desirable to have tubes 
with well-separated leads to reduce the interelectrode capacity. 

16.4. The Nature of Currents Induced by Electron Motion at Ultra­
high Frequencies. The Plane Diode without Space Charge. At low 
frequencies, the current flowing to any electrode in a vacuum tube is 
considered as resulting from the arrival of electrons at the electrode in 
accordance with the equation 

i = nev (16.13) 

1 WHEELER, H. A., Wide-band Amplifiers for Television, Proc. I.R.E., vol. 27, 
pp. 429-438, July, 1939. 
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where n is the number of electrons per unit length of beam, - e is electron 
charge, and v is the electron velocity. This concept is satisfactory as long 
as the time required for an electron to move from one electrode to another 
is so short that it can be considered as being virtually instantaneous. If, 
however, the time required is appreciable when measured in time units of 
the period of the alternating frequency involved, then this concept is no 
longer adequate. The question arises as to 
whether there is any current in the electrode q,. 
circuit while the electron is en route. It + __ --,+ 

turns out that there is such a current; and ~t +:? 
since the electron transit time may be an 1+~1c:------1 ~ (n) 

appreciable fraction of the period involved ]: + o.. 

it needs to be considered. When the elec- - x -
tron transit time is appreciable, it is no 
longer true that the electrode current is 
determined by the rate of arrival of electrons 
at the electrode. The current may be 
greater or less. 

The correct concept of electrode current 
is that it is determined by rate of change of 
the charge on the electrode induced by the 
electron in flight. This induced current is 
the real current, and its magnitude is readily 
determined. Consider the situation shown 
in Figs. 16.4a, b, and c. Here there is shown 
an electron moving from the cathode to the 
plate of a plane-electrode diode. From the 
electron there emanate - e lines of electric 
flux, which terminate on a like amount of 
positive charge on the cathode and plate. 
When the electron is close to the cathode 
as in Fig. _16.4a, then most of the lines from 
the electron terminate on the cathode, with 
the result that the positive charge so induced 
on the cathode is larger than the positive 

-------- d ________ .,. 

+ 

+ 

+ 

----· X ----·-· 

Frn. 16.4(a,b,c).-The electric 
field of a single electron in 
flight between parallel planes. 

charge induced on the plate. When the electron is midway between 
cathode and the plate as in Fig. 16.4b, then half the lines terminate on 
the cathode and half terminate on the plate, with the result that the 
induced charges on cathode and plate are equal. When the electron is 
close to the plate as shown in Fig. 16.4c, then more lines terminate on 
the plate than on the cathode. 

The exact magnitude of the induced charges described above may be 
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calculated from the equality of the work done in transferring the charge 
from cathode to plate to the energy gained by the electron in its move­
ment. Let q1 be the charge induced on the cathode and q2 the charge 
induced in the plate. As the electron moves across from cathode to 
plate, the battery effectively transfers a charge q2 from cathode to plate. 
This means that the battery does work of the amount V q2• At the same 
time the electron has moved a distance x under the ;nfluence of a field 

-V Vex . 
of strength d so that work of the amount d has been done on 1t. 

Accordingly, 

from which 

+e 

X -

Vex 
,Vq2 = -

d 
(16.14) 

(16.15) 

x =O af cathode 
x=d afp/ate 

Since the total charge induced on 
both cathode and plate must equal 
+e, it must be true that 

q1 = e ( 1 - fl) (16.16) 

This means that the induced 
charge on the plate grows linearly 
with electron position from a value 
of zero to +0 as the electron 

FIG. 16.5.-Charges induced on the elec­
trodes of a plane diode by a single electrode 
m flight. moves across the diode from cath­
ode to plate. At the same time the induced cathode charge decreases 
from +e to zero. These relations are shown in Fig. 16.5. 

The current associated with the induced charges resulting from the 
motion of an electron is given simply by the time rate of charge. Thus 

. dq2 e dx ev 
i=-=--=-

dt d dt d 
(16.17) 

This is the current flowing to the plate. The abova is one of the most 
important fundamental relations in the field of high-frequency-tube 
behavior. The magnitude of the circuit current associated with the 
electron flight is shown in Fig. 16.6. For the parallel-plane diode con­
sidered here, the field will be linear, and the velocity of the electron if 
emitted with zero velocity will increase linearly with time. This gives 
rise to a triangular-shaped p11lse of current. Furtb.ermore, the induced 
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current depends only on the electron velocity and is independent of 
electron position to the extent that the position is independent of the 
velocity. It is seen that current starts to flow the moment the electron 
enters the interelectrode space and continues until it reaches the plate. 
It is not true that current flows only when the electron reaches the plate. 
The area under the current pulse is +e from Eq. (16.17). 

The total current that flows to any electrode is found by adding up 
the triangular pulses of current 
associated with each electron. 
This summation will generally 
result in a current curve that lags 
the emitted-electron current by 
an angle proportional to the 
product of the angular frequency 
and the transit time. Currents 
may even be induced in electrodes 
to which no electrons flow if the 
number or velocity of the electrons 
approaching the electrode is dif­

'"'5-+­
Q) C 
0 Q) 
::, L 

'"'5 L 
C::, 

.... 0 

t - T 

e . 
d tp=tmax. 

No space charge 

FIG. 16.6.-Induced current resulting 
from an electron in transit in a parallel­
plane diode without space charge. 

ferent from the number or velocity of the electrons receding from it. This 
is the case with the control grid in ordinary triodes and multielectrode 
tubes when operating Class A. 1•2 

The General Case. The relations given above are a special case of 
a more general relation in that they are restricted to the plane-electrode 
diode in the absence of space charge. The general relation that applies 
for any field configuration is 

. dV,. 
i,. = edsv (16.18) 

where i is the induced current flowing to any electrode, e is the magnitude 

of the elect.ron charge, and dJs" is the gradient of potential in the direction 

of the electron velocity that would exist at the electron's instantaneous 
position if the given electrode were raised to unit positive potential and 

1 NoRTH, D. 0., Analysis of the Effects of Space Charge on Grid Impedance, Proc. 
I.R.E., vol. 24, pp. 108---136, January, 1936. One of the earliest papers to m ake use 

{ . ev 
o the relation i = d · 

2 THOMPSON, B. J., Review of Ultra-high Frequency Vacuum Tube Problems, 
RCA Rev., vol. 2, pp. 146--155, October, 1938, 
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all other electrodes were grounded. 1- 5 It will be noticed that the relation 
of Eq. (16.18) reduces to the relation of Eq. (16.17) for the plane-electrode 
case. From the general relation of Eq. (16.18) it is seen that the induced 
current is maximum when the electron is moving along a path for which 
the gradient of potential resulting, when the electrode in question is 
raised to unit positive potential and all other electrodes are grounded, 
is itself maximum. If the electron were to follow an equipotential line 
under the conditions stated above, the induced current would be zero. 

Induced Currents in the Space-charge-limited Diode. The shape of 
the induced-current pulse associated with a single electron transit in a 
plane diode is slightly differe~t when the diode is space-charge-limited 
from what it is when it is not. This comes about because the potential 
variation with distance is a four-thirds-power law in the p~esence of 
space charge, while it is linear in its absence. As a result, the electron 
velocity follows a two-thirds-power law of variation with distance for the 
space-charge-limited case, whereas it follows a one-half-power law in 
the absence of space charge. Accordingly, the velocity of an electron 
varies with the square of the time in the space-charge-limited case, 
whereas it varies linearly with time in the absence of space charge. In 
addition, the transit time in the presence of space charge has been 
shown in Sec. 8.10 to be 50 per cent greater than in its absence. As a 
result, the potential, velocity, and induced current in the space-charge­
limited case will have the form shown in Fig. 16.7. For comparison, 
the corresponding relations that hold in the complete absence of space 
charge are shown dotted. The current pulse with space charge is sharper, 
which means that its fundamental component is smaller and is retarded 
more than in the space-charge-free case. The difference between the 
behavior with and without complete space-charge saturation is, however, 
small enough so that for most qualitative evaluations the triangular 

1 SHOCKLEY, W., Currents Induced by a Moving Charge, Jour. Appl. Phys ., vol. 9, 
pp . 635--636, October, 1938. 

• RA.MO, SIMON, Currents Induced by Electron Motion, Proc. I .R .E ., vol. 27, 
pp. 584-585, September, 1939. 

3 JEN, C. K., On the Induced Current and Energy Balance in Electronics, Proc. 
I.R.E., vol. 29, pp. 345--349, June, 1941. 

• JEN, C. K ., On the Energy Equation in Electronics at Ultra-high Frequencies, 
Proc. I .R .E ., vol. 2J, pp. 464-466, August, 1941. 

• This relation results from the fact that the charge induced on one of a system of 
grounded conductors by an electron is e V n, where V n is the potential to which the 
location point of the electron is raised when unit potential is applied to the electrode in 
question and all other electrodes are grounded. The induced current is then simply 
the time ri,.te of change of charge. See SHOCKLEY and RAM01 op. cit. 
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current pulse is sufficiently accurate. The area under the current pulse 
in this case is again +e. 

Currents Induced in the Electrodes of a Triode. The relations discussed 
above may be applied to triodes quite successfully to give an indication 
of the magnitudes and phases of the currents induced in the different 
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FIG. 16.7.-lnduced current resulting from a single electron 
in transit in a plane diode whose emission is space-charge­
limited. 

electrodes. Between the electrodes the potential fields will resemble 
those of a diode in that potential will vary linearly with distance except 
in the immediate vicinity of the grid wires. The gradients of potential 
will be determined by the ele trode voltages and the tube dimensions. 
The currents induced in any electrode can be calculated from the general 
relation of Eq. (16.18). To find the current induced in the cathode it 
is necessary to know the gradient of pot.ential which exists at the elec-
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tron's location when the cathode is raised to unit potential and the other 
electrodes are at zero potential. The potential contours in a triode for 
this condition are shown in Fig. 16.8a. The effects of space charge have 
been neglected in setting up these profiles. When the gradient of 
potential is known, the induced current is simply the product of the 

Vc = I {a) 
Jj=O 
lf,=O 

C G p 

11 
11 

17c=O 
11 
1 I 
11 rb) Vg=/ 11 

r,p=o 

C G p 
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Frn. 16.8.-Potential contours in a triode 
used in determining the currents induced in 
the electrodes by the transit of a single 
electron. 

gradient, the electron charge, and the actual velocity. Since the gradient 
of potential is negative in both the cathode-grid and in the grid-plate 
region, the induced cathode currents will always be negative. Further­
more, the induced current will be greater in magnitude by approximately 
the amplification factor of the tube when the electron is in the cathode­
grid region than when it is in the grid-plate region. 

To determine the currents induced in the grid wires, it is necessary 



ULTRA-HIGH-FREQUENCY EFFECTS 489 

to know the potential distribution that results when the grid is at unit 
positive potential and the cathode and plate are at zero potential. 
The resulting potential profiles are shown in Fig. 16.8b. The induced 
grid current will be positive when the electron is in the cathode-grid 
region but negative when the electron is in the grid-plate region. The 
magnitudes of the currents will be approximately in the inverse ratio of 
the cathode-grid distance and the grid-plate distance for a given electron 
velocity since the magnitudes of the potential gradient are in this inverse 
ratio. 

To determine the induced plate current it is necessary to consider 
the potential configuration that results when the plate is at unit positive 

TABLE X 
CURRENTS INDUCED IN THE ELECTRODES OF A PLANE-ELECTRODE 

TRIODE BY THE PASSAGE OF A SINGLE ELECTRON 

Cathode current Grid current Plate current 
le I, T,, 

Electron in 
cat~ode-grid -ev(l + µ) + evµ ev region ...... 

dup + (1 + µ)deg dup + (1 + µ)deg d0 p + (1 + µ)d,u 
r,,..J -ev ~ evµ ev 
=r. = (1 + µ)d,a :='! µd,. 

Electron in 
gri1-plate 

-evduP -evµd,0 ev(dap + µd,,) region ...... 
dup[dap + (1 + µ)d,al dop[d 0 p + d,0 (1 + µ)] dop[daP + (1 + µ)deol 

~ -ev ~ -evµ ~ evµ 
= µd,. = (I + µ)d,p = (1 + µ)d,p 

potential and the grid and cathode are at zero potential. The resulting 
potential profiles are sketched in Fig. 16.8c. Then, by Eq. (16.18), the 
induced current to any electrode is simply the product of the electron 
charge, the electron velocity, and the corresponding gradient of potential. 
The resulting electrode currents are listed, in Table X. It will be noted 

that the induced electrode currwt is alwa.ys uf the form :- For any 

position of the electron it will also alway~ be true that the sum of the 
cathode, grid, and plate current is zero. 

Expressions similar to those for the plane-electrode triode can also 
be worked out for the cylindrical-electrode triode. These expressions 
will be more involved than those for the plane-electrode triode and will 
involve the radial position of the el'3ctron. This comes about because 
the gradient of potential is 11ot constant in the interelectrode Rpaces. 
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For the cylindrical diode, for instance, the induced cathode and plate 
currents are 

I. = - ev ln (Tp) 
T Tc 

(16.19) 

and 

I = ev ln (?i) 
P T Tc 

(16.20) 

16.5. Onset of Transit-time Effects in Triodes. As the frequency of 
operation of a vacuum tube is raised, there is finally reached a frequency 
at which electron-transit-time effects make themselves felt. These are 
evident first with the appearance of a conductive component of the grid 
input admittance; i.e., a definite amount of power is required to drive the 
grid even though it does not intercept any electrons. In addition, the 
mutual conductance and amplification factor become complex and smaller 
in magnitude, having a negative phase angle that increases in magnitude 
with frequency. Of these various effects the appearance of a conductive 
component of grid input admittance is most important. This component 
is one that at first grows as the square of the frequency. The existence 
of this component and its dependence upon frequency and other factors 
can be demonstrated by examining the induced grid currents along the 
lines indicated in the previous section. 

Consider first the grid current induced by the transit of a single 
electron from cathode to plate. Ordinarily the grid will be negative, 
but above its cutoff value. The electron, however, passes readily through 
the space between grid wires where the potential is positive. In the 
cathode-grid region the gradient of potential is nearly constant at a small 
positive value determined by the cathode-grid distance and the mean 
potential of the grid plane. In the grid-plate region the potential 
gradient is again positive, but at a much higher value. Potential con­
tours for a typical condition are shown in Fig. 16.9a. The associated 
electron velocities will as a first approximation be considered linear with 
time in both the cathode-grid and the grid-plate region because the 
potential gradients in these regions are nearly constant. The electron 
velocity is as shown in Fig. 16.9b. It is seen to increase linearly with 
time at a relatively slow rate in the cathode-grid region and at a rela­
tively faster rate in the grid-plate region. 

The corresponding current induced in the grid electrode will be as 
shown in Fig. 16.9c. The induced current has the form of the product 
of the electron velocity as in Fig. 16.9b by the potential as shown in Fig. 
16.8b. The sign of the current changes as the electron passes the grid 
plane, for here the electron changes its relative direction with respect to 
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the grid. The induced-current pulse as a result consists of a positive 
triangular pulse followed by a negative trapezoidal pulse. The area" 
of the positive and negative pulses will nearly equal plus and minus e 
respectively, yielding a net zero direct component as expected from physi­
cal considerations. 

Dis tor nee 

fb) 

Time 

lc-8-,.l 
I I 
I I 

(c) 

Fm. 16.9.-Factors determining induced grid current in a plane­
electrode triode. 

If it is assumed that there fa one electron liberated per cycle at the 
same time after the maximum value of grid voltage, then the pulse of 
Fig. 16.9c will occur once each cycle and will have a fundamental compo­
nent of current of the frequency of the exciting voltage. The funda­
mental component of current of the induced-current pulse will haYe the 
position shown in Fig. 16.9c. This fundamental component of current 
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will change from positive to negative at about the same time as the 
induced-current pulse itself changes from positive to negative. As a 
result, the fundamental component of grid current will lead the grid 
voltage by 90 deg minus some small angle fJ. The total grid current 
will be made up of the sum of all the induced currents resulting from the 
total electron flow. Since the electron current will be nearly sinusoidal 
and in phase with the grid voltage, the resultant fundamental component 
of grid current will have the same location as that shown for the single 
electron of Fig. 16.9c. This is because most electrons will flow at the 
peak of the grid voltage, and as a result any summation of pulses will 
favor those associated with the peak of the grid voltage. 

The magnitude of the resulting fundamental component of grid cur­
rent will be proportional to the product of the mutual conductance, the 
frequency, the electron transit time, and the grid voltage 

(16.21) 

This occurs because the magnitude of the induced current depends upon 
the change in the number of electrons in the stream, which in turn depends 
upon the product of mutua1 conductance and voltage. The fundamental 
component of induced grid current depends upon the frequency, for the 
length of the current pulses induced by the individual electrons relative 
to the period of the exciting voltage is directly proportional to this factor, 
as will also be the area of the pulse. The fundamental component of the 
induced grid current will also depend upon the transit time of the electrons, 
for this will determine the area of the pulses of current induced by the 
passage of each electron. 

The grid input admittance will be defined as the ratio of the grid 
current to the grid voltage 

(16.22) 

This admittance will have a conductance component and a susceptance 
component. If the grid current led the grid voltage by 90 deg, the input 
admittance would be purely imaginary, corresponding to the susceptance 
of the cathode-grid capacity, jwCcu• Actually, this will be the larger 
component of the input admittance. However, the admittance will 
have a conductance component of the form 

Gu = Yu sin 8 (16.23) 

where 8 is the angle of Fig. 16.9c by which the fundamental component 
of the induced grid current fails to lead the grid voltage by 90 deg. For 
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small angles, sin (} can be replaced by 0. The angle (} itself depends upon 
the product of the frequency and transit time of the electron, 

sin e = e = kdT (16.24) 

This is evident from Fig. 16.9c, it being remembered that the angle of 
a full period is 21r radians and that if the fundamental period is changed 
the angle (} will be changed even though the electron transit time is not 
changed. As a result of Eqs. (16.23) and (16.24), the input conductance 
,s given approximately by 

Go = kaGmf2T 2 (16.25) 

to a high degree of approximation. 1 Equation (16.25) shows that the grid 
input conductance increases as the square of the frequency for a given set of 
operating conditions. This is to say that the equivalent input resistance 
considered to be in parallel with the input capacity decreases as the square 
of the frequency. Some experimentally determined values are given in 
Fig. 16.10. The input resistance encountered here is such that the driving 
power required for a given degree of excitation increases as the square of 
the frequency. This rapidly becomes a limiting factor of considerable 
seriousness. 

Although space-charge effects have been neglected in the above 
development, their presence will merely change the numerical constant. 
If the induced-current pulse of Fig. 16.9c had been drawn to include the 
effect of space charge, the positive part of the pulse would have had 
the form of the solid curve of Fig. 16.7c instead of the triangular form 
t--.... n. The shape of the negative portion of the pulse would not have 
been much changed. The constant of Eq. (16.25) can be evaluated to 
include the effect of space charge. 2 The specific form of the grid con­
ductance is 

G0 "' ;;~ Gmf2Tc0
2 

[ 9 + 44 ~: + 45 (;::Y 
( 17 + 35 Top) 20 (ToP)2j 

_ 2 TOP T co + T co 

Teo l + Vp (i + ~)
2 

Vo Vo 

(16.26) 

where Teo is cathode-grid transit time, T0 p is grid-plate transit time, Vp 

is electron velocity at the plate, and v0 is mean electron velocity in the 

1 See FERRIS, W. R., Input Resistance of Vacuum Tubes as Ultra-high Frequency 
Amplifiers, Proc. I.R.E., vol. 24, pp. 82-105, January, 1936, for an alternative deriva­
tion of Eq. (16.25). 

2 NORTH, op. cit. 
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grid plane. The numerical value of the constant given by the first term 
only of the expression in brackets is approximately 2; that is, k3 in Eq. 
(16.25) is approximately 2 when T is the cathode-grid transit time. 
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FIG. 16.10.-lnput resistance of triodes as a function of frequency. 

A number of factors conspire to prevent Eqs. (16.7) and (16.25) from 
being fulfilled exactly. The actual situation with respect to input con­
ductance is extremely complicated. 1 As a result the above equations 

• "Input Admittance of Receiving Tubes," Tube Department, Radio Corporatior. 
of America, Harrison, New Jersey, November, 1946. 
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indicate only first-order effects. Departures from the simple theory 
indicated above are due to the following: 

1. The input capacity of a tube is nonlinear with transconductance. 
This is a low-frequency effect due to space charge. It con­
tributes to a nonlinearity between input conductance and tube 
transconductance. 

2. Partial resonance between lead inductance and interelectrode 
capacity may change apparent input capacity. 

3. There may be a negative input-conductance component due to 
screen lead inductance in pentodes. 

4. There are cold-tube input-conductance components due to lead 
resistance and dielectric losses that obscure lead-inductance and 
electron-transit-time effects. The lead resistance yields an input­
conductance component that increases as the five-halves power 
of frequency as a result of skin effect and the series combination of 
resistance and inductance. Dielectric losses yield a component of 
conductance that increases linearly with frequency. 

16.6. Transit-time Effects in the Space-charge-limited Diode. In 
the discussions thus far, relatively little attention has been paid to the 
effects of space charge. The effect of space charge may be expected to 
be considerable, particularly in the vicinity of the cathode, where the 
space-charge density is very high. Before going into this subject it will 
be well to emphasize the distinction between the various components of 
current encountered. 

The general form of current involves a combination of conduction 
current and displacement current. 

aE 
J = pV + £0-

i)t 
(16.27) 

The first term here is the conduction current and is proportional to 
the numQer of electrons arriving per second at any reference plane. The 
second component of current is the displacement current. This is the 
current that flows as a result of changes in the electric-field strength. 
In vacuum-tube problems the resultant current will ordinarily be a 
combination of conduction and displacement current. At low frequencies 
the current will be nearly all conduction current, but at sufficiently high 
frequencies the displacement current will be considerable. This occurs 
because of the finite transit time required by the electrons to pass from 
one point to another. Thus, if a group of electrons is liberated at a 
cathode of a diode, it will be a while before they arrive at the plate. 
This does not mean that the plate current is zero until the electrons 
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arrive. True, the conduction current will be zero until the electrons 
arrive, but in the meantime there will be current in the form of dis­
placement current (the induced current of the previous sections). The 
total current in the general case is the sum of the conduction current and 
the displacement current and is the same at any point in the <:ircuit. 
Thus in the diode the current at the cathode is virtually all conduction 
current because the field there is zero. At the plate, in the presence of an 
alternating voltage, the total current will be the sum of the conduction 
current at the plate and the displacement current associated with the 
changing electric field resulting from electrons en route to the plate. 

To examine the relations in the plane-electrode diode with space 
charge it is necessary to know' the equation of motion of the electron in 
addition to the general definition of current flow. The equation of motion 
is simply 

dV 
-eE = e - = -m,a 

dx 
(16.28) 

where e is the magnitude of the electron charge, ~: is the gradient of 

potential, m is the mass of the electron, and a is its acceleration. In 
addition, Poisson's equation will be involved to take account of the effect 
of space charge upon the potential distribution. For the plane-electrode 
case with the various quantities varying in the x direction only, 

d. E aE 
lV to = to - = p 

ax 
(16.29) 

where p is the space-charge density and to is the dielectric constant of 
free space. Combining Eqs. (16.27) and (16.29) gives 

J = to (aE dx + aE) = to dE 
ax dt at dt 

Referring back to Eq. (16.28), it is now apparent that 

mda J = -to - -
e dt 

(16.30) 

(16.31) 

The previous five equations are the fundamental ones upon which 
all electron-transit-time studies involving space charge are based. Equa­
tion (16.27) is essentially Maxwell's definition of current in its general 
form. Here it is necessary only to remember that current in general may 
be either displacement or conduction or a combination of both. Equations 
(16.28) and (16.29) are relatively well known and deserve no particular 
comment. Equations (16.30) and (16.31) are the new relations of 
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significance. These give current as a function of time only, directly 
proportional to the time rate of change of electric field or of acceleration. 
Since electric field is a function of both time and distance, the total 
derivative with respect to time has involved partial derivatives with 
respect to each. Fortunately, the combination of partial derivatives 
given in Eq. (16.30) is exactly the total derivative of the electric field. 
It is the last of the above equations that is really new and significant. 
From this it is seen that if the acceleration or for that matter any of its 
derivatives be known then the current can be determined. From this 
equation all the dynamic properties of space-charge flow can be 
determined. 

Let us test the power of Eq. (16.31) by obtaining some basic relations. 
Let it be assumed that the current density is made up of a constant 
component plus an alternating component of the form. 

(16.32) 

where Jo is a direct component of current density and J 1 is the magnitude 
of an alternating component, p being equal to jw, and it is understood 
that we are dealing with only the real part of the exponential factor 
fvt. This is a well-known procedure in network theory, and it is used 
here because it simplifies the writing of the associated equations. 

The differential equation corresponding to Eq. (16.31) becomes 

da -e - = - (Jo+ J1fvt) (16.33) 
dt mr.o 

Let this now be integrated to obtain the acceleration, velocity, and 
distance in a parallel-plane diode under the assumption that the initial 
velocity and acceleration of the electrons are zero. With these restric­
tions, a first integration of Eq. (16.33) gives 

where t. IS the time when the electron leaves the cathode. 
integration gives 

-e [Jo ( J 1 ( ) V = - - t - la) 2 + - fpt - fPla 
mEo 2 p 2 

A third integration gives 

-e l°Jo Jr ( X = - - (t - la)3 + - fpt - fpta) 
mEo 6 p 3 

- :: (t - la)fP
1
• - :; (t - la) 2

fP
1
•] 

(16.34) 

A second 

(16.35) 

(16.36) 
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These equations give acceleration, velocity, and distance as a function of 
the time, the starting time, and the current-density components. Let the 
validity of these equations be tested by examining the direct components. 
If the above equations are restricted to the case in which the alternating 
component of current density J 1 is zero and if t - ta be considered the 
transit time to, then the above equations reduce to 

-eJoto ao = --­
mto 

-eJolo2 

Vo= 2mto 

Xo = 

(16.37) 

(16.38) 

(16.39) 

Of these, the last equation will be recognized as giving the proper varia­
tion of distance with time. To bring the above equations into a more 
familiar form it is desirable to obtain an expression of the voltage differ­
ence corresponding to the distance Xo. This is readily obtained from the 
definition 

rx• Vo= - Jo Eo dx 

which by virtue of the equation of motion (16.28) is the same as 

This yields 

mJ"to Vo = - aovo dt 
e o 

m vo2 

Vo= --
e 2 

(16.40) 

(15.41) 

(16.42) 

to our small surprise. If now the expression for Vo from (Eq. 16.38) 
be substituted in this and the value of to as determined from Eq. (16.39) 
be applied, there results 

(16.43) 

which is Child's law as previously given by Eq. (8.7). Apparently 
Eqs. (16.33) to (16.35) can be trusted to give some reliable answers if 
properly interpreted. 

In the same way as the direct current was found as a function of the 
direct voltage, the alternating component of current can be found as a 
function of the alternating component of voltage. In this case the 
electron transit time is expected to be involved, and it is. When the 
voltage and current are known, their ratio gives the equivalent imped­
ance, a factor of great importance in tube application problems. The 
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derivation of the impedance of a diode whose emission is space-charge­
limited has been given many times and is much too lengthy to be included 
in the text. 1- 3 The specific formula for the diode impedance is 

Z 2 12 
Ro = {i + {3 4 (2 - 2cll - f3 - {3e-P) (16.44) 

where {3 = i8, 8 being the transit angle from cathode to plate, that is, 
8 = 21rJT, where Tis the transit time. Ro is the low-frequency dynamic 
plate resistance of the diode as determined by the slope of the voltage­
current characteristic. This expression separates readily into real and 
imaginary parts corresponding to series resistance and reactance 
components. 

.!!:_ = 12 
[2(1 - cos 0) - 0 sin 0] 

Ro 04 (16.45) 

X 2 12 . 
Ro = - 8 - B4 [0(1 + cos 0) - 2 sm 0] (16.46) 

Curves of !
0 

and io are given in Fig. 16.11 as a function of the transit 

angle 0. These components are part of the series representation of 
impedance and indicate that the diode impedance is equivalent to a 
resistance in series with a capacitive reactance, X being always negative. 
Also shown as a dashed curve in Fig. 16.11 is the high-frequency asymptote 
of the reactance curve. This has the form of the reactance curve of a pure 
capacity. The resistance component drops from a maximum value for 
zero transit angle to a zero value for a transit angle of 27r. After that, it 
assumes alternately negative and positive values but never exceeds a few 
per cent of the maximum value in magnitude. It is interesting to note 
that the resistance changes from positive to negative at transit angles of 
21r, 41r, 67r, etc., whereas the change from negative to positive resistance 
occurs for transit angles of 31r, 5-ir, 71r, etc. This means that the region in 
which the diode resistance is negative is smaller than the region in 
which the diode resistance is positive. The negative resistance pre­
dicted by the form of Fig. 16.11 for transit angles between 2·,.· and 31r is 
quite real, and special diodes have been made to oscillate by virtue of 

1 BENHAM, W. E ., A Contribution to Tube and Amplifier Theory, Proc. I .R .E ., 
vol. 26, pp. 1093--1170, September, 1938. This article summarizes work in earlier 
British publications. 

2 LLEWELLYN, F. B., "Electron Inertia Effects," Cambridge, London, 1941 (dis­
tributed in the United States by Macmillan). This tract summarizes the work 
covered in Llewellyn's numerous papers prior to 1941. 

3 M tiLLER, J ., Eletronenschwingungen im Hochvakuum, Hochfrequenz. und 
Elektroakustic, vol. 41, pp. 156-167, May, 1933, 
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this negative resistance. 1 The finite velocity of emission of the electrons 
tends to reduce the magnitude of the negative resistance predicted by 
Eq. (16.45). 

The nature of the reactive component of diode impedance is best 
understood by exammmg the imaginary component of the reciproca.! 
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Frn. 16.11.-Components of the equivalent series 
impedance of a plane diode whose emission is space­
charge-limited. (After Llewellyn.) 

of impedance, i.e., the admittance. A plot of the real (conductance) 
and imaginary (susceptance) components of admittance of a plane­
electrode diode whose emission is space-charge-limited is shown in Fig. 
16.12. From this it is seen that the susceptance of the diode is closely 
represented by that of a capacity in shunt with a resistance for small 
transit angles. At low frequencies or small transit angles, the capacitive 

· · · . t 1 b 3 8 Th t· 1· . h susceptance rat10 1s given approx1ma e y y 
10 

• e propor 10na 1ty wit 

1 LLEWELLYN, F. B., and A. E. BowEN, The Production of Ultra-high Frequency 
Oscillations by Means of Diodes, Bell Sys. Tech. Jour,. vol. 18, pp. 280-291, April, 

1930, 
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transit angle and frequency means that the susceptance can be repre­
sented by a fixed capacity. The size of this capacity happens to be % 
of the cold capacity of the tube. This amounts to saying that the 
electron charge acts like a dielectric with a dielectric constant of ;%. 
For higher values of frequency and transit angle the susceptance departs 
from the low-frequency value and finally becomes asymptotic to the 
value corresponding to the cold capacity. 
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Fm. 16.12.-Components of the equivalent shunt 
admittance of a plane diode whose emission is 
space-charge-limited. (After Llewellyn.) 

It is possible to work out equivalent circuits for the diode admittance 
over a large range of transit angles. For low frequencies the parallel 
combination of a resistance equal to the plate resistance in parallel with a 
capacity equal to % of the cold capacJty works very well. For fre­
quencies giving rise to transit angles greater than 90 deg it is best to 
refer to the curves of Figs. 16.11 and 16.12. 

16.7. Small-signal Transit-time Effects in the Space-charge-limited 
Triode. Much of the information obtained in the previous section can 
be applied to the case of a triode operating with small signal voltages 
and with its emission space-charge-limited. Here it is expected that 
there will be something like a diode action between the cathode and grid. 
This will influence the input impedance of the tube. Further, it is 
expected that the tube capacities will play an important role. In 
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addition, it is to be expected that the mutual conductance of the tube 
will be changed by transit-time effects. Various equivalent circuits 

YizT? -,,1 

a--7~~i 
tYi1 
C 

Fm. 16.13.-Equiva­
lent circuit of a triode 

have been proposed for triodes operating under 
the above conditions, one of the most successful 
being that shown in Fig. 16.13.1 This is a T sec­
tion of admittances with an internal generator in 
the plate lead to represent the effect of the volt­
age applied in the grid circuit. The junction of 
the admittances occurs, not on any of the elec­
trodes, but in the grid plane between the grid 
wires. The admittance Y 11 is the admittance 

operating at ultra-high between' the cathode and the grid plane and is the 
frequencies. same as that given by Fig. 16.12 for- a plane­
electrode diode. The admittance Y 22 is simply the admittance of the 
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Fm. 16.14.--Small-signal transadmittance of a triode as a 
function of cathode-grid transit angle. (After Llewellyn.) 

plate-grid-plane capacity. The admittance Y0 is the capacity from the 
grid wires to the grid plan{l and is mu times as big as the plate-grid-plane 

1 LLEWELLYN, F. B., and L. C. PETERSON, Vacuum Tube Networks, Proc. I.R.E., 
vol. 32, pp. 144-166, March, 1944. 
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capacity. The transadmittance Y12 replaces the Gm used at low frequen­
cies. The transadmittance can be evaluated by an extension of the 
arguments used to obtain the diode admittance. On the assumption 
that the grid-plate transit time is small compared with the cathode-grid 
transit time the transadmittance is given by the curves of Fig. 16.14. 1 

The magnitude of the transadmittance is seen to fluctuate with transit 
angle, but not excessively. The magnitude never differs from the low­
frequency value by more than 25 per cent. This is apparently due to 
something like the bunching action that occurs in klystrons in the pres­
ence of space charge where there is a periodic variation of the effective 
bunching parameter. The phase of the transadmittance, however, is 
continuously retarded with transit angle. The first minimum of the mag-

Yi2 V. 

Goo-----1?1------1A,-.cc1---{-~2>-_2_'_-1lzy.2 A2 }i(i----ooP 

~ 

Yu 

Tis 
C S 

FIG. 16.15.-Equivalent circuit of a tetrode at ultra-high 
frequencies. 

nitude occurs for a transit time of approximately one cycle in the cathode­
grid region. 

With all the elements of Fig. 16.13 given it is a relatively simple 
matter to compute the performance of the tube under any conditions. 
Thus the predictions of Sec. 16.5 on the input impedance of a triode may 
be verified by inspection. The input impedance of the circuit of Fig. 
16.13 is · essentially that of the grid-plane capacity in series with the 
cathode-grid-plane diode impedance. At low frequencies this acts like 
a capacity in series with a resistance. This is readily shown to be the 
same as the impedance of a capacity paralleled by a resistance whose 
magnitude varies inversely as the square of the frequency. 

Multielectrode tubes can be treated by an extension of the ideas 
applied above to the triode. Here it is merely necessary to add another 
L section for each additional grid to the circuit of Fig. 16.13. Thus the 
equivalent circuit of a tetrode is as given in Fig. 16.15. 1 Here the first 

1 Ibid 
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branch point A1 is located in the control-grid plane between wires. The 
second branch point A2 represents the screen-grid plane between wires. 
The admittances Yu, Y 22, and Y 33 are the admittances ofJ the simple 
capacities between adjacent electrodes. Y, is the admittance of the 
screen-grid-screen-grid-plane capacity, which is larger than the screen­
grid-phte capacity by the screen-grid mu. Yi. is the transadmittance of 
the first-grid relative to the second-grid current. Y 12 is the transadmit­
tance of the plate current relative to the grid potential. 

16.8. Similitude and Scaling in Ultra-high-frequency Tubes. It is 
frequently of interest to consider the effect of changing the size of tubes 
or of operating given tubes at a different voltage or freque_ncy. A study 
of such changes is well worth while, for it lays a basis for design and also 
aids greatly in the understanding of the operation of tubes at u1tra-high 
frequencies. 

It is recognized that there is a relation between voltage, frequency, 
and the distance that an electron must travel in a given length of time. 
A basic relation between these factors can be obtained from the equation 
of motion of an electron subjected to an electric field. 

-eE = ma 

Dimensionally, this is of the form 

e d2 d2f2 
m = Vt 2 = V 

(16.28) 

(16.47) 

Since !!.. is a numerical constant, it follows that dV
2

f2 is also a numerical 
-m 

constant. Essentially, this makes the combination~ dr a dimensionless 

parameter that applies to the problems of motion. Thus, as long as 

the factor d;r is constant, no matter what the value of the individual 

factors it will always be true that an electron will require the same frac­
tion of a cycle to travel corresponding distances. This same conclusion 
is arrived at by considering transit angle as being equal to 21rfT, where T 
is the transit time. Since the transit time is proportional to the ratio 
of distance to velocity or the square root of voltage, transit angle is 

proportional to the factor tt, which is simply the square root of the 

dimensionless factor given above. Hence to get tubes that will have the 
same impedance at any given frequency, if tube a is twice as big as tube 
b it must operate at four times the voltage of tube b. Likewise, to keep 
transit time constant, it is necessary to build tubes smaller in inverse 
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proportion to frequency for operation at a given voltage or operate at 
voltages tha.t are higher in proportion to the square of frequency for a 
given size of tube. 

Other factors besides the transit angle are involved in high-frequency 
operation. If the size of tubes is changed, then power-dissipation 
capacities are changed. So likewise are the actual inductances and 
capacities of the tube. All these factors may be studied by setting up 
some scaling factors with respect to the basic equations that determine 
ultra-high-frequency operation. These equations are two, the equation 
of motion of an electron and Poisson's equation. Let there be considered 
two tubes whose dimensions are in the ratio of D operating at wave 
lengths in the ratio of W. Thus the defining relations for D and W are 

D = X2 (16.48) 
X1 

and 

W = X2 
X1 

(16.49) 

If now an electron moves between corresponding points of two similar 
tubes in the same fraction of a cycle, 

The equation of motion for an electron in the second tube is 

d2x2 
m dt22 = -eE,,, 

(16.50) 

(16.51) 

The corresponding equation of motion in terms of an electron in the first 
tube is 

= -eE,,, (16.52) 

For these two equations to yield similar paths with the same dependence 
upon transit angle at the respective frequencies it is necessary that 

E2 D 
E1 = W 2 

Referring now to Poisson's equation in the form of Eq. (16.31), 

dE2 
J2 dt2 D 
J1 = dE1 = W3 

dt1 

(16.53) 

(16.54) 
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In like manner the ratios of all the critical quantities may be obtained 
in terms of the factors D and W. The resulting relations are sum­
marized in Table XI below. 

TABLE XI 
SCALING FACTORS FOR ULTRA-HIGH-FREQUENCY TUBES* 

Complete Voltage Wave-length 
Quantity Ratio General scaling scaling scaling 

w = D w = 1 D = 1 

Inductance ... . ... . . ... . . . . . 
L 2 D ff,' D l L, -

- w• 
Capacity .......... ... ...... Cz D w D 1 C, 

-w• 
Field ..... ..... .. . . . . ...... 

E2 D 1 
]) 

1 
E, - w w• JV2 

Voltage .. .. . . ... .. . . .. ... . . v. 1)2 
1 1)2 1 

V, w2 -w2 
Current density ..... . . ... ... 

J, D 1 
D 1 

J, - w• w• w• 
Current ............ . . . ..... 12 D3 

1)3 
1 

r; w• 1 w• 
Power .... . ... .. . . . . . .. ... . 

P, D• 
1)5 

1 
P, w• 1 -w• 

Power density .... .. ....... . 
h2 D• 1 1)3 

1 
hi w• w2 w• 

Conductance ............... G2 D 
D 

1 
G-, w 1 w 

*D = ~. W = ~ -
x, >-, 

It is interesting to note that this same table applies for magnetron 
tubes, it being necessary only to add a row for the ratio of magnetic-flux 
densities. The ratios in the column entitled "General" apply for similar 
tubes operating at different frequencies but with electrons moving 
between corresponding points in the tubes in the same fraction of a 
cycle. The ratios in the column entitled "Complete scaling" apply for 
similar tubes with dimensions proportional to wave length, the usual 
case. If a tube is simply changed in size and the voltage adjusted accord­
ingly but operation is had on the same frequency, then the values in the 
"Voltage scaling" column apply. If dimensions are not changed but 
wave length and voltage are changed to get the same electronic action, 
then the values in the "Wave-length scaling" column apply. 

In the case of complete scaling, increased power output is actually 
obtained up to the point where one of the requirements indicated by 
the table is violated. This will usually be either the current-density 
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requirement, which increases as the square of the frequency, or the power 
dissipation per unit area requirement, which increases as the square of 
the frequency. 

In the case of voltage scaling an excellent gain in performance charac­
teristics is achieved. Tubes scaled on this basis will usually be limited 
either by voltage breakdown or power dissipation. Note that the power 
output goes up as the fifth power of the size. The required voltage 
goes up as the square of the size. Inductance and capacity go up 
linearly with size but will usually be the same percentage of the associated 
external values. 

Wave-length scaling amounts to operating a given tube at a variable 
frequency but changing the voltage to compensate for transit-time effects. 
This requires that the voltage be increased as the square of the frequency. 
This requires emission-current density that increases as the cube of the 
frequency and power dissipation per unit area that increases as the fifth 
power of the frequency. Ordinarily, one cannot go very far in this 
direction. 

16.9. High-frequency Limit of Triode Oscillation. The operation of 
power oscillator tubes at ultra-high frequencies is considerably more 
complicated than that of receiving tubes. The increase in complexity 
results from the fact that the alternating voltages are usually large and 
therefore current will flow for only part of a cycle. Electrons flowing at 
different times during the cycle will have widely different behavior as 
far as transit times are concerned. The general treatment of large signal 
effects will be left for the next section, and this section will be devoted 
to some observations that can be made in limiting cases. 

It is well known that transmitting tubes whether operating as oscil­
lators or as amplifiers suffer from a loss of output as the frequency is 
raised. Figure 16.16 gives some curves showing the power output 
of a number of different oscillator tubes as a function of frequency. All 
these curves have the same general shape. At low frequencies the output 
is constant. As frequency is raised, the power drops off, slowly at first, 
and then very rapidly. Usually the power output will have dropped to 
zero within a factor of 10 of the frequenc"y at which a decrease in output 
is first detectable. Of considerable importance is the observation that 
there is a power-frequency limit for tubes of the same type. 1 This is 
evident in Fig. 16.16. 

Although the curves for different tubes overlap, there is an envelope 
that can be drawn to the family of curves as a whole. The basic trend 

1 WAGENER, W. G., The Developmental Problems and Operating Characteristics 
of Two New Ultra-high Frequency Triodes, Proc. I.R.E., vol. 26, pp. 401-414, ApriL 
1938. 
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is that tubes designed to produce high power are not able to go to as high 
frequency as tubes designed for a lower power output. A better state­
ment of this effect is that as tubes are designed to operate at higher and 
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Fm. 16.16.-Power output of ultra-high-frequency oscillator tubes as a function 

of frequency. 

higher frequencies their output is inherently reduced. This is in accord 
with the observations made in connection with the scaling values of 
Table XI. The envelope for the water-cooled tubes is approximately a 
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straight line with a slope of -4. This is the proper limit for tubes whose 
output is limited by a given power dissipation per unit area. From 
the Complete scaling column in Table XI it is seen that the power density 
varies as the square of the frequency. Since the actual allowable dis­
sipation is fixed by the cooling system, the power must be decreased 
inversely as the square of the frequency to keep the dissipation per unit 
area constant. In addition, the area varies inversely as the square of the 
frequency, and as a result the power output obtainable with a watercooled 
tube of optimum design operating at a given fraction of its high-fre­
quency limit is expected to vary as the inverse fourth power of frequency. 

The air-cooled tubes have a high-frequency limit that varies approxi­
mately as the inverse square of frequency. This is not greatly different 
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FIG. 16.17.-Power output of continuous-wave oscillators as a 
function of frequency. 

from the relation that is expected from complete scaling when the 
cathode emission is the limiting factor. 

Recent developments in tubes have pushed the high-frequency 
envelope appreciably to the right. In Fig. 16.17 is shown the power 
output as a function of frequency of various types of continuous-wave 
tubes as of early 1946. 1 Undoubtedly, further advances will push these 
limits still farther to the right, but the big gains in this direction will 
come from the development of new types of operation rather than from a 
refinement of conventional tubes. 

Not too much is known about the operation of tubes over the com­
plete range of frequencies from a low-frequency range of constant output 
to a high-frequency limit of extinction. At low frequencies where the 

1 BYRNE, JoHN, Power Limits of Continuous Wave Tubes, Electronics, vol. 19, 
p. 91, January, 1946. 
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transit time of the electrons is negligible the performance is well under­
stood in terms of Class C amplifier theory. As frequency is raised, some 
phase shifts are encountered as a result of the finite transit time of the 
electrons and the performance can still be estimated. This takes one 
out to frequencies where the output has dropped off to about 80 per cent 
of the low-frequency value. As frequency is increased still further, 
there are pronounced phase-shift and transit-time effects associated with 
large alternating voltages and the resulting operation is at best poorly 
understood. This covers the frequencies from about 80 per cent to about 
5 per cent of the low-frequency output. When the output has dropped 
to about 5 per cent of the low-frequency output, the alternating voltages 
will be quite small and the small-signal theory of Llewellyn, Benham, and 
Mueller will apply. 

Frequency at Which Efficiency Begins to Fall Off. It is of interest 
to identify some reference points on the curves of Fig. 16.16. One 
such reference point is the frequency at which the output has dropped to 
some given percentage of the low-frequency value, say 90 per cent. This 
can be done fairly satisfactorily by the application of some simplifying 
assumptions. 1 Let it be assumed that the oscillator is operating Class C 
and that the plate-current pulse is a rectangular one which flows for a 

quarter of a cycle. Thus let ip = i I for - i < 0 < i and iP = 0 for 

other angles of the cycle where 0 = wt. Let the corresponding plate 
voltage be 

(16.55) 

The plate power loss for these assumed conditions is as shown in Fig. 
16.18. 

" 
Wpl = ~ !4 

... i1(Vpo - vpl cos 8) d0 
-4 

W 
1 

= i1Vpo _ i1Vp1 
p 4 ,v2,r 

(16.56) 

(16.57) 

Let it now be assumed that electron-transit-time effects set in as a 
result of an increase in frequency and that the only effect is to cause 
the plate-current pulse to lag the alternating plate voltage by the angle 
wT, where T is the cathode-plate transit time. The plate loss under 
these conditions corresponding to the dotted curves of Fig. 16.18 will be 

1 GAVIN, M. R ., Triode Oscillators for Ultra-short Wave Lengths, Wireless Eng., 
vol. 16, pp. 287-296, June, 1939. 
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FIG. 16.18.-Effect of transit time upon the 
plate loss of a Class C oscillator. 

or for small transit angles 

The efficiencies for the two cases cited above are 

Wo - wpl 
711 = Wo 

and 

511 

(16.58) 

(16.59) 

(16.60) 

(16.61) 

(16.62) 
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where Wo is the input power and Wv1 and Wp2 are the plate losses for 
the two cases. Accordingly, the difforence in efficiency is 

'1)1 - 7/2 = i1 V p1w
2
T

2 = 0 V pl w2T2 
21r y2 Wo ,r Vpo 

(16.63) 

which indicates that the decrease in efficiency is proportional to the square 
of the frequency, to the square of the transit time, and to the ratio of 
peak alternating to direct plate voltage. A further assumption that is 
reasonable is that the ratio of peak alternating to direct plate voltage is 
0.9. This corresponds closely to the operating condition for maximum 
efficiency over a wide rang{} of conditions of voltage, load, and tube 
selection. With this assumption Eq. (16.63) reduces simply to 

...... 
C 
Q) ..... 
0 

Cl.. 

C 

(16.64) 

Let now some voltages be assumed so that the transit time T can 

G 
I 

p 

I __ ,,... ______ -_-_------------"""~/to 

be determined. A representative 
operating condition is that 

Vuuuu = Vpmm = ir (16.65) 

FIG. 16.19.-Potential profile deter­
mining low-frequency transit time in 
a Class C oscillator 

This means that the transit time will 
be determined for a potential profile 
like that shown in Fig. 16.19. Here 
it is assumed that the current flow in 
the cathode-grid region is space­
charge-limited while that in the grid­

plate region is not. Actually, the presence of space charge will depress 
the voltage in the grid-plate region slightly as shown by the dotted 
curve, but the error made in assuming that there is no space charge 
present in this region will not be great. The cathode-plate transit time 
for this condition is 

T ~ 3dcu + duv 

cp - 5. 93 X 107 ✓i[/ 
sec (16.66) 

where dcu and dur- are cathode-grid and grid-plate distances in centimeters, 
respectively, and V po is the direct plate voltage in volts. 

If now it is desired to determine the wave length at which the 
efficiency has dropped 10 per ce:!lt from the low-frequency value, then 
'12 - 111 is set equal to 0.1, as a result of which 

>-2 = 4-ircTcv (16.67) 
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where c = 3 X 1010 cm per sec is the velocity of light. When now the 
value of Tep from Eq. (16.66) is substituted, it is found that 

>-2 ,..._, 20,200(3~ + dor,) cm (16.68) 
yVpo 

This is the relation that has been sought. It gives the wave length at 
which the efficiency of a Class C oscillator will have dropped 10 per cent 
from its low-frequency value. The assumptions made were that the 
plate current was a rectangular pulse of a quarter-cycle duration which 
was shifted in phase but not changed in shape by electron-transit-time 
effects and that the grid and plate voltage at the peak of the alternating 
grid voltage were each one-tenth of the direct plate voltage. While 
these assumptions are somewhat rough, the answer depends upon the 
difference between the two quantities arrived at by making the same 
assumptions and so the errors involved tend to cancel. The largest error 
probably lies in the assumption that the shape of the plate current does 
not change. The formula is probably accurate only within 10 per cent 
but is still useful in estimating ultra-high-frequency behavior. Inspection 
of Eq. (16.68) shows that the lower wave-length limit of tubes may be 
extended by reducing the interelectrode spacings, with the cathode-grid 
distance more critical than the grid-plate distance, or by increasing the 
plate voltage. 

Frequency at Which Oscillation Ceases. Another reference point 
on the curves of Fig. 16.16 is the frequency at which the tube ceases to 
oscillate. This is determined by circuit as well as electron-transit-time 
considerations, but with proper design of tubes it is always the electron­
transit-time effects that finally dominate in reducing the-output. It may 
therefore be expected that whatever mechanism reduces the tube output 
is some function of the total transit time from cathode to plate. If this 
can be specified in terms of operating conditions at the limiting frequency, 
then the extinction frequency can be related to the cathode-plate transit 
time by experimental observations. 1 

Since most oscillators derive their grid bias from a resistor in the 
grid circuit, it is expected that as frequency is raised and the oscillations 
become weaker until finally they cease, the grid-bias voltage will be 
reduced until at the extinction frequency it has become zero. Under this 
condition the potential profiles along which the electrons must move will 
be as shown in Fig. 16.20. The electrons will prefer to move between 
the grid wires, taking the path that has the most positive potential. 
For the case under discussion it will be assumed that the current flow iI' 
the cathode-grid region is space-charge-limited while that in the grid-

t /bid. 
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plate region is not. This, as we shall see later by a comparison of transit­
time formulas, is a reasonable approximation to the true condition. As 

-+­
c 
G) 

+ 
0 
a.. 

C 
a result of these assumptions the potential 

P will vary as the four-thirds power of the 
distance from the cathode in the cathode­
grid region and linearly in the grid-plate 
region. 

At the extinction frequency, with the 
grid electrode at zero voltage, the average 

potential of the grid plane will be VP, where 
µ. 

FIG. 16.20.-Potential profile 
determining the high-frequency 
limit of triode oscillation. 

VP is the plate potential andµ is the ampli­
fication factor of the tube. With this infor­
mation the transit times can now be 
calculated. The transit time in the cath­
ode-grid region will be 

Teo = 3dco 

5.93 X 107 ✓:p 
sec (16.69) 

since the transit time in the absence of space charge is the distance divided 
by the average velocity and with full space charge is 50 per cent greater. 
The transit time for the grid-plate region is 

T = 2dap yµ 
OP 5.93 X 107 yVp (Vµ. + 1) 

(16.70) 

since the transit time is the distance divided by the average velocity. 
Adding the results of Eqs. (16.69) and (16.70), there is obtained 

Tc = l /µ (3d + 2dop ) 
p 5.93 X 107 '\/VP co yµ. + 1 

(16.71) 

If the oscillator ceases to oscillate when this transit time is some 
fraction k of a cycle, then the limiting wave length of oscillation is 

where c = 3 X 1010 cm per sec is the velocity of light. 
the specific value of T cp this becomes 

Ao = 506 Jµ (3dc0 + 2dup ) 
k '\JTf;, yµ + 1 

cm 

(16.72) 

In terms of 

(16.73) 



ULTRA-HIGH-FREQUENCY EFFECTS 515 

This is the relation for the limiting wave length of oscillation that has 
been sought. It gives the limiting wave length in terms of the plate 
voltage of the tube in volts, the interelectrode distances in centimeters, 
the amplification factor, and the fraction of period required for an 
electron to travel from cathode to plate, k. Gavin found that the limiting 
total electron transit time was approximately half a cycle, k = 0.5, for a 
series of tubes of the radiation-cooled type with single grid and plate 
leads brought out the top of the tube. For tubes of the lighthouse type, 
to be described, the limiting fraction of the cycle required by an electron 
to travel from cathode to plate is grcakr, of t!ie order of %:. 

It is possible to evaluate the transit time in the grid-plate region 
more accurately than was done in Eq. (16.70). The ratio of the grid­
plate to the cathode-grid trnnsit time as obtained from the assumption 
that there is full space limitation of emission in the cathode-grid region 
and no space charge in the grid-plate region is 

2 d0 p 

3 dC{/ 
(16.74) 

where Va is the effective potential of the grid plane, VP is the plate 
potential, d0 p is grid-plate distance, dco is cathode-grid distance, T ov 
is grid-plate transit time, and Teo is cathode-grid transit time. This 

expression is accurate within a few per cent for values of TTov less than½-
co 

For cases in which the effective grid potential is relatively large compared 
with the plate potential a more accurate expression that considers space­
charge effects in the grid-plate as well as in the cathode-grid region is 
needed. Such an expression has the form 1 

(16.75) 

This is a cubic equation, which is a little inconvenient to solve, but the 
relation between the different variables is represented by the nomographic 
chart of Fig. 16.21. It will be recognized that Eq. (16.75) reduces 

approximately to Eq. (16.74) when the ratio TToP is small enough so that 
co 

the third term on the right-hand side of Eq. (16.75) may be neglected. 

1 LLEWELLYN, op. cit., p. 36. 
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16.10. Large-signal Effects. The analysis of the previous sections 
has been mostly restricted to small signal voltages, with the attendant 
assumption that none of the electrons were ever turned back. In actual 
tubes these assumptions will often not apply because of the large signal 
voltages developed. When large signal voltages are developed, a new 
set of considerations apply and it is of some interest to examine these 
briefly. Unfortunately, the analysis of large-signal effects is so com­
plicated that only relatively simple cases can be solved. 1 

Trans-it-time Ejf ects in Diodes. The simplest case of large-signal 
effects that can be handled yielding some generally useful information 
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Fw. 16.21.-Nomographic chart relating triode transit times in the presence of 
space charge to electrode dimensions and voltages as given by Eq. (16.75). 

is that of the unbiased diode. Even here, it is not possible to take into 
account the effect of space charge because of attendant complications 
of the analysis. Accordingly, let it be assumed that the emission is 
temperature-limited. This means that the same number of electrons 
per second will be liberated whenever the potential gradient at the 
cathode is positive. This assumed condition is often realized in pulsed 
oscillators, where the voltages are so extremely high. Of principal inter­
est is the behavior of the electrons with regard to such matters as their 
transit time, conditions for traveling a certain distance before turning 
around, and so on. The voltage will be assumed to be of the form 

V(t) = V sin wt (16.76) 

1 WANG, C. C., Large Signal High Frequency Electronics of Thermionic Vacuum 
Tubes, Proc. I.R.E., vol. 29, pp. 200-214, Aoril. 1941. 
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The corresponding differential equation of motion is 

V . d2x 
e - sin wt = m -

s dt 2 

517 

(16.77) 

where s is the distance between cathode and plate of the diode. The 
starting conditions are that the initial velocity and acceleration of the 
electron are zero. As a result, a first integration of Eq. (16.77) gives 

eV 
v = -- (cos wti - cos wt) 

mws 
(16.78) 

where v is the velocity of the electron and t1 is the starting time. .A 
second integration gives 

~ = ~ ~ 
2 

(0 cos 01 - cos 01 01 + sin 01 - sin 0) 
s mw s 

(16.79; 

where 0 = wt is a transit angle. This equation gives the fractional 
distance from cathode to plate in terms of the elapsed transit angle and 
the starting angle. Note that as a coefficient of the right side of the 
equation there appears the dimensionless parameter of Eq. (16.47). 
It is convenient to express the distance sin centimeters and the frequency 
in megacycles, in which case Eq. (16.79) takes the form 

x 0.232V (0 0 0 + . 8 . 8) - = f~ cos 1 - 1 cos 01 sm 1 - sm 
S me Scm 

(16.80) 

The behavior of electrons in an unbiased diode is best studied by 
plotting their position as a function of time from Eq. (16.79). Such a 
plot is given in Fig. 16.22. 1 It looks different from the more commonly 
presented figure that results when the voltage is a square wave, but it is 
the true representation for the unbiased diode without space charge with 
an applied sine wave of voltage. This figure contains a great store of 
useful information from which many interesting properties of the electron 
trajectorie;; may be observed. Curves are shown for electrons emitted 
every 30 deg of the plate-voltage cycle. The most important observation 
is that electrons will flow only when the plate voltage is positive or 
between 0 and 180 deg for the sine wave of voltage assumed. In the 
second place, all electron curves consist of a straight line with a super­
imposed sinusoidal component. The slope of the straight-line portion 
of the curve is proportional to the rate of change of voltage with time 
at the instant of emission. This makes the slope maximum at the 

1 Curves such as those of Fig. 16.22 are readily plotted by graphical means. See 
KoMPFNER, RUDOLF, Transit-time Phenomena in Electronic Tubes, Wireleaa Eng., 
vol. 19, pp. 2-7, 1942. 
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beginning of the sine-wave cycle, zero at the positive peak of voltage, 
and negative for the rest of the positive half cycle. Any electrons 
emitted during the first half of the positive cycle will eventually reach 
the plate, no matter how far distant. Electrons emitted during the 
second half of the positive half cycle of voltage may return to the cathode 
if they do not strike the plate electrode first. This means that the plate, 
no matter how situated, will always receive at least half the emitted 
electrons. 

The curves of Fig. 16.22 are universal because of the fact that the 
distance and the time are expressed in units of frequency, cathode-plate 

Frn. 16.22.-Distance-time behavior of electrons in an unbiased diode without space 
charge. 

distance, and voltage. Increasing the frequency increases the time 
parameter in direct proportion and the distance parameter in proportion 
to the square of the separation. Increasing the voltage decreases the 
distance parameter inversely as the voltage. 

The point at which any curve of Fig. 16.22 reverses direction is given 
by 

8 = 360° - 81 (16.81) 

The locus of the reversal points is shown by a dashed line in Fig. 16.22 
up to the curve for the 90 deg electron, beyond which no electrons will 
return to the cathode. The starting time of a grazing electron for any 
plate distance, voltage, and frequency may be calculated from the above 
relation. 
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The current associated with the electron movements of Fig. 16.22 

may be computed by summing the quantity ev for all electrons in transit 
s 

over a cycle of voltage. This is rather difficult to do analytically because 
different conditions hold for different parts of the cycle. Suppose, for 
instance, that frequency, voltage, and electrode separation are such 
that the electron liberated at the peak of the voltage wave (0 = 90 deg) 
just grazes the plate. Then in evaluating the current the first electron 
requires 150 deg of transit angle to arrive at the plate. During this time 
the current increases rapidly. As soon as the first electron strikes the 
plate, the current drops, quite rapidly at first, and then more slowly 
because the contribution to the total induced current made by the 
electrons striking the plate is much greater than that of the new electrons 
liberated at the cathode. The induced current then drops because the 
velocity of the electrons drops progressively from the beginning of the 
cycle. After the voltage reverses, some of the electrons reverse direction 
and return to the cathode so that some electrons are inducing positive 
current while the returning electrons are inducing negative current. 
Eventually, the current will become negative but will reach a finite 
magnitude and then decrease. Although analytical treatment of the 
current is difficult, the shape of the induced-current pulses is readily 
obtained by graphical methods. 1 Some of the resultant shapes of the 
induced-current pulses are shown in Fig. 16.23. Curves are labeled with 
values of the distance parameter of Fig. 16.22, with x set equal to s, 

• fmc
2

Scm2 
that 1s, values of 

0
_
232

v• It must be remembered that the diode emis-

sion is temperature-limited, which means that for small transit angles 
the current pulse is expected to be square. 

The curves of Fig. 16.23 show the degeneration of the square pulse 
of current, which exists for short transit times, into a nearly triangular 
pulse with a negative tail as the transit angle increases. For very short 
values of ,the determining parameter the current pulse is very nearly 
square except for a sharp spike at the front of the pulse, which rises to 
twice the height of the rest of the pulse. This occurs because the initial 
induced current is made up of the contributions of a large number of 
high-velocity electrons, which are bunched at the front of the electron 
stream. When these are retired from action on striking the plate, the 
current drops very rapidly because the successive electrons come along 
at a lower velocity and are not so strongly bunched. This bunching 

1 KoMPFNER, RunoLF, Current Induced in an External Circuit by Electrons Mov­
ing between Two Plane Electrodes, Wireless Eng., vol. 19, pp. 52-55, February, 1942. 
Figure 16.23 is from this paper. 
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action is evident from the curves of Fig. 16.22, where it is seen that the 
electrons liberated at O and 30 deg are separated by a time interval, over 
most of their path, which is less than half that between any two successive 
curves corresponding to electrons liberated at adjacent 30 deg intervals. 
As the transit angle increases, the peak is reduced somewhat and the 
subsequent current falls off more gradually. At the same time a negative 
pulse of current forms, due to electrons falling back on the cathode as 
the plate voltage becomes negative. 

Transmit-time Effects in Triodes. Although the above remarks have 
been restricted to the diode, they are readily extrapolated to cover the 

lrnnsit omgle, 9 

Frn. 16.23.-Induced-current pulses in an unbiased diode without space charge. 

behavior of a triode. For a triode operating Class B the electron behav­
ior may be expected to be very similar to that of the diode under the 
conditions just discussed. As a result, the distance-time picture for 
the cathode-grid region will be very similar to that of the corresponding 
portion of Fig. 16.22. On passing through the grid plane the electrons 
will encounter a positive gradient of potential that is quite large and 
varying sinusoidally with time. The plate voltage will adjust itself in 
a.n amplifier so that it will be minimum when the fundamental component 
of plate current is a maximum. This means that the plate voltage lags 
the negative grid voltage and the first electrons passing through the grid 
plane will encounter a voltage gradient which is higher than the minimum. 
As a result, the first electrons passing through the grid will be accelerated 
more than the electrons immediately following. The resultant distance-
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time diagram will take the form shown in Fig. 16.24. Here it is seen 
that the plate-current pulse has been stretched out considerably by 
what is essentially a debunching action in the grid-plate space. The 
length of the plate pulse is determined by the interval between the 
times when the first electron enters the grid-plate space till the last 

0 

0 

> -lf 1'----------------r­
,:s 

Time-
Frn. 16.24.-Distance-time diagram ot elec­
trons in a triode. 

electron leaves it. The corresponding plate-current pulse is shown in 
Fig. 16.25. For comparison, there are shown in this figure the plate 
current and plate voltage that would exist at low frequencies for a given 
grid driving voltage. The plate-current pulse is seen to be displaced 
and distorted. The displacement takes the form of a phase lag, due both 
to the grid-plate transit time and to the debunching action of the field, 
which causes the electrons to be progressively retarded throughout the 
current pulse. The distortion is due primarily to the debunching acti,Jn. 
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The phase shifts which occur in the plate current because of transit­
time effects are sufficiently pronounced so that there is a considerable 
difference between the operation of amplifiers and oscillators. In an 
amplifier the plate voltage will adjust itself to the phase lag of the plate 
current In an oscillator the plate is coupled to the grid so that the two 
electrode voltages are ordinarily 180 deg out of phase. As a result, the 
output of an oscillator falls off more rapidly with frequency than does 
that of an amplifier. This is because in the amplifier the output is 
decreased only as the reduction in the fundamental component of plate 

___ _ current arising from pulse distortion 
but is independent of the phase of 
the plate current. In the oscillator 
the output is reduced because in 
addition to the reduction of the fun­
damental component of plate cur­
rent the phase of the current 
relative to a plate voltage of fixed 
phase causes a further lowering of 
the output power. As a result, the 
general experience is that amplifiers 
will give output when the transit 
angle is increased 50 per cent 
beyond that at which oscillators 
cease to operate. 1 

Transit-time Effects in Tetrodes. Grtd 
voltt?1qe--

Tetrodes have inherently better 
operating characteristics than tri­

Frn. 16.25.-Distortion of the plate-cur- odes as far as transit-time effects are 
rent pulse in a Class C triode amplifier concerned. This is because the con­
caused by transit-time effects. trol grid is followed by a positive 
screen grid maintained at a fairly high potential. As a result, the elec­
trons are accelerated fairly uniformly as they pass the control grid and 
the attendant debunching action is much less than is the case with the 
triode. In addition, the over-all transit time from control grid to plate 
of the screen-grid tube may actually be less than is the case for the triode 
because the electron is moving in regions of higher potential most of the 
time. In the screen-plate region of the tetrode the electrons will encoun­
ter a retarding potential gradient that will exert some debunching action 
but that will not be as strong as is the case with the grid-plate region 
of the triode. A typical set of distance-time curves of a tetrode is shown 
in Fig. 16.26. These curves exhibit all the properties mentioned above. 

l WAGENER, op. cit. 
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To be a satisfactory tube, a tetrode should be built on the principle 
of the beam-power tubes, i.e., with aligned control and screen grids. 
This alignment, along with proper interelectrode dimensions, serves two 
purposes. (1) It reduces the direct current to the screen. (2) It pro­
duces a strong enough potential minimum by virtue of space-charge 
effects to suppress secondary emission from the plate. The beam tetrode 
has a number of advantages for ultra-high-frequency operation in 
addition to the favorable transit-time characteristics mentioned above. 
In the first place it is possible to attach separate resonant circuits to 
the cathode and control grid on the one hand and to the screen grid and 
plate on the other hand. By means of concentric lines or cavity reso­
nators it is possible to separate almost completely the fields of what are 
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Fw. 16.26.-Distance-time behavior of elec­
trons in a tetrode. 

then the input and output resonators. The only interaction that exists 
is through the medium of the cathode-plate capacity, which is inherently 
small. 

Beam t~trodes built so that they may be connected to concentric-line 
resonators have been very successful as ultra-high-frequency oscillators. 
Such tubes, known as "resnatrons," 1 have~been built to give continuous 
power outputs of 60 kw at frequencies of 500 mc. 2•3 In the form of 

1 The resnatron, also known as the "Sloan-Marshall tube," was developed at the 
University of California. It underwent further development both at the Westing­
house Laboratories and at the Radio Research Laboratory during the Second World 
War. 

2 SALISBURY, W.W., The Resnatron, Electronics, vol. 19, pp. 92-97, 1946. 
3 Dow, W. G., G. HoK, and H. W. WALSH, "Very High-Frequency Techniques" 

(report of the Radio Research Laboratory), Chaps. XVIII, XIX, McGraw-Hill, New 
York, 1947. 
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a very large tube operating continuously at voltages of 10 to 15 kv the 
resnatron takes advantage of the inherent benefits of voltage scaling. 
The large size makes possible water-cooled screen grids, thus removing 
what might otherwise be a limiting factor in the tube design. In addi­
tion, the high voltage reduces secondary emission since at high enough 
voltages the ratio of secondary- to primary-electron currents goes down 
again. Evidence of this is found in the fact that scaled-down tubes 

Frn. 16.27.-Lighthouse tube-external 
view. Type 2C39-plate at top. 

designed to give about 1 kw of continuous power have shown efficiencies 
of only about 20 per cent, whereas the large tubes have given efficiencies 
of the order of 50 to 60 per cent. 

16.11. Disk-seal Tubes. There have recently been developed a 
number of tubes known as "disk-seal" or "lighthouse tubes." 1•2 Essen-

1 Disc Seal Tubes, Gen. Elec. Rev., vol. 48, pp. 50-51, January, 1945. 
1 McARTHUR, E . D ., Disc Seal Tubes, Electronics, vol. 18, pp. 98-102, February, 

1945. 
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tially, the lighthouse tube is a tube with so many leads brought out 
from a single electrode that the leads become a disk. The external form 
of the tube is shown in Fig. 16.27. In small power tubes the plate is 
hrought out through a cap at the top of the tube. The grid is brought 
out through a disk at the center of the active tube structure, and the 
r.athode is brought out through a cylinder at the base of the tube. The 
electrodes are separated by cylindrical sections of glass, which are butt­
sealed to the metal disks with which they are in contact. The internal 
electrodes are of a plane-parallel design. The grid is of parallel wires 
supported over the hole in a disk in which currents flow radially to the 
outside circuit. The cathode and plate are the ends of small-diameter 
cylinders, which are supported by the glass tubing. A cutaway view 

FIG. 16.28.-Lighthouse tube-cutaway 
view. Type 2C40. 

of a low-power lighthouse tube is shown in Fig. 16.28. In high-power 
lighthouse tubes having plate dissipations between 20 and 100 watts, 
the position of the plate and cathode is reversed, with the result that the 
plate is at the large end of the tube. This permits radiating fins to be 
attached to the plate for air cooling. 

By virtue of the electrode arrangeme!).t of lighthouse tubes, lead 
inductance is cut to a minimum. Therefore, operation is possible to 
much higher frequencies than with tubes having single or even double 
wire leads. Lighthouse oscillators have been made that will operate to 
3,000 me (1946). 

A further advantage of the electrode arrangement is that it makes 
the tube suitable for use in a double concentric-line structure such as is 
E.hown in Fig. 16.29. The line type of resonator makes it possible to 
operate at higher frequencies than the natural resonant frequency of 
the shorted tube. This is possible with resonator operation on a three-
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quarter wave-length mode, for which it is possible to go to such high 
frequencies that the voltage node is pushed inside the tube. In addi­
tion, it is possible to gang the cathode and plate resonators for broad-band 
operation. This has been done successfully over a 3 to 1 band of fre­
quencies. If minor trimming adjustments are permitted, it is possible 
to produce an oscillator that. will operate at 300 to 3,000 me. Not 
shown in Fig. 16.29 are the input and output coupling devices and the 
intercavity coupling. These, however, are usually loops or probes of 
conventional form and can readily be imagined. 

In addition to the somewhat conventional resonator arrangement 
.Shorlinq 
p~uqs\ Grid line, 

P!;fe or anode line Cathode line 
Fw. 16.29.-Double concentric-line oscillator: utilizing a 
lighthouse tube. 

of Fig. 16.29, various special methods of coupling the cathode and plate 
lines for oscillator operation may be used. 1- 4 

Lighthouse-tube amplifiers have found some use in the ultra-high­
frequency band. Here the operation is that of a grounded-grid amplifier, 
with the attendant advantages of low input impedance, high output 
impedance, low interaction between input and output circuit, and the 
relatively low noise associated with a triode. 5•6 At frequencies below 
1,200 me an amplifier-converter combination using lighthouse tubes is 
superior in its noise figure to a crystal mixer. There will undoubtedly 
be advances in tube design, which will extend appreciably the present 
limits of such tubes. 

1 General Electric Company, Electronic Tube Eng. Bull. ET-Bl, June, 1945. 
: GuREWITScu, A. M., Cavity Oscillator Circuits, Electronics, vol. 19, pp. 135-137, 

February, 1946. 
3 GuARRERA, J . J., Tunable Microwave Cavity Resonators, Electronic Ind., vol. 

5, pp. 80-82, March, 1946. 
4 GunEWITscu, A. M., and J. R. WHINNERY, Microwave Oscillators using Disk 

Seal Tubes, Proc. I.R.E., vol. 35, pp. 462-473, May, 1947. 
5 DISHAL, MILTON, Gain and Noise of Grounded Grid Amplifier at Ultra-high 

Frequencies, Proc. I.R.E., vol. 32, pp. 276-284, May, 1944. 
6 JONES, M. C., Grounded-grid Radio Frequency Voltage Amplifors, Proc. I.R,E .• 

' vol. 32. pp. 423-429, July, 1944. 



CHAPTER 17 

VELOCITY-MODULATED TUBES, OR KLYSTRONS 

17.1. The Bunching Principle. We have seen in the last chapter that 
there are some severe limitations on conventional tubes which conspire 
to make their operation relatively poor at ultra-high frequencies. The 
principal limitations arise from electron-transit time, lumped electrical 
reactances, and low-Q resonant circuits. With negative-grid tubes each 
of these factors has been pushed considerably beyond conventional 
form, and yet the performance characteristics of these tubes leave much 
to be desired at the ultra-high frequencies. It was not strange, therefore, 
that various investigators sought means of efficiently generating and 
amplifying power at ultra-high frequencies by a totally new attack 
on the utilization of electronic principles. This new attack, which 
resulted in the modern klystron, involved a combination of the elec­
tronic-bunching principle and the cavity resonator. Both were neces­
sary for the production of a successful tube. The bunching principle 
overcame the transit-time difficulties, and the use of cavity resonators 
largely eliminated lumped reactances and produced high-Q resonant 
circuits. 

In negative-grid tubes the transit-time difficulties encountered arise 
largely because the electrons in the cathode-grid space start at zero 
velocity, hence inherently move slowly, and thus take a large fraction 
of a cycle to get from cathode to grid as the frequencies get up into the 
ultra-high region. Since the method of producing variations in plate 
current is inextricably associated with the large cathode-grid transit 
angle, the J)egative-grid tube always operates poorly if the frequency is 
raised high enough. Means are therefore sought for producing varia­
tions in current that are not limited by trinsit time. Such means were 
independently conceived by the Heil brothers and the Varian brothers. 1•2 

Both these pairs of men proposed devices utilizing an electron beam 

1 HEIL, A. A., and 0. HEIL, Eine neue Methode zur Erzeugung kurzer ungedampf­
ter elektromagnetishen Well en von grosser Intensitiit (A New Method of Generating 
Short Undamped Electromagnetic Waves of High Intensity), Zeit. fur Phys., vol. 95, 
pp. 752-773, July, 1935. 

2 VARIAN, R. H., and S. F. VARIAN, A High Frequency Oscillator and Amplifier, 
.Tour. Appl. Phys., vol. 10, pp. 321-327, May, 1939. 
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similar to that in a cathode-ray tube and then obtaining current pulses 
by periodically varying the beam-electron velocity a small amount 
about its average value. When the velocity of the beam electrons is 
varied, those which have been speeded up will subsequently overtake 
those which have been slowed down. The result is that a short distance 
beyond the point where the electron velocity is varied there will appear 
bunches of current from which power can be extracted. This in its 
essence is the bunching principle. The formation of electron bunches 
is illustrated in Fig. 17.1. In this figure there is shown the behavior 
of a series of electrons, represented by dots, released at uniform intervals 

BUNCHER----------------------------

. . . 

• i 

CATCHER--!-..___: ____ --;---~--.: __ ~--
1 • 

I .. . . 
~ • i 

TIME- --
FIG. 17.1.-Elementary representation of bunching 
action. 

through a cycle of alternating voltage, which is applied between two 
closely spaced grids of an input resonator known as the buncher. The 
voltage between the grids of the buncher serves to modify the velocity 
of the electrons as they arrive from the cathode. Some electrons are 
speeded up a little, and some are slowed down a little. The bunching 
action resulting from the regrouping of the electrons of different velocity 
is evident from the figure. Thus, the application of the bunching 
principle utilizes transit-time effects, whereas in negative-grid tubes 
transit-time effects are detrimental. 

To utilize the current bunches that are formed along the beam of 
electrons it is necessary to extract energy from this current stream. 
This is done by passing the bunched beam through the grids of an 
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output resonator or catcher. As the electrons pass through the grids, 
charges are induced on the grids that change in magnitude and sign as 
each electron passes through. In effect, this causes the induced charge to 
flow through the resonator to produce a current flow that delivers power 
to the resonator by passing through its equivalent resistance. Tubes 
utilizing the velocity-modulation principle are generally referred to as 
klystrons after the Greek verb "klyzein," expressing the breaking of 
waves on a beach. 

The physical form of the klystron has been described briefly in Sec. 
2.7. Further information with specific reference to klystron amplifiers 
is given in Sec. 17.5. The klystron differs from negative-grid tube 
amplifiers and oscillators in two respects. First, the current pulses are 
produced by a velocity variation rather than by an intensity variation. 
Second, energy is extracted from the current pulses by the charges induced 
on passing the beam through a short region of varying field instead of a 
long one. Furt!:iermore, the extraction of energy does not require the 
electrons to strike the electrodes attached to the resonator. It is not 
always recognized that energy is extracted from electrons in a negative­
grid tube by forcing the electron to move against an alternating compo­
nent of electric field, but this is the case. Electrons in a negative-grid 
tube will arrive at the plate with velocities which are on the average less 
than those which they would have had if no alternating component of 
electric field were present. The residual energy represents a loss and 
appears as heat liberated at the plate electrode. The difference between 
the direct power input to the tube and the heat liberated at the plate 
appears as useful output. In the klystron the electrons that have passed 
through the catcher grids emerge with less energy on the average than 
they would have had if the beam had been unbunched. The difference 
in energy goes into useful r-f power. The residual energy appears as 
heat on a collector electrode. 

17.2. Cavity Resonators. The desirability of extracting energy from 
electrons by passing them through a short region of alternating electric 
field, which as we shall see leads to greater efficiency uf conversion of 
energy, requires the use of cavity resonators. The outstanding charac­
teristic of these devices is that current flow and associated alternating 
components of field are entirely internal to the resonator. 1•2 A con­
centric-line resonator in which the inner conductor is shorted to the outer 
at one end and which is coupled by a small capacity gap to the outer 

1 HANSEN, W. W., A Type of Electrical Resonator, Jour. Appl. Phys., vol. 9, 
pp. 654--663, October, 1938. 

2 HANSEN, W. W., and R. D. RICHTMYER, On Resonators Suitable for Klystron 
Oscillators, Jour. Appl. Phys., vol. 10, pp. 189-199, March, 1939. 
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conductor at the other is one form of cavity resonator. Such resonators 
have already been referred to in the discussion of grounded-grid amplifiers 
and oscillators utilizing lighthouse tubes. Such a shorted concentric-line 
resonator will resonate when the capacitive reactance of the gap equals 
the inductive reactance of the line and hence if the gap is small will 
oscillate at lengths somewhat less than ¼, %, ¾, etc., of a wave length. 
In such a resonator the electric and magnetic fields will be totally confined 
to the interior of the resonator. In addition, if the wall thickness is 
large compared with the skin depth, 1 as it usually is, the currents asso­
ciated with the fields will flow in a thin layer on the interior conducting 
surfaces of the resonator-no currents will flow on the outside of the 
resonator. The electric and' magnetic fields in such a resonator will be 
established 90 deg out of time phase. As a result, when tlie magnetic 
field is a maximum, the electric field is zero, and vice versa. The total 
energy stored in magnetic and electric fields at any point on the cycle is 
very nearly constant over a period of a cycle or two. The total stored 
energy of a freely oscillating resonator decreases exponentially over long 

periods of time and drops by a factor of 2. 718 in a time of ~ cycles. 

Electric- and magnetic-field components and associated voltages and 
current likewise decrease exponentially with time in a freely oscillating 
resonator. All the currents, voltages, and field components will decrease 

1 "Skin effect" is a term applied to the tendency of ultra-high-frequency currents 
to flow in a layer on the surface of a conductor. This comes about because of the 
tendency of the current to flow in such a way that it is encircled by the fewest number 
of magnetic-flux lines. Thus with circular conductors the current tends to flow on the 
surface, and hollow tubes are just as good conductors at sufficiently high frequencies 
as are solid conductors. Since the penetration of current at 6.5 me is only 0.001 in. 
in copper and is less at higher frequencies, most skin-effect problems for ultra-high 
frequencies can be solved by assuming that the surfaces are plane, i.e., that the radius 
of curvature of the surface is much greater than the skin depth. For plane-surface 
conductors the relations are relatively simple (see WHEELER, H. A., Formulas for the 
Skin Effect, Proc. I.R .E., vol. 30, pp. 412-424, September, 1942). The current density 
drops off exponentially into the conductor, and the effective skin depth is defined as 

that depth at which the current density is 
2

_ ;
18 

of the surface current density. The 

formula for skin depth is d = (1rfµq )-¼ meters, whereµ is the permeability in mks units 
and u is the conductivity of the material. For copper this reduces to 2.57 X 10-31-,2 

in. The corresponding surface resistivity is R = (1rlµp) '' ohms per unit square, where 
p is the volume resistivity in ohm-meters and other units are mks. For copper this 
reduces to R = 2.61 X 10-•1 me'' ohms. The direction of current flow is always 
parallel to the surface and directly proportional to the strength of the tangential 
component of magnetic-flux density at the surface. 
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by a factor of 2. 718 in a time of g cycles. Another characteristic of a 
7r 

concentric-line cavity resonator is that the magnetic-flux lines always 
encircle current, whether this be in the form of conduction or displace­
ment current (displacement current is equal to the time rate of change 
of electric field multiplied by the dielectric constant). 

So far, all the remarks on closed resonators have been confined to 
concentric-line resonators. Many other closed or cavity resonators are 
possible. It is possible to get electromagnetic-field resonances that 
exhibit all the above-mentioned characteristics in simple cavities such as 
cubes or cylinders or spheres. These have limited usefulness for elec­
tronic purposes, for it is not possible to shoot an electron through such 
pure cavities in a sufficiently small fraction of a cycle to secure an efficient 

d 

D 
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············L__J 

(b) 

• -Electric 
fluxkne 

...._ ______ .............. , _____ _, • c,i-cu/ar 
mC¥qnet/c 
flux line 

(c) (d) 
Frn. 17.2.-Reentrant cavity resonators. 

energy exchange between the field and the electron. This is because the 
dimensions of pure cavities are relatively large compared with a wave 
length. The diagonal of a cubical resonator, for instance, is equal to 
the wave length of oscillation for operation on its lowest resonant fre­
quency. For this reason, the pure cavity resonators find their principal 
applicatioq in such devices as wavemeters and filter elements rather than 
in vacuum tubes. For tube applications, cavity resonators that are 
reentrant, i .e., have internal projections f;om the walls, are of most use 
because this form produces a very intense electric field, concentrated in a 
small region, through which it is convenient to shoot electrons. Some 
typical resonators of this kind are shown in Fig. 17.2. The resonators 
a, b, and c, shown in this figure have the same resonant frequency. 
Extreme forms such as a and c may be considered equivalent to coaxial 
and radial lines, respectively, with capacity loading1 and may be studied 

1 RAMO, S., and J. R. WHINNERY, "Fields and Waves in Modern Radio," pp. 404--
411, Wiley, New York, 1944. 
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by conventional transmission-line formulas. Intermediate forms such 
as are shown in Fig. 17.2b can be analyzed only by more powerful 
methods. 1•2 The electric field is almost entirely confined to the resonator 
gap. The shape and location of the electric- and magnetic-flux lines 
are shown in Fig. 17.2d. 

Every cavity resonator has an infinite number of resonant frequencies. 
Of these the lowest frequency of resonance is usually that of most interest. 
In terms of response to a sinusoidal excitation, resonance occurs when 
equal amounts of energy are stored in the electric and magnetic fields on 
successive quarter cycles. At the frequencies for which this occurs the 
impedance, or ratio of equivalent voltage to equivalent current, will be a 
maximum at any point in the resonator. In terms of th~ transient 
response to a shock excitation, currents and voltages will occur as a 
combination of exponentially damped sine waves, provided only that 
the losses are not excessive. The resonant frequencies are the frequencies 
of the individual damped-sine-wave components. In terms of field 
theory there will be certain solutions of the wave equation that fit the 
resonator shape at distinct frequencies. These frequencies are the 
resonant frequencies. For certain simple cavities the shapes of these 
fields are readily found, but in general they are difficult to find. 

The longest resonant wave length of a resonator such as that shown 
in Fig. 17 .2a may be determined quite closely by solving for the frequency 
for which the capacitive reactance of the gap equals the inductive react­
ance of the shorted transmission line formed by the rest of the resonator. 
The formula for the resonant wave length is approximately 

(17.1) 

for dimensions as in Fig. 17.2a. This formula gives the resonant wave 
length to within about 5 per cent for resonators of the shape shown in 
Fig. 17.2a but will give values that range from 60 to 80 per cent of the true 
value for resonators of the shape shown in Fig. 17.2b. 3 It will be observed 
from Eq. (17.1) that the resonant wave length is proportional to the 
linear dimension of the resonator. This proves to be a general property 
so that the resonant wave lengths of geometrically similar cavity reso-

1 HANSEN, W. W., On the Resonant Frequency of Closed Concentric Lines, Jour. 
Appl. Phys., vol. 10, pp. 38-45, January, 1939. 

2 HAHN, W. C., A New Method for the Calculation of Cavity Resonators, Jour. 
Appl. Phys., vol. 12, pp. 62-28, January, 1941. 

3 Curves giving the resonant wave length of resonators having the approximate 
shape of that in Fig. 17.2b are given in "Microwave Transmission Design Data," 
pp. 200--204, Sperry Gyroscope Company, Brooklyn, 1944. 
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nators of different sizes are directly proportional to the size of the reso­
nator. Resonators of the general shape shown in Fig. 17.2c may be 
treated by radial-transmission-line theory. 1 

In cavity resonators it is difficult to identify· the lump~d 
reactance elements that are apparently involved. This occurs because 
the fields are distributed more than they are grouped; i.e., there are not 
specific regions within the cavity within which the electric field exists 
alone and there is no magnetic field, and vice versa. As a result, it. is 
more convenient to express the resonator characteristics in terms of its 
Q, shunt resistance, and resonant wave length instead of its inductance; 
capacity, and resistance. Some more general definitions of circuit 
parameters are therefore required. The Q of a cavity resonator, · or 
reciprocal sharpness of resonance, is most conveniently defined in. terms 
of the transient response to shock excitation. As previously mentioned, 

the fields within a resonator decay by a factor of 2. 718 in a time of g 
'Ir 

cycles. Thus the time variation of any component of field is given by 

-~ (2?rt) E(t) = E 1E QTo sin To (17.3) 

where To is the period of oscillation frequency. This is seen to correspond 
to the equation for the voltage decay in a high-Q series resonant circuit 
that has the form 

V(t) = V1E -:{ sin (~D (17.4) 

Upon substitution of !1r;
0 

for Q, Eq. (17.4) may be obtained from Eq. 

(17.3) with the further recognition that the equivalent voltage of a 
cavity resonator is commonly taken as the line integral of the electric 
field along the line of maximum field strength. The stored electrical 
energy associated with a transient decay in a resonator will vary as the 
square of Eq. (17.3) since the energy stored in the electric field is obtained 
by integrating the square of the electric ~field throughout the volume 
of the resonator. 

_ 2.-t (2?rt) 
0e(t) = 0eJE QTo Sin2 To (17.5) 

This is seen to have twice the frequency and to decay exponentially 
at twice the rate of the field. Likewise, the energy stored in the magnetic 
field will be similar in form but shifted 180 deg in phase. 

1 See RAMO and WHINNERY, loc. cit. 
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2
--

1 (2 t) 8m(t) = Om1E - QTo COS 2 i (17.6) 

The total stored energy is the sum of the energy stored in the electric 
and magnetic fields and is given by 

2.-t 

8(t) = 8,(t) + 8m{t) = 81E - QTo (17. 7) 

,rom which it is seen that the total energy stored in the fields decays 

by a factor of 2. 718 in a time of ~ cycles. The decay in this case is a 

simple exponential one. If the rate of change of stored energy with time 
be obtained by differentiatiii.g Eq. (17.7) with respect to time and 
solving for Q, there results 

(17.8) 

which may be written in words as 

21r X energy stored 
Q = energy loss per cycle (17.9) 

This last is probably the most fundamental definition of Q that can be 
written and serves as a basis for the calculation of the Q of cavity reso­
nators.1 The energy stored in the field is most readily calculated from 
the peak value of the energy stored in the magnetic field. Likewise, 
the loss per cycle can be calculated from the ohmic losses associated with 
current flow, which is directly proportional to the tangential component 
of magnetic field at the inner surface of the resonator. The unloaded 
Q's of cavity resonators will be quite high, for the current flow associated 
with the fields is distributed over a large surface. The Q's of pure 
cavities (about 25,000 at 3,000 me) are about ten times as high as those 
of reentrant cavities as shown in Fig. 17.2. The Q's of reentrant cavities, 
in turn, are at least ten times as high as those of resonant circuits con­
sisting of lumped inductances and capacities. The Q's of loaded cavities, 
i.e., cavities supplying power to an external load, may be calculated 
from Eq. (17.9) if the energy loss per cycle be considered as the sum of 
the energies delivered to the walls of the resonator and to the external 
load. In most applications the energy per cycle supplied to the external 
load will be many times that to the cavity itself, and as a result, the Q of 
a loaded cavity is much lower than that of the cavity when not loaded. 

1 HANSEN, W. W., A Type of Electrical Resonator, Jour. Appl. Phys., vol. 9, pp. 
654-663, October, 1938. 
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Another circuit parameter that is convenient in describing cavity­
resonator characteristics is the equivalent shunt, or parallel, resistance. 
It is possible to talk about equivalent shunt resistance in terms of an 
equivalent voltage and the power supplied to the cavity walls and load 
by the fields. This is done in preference to the usual procedure of defining 
resistance as a ratio of voltage to current, for it is relatively more difficult 
to define an equivalent current than to determine the power consumed. 
The equivalent voltage is 'ogically taken as the product of the negative 
electric field in the reentrant-cavity gap and the gap spacing. It should 
be pointed out that this is not a true voltage but merely an equivalent 
voltage, for the energy interchange between an electron crossing the gap 
and the field would be the same as for the low-frequency or direct­
voltage case only if the electron were able to cross the gap in zero time. 
Since the frequencies involved in microwave generators are extremely 
high and the velocity of an electron is ordinarily only a fraction of the 
velocity of light, the electron will generally take an appreciable part 
of a cycle to cross the gap and the energy change of the electron will be 
somewhat less than the corresponding direct-voltage value. Nevertheless, 
the concept of an equivalent voltage defined by 

V = -Ed (17.10) 

where E is electric intensity in the gap and d is the gap spacing, is an 
extremely useful one. The shunt resistance of a reentrant cavity 
resonator is given by 

v2 
R,h = ~--------:-

2 X power consumed 
v2 

R,h = 2P 

(17.11) 

(17.12) 

from the usual power relation, where P is the power consumed by the 
resonator walls and load and the factor 2 results from the use of peak 
rather than rms-voltage values. Equation (17 .12) is a fundamental 
definition of shunt resistance that is consistent with lumped-reactance­
circuit formulas. The shunt resistance may also be calculated from the 
fields for a cavity resonator. As with th~ Q, the shunt resistance of a 
loaded cavity is lower than that of the unloaded cavity because of the 
fact that the power loss includes the power delivered to the external 
circuit as well as that consumed in the cavity walls. The shunt resistance 
of pure cavities at frequencies of 3,000 me is of the order of megohms. 
The shunt resistance of unloaded reentrant cavity resonators is of the 
order of hundreds of thousands of ohms at the same frequency. The 
shunt resistance of a loaded reentrant cavity resonator is likely to be cf 
the order of tens of thousands of ohms, depending upon the degree of 
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loading. These values are much higher than can be achieved with 
lumped reactance circuits at this frequency. 

Wheti the resonant frequency, Q, and shunt resistance of a cavity are 
known, its behavior in the vicinity of resonance is completely determined. 
The impMance of a resonant cavity in the vicinity of resonance is given 
at)proximately by 

(17.13) 

where R,h is the shunt resistance at resonance and o is the fractional 
deviation from resonance. 1 It is sometimes of interest to determine the 
~quivalent series resistance, inductance, and capacity from the resonant 
frequency, Q, and shunt resistance, though too much significance should 
not be attached to these equivalents. By analogy with the low-frequency 
relations in a closed series R,L,C circuit, the equivalent series elements are 

Equivalent series resistance 

Equivalent inductance 

Equivalent capacity 

R = R,h 
Q2 

Q 
C=-­

woR,h 

(17.14) 

(17.15) 

(17.16) 

where wo is the equivalent resonant angular frequency. Because of the 
fact that the circuit elements are not lumped, equivalent values calculated 
by all the methods possible will not agree. For pure cavities it is found 

1 This is arrived at by assuming that the circuit is equivalent to the parallel com­
bination of a resistance equal to the shunt resistance, a lossless inductance, and a loss­
less capacity whose resonant frequency is the same as that of the cavity. The 

impedance of this parallel combination is 
1 

. 
1 

1 
, which may be written as 

-R +JwC +-;---L 
, h Jw 

R ,h 

1 + jR,h ( wC - w~) 

Siiwe oa' "" T ~. and Q = R,hwC, the impedance can be written as R,h [ ( ) 2]- • 

µ l +jQ 1 - WO 

w 

If now ~ be replaced by 1 + Ii, the denominator expanded into a series, and only the 
WO 

jirst-powerterm of Ii ri.it~ined1 then Eq. (17,13) results. 
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that the equivalent capacities as given by various arbitrary definitions 
differ between themselves by 50 per cent from a mean value which is 
about 50 per cent of the low-frequency value. 1 In reentrant cavities the 
difference between the different values possible will be less, say 10 per 
cent deviation from a mean value that is approximately 80 per cent of the 
low-frequency value. 

This has been something of a digression on the subject of cavity 
resonators, but it has been desirable because of the necessity of using 
klystron circuits in which the electric field appears only between two 
closely spaced surfaces. Since only cavity resonators exhibit this 
property in anything approaching its ideal form, an understanding of the 
principal properties of such resonators is necessary before undertaking a 
complete discussion of klystron principles. 

17 .3. Mechanism of Energy Interchange between Electrons and 
Cavity Resonators. In klystron amplifiers and oscillators, resonators of 
the reentrant type are most extensively used. In such resonators, the 
gap surfaces are made as grids instead of solid conducting material, and 
electrons are shot through the spaces in the grids, with the result that 
the electrons will interact with the electric field which exists between the 
grids. The grid structures are shown in Fig. 17.2. The grids may consist 
of a fine mesh of wire that will give about 80 per cent electron transmis­
sion. Those electrons which hit grid wires will be retired from operation 
and give up their kinetic energy in the form of heat. In high-power tubes, 
where the heating from intercepted electrons may be appreciable, grids 
are sometimes made of copper strips arranged like the spokes of a wheel 
but with the center of the wheel cut out so that the strips are supported 
only from the outside of the grid aperture. For minimum interception 
of electrons such strips should present their thin edge to the oncoming 
electrons. 

When an electron enters the space between grids, the lines of flux 
associated with the electron charge will terminate almost entirely on the 
grid condudors. As an electron moves from the first to the second grid, 
at first most of its flux lines will terminate on the first grid, where they 
will induce a positive charge. This situ'ation is shown in Fig. 17 _34·. 
As the electron advances toward the second grid, relatively less charge 
will be induced on the first grid and relatively more induced charge will 
appear on the second grid, as shown in Fig. 17.3b. In effect, the passage 
of an electron between the two grids causes a positive charge equal in 
magnitude to the electron charge to move from the first to the second 
grid. This transfer of charge must occur through the resonator circuit. 

1 RAMO and WHINNERY, op. cit. 
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In the previous chapter it was shown that the charge induced on one uf 
two parallel plates between which an electron is passing is 

ex 
q2 = d (17.17) 

In the case of the electron passing through the grids of a cavity resonator 
this is the charge induced on the second grid when the distance between 
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FIG. 17.3.-Charges induced by an electron 
moving between resonator grids. 

grids is d and the distance from the first grid to the electron is x, as shown 
in Fig. 17.3. The charge induced on the first grid is 

(17.18) 

Since the induced charge results from electric-flux lines of the electron 
terminating on the grids, it must be true that 

(17.19) 

which it obviously does, as may be seen from the previous two equations. 
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Since the electron will move between the grids with a nearly constant 
,elocity, the charge induced on the second grid will increase uniformly 
with time, as shown in Fig. 17.4. It was also shown in the previous 
chapter that the current associated with the transfer of induced charge 
from one plate to the other has the 
value 

i(t) 
ev 
d (17.20) 

This same value is obtained if the cur-

7 
' +e 

rent is defined as 7t2 and the value of 7!J t -

this derivative is obtained from Eq. Fw. 17.4.-Charge induced by an 

(17.17). The current given in Eq. electron moving between resonator 
(17.20) represents a current flowing grids as a function of time. 
from the first to the second grid since 
the associated charge transferred is positive. Curves of i(t) as a func~ 
tion of time are given in Fig. 17.5, in which the time required for the 
electron to move between grids is represented by T 0 • As far as current 
production goes, the result is the same as though an electron initially at 
zero velocity suddenly acquired a velocity v and traveled to the second 
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Fm. 17.5.-Induced current resulting from pas­
sage of an electron between resonator grids. 

grid, where it was stopped. The current form of Fig. 17.5 is also seen 
to be that determined by the slope of the charge function of Fig. 17.4. 
The shape of the induced-current pulse is independent of the intergrid 
transit time and the voltage between grids, provided that this is not 
excessively high. Thus a slow electron will i.nduce a rectangular pulse of 
current that is relatively small in magnitude but long in duration. A 
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fast electron will induce a rectangular pulse of current that is large in 
magnitude but short in duration. The area under the induced-current 
pulse is numerically equal to the charge of the electron and hence must 
-be the same for electrons of any speed. 

Since the electron stream has a current density that is periodic with 
time in a period T1, there will be a fundamental component of resonator 
current associated with it. If one electron arrives at the same point in 
every cycle, it will produce rectangular pulses such as those of Fig. 17.5, 
which are periodic in a time T1 corresponding to the r-f cycle. The 
fundamental component of this current is given by Fourier series analysis 
as 

. (1rTo) 
2esm Ti 

I,1 = -T T 
1 7r O 

(17.21) 

Ti 
where I,1 is the fundamental component of current flowing through the 
resonator and the other symbols have their previous significance. Let 

. (1rTa) sm ~ 
A 

T1 
= 1rTo (17.22) 

Ti 

A 
sin(~) 

0o (17.23 

2 
be the ratio of the fundamental component of current for a finite transit 
angle 80 to that for a zero transit angle for the case of a pulse created by 
the passage of a single electron each cycle between the grids, where 80 

is the intergrid transit angle of the electron in radians, 21r radians cor­
responding to the period T1 of the radio frequency considered. The 
factor A is the function encountered in Eq. (15.89) and plotted in Fig. 
15.40 for the ratio of d-c to r-f deflection sensitivity of electrostatic­
deflection plates in a cathode-ray tube and will not be replotted here. 
It has a maximum value of unity for zero transit angle and first falls to 
?,ero for a transit angle of 21r radians. 

The power delivered to the resonator by the periodic transit of a 
single electron when the resonator is tuned to resonance at the frequency 
:corresponding to the period T 1 is 

p = I,1V1 
2 

watts (17.24) 
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when the voltage gradient is in a direction opposite to that of the electron 
flow, i.e., when the voltage exerts a force on the electron in the direction 
opposite to its motion, and for which condition the fundamental compo­
nent of induced resonator current and the resonator voltage are 180 deg 
out of phase. In Eq. (17.24) the values of current and voltage are peak 
rather than rms. The above value of power has the value 

p = eV1 A 
T1 

(17.25) 

When the grid transit angle is negligible, the factor A is unity and the 

power supplied to the resonator is e;i_ It is seen that the factor A is 

therefore one which measures the efficiency of energy transfer; as such, 
it will be extensively used in subsequent analysis. It is frequently 
referred to as the beam coupling coefficient. It should be noted that the 
value of A given in Eq. (17.22) is only a first-order approximation which 
has assumed that the velocity of the electron has not changed in moving 
between the grids. Actually, the velocity of the electron will change 
as energy is extracted from it. 1 A more rigorous analysis leads to the 
same first-order results as those given above. 2 

In an actual tube a fairly continuous stream of electrons passes 
through the resonator grids. Each electron of this stream induces a 
rectangular pulse of current that flows through the resonator. The reso­
nator current will therefore have the same form as the beam current as a 
function of time except that the magnitude of any component will be 
reduced by the factor A computed for the corresponding frequency. 

17 .•. First-order Bunching Theory. The general picture of the 
bunching principle has been given in the first section of this chapter. 
It now remains to give a quantitative analysis of the effects associated 

1 Actually, the velocity of an electron while crossing the resonator gap will be a 
constant plus a sinusoidal variation in accordance with 

[ 1 T,V, ( . . )] 
v = Vo + 4.,..T.Vo sm wl.,, - sm wt 

where t, is the time at which the electron enters the gap, the gap voltage beinir 
assumed to be VI cos wt, T, is the period of the r-f gap voltage, and T • is the gap transit 
time of an unmodulated electron. Maximum energy will be extracted from the 

electron when it enters the gap at a time ~ • before the negative peak of the gap voltage. 

Under these conditions the induced current will have the form shown by the dotted 
curves of Fig. 17.5. 

2 BLACK , L. J ., and L. P. MORTON, Current and Power in Velocity Modulated 
Tubes, Proc. l .R.E., vol. 32, pp. 477-482, August, 1944. 
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with this principle. The bunching principle was studied by the Heil 
brothers, but their work was confined to numerical and graphical com­
putations on certain special kinds of operation. 1 The first satisfactory 
analysis of bunching was made by Webster, whose work has formed the 
basis for virtually all the subsequent work in this field. 2•3 Webster's 
attack on the subject has been considerably enlarged by Hansen, Hahn, 
and Feenberg in this country, by Benham, Hartree, Petrie, Strachey, and 
Wallis in England, and by Hollman, Brtiche, and Recknagel in Germany. 

The general picture of the bunching action of a set of resonator grids 
is well illustrated by a distance-time diagram (attributed to L. M. 
Appelgate). Let the problem under consideration be formulated 
as follows: A beam of parallel electrons which have been accelerated 
through a potential of Vo volts is passed through the grids of a' resonator 
across which there appears a voltage V1 sin wt. Let the resulting electric 
field be parallel to the electron motion. Those electrons which pass 
through the resonator gap at the time the alternating voltage has its 
maximum value will emerge with an energy corresponding to Vo+ V1 

volts if the grid transit angle is sufficiently small. More exactly, they 
will emerge with an energy corresponding to Vo + A Vi if the grid transit 
angle is appreciable. This occurs because the beam coupling coefficient 
A given by Eq. (17.22) applies whether energy is transferred from the 
electron to the resonator, or vice versa. Electrons passing through the 
grids when the r-f voltage opposes the electron motion will emerge with 
an energy corresponding to Vo - AV 1 volts. In general, they will 
emerge with an energy corresponding to Vo + A V1 sin wta, where ta is the 
time at which the electron passes the midplane of the resonator gap 

Since the velocity of an electron is proportional to the square root 
of the voltage through which it has been accelerated, the vel3city with 
which an electron emerges from the first, or bunching, resonator of a 
two-resonator klystron will be 

✓l+ AV1. Va = Vo Vo sin wt (17.26) 

In all subsequent work the numerical subscripts will be associated with 
the corresponding frequency components; thus v0 is the d-c component 
of velocity, and V1 is the fundamental r-f component of voltage. The 
letter subscript a will refer to the first-resonator gap transit, and the 

1 HEIL and HEIL, op. cit. 
2 WEBSTER, D. L., Cathode-ray Bunching, Jour, Appl. Phys., vol. 7, pp. 501-508, 

July, 1939. 
3 WEBSTER, D. L., Theory of Klystron Oscillations, Jour. Appl. Phys,, vol. 10, 

pp. 864-872, December, 1939. 
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letter subscript b will refer to the second-resonator gap transit. Let 

the symbol a be used to designate the excitation-voltage ratio ~ :, which will 

ordinarily be less than unity. The product Aa is known as the depth 
of modulation, since it is the ratio of the peak amplitude of velocity 
modulation in volts to the beam voltage. Then if a is small, say less 

t 

0 

Alf 
.Aa.=-=Q254 

Yo 

K=AaTo 
2 

2T 
Time--

FIG. 17.6.-Distance-time diagram, of a klystron amplifier. 

than 0.2, the radical of Eq. (17.26) is represented within a few per cent by 
the first two terms of its binomial-series expansion, 

Va "" Vo ( 1 + ~a sin wt) (17.27) 

From this equation it is seen that for a small excitation-voltage ratio 
the velocities of the electrons emerging from a bunching resonator have 
a value which is a constant plus a factor which is sinusoidal with time. 
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It is instructive to make a chart that shows how this variation in first­
resonator velocity affects the subsequent grouping of electrons. Such 
a chart is shown in Fig. 17.6. In this chart, distance is plotted vertically, 
the time is plotted horizontally. The distance-time representation of 
any electron moving in the field-free region outside of the bunching­
resonator grids will be a straight line whose slope is proportional to its 
velocity. The horizontal axis of this chart corresponds to zero distance 
from the first-resonator grid, and electrons are assumed to leave this 
grid at the uniform rate of 40 electrons per cycle. Shown along the 
horizontal axis is a sine wave corresponding to the r-f voltage between 
the resonator grids. Electrons that pass through the grids when this 
voltage is zero will be represented by lines that have a slope corresponding 
to the original velocity of the electrons, which has been undisturbed by 
passage through the resonator at this point of the cycle. All other 
electrons will have either greater or smaller slopes (velocities) than the 
undisturbed electrons. Those electrons which pass through the resonator 
when the r-f voltage is negative, i.e., has its gradient in the direction 
opposite to the electron velocity, will be slowed down and will have 
slopes smaller than those of the undisturbed electrons. Correspondingly, 
those electrons which pass through the resonator when the r-f voltage is 
positive, i.e., has its gradient in the direction of the electron velocity, 
will be speeded up and will be represented by lines whose slopes are greater 
than those of the undisturbed electrons. In the resulting set of lines 
the density of lines along any horizontal line corresponds to the magnitude 
of the current as a function of time. The bunching action that results 
is quite evident from the diagram. A bunch forms about the electron that 
passes through the resonator at the instant the r-f voltage is changing from 
retarding to accelerating. As the electrons move along the beam in what 
is commonly called the drift space, there is first formed a bunch that is 
very narrow and has a high current associated with it. Farther down 
the beam, the bunch becomes wider and has the highest current asso­
ciated with its edges. The corresponding picture of current as a function 
of time for any position on the beam is shown in Fig. 17. 7. The particu­
lar shapes that the bunches of electrons give to the beam current will be 
demonstrated analytically. 

The time it takes any electron to move a certain distance along the 
beam depends upon the point on the cycle at which it passed through 
the resonator gap and also upon the magnitude of the gap voltage. For 
travel a distance l from the first resonator gap, 

(17.28) 
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where ta is the time at which the electron leaves the first resonator, tb 
is the time at which the electron has moved a distance l along the beam, 
and v0 is the velocity with which the electron leaves the first resonator. 
Substituting the value of Va from Eq. (17.27), 

tb = ta+ ( 
Vo 1 + 1a sin wta) 

(17.29) 

If the depth of modulation factor a is small compared with unity, the 

Time-
Fw. 17.7.-Current as a function of time for various distances along a bunched 
beam. 

fractional term is closely represented by the first two terms of its series 
expansion. 

tb '.::::'.ta+ to ( 1 -1a sin wta) (17.30) 

where the transit time of an undisturbed electron, to, has been written 

for .L This expression will be accurate within 5 per cent if Aa is less 
Vo 

than 0.2. In subsequent analysis it is convenient to deal with transit 
angles instead of transit times. Transit angle is simply the transit 
time multiplied by the angular frequency, 

T = wt (17.31) 

where r is the symbol that will be used for transit angle. Other times 
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as well as the transit time are also conveniently represented by the cor­
responding angle found by multiplying the time by the angular frequency. 
Accordingly, Eq. (17.30) may be rewritten 

AaTo . 
Tb =Ta+ To - -

2
- Slll Ta (17.32) 

The factor A;To occurs so frequently in subsequent work that it will be 

Jc= 1.5------­
k = l.0------­
k =0.5- ----­
k = 0 ---- --- - -
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Fm. 17.8.-Electron arrival time as a function of 
departure time in a bunched beam. 

designated by the symbol k and called the bunching parameter. With 
this notation, 

k = AaTo (17.33) 
2 

and 
Tb = Ta + To - k sin Ta (17.34) 

This equation gives the arrival angle Tb with respect to travel of a distance 
l in terms of the departure angle Ta and the bunching parameter k. 
It is instructive to plot some curves of arrival time in terms of departure 
time. This is done in Fig. 17.8, in which there are shown curves of Tb 

as a function of Ta and k for values of the latter of 0, 0.5, 1.0, and 1.5. 
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The bunching parameter k has its value determined by half the product 
of the beam c::>Upling coefficient A, the excitation-voltage ratio a, and 
the d-c transit angle To. To discuss the curves of Fig. 17.8, let it be 
considered that the value of k is varied by increasing the bunching vol­
tage V 1• For a value of the bunching parameter of zero, i.e., no bunch­
ing, the arrival angle (time) is a straight-line function of the departure 
angle (time). As the bunching voltage is raised from zero, the arrival 
angle as a function of departure angle will be a straight-line function 
with a superimposed sinusoidal variation whose phase is such that elec­
trons leaving the resonator gap slightly before the reference departure 
time of zero will have a greater transit time than for no-bunching voltage. 
Likewise, electrons leaving after the reference departure time of zero will 
have a smaller transit time than for no-bunching voltage. Those condi­
tions are evident for the value of k equal to½. For a value of k equal 
to unity the properties observed above still hold but are accentuated 
to the point where the slope of the curve of arrival angle as a function 
of departure angle has a zero value at the reference departure angle of 
zero. It will be seen later that this has a special significance. Up to a 
value of k equal to unity the arrival angle is a single-valued function of 
departure angle, and vice versa. The point for which k equals unity is 
marked on the distance-time diagram of Fig. 17.6. At this value of the 
bunching parameter there is evident a strong bunching action. At this 
value of k the electrons that left just before and after the electron leaving 
at time zero arrive together. 

As the bunching parameter is increased still further, the curve of 
Fig. 17.8 exhibits a negative slope at the departure time zero, and at this 
point the departure time is a triple-valued function of arrival time. 
Furthermore, it will be noted that the electrons near the center of the 
bunch in the distance-time diagram have crossed, and over an appreciable 
region it will be true that electrons leaving after a time zero arrive before 
electrons which have left earlier, and vice versa. For still larger values 
of k this property continues to hold. It should be noted that although 
the departure time is a triple-valued function of the arrival time, the 
arrival time is always a single-valued function of the departure time. 
This is to say that, if the arrival time near the center of the bunch for 
k greater than unity is specified, there will be three different electrons 
which have left at different times in the vicinity of zero arriving simul­
taneously at this time. On the other hand, each departure time has a 
single value of arriv:,.l time associated with it. 

To find the current associated with the electron bunches it must first 
be observed that the principle of conservation of charge applies to any 
corresponding departure- and arrival-time intervals. The electron 
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stream can always be broken up into increments such that all electrons 
which depart from the bunching resonator between two particular 
electrons m and n will arrive at a distance l between the times at which 
these two electrons arrive. Mathematically, this is written 

(17.35) 
or 

(17.36) 

Only the magnitudes of the charge increments are of interest, for it is 
these which will determine the current. Even though electrons may 
arrive in a reverse order froPl that in which they left the bunching 
resonator, their effect in producing output-resonator current is the same 
since they are traveling through the output resonator in the sii.me direc­
tion. From Eq. (17.36) the current at a distance l along the beam is 
related to the current at a distance zero by 

fb=fa\!~:I (17.37) 

lb = lo I dla I 
dtb 

(17.38) 

since Ia equals Io, the direct current through the bunching resonator. 
From Eq. (17.34), h, the current a distance l along the beam, as a 

function of tb may be obtained by making use of the fact that :~: equals 

dT a h' h · . l l Th' h h l - w 1c m turn is equa to-· is as t e va ue 
dT/ dTb 

dTa 

Iha) = lo I l l I - k COS Ta 
(17.39) 

Curves of lb as a function of Ta have no great significance. Curves of 
has a function of Tb as determined by invoking Eq. (17.34) are shown in 
Fig. 17.9 (top) for values of k of 0, 0.5, 1.0, and 1.50. Fork equal to zero 
the current is constant. This corresponds to an undisturbed beam. For 
k equal to ~~ a current pulse is seen to begin to form. For k equal to 
unity the current exhibits an infinite peak corresponding to the simul­
taneous arrival of several electrons. For k equal to l ½ the curve is 
double peaked. Infinite current peaks will appear at points correspond­
ing to arrival times for which the slope of arrival time as a function 
of departure time shown in Fig. 17.8 is zero. As k is still further 
increased, the double peaks will spread farther apart and the magnitude 
of the current midway between them will decrease, as shown in Fig. 17.7. 
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The area under any of the curves shown in Fig. 17.9 is the same, regard­
less of the value of k, since the current distribution resulting from the 
bunching action always involves the same number of electrons per cycle. 
The distance s shown in Fig. 17.7 corresponds to a value of k of unity 
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Fm. _17.9.-a (top) Current as a function of time along a bunched beam, 
for different degrees of bunching. b (bottom) Induced resonator current 
as a fun ction of time for different intergrict transit angles. (After Black 
and Mort-On.) 

for which a single infinite peak of current first appears. It has a value, 
which may be obtained from Eq. (17.33), of 

2voVo 
s = AV1 w (17.40) 

The curves shown in Fig. 17.9a are curves of beam current as a 
!unction of arrival time. The current indttced in a catcher resona,tor 
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by the passage of the beam will not have exactly the same form because 
of the finite time required for electrons to pass between the resonator 
grids. This finite time will have the effect of integrating the current at 
different points on the beam between the resonator grids. The integrat­
ing effect may be simulated by making a mask with a vertical slit of 
width corresponding to the intergrid transit angle and sliding this along 
the curves of Fig. 17.9a. Actual resonator currents will be proportional 
to the area under the beam-current curve revealed through the slit in 
the scanning mask. Curves of actual induced resonator current obtained 
by this method are shown in Fig. 17.9b. Here it is seen that the infinite 
peaks do not appear in the actual resonator current and that as the inter­
grid transit angle is increased 'the resonator-current pulse becomes less 
sharp. 1 Examination of the fundamental components of current cor­
responding to each of the curves of Fig. 17.9b will reveal that they are 
in the ratio of the corresponding A factors as given by Eq. (17.23) to 
the fundamental components of the corresponding curves of Fig. 17.9a. 

Several of the parameters which have been used in the preceding 
analysis are used frequently enough so that it is convenient to have charts 
giving their magnitude. One of these factors is the d-c transit angle 
corresponding to a distance l. This has the value 

wl l,0001rl 
To= ii; = vVo X (17.41) 

A chart of this factor as a function of the variables upon which it depends 
is given in Fig. 17.10. Another factor of importance is the bunching 
parameter k given by Eq. (17.33). A chart of this factor as a function 
of the variables upon which it depends is given in Fig. 17 .11. 

The curves of beam current shown in Fig. 17.9 give the bunched 
beam current as a function of time. To find out how this current may 
be used it is necessary to determine its various components, of which the 
fundamental component is the most important. The fundamental 
component of the periodic beam current for any degree of bunching may 
be determined from the Fourier series coefficient formula 

(17.42) 

where h 1 is the fundamental component of h whose value is given by 
Eq. (17.39). Since the curves of lb are symmetrical about the bunch 
center, the resultant terms in its frequency composition will be cosine 
terms if the current is arbitrarily centered at the bunch center by neglect-

1 BLACK, L. J., and P. L. MORTON, Current and Power in Velocity-modulation 
Tubes, Proc. I.R.E., vol. 32, pp. 477-482, August, 1944. 



10,000 

1000 

100 

10 

VELOCITY-MODULATED TUBES, OR KLYSTRONS 551 

-~-...-.... __ 
- -o> --

l:s 
·..: 
s:: 
~ 
0 
Q. 

E 
cs 
Q) 

ca 

1.0 

--or 

0.01 

0.001 

<I) 

..c 
-+­
ts'> 
s:: 
"' Q) 

-.> ~------- --

20rr 

101T 

57T 

Q.) --

u --ts 

~ 2rr 
-+­..... 

L 
0 

0.5rr 

-+­
<I) 

s:: 
f ..__,_ 
C 
0 
L ..... 
u 
Q) 

Lu 

u 
c:i 

FIG. 17.10.-Nomographic chart giving transit angle as a function of drift distance 
and beam voltage. 



552 VACUUM TUBES 

0.1 

0.5 5 5011' 

0.2 

' ' II) 

0.2 -- 2 ', E ~ 2011' II) 

' 
Q) ..... ~ C 

::0 ts ~ -- ' a C -- ' ,_ 
Q) -a ,.. -- c;\, ·;:; . ts 

0 L 
:.: -- .;:· cs .:C:· ~ ....... - --4,, 0.5 0 ,_ 

L. , . ~-
... 

C L" 
0 ' U - ~ -0 0.1 .e:! 4-', ' .IQ1T 0' :.: Q) 

.._ts' s:: Q) C t:s E C :.=, 15 
+- 0.. +-·.:; t:s ;J II) X L C 0 ... 
Q) 1:5 0 u C 

a. :;:: 15 
Q) El.0 L 
C> ~ u .... 

;J 
0 C L. IS ·+-+- ..,_ Q) 4-
~ 0.05 0.5g 

II) al Sir .i: C 
0 0 

:J ~ 
a:) 

0.02 0.2 

2,r 

·0.01 0.1 tr 

Frn. 17.11.-Nomographic chart giving bunching parameter as a function of beam 
coupling coefficient, excitation-voltage ratio, and transit angle. 



VELOCITY-MODULATED TUBES, OR KLYSTRONS 553 

ing the d-c transit-angle term. This amounts to neglecting the phase 
factor, but this can be put in by inspection later. The fundamental 
component indicated by Eq. (17.42) is not possible of determination in 
the form given, for lb is given as a function of Ta, whereas the integral is 
in terms of Tb. To follow the elegant method proposed by Webster, the 
integral of Eq. (17.42) can be placed entirely in terms of Ta by using the 
relations of Eqs. (I 7.34) and (17.38). This method eliminates all 
the apparent difficulties associated with electron crossovers, for Tb is 
a single-valued function of Ta. When this is done, 

Ib1 = ! /" lb COS (Ta - k sin Ta) 1
10 

dTa 
1r -,r b 

(17.43) 

which reduces to 

lb1 = ~o J~,, COS (Ta - k sin Ta) dTa (17.44) 

in which it is seen that the To term of Tb has been dropped. When the 
integrand is expanded, the integral assumes the form 

Ibi = : 0 J~,, [cos Ta cos (k sin Ta) + sin Ta sin (k sin Ta)] dTa (17.45) 

This is a somewhat formidable integral involving cosines and sines of a 
sine function. Such terms are encountered in frequency-modulation 
studies where the frequency of a wave varies periodically with time. 
In the frequency-modulation problem it is found that terms such as the 
above correspond to a carrier and a doubly infinite set of side bands whose 
magnitude is expressed in terms of Bessel functions. The same situation 
applies here. Each term of the integrand contains an infinite number of 
terms according to the relations 

cos (k sin x) = J 0(k) + 2(J2(k) cos 2x + J4(k) cos 4x + 
and 

• J (17.46) 

sin (k sin x) = 2[J1(k) sin x + J1.(k) sin 3x + · · · ]* (17.47) 

If the above series are substituted into the integrand of Eq. (17.45), 
the integral is readily evaluated term by term, all but the sin2 Ta term 
yielding zero. The result is 

(17.48) 

which is the most important equation in the first-order bunching theory. 

• These relations are developed in Wooos, F. S., "Advanced Calculus," p. 281, 
Ginn, Boston, 1932. 



554 VACUUM TUBES 

If a curve of h 1 as a function of k be plotted, the form shown in Fig. 
17.12 results. 1 The ratio of the fundamental component of beam 
current to the d-c beam current is simply a curve of the first-order Bessel 
function multiplied by 2. This curve starts out as a straight line for 
small values of k of the form 

Ib1 ~ k 
Io - (for small k) (17.49) 

The maximum value of the current ratio occurs for a value of k equal to 
1.84 and is equal to 1.16. The curve falls to zero for a value of k equal 
to 3.83. The significance of the maximum value is that the fundamental 

1.5 

/Ib1/ 
Io Or---.---'-r---r-~r--..----r-r-~---.---

·0.5 

-1.0 

FIG. 17.12.-Fundamental component of current in a bunched 
beam as a function of bunching parameter. h1 = 2IoJ1(k). 

~omponent of current will have its maximum value for k equal to 1.84, 
which is marked on the distance-time diagram of Fig. 17.6. In this 
figure, k varies directly as distance. The maximum value of fundamental 
current is obtained not when the bunched beam has its first infinite peak 
but rather when the double peaks have appeared and spread apart 

1 The Bessel functions resemble damped sine waves except that they are not 
exactly periodic and that the damping is geometric instead of exponential. The 
order of the Bessel function indicated by the subscript tells what the small-value 

nature of the function is. For small values of x, J .(x) = n~;., which is to say that. 

the first-order Bessel function starts like a straight line, the second-order function 
~tarts like a parabola, etc. The functions soon reverse curvature and have a zero 
value, after which they approximate damped sine waves and the distinction between 
the orders appears merely as a phase factor. For a compilation of the principal 
~roperties of Bessel functions, see A{)\)Pndix VI. 



VELOCITY-MODULATED TUBES, OR KLYSTRONS 555 

appreciably. The maximum value of the fundamental component of 
current occurs for a value of the bunching parameter for which the area 
under the product of the beam current as a function of time multiplied 
by a cosine wave is a maximum. 

The phase of the fundamental component of current relative to the 
peak of the bunching voltage may be determined by inspection from the 
distance-time diagram of Fig. 17.6. Here it is seen that the bunch 
center, or peak of the fundamental component of current, forms about an 
electron which leaves the bunching resonator a quarter of a cycle prior 
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to the peak of the bunching voltage. Accordingly, the fundamental 
component of current lags the bunching voltage by To minus 1r /2 radians. 
The fundamental component of beam current can therefore be written as 

lb1 = 2IoJ1(k)e-i(TO-i) (17.50) 

in which the exponential factor is one that has unit magnitude and a 

phase factor of - (To - ;)-
If the harmonics of the beam current were evaluated by the method 

used to determine the fundamental, it would be found that 

l,,.. = 2IoJ,.(nk)e-jn(T.-i) (17.51) 
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Curves of the higher-order Bessel functions are shown in Fig. 17.13. 
Curves of J,.(nk) as a function of k are shown in Fig. 17.14. The peaks 
of the various harmonics are smaller as the magnitude of the harmonic 
increases and occur for values of the bunching parameter closer to unity 
but not less than unity. The locus of the peaks of J ,.(nk) is shown 
dotted in Fig. 17.14. The magnitude of the harmonics as given by Eq. 
(17.51) drops off very slowly as the order of the harmonic increases, 
indicating that the klystron should make a good frequency multiplier. 
This is expected from the shape of the bunched beam current as a function 
of time, for a current pulse with infinite peaks is rich in harmonics. 
Maximum values of J,.(nk), along with the corresponding values of k 
that produce this maximum ior different orders of n, are shown in Fig. 

Frn. 17.14.-Curves of J,.(nk) as a function of k. 

17.15. Maximum ratios of harmonic component to d-c component of 
current fit the empirical function 

I 
Max 17 "' l.l6n-o.2&9 (17.52) 

within a few per cent out to the tenth harmonic. Values of the bunching 
parameter for which harmonic currents are maximum are given very 
closely by1 

k "' l + 0.808n-¼ (for max h,.) (17.53) 

In actual frequency-multiplier tubes the output drops off much more 
rapidly than is indicated by the relation of Eq. (17.51). This is because 
of various deficiencies in the first-order bunching theory that have not 
yet been considered. 

17.5. The Klystron Amplifier. Historically, the bunching principle 
was first applied to produce an oscillator tube. Some amplifier tubes 

! HANSEN, W.W., and J. R. WooDYARD, A New Principle in Directional Antenna 
Desiin, Proc. I.R.E .. vol. 26, p. 338, March, 1938. 
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were then built, using the velocity-modulation principle; and later a 
special kind of klystron oscillator, known as the "reflex-klystron oscil­
lator," was extensively used. In this exposition these three kinds of 
tubes will be discussed in the order, klystron amplifier, reflex-klystron 
oscillator, and two-resonator klystron oscillator. This order is used 
because it makes the explanation of the operation of these tubes much 
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Frn. 17,15.-Maximum values of J.(nk) as a function of the order n and 
corresponding argument at which the maximum occurs. 

easier. The amplifier is readily described in terms of principles already 
discussed. The reflex-klystron oscillator is the simplest kind of klystron 
oscillator to discuss. The methods of analysis used in describing the 
reflex-klystron oscillator are readily applied to the two-resonator klystron 
:>scillator. 

Structure of the Klystron Amplifier. The structure of a klystron 
amplifier is shown schematically in Fig. 17.16. This type of tube has 
nvacuated reentrant cavity resonators, which are tuned by squeezing 
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the cavities mechanically so that the resonator gap spacings and hence 
the as.3ociated capacities are changed. The tuning range made available 
by this means is small, being of the order of 10 per cent of the mid­
frnquency. The tube contains a cathode gun, which may be of the form 
of the unipotential cathode structures described in the chapter on 

SYMBOL 

Fm. 17.16.-Structure of the two-resonator klystron am­
plifier. 

Cathode-ray Tubes or which may involve a control or focusing electrode. 
The input and output resonators are usually identical and are placed 
back to back so that there is a relatively short drift space between the 
resonator gaps. The length of this gap is moderately critical. If it 

' 

is too short, there will not be 
enough time for the electrons to 
bunch sufficiently. If it is made 
too long, the bunches are found to 
deteriorate instead of improve. 
Power is transferred in and out of 
the resonators by means of coaxial 

Bun~her Catcher qap 
<7ap lines, which terminate in small loops 

Fm. 17.17.-External-cavity klystron that provide inductive coupling to 
amplifier. the magnetic field of the resonator. 

Electrons that have passed through 
both resonators impinge on a collector electrode, which returns them to 
the cathode. 

Another form of the klystron amplifier tube is shown in Fig. 17.17. 
In this form of the tube the resonant cavities are attached externally to 
the evacuated tube and are tuned by plugs inserted into the cavity. 
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This form is easier to build but is not as stable as the first type 
described. 

Operation of the Klystron Amplifier. The operation of the klystron 
amplifier is very simple. Radio-frequency power is fed into the input 
resonator through the coaxial-line connection, where it produces fields 
that bunch the electron beam. The bunched electron beam sets up alter­
nating fields in the output resonator. Power is extracted from the 
output resonator through the coaxial line to a load. The amplifier may 
be operated at virtually any beam voltage or current. It is necessary 
only that the input and output resonators be tuned exactly to the 
frequency of the excitation power. 

Output Power of the Klystron Amplifier. If the electron beam passing 
through the grids of the output resonator has a fundamental component 
of value Ib1, then the output power will be the same as though a current 
of value Ah1 were passed through the resonator, where A is the beam 
coupling coefficient defined by Eq. (17.23) and it is assumed that the A 
factor is the same for both buncher and catcher. This follows because 
the current resulting from the stream of electrons is the simple summation 
of the currents corresponding to the individual electrons. Accordingly, 

Pb1 = (A;b1
)

2 
R,1,, (17.54) 

where Pb1 is the power delivered to the resonator and R,1,, is the equivalent 
shunt resistance of the resonator. In terms of the equivalent output­
resonator gap voltage 

p _ Alb1Vbl 
bl - 2 (17.55) 

in which Vb1 is the fundamental component of the second-resonator gap 
voltage. In both the above equations it must be remembered that lb1 

is the fundamental component of beam current, whereas Ah1 is the cor­
responding effective component of resonator current. 

Efficiency of the Klystron Amplifier. The efficiency of the klystron 
amplifier is defined as the ratio of the output power to the input power, 

Effi • Pout 
c1ency = Pm 

. Ah1 Vb1 
Efficiency = 210 Vo 

(17.56) 

(17.57) 

not including the power required to bunch the beam. The maximum 
theoretical efficiency is obtained when each of the factors in Eq. (17.57) 
assumes its maximum value. The factor A has a maximum value of 
unity when the gap transit angle is zero. The maximum value of I bl 
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is 1.16/o. The maximum value of Vb1 is expected to be about Vo; for 
if this value is exceeded, electrons will be thrown back toward the 
cathode by the output-resonator voltage and the effective output­
resonator resistance will drop very sharply because of the associated 
increased losses. Upon substituting these maximum values into Eq. 
(17.57) it is found that the maximum theoretical efficiency is 58 per cent. 
Practical efficiencies are much lower than this because of various second­
order bunching effects to be described and are of the order of 20 per cent. 

Equivalent Circuit of the Klystron Amplifier. The equivalent circuit 
of the klystron amplifier is shown in Fig. 17 .18. The circuit is the same 
as that of an ideal pentode r-f,amplifier with a delay circuit between the 
pentode and the output circuit. The hypothetical pentode involved 

Hypo/helical vacuu,,{ lube wifh no 
coupling between inpvt and output circuits 

'-De/cry introduced by fransif line 
of' elecfrons in dnff space 

Fm. 17.18.-Equivalent circuit of the klystron amplifier. 

has a virtually infinite plate resistance, for there is no electronic or 
electromagnetic interaction between the input and output circuits. 

The delay circuit is one that produces a phase shift of - (-ro - ;), 
corresponding to the phase shift between the output current and the input 
voltage. 

Mutual Conductance of the Klystron Amplifier. An equivalent mutual 
conductance of the klystron amplifier may be defined as the ratio of 
the induced output current to input voltage Vat• From Eq. (17.50\ 
this may be written as 

(17.58) 

which is readily rearranged by the application of Eq. (17.33) to give 

I Gm I= GoA 2-ro Jit) (17.b\;; 

where Go ( = ~:) is a factor that may be called the d-c beam con­

ductance. The above assumes that the beam coupling coefficient A 
is the same for input and output resonators. The mutual conductance 
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is not a constant but rather is a factor that decreases as the magnitude 

of the excitation voltage increases in accordance with the curve of J 11k). 
A curve of mutual conductance as a function of the factor k is given in 

15 ,....,,-----.------.----~-----, 

Oo!----'---L--'---..1.2_-1..._..13_.....,!::::::a...,J4 

k=Allll'o 
2 

Frn. 17.19.-Transconductance of a klystron amplifier 
as a function of the bunching parameter. 

Fig. 17.19. Since, for the zero value of 7c, Ji?) is >:2, the small-signal 

value of mutual conductance is the maximum and has the value 

I Gm I A 2To 
~ = -2- for small signals (17.60) 

The value of mutual conductance for maximum current (k = 1.84) is 

I~: I = 0.316A 2r 0 for maximum output (17.61) 
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The mutual conductance as used above has a phase angle associated with 

it that is - (To - ;} accordingly, we may speak of the transadmittance 

of the amplifier tube as the product of the mutual conductance and the 
phase factor 

Y m _ A 2 J 1(k) -j(r.-i) 
Go - To-k-e 

Y m A 2 J1(k) ( . + . ) 
Go = To -k- sin To J cos To 

(17.62) 

(17.63) 

where Y m, the transadmittance, is the ratio of the output ,current to 
the input voltage in phase and magnitude. 

Power Required to Bunch the Beam. In the input resonator of a 
klystron amplifier the bunching action speeds up electrons over half the 
cycle and slows them down over the other half. When the intergrid 
transit angle is small, the average energy of electrons leaving the 
bunching resonator over a cycle will be nearly equal to the energy with 
which they enter. However, as the intergrid transit angle increases, 
the average energy of electrons leaving the resonator will be greater than 
the entering energy and as a result the bunching resonator must supply 
power to bunch the beam. Therefore, there is an equivalent resistance 
that can be attributed to the power required to bunch the beam. 

The calculation of the power needed to produce bunching action 
requires extensive manipulation of second-order effects and will only be 
indicated here. 1 It is a simple matter to calculate the velocity of any 
electron passing through the bunching resonator as a function of the 
point on the cycle at which it enters the resonator and the subsequent 
time interval. Likewise, the distance-time behavior can be calculated. 
The resulting expressions give velocity and distance as a function of time. 
However, it is desired to know the velocity of an electron as it leaves the 
resonator, which requires that the above expressions be inverted so 
that exit velocity is given as a function of d-c transit angle. An equation 
for this relation can be obtained in terms of a series in powers of the d-c 
transit angle. When this is obtained, the average exit energy can be 
calculated from the square of the velocity. The difference between the 
average exit energy and the entrance energy is a measure of the bunching 
power required. The ratio of the power required to produce bunching 
to the d-c power required to produce the beam has the form 

1 See FEENBERG, E., Notes on Velocity Modulation, Sperry Gyroscope Laboratories 
Rept., 5521-1043, Chap. I, pp. 41-44. 
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(17.64) 

P1 = Va1
2 

F(O) 
Po 2Vo2 u 

(17.65) 

for values of ~:1 less than ½, where Po equals Io Vo and the definition 
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Fm. 17.20.-Theoretical equivalent bunching resistance of a beam as a 
function of the intergrid transit angle. (After Feenberg.) 

of F(Ou) is apparent. The ratio of equivalent beam resistance to bunch­
ing resistance may be defined as 

Accordingly, 

Ro Vo2 2P1 
Ra = Po Va12 

(17.66) 

(17.67) 

A curve of!; as a function of 00 is given in Fig. 17.20. The justification 

for defining an equivalent bunching resistance as V
2
p~ is that the power 
al 

required to produce bunching is proportional to V0 12 provided that the 
excitation-voltage ratio is not excessive. This means that the power 
required to produce bunching is the same as would be consumed by a 
resistance Rv, as defined in Eq. (17.67), in narallel with the shunt resist-
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ance of the resonator. Examination of Fig. 17.20 shows that the equiva­
lent bunching resistance js ten times the beam resistance for an intergrid 
transit angle of 1.66 radians (95 deg). For transit angles less than a 
quarter of a cycle the equivalent bunching resistance will be greater than 
ten times the beam resistance, and for transit angles greater than a 
quarter of a cycle it will be less than ten times the beam resistance. 
The power consumed by the equivalent bunching resistance is by no 
means negligible and will ordinarily be of the same order of magnjtude 
as the ohmic power loss in the resonator itself. Measured values of 
equivalent bunching resistance range from 20 to 50 per cent of the theo­
retical values and are not independent of the excitation-voltage ratio.1 

OUTPUT 
TERMINAL 

INPUT 
TERMINAL: 

CATCHER GRIDS 

CASCADE 
BUNCHER GRIDS 

BUNCHER GRIDS 

ELECTRON GUN 

FIG. 17.21.-Structme of the cascade amplifier. 

17.6. The Cascade Amplifier. If a three-resonator klystron amplifier 
be made with the first and third resonators used as input and output 
resonators, respectively, but the middle resonator be left unloaded and 
simply tuned to the frequency of the input signal, very large power 
amplifications are obtained. Such an amplifier has been termed a 
"cascade amplifier" and has the structure shown schematically in Fig. 
17.21. If a small input signal to the first resonator is assumed, there 
is produced at the second resonator a fundamental component of current 
that, though small, is appreciable. The second, or cascade, resonator, 
being unloaded, will have a very high effective resistance, which is deter­
mined by the parallel combination of its shunt resistance and its effective 

1 HADLEY, C. F ., Velocity Distribution of Velocity Modulated Beams, Ph.D. 
Dissertation, Stanford, 1944. 
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bunching resistance, as discussed in the previous section. Both these 
components of resistance can be made quite high. As a result, a large 
voltage will be produced in the cascade resonator by a small fundamental 
component of beam current. Since the exciting current that produces 
the voltage in the second resonator and the resulting current that is 

.ACCELERATION VOLTAGE \IIUNQ£R VOLTAGE 

Fm. 17.22.-Distance-time diagram of a cascade amplifier. (After Harrison.) 

produced arc 90 deg out of phase, the bunching actions before and after 
the second resonator can be considered independently to a fair degree of 
approximation. The ratio of bunching parameters of the first and second 
resonators relative to the second and third resonators will be proportional 
to the square of the transit angle between resonators. The ratio of 
the output power of the third resonator to the input power to the first 
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resonator will be proportional to the fourth power of the transit angle 
between resonators. 

A distance-time diagram of a cascade amplifier is shown in Fig. 
17.22. In this diagram it is seen that a very small bunching action 
between the first and second resonators gives rise to an appreciable 
voltage on the second resonator. This in turn gives rise to a higher 
degree of bunching. The resultant bunching action is not due to that of 
the second resonator alone. Those electrons which pass through the sec­
ond resonator at times when the second-resonator voltage is zero form the 
center of its bunching action, while those which pass through the second 
resonator when its voltage is :giaximum are at the center of the bunch 
formed by the first resonator. The combined action is much b~tter than 
could be achieved by a single bunching resonator and approximates 
that which would result from a single resonator which had a saw-toothed 
instead of a sinusoidal gap voltage. Maximum theoretical efficiencies 
are 74 per cent, though actual efficiencies are much less. Cascade­
amplifier tubes have given power amplifications of the order of 1,000 
to 5,000 times. Tuning of such an amplifier is quite critical since 
all three resonators must be tuned to exactly the same frequency. Such 
amplifiers are essentially single-frequency devices. Unfortunately, 
the internal noise of klystron amplifiers is so high that the improvement 
in signal-to-noise ratio is much less than the actual power amplification. 

17.7. Frequency-multiplier Klystrons. Because the harmonic con­
tent of a bunched beam is relatively high, the klystron makes a good 
microwave frequency multiplier. The frequency-multiplier klystron 
is similar to the amplifier except that the output resonator is designed to 
be tuned to a harmonic of the input frequency. To get a tube with an 
input resonator that tunes to a low frequency it is necessary to use a 
resonator in the form of a concentric line that is heavily loaded with 
capacity. The structure of such a tube is shown schematically in Fig. 
17 .23. Such tubes are critical of excitation and beam voltage. This is 
because the maximum value of harmonic current for a large frequency­
multiplication factor is relatively critical with respect to the bunching 
parameter, as may be seen from Fig. 17.14. As input excitation is 
increased for a given beam voltage, a frequency-multiplier tube will 
pass through its maximum output rather sharply and is easily over­
driven. For a given input excitation, the power output as the beam 
voltage is changed will follow a curve such as is shown in Fig. I 7 .24. 
This curve is like the curves of Fig. 17.13 squared, but with the x axis 
inverted. Maximum theoretical efficiencies are equal to half the ratio 
of maximum value of harmonic current to d-c beam current as given in 
Sec. 17.4. Actual efficiencies run about one-tenth of the maximum 
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theoretical efficiencies. Efficiencies are further found to drop off much 
more rapidly with the order of the harmonic than the inverse one-third 

Hiqh frequency 
oufpuf 

Buncher qap_ 

Cathode,, Collecfor 

j Catcher qap 

low frequency_ 
Input 

Capacify 
loadinq 

FIG. 17.23.-Structure of the frequency-multiplier klystron. 

power that is expected from the theoretical maximum values of harmonic 
components of current. Frequency multiplication by a factor of 10 in a 
single tube is entirely practical in the range of 300 to 10,000 me and makes 
possible crystal-controlled microwave signals. 
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Fm. 17.24.-Power output of a frequency-multiplier klystron as a function of beam 
voltage. 

17.8. Second-order Bunching Effects. The theory of bunching that 
has been presented up to this point i~ what may be called the "simole" 
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or "first-order theory." It gives a correct picture of the mechanism, 
but appreciable departures from it are encountered in actual tubes. 

One of the limitations of the first-order theory is that it has entirely 
neglected the mutual electrostatic repulsion forces between the electrons 
associated with the electron charge. This is to say that space-charge 
effects have been neglected. The analytical treatment of such effects 
becomes sufficiently involved so that only a description of the principal 
effects will be undertaken here. 1 

Space-charge effects will in general have the effect of reducing the 
degree of bunching that would exist if there were no space charge. For a 
!:>earn that is large in diameter _the axial repulsion forces of the electrons 
will be greater than the radial forces except at the edge of the beam. For 
such a beam, as electrons tend to come together there will -build up 
repulsion forces that oppose the bunching action. Near the center of a 
bunch there will develop forces that are proportional to the distance of a 
particular electron from the center of the bunch. The resultant electron 
action is similar to that observed in mechanical compression problems. 
Imagine an observer riding along with an electron at the center of a bunch. 
He observes electrons approaching the center of the bunch in both direc­
tions. These electrons will be progressively slowed down as they 
approach the center of the bunch because the electrostatic repulsion 
forces will build up. As a result, the individual electrons before and 
after the center of the bunch will approach to within a given distance 
of the center of the bunch and will then turn and move away from it. 
This action is illustrated roughly in the distance-time diagram of Fig. 
17.25. Here electrons near the center of the bunch are seen to approach 
each other and then diverge without crossing. 2- 4 To a first order of 
approximation the velocity of an electron near the center of the beam and 
the center of the bunch is a constant with a superimposed sinusoidal 
variation. Webster has termed this action "longitudinal debunching." 
From the distance-time diagram it is seen that the maximum degree of 
bunching occurs considerably farther along the beam than the distance 
corresponding to the formation of the first infinite peak of current in 
the absence of space charge. Furthermore, the maximum degree of 

1 The most complete treatment of bunching theory in all its aspects yet published 
appears in Sperry Research Laboratories Rept. 5221-1043 by E. Feenberg, 1945. 

2 WEBSTER, D. L., Cathode-ray Bunching, Jour. Appl. Phys., vol. 7, 501-502, 
July, 1939. 

3 HAHN, W. C., Small Signal Theory of Velocity-modulated Electron Beams, 
Gen. Elec. Rev., vol. 42, pp. 258-270, June, 1939. 

' WARE, L. A., Electron Repulsion Effects in a Klystron, Proc. I.R.E., vol. 33, 
pp. 591-596, September, 1945. 
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actual bunching will be equal only to that which would occur con­
siderably before the first infinite peak of current in the absence of space 

(I) 
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FIG. 17.25.-Distance-time diagram of a high-current-density beam showing space­
charge debunching effects. 

charge. Infinite peaks of current are, of course, a physical impos­
sibility, and it is doubtful whether or not even double peaks occur where 
high beam currents are involved. Since the space-charge repulsion 
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--...--._ I• • --.. __ ... -------FIG. 17.26.-Picture of a bunched beam showing radial disper-
sion due to space charge. 

forces near the edge of the beam are less than at the center, the bunches 
will tend to form sooner near the edge and be more intense. As a result, 
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the bunches will tend to be crescent-shaped in a plane through the axis 
of the beam, with their concave side toward the cathode. 

In Chap. 15 it was shown that an unbunched beam would tend to 
spread owing to radial electrostatic repulsion forces. The same action 
occurs in a bunched beam except that it is accentuated by the bunching 
action. As bunches tend to form, the space-charge density in that 
region will increase and the radial expansion will be greatest about a 
bunch center. Portions of the beam between bunches will have their 
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FIG. 17.27.-Electron arrival time as a function of departure time for 
a bunched beam with a short drift distance and relatively large values 
of r-f voltage. 

space-charge density reduced and will not spread so much. The resultant 
action is that the bunches will tend to form, achieve a certain degree of 
grouping of electrons, and then literally explode radially. The actual 
picture of a bunched beam may be expected to look something like 
Fig. 17 .26. As a result of this action, the current density associated 
with any bunch will first increase as the electrons move along the beam 
and then decrease. 

The general observations made about space-charge effects above are 
borne out in the operation of actual tubes. Studies of the velocity 
distribution of bunched beams made with a special tube incorporating 



VELOCITY-MODULATED TUBES, OR KLYSTRONS 571 

a velocity spectrograph where the collector electrode is normally placed 
reveal that the actual velocity distribution is quite different from that 
expected from first-order bunching theory neglecting space charge. 1 

Furthermore, it is found that amplifier and oscillator klystrons built 
with relatively short drift spaces give higher output and efficiency than 
do those with long ones, this being particularly true of frequency-multi­
plier tubes. Likewise, the output of almost any klystron amplifier or 
oscillator can be increased by applying an axial magnetic field even when 
the cathode design is good. 

Since space-charge effects dictate short drift spaces, larger driving 
voltages are required to produce a given degree of bunching. Accord-

ingly, the limiting value of ;: of 0.2 assumed in the first-order theory is 

generally exceeded. In general, the resulting action is the same as 
before except that the degree of bunching is less than that predicted by 
the first-order theory. Curves of arrival versus departure time for a very 

short drift distance but relatively large values of ;: are shown in Fig. 

17.27 (space-charge effects neglected). According to such a set of 
curves, double peaks occur at smaller values of k than unity, and maxi­
mum output results at a value of k appreciably smaller than 1.84. This 
tendency is frustrated by the space-charge effects. 

17.9. The Refl.ex-kiystron Oscillator. The reflex-klystron oscillator 
is a single-resonator klystron with a reflector electrode, operated below 
cathode potential and located so that electrons are reversed in direction 
after a first passage of the resonator and made to return through the 
same resonator. 2 •3 The electron stream is velocity-modulated by its 
first passage through the resonator gaps, and power is extracted from the 
bunched beam current upon the second passage of the electrons through 
the resonator. The structure of some typical 10-cm reflex-klystron 
oscillators is shown in Fig. 17 .28. Tubes are of two types, those in which 
the resonant cavity is sealed to the tube and evacuated and those in which 
the resonant cavity is attached externally to the tube. Both types 
utilize a cathode for the production of the beam. The magnitude of 
the cathode current is sometimes controlled by a control grid or focusing 
ring. The entire resonator is operated at the same potential above 
cathode, and this potential is that through which the electrons are 

l HADLEY, op. cit. 
'PIERCE, J. R., Reflex Oscillators, Proc. I.R.E., vol. 33, pp. 112-118, February, 

1945. 
3 GINZTON, E. L., and A. E. HARRISON, Reflex-klystron Oscillators, Proc. I.R.E., 

vol 34, pp. 97-117, March, 1946. 



572 VACUUM TUBES 

accelerated. Since the reflex-klystron oscillator is seldom used to 
obtain appreciable power but rather finds its greatest application as a 
local oscillator tube, large currents are not needed and the resonator gap 
faces are made of a fine-mesh grid. The tube is usually constructed 
so that immediately beyond the second resonator grid there is a region 
of nearly constant potential gradient. The reflector electrode is ordinarily 
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/ loop 
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. --, --,Disks for affachinq 

gap ·---...;-~=;=•~-external resonator 
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''' 

(B) 
Frn. 17.28.-Structure of the reflex klystron: 
(A) evacuated resonator, Sperry type; (B) ex­
ternal cavity required. 

concave toward the resonator so that there is a focusing effect which 
directs the electrons back toward the center of the resonator grid. 

Behavior of Electrons in the Reflector Space_ Electrons in the reflector 
space encounter a nearly constant gradient of potential opposing thei;· 
motion. In all the subsequent analyses it will be assumed that the 
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potential variation in the reflector space is linear with distance and that 
as a consequence the gradient of potential is indeed constant. As a 
result of this assumption, the laws of motion of electrons in the reflector 
space are identical with those of a ball thrown up into the air in the 
absence of friction. In this mechanical analogy the ball experiences a 
constant downward force due to gravity just as the electron experiences 
a constant force directed toward the resonator. The equations of motion 
for the acceleration, velocity, and position as a function of time of an 
electron injected into a region of retarding potential gradient of value 

Vo + Vr . h ... 1 1 't d wit an m1tia ve oc1 y v0 are 

a=:~= e(Vo~ Vr) (17.68) 

dx 
V = - = 

dt 
_ et(Vo + Vr) + Vo 

md 
et2 

X = - 2md (Vo+ Vr) + Vol 

(17.69) 

(17.70) 

where a is acceleration, v is velocity, Vo is initial velocity, t is time, VO is 
cathode-resonator potential difference, Vr is the potential difference exist­
ing between reflector and second resonator grid, which are separated a dis­
tanced, e and mare, respectively, the charge and mass of the electron, and 
xis distance measured from the second resonator grid. It is seen that the 
acceleration is constant with time, velocity decreases uniformly with 
time, and distance is a parabolic function of time. Hence, if a distance­
time diagram be plotted for electrons in the reflector field, the curves 
will all be parabolas. The maximum distance to which an unmodulated 
electron will penetrate the reflector field will be given by 

dVo 
Xmax = Vr + Vo (I 7.71) 

since at this distance the potential has changed by an amount Vo, as 
is apparen~ from Fig. 17.29, which shows the potential profile of the tube. 
Hence the distance to which an electron penetrates the field is directly 
proportional to the initial potential through which the electron has been 
accelerated. The average velocity of the electron in the reflector field 
will be half of its initial velocity, and hence the time the electron spends 
in the reflector field will be 

t _ 4Xmas o---
Vo 

(17.72) 

Since 

Vo v'Vo (17.73) -=--
C 506 
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where c is the velocity of light, then 

to = 2,024d v'Yo 
c(Vo + V,) 

(17.74) 

If both sides of this equation be multiplied by the angular frequency 
wand use is made of the relation c = >.f, where>. is the wave length, then 
the resulting expression for the d-c transit angle in radians spent in the 
reflector space is 

d vYo 
To = 4,0481r ~ (Vo + V,) 

t 
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FIG. 17 .29. -Potential profiles of a reflex-klystron 
oscillator. 

(17.75) 

Distance-time Diagram of a Reflex-klystron Oscillator. Since the 
distanct to which an electron penetrates the reflector field against a 
constant gradient of potential is proportional to the initial energy and 
since the law of falling relative to the point at which the electron direc­
tion is reversed is the same for all electrons regardless of their initial 
energy, the distance-time curves of electrons entering the reflector space 
with different velocities will all be parts of the same parabola. This 
makes it relatively easy to construct a distance-time chart by means of a 
template since the energy of electrons leaving the resonator will be 

Va =_ Vo(l + Aa sin wt) (17.76) 

where Va is the voltage equivalent of the electron energy associated with 
the first resonator transit (subscript a). Other symbols have their 
previous significance, that is, Vo is beam potential, A is beam coupling 
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coefficient, and a is excitation-voltage ratio. For the present, it is 
assumed that an r-f gap voltage 

V1(t) = V1 sin wt (17.77) 

exists, without saying how it is created. The distance to which any 
electron penetrates the field will be proportional to the value of V0 

given by Eq. (17.76). The corresponding initial velocity of an electron 
entering the reflector space is 

Va = Vo ( 1 + ~a sin wt) (17.78) 

which is identical with the expression encountered in the klystron­
amplifier bunching resonator. The value of v0 from Eq. (17.78) will 
determine the initial slope of the parabola associated with any electron. 
A sample distance-time diagram constructed by applying the above 
observations is shown in Fig. 17.30. The bunching action is quite evident 
and is slightly greater in this case than that required to produce a first 
infinite peak of current. If the bunch which is formed returns to the 
resonator at such a time that the electrons pass through the resonator 
gap when they are opposed by the potential gradient between the resonator 
grids, then energy will be extracted from the bunched current and the 
tube may oscillate if other conditions are suitable. Of great significance 
is the observation that the bunch forms about the electron which passes 
through the resonator when the modulating voltage is changing from 
accelerating to retarding in its action. (It will be remembered that in 
the klystron amplifier the bunch formed about the electron which 
passed through the bunching resonator when the modulating voltage was 
changing from retarding to accelerating.) This happens because those 
electrons which enter the reflector field with energies greater than the 
average will penetrate farther and take longer to return. Accordingly, 
electrons which have been slowed down wi11 overtake those which have 
been speeded up, which is just the opposite to what happens in the 
klystron amplifier. A combination of this' property and the requirement 
that the electrons return when the resonator voltage opposes their 
motion through the resonator indicates that oscillations can occur only 
when the d-c transit time is in the vicinity of n + % cycles, where n is 
zero or any integer. The distance-time diagram of Fig. 17.30 shows a 
d-c transit time of 1% cycles, which admits of oscillation. 

Bunching Theory of the Reflex-klystron Oscillator. There has already 
been given in Eq. (17. 78) an expression for the electron velocity resulting 
from a first transit of the resonator. For the distance-time diagram 



576 VACUUM TUBES 

of Fig. 17 .30 the principle of conservation of charge will hold, just as it 
did for the klystron amplifier; i.e., Eq. (17.37) will again apply, 

lb = la I:!: I (17.37) 

where I a is again equal to Io- Likewise it will be true that the relation 
between arrival and departure time of any electron will be the same 
as for the klystron amplifier; i.e., Eq. (17.30) will hold, 

tb"" ta+ to ( 1 - ~~ sin wta) (17.30) 

a=0.2 
T:o,a,t0 = 7f- rad1tJns 

K=(-A; ~o)=!.! 

T 

~------!J cycles-------~ o---~-----~ 
Resonator... Time-+-
voltage 

Fm. 17.30.-Distance-time diagram of a reflex-klystron oscillator. 

Since the equations that determine the shape of the current pulse are 
the same as for the klystron amplifier, it is expected that the resultant 
current will be the same and it is. Thus 

(17.50) 

where all the symbols have their previous significance. It must be 
noted, however, that for the case of the reflex-klystron oscillator the 
current of Eq. (17.50) is taken with respect to the direction of the second 
electron transit and this defines the positive gap voltage. For some 
purposes it is more convenient to deal with the current associated 
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with the direction of the first electron transit, which will be the negative 
of that given by Eq. (17.50) and will have the form 

-j(To+~) 
-[bl= 2IoJ1(k)E 2 (17.79) 

In this form it is apparent that the klystron-amplifier and reflex-klystron­
oscillator bunches form about zero-excitation-voltage points which are 
half a cycle apart. 

From Eq. (17.50) it is apparent that whenever the d-c transit angle is 

;, -;, ~;, etc., radians the current will be in phase with the gap voltage 

and the beam action will be equivalent to that of a positive resistance 

h d h Wh h d 
. l . 31r 71r 11-ir s unte across t e gap. enever t e -c transit ang e is 2 , 2 , 2 , 

etc., the fundamental component of beam current will be 180 deg out 
of time phase with the gap voltage and the beam action will be equivalent 
to a negative resistance shunted across the gap. Under this last set of 
conditions the tube may oscillate if the magnitude of the negative beam 
resistance is less than the positive resonator resistance. 

Self-admittance of the Beam. It is convenient for purposes of analysis 
to speak of the beam admittance, defined as the ratio of the fundamental 
component of induced resonator current to the gap voltage that produces 
it. From Eq. (17.50) this is 

y = Albl 
• Vi 17.80) 

Y. = 2t~0 J1(k) E -j(T•-n (17.81) 

Y - A2G J1(k) -jcTO-n 
• - oro - k- E (17.82) 

where Y. is the self-, or electronic, admittance of the beam, Go = ~:, 

d h b d . ' Aaro 
an use as een ma e of the relation k = -

2
-- The factor A that 

appears in Eq. (17.80) arises from the desirability of comparing beam 
and resonator admittances in terms of induced resonator currents. 

The ratio of the electronic to the beam admittance is perhaps most 
conveniently written in component form by expanding the exponential 
into a complex quantity. 

Y. A 2 J1(k) ( . . ) 
Go = To -k- sm To + J cos To (17.83) 
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The electronic admittance of the tube is seen to be a function of the d-c 
transit angle and the bunching parameter k, which also involves the 
transit angle. Likewise it is seen that the electronic admittance has 
both a conductive and a susceptive component depending upon the value 
of the d-c transit angle. Let it be assumed first that the value of k is 

J1(k) 
zero, corresponding to zero r-f gap voltage. The factor k- then has a 

value of½- Accordingly, the conductance and susceptance of the beam 
have the form shown in Fig. 17.31. The zero signal value of beam 

Q) 
0 
C: 
~ 
t; 
::, 
~ 
C: 
0 
<JG 
- 'R 

Positive 
-J\,/1/\/\, 

conductance is of the form x sin x. It is first positive and then alter­
nately negative and positive with increasing amplitude. Correspond­
ingly, the zero signal value of beam susceptance is of the form x cos x. 
It is first positive for a quarter cycle and then alternately negative and 
positive with increasing amplitude as d-c transit angle increases (reflector 
voltage decreases). The tube may oscillate whenever the beam con­
ductance is negative and exceeds the magnitude of the positive resonator 
conductance. The negative of the resonator conductance is shown in 
Fig. 17.31. For the value shown, oscillations will not occur the first 
time the beam conductance is negative, for its magnitude is not large 
enough. Oscillations will occur the second time and subsequent times 
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the beam conductance is negative as d-c transit angle is increased, for 
the magnitude is then greater than the resonator conductance. 

Mechanism by Which Oscillations Start. The above statements about 
conditions for oscillation are readily demonstrated by reference to the 
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FIG. 17.32.-Transient response of an RLC circuit. 

' 

transient response of a parallel combination of a resistance, inductance, 
and a condenser. Let the circuit be as shown in Fig. 17.32. The voltage 
transient across such a circuit that has been shock-excited by some 
disturbance has the form 

V(t) (17.84) 

where G is the value of the shunting conductance, C is the capacity, and 
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1 
Wo = vrc• This equation is quite a good approximation for circuits 

with a Q greater than 10. From the form of Eq. (17.84) it is seen that 
the transient response has the form of a damped sine wave, though the 
extent of the damping depends upon the nature of the conductance. If 
the conductance is postive, then the response is a damped sine wave, as 
shown in Fig. 17 .32a. If the conductance is zero, the response will 
be an undamped sine wave, as shown in Fig. 17.32b. If the conductance 
is negative, then the response is an exponentially increasing sine wave, 
as shown in Fig. 17 .32c. The circuit here discussed is the equivalent 
of that encountered in the r~flex-klystron oscillator, the net conductance 
being the algebraic sum of the resonator and beam conductance. The net 
conductance can be positive, zero, or negative. If the beam conductance 
is smaller in magnitude than the resonator conductance, then the net 
conductance is positive. If the beam conductance is negative and equal 
in magnitude to the resonator conductance, then the net conductance is 
zero. If the beam conductance is negative and greater in magnitude than 
the resonator conductance, then the net conductance is negative. 

The mechanism by which oscillations start in a reflex-klystron 
oscillator is evident from the above. Suppose that there is initially no 
r-f voltage but tha t the beam conductance is negative and greater in 
magnitude than the resonator conductance, as at the second negative­
conductance peak shown in Fig. 17.31. The net conductance will be 
negative, and hence any small disturbance will start a transient response 
like that shown in Fig. 17 .32c. As the transient gap voltage builds 
up, the beam conductance will decrease in magnitude in accordance with 

the factor J 1t), as shown in Fig. 17.33. The result will be that the 

transient voltage will build up less rapidly, but it will continue to increase 
in magnitude as long as the magnitude of the negative beam conductance 
exceeds the resonator conductance. As the transient gap voltage builds 
up, the beam conductance will continue to drop off until finally it is 
exactly equal to the resonator conductance. At this value of voltage 
the net conductance will be zero, and stable oscillations of constant 
magnitude as shown in Fig. 17.32b will result. 

Variation of Beam Conductance with Amplitude of Oscillation. Exami­
nation of the real part of Eq. (17.83) shows that the beam conductance 

varies as the factor J 1t) with the degree of bunching. Of particular 

interest are the values of transit angle of 3;, 7;, 1;11", etc., for which the 

negative conductance has its greatest magnitude. Shown in Fig. 17.33 
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are relative values of beam conductance as a function of resonator gap 
voltage for different values of n, oscillations being considered possible for 
transit times of n + % cycles. All these curves have the same form 

but differ in their initial magnitude, which is always ~' and in their rate 

of decline, which increases as the value of n increases. Marked on the 
curves are the abscissas corresponding to maximum power. As will 
be shown, this occurs for a value of k equal to 2.405 and yields a conduct-

to=(n +'¾/cycles 
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Fw. 17.33. -Electronic conductance of a reflex-klystron 
oscillator as a function of r-f voltage for transit angles 
admitting of oscillation. 

ance that is 43.1 per cent of the maximum value. The curves are 

extended only to a value of A;: 1 of 0.5, which is well beyond the limit of 

accuracy of the first-order theory. From the slope of the curves it is 
expected that the oscillations for large values of n are more stable than 
for the low values. 

The Electronic-admittance S'f)iral. The condition for oscillation of a 
reflex-klystron oscillator is that the electronic beam conductance be 
negative and equal in magnitude to the positive resonator conductance. 
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For the resultant circuit to be resonant it is also necessary that the net 
susceptance of the parallel resonator-beam combination be zero. All 
this can be stated by the single equation 

Y, = -Y. (17.85) 

where Yr is the resonator admittance and Y. is the electronic admittance 
of the beam. For many purposes it is convenient to plot the locus 
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of admittance as frequency is varied since for ordinary resonant circuits 
the loci will usually be of some simple geometrical form. If a locus of 
electron admittance also be plotted, then limits of oscillation can be deter­
mined by intersections of the resonator and negative-beam-admittance 
loci. Pierce has suggested the use of a plot of the locus corresponding 
to Eq. (I 7.83) for the beam admittance. For any fixed value of k the 
locus of the beam admittance is a spiral of Archimedes. Two such 
spirals are shown in Fig. 17 .34. The solid curve is the spiral locus for 
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k equal to zero, or the limit-of-oscillation value. The dotted spiral locus 
is for a -value of k of 2.405, or the maximum-power value. The spirals 
are geometrically similar except that the dotted spiral is only 43.1 
per cent of the size of the solid spiral. Transit angle is measured clock­
wise from the positive susceptance axis, increusing transit angle cor­
responding to decreasing reflector voltage. The beam conductance is 
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FIG. 17.35.-Analysis of oscillations of a reflex-klystron 
oscillator by means of admittance loci. 

seen to be-negative whenever the transit angle is within; radians of 3;, 
71r ll1r 
2 , 2 , etc. 

Reflex-klystron Oscillation with a Simpl.e Resonant Circuit. When 
the resonant circuit is representable by a parallel combination of a 
resistance, inductance, and capacity, then the locus of the circuit admit­
tance is a straight line parallel to the susceptance axis in the positive 
half of the admittance plane, as shown in Fig. 17 .35. 1 On this line, 

1 Specifically, the approximate formula for admittance as a function of frequency is 
Y,(w) = G,(l + 2jQo), where r, is the fractional frequency deviation from resonance. 
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frequency increases upward. Also plotted in Fig. 17 .35 is the negative 
of the admittance spiral. Let it now be supposed that every parameter 
in the oscillating circuit and tube is kept constant except the reflector 
voltage, which is varied from some large negative value to zero. Then 
on the beam-admittance spiral this corresponds to a clockwise traversing 
of the spiral. As transit angle increases with reduction of the magnitude 
of repeller voltage, the beam admittance will spiral out from a point 
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Fm. 17.36.-Power output of a reflex-klystron oscillator as a func­
tion of reflector voltage. 

on the curve near the origin. When the beam admittance first has a 
negative-conductance component (right half of Fig. 17 .35), oscillations 
will not occur for the case shown because the magnitude of the negative 
beam conductance is less than the positive resonator conductance. As 
transit angle is increased further, the beam conductance becomes positive 
(left half of Fig. 17.35) and then negative again. When the transit 
angle has increased to the point a on the spiral, the negative beam 
conductance equals the resonator conductance in magnitude for the first 
time and oscillations will start. As transit angle is increased still 
more, the beam admittance will now follow a segment of the resonator­
admittance line from point a to b, the beam-admittance spiral shrinking 
with increased gap voltage and output until it is equal to the resonator 
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aclmittance at every point. Maximum gap voltage and output will occur 
when the beam admittance is a pure negative conductance on the real 
axis of Fig. 17.35. As transit angle is further increased, the tube will 
drop out of oscillation at b. The admittance will now trace the spiral, 
and oscillations will start again when the point c has been reached. As 
transit angle is increased still further, the beam admittance will now trace 
the segment of the straight-line resonator-admittance locus between c 
and d, where the tube will again drop out of oscillation, and so on. 

If the power output of a reflex klystron oscillator be observed with an 
oscilloscope connected to a crystal output as the reflector voltage is swept 
sinusoidally, the trace shown in the lower part of Fig. 17.36 results. Each 
output pulse shown here corresponds to a segment of the resonator 
admittance between intersections with the beam admhtance. The 
frequency corresponding to the center of the different output pulses is 
the same but changes through the pulses as shown. The frequency 
deviation for each mode of oscillation is about the same, but it wiJI occur 
for a smaller change in voltage and be more linear for large values of n. 

Power Relations in the Reflex-klystron Oscillator. The power trans­
ferred from the resonator to the bunched electron beam is the product 
of the resonator voltage by the in-phase component of induced resonator 
current. This has the value 

P = V1Ah1 
e 2 (17.86) 

(17.87) 
or 

P, = ~ kJ 1(k) sin To 
Po To 

(17.88) 

by application of the definition of k given in Eq. (17.33). The power 
transferred from the resonator to the beam will be negative whenever 
sin To is negative, which is to say that the power is actually transferred 
from the beam to the resonator under this condition. The power 
delivered to the resonator will be a functio11 of the bunching parameter k, 
which is in turn determined by the requirement that the negative of the 
beam admittance equal the resonator admittance. A set of curves 
showing how power transferred from beam to resonator varies with 
r-f gap voltage is given in Fig. 17 .37. The peak power transferred for 
each mode of operation shown occurs for a value of k of 2.405 and is 
lower for successively higher values of the transit angle. This might at 
first thought seem to indicate that the maximum power would be obtained 

with the lowest transit angle of the possible oscillation values, 
3
;, 

7
;, 
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lbr 
2 , etc. However, the maximum power for the lowest transit angle 

occurs at such large gap voltages that the resonator and load demands 
may exceed the power which can be delivered and oscillations will not 
occur at all. 

O, .• ~ .-----.,..----....-----,------.-----.------. 

0 
0
L-~::::::::::I..... __ __L __ _.l_l __ .l_l _ _J_ __ _J 

0.2 0.'3 0.4 0.5 0.6 
A~ 

J;& 
FIG. 17.37.-Power output of a reflex-klystron oscillator as a function of 
bunching parameter (theoretical). 

Equation (17 .88) is really an expression for efficiency. The maximum 
theoretical efficiencies apparent here for different values of n where 
oscillations are presumed to occur in n + % cycles transit time are 
listed below: 

Efficiency 
AV, 

n Vo 

0 0.531 1.018 (not valid) 
1 0.227 0.436 
2 0.145 0.278 
3 0.106 0.204 

0.398 0.767 
n 11-+% ~ ( for n > 3) 

n 74 

In the above tabulation the d-c transit angle has the value of 
(n + %)2-ir. The values for n equal to zero are obviously not valid, 
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for the excitation-voltage ratio greatly exceeds the limit of accuracy 
of the theory. Values for higher orders are progressively more accurate. 
Actual measured efficiencies are of the order of one-fourth of the theo­
retical values given above. 

In the previous discussion there have been given formulas for the 
fundamental component of beam current [Eq. (17.50)], for electronic 
admittance [Eq. (17.83)), for electronic power [Eq. (17.88)). Each o 
these quantities depends upon the bunching parameter k in some com 
bination of the first-order Bessel function of the factor k. Thus for 1,. 

0.1~---.----,-----.-----.----,---r---.----, 

Q62S 

0.6 _ f!J§?_-+-_-_-_-_-+----+----.Jl--7"'"----t--t--''"•-,t' 

k=Aaz-0 

2 

1.0 1.5 2.0 2.5 3.0 4.0 
k 

Fw. 17.38.-Theoretical current, conductance, and power function in a reflex­
klystron oscillator. 

fixed electron transit time the fundamental component of current is 
proportion~l to J 1 (k), the electronic conductance is proportional to 

J 1t), and the electronic power is proportioual to kJ 1(k). It is of interest 

to plot these functions side by side in order to compare their properties. 
This is done in Fig. 17.38. The three functions have in common a zero 
value for a value of k equal to 3.84. The maximum value of current 
occurs for a value of k equal to 1.84. The maximum value of power 
occurs for a value of k of 2.408, corresponding to 0.431 of the maximum 
value of conductance. 

The magnitude of the actual power delivered to the resonator is best 
obtained by plotting contours of equal power output on an admittance 
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diagram. Such contours may be calculated from Eq. (17.88) and are 

shown in Fig. 17 .39 for transit angles in the vicinity of 
1 t radians 

(n = 2). Contours for other values of n will be similar. The power 
transferred from beam to resonator for any given load admittance is 

frequency interval bel-Neen poinfs = f&- per cent 

Fm. 17.39.-Contours of electronic power output of a 
reflex-klystron oscillator on an admittance plane. This 
representation shows the power supplied to both 
resonator and load. 

immediately evident from these contours. Of particular interest are 
the variations of power output with reflector voltage for different degrees 
of resonator loading. As the resonant circuit is loaded, its straight- line 
admittance loi::us assumes a larger conductance component, while at 
the same time equal frequency increments along the line become smaller 
relative to the conductance. This is due to the fact that the conductance 
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is given by ~' where B is the magnitude of either the circuit inductive or 

capacitive susceptance. At the same time the frequency increment 
between values of admittance having angles of plus and minus 45 deg 

is B· Hence, as the resonant circuit is loaded the Q decreases and 

the conductance component increases, as does also the frequency incre-

+0.004 

+0.002 
JJf 0 
f 

-0.002 

-0.004 
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Q) 
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0.8 
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:::, 
0.. .... 
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<1> 0.4 
> :;:: 
cs 

Q) 
ex: 

0.2 

Q I 
-20 -30 -40 -so -60 -10 

Reflector volfoge, volts ( Relative to cOJthode) 
Frn. 17.40.-Power output of a reflex~klystron oscillator as 
a function of loading for variable reflector voltage. 

ment between the 45-deg values of admittance. Accordingly, the change 
in susceptance for a given frequency increment decreases. Figure 17.39 
shows admittance loci of a resonant circuit for three degrees of loading. 
The dots on the straight-line admittance loci of this figure show 7'5 per 
cent frequency variations. The corresponding curves of power output 
versus reflector voltage are shown in Fig. 17.40. 

Of interest is the amount of frequency variation between the limits 
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of oscillation for a given resonator loading as the reflector voltage is 
varied. This may be calculated exactly from determining the frequencies 
corresponding to intersections of the zero-signal beam-admittance spiral 
and the straight-line resonator locus. This determination requires 
numerical or graphical computation. A good approximation for the 
amount of frequency variation between limits of oscillation may be 
obtained by assuming that the beam-admittance locus is a circle whose 
radius is that corresponding to a transit angle of 2-ir(n + %) radians 
instead of the actual spiral. With this assumption the limiting inter­
sections of the beam and resonator admittance loci can be calculated. 
The errors appearing at the t,wo intersections as a result of the assumption 
of a circular locus cancel as far as the difference in frequency_ for the two 
intersections is concerned and the resulting expression is accurate within 
a few per cent. It is 

Half band width between N = 2_ ✓(r0G0A 2)
2 (l7.89) 

oscillation limits Jo 2Q 2G, 1 

where the Q is that of the resonator, Go and G, are beam and resonator 
conductance at mid-mode, respectively, To is the transit angle at mid­
mode of value 2,r(n + %). 1 It will be noted that this expression 
properly reduces to zero when the resonator-admittance line is tangent 
to the beam-admittance spiral, i.e., when 

G = roGoA 2 

r 2 (17.90) 

This equation represents a limit of oscillation. It may also be used to 
determine the minimum beam current required to start the oscillation for 
a given resonator and a given reflector mode of operation. Since the beam 
admittance as given by Eq. (17.83) is proportional to the d-c beam 
admittance, which in turn is proportional to the d-c beam current, then 
the starting current for any resonator and reflector mode is 

I _ = 2G,Vo 
mm roA2 amperes 

I _ = 2Vo 
mm roA 2R,h amperes 

where R.,. = ~r is the shunt resistance of the resonator. 

(17.91) 

(17.92) 

1 This is arrived at as follows: At the intersection of the assumed circular beam­
admittance locus and the straight-line resonator locus the equality of the conductance 
component gives G, = ½GoroA 2 cos Llro, whereas the equality of the susceptance 

components gives QG, ~: = ~ G0r 0A 2 sin t,.,-0, where t,.,-0 = ro ~~- Squaring and adding 

these relations and then solving for the band width yield Eq. (17.89). 
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Voltage Stability of Reflex-klystron Oscillators. Since the d-c transit 
angle of the electrons in the reflector space depends upon the electrode 
voltages, the frequency of oscillation changes with supply voltage, as 
has already been shown. This may be a serious limitation in applica­
tion, for a small change in electrode voltage will cause a relatively 
large change in frequency of oscillation. If it is assumed that the cathode 
and reflector voltage both change by the same percentage with a given 
change in line voltage, then the frequency stability at mid-mode with 
respect to voltage is1 

cycles per volt (17.93) 

For the 2K28 with the characteristics shown in Fig. 17.36, this variation 
is of the order of}~ me per volt at mid-mode. 

If the cathode-reflector voltage instead of varying proportionally to 
cathode-resonator voltage is kept constant, then the frequency change 
with voltage is zero when the cathode-resonB,tor and cathode-reflector 
voltages are equal. This occurs because under this condition the gradient 
of potential in the resonator-reflector space and the distance to the point 
vf electron reversal change by the same percentage with a change of 
cathode-resonator voltage, thus keeping the transit angle constant. 
The frequency change with voltage for other conditions can be made 
low by giving the cathode-resonator and cathode-reflector voltages 
different degrees of regulation of the proper value. 

The relatively large frequency change with voltage observed in Eq. 
(17.93) may actually be of use in some applications, for it indicates that 
frequen(}y modulation is easily achieved. Even in cases where stability 
is desired, automatic frequency control is easy to apply. 

17.10. Broad-band Operation of Reflex-klystron Oscillators. Tubes 
of the type shown in Fig. 17.28b are frequently used with an external 
resonant cavity in the form of a concentric line. Such an arrangement 
permits of an extremely wide band of frequency operation. The low­
frequency limit of oscillation will be governed by the resonator-reflector 
distance, which in turn determines the largest transit time that can be 
used without the reflector drawing current. The high-frequency limii 
will be determined either by the gap transit angle, which reduces the beam 

1 Arrived at by applying the relation /{,
0 
= ;[ :;;

0 
to the formulas 

2Q(f-/o) 
lo =cosro 

and Eq. (17.74) on the assumption that ~: is constant. 
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coupling coefficient A and thus reduces the beam conductance, or by 
the resonator shunt resistance, which may drop off with increasing 
frequency to the point where oscillations cannot be maintained. Opera­
tion over a frequency band of as great as 2 to 1 may be had with this type 
of tube and resonator. 

Equivalent Circuit of Concentric-line Resonator. In the ordinary 
reflex-klystron-oscillator tube built to use an external resonator there 
will be an appreciable capacity across the electron bunching gap. As a 
result of this capacity, the tube v,·ill oscillate when the capacitive react­
ance of the gap is equal in magnitude to the inductive reactance of the 
shorted concentric line attached to it. Accordingly, the equivalent 
circuit is that shown in Fig. f7.41. This is simply a capacity in parallel 

Cg+ Zo I 
~--------------- -- /---------------- ~ 
ror resonance 

L =z tan{-2tr') 
u1Cg O A 

or l=;, arc fan~i} 
Fm. 17.41.-Equivalent circuit of a concen­
tric-line resonator and reflex-klystron oscil­
lator. 

with a shorted section of concentric line. Resonance will occur whenever 
the gap reactance equals the inductive line reactance in magnitude, 
i.e., when 

- 1- = Z o tan (
2

1rZ) 
wCu A 

(17.94) 

- 1- = Z o tan (wl) 
wC0 c 

(17.95) 

where w is the angular frequency, C0 is the gap capacity, Zo is the charac­

teristic impedance of the line given by 138 log10 (~), l is the equivalent 

line length, and:>,. is the wave length. Curves of magnitude of capacitive 
reactance and inductive line reactance are shown in Fig. 17.42. Reso­
nances will occur at the intersections of the two reactance curves shown. 
The resonances are multiple, which means that, for a given line length, 
resonance can occur a.t a number of different frequencies. The fre-
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quencies of resonance will occur at frequencies somewhat less than those 
for which the line is }-4, %, %, etc., wave lengths long. 

For convenience in subsequent analysis, Eq. (17.94) may be solved 
for l and written in the form 

>-. (>-Co) l = - arctan - -
21r 21rC0 

(17.96) 

as a function of wave length, where Co is the distributed capacity of the 
concentric line per unit of length. 1 The general form of curves of l as a 

+X 

-x 

., wl ; . z 0 ,cm7: 

W-• 

FIG. 17.42.-Curves of reflex-klyst_ Gn gap reactance !lnd induc­
tive line reactance as a function of frequency. 

function of wave length is shown in Fig . .17.43. The various branches 
of this curve correspond to the different possible line lengths. The 
lowest branch of the curve gives resonant lengths slightly less than 
}i wave length, the next gives lengths slightly shorter than % wave 

1 This follows from the fact that Zo = ~C0 and c = _ 
1

1 
, as a result of which 

o v LoCo 

cZ0 = ~; Utilization of this last relation along with c = V leads to Eq. (17.q6). 

Distributed inductance of the line per unit length is L0 ; velocity of pronagation is 
c = 3 X 1010 cm per sec. 
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length, and so on. All curves start out like parabolas from the origin 
and then become straight lines parallel to a line whose slope is ¼, %, ¾, 
etc. respectively for the different curves starting from the bottom. 

32.----~----,----,,-----.-----, 

I 
I 

28t------'-- _____ ,_. 

Cg=2.S* I 
µµf 

1.-------- l -----,..J 
24 t------+-- C0 =0.88µµf/cm 

10 25 
~.cm 

FIG. 17.43.-Length of a capacitively loaded line required 
to give resonance at various wave lengths. 

Possible Modes of Oscillation. A reflex-klystron oscillator with an 
external concentric-line resonator has numerous possible modes of 
oscillation. Oscillations can occur whenever the transit time of electrons 
in the reflector space is n + ~{ cycles, where n is zero or any positive 
integer, and the cavity length is effectively an odd quarter of wave lengths 
long. The tube gap capacity always loads the line resonator so that its 
actual length is less than an odd quarter of wave lengths long, but it is 
convenient to speak of the effective length as that corresponding to the 
nearest odd number of quarter waves. Accordingly, if the cavity length 



VELOCITY-MODULATED TUBES, OR KLYSTRONS 595 

and electron transit time in the reflector space are admitted as variables, 
a considerable number of oscillation modes are possible. Each oscillation 
mode needs to be designated in terms of both the electron transit time 
and the effective cavity length. 

The possible oscillation modes of the reflex-klystron oscillator with a 
concentric-line resonator may be investigated conveniently by applying 
an alternating voltage to the reflector and observing by means of a 
cathode-ray oscilloscope the reflector voltages at which oscillations occur. 
This is done by connecting the output of a crystal detector to the vertical 
plates of the oscilloscope while at the same time applying the alternating 
reflector voltage to the horizontal plates. The resultant screen repre­
sentation on the cathode-ray tube will be like that shown in the lower 
half of Fig. 17.36. If now the cavity length is varied, the modes will 
change position progressively as the voltage required to give different 
transit times changes. A plot can be made showing reflector voltage 
ranges that maintain oscillation as a function of cavity length, which is 
usually nearly linear with wave length. It is even possible to record 
such an oscillation mode plot photographically by intensity-modulating 
the oscilloscope with the crystal output, applying the alternating reflector 
voltage to the horizontal plates, and obtaining a vertical deflection 
proportional to cavity length by means of a potentiometer connected to 
the cavity-plunger drive. The cavity plunger is then moved uniformly 
throughout its entire travel while a camera integrates the line indication 
of the oscilloscope. Such a photographically recorded mode plot is 
shown in Fig. 17.44. The numerous possible modes of oscillation are 
labeled in terms of their corresponding electron transit time in cycles 
and their equivalent cavity length in wave lengths. For the type 707B 
tube shown, oscillations occur for transit times ranging from 1.75 to 
3.75 cycles in integral steps and for equivalent cavity lengths ranging 
from 0.25 to 1.25 wave lengths in half-wave-length steps. Maximum 
output is obtained for an electron transit time of 2.75 cycles and an 
equivalent cavity length of 0.75 wave length. 

Method ·of Calculating Oscillation Mode Plot. It is possible to deter­
mine graphically the form of a mode plot ;uch as was obtained photo­
graphically in Fig. 17.44 on the basis of the simple theory proposed in 
the previous sections. Such a determination serves as a check upon the 
validity of the assumptions made in deriving the above theory. 

There is desired a relation between reflector voltage and cavity 
length for the different cavity-length and electron-transit-time modes. 
A relation between cavity length and wave length has already been given 
in Eq. (17.96) and shown in Fig. 17.43. A relation between resonant 
wave length and reflector voltage has been given in Eq. (17.75). From 
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this relation it is seen that for a given transit angle the reflector voltage 
is linear with the reciprocal of the resonant wave length. Plots of Eqs. 
(17.75) and (17.96) can be combined to give the desired relations between 
reflector voltage and cavity length by means of the construction shown in 
Fig. 17.45. In the second quadrant of this chart is given the linear rela­
tion between reflector voltage and reciprocal wave length. In the fourth 
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't-200 
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Q) 

~ 

-JOO 

2 4 6 8 JO 
Cavity Length, ems. 

Z0 =50ohms 
Fro. 17.44. -Photographically recorded mode plot of a broad-band reflex­
klystron oscillator. The number pairs give the number of quarter waves 
in the resonator and the value of n respectively. 

quadrant is given the relation between resonant wave length and cavity 
length as shown in Fig. 17.43. In the third quadrant is given the curve 
relating 'Nave length and its reciprocal. A set of rectangular con­
struction lines tying together points in the second, third, and fourth 
quadrants for a given set of electron-transit-time and cavity-length 
modes yields an intersection in the first quadrant which is a point on one 
of the reflector voltage-cavity-length modes desired. 

Differences between the theoretical and actual reflector-voltage-
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cavity-length curves result from numerous limitations · to . the,.' simple 
theory. Prominent among these is the inadequacy of the assumptioµ 
of the equivalent circuit shown in Fig. 17.41. This equivalent circuit 
is probably adequate at long wave lengths, but not at short ones. At 
short wave lengths the effect of the corner of the concentric-line cavity 
adjacent to the tube needs to be considered. The corner has the effec,t 
of an impedance-transforming network in the form of a 1r section with a 
series inductive reactance and shunting capacitive reactances. Another 

n= f 

Cg=2.Sµµf 
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Fm. 17 .45. -Construction of a reflector-voltage-cavity-length plot. 

\ 
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30 

limitation to the simple theory is the assumption that the reflector field 
is linear. Actually, the curvature given the reflector electrode to focus 
the electrons on the resonator grids may give an appreciable departure 
from linearity. 

Mode Interference. Mode interference may exist in reflex-klystron 
oscillators with concentric-line resonators. This results from the 
simultaneous resonance on several modes and may be a serious limita­
tion in oscillator design. The mode interferences may be said to arise 
primarily from the external resonator characteristics in that they do not 
exist in an ideal line resonator which has no capacity loading and in 
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that they are independent of the reflector geometry. For an unloaded 
line the length will be directly proportional to the wave length, 

l = p}.. 
4 

unloaded line length, cm (17.97) 

where p = 1,3,5, etc., is the number of quarter wave lengths of field 
variation along the line. The transit time of an electron in the reflector 
space will be 

n+% 
to= I 

, (n + %)}.. to=-'---~~ 
C 

sec 

sec 

(17.98) 

(17.99) 

Equations (17.97) and (17.99) can be combined to give the transit time 
in the reflector space in terms of idealized cavity length for the various 
reflector-transit-time and cavity-length modes. 

to= (n + %)4l 
pc 

to = 133.3(n + %)l 
p 

sec (17.100) 

micromicroseconds (17.101) 

A plot of electron transit time in the reflector space against ideal cavity 
length is shown in Fig. 17.46.1 Examination of this chart shows that 
ideally there will be no tendency for the tube to oscillate simultaneously 
on two frequencies. (An exception is the coincidence of the l.25-wave­
length-3.75-cycle mode with the 0.25-wave-length-0.75-cycle mode.) 
However, many of the prominent modes are very close together, and a 
small change in the resonator tuning curve may bring them into 
coincidence. 

In reflex-klystron oscillators with concentric-line resonators greatest 
dependence is placed at present upon the 0.75-wave-length-resonator 
modes. This is because the line loading by the cold-tube capacitance is 
usually so high that only very low frequencies can be obtained with 
quarter-wave resonance and interest is invariably centered about the 
high frequencies. Undoubtedly, the tubes of the future will be made 
smaller for a given wave length of operation so that greater use will be 
made of quarter-wave-length resonances. With 0.75-wave-length­
resonator modes and the usual dimensions, oscillations will ordinarily 
not occur for 0.75-cycle electron transit times, for the beam conductance 
will be lower than the resonator conductance. Oscillations will not 

1 An alternative form of this type of chart was first proposed by W. Huggins and 
H. Zeidler. 
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ordinarily occur for electron transit times greater than 4.75 cycles, 
for the electrons wiH eventually strike the reflector as its voltage is reduced 
to lengthen the transit time. The resultant range of frequencies that 
can i;e obtained with 0.75-wave-length resonators will bracket a 2-to-1 
range of frequencies; though use will ordinarily have to be made of several 
transit-time modes. 
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Fm. 17.47.-Electron transit time as a fun ction of length of a capacitively 
loaded line used with a broad-band reflex-klystron oscillator. 

-The chart of Fig. 17.46 serves only to give a general idea of the relation 
between the modes. "The effect of tube capacity is to put a bend in the 
quarter-wave mode line. From Eq. (17.96) it is seen that for very short 
wave lengths the cavity length varies as the square of the wave length and 
hence the electron transit time. All curves of the form given by Eq. 
(17.96) have the same form for any one cavity length when plotted on 
log-log paper, regardless of the ratio of Co to Cu . Some sample curves 
pf this fwm ltre shown in Fig. 17 .47. Various mode interferences are 
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possible because of the bend in the curves introduced by the tube capacity. 
Unfortunately, the bend frequently occurs right in the region of desired 
operation. Examination of Fig. 17.47 shows that the mode interferences 
are independent of the reflector-field characteristics of the tube. This is 
because the possible crossovers in a chart such as that of Fig. 17.47 are 
entirely determined by the geometry of the resonant cavity. Since the 
reflector voltage required to give a certain transit time is always a single­
valued function of the transit time regardless of the shape of the reflector 
field, it will be true that the mode interferences will not be altered by 
changing the reflector-field characteristics. This is to say that, if a given 
gap capacity and resonator dimensions result in mode interferences, 
merely changing the resonator-reflector distance or the shape of the 
reflector electrode will not eliminate these interferences. All that can 
be done is to change the reflector voltage at which they occur. 

The above serves only to introduce the problem of mode interference. 
The actual problem is vastly more complicated than indicated above. 
This is because a simple capacity loading of the line is not an adequate 
equivalent circuit. Actual circuits may have impedance-transforming 
circuits associated with the corner connection. Some tubes will even 
have an equivalent shunting inductance at the resonator gap. In addi­
tion, the reflector field is seldom exactly linear. It may be expected 
that in the near future much will be added to the present knowledge of 
mode interferences. 

Blind Spots. In addition to mode interferences the broad-band 
reflex-klystron oscillator will frequently exhibit blind spots, i.e., regions 
of no oscillation. In general, such spots will occur when the cavity 
impedance is reduced by the effect of a coupled resonant circuit. The 
possibility of such coupled resonances are numerous. Most of them can 
be eliminated by proper design, but some cannot be eliminated by 
resonator design alone since they are inherent in the higher-order oscil­
lations of the resonator. 

The nature of the change of resonator admittance caused by coupled 
resonances is of considerable interest. The admittance locus of a single 
high-Q parallel resonant circuit is a straight line parallel to the susceptance 
axis in the admittance plane, with frequency increasing uniformly 
upward along the line in the vicinity of resonance. Mathematically, 
this may be represented by 

Yr(w) = z: (1 + 2j 1hQ1) (17.102) 

where B1 is the magnitude of either susceptance at resonance and 01 is 

the fractional deviation of frequency from resonance, J - Jo. If now 
Jo 
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another resonant circuit is coupled to the above circuit, a bump in the 
form of a protrusion to the right will appear in the line locus of resultant 
admittance as the coupled circuit passes through resonance. If the 
coupling to the second circuit be increased, the size of the bump will 

increase up to a critical value of coupling, K1 = J/ at which value the 

bump will have the form of a cusp. If the coupling be increased still 
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Frn. 17.48.-Admittance loci of a resonant circuit with a coupled 
resonant secondary. 

further, the cusp transforms into a loop. This action is shown in Fig. 
17.48. It will be apparent that if the bump, cusp, or loop extends suffi­
ciently far to the right the resonator admittance may exceed the electronic 
beam admittance of the oscillator tube and oscillations will cease. Even 
if the beam admittance is not exceeded, if the resonator admittance has a 
loop there will be a frequency discontinuity in the oscillations as reflector 
voltage or cavity length is changed because of the inability of the beam 
admittance to follow the loop. 

The quantitative details of the above phenomena will be indicated 
a little further. The impedance of the secondary circuit in the vicinity 
of resonance is approximately 
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(17.103) 

where li2 is the fractional deviation of frequency from secondary resonance 
and X 2 is the magnitude of either reactance at resonance. The imped-

I d . t th . . ·t ·11 b w
2 
M

2 
• ance coupe m o e pnmary c1rcm w1 e h' or, m component 

form, 
• w 2M 2Q2 1 

Coupled resistance = X
2 1 + (2 li2

Q
2

) 2 (17.104) 

2 li2Q2
2w 2 M 2 1 

Coupled reactance = - X
2 1 + (2 52

Q
2
) 2 (17.105) 

Accordingly, the series impedance of the primary is 

(17.106) 

where 

(17.107) 

and 
2 li2Q2

2K 2 

b = 1 + (2 li2Q2) 2 (17.108) 

where use has been made of the relation K 2 = L~
2

- Since Y, = Cl~1, 

the corresponding resonator t1,dmittance across the capacity junction is 
approximately 

(17.109) 

where all the symbols have their previous significance. It is seen that 
the effect of a coupled resonant secondary circuit is to increase the normal 
conductive component of the primary admittance by a fractional amount 
a and to reduce the normal susceptive con;ponent of the primary admit­
tance by a fractional amount b/2li1. The reduction in the susceptance 
component may be so large that the net susceptance actually decreases 
with frequency. This happens when the coupling exceeds the critical 
value 

(17.110) 

for the case of equal primary and secondary resonant frequencies, as 
may be seen by setting the derivative of the susceptance term of Eq. 
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(17.109); with respect too equal to zero: The values of zero susceptance 
for eqnal primary and secondary resonant frequencies occur for 

om = 0 at maximum conductance 

0% = ± ½ ✓ K 2 
- d

22 
at loop crossover 

(17.111) 

(17.112) 

The corresponding values of conductance are 

maximum value (17.113) 

and 

at crossover when crossover exists 

(17.114) 
' 
Because of the factor K 2 in the expression for maximum conductance 
and its nonappearance in the crossover value it is expected that the 
loop size is a sensitive function of the degree of coupling. 

Some typical admittance curves in the presence of a coupled secondary 
resonant circuit are shown in Fig. 17.48 for fixed primary and secondary 
Q's, equal resonant frequencies, and different degrees of coupling. The 
transition from bulge to cusp to loop as the coefficient of coupling is 
increased is evident. It is seen that the loop can be eliminated by 
reducing the coupling. It can also be eliminated by decreasing the Q 
of the secondary circuit. Examination of Eq. (17.109) shows that the 
change in admittance introduced by the presence of the resonant second­
ary circuit depends only on the frequency parameter 02 and hence the 
shape of the resultant admittance does not depend upon the primary 
resonant frequency. The primary resonant frequency will determine 
only the position of the bulge, cusp, or loop and not its shape. In the 
usual case, where the secondary resonant frequency is fixed, the resultant 
bump on the resonator-admittance curve will move up as the resonator 
length is increased. 

Resonances may be coupled into the line resonator in many ways. 
The resonator load may be resonant. Under certain conditions a reso­
nant load may be connected to the cavity coupling loop through an 
unmatched line, in which case numerous loops may be induced in the 
resonator admittance. This is known as the "long-line effect." Some­
times the line plunger is not a perfect short, in which case back-cavity 
resonances may couple in admittance loops, which will cause blind spots 
or frequency jumps. When the resonant cavity is operating on a 0.75-
wave-length resonance, there may occur a higher-order cavity resonance 
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that will be coupled into the principal cavity resonance through virtually 
imperceptible asymmetries in the structure. The commonest higher 
order mode that may occur in cylindrical resonators is shown in Fig. 
17.49 in both the actual and the developed form. This is a transverse 
electric mode for which the tube gap is a virtual short circuit, for voltage 
drops resulting from equal currents flowing in opposite directions cancel. 
Its resonant wave length is given approximately from the developed 
rectangular form by the formula 

(17.115) 

where r 2 and r1 are the outer and inner radii of the concentric-line reso-

Oulerradius=r2 ~ 
/nnerradius=r1 ~ I : l}: : I 

f...----- l _____ j 

Onlv E lines 
are shown 
(TEm) 

F10. 17.49.- Commonest higher order resonance field of a con­
centric-line resonator. 

nator, respectively, and l is its length. Resonance in this manner cannot 
exist until the length exceeds a half wave length and the mean circum­
ference of the line exceeds a wave length. Tuning curves for both the 
desired cavity resonance and the undesired higher mode are shown in 

Fig. 17.50. For an equivalent cavity length of 
3
; the desired line mode 

will have the shape shown and previously discussed. Its slope will be 
slightly greater than % for the axes of Fig. 17 .50. The first higher­
order mode will have a curve that starts out with a slope of 2 and then 
becomes asymptotic to a wave length equal to the mean circumference 
of the line. It is inevitable that the two curves shown should intersect. 
For usual tube dimensions the intersection occurs at about 70 per cent 
of the maximum wave length of resonance of the higher-order mode. 
When the cavity is simultaneously resonant in both modes, a slight 
coupling between them through some asymmetry in construction will 
cause a loop to be induced in the resonator impedance with a resultant 
blind spot or frequency jump as line length or reflector voltage is varied. 
Such a blind spot is very difficult to eliminate. It should be pointed out 
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that this type of blind spot cannot occur when the cavity is operated on a 
0.25-wave-length resonance; for then the resonator tuning curve has a 
slope of about 4 on a plot like that of Fig. 17 .50, and it is impossible for 
an intersection with the higher-order resonance to occur. This fact gives 
a great incentive for developing tubes which are small enough so that 
they can be operated on a 0.25-wave-length line resonance. 1 
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Fm. 17.50.-Tuning curves of a concentric-line cavity for the desired mode and the 
first higher order mode. 

17.11. The Two-resonator Klystron Oscillator. A picture of an 
early type of two-resonator klystron has already been shown in Fig. 2.9. 
Modern tubes are quite similar except that the resonators are back to 
back so that coupling may be introduced through a set of coupling loops 
instead of by means of loops at the end of a transmission line of 
appreciable length. A schematic drawing of a two-resonator klystron 
oscillator and its equivalent circuit is shown in Fig. 17.51. The only 
difference between the amplifier and oscillator is that the oscillator has 
coupling between secondary and primary. 

In the equivalent circuit shown in Fig. 17.51 several assumptions 
have been made in the interests of simplicity, all of which are justifiable. 

1 For further information on the subject of broad-band reflex-klystron oscillators 
S:)e Chaps. 31 and 32, Vol. II of "Very High-Frequency Techniques," report of 
the wartime researches of the Radio Research Laboratory, Harvard University, 
McGraw-Hill, New York, 1947. 
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It has been assumed that the coupling between buncher and catcher 
resonators is purely inductive. This it is in many tubes, though in 
some there is coupling through a transmission line, which merely changes 
the phase of the mutual impedance from 90 deg to an arbitrary value. 
It has been assumed that all losses may be inserted in series with the 
resonator reactances. This is quite satisfactory if the proper conversion 
factors are always used and if the circuit Q's are greater than 20. Final 

Z 0 =Ser/es 
impedance 

FIG. 17.51.---Schematic drawing of a two-resonator klystron 
oscillator and the equivalent circuit. 

answers will involve the Q's of the resonators and will be independent 
of whether the loss resistances are in series or in parallel with the reso­
nator. The resistance in series with the buncher resonator includes the 
effect of the ohmic resonator losses and also the power required to bunch 
the beam. The resistance in series with ,the catcher resonator includes 
the ohmic losses of the resonator and also the load. The catcher reso­
nator will ordinarily be more heavily loaded than the buncher resonator 
so that its Q will be lower. 

The analysis of the two-resonator klystron oscillator will proceed 
along the lines used for the reflex-klystron oscillator, though equivalent 
methods are just as satisfactory. 1•2 The fundamental requirement for 

1 WEBSTER, D. L., Theory of Klystron Oscillations, Jour. Appl. Phys., vol. 10, 
pp. 864-872, December, 1939. 

2 HARRISON, A. E., Klystron Oscillators, Electronics, vol. 17, pp. 100-107, Novem­
ber, 1944. 
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oscillation in a klystron is the same as for any oscillator. This is to say 
that the transadmittance of the tube must equal the current-voltage 
reduction factor (transfer admittance) of the network 

where the transadmittance of the tube 

Y = lout 

m Va 

(17.116) 

(17.117a) 

has been given in Eq. (17.62) and the current-voltage step-down factor 
of the coupling circuit is 

1 v .. 
Yba = lout 

(17.1176) 

under the condition that all circuit meshes are closed. 
The beam transadmittance Y m has a phase angle that depends only 

upon the electron transit angle between resonators, i.e., only upon beam 
voltage. The magnitude, however, has a maximum value that is 
directly proportional to the transit angle, while the fraction of this value 
that is realized depends upon the buncher-resonator voltage V11 • Thus 
Y m is a nonlinear admittance, decreasing with amplitude of exciting 
voltage. The circuit transfer admittance Y ba, on the other hand, 
does not vary with electron transit angle, beam voltage, or amplitude 
of r-f voltage. It is a quantity that for a given adjustment of the 
resonators, coupling, and loading varies only with frequency. Hence 
for a fixed adjustment of the circuit the tube may be expected to go in 
and out of oscillation as beam voltage is varied, for this changes the phase 
of the beam transadmittance progressively. The resultant selective 
oscillation with respect to beam voltage has already been shown in Fig. 
2.10. It may be expected that the two-resonator klystron can be 
analyzed by a method similar to that used for the reflex-klystron oscil­
lator, the difference being that instead of equating resonator admittance 
and negative beam admittance for the condition of oscillation we now 
equate beam transadmittance and the circuit transfer admittance Y ba· 

In order to specify conditions of oscillation it will be necessary to 
know the form of the factor Y 00 • This is readily obtained by direct 
application of standard circuit theory. Let the series self-impedances 
of the input and output resonant circuits be Za and Zb, these circuits 
including all the loss effects in the form of series resistance. The input 
and output impedances of the box representing the tube in Fig. 17.51 
will be assumed infinite since the beam effects have been incorporated 
into the resistance of the input and output circuits. The output voltage 
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is developed across an admittance Yr, which includes the effect of the 
coupled input resonator and has the form 

(17.118) 

where Zm is the mutual impedance between the input and output circuits. 
In order to establish the relation between output current and input 
voltage let the sequence of current-voltage relations be traced backward 
from the input. The input voltage is related to the current flowing in 
the input resonant circuit by 

Va= jwLJa (17.119) 

to a good degree of approximation for a high-Q circuit. The circulating 
current in the input resonator is related to that in the output resonator by 

I = Z,Jb 
a Za (17.120) 

The circulating current in the output resonator is related to the output 
current from the tube by 

(17.121) 

with sufficient accuracy for high-Q circuits. Putting these last four 
equations together to obtain the ratio of tube output current to the input 
voltage that it produces, 

~: = L:Zm (ZaZb - Zm2
) (17.122) 

Since wLb = _!__C in the vicinity of resonance and since the coefficient 
W b 

of coupling between buncher and catcher resonators is given by 

then 

K2 = zm2 
w2LaLb 

(17.123) 

(17.124) 

This ratio obtained from the circuit action must equal the ratio of output 
current to input voltage produced by the beam, i.e.

1 

(17.125) 
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This is the important defining relation for oscillation, similar to the 
relation 

Y, = .-Y. (17.85) 

that holds for reflex-klystron oscillators. 
Conditions for oscillation can now be studied by examining the locus 

of beam transadmittance in the admittance plane and comparing with 
the locus of circuit transfer admittance. The beam-transadmittance 
locus will be exactly the same as the self-admittance spiral of the reflex­
klystron oscillator if the beam current does not change as the beam voltage 
is varied. Under these conditions the locus of the beam transadmittance 
will be a spiral as the beam voltage is varied. 

Another type of beam-tra:nsadmittance locus commonly occurs. If 
the cathode is space-charge-limited, the current will increase as the three­
halves power of the beam voltage. For this condition the d-c beam 
conductance will be proportional to the square root of the beam voltage. 
Since the beam conductance is also directly proportional to the d-c 
transit angle, which depends upon the square root of the beam voltage, 
this means that the transadmittance magnitude will be independent of 
d-c transit angle for any given value of the bunching parameter. As a 
result, the locus of the beam transadmittance will be a circle as the beam 
voltage is varied. The power that the beam can deliver to the circuit 
will, however, vary as the beam voltage, and the maximum power will 
be proportional to the cube of the beam voltage. 

The locus of the transadmittance through the circuit given by the 
right side of Eq. (17.125) is not so well known. It will be recognized, 
however, that the factor ZaZb - Zm2 is one which appears frequently 
in coupled-circuit theory and is the one that contributes virtually all the 
variation of the transfer admittance in the vicinity of resonance. In 
the vicinity of resonance the factor Zm is relatively constant compared 
with the factor ZaZb - Zm2 and will be so considered. In particular, the 
factor ZaZb - Zm 2 appears in the denominator for the expression relating 
secondary current to series primary voltage in coupled-resonant-circuit 
theory. 1 It is this factor that gives rise to the well-known double­
peaked response curves for couplings greater than critical. It would 
be expected therefore that the locus of ZaZb - Zm2 itself would be such 
as to exhibit two minima for coupling! greater than critical. This is 
readily shown to be the case. 

To examine the defining relation for oscillation given by (Eq. 17.125) 
let the mutual impedance be assumed to be inductive of the form 

Zm = jwM (17.126) 
1 TERMAN, F. E., "Radio Engineering," 2d ed., p. 74, Eq. (42), p . 82, Eq. (45), 

McGraw-Hill, New York, 1937. 
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For small coupling factors, coupling of any other form will lead to the 
same result except that the phase of the coupling impedance may be 
different from 90 deg. With the above assumed form of the coupling 
impedance, Eq. (17.125) reduces to 

·K2 
Ym = ; 3M 3 (ZaZb + w2M 2) (17.127) 

If the input and output circuits have relatively high Q's then their series 
impedances can be represented by 

(17.128) 

and 

(17.129) 

where o is the fractional deviation from resonance and it has been assumed 
that the resonant frequencies of the input and output resonators are the 
same. The above are simple linear approximations for the actual 
expressions but hold well enough in the vicinity of resonance. The 
effect of different input and output resonant frequencies will be discussed 
later. Using Eq. (17.125) and substituting Eqs. (17.128) and (17.129) 
into Eq. (17.127), 

Ym = wMtQb [(1 + K 2QaQb - 4QaQb o2
) + j2 o(Qa + Qb)] (17.130) 

The locus of the circuit transfer admittance is a simple parabola. The size 
of the parabola depends upon the Q factors and upon the coupling factor. 
The parabola is symmetrically disposed about the imaginary axis when 
the primary and secondary resonant frequencies are the same. For a 
given set of Q values the parabola will merely be shifted upward and 
have its curvature increased by an increase in coupling. For critical 
coupling -

1 ~ 
K 2-

c - QaQb (17.131) 

and smaller values of coupling, the vertex of the parabola will be the 
closest point to the origin. For values greater than critical coupling 
there will be two points symmetrically disposed about the vertex that 
are closest to the origin, while the vertex itself wrn be slightly farther 
away. 

Some typical parabolic loci are shown in Fig. 17.52. These reveal 
all the well-known characteristics of tuned coupled circuits and some 
of the less well-known. Below critical coupling the transfer admittance 
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is large, which means that there is a small buncher voltage for a large 
output current. It is convenient to talk in terms of the reciprocal 
magnitude of the transfer admittance since this gives the ratio of buncher 
voltage to catcher current. Assuming a constant catcher current, the 
buncher voltage increases as the coupling increases up to the critical 
value and is single-peaked as frequency is varied. As critical coupling 
is approached, the single resonant peak becomes broader, indicated by 

l'i,a = W}oa Qb (?t+KzQa06-40a06 02) 

+jzo(Qa+06f/ 
Qa=Z0O, Ob=SO 

'3o=o.ooos 
(between po/nfs) 

z M 2 
K=-­

LaLb 

-2 -, 
-Gba 

Arrows show cl/reel/on of' 
increorsinq frequency 

j3 

jl 

0 
0 

K=0.0025=Kc/4 

2 
-'"Gba 

Fm. 17.52.-Parabolic transfer-admittance loci of a two-mesh coupled resonant 
circuit. 

the decreased size of a constant-frequency interval on the admittance 
locus. Up to and including critical coupling the vertex of the parabola 
is the point on the parabola closest to the origin, which means that the 
frequency response will be single-peaked and that maximum buncher 
voltage will occur at the frequency of resonance of the resonant circuits. 
For couplings greater than critical, the vertex of the admittance locus 
recedes from the origin, but the parabolas become curved strongly 
enough so that two points symmetrically disposed on either side of the 
vertex are closest to the origin. This means that the input voltage is 
double-peaked as frequency is varied and that the response at the peaks 
i& less than for critical coupling. This is a proper characteristic of 
coupled circuits. The peak response for couplings greater than critical 
will be equal to that at critical coupling only if the circuits are the same, 
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i.e., if the Q's are identical. 1 The peak response with greater than 
critical coupling drops off more rapidly with coupling as the dissimilarity 
of the two circuits is increased (same resonant frequency but different 
Q's) . In addition to becoming double-peaked and smaller in peak 
amplitude as coupling increases, the response curves become broader 
with frequency, as may be seen from the decreased size of the constant­
frequency interval. For klystron oscillators with the Q ratio given, it is 
seen that coupling will probably have to lie within a factor of two of the 

-j3 
-jB 

Frn. 17.53.-Two-resonator klystron-oscillator operation in terms of ad­
mittance loci. 

critical value in order to give appreciable output. The error made in 
using the linear approximations to the correct expressions is quite small. 
It is independent of the Q values and depends only upon the value of o. 
The error is equal to three-halves of the o value. Thus the maximum 
error for any of the loci shown in Fig. 17.52 is about two per cent. 

The two-resonator klystron oscillator will oscillate whenever the 
beam-transadmittance locus enters the area outside the circuit-transfer­
admittance parabola (the area outside of the parabola is that in which all 
the possible tangents to the parabola lie) . This requires that the cou­
pling between buncher and catcher circuits be great enough, that the 
beam transadmittance be large enough in magnitude, and that the phase 
angle be correct. Shown in Fig. 17 .53 is the intersection of a beam-

1 AIKE N, C. B., Two Mesh Tuned Coupled Circuit Filters, Proc. l.R.E. , vol. 25, 
;;p. 230-272, February, 1937. 
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transadmittance spiral and the circuit-transfer-admittance parabola. 
Whenever the zero-signal beam transadmittance exceeds the circuit 
transadmittance in magnitude, oscillations will build up that will shrink 
the beam-transadmittance locus. This has the result that as beam 
voltage is varied the beam transadmittance will trace the circuit transfer 
admittance whenever the latter is smaller than the zero-voltage beam 
transadmittance. Oscillations will in general occur whenever the 
electron transit angle is in near equality with the phase of the circuit 
transfer admittance, i.e., whenever 

(17.132) 

where tf, is the angle of the circuit transfer and n = 1, 2, 3, etc. For the 
particular case shown in Fig. 17 .53 this will give oscillations in the vicinity 
of 

ro = 2-irn (17.133) 

In general, oscillations will occur for values of the transit angle differing 
by integral multiples of 2,r. 

For any one loop of the beam-transadmittance locus, relative power 
contours can be drawn, as for the reflex oscillator in Fig. 17.39. Positive­
power-output contours will occur only in the upper half plane of Fig. 
17.53, because as may be seen by comparing Eqs. (17.118) and (17.127) 
the circuit transfer admittance equals the output admittance multiplied 
by some numerical factors and rotated 90 deg in the counterclockwise 
direction. This means that the positive-conductance region of the output 
admittance appears in the upper half plane of the circuit-transfer­
admittance plot. The relative power contours will have the same general 
shape as those of the reflex tube. 

The beam-transadmittance locus is traced in a clockwise direction as 
the beam voltage is decreased. Hence, for a constant current, the 
magnitude of the beam transadmittance will decrease as the beam voltage 
is increased. This means that there is a highest voltage at which the 
tube will oscillate which occurs when the transit angle is so small that 
the magnitude of the beam transadmittance is reduced to the point 
where it does not intersect the circuit-transfer-admittance parabola. 
With actual tubes it may not be possible to reach this voltage without 
exceeding some design limitation of the tube. 

The selective oscillation with voltage is shown in Fig. 2.10. Output­
power loops as shown in Fig. 2.10 may be single- or double-peaked. If 
the resonator coupling is much below critical, the mode loops will gener­
ally be single-peaked. However, with critical coupling the output-power 
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pulses may be either single- or double-peaked. In general, if the vertex 
of the circuit-transfer-admittance parabola is exceeded only slightly in 
magnitude by the zero-signal beam tran3admittance, the power loops 
will be single peaked. If the vertex of the circuit-transfer-admittance 
parabola is greatly exceeded in magnitude by the zero-signal beam 
transadmittance, the output loops will generally be strongly double­
peaked. When the resonator coupling is considerably above critical, 
the power-output loops will generally be double-peaked. 

As the beam voltage is changed during a condition of oscillation, the 
frequency of oscillation will change slightly. The curves of frequency 
deviation will resemble the curves of phase shift through the coupled 
resonant circuits as a function of frequency. When the resonator 
coupling is critical or less, the frequency deviation will be nearly linear 
with transit angle or beam voltage everywhere but at the edges of the 
oscillation modes. The frequency will increase as the beam voltage 
increases. When the resonator coupling is in excess of the critical value, 
there will be a strong kink in the frequency-deviation curve near the 
middle of the mode due to the fact that the frequency changes more 
rapidly there. Of interest is the rate of frequency change at mid-mode 
with beam voltage. By a method similar to that used in obtaining Eq. 
(17. 93) it is readily shown that 

df = (1 + K 2
QaQb)?!dVo (l 7_134) 

Jo Qa + Qb 4 Vo 

at the mid-mode. The frequency stability will ordinarily be of the order 
of tens of kilocycles per volt. 

If all operating conditions of the two-resonator klystron oscillator 
but the magnitude of the beam current are kept constant, it will be found 
that there is a minimum beam current which will sustain oscillations. 
The limiting condition for oscillation is that at which the beam-trans­
admittance spiral is just tangent to the circuit-transadmittance parabola. 
This point of tangency will be near the vertex of the parabola for all 
cases except coupling greatly in excess of critical. For the usual condi­
tions the limiting condition of oscillation, 'from Eqs. (17.60) and (17.130), 

GoA 2To 1 + K 2QaQb 
-2- = wMQaQb (17 .135) 

from which the minimum current that will sustain oscillations is 

2 1 + K 2QaQb 
Imin = -A2 MQ Q Vo 

To W a b 
(17.136) 

Two-resonator klystron oi,;cillators have been built for frequencies 
ranging from 600 to 4,000 me. In power output they have ranged from 
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a fraction of a watt to one kilowatt. In the United States the develo~ 
ment of these tubes has been pioneered by the Sperry Gyroscope 
Company, which has specialized in tubes with evacuated resonators. 
European tube developers have favored tubes with cavities external 
to the evacuated parts of the tube. 

17.12. The Heil Tube. Historically, the first tube to use the velocity­
modulation principle was one proposed by the Heil brothers. 1 A diagram 
of such a tube is shown in Fig. 17.54. The tube makes use of a beam 
of electrons, which are shot across the ends of a concentric-line resonator. 
Each electron thereby follows a path along which r-f voltage appears 
twice. The voltage across the second gap is instantaneously 180 deg 
out of phase with the voltage across the first gap. After crossing both 

CCJffhode ···/nferacfi'on 
qaps 

gaps the beam electrons are taken out 
of action by a collector electrode. The 
tube operates by bunching the electron 
beam in the first gap and extracting 
energy from the bunched electrons in 
the second gap. As with the reflex­
klystron oscillator the tube will reso­
nate when the transit angle between 
gap crossings is n + % cycles and if 
the resonator admittance is smaller in 

Fm. 17.54.-Diagram of the Heil magnitude than the beam conductance. 
tube. 

The analysis of the Heil tube proceeds 
along exactly the same lines as does that of the reflex tube. Some excel­
lent Heil tubes have been made, but they seem to have lost the applica­
tion race in competition with the reflex-klystron oscillator. This is due 
to a number of reasons prominent among which are the following: The 
transmission-line type of resonator is not quite as efficient at super­
high frequencies as is the reentrant-cavity type of resonator; the tube 
is not so well adapted to an external resonator. Against these dis­
advantages, the Heil tube is superior to the reflex-klystron oscillator 
in that multiple electron transits are avoided and that tubes can be built 
to which magnetic beam focusing is easily applied. 

17.13. Bunching Effects in Negative-grid Tubes. The analysis of 
klystron tubes by means of simple bunching theory is so enlightening that 
the question is raised whether the action of negative-grid tubes cannot 
be explained in similar terms. Certainly, when transit times are large 
and voltages are not excessive, there will be a bunching action occurring 
in the electron stream of negative-grid tubes. An examination of this 

1 HEIL and HEIL, op. cit.; see also HAHN, W. C., and G. F. METCALF, Velocity 
Modulated Tubes, Proc. I.R.E., vol. 27, pp. 106-116, February, 1939. 
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bunching action should reveal some relations that will tie in with the 
observed action of such tubes at ultra-high frequencies. 

In attempting to analyze the action of negative-grid tubes in terms 
of velocity modulat!on one immediately encounters the difficulty of 
accounting properly for space-charge effects. However, even though 
the neglecting of space-charge effects is bound to lead to large errors, it is 
instructive to examine tube behavior under the assumption of their 
absence. Let it be assumed that the potential variation from cathode to 
grid plane and from grid plane to plate is linear. Let it further be 
assumed that bunching action occurs only in the grid-cathode region, a 
reasonable assumption since the a-c components of field will be larger 
here and since the time spent in this region will be larger too. Let it 
further be assumed that alternating components of voltage appear only 
on the grid and that these are small compared with the direct potentials 
involved. The final assumption is that the emission is directly propor-

tional to the equivalent grid voltage V0 + VP_ In addition to space 
µ 

charge, the displacement components of current are neglected. 
If with the above assumptions an analysis of the electron action is 

made, it is possible to solve for electron arrival time at the plate in terms 
of its departure time from the cathode. Plate current can then be solved 
for by allowing for variation of emission over the cycle. The resulting 
expression for plate current is expected to be a function of the amplitude 
of grid voltage and of the transit angles involved. It should reduce 
properly to approximate expressions for current flow for negligible transit 
angles and should exhibit some bunching effects. 

'l'he resulting expression for plate current obtained by neglecting all 
but first- and second-order terms in grid voltage is 

l;npb&8o = u cos T ep+ V sin Tep 

lout of pl>Aao = u sin Tep - V cos Tep 

(17.137a) 
(17.137b) 

where the phase is taken relative to the grid voltage and Tep is the cathode­
plate transit angle and where 

U = -2G (:b + Ve) Ji ( a
2
;ca2) Jo G aT:0) 

+ GV0J 0 (a2~c/) J 0 (½ aTcg) (17.138) 

and 

( Vb ) (a2Tc.2) (1 ) V = 2G µ+Ve Jo ~6~ Ji Z aTcg 

(
a

2
T 

2
) (} ) - GV0J1 T Ji 2 aTcg (17.139) 
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where G is mutual conductance, Vb and Ve are d-c components of plate and 
grid-plane potentials, a is the ratio of a-c to d-c grid-plane potential, 
Teu is cathode-grid transit angle, V9 is a-c component of grid-plane poten­
tial, and J O and J 1 are the zero- and first-order Bessel functions of the first 
kind. From the above the expression for magnitude of plate current 
can be written 

I I I= vu2 + v2 (17.140) 

and the corresponding phase by which plate current lags grid voltage is 

cf,p = Tep - arctan (~) (17.141) 

The above expressions reveal much about the nature of the plate 
current as affected by the transit time and the bunching action. In the 
first place the magnitude of plate current as given by Eq. (17.140) is 
independent of the cathode-plate transit angle and depends only upon 
the magnitude of the a-c component of grid voltage and the cathode­
grid transit angle. The dependence is partly in terms of the well-known 
first-order bunching parameter ½aTcu and also in terms of the second-order 

a2T 2 

bunching parameter f· The components of plate current given by 

Eqs. (17 .137a) and (17.137b) each contain two types of terms. The first 
term gives the a-c components of current that would result if the emission 
were constant over the cycle and the plate current were produced only by 
bunching action. These terms properly reduce to zero for zero transit 
angle. The second terms give the current components resulting from 
the normal grid action but reduced by the dispersing effect of the bunching 
action. The normal-current t erms are correctly maximum for zero 
transit angle and drop off in magnitude as the transit angle increases. 
The bunching terms initially are zero, increase, and then decrease again. 

The nature of the plate current is best illustrated by some specific 
examples. In Fig. 17 .55 are shown the magnitude and phase of plate 
current for a typical tube under the conditions that a = 0.2 and 
Tep = 2Tco• The magnitude is seen to drop off more or less gradually. 
Undoubtedly this should be a smooth curve, but it exhibits some small 
ripples because higher-order effects have been neglected. The phase 
of the current initially is -180 deg and then drops back progressively 
as the cathode-plate transit angle is increased. The change of phase is 
always less than the change of cathode-plate transit angle but has its 
principal dependence upon this angle. 

In Fig. 17.56 is given another set of curves showing magnitude and 

phase of plate current for the conditions that a = 0.5 and r e p = 4;,u. 
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This is a rather large value of a for bunching relations but is not too large 
in this case because second-order effects have been included. The 
magnitude in this case exhibits a striking decrease with transit angle 
and then a slight increase. The locus of plate current in amplitude and 
phase is again a form of spiral, but with the second turn not enclosing 
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Fm. 17.55.-Triode plate current as a function of transit angle 
for relatively small excitation. 

the origin. As before, the magnitude depends only on the cathode-grid 
transit angle, and the phase has its principal dependence upon the 
cathode-plate transit angle, though the actual phase is always somewhat 
less than this value. The plate-current spirals, which are really trans­
admittance spirals, bear a striking resemblance to the transadmittance 
spirals for klystron tubes. 
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The above analysis must not be taken too seriously because it has 
neglected space-charge and displacement currents. However, the 
nature of the variations in plate current is quite possibly not too different 
from that shown in Figs. 17.55 and 17.56. Correlations with reduction 
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Fro. 17.56.-Triode plate current as a fun ction of transit angle 
for moderate excitation. 

in amplifier output with increasing frequency and reduction of oscillator 
outµut as a result of both reduction in magnitude of current and change 
in phase are evident. 



CHAPTER 18 

MAGNETRON OSCILLATORS 

18.1. Introduction. A brief description of the magnetron has already 
been given in the chapter on Basic Tube Types. Basically, the mag­
netron is a tube containing a cathode and what is usually a symmetrical 
distribution of anodes in which electrons move under the influence of an 
internal electric field and a crossed externally supplied static magnetic 
field. The electrons move in complicated curved paths, and under certain 
conditions powerful oscillations will be sustained. 

The magnetron underwent a tremendous development during the 
Second World War. Its development made possible the numerous 
microwave radars, which used it as a source of extremely high power 
pulses in the frequency range of 700 to 24,000 me. It has amazed every­
one by its efficiency, relatively high for an electronic device. Efficiencies 
are of the order of 50 to 80 per cent, and these are obtained at reasonable 
values of current, voltage, and magnetic field. Furthermore, the physical 
dimensions of magnetrons are of the order of the wave length, so that 
even the highest frequency magnetrons are not too hard to build. 

A brief study of electronic motion of the type encountered in mag­
netrons has already been made in Chap. 6. Here it was found that 
electrons in combined electric and magnetic fields will move in strongly 
curved paths with periods of rotation corresponding to microwave 
frequencies. Thus, an electron in a uniform magnetic field of 1,070 
gausses rotates in a circular path at a frequency of 3,000 me per sec. 
By the use of multisegmented anodes, oscillations at frequencies higher 
than that corresponding to the simple rotation can be obtained. Inher­
ently, then, electron motion in magnetic ,fields is of the right nature to 
produce microwave oscillations. 

Many kinds of magnetron tubes can be built, ranging from a single­
anode tube to multisegment-anode tubes. Many kinds of oscillations 
are also possible. The nature of the electron paths is such that a negative 
resistance can be obtained from the division of current between anode 
segments. This leads to negative-resistance oscillations. This type 
of oscillation is effective only at low frequencies and is no longer con­
sidered of great importance. Early work in the field was largely con­
fined to oscillations of two- and four-segment-anode tubes involving 

621 
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electron-transit-time characteristics. Later development showed that 
such tubes were the least efficient of the entire class of magnetrons, and 
they are now not of much interest except for special applications. 1 

Present interest is concentrated mainly in electronic oscillations of multi­
segment cavity magnetrons, and most of the comments in this chapter 
will be restricted to this case. 

The complete theory of magnetron operation is not known at present. 
Wartime developments were largely of an empirical sort. Even a large 
fraction of the present information available on the subject is based upon 
specific calculations and tests. 2 It will probably be some time before 
the great mass of informatiop on this subject is reduced to a simple 
organized treatment. The most complete organization of this sort 
appears in the report of the wartime researches of the Radiation Labora­
tory. 3 The complete story will, of course, have to be written by the men 
who are responsible for most of the recent development and by their 
successors who will carry on this work. There will be given in this 
chapter only those fundamental relations which are fairly well estab­
lished. This will obviously be insufficient as a basis for the design of 
tubes but will serve as an introduction to the subject, which will furnish 
a basis for understanding the detailed reports on this subject. 

18.2. Structural Form of Magnetrons. All magnetrons have in 
common a cathode, an anode, and an output-coupling device. In 
addition, magnetrons may have tuning mechanisms, mode suppressors, 
and end plates. Early two- and four-segment magnetrons were housed 
in glass envelopes with the cathode in the form of a tungsten filament 
and the anode segments supported from a two-wire transmission line 
brought out through the end of the tube opposite to that at which the 
filament leads were brought out. In some tubes, special end plates 
supported from leads brought out at the filament end of the tube 
were used to remove out-of-phase electrons from the cathode-anode 
region. 4•5 

Modern multicavity magnetrons are housed in metal and use glass 

1 Bibliographies of magnetron articles prior to 1941 are given in "High Frequency 
Thermionic Tubes" by A. F. Harvey, Wiley, New York, 1943, and "Einfiihrung in 
der Theorie und Technik der Dezimeterwellen" by 0. Groos, Herzel, Leipzig, 1937. 

2 FrsK, J. B., H. D. HAGSTRAM, and P. L. HARTMAN, The Magnetron as a Gen­
erator of Centimeter Waves, Bell Sys. Tech. Jour., vol. 25, pp. 1-188, April, 1946. 

•Radiation Laboratory Series, 28 Volumes, McGraw-Hill, New York, 1947-1948. 
4 LINDER, E. G., Description and Characteristics of End Plate Magnetrons, Proc. 

l.R.E., vol. 24, pp. 633--653, April, 1936. 
5 LINDER, E.G., Anode Tank Circuit Magnetron, Proc. l.R.E., vol. 27, pp. 732-

738, November, 1939. 
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only around the high-voltage filament leads and at the point where the 
output power is taken from the tube. The multisegmented anode is 
commonly formed of laminations having one of the forms shown in Fig. 
18.1. Each of these consists in effect of a number of parallel resonant 
circuits in series around the inner circumference of the anode. In form 
a the individual resonant circuits are nearly lumped, i.e., there is a 

(aJ 
Hole and slot type 

(bl 
Slot type 

( cJ rd) 
Voine type Rising sun type 

Frn. 18.1.-Various forms of muftisegment anodes. 

capacity across each gap in parallel with the inductance formed by the 
inner surface of the circular hole. Actually, such a circuit is not truly 
lumped, for the dimensions of the various parts may be an appreciable 
fraction of a wave length long. In other forms of the anode the resonant 
circuit consists of a shorted section of strip trnnsmission line. 

The cathodes of multicavity magnetrons are usually of appreciable 
diameter and in tubes for pulsed operation are indirectly heated and make 
use of oxide emitters. The cathode is usually supported by the filament 
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i~ads, which are brought out at right angies to the axis of the tube. The 
cathode usually extends on each end about 25 per cent in length beyond 
the stack of anode laminations. Great precautions are taken to insulate 
the cathode leads for the high voltage that the tube must withstand; 
often the cathode lead insulator takes up about one-third the volume 
of the tube. 

The output-coupling device in a multicavity magnetron is commonly 
a loop located at the base of one of the resonant radial anode spaces and 

0 :::. ---Cathode. ~,., __ .. -Loop 
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(b) 
FIG. 18.2.-0utput-coupling schemes for multicavity 
magnetrons. 

leading out of the tube through a concentric line with a vacuum 
glass seal. Such an arrangement is shown in Fig. 18.2a. In some tubes 
the output coupling is accomplished by means of a tapered transmission 
line feeding from a narrow slot at the base of one of the radial resonant 
spaces and leading to a wave-guide section, with the vacuum seal effected 
by a window at the end of the guide section as shown in Fig. 18.2b. 
Numerous variations of these two basic schemes, including aperture 
coupling to a wave guide, form the bulk of the output-coupling 
arrangements. 
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Multicavity magnetrons will frequently have iron pole pieces built 
into them, with the iron brought close to the cathode and arranged so 
that a magnetic field parallel to the cathode is created. The pole pieces 
are brought to the external surface of the tube so that a magnet can be 
attached external to the vacuum. In some tubes the cathode leads are 
brought out axially through a hole in the iron pole pieces. 

In addition, there are frequently straps interconnected between the 
anode pole pieces in order to separate the 
various natural resonant frequencies of the 
resonant circuit. Various tuning devices are 
also used. These will be described in connec­
tion with the resonant properties of the multi­
cavity circuit. 

18.3. Resonant Properties of Multicavity 
Magnetrons. The resonant systems shown 
in Fig. 18.1 will have a series of natural 
resonant frequencies. These frequencies are 
most properly determined by an analysis of 
the electromagnetic fields of the system. 
However, since most engineers are more 

Fm. 18.3. - Approximate 
equivalent circuit of the 
magnetron of Fig. 18.la. 

familiar with circuits than with fields, a partial approximate analysis will 
be made in terms of some equivalent circuits. It must be recognized, 
however, that the determination of suitable equivalent circuits depends 
originally upon a knowledge of the fields. 

The anode-cathode arrangement of Fig. 18.la is, at first glance, 
expected to have the equivalent circuit shown in Fig. 18.3. The capacity 
C1 represents the capacity between a pole face and the anode. The 

L1 
capacity C2represents the capacity 
between two adjacent pole faces. 
The inductance L 1 is the induct­
ance of the inner surface of the 

CzT T . J T T J J J J circular hole. Actually, this is a 
poor equivalent circuit, for it neg­

Fm. 18.4.-Developed form of the equiva-
lects transmission-line effects and lent circuit of the magnetron of Fig. 18. la. 
the large mutual inductance be-

tween adjacent anode spaces. It will, however, serve as a basis for an initial 
discussion. Let the circuit be developed by unwrapping the structure to 
give the arrangement of Fig. 18.4. This is seen to be a low-pass filter. As 
such, it will have a pass band in which the attenuation is substantially 
zero and in which there is a phase shift per section which increases 
uniformly from zero at zero frequency to 1r radians per section at cutoff. 
When the total phase shift along the series of N pole faces and hence N 
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sections is any integral multiple of 2r, then standing waves can exist in 
the circular arrangement, which is merely the developed form connected 
onto itself. The actual resonant fields are formed by two waves of equal 
amplitude traveling in opposite directions around the cathode. Ana­
lytically, this occurs whenever 

(3 = 2nr 
N 

(18.1) 

where (3 is the phase shift per section in radians, n is the number of cycles 
of a traveling wave around the cathode, commonly referred to as the 
mode number, and N is the number of gaps or pole faces. When n 

equals ;, then the phase shift per section is r radians and th~ fields will 

reverse at adjacent gaps. This mode is called the r mode and is the one 

faJ lbJ 
Fm. 18.5.-Fields in multicavity magnetrons. 

ordinarily used in multicavity magnetrons. In Fig. 18.5 are shown the 
fields in a multicavity magnetron of eight segments for n equal to 1 and 
4, the latter being the 1r mode. The resultant field has the properties 
of a standing wave, i.e., it remains stationary and only varies in magni­
tude periodically with time. Such a standing wave can, of course, be 
resolved into traveling waves, and it is the study of the interaction 
of the electrons with one of the traveling-wave components that leads 
to the best picture of magnetron operation. 

The phase-shift function of the circuit of Fig. 18.4 can be evaluated 
by applying Campbell's formula. 1 In the pass band this has the form 

cos (3 = l + (2~) (18.2) 

1 EVERITT, W. L., "Communication Engineering," 2d ed., p. 173, McGraw-Hill, 
New York. 19&:"'. 
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where (3 is the phase shift per section in radians, Z 1 is the total series 
impedance per section, and Z2 is the total shunt impedance per section. 
In this case 

which reduces to 

L1 

z - Ci 
i - • L l 

JW 1 +~c JW 1 

(18.3) 

(18.4) 

where w1 is the angular resonant frequency of the parallel L,C1 com­

bination equal to _ 
1 

1 
in magnitude. The shunt impedance is given 

vL1C1 
by 

Z2 = -.-1-
JwC2 

Making the indicated substitutions into Eq. (18.2), 

(18.5) 

(18.6) 

If now Eq. (18.1) is invoked and the above equation solved for (;)2. 
there is obtained 

(18.7) 

where w is now the angular resonant frequency corresponding to a given 
value of n and N . The resonant frequencies for the assumed circuit 
will have the form shown in Fig. 18.6. The important observation about 
Fig. 18.6 is that t,he frequency of the 11" mode is not very different from 
the next resonant frequency. This is a bad situation and cannot be 
tolerated if the frequency separation is too s:nall. A 1 per cent frequency 
separation is poor and will give trouble from the oscillation jumping to 
the adjacent frequency. A 3 per cent frequency separation is marginaL 
A 15 per cent frequency separation is good. 

The above analysis is not very satisfactory, for it neglects the mutual 
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Frn. 18.7.-Equivalent circuits of multicavity magne­
trons including the mutual inductance between slots. 
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inductance between adjacent slots, which is expected to be quite high. 
The magnetic flux lines are parallel to the axis of the tube in the slots. 
At the edges of the slots the magnetic flux lines divide and return through 
the adjacent slots. Accordingly, the equivalent circuit is expected to 
look like that shown in Fig. 18.7a. The ratio of the number of magnetic 
flux lines returning through adjacent slots to the total number will be 
nearly unity, which means that the coupling is nearly unity. The mutual 
inductances of Fig. 18.7a can be replaced by the T-section equivalent 
of Fig. 18.7b. 1 This allows the circuit of Fig. 18.7a to be represented 
as in Fig. 18. 7 c. This circuit has the characteristics of a band-pass 
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Fm. 18.8.-Resonant frequencies of the circuit 
of Fig. 18. 7. 

filter, the phase shift at the low-frequency cutoff being 1r radians per 
section. For this circuit the resonant frequencies are given by 

1 
w2 = ~---~~----

( 1 - cos 
2N1rn)-22 + -1

-2 
Wt W2 

(18.8) 

1 1 
where w1

2 =. MCi and w2
2 = Mc

2
• The relative disposition of the 

resonant frequencies for the different mode numbers is shown in Fig. 
18.8. Again the frequency separation between the 1r mode and its 
neighbor is very small. 

Actual magnetrons will have characteristics between those cor­
responding to the two case:,; discussed, the behavior more frequently 
corresponding to a band-pass filter and the resonant frequency of the 1r 

mode occurring slightly above the low-frequency cutoff. 
The difficulties associated with closely spaced resonant frequencies 

1 EVERITT, op cit., p. 232. 



630 VACUUM TUBES 

can be greatly reduced by strapping alternate pole tips together. The 
commonest form of strapping, known as "double-ring strapping," 
is shown in Fig. 18.9. In this arrangement two rings are run around 
the pole tips. Each ring is connected to alternate pole tips, one ring 
being connected to all the odd-numbered pole tips and the other to all 
the even-numbered pole tips. In the 1r mode of resonance, alternate 
poles are 180 deg out of time phase with each other. As a result, the 
straps will be 180 deg out of phase with each other, and thus the capacity 
between the straps is added in parallel with the capacity C1 in the equiva­
lent circuits. From Eq. (18.8) this is seen to lower the resonant frequency 
of the 1r mode. Because of the symmetry and phasing no current will 
flow in the straps at the resonance frequency of the 1r mode. For other 
modes, the phase shift between adjacent poles is not 180 deg, and so 
currents will flow in the straps. This effectively puts more inductance 
in parallel with the inductance of the slots and so raises the frequency 

D 
Sfraps c: I 

of the adjacent resonances. Both the 
capacity and inductances thus com­
bine to increase the frequency separa­
tion between the 1r-mode resonance 
frequency and the adjacent resonant 
frequency. The shorter and heavier 
the strap segments, the more heavily 
strapped the magnetron is said to be. 
Another device sometimes used to Fm. 18.9.-Double-ring strapping. 
increase the frequency separation 

between the desired resonance and its neighbor is that of making alter­
nate anode slots of different length, as shown in Fig. 18.ld. Magnetrons 
using this arrangement are designated as being of the rising-sun type. 
By proper proportioning of the lengths a very good frequency separation 
can be achieved. 

All the multicavity-magnetron resonances correspond to standing 
waves formed by two traveling waves of equal magnitude moving in 
opposite directions. These traveling waves will have radial components 
of electric field that are strongest at the plate and drop off somewhat 
toward the cathode. They will also have tangential or angular compo­
nents of electric field that are very strong at the anode gaps and drop off 
very rapidly toward the cathode. For the plane-electrode case of Fig. 
18.15 the tangential component of electric field will drop off exponentially 
from anode to cathode. In the cylindrical case the tangential compo­
nent will vary approximately as the nth-order Bessel function of the 
radius, where n is the mode number. 

Multicavity magnetrons may be tuned over an appreciable range by 
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changing either the slot capacity or the inductance. One way of doing 
this is to use a set of plugs, in a crown-shaped arrangement, that are 
dropped into the slots at the appropriate point. If the plugs are inserted 
near the interaction gap of the anode slots, the capacity of the resonant 
slots will be increased and the frequency decreased. If the plugs are 
inserted near the base of the anode 
slots, the inductance will be decreased 
and the frequency increased. An 
arrangement using both an L ring and 
a C ring for tuning is shown in Fig. 
18.10. Where a very broad range is 
desired, both an L and a C ring are 
used. In this case the rings are 
ganged so that the L ring enters as the 
C ring emerges. For a narrow tuning 
range a capacity tuning alone suffices. Fm. 18.10.-Inductive and capaci­
This tuning arrangement admits of a tive tuning rings. 
great variety of forms. Numerous 
other methods of changing the slot capacity or inductance are also used. 

18.4. Electron Behavior in Crossed Static Magnetic and Static 
Electric Fields: Plane Case. The behavior of electrons in combined 
electric and magnetic fields has already received a brief treatment in 
the chapter on Laws of Electron Motion. This subject will be reviewed 
and extended here. 

First review the behavior of an electron moving at right angles to a 
uniform magnetic field with a flux density B in the absence of an electric 
field. The electron m this case will describe a circular path whose 
radius will be 

R = 3.372 X 10-evi, 
B 

meters (18.9) 

where V is the potential in volts through which the electron has been 
accelerated and B is the magnetic-flux density in webers per square meter 
(104 gausses). If this relation is conv"erted to practical cgs units, it 
becomes 

R' = 3.37V½ 
B' cm (18.10) 

where R' is in centimeters, V in volts, and B' in gausses [see Eq. (6.62) 
for the development of this relation]. 

The freqwmcy of rotation of an electron under the above conditions 
depends only upon the magnetic-field strength. This is because the 
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electron velocity and radius are in direct proportion. The frequency of 
rotation is given by 
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Fm. 18.11.-Dependence of the cyclotron and Larmor frequencies upon the 
netic-flux density. 

mag-

where B is in webers per square meter. In practical cgs units the fre­
quency of rotation is 

Jo= 2.800B' me (18.12) 

where B' is magnetic-flux density in gausses. For obvious reasons, this 
frequency will hereafter be referred to as the cyclotron frequency. Note 
that electron rotations in a magnetic field are inherently of the right 
frequericy for microwave operation. Thus a magnetic-flux density of 
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1,000 gausses gives rise to a cyclotron frequency of 2,800 me or a wave 
length of 10.82 cm. A curve of the cyclotron frequency as a function 
of the magnetic-flux density is given in Fig. 18.11. 

Another frequency that appears in magnetron electron orbits is the 
Larmor frequency, which is just half the cyclotron frequency. The Larmor 
frequency is the frequency with which atoms will precess about lines of 
magnetic flux. 1 The atoms may be thought of as little gyroscopes hav­
ing the property of magnetic dipoles because of the fact that each rotat­
ing electron is equivalent to a small current loop. If an external magnetic 
field is applied, the magnetic dipole of the atom has a torque applied to 
it, which causes the atom to precess like a top. The Larmor precession 
frequency is 

eB 
WL =-

2m 
radians per sec (18.13) 

where B is in webers per square meter and !__ is in coulombs per kilo­
m 

gram. In practical cgs units this is 

f L = 1.400B' me 

where B' is in gausses. The Larmor frequency as a function of magnetic­
flux density is also shown in Fig. 18.11. Something akin to atomic 
precession is encountered in magnetron orbits. If an electron is moving 
in a circular path under the influence of a radial electric and an axial 
magnetic field and is then disturbed, it will oscillate about the original 
circular path at the Larmor frequency. It is also found that electron 
rotations in the presence of space charge occur at the Larmor frequency. 

An electron starting from rest in a region that has a uniform gradient 
of potential in the positive y direction and a uniform magnetic field in 
the negative z direction will move in a cycloidal path progressing in the 
positive x direction with components of displacement given by 

and 

at a . 
X = - - - SIU wot 

wo wo2 

a 
Y = - 2 (1 - cos wot) 

Wo 

(18.14) 

(18.15) 

where a = - eEy and w0 = eB.. The corresponding velocity terms are 
m m 

given by 

1 See, for instance, HARNWELL, G. P., "Principles of Electricity and Electro­
magnetism," p. 336, McGraw-Hill, New York, 1938. 
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x = !!:_ (1 - cos wot) 
Wo 

. a . t y = - Sill Wo 
Wo 

(18.16) 

(18.17) 

where the dots over the letters indicate derivatives with respect to time. 
(See Sec. 6.8 for the development of these equations.) Examination 
of the above equations shows that the cycloidal motion is a combination 
of a circular motion at a frequency equal to the cyclotron frequency and a 

linear translational motion at a constant velocity of ~ or BE11
, the field-

wo • 
neutralizing ratio (see Sec. 6.8). 

When there is again a y component of gradient of potential and a 
negative z component of magnetic field and the electrons have an initial 
velocity with components Xo and Yo at a point of zero potential, then 
the equations of motion are 

at ( ) Yo (a - woio) . X = - + I - cos wot - - 2 Sill wot 
wo ~ ~ 

(
a - woio) ) Yo • y = 2 (1 - cos wot + - Sill w0t 

wo wo 

(18.18) 

(18.19) 

(These were also developed in Sec. 6.8.) The correEponding velocity 
components are 

. a + . . t (a - woio) t X = - Yo Sill Wo - --- cos wo 
Wo ~ 

. . + (a - woio) . y = Yo cos wot wo sm wot 

Consider now only the periodic terms in the displacement. 

Yo (a - woio) . Xi = - - cos wot - 2 sm WQt wo wo 
Yo . (a - woio) Yi = -- sin wot - 2 cos wot 
Wo WO 

This is seen to be a circular motion with a radius given by 

R12 = Xz 2 + Y1 2 

Ri2 = (!:Y -f- ( a ~o~oXor 

(18.20) 

(18.21) 

(18.22) 

(18.23) 

(18.24) 

(18.25) 

For zero initial velocity, R 1 reduces to -;, which checks the cycloidal 
wo 

case, as may be seen from Eqs. (18.14) and (18.15). Note that the con-
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stant term in the x component of velocity is independent of the initial 

velocity and is equal to !!_ or BE11 as with the cycloidal case. Note also 
Wo z 

that the frequency of the rotational component of the motion is again 
the cycloidal frequency. Motion is again a combination of a circular 
motion and a translational one. The velocity of the circular motion is 

V1
2 = X12 + 'J/1

2 

V1
2 = wo2R12 

(18.26) 
(18.27) 

Thus the velocity is proportional to the radius and therefore corresponds 
to motion in a magnetic field alone. The resulting paths are those 
generated by a point on a projecting spoke of a rolling wheel and are 
known as trochoidal paths. The radius of the roHing wheel and its angular 

Rolling __ 
circle ', 

, Tradnq circle 

Fm. 18.12.-Modification of cycloidal path by subtraction of energy. 

velocity are determined by the ratio of the fields and the magnetic field, 
respectively, but are independent of the initial velocity, which is to say 
the energy of the electrons. The square of the radius of the tracing circle 
is directly proportional to the energy of the system and may drop to zero 
if sufficient energy is extracted from the electron. 

Because of the fact that the average translation velocity and the 
frequency of rotation do not change with instantaneous velocity of the 
electron, some observations can be made on the electron paths as energy 
is added or subtracted from the electron by any means. Assume an 
electron starting from rest at zero potential. Then the resulting path 
will be cycloidal. Suppose now that ene_rgy is gradually taken from the 
electron by some means. The path then becomes trochoidal, with the 
radius of the tracing circle smaller than the radius of the rolling circle 
but maintaining the same average translational velocity and the same 
cyclotron frequency of rotation. This situation is shown jn Fig. 18.12. 
If energy were added to the electron in its original cycloidal path, the 
orbit would again become trochoidal, but with the radius of the tracing 
circle greater than the radius of the rolling circle. The resulting path is 
shown in Fig. 18.13. Such electrons would be removed from operation 
in an actual tube, for the electrons would strike the cathode as soon as 
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any energy were added. The above conclusions on the effect of changing 
the electron energy will be verified quantitatively in the next section. 

18.5. Electron Behavior in Crossed Magnetic and Alternating Electric 
Fields: Plane Case. Alternating Transverse Electric Field. Consider 
now the case of an electron starting from rest at a point of zero potential 
when the electric field is y-directed and consists of a constant component 
with a superimposed alternating component of a frequency different from 
the cyclotron frequency and when the magnetic field is directed in the 

7;,~~~" --, 

FIG. 18.13.-Modification of cycloidal path by addition of energy. 

negative z direction. To treat this problem it is best to go back to the 
original differential equations of motion 

X = wo'fl 
and 

fi = a(I - a cos wit) - woX 

(18.28) 

(18.29) 

where E 11 = -Ei(l - a cos wit), B = -B,, a = - eE11
, and w0 = eB,. 

m m 
The starting conditions are that the initial velocity is zero, that is, ;i; = 0 
and 'fl = 0 for t = 0. Equation (18.28) integrates to give 

;i; = woy 

Substituting this value into Eq. (18.29), 

fi + wo 2Y = a(I - a cos wit) 

(18.30) 

(18.31) 

This is analogous to the circuit problem of a series inductance and 
capacity with an impressed voltage consisting of a direct potential with 
a superimposed alternating potential of a frequency different from the 
resonant frequency. The solution will consist of two parts. The first 
part is the transient response known as the "complementary function" 
and is the same as that given in Eq. (18.15). The second part is known 
as the "particular integral" and corresponds to the steady-state solution 
in the equivalent electrical circuit. It is expected to be of the form 

y; = A cos wit + B (18.32) 
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from inspection of Eq. (18.31). Substitution into Eq. (18.31) shows that 
the particular integral associated with the a term of Eq. (18.31) is of the 
form 

(18.33) 

The complete solution is therefore represented by the sum of Eqs. (18.15) 
and (18.33), 

a aa 
y = - 2 (1 - cos wot) + 2 2 (cos wot - cos wit) (18.34) 

wo wo - w1 

Substituting this into Eq. (18.30) and integrating to obtain x, 

x = .!!:.. (t _ sin wot) + aawo 
2 

(sin wot _ sin w1t) (lS.35) 
Wo Wo Wo 2 

- W1 Wo W1 

the constant of integration being zero because the initial velocity was 
taken as zero. The above equations reduce to the cycloidal form for 

27;, 

7; 27} 
.x axis <Timel-

31j 

Frn. 18.14.-Path of an electron in crossed magnetic and alternating electric fields. 

a = 0. Each of the coordinate displacements is seen to have alternating 
components with frequencies w0 and w1• Because of this we expect that 
the resultant path will display some beat phenomena at the difference 
frequency of w0 - w1. This occurs because the alternations at frequencies 
w0 and w1 are alternately in phase and out of phase. A plot of the 
resultant path is shown in Fig. 18.14. The amplitude is seen to be high 
initially, to decrease to a minimum, and then to build up again. As the 
amplitude decreases, average kinetic energy of the electron drops and 

then builds up again. Average translational velocity is .!: + ~awo 
2

, 
Wo wo - w1 

a value that is maintained constant regardless of the amplitude of 
oscillation. It should be pointed out, however, that, although the 
translational velocity will be constant for an electron starting at any 
pa.rticular time, the magnitude of the translational velocity will vary 
for electrons starting at different points on the cycle. The value given 
above is the maximum translational velocity that will be encountered. 
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The minimum value will be _E:_ -
2
aawo 

2 
and will occur for electrons 

Wo Wo - W1 

that leave half a cycle later than for the case solved above. The ratio 
of the alternating components of displacement of frequency w 0 and w1 

will be 

Magnitude of w0 component w0
2 - w 1

2 

Magnitude of w1 component = aw 0
2 (lS.36) 

When the frequency of the alternating component of electric field is the 
same as the cyclotron frequency, a resonance will occur that may build 
up the oscillations to infini'te amplitude. For the off-resonance case 
discussed above the instantaneous radius of the rotational motion will 
be given approximately by 

2 "' ( a )
2 

2a
2
a R1 = - 2 + 2 ( 2 2) cos (wo - w1)t 

Wo Wo Wo - W1 
(18.37) 

on the assumption that w 0 and w 1 are not greatly different. This shows 
that the radius changes periodically at the difference-frequency rate, 
which means that the rotational kinetic energy changes periociically at 
the same rate. In an actual magnetron, use is made of electrons behaving 
somewhat like the one discussed above. Electrons liberated at the proper 
point on the cycle will have high initial kinetic energy, which they will 
lose at first through interaction with the alternating component of electric 
field. If such electrons can be removed from the field before they begin 
to take energy from the electric field and if electrons that initially 
take energy from the electric field can be removed quickly, there will be a 
selective mechanism by which the electrons will convert their kinetic 
energy derived from the static field to r-f energy, which is supplied to 
the alternating field. This naturally occurs in cylindrical magnetrons, 
for electrons that lose energy will move away from the cathode, and, with 
proper design, they will be taken out of action by striking the plate 
before they begin to absorb energy. Electrons that tend to take energy 
from the field will have the amplitude of their oscillations built up and 
will usually be removed from action by coming back and striking the 
cathode on the first loop of their orbit. 

Effect of a Traveling Electric Field. In actual tubes the alternating 
components of field result from standing waves, which may be resolved 
into traveling waves of equal amplitude moving in opposite directions. 
Such waves will have both transverse and longitudinal components. In 
general, both the transverse component and the longitudinal component 
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of electric field will increase in strength from cathode to plate. If an 
electron moves with a translational velocity corresponding closely to 
the velocity of the traveling waves, then the field components of the 
wave moving with the electron will have a considerable effect, while the 
field components of the wave traveling in the opposite direction will be 
going by the electron at twice the frequency of the alternating field and 
will merely introduce some perturbations, which will average out over 
short periods of time. 

It is possible to make a reasonably exact analysis of such a case as is 
cited above, though by now enough properties of the electron orbits have 
been pointed out so that a qualitative discussion will reveal the out­
standing characteristics of the resulting paths. Assume that the transla­
tional velocity of the electron is nearly equal to that of the traveling-wave 
components, and neglect the effect of the wave traveling in the direction 
opposite to that of the electron. Consider the effect of the longitudinal 
component of electric force, which increases toward the plate. An elec­
tron initially moving in the same direction as the longitudinal force will 
pick up energy on the portion of its loop closest to the plate and lose 
relatively less on the portion of its loop nearest to the cathode. There 
will thus be a net gain in energy, and the radius of the rotational part of 
the motion will increase, with the result that the electron will probably 
strike the cathode at the end of its first loop and be retired from action. 
Such electrons as tend to extract energy from the traveling wave will 
therefore in general be quickly removed. Those electrons which initially 
move against the longitudinal component of electric force will lose 
considerable energy on the portion of their loop closest to the plate, 
where the longitudinal field is strongest, and regain relatively less energy 
on the portion of the loop closest to the cathode. There is therefore a 
net loss of energy, which will cause the electron to have the radius of the 
rotational part of its motion decreased, indicating that the electron is 
giving up energy to the traveling wave. If now the associated transverse 
component of force is in the direction to attract the electron to the plate, 
the electron will drift toward the plate, where it will strike with an 
energy less than that corresponding to the direct potential of the plate. 
Electrons moving under these conditions constitute the useful, or working, 
electrons and serve to supply energy to the traveling wave. All other 
groups will be retired from action by striking one of the electrodes in a 
relatively short time, and the energy which they take from the traveling 
wave will be much less than that supplied by the working electrons. 
The mechanism by which the nonworking electrons are retired from action 
is highly selective and accounts for the high efficiencies obtainable with 
magnetron oscillators. 
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The diagram in the upper half of Fig. 18.15 is the approximate form 
of the electric field at the peak of a cycle. Both traveling-wave com­
ponents will have the same shape of field, and the shape of this field 
will be preserv~d approximately as the waves move along. Shown 
in the figure are lines of electric force on electrons. The direction of the 
force on an electron will be opposite to the direction of the flux and field 
lines. In magnetron tubes designed so that the average translational 
velocity of the electrons is approximately equal to the velocity of the 
traveling waves the electrons will be subjected to a nearly constant 
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Fm. 18.15.-Force lines in a plane-electrode multianode magnetron. 

electric force as they move along, except that the field strength increases 
as the electrons move from cathode to anode. 

The direction of the electric force at a point midway between cathode 
and anode is approximately as shown in the lower half of Fig. 18.15. 
The force is seen to rotatP progressively along a line parallel to the 
electrodes. 

Consider now the behavior of electrons emitted at different points 
along the cathode (or at different times on the cycle). An electron 
emitted in the region B will encounter a transverse force, which will 
tend to drive it back toward the cathode. It will also encounter a 
longitudinal force, which will tend to accelerate it. This means that the 
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axis of the rotational component of its motion will be bowed, as shown by 
the dotted line of Fig. 18.16a. Also, because the electron is being 
accelerated in the longitudinal direction the amplitude of its rotational 
component of motion will increase, giving rise to a trochoidal orbit., 
with the result that the electron will strike the cathode after a half cycle 
of rotation. This is one of the nonworking electrons. It extracts a 
little energy from the traveling-wave component of the alternating field. 
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FIG. 18.16.-Approximate electro:o paths in a plane­
electrode multianode magnetron. 

An electron emitted in the region D will meet with accelerating 
components of both transverse and longitudinal forces. The axis of 
its rotational motion will be bowed toward the anode, as shown by 
the dotted line of Fig. 18.16b. Because this electron is accelerated, the 
amplitude of its rotation will increase and it will probably strike the 
cathode after a half cycle of its rotational motion. This is also a non­
working electron, and it extracts a little energy froir. the alternating 
field 
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An electron emitted in the region F will meet with an accelerating 
component of transverse force and a retarding component of longitudinal 
force. As a result, the axis of its rotational motion will be bowed toward 
the anode, as shown in Fig. 18.16c. Because of the retarding component 
of longitudinal force the electron will give up energy to the alternating 
field and suffer a decrease in its rotational amplitude. It will strike 
the anode after about one cycle of its rotational motion, and during this 
time the rotational component of its kinetic energy will be greatly 
reduced. This is one of the working electrons, and it is electrons in this 
group that convert the energy of the direct component of electric field 
into r-f energy. 

An electron emitted in tile region H encounters retarding components 
of both transverse and longitudinal force. As a result, the axis of its 
rotational motion will be bowed, as shown by the dotted line in Fig. 
18.led. Because of the retarding component of longitudinal force the 
amplitude of the rotational component of its motion will decrease 
somewhat, though not very much, for it is forced back toward the cathode, 
where the longitudinal component of force is very weak. Such electrons 
will probably strike the cathode after the first half cycle of rotation, but 
some may drift along the cathode, where they will form a space-charge 
cloud, which will act as a source of electrons at different parts of the cycle. 
These electrons are low-grade working electrons in that they will con­
tribute a little to the energy of the alternating field. 

There is a bunching action associated with electrons in the F group. 
Those electrons in the F group emitted near the point G will meet with a 
larger retarding component of longitudinal force than those emitted 
near the center of the group. Accordingly, they will be retarded more, 
will move more slowly, and will fall back on those emitted near the center 
of the region. Those electrons which are emitted in the F group near 
the point E will meet with a smaller retarding longitudinal component of 
force and hence will not be retarded so much, will move faster, and so 
will catch up with those electrons emitted near the center of the group. 
Calculations of electron paths show that this bunching action is very 
strong and undoubtedly contributes to the efficiency with which energy 
is transferred to the alternating field. 

18.6. Electron Behavior in Crossed Magnetic and Radial Electric 
Fields. The motions of eiectrons in crossed magnetic and radial electric 
fields are somewhat similar to those for the plane case. The similarity 
is close in the limiting case of very large radii but disappears as the radii 
become small. The equations of motion for such fields are best expressed 
in polar coordinates of radius and angle. The :differential equations of 
motion may be obtained by transforming the well-known rectangular-
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coordinate equations to polar coordinates. 1 

equations for the case of an axial magnetic 
field are 

In polar coordinates the 
field and a radial electric 

e e dV r - r82 = - - r(JB, + - -
m m dr 

(18.38) 

and 

1 d ( 2 .) •• 2· (J e ·B - - r 8 = re + r = - r • rdt m 
(18.39) 

where the dots over the coordinates indicate derivatives with respect t0 
time and the other symbols have their usual significance in mks units. 
The equation for the radial component of motion is seen to consist of two 
acceleration terms and two force terms. The first acceleration term is 
the simple radial acceleration. The second radial-acceleration term 
represents the acceleration associated with circular motion. The differ­
ence in signs is due to the fact that a positive radial force is required to 
sustain positive radial acceleration, while a negative radial force is 
required to overcome the acceleration due to circular motion. The first 
force term in the radial equation is the radial force caused by the reaction 
of the angular component of velocity with the axial component of mag­
netic field. The second radial-force term is that due to the radial 
electric field. The equation for the angular component of motion 
involves two angular-acceler'1tion terms and one angular-force term. 
The first angular acceleration results from the change of angular velocity 
with time. The second angular-acceleration term corresponds to the 
force required to maintain a constant angular velocity as the radial 
distance changes. The angular component of force is entirely derived 
from the magnetic field and results from the reaction of the radial 
component of velocity with the axial magnetic field. 

The above equations of motion are more simply written if the cyclo-

tron angular frequency w0 = eB. is introduced. The equations in terms 
m 

of this frequency are 

and 

. , e dV 
r - r/J2 = -wor8 + - -

m dr 

! !!__ (r2/J) = wor 
r dt 

(18.40) 

(18.41) 

These equations are amenable to a little simplification if attention is 
initially restricted to ~ases in which both the radial and the angular 

1 See, for instance, MACMILLAN, W. D., "Statics and the Dynamics of a Particle," 
p. 238, McGraw-Hill, New York, 1927. 
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component of velocity are zero at a cathode, r = re. Equation (18.41) 
can be integrated to give 

r28 = ~ (r2 - rc 2) (18.42) 
2 

or, solving for 8, 

(J = Wo (i _ rc2
) 

2 r2 (18.43) 

This equation is subject only to the restriction that the velocity be zero 
when the radius is equal to the cathode radius. It shows that the angular 
velocity depends only on the radius and the magnetic-field strength. 
The angular velocity is seen to rise from a value of zero at the cathode 
to a limiting value of half the cyclotron angular frequency, i.e., the Larmor 
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Fm. 18.17.-Angular velocity of an electron moving 
under the influence of an axial magnetic field and a radial 
electric field as a function of radius. 

angular frequency, at very large radii. A curve giving the relation between 
the angular velocity and the cyclotron angular frequency as a function 
of radius is shown in Fig. 18.17. Equation ( 18.43) does not apply if 
the electron gains or loses energy after its departure from the cathode. 

It is possible to get a differential equation for the radial component 
of motion alone by substituting the value of the angular velocity as 
given in Eq. (18.43) into Eq. (18.40). The resulting equation is 

r + rwo
2 (i _ rc4

) = !'._ dV 
4 r4 m dr (18.44) 

This equation is rather difficult to solve in general because it is non­
homogeneous and because V is a function of r (usually logarithmic). 
However, many useful deductions about orbits in limiting cases can be 
made from this equation. 

The energy equation for polar coordinates is like that in any set of 
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coordinates except that the velocity is expressed in terms of radial and 
angular components. It is 

~ (r2 + r282) = eV(r) 
2 

(18.45) 

on the assumption that the velocity and potential are zero at the cathode. 
This simply states that the kinetic energy gained is equal to the potential 
through which the electron has fallen. The magnitude of the velocity 
is seen to depend only upon the potential and to be independent of the 
magnetic field and the direction of the velocity. The direction of the 
velocity will, however, depend upon the magnetic field. With the above 
assumptions it is possible to specify conditions under which an electron 
will just graze the plate of a cylindrical magnetron. Substitute the value 
of the angular velocity from Eq. (18.43) into Eq. (18.45) to eliminate this 
factor. There results 

f2 + r wo I - '!::__ 2 2 ( 2)2 
4 r2 

2e =-V 
m 

(18.46) 

For an electron grazing the plate, i.e., for cutoff, the condition that r = O 
for r = rp is imposed, where the subscript p refers to the plate. This 
gives 

2e = -Vpc 
m 

or, solving for V pc in terms of the other factors, 

V _ e rp B 2 l re 2 ( 2)2 
pc.--- z --

m 8 rp2 

(18.47) 

(18.48) 

where V pc is the voltage below which no electrons emitted with zero 
velocity will reach the plate. This equation shows that the voltage 
requi1·ed to give cutoff in a magnetron increases as the square of the 
magnetic field for a given tube geometry. It is often referred to as the 
"cutoff parabola" and was originally derived by Hull. 1 For convenience 
in calculation let the magnetic field be ,:ixpressed in gausses as B.', 
let distance be measured in ems, and let the constant be numerically 
evaluated. Then 

riBz'2 ( rc2)2 
Vpc = 45.48 1 - ri volts (18.49) 

The cutoff equation given above is exact whether there is space charge 
present or not, for it is derived from the energy relation. The shape 

1 HULL, A. W., Effect of a Uniform Magnetic Field on the Motion of Electrons 
iwtween Coaxial Cylinders, Phys. Rev., vol. 18, pp. 31-61, July, 1921. 
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of the potential field between cathode and plate will be influenced by the 
presence of space charge, but the grazing relation will not. A nomo­
graphic chart of the cutoff relation of Eq. (18.49) is given in Fig. 18.18. 

In the absence of oscillations and space charge, electrons will move out 
from the cathode in cardioid-like orbits, returning again to the cathode 
with zero velocity provided that they are not intercepted by the plate 
en route. When there is no energy added or subtracted en route, the 
orbits will always consist of single loops between the contacts with the 
cathode. For the limiting case of a very small cathode the orbits are 
represented approximately by1 

( . 28)~ r ""'= r max Sill 3 (18.50) 

Another static orbit of interest is that in which the electron simply 
rotates in a circular orbit around the cathode at a constant radius. 
In the absence of space charge, it is a little difficult for an electron to 
get into such an orbit, but such an orbit is possible. The equation for 
this case is obtained from Eq. (18.40) by setting the radial acceleration 
equal to zero. The resulting equation may then be written 

-2 11 woE 
(J - Wo!1 - - = Q 

rB, (18.51) 

whereE = - ~~ is directed inward. This may be solved for the angular 

velocity to give 

(18.52) 

Numerical substitution shows that the second term in the radical is 
invariably much smaller than the first, and thus the first two terms of the 
binomial expansion may be used to give 

/1 "-' Wo + ! (18.53a) 

or 

(J ~ wo - _!_ dV 
- rB dr (18.53b) 

where B is in webers per square meter (10 4 gausses). This shows that 
the angular velocity is a little less than the cyclotron angular frequency. 
Numerically, the second term seldom exceeds 10 per cent of the cyclotron 
angular frequency. This means that the inward-directed radial magnetic 
force is much greater than the outward-directed radial electric force. 

1 lfli.d.. 
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For ordinary purposes the angular velocity for a fixed radial distance 
can be taken as the cyclotron angular frequency. 

18. 7. The Effect of Space Charge. In an actual operating magnetron 
it is expected that space-charge effects cannot be neglected. Since the 
transit time associated with the curved paths is relatively large, the 
electrons will stay in the interelectrode fipace of a magnetron much longer 
than in that of a cylindrical diode without axial magnetic field. As a 
result, the space-charge effects should be much more pronounced and 
should exhibit a considerable smoothing effect upon the shape of the 
electron paths. The analytical treatment of space-charge effects is 
expected to be somewhat difficult; yet a considerable impression has 
been made on this subject. -

The basic differential equations that have been given before are 
expected to apply to the space-charge case, with the difference that the 
potential distribution will be altered by the space charge. Specifically, 
the equations involving angular velocity but not the potential distribu­
tion [Eqs. (18.41) to (18.43)) will be unchanged. Likewise, the energy 
equation [Eq. (18.45)) and the corresponding differential equation for 
radial displacement [Eq. (18.46)) will apply, with the difference that the 
potential function is influenced by the space charge. The potential 
distribution will be given by Poisson's equation in polar coordinates for 
the single coordinate of radius, 

1 d ( dV) -p 
rdr r dr = ---;-; (18.54) 

where p is space-charge density in coulombs per cubic meter, negative 
for electrons, and t:o is the dielectric constant of free space in mks units. 
The radial current through any cylinder concentric with the axis of the 
tube is proportional to the radial velocity and the space-charge density, 

Jr = 21C"'rpT 

With this substitution, Eq. (18.54) becomes 

I d ( dV) -Jr r dr r dr = t:o2m 

(18.55) 

(18.56) 

If now the value of r from Eq. (18.46) be substituted, there results 

d ( dV) -J, (18.57) 

dr r dr = t:o21r ✓ + 2;: - wl2 (r - r;2y 
This is the differential equation for the potential as a function of radial 
distance, including the effect of space charge. 
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A detailed study of Eq. (18.57) shows that the radial acceleration 
of an electron is governed by an apparent potential which varies as the 
two-thirds power of the radius near the cathode and as the inverse square 
of the radius close to the plate as long as the current is not cut off. The 
apparent potential referred to is the real potential less the critical poten­
tial that would just prevent an electron from reaching a plate of radius 
r. 1- 3 Between the cathode and plate the apparent potential is a 

He 
4 

He 

0 
2Hc 

FIG. 18.19.-Spiral electron orbits in t,he cylindrical magnetron in the presence of 
space charge. (After Brillouin.) 

continuously increasing function of radius. As a result, the radial 
velocity will always be positive, increasing rapidly at first and then more 
slowly. Since the corresponding angular velocity as given by Eq. 
(18.43) and Fig. 18.17 is a continuously increasing function of the radius, 
being small at first and then increasing with the radius, the resultant 
eiectron paths will be nearly radial at the cathode, and will then curve 
strongly into a spiral orbit out to the plate. In Fig. 18.19 are shown some 

1 BRILLOUIN, L., Theory of the Magnetron, Elec. Commun., vol. 20, pp. 112-121. 
2 BRILLOUIN, L., Theory of the Magnetron L Phys. Rev., vol. 60, pp. 385--396, 

Sept. 1, 1941. 
3 BRILLOUIN, L., Practical Results from Theoretical Studies of Magnetrons, Proc. 

l.R.E., vol. 32, pp. 216-230, April, 1944. 
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electron orbits in the presence of space charge for a fixed plate potential 
as the magnetic-flux density is increased. For low magnetic fields, the 
paths are nearly radial, with only a slight curvature. As the magnetic 
field is increased, the spiral orbits evidence themselves and the total 
angular progression increases. At cutoff all the electrons move in circu­
lar paths, constituting a core of space charge that rotates about the 
cathode almost as a solid body. As the magnetic field is increased still 
further, the radius of the space-charge core decreases but still maintains 
its composition of electrons moving in circular paths with a nearly 
constant angular velocity. 

The case of the electrons moving in circular orbits for voltages 
beyond cutoff is of considerable interest, for it is found that actual 
magnetrons operate most efficiently well beyond cutoff. The rotating 
core of space charge undoubtedly plays an important role in the operation. 
This case may be handled analytically. Setting the radial current in 
Eq. (18.57) equal to zero requires that the radical in the denominator of 
the right-hand term also be zero. Hence 

m w0
2 

( r 2)2 
V(r) = + - - r - .5_ 

2e 4 r 
(18.58) 

Upon differentiating this in accordance with Eq. (18.54) there is obtained 
an expression for the space-charge density as a function of the radial 
distance, 

(18.59) 

Each of the above expressions applies only out to the radius at which 
the cutoff relation of Eq. (18.49) holds, with a general radius substituted 
for plate radius. The potential is seen to increase nearly quadratically 
with radius out to the edge of the space-charge core. Beyond that it will 
follow the logarithmic function that applies for cylindrical electrodes 
in the absence of space charge. The space-charge density is seen to be 
nearly constant for large values of r but will rise to twice the large-radius 
value at the cathode. The angular velocity follows the Jaw of Eq. 
(18.43) and Fig. 18.17. Accordingly, the core is one whose density is 
nearly constant except for an increased density near the cathode and 
whose outer portions rotate at half the cyclotron frequency and whose 
inner portions rotate at lower frequencies. 

The above picture of a rotating core of space charge has been verified 
experimentally. In an experiment in which an indication of the current 
flowing is measured by the number of positive ions created by collision, 
the positive-ion current is found to increase sharply as the plate current. 
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is cut off, indicating that a greater current is flowing around the cathode 
than was flowing to the plate. 1 Further confirmation of this type of 
motion is obtained by considering the equivalent relative dielectric 
constant of an electron cloud, which in this case, by application of Max­
well's equations, is found to be 

wo2 

£
1 = 1 - - (18.60) 2w2 

If an experimental coaxial diode is made that can be inserted into a 
coaxial line, it is found that the equivalent dielectric constant of the tube 
section of the line follows very closely the relation given above. 2•3 The 
quantitative agreement with the simple theory in the above experiments, 
while not perfect, is very convincing, though the complete validity 
of the ideas involved is subject to some question.4 

18.8. Electron Behavior in Crossed Magnetic and Alternating Radial 
Electric Fields. No complete analysis of electron motion in crossed 
magnetic and alternating radial electric fields is available although the 
relations seem to be reasonably well understood. Relations for small­
amplitude oscillations with and without space charge can be given, 
though these obviously tell only part of the story since actual magnetron 
oscillations involve large amplitudes. Large-amplitude relations can 
be calculated numerically for specific tube dimensions and operating 
conditions, from which some general deductions can be made. It is 
worth considering the small-amplitude relations, however, in that they 
will contain some elements of truthful representation of the actual 
picture. 

Consider first the small-amplitude oscillations without space charge, 
based upon Eq. (18.44). Let the gradient of potential at any radius 
ro be given by 

e dV - - = ao + a1(r - ro) 
m dr 

i.e., a constant plus a linear term, and let 

s = r - ro, 

(18.61) 

(18.62) 

1 HuLL, A. W., The Paths of Electrons in the Magnetron (Abstract Only), Phys. 
Rev., vol. 23, p . 112, January, 1924. 

2 BLEWETT, J . P., and S. RAMO, High Frequency Behavior of a Space Charge 
Rotating in a Magnetic Field, Phys. Rev. , vol. 57, pp. 635-641, April 1, 1940. 

3 BLEWETT, J.P., and S. RAMO, Propagation of Electromagnetic Waves in a Space 
Charge Rotating in a Magnetic Field, J our. Appl. Phys., vol. 12, pp. 856-859, Decem­
ber, 1941. 

• GABOR, D. , Stationary Electron Swarms in Electromagnetic Fields, Proc. Roy. 
Soc., (l,ondon), Ser. A, vol. 183, pp. 436-453, 1945. 
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Upon making these substitutions in Eq. (18.44) and preserving only 
first-power terms in t there results the differential equation for the 
perturbed motion about any radius ro, 

Of principal interest is the periodic term in the solution of this equation. 
This will have the form 

wo ✓ (re).: 4a1 Sl = A cos - 1 - 3 - + -2 t 
, 2 ro wo 

(18.64) 

The resulting path is like that generated by a point on a small circle 
rolling on a large circle of radius r0 concentric with the cathode. The 

angular frequency of the perturbed motion is seen to differ from ~0 by a 

radical containing a distance ratio raised to the fourth power (generally 
small) and the coefficient of the gradient, a 1, which will be positive in 
the presence of space charge and negative in its absence. This means 
that the perturbation frequency will ordinarily be less than the Larmor 
frequency (half the cyclotron frequency) in the absence of space charge 
and greater than the Larmor frequency in its presence. Correspondingly, 
the average angular velocity will be 

(J = Wo ( 1 _ rc
2
) 

2 ro2 (18.65) 

which is the same as previously given by Eq. (18.43). At large radii 
and in the presence of space charge the perturbation frequency can be 
many times the average angular velocity. 

The conclusion that the perturbation frequency is more than the 
Larmor frequency (half the cyclotron frequency) is confirmed by examina­
tion of a simple oscillation mode in the presence of space charge. Let 
it be assumed that there is under consideration a rotating core of space 

charge. At the outer edge of the core, where ( ~) 
4 

is much less than 

unity, the differential equation of the radial component of motion will be 

(18.66) 

from Eq. (18.44). Now let r = ro + t as before, and apply this to a 
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uniform expam,ion through the core. Conservation of charge then 
requires that 

Now since 
l dV -p 

r dr = 2to 

from Eq. (18.54) and the large-radius value of Po is 

(18.67) 

(18.68) 

(18.69) 

from Eq. (18.59), then the differential equation [Eq. (18.66)1 takes the 
form 

(18.70) 

which reduces to simply 

Wo 2 

f = - -t 
.; 2 

(18.71) 

if terms in l of powers higher than unity are disregarded. From this 
To 

it is seen that the perturbation frequency of the electrons in the space-

charge cloud is ~ for the simple mode of oscillation in which the whole 

cloud pulsates uniformly. 1,2 

Solutions other than the simple one indicated above can be obtained 
for the magnetron with space charge. These will not be discussed in 
detail, for their application is limited to small-amplitude oscillations. 
In addition to the pulsating core of space charge just referred to, solutions 
have been found in which the edge of the space-charge core has sinusoidal 
ripples appear on it in the form of standing waves, with an integral 
number of sine waves around a complete circumference. These standing 
waves can be resolved into traveling waves of equal amplitude traversing 
the circumference of the core with equal velocities in the two directions. 1•2 

1 BRILLOUIN, L., Theory of the Magnetron II, Phys. Rev., vol. 62, pp. 166--177, 
Aug. 1 and 15, 1942. 

2 BRILLOUIN, L., Theory of the Magnetron III, Phys. Rev., vol. 63, pp. 127-136, 
Feb. 1 and 15, 1943. 
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Some of these modes exhibit an associated negative resistance and so 
may give rise to oscillations. Likewise, there have been found solutions 
in which there is a rotating cylinder of space charge with definite inner 
and outer edges not in contact with the electrodes. In such cylinders of 
charge it is possible to have clumps or spokes of increased space-charge 
density, which rotate at half the cyclotron angular frequency. 1 The 
appearance of spokes of space-charge density in an analytical solution 
is of great significance, for it confirms the existence of such spokes pre­
dicted from simple qualitative considerations. 

So far the information obtained about electron behavior in the 
presence of alternating components of electric field has not been very 
enlightening with regard to efficiency of operation and other practical 
matters. It is perhaps too much to expect that an analysis of this 
complex problem will yield neat and simple engineering-design formulas. 
The best that can be done at present is to attempt to get a composite 
picture of the mechanism of operation by combining the impressions 
obtained by looking through the various windows corresponding to 
the different avenues of approach to the problem. 

Considerable information is obtained from considering the reaction 
of electrons with rotating-field components. If an electron moves so 
that it is being continuously retarded by a tangential component of 
electric force, it will give up energy, which will allow it to move in a larger 
radius path. Since energy is being given up, it is possible for such an 
electron to have its angular velocity become progressively less than the 
value it would have at any radius if it had not lost energy. Accordingly, 
it is possible for electrons to spiral out to the plate with a constant or 
nearly constant angular frequency of rotation. 2 

The alternating components of the electric field of a cylindrical 
multicavity magnetron contain both radial and tangential components, 
which can be resolved into components traveling in the two directions. 
Let the radial component of the alternating gradient of potential in the 
direction of the electron travel be R(r)q,(nfJ + wt) and the tangential 
component be T(r)y;(nfJ + wt). The components rotating in the oppo­
site direction will be neglected. The functions y; and q, are periodic 
functions of the angle 8, with n an integer equal to the number of full­
period variations of field around the magnetron. Near the cathode, y; 
and q, will be simple cosine waves, but near the plate they will be nearly 
square waves. If these components of the gradient of potential are 

1 BLEWETT, J. P., and S. RAMO, High Frequency Behavior of a Space Charge 
Rotating in a Magnetic Field, Phys. Rev., vol. 57, pp. 635--641, 1940. 

2 Application of the above ideas was first made by PosTHUMUS, K., Oscillations in a 
Split Anode Magnetron, Wireless Eng., vol. 12, pp. 126-132, March, 1935. 
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included in the basic differential equations of motion, then Eqs. (18.40) 
and (18.41) become 

r - r02 = ~ [ ~~ + R(r)cf>(n0 +wt)] - w0r0 (18.72) 

~ ;t (r 20) = ~ T(r)y,,(n0 + wt) + w0r (18.73) 

Let it now be considered whether it is possible for an electron tc 
follow the field around in such a way that 

n0 = -wt + a (18.74) 

where the negative sign goes with the counterclockwise rotation of an 
electron which occurs for a magnetic field in the negative z direction and 
it is assumed that a changes very little with time. The interpretation 
of the angle a is that it is the angle by which the electron lags some 
reference point on the rotating field, conveniently the maximum. Then 
since 

the equations of motion above become 

r _ rw
2 

= !__ [dV + R(r)cf>(a)] + w wor 
n 2 m dr n 

2rw . e - -- = wor + - T(r)y,,(a) 
n m 

(18.75) 

(18.76) 

(18.77) 

These equations can be partly solved without knowing the exact nature 
of the functions y; and cf>. Let Eq. (18.76) be integrated on the assump­
tion that the radial velocity and potential at the cathode are zero. Then 

i-2 = r2 
( 1 -

1
: 2

2

) ~ (~ + wo) + ! V(r) + ! f R(r)cf>(a) dr (18.78) 

If now the value of i- 2 from Eq. (18.77) is substituted in the above, there 
results 

r
-~ T(r)y,,(a)]

2 

_ ( rc2) w (w ) 
- r2 1 - - - - + wo 

2w + r 2 n n 
- Wo 
n 

2e 2e f + - V(r) + - R(r)cf>(a) dr 
m m 

(18.79) 

This equation tells how the angle a by which the electron lags some 
referenc~ line on the rotating field varies with the radial distance. Simple 
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physical reasoning indicates that electrons will be in equilibrium when 
they are slightly behind a radial line of maximum retarding force. Under 
this condition a momentary increase of angular velocity increases the 
radius of the orbit and brings the electron into a region of stronger 
retarding force that acts to decrease the angular velocity. The argu­
ment here is the same as that used in consideration of Figs. 18.15 and 
18.16. The radial force is not necessary to the argument and will for 
the moment be considered negligible. A possible situation demon­
strated by Eq. (18.79) is shown in Fig. 18.20. Shown here are tangential 
components of electron force rotating in the counterclockwise direction 
for a six-segment magnetro_n operating on its r mode. Nodal planes 

trons and f"ie/ct 

~ -Locus of ________ : \ _ 
1 electrons in ·" \ 1 

· .. \ ... I 

,~ 7i:m9enfi'1I 
,, force 

,. vectors equilibrium I/; ·.. \ - / 
;; 

• \ .._ I ~ 

/ 1·-, .. ' 1 \\ ~ ............... . -------:v------ Noda/plane 
'oftangenfi'1I 
force 

l \\ ~>~'{I J) 
~-/- \ -

Fm. 18.20.-Electron orbits in a multicavity magnetron as deter­
mined by rotating tangential components of field. 

of force are shown by dashes. The position of electrons in equilibrium 
with the field is shown by the dotted curve lagging a plane of maximum 
retarding force. If the square of the radial function T(r) increases less 
rapidly than the radial function of the right-hand side of Eq. (18.79), 
then the angle a by which the electron lags the line of maximum retarding 
force must increase as the radius increases. Note that, although the 
effects of space charge have not been specifically considered, this treat­
ment admits of solution in cases with space charge, for then it is merely 
necessary to introduce the proper form of the potential, V(r). Including 
the effect of the radial forces will only change the locus of the electrons 
in equilibrium with the field. The locus will always lie within the zone 
between a plane of maximum tangential force and the nodal plane of 
tangential force behind it. 
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For the case of negligible radial force the square of the radial velocity 
of the equilibrium electrons at the plate will be 

r 2 = r 2 (1 - Tc
2
) (w2 + WWo) + 2e V 

P v r,,2 n 2 n m P 
(18.80) 

Correspondingly, the square of the total velocity at the plate will be 
obtained by adding r,,282, as obtained from Eq. (18.75), to the value of 
rp2 above. 

v,,2 = ri [ (2 - ;;:) :: + (1 - ;;:) w:o] + ~ V,, (18.81) 

The above two equations are those whose properties it is desired to study. 
For purposes of simplification let the angular velocity at the plate be 
written as 

,1 TpW 
TpU = - = XVo 

n (18.82) 

where v0 is the velocity corresponding to the plate potential and introduce 
the factor 

B "'o z = - = - (18.83) 
Be We 

where Be is the cutoff value of magnetic-flux density corresponding to 
the plate potential V n as obtained from Eq. (18.48). Let the cutoff 
relation be written 

riwe2 
( 1 - ;;:) = 4v0

2 (18.84) 

With the above substitutions, Eq. (18.80) becomes 

r,,: = (l _ r•:) (x 2 + 2xz 
2
) + 1 

Vo Tp ✓l _ ~ 
r/ 

(18.85) 

and Eq. (18.81) becomes 

v2 ( r2) R2 7 = 2 - ~ 2 x2 + 2 1 - --; xz + 1 
Vo Tp , Tp 

(18.86) 

Posthumus has examined these equations for the case of r. = 0 for 
r,, ' 

which the above equations simplify to 

r 2 

L = x 2 + 2xz + 1 
Vo2 

and 
V 2 
L = 2x2 + 2xz + 1 
Ve2 

(18.87) 

(18.88) 
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The relations between these factors are shown in the curves of Fig. 18.21. 
These curves show the square of the radial velocity and the square of 
the total velocity as a function of the angular velocity xvo which is 
proportional to the square root of the plate potential and inversely 
proportional to the mode number n. Since the energy taken from 
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FIG. 18.21.-Total and radial electron velocity at the anode -of a 
magnetron as a function of magnetic-flux density and angular veloc­
ity for a small ratio of cathode to plate radius. (After Posthumus.) 

the potential source per electron is ½mv0
2 on the average, then the 

electron efficiency is 
Vp2 

Electron efficiency = 1 - Vo2 (18.89) 

which means that an efficiency scale can be included on the curves of 
2 

total velocity squared with a zero value of Vv 
2 

corresponding to 100 per 
Vo 

cent efficiency. This efficiency does not, of course, include the effed 
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of circuit losses. The curves indicate only the maximum efficiencies 
that can be obtained. Actual efficiencies will be less, since not all 
electrons are as favorably operated as those discussed in this analysis. 
The principal things to be learned from Fig. 18.21 are that higher effi­
ciencies can be obtained at progressively higher mode numbers with 
higher d-c potentials and with magnetic-flux densities higher than the 
critical value. The dashed curve in Fig. 18.21 is for the case of i' i = 0. 
This corresponds to the case of electrons that have given up all their 
radial energy to the field and strike the plate at grazing incidence. This 
curve represents the highest efficiencies obtainable for any value of 
angular velocity and magnetic-flux density. 

Equations (18.85) and (18.86) are a generalization of Eqs. (18.87) 
and (18.88) originally given by Posthumus and make possible an exten­
sion of this analysis to magnetrons with finite ratios of cathode to plate 
radius. Let a limiting small value of the ratio of cathode to plate radius 
oe 0.707. Then Eqs. (18.85) and (18.86) become 

i' 2 x2 
~=-+v'2xz+l 
Vo 2 2 

V 2 x2 
...E....=3-+,v'2xz+l 
Vo2 2 

(18.90) 

(18.91) 

The corresponding curves for this high ratio of cathode to plate radius 
are shown in Fig. 18.22. These have the same general form as those of 
Fig. 18.21 except for some rather pronounced displacements. The 
limiting curve (shown dashed) for which the radial velocity of an electron 
at the plate is zero is the same for any ratio of cathode to plate radius 
and is simply 

V 2 
L = x2 
Vo2 (18.92) 

However, for the larger ratio of cathode to plate radius of Fig. 18.22, 
oscillations can be had for a given mode and magnetic-flux density at a 
lower value of plate voltage but with a slightly lower efficiency. 

In spite of some rather general assumptions made in this analysis, 
the results have considerable validity. Without question, the curves 
demonstrate c0rrectly that it is possible to get loigher efficiencies by going 
to higher mode numbers and magnetic-flux densities in excess of the 
critical value. Deductions as to the effect of the ratio of cathode and 
plate radius cannot be taken too seriously. The curves of Figs. 18.21 
and 18.22 should be displaced upward by the amount of the integral 
of the radial force, which was neglected in Eq. (18.80). When this 
displacement upward is made, the minima of the efficiency curves play 



660 VACUUM TUBES 

a more prominent role within the region of operation and specific deduc­
tions with regard to the effect of the dimensions definitely need to consider 
the effect of the radial electric forces. 

p 

(Q) 

oo~~...,...,.-___,._ _ _._ __ ,.._ _ _._ __ .___~IOO 
-0.4 -0.6 -0.8 -1.0 

wrp =x , relative angular velocity 
nvo 

Fm. 18.22.-Total and radial electron velocity at the anode 
of a magnetron as a function of magnetic-flux density and 
angular velocity for a large ratio of cathode to plate radius. 

18.9. Basic Relations for Multicavity Magnetrons. Of the various 
relations given for magnetrons thus far, the most important is the cutoff 
relation of Eq. (18.48). Further relations which have a bearing upon 
the a-c operation are semiempirical. Slater and his colleagues have 
shown by extensive calculations and tests that maximum bunching 
action and resultant efficiency occur in a tube when the area between 
cathode and plate and between two corresponding pole points, as shown 
by the shaded area in Fig. 18.lc, is approximately a curvilinear square. 
More specifically, the ratio of the radial to the average angular dimension 

of the four-sided figure shown should be !. In terms of the radii and the 
"II" 
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number of poles this gives 

4 2 (rv+rc) r v - r c = ; 1r ~ 

where N is the number of pole tips. This reduces to 

Tc 

Tv=1+4 
N 

661 

(18.93a) 

(18.93b) 

A curve of rc as a function of N is given in Fig. 18.23. For 4 plate 
Tp 

segments or fewer, the ratio of plate to cathode radius should be zero. 
For a larger number of plate segments the optimum ratio increases but 

0.6 

0.4 
!£. 
Tp 

0.2 

0 
0 2 

/ 

/ 
/ 

4 6 6 
N 

L---
.... 

L----

10 12 14 16 

Fm. 18.23.-0ptimum ratio of cathode to plate radius as 
a function of the number of plate segments. (After 
Slat.er.) 

does so rather slowly and even at 12 segments is only at half its asymp­
totic value of unity. Under the condition of Eq. (18.93b) the dimensions 
of a multicavity magnetron will be such that the working electrons will 
traverse about two loops of a modified trochoidal path before being taken 
out of action at the plate with a small residual energy. 

Another condition which ensures favorable action is that the electrons 
in their motion around the cathode move at the velocity of the traveling 
wave. The angular velocity of the electrons varies considerably from 
cathode to plate, and therefore let the angular velocity halfway between 
the cathode and plate be set equal to the velocity of the traveling wave. 
Referring to Eq. (18.40), setting the radial acceleration equal to zero, 
and letting the angular velocity re be represented by v8, 

dV = Ve (B, _ mvo) 
dr ero 

(18.94) 

where ro is to have the value corresponding to the halfway points between 
cathode and plate, 
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re+ rp 
ro = --

2
-

If now, Vs is to be equal to the wave velocity, then 

vs = ro8 
row 

Vs= -
n 

21rroc 
Vs= --

nXo 
1r(rc + rp)c 

V8 = ~--~ 
nXo 

Assume now as a simplifying approximation that 

dV Vp 
dr = rp - re 

(18.95) 

(18.96a) 

(18.96b) 

(18.96c) 

(18.96d) 

(18.97) 

for r = r0• Then, with the substitutions of Eqs. (18.95), (18.96d), and 
(18.97), Eq. (18.94) becomes 

VP = 1r(rp2 - rc2) 3 X 108 (B - 0.010463) 
nXo nXo 

(18.98a) 

in mks units. For those who are more familiar with practical cgs units 
this will appear as the general relation 

VP = 30<hr(ri - r/) (B.' _ 10,463) 
nXo nXo 

(18.98b) 

where VP is in volts, B.' is in gausses, and rand X are in centimeters. If 
now the optimum ratio of cathode to plate radius of Eq. (18.93b) is intro­
duced, the above equation becomes 

_ 300ri ~ 1r ( , 101463) 
Vp - ( 4) 2 nXo B, - ~ 

1 + N 

(18.99) 

for the optimum dimensions. This is the important relation that has 
been sought. It shows that there will be a linear relation between VP 
and B. for optimum operation on any one mode. A plot of Eq. (18.99) 
is usually referred to as the mode line or the Hartree line. The mode 
lines have slopes that vary inversely as the value of n, Xo, and N. For 
any one tube there is a family of mode lines in the V-B plane that 
almost pass through the origin. Such a family of lines is shown relative 
to the cutoff parabola in Fig. 18.24. 
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The mode-line equation (Eq. (18.99)] may be solved for plateradius 
to give 

>-oVp 
B, _ 10,463 

• n>-o 

(18.100) 

where B.' is in gausses. Tubes will ordinarily operate on the highest, 

20.0 r----ir---r---,----,------, 

.e 1'2.5 f----f----+---+-+--+-~--+--1 
0 
> 
0 

X .; 10.0 l------<i-------1-­
C' 

,g 
0 
> 

.!! 5 ~ 1. 1-----+----+--
a. 

00~~-so~o--=,oo~o--~,w~o,__2~00~0,_-~~oo 
Magnetic flux density, gauss 

FIG. 18.24.-Mode lines in the.voltage-magnetic-­
flux-density plane. 

or -ir, mode for which n = ~' in which case the above reduces to 

B, _ 20,926 
• N>-o 

N+4 r = ----'--
P v' 9

1
6QQ-ir 

>-oVp 
(18.101) 

where B.' is in gausses. The above may serve as an approximate design 
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equation in determining plate radius of a magnetron. It assumes the 
optimum ratio of cathode to plate radius of Eq. (18.93b). 

The cutoff relation itself may be rewritten to include the optimum 
electrode ratio of Eq. (18.93b). When restricted to the optimum ratio, 
the cutoff parabola becomes 

(18.102) 

where Bz' is in gausses, and the relation is independent of the value of n 
since it is a static relation. 

35,000 
;t0 in cm 
B!t in6auss 
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---r--- -
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Number of poles,N 

Fm. 18.25.-Values of 'l,.oB.1 fordifferentvalues 
of N. 

Upon combining Eqs. (18.101) and (18.102), the quantities rp and VP 
may be eliminated and an expression obtained that gives XoB.' in terms 

N 
of the number of poles, N, for the case that n = 2 - This relation may be 

solved for the product X0B/, which applies at cutoff for tubes with 

different numbers of poles N and operating in the 1r mode, n = ~ • The 

restilts ll,re given by the curve of Fig. 18.25. 1 The advantage of large 
1 This and the other relations of this section follow the early work of J. C. Slater 

and colleagues. Details of the 1tnalysis, along with refinements on this elementary 
point of view, are given in the report of the wartime researches of the Radiation 
L11,b()rl!fnrv. volume on magpetrnns1 M9Grnw-Hill, New York, 1948. 
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values of N in terms of low magnetic field is apparent. Actual operation 
will be best at flux densities considerably above cutoff. 

Another condition for operation which may be specified is that the 
frequency of oscillation should be approximately equal to the cyclotron 
frequency. Examination of this condition shows that the optimum 
value of magnetic-flux density is approximately 33 per cent greater than 
the cutoff value for values of N greater than 4. Oscillations may occur 
almost anywhere in the V-B plane of Fig. 18.24, but greatest output 
will be obtained in the vicinity of the mode lines to the right of the cutoff 
parabola. 

18.10. Dimensional Relations in Magnetrons. Many important 
deductions about the effect of the various parameters involved in mag­
netron operation can be made by examining the dimensionality of the 
basic differential equations involved, just as was done for the ultra-high­
frequency triode. 1 The differential equations of motion of an electron 
under the influence of electric and magnetic fields in rectangular coordi­
nates are 

dv,, B E m dt = evu • - e ., (18.103) 

and 
dv11 B E m <ii= -ev,, • - e 11 (18.104) 

for a magnetic field having only a z component and an electric field 
having no z component. Poisson's equation, which governs the space­
charge relations, is 

aE,, + aE11 _ P ax a-ii - ;;; (18.105) 

The relations between current density, space-charge density, and velocity 
are 

J,, = pv,, (18.106) 
J11 = PV11 (18.107) 

Let now the comparative operation of two tubes that are geometrically 
similar be considered. Let D be the dimension ratio and W be the wave­
length ratio of the two tubes. Then, if an electron is moving between 
two corresponding points in the two tubes, 

and 
dt2 = W dt1 (18.108) 

dx2 = D dx1 
dy2 = D dy1 

(18.109) 
(18.110) 

1 The analysis of this section follows the early work of A. M. Clogston, done at the 
Radiation Laboratory. 
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where 

(18.111) 

and 

(18.112) 

The equation of motion for tube 2 then becomes 

dvx2 p E 
m dt2 = CVy2,U2 - C x2 (18.113) 

or 
D dvx1 D 

m w2 dt1 = Cw V111B2 - eEx2 (18.114) 

For these last two equations to be consistent it is necessary that 

(18.115) 

and that 
D 

E2 = W 2E1 (18.116) 

Since potential is the product of gradient by distance and the distance 
ratio is D, then 

D2 
V2 = -Vi w2 (18.117) 

By an extension of this type of reasoning, ratios of all the critical quanti­
ties in the two tubes as a function of the factors D and W may be obtained. 
These are summarized in the table on page 667. 

The quantities in Table XII enable the tube designer to tell how the 
various operating quantities in a tube that has been scaled from a 
given tube will compare with the corresponding quantities of the given 
tube. It further tells how the quantities in a single tube will change 
if the operating characteristics are changed. Thus, if a tube is enlarged 
by a factor D but is to work at the same wave length, then the factors 
in the Voltage scaling column apply. In this case the required magnetic­
flux density is unchanged, the required voltage is increased by a factor 
of D 2, and so on. If a given tube is to be operated at a wave length 
greater by a factor of W than that for which the operating characteristics 

are known, then the required magnetic-flux density is ~ times as great 

as before, the required voltage is i,-
2 

times as great as before, and so on. 
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If with a known set of dimensions and operating characteristics the 
dimensions and wave length are changed in direct proportion, then the 
values in the Complete scaling column apply. The values in the General 
column take care of the general case. 

TABLE XII 
MAGNETRON SCALING FACTORS 

Complete Voltage 
Quantity Ratio General scaling scaling 

w =D W = 1 

Magnetic-flux density ... .... 
B, 1 1 

1 B, w w 
Voltage . ........ . . . . . .. .... 

v. D• 
1 D2 V, w• 

Current density ....... .... .. 
J, D 1 

D J, w• W2 

Current . ........ . .. ... ..... 
I, D• 1 D2 
Ti w• w 

Power .. ........... . . . ..... 
P, D4 1 D4 P, - w W• 

Conductance .. .. . .. .. . . .. .. G2 1 1 1 G, w w 
Gradient .......... . . . ...... 

E, D 1 D E, w• w 

Wave-length 
scaling 
D = 1 

1 
w 
1 

ws 
1 

ws 
1 

w• 
1 

W& 
1 
w 
1 

w2 

18.11. Output Characteristics of Magnetrons. It is not possible 
to write simple formulas that describe the output characteristics of 
magnetrons as was possible for reflex-klystron oscillators. This is because 
no valid expressions for the equivalent electronic admittance of a mag­
netron have yet been proposed. From external measurements on mag­
netrons it has been established that the electronic conductance is negative 
for conditions of oscillation and decreases in magnitude as the r-f voltage 
increases, .as was the case for reflex-klystron oscillators. However, the 
electronic admittance evidently depends ,upon the effective impedance 
presented by the cavity, whereas in the reflex klystron the beam admit­
tance was independent of the cavity impedance. For this reason the 
only suitable way of representing magnetron characteristics is by means 
of a set of contours on some sort of load-impedance coordinates which 
show the way in which such quantities as efficiency, power output, and 
frequency depend upon the load impedance. In practice, magnetrons 
feed loads through transmission lines, and the effective impedance into 
which the magnetron works is determined by the standing-wave ratio 
and position of the minimum of voltage on the line. Accordingly, it is 
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convenient to plot magnetron characteristics on special transmission­
line-coordinate paper instead of on an impedance plane directly. 

Although the exact nature of the electronic admittance of a magnetron 
(which corresponds to the beam admittance of a reflex-klystron oscillator) 
is not known, the nature of the conventional representations of magnetron 
characteristics may be understood from a brief analysis based upon the 
assumption that the electronic admittance of the magnetron is some­
thing like that of the reflex-klystron oscillator. With this assumption 
the equivalent circuit of a magnetron, resonant cavity, coupling loop, 
and line terminated in load, is that given in Fig. 18.26. The electronic 
admittance of the magnetron is represented by the admittance labeled Y ,. 
It will have a negative conductance component for a condition of oscilla­
tion. .The electronic admittance is considered to be in shunt with the 
unloaped resonator, which is represented by a parallel combination of an 
inductance and capacity, and with the shunt resistance of the unloaded 

FIG. 18.26.-Simple equivalent circuit of mag­
netron oscillator, output coupling, line, and 
load. 

resonator. The resonator is assumed to be inductively coupled to a 
transmission line leading to a load. The impedance seen looking back 
into the coupling loop from the line is 

Z = Z1 + w 2M 2(Y, + Y,) (18.118) 

where Z1 is the impedance of the coupling loop, w is the operating angular 
frequency, M is the mutual impedance between the loop and the resona­
tor, and Y, is the unloaded admittance of the resonator at the operating 
frequency. The requirement for oscillation is that the impedance seen 
looking back into the coupling loop be the negative of the impedance seen 
looking into the line Z L, 

ZL = - [Zz + w 2M 2(Yr + Y,)J (18.119) 

While this equation is not capable of analytical solution, it is capable of 
graphical representation. This graphical representation will now be 
developed. 

Assume that the electronic admittance is as shown in Fig. 18.27. 
The locus of the electronic admittance is given by the vector in the 
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second quadrant. For zero r-f voltage the electronic admittance has 
the value given by the extremity of the vector. As the r-f voltage 
increases, the vector will be assumed to shrink but maintain its direction. 
This is not strictly true but will serve for a basis of discussion. It will 
further be assumed that the electronic admittance is not affected by the 
resonator admittance. Shown in the same figure is the unloaded reso­
nator admittance. This has a locus that is approximately a straight line 
parallel to the susceptance axis, as was shown in the chapter on Velocity­
modulated Tubes, or Klystrons. Different points along this locus cor-­
respond to different frequencies, frequency increasing upward. At 
unloaded cold resonance the resonator admittance is a pure conductance. 

+B 
R.r. Vo/faqe 1s zero 
cd e1dremify buf 
increases toward base ,,, Locus of' 

· unloaded 
resonant 

Elecfronic ,... circuit 
crdmift01nce f0 +.Jf 
of maqnefrom f, 

G ·o - ------~~--¥--=------+G 

Orirpn or .,. 
crdmiffcrnce 
crxes 

-B 

FIG. 18.27.-Loci of electronic admittance of a magne­
tron and the resonator admittance in an admittance 
plane. 

Shown in Fig. 18.28 is the sum of the resonator and electronic admit­
tance. The electronic-admittance vectors are shifted to the right by 
the resonator conductance and shifted up or down by departures in 
frequency from the cold unloaded resonant frequency of the resonator. 
The locus of w2M 2(Yr + Ye) will have the same form as that shown in 
Fig. 18.28 except that the scale will be changed and the locus will be 
plotted on an impedance plane with axes of resistance and reactance 
instead of conductance and susceptance. The locus of 

Z1 + w 2M 2(Yr + Y.) 

is shown in Fig. 18.29. The addition of the loop impedance merely 
shifts the previous representation strongly upward and a little to the 
right since the loop will ordinarily have a higher reactance than resistance. 
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The negative of the impedance seen looking into the loop is shown in 
Fig. 18.30 against coordinates of load impedance. In this representation 

Locus of_____ f, Ye+Yr _______ 0 

f"or zero R.F. f.-ilf 
ll'OlfalJe o 

t;,-Af 

Successively .__ .. 
greater values-::·.: 
of R.F. voltage •·· ·---· 

-B 

--
Fm. 18.28.-Sum of resonator and electronic admittance of a 
magnetron. 

it is possible to plot power contours. Ideally, the power will be con-

t t 1 . 11· . . · b V2 P S an a ong any vertlca me smce power output IS given y a• ower 

Locus of -------

Ys +(Yr+le) 
fbr zero R. F. 
vo/fcrge 

+X 

f
0
-Af 

--1s 
-R---t--,l-"'._,-+------'1-~-9---"lr-=------+R 

, 

Locus of _,/-.=::.:~--- ·· .. -r 
Ya+CYr+Ye) ,/ 
tbr successively 
grealer values of'· 
R. F.. 110lfa<Je -x 
Fm. 18.29.-Locus of z, + w 2M 2(Y, + Y,) in an impedance 
plane. 

is expected to be zero along the vertical line through the extremities of the 
transformed admittance vectors since here the r-f voltage is zero. It is 
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also expected to be zero along the zero-resistance axis since the power 
that can be delivered to a zero resistance is zero. Between these limits 
the power will rise to a maximum. Actual contours of constant power 
are not straight vertical lines but elongated closed loops, for the electronic 
admittance of the tube apparently changes with the admittance into 
which the electrons work. Such elongated loops are shown dotted. 
They are closed about a point of maximum power output. Also shown 
in Fig. 18.30 are lines of constant frequency in the form of the transformed 

-----Contours oF 
constanf power 
output;P1 >P2 

-·-Contours of' 
constant sfandinq 
wave ratio on· 
oufpuf lt"ne 

+X 

-x .. 
/ 

Locus of 
-[Y,s-t- (Yr+~}] 

forzeroBF 
voltage 

FIG. 18.30.-Locus of -[Z, + w 2M2 (Y, + Y,)] in an impedance 
plane. 

electronic-admittance vectors. For the reflex-klystron oscillator the 
slope of this line is related to the transit time in the repeller space. For 
the magnetron the slope of these lines io also probably related to the mean 
transit time, though the exact relation has not been definitely established. 
Shown in this same figure are some loci of constant standing-wave ratios 
on a transmission line that will produce the indicated load impedance. 
These loci are circles about the characteristic impedance of the line. 1 

1 See Krno, R. W. P., H. R. MIMNO, and A. H. WING, "Transmission Lines, 
Antennas and Wave Guides," McGraw-Hill, New York, 1945, for an introductory 
treatment of transmission-line impedance loci. 
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Along any circle about the characteristic impedance of the line the 
magnitude of the standing wave of voltage or current is constant, but 
the distance from the magnetron output to the minimum of voltage 
changes. 

The contours of Fig. 18.30 are usually transformed to a representation 
on which the circles of constant standing-wave ratio are concentric about 

0 
c:, 
~ 

Fm. 18.31.-Rieke diagram of a Raytheon 2J38 magnetron. 

the center of the plot and evenly spaced on a radial scale, the value of the 
standing-wave ratio at the center being unity. The contours of Fig. 
18.30 are correspondingly deformed to give the representation of Fig. 
18.31, which is known as a Rieke diagram. Positions of constant distance 
of a voltage minimum from the output loop in electrical degrees become 
radial straight lines in such a plot. The contours of constant power 
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output are closed contours about a point of maximum output, though 
for low powers the contours are closed off the chart through regions of 
voltage standing-wave ratios greater than 5. Contours of constant 
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Fm. 18.32.-Voltage-current characteristics of a Raytheon 2J30 magnetron. 

frequency are shown in this diagram, corresponding to those in Fig. 
18.30. Ideally, these would intersect the constant-power contours at a 
constant angle. It is seen that for a load corresponding to a given 
standing-wave ratio of voltage and location of voltage minimum from 
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the output loop the power output and frequency are specified. The 
position of the point of maximum power output relative to the center 
of the chart is determined primarily by the design of the output-coupling 
loop. It is not always desirable to operate the tube at maximum output, 
for here the frequency changes relatively rapidly with changes in load 
impedance, an effect known as frequency pulling. Accordingly, the 
output loop is usually designed so that the center of the chart falls at a 
point in the characteristic field which represents a suitable compromise 
between output and high-frequency stability. The amount by which the 
frequency changes for a given standing-wave ratio as the position of 
the minimum of the standing wave is changed is a figure of merit for the 
tube; the less the frequency cliange, the better the tube. In a good tube 
the amount of the frequency variation at a standing-wave ratio of 1.5 is 
less than Yi o of 1 per cent. Rieke diagrams are usually plotted for a 
condition of constant plate current and constant magnetic-flux density, 
the voltage being varied slightly to keep the current constant as the 
load is changed. The advantage of the Rieke diagram over other 
possible representations is that a change in the reference point from which 
the standing-wave maxima and minima are measured merely rotates the 
plot without changing its form. 

Another representation of magnetron characteristics that is commonly 
given is a voltage-current plot as shown in Fig. 18.32. On this plot, known 
as the "performance characteristic," there are shown contours of con­
stant magnetic field, output, efficiency, and frequency. The controlled 
variables are the magnetic field and the voltage, which determine the 
current and at which frequency, power output, and efficiency can be 
measured. Such plots are made for a constant load impedance, usually 
a flat line of the proper characteristic impedance. 



CHAPTER 19 

PHOTOELECTRIC TUBES 

19.1. The General Form of Photoelectric Tubes. Photoelectric 
tubes, or, as they are now more frequently referred to, "phototubes," 
are at first glance very simple devices, though the preparation of the 
photosensitive surface involves some of the most delicate operations in 
modern electronic practice. The tube is generally housed in a small 
glass envelope and contains, in its simplest form, just two electrodes. 
The cathode, or photosensitive emissive surface, is usually in the form 
of a half cylinder. The anode, or electron collector, is usually in the 
form of straight wire on the axis of the cylindrical cathode. Great pains 
are taken to make the leakage resistance between the two electrodes as 
high as possible. In some tubes the leads to the two electrodes are 
brought out at different ends of the tube in order to achieve a high leakage 
resistance. The envelope of the tube is usually made of a special glass, 
which acts as a light filter to make the light absorption as low as possible 
in the desired light frequency band. 

Applications of the phototube are too well known to require much 
discussion. Phototubes can be used to activate almost any kind of 
electrical or mechanical device through the medium of suitable amplifiers 
and relays. They can be used to cause a device to respond to almost 
any variation in light intensity. They can be made to respond to light 
of any color in the visible spectrum and to respond as well to radiation 
in the infrared and ultraviolet portions of the spectrum. Applications 
as door openers, counters, automatic light switches, and color sorters 
are well known. 

19.2. Fundamental Photoelectric Relations. Phototube operation 
is based upon what are now the well-estaolished properties of the photo­
electric effect. These may be enumerated a s follows: 

1. Electrons are emitted from low-work-function surfaces when 
exposed to radiations in the visible or near-visible region of the 
spectrum. 

2. The magnitude of the emitted photoelectric current is propor­
tional to the intensity of the illumination. 

3. Photoelectrons are emitted with finite velocities. The maximum 
675 
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velocity of emission is independent of the intensity of the illumina­
tion of the emitting surface (time rate of flow of radiant energy). 

4. Any photoemissive surface has a low-frequency limit of radiation 
beyond which no electrons are emitted regardless of the intensity 
of illumination. 

5. The emission velocity of photoelectrons depends upon the work 
function of the emissive surface as well as upon the frequency of 
the illuminating radiation. 

These various properties will be described in some detail in subsequent 
sections. 

19.3. History of the Pho.toelectric Effect. The history of the dis­
covery, theoretical development, and experimental verification of the 
photoelectric effect is so fascinating that it deserves at least a topical 
recapitulation. It is all the more remarkable in that the fundamental 
relations of the photoelectric effect were established before the existence 
of the electron was verified! Chronologically, the high spots in the 
history of the photoelectric effect are somewhat as follows: 

1887 Hertz discovered the photoelectric effect in his experiments on 
electromagnetic waves. His experiments dealt with obser­
vations on the transmission of damped electromagnetic 
waves of a frequency of about 1,500 me, generated with a 
spark coil and a suitable resonant circuit. Transmitted 
energy was picked up on a resonant circuit, and the intensity 
of the transmission was observed on a spark gap adjustable 
with a micrometer. Hertz found that his receiving circuit 
sparked more readily when the electrodes were illuminated 
by the spark from the transmitting gap. He further found 
that the effect was present only when the negative electrode 
(the gaps were polarized with a direct voltage) was illumi­
nated. He verified that ultraviolet radiations were responsi­
ble for the effect and that the effect was independent of the 
source of the radiations. 

1888 Hallwachs established that the effect consisted in the emission 
of negative particles of electricity. 

1889 Elster and Geitel showed a relation between the contact 
potential of a surface and its long-wave limit of photo­
ermss10n. They built the first photocells and made the 
first photometer. 

1889 J. J. Thompson discovered the electron as a fundamental 
particle and constituent of matter. He established that 
the negative particles emitted from incandescent bodies 
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were the same as the particles emitted photoelectrically. 
He deflected electrons electrically and magnetically and 
made the first determination of the ratio of the charge to 
the mass of the electron. 

Lenard showed that the magni­
tude of the photoelectric current 
was proportional to the inten­
sity of the exciting illumination. 
He also discovered that the 
velocity of emission of photo­
electrons was independent of 
the intensity of exciting illumi­
nation. 

Einstein applied the quantum 
theory enunciated by Planck in 
1900 to the photoelectric effect. 

Fm. 19.1.-Circuit for ob­He predicted correctly the rela-
serv ing the photoelectric 

tion between the velocity of effect. 
emission of photoelectrons, the 
work function of the emitting surface, and the frequency of 
the exciting radiation. 

Hughes verified the Einstein equation. 
Millikan checked the values of Planck's constant by photo­

electric measurements. 

19.4. Specific Photoemission Characteristics. The photoemissive 
properties of surfaces are usually investigated by means of the arrange­
ment of Fig. 19.1. Here the phototube is shown by the circle containing 
a photosensitive cathode and an anode. The cathode is illuminated 
from an external source. The cathode and anode are connected to a 
source of direct potential in such a way that the anode can be made either 
positive or negative relative to the cathode. A sensitive current meter 
is connected in series with the tube and voltage source. 

With the arrangement of Fig. 19.1 the-current registered by the meter 
is a function of the intensity of the light and the electrode voltages, as 
shown in Fig. 19.2. From this figure it is observed that for any anode 
voltage positive relative to cathode voltage the photoelectric current is 
directly proportional to the intensity of the illumination. Let the differ, 
ence between anode and cathode voltage be designated by V. ( V includes 
the effect of contact potential.) Then for positive values of V the photo­
electric current is constant for a fixed illumination. This means that 
the photoemission is constant and that the anode is collecting all the 
photoelectrons. When V is made negative a.t a fixed illumination1 the 
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current falls off, reaching zero at a value of Vo that is independent of 
the intensity of the illumination. The explanation of these effects is 
apparently that photoelectrons are emitted with velocities ranging from 
zero to some maximum value. The number of electrons emitted is propor­
tional to the rate of incidence of radiant energy, but the maximum 
velocity of the emitted electrons is independent of the intensity of illu­
mination of a given spectral distribution. 

The maximum velocity of emission does, however, depend upon the 
frequency of the light, as may be shown by illuminating the photo­
emissive surface with monochromatic light of a variable frequency but 
constant intensity. The results of such a test are shown in Fig. 19.3. 
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FIG. 19.2.-Photoemission current versus retarding volt­
age for various intensities of illumination. 

The three curves shown give current against retarding voltage for equal 
intensities of illumination of three different frequencies of light such 
that f 1 > !2 > f 3. The higher the frequency of the light, i.e., the farther 
toward the short-wave-length (blue) end of the spectrum, the greater 
the maximum velocity of emission. Curves such as those of Fig. 19.3 
are rather difficult to obtain, for it is necessary to measure radiant energy 
with a thermocouple or bolometer, correct the resultant curves for contact 
potential, stray light, and secondary emission, and be sure that the 
emissive surfaces are free from any contamination and totally outgassed. 

Tb.e relation between the maximum velocity of emission and the 
frequency of the exciting radiation is given in Fig. HU. This shows 
that the maximum energy of emission of photoelectrons is linear wifo 
the frequency of the exciting radiation. There is a minimum frequency 
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of light for any surface beyond which photoelectrons are simply not 
emitted. The curve of Fig. 19.4 is a good straight line, which Millikan 
has shown comes down to the axis with a definite angle and not asymp­
totically. The straight line of Fig. 19.4 may be represented by the 
equation 

Voe = ½mvm2 = hf - w (19.1) 

where - Vo is the intercept with the voltage axis of any curve in Fig. 
19.3, Vm is the corresponding maximum velocity of emission, m is mass of 
the electron, - e is charge of the electron, f is light frequency in cycles per 

I 

0 

+-­
c 
Q) 
\.. 
L 
::) 
<.) 

., 
<S 
0 
.c .... 
(S 

V 

Potential difference between anocle and cathode 
+ 

Fm. 19.3.-Photoemission current versus retarding voltage 
for various frequencies of illumination. 

second, h is the slope of the straight line of Fig. 19.4, and w is the fre, 
quency axis intercept of the straight line of Fig. 19.4. As given above, 
Eq. (19.1) is purely empirical. Howev;er, Eq. (19.1) is the equation 
predicted by Einstein on purely theoretical grounds, with h identified 
as Planck's constant and w identified as the work function of the photo­
emissive surface in electron volts. From Eq. (19.1), the minimum fre­
quency of emission occurs when the velocity of emission is zero and is 
given by 

(19.2) 

The relation between the work function and the minimum frequency 
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or maximum wave length of exciting radiation predicted by Einstein in 
the form of Eq. (19.1) has been verified experimentally. If we let 

w = ecJ,p (19.3) 

where w is work function in electron volts, e is electron charge, and cJ,p 
is the voltage equivalent of the work function as determined from 
photoelectric measurements, then the work function in volts should be 
inversely proportional to the maximum wave length in angstrom units. 
In Fig. 19.5 is given a plot on log-log paper of the relation between 
experimentally observed values of the thermionic work function and 

+ 

.-oi-------,rF-----------i ;-' 
,,/ fo=w/Ji 

,,,,.,;' 
w 

' .L_ 

f-

Frn. 19.4.-Maximum velocity of emission 
of photoelectrons as a function of frequency 
of exciting radiation. 

the maximum wave length of photoelectric emission for different mate­
rials. If the relation predicted by Einstein is correct, then the plot of 
the work function against the threshold wave length on log-log paper 
should be a straight line with a slope of -1. Reference to Fig. 19.5 
shows that this relation is obeyed fairly well. Departures from the 
relation postulated are primarily due to the difficulty of getting an 
uncontaminated emitting surface. There are also some discrepancies 
due to a correction which must be made for the temperature of the 
emitting surface. The most extensive work in trying to correlate values 
of the work function as measured by thermionic and photoelectric 
methods has been done on platinum. It is the consensus of workers in 
this field that the photoelectric and thermionic work functions of platinum 
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are the same and that those of other metals would be revealed as the 
same if the measurements were sufficiently refined. 1•2 
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Fm. 19.5.-Relation between the thermionic work function of 
different metals and the threshold wave length of photo­
emission. 

19.5. Fundamental Theory of Photoemission. The wave theory of 
light meets with considerable difficulty in explaining the various aspects 
of the photoelectric effect. The proporti9nality between the photoelectric 
current and the intensity of illumination is consistent with the wave theory, 
but the fact that the maximum velocity of emission is independent of 
the intensity of the illumination cannot be explained on the basis of the 
wave theory of light. When the independence of the velocity of emission 

1 The classical reference on all phases of photoelectricity is HUGHES, A. L., and 
L.A. DuBRIDGE, "Photoelectric Phenomena," McGraw-Hill, New York, 1932. 

2 An excellent elementary survey of the photoelectric effect is contained in RICHT­
UYER, F. K., and E. H. KENNARD, "Introduction to Modern Physics," 3d. ed., 
McGraw-Hill, New York, 1947. 
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and the intensity of illumination was discovel'ed a furor was created 
among students of physics. The dilemma encountered in trying to 
explain the above-mentioned effect can be circumvented by postulating 
the dual nature of light; that is to say, light rays exhibit both a wave and a 
particle aspect. The wave nature of light cannot, however, be com­
pletely discarded on the assumption that light is corpuscular in nature, 
for some aspects of light behavior are very difficult to explain on this 
basis. 

The corpuscular aspect of light rays has its basis in the quantum 
theory. The quantum theory had its origin in the study of heat-radia­
tion phenomena. The quantum theory has proposed that energy flows, 
not continuously, but rather in small packages. The smallest unit of 
energy that can be involved in any transfer is called the "quantum." 
A quantum of energy has a size that is directly proportional to the cor­
responding frequency of radiation as given by 

Q = hf (19.4) 

where Q is the quantum of energy, his a universal constant having a value 
of 6.624 X 10-34 watt-second per cycle and known as "Planck's con­
stant," and f is the frequency of the radiation in cycles per second. Thus 
if monochromatic orange light of wave length 6,000 angstrom units is 
involved (1 angstrom unit = 10-10 meter), the corresponding frequency 
of radiation is 5 X 1016 cycles per sec and the corresponding quantum 
of energy for this frequency is 33.12 X 10-1s watt-second. This means 
that light of this frequency delivers energy in units of 33.12 X 10-18 

watt-second and cannot deliver any but an integral multiple of this 
amount of energy. Thus, just as the modern theory of matter postulates 
the indivisible particle, the electron, so, correspondingly, the quantum 
theory says that energy is finally delivered in minute but indivisible units 
of quanta. 

A quantum of light is known as a photon. Light rays may be con­
sidered to be made up of photons, which have many of the characteristics 
of small particles in that each carries a discrete quantity of energy but 
which also have the characteristics of waves. When the quantum 
theory is applied to light rays, all the effects observed in connection with 
photoemission are readily explained. 

If light rays consist of photons each of which carries a definite quantity 
of energy proportional to its frequency, then each photon on striking a 
surface may transfer to an electrcn in the surface at most a quantum of 
energy. This quantum of -energy may give rise to emission of an elec­
tron, and the energy that the emitted electron will have will be at most 
the quantum of energy minus the work necess,ary to overcome the surface 
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eledrostatic forces. Hence the validity of Eq. (19.1), the Einstein 
photoelectric equation, 

(19.1) 

The work necessary to overcome the surface electrostatic forces, w, 
is the work function of the metal in question. 

By applying the quantum theory of light, all the photoelectric effects 
observed experimentally are completely explained. The threshold 
frequency of photoemission is that frequency at which the energy of the 
photon is converted into electron energy enabling the electron to just 
barely overcome the surface restraints and thus be emitted with zero 
velocity. The threshold frequency is accordingly proportional to the 
work function of the metal, as previously noted. The proportionality 
between photoelectric current and intensity of illumination follows from 
the fact that the number of photons is proportional to the intensity of the 
illumination for a given area. 

19.6. Spectral Response Curves of Photoemissive Surfaces. The 
photoelectric emission of metal surfaces exhibits two important kinds of 
selectivity The first selectivity is a variation in emitted current with 
wave length of the exciting radiation. The second shows itself as a 
variation in emitted current with the polarization of the exciting radia~ 
tion. The response to polarized light is much smaller when the electric 
vector of the exciting radiation is parallel to the surface than when the 
light is polarized at right angles to the surface. Of the two types of 
selectivity the first is by far the more important since ordinary photo­
emissive surfaces as used in commercial tubes are so rough that no differ­
entiation with respect to polarization can be observed. 

Every photoemissive surface exhibits peaks of sensitivity as the 
wave lengths of the exciting radiation are changed. Typical of the 
response characteristics of the pure metals are the curves for the alkali 
metals shown i-n Fig. 19.6. 1 Observation of these curves shows that, as 
the atomic number of the element increases, the maximum sensitivity 
decreases, the resonance peak becomes broader, and the wave length of 
the maximum sensitivity increases. No completely satisfactory quanti­
tative explanation for the above relations seems to be available. The 
threshold wave length increases as the work function of the surface 
decreases in accordance with Einstein's photoelectric equation. Qualita­
tively it is expected that the wave length of maximum sensitivity would 
follow somewhat the same relation. An investigation from the point of 
view of quantum-mechanical considerations will no doubt some day give 

1 SEILER, E . F ., Color-sensitiveness of Photo-electric Cells, Astrophys. Jour ., vol. 
52, pp. 129-153, October, 1920. 
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the complete story. It is possible that the mechanism involved is 
similar to that which occurs for secondary emission, which yields a 
maximum emitted current for a given energy of excitation. 

It is possible to make complex emitting surfaces that have lower work 
functions than the pure metals. The surface that gives maximum 
secondary emission also seems to give maximum photoelectric emission. 
Maximum emission is obtained with a surface of the type caesium on 
caesium oxide on silver. 1 Such a surface is prepared by oxidizing silver 
and then exposing it to caesium vapor. Photoemissive surfaces may also 
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Frn. 19.6.-Photoelectric color sensitivity of the alkali metals. 

be prepared by sputtering metals, vaporizing metals, and electrolyzing 
metals through a glass envelope. 

19.7. Vacuum-phototube Characteristics. Current-voltage Character­
istics. Vacuum phototubes exhibit characteristics that depend pri­
marily upon the nature of the emissive surface and the transmission 
characteristics of the glass envelope. A typical set of vacuum-phototube 
characteristics is shown in Fig. 19.7. For a fixed amount of light flux 
from the exciting source the curves of current against voltage are similar 
to those of a diode. For very low voltages the current follows the three-

1 ZwoRYKIN, V. K., and G. A. MORTON, "Television," pp. 22-28, McGraw-Hill, 
New York, 1940. 
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halves-power law of variation with voltage. Because the emission cur­
rent from a photosensitive surface is so small, this region is extremely 
small and most of the curve of current against voltage shows pronounced 
emission saturation. As a result, the emission current is almost constant 
over nearly the entire operating range. A load line may be constructed 
on the current-voltage characteristics of a phototube just as is done on a 
set of vacuum-tube characteristics. Several such lines are shown in 
Fig. 19.7. These lines have a slope that is the negative reciprocal of the 
resistance in series with the voltage supply and the phototube. Such 
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(light from a tungsten filament at 2870°K). 

toad lines will always be straight lines regardless of the current-voltage 
~haracteristics of the device since they a;e simply a graphical representa­
tion of Ohm's law. The proportionality between current and light flux is 
almost exactly linear for any operating voltage, as shown in Fig. 19.8. 

The reaction of a photoemissive surface to illumination is almost 
instantaneous. Experiments show that less than 3 X 10-9 sec elapse 
from the time the photoemissive surface is illuminated until photo­
emission begins. The photoelectric current ceases in less than 10-s sec 
after the illumination is cut off. Hence in a vacuum phototube the 
principal time factor involved is the transit time of an electron from 
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cathode to anode. The transit time may be calculated from the curves 
of Fig. 8.14. This time will generally be very short. 

Example: Determine the transit time of a photoelectron emitted from a semi­
cylindrical cathode of radius 1 cm and collected at an anode of radius H mm. 
The ratio of cathode to anode radius is 20, and the distance between cathode and 
anode surfaces is 0.95 cm. From Fig. 8.14, the factor K is 1.344. Let the anode 
potential be 200 volts. Then the electron velocity at the anode is 243.5 X 106 cm 

per sec. The corresponding transit time from the formula T = Kd is 0.00525 
V 

microsecond. This means that a vacuum phototube can handle any known type 
of light modulation. 
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Spectral Characteristics. Phototubes are available with spectral 
sensitivities that cover the visible portion of the spectrum and carry well 
into the infrared and ultraviolet. In general, the response curves will be 
different from that of the eye, which is shaped something like a resonance 
curve, with a peak at 5,550 angstrom units (1 angstrom unit = 10-10 

meter) and dropping to virtually zero at 4,000 and 7,000 angstrom units. 
Some typical spectral response curves of commercial phototubes are 
shown in Fig. 19.9. It is seen that th;:;:.c .;,:.e tubes available which 
cover the visible spectrum, the short infrared rays, and the Ion!! ultra-
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violet rays. The majmity of phototube applications depend upon a 
tungsten filament as a source of illumination. The tungsten filament 
has its spectral characteristic centered in the infrared range, with appre­
ciable radiation in the visible portion of the spectrum. Light filters may 
be used with phototubes where selective response with respect to color 
is desired Where high sensitivity in the ultraviolet is desired, special 
envelopes must be used with the tube, for the ordinary glass does not 
transmit ultraviolet rays well. Such special envelopes usually take the 
form either of a glass envelope with an extremely thin window in front 
of the cathode or of a quartz envelope. 

The spectral sensitivities of vacuum phototubes range from about 
5 to 50 microamperes per lumen (I lumen = 0.0016 watt for green light). 
The number of lumens, L, of light flux falling upon an area A of a surface 
a distance d from a point source of light of candle-power strength C is 

L = CA 
d2 lumens (19.5) 

where any units of length may be used provided only that they are the 
same for A and d2• 

19.8. Gas-phototube Characteristics. The sensitivity of a phototube 
can be increased by utilizing what is known as the gas amplification of 
the photoemission current. If a small amount of gas of the right kind 
and pressure is admitted into the phototube, then the photoe~ectrons in 
their travel from cathode to anode will strike some of the gas molecules, 
causing ionization. This ionization splits the gas molecule into a free 
electron and a negative ion. The free electron is now available to join 
the photoelectron in its travel toward the anode and may itself ionize 
other gas molecules, giving rise to more electrons, which can add to 
the effective current of the phototube. The positive gas ions formed will 
move toward the cathode and, in doing so, will constitute a current that 
is nearly equal to the electron current. In addition, the positive ions 
on impact with the cathode will create some secondary electrons, which 
1Vill further increase the total current. As a result of the cumulative 
action of all the above effects, the net current to the anode of the photo­
tube can be made as much as ten times the photoemission current. 

The current-voltage characteristics of a typical gas phototube are 
shown in Fig. 19.10. For low anode voltages the characteristics are 
about the same as for the vacuum phototube, for at low voltages there 
is inappreciable ionization owing to the low energies of the photoelectrons. 
At higher anode voltages, ionization occurs, and the current increases 
rather rapidly with voltage. At sufficiently high voltages a glo~-.· dis­
charge will be sustained between electrodes, as shown in Fig. 19.10, anct 
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the tube operation is impaired. Some appreciable departures from 
current linearity with light intensity are expected in the gas phototube 
and are indeed present, as shown in Fig. 19.11. The distortion resulting 
from this nonlinearity of the characteristics is, however, no greater than 
that encountered in ordinary vacuum tubes and does not prevent gas 
phototubes from being used to reproduce the sound recorded on film. 

Factors in the Design of Gas Phototubes. There are a number of rather 
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FIG. 19.10.-Current-voltage characteristics of a typical gas phototube. 

140 

critical factors that must be properly adjusted in the gas photocell to 
obtain a good tube. These may be listed as follows: 

I. Chemical properties of the gas. 
2. Atomic weight of the gas. 
3. Pressure. 
4. Maximum allowable voltage. 

The principal consideration involved in the choice of a gas is that it 
must not react with the photoemissive surface. The only gases that can 
be depended upon not to react with caesium surfaces are the inert gases 
helium, neon, argon, krypton, and xenon. 

The atomic weight of the gas used is a factor, for if the gas is too 
heavy the transit time of the positive ions formed will be too great and 
the high-frequency response of the phototube will be poor. Correspond­
ingly, the ionization potential, or potential of a striking electron that 
will free an electron from the gas molecule, must be low; otherwise, 
the potential across the tube will be so high that the cathode emission 
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:-nay be impaired by the bombardment of high-energy positive ions. 
The critical physical characteristics of the inert gases are listed below: 

Gas 

Helium .............................. . 
Neon ................................ . 
Argon .............................. . . 
Krypton ............................. . 
Xenon ............................... . 

Atomic 
weight 

4.002 
20.183 
39.944 
82.9 

130.2 

Ionization 
potential, 

volts 

24.46 
21.47 
15.68 
13.96 
12.08 

Molecular 
diameter, 

cm 

1.9 X 10-s 
2.35 X 10-s 
2. 9 X 10-s 
3.2 X 10-s 
3.5 X 10-s 

From this tabulation it is seen that as the atomic weight decreases 
the ionization potential increases. A compromise must therefore be 
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effected in realizing the requirements of low atomic weight and low 
ionization potential. The properties of argon represent a reasonable 
compromise, and this gas is the one most commonly used, though other 
gases may be and sometimes are used in special applications. 

The gas amplification that can be realized in a gas phototube depends 
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upon the gas pressure and the voltage involved. These factors deter­
mine the number of ionizing collisions of a photoelectron. The greater 
the pressure, the less the average distance between molecules but cor­
respondingly the less energy the electron has at each collision. The 
average distance between collisions of molecules or electrons in a gas 
is known as the "mean free path." The mean free path of an electron 
moving among gas molecules is in turn related to the pressure, or number 
of molecules per cubic centimeter, and to the molecular diameter of the 
gas molecules by the relation 

4 
Mean free path = -d 2 cm (19.6) 

1T' m n 

where dm is the molecular diameter in centimeters and n is the number 
of molecules per cubic centimeter.1 The number of molecules per cubic 
~ntimeter of a gas depends only upon the pressure and the tempew.ture 
and is independent of the gas involved, 

n = 7.244 X 1015
; (19.7) 

where P is pressure in bars or dynes per square centimeter 

(1 atmosphere = 106 bars = 760 mm of mercury) 

and T is temperature in degrees Kelvin (273 + C 0
). Combining Eqs. 

(19.6) and (19.7) for argon and assuming room temperature to be 290°K, 

Mean free path of electron 60. 7 
among argon molecules = P cm (19.8) 

where P is in dynes per square centimeter or bars. 
A pressure of 0.2 mm of mercury is commonly used in gas phototubes. 

This corresponds to a pressure of 263 bars and a mean free path of 0.23 
cm. At every ionizing collision a new free electron is created that can 
itself produce more electrons by collision. Thus, if the original photo­
electron in traveling from cathode to anode experiences n collisions each 
of which produces a single free electron, then 2n free electrons reach the 
anode for each photoelectron emitted. The potential distribution must 
be such that each electron acquires enough energy to ionize another 
molecule in a distance equal to or slightly less than the mean free path. 
From the above figures it is seen that with a linear potential field it would 
be necessary to have a cathode-anode spacing of only about 0.8 cm and 
a total potential of only about 64 volts to ensure a gas amplification of at 
least fifteen times (since for every electron formed a positive ion is 
also formed that contributes to the current). 

1 Dow, W. G., "Fundamentals of Engineering Electronics," pp. 256-260, Wiley, 
Nl.lw York, 1937. 
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Frequency Distortion in Gas Phototubes. Owing to the presence of 
the high-mass positive ions in the current flow of a gas phototube there is 
appreciable frequency distortion in such tubes. This arises from the time 
involved in the formation of the ions and in their large transit time. A 
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Fm. 19.12.-Response of a gas phototube to a constant illumination modulated 
at audio frequencies. 

typical response curve to a light ray that is sine-wave-modulated at a 
variable frequency is given in Fig. 19.12. Distortion is small enough 
so that it is tolerable in the a-f range. It may be equalized by using an 
amplifier with a characteristic that rises with frequency in such a way 
as to offset the distortion introduced by the gas tube. A little har-

L 

Time -Fm. 19.13.-Rcsponse of a gas phototube to a light ray that is 
square-wave-modulated at a high audio frequency. 

monic distortion is involved in the response of a gas phototube, too, 
but it is generally small enough so that it is not serious. If the light 
source is square-wave-modulated, the current output of the gas phototubE 
will not be a perfect square wave but will have the form of the wave 
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shown in Fig. 19.13. The current does not build up instantaneously to 
its maximum value. The principal cause of this time lag is the time 
required for the positive ions formed to reach the cathode. When the 
light source is cut off the current does not immediately drop to zero, for 
there are still positive ions floating about between electrodes. The 
time lag here is primarily due to the time required for the positive ions to 
<liffuse to the electrodes or to disappear by combination with free 
electrons. 

Summary of Gas-phototube Characteristics. As a result of intro­
ducing gas into a phototube, a gain in the luminous sensitivity by about 
a factor of 10 may be realized. A price must, however, be paid for this 
gain in sensitivity-the fact that the resultant tube characteristics are 
slightly nonlinear, introducing some harmonic distortion. Further, 
some frequency distortion is encountered, due to the time-lag effects 
in the tube. 

The gas phototube must operate at much lower voltages than the 
vacuum phototube. This effects a considerable simplification of the 
power-supply circuit and is an advantage in many applications. How­
ever, there is a minimum resistance that can be used with the tube to 
avoid a glow discharge. The glow discharge is readily avoided by using 
a larger load resistance, but then the nonlinear distortion increases. 
Further, since the voltages at which the gas phototube are operated are 
of the order of one-half to one-fifth of the voltages used with the vacuum 
phototube and the load resistances are correspondingly lower, much of the 
gain in luminous sensitivity is lost. In general, gas phototubes are more 
suitable for low levels of illumination because of the greater luminous 
sensitivity, while vacuum phototubes are best suited for applications 
in which the amount of light or the size of the voltage supply is not a 
factor. Gas phototubes are further not as stable as vacuum phototubes 
and have a greater tendency to age rapidly and are more susceptible to 
injury from excessive light intensity or voltage. 

19.9: Utilization of Phototube Characteristics. The output current 
of a phototube is so low that the phototube must always be used in 
conjunction with some other vacuum tu15e that can amplify the phototube 
current to a value large enough to operate a relay or other registering 
device. Generally this can be achieved with one stage of amplification 
of the voltage across the load resistor in series with the photocell and 
with the i.i,mplified voltage then applied to the grid of a small thyratron 
in whose plate circuit there is a relay. The amplifier and thyratron may 
be opervted with either alternating voltage or direct voltage; in fact, 
the former arrangement has the advantage that the relay operation is 
generally ¾etter. If alternating voltages are used, then either a con-
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denser must be put across the relay or a relay with a shaded pole must 
be used. Recently there have been developed some small screen-grid 
thyratrons, such as the RCA 2051, which have a sufficiently high control 
ratio and a low enough control-grid current so that they niay be operated 
from either a vacuum or a gas phototube directly. In general, the 
electronic circuits associated with phototube control systems are quite 
simple and easy to build. 1- 4 

19.10. Photomultiplier Tubes. Much attention has been devoted 
to the development of phototubes with a secondary-electron multiplier 
as part of the tube to increase the minute photoemission current to a 
larger value. - 9 Early attemyts met with great difficulty in achieving 
stable secondary-emission surfaces that had low noise characteristics. 
Suitable secondary-emission surfaces were finally developed, and photo­
multiplier tubes are now available commercially. 

The principle of the photomultiplier tube is illustrated by the parti­
tion type of tube shown in Fig. 19.14. This is a longitudinal section of a 
cylindrical structure, i.e., the individual electrodes are noncircular 
cylinders generated by moving a line perpendicular to the paper. The 
tube contains a photocathode PC, from which electrons are drawn 
through a hole H in a mica shield to a first electrode 1, which has an 
electrostatic shield S attached. The photoelectrons striking the concave 
side of the first electrode, which is more positive than the photocathode 
by, say, 100 volts, give rise to secondary electrons, which are attracted 
to the second anode, 2, which is, say, 100 volts more positive than the 

1 Phototubes, RCA Tech. Bull. PT-20Rl, pp. 4-41. 
2 HENNEY, KEITH, "Electron Tubes in Industry," 2d ed., McGraw-Hill, New 

York, 1937. 
3 SHEPHARD, F. H., JR., Application of Conventional Vacuum Tubes in Uncon­

ventional Circuits, Proc. J.R.E., vol. 24, pp. 1573-1581, December, 1936. 
4 REICH, H. J., "Theory and Application of Electron Tubes," pp. 505-511, 

McGraw-Hill, New York, 1939. 
5 IAMS, H ., and B. SALZBERG, The Secondary Emission Phototube, Proc. J.R.E., 

vol. 23, pp. 55-64, January, 1935. 
6 RAJCHMAN, J. A., Le Courant residue! dans Jes multiplicateurs d'electrons elec­

trostatique, Archives sci. phys. nat., [VJ vol. 20, September-October and November­
December, 1938. The same material is contained in Rajchman's doctor of science 
thesis from the Technical Institute of Zurich, 1938. 

7 ZwoRYKIN, V. K., and J. A. RAJCHMAN, The Electrostatic Electron Multiplier, 
Proc. I.R.E., vol. 27, pp. 558-566, September, 1939. 

8 RAJCHMAN, J. A., and R. L. SNYDER, An Electrically Focused Multiplier Photo­
tube, Electronics, vol. 13, pp. 20-23, 58, 60, December, 1940. 

• GLOVER, A. M., A Review of the Development of Sensitive Phototubes, Proc. 
i.R.E., vol. 29, pp. 413-423, August, 1941. 
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first anode. The secondary electrons from the first anode are more 
numerous than the exciting photoelectrons. Likewise, the secondary 
electrons from the first anode on striking the second anode give rise to 
still more secondary electrons. Each successive anode is at a higher 
potential than its predecessor, and each electron striking one anode 
gives rise to several secondary electrons. If the secondary-emission 
ratio for any one electrode is r and the number of electrodes is n, then 
the output current is rn-1 times the photoelectron current. By this 
mechanism, current amplification of the order of 100,000 is possible. 
Voltages of the successive anodes are readily obtained from a voltage 
divider since the magnitude of the current is small. 

A 

s 7 9 

----Elecfrons 
FIG. 19.14.-Structure of a partition-type photomultiplier tube. 

The shape of suitable electrodes may be determined from membrane­
model studies. Some typical electrode shapes and electron paths through 
the resultant field are shown in Fig. 19.15. For the case shown, the 
potential between successive electrodes is taken as 100 volts. The 
paths of the electrons are critical only to the extent that the action of 
successive electrodes produces a convergent focusing action which pre­
vents the electrons from spilling over the edge of some later electrode. 
The focusing action of successive similar electrodes can be checked by 
plotting a curve of the striking position' on an electrode as a function of 
the position of liberation on the previous electrode. A typical focusing 
curve is shown in Fig. 19.16. The liberation point is indicated by the 
parameter x in Fig. 19.15, while the corresponding arrival point is y 
(Figs. 19.15 and 19.16 are for similar but slightly different tubes). 
The crossover action evident in Fig. 19.15 gives rise to the peaked double­
valued focusing curve of Fig. 19.16. The focusing action of the succes­
sive electrodes may be studied from the curve of Fig. 19.16 with the a.id 
of a 45-deg construction line. An electron liberated from x = IO on 
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anode 1 will strike anode 2 at y = 2.8. Using the 45-deg construction 
line, an electron liberated from x = 2.8 on anode 2 will strike anode 3 at 
y = 9.1. An electron liberated from x = 9.1 on anode 3 will strike 
anOC:e 4 at y = 3.6, and so on. The focusing action follows the rec­
tangular spiral shown, with eventual convergence on point P. The 
electrode will have a convergent focusing action as long as the second 
derivative of y with respect to x of Fig. 19.16 is negative. The height 
of the focusing curved is a figure of merit of the electrode shape because it 
determines the active portion of the multiplier electrodes. A large 
radius of curvature in the vicinity of the point P is desirable to prevent 
the electrons from bunching into the middle of an electrode too rapidly. 

/ 

I ,s,r:, 

<Vo ...__ 
FIG. photomultiplier 

In practical commercial tubes the circular structure of Fig. 19.17 
is preferred because of its smaller space requirements. The action of 
this tube is the same in principle as that of the tube of Fig. 19.14. In 
the tube of Fig. 19.17 the same type of emissive surface is used for both 
the photocathode and the multiplier electrodes. It was the discovery 
of a surface with both good photoemission and good secondary-emission 
properties that made the commercial form of this type of tube practical. 
The photoemission sensitivity of this surface is about 15 microamperes 
per lumen. The secondary-emission multiplication ratio is about 3.5 
at 100 volts per stage and about 4.0 at 125 volts per stage. For 10 
multiplying anodes, or "dynodes" as they are sometimes called, this 
gives a total multiplication of 60,000 at 1,000 volts or 230,000 at 1,250 
volts. Since a 25 per cent i11crease in voltage gives rise to a 200 per cent 
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increase in current, the voltage must be regulated to 0.1 per cent if the 
output current is to be constant to 1.2 per cent. The luminous sensitivity 
of the 931 tube is 0.6 ampere per lumen for light from a tungsten fila­
ment at 2879°K and a 1 ,000-volt supply. The corresponding background, 
or "dark," current is 0.25 ampere. The dark current arises from (1) 
leakage resistance between electrodes, (2) secondary emission resulting 
from bombardment of the photocathode by positive gas ions, (3) field 
emission from all electrodes, and (4) thermal emission from all electrodes. 
Contributions to the dark current from all these sources can be reduced 
by careful design but can probably never be completely eliminated. 
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F10. 19.16.-Focusing curve of photomultiplier electrodes. 

The signal-to-noise ratio of the type 931 photomultiplier tube shown 
in Fig. 19.17 is superior to that of an ordinary phototube-resistor­
amplifier combination. A comparison of the signal-to-noise charac­
teristics of the 931 photomultiplier tube and a 929 vacuum phototube 
with amplifier is shown in Fig. 19.18. At threshold values of illumina­
tion the multiplier phototube is about 45 db superior to the vacuum­
tube-resistor-amplifier combination. The signal-to-noise ratio of the 
photomultiplier tube increases 10 db for every factor of 10 in current, 
while the signal-to-noise ratio of the phototube-resistor-amplifier com­
bination increases 20 db for every factor of 10 in current up to a point at 
which relatively large currents flow. At this point the signal-to-noise 
ratios of the two devices are about the same. The superiority of the 
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multiplier phototube lies in the fact that noise is contributed only by 
shot effect, whereas in the phototube-resistor-amplifier combination 
there is a considerable contribution of noise from the rather large load 
resistor that must be used. 

The nature of the signal-to-noise characteristics can be better under­
stood from a study of the specific formulas involved. For a vacuum­
phototube-resistor combination, the signal-to-noise ratio has the form 

Sou, FM2l 0
2R 

Nau• 2eBI oR + 4kT B 

.,.. ____ --Liqhf 
shield 

Mica shield.,-

0 = Phofocorfhode 
IO=Anode 

I- 9 "Dynodes 
Fm. 19.17.-Structure of a circular photomultiplier 
tube. 

where F is form factor of light modulation wave 
M is percentage modulation of light wave 
Io is direct photoelectric current, amperes 
R is effective load resistance, ohms 
e is charge of the electron, coulombs 

B is band width, cycles 
k is Boltzmann's constant, 1.372 X 10-23 watt-sec per °K 
T is temperature, °K 

(19.9) 

The numerator of Eq. (19.9) represents the signal power. The denomi­
nator contains two terms, the first of which represents the shot-noise 
power originating in the phototube and the second of which represents 
the thermal-agitation noise arising from the load resistor. For low 
levels of illumination the first term in the denominator of Eq. (19.9) 
will be small, and the equation will reduce to 

Bout FM 2Io2R (19.10) 
Nout = 4kTB 
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The signal-to-noise level for low levels of illumination is seen to vary 
with the square of the photoemission current (20 db for every factor of 
10 in current). At high levels of illumination the second term of the 
denominator of Eq. (19.9) will be small compared with the first, and the 
equation will redur,e to 
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FIG. 19.18.-Comparative signal-to-noise ratios of a photomulti­
plier tube and a vacuum phototube with amplifier. 

(19.11) 

which is seen to be linear with photoemission current (10 db for every 
factor of 10 in current). The low and high level rates of variation of 
signal-to-noise level with photoemission current exhibited in Fig. 19.18 
are thus explained. 

It is of interest to examine the conditions under which either the shot 
noise or the thermal-agitation noise predominates in the phototubeJ 
resistor-amplifier combination. Noise contributions from the two sources 
will be equal when the two terms in the denominator of Eq. (19.9) are 
equal, i.e., when 

lo= 2kT 
eR 

(19.12) 
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At room temperature, T = 290°K, this has the approximate value 

1 
Io= 20R (19.13) 

where Io is in amperes and R is in ohms (or, more conveniently, Io may 
be taken in microamperes when R is in megohms). Thus the shot­
noise contribut ion will equal the thermal-agitation-noise contribution 
from the resistor if the current is 1 microampere when the load resist­
ance is 1/20 megohms. When the current is less than the value given 

by Z~R' the thermal-agitation noise from the resistor will be larger. 

When the current is greater than Z~R' the shot noise from the emitted 

electrons will predominate. 
For the photomultiplier the signal-to-noise ratio is given by 

2eB S"(~"~ ~ l) Rio+ 4kTB 
(19.14) 

where the symbols have the significance of Eq. (19.9) and Sis the second­
ary-emission-current multiplication ratio per stage. The total power 
gain of the multiplier is thus S2". The numerator is evidently the same 
as those in the previous equations except for the factor of power gain. 
The first term of the denominator represents the photoemission shot 
noise multiplied by the noise amplification factor developed in Eq. 
(12.44), which includes the noise of subsequent secondary emission. 
The second term of the denominator of Eq. (19.14) represents the 
thermal-agitation noise in the frequency band B. Because of the rather 
considerable noise amplification, the first term in the denominator will 
generally be much larger than the second, and accordingly the equation 
reduces to 

Soul FM2(S - l)Io 
Nou, = 2eBS 

(19.15) 

This shows the signal-to-noise ratio to be linear with the photoemission 
current (10 db for every factor of 10 in current). The signal-to-noise 
ratio for this case is further seen to be the same as that of the vacuum­
phototube-resistor combination as given in Eq. (19.11) except that it is 

S-1 smaller by the factor -g-· Hence the observed behavior of Fig. 19.18, 

which shows the signal-to-noise ratio of the vacuum-phototube-resistor 
combination to be slightly less than that of the photomultiplier tube at 
high levels of illumination. 



CHAPTER 20 

SPECIAL TUBES 

20.1. Introduction. It was inevitable that in the development of 
vacuum tubes there should arise the need for various special forms. 
Fortunately, tubes are now manufactured so easily that it is actually 
possible to get a tube tailor-made to suit almost any purpose. Attempts 
at standardization have held down the number of special tubes that would 
otherwise have come into existence. Also, the fact that tubes are quite 
versatile and can be used to give various operating characteristics by 
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Fro. 20.1.-Potential profileS in a hexode. 
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changing connections and the applied voltages has acted somewhat to 
restrict the number. During the Second World War the need for special 
tubes was so great that hundreds came into existence, but with time these 
will probably be reduced to a relatively small number. 

In this chapter there will be discussed the principal special tubes 
not treated in the previous chapters. The characteristics of con­
ventional tubes operated so as to produce special characteristics will 
also be discussed. 

701 
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20.2. The Hexode. The hexode is a six-electrode tube. It consists 
of a cathode, four grids, and an anode. It is generally used as a mixer 
tube in superheterodyne receiver circuits. The nonlinear charac­
teristics of the tube are used in such a way that when a r-f signal is 
applied to one grid and a signal from a local oscillator is applied to another 
grid the beat- or difference-frequency component appears in the plate 
current. Thus the mixer tube functions as a frequency converter. 

For frequency-conversion purposes the hexode is invariably operated 
with the relative potentials shown in Fig. 20.1. Let the grids be num­
bered consecutively from the cathode to anode, and let the voltages 
applied to them be designated by the corresponding numerical subscripts 
in all the following discussi6n. The function and operating conditions 
of the various electrodes may be summarized by the followingtabulation: 

Electrode Direct voltage Function 

Cathode .... ........ Zero Source of electron current 
Grid No. 1 ... ... .. . Small negative Injection of local oscillator voltage 
Grid No. 2 ....... .. Large positive Screen grid to reduce electrostatic coupling 

between the signal and oscillator grids 
Grid No. 3 . ...... . . Small negative Injection of r-f signal voltage 
Grid No. 4 ......... Large positive Screen grid to reduce electrostatic coupling 

between signal and output circuits 
Plate .............. Larger positive Collector of modulated electron current 

The complete representation of hexode characteristics involves a 
large collection of characteristics, for many voltage combinations are 
possible. However, since the No. 2 and 4 grids and the plate are usually 
held at fixed potentials, the tube is well described by two characteristic 
curves. These are the IP-V 1 and the Ip-V 3 characteristics. In addition, 
the IP-VP characteristics are of some interest. 

The Ip-V 1 characteristics of a hex ode are similar to the Iv-VI curves 
of a pentode for different values of suppressor-grid potential if the cur­
rents involved are small. The No. 1 grid under this condition will 
control the space current to the subsequent electrodes. This current 
will divide between these electrodes in a nearly constant fashion. The 
Ip-VI curves of an actual commercial hexode are shown in Fig. 20.2. 
These curves exhibit a maximum of plate current due to the formation 
of a virtual cathode in front of the No. 3 grid. When the virtual cathode 
forms, some of the space current will be reflected back to the No. 2 grid 
and the current transmitted to the plate will actually decrease as the 
space current increases. This action is very similar to that which 
occurred in the beam-power tube. As the No. 3 grid is made more 
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negative, the virtual cathode will form at lower space current. The 
formation of the virtual cathode corresponds to the peak of plate current. 
In application, this tube must be operated to avoid the region of negative 
transconductance. 
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FIG. 20.2.-lp-Vi characteristics of a hexode. 

The I P-V 3 curves of a hexode will resemble those of a pentode if the 
current is small. Actual characteristics as shown in Fig. 20.3 may 
exhibit some crossovers due to the formation of a virtual cathode in front 
of the No. 3 grid. 

The Ip-VP characteristics of a hexode will resemble those of a tetrode 
if the current is small. There may be an interchange of secondary 
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electrons between the No. 4 grid and plate since there is no shielding 
grid between them. Actual curves as shown in Fig. 20.4 will resemble 
beam-power-tube characteristics if the current is high enough, for then 
a potential minimum will form between the No. 3 grid and plate that will 
suppress the interchange of secondary electrons. 

In addition to the static characteristics, several of the dynamic 
constants of the hexode are of interest. As with other multielectrode 
tubes, the amplification factor is of no particular significance. It is very 
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high because of the shielding action of the screen grids. The plate 
resistance of the hexode is likewise of no great significance. It will 
tend to be high, of the order of the plate resistance in a tetrode but not 
as high as the plate resistance of a pentode. The control-grid trans­
conductances of a hexode, however, are of considerable importance. The 
first of these transconductances is the first-grid-plate transconductance, 
which is defined by 

g1p = alp = (dlp) (20.1) 
av1 dV1 V2,V3,V4,Vp =onst 
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This transconductance is equal to the slope of the characteristics shown 
in Fig. 20.2. The other transconductance of interest is the third-grid­
plate transconductance. It is defined by 

olv (div) Yav = - = -
iJVa dVa v1,v2,v4,Vp ~=- (20.2) 

This transconductance is equal to the slope of the characteristics shown 
in Fig. 20.3. The transconductance giv will generally be greater than 
the transconductance gap, 

7 

6 

.... -
s:: 
Q) 

t3 
::, ._, 
Q) ..... 

-£ 2 

V 
J 

I 
1/ t.,-
l 
~ 0 

0 20 

I TYPE 6K8 HEXODE SECTION I . I 
He'1ter wltoige=6.3volts, Grid No.2and4voltage=l00volts 
Grid No. 1 ,.md 3 volt01ge = Vi 11nd l;s, resp. 

I 
if, .,113=0 

-~ 

~=J/3=-Sv. 

1{=~=-/0v. 

40 60 80 100 120 140 160 
Plat-e volt01ge, volts 

FIG. 20.4.-J v-V v characteristics of a hexode. 

ff= VJ=,-l8v.-,,. 

180 200 

Another hexode constant that is of particular significance is the 
so-called "conversion transconductance.~ This is the ratio of the 
magnitude of the plate current of frequency Ji - h to the magnitude 
of voltage of frequency Ji applied to one of the control grids (No. 1 or 3 
in the case of the hexode) under the condition that a fixed voltage of 
frequency h is applied to the other control grid and that all the direct 
electrode voltages are kept constant. Thus, in contrast with other tube 
conductances, the conversion transconductance is the ratio of an alter­
nating component of plate current at the difference frequency (!1 - f~) 
to the alternating component of signal voltage on one control electrode 
at a different frequency Ji under the condition that a local oscillator 
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voltage at a still different frequency /2 be applied and maintained con­
stant on another control electrode. The conversion transconductance 
is a function of the magnitude of the local oscillator voltage and passes 
through a maximum at a particular value of local oscillator voltage. 
In Fig. 20.5 are given some typical curves of conversion transconductance 
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FIG. 20.5.-Conversion transconductance of a mixer 
tube. 

of a hexode in terms of local oscillator grid current, which for a given bias 
resistor is proportional to local oscillator voltage. 

Frequency conversion in any of the mixer type of tubes can be 
considered as a process of modulation of the oscillator frequency by 
the signal frequency, the intermediate frequency appearing as one of the 
sidebands. The modulation is accomplished through the medium of the 
electron stream in the tube. The electron stream will ordinarily experi­
ence a large amplitude variation at the oscillator frequency. The com­
ponent of tube current at oscillator frequency is modulated in magnitude 
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at the signal frequency. The degree of modulation is ordinarily so low 
that higher-order effects can be neglected and the basic relations studied 
by simple analysis. 

As with an ordinary amplitude-modulated wave of current the ampli­
tude of the side bands is smaller than the carrier by half the degree of 
modulation. Hence 

(20.3) 

where lit is the component of plate current at the intermediate frequency, 
which is the difference between the signal and oscillator frequency; m 
is the degree of modulation, or the ratio of the change in the component of 
current at oscillator frequency to the magnitude of this component; and 
Io,c is the component of plate current at oscillator frequency. All 
values of current are peak rather than effective. The degree of modula­
tion is given by 

m = Alo,c = iJlo,c V.io _!__ 
fo,c iJV,io lose 

where V,;0 is the peak value of the signal voltage. 
Eqs. (20.3) and (20.4), 

I 1 iJf o,c V 
,1=2av,,o no 

Since the conversion transconductance is defined as 

l;1 
Yc=-v 

••o 
then, from Eq. (20.5), 

(20.4) 

Hence, combining 

(~0.5) 

(20.6) 

(20.7) 

The component of plate current at oscillator frequency is given from the 
well-known Fourier integral 

J fr J oac = - / 'P COS-<,Jt d(wt) 
'Ir -,.-

(20.8) 

where IP is the instantaneous value of plate current as a function of time 
and w is the oscillator angular frequency. Taking the derivative of 
this expression with respect to V,;0 and substituting into Eq. (20.7), 

J fr 
Ye = 21r _,, gap COS wt d(wt) (20.9) 

results, as may be seen by recalling the definition of g3p given in Eq. 
(20.2) . The above assumes that the oscillator voltage is applied to the 
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No. 1 grid of the hexode and that the signal voltage is applied to the 
No. 3 grid. 

The third-grid-plate transconductance will vary over a large range 
of values as the oscillator voltage swings over its range of voltages applied 
to the No. 1 grid. The nature of the variation of the third-grid-plate 
transconductance with No. 1 grid voltage is shown in Fig. 20.6, curve b. 
The conversion transconductance can be evaluated graphically or 
numerically from this curve and Eq. (20.9). Also shown in Fig. 20.6 is 
the effect of the sinusoidal variation of oscillator voltage upon the plate 

.!hp 

t 

Fm. 20 .6.-Varia tion of transconductance of a hexode with control-grid 
voltage. 

current, which is proportional to the third-grid-plate transconductance 
for a fixed small signal voltage. The conversion transconductance is by 
the definition of Eq. (20.9) equal to half the fundamental component of 
the resultant curve of g3p as a function of time shown in Fig. 20.6. From 
observation of Eq. (20.9) it is seen that the oscillator voltage should 
be adjusted so that the tube current is cut off in the interval that cos wt 
is negative. Otherwise, there is a negative area under the curve of the 
integrand that reduces the conversion transconductance. The maximum 
possible conversion transconductance would be obtained if the curve of 
third-grid-plate transconductance rose sharply from zero to a maximum 
value as shown for curve a of Fig. 20.6. Such a transconductance would 
yield the square wave of plate current shown and a conversion trans­
conductance of value 

gap mas 
g. =--

7f' 
(20.10) 
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In other words, the maximum possible value of the conversion trans­
conductance is about one-third the maximum value of the third-grid­
plate transconductance. Actually, the curve of g3p against V 1 has the 
form shown at b, which is an s-shaped curve that is almost straight. 
This s-shaped curve is closely approximated by the straight-line curve 
shown as c, which yields the triangular wave of plate current given. 
The Fourier integral of Eq. (20.9) for this case yields the value 

gap max 
Uc= -

4
- (20.11) 

The actual value for the curve b will lie somewhere between the values 
given by Eqs. (20.10) and (20.11) but much closer to the latter. Hence, 
in general it may be expected that the conversion transconductance will have 
a value approximately equal to one-fourth the maximum value of signal­
grid-plate transconductance of any mixer-type tube. 

FIG. 20.7.-Electrode structure of the 6K8 triode-hexode. 

The form of Eq. (20.9) indicates that there is generally an optimum 
value of oscillator voltage. If the oscillator voltage is too large, the 
plate current will not flow for a sufficiently large fraction of a cycle. If 
it is too small, the current will flow for more than a half cycle and the 
conversion transconductance will be reduced. 

An example of a commercially available hexode is the 6K8, which 
contains a triode and a hexode in the same envelope. This tube is 
specifically designed to be operated as a mixer tube in a superheterodyne 
receiver. . The tube is built so that the No. 1 grid is common to the hexode 
and the triode. The No. 2 and 4 grids, are tied together internally. 
The triode is built on one side of a strip cathode, and the hexode is built 
on the other. A cross section of the tube electrode structure is shown 
in Fig. 20. 7. As a result of this structure, the local oscillator voltage 
appears on the No. 1 grid of the hexode, and the r-f signal must be applied 
to the No. 3 grid. 

The hexode was one of the first mixer-type tubes developed. More 
recently developed types exhibit better operating characteristics. 
Hexodes in general suffer from some interaction between the two input 
circuits, a relatively low conversion transconductance, and a relatively 
low plate resistance. 
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20.3. The Heptode. The heptode is a seven-electrode mixer tube 
with five grids. It has the construction shown in Fig. 20.8. The 
potential variation within the tube is shown in Fig. 20.9. The function 
and operating conditions of the various electrodes may be summarized 
in the following tabulation: 

Electrode Direct voltage Function 

Cathode. . . . . . . . . . . . Zero Source of electron current 
Grid No. 1. . ... .... Small negative Injection of signal voltage, source of bias for 

automatic volume control 
Grid No. 2 .. ....... Large positive Screen grid to reduce electrostatic coupling 

between signal and oscillator grids 
Injection of local oscillator voltage Grid No. 3 . . ... ... . Small negative 

Grid No. 4 . .. . . .... Large positive Screen grid to reduce electrostatic coupling 
between oscillator and output circuits 

Grid No. 5 ...... .. . Zero Suppressor grid to improve plate-current 
characteristics and further reduce electro­
static coupling between oscillator and out­
put circuits 

Plate .............. Large positive Collector of modulated electron current 

Since the No. 2, 4, and 5 grids of the heptode are generally held at 
fixed voltages, the static characteristics of the heptode may be repre­
sented by the IP-V 1, Ip- Va, and Ip-VP characteristics. 

The Ip-V 1 characteristics of a 6L 7, which is a typical heptode, are 
shown in Fig. 20.10. These are similar to the I P-V 1 curves of a variable­
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mu pentode for various suppressor-grid volt­
ages. The No. 1 grid has the principal influ­
ence in determining the magnitude of the 
space current that is passed on to the sub­
sequent electrodes. 

The Ip-Va characteristics of a 6L 7 heptode 
are shown in Fig. 20.11. These curves are 
similar to the plate-current-suppressor-grid­
voltage characteristics of an ordinary pentode. 
The potential of the No. 3 grid determines the 

Frn. 20.8.-Structure of the 
heptode. fraction of the space current that is passed on 

to the plate. 
The lp-Vp characteristics of a 6L7 heptode are shown in Fig. 20.12. 

These curves are similar to the Ip-VP characteristics of an ordinary 
pentode. They resemble pentode rather than screen-grid-tube charac­
teristics because of the presence of a suppressor grid between the last 
screen grid and the plate. 
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Heptode characteristics are in general superior to hexode charac­
teristics.1 In the first place it is possible to use the No. 3 instead of the 
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Frn. 20.9.-Potential profiles of the heptode. 
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FIG. 20.10.-/ p-V1 characteristics of the heptode. 

No. 1 grid for local-oscillator-voltage injection because of the extra 
shielding between the No. 3 grid and plate introduced by the presence of 

1 NESSLAGE, C. F., E. W. HEROLD, and W. A. HARRIS, A New Tube for Use in 
Superheterodyne Frequency Conversion Systems, Proc. I.R.E., vol. 24, pp. 207-218, 
February, 1936. 
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the No. 5 suppressor grid. This arrangement allows the No. 1 grid to 
be used for signal injection and makes it possible to obtain a variable-mu 
action from this grid, which in turn makes good automatic volume con­
trol possible. In general, it is very difficult to design a tube with a 
variable-mu characteristic on any but the first grid. This is because 
the subsequent control grids are necessarily coarse in order to pass a 
sufficient fraction of the space current, and being coarse do not allow a 
large enough range of amplification factor. The addition of the No. 5 
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Fw. 20.13.-gip-Va characteristics of the 
heptode. 

suppressor grid also raises the plate resisj,ance and thus allows higher 
screen-grid voltages, which in turn increases the No. 1 grid-plate trans­
conductance and so raises the obtainable conversion transconductance. 
The increase in plate resistance improves the selectivity and gain of the 
tube. 

Aside from the above factors the mixer operation of the heptode is 
like that of the hex ode. In Fig. 20.13 are shown the g1p- Va characteristics 
of the 6L7 heptode. These transconductance curves are similar to the 
limiting curve c of Fig. 20.6. The resultant gc-V 1 characteristics are 
shown in Fig. 20.14. Excellent automatic-volume-control characteristics 



714 VACUUM TUBES 

are exhibited here. It should also be noted that the maximum conversion 
transconductance obtained is approximately one-fourth of the maximum 
No. 1 grid-plate transconductance. 
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Fm. 20.14,-gc-V, characteristics of the hept.ode. 

20.4. The Pentagrid Converter. The pentagrid converter is a heptode 
as far as its static characteristics are concerned but is used as a mixer 
by connecting the cathode and first two grids as a triode oscillator. With 
this arrangement, the No. 2 grid acts as the triode plate, and the cathode 
cannot be operated at zero potential but must be allowed to have oscil­
lator voltage on it. Furthermore, the local oscillator voltage is effec­
tively introduced on the No. 1 grid, and the signal is introduced on the 
No. 3 grid. As with the heptode, the No. 4 grid is a screen grid, and the 
No. 5 grid functions as a suppressor. This arrangement has the advan­
tage that it requires one less tube but has the disadvantage that bias 
for the automatic-volume-control action is more difficult to apply. 

Typical potential profiles for a pentagrid-converter connection of a 
heptode are shown in Figs. 20.15 and 20.9. Two types of operation are 
possible. In Fig. 20.15 the No. 3 and 5 grids are operated as screen grids. 
This arrangement has the advantage that the reaction between the signal 
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and oscillator circuits is reduced because the No. 2 and 3 grids exert a 
shielding action but has the disadvantage that the plate resistance is 
relatively low, with attendant loss of gain and selectivity. In the 
arrangement of Fig. 20.9 the No. 2 grid acts as triode plate and screen 
grid, the No. 3 grid is signal-injection grid, the No. 4 grid is a screen 
grid, and the No. 5 grid is a suppressor grid. This arrangement has 
better plate-resistance characteristics than the previous one but shows 
more interaction between the signal and oscillator circuits unless specially 
designed tubes are used. 

In addition to the electrostatic coupling between the signal and 
oscillator circuits in mixer tubes there may be an electronic interaction. 
This occurs because with moderately large signal voltages the No. 3 
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Fm. 20.15.-Potential profiles of a pentagrid converter. 

signal grid may become negative enough on the negative half of the signal­
voltage cycle to repel low-velocity electrons approaching it from the 
oscillator section of the tube. These electrons will be thrown back 
into the oscillator section and constitute an electronic loading that may 
change the local oscillator frequency appre,ciably. 1

•
2 

The electronic interaction between the signal and oscillator circuits 
may be reduced by using a heptode with the special electrode structure 
shown in Fig. 20.16. This structure, typified in the 6SA7, differs from 
that shown in Fig. 20.8 by the addition of some curved collector plates 
which partly enclose the No. 2 grid and are connected to it. In addition, 
the No. 3 signal grid has a supporting wire opposite the opening in the 

' STRUTT, M. J. 0., "Moderne Mehrgitter-Elektronenrohren," Vol. II, pp. 94-102, 
112-114, Springer, Berlin, 1938. 

2 RCA Manufacturing Co., Operation of the 6SA7, Application Note, 100, 1938. 
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collector plates. This causes the potential opposite the collector-plate 
opening to be more negative than on either side of the supporting rod, and 
as a result electrons are deflected to one side. By virtue of this special 
electrode structure, electrons that are repelled from the No. 3 signal 
grid are deflected so that they are caught by the collector plates and 
prevented from returning into the active electron stream of the oscillator 
section. The collector plates further increase the electrostatic shielding 
between the signal and oscillator circuits, with attendant improvement 
of operation. The resulting operating characteristics are appreciably 
superior to those of the ordinary pentagrid tube. 
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STRUCTURE AND SOCKET CONNECTIONS 
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FIG. 20.16. -Structure of the 6SA 7 special pentagrid 
converter. 

20.5. The Octode. The octode is an eight-electrode mixer tube with 
six grids. As ordinarily used, the cathode and first two grids are con­
nected as a triode oscillator. The No. 3 and 5 grids act as screen grids. 
Signal is injected into the No. 4 grid. The No. 6 grid is used as a sup­
pressor grid. This arrangement achieves the desired effects of low 
electrostatic coupling between the signal and oscillator circuits while 
at the same time giving good plate-circuit characteristics. The 7 A8 
is an example of a typical octode. In addition, the electrodes may have 
the special structure described in the previous section, with the difference 
that the collector plates form the No. 3 electrode and are not connected 
to the No. 2 grid. The No. 3 grid is operated as a screen grid, and inas­
much as it has a separate connection the repelled electrons that are caugh~ 
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by it do not fl.ow through the triode oscillator or No. 2 grid circuit. The 
Philips EK3 is an example of such a tube. 1 

20.6. Space-charge-grid Tubes. In all multielectrode tubes having 
signal grids operated at small negative potentials there is the possibility 
of the formation of a virtual cathode before the control grid if the space 
current is high enough. This virtual cathode acts like an ordinary 
cathode and has the advantage that it has a large area and so may give 
rise to a relatively high transconductance. An ordinary screen-grid 
tetrode can be operated as a space-charge-grid triode by connecting 
the No. 1 grid at a positive potential and using the No. 2 grid as a control 
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FIG. 20.17.-Potential profiles in the space-charge­
grid triode. 

grid. This gives rise to the potential distribution shown in Fig. 20.17. 
The No. 1 grid in this case is called the "space-charge grid" because it 
draws a high enough current from the cathode to form the virtual cathode 
in front of the No. 2 grid. Typical current-voltage characteristics are 
shown in Fig. 20.18. The IP-V 2 characteristics are similar to those of a 
triode except that they exhibit greater cur\m.ture and hence more distor­
tion in amplifier applications. 

The space-charge-grid principle may be applied to pentodes and other 
multielectrode tubes as well as to tetrodes. The space-charge principle 
finds its chief application where tube operation is restricted to low 
voltages, as with certain types of battery-operated circuits. When 
the voltages available are of the order of 50 volts or less, appreciably 
higher effective transconductances can be obtained than can be had with 

1 See STRUTT, op. cit. 
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conventional tube connections. For voltages above 50 volts there is no 
gain, and the space-charge-grid principle finds little application. 

Spoice charge grid voltoige: 20 volts 
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Fm. 20.18.-Current-voltage characteris­
tics of the space-charge-grid triode. 

them. 
Means of obtaining negative-resistance characteristics from tubes are 

almost too numerous to mention. 1 A few of the devices are fundamental 
and important enough to deserve mention. 

Glow-discharge Tubes. In an arc or glow-discharge tube an increase 
in current produces an increase in ionization so that a smaller voltage 
is required to maintain the discharge. Almost every two-element glow 
tube exhibits a negative resistance somewhere in its operating charac­
teristic. The usefulness of this type of negative resistance is limited 
by the fact that the magnitude of the resistance changes with temperature 
and life of the tube. Also, the time lag associated with the positive ions 
present limits the frequencies at which the negative-resistance charac­
teristic is available to low audio values .. 

The Dynatron. The negative resistance that is available over part 
of the plate-current-plate-voltage characteristic of an ordinary screen-

' HEROLD, E.W., Negative Resistance and Devices for Obtaining It, Proc. I.R.E., 
vol. 23, pp. 1201-1223, October, 1935. Contains extensive bibliography. 



SPECIAL TUBES 719 

grid tube as shown in Fig. 10.2 is known as a "dynatron characteristic." 
The negative-resistance characteristic results from the transfer of 
secondary electrons from plate to screen grid. When the screen grid is 
more positive than the plate, an increase in plate voltage will attract 
more primary electrons to the plate but relatively more secondary 
electrons are lost to the screen grid so that the net plate current decreases 
rather than increases. If a parallel resonant circuit is placed in the plate 
circuit of a screen-grid tube and the tube operated at voltages that will 
give a negative-resistance characteristic, oscillations will occur in the 
plate circuit provided that the magnitude of the resistance of the parallel 
resonant circuit is greater than the magnitude of the negative resistance 
of the tube plate circuit. Oscillations will in general build up to the point 
where the magnitude of the negative resistance as averaged over the 
cycle of oscillation equals the positive resistance of the parallel resonant 
circuit. 

The negative-resistance characteristic obtainable from a screen-grid 
tube is subject to change as the tube ages and as the secondary-emission 
characteristics of the plate change from any of a number of causes. For 
this reason this type of negative resistance is not extensively used. 

Direct-coupled Negative-resistance Devices. The most interesting and 
stable types of negative resistances are those which are obtained from 
judicious interconnections of standard vacuum tubes. Such devices are 
dependent not upon gas or secondary-emission characteristics but rather 
upon current division between electrodes, space-charge effects, or a 
feedback action, all of which are quite stable and are capable of giving 
lower magnitudes of negative resistance and a wider range of operating 
voltages than are available by other methods. 

Negative Screen-grid Resistance of a Pentode. The screen grid of an 
ordinary pentode exhibits a negative-resistance characteristic if it is 
connected to the suppressor grid in such a way that an increase in screen­
grid voltage is accompanied by an equal increase in suppressor-grid 
voltage. This is evident from the curves of Fig. 20.19. This family of 
curves shows the Ir V 2 characteristics of a pentode for various values of 
V 3, where the numerical subscripts refer to the grid number in order 
from the cathode to plate. The solid curves show the I 2-V 2 charac­
teristics. As the No. 3 (suppressor) grid is made more negative, the 
No. 2 (screen) grid current decreases. If the No. 2 and 3 grids are con­
nected so that there is a constant difference of potential between them, 
the dotted curves shown in Fig. 20.19 result. The screen current 
decreases as the suppressor grid is made more positive; for the latter 
then transmits a greater fraction of the space current that approaches 
it, and as a result less current is returned to the screen grid. This 
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decrease in reflected current more than offsets the increase in directly 
intercepted space current that is taken on by the screen grid as a result. 
of its more positive potential. The two dotted curves of Fig. 20.19 
are for differences of No. 2 and No. 3 potential of 54 and 90 volts, respec­
tively. The magnitude of the negative resistance made available by 
this means is of the order of 3,500 ohms, which is considerably less than 
that obtainable from a dynatron, which is usually of the order of 10,000 
ohms. The region of negative resistance is limited at low voltages by 
the condition that the suppressor grid is returning all the electrons which 

5 

40 60 80 100 120 140 
Screen grid, volts 

Frn. 20.19.-h-V2 characteristics of a pentode. 

approach it and beyond this condition the suppressor grid has virtually 
no influence. Correspondingly, the region of negative resistance is 
limited at high voltages by the condition that the suppressor grid is 
passing all the current which approaches it and so again loses control. 

In actual applications the screen and suppressor grids are separately 
biased and fed through separate resistors but are coupled by a large 
capacity connected directly across the tube leads. This means that the 
No. 2 and 3 grids are connected together as far as voltage variations are 
concerned over a large band of frequencies. The negative-resistance 
characteristic is available from low audio frequencies, dependent upon 
the size of the coupling condenser compared with the size of the resistors 
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in series with the electrodes, to frequencies of the order of 60 me, at which 
transit-time effects disturb the relations. 

With proper connections the negative screen resistance of a pentode 
can be made to furnish either sinusoidal or square waves. 1•2 Likewise, 
trigger and flip-flop characteristics can be made available. 

Push-pull Negative-resistance Circuit. It is possible to connect two 
triodes or two pentodes in a push-pull arrangement by which a very 
good negative-resistance characteristic is made available. The circuit 
and resultant characteristics are shown in Fig. 20.20. The current which 
flows through the input terminals shown consists of two components, 
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Frn. 20.20.-Current-voltage characteristics of the push-pull circuit. 

that produced by the applied voltage, which is in one direction, and that 
produced by the tubes, which will be in the opposite direction because 
of the cross connection of the grids. The latter component of current 
can be made much larger than the former by tapping sufficiently high 
on the plate resistor of the other tube, usually across the entire resistor. 
The negative-resistance characteristic shown results. The resistance 
available has the approximate value of 

(20.12) 

for smh.11 values of impressed voltage, where R is the effective value of 
the resistance at the input termina~3, rv is the dynamic plate resistance 
of the tubes, rb is the value of the plate resistor, µ is i;he amplification 

1 REICH, H. J., "Theory and Application of Electron Tubes," 2d ed., Chap. X, 
McGraw-Hill, New York, 1944. 

1 BRUNETTI, C., The Transitron Oscillator, Proc. I.R.E., vol. 27, pp. 88--94, 
February. 1939. 
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factor of the tubes, and k is the fraction of the voltage developed across 
the plate resistors that is applied to the other tube. If k is sufficiently 
large, the effective resistance will usually be negative. 1 

In application, the cross connection between grids is made through 
a large capacity. By proper connection either sinusoidal or square waves 
may be obtained. The negative-resistance characteristic is available 
from low audio frequencies to frequencies of the order of megacycles. 
This is the basic circuit of the Eccles-Jordan trigger circuit and 
multivibrator. 

Feedback Circuits. The push-pull tube connection just described 
may be thought of as a f.ee:Iback circuit composed of a two-stage direct-
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FIG. 20.21.-Structure and characteristics of a special negative-resistance tube. 

coupled amplifier that has its output connected to its input. More 
complicated arrangements can be used as well to give negative reactances 
as well as resistances. 2 In principle, these methods use a feedback 
connection so that an increase in voltage between two terminals causes 
a current to flow in the opposite direction and thus gives rise to a negative­
impedance characteristic. 

Special Negative-resistance Tubes. It is possible to design special 
tubes so that they will have particularly good negative-resistance eharac­
teristics. Such tubes will in general make use of rather well-known 
electronic action. Already mentioned has been a negative resistance that 

1 See REICH, op. cit. 
2 GINZTON, E. L., Stabilized Negative Impedances, Electronics, vol. 18, pp. 140--

150, 138-148, 140--144, July, August, September, 1945. 
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depends upon reflection of electrons from a grid. Such action can be 
enhanced by making the electrons approach the grid at a small angle. 
In addition, it is possible to get a negative resistance by deflection of an 
electron beam. Shown in Fig. 20.21 is a special electron tube that 
obtains its negative-resistance characteristic from the change of focal 
length of an electron beam. 1 Maximum current will be intercepted by 
the No. 4 wire electrode when the voltage on it is just right to focus on it 
the electron beam produced by the other electrodes. For higher or lower 
voltages the current will drop off, thus giving rise to a negative-resistance 
characteristic for voltages higher than that required for a focus on the 
wire. 

20.8. Negative-transconductance Tubes. Two instances in which 
negative transconductances appear in tubes have already been mentioned. 
One case is that of the beam-power tube in which as shown in Fig. 10.13 
the curve of plate current versus current injected into the screen-grid­
plate region exhibits a negative slope over a portion of its characteristics. 
Since the space current in a beam tube increases as control-grid voltage 
increases, it will be true that over an appreciable portion of the available 
characteristics the plate current can be made to decrease as the control­
grid voltage increases provided only that the space current is high enough 
so that a virtual cathode forms between the screen grid and plate. This 
gives rise to a negative control-grid-plate transconductance but with an 
ordinary 6L6 requires that the tube be operated at its maximum 
dissipation. 

A negative suppressor-screen-grid transconductance also exists in 
the ordinary pentode, as is evident from the characteristics of Fig. 20.19. 
As suppressor-grid voltage is raised from a negative value, the screen-grid 
current decreases; for a greater fraction of the space current is passed 
on to the plate, and hence a smaller current is reflected back to the screen 
grid. The negative transconductance here is available only in the range 
of suppressor-grid voltages between which the suppressor grid reflects all 
current and passes all current. 

20.9. Electron-ray Indicator Tubes. The electron-ray tube is an 
indicator tube designed originally as a tuning indicator for radio receivers 
but capable of a wide range of applications. It is something of a cross 
between a triode and a cathode-ray tube. Basically, in its commonest 
form, it is a triode with one grid wire. The cathode is cylindrical, the 
grid is of the form of a narrow metal strip, and the plate is of the form 
of a wide-angle cone, which is coated with a fluorescent material and 
faces the end of the glass envelope of the tube so that the observer looks 

1 THOMPSON, H. C., Electron Beams and Their Application in Low Voltage Devices, 
Proc. I.R.E., vol. 24, pp. 1276-1297, October, 1936. 
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in toward the apex of the cone. The arrangement of the electrodes is 
shown in Fig. 20.22. 

When the grid, or control electrode, of the electron-ray tube described 
is sufficiently positive relative to cathode potential, electrons will move 
in all directions, giving a complete circle of illumination from the fluo­
rescent material on the plate. As the control electrode is made negative, 
it will repel electrons from its immediate vicinity and cause a sectorlike 
shadow on the plate. As the control-electrode potential is made more 
negative, the shadow angle increases. It is possible to make a tube in 
which the shadow angle can be varied from 0 to 100 deg as the control­
electrode potential is varied from a suitable positive value to zero. 

Characteristics of the 6AF6-G, which is an 
electron-ray tube with two identical and sepa­
rate control electrodes, are shown in Fig. 

-Oarkor 
shadow 20.23. Because of the relatively large varia-
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tion in control-electrode potential required to 
give an appreciable change in shadow angle, 
the commonest types of electron-ray tubes 
contain a directly connected triode in the 
same envelope as the indicator electrodes. 
Examples of such tubes are the 6E5 and the 
6G5. The characteristics of the 6E5 are 
shown in Fig. 20.24. These characteristics 
represent the combination effect of the triode 
amplifier and indicating device. The charac-

Catho'de · e'rid teristics of the 6G5 are similar except that the 
Fm. 20.22.-Construction of sensitivity is about half as great. Many other 
the electron-ray tube. 

electrode structures exhibit the property of 
having an electron ray whose position or width varies with the electrode 
potentials. 1 

20.10. Directed-ray Electron Tubes. In this class fall all the tubes 
in which the direction as well as the magnitude of the electron current is 
important. Several tubes in this category have already been mentioned. 
An example is the beam-power tube, in which the electron current is 
formed into parallel sheets by means of aligned control and screen grids. 
Likewise, the orbital beam tube, the 6SA7 special mixer heptode, and 
the electron-ray indicator tubes make use of electron rays directed in a 
specific manner to obtain the desired characteristics. 

The directed-ray tubes fall into several classes according to the function 
that the directed ray is intended to perform. The possible functions 
include obtaining high current densities, a selective action between 
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electrodes by a focusmg action, a variable electrode current by chr.nging 
beam width, a discrimination between electrons of different velocities, 
a high or low fractional electron-current discrimination with respect to 
any particular electrode, and negative-resistance and negative-trans­
conductance characteristics. This list is by no means complete. 

It is a relatively simple matter to form electrons into definite beams 
of either sheet or circular form. In the ordinary triode the action of 
the control grid is such that the electrons leaving it tend to form into 
sheets. By proper use of grid wires and specially shaped electrodes a 
rather wide variety of beam patterns can be had. In Fig. 20.25 are shown 
a number of structures that can be used to produce specific electron-ray 

{a) 

(d) 

/W.. 
fj' 

{b) 

fe) 
Fm. 20.25.-Directed-ray electron-tube structures. 

patterns. With all such devices, the angle of the electron beam will be a 
function of the electrode potentials, and the rate of change of angle or 
electrode current with any electrode voltage will be relatively slow 
because of the low amplification factors associated with a low number 
of grid wires. 1 

Of particular interest are arrangements by which current to a set of 
grid wires may be kept low. In Fig. 20.26 are shown two such arrange­
ments. The arrangement of Fig. 20.26a makes use of a cathode surface 
the cross section of which is scalloped in shape and against the points of 
which the grid wires are aligned. The curved equipotentials associated 

1 KNOLL, M ., and J. ScHLOEMILCH, Elektronoptische Stromverteilung in gitter­
gesteureen Elektronenrohren, Arch. Elektrotech. vol. 28, pp. 507-516, August, 1934 
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with the scallops of the cathode surface focus the electrons so that they 
pass mostly between the grid wires even when the control grid is positive. 1 

In the arrangement of Fig. 20.26b the emitting material is painted on a 
cylinder in a helical trace. The grid is likewise a helix of the same pitch 
as the emitting helix and positioned so that the wire lies opposite a non-· 
emitting portion of the cathode cylinder. By these arrangements the 
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FrG. 20.26.-Electrode arrangements for reducing 
control-grid current. 

control-grid current can be kept to less than 1 per cent of the space cur­
rent when the control grid is as positive as the plate for a triode structure! 
In spite of this remarkable operating characteristic the difficulties of 
constructing such cathodes are great enough so that they have not found 
commercial application. In Fig. 20.27 is shown a low-screen-current 
tetrode. The low screen current is obtained 
by using squirrel-cage control and screen grids 
of the same number of wires and simply aligning 
the grids. With this arrangement the screen­
grid current can be kept to a value as low as 
0.2 per cent of the plate current. 2 

20.11. Deflection Tubes. Most ele9tron 
tubes make use of the variation of magnitude of 
electron current with electrode potentials to 
obtain their control characteristics. It would, 
however, be entirely feasible to obtain control 
characteristics from deflection of an electron 
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Frn. 20.27. -Low-screen-
current tetrode. 

beam rather than from 

1 KNOLL, M., Verstii.rker und Senderohren als elektronenoptisches Problem, Zeit. 
fur Tech. Phys., vol. 15, pp. 584-591, December, 1934. 

2 THOMPSON, op. cit. 
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change in magnitude of an electron current. 1•2 In Fig. 20.28 are shown 
two forms of deflection tubes. In the tube of Fig. 20.28a a cylindrical 
cathode and two four-wire grids are used to form a four-lobed electron­
current pattern The resultant lobes are then deflected by the trough­
shaped external-corner electrodes so that the electron-beam lobes are 
effectively switched between the sections of the plate. In the arrange­
ment of Fig. 20.28b a plane cathode and a parallel-wire control grid are 
used to form sheet electron beams, which are then deflected by an 
interleaved double screen grid so that the electron sheets are switched 
between the sections of an interleaved plate in the form of a double-strip 
grid. Alternate sections of the screen grid and plate are connected to 
opposite ends of the driving and output circuits, respectively. 

0 + + 
@ I ~d~(bj 

177r1 
@ =-11 ---i-== ::.::..-~ 
e = ~[ @ 
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FIG. 20.28.-Deflection tubes. 

It might be thought that it would be possible to make a deflection 
tube which would exhibit a nearly infinite transconductance by creating a 
beam with a sharp edge and then deflecting this past the edge of a 
collector electrode. This property does not seem realizable in practice, 
for two reasons. (1) Thermal velocities place a limit upon the maximum 
current density that can be achieved in a beam and upon the sharpness 
of the edge, as discussed in Sec. 15.5. (2) To realize a high effective 
mutual conductance it is necessary to place a large resistance in series 
with the collector electrode, and current flow through this resistance 
develops a voltage change that is in the direction to repel the electron 
beam being directed toward the electrode. 

20.12. Television Camera Tubes. In a class by themselves are the 
television camera tubes. These tubes are means of electronically 
scanning a visual picture. They tax the tube designer's and the tube 
maker's art to the utmost, for they represent the most complicated 

1 HAZELTINl'l, A,, Deflection Control Tubes, Electronics, vol. 9, pp. 14--16, March, 
1936. 

2 RoTHE, H., and W. KLEEN, Die Bedeutung der Elektronenoptik in der Technik 
der Verstarkerrohren, Zeit. fur Terh. Ph11s., vol. l 7 (No. 12), pp. 635-642, 1936. 
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assemblage of purely electronic components in existence. They involve 
the preparation of sensitive photoelectric and secondary-emissive sur­
faces. They involve beam formation and deflection, invoking all the 
tricks of combination electrostatic and magnetic manipulation. They are 
probably the most difficult of any tubes to make, and their successful 
development is a triumph of the application of fundamental electronic 
principles. 

The Image-dissector Tube. One of the earliest purely electronic 
television viewing tubes developed was the so-called image-dissector tube, 1 

a diagram of which is shown in Fig. 20.29. This tube contains a large 

.-Mcrgnet,c focusing COIi 

Siqnal 
output 

Fm. 20.29.-The Farnsworth image-dissector tube. 

.- Photocathode 

photoelectric cathode upon which the picture to be imaged is focused. 
The photoelectrons liberated from the photocathode are attracted toward 
an anode in the form of a nickel wall coating designed so that the electrons 
from the photocathode are brought to a focus in a plane at the other end 
of the tube. In this way the electrons reproduce the current-density 
pattern corresponding to the original pi'cture. In early tubes of this 
type the focusing was achieved by means of an axial magnetic field, but in 
later tubes by purely electrostatic means. In the plane of the focus of 
the photoelectrons there is located a pickup electrode shielded by an 
aperture so that this electrode picks up only the current corresponding 
to a small element of cathode area. The pickup electrode is followed 
by a secondary-electron multiplier to increase the sensitivity. Picture 

1 FARNSWORTH, P . T ., Television by Electron Image Scanning, Jour. Franklin 
Inst.: vol. 218, pp. 411-444, Oetober, 1934. 
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scanning is achieved by deflecting the entire field stream of electrons from 
the photocathode so that the aperture in front of the collector electrode 
successively collects electrons from every portion of the picture-activated 
photocathode. Deflection is satisfactorily achieved by two pairs of 
magnetic coils external to the tube and producing fields at right angles 
to each other. The light image is projected upon the photocathode 
through the collector end of the tube, the obstruction caused by the 
collector structure and associated electron multiplier being negligible. 

While the linearity of response of the image-dissector tube is virtually 
perfect, its sensitivity is very low, of the order of 50 microvolts per 
millilumen per cm2 of cathode area. As a result, the tube is suitable only 
for outdoor televising and reproduction of motion pictures where the 
brightness of the objects to be viewed is quite high. 

The I conoscope. The iconoscope was the first of a series of television 
camera tubes developed to make use of a charge-storage principle. 1- 4 

The tube derives its name from the Greek derivatives "icon," meaning 
image, and "scope," signifying to view. The primary element of the 
tube is a mosaic of photoactive silver particles. These are deposited 
on a mica sheet and insulated from each other and from the sheet but 
are capacitively coupled to a metal backing on the other side of the 
mica sheet. The picture to be viewed is focused on this mosaic. The 
mosaic is scanned by an electron beam injected from an electron gun 
mounted at an angle with the mosaic. There is also a collector electrode 
in the same envelope. The video signal is obtained between the electron­
gun anode and the conducting sheet backing the mosaic. The structure 
of the iconoscope and the associated electrical connections are shown in 
Fig. 20.30. 

As the light image falls upon the mosaic screen, the various elements 
of the screen will emit photoelectrons in proportion to the intensity of 
the light falling upon them. The mosaic elements will thus become 
positively charged as they lose photoelectrons to the collector electrode. 
The mosaic elements act like a number of individual photoelectric cells 
all connected by capacity to the common signal plate, which is the con­
ductive backing to the mica support. The elements of the mosaic are 

1 ZWORYKIN, V. K., The Iconoscope, Proc. I.R.E., vol. 22, pp. 16-32, January, 
1934. 

• ZWORYKIN, V. K., Television, Jour. Franklin Inst., vol. 217, pp. 1-37, January, 
1934. 

1 ZWORYKIN, V. K., Iconoscopes and Kinescopes in Television, RCA Rev., vol. 1, 
pp. 60-84, Jnly, 1936. 

• ZwoRYKIN, V. K., G. A. MORTON, and L. E. FLORY, Theory and Performance of 
the Iconoscope, Proc. I.R.E., vol. 25, pp. 1071-1092, August, 1937. 
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successively struck by the scanning beam. This process restores to them 
the charge that they have lost by photoemission and releases a correspond­
ing charge to the signal backing plate to the mosaic. There thus flows 
through the signal-plate lead a current that is proportional to the light 

Deflecfinq 
coils 

Frn. 20.30.-lconoscope structure and circuit; C, cathode; G, control electrode; 
A, accelerating electrode; P., collector; Pc, photocathodes; R, load resistor. 

intensity of the areas scanned by the electron beam. A considerable 
gain in sensitivity is achieved by this arrangement by virtue of the fact 
that each of the picture elements is storing up charge continuously and 
so ideally the signal current is amplified by the number of picture ele­
ments over that obtained from 
such a tube as the image dissec­
tor. Actually, the process is only 
about 5 instead of 100 per cent 
efficient because of various detri­
mental effects to be described, but 
even at that the sensitivity of the 
tube is about 200 times as great as 
that of the image-dissector tube. 
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if 
The equivalent circuit of a 

mosaic picture element made up 
of many globules is given in Fig. Frn. 20.31.-Equivalent circuit of a mosaic 

picture element. 
20.31. In effect, the mosaic glob-
ules in any picture element are equivalent to a photoelectric cell that is 
capacitively connected to an output resistor. As light falls upon the 
cell, electrons are passed slowly by the cell but gradually build up an 
appreciable charge and corresponding voltage upon the coupling con­
·~nsfl. 'T'bp action of the beam is that of a separate circuit which dis-
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charges the condenser periodically and thus releases a peaked current 
pulse through the output resistor. 

Several effects enter into the action of the iconoscope that prevent 
it from being perfect in its operation. For one thing, the photoelectric 
emission from the mosaic elements is space-charge limited. Also, the 
charge built up by the photoelectric emission is partially neutralized by a 
rain of secondary electrons all over the mosaic, originating from the impact 
of the beam primary electrons. Further, there is some loss of charge 
by surface leakage. All these effects combine to make the efficiency 
about 5 to 10 per cent of the theoretical maximum. The average 
brightness of field builds up the mosaic potential to a level such that the 
change in potential which the beam can effect is not the maximum value. 
As a result, the sensitivity of the tube is nonlinear and is only about 
one-fourth as much for high levels of illumination as for threshold values. 

The potential behavior of the mosaic elements described earlier 
applies only if the secondary emission from the globules is negligible, 
which requires that the scanning electrons have only a few volts of energy. 
Ordinarily, the scanning electrons will have enough energy to produce five 
to seven secondary electrons for every primary electron, and the action 
of the mosaic screen will be quite different from that previously described. 1 

Since there are more electrons leaving than arriving on any mosaic 
element, when the scanning-beam potential is appreciable, the potential 
of the picture element being scanned will become positive instead of 
negative. Further, under the conditions of appreciable voltage of the 
scanning beam, the rain of secondary electrons falling upon elements 
of the mosaic not being scanned will exceed the number of photoelectrons 
being emitted, and the unscanned portions of the picture will assume a 
negative rather than a positive potential. The iconoscope still works 
under these conditions because the level of the negative potential assumed 
by the unscanned portions of the mosaic depends upon the picture illumi­
nation being relatively more positive (though still negative) in the 
illuminated areas than in the unilluminated areas. 

The action described above is shown in Fig. 20.32 Figure 20.32a 
shows the potential response of an unilluminated portion of mosaic to 
the scanning beam. The rain of secondary electrons depresses the 
potential of such portions of the mosaic to about 1.5 volts negative 
relative to the collector. At this point a stable potential condition 
exists, for any further depression of potential would cause the mosaic to 
repel the secondary electrons. Thus in front of the scanning beam a 
potential of -1.5 volts exists. The mosaic elements under the beam 
become charged to about 3 volts positive, relative to the collector, by 
the emission of secondary electrons. This is also a stable potential, 
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for if the element became more positive than this there would be a nega­
tive gradient of potential at the mosaic surface, which would prevent 
secondary-electron emission. The line behind the scanning beam rapidly 
becomes negative in potential again because of the acquisition of second­
ary electrons. Figure 20.32b shows the response of an illuminated 
section of mosaic to the scanning beam. Because of the emission of 
photoelectrons the potential of an unscanned portion of illuminated 
mosaic is less negative than for no illumination. The potential will, 
however, not become positive however much the mosaic is illuminated, 
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for then a negative gradient of potential would exist, which would prevent 
photoemission. The portions of the illuminated mosaic under the 
scanning beam rise to the same maximum, about 3 volts positive, as was 
the case for the unilluminated portions. Hence the signal is derived 
from the difference between the change in potential that exists between 
unscanned portions of illuminated and unilluminated portions of mosaic. 
For the figures quoted, it is seen that the maximum change in potential 
which can be achieved by illumination is 1.5 volts out of 4.5 volts, with 
the added condition that the change in potential level is nonlinear with 
illumination. From this factor alone, there is a loss of 67 per cent in 
efficiency. For ordinary levels of illumination restricted to the region 
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of linear response the loss is about 80 per cent. Leakage and other factors 
oring the efficiency down to 5 to 10 per cent. 

The structure of the mosaic is shown in Fig. 20.33. It consists of 
silver globules on a mica sheet of about 0.001 to 0.003 in. in thickness. 
The globules are formed by s £ting a finely ground silver oxide powder 
onto the mica sheet and then reducing the silver by heating. The silver 
particles form into little globules ranging in size from 0.0005 cm in diam­
eter down to particles microscopic in size. There are thus hundreds of 
mosaic particles scanned at any one instant by a beam of, say, 0.02 cm 
diameter, and a~ far as the beam action is concerned the mosaic may be 
considered as continuous. The conducting signal plate on the back 
side of the mica is formed by vaporizing or sputtering silver on that side 
of the mica. The globules on the front side of the mica are ~ctivated 

Phofosensifized 
silver qlobules,. ,. 

Mica sheet 

Conducf,"n(J.4ZZZZZZZZ22Z2ZZ:.:ZZ2ZZ2ZZZZZZZZZZZZZ22Z22Z22Z2ZZ:.:ZZ"4 
back plate • 

Mica backinq .sheef 

FIG. 20.33.-Structure of the iconoscope mosaic. 

by much the same process as is used in making photoelectric surfaces. 
The silver globules are first oxidized and then exposed to caesium vapor 
to give a photoemissive surface. The signal plate is made just thick 
enough to become reasonably conducting and is usually backed by a heavy 
sheet of mica to prevent buckling or warping of the mosaic. The 
capacity of the mosaic to the signal plate ranges from 50 to 300 micro­
microfarads per cm2, and a value of 100 micromicrofarads per cm2 is 
generally assumed in calculations. The photoelectric sensitivity of the 
emissive surfaces is of the order of 7 to 10 microamperes per lumen. 
The activated surface of the globules exhibits secondary emission as well 
as photoemission, the ratio of secondary to primary electrons ranging 
from five to seven for the usual conditions of operation. If the globules 
are activated with care, the insulation between them is very good, though 
some loss of charge is experienced from the fact that the resistance is 
not infinite. 
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The Image Iconoscope. Various arrangements have been tested 
in the attempt to improve the efficiency of the iconoscope. One of these 
arrar3ements is found in the image iconoscope. 1•2 The structure of 
the image iconoscope is indicated in Fig. 20.34. This tube makes use of a 
mosaic screen as in the iconoscope but charges it by secondary-electron 
action. The mosaic is excited not with a light field but with a field of 
electrons of which the intensity pattern corresponds to that of the picture 
to be viewed. This field is generated by a transparent photocathode that 
is excited by the picture. This tube uses an electron lens, which is rather 
difficult to design, to focus the output of the photocathode upon the 
mosaic. 3 The charge on the mosaic is derived from secondary-electron 
emission, which exceeds the primary-electron current and also exceeds 
the photoelectric current in the ordinary iconoscope. Such tubes are 
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Fm. 20.34.-Structure of the image iconoscope. 

capable of giving sensitivities as high as 5 millivolts per millilumen per 
cm2• These tubes have not found great use because of the difficulty 
in constructing an electron lens that will reproduce the light image 
upon the mosaic without distortion. 

The Orthicon. Another arrangement by which the low efficiency 
of the iconoscope is increased is the orthoiconoscope, usually abbreviated 
to orthicon. 4 The name is derived fr~m the Greek prefix "ortho," 
meaning straight, which has reference to the linearity of characteristic. 
The orthicon overcomes some of the limitations of the iconoscope by 

I Ibid. 
• IAMS, H., and A. RosE, Television Pickup Tubes with Cathode-ray Beam Scan­

ning, Proc. I.R.E., vol. 25, pp. 1048-1070, August, 1937. 
a MoRTON, G. A., and E.G. RAMBERG, Electron Optics of the Image Tube, Physics, 

vol. 7, pp. 451-459, December, 1936. 
• RosE, A., and H. A. IAMS, The Orthicon, RCA Rev., vol. 4, pp. 186-199, October, 

1939. 
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scanning the mosaic with electrons of such low velocity that secondary 
electrons are not created and hence do not neutralize the mosaic charge. 
A diagram of the orthicon is given in Fig. 20.35. The picture to be 
viewed is focused upon the mosaic, where it causes a variation in charge, 
as in the iconoscope. The scanning beam is generated by a flying spot 
of light upon a photocathode, which releases low-velocity electrons. 
Focusing of low-velocity electrons is difficult but is achieved in the 
orthicon by making use of the fact that low-velocity electrons will move 
in a tightly wrapped spiral around a strong magnetic-flux line. The 
scanning electrons generated by the light spot on the photocathode are 
guided to the mosaic by a strong curved magnetic field. When the 
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FIG. 20.35.-Structure of the orthicon. 

scanning electrons approach a brightly illuminated spot on the mosaic, 
they are confronted with a positive potential, which draws them in and 
neutralizes the positive charge. When they approach a dark spot on 
the mosaic, they are repelled and return to the photocathode. Sensitivi­
ties of the order of 2 millivolts per millilumen per cm 2 have been attained 
with the orthicon. The conversion of the photoelectric scanning current 
into signal is believed to be nearly 100 per cent. 

The Image Orthicon. Still greater sensitivity can be obtained with a 
tube known as the "image orthicon," a diagram of which is given in Fig. 
20.36. This tube combines features of the image iconoscope and orthicon. 
The light image is focused upon a transparent photocathode. The 
emitted current from the photocathode carries current-density variations, 
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corresponding to the light-intensity variations in the picture to be viewed. 
The current field from the photocathode is focused upon a two-sided 
target by means of a suitable electron lens. The target surface is 
charged up according to the density of the exciting current by secondary­
electron emission. The target is scanned with a low-velocity beam, 
which is deflected by magnetic means. The velocity of the scanning 
electrons is low enough so that no secondary electrons are created in the 
scanning process. The relative potentials of the mosaic and beam 
electrons are adjusted so that the scanning electrons will be attracted 
to neutralize the charge of the brightly illuminateJ areas but will be 
reflected from the dark areas. The signal is derived from the reflected 
electrons whose number will be an inverse function of the original picture 
illumination. In addition, the reflected electrons are multiplied by an 
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electron multiplier, which helps increase the sensitivity and reduce the 
noise figure of the device. This tube is so sensitive that it can be used 
to view scenes illuminated with as little brightness as 0.01 candle per 
ft2. The characteristics of the photocathode also make it possible to 
observe objects from their infrared radiation alone. 1•2 

The M onoscope. The monoscope is I\0t a camera tube but simply a 
standard picture-signal-generating tube. It is similar to the iconoscope 
in construction except that instead of the mosaic it has a fixed pattern 
printed on the oxide coating of an aluminum sheet. The secondary 
emission of the unprinted portions of the oxide coating is fairly high, 
while that of the printed portions is low. The printed pattern is scanned 
with an electron beam and gives rise to a variable secondary-electron 

1 Sensitive Television Camera Tube, Electronics, vol. 18, p. 330, December, 1945. 
2 RosE, A., P. K . WEIMER, and H. B. LAw, The Image Orthicon, Proc. I.R.E., 

vol. 34, pp. 424-432, July, 1946. 



738 VACUUM TUBES 

current to the collector electrode which corresponds to the printed signal. 
The signal from the collector electrode has the same polarity as that from 
the backing plate in an iconoscope. A negative picture signal may be 
obtained from the backing plate of the monoscope. The tube is used 
exclusively as a picture-signal generator for circuit-testing purposes. 

20.13. The Electron Microscope. The electron microscope is not 
really a vacuum tube in the sense that it is available in sealed-off form 
that can be plugged into a circuit, but it is of sufficient importance to 
deserve a brief comment. The electron microscope extends the electron­
optical analogy to the logical limit by actually using electrons to obtain 
an expanded image of an object. Use is made of the fact that electrons 
exhibit a wave as well as a; particle behavior. Since electrons have 
appreciable path lengths only in a vacuum, it is necessary that the speci­
men be placed in a vacuum and the specimen is viewed by shooting 
electrons through it !1 

Structure of the Electron Microscope. In its usual form the electron 
microscope consists of a source of electrons, a condensing lens for the 
electron beam, and a specimen holder followed by two magnifying 
lenses. The lenses may be either electrostatic or magnetic. The electron 
source is usually a tungsten filament shielded by a cathode electrode so 
that emission occurs from only a small area of the filament. The elec­
trons are accelerated by a unipotential gun structure constructed so that 
the angle of the electron ray is small. Since the magnetic type of electron 
microscope is thus far that most extensively used, the remainder of the 
remarks of this section will apply to it. A separate section will be 
devoted to the electrostatic type of microscope. 

A magnetic condensing lens of the type shown in Fig. 14.8e is used 
to focus the electron beam upon the specimen. Just beyond the speci­
men to be viewed is placed an objective lens, also magnetic and of the 
same form as the condensing lens. Another magnetic lens, called the 
"projecting lens," is used to focus the image formed by the objective lens 
upon either a fluorescent screen or a photographic plate, both in vacuum. 
An intermediate image can be obtained before the projecting lens. The 
general structure involved is shown in Fig. 20.37. 

The specimen is applied to a thin film of collodion, which is supported 

1 The literature on electron microscopes runs into hundreds of articles and a score of 
books. The reader is referred to bibliographies on the subject by C. Marton and 
S. Sass, published in the Journal of Applied Physics, which list articles and books since 
the development of the electron microscope and are periodically extended. 

See MARTON, CLAIRE, and SAMUEL 8Ass, A Bibliography of Electron Microscopy, 
Jour. Appl. Phys., I, vol. 14, pp. 522-531, October, 1943; II, vol. 15, pp. 571>--579, 
August, 1944; III, vol. 16, pp. 373-378, July, 1945. 
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upon a fine mesh screen, of 100 to 400 wires per inch. The collodion 
film is prepared by placing a drop of the material in liquid form on the 
surface of a dish of water, then raising the supporting screen through 
the film that forms from below so that a single layer of the film becomes 
attached to the screen, and then cutting away the excess collodion. The 
specimen to be observed is then deposited upon the collodion film. The 
specimen is admitted into the microscope through a rather intricate 
arrangement in the form of a vacuum lock with attendant manipulating 
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levers. The microscope is left on a vacuum pump at all times, and when 
the specimen is removed a door is first' opened into a small vacuum 
chamber and the specimen put into this chamber. The door between 
the chamber and the main body of the microscope is then closed, and 
another door opening to the outside is opened and the specimen removed. 
By this arrangement the entire microscope does not have to be evacuated 
every time a specimen is admitted or removed; rather, the vacuum 
pumps need remove only the small volume of the air admitted from the 
intermediate chamber. Photographic plates are admitted and removed 
by the same general scheme. 



740 VACUUM TUBES 

Eq4ivalent Wave Length of Electrons. One of the revelations of 
modern physics is that there is a dual aspect of matter and energy. 
This applies to light rays, which may exhibit the propertiefl of either 
waves or particles. Likewise, particles in motion exhibit the properties 
of light rays. It is the wave aspect of the electron that is utilized in 
the electron microscope. One of the teachings of quantum mechanics 
is that a particle in motion exhibits an equivalent wave length, known 
as the "De Broglie wave length," given by 

h >. =­
mv 

(20.13) 

where >. is the equivalent wave length in meters, h is Planck's constant 
whose value is 6.624 X 10-34 watt-sec 2, rn is the mass of the particle in kg, 
and v is the velocity in meters per sec. For an electron at low velocities, 
the mass is constant, and the velocity is proportional to the square root 
of the potential through which it has been accelerated. Invoking the 
physical constants and Eq. (6.7a), the equivalent wave length of :m 
electron that has been accelerated through a potential Vis 

angstrom units (20.14) 

where V is in volts and 1 angstrom unit equals 10-10 meters. This 
expression is accurate within 1 per cent for voltages up to 20,000 volts. 
For higher voltages the relativity change of mass and the departure of 
velocity from the dependence upon the square root of potential must be 
considered. From Eq. (6.40a), the mass of an electron is seen to increase 
linearly with the potential through which it has been accelerated. Figure 
(6.3) and Eq. (6.39) give the dependence of electron velocity upon 
potential. Upon combining these last two relations with Eq. (20.13) 
there results the general equation for equivalent wave length of an 
electron that has been accelerated through V volts, 

>. = 12.26 
yV yl + 0.9788 X 10-6 V 

angstrom units (20.15) 

This expression reduces to that of Eq. (20.14) for low voltages. A 
curve of equivalent wave length as a function of voltage is given in Fig. 
20.38. 

Theoretical Resolving Power of the Electron Microscope. The maximum 
useful magnification that can be obtained from a microscope is limited by 
the so-called "resolving power" and the lens defects. The resolving 
power of a microscope is measured by the least distance between two 
points that can just be distinguished and is determined by diffraction 
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laws, which in turn depend upon the wave length of the light used. 
The least resolved distance of a microscope is usually given in terms of 
the Abbe formula, which has the form 

d = O.?>-
n sin a 

(20.16) 

where d is the minimum distance separating two points which can be 
resolved, >- is the wave length of the light used, n is the index of refraction 
of the medium in which the object is situated, and a is the maximum 
angle which a ray leaving the central point of the object and entering the 
objective lens makes with the optical axis of the system. The quantity 
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n sin a is known as the "numerical aperture" of the lens. From the 
Abbe formula it is seen that the least resolved distance d is decreased as 
the wave length is decreased. This is supported experimentally by the 
fact that the highest resolution with opti~al microscopes is obtained with 
ultraviolet radiations. With ultraviolet wave lengths of the order of 
2,500 angstrom units, refractive media with indices of refraction of a 
maximum value of about 1.6, and a maximum value of sin a, it is seen 
that the best that can be hoped for in the way of optical resolution is 
of the order of 1,000 angstrom units. 

It may be noted from Fig. 20.38 that the equivalent wave length of 
even low-voltage electrons is much less than the wave length of the 
shortest usable near-visible radiations. Hence the electron microscope 
has a tremendous opportunity of increasing resolution and magnification. 
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This it does, though as yet the maximum resolution is Iim11,ed by the 
small apertures involved. The maximum useful magnification obtainable 
with an optical microscope is about 3,000 diameters. Electron micro­
scopes have given useful magnifications as high as 100,000 diameters. 

That the resolving power of an electron microscope is given by the 
Abbe formula may be demonstrated from a simple consideration of the 
Heisenberg principle of uncertainty. The principle of uncertainty states 
that the product of the error in determination of position and the error 
of determination of velocity of a particle is a constant. In other words, 
the more accurately the position is known, the less accurately the velocity 
can be known, and vice versa. Specifically, the principle of uncertainty 
states , 

Ax Ap = h (20.17) 

where Ax is the uncertainty of position, Ap is uncertainty of momentum 
mv, and his Planck's constant. Upon applying this to a particle that is 
struck by an electron moving at an angle a with the axis of an electron 
microscope it is expected that the product of the indeterminancy of x 
of the particle by the indeterminancy of the x component of momentum 
will equal Planck's constant. If it is assumed that the point of contact 
of the electron with the particle is such that the tangent through this 
point is parallel to the optical axis, then the x component of momentum 
imparted to the particle is 2mv sin a, where mis the electron mass and v 
is the electron velocity, and hence 

Ax Ap,. = Ax2mv sin a = h (20.18) 

Substituting the value of the De Broglie wave length from Eq. (20.13) , 

A 
Ax=--.-

2 sm a 
(20.19) 

which is the same as the Abbe formula of Eq. (20.16). 1 As an example, 
suppose that the numerical aperture of a lens is 0.0025 and that a 50,000-
volt electron beam is involved. Then the De Broglie wave length, from 
Fig. 20.38, is about 0.05 angstrom unit and the corresponding theoretical 
least resolved distance is 10 angstrom units. The least resolved distance 
would be of the order of atomic dimensions if it were not for the lens 
defects. Actual least resolved distances of electron microscopes are of 
the order of 20 angstrom units. 

Operating Principle of the Electron Microscope. The electron micro­
scope produces an image because certain of the electrons in the beam 
on passing through the specimen have been scattered rather than refracted 
or absorbed. The scattering mechanism is entirely a dynamical one 

1 This derivation is attributed by Marton to Henriot. 
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resulting from the reaction of the electron charge with the electrostatic 
fields of the atoms and molecules that the electron approaches. Some 
of the scattered electrons are intercepted by the apertures. Others 
undergo single or plural scattering and remain in the field. Variations 
in density of the resultant picture occur because of the scattering process, 
which shifts some of the electrons from the portions of the picture cor-

FIG. 20.39a.-8oap-curd fibers. Picture taken with the electron 
microscope. Magnification is about 10,000 times: lµ = 1 
micron = 10--G meters. (Courtesy of' J. W. McBain.) 

responding to dense parts of the specimen. Thus the electron-microscope 
picture resembles an X-ray picture more than an optical picture. Some 
photographs of soap-curd fibers obtained with the electron microscope 
are shown in Fig. 20.39. 

Limits of Resolving Power. A number of factors conspire to make the 
resolving power of the electron microscope less than the theoretical value. 
In the first place all the voltages and currents of the microscope are sub­
ject to some variation, which introduces a fuzziness in the pictures. 
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This can, however, be virtually eliminated by stabilizing the voltages and 
currents to a sufficient degree. The degree of stability required for a 
least resolved distance of 10 angstrom units is rather large, being of the 
following order: 

Voltage stability ............ . .. ....... . . ......... 1 part in 7,000 
Current stability 

Condenser lens ..... . ........................... 1 part in 1,000 
Objective lens .................................. 1 part in 14,000 
Projection lens .............•...........•..•.... 1 part in 1,500 

Fw. 20.39b.-Soap-curd fibers . Picture taken with the 
electron microscope. Magnification is about 100,000 
times. (Courtesy of J. W. McBain.) 

Furthermore, any stray magnetic fields must be reduced by shielding 
so that components normal to the axis are weaker than 5 X 10-5 gauss. 

In addition to the above there are all the various lens aberrations to 
be coped with. 1 Most of these are extraaxial so that they can be reduced 

1 An excellent discussion of the limitations of the resolving power of electron 
microscopes is given by MARTON, L., and R. G. E. HUTTER, The Transmission Type of 
Electron Microscope and Its Optics, Proc. I.R.E., vol. 32, pp. 3-12, January, 1944. 
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by using a small beam angle, with attendant loss of resolving power. 
Whereas beam angles in optical microscopes may be quite large, values 
of a for electron microscopes are of the order of 10-2 to 10-5 radian. 
Some lens errors are axial and cannot be eliminated. These are spherical 
and chromatic aberration and also the diffraction defects. Scattering 
also imposes some irremediable limitations. 

Chromatic aberration is proportional to the beam angle and thus may 
be reduced by keeping the beam angle low. It is principally due to 
changes in velocity incurred when the electrons pass through the speci­
men. It may be reduced by using thin specimens and supporting films 
and materials of low atomic number. 

Spherical aberration increases as the cube of the beam angle and with 
the beam voltage because the minimum focal lengths of the magnetic 
lenses increase with beam voltage, owing to saturation effects. 

Diffraction errors are proportional to the equivalent wave length and 
inversely proportional to the beam angle. Since the diffraction error 
decreases with beam angle, while the spherical aberration increases with 
beam angle, there is an optimum resolution which occurs at the angle at 
which the two errors are approximately equal. 

Because the De Broglie wave length decreases with increasing 
electron energy, it might be thought that increasing improvement in 
resolution could be achieved by simply going to higher voltages. This is 
not realized in practice, largely because the magnetic lenses lose strength 
through saturation, as a result of which spherical aberration and diffrac­
tion actually increase. A reduction of chromatic aberration and an 
increase in penetration power are realized; but, in spite of this, pictures 
obtained with beam voltages greater than 100 kv are not noticeably 
superior to those taken with beam voltages between 50 and 100 kv except 
for the greater penetrating power evidenced. 1 

Electrostatic Electron M icrosr:opes. The structure of an electrostatic 
electron microscope is also shown in Fig. 20.37. 2 A shielded tungsten 
filamentand a unipotential cathode gun are used to produce and acceler­
ate the electrons. Three lenses are used, and these have the same func­
tion as the corresponding lenses in the :magnetic type. The electrostatic 
lenses are of the Einzel lens type and are dimensioned so that the center 
electrode of each lens is operated at cathode potential. This makes the 
lens action independent of the voltage used, for the focal length depends 
only on the shape of the field. As a result, the lens voltage supply 

1 ZwoRYKIN, V. K., J. HILLIER, and A. W. VANCE, Preliminary Report on the 
Development of a 300 Kilovolt Magnetic Electron Microscope, Jour. Appl. Phys., 
vol. 12, pp. 738-742, October, 1941. 

2 BACHMAN, C. H., and SIMON RAMO, Electrostatic Electron Microscopy, Jour. 
Appl. Phys., vol. 14, pp. 8-18, 69-72, 155-160, January, February, April, 1943. 
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does not hava to be as carefully stabilized as is the case with the magnetic 
type of electron microscope. Focusing is achieved in the General Electric 
model by moving the specimen physically without changing the lens 
characteristics. All the lens defects encountered in the magnetic type 
of microscope appear in the electrostatic typ.a and are distinctly greater 
in magnitude. As a result, the least resolved distance as yet obtained 
with an electrostatic microscope is about 80 angstrom units. Hence 
the electrostatic types developed thus far are inferior in magnification 
to magnetic types by about a factor of 4. This limitation is offset by an 
appreciable reduction in cost and size. 



CHAPTER 21 

HIGH-VACUUM PRACTICE 

21.1. Introduction. The construction of vacuum tubes requires a 
high degree of skill and a great knowledge of the techniques associated 
with obtaining and maintaining a high vacuum. It may be said without 
exaggeration that the problem of producing a good vacuum tube depends 
about 90 per cent upon the knowledge of high-vacuum techniques. With­
out a knowledge of these techniques a knowledge of the theory of 
vacuum-tube design is useless. Much has been written on the subject of 
high-vacuum techniques, but probably as much knowledge exists that has 
never been recorded. This brief chapter cannot do more than collect 
the most important relations and facts concerning high-vacuum practice.1 

In answer to the question as to what is meant by high vacuum it is 
first necessary to define the units in which vacuums are measured. There 
are a number of systems of units that are commonly used to represent the 
degree of vacuum. Vacuums may be described in terms of a fraction 
of atmospheric pressure, 760 mm of mercury column. They may be 
described in terms of the absolute gas pressure in units of bars, 1 bar being 
nearly equal to 1 dyne per cm 2 and 1,000,000 bars being nearly equal to 
atmospheric pressure, actually 750 mm of mercury column. Vacuums 
may also be measured in terms of the height to which the gas whose 
pressure is being measured will raise a column of mercury. This height 
is 760 mm at atmospheric pressure and will be proportionately less for 
gases whose pressure is less than atmospheric. This method of repre­
senting pressure of vacuum has a definite physical significance in that 
it is possible to devise an apparatus which will give direct measurements in 
terms of a mercury column for heights of the mercury column as low as 
10-4 mm. Sometimes the height of the mercury column is expressed in 

1 The most useful books devoted entirely to high-vacuum practice are 
DusHMAN, S., "The Production and Measurement of High Vacuum," General 

Electric Review, Schenectady, New York, 1922. 
DUNOYER, L., "Vacuum Practice," Van Nostrand, New York, 1926. 
ESPE, W., and M. KNOLL, "Werkstoffkunde der Hochvakuumtechnik," Springer, 

Berlin, 1936. 
YARDwoon, J., "High Vacuum Technique," Chapman & Hall, Ltd., LondoJJ, 

1943. 
747 
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llnits of microns, 1 . b . 1 
This has the virtue mwron emg 1 000 000 meter. 

' ' that the numbers are a little easier to write for low vacuums. In Fig. 
21.1 is given a chart comparing the different scales for measuring vacuums. 

Bars, 
Atmospheres dynes per sq.em. mm.of Hg microns of Hq 

I 106 160 1.6x 105 

,0-1 105 100 ,os 

10-2 I04 10 104 

,o-3 103 101 

10-4 102 10-1 102 

10-S 10 
io-z 10 

1-------- ,o-J ------ 1---

10-1 ,0-1 10-• io-' 

10-8 10-2 10-s 10-2 

io-9 ,o-J 10-6 10-J 

I0-10 I0-4 10-1 io-4 

Fm. 21.1.-Comparison of pressure scales. 

The values along any horizontal line correspond to the same gas pres­
sure. Thus 1 micron equals 10-3 mm of mercury and corresponds to 
1.333 bars or 1.318 X 10-s atmosphere. 
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Pressures of 10-4 mm of mercury or less are referred to as "high 
vacuums." A pressure of 10-7 mm of mercury is referred to as a "hard 
vacuum." One of 10-3 mm of mercury or less is referred to as a "soft" or 
"low vacuum." An idea of the scale of vacuums encountered in elec­
tronic devices is given by the following tabulation: 

Pressure, Mm of Mercury 
760 
100 
10 

Characteristic or Device 
Atmospheric pressure 
Gas-filled Lamps 

Spark streamers in electrical discharge 
Glow discharge, neon lamps 
Lower limit of glow discharge 

1 
10-1 
10-2 
10-a Glass fluoresces under electron bombardment 
10-4 Bad receiving tube 
10-5 Old receiving tube, operating 
10-s New receiving tube, operating 

Old transmitting tube, operating 
10-7 New transmitting tube, operating 
10-s New tube, cold 

21.2. Fundamental Gas Laws. Since all vacuum processes are 
merely operations upon gases at pressures less than atmospheric, it is 
important to review the laws governing the behavior of gases. There 
will also be included in this section comments upon the behavior of 
molecules in a gas and of electrons in a gas. 

Boyle's Law. Boyle's law states that the volume which a given mass 
of gas at a fixed temperature occupies varies inversely as the pressure 
to which the gas is subjected. Mathematically this is stated by 

(21.1) 

Charles's, or Gay-Lussac's Law. Charles's, or Gay-Lussac's, law 
states that the volume which any mass of gas occupies at a given pres­
sure varies directly with the temperature. Mathematically this is stated 

(21.2) 

Avogadro's Law. Avogadro's law stattis that the number of moleculee 
in equal volumes of gases at the same temperature and pressure are equal. 
More specifically, the number of molecules in a mole or in a mass in 
grams of substance numerically equal to its molecular weight is always the 
same regardless of the kind of gas. The number of molecules in a mole 
is known as Avogadro's number and is equal to 6.023 X 1023 • 

General Gas-expansion Law. Boyle's, Charles's, and Avogadro's 
laws can be combined into a single law, 

PV = RmT (21.3) 
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where Pis pressure in bars or dynes per square centimeter, Vis volume 
in cubic centimeters, R is a universal gas constant having a value of 
8.314 X 107 ergs per deg per mole, m is the mass of the gas in moles, 
i.e., the mass in grams divided by the molecular weight, and T is the 
temperature on the absolute scale, which is 273° plus the number of 
degrees centigrade. From this equation and Avogadro's number it is 
readily calculated that the number of molecules in 1 cm3 at a pressure 
of 106 bars (750 mm of mercury, nearly atmospheric) and 0°C is 
2.654 X 10 19• Even at the very low pressure of 10-7 mm of mercury, 
about 10-10 atmosphere, the number of molecules per cubic centimeter 
of a gas is about 3,000,000,000. In general, the number of molecules per 
cubic centimeter of a gas is given by 

n = 7.244 X 1015
; molecules per cm3 (21.4) 

where P is pressure in bars and T is absolute temperature. 
Distribution of Velocities in a Gas. The heat energy that a body of 

gas contains exists in the kinetic energy of motion of the gas molecules. 
As the temperature is increased, the heat energy increases and the velocity 
of the molecules increases. The molecules will have velocities in all 
directions and with all magnitudes, but most of them will have velocities 
grouped around a most probable velocity. Maxwell has shown from 
application of the theory of probability that the distribution of velocities 
of molecules in a gas is given by 

(21.5) 

where x is the ratio of velocity to the most probable velocity and y is 
the corresponding probability that a molecule will have a velocity x. A 
plot of Eq. (21.5) is given in Fig. 21.2. The area under the curve between 
any two values of x, say x1 and x2, divided by the total area under the 
curve gives the fraction of the total number of molecules that have 
velocities in the interval between X1 and x2• The coefficient of Eq. (21.5) 
is chosen so that the total area under the distribution curve is unity. 
This causes the maximum ordinate to be other than unity but makes 
the estimate of the fraction of the total number of molecules having 
velocities in any given velocity interval very simple. Thus the area under 
the curve between values of velocity X1 and x2 gives the fraction directly 
and may be estimated by simply counting squares, each square representing 
l per cent of the total number for the scale divisions given. Thus only 
about 5 per cent of the total number of molecules have velocities greater 
than twice the most probable velocity. 
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The distribution curve of Fig. 21.2 holds for all temperatures, the 
only difference being that the most probable velocity increases with the 
square root of the absolute temperature. 

(T 
Vp = 12,900 '\}M cm per sec (21.6) 

where T is the absolute temperature and M is the molecular weight of 
the gas. Also of interest is the average velocity, which is 1.124 times 
the most probable velocity, 

Va = l.124vp (21.7) 

where Va is the average velocity and Vp is the most probable velocity. 
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Frn. 21.2.-Maxwell's law of distribution of molecular velocities in a gas. 

The rms velocity is involved in energy calculations and has the value of 
1.224 times the most probable velocity, , 

Vm = l.224Vp (21.8) 

where Vm is the rms velocity and Vp is the most probable velocity. All 
the velocities cited above are independent of the pressure involved. A 
curve showing average velocities at room temperature of various gases 
as determined by their molecular weight is given in Fig. 21.3. 

Mean Free Path of a Gas Molecule. Although it is true that the 
molecules of a gas have rather high velocities, it is a common observation 
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that gases diffuse together very slowly. This is undoubtedly due to the 
fact that the molecules collide frequently with one another and so move 
in zigzag paths made up of rather short straight-line segments. The 
term mean free path is used to indicate the average length of path of a 
molecule between collisions. The collisions themselves are of an elastic 
nature and tend to leave the magnitude of the velocities involved 
unchanged on the average. 

An estimate of the mean free path of a gas molecule among other gas 
molecules can be had by considering the total area of molecules in a 
volume of cross-sectional area A and thickness t. The number of 

I 
~2 

" 

I04 
l 

......... -......., 

- ~••H3 CO 
H.n· ,-....,_;.v2 

Ail~ A z 

10 
Molecular weight 

T=20°C 

' "'-. 

" Hg' 

" ,, 
lOO 

Fm. 21.3.-Average velocity of gases at room temperature. 

1000 

molecules in such a volume is nAt, where n is the molecular density. 
Let the volume be viewed from the surface of area A, and assume that 
the molecules are uniformly distributed throughout the volume in such 
a way that their projections upon the surface of area A are also uni­
formly distributed. When the number and arrangement of the projec­
tions of the molecules upon the surface of area A have the form indicated 
in Fig. 21.4, then it will be impossible for a molecule to travel a distance 
t perpendicular to the surface of area A without making contact with 
another molecule. The equilateral triangle shown in Fig. 21.4 has an 

altitude of 1.5 molecular diameters and so has an area of 3 v; dm
2 

and 

contains effectively one-half of a molecule. The density of the molecules 

as projected on the surface of area A is therefore ~ , where dm 
3 3 dm 2 

is the molecular diameter. Equating the number of molecules projected 
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on the surface for this dPnsity to the number of molecules contained in 
the volume, 

2A = nAt 
3-v3dm 2 

(21.9) 

from which 

t = 1 
2.60ndm2 (21.10) 

There is a 100 per cent probability that a molecule will collide with 
another molecule in a distance t, or roughly a 50 per cent probability that a 

8 
0 
0 

Fm. 21.4.-Arrangement of molecules in a gas to illustrate the 
concept of the mean free path of a gas molecule. 

molecule will collide with another in a distance ~ which will be called 

the "mean free path" of a molecule. Accordingly, 

Approximate mean free path of gas molecule = o~::3 
(21.11) 

This formula is only approximate, for it' does not consider the random 
distribution of molecular velocities. Maxwell has considered this prob­
lem and proposed the following formula: 

1 0.225 
Mean frrn path of gas molecule = ---- ---

y2,rndm 2 - ndm 2 (21.12) 

Some further refinements on this formula give the coefficient as 0.315, but 
for ordinary purposes Maxwell's form as given in Eq. (21.12) is generally 
used. The mean free path of a molecule of a gas is seen to be an inverse 
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function of the molecular density and also an inverse function of the 
equivalent molecular cross-sectional area or diameter squared. 

The molecular diameter is a convenient fiction useful in many gas 
relations. The agreement between the values of molecular diameter as 
determined from various considerations is fairly good. 1 Values of the 
molecular diameter of various gases are given in the following table. 
Values are given only to two significant figures since the agreement 
between various determinations is no greater than this. 

TABLE XIII 
MOLECULAR DIAMETER OF THE GASES 

Gas , Molecular Diameter, Cm 
A 2.9 X 10-s 
CO 3.2 X 10-s 
CO2 3.3 X 10-s 
H2 2.4 X 10-s 
He 1.9 X 10-s 
Kr 3.2 X 10-s 
N2 3.1 X 10-s 
Ne 2.35 X 10-s 
NHa 3.0 X 10-s 
02 3.0 X 10-s 
Xe 3.5 X 10-s 

Since the molecular density as given by Eq. (21.4) is directly propor, 
tional to pressure, it follows that the mean free path of a molecule is 
inversely proportional to pressure. Upon combining Eqs. (21.4) and 
(21.12) the mean free path is given by 

3.107T 
Mean free path of gas molecule = Pdm2 X 10-17 cm (21.13) 

where Tis temperature in degrees absolute, Pis pressure in bars, and dm 
is molecular diameter in centimeters. A curve of the mean free path of 
nitrogen, the principal ingredient of air, as a function of pressure is given 
in Fig. 21.5. It is convenient to remember that the mean free path of 
nitrogen at room temperature and a pressure of 1 bar (about 10-a mm of 
mercury) is approximately 10 cm and varies inversely with the pressure. 

The average number of collisions of a gas molecule per centimeter of 
travel is the reciprocal of the mean free path and is given by 

Collisions per cm = 3.219 X 101a P~m
2 

in which the units are the same as for Eq. (21 13). 
1 Dushman, op. cit., p. 27. 

(21.14) 
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Mean Free Path of an Electron among Gas Molecules. The reasoning 
that was used in the previous subsection to get an estimate of the mean 
free path of an electron may be used to get an estimate of the mean free 
path of an electron moving among gas molecules. Since the electron 

Gas pres,ure,mm. of Hg. 
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FIG. 21.5.-Mean free path of a nitrogen 
molecule as a function of pressure. 

has a negligible cross-sectional area compared with a molecule, if we aga;n 
consider a volume of surface area A and thickness t, then the molecules 
must be sufficient in number and must arrange themselves as shown in 
Fig. 21.6 to ensure that there will be a collision of an electron with a gas 
molecule in a distance t. For the 
arrangement of molecules shown, 
each equilateral triangle of altitude 

3dmh f3v'3dm2 d 
4 as an area o 

16 
an .!On-

tains effE:lctively half a molecule. 
Accordingly, the density of the mol­
ecules as projected upon the surface 

of area A is }a , or just four 
3 3dm2 

times the density required to ensure 
a molecule collision in a distance t. 
One may therefore expect that the 

FIG. 21.6.-Arrangement of molecules 
in a gas to illustrate the concept of 
mean free path of an electron. 

mean free path of an electron among gas molecules is four times that of 
the gas molecules themselves. Needless to say, this is a very rough 
estimate and applies only to electrons having velocities corresponding 
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to a few volts. Even at velocities corresponding to about 10 volts the 
above estimate will not hold, for the exchange of energy between electrons 
and molecules is extremely complex in the vicinity of the ionization 
potential of the gas. 1 
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Fm. 21.7.-Nomographic chart of the number of ions formed per centimeter of 
electron beam per second as a function of current, voltage, and pressure. 

The concept of the mean free path of an electron among gas molecules 
needs revision when the electron velocity becomes appreciable. As the 
electron acquires a higher voltage, it may approach closer to a molecule 
before it will be deflected or before it will produce ionization. This is 
because there is less time for the electrostatic forces to effect a transfer of 
energy as the electron velocity increases. Of more interest than the mean 

1 BRODE, R. B., Quantitative Study of the Collisions of Electrons with Atoms, 
Rev. Modern Phys., vol. 5, pp. 257-279, October, 1933. 
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free path of an electron, which is difficult to define, is the distance between 
ionizing collisions. Above a velocity corresponding to about 500 volts 
for heavy molecules such as mercury and above a few hundred volts for 
the molecular constituents of air, it is found that the number of ions 
formed per centimeter per second by an electron beam is proportional to 
the current and the gas pressure and inversely proportional to the beam 
voltage. A satisfactory empirical form 1 of this relation for air is 

N _ 3.75 X 1023lp ions formed per sec (21.lS) 
- V per cm of length 

where I is current in amperes, V is voltage through which the electrons 
have been accelerated in volts, and p is gas pressure in millimeters of 
mercury. A nomographic chart of the number of ions formed per centi­
meter of path per second is given in Fig. 21. 7. Since current is the prod­
uct of the number of electrons passing a reference plane per second 
multiplied by the charge, the number of ions formed by each electron 
per centimeter of travel is 

Number of ions formed by 1 _ 6 X 104p 
electron per cm of travel - V (21.16) 

where p is in millimeters of mercury and V is in volts. The distance 
between ionizing collisions of an electron is the reciprocal of Eq. (21.16), 
or 

Distance between ionizing _ V kv 

collisions of an electron - 60p cm (21.17) 

where V .1ov is the potential through which the electrons have been acceler­
ated, in kilovolts, and p is pressure in millimeters of mercury. Thus an 
electron with a velocity corresponding to 6,000 volts, moving in a vacuum 
of 10-3 mm of mercury, experiences an ionizing collision every 100,000 
cm. At 10-4 mm of mercury the distance between ionizing collisions is 
only 1,000 cm. A nomographic chart showing the distance between ioniz­
ing collisions, as a function of gas pressure and voltage through which 
the electron has been accelerated, is given in Fig. 21.8. 

21.3. Measurement of Vacuum. Tfie range of pressures over which 
vacuum devices operate is so large that no one pressure-measuring device 
can cover it. Accordingly, it is necessary to use a number of devices 
to handle the entire range of pressures from atmospheric down to the best 
vacuums producible. The number of types of vacuum gauges runs into 
the dozens, but of these there are about half a dozen that have shown more 

1 BENNETT, W. H ., Magnetically Self-focusing Streams, Phys. Rev., vol. 45, pp. 
890-897, June 15, 1934. Equation (21.15) is given originally as N = 200pl / Ve, 
with pin millimeters of mercury and electrical quantities in esu. 
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Fm. 21.9.-Range of various pressure-measuring devices. 

ruggedness and versatility than the others. 
briefly. In Fig. 21.9 is shown the range of 
the most commonly used types of vacuum 
gauges. Where the range line is solid, the 
range of pressures indicated can be covered 
with a single instrument. Where the range 
line is dotted, several instruments of the 
same type are required to cover the range 
indicated. 

These will now be described 

Manometers. The simplest type of 
vacuum gauge is the mercury manometer, 
or U tube, shown in Fig. 21.10. One sur-

To vacuum 

Mercury 

face of the mercury column is exposed to Frn. 2uo.-Mercury manom­
atmospheric pressure, and the other is eter. 
exposed to the low pressure to be measured. 
The mercury column thus experiences a difference of pressure on the tw'l 



760 VACUUM TUBES 

surfaces and adjusts the height of these surfaces until the forces are in 
equilibrium around the column. The difference in height of the two 
surfaces is a measure of the vacuum relative to atmospheric in that 
atmospheric pressure alone will support a mercury column of height 
760 mm. The U-tube manometer is suitable for measuring only relatively 
poor vacuums of the order of 10- 1 mm of mercury or less. 

The McLeod Gauge. The McLeod gauge is a special type of mercury 
manometer. It works on the principle of compressing a sample of the 
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Fm. 21.11.-Long and short form of the McLeod gauge. 

gas of which the pressure is to be measured by a known volume ratio and 
thus increasing the pressure in inverse ratio to an amount which is large 
enough to measure by direct observation. The McLeod gauge is one of 
the few gauges that give an absolute pressure indication. Most of the 
other types of vacuum gauge have to be calibrated against the McLeod 
gauge, which serves as a standard of measurement. 

The general form of the McLeod gauge and the means by which a 
sample of gas is trapped and compressed are shown in Fig. 21.11. All 
McLeod gauges have in common a large volume Vin which a sample of 
gas can be trapped by raising a column of mercury. The volume V has a 



HIGH-VACUUM PRACTICE 761 

sealed-off capillary tube C sealed into its top. By raising the mercury 
until its surface is well up in the capillary the volume of gas trapped can 
be compressed by a factor of many hundred times. The pressure of the 
compressed sample of gas can be measured by comparing the height of 
the mercury column in a parallel capillary of the same diameter-pref­
erably from the same specimen of tubing as the compression capillary­
in which the gas is uncompressed. The structure of the McLeod gauge 
requires that it always be made of glass. 

The various McLeod gauges differ only in the means of raising the 
mercury column and of reading the gauge. In Fig. 21.11 are shown two 
of the commonest methods of raising the mercury column. The arrange­
ment at the left shows a design, known as the "long form," in which 
the mercury column is raised by means of a displacement piston. The 
piston can be arranged with a clamp and screw thread so that fine adjust­
ments of level can be obtained by turning the piston when it is clamped in 
one position. This arrangement has the advantage that the use of rubbe1· 
tubing can be avoided since the displacement piston can be made of metal. 
The structure is of necessity quite high since a difference of elevation of 
760 mm must exist between the level of mercury in the gauge and that 
in the displacement-piston reservoir. This form of the McLeod gauge 
requires mounting on a vertical rack rising from floor level to a height of 
about 5 ft. A somewhat shorter vertical height can be achieved with the 
arrangement at the right, known as the "short form." With this 
arrangement the mercury level may be raised and lowered by gas pressure 
through a combination of valves. The mercury is raised by opening the 
valve to the high vacuum to be measured. Too rapid a rise is offset by 
partly evacuating the mercury reservoir by opening the valve connected 
to a source of low vacuum such as a mechanical pump. If the pressure in 
the mercury reservoir is made too low, the mercury will fall but this can 
be offset by admitting air through another valve attached to the reservoir. 
This form of the McLeod gauge requires extremely careful handling. 
Another form of the McLeod gauge, not illustrated, carries the com­
pression volume, the compression capillary, and the comparison capillary 
on a framework that can be tilted to achieve an effective raising or lower­
ing of the mercury relative to the measuring tubes. 

The McLeod gauge can be used in two ways as a pressure indicator. 
In the first method there is determined a point on the compression capil­
lary such that when the mercury is raised to this level the compression 
volume is compressed by some convenient factor such as 100 or 1,000. 
The height of the mercury in the free capillary above this reference point 
will be a linear function of the gas pressure. Specifically, the difference 
in height will be the original pressure in millimeters of mercury times the 
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compression ratio. By using capillaries of equal diameter, surface ten­
sion forces are equal in the two tubes. Thus 

(21.18) 

where Pis the pressure of the gas in millimeters of mercury; hr is the dif­
ference in level between the mercury in the free and in the compression 
capillaries, in millimeters, when the mercury is raised to a point a dis­
tance ho from the top of the compression capillary at which point the 
compressed volume of gas is V 0 ; and Vis the original trapped volume of 
gas. Since 

Vo= 1rd2ho 
4 

where d is the diameter of the capillary 

p = (r:;o) hi 

(21.19) 

(21.20) 

The other method of using the McLeod gauge raises the mercury level 
in the free capillary to a height the same as that of the top of the com­
pression capillary each time a measurement is made and reads the differ­
ence in height h2 between the mercury levels in the free and compression 
capillary. With this method there is a different compression ratio with 
each gas pressure, but the basic relation of Eq. (21.19) holds in the form 

V2 
P = h2 V (21.21) 

where V 2 is the volume of the gas in the compression capillary to a height 
h2. Accordingly, 

(21.22) 

Hence 

(21.23) 

and it is seen that the difference in mercury levels by this method is a 
quadratic function of the gas pressure. The gas pressure is conveniently 
read by attaching a suitable quadratic scale upside down to the com­
pression capillary, lined up so that the zero of the quadratic scale cor­
responds to the top of the compression capillary. The quadratic and 
linear methods of measuring pressure may be used with either the long 
or the short form of the gauge. 

The sensitivity of the McLeod gauge may be increased by increasing 



HIGH-VACUUM PRACTICE 763 

the size of the compressible volume or by decreasing the diameter of the 
compression capillary. There are definite limits beyond which neither of 
these quantitiel5 can be carried. If the compression volume is made too 
large, the weight of the mercury needed to fill it becomes a limitation. 
The weight of 330 cm3 of mercury is 10 lb, and the problems involved in 
making the gauge strong enough to support this weight are considerable. 
If the compression capillary is made too small, there is trouble with the 
mercury sticking. This imposes a practical limit of about ½ mm at the 
smallest diameter capillary. The reference heights used on the cali­
brated scales can be reduced to increase the sensitivity, but there are 
limits here, too. The reference heights have to be more than a few 
diameters of the capillary because of the difficulty of estimating the vol­
ume of the rounded end of the capillary. 

As a rough guide to the design of McLeod gauges let it be assumed that 
for linear-scale operation the reference height ho is nine times the diameter 
of the capillary and that the smallest measurable difference in height h1 
is equal to the diameter of the capillary. With these assumptions, Eq. 
(21.20) reduces to 

p = 7.06d4 

m V (21.24) 

where Pm is the minimum pressure that can be read with ease and accur­
acy where all quantities are expressed in terms of millimeters. Likewise, 
for quadratic-scale operation let it be assumed that the lowest practical 
height difference h2 is three times the diameter of the capillary. Substitu­
tion of this value into Eq. (21.23) again yields Eq. (21.24), which may be 
used as a design equation. A nomographic chart showing the relations 
between the variables in Eq. (21.24) is given in Fig. 21.12. The sample 
construction line drawn shows that a sensitivity of 10-4 mm of mercury 
can be realized with a compression volume of 100 cm3 and a capillary 
of diameter 1.091 mm. 

McLeod gauges are frequently made with two capillaries attached in 
series on top of the compression volume. The large-diameter capillary 
is sealed directly to the volume, and the'small capillary is connected to 
the large one and sealed off at its end. Two free parallel capillaries of 
the same diameter are used. With this arrangement the use of linear 
scales over a wide range of pressures is facilitated. 

The McLeod gauge does not indicate the presence of water vapor, 
carbon dioxide, ammonia, pump oil vapors, and condensable vapors in 
general. When used with an oil-diffusion pump a cold trap should be 
placed between the pump and the gauge; otherwise, the latter will simply 
indicate the vapor pressure of mercury, which is 2.777 X 10-3 mm at 
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room temperatures. The tendency of the mercury to stick in the com­
pression capillary can be reduced by warming and thus degassing the 
capillary with a soft flame. Mercury that has stuck can be evaporated by 
heating. The McLeod gauge is considered reliable to 10- 4 mm of mer­
cury and is useful to I0-6• Qualitative indications may be had for pres­
sures as low as 10-5 mm of mercury. 
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The Spark-discharge Tube. A convenient device for monitoring low 
pressures is a spark-discharge tube about 1 in. in diameter and about 8 
in. in length, with disk electrodes supported on tungsten wires sealed 
through the glass, as shown in Fig. 21.13. The tube has a T joint to 
the vacuum system and has a d-c potential of about 15 kv applied in 
~eries, with a resistance large enough to limit the current to about 2 ma. 
The series resistance is necessary because the resistance of the discharge 
tube between electrodes changes greatly with pressure. The nature of 
the discharge serves as a rather good index of pressure in the range of 50 
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to 10-3 mm. The glow generally has these distinctive parts: Immediately 
surrounding the cathode, or negative electrode, and assuming its contour 
is the cathode glow. Beyond the cathode glow is the Crookes dark space. 
Beyond the Crookes dark space is the negative glow. Extending from the 
positive anode, or electrode, is the positive glow, which will be continuous 

!
To vacuum 

Circular disc 
electrode 

____ o_f_f-...iu1qsfen 

Fm. 21.13.-Structure of the gas-discharge 
tube. 

or striated depending upon the pressure. The characteristics of the dis­
charge are roughly as follows: 

Mm of Mercury Appearance 
20-50 Narrow streamers 

10 
6 

4 
0.4 
0 .2 

0.15 

0.10 

0.05 
0 .03 

0.03-0.001 

Broad streamers 
Cathode and negative glow forms, positive glow is small tuft at 

positive electrode 
Positive glow elongates 
Elongated positive glow breaks into a row of tufts (very pretty) 
Number of tufts in positive glow decreases, and tufts become larger 

and more widely separated 
Limit of tuft structure of positive glow-two large tufts close to 

anode 
Negative glow, which has been a small tuft at all higher pressures, 

elongates. Positive glow is a single tuft 
Negative glow extends nearly to anode, positive glow disappears 
Glow diffuses the whole tube, no definite structure 
Glow disappears and glass fluoresces from electron bombardment 

In addjtion to the glow discharge changing its structure, it also 
changes its color. At high pressures the predominating color for air is 
pink. At lower pressures the pink changes to a blue as the oxygen and 
nitrogen, which have higher molecular mobility, are removed and carbon 
dioxide remains. The color of the glass fluorescence depends upon the 
glass being a yellowish blue in all cases, but more yellow than blue for the 
soft glasses and more blue than yellow for the hard glasses. The 
presence of water vapor is indicated by a whitish glow. 

In ordinary vacuum setups a spark coil that can be applied to an 
insulated electrode of the system can be used as a rough pressure indi­
cator at low vacuums. The voltage will set up a glow in the entire 
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system. The nature of the glow is roughly as follows for different 
pressures: 

Mm of Mercury 
1()()-40 
4o--4 

4--0 .4 
0.4--0 .04 

0.04--0.004 

Appearance 
Bluish-white filamentlike discharge 
Purple filament 
Wide, stringy pink discharge 
Full glow-pink changing to gray to pale gray 
Discharge disappears, glass fluorescence appears. Predominant 

color is pale gray. Glass fluorescence disappears at lower limit 

A high-frequency Tesla coil can be used instead of a spark coil. This 
has the advantage that it is safer and will not puncture the glass. Leaks 
in glass can be detected with- a spark coil since a spark will tend to jump 
from the coil electrode to any leak in the glass. 

The Pirani Gauge. The Pirani gauge is simply a temperature-sensitive 
resistance element to which a small amount of power is supplied and 
which is cooled by the conduction away of energy by molecules of the gas 
which have collided with it. Thus if the power to the temperature-sensi­
tive resistance element is kept constant, the cooling of the element will 
be a function of the pressure and will produce a variation in the tem­
perature of the element that can be detected as a change in resistance. 

A fine tungsten wire can be used as the temperature-sensitive ele­
ment. In fact, the filament of a 10-watt light bulb works quite well; 
a gauge may be made by sealing a piece of glass tubing to such a bulb 
and attaching it to the vacuum system. The resistance of the filament 
increases rather rapidly with the power consumed by it. If the filament 
structure is not coiled but consists of straight wire, it will make a better 
gauge. In general, the higher the thermal efficiency of the filament as a 
light-producing element, the lower its effectiveness as a vacuum-measur­
ing gauge, and vice versa. This is because, the higher the thermal effi­
ciency, the less effective the cooling by molecular impact. In operation, 
the Pirani gauge is conveniently used at a temperature of 100 to 500°C 
above room temperature, just below the temperature of appreciable 
radiation. This is the temperature range of greatest sensitivity, for 
~he cooling of the filament is then mostly by conduction rather than by 
radiation. 

In principle, the Pirani gauge can be operated in three fundamental 
ways. 

1. Maintain the voltage across the filament constant, and measure the 
resistance as a function of pressure. 

2. Maintain the current through the filament constant, and measure 
the resistance as a function of pressure. 

3. Maintain the resistance of the filament constant, and measure the 
power supplied as a function of pressure. 
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Method 3 has been tested by Campbell, who found that the power 
,·!quired to keep the filament resistance constant was a linear function of 
pressure, becoming less as the pressure became less. This is in accord­
ance with the expectation that the conduction cooling by molecules of 
the gas is proportional to the number striking the filament per second, 
which is proportional to the pressure. The direct proportionality has 
an upper limit at the pressure at which the mean free path of the molecules 
is of the order of the bulb dimensions. Below this pressure the heat is 

To 
conducted by the molecules directly from 
the filament to the bulb walls. Above 
this pressure the heat is conducted from 
layer to layer of gas surrounding the fil­
ament; and since the heat conductivity 
of a gas according to the predictions of 
the kinetic theory of gases is constant 
under these conditions, there is no fur­
ther change in heat loss with pressure. 
Since the mean free path of nitrogen is 
about 1 cm at 10-2 mm of mercury 
pressure, this will ordinarily be the 
upper limit of linearity between power l1l1l1l1l1l1 

and pressure for a constant filament Fw. 21. 14. - Constant-resistance 
resistance, though indications can be method of using the Pirani gauge. 

obtained up to 10-l mm of mercury. It is convenient in obtaining 
v2 - Voz 

pressure data by method 3 to plot the ratio Vo2 as a function of 

pressure. In this ratio, V is the voltage required to produce a given 
resistance at a pressure p, and Vo is the voltage required to produce the 
same resistance at pressures less than 10-4 mm of mercury. The low­
pressure voltage V 0 across the filament represents heat loss primarily 
by metallic conduction, though there will be some by radiation. For 
pressures Jess than this value there are so few molecules present that there 
is virtually no molecular cooling action. Accordingly, the range of the 
Pirani gauge is about 10-1 to 10-4 mm of mercury when an ordinary light­
bulb filament is used. It is possible to extend the upper limit of pressure 
with specially designed tubes of small dimensions. 

The simplest circuit by which pressure may be measured by the con­
stant resistance method is shown in Fig. 21.14. Filament resistance is 
determined by the bridge balance as shown by the galvanometer. The 
bridge is first balanced at very low pressures, and the bridge resistances 
are then left unchanged. Bridge voltage is chosen to impart a suitable 
temperature, well below color, to the filament. As pressure rises, the 
cooling of the filament will increase and lower the temperature, in turr 
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lowering the resistance. Bridge balance is restored by increasing the 
bridge voltage. 

The Pirani gauge can be incorporated into an automatically self­
balancing bridge by means of the circuit of Fig. 21.15. The gauge­
bridge circuit is in the feedback circuit of an audio amplifier tuned to 
about 1,000 cycles. The amplifier will oscillate at an output-power level 
that nearly balances the bridge. Thus, if the amplifier gain between 
input and output terminals is 100, the output power will rise until the 

TUNED AMPLIFIER 

FIG. 21.15.-Automatically self-balancing bridge circuit for use with the 
Pirani gauge. 

ratio of the input and output voltage of the bridge is ¼oo, which is nearly 
a condition of balance. Under the conditions stated the gauge resistance 
will be maintained constant within about 1 per cent, which is close 
enough for pressure measurements. As pressure rises and the gauge 
filament resistance tends to fall, the amplifier will supply more power to 
keep the resistance constant. The power supplied by the amplifier is 
conveniently indicated by a thermocouple milliammeter, properly 
shunted, in the output circuit. Since the deflection of a thermocouple 
meter is proportional to current squared, the deflection is directly pro­
portional to power. Hence the meter can be engraved with a scale that, 
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will be linear with pressure but have zero pressure slightly upscale. This 
may be corrected by adjusting the zero setting of the needle so that it is 
negative by the proper amount. When this is done, the indication of 
the meter will be linear with pres­
sure. The shunt may be adjusted 
to give different ranges of pressure. 
The power supplied by the ampli­
fier to the bridge will divide in 
constant ratio between the bridge 
arms. If the ratio of the bridge 
resistances is as indicated in the 
figure, the power consumed by the 
gauge filament will be nearly ten-
elevenths of the output power. '--------1!1!!111--------1 

The simplest of all possible Fm. 21.16.-Pirani gauge with bridge 
methods of using the Pirani gauge unbalance indicator. 
consists in putting the filament in a 
bridge circuit to which a constant direct voltage is applied and calibrating 
the unbalance current against pressure. The circuit of Fig. 21.16 shows 
how this may be done. The use of identical filaments one of which is 
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Fm. 21.17.-Bridge unbalance current of a Pirani gauge as a function of pressure. 

sealed off at high vacuum compensates for external-temperature varia­
tions. A typical curve of bridge unbalance current as a function of 
pressure is shown in Fig. 21.17. 
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The Pirani gauge will respond to compressible gases and thus may be 
used to check the pre::ience of components not revealed by the McLeod 
gauge. The calibration curves of different gases are slightly different. 
In general, the more mobile gases will conduct heat away from the fila­
ment more readily. In calibrating the Pirani gauge against the McLeod 
gauge a cold trap should be placed between the gauges to keep mercury 
vapor out of the former. 

The Thermocouple Gauge. The thermocouple gauge works on the 
same principle as the Pirani gauge. A thermojunction is attached to a 
heater wire as shown in Fig. 21.18. The heater wire is usually of tungsten 
and is heated with a current of 10 to 100 ma. The thermojunction can 

Heorter(W) 
I 

:' 

be made of any of the standard combi­
nations such as platinum-p 1 at in um 
rhodium; chromel P-alumel; copper­
constantan (advance); iron-constantan 
(advance); ni chrome-constan tan 
(advance). It is connected directly to 
a sensitive d-c microammeter. 1• 2 The 
cooling of the resistance wire is a func­
tion of the pressure, which is recorded 
by the microammeter, which is acti-
vated by the thermal emf generated by 
the junction on the wire. The range of 

HH 
Fm. 21.18.-Thermocouple vac- the thermocouple is from 10-1 to 10-4 

mm of mercury, and it must be cali­
brated against some standard pressure 

gauge such as the McLeod gauge. 

uum gauge. 

The specific dimensions of a thermocouple that is excellent for routine 
pressure indications are as follows: Couple of 3-mil nichrome and 4-mil 
advance wire, each 1 % in. long. Heater of 4-mil platinum wire 2¾ in. 
long. The wire lengths are long enough to eliminate thermal end effects. 
Heating current is 150 ma to give a junction current of 200 microamperes 
in a perfect vacuum. 3 

Triode Ionization Gauge. All the gauges mentioned thus far have 
been limited in their range to relatively low vacuums. The triode 
ionization gauge is the most extensively used high-vacuum gauge. The 

1 "Handbook of Chemistry and Physics," 26th ed., pp. 1876-1878, Chemical 
Rubber Co., Cleveland, Ohio, 1942. 

2 WEBER, R. L., "Temperature Measurement and Control," Chap. IV, Blakiston, 
Philadelphia, 1941. 

3 DUNLAP, F. C., and J. G. TRUMP, Thermocouple Gage for Vacuum Measure­
ments, Rev. Sci. Instr., vol. 8, pp. 37-38, January, 1937. 
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gauge itself has the form of (or may actually be) an ordinary triode tube 
sealed into the vacuum system. The most sensitive electrode connection 
is, however, not the usual triode connection. The grid is operated at a 
relatively high positive voltage, while the plate is operated at a relatively 
low negative voltage. With this arrangement the filament has to be 
operated at considerably below its normal rating, i .e., the temperature of 
the filament must be low enough so that the emission is temperature­
limited. The basic circuit arrangement involved is shown in Fig. 21.19. 

jTo vacuum 

Triode qe,ge 

+ .Ie 

FIG. 21.19.-Basic circuit of the triode ionization 
gauge. 

The function of the positive grid is to attract a stream of electrons into 
the space between the positive grid and negative plate. In their initial 
flight from the filament most of the electrons will miss the grid, and their 
momentum will carry them toward the plate, where the negative potential 
will repel them and return them to the grid. Some of the electrons will 
make several oscillations about the grid before they fall into it. While 
in flight the electrons may ionize some of the gas molecules present, by 
impact. When this occurs the positive ions created in the grid-plate 
space will be attracted to the negative plate. The positive-ion current 
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in the plate circuit is therefore a measure of the number of ionizing 
collisions, which, in turn, is a measure of the pressure. Thus for any 
emission current I, the positive-ion current in the plate circuit, I+, is a 
linear function of the pressure. 

The range of the triode ionization gauge is about 10-3 to 10-9 mm of 
mercury. The upper limit of pressure occurs when a glow discharge 
exists. The lower limit of pressure is fixed by the smallest positive-ion 
current that can be measured, which in turn depends upon the leakage 
resistance of the gauge between electrodes. The positive-ion plate cur­
rent of a type 45 triode used with an emission current of 5 ma, a grid 
voltage of + 120 volts, and a plate voltage of -15 volts is of the order of 
3 microamperes at a pressure of 10-4 mm of mercury. The positive-ion 
current is linear with pressure within the range indicated, i.e., the posi­
tive-ion current will be 0.3 microampere at 10-0 mm of mercury and 0.03 
microampere at 10-s mm of mercury for the operating conditions given. 
Positive-ion current is linear with electron-emission current up to about 
20 ma for the type 45. The positive-ion current will also increase with 
positive grid voltage, but not in a linear fashion. The increase of posi­
tive-ion current to the plate with positive grid voltage is most rapid at first 
and then relatively less rapid. The grid may be operated as high as +200 
volts relative to filament. The limit to which the emission current and 
positive grid voltage can be raised is the dissipation capacity of the grid, 
which is of the order of 1 watt. For reliable readings both the grid and 
plate should be degassed by heating to a dull red heat either by r-f induc­
tion coil or by direct electron bombardment. To keep the emission down 
to the level of 5 to 10 ma it is necessary to keep the filament voltage quite 
low, for the type 45 used as a gauge about 1 volt instead of the rated 2.5. 
Oxide-coated filaments are fairly satisfactory for triode ionization gauges. 
They have the advantage that they will not burn out if the vacuum sys­
tem accidentally springs a leak. On the other hand, the emission is easily 
poisoned by pressures lower than 10-3 mm. When this occurs, it is 
frequently possible to restore emission by heating the filament to emission 
temperatures in the presence of a glow discharge at pressures of the order 
of 3 X 10-2 mm of mercury. The restoration of emission results from 
positive-ion bombardment of the filament. Some gauges use tungsten or 
tantalum emitters. These are very rugged but may give rise to false 
readings at low pressures, for the filament itself will collect the molecules 
that strike it and so tend to reduce the pressure in the gauge. The 
characteristics of such a triode ionization gauge are given in Fig. 21.20. 

Since the positive-ion current is so small, it is necessary to have either 
a sensitive galvanometer or a vacuum-tube amplifier. When a gal­
vanometer is used, it is well to protect it against gas bursts or leaks by 
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placing an inductance of½ henry or so in series with it and shunting the 
galvanometer with a neon bulb and a condenser of about ½ microfarad. 
Any pulse of positive-ion current will tend to be by-passed around the 
meter by the neon tube and condenser. Since high-sensitivity galvanom­
eters are expensive, it is common practice to use some sort of amplifier 
that will give an indication on a low-sensitivity instrument. One simple 
arrangement is shown in Fig. 21.21. This circuit makes use of a cathode 
follower to measure the voltage across large resistors placed in series 
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FtG. 21.20.-Characteristics of a typical triode ionization gauge. 

with the plate of the ion gauge. The resistors are large, ranging from 
10 megohms on down in steps of 10. One-tenth microampere through the 
IO-megohm resistor produces a voltage drop of 1 volt, which the cathode 
follower triode reproduces almost exactly in its cathode circuit in the 
form of 1 ma through 1,000 ohms. A zero adjustment of the output 
meter is provided in the form of a potentiometer. With the plate load 
resistance of the triode gauge set to zero the potentiometer is adjusted to 
give zero current in the cathode circuit of the cathode follower tube. 
Resistance is now switched into the plate circuit of the triode gauge; 
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and as positive-ion current flows, a positive voltage will appear on the 
grid of the cathode follower tube and current will flow in its cathode lead. 
The cathode voltage "follows" the grid voltage almost linearly and so 
gives suitable indication. Almost any high-mu high-current triode can 

200v + 
Fm. 21.21.-Cathode-follower metering circuit for use 
with triode ionization gauge. 

be used in the cathode follower circuit. The tube characteristics should 
be such that about 5 ma of plate current will flow when the grid is at 
cathode potential. 

Fm. 21.22.-Circdt for regulating the emission of a triode 
ionization gauge. 

Variations and refinements of the basic circuit shown in Fig. 21.21 
are numerous. If extern:,.ive vacuum work is done, it is sometimes con­
venient to have a circuit that will maintain the emission current at a 
fixed value. Such a circuit is shown in Fig. 21.22. This circuit inserts a 
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variable resistance in series with the fil1tment in the form of the trans­
formed plate resistance of a pair of triodes, one of which conducts for 
each half of the alternating-voltage cycle. The magnitude of the plate 
resistance is controlled by a grid voltage derived from a resistor through 
which the emission current flows. If the emission current tends to 
increase, the triodes are biased negatively, with the result that their plate 
resistance and hence the resistance in series with the filament circuit is 
increased, thus decreasing the filament current and offsetting the increase 
in emission. 1 It is also possible to construct a circuit using a "magic­
eye" electron-ray tube as an indicator and thus save the cost of sensitive 
meters. 2•3 

21.4. Pumping Speed. Before talking about means of producing low 
pressures it is well to define the terms in which the characteristics of 
such devices will be described. In talking about vacuum pumps we are 
concerned with the laws related to the movement of gases through tubes 
~nd orifices. 

Speed of an Aperture. Consider the case of a large volume of gas in a 
chamber closed except for a small aperture opening into a perfect vacuum. 
Gas will move out of the volume at a rate given by 

dV {T29 
di = 10.08 '\)2§3 MA liters per sec (21.25) 

where A is the area of the aperture in square centimeters, Tis temperature 
in degrees absolute, and M is molecular weight of the gas involved (29 
for air). It is seen that at room temperature of 20°C the flow through an 
aperture of area 1 cm2 is 10.08 liters per sec. At a temperature of 27°C it 
is 10.2 liters per sec. The volume flow is independent of the pressure! 
This occurs because, although the number of molecules passing through 
the aperture is proportional to pressure, the volume of gas cocresponding 
to a given number of molecules is inversely proportional to pressure. 

Definition of Pump Speed. By analogy with an aperture the speed of a 
pump is measured in volume flow, usually in units of liters per second. 
Pumps are similar to apertures in that tp.eir speeds are nearly constant 
over a wide range of pressure and that their speeds are comparable 
with those of pump output apertures. Pumps will, however, have a 
limiting pressure, subsequently referred to as Po. Accordingly, the 

1 RIDENOUR, L. N., and C. W. LAMSON, Thermionic Control of an Ionization Gage, 
Rev. Sci. Instr., vol. 8, pp. 162-164, May, 1937. 

2 RIDENOUR, L. N., Magic Eye Ionization Gage, Rev. Sci. Instr., vol. 12, pp. 134-
136, March, 1941. 

'!'1\JRKINS, W. E., and H. A. HIGGINBOTHAM, An Ionization Gage Circuit, Rev. Sci, 
Instr., vol. 12, pp. 366-367, July, 1941. 
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removable volume of gas of any nominal volume in terms of any pressure 
we wish to use as reference is proportional to the difference between the 
existing and ultimate pressure, 

V = k(P - Po) 

Speed is defined as the volume flow 

dV dP V dP 
S = dt = kdt = P - Po dt 

(21.26) 

(21.27) 

Integration of this equation from a pressure P 1 at time zero to pressure P 2 

at time t yields 

(21.28) 

The above is useful in estimating the time required to reduce pressure to a 
given level. When the ultimate pressure is low compared with the other 
µressures concerned, then Eq. (21.28) reduces to 

t = -In -V (P2) 
S Pi 

(21.29) 

Speed of Tubing. At low pressures the flow of gases through tubing 
is molecular rather than hydrodynamic in nature. The flow involves 
frequent collisions with the walls and relatively few collisions between 
molecules. On the assumption that the mean free path of the molecules 
is large compared with the diameter of the tubing involved, that Lam­
bert's cosine law holds for reflection from any impact with the walls, that 
the velocity distribution is Maxwellian, and that the number of molecules 
striking any area is proportional to the pressure, the flow through a piece 
of tubing has been calculated to be 

r 3 I / T 29 
G = y ( Sr) '1 300 M liters per sec (21.30) 

1 + 3l 

where r and l are radius and length of the tubing in millimeters, respec­
tively, T is temperature in degrees absolute, and M is the molecular 
weight of the gas involved;1 For air at 27°C the radical has the value of 
unity. The symbol G is used because the quantity is analogous to elec­
trical conductance. A nomographic chart of tube conductance as a 
function of radius and length is given in Fig. 21. 23. The above equation 
is accurate to within a few per cent, provided that the diameter of the tub-

' KNUDSEN, M., Die Molekularstromung der Gase durch Offnungen und die 
Effusion, Ann. Physik, vol. 28, pp. 99~1016, 1908. 
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ing is less than the mean free path of the gas molecules. The quantity 
in parentheses in Eq. (21.30) is a correction factor for shortness of tub­
ing. When the tubing is long compared with the radius, this quantity 
approaches unity very closely. Hence for long tubing containing air at 
room temperature the conductance in liters per second is given approximately 
by the radius in millimeters cubed divided by the length in millimeters. The 
importance of using large-diameter tubing is evident from the dependence 
of the conductance upon the cube of the diameter. Reduction of diam­
eter by a factor of 3 reduces conductance by a factor of 27. The speed 
of flow of gases in a vacuum system cannot be greater than that given by 
the lowest tubing conductance in the system. 

When a number of pieces of tubing are connected in series, the recipro­
cal of the resultant conductance is equal to the sum of the reciprocals of 
the individual conductances. 

1 1 1 1 1 -=-+-+-+ ... +­
Geo. Gi G2 G3 G,. 

(21.31) 

where G"" is the equivalent conductance and G1, G2 · · · G" are the con­

Equivalent S d 5;~ pte~.i 
Pz' : Co"1f"""" J\ 

_ TuMnq 8 
Volume beinq Pump 
evacuRfed 

.l. _ _1 ..,. .1. 
Sz-SJ G 

FIG. 21 24.-Diagram illustrating 
equivalent pumping speed. 

resistances, 

ductances of the different portions of 
tubing. If the resistance of a long 
piece of tubing is defined as the recip­
rocal of the conductance, then, for air 
at 27°C, 

I l R=-=­G r 3 
sec per liter (21.32) 

where l and r are the length and radius 
of the tubing in millimeters, respec­
tively. Then the resultant resistance 
is simply the sum of the individual 

Req = R1 + R2 + · · · + R,. (21.33) 

Only the length and diameter of a tubing are of importance in calculating 
the gas flow. Bends and corners have little effect. It must always be 
remembered that such computations as are indicated above are restricted 
to the range where the diameter of the tubing is less than the mean free 
path of the gas molecules. 

Effect of Tubing upon Pumping Speed. The speed of a pump has the 
same units of conductance, i.e , liters per second. Hence a pump may be 
considered as a piece of tubing, of conductance equal to its speed, feeding 
into an infinite reservoir of gas at the ultimate pressure of the pump. 
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The reciprocal of the equivalent pumping speed of a pump with associ-· 
ated tubing is found by adding the reciprocal speed of the pump and the 
reciprocal conductance of the tubing. Thus for the arrangement of 
Fig. 21.24, where the speed of the pump is 81 and the conductance of 
the tubing is G, the equivalent speed at the volume being evacuated, S2, 
is given by 

1 1 1 * 
S2 = G + S1 (21.34) 

It is seen that the resultant speed is lower than both the tubing and the 

/30 
I 

I 
I 

I 
I 

I 
I 

I 
0 --+--+---+--+--t---,+---+---+---1--+--+---+--+--t---+--+---+--1 

10 / 20 30 
, Equiv~lent pumping speed, liters per second 

I 
20 

FIG. 21.25.-Nomographic chart of equivalent pump speed. 

pump speed. The importance of using large-diameter high-speed tubing 
is again evident. A nomographic chart of Eq. (21.34) giving the result­
ant speed of a pump and tube in terms of the pump speed and tube con­
ductance is shown in Fig. 21.25. 

* Proof of Eq. (21.34) may be found by equating the mass of flow at different 
points in the system as Q = G(P, - P1) = S,P1 = S,P,. When pressures are 
eliminated from these relations, Eq. (21.34) for the equivalent speed results. 
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21.5. Production of Low Vacuum. Numerous applications require the 
production of vacuums of 10-4 mm of mercury or less. In addition, 
high-vacuum pumps will not operate if required to exhaust directly into 
air but must exhaust into a low vacuum to be efficient. As a result, the 
subject of production of low vacuum falls into a class by itself. 

Low vacuums are most easily obtained by meanb of a mechanical 
pump. Numerous designs for such pumps have been suggested, but the 

G-
-K 

-J 

Pm. 21.26.-Diagram and picture of Cenco Hyvac 
pump. 

successful pumps that are used in large quantities all embody the same 
principle. An example of a widely used mechanical pump is the Cenco 
Hyvac. A diagram of the internal structure of this pump is given in Fig. 
21.26. Essential features of this pump are an eccentric rotor A, a valve 
K, which divides the space between the rotor and stator into two vol­
umes, and an output valve L. As the rotor turns in the direction indi­
cated in Fig. 21.26, there is presented to the space being evacuated a 
volume H, which expands, allowing gas to enter, and is then sealed off 
by the rotor surface. The trapped volume of gas is then compressed 



HIGH-VACUUM PRACTICE 781 

against the output valve L through which it is expelled. By ganging 
such rotors and running up the speed, very good evacuation properties 
may be had. In Fig. 21.27 are shown the speed-pressure curves of some 
well-known mechanical pumps. Ultimate pressures are of the order of 
10-3 to 10-6 mm of mercury, the average being 10-4 mm of mercury. 
Speeds of mechanical pumps are usually from three- to five-tenths of the 
speed of the input aperture except in the immediate vicinity of the 
ultimate pressure, where the speed is much lower. Limiting pressures 
are determined largely by the excellence of the mechanical tolerance in 

<.) ., 
II) 

'­
"' 0.. 

~ ., 

20 

10 

5 

3 
2 

:t 0.5 

E° o.3 
5. 0.2 .... 
0 

,s 0.1 
"' ., 
Jr0.05 

0.03 
O.D2 

0.01 

1111111 I LIi 
H'll>ervac I00(4S0r >m) p=760mm· 

., 
n:,ft,mm ,, 

Hyoervac 20(422 rpm) 
, 

-- p=760mm ,. 

avac(6 (l5r 
,,,, 

tvfea -
aJcic (J20 rpm J P.='ft' ,n- ,-__ ..... Mee 

/ 
i,..,---

H!Jd (J4)rpm) 
p=760,m .-, , 

I ~~ 
I i~ -I 

~~ -
1'l'f 

001 0.02 0.05 0.1 0.'2 05 I 2 3 4 5 IO 100 
Pressure, microns of mercury 

Fm. 21.27.-Speed-pressure curves of mechanical vacuum pumps. 

the rotor and valve construction. Pumps are usually immersed in oil to 
improve the valve action. 

21.6. Production of High Vacuum. For the production of pressures 
lower than those which can be obtained with mechanical pumps, vapor­
diffusion pumps are invariably used. 1 Roughly speaking, the diffusion 

1 Some information on this subject is given in the general references cited earlier 
(p. 747) . For more recent information see HICKMAN, K. C. D., and C.R. SANFORD, 

A Study of Condensation Pumps, Rev. Sci. Instr ., vol. 1, pp. 140-163, March, 1930; 
Ho, T. L., Multiple Nozzle Diffusion Pumps, Rev. Sci. Instr., vol. 3, pp. 133--135, 
March, 1932; Ho, T . L., Speed, Speed Factor and Power Input of Different Designs of 
Diffusion Pumps, and Remarks on the Measurement of Speed, Physics, vol. 2,, pp. 
386--395, May, 1932. See also the excellent summary given in STRONG, J ., and 
others, "Procedures in Experimental Physics," pp. 111-124, Prentice-Hall, New 
York, 1941. 
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pump works on the principle of creating a gas flow of a condensabl~ 
vapor that draws along with it all the molecules from the system being 
evacuated that get into the flow. The vapor wind so formed is termi­
nated by condensation, and the liquid so formed is returned to a Yapor­
izing unit, where it is again used to form part of a vapor flow. The 
operation of this principle is best seen by considering specific vapor­
diffusion pumps. 

The Mercury-diffusion Pump.-One commonly used type of vapor­
diffusion pump makes use of mercury as the circulating vapor. A dia­
grnm of an early metal pump used by Langmuir is shown in Fig. 21.28. 
Mercury is heated in the bot,tom of the unit at D, and the resultant vapor 
rises up the chimney F, where it is deflected downward by the umbrella-

LEGEND 

Hyvapor- -
Air --• -
Water -

Hi vacuum 

.,,,Tomech • 
.,.. pump 

Fm. 21.28.-Langmuir's mercury-diffusion pump. 

shaped cup E placed over the end of the chimney. The mercury vapor 
moves down between the outside of the chimney and the outer wall of 
the pump A, which is cooled by a water jacket J. The principle of 
counterflow in cooling is purposely avoided, for the back vapor pressure 
will be least if the condenser temperature is lowest at the high-vacuum end 
of the pump. As the mercury vapor moves down, it is cooled to the point 
of condensation and then runs back down into the reservoir at the bottom, 
where it is again vaporized and recirculated. The probability that any 
gas molecule that gets into the mercury-vapor stream will experience a 
collision that will force it to move in the direction of the exhaust is 
extremely strong. As long as the input pressure exceeds the exhaust 
pressure by a factor of 100, the forces driving molecules toward the 
exhaust will predominate over those acting in the opposite direction. 
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Diffusion pumps of the type described require a low output pressure 
to give an effective condensation action. As a result, vapor-diffusion 
pumps are always operated into a mechanical pump. Diffusion pumps 
will operate into exhaust pressures, or "fore pressures," as high as 10-1 mm 
of mercury but in general should not be operated into fore pressures of 
more than 10-2 mm of mercury for any length of time. This is about the 
pressure at which a spark coil will fail to produce a discharge through a 
gas, and therefore in practice the diffusion pump is not turned on until 
the mechanical pump has reduced the pressure to the point where a glow 
discharge can no longer be observed upon application of a sparJr coil. 

Vacuum-

---Pump 

L/qu/dm'r 
or.solid CO2 
in alcohol 

Fm. 21.29.-Freezing trap for collecting condensable 
vapors. 

When mercury is used as the pump vapor, it is necessary to place a 
freezing trap between the pump and the syslem being evacuated to catch 
such mercury molecules as diffuse out from the pump. If this is not done, 
the minimum pressure that can be obtained with the system is the vapor 
pressure of mercury, which is about 10-3 mm of mercury at room tem­
perature. A commonly used type of cold trap is shown in Fig. 21.29. 
Cold traps may be cooled with liquid air or with a slush formed by adding 
alcohol to carbon dioxide snow. The temperature of the trap must be 
such that the vapor pressure of the mercury is reduced to a value below 
~ level corresponding to the lowest pressure desired. A curve of the 



784 VACUUM TUBES 

vapor pressure of mercury as a function of temperature is given in Fig. 
21.30. 

With vapor pumps, in general, 
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Fm. 21.30.-Vapor pressure of mer­
cury as a function of temperature. 

some resulting reduction in speed. 

it is necessary to use two pumps in 
series to get a very good vacuum. 
This is because there is a maximum 
ratio of input and output pressures 
of about 100 that oan be achieved 
by a single stage. 

Oil Pumps. Pumps using oil as 
a diffusion-pump liquid have 
become more popular than mer­
cury-vapor pumps as oils were 
developed that had successively 
lower and lower vapor pressures. 1- 4 

The various oils now in use and 
their corresponding vapor pressures 
are shown in Fig. 21.31. Other 
properties of the principal oils are 
given in Table XIV. Oils have the 
advantage over mercury vapor that 
a freezing trap is not needed. Fur­
thermore, the speed factors of 
pumps using oils will tend to be 
about ten times as great as of those 
using mercury vapor. Relative to 
the equivalent aperture oil-vapor 
pumps are about 50 per cent effec­
tive. In oil pumps a baffie or char­
coal trap must be used to prevent 
oil vapor from diffusing into the 
chamber being evacuated, with 
Care must also be taken not to 

1 BuRcH, C. R., Oils, Greases and High Vacua, Nature, vol. 122, p. 729, Nov. 10, 
1928. 

2 VON BRANDENSTEIN, M., and H. KLUMP, Ueber die Verwendun organischer 
Substanzen in der Hochvakuumtechnik, inbesondere bei dem Betrieb von Hoch­
vakuum Pumpen, Physik. Zeit., vol. 33, pp. 88--93, Jan. 15, 1932. 

3 KLuMB, H., and H. D. GLIMM, Ueber die Sauggeschwindigkeit von Diffusion­
pumpen die mit organischen Substanzen betrieben werden, Physik. Zeit., vol. 34, pp. 
64---65, Jan. 15, 1933. 

• HICKMAN, K. C. D., Vacuum Pumps and Pump Oils, Jour. Franklin Inst., vol. 
221, Part I, Some Fractionating Pumps, pp. 215-235, February, 1936; Part II, A 
Comparison of Oils, pp. 383-402, March, 1936. 
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expose the oil while hot to air at pressures greater than 10-2 mm of mer­
cury. Likewise, the oil must not be overheated even at extremely low 
pressure, for then decomposition will be accelerated. All the oils listed 
in Table XIV are formed by fractional distillation, ending with the com­
ponent having the lowest product of vapor pressure and rate of chemical 
breakdown. 

10-4 - Apiezon A 

- Butyl phthe11late .,. 
:c .... 
0 10·5 - Butyl sebacate 
~ -Amoil 

f 
:, -Amyl &ebace11te (Amoil-S) 
~ 
f 10-& -Apiezon B, Litton A 
0. 

+-2Ethyl hexyl plnhalcde(Octoil) 

10·7 +- Litton C 

- 2 Ethyl hexyl seboicate(Octoil-s) 

10·8 
Fw. 21.31.-0ils and their vapor pres­
sures at operating temperature. 

In addition to oils, extensive use is now being made of silicones. 
Most prominent among these are the Dow-Corning silicones DC702 and 
DC703. These are as good as the best oils~ with an ultimate pressure of 
5 X 10-1 mm of mercury for the DC703 and 1 X 10-5 mm of mercury 
for the DC702. The great advantage of the silicones over oils is their 
resistance to oxidation; the silicones do not burn. However, there is a loss 
of ultimate vacuum due to absorbed gases, but the recovery time to 
ultimate vacuum is about the same as for the best oils. The disadvan­
tage of the silicones lies in their present high cost. They also exhibit the 
same undesirable back diffusion as the high-grade oils. Poisoning of 
oxide cathodes is about the same as for oils without traps or baffies. 
Both silicones and the highly refined natural oils from which sulphur 



TABLE XIV 
CHARACTERISTICS OF PUMP OILS* 

Re-
frac-

Mol. Sp. gr. tive 
Name Formula wt. at indext 

25°C N, at 
40°c 

----
Butyl phthalate. C.H.(COOC.H9)2 278.1 1.0465 1.4851 
Butyl sebacate .. CsH "(COOC.H9), 314.3 0.933 1.4362 
Amoil. ......... C 6H 4(COOC,H,, )z 306.2 1.0190 1.4802 
Amoil-S ........ CsH,.(COOC,H,1)2 343.3 0.9251 1.4395 
Octoil ... . .... .. C.H, (COOC,H11 )z 390 .3 0 .9796 1.4795 
Octoil-S ....... . C8H 1o(COOCsH,, )2 426 .3 0 .9 103 1.4440 

* From data supplied by Distillation Products, Inc. 
t For white light. 
t With fractionating pump. 
§ Saybolt viscosimeter (approximate). 

Ult. 
Pour vacuumt 
pt., at OF 

25°c 

-96 4 X 10-• 
4 2 X 10-• 

-61 7 X 10-• 
24 2 X 10-• 

-61 2 X 10-7 

-69 5 X 10-s 

II Maximum safe temperature for exposure to atmospheric pressure. 

Boil-
ingpt., Conductivity 
~C, at G, mhos, 
10-2 at 27°C \ 
mm 

80 1. 7 X 10-10 

90 1.6 X 10-11 

100 1.7 X 10-11 

111 2.9 X 10-13 

122 2 . 6 X 10-10 

143 6 .7 X 10-11 

Viscosity, sec§ 

80°F 100°F 130°F 

------
79 58 45 
65 46 43 

100 81 52 
71 65 50 

178 171 75 
83 81 57 

Temp.,IJ 
oc 

94 
103 
96 

118 
125 
140 

~ 
~ 
c . 
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c::: 
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c::: 
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compounds have been removed have a chemical stability higher than the 
synthetic oils, and fractionation is less important. 1 

A typical diffusion pump using oil as the liquid is shown in Fig. 21.32. 
The arrangement of the parts is evident. From the boiler, vapor rises 

Oil vapor --

A t'r ---• 

Wafer -

High vacuum 

' 

8011/er 
with 

elecfr/c 
heater 

_,,,.Tomech. 
pump 

Frn. 21.32.-Typical glass, water-cooled, oil-diffusion pump. 

into the nozzle, where it is blown down a water-cooled section of tubing, 
at the bottom of which the condensed oil is collected and returned to the 
boiler. In general, the action of oil pumps is more positive when water­
cooled than when not, though air-cooled 
pumps are quite common. Two such 
pumps in series using a good oil can 
achieve a pumping speed of 30 liters per 
sec at 10-s mm of mercury and have 
an ultimate pressure of better than 10-7 

mm of mercury if a charcoal trap is 
used. The fore pressure required is 
generally of the order of 10-3 mm of 
mercury for positive action. The char-

lnsulafecl ._ 
healer · 
embedded 
in charcoal 

I 
' I 
+ 

' coal trap serves to collect molecules of : 

Charcoal in 
_open pan 

Roel 
supports 

oil vapor that tend to stray into the t 
chamber being evacuated. 2 One com- Frn. 21.33.-Charcoal trap with 
mon form of charcoal trap is shown in electric heater. 
Fig. 21.33. This trap consists simply of 
a pan of charcoal powder located so that no oil-vapor molecules may move 
directly into the chamber being evacuated without coming in contact 

1 The above information on silicones was privately communicated to the author by 
C. V. Litton. 

2 BECKER, J. A., and E. N. JAYcox, A New High Vacuum System, Rev. Sci. Instr., 
vol. 2, pp. 773-784, December, 1931. 
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with the- charcoal. Oil molecules will stick to the charcoal. Provision 
must be made for degassing the charcoal. This usually takes the form 
of an electric heater embedded in the charcoal. When the charcoal is 
heated to a temperature of several hundred degrees, the absorbed oil 
molecules are decomposed into gases that may be removed by the pump. 

BOILING OIL 

HEATING 
ELEMENT 

OIL VAPOR 11 
GAS MOLECULES :::•: 

} 

LOW 

PRESSURE 

REGION 

~ COOLING 

C3 AIR 

TO MECHANICAL 
"FOREPUMP" 

Fm. 21.34.-Air-cooled oil-vapor pump. (Eimac HVl.) 

A charcoal trap can absorb several thousand times its own volume of 
oil vapor. Ultimate pressures of 10-s mm of mercury have been recorded 
with charcoal traps and a good pump oil. Other means of keeping oil 
vapors out of the vacuum system are baffles of some metal, such as alu­
minum, that will not react with the oil and yet that has a good heat 
conductivity so that oil vapor will condense on it. 
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A popular form of air-cooled oil-vapor pump is shown schematically 
in Fig. 21.34. This pump achieves a three-stage action by suitable 
bleeding of vapor from a chimney over a single boiler. Throat areas and 
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Fm. 21.35.-0perating characteristics of a triple-jet air­
cooled oil-vapor pump. 

vapor speeds are adjusted to give maximum effectiveness at the different· 
pressures encountered in the system. Operating characteristics typical 
of such pumps are shown in Fig. 21.35. Pumping speeds in the range of 
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20 to 30 liters per sec at 10-4 mm of mercury and ultimate pressures of 10-, 
to 10-6 mm of mercury may be obtained with this type of pump. Pump­
ing speed drops quite sharply if the fore pressure becomes too low. The 
operating range of such a pump may be shifted toward low pressure by 
decreasing heater power. In some pumps of this type the output tubing 
leading to the mechanical pump contains a series of trapping ridges or 
alembics that prevent substances of high volatility from returning to 
the pumping-fluid reservoir. 

Fractionating Pumps. In order to obtain extremely low pressures it is 
necessary that the pump oils be uncontaminated with materials of lower 
vapor pressure. One means of ensuring this is to use a type of pump 
incorporating a fractional 'distillation still that continuously refines 

Hi vacuum--

_ Tomech. 
pump 

Fm. 21.36.-Diagram of two-stage fractionating 
pump. 

the oils used. 1 A diagram of a two-stage fractionating pump is given in 
Fig. 21.36. In operation the alembics in the output chimney collect 
the extreme volatiles, which if left in the system cause turbulence in 
the vapor flow. The boiler A at the low-pressure end of the pump 
operates at the highest temperature and utilizes mainly the more volatile 
low-vapor-pressure components of the oil. Less volatile components flow 
through the connecting tube to the middle boiler B, where they are more 
effective at the lower pressure because of their lower vapor pressure. 
The third boiler C serves to collect relatively nonvolatile residue and 
redistill the volatile components back into the other two boilers. Operat­
ing characteristics of a three-stage fractionating pump are shown in 
Fig. 21.37. Ultimate pressures of 10-9 mm of mercury may be obtained 
with pumps of this design, though pumping speeds are only of the order 

1 HICKMAN, K. C. D., Trends in the Design of Fractionating Pumps, Jour. Appl. 
Phys., vol. 11, pp. 303-313, May, 1940. 
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of 30 liters per sec. The operation of this type of pump is quite critical 
with respect to temperature. 
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21.7. Glass and Its Properties. Almost every vacuum system 01 

vacuum tube contains some glass in it. Early systems and tubes were 
entirely of glass, though the trend at present is to use more metal and less 
glass. Nevertheless, glass is still an indispensable item in vacuum-tube 
research and construction. 

The usefulness of glass is derived from its excellent working character­
istics. It can be shaped or molded into almost any form. The varieties 
of glass which are available are so numerous that a glass can be found 
suitable for almost any purpose. The greatest disadvantage of glass is 
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the ease with which it breaks, but even this can be minimized with proper 
design. 

Composition of Glass. Glass is a fused mixture of silica, SiO2, and 
various metallic oxides. The silica is the predominant component, 
being from 60 to 80 per cent of the total weight. The characteristics of 
the glasses are determined by the percentages of the metallic oxides. 
Pyrex glass is made up of 81 per cent SiO2, 12 per cent B2Oa, 4 percent 
Na2O, and a few per cent of other oxides. Lead glass is made up of 61.5 
per cent SiO2, 23 per cent PbO, and sodium and potassium oxide. These 
two glasses lie near the extremes of a scale of glasses, pyrex being at the 
so-called "hard" end and lead glass being at the so-called "soft" end. 
Other glasses lie between these extremes both in composition and in 
physical characteristics. Of considerable interest in transmitting-tube 
manufacture is nonex glass, which is a hard glass but not as hard as pyrex. 
Nonex glass contains 73 per cent SiO2, 16.5 per cent B2Oa, and 6 per cent 
PbO. N onex is not inactive enough chemically to make it useful for 
chemical glassware though it is extensively used in transmitting-tube 
manufacture. 

Physical Properties of Glass. Loosely speaking, any material that is 
hard, brittle, and transparent is referred to as a glass. More properly, 
glass is an amorphous material that is hard and transparent at room 
temperatures. As it is heated it softens gradually, becoming softer and 
softer. Because of this gradual change, it has no definite melting tem­
perature. The transition from a solid to a viscous state is usually defined 
in terms of the following arbitrary reference temperatures: 

Strain point. An arbitrary point on the temperature-viscosity curve, 
representing a viscosity of 101u poises1 where rapid cooling will 
not produce permanent strain. 

Anneal point. Arbitrary point; viscosity 1013· 4 poises, corresponding 
to relief of strain in H in. plate in 15 min. 

Softening point. Arbitrary point; viscosity 107·66 poises, correspond­
ing to unit elongation of glass rod in given time interval. 

Working temperature. Arbitrary point; viscosity 104 poises. Close 
to maximum temperatures for glassworking-in general, higher 
than temperatures used for metal seals by 150 to 200°C. 

The transition between the various physical states of glass is shown 
jn Fig. 21.38. The temperature scale will be different for each kind of 

1 The poise unit of viscosity is the force in dynes required to impart a relative 
velocity of 1 cm per sec to two parallel surfaces each having an area of 1 cm• and spaced 
l cm apart with the viscous material between them. The viscosity of pitch at 15°C is 
J010 pois~$. The viscosity of rnstor c:>il iit room temperature is 2 poises. 
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glass, but the general characteristics of the curve will be the same. The 
softening temperatures of the various glasses depend upon the composi­
tion, being higher for the higher percentages of silica. Glass must be 
worked above the softening point. If the glass is maintained at a tem­
perature near the softening point too long, it will be devitrified and 
possibly oxidized, with the result that its physical characteristics will be 
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FIG. 21.38.-Viscosity of glass as a function of tempera­
ture. 

impaired. The critical temperatures for the commonest types of glasses 
are listed in Table XV. 

The expansion characteristics of glasses are different for the different 
grades of glass and are nonuniform with temperature, unlike those of the 
pure metals. 1 Hence different types of glass cannot be joined together 
without cracking upon cooling unless their expansion coefficients are 

1 PETERS, C. G., and C. H. CRAGOE, Measurement of the Thermal Dilatation of 
Glass at High Temperatures, U.S. Bur. Standards Sci. Paper 393. 



TABLE XV 
PROPERTIES OF THE PRINCIPAL GLASSES* 

Corning Den-
Composition 

Exp X Strain Ann. Soft Work 
Use Code 

Lab. No. sity 10-,;0 c pt., °C pt., °C pt., °C pt., °C 

------ ---

.001 G-1 2.85 Soda potash lead (22 per cent PbO) 9.1 397 428 626 970 Lamp and rectifier-tube stems 

.005 G-5 2.92 Soda lead 9.1 404 429 619 970 Vacuum-tu,be bulbs 

.008 G-8 2.47 Lime 9.2 475 510 696 1000 Lamp and rectifier-tube bulbs 

.012 G-12 3.05 Soda potash lead (30 per cent PbO) 8.9 400 433 630 970 Vacuum-tube stems 
3320 G-371-BN 2.29 Soda-alum-borosilicate plus uranium 4.0 497 535 780 Intermediate nonex to pyrex. Also tungsten sealing 
704 G-705-BA 2.24 Potash borosilicate with alumina 4.75 450 484 702 1080 Kovar sealing. Not much used on account ol 

weathering 
705 G-705-AJ 2.23 Soda-borosilicate with alumina 4.6 461 496 703 1100 Kovar-tungsten-molybdenum sealing 

7052 G-705-FN 2 29 Potash-barium borosilicate 4.6 442 480 708 1115 Standard Kovar sealing (poor glass quality) 
706 G-705A0 2.25 Borosilicate 5.0 463 495 690 1050 Kovar sealing. Best at present, but expensive 
707 G-707-OG 2.13 Lithia borosilicate 3.2 455 490 746 1100 Low loss for ultra-high frequency 
772 G-702-P 2.35 Soda-lead borosilicate 3.6 484 518 755 lllG Nonex-power-tube-tungsten sealing 
774 G-726-MX 2 23 Soda-alum-borosilicate 3.25 510 553 820 1220 Pyrex chemical ware 
775 G-705-R 2.19 Soda-alum-borosilicate 4.05 431 467 704 1100 Practically obsolete 
776 G-720-GO 2.23 Borosilicate 3.4 480 520 780 1213 Pyrex bulbs 
790 2.18 96 per cent silica (Vycor) 8 820 910 1500 Quartz substitute 

9700 G-970-G 2.26 Borosilicate (Corexo) 3.7 517 558 804 1195 Ultraviolet transmitting 
9740 G-970-HW 2. 15 Borosilicate 4.5 405 450 775 1250 Ultraviolet transmitting 

* Prepared by C. V. Litton and reproduced with his permission. 
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nearly alike. In general, all glasses have a lower rate of expansion at the 
low temperatures than at the high. Soft glasses have higher coefficients 
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FIG. 21.39.-Expansion-temperature characteristics of the common 
metals and glasses used in vacuum-tube construction. 

of expansion than hard glasses. The expansion-temperature character­
istics of the principal glasses and metals used in vacuum tubes are shown 
in Fig. 21.39. 
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Working of Glass. The working of glass requires a high degree of 
physical coordination and skill. Simple operations can be learned in a 
short time, but a professional touch is slowly acquired !1 

21.8. Sealing of Glass to Other Materials. Very few vacuum tubes 
have been built with no glass in them. Even in the so-called "metal 
tubes" the leads are brought into the tube through a glass bead sealed 
into an eyelet. In experimental and developmental work, glass is used 
even more extensively and glass-to-metal sealing assumes even greater 
importance. 

Sealing of Small Leads into Glass. The problem of bringing leads into 
vacuum tubes is ever present. The principal problem involved is that 
of finding a metal of which the expansion coefficient matches that of the 
glass quite closely. Since the expansion coefficient of metals is nearly 
constant with temperature while that of glass generally increases with 
temperature, the perfect combination is seldom found. However, if the 
diameter of the lead is small, a considerable mismatch in expansion can be 
tolerated. Thus with tungsten, of which the expansion coefficient is 
4 ppm (parts per million) per °C, leads of diameter 0.020 in. or less can be 
sealed into pyrex glass, of which the expansion coefficient is 3.3 ppm per 
°C, whereas leads of diameter as great as 0.125 in. can be sealed into 
nonex glass, of which the expansion coefficient is 3.6 ppm per °C, without 
cracking. Because the coefficient of expansion of platinum, 9 ppm per 
°C, is very nearly the same as that of G-12 soft lime glass, 8. 7 ppm per °C, 
lead size of this glass-metal combination is limited only by the budget. 
Platinum leads can also be sealed into G-12 soft cobalt lead glass, of 
which ;the coefficient of expansion is 8. 7 ppm per °C. In all cases the 
glass ahd metal must be heated to a red heat together, bringing the glass 
to a soft state so that it will wet the metal. This generally requires that 
the metal be coated with an adherent coating of oxide and that the glass 
and metal be heated together so that the oxide partly dissolves in the 
glass, though perfect seals can be made with no oxide on copper, tungsten, 
or Kovar. 

Metal-glass combinations other than those mentioned above may also 

1 For further information the reader is referred to FRARY, F. C., C. S. TAYLOR, anci 
J. D. EDWARDS, "Laboratory Glass Blowing," 2d ed., McGraw-Hill, New York, 1928, 
and also the excellent illustrated treatment of STRONG, J., and others, "Procedures in 
Experimental Physics," Chap. I, Prentice-Hall, New York, 1941; PERCIVAL, G. A., 
The Technique of Glass Manipulation, Electronic Eng., April, 1944, pp. 453-457; 
BREODUER, R. L., and C. H. SIMMS, Planning a Glassworking Department, Jour. 
Sci. Instr., vol. 21, pp. 169-173, October, 1944; HOLDMAN, J. D., "Techniques of Glass 
Manipulation," Prentice-Hall, New York, 1946. 
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be used for sealing small leads into glass. Dumet, which is a copper-clad 
iron alloy, is extensively used in receiving-tube stems of soft glass. 1 

The expansion coefficient of dumet is close enough to that of the soft 
glasses so that it can be used in diameters under 0.040 in. Molybdenum 
can be sealed into pyrex and nonex in small diameters. Corning G-71, 
softest of the hard glasses, matches the expansion of molybdenum very 
closely and can be used to fairly large sizes. Some of the stainless steels 
have expansion coefficients low enough to be used with this same glass. 
Chrome-iron alloys containing 26 to 28 per cent chromium match G-6 
glass quite well at low temperatures. 

Copper-to-glass Seals. Copper may be joined to almost any type of 
glass if the edge of the metal that is being joined to the glass is made 
extremely thin. This is possible in spite of the fact that the coefficient of 
expansion of copper is much greater than that of any of the glasses. A 
thin piece of copper will give to high stresses because of its high ductility 
and its low yield point. The technique of joining copper to glass was 
perfected by Housekeeper, and such seals are often referred to as" House­
keeper seals." 2 Copper-to-glass seals are invariably used in transmitting 
tubes for any seals requiring conductors larger than ;!,s in. in diameter. 

Copper is prepared for sealing by cutting or rolling the edge of copper 
tubing so that the edge is 1.5 ± 0.5 thousandths of an inch thick and 
tapered back at about a 2.5-deg angle to about 40 thousandths thickness. 
The joining of glass to the copper requires a high degree of skill and is 
probably the most difficult of all the glassworking operations to perform. 
Small seals, up to~~ in. in diameter, are commonly made with the glass 
applied only to the inside of the copper edge. This is done because the 
expansion of copper is greater than that of glass and the differential 
expansion is therefore in the right direction to maintain the bond. For 
seals larger than ½ in. in diameter it is common to coat both the inside 
and the outside of the copper edge with glass. This is done primarily to 
prevent overoxidation of the thin copper at the seal. Copper must be 
heated with an oxidizing flame. The black oxide is formed, and seal 
temperature must be maintained constant throughout the operation. 
The glass is bound to the black oxide. On further heating the excess 
oxygen of the black oxide combines with more copper, changing it to the 
red oxide. Simultaneously some of the black oxide dissolves in the glass. 

1 Dumet cores are 42 per cent nickel, and the copper coating is 20 to 25 per cent of 
the total volume. 

2 HOUSEKEEPER, W. G., Glass to Metal Seals, Jour. Amer. Inst. Elec. Eng., vol. 42, 
pp. 954-960, September, 1923. Earliest seals were made by Kruh and Kraus. 
Housekeeper introduced the featheredge. 
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As a result, the final interlace between the red oxide and the copper lies 
at a new depth, created after the glass was fused to the outside. Mechan­
ically a rim of glass is first attached to the outside of the copper edge from 
a piece of glass tubing and then detached from the glass tubing, leaving a 
little glass projecting over the edge of the copper, which is then folded 
over to cover the inner side. The glass tubing is then joined to this 
"bead" of glass on the copper edge. The color of a properly fashioned 
copper-glass seal is a bright red and will stand heating up to the softening 
temperature of the glass. Seals are commonly made up to 6 in. in diam­
eter, and some as large as 10 in. in diameter have been made. The same 
procedure is used in joining copper to all types of glass. Joining of copper 
to pyrex is the most difficult, for there is a temperature interval of only a 
couple of hundred degrees between the temperature at which the glass 
softens and that at which the copper melts. The only disadvantages of 
copper-glass seals are that they are relatively difficult to make and that 
they have a relatively low mechanical strength because of the thinness of 
the copper next to the glass. 

In addition to the Housekeeper seal it is possible to make disk seals to 
copper. This was anticipated by Housekeeper but only recently put 
into extensive commercial use. Disk seals are used in tubes of the light­
house type and in reflex-klystron-oscillator tubes designed to work with 
external cavities. 1· 2 The general method of construction consists in 
stacking a circular copper disk with a circular hole in its center between 
two equal-diameter pieces of glass and then heating the metal by torch or 
preferably by r-f eddy currents until the copper disk becomes hot enough 
to melt the glass, which forms a bond with the metal. The glass does not 
cover the edges of the copper. If the copper disk is thin enough, 15 
thousandths of an inch or less, then no intermediate materials are needed 
between the glass and copper. As with the Housekeeper featheredge 
seal, the difference between the expansions of the glass and copper is 
taken up by the copper. Copper disks are frequently given a circular 
crimp to weaken them to radial forces and allow radial contraction without 
having to stretch the whole metal area. The surfaces of thick disks are 
often coated with a layer of copper borate, which ensures maximum 
bonding strength. 

Kovar and Fernico. Kovar and Fernico are trade names used by the 
Westinghouse and General Electric Company, respectively, for some 
nickel-cobalt alloys of iron having nonuniform expansion characteristics 

1 Disc Seal Tubes, Gen. Elec. Rev., vol. 48, pp. 50-51, January, 1945. 
2 McARTHUR, E. D., Disc Seal Tubes, Electronics, vol. 18, pp. 98-102, Februarc• 

1945. 
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that match very closely the expansion of some commercial glasses. 1- 3 

Pure metals have expansion coefficients that are virtually independent of 
temperature. Ferromagnetic alloys, however, experience an increase in 
their expansion characteristics at the temperature at which the alloy 
becomes hot enough to lose its magnetic properties. The action is per­
fectly reversible, i.e., the magnetism is restored and the coefficient of 
expansion reduced as the alloy is cooled. The composition of Kovar and 
Fernico is as follows: 

Alloy 
Iron, Nickel, Cobalt, Matching 

per cent per cent per cent glass 

Kovar A ........................... 53.8 29 17 705A0, 705FN 
Fernico ............................ 54 28 18 705A0, 705FN 
Fernichrome ............. . .......... 30 25 8 G8 

The difference in contraction of the principal sealing glasses and metals 
when cooled at a slow rate is shown in Fig. 21.40. It is seen that the iron 
alloys match the glass characteristics quite closely over the entire tem­
perature range. As a result, the sealing of these metals to their corre­
sponding glasses is a relatively simple matter. No featheredges are 
needed; in fact, edges as thick as 3--s in. can be joined directly. Seals as 
large as 4 in. in diameter can be made. Leads of Fernico wire in match­
ing glass set in a Fernico eyelet that is welded to a metal base are used 
in the mass production of metal receiving tubes. As may also be seen 
from Fig. 21.40, the reason why nonex seals fairly successfully to tungsten 
is that the differential expansion is nearly zero in the annealing range. 
Uranium nonex gives a better match and is sometimes used as an inter­
mediary between tungsten and pyrex glass. 

Glass-to-porcelain Seals. The expansion characteristics of nonex glass 
and some porcelains are close enough so that nonex can be sealed directly 
to porcelain. Where a porcelain-pyrex joint is desired, nonex should be 
used as an intermediary material. 

Glass-to-mica Seals. Mica can be sealed to a special high-expansion 
lead borosilicate glass having an expansion of coefficient of about 9.8 

1 BURGER, E. E., Expansion Characteristics of Some Common Glasses and Metals, 
Gen. Elec. Rev., vol. 37, pp. 93-99, February, !934. 

2 HULL, A. W., and E. E. BURGER, Glass to Metal Seals, Part I, Physics, vol. 5, 
pp. 384--405, December, 1934. 

3 HULL, A. W., E. E. BURGER, and L. NAVAIS, Glass to Metal Seals, Part II, 
Jour. Appl. Phys., vol. 12, pp. 698--707, September, 1941. 
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ppm per °C. 1 Mica-to-metal joints are more difficult to form, for the 
metal invariably has a higher expansion coefficient than the mica, which 
results in the mica becoming bowed on cooling. With proper inter­
mediary oxides and glass, mica can be sealed to copper with very little 
resultant bowing. Window thicknesses may range from five to twenty­
thousandths of an inch in thickness and be as large as two inches in 
diameter. 

Metal-to-metal Sealing. Metals can be joined by suitable solders. 
For demountable systems kept on a pump and not involving high tem­
peratures, brass can be used, joined by ordinary soft solder, the eutectic 
proportions (lowest melting temperature) of tin and lead giving the best 
results. Brass and soft solder cannot be used in tubes that are to be 
sealed off, for brass is somewhat porous, evolves great quantities of gas, 
and tends to vaporize its zinc at high temperatures. For tubes that are 
to be sealed off, oxygen-free copper, most iron alloys, aluminum, and 
beryllium can be used as vacuum-tight containers. Joining is most 
satisfactorily effected by means of high-melting-temperature silver­
copper alloys melted in a hydrogen (reducing) atmosphere by means of a 
tungsten filament or induction heater. This involves heating the metals 
to a red heat, at which temperature the silver-copper alloys flow freely 
and wet clean metal surfaces. For high-temperature work, gold-copper 
alloys are also used. Gold has a lower vapor pressure than silver. 

21.9. Metals Useful in Tube Construction. The properties required 
of metals for use in vacuum-tube construction are rather numerous. In 
general, no one metal meets all the requirements, but each metal in turn 
has its distinctive advantages. 2•3 

Mechanically, a metal to be useful in vacuum-tube construction 
should have a strength and ductility that permit easy forming of electrode 
shapes. The strength must be retained at high temperature without 
excessive crystallization to avoid deformation during degassing and sub­
sequent use. The stiffness and damping factor of the metal should be 
high, to reduce vibration effects. 

Thermally, the coefficient of expansion should be relatively low and, 

1 DONAL, J. S., JR., Sealing Mica to Glass or Metal to Form a Vacuum Tight Joint, 
Rev. Sci. Instr., vol. 13, pp. 266--267, June, 1942. 

2 See W1sE, R. M., Nickel in the Radio Industry, Proc. I.R.E., vol. 25, pp. 714-752, 
June, 1937, for a detailed treatment of this subject with special reference to nickel. 
This paper contains an extensive bibliography on the general subject of metals in 
tubes. 

3 EsPE and KNOLL, "Werkstoffkunde der Hochvakuumtechnik," op. cit., pp. 
1-110. Obtainable from Edwards Bros., Ann Arbor, Mich. A classic source con­
taining the most extensive information available in book form. 
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except for special applications, quite constant. Good thermal con­
ductivity is generally sought. Depending upon the application, metals 
should have either a high reflectivity or a high thermal emissivity. 
The vapor pressure at degassing temperatures should be low, while the 
melting temperature itself should be well above the highest degassing 
or operating temperature. 

Electrically, a moderate conductivity is desired. Too low a conduc­
tivity introduces appreciable resistance and attendant losses, while too 
high a conductivity makes spot welding difficult. Except for cathodes, 
the primary and secondary emission should be low. Except for shielding 
applications, the magnetic permeability should be low, and the metal 
should be one that is readily demagnetized by a magnetic field. 

Chemical freedom from oxidation at high temperatures simplifies 
construction processes immensely. Resistance to corrosion by various 
cleaning agents should be low. Most important of all, the metal should 
absorb only a small amount of gas and give this up easily when heated 
in vacuum. 

In addition, materials should be relatively inexpensive and generally 
available. Alloys having a wide range of physical characteristics as 
determined by their chemical content are especially useful. 

Nickel. Nickel is the metal that is most extensively used in forming 
receiving-tube electrodes. It is easily drawn and formed. It stretches 
easily and does not exhibit any sharp break at its yield point. Its 
hardness and strength at high temperatures are good. It has thirteen 
times the mechanical damping factor of iron and molybdenum. It 
spot-welds well to almost all metals. Its expansion coefficient is nearly 
constant with temperature, and its thermal and electrical conductivity 
are good. When polished, nickel has an emissivity which ranges from 
5 to 20 per cent of that of a black body, i.e., it makes a good reflector. 
When carbon-coated, the thermal emissivity ranges from 80 to 94 per 
cent of that of a black body, i .e., it makes a good radiator. Anodes 
formed of nickel are usually carbon-coated to increase their radiation. 
Vapor pressure is low at all but very high temperatures, 10-6 mm of 
mercury at a red heat. The work function of nickel is high, 5 volts, 
but commercial nickel may have appreciable thermionic emission due 
to barium contamination. Alloying about 4.5 per cent manganese 
reduces both primary and secondary emission. Others of the desirable 
properties are likewise present. As a result, nickel is an ideal metal 
for tube construction in all applications except those where a high tem­
perature is involved. 

Copper. The outstanding physical characteristics of copper are its 
high thermal and electrical conductivity. As has also been mentioned, 
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it can be sealed to all glasses by the Housekeeper technique. It is 
extensively used as an anode material in water- and air-cooled tubes. 
It is moderately porous and requires a thick wall to withstand atmos­
pheric pressure when hot. Likewise, it oxidizes readily and so cannot be 
allowed to assume temperatures above a few hundred degrees centigrade. 
It must be used in the oxygen-free form in all applications that involve 
heating for red heat. Even within a vacuum, copper must be protected 
from high temperatures, for it softens and vaporizes at relatively low 
temperatures. Its high ductility and low yield point make it easy to 
draw, form, and spin. 

Aluminum. Aluminum is easy to work and is fairly noncorrosive to 
other materials encountered in vacuum-tube construction. One valuable 
property is that it does not sputter easily. However, it melts at too 
low a temperature and absorbs too much gas to be very useful in sealed-off 
tubes. 

Molybdenum. Molybdenum has most of the excellent properties 
of nickel except that it is somewhat harder to work and is more expen­
sive. Its relatively high melting temperature and low vapor pressure 
make it useful in low-power transmitting tubes. It is readily spot­
welded to iron or nickel but not to tungsten. It absorbs oxygen when 
heated to a dull red heat. Molybdenum is used in applications that 
involve temperatures in the range of 200 to 500°0. 

Tantalum. Next to tungsten, tantalum has the highest melting 
temperature of all the metals. Its vapor pressure is very low. It is 
easily formed and drawn. The metal is expensive as a result of the 
relatively complicated vacuum processing required to put it into form 
suitable for vacuum-tube construction. It is extensively used in radia­
tion-cooled transmitting tubes, where the electrodes are often run at a 
red heat. It has a getter action that causes it to absorb gases, particu­
larly hydrogen, the maximum absorption occurring at 1000°0 (cherry 
red). The gases that have been absorbed are given off again at tem­
peratures of 1300°0 and higher. Minimum temperature for getter action 
is approximately 800°0. Tantalum is also used as an emitter in applica­
tions requiring specially shaped cathodes. Its work function is lower 
than that of tungsten, with the result that its emission is greater at the 
same temperature. Tungsten can, of course, achieve higher emission 
because it can be heated to higher temperatures without melting. 

Tungsten. Reference has already been made to some of the numerous 
applications of tungsten in vacuum-tube construction; as an emitter 
and filament wire and in some lead-sealing applications it has virtually 
no substitute. Its high melting temperature makes it especially useful 
in some vacuum-tube construction processes. It is used as a filament 



804 VACUUM TUBES 

wire for silver-soldering operations. It is likewise used as a filament 
heater in numerous metal-evaporation processes. It is one of the few 
metals that can be used as a target in X-ray tubes. Numerous gauges 
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and control devices make use of its large change of resistance with 
temperature. 

Tungsten is not readily drawn or formed. It must be hammered or 
swaged into shape. As a result, it is principally available in wire or rod 
form. Tungsten has a pronounced crystalline structure, which is 
accentuated by heating. Tungsten filaments therefore become brittle 
if overheated for appreciable periods of time. Tungsten is relatively 
inactive chemically, which reduces contamination problems. It is 
sometimes alloyed with molybdenum (W /Mo = 4%1) to give a material 
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that is more workable than tungsten itself and yet retains a high melting 
temperature. 

Relative Properties of the Metals. Metals other than those listed 
separately above find many special applications in tube construction, 
but those listed take care of the majority of the applications. The 
relative properties of the principal metals used in vacuum-tube con­
struction are shown on the scale lines of Fig. 21.41. 1 One of the most 
important properties of a metal is its vapor pressure, which is an increas­
ing function of temperature. The last scale line gives the temperature 
of which a metal has a vapor pressure of 10-5 mm of mercury. This 
determines the highest temperature to which a metal in a tube can be 
raised during the exhaust proc"ess. 

Spot Welding. In the construction of vacuum tubes the majority 
of small metal-to-metal joints are formed by spot welding. Basically 
the process of spot welding consists in passing a large current through 
the joint to be welded. The joint is heated by the large current density, 
of the order of thousands of amperes per square inch, to the point where 
the metals melt and dissolve into one another, forming a weld. 

Spot-welding machines consist of a set of pointed jaws supported by a 
mechanical arrangement that brings the jaws together by the operation 
of a foot pedal. The materials to be welded are placed between the jaws, 
and pressure is applied by the foot pedal. Care must be taken in sup­
porting the work between the jaws to see that current will flow from the 
jaws through the work and through the point to be welded. The jaws 
are connected to a step-down transformer that gives a large current 
through a closed circuit when the primary is closed by means of another 
foot pedal. For most operations the jaws are made of copper and 
because of their resulting high conductivity will have relatively little 
heat developed at their point of contact with the work. Where welding 
operations are at all critical, an electronic circuit should be used to control 
the amount of current and the time duration of current flow. Many 
welding operations require a current flow of hundreds of amperes for a 
fraction of a second. 

Not all metal combinations will spot-weld readily. Difficulties are 
encountered with metals of high conductivity, high melting temperature, 
and high oxidation tendencies. In Table XVI there is indicated the 
relative ease with which different metals can be spot-welded to one 
another. 2 

Spot welding forms only a part of the art of joining metals. In the 
1 For more complete data than are given here the reader is referred to ESPE and 

KNOLL, loc. cit. 
2 EsPE and KN0LL1 OP. cit., pp. 135-13!1 
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newer tube designs, extensive use is made of r-f brazing both in hydrogen 
atmosphere and in air. This brazing process makes use of single shots 
of r-f power (about 100 kc) where the pulses are of the duration of 
0.001 to 0.1 sec for the whole weld. Arc welding is also employed in 
both hydrogen and argon atmospheres. This is essentially atomic 
welding. The gas is dissociated by the arc and then recombines on the 
work, where it liberates energy in very concentrated form. 

TABLE XVI 
SPOT-WELDING PROPERTIES OF THE METALS 

Con- Ni/Cr In- Fe/Cr Al Cu Fe Ni Ta Mo w Monel stan- (%) var (½) 
tan - - ---- - - ----------------

Tungsten ..... . . . . . . . . . . 4 4 C3 2 A4 C4 4 
Mo . .. ...... . B . . .. B . . 4 4 C3 2 4 C4 
Ta ........ .. . . . . . . . . . . . 4 A4 C3 2 3 
Ni . ..... ... .. B 3 B B 2 3-4 3 1 1 
Fe (pure) ..... B 2 B . . .. 3 2-3 1 
Cu ........... . . . . . . . . . . 4 4 B3-4 
Al. ..... .... 4 2 4 . . .. 3 
Fe/Cr (½) ... . . . . .. 3 
Invar .. .... . . B .. B B 
Ni/Cr(½) ... B .. B 
Constantan ... .. B 
Monel. ....... B 

l. Very good. 
2. Good. 
3. Difficult. 
4. Bad or impossible. 
A. Good with suitable flux. 
B. Good with controlled current impulses. 
C. Good for small wires with short controlled current impulses. 

21.10. Insulators. In addition to glass, which is a good insulator at 
low temperatures, mica and various ceramics are the principal insulators 
used in vacuum-tube construction. 

Mica is extensively and almost exclusively used as an insulator and 
electrode spacer in receiving tubes. It is a potassium-aluminum silicate, 
which in its natural form is known as "muscovite." Mica as used in 
tubes is a dehydrated muscovite. It has a crystalline structure that 
permits it to be split into thin sheets. Sheets as thin as 0.5 thousandths 
of an inch can be had. For receiving-tube use, the sheets are usually 
of the order of 20 thousandths of an inch thick. Mica has one of the 
highest specific resistances of all known insulators. Its dielectric con-
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stant of 5 to 8 makes it useful in electrical condensers. Its breakdown 
voltage lies in the range of 60 to 200 kv per mm. It can be used at 
temperatures up to 500°C. 

Various ceramics are used as insulators in transmitting tubes that 
involve higher temperatures and strength than mica can withstand and 
furnish. Most useful are the various silicates, principally those of 
magnesium. These materials are not machinable but can be formed 
to almost any shape desired before they are fired. A compromise 
on machinability has been achieved in some special materials, such 
as Alsimag 222, which can be machined with a stellite or other hard 
tool. For experimental work, soapstone, which is very soft, is often 
machined to shape and then hardened by heating in hydrogen to a red 
heat. 

Porcelain, as has been mentioned, finds some applications where it is 
necessary to get a glass-ceramic seal. It is not machinable but must be 
formed in the desired shape before firing. 

Aluminum oxide is often used as an insulating coating on filament 
wires. The coating is obtained by either dipping or spraying from a 
suspension of amyl acetate and then drying at about 600°C. A hard 
vitreous coating is formed by flashing at 1500°C. Such insulating coat­
ings are most effective if made of a succession of thin layers each baked 
individually. The resulting insulation has a sufficiently high mechanical 
strength to make it useful for filament wires used in indirectly heated 
cathodes. The electrical strength is likewise adequate for low-voltage 
applications. 

21.11. Degassing of Glass and Metals. Materials used in vacuum 
tubes must be heated to drive off gases during the evacuation process. 
Some of the gas is merely condensed on the surface, in which it is said 
to be adsorbed. Other gases are in chemical combination with the 
material, in which case they are said to be absorbed. With metals 
there will generally be considerable quantities of gas trapped in crevices, 
seams, and flaws. Such gases are said to be occluded. 

In general, tubes should be degassed by heating at temperatures 
appreciably greater than the temperatures the tube will encounter in 
practice. The time required for outgassing may range from 15 min for 
receiving tubes to hours or days for high-power transmitting tubes. 

The gases encountered with glass are mostly adsorbed. A 40-watt 
lamp bulb will evolve about 500 cm 3 of gas (measured at room tempera­
ture and pressure) when heated at 500°C. About 90 per cent of this 
gas is in the form of water vapor. Glasses should be heated at about 
90 per cent of their annealing temperature to drive off adsorbed gases. 
At higher temperatures the glass may soften, and some gases will be given 
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off by decomposition of the glass. The time required for outgassing of 
glass is about 15 min at top temperature. Heating may be done with 
either soft gas flames or with a baking oven that surrounds the entire tube. 
Heating with a baking oven allows a better control of temperatures, 
though receiving tubes are frequently degassed with gas flames. Degas­
sing of a tube should not be begun until the tube has been evacuated to a 
pressure of 10-a mm of mercury or less. 

The gases encountered with metals are mostly in the form of occluded 
gases. Metal electrodes and parts may be degassed by heating to about 
50 per cent of the melting temperatures of the metals. The amount of 
gas evolved from a metal will depend upon the area multiplied by a depth 
of a few thousandths of an inch, except for tungsten and molybdenum, 
which have a laminar structure. The principal component of the gases 
involved is generally carbon monoxide, which is present to the extent of 
about 30 to 90 per cent of the total gases. The remainder of the gas 
is mostly nitrogen, which comes off at a higher temperature than carbon 
monoxide. Interestingly enough, when a metal has been degassed by 
heating in a vacuum it will pick up very little gas upon subsequent 
exposure to air at atmospheric pressure, if carefully handled. 1 Degassing 
of metals is commonly achieved by r-f induction heating. Radiation­
cooled transmitting tubes may be degassed by direct electronic bombard­
ment of the elements. 

21.12. Getters. Getters are materials used in vacuum tubes to 
clean up residual gases by chemical combination. The alkali metals 
are most extensively used. Barium seems to be most effective in cleanup 
action though magnesium, calcium, sodium, and phosphorus have also 
been used. 2•3 The getter material is usually enclosed in the pure metal 
form in a small cup or wire cage of base metal and then reduced and 
vaporized, after the tube is sealed off, by heating to a temperature of 
about 700°C by r-f induction currents. Sometimes the getter material 
is contained in a tube formed of a rolled nickel sheet, in which case the 
vaporized metal escapes through the crack in the tube. The vaporized 
metal deposits on the wall of the tube, care always being taken that it 
does not deposit on any of the insulators. When gas molecules come 
in contact with this layer, they will combine (except for the noble gases), 
with the result that the vacuum gets progressively better with time. A 

1 NORTON, E. J., and A. L. MARSHALL, The Degassing of Metals, Gen. Elec. Co. 
Research Lab. Rept. 613, March, 1932. 

2 LEDERER, E. A., and D. H. WAMSLEY, Batalum, a Barium Getter for Metal 
Tubes, RCA Rev., vol. 11, pp. 117-123, July, 1937. 

~ LEDERER, E . A., Recent Advances in Barium Getter Techniques, RCA Rev., 
vol. 14, pp. 310-318, January, 1940. 
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getter in a receiving tube will usually be sufficient to improve the vacuum 
obtained from a mechanical pump to 10-5 mm of mercury in about 10 
min. Previous treatment of the getter to remove gases seems to be more 
important then the material of the getter itself. 1•2 

The absorption properties of other metals may also be used in the 
form of an auxiliary filament. Tungsten, molybdenum, and tantalum 
can be used for this purpose if heated to 1000°C or higher. Most 
interesting of all the metals in its cleanup action is zirconium. 3·4 Zir­
conium will absorb 5 times its own volume of hydrogen at 400°C, whilb 
at 1400°C it will absorb carbon monoxide and carbon dioxide as well 
as 40 times its own volume of oxygen and 20 times its own volume of 
nitrogen. At temperatures below 200°C, protective oxides and nitrides 
form. For complete getter action, two filaments, one to workat 400°C 
and one to work at 1400°C, are necessary. Zirconium-filament getters 
are seldom used in commercial tubes but are useful in experimental 
tubes. Zirconium is often used in the form of a sprayed powdered 
coating applied to metal anodes. This gives increased thermal emissivity 
and also a continuous getter action during operation. 

1 ANDREWS, M. R., and J. S. BACON, The Comparison of Certain Commercial 
Getters, Gen. Elec. Research Paper 574, June, 1931, also published in Jour. Amer. 
Chem. Soc., pp. 1674-1681, May, 1931. 

2 DusHMAN, " The Production and Measurement of High Vacuum," op. cit. The 
last half of this book is devoted to the subject gas sorption and degassing of materials. 

3 FAsT, J. D., Zirkon und seine hochschmelzenden Verbindungen, Philips Tech. 
Rev., vol. 3, pp. 353-360, December, 1938. 

' FAST, J. D., Metals as Getters, Philips Tech. Rev., vol. 5, pp. 217-221, August, 
1940. 
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APPENDIX I 
PROPERTIES OF THE ELEMENTS 

A. Atomic Weights and Numbers 

Sym- Atomic Atomic Sym- Atomic 
bol number weight bol number 

·--
Al 13 26.97 Molybdenum .. Mo 42 
Sb 51 121.76 Neodymium ... Nd 60 
A 18 39.944 Neon . . . .. .... Ne 10 
As 33 74.91 Nickel .. . .. ... Ni 28 
Ba 56 137.36 Nitrogen .. ... . N 7 
Be 4 9 .02 Osmium . . . ... . Os 76 
Bi 83 209 .00 Oxygen ... . ... 0 8 
B 5 10 .82 Palladium .. . .. Pd 46 
Br 35 79 .916 Phosphorus p 15 
Cd 48 112 .41 Platinum . .. . . . Pt 78 
Ca 20 40.08 Potassium ... .. K 19 
C 6 12.010 Praseodymium. Pr 59 
Ce 58 140.13 Protoactinium Pa 91 
Cs 55 132.91 Radium . ...... Ra 88 
CI 17 35.457 Radon ........ Rn 86 
Cr 24 52 .01 Rhenium ...... Re 75 
Co 27 58 .94 Rhodium .. .. .. Rh 45 
Cb 41 92.91 Rubidium ... . . Rb 37 
Cu 29 63.57 Ruthenium ... . Ru 44 
Dy 66 162.46 Samarium . . . . . Sm 62 
Er 68 167.2 Scandium . . ... Sc 21 
Eu 63 152.0 Selenium . . . ... Se 34 
F 9 19 .00 Silicon ... . .... Si 14 
Gd 64 156.9 Silver . ... . .. . . Ag 47 
Ga 31 69.72 Sodium .. ..... Na 11 
Ge 32 72.60 Strontium ..... Sr 38 
Au 79 197.2 Sulphur . .. .... s 16 
Hf 72 178.6 Tantalum . .. . . Ta 73 
He 2 4 .003 Tellurium ... . . Te 52 
Ho 67 164 .94 Terbium .. . . .. Tb 65 
H 1 1.0080 Thallium .... . . TI 81 
In 49 114. 76 Thorium ...... Th 90 
I 53 126 .92 Thulium . . . .. . Tm 69 
Ir 77 193.1 Tin . . ..... . .. . Sn 50 
Fe 26 55.85 Titanium . .. . . Ti 22 
Kr 36 83.7 Tungsten ..... w 74 
La 57 138.92 Uranium ...... u 92 
Pb 82 207.21 Vanadium ..... V 23 
Li 3 6.940 Xenon ... ..... Xe 54 
Lu 71 174.99 Ytterbium .... Yb 70 
Mg 12 24 .32 Yttrium . . .... y 39 
Mn 25 54.93 Zinc . . . . ... .. . Zn 30 
Hg 80 200 .61 Zirconium . ... . Zr 40 
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58.69 
14 .008 

190 .2 
16 .0000 

106 .7 
30 .98 

195 .23 
39.096 
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231. 
226.05 
222 . 
186 .31 
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85.48 

101 .7 
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45 .10 
78 .96 
28 .06 

107.880 
22.997 
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32.06 
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127.61 
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204 .39 
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169.4 
118 . 70 
47 .90 

183.92 
238.07 
50.95 

131 .3 
173.04 
88 .92 
65.38 
91 .22 
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APPENDIX II 

DIFFERENTIAL OPERATORS AND 
VECTOR NOTATION 1 

1. Differential operators for rectangular coordinates (mutually perpen, 
dicular unit vectors a.,, av, a,). 

Gradient: 

. ( av av av) -E = gradient V = VV = a., ax + av ay +a.a. 
Components: 

av 
grad., V = ax 

av 
grad11 V = ay 

av 
grad, V = iii 

/ 

y 

/ 

/ / z 
/ 

The gradient of any scalar quantity is always a vector quantity. 

Divergence: 

D . E d" E E aE., + aE11 aE. 1vergence = 1v = V · = - - + -ax ay az 

dx 

The divergence of any vector quantity is always a scalar quantity. 

Curl: 
a.,_ '1v a. 

curl E = V XE= 
a a a 
ax ay az 
E., Eu E. 

1 For the development of the relations of this appendix and further information on 
vector notation and relations see 

SKILLING, H. H., "Fundamentals of Electric Waves," Wiley, New York, 1942. 
HARNWELL, G. P., "Principles of Electricity and Electromagnetism," McGraw­

Hill, New York, 1938. 
STRA'ITON; J . A., "Elektrgmagnetic Theory," McGraw-Hill, New York, 1941. 
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Components: 
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curl,, E = aE, - aE11 

ay az 

curl
11 

E = oE,, - iJE. 
i)z iJx 

curl. E = aE11 - aE,, 
ax ay 

The curl of a vector quantity is always a vector quantity. 

Laplacian: 

The Laplacian ofa scalar quantity is always a scalar quantity: 
2. Differential operators for cylindrical coordinates (mutually perpen­

dicular µnit vectors ar, a8, a.). 

Gradient: 
-E = gradient V = VV 

Components: 
av 

grad, V = Tr 
1av 

grade V · = r 7iii 
av 

grad, V = az 

Divergence: 

X 

z 

div E = V · E = .!_ _i!_ (rEr) + .!_ oEe + aE. 
r or r ao az 

Curl: 
a, rae a, 

1 a a a curl E = V X E = -
or ao oz r 
E, rEe E. 

/ 
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Components: 

curl E = ! aE, - aE9 
r r ao az 

curlo E = aE, - aE, 
az ar 

curl. E = ! a(rEo) _ ! aE, 
r ar r ao 

Laplacian: 

v 2v = !~ (r av)+!_ a
2
v + a2

v 
r ar ar r 2 a02 az2 

3. Differential operators for spherical coordinates (mutually perpen­
dicular unit vectors a., ao, a,.,). 

Gradient: 

Components: 
av 

grad, V = -
ar 

-E = gradient V = V V 

IaV 
grado V = -­r ao 

1 av 
grad = -.-­

"' rsmOa'P 

X 
Divergence: 

z 

r.sm8drp 

div E = V · E = ~ ! (r 2E,) + -!--
0 
!
0 

(sin 0 E 8) + __ I_!_ (aE,,,) 
r vr rsm v rsm8a'{' a'{' 

Curl: 
a, rao rsinOa,., 

curl E = V XE= 
1 a a a 

r2 sin 0 ar ao a'P 
E, rEo r sin 8 E,, 

Components: 

1 E = _I_ [a(sin 0 E,,,) _ aEo] 
cur r • 0 ao a Tfiln '{' 

curlo E = -~- aE, - ! a(rE"') 
r sm 0 a'P 1r ar 

curl E = ! [a(rEo) - aE,1 
,p r ar ao 
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Laplacian: 

v2v = !_ ~ (r2 av)+ _l_ ~ (sin 8 av)+ _l_ a2v 
r 2 /Jr /Jr r 2 sin 8 rJ8 ;)8 r 2 sin 8 ;Jcp2 

4. Differential operators for general orthogonal coordinates (mutually 
perpendicular unit vectors a1, a2, a 3). 

h1, h2, and h3 are scale factors such that an element of length is given 
by 

Gradient: 
-E =, gradient V = VV 

Components: 

Curl: 

1 av 
gradu, V = h- ::,--

1 uU1 

1 av 
gradu, V = h- ::,--

2 uU2 

1 av 
gradu, V = -h ~ 

3 uU3 

h1a1 h2a2 h3aa 
1 a a a 

curl E = V X E = --h1h2ha au1 rJu2 dU3 

h1E1 h2E2 haEa 



APPEND IX III 

A NOTE ON MKS UNITS 

IN this book there are used rationalized practical mks units. Much 
has been written on the subject of units. This section is intended to be 
not an exposition of the topic but rather a group of comments that will 
aid the student in using mks units. 

In the mks system of units, distance is measured in meters, mass in 
kilograms, and time in seconds. The term "rationalized" means 
that the defining constants of the system have had the factor 41r included 
in them in such a way that Maxwell's equations have the simplest 
possible form. The term "practical" indicates that the common 
electrical quantities such as potential, current, power, charge, and 
resistance are expressed in the practical units of volts, amperes, watts, 
coulombs, and ohms. This latter simplifies things greatly, for no con­
version factors need be applied for the common electrical quantities. 
It may be argued that it would be more appropriate to use rationalized 
practical cgs units in a book on vacuum tubes than the corresponding 
mks units because it is easier to think in terms of coulombs per cubic 
centimeter than in terms of coulombs per cubic meter, etc. The mks 
units have been used, however, because they are so extensively employed 
in books and papers on electromagnetic theory and so will ordinarily be 
reasonably familiar to the student. It is probably a simpler matter to 
shift a decimal point than to remember two sets of constants. 

The basic constants of the rationalized practical mks units are the 
permeability and dielectric constant of free space, which have values of 

and 
µo = 41r X 10-7 = 1.2576 X 10-:6 

e0 = 
3

~ X 10-9 = 8.8485 X 10-12 

hem-y per meter 

farad per meter 

The dimensions of these units become apparent if one works out the 
expression for the inductance of a long solenoid and the capacity of a 
parallel-plate condenser in these units. The resulting expressions are 

L = N 2 area 
µ length 

817 
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where N is the number of turns, and 

C = £ are_a farads 
spacmg 

Although the numerical values of the two fundamental constants given 
above look very awkward, they may be remembered or quickly derived 
by virtue of their relation to two other well-known physical constants. 
One of these is the velocity of light, which has the value 

1 
C = -- = 3 X 108 

~ 
meters per sec 

The other is the so-called "intrinsic impedance of free space," which 
is the ratio of the electric- to the magnetic-field strength in a plane­
polarized wave, 

TJ = }!_ = /µo = 120r = 377 
H '\feo ohms 

which by coincidence is the same as the angular frequency of a 60-cycle 
wave. From the above it is seen that 

and 

µo = ?I 
C 

1 
Eo = -

TJC 

In rationalized practical mks units, Maxwell's equations have the form 

div D = p 

div B = 0 
curl E = -iJ 
curlH=D+J 

This set of equations differs notably from the corresponding equations 
written in Gaussian units by the fact that all the numerical coefficients 
are unity. In particular, the factors c and 41r do not appear. This 
means that the factor 41r and c have been absorbed into the constantsµ 
and E. Unfortunately, if the factor 41r is suppressed in one place it will 
necessarily crop out in another. In any rationalized system of units 
the factor 41r will not appear in any relations involving rectangular 
coordinates, but it will appear in relations involving spherical coordinates. 
This is just the reverse of the situation encountered with unrationalized 
units, of which the Gaussian units are an example. Since rectangular 
components are used more frequently than spherical components in 
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vacmim-.tube problems and for that matter in virtually all exeept anteima­
radiation problems, the· rationalization seems justifiable. 

So far it seems that the rationalized practical mks units achieve some 

. .. TABLE __ XYII . . , . 
RELATIONS BETWEEN THE PRINCIPAL PHYSICAL, MAGNETIC, AND 

ELECTRIC QUANTITIES IN THE PRINCIPAL SYSTEMS OF UNITS · 

Le~'gth, l.. ....... .. . 
Mass, m .... ·.: ... . . . 
Time, t ......... . . .. . 
Force, F ........... . 
Work, energy, s .. . . . 

Ration,ali~ed 
practical mks 

1 meter 
1 kilogram 
1 second 
1 newton 
1 watt-second 
1 joule · 
1 meter-kilogram 

Power, W .......... . 1 watt · · 
Charge, q. . . . . . . . . . . 1 coulomb, 

Current, I. . . . . . . . . . 1 ampere 

Electric field, E . . . . . . 1 volt per meter 

Electrostatic 

100 centimeters 
1,000 grams 
1 second · 
10• dynes 

107 ergs 

Magnetic 

100 centimeters·· 
1,000 ·grams 
isecond 

-105:dynes 

107 ergs 

107 ergs per second 107 ergs per second 
3 X 109 statcou- 10-1 abcoulomb 
lambs 

3 X 109 statamperes 10-1 a bampere 
1 

statvolt 

Potential difference, 
or emf, V ...... . . . 

Electric-flux density, 
D 

1 volt 
1 coulomb 

per centimeter 

~'3 o o statvolt 
per 3 X 105 

106 abvolts per cen­
timeter 

106 abvolts 
10-• 

Magnetic field , H . ... 

Magnetic-flux den­
sity, B 

square meter 
1 ampere turn per 
meter 

1 weber per square 
meter 

12,r X 107 

1 
3 X 106 

4 ,r X 10-3 oersted 

104 gausses 

Resistance, R ...... . . 1 ohm 
1 

9 
X 1011 statohm ]09 abohms 

Inductance, L ..... .. 1 henry 
1 

9 
X 1011 stathenry 109 abhenry 

Capacity, C .... . .. .. l farad 9 X 1011 statfarads 10-9 abfarad 

space, µo 

Permeability of free 4,r X 10-1 henry per 1 
9 

X 1020 (seconds Unity meter 
per centimeter)• 

Dielectric constant of 1 f d U . 
free space, £0 3&.- X 109 ara 8 per mty 

1 
9 X 1020 (seconds 

r meter per centimeter) 2 

simplifications of formulas in return for some other slight disadvantages. 
Another factor to be considered is that in the system of units used here 
magnetic-fiux density does not equal magnetic field but rather 

B= t,H 
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It is important to distinguish between B and H. Likewise, electric­
fl.ux; density does not equal electric field but rather 

D=r.E 

In both the above relations there is a big difference in the numerical 
values of the flux-density and field factors even for free space. 

The price that is paid for reducing the common electrical quantities 
to practical units is that some other quantities appear in relatively 
unfamiliar units. Thus the unit of force becomes the newton, which is 
~qual to 105 dynes and is sometimes known as the "dyne-five." The 
mainetic units are a little strange, too. The magnetic field H appears 
in units of ampere turns per,meter, which, however, makes good physical 
sense. The magnetic-flux density appears in units of webers per square 
meter, each one of which is equal to 104 gausses. These are not too 
difficult to remember, however. 

The relation between the most commonly used qua,ntities in electro­
static, electromagnetic, and rationalized practical units are given in 
Table XVII. Quantities in any row are equal. 



APPENDIX IV 

CHARACTERISTICS OF FLUORESCENT SCREENS 

RMA * designation Substance Activator Formula 
Fluorescent Phosphorescence, 

color sec 

t ... Pl Zinc silicate Manganese Zn2 SiO,-Mn Green Medium 0.03--0.05 
P2 Zinc sulphide Copper ZnS-Cu Blue-green Long 
P3 Zinc beryllium silicate Manganese Zn Be SiO,-Mn Yellow-green Medium 0.05 
P4 Pa and zinc sulphide Silver ZnS-Ag + P3 White Short 0.005 
P5 Calcium tungstate .. . . . . . . .. .... Ca WO, Blue Very short 5µ sec 
P6 Zinc sulphide Silver ZnS-Ag . . .... .. ... Medium 0.005 

Zinc cadmium sulphide Silver ZnCdS-Ag White 
P7 Zinc sulphide Silver ZnS-Ag Blue Medium 0.005 

Zinc cadmium sulphide Copper Zr,CdS-Cu Yellow Long 
PH Zinc sulphide Silver with a ZnS-Ag-Ni Blue Very short 10µ sec. 

nickel quencher 

* Radio Manufacturers Association. 
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APPENDIX VI 

PRINCIPAL PROPERTIES OF THE 
BESSEL FUNCTIONS 1- 4 

Differential equation of the Bessel function: 

d2y 1 dy ( n 2
) -+- - + 1-- y=O dx 2 x dx x 2 

Form of solution: 
y = AJ,.(x) + BN,.(x) 

where J,. is the nth-order Bessel function of the first kind and N,. is 
the nth-order Bessel function of the second kind, also known as the 
"Neumann function." 

Series expansion of the Bessel function: 

x" [ x 2 x 4 

J,.(x) = 2"n! 1 - 22(n + 1) + 242!(n + l)(n + 2) + 
(-l)kxn+2k ] 

+2n+2kk!(n+k)!+ ... 

Small-value approximations (x less than ½ o of first root): 

~ 2 2 
J,.(x) = n!2" No(x) = - ; In, l.781x 

-(n - 1) ! 2" 
11' X 

(n = 1, 2, · · · ) 

Large-value approximations (x larger than third root): 

/2 ( 2n + 1 ) J,.(x) = '11rx cos x -: 4 11' 

{2 . ( 2n + 1 ) N,.(x) = '\J;i sm x - 4 1r 

1 JAHNKE, E ., and F . EMDE, "Tables of Functions," Teubuer, Berlin, 1933. 
2 BuRRINGT&N, R. S., and C. C. TORRANCE, "Higher Mathematics," pp. 432-442, 

McGraw-Hill, New York, 1939. 
3 HANSEN, W. W., and V. R. WOODYARD," A New Principle in Directional Antenna 

Design," Proc. I.R.E., vol. 26, p. 338 March, 1938. 
• SMITH, D. B., L. M. RODGERS, and E. H. TRAUB, Zeros of Bessel Functions, Jour. 

Franklin Inst., vol. 237, pp. 301-303, April, 1944. 
823 
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Roots of the Bessel function: u,.m = mth root of nth-order function. 

Uo1 = 2.405 
Uo2 = 5.520 
Uo3 = 8.654 
Uo4 = 11.792 

Un= 3.832 
U12 = 7.016 
U13 = 10.173 
Ua = 13.324 

U21 = 5.135 
U22 = 8.417 
U23 = 11.620 
U24 = 14.796 

U31 = 6.380 
U32 = 9.761 
Uas = 13.015 
U34 = 16.223 

Roots of first derivative of Bessel function: u' nm = mth root of 
nth-order function. 

u'o1 = 3.832 u'n = 1.841 u'21 = 3.054 u'a1 = 4.201 
u'o2 = 7.016 u'12 = 5.331 u'22 = 6.706 u'a2 = 8.015 
u'o3 = 10.174 u'1a = ~.536 u'23 = 9.970 u' 33 = 11.346 
u' o4 = 13.324 u' 14 = 11.706 u'24 = 13.170 u'34 = 14.586 

Integral definition of the Bessel function: 

1 f .. J,.(x) = - cos (x sin <f, - n<f,) d<f, 
1f' 0 

Other important relations: 

dJ,.(x) _ n dx - - x J,.(x) + J,._1(x) 

ddJ.,. = ?!'. J.,. - Jn+l 
X X 

dJ.,. 1 1 
dx = 2 J.,._1 - 2 J,.+1 

Jo' = -J 1 J 11 = JO - J l 
X 

cos (z sin x) = Jo(z) + 2[J2(z) cos x + J4(z) cos 4x + · · · ] 
sin (z sin x) = 2[J1(z) sin x + J3(Z) sin 3x + · · ·] 
cos (z cos x) = Jo(z) - 2[J2(z) cos 2x - J4(z) cos 4x + · · · ] 
sin (z cos x) = 2[J1(z) cos x - Ja(z) cos 3x + · · · ] 
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VALUES OF a 2 AS A FUNCTION OF re FOR USE IN 
r 

EQ. (15.63)* 
(re = radius of emitter; r = radius at any point P; a 2 applies to case where P is 

outside emitter, r > re; ( -a)2 applies to case where Pis inside emitter, re > r) 
r r, 

a• (-a') 
r r, 

a' (-a)• - or- - or-
r, r r, r 

1.0 0.0000 0.0000 6.5 1.385 13.35 
1.05 0.0023 0.0024 7.0 1.453 15.35 
1.1 0.0086 0.0096 7.5 1.516 17 .44 
1.15 0.0180 0.0213 8.0 1.575 19.62 
1.2 0.0299 0.0372 8.5 1.630 21.89 
1.25 0.0437 0.0571 9.0 1.682 24.25 
1.3 0.0591 0.0809 9.5 1. 731 26.68 
1.35 0.0756 0.1084 10 1.777 29.19 
1.4 0.0931 0. 1396 12 1.938 39.98 
1.45 0.1114 0.1740 14 2.073 51.86 

1.5 0.1302 0.2118 16 2.189 64.74 
1.6 0.1688 0.2968 18 2.289 78.56 
1. 7 0.208 0.394 20 2.378 93.24 
1.8 0.248 0.502 30 2.713 178.2 
1.9 0.287 0.621 40 2.944 279.6 
2.0 0.326 0.750 50 3.120 395.3 
2.1 0.364 0.888 60 3.261 523.6 
2.2 0.402 1.036 70 3.380 663.3 
2.3 0.438 1.193 80 3.482 813.7 
2.4 0.474 1.358 90 3.572 974.1 

2.5 0.509 1.531 100 3.652 1144 
2.6 0.543 1. 712 120 3.788 1509 
2.7 0.576 1.901 140 3.903 1907 
2.8 0.608 2.098 160 4.002 2333 
2.9 0.639 2.302 180 4.089 2790 
3.0 0.669 2.512 200 4.166 3270 
3.2 0.727 2.954 250 4.329 4582 
3.4 0.783 3.421 300 4.462 6031 
3.6 0.836 3.913 350 4.573 7610 
3.8 0.886 4.429 400 4.669 9303 , 

4.0 0.934 4.968 500 4.829 13015 
4.2 0.979 5.528 600 4.960 
4.4 1.022 6.109 800 5.165 
4.6 1.063 6.712 1000 5.324 
4.8 1.103 7.334 1500 5.610 
5.0 1.141 7.976 2000 5,812 
5.2 1.178 8.636 5000 6.453 
5.4 1.213 9.315 10000 6,933 
5.6 1.247 10.01 30000 7.693 
5.8 1.280 10.73 100000 8.523 
6.0 1.311 ll.f6 

• LANGMUIR, I. L., and K. BLODGJWr, Currents Limited by Space Charse between Concentrie 
Spherea, Ph11a. Rev., vol. 24, p. 53, July, 1924. 
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.L :.1.. +.l. 
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Nomographic chart relating object and image distance to the focal 
length of a thin lens. 
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DESIGNATION OF FREQUENCY BANDS1 

Title Abbr. Wave length Frequency 
--

Very low frequency .. . . ..... .... : .. ... VLF 33 .3- 10km 10- 30 kc 
Low frequency ......... .. .. ..... .. . ... LF 10- 1 km ao- 300kc 
Medium frequency .... .............. .. MF 1,000-100 meters 0 .3- 3 me 
High frequency ................. .... .. HF 100- 10 meters 3- 30 me 
Very high frequency . . ........... . .. ... VHF 10- 1 meter 30- 300 me 
Ultra-high frequency . ... ......... ..... UHF 1- 10 cm 300-3,000 me 
Super-high frequency ... ... .. . .. ... .... SHF 10- 1cm 3- 30 kmc 

1 As announced by Federal Communications Commission, Mar. 2, 1943. 



PROBLEMS 

CHAPTER 4 

4.1. What fraction of the electrons emitted from an oxide coating at a tem­
perature of 1000°K can overcome a retarding voltage of 0.5 volt? 

4.2. What is the emission-current density predicted by the emission equation 
[Eq. (4.3)) for tantulum at 2500°K? What is the corresponding emission-current 
density of tungsten at 2500°K? At what temperature will t.he emission-current 
density of tungsten be five times as great as at 2500°K? 

4.3. Using the data given in Table 2, calculate the operating characteristics 
and life for a 10 per cent evaporation of mass of an ideal tungsten filament having 
a length of 2 cm and a diameter of 0.25 mm when: heated to 2600°K. 

a. Power radiated 

W = W'ld = 263.0 X 2 X 0.025 = 13.17 watts 

b. Resistance 

R = R' j-2 = 98.66 X 10-s 0_0; 52 = 0.3155 ohm 

c. Filament current 

I 1 = I/ X d~• = 1.632 X 0.025~2 = 6.45 amperes 

d. Voltage drop 

V 1 = V / X };, = 161.1 X 10-3 X 0_0!5;-;, = 2.04 volts 

e. Emission current 

I.= l.'ld = 2.25 X 2 X 0.025 = 0.1125 

f. Ratio of hot to cold resistance 

R r - 14.12 
R 29a

0 

-

g. Life for 10 per cent reduction in mass 

L"f volume X density 
1 e = l0(sec per hr)M 

)r since M = M'ld and density is 19, 

hr 

ampere 

L"f _ 4.15 X 1Q- 4d _ 4.15 X 10- 4 X 0.025 = 
376 

hr 
1 e - M' - 2. 76 X 10-s 

829 
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4.4. Calculate the operating characteristics and life for a 10 per cent evapora­
tion of mass of an ideal tungsten filament having a length of 1 in. and a diameter 
of 10 thousandths of an inch when operated at 2850°K. 

4.6. Design a tungsten filament ½ in. long that will give an emission of 0.500 
ampere and have a life of 1,000 hr. Find the emission efficiency of this filament 
in milliamperes per watt. 

4.6. Calculate and plot the emission efficiency of tungsten filaments in milli­
amperes per watt over a temperature range of 2000 to 3000°K. Show that the 
emission efficiency is independent of the length and diameter of the filament. 

4.7. Calculate the emission of an ideal tungsten filament whose length is 
4 cm and whose diameter is 0.5 mm over the temperature range of 2000 to 3000°K. 
Plot the results on power-emission paper to show that the curve is a straight line 
when presented in this form. l5lot contours of constant emission efficiency in 
milliamperes per watt on this same sheet. 

4.8. What is the emission-current density from a tungsten filament 1 cm 
in length and 0.2 mm in diameter operating at a temperature of 2700°K when the 
surface gradient of potential is 500 volts per cm? What is it when the surface 
gradient results from a cylindrical electrode surrounding the cathode that is 
2 cm in diameter and raised to a potential of 500 volts? 

4.9. Determine the emission constants A and b appearing in Richardson's 
equation for thoriated tungsten and barium-strontium oxide from the intercept 
and slope of the lines of Fig. 4.5. 

4.10. What are the operating characteristics of a thoriated tungsten filament 
1 in. in length and 10 thousandths of an inch in diameter operating at 2100°K? 
Use the data of Table II for heating power and the constants determined in 
Prob. 4. 9 to determine the emission. 

4.11. What are the relative emission-current densities of a pure tungsten 
filament and a thoriated tungsten filament at 2500°K? For the case of a filament 
2 cm in length and 0.1 mm in diameter what are the relative emission efficiencies 
in milliamperes per watt? 

4.12. Using coefficients determined as in Prob. 4.10, determine the emission­
current density of a barium-strontium oxide coating at 1000°K. 

4.13. Using the emission efficiency data of Fig. 4.7, estimate the emission 
of the oxide-coated cathode of a type 27 tube. The cathode dimensions are 
0.065 in. in diameter by 14 mm in length. The cathode is heated by a voltage of 
2.5 volts, which produces a current of 1.75 amperes. How does the emission 
current compare with the rated space-charge-limited current of 5 ma? Suggest 
how you could measure the emission current without damaging the tube. 

CHAPTER 5 

6.1. Two particles are suspended by strings of the same length, L, from the 
same point. Each has a mass m and a charge q. As a result of the forces arising 
from the like charges the particles will separate. Show that the angle (J which 
~ach string makes with the vertical in the equilibrium position is given by 

4mgL2 sin 3 () = q2 cos fJ( 41reo) 
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6.2. Two point charges are located as follows: 

+200 coulombs at x = 0, y = 0 meters. 
-100 coulombs at x = 1, y = 0 meters. 

a. Sketch a curve showing how potential varies along the line passing through 
the charges, outside the charges, and between. 

b. At what points on the line is the potential zero? 
c. At what point on the line is a gradient of potential zero? 
6.3. Two parallel line charges are spaced 1 meter apart. If the first is located 

at the point (0,0) and has a positive charge of +2 units per meter and the second 
is located at (0,1) and has a charge of -1 unit per meter, sketch the relative 
potential along a line passing through the two line charges and perpendicular to 
both. If the potential midway between the wires is zero and if it is -100 volts 
at (0,0.9), where else is it zero? Where is the gradient of potential zero? 

6.4. Show that the electric intensity inside of an infinitely long straight 
cylindrical rod of radius a which has a charge of X per unit length uniformly dis­
tributed throughout its cross section is 

E = ~ 
r 27r£oll2 

6.6. Obtain the potential plot about two parallel equally charged wires by 
drawing logarithmically spaced equipotential circles about individual wires, 
obtaining the potentials at the intersections of the circles by addition, and then 
drawing equipotential contours through points of the same value of potential. 
Let the wire diameter be one-twentieth of the spacing between wires, and assume 
that each wire is charged to + 100 volts. 

6.6. Work Prob. 5.5 for the case of one wire charged to +100 volts and the 
other charged to -100 volts. 

6.7. Prove that the electric intensity inside a uniformly charged spherical 
shell is zero. 

6.8. What is the gradient of potential between the conductors of a con­
centric cable whose outer and inner radii are r2 and r1, respectively, whose inner­
conductor potential is zero, and whose outer-conductor potential is V 1? Find 
the potential at any radius between the conductors. 

6.9. Evaluate the potential at a point that lies a distance c from a uniform 
spherical distribution of charge of radius a. Let the charge per unit volume of 
the spherical distribution be p. Show that tbe resulting potential outside the 
charge is the same as though the total charge were concentrated at the center of 
the sphere. Do this by integrating the effects of elements of charge in spherical 
coordinates. 

6.10. Given a linear distribution of charge along a line segment of length l 
and density of X coulombs per meter. Show that the potential gradient at a 
distance a from the end of the line segment of charge along the extended line 
segment is 

dV -Al 
dx - 4m:o(a + 1) 

Solve this problem by taking a summation of intensities. 
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6.11. Solve Prob. 5.10 by evaluating the potential at any point along the 
extended line segment of charge and then taking the derivative. 

5.12. Sketch the potential-flux pattern around an exterior right angle of a 
conductor, i .e., the field in the vicinity of a corner of a long square charged con­
ductor. Make use of the properties listed in the text. 

6.13. Calculate and plot equipotential and flux lines outside of a right-angle 
corner of a conductor by means of the function W = Z~•. Compare the results 
with the sketch of Prob. 5.12. 

5.14. Obtain by integration a solution of Laplace's equation in one dimension 
for rectangular coordinates. Show that the potential varies linearly with distance 
while the gradient of potential is constant. 

5.15. Obtain by integration a solution of Laplace's equation in polar coordi­
nates when there is no variation' of potential with angle. Show that potential 
varies logarithmically with radius while the gradient of potential varies inversely 
as radius. 

5.16. A concentric conductor cable consists of a circular inner conductor 
2 cm in diameter inside of an outer conductor of square cross section that meas­
ures 4 cm per side. Assume that the inner conductor is at a direct potential of 
100 volts while the outer conductor is at a direct potential of O volts. Sketch 
flux and potential lines in the space between conductors. Estimate the gradient 
of potential at 

a. The surface of the center conductor opposite a corner of the outer 
conductor. 

b. The surface of the center conductor closest to the outer conductor. 
c. The surface of the outer conductor closest to the center conductor. 
d. At a corner of the outer conductor. 

Estimate the capacity per unit length of line by taking the ratio of charge to 
potential. Remember that each flux line terminates on one unit of charge 
when the field plot is given by curvilinear squares and the adjacent equipotentials 
are separated by unit potential. 

5.17. One section of a plane-electrode triode is approximated by the following 
potential lattice 

100 volts 100 volts 100 volts 100 volts 100 volts 
a b C b a 
d e f e d 
g h -10 h g 
i j k j i 
0 volts 0 volts 0 volts 0 volts 0 volts 

The top row represents the plate at a potential of 100 volts. The bottom 
row represents the cathode at a potential of O volts. The grid is represented by 
the number in the fourth row of the third column and is at -10 volts. The 
points a, d, g, i are midway between grid wires on a line of symmetry. Find 
potentials at the lettered points by first assuming reasonable values and then 
correcting several times around by means of Eq. (5.44). 
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6.18. Prove that the function W = ln Z is analytic for finite values of Z 
other than zero and infinity. 

5.19. Prove that the function W = zi is analytic for finite values of Z other 
than infinity. 

5.20. Separate the function W = ln Z into real and imaginary parts U and V, 
respectively. Show that U = const and V = const form orthogonal families of 
curves. Show that both U = const and V = const are solutions of Laplace's 
ec;,uation. Show also that the Cauchy-Riemann conditions are satisfied. 

5.21. The transformation W = Z~~ transforms the upper half of the Z plane 
into the first quadrant of the W plane, giving rise to the field configuration 
associated with an inside right-angled corner. Show that the equipotential 
lines inside the right-angled corner are given by rectangular hyperbolas. Show 
that the flux lines are also hyperbolas. Show that the gradient of potential 
along the u and v axes in the W plane is normal to the axis and proportional 
to the distance from the origin. 

5.22. Use the function W = Z H to obtain the flux and potential plot for an 
internal 45-deg corner between two plane conducting surfaces. Do this by 
letting W = RLcp and Z = r LO and then transforming the lines x = r cos 0 = con st 
and y = r sin 0 = const by means of the transforming function. 

5.23. The function W = Z2 transforms the upper half of the Z plane into 
the entire W plane and gives the potential configuration about the edge of a sheet 
conductor corresponding to the positive real axis of the W plane. Find the 
equations of the potential and flux lines in the W plane. Show that these 
are orthogonal sets of parabolas. Find the gradient of potential at any point 
in the W plane. 

5.24. Show that the transformation W = In sin Z gives the field configuration 
of a row of parallel equidistant line charges having the same charge, i.e., the field 
about a grid of parallel wires. 

5.25. Show that the transformation W = In t an Z gives the potential about 
a row of parallel equidistant line charges with alternate positive and negative 
charges. 

5.26. Show that the function W = In (~ ~ ~) gives the potential and flux 

pattern about a two-wire transmission line having wires located at (a,0) and 
( -a,O) in the Z plane. Find the equations for the flux and potential lines to 
show that these are orthogonal families of circles. 

5.27. Show that the function W = In (Z,. - 1) gives the field about n line 
charges uniformly distributed around the unit circle, i.e., the field of a squirrel­
cage grid. 

CHAPTER 6 

6.1. An electron is liberated with zero velocity at the cathode of a plane­
electrode diode whose electrode spacing is 5 mm and whose cathode-plate potential 
difference is 100 volts. With what velocity does the electron strike the plate? 
What energy has the electron acquired in moving from cathode to plate? How 
long does it take the electron to make the trip? If a singly charged hydrogen 
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ion and a doubly charged oxygen ion are liberated at the plate, give the velocity, 
energy, and time associated with their arrival at the cathode. 

6.2. An electron is liberated with zero velocity at the cathode of a cylindrical­
electrode diode whose cathode radius is 0.2 cm and whose concentric plate radius 
is 1.0 cm. The cathode-plate potential difference is 100 volts. With what 
velocity and energy does the electron arrive at the plate? How long does the 
trip take? If a singly charged hydrogen ion and a doubly charged oxygen ion 
are liberated at the plate, with what velocity and energy and at what time will 
they arrive at the cathode? Refer to Fig. 8.14 for time factors. 

6.3. An electron with a velocity acquired by falling through 10 volts is 
injected into a region with a retarding potential gradient of 2 volts per cm. How 
far will the electron travel before having its direction reversed? How long will 
it take the electron to return to its starting point? With what velocity will the 
electron return? 

6.4. An electron is injected into the region between two parallel planes sepa­
rated 1 cm and differing in potential by 50 volts, the resultant field being retarding_ 
If the electron has a velocity acquired by falling through 100 volts of potential, 
find the point at which the electron will strike one of the electrodes, the velocity 
components with which it will strike, and the time of flight when the angle with 
which the electron enters is 0, 30, 45, and 60 deg with the normal to the electrodes. 
Tabulate results. 

6.6. Solve Prob. 6.4 when the potential between the plates is 50 volts and the 
field is accelerating. 

6.6. In Prob. 6.4 find the location of points closest to the second plate on 
trajectories of those electrons which are returned to the first plate. 

6.7. An electron is injected at an angle of 60 deg with the normal to the plates 
into a region between two parallel plates separated 1 cm and having a retarding 
field of 20 volts per cm. There is a small hole in the second plate displaced 3 cm 
from the point at which the electron enters. Assuming that the transverse 
component of electron velocity is in line with the point of entrance and the hole 
in the second plate, with what velocity must the electron enter the retarding field 
region in order to pass through the hole in the second plate? 

6.8. Derive Eq. (6.25). 
6.9. Through what potential must an electron fall in order to be accelerated 

to 0 1, 0.5, 0.9, 0.95 of the velocity of light? What is the relative transverse 
mass of the electron at each of these velocities? 

6.10. At what velocity is the transverse mass of an electron increased 1, 10, 
and 100 per cent? What are the corresponding accelerating potentials? 

6.11. Derive Eq. (6.38). 
6.12. Calculate and plot curves of the transverse and longitudinal mass of an 

electron as a function of !:'.. 
C 

6.13. Calculate and plot curves of the transverse and longitudinal mass of an 
electron relative to the rest mass as a function of potential. 

6.14. Derive an expression for the deflection of a cathode-ray-tube beam by a 
set of deflecting plates, the expression to include the relativity correction for 
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mass and velocity. Express the deflection as a fraction relative to the deflection 
in the absence of relativity effects. 

6.15. Calculate and plot a curve of electron velocity in equivalent volts 
required to produce a circular path 1 cm in diameter when an electron is moving 
in a magnetic field ranging in intensity from 100 to 10,000 gausses. 

6.16. Singly ionized lithium atoms with atomic weights of 6 and 7 are acceler­
ated by a potential of 2,000 volts and then injected into a region of constant 
transverse magnetic field of density 800 gausses. The atoms are allowed to 
traverse a half circle before striking a photographic plate. What will be the 
separation of the marks on the photographic plate corresponding to the two 
isotopes of lithium? 

6.17. An electron is accelerated through a given potential and then injected 
perpendicular to the elements of a cylinder, 10 cm in diameter, that has a con­
stant magnetic field of strength 10 gausses parallel to its axis. There is a hole in 
the cylinder a quarter of a full circumference around the cylinder on a circle at 
which the electron enters. Through what potential must the electron be acceler­
ated before entering the cylinder in order to pass out of the cylinder through this 
hole? There is a second hole a quarter of a circumference around the cylinder 
but displaced 3 cm axially along the tube. With what potential and at what angle 
with the axis must an electron directed toward the axis enter the cylinder in order 
to pass out through this second hole? 

6.18. In a cyclotron a uniform magnetic field is used to cause ions to move in 
segments of a circular arc . Every half revolution the ions are subjected to an 
accelerating gradient of potential at the gaps of two D-shaped electrodes so that 
the radius after each semicircle of motion is greater than before. The accelerat­
ing field is supplied by a r-f voltage impressed upon the two D's and appears as 
an alternating field across the gap. The frequency of the field is regulated so 
that the ions cross the gap twice each cycle. If the magnetic-flux density is 
10,000 gausses, what must the frequency of the applied voltage be when singly 
charged light hydrogen ions are used (atomic weight unity)? If each passage 
across the gap increases the energy of the ions by 40,000 volts, how many such 
passages are required to produce a 2,000,000-volt particle? What will be the 
diameter of the last semicircle of circular motion? 

6.19. What will be the final diameter of the path of a 2,000,000-volt heavy 
hydrogen ion (atomic weight 2) and what will be the frequency of the applied 
voltage for the cyclotron of Prob. 6.18? Assume the same magnetic field and 
energy increase per gap passage. 

6.20. What will be the final diameter of the path of a 2,000,000-volt argon 
ion and what must be the frequency of the voltage producing the accelerating 
field for the cyclotron of Prob. 6.18? Assume the same magnetic field and 
energy increase per gap passage. 

6.21. An electron's velocity is x-directed in a region of uniformly directed 
electric field of strength 50 volts per cm and uniform z-directed magnetic field of 
strength 500 gausses. What must the electron velocity in equivalent volts be 
in 0rder that its net deflection is zero? 

6.22. An electron is emitted with zero velocity from a plane surface where it 
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is subjected to an accelerating gradient of field of strength 50 volts per cm and a 
transverse magnetic field of 500 gausses. What is the maximum travel in the 
direction of the electric field in the resulting cycloidal path? What is the 
velocity at this point of maximum separation from the plane of emission? Where 
does the electron again return to the plane of emission? What is the elapsed 
time between departure and return to the emission plane? 

6.23. Given the field conditions of Prob 6.22, but with an electron injected 
with a velocity equivalent to 20 volts normal to the plane. Find the position 
and velocity with which the electron again returns to the plane. 

6.24. A diode consists of a straight filamentary cathode of radius Tc surrounded 
by a concentric circular plate of radius Tp. If the plate voltage is low enough, 
the magnetic field of the filament current may cause the electrons to curve 
strongly enough in their paths so that the tube will be cut off. Derive an expres­
sion for cutoff in such a tube in terms of the plate potential, the filament current., 
and the cathode and plate radius. 

CHAPTER 7 

7.1. Consider an idealized type 210 plane-electrode triode for which 
d,. = 0.050 in., duP = 0.075 in., a = 0.050 in., and r. = 0.0025 in. Using the 
low-mu formulas, calculate and plot potential profiles along lines perpendicular 
to the plane electrodes and passing (1) through a grid wire and (2) midway 
between grid wires for 

a. Grid at twice cutoff voltage. 
b. Grid at cutoff voltage. 
c. Grid at half cutoff voltage. 
d. Grid at zero potential. 
e. Grid positive and at its "natural" potential. 
f. Grid positive and at plate potential. 

Assume a plate potential of 100 volts. 
7.2. Find the diameters of the cathode, grid, and plate cylinders in the 

Z-plane equivalent of the W-plane triode representation of the tube whose dimen­
sions are given in Prob. 7.1. Use the transformation of Eq. (7.3). 

7.3. A cylindrical-electrode triode has a cathode diameter of 0.020 in. and a 
plate diameter of 0.750 in. There are 10 grid wires each of 0.012 in. diameter 
arranged to form a squirrel cage of grid wires evenly spaced around a grid-wire 
circle of diameter 0.262 in. 

a. Calculate the amplification factor of the tube. 
b. Calculate the equivale'nt-diode radius of the tube. 
c. Calculate the interelectrode capacities of the active portion of the tube 

if this is 1 in. long. 

7.4. Calculate and plot potential profiles of the cylindrical-electrode triode 
of Prob. 7.3 in planes through the axis and (1) through a grid wire and (2) midway 
between grid wires for a plate potential of 100 volts and 
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a. Grid at twice cutoff potential. 
b. Grid at cutoff potential. 
c. Grid negative but at half the cutoff potential. 
d. Grid at zero potential. 
e. Grid positive at its "natural" potential. 
f. Grid at plate potential. 

7.5. Find the diameters of the cathode, grid, and plate cylinders in the 
Z-plane equivalent of the triode of Prob. 7.3 if this latter be considered the 
W-plane configuration. Use the transformation of Eq. (7.15). 

7.6. A plane-electrode triode has a cathode-grid spacing of 1 mm, a screening 
fraction of 0.14, grid-wire diameter of 0.1 mm, and a grid-plate spacing of 2.5 mm. 
Determine the amplification factor and the equivalent-diode spacing. 

7.7. A cylindrical-electrode triode has the dimensions of the tube of Prob. 
7.3 except that there are 14 grid wires evenly spaced around the grid-wire circle, 
instead of 10. Calculate the amplification factor and equivalent-diode radius. 

7.8. A plane-electrode triode is to have an amplification factor of 10. If the 
screening fraction is Ys and there are 50 grid wires per in., specify the grid-wire 
radius and the grid-plate spacing. 

7.9. A plane-electrode triode has a grid-plate spacing of 0.050 in. and a 
square mesh grid of 0.005-in.-diameter wire spaced 0.015 in. Find the amplifica­
tion factor of the tube. 

7.10. A cylindrical-electrode triode has a plate radius of 0.500 in. and a grid 
consisting of parallel rings of 0.250 in. diameter and of 0.005-in. wire spaced 
0.015 in. There are four grid-ring supports of 0.010-in. wire parallel to the axis 
of the tube and evenly spaced around the grid. Find the amplification factor 
of the tube. Cathode diameter is 0.10 in. 

7.11. A cylindrical triode has a cathode diameter of 0.10 in. and a plate diam­
eter of 0.500 in. The grid is a helix of 0.01-in.-diameter wire wound so that the 
largest circular cylinder that can be passed through it is 0.245 in. in diameter. 
The helical grid has a pitch of 0.08 in. between turns. There are two support 
wires for the grid of 0.025-in. wire parallel to the axis of the tube. Determine 
the amplification factor of the tube. 

7.12. A plane-electrode triode has a grid-cathode spacing of 8 mils, a grid­
wire spacing of 16 mils, grid-wire radius of 1 mil, and a grid-plate spacing of 
20 mils. Determine the variation of amplification factor along the cathode. 
What are the maximum, minimum, and average values of amplification factor 
that appear? How do these compare with the values of amplification factor 
that assume large cathode-grid spacing? 

7.13. Suggest means of measuring the amplification factor of a triode, given 
a current-flow model containing a suitable electrolyte. 

7.14. Prove that the amplification factors of two geometrically similar tubes 
are equal. 

7.15. From a comparison of Eqs. (7.33) and (7.43) obtain expressions for the 
cathode-grid and cathode-plate capacities of the fundamental triode of Fig. 
7.la. From a comparison of Eqs. (7.34) and (7.44) obtain an expression for the 
grid-plate capacity. 
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7.16. From the results of Prob. 7.15 and the transformation of Eqs. (7.4) 
and (7.5) obtain expressions for the interelectrode capacities of a plane-electrode 
triode per unit of area. 

7.17. From the results of Prob. 7.15 and the transformation of Eqs. (7.16) 
and (7 .17) find the interelectrode capacities of a cylindrical-electrode triode per 
unit of axial length of structure. 

7.18. Find the interelectrode capacities per unit area of the triode of Prob. 
7.1. Consider that the grid and plate exist only on one side of the cathode. 

7.19. Calculate the interelectrode capacities per unit of axial length of the 
cylindrical-electrode triode of Prob. 7.7. 

7.20. Calculate the capacity per unit length of a five-wire transmission line 
made of wires of 3-mm-diamete.r wire. Four of the wires are located at the 
corners of a square whose dimension is 10 cm on an edge in the cross-sectional 
view and are connected together. The other wire is located at the center of the 
square and acts as a return wire. From the capacity per meter determine the 
characteristic impedance of the line neglecting losses, using the relation that 
the characteristic impedance in ohms is the reciprocal of the product of the capac­
ity per unit length in farads per meter and the velocity of propagation in meters 
per second. 

7.21. Given a plane-electrode triode with the dimensions of the tube of Prob. 
7.1 except that the diameter of the grid wires is twice as large. Calculate the 
amplification factor by the formula of Vodges and Elder and by the Ollendorf 
second and third approximations, and compare results. 

7.22. Given a cylindrical-electrode triode with the dimensions of the tube of 
Prob. 7 .3 except that the grid wires are twice as large in diameter. Calculate 
the amplification factor by the formulas of Vodges and Elder and the Ollendorf 
second and third approximations, and compare results. 

7.23. Derive the amplification-factor formula given in Fig. 7.19a for the 
electrode geometry shown. 

7.24. Derive the amplification-factor formula given m Fig. 7.19b for the 
electrode geometry shown. 

7.25. Derive the amplification-factor formula given in Fig. 7.19c for the 
electrode geometry shown. 

7.26. Derive the amplification-factor formula given in Fig. 7.19d for the 
electrode geometry shown. 

CHAPTER 8 

8.1. In an ideal plane-electrode diode whose emission is space-charge-limited, 
the cathode-plate separation is 2 mm, and the potential difference is 100 volts. 
Find the transmitted-current density, the space-charge density at the plate, and 
the velocity of the electrons arriving at the plate. Find also the power dissipated 
per unit area of plate surface and the gradient of potential at the plate. 

8.2. What must be the cathode-plate spacing of an ideal plane-electrode diode 
in order that the transmitted current per square inch be 250 ma when the poten­
tial difference between cathode and plate is 200 volts? 
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8.3. Calculate and plot curves similar to those of Fig. 8.6 for a cylindrical 
diode whose ratio of plate to cathode radius is 10. 

8.4. Given an ideal cylindrical diode whose cathode diameter is 2 mm and 
whose plate radius is 1 cm. Find the transmitted current per centimeter of 
axial length for a potential difference of 100 volts. Find also the velocity with 
which the electrons arrive at the plate, the space-charge density at the plate, the 
gradient of potential at the plate, and the power dissipated per centimeter of 
axial length at the plate. 

8.6. Find the potential, gradient of potential, electron velocity, and space­
charge density midway between cathode and plate in the diode of Prob. 8.4. 

8.6. Solve Prob. 8.4 on the assumption that the outer electrode is the cathode 
and the inner electrode is the plate, dimensions and potentials being otherwise 
unchanged. 

8.7. Calculate and plot curves showing the location and magnitude of the 
maximum gradient of potential in a cylindrical diode as a function of the ratio 
of plate radius to cathode radius when the inner electrode is the cathode. 

8.8. Calculate and plot curves similar to those of Fig. 8.6a but for a cylindrical 
diode whose outer electrode is the cathode and whose inner is the plate. 

8.9. Given a diode whose electrodes are concentric spheres, the inner being 
the cathode and the ratio of diameters being 2 to 1. If the plate diameter is 
2 cm, what will be the plate current for a potential difference of 100 volts? 

8.10. Solve Prob. 8.9 with the outer electrode considered the cathode and 
other conditions unchanged. 

8.11. A plane-electrode triode has the dimensions of the tube of Prob. 7.1. 
Calculate the mutual conductance for a plate potential of 100 volts and a grid 
potential of half the cutoff value. Determine also the plate current per square 
inch under these conditions. 

8.12. A plane-electrode triode has a grid-plate spacing of 30 mils. Grid 
wires are spaced 15 mils, and the screening fraction is ½' 0 • What must be the 
cathode-grid spacing to give a mutual conductance of 5,000 micromhos per 
in. 2 if the plate voltage is 200 volts and the grid voltage is 1 volt negative? 

8.13. Calculate the equivalent-diode spacing of the tube of Prob. 7.1 for a 
plate voltage of 100 volts and a grid voltage of 2 volts negative by the formulas 
of Eq. (7.53) and Eq. (8.45), and compare results. 

8.14. Derive Eqs. (8.49) and (8.50). 
8.15. From Eq. (8.49) obtain an expressioh for the equivalent-diode radius 

of a cylindrical triode. Calculate the equivalent-diode radius of the triode of 
Prob. 7.3 by this formula, and compare with the result obtained by using Eq. 
(7.58). 

8.16. Calculate the mutual conductance and plate current for the tube of 
Prob. 7.3, assuming that the structure is 1 in. long and that the plate potential 
is 500 volts while the grid potential is -20 volts. 

8.17. It is desired to design a triode for high-power audio service. Assume 
an ideal cylindrical structure. Assume that the cathode is to be 2 mm in diam­
eter and the plate to be 1 cm in diameter. The electrode structure is to be 1 cm 
in length. What must be the grid dimensions in order that the tube will have ar, 



840 VACUUM TUBES 

amplification factor of 100 and an average mutual conductance of 5,000 micr~ 
mhos when the plate potential is 500 volts? 

8.18. Given a plane-electrode diode whose cathode is emitting electrons having 
an average velocity such that they can overcome a retarding potential of 2 volts. 
Let the electrode spacing be 5 mm, and let the current that reaches the plate be 
one-tenth of the emitted current. Find the location of the potential minimum 
and the magnitude of the plate-current density for a plate 25 volts more positive 
than the cathode. Use the relations of Eqs. (8.58) to (8.62). 

8.19. The cathode of a plane-electrode diode is oxide-coated and operates at a 
temperature of 1000°K. What is the transmitted-current density to a plate at a 
potential that is 20 volts positive relative to cathode? Find the location and 
magnitude of the potential mirtimum. Find also the fraction of the emitted 
current that is transmitted to the plate. 

8.20. A cylindrical diode is 1 in. long and has a plate diameter of ½ in. and a 
tungsten filament whose diameter is 5 mils. Neglecting end effects and initial 
velocities of electrons, calculate the plate current when the plate is 20 volts 
positive with respect to the negative end of the filament and the direct voltage 
drop along the filament is 10 volts. Calculate the plate current when the 
filament is excited by an alternating voltage whose rms value is 10 volts and one 
end of the filament is grounded. How does this differ from the current resulting 
when the filament is heated by alternating current with the same voltage drop 
but with the center tap of the exciting transformer grounded? 

8.21. Derive Eq. (8.85). 
8.22. Carry out the steps leading to Eqs (8.22) to (8.24). 

CHAPTER 9 

9.1. Three triodes with constants as follows are operated in parallel: 

µ, = 10 Gm, = 2,000 micromhos 
µ2 = 12 Gm 2 = 5,000 micromhos 
µa = 30 Gma = 3,000 micromhos 

Calculate the equivalent amplification factor, mutual conductance, and plate 
resistance. 

9.2. A plane-electrode triode has the following dimensions: 

d,. = 40 mils r. = 2 mils 
a = 30 mils dup = 60 mils 

Calculate the current-division factor. Calculate the ratio of plate to grid current 
when the grid and plate are both positive and the plate potential is five times as 
great as the grid potential, assuming that there is negligible secondary emission. 

9.3. Estimate the current-division factor of the cylindrical triode having 
the dimensions of the tube of Prob. 7.3. 

9.4. Calculate and plot contours of constant plate and grid current per square 
inch of electrode structure of the triode of Prob. 7.1. Let grid voltage range 
from -100 to + 100 volts. Let plate voltage range from -500 to +500 volts . 
Show constant current contours in all four quadrants. Assume that secondary 
emission from both grid and plate is negligible. 
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CHAPTER 10 

10.1. A plane-electrode beam-power tube has the following electrode dimen­
sions: 

d,0 = 20 mils 
d,., = 30 mils 
d0 v = 70 mils 

a= 20 mils 
r0 = 1 mil 
r, = 1 mil 

Calculate the amplification factor by the formula of Eq. (10.11). Compare 
this value with that obtained from the product of the triode mu's as explained 
in Sec. 10.2. 

10.2. In an idealized beam-power tube the density of the current injected 
into the screen-grid-plate region is 10 ma per cm2

• If the screen grid is at a 
potential of 100 volts positive and the plate is at a potential of 10 volts negative, 
at what point will the electrons come to rest and reverse direction. The screen­
grid-plate spacing is 1 cm. 

10.3. In the beam-power tube of Prob. 10.1 the plate voltage is raised to 10 
volts positive. For the same injected-current density determine whether a type 
B distribution of potential is possible. 

10.4. For the beam-power tube of Prob. 10.1 let the screen-grid potential be 
100 volts positive, the plate voltage be 10 volts positive, and the injected-current 
density be variable. The potential distribution is of type B. Find the location 
of the virtual cathode when the current transmitted to the plate is 0.25, 0.5, and 
0.75 of the injected c•1rrent. 

10.5. A beam-power tube has a screen-grid potential of 300 volts and a plate 
potential of 60 volts. The potential distribution is of type C with a potential 
minimum of 30 volts. What must be the screen-plate distance for an injected 
current of 48.5 ma per cm2? 

10.6. A plane-electrode beam-power tube has a screen-grid-plate spacing of 
0.5 cm. Screen grid and plate are kept at a potential of 50 volts. Indicate the 
position of the potential minimum or virtual cathode as the injected-current 
density is increased from zero to 50 ma per cm2 and then reduced to zero again. 

10.7. A beam-power tube has its plane screen grid and plate separated a 
distance of 0.8 cm. Plot a curve of current density transmitted to the plate 
against injected-current density as the injected-current density is increased from 
zero to 50 ma per cm2 and reduced to zero again, when the screen grid is at a 
potential of 100 volts and the plate is at a potential of 50 volts. 

10.8. A plane-electrode beam-power tube has its screen grid and plate 
separated a distance of 0.8 cm. Let the screen-grid potential be 100 volts and 
the injected-current density be held constant at 10 ma per cm 2. Plot a curve of 
plate current against plate voltage as plate voltage is raised from zero to 100 volts 
and then reduced to zero again. 

CHAPTER 11 

11.1. Derive an expression similar to that of Eq. (11.6) giving the maximum 
potential between suppressor-grid wires when the plate potential has the general 
value Vv not equal to V2. Let V3 = 0. 
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11.2. Justify Eq. (11.9) qualitatively. 
11.3. An idealized plane-electrode pentode has the following electrode 

dimensions: 
d,1 = 10 mils 
d12 = 60 mils 
d23 = 120 mils 
d3p = 80 mils 

a1 = 12 mils 
a2 = 18 mils 
a3 = 60 mils 

Calculate the ratio of plate to screen-grid current. 

r1 = 1.5 mils 
T2 = 1.75 mils 
T3 = 2.5 mils 

11.4. For the pentode of Prob. 11.3 determine the cathode charge per unit 
area and the charge per unit length of each of the grids for the following potential 
values: 

, 

Ve= Va= 0 V1 = -1 volt V 2 = 200 volts VP = 250 volts 

115. For the pentode of Prob. 11.3 calculate the electrostatic amplification 
factors µ1p and µ12. 

11.6. Assuming that the value of m in Eq. (11.1) is 0.2, calculate the true 
amplification factor of the pentode of Prob. 11.3. 

11.7. Calculate the mutual conductance of the pentode of Prob. 11.3 for 
the electrode potentials of Prob. 11.4 and for an m of 0.2. 

11.8. Calculate the plate resistance of the pentode of Prob. 11.3 for the elec­
trode potentials of Prob. 11.4 and an m of 0.2. 

11.9. Plot curves similar to those of Fig. 11.12 for the pentode of Prob. 
11.3, assuming values of aa of 30 and 90 as well as 60 mils. Plot curves with 

y p b . d V p - V min d" N h h V . l d h . V 
2 

as a sc1ssa an V 
2 

as or mate. ote t at t e min mvo ve ere 1s 

the Va max of Eq. (11.6). 
11.10. Plot curves similar to those of Fig. 11.13 for the pentode of Prob. 

11.3. Let d 2p have a constant value of 200 mils, but plot curves for d3p equal to 

40 and 120 as well as 80 mils. Plot curves with ~: as abscissa and VP ~ 
2
V m,n 

as ordinate. 
11.11. Plot curves similar to those of Fig. 11.18 showing the distribution of 

the sidewise component of velocity of electrons scattered by the three grids of the 
pentode of Prob. 11.3 operating with the electrode potentials of Prob. 11.4. 

11.12. From the results of Prob. 11.11 calculate and plot the plate-voltage­
plate-current characteristic. 

CHAPTER 12 

12.1. Find the rms voltage and current associated with the thermal-agitation 
noise in a 10,000-ohm resistor over a band width of 50,000 cycles. 

12.2. What is the available noise power from the resistor of Prob. 12.1? 
12.3. What is the noise power available from a 200-ohm resistor over a band 

width of 10 me? 
12.4. What is the noise power available from a parallel combination of a 

resistance of 50,000 ohms at 20°C and a resistance of 100,000 ohms at 200°C over 
a band width of 2 me? 
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12.5. What is the noise voltage associated with a parallel combination of a 
20,000-ohm resistor and a 0.1-microfarad condenser over a band width of 50,000 
cycles? 

12.6. The relative power gain of a resistance-capacity coupled amplifier is 
given by 

where G,,(fm) is the mid-frequency power gain, f 1 is the low-frequency 70.7 per 
cent point, and h is the high-frequency 70. 7 per cent point. What is the equiva-

lent band width from Eq. (12.10)? Assume~> 100. 

12.7. What direct current is required in a diode whose emission is tempera­
ture-limited to give an rms noise current of 20 microamperes over a band width 
of 5 me? 

12.8. What is the nns noise current in a diode whose emission is space­
charge-limited when the cathode temperature is 1000°K, the band width is 1 me, 
and the plate resistance is 10,000 ohms? 

12.9. What is the rms noise current in a diode whose emission is space-charge­
limited when the plate current is 10 ma, the plate voltage is 50 volts, and the 
band width is 0.5 me? 

12.10. What resistance in series with the grid circuit of a triode will produce 
as much noise in the plate circuit as does the tube itself if the mutual conductance 
is 5,000 micromhos, the amplification factor is 50, the cathode-grid spacing is 12 
mils, and the grid-plate spacing is 25 mils? 

12.11. What resistance in series with the grid of a triode will produce as much 
noise in the plate circuit as does the gas in a triode when the grid-circuit resistance 
is 1 megohm, the plate current is 10 ma, the positive-ion grid current is 0.1 micro­
ampere, and the mutual conductance of the tube is 2,000 micromhos? 

12.12. What is the resistance whose noise when placed in series with the grid 
of an ideal pentode produces the same effect as does the actual tube when the 
mutual conductance is 6,000 micromhos, the plate current is 10 ma, and the 
screen current is 2 ma? 

12.13. What is the noise figure of a secondary-emission multiplier tube using 
six stages of multiplication when the secondary-emission ratio per stage is 5? 

12.14. What is the noise figure of an intermediate-frequency amplifier having 
a pentode input stage operating from a resistance of 600 ohms over a band 
width of 3 me? The mutual conductance of the tube is 7,000 micromhos, the 
plate current is 10 ma, and the screen current is 2 ma. If the output impedance 
of the first stage is 2,000 ohms and the second tube in the amplifier has the same 
characteristics as the first, will it contribute appreciably to the output noise? 
What is the over-all noise figure including the effect of the second stage? 

12.15. Derive an expression for the noise figure of three stages of amplification 
in cascade. 

12.16. A receiver uses a crystal mixer without r-f preamplification, If the 
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crystal conversion gain is 0.6 and its noise temperature is 2.3, what will be the 
noise figure of the receiver if the noise figure of the amplifier is 3.12? 

CHAPTER 13 

13.1. An electron moving with a velocity equivalent to 500 volts crosses a 
plane boundary into a region where the potential is uniformly 100 volts less. 
If the electron made an angle of 30 deg with the normal to the plane boundary 
before crossing it, what angle will it make after? By how much must the 
potential on the far side of the plane boundary be less than 500 volts for the same 
angle of incidence in order that the electron will just be reflected back? 

13.2. Derive a series expansion for potential similar to that of Eq. (13.21) 
about a radial line of symmetry -for two-dimensional potential fields expressed 
in terms of polar coordinates r and 8. What angle do the equipotential lines 
at a saddle point make with the radial line of symmetry in this case? 

13.3. What is the radius of curvature of the equipotential line on the axis 
of an equal-diameter two-cylinder lens at a distance of one radius from the 
cylinder junction when the cylinder spacing is very small? 

13.4. An electric lens consists of a circular aperture in a plate between two 
parallel plates. Plot the potential along the axis of the lens for the following 
potentials and dimensions: 

Vi = 10 volts 
V2 == 2 volts 
Vs = 50 volts 

where the notation is that of Eq. (13.37). 

d12 = 3 mm 
d23 = 9 mm 
R = 1.5 mm 

13.5. What is the focal length of the aperture lens of Prob. 13.4? 
13.6. Calculate the two focal lengths and the location of the two principal 

planes of an equal-diameter two-cylinder lens for a voltage ratio of 4 to 1 by 
the method of linear axial-potential segments. 

13.7. Solve Prob. 13.6 by the method of joined circular segments. 
13.8. Solve Prob. 13.6 by the method of equivalent thin lenses. 
13.9. For the lens of Prob. 13.6 what is the location of the image for an abject 

located four lens diameters from the cylinder junction on the low-voltage side 
of the lens, and what is the corresponding magnification? 

13.10. Calculate and plot the P-Q curves for the Hutter lens of Fig. 13.26. 
13.11. It is desired to use a lens that will operate with an object distance of 

3 cm and an image distance of 25 cm. The voltage ratio to be used is to be 5 to 1. 
If the resulting image is to have as small a size as is practically feasible, what 
lens should you use? 

13.12. Given a lens with the following constants: 

Ji= -1.8 mm 
F1 = -2.6 mm 

/2 = 4mm 
F 2 = 2.8mm 

Calculate and plot image distance and lateral magnification as a function of object 
distance, · • 



14.1. Derive Eq. (14.26). 
14.2. Derive Eq. (14.30). 
14.3. Derive Eq. (14.31). 
14.4. Derive Eq. (14.57). 

PROBLEMS 

CHAPTER 14 
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14.5. How many ampere turns are required for a magnetic lens that is to 
have a focal length of 2 cm when the coil diameter is 3 cm and the beam voltage 
is 800 volts? What is the rotation associated with such a lens? · 

CHAPTER 15 

15.1. A cathode gun of the aperture type shown in Fig. 15.5 has the following 
dimensions: R = 1 mm, d12 = 3 mm, d2a = 6 mm. What is the amplification 
factor determining current cutoff? 

15.2. What is the radius of the crossover section of the beam of a gun cathode 
for which r, = 2 mm, 8 = 0.1 radian, V 2 = 10 volts, and the cathode is· coated 
with an oxide emitter operating at 1000°K? 

15.3. What magnetic-flux density is required to produce a deflection of 2 cm 
at a fluorescent screen 20 cm from the deflecting field if the region of uniform 
field is 2.5 cm long and the beam voltage is 1,000 volts? 

15.4. An electron beam leaves an electron gun converging with a maximum 
angle of 5 deg with the axis. The current is uniformly distributed over the beam. 
If the total beam current is 1 ma and the beam voltage is 800 volts, where will 
the minimum-diameter cross section occur and what will be the value of this 
diameter? Assume that the original diameter of the beam is 2 mm. What will 
be the diameter of the beam on a screen 25 cm from the electron gun? 

15.5. At what angle should a 1-kv beam with a current of 1 ma leave an elec.:. 
tron gun in order that the cross section of minimum diameter will occur on a 
screen 25 cm away? Assume that the original diameter of the beam is 2 mm. 

15.6. What is the maximum current that can be transmitted in the form of a 
beam through a cylinder 2.5 cm long and 0.5 cm in diameter without wasting 
any current in the absence of positivea-ion neutralization? What is the imped­
ance corresponding to this current? What will be the maximum current if it 
is permitted to waste current? 

15. 7. It is desired to construct a Pierce cathode with a convergent conical 
beam. The cathode diameter is to be 1 cm; the initial angle of convergence of the 
beam is to be 15 deg after the anode and 56 deg before the anode. What wilt 
be the size of the anode aperture, and what voltage will be required to produce 
a current of 500 ma? Indicate the shape of the cathode and anode electrodes 
outside the beam. 

15.8. Design a Pierce cathode that will pass the maximum current through a 
cylinder H cm in diameter and 6 cm in length at a voltage of 1,000 volts. 

15.9. Design a Pierce cathode that will produce a parallel circular beam Ji in. 
in diameter and carrying a total current of 1 ampere at a voltage of 5,000 volts. 

15.10. Design a Pierce cathode that \viii produce a strip beam 2 mm thick 
-and carrying a current of 100 ma per cm2 'at a voltage of 600 volts. 

15.11. A set of electrostatic-deflection plates for an 800-volt beam is 2 cm 
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long with e. spacing of ½ cm. At what frequency will the maximum deflection 
be reduced to he.If the d-c value? 

16.12. Derive e.n expression for the static deflection of a two-wire trans­
mission line of wires of diameter d and spacings. The electrons are shot between 
the wires in e. direction normal to the plane of the wires. Extend this expression 
to include transit-time effects. 

16.13. Derive e.n expression for the spread of a sheet beam resulting from the 
mutual electrostatic repulsion between electrons. 

15.14. Derive an expression for the spread of a circular beam of electrons 
including the effect of the magnetic forces involved. 

16.16. At what angle must a beam whose initial diameter is 3 mm leave an 
electron gun in order to have th~ minimum possible diameter at a screen 30 cm 
away if the beam current is 0.1 ma and the beam voltage is 1,000 volts? What 
is the resultant minimum diameter at the screen? 

16.16. Solve problem 15.15 for the case of a beam current of 1 ma, all other 
conditions being the same. 

CHAPTER 16 

16.1. Calculate the inductance of a straight piece of wire 2 in. long and 20 mils 
in diameter. What is the reactance of this inductance at 250 me? 

16.2. An ultra-high-frequency amplifier has a common grid and plate-circuit 
inductance consisting of a lead 1 in. in length and 50 mils in diameter. What is 
the component of input conductance due to this at 200 me if the input capacity 
is 10 micromicrofarads and the tube conductance is 2,000 micromhos? 

16.3. What is the input conductance of a tube due to electron transit-time 
effects at a frequency of 100 me if the tube has a mutual conductance of 2,000 
micromhos, the cathode-grid spacing is 10 mils, the grid-plate spacing is 50 mils, 
the effective voltage of the grid plane is 2 volts, and the plate potential is 100 
volts? 

16.4. A plane-electrode diode has a plate current of 100 ma at a plate potential 
of 50 volts. (Cathode is one-sided, and there is a plate only on the emitting 
side.) If the area of the cathode and plate are each 4 cm 2, what is the r-f imped­
ance of the diode at a frequency of 400 me? 

16.6. Calculate the components of the equivalent circuit of Fig. 16.13 for 
the idealized 210 tube of Prob. 7.1 if the effective cathode and plate area are each 
1 ini. Take the plate potential as 100 volts, the grid potential as half the cutoff 
value, and the frequency as 200 me. 

16.6. What is the effect of voltage-scaling a triode by a factor of 2 in dimen­
sions upon the various operating constants and properties of the tube? 

16.7. What is the effect of completely scaling a tube in the direction of higher 
frequencies if the tube size is reduced by 2 and the tube is to operate at twice 
the frequency? 

16.8. Two tubes are geometrically similar except that the smaller is half the 
size of the larger. If the smaller is to be used at three times the frequepcy to 
be applied to the larger, how will the tube constants and operating conditions 
compare? 
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16.9. At what frequency will the efficiency of a triode whose cathode-grid 
spacing is 20 mils, whose grid-plate spacing is 100 mils, and whose plate voltage 
is 1,600 volts have dropped to 90 per cent of its low-frequency value? 

16.10. At what frequency will the efficiency of a triode whose cathode-grid 
spacing is 6 mils and whose grid-plate spacing is 30 mils have dropped to 90 
per cent of its low-frequency value if the plate voltage is 250 volts? 

16.11. What is the frequency at which the tube of Prob. 16.10 would stop 
oscillating if the amplification factor of the tube is 20? 

16.12. What is the ratio of the grid-plate transit time to the cathode-grid 
transit time of the tube of Prob. 16.10 if the effective potential of the grid plane 
is 5 volts and the plate potential is 50 volts? 

16.13. Obtain equations of motion for electrons in a plane-electrode diode 
similar to those of Eq. (16.79) for the case of temperature-limited emission and 
bias such that current flows for only 60 deg of the entire cycle. 

CHAPTER 17 

17.1. What is the skin depth of current penetration in copper at 4,000 me? 
What is the corresponding surface resistivity? 

17.2. What is the skin depth of current penetration in iron at 3,000 me if the 
volume resistivity of the iron is six times that of copper and the permeability is 
50? What is the corresponding surface resistivity? 

17.3. The energy stored in the field of a cavity that is tuned to 4,500 me 
drops by a factor of 10 db in 5 microseconds. What is the Q of the resonator? 

17.4. What is the error in the approximate expression for the impedance 

of a parallel resonant circuit given by Eq. (17.13) when the value of o is ~? 

17.5. What are the equivalent series resistance, inductance, and capacity of a 
resonator whose shunt resistance is 100,000 ohms, whose Q is 15,000, and whose 
resonant frequency is 2,500 me? 

17.6. Derive an expression for the beam coupling coefficient of a parallel 
set of fine grids including second-order transit-time effects. 

17.7. Obtain an expression for the beam coupling coefficient of a bunching 
gap consisting of two equal-diameter cylinders placed end to end without grids. 

17.8. Construct a distance-time diagram for electrons bunched by a set of 
plane grids. The depth of modulation is 0.15, the beam voltage is 1,000 volts, 
and the frequency is 3,000 me. Use at least 18 lines per cycle. 

17.9. Repeat Prob. 17.8 for a depth of modulation of 0.30. 
17.10. The bunching grids of a klystron amplifier are 2 mm apart. If the 

beam voltage is 2,000 volts and the drift space is 2.5 cm long, what must be the 
value of the r-f voltage at the bunching grids to produce a maximum fundamental 
component of current at the catcher? The operating frequency is 3,000 me. 
For the same bunching grids, what must be the magnitude of an exciting voltage 
of 300-mc frequency to produce a maximum value of tenth-harmonic current 
at the catcher? 

17.11. A klystron amplifier has buncher and catcher grids that are fine and 
plane and spaced 2 mm apart. The length of the drift space is 2.5 cm. The 
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operating frequency is 3,000 me. The beam current is 20 ma at 1,500 volts. 
Calculate and plot small-signal transconductance as a function of beam voltage 
for the following cases: 

a. Emission is space-charge-limited so that beam current is proportional to 
the three-halves power of the beam voltage. 

b. Beam current is constant as beam voltage is varied. 

17.12. What is the theoreticar power required to bunch a beam of 30 ma at 
300 volts when the bunching gap spacing is 1.5 mm? 

17.13. Construct a distance-time diagram for; a reflex-klystron oscillator 
whose potential field in the reflector space is linear. Let the time spent by an 
unmodulated electron in the reflector space be 2.75 cycles. Let the depth of 
modulation be such that maximum power is obtained from the beam. (Con­
struction is simplified if a template of the parabolic curve involved is cut and all 
curves are drawn from this.) Use at least 18 lines per cycle. 

17.14. Plot the negative of the small-signal admittance i;:,piral of a reflex­
klystron oscillator whose beam conductance is 100 micromhos and whose beam 
coupling coefficient is unity. The tube has a resonator whose shunt resistance at 
the resonant frequency of 3,500 me is 1,000 ohms and whose Q is 200. Plot 
the line showing the locus of resonator admittance as frequency is varied. On 
which transit-time mode will oscillations first occur? On which mode will the 
power output be maximum? What will be the limiting frequencies of oscillation 
on the two lowest modes? What will be the frequency stability in megacycles 
per volt at mid-mode for the lowest mode, assuming that cathode and reflector 
voltages vary proportionately? 

17.15. Derive Eq. (17.89). 
17.16. Derive Eq. (17.93). 
17.17. Discuss qualitatively the factors determining optimum gap spacing 

in a reflex-klystron oscillator of the evacuated-cavity type from the standpoint of 
maximum output power. 

17.18. What is the maximum power that can be obtained from a reflex­
klystron oscillator having a beam current of 15 ma and operating with a beam 
voltage of 300 volts, if the gap spacing is 1.5 mm, the resonant frequency is 
3,500 me, the unloaded shunt resistance is 1,000 ohms, and the unloaded Q is 
300? Consider that the Q and shunt resistance can be reduced by coupling an 
external resistive load through a lossless coupling loop. What is the resonator 
efficiency for a condition of maximum output power? 

17.19. Plot curves similar to those of Fig. 17.48 for k = 0.01, Qi = 100, 
w1 = w2, but with Q2 assuming values of 50 and 200 as well as 100. 

17.20. What is the frequency stability in kilocycles per volt of a two-resonator 
klystron oscillator whose operating frequency is 3,000 me and whose beam voltage 
is 1,500 volts if Qa = 250, Q. = 60, and k = 0.02, the transit angle between 
resonators being &r radians? 

17.21. Derive Eq. (17.134). 
17.22. What is the starting current of the tube in Prob. 17.20 if the beam 

coupling coefficient is 0.7 and the mutual reactance between resonators is 50 
ohms? 
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A 

Abbe formula, 741 
Absorption of gases, 808 
Action, least, principle of, 123 
Adsorption of gases, 808 
Aluminum, 803 
Amplification factor, 128-165 

of pentode, 286, 288 
of screen-grid tube, 248 
of triodes, definition of, 206 

high-mu cylindrical-electrode, 151 
high-mu plane-electrode, 148 
low-mu cylindrical-electrode, 137 
low-mu plane-electrode, 128 
nonideal, 156 
for small cathode-grid spacing, 162 
for small grid-plate spacing, 159 
for small screening fraction, 160 

of tubes in parallel, 212 
of unconventional tubes, 165 
variation of, 208 

Analytic functions, 84 
Atomic numbers, 21 

tables of, 811-812 
Atomic weights, 21 

tables of, 811-812 
Atoms, 20, 21 
Avogadro's law, 749 

Barium, 809 
Batalum, 809n. 

B 

Beam coupling coefficient, 541 
Beam-power tube, 9, 245 
Bessel function, 71, 553-557, 823 
Black-body radiation, 31 
Boyle's law, 749 
Bunching of electron beam, 541-556 

large-signal effects on, 570 

Bunching of electron beam, power re­
quired for, 562 

Bunching parameter, 546, 552 

C 

Camera tubes, 728 
Campbell's formula, 626 
Cathode lead inductance, 478 
Cathode-ray beam deflection, 101-103, 

425-429 
electrostatic, 101 
magnetic, 425 

Cathode-ray tubes, 412-472 
description of, 12 
form of, 412 
photography of traces, 470 
postdeflection acceleration in, 428 

Cathodes, 413, 449---450 
of electron gun, 413 
high-efficiency, 449 
Pierce, 450 

Cauchy-Riemann conditions, 85 
Cavity resonators, 529 

excitation of, by electrons, 537 
Q of, definition of, 534 
shunt resistance of, definition of, 535 

Ceramics, vacuum, 808 
Charles's law (Gay-Lussac's), 749 
Child-Langmuir space-charge law, 171 

fol' cylindrical-electrode diode, 173 
filament voltage-drop effect on, 189 
initial-velocity effect on, 191 
for plane-electrode diode, 171 

Complex functions, 82 
Concentric-line resonator, 591-606 

circumferential resonances in, 605 
equivalent circuit of, 592 
tuning curves for, 594 

Conformal transformations, 82-96 
Contact potential, 48 

353 
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Conversion transconductance, 705 
Converter, pentagrid, 714 
Copper, 797, 802 
Copper-to-glass seals, 797 
Coulomb's Jaw, 59 
Coupled circuits, 611 
Current, induced by electron motion, 482 

ultra-high-frequency space-charge, 496 
Current-division factor, 225 
Cyclotron frequency, 632 
Cylindrical-electrode triode, 135-142, 149-

152 
electron paths in, 215 
field transformation equation'for, 135 
potential contours of, 138 
potential profiles in, 139-144 

D 

De Broglie wave length, 740 
Deflection, electron-beam, 101-103, 425---

429 
electrostatic, 425 
magnetic, 426 
ultra-high-frequency, 466 

Deflection tubes, 727 
Degassing, 808 
Diode, 5, 168-200, 495-501 

!idmittance at ultra-high frequency, 501 
impedance at ultra-high frequency, 499 
ultra-high-frequency current form, 520 

Diode characteristics, 5 
Directed-ray electron tubes, 724 
Disk-seal tubes, 524 
Disk seals, 798 
Dumet, 797 
Dynatron, 718 

E 

Einstein's photoelectric equation, 679, 
683 

Electric flux, definition of, 60 
Electric intensity, definition of, 59 
Electron, 19, 104, 740 

equivalent wave length of, 740 
mass of, longitudinal, 104 

rest, 19 
transverse, 104 

radius of, 19 

Electron beam, 5, 328-474 
bunching of, 541-556, 562, 510 
current efficiency of, 439 
electric force within, 441 
electrodes for conical beam, 456-458, 
electrodes for cylindrical beam, 452-

453 
impedance for maximum current, 448 
intensity efficiency of, 439 
magnetic forces within, 441 
maximum current through cylinder, 

447 
maximum current with positive ions, 

447 
negative ions in, 427 
slope of spread of, 465 
spot size, space-charge limitation of, 

440 
thermal limitation of, 440 

spread due to space-charge, 441 
universal spread chart for, 444, 445 
universal spread formula for, 443 

Electron charge, 19 
Electron gun, 412--425 

amplification factor of, 417 
cutoff relations in, 415 
design of, 414 
size of crossover in, 419 
unipotential, 451, 455--462 

Electron-gun structures, typical, 423, 424 
Electron microscope, 738-746 

electrostatic, 745 
magnetic, 735 
resolving power of, 740 
stability af, 744 
structure of, 734 

Electron motion, 97-124 
in combined electric and magnetic 

fields, 116, 406 
in crossed magnetic and alternating 

electric fields, 636 
in crossed magnetic and radial electric 

fields, 642 
in crossed static fields, 631 
current induced by, 482 
cycloidal path, 117, 633 
initial velocity at angle with uniform 

electric field, 99 
in nonuniform magnetic field, 114 
relativity effects on, 103 
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Electron motion, segments, circular, 122 
trochoidal path of, 119, 635 
in two-dimensional electric fields, 107 
in uniform electric field, 97 
in uniform magnetic field, 111 

Electron optics, 328-393 
Electron paths, 97-124 

in beam-power tube, 249 
in cylindrical-electrode triodes, 216 
determination of, 121- 124 

circular-segments method, 122 
elastic-membrane method, 123 
graphical methods, 121 
least-action method, 123 
numerical methods, 121 

helical, in uniform magnetic field 394 
. ' m magnetron, 641 
!n magnetron with space charge, 649 
m pentode, 283, 291, 292 
in photomultiplier tubes, 696 
in plane-electrode triodes, 215 

Electron-ray indicator tubes 723 
Electron tubes, directed-ray: 724 
Electrostatic field, of pentode, 283 

of triodes, 125-167 
cylindrical-electrode, 138 
plane-electrode, 125 

Elements, periodic table of 21 812 
properties of, 811 ' ' 

Emission, 23---57 
field, 23, 24 
secondary, 48-57 

of alkali halides, 55 
current ratio, 49 
dependence upon angle, 53, 54 
of insulators, 56 
velocity distribution of, 52-53 

transient, 46 
types of emitters, 3&--42 

atomic film, 39--42 
thoriated tungsten, 39--41 

oxide, 42 
pure metal, 35-39 

tantalum, 36 
tungsten, 35, 37, 38 

Emission equation, 30 

F 

Fermat principle, 328 
Fernico, 7981 799 

Field emission, 23, 24 
Fluorescence, 430 
Fluorescent materials, 429-437 

and blocking potential, 437 
characteristics of, 433 
electrical properties of, 434 
luminous properties of, 431 
make-up of, 430 
photographic properties of, 471 
and sticking potential, 437 

Flux, electric, definition of, 60 
Fractionating pumps, 790 

G 

Gain-band-width law, 482 
Gas laws, 749 
Gases, absorption of, 808 

adsorption of, 808 
molecular diameters of, 754 
occlusion of, 808 

Gauges, McLeod, 760--764 
Pirani, 766--770 
thermocouple, 770 
triode ionization, 770--775 

Gay-Lussac's (Charles's) law, 749 
Getters, 809 
Glass, 791-795 

composition of, 792, 794 
hard, 792 
physical properties of, 7V4 
soft, 792 
thermal expansion ot, 794, 800 
viscosity of, 793 

Glass-metal sealing, 796 
Glass-mica sealing, 799 
Glass-porcelain sealing, 799 
Glow-discharge tube, 718 
Gradient of potential, 61 
Grid current, 2, 8, 237 

primary law of, 224 
secondary emission, effect of, 234 

Grid-input conductance, 479, 492 
Grid-input resistance, 494 

H 

Heil tube, 616 
Heptode, 710--716 
Hexode, 702--710 
Housekeeper seals, 797 
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I 

Iconoscope, 730-734 
operation of, 733 
structure of, 731 

Image-dissector tube, 729-730 
Image iconoscope, 735 
Image orthicon, 736 
Induced currents, 482--495 

in diodes, 483, 486 
in triode grid, 487, 489 

Insulators, 807 
Intensity, electric, definition of, 59 
Ionization, 22 ' 

by collision, 756 
Ionization gauge, 770 
Ionization potentials, 690 
Ions, 21 
Isotopes, 21 

K 

Klystron amplifier, 556-566 
Klystron oscillators, 606-616 

condition for oscillation, 610 
frequency stability, 615 
phase requirements, 614 
reflex (see Reflex-klystron oscillators) 
starting current, 615 

Klystrons, 527-620 
beam current, 545 
bunching principle for, 527 
bunching theory for, 541 
cascade amplifier, 564-566 
description of, 13 
equivalent circuits, 560, 607 

Kovar, 798 

L 

Lagrange's law, 360 
Laplace's equation, 67-74 

curvature interpretation of, 69 
difference form of, 72-74 

for cylindrical coordinates, 74 
for rectangular coordinates, 72 

solutions of, 70-72 
for cylindrical coordinates, 71 
for polar coordinates, 71 
for rectangular coordinates, 70 

Larmor frequency, 633 
Least action, principle of, 123, 330 
Lenses, electrostatic electron, 328--393 

aberrations in, 387-393 
astigmatism, 390 
chromatic, 389 
coma, 390 
curvature of field, 391 
distortion of field, 391 
spherical, 392 

characteristics of, 332-337 
calculation of, 360-365 
focal length of, 332 

of specific lenses, 369-373 
focal point of, 332 

of specific lenses, 369-373 
measurement of, 365-369 
P-Q curves, 377-386 

equation of, 335, 336, 358 
fields of, 337-349 
third-order imagery, theory of, 388 
types of, 330-336, 350-360 

aperture, 345, 354 
cylinder, 342-345 
Einzel, 386 
Hutter, 375-377 
thick, 355 
thin, 350 

magnetic, 394-411 
aberrations in, 405 
of circular turn of wire, 400 

electron rotation in, 340 
focal length of, 399 

Glazer, 401 
Lighthouse oscillator, 524 
Lighthouse tube, 526 
Logarithmic transformation, 87 
Luminescence, 430 

M 

McLeod gauge, 760-764 
design chart for, 764 
for linear-scale operation, 762 
long form of, 761 
for quadratic-scale operation, 762 
short form of, 761 

Magnetic fields with axial symmetry, 
396 
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Magnetrons, 621-674 
angular velocity of electrons in, 644 
cutoff relations of, 645 
dimensional relations of, 665 
electron action in, 639 
electron efficiency in, 658 
electron paths in, 641, 649 
electron reaction with rotating fields, 

656 
equivalent circuit of, 628 
frequency pulling in, 674 
mode interference in, 630 
optimum dimensions for, 661 
output characteristics of, 667 
output coupling for, 624 
performance chart for, 673 
resonant properties of, 625 
Rieke diagram of, 672 
rising-sun type, 630 
space charge in, 648 
and strapping, 630 
structural form of, 622 
tuning of, 631 

Manometers, 759 
Maxwellian distribution of velocities, 24-

25, 750 
Mean free path, of an electron, 755 

of a molecule, 753 
Mercator projection, 89, 91 
Mercury-diffusion pump, 782 
Meson, 20 
Mesotron, 20 
Metal-to-metal seals, 801 
Metals, 801-806 

lattice constant for, 29 
melting temperature of, 29, 804 
miscellaneous properties of, 804 
radiation efficiencies of, 33, 34 
thermal expansion of, 795, 800, 804 
vapor pressure of, 804 
work function of, 25-29 

Mica, 807 
Microscope, electron (see Electron Micro-

scope) 
Mixer tubes, 705 
Molecular diameters, 754 
Molecules, 22 
Molybdenum, 797, 803 
Monoscope, 737 

Mosaic, photoelectric, 734 
Mutual conductance, 206 

of pentodes, 288 
of triodes, 188, 189 
of tubes in parallel, 212 
variation of, 209 

N 

Negative-resistance devices, 718-723 
feedback circuits, 722 
pentode circuit, 720 
push-pull circuit, 721 
special tubes, 718, 722 

Negative-transconductance tubes, 723 
Neumann function, 71, 823 
Neutrons, 20 
Newton's law, 359 
Nickel, 802 
Noise, in circuits, 298-305 

in resistors, 299 
in tubes, 298-327 

in diodes, 306, 308 
from gas, 312 
in mixer tubes, 314 
in pentodes, 313 
in phototubes, 318 
in secondary-electron multipliers, 

319 
sources of, 305 
in triodes, 310 
at ultra-high frequency, 316 
in velocity-modulation tubes, 317 

Noise figure, 321-326 
definition of, 321 
measurement of, 325 
for networks in cascade, 323 

N onex, 792, 794, 795, 797 

0 

Occluded gases, 808 
Octode, 716 
Oil-vapor vacuum pumps, 784-791 

air-cooled, 788 
fractionating, 790 
water-cooled, 787 

Orthicon, 735 
Oscillator, klystron, 606-616 
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Oscillator, lighthouse, 526 
reflex-klystron, 571-606 
triode, 507 

p 

Pentagrid converter, 714 
Pentodes, 266-297 

amplification factor of, 286, 288 
current division in, 272 
design considerations for, 289 
electron paths in, 283, 291, 292, 296 
electrostatic field of, 279 
plate-current characteristics of, 2"67 
plate resistance in, 288 
screen-current characteristics of, 269 
transconductance in, 288 

Periodic table of the elements, 21, 812 
Phosphorescence, 430 
Phosphors (see Fluorescent materials) 
Photoelectric mosaic, 734 
Photoemission, 675-683 

dependence of initial velocity upon 
frequency, 679 

dependence upon illumination, 678 
theory of, 681 

Photographic-film sensitivities, 473 
Photomultiplier tubes, 694-701 

electron paths in, 696 
noise in, 697 

Photon, 20, 682 
Phototubes, 675-700 

gas-type, 688 
frequency distortion in, 692 

general form of, 675 
use of, 693 
vacuum-type, 685 

Pirani gauge, 766-770 
Plane-electrode triodes, 125-135, 142-

149 
electron paths in, 215 
field transformation of, 127 
potential contours of, 130, 131 
potential profiles of, 132-135 

Plate resistance, 207-212 
definition of, 207 
of tubes in parallel, 212 
variation of, 210 

Platinum, 796 
Poisson's equation, 67 

Polar azimuthal equidistant projection, 
89-96 

Porcelain, 799, 808 
Positron, 20 
Potential, 58-124 

contours of, radius of curvature for, 
341 

current-flow models of, 76, 80 
definition of, 60 
gradient of, 61 
membrane models of, 75 
profiles of, 70 
series expansion for axial, 339 
sketching of fields, 80 

Power-emission paper, 33 
Pressure measurement, 757-775 

by McLeod gauge, 760-764 
by manometer, 759 
by Pirani gauge, 766-770 
by spark-discharge tube, 764 
by thermocouple gauge, 770 
by triode gauge, 770-775 

Pressure scales, 748 
Principal rays of lenses, 332 
Principle of least action, 123, 330 
Proton, 20 
Pump-oil characteristics, 786 
Pumping speed, 775-779 

of aperture, 775 
definition of, 775 
of tubing, 776 

Pumps (see Vacuum pumps) 
Pyrex, 792-797, 800 

Q 

Q of cavity resonators, 534 
Quantum theory, 682 

R 

Reflex-klystron oscillators, 571-606 
admittance spiral, electronic, 581 
band width of modes in, 590 
beam admittance for, 577 
beam conductance for, 580 
blind spots in, 601 
broad-band operation of, 591 
bunching theory of, 575 
distance-time diagram for, 576 
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Reflex-klystron oscillators, general form 
of, 571 

mode plot for, 583, 596 
calculation of, 595 
ideal, 599 

power relations in, 585 
reaction with resonant circuit, 583 
starting current for, 590 
voltage stability of, 591 

Resonator, concentric-line, 591-606 
RLC circuit, transient response of, 579 

s 
Scaling, voltage, 506, 667 

wave-length, 506, 667 
Schottky effect (Schrot effect), 46, 306 
Schwartz-Christoffel transformation, 86 
Screen-grid tube, 238-245 

plate-current characteristics of, 241 
screen-current characteristics of, 244 

Secondary emission (see Emission, sec-
ondary) 

Shot noise (see Schottky effect) 
Silicones, 785 
Skin effect, 530, 822 
Snell's law, 329 
Space-charge effects, 168-200 

in cylindrical-electrode diodes, 173-
181 

equivalent dielectric constant of, 651 
in plane-electrode diode, 168-173 
in screen-grid-plate space, 250 

Spark-discharge tube, 764 
Spot welding, 806 
Stefan-Boltzmann law, 31 

T 

Tantalum, emission of, 36, 803 
Television tubes, 728-738 
Tetrodes, 238-265 

beam-power tube, 245-265 
screen-grid tube, 238-245 
at ultra-high frequency, 522 

Thermocouple pressure gauge, 770 
Thoriated-tungsten emission, 39-41 
Transconductance (see Mutual conduc-

tance) 
Transient emission, 46 
Transient response of RLC nircuit, 579 

Transit time, 195-198 
in diodes, 195-198 

at ultra-high frequency, 487, 516 
in triodes, 514, 520 

at ultra-high frequency, 490, 491 
with space charge, 515-516 

Transit-time effects, 482-524 
in diodes with space charge, 495-501 , 

516-520 
onset in triodes, 490--495 
in triodes with space charge, 501-502 

Triode ionization gauge, 770 
Trit,de oscillation, 507 
Triodes, 201-237 

constant-current curves of, 204, 224 
current law in cylindrical-electrode, 188 

in plane-electrode, 183 
effective grid radius for, 230 
equivalent-diode radius for, 155 
equivalent-diode spacing for, 153, 187 
grid-current characteristics of, 218-237 
mutual conductance of cylindrical-

electrode, 189 
of plane-electrode, 188 

plate-current characteristics of, 201-
218 

ultra-high-frequency, 475-522 
bunching effects in, 617 
current form, 522 
electrostatic field of, 125-167 
lighthouse, 524 
output versus frequency, 508, 509 
small-signal transadmittance, 502 
transit time, 512, 515 

Tube-noise values, 327 
Tungsten, 35-38, 796, 800, 803, 805, 807 

u 

Ultr"a-high-frequency effects, 475-526 
large-signal effects, 516 
limit of triode oscillation, 507 
scaling factors for ultra-high-frequency 

tubes, 506 
on tetrodes, 522 
on triode current, 522 
on tube output, 475 
on tube reactance, 477 

Ultra-high-frequency tubes, types of. 
481 
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Unipotential electron gun, 451, 45,';----462 
design chart for, 462 
electrode shapes for , 456-458 
focal lengths of, 459 
general form of, 460 
location of focal point, 461 

Units, rationalized mks, 58, 817-820 

V 

Vacuum gauges (see Gauges) 
Vacuum pumps, mechanical, 780--781 

vapor, 781-791 
Vapor pressure, of mercury, 784 

of oils, 785 

Velocity distribution, Fermi-Dirac, 24 
in a gas, 751 
Maxwellian, 24-25, 750 

Virtual cathode, 191, 194, 253 
Voltage scaling, 506, 667 

w 

Wave-length scaling, 506, 667 
Work function, 25, 27, 29, 679, 681 

z 

Zirconium, 810 


