

# Encyclopedia of <br> ELECTRONIC CIRCUITS 

Volume 5

## Patent notice

Purchasers and other users of this book are advised that several projects described herein could be proprietary devices covered by letters patent owned or applied for. Their inclusion in this book does not, by implication or otherwise, grant any license under such patents or patent rights for commerical use. No one participating in the preparation or publication of this book assumes responsibility for any liability resulting from unlicensed use of information contained herein.

# Encyclopedia of ELECTRONIC CIRCUITS Volume 5 

Rudolf F. Graf \& William Sheets

## TAB Books

Division of McGraw-Hill, Inc.

## (C) 1995 by Rudolf F. Graf and Willlam Sheets

Published by TAB Books, a division of McGraw-Hill, Inc.
Printed in the United States of America. All rights reserved. The publisher takes no responsibility for the use of any of the materials or methoos described in this book, nor for the products thereof.
pbk $5678910111213 / 998765$
Llbrary of Congress Cataloging-in-Publication Data (Revised for vol. 5)

Graf, Rudalf F.
The encyclopedia of electronics circuits.
Authors for v. 5- : Rudolf F. Graf \& William
Sheets.
Includes bibliographical references and indexes.

1. Electronic circuits-Encyclopedias. I. Sheets,

William. II. Title.
TK7867G66 1985 621.3815 84-26772
ISEN 0-8306-0938-5 ( $v .1$ )
ISBN 0-8306-1938-0 (pbk. : v. 1)
ISBN 0-8306-3138-0 (pbk. : v 2)
ISBN 0-8306-3138-0 (v. 2)
ISBN 0-8306-3348-0 (pbk. : v, 3)
ISBN 0-8306-7348-2 (v. 3)
ISBN 0-8306-3895-4 (pbk. : v. 4)
ISBN 0.8306-3896-2 (v. 4)
ISBN 0-07-011077-8 (pbk. : v, 5)
ISBN 0-07-011076-X (v. 5)
Acquisitions Editor: Roland S, Pheips
Editorial team: Andrew Yoder, Book Editor
Joanne Slike, Executive Editor
Production Team: Katherine G. Brown, Director
Jan Fisher, Coding
Lisa M. Mellott, Coding
Rose McFariand, Layout
Linda L. King, Proofreading
Nancy K. Mickley Proofreading Joann Woy, Indexer
Design tearn: Jaclyn J. Boone, Designer
Brian Allison, Associate Designer
Cover design: Stickies Associates, Bath, Pa.

## Contents

Introduction ..... xi
1 Alarm and Security Circuits ..... 1
2 Amplifier Circuits ..... 17
3 Analog-to-Digital Converter Circuits ..... 27
4 Antenna Circuits ..... 31
5 Audio Power Amplifier Circuits ..... 39
6 Audio Signal Amplifier Circuits ..... 52
7 Automatic Level Control Circuits ..... 60
8 Automotive Circuits ..... 63
9 Battery Charger Circuits ..... 78
10 Battery Test and Monitor Circuits ..... 82
11 Buffer Circuits ..... 90
12 Carrier-Current Circuits ..... 94
13 Clock Circuit ..... 97
14 Code Practice Circuits ..... 100
15 Color Organ Circuit ..... 104
16 Computer Circuits ..... 106
17 Control Circuits ..... 111
18 Converter Circuits ..... 116
19 Counter Circuits ..... 129
20 Crystal Oscillator and Test Circuits ..... 134
21 Current Source Circuits ..... 141
22 Current Limiter and Control Circuits ..... 144
23 Delay Circuit ..... 147
24 Detector, Demodulator, and Discriminator Circuits ..... 149
25 Digital Circuits ..... 156
26 Display Circuits ..... 161
27 Doorbell Circuits ..... 168
28 Fax Circuit ..... 171
29 Field-Strength Meter Circuits ..... 174
30 Filter Circuits ..... 177
31 Flasher Circuits ..... 192
32 Frequency Multiplier Circuit ..... 198
33 Function and Signal Generator Circuits ..... 200
34 Game Circuits ..... 208
35 Gas Detector Circuits ..... 212
36 Gate Circuit ..... 215
37 Geiger Counter Circuits ..... 217
38 Hall Effect Circuits ..... 220
39 Infrared Circuits ..... 223
40 Indicator Circuits ..... 230
41 Instrumentation Amplifier Circuits ..... 233
42 Integrator Circuit ..... 236
43 Intercom Circuits ..... 238
44 Interface Circuits ..... 241
45 Inverter Circuits ..... 245
46 Ion Generator Circuit ..... 248
47 Laser Circuits ..... 250
48 Lie Detector Circuit ..... 255
49 Light-Bearn Communication Circuits ..... 257
50 Light-Control Circuits ..... 262
51 Light-Controlled Circuits ..... 272
52 Light Sources Circuits ..... 280
53 Load-Sensing Circuits ..... 284
54 Mathematical Circuits ..... 286
55 Measuring and Test Circuits ..... 289
56 Metal Detector Circuits ..... 322
57 Miscellaneous Treasures ..... 325
58 Mixer Circuits ..... 359
59 Modulator Circuits ..... 365
60 Monitor Circuits ..... 368
61 Moisture \& Fluid Detector Circuits ..... 373
62 Motion Detector Circuits ..... 376
63 Motor Control Circuits ..... 378
64 Multiplexer Circuit ..... 382
65 Multivibrator Circuits ..... 384
66 Musical Circuits ..... 389
67 Noise-Generator Circuit ..... 394
68 Noise-Limiting Circuits ..... 396
69 Operational Amplifier Circuits ..... 399
70 Optical Circuits ..... 404
71 Oscillator Circuits ..... 410
72 Oscilloscope Circuits ..... 422
73 Pest Control Circuits ..... 427
74 Phase-Shifter Circuits ..... 429
75 Photography Related Circuits ..... 432
76 Piezo Circuits ..... 439
77 Power Supply Circuits-High Voltage ..... 442
78 Power Supply Circuits-Low Voltage ..... 448
79 Probe Circuits ..... 473
80 Protection Circuits ..... 475
81 Proximity Circuits ..... 484
82 Pulse-Generator Circuits ..... 487
83 Receiver Circuits ..... 493
84 Relay Circuits ..... 504
85 Remote-Control Circuits ..... 508
86 RF Amplifier Circuits ..... 514
87 RF Oscillator Circuits ..... 528
88 Sample-and-Hold Circuits ..... 533
89 SCA Circuit ..... 535
90 Shutdown Circuits ..... 537
91 Sine-Wave Oscillator Circuits ..... 539
92 Sound- and Voice-Controlled Circuits ..... 545
93 Sound-Effects Circuits ..... 556
94 Square-Wave Generator Circuits ..... 568
95 Stepper Motor Circuits ..... 571
96 Stereo Circuits ..... 574
97 Switching Circuits ..... 585
98 Synch Circuits ..... 594
99 Tachometer Circuits ..... 596
100 Telephone-Related Circuits ..... 599
101 Temperature-Related Circuits ..... 616
102 Timer Circuits ..... 621
103 Tone Circuits ..... 628
104 Tone-Control Circuits ..... 630
105 Touch-Control Circuits ..... 632
106 Transmitter Circuits ..... 636
107 Ultrasonic Circuits ..... 650
108 Video Circuits ..... 654
109 Voltage-Controlled Oscillator Circuits ..... 663
110 Voltage-Converter/Inverter Circuits ..... 668
111 Voltage Multiplier Circuits ..... 670
112 Window Comparator and Discriminator Circuits ..... 673
Sources ..... 675
Index ..... 699

## Introduction

The Encyclopedia of Electronic Circuits, Volume V adds approximately 1000 new circuits to the treasury of carefully chosen circuits that cover nearly every phase of today's electronic technology. These five volumes contain a wealth of new ideas and up-to-date circuits garnered from prestigious industry sources. Also included are some of the authors' original designs.

Each circuit is accompanied by a brief explanation of how it works, unless the circuit's operation is either obvious or too complex to describe in a few words. In the latter case, the reader should consult the original source listed in the back of the book. The index includes all entries from Volumes I to V. This provides instant access to about 5000 circuits, which make up the most extensive collection of carefully categorized modern circuits available anywhere.

Once again, the authors wish to extend their thanks to Ms. Loretta Gonsalves, whose virtuoso performance at the word processor contributed so much to the suc:cessful completion of the manuscript for this work. We look forward to the pleasure of working with her on Volume VI, which is now under development.

Rudolf F. Graf and William Sheets

## 1

## Alarm and Security Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

| High-Power Alarm Driver | Exit Delay for Burglar Alarms |
| :--- | :--- |
| Multi-Loop Parallel Alarm | 555--iased Alarm |
| Series/Parallel Loop Alarm | Light--Beam Alarm for Intrusion Detection |
| Parallel Loop Alarm | Light-Activated Alarm with Latch |
| Closed-Loop Alarm | Precision Light-Activated Alarm |
| Delayed Alarm | Dark-Activated Alarm with Pulsed Tone Output |
| Door Minder | Light-Beam Alarm Preamplifier |
| Strobe Alert System | Precision Light Alarm with Hysteresis |
| Warble Alarm | High-Output Pulsed-Tone/Light-Activated Alarm |
| Audio Alarm | Self-Latching Light Alarm with Tone Output |
| No-Doze Alarm | Alarm Sounder for Flex Switch |
| Heat- or Light-Activated Alarm | Burglar Chaser |
| Piezoelectric Alarm | Silent Alarm |

## HIGH-POWER ALARM DRIVER



In this circuit, a low-powered SCR is used to trigger a higher powered SCR. When a switch is opening ( $\mathrm{S} 2, \mathrm{~S} 3, \mathrm{~S} 4$ ) or closing ( $\mathrm{S} 5, \mathrm{~S} 6, \mathrm{~S} 7$ ), either SCR1 or SCR2 triggers. This triggers SCR3 via D1, D2, and R5. BZ1 is a high-powered alarm of the noninterrupting type.

POPULAR ELECTRONICS
FIG. 1-1

MULTI-LOOP PARALLEL ALARM


POPULAR ELECTRONICS
FIG. 1-2

This alarm has status LEDs connected across each inverter output to indicate the status of its associated sensor. S 8 is used to monitor the switches via the LED)s, or to trigger an alarm via Q1 and SCR1. BZ1 should be a suitable alarm of the noninterrupting type.

## SERIES/PARALLEL LOOP ALARM



POPULAR ELECTRONICS
FIG. 1-3

Two SCRs are used with two sensor loops. One loop uses series switches, the other loop parallel switches. When a switch actuation occurs, the SCR triggers. The alarm should be a noninterrupting type.

PARALLEL LOOP ALARM


POPULAR ELECTRONICS
FIG. 1-4

Four parallel switches are used to monitor four positions. When a closure occurs on any switch, SCR1 triggers, which sounds the alarm. The alarm should be of the noninterrupting type.

## CLOSED-LOOP ALARM



POPULAR ELECTRONICS
FIG. 1-5

A string of three series-connected, normally closed switches are connected across the gate of an SCR. When one opens, the SCR triggers via R1, sounding an alarm. The alarm should be of the noninterrupting type.

## DELAYED ALARM



## POPULAR ELECTRONIGS

FIG. 1-6

The alarm/sensor circuit shown is built around two SCRs, a transistor, a 4049 hex inverter, and a few support components, all of which combine to form a closed-loop detection circuit with a delay feature. The delay feature allows you to enter a protected area and deactivate the circuit before the sounder goes off.

Assuming that the protected area has not been breached (i.e., S1 is in its normally-closed position), when power is first applied to the circuit, a positive voltage is applied to the input of U1-a through S1 and R1, causing its output to go low. That low is applied to the gate of SCR1, causing it to remain off. At the same time, C6 rapidly charges toward the $+V$ supply rail through S2, LED2, R4, and D3. The charge on C6 pulls pin 5 of Ul-b high, causing its output at pin 4 to be low. That low is applied to the base of Q1, keeping it off. Because no trigger voltage is applied to the gate of SCR2 (via Q1), the SCR remains off and BZ1 does not sound.

But should S1 open, the input of U1-a is pulled low via R9, forcing the output of U1-a high, lighting LED1. That high is also applied to the gate of SCR1 through D1 and R3, causing SCR1 to tum on. With SCR1 conducting, the charge on C6 decays, the imput of U1-b at pin 5 is pulled low, forcing its output high, slowing charging C 8 through R 8 to a voltage slightly less than the positive supply rail.

Transistor Q1 remains off until C8 has charged to a level sufficient to bias Q1 on, allowing sufficient time to enter the protected area and disable the alarm before it sounds. Once C 8 has developed a sufficient charge, Q1 turns on and supplies gate current to SCR2 through R6, causing the SCR to turn on and activate BZ1. If the circuit is reset before the delay has timed out, no alarm will sound.

The delay time can be lengthened by increasing the value of either or both C 6 and R5; decreasing the value of either or both of those components will shorten the delay time.

All of the switches used in the circuit are of the normally-closed ( NC ) variety. Switch Sl can be any type of NC security switch. Switch $S 2$ can be either a pushbutton or toggle switch. Because S 3 is used to disable the sounder (BZ1) only, anything from a key-operated security switch to a hidden toggle switch can be used.

DOOR MINDER


## POPULAR ELECTRONICS

FIG. 1-7
This circuit monitors a door to determine if it has been left open. After 24 seconds, the alarm sounds. S 1 is a magnetic sensor. The alarm is an electronic chime sound that is struck once per second.
$\qquad$


FIG. 1-8
The circuit is activated by an LED/photoresistor isolator (U1), which is a combination of a lightdependent resistor (LDR) and an LED in a single package. That device was chosen because of its high isolation ( 2000 V ) characteristic, which is necessary because the strobe part of the circuit is directly connected to the ac line.

## STROBE ALERT SYSTEM (Cont.)

The voltage divider is formed by R2, U1's internal resistance, and R3. When Ul's internal LED is off, U1's internal LDR has a very high resistance-on the order of $10 \mathrm{M} \Omega$. The voltage applied to NE 1 is considerably below its ignition voltagc of approximately 90 Vdc .

The optoisolator's internal LED is activated by a de signal supplying 20 mA . The external sensor(s) that supply the signal are connected to the strobe part of the circuit at J 1 and J 2 .

When the internal LED lights, the LDR's resistance decreases to around $5 \mathrm{k} \Omega$. Under that condition, about 125 Vde is applied across $\mathrm{C} 1, \mathrm{R} 4$, and C 2 . The neon lamp periodically fires and extinguishes as capacitor C3 charges through R4, and discharges via NE1 and the SCR gate.

Resistor R4 restricts the current input to C3, and thereby controls the firing rate of NE1-about three times per second. The discharge through NEI is applied to the gate of SCR1.

SCR1, a sensitive-gate umit, snaps on immediately when NE1 conducts, which completes the ground circuit for transformer Tl (a 4-kV trigger transformer). As SCRl toggles on and off in time with the firing of NE1, capacitor C2 (connected in parallel with Tl's primary) charges via R1, and then discharges very rapidly through Tl's primary winding. A voltage pulse is applied to the trigger input of FL1, a Xenon flash lamp.

It is important to remember that the circuit is comected dircetly to the ac line. Resistor R6 is included to limit the amount of line current available to the circuit. The value of R6 can be decreased if you intend to modify the circuit for more flash power.

Warning: Even though the circuit is fusc-protected, it can still be dangerous if handled carelessly.


IC1 NE556 dual time
WILLIAM SHEETS
FIG. 1-9

This circuit uses a 556 to first gencrate a low frequency square wave, that is modulated to produce two alternate tones of about 400 and 500 Hz . Circuit generates warble alarm of European emergency vehicles. The frequencies of the oscillators are determined by the vaiues of R1, C1 and R2, C2.

## AUDIO ALARM



## POPULAR ELECTRONICS

FIG. 1-10
In the circuit, U 1 amplifies the audio picked up by the condenser microphone. Resistor R1 limits current, while R2 and R3 center the output of the amplifier to $1 / 2 B+$ to allow a single-ended supply to be used. Diodes D1 and D2 rectify the output of U1, and C3 filters the resulting pulsing dc. Thus, a dc voltage that is proportional to the ambient sound level is produced.

That voltage is presented to the noninverting input of U 2 . The inverting input is provided with a reference voltage of between 0 and $1 / 2 B+$, which is set by R11.

As long as the noise level is low enough to keep the voltage at pin 3 lower than the voltage at pin 2, the output of U2 stays low (approximately 1 V ). That is enough to bias Q 1 partially on. A voltage divider, formed by R8/R10 and Q1 (when it's partially on), prevents Q2 from turning on.

When the noise level is high enough to bring the voltage at pin 3 higher than the voltage at pin 2, the output of U 2 goes high. That turns Q 1 fully on and drives Q 2 into saturation. The piezo buzzer then sounds until the power is cut off.

NO-DOZE ALARM


This circuit sends out a loud tone if the input switch (S2) is not retriggered at preset intervals. If you fall asleep and miss retriggering the circuit, it will sound until you press S 2 .

FIG. 1-11


SENSOR CIRCUITS


Darkness


Light


Cold


Heat

WILUAM SHEETS
FIG. 1-12

The tone generated by a 555 oscillator can be turned on (activated) by heat or light. That causes Q1 to conduct transistor W2 (TIP 3055). Q2 (TIP 3055) acts as an audio amplifier and speaker driver.

## PIEZOELECTRIC ALARM



1991 PE HOBEVIST HANDBOOK
FIG. 1-13
The alarm uses a fixed-frequency piezoelectric buzzer in conjunction with the cadmium-sulfide (CDS) cell and the two-transistor circuit to provide a unique effect. Whenever light reaches the CDS photo-electric cell, the alarm is silent. But when no light strikes the cell, transistor Q1 turns on, and the circuit emits a high-pitched tone.

The alarm consists of a piezoelectric disk that oscillates at the fixed frequency of 3.137 kHz , created by transistor Q2, capacitor C1 and C2, and resistors R1 through R3. Transistor Q1 is used as a switch. It is forward-biased "on" by R4; however, the CDS ecll turns Q1 "off" when the light is striking it.

A CDS photo cell is made from cadmium sulfide, a semiconductor material that changes resistance when the light strikes it. The greater the amount of light, the lower the resistance. The low resistance conducts positive voltage to the base of pnp transistor Q1, keeping it turned "off" when the light shines on the CDS cell. As soon as the light is removed, the CDS cell provides a resistance of over $100 \mathrm{k} \Omega$. That causes Q1 to turn "on," allowing a positive voltage to reach the emitter lead of Q2, which then begins to oscillate. That then causes the piezoelectric element (transducer) to produce a loud signal.

## EXIT DELAY FOR BURGLAR ALARMS



Depressing S1 charges C1 to the supply voltage. This biases Q1 on via bias resistors R2 and R3. A voltage is available for the duration of the delay period, to hold off the alarm circuit. Cl can be increased or decreased in value to alter the delay times.

POPULAR ELECTRONICS
FIG. 1-14


POPULAR ELECTRONICS
FIG. 1-15
The alarm circuit has a single 555 oscillator/timer (U1) performing double duty; serving both in the alarm-trigger circuit and the entry-dclay circuit. In this application, the trigger input of Jl at pin 2 is held high via R1. A normally-closed sensor switch, S1, supplies a positive voltage to the junction of R2 and C 1 , and lights LED1. With both ends of C 1 tied high, there is no charge on C1. But when S1 opens, C 1 (initially acting as a short) momentarily pulls pin 2 of U 1 low, triggering the timed delay circle.

At the beginning of the timing cycle, Ul produces a positive voltage at pin 3, which charges C4 to near the positive voltage at pin 3, which charges $\mathrm{C4}$ to near the positive supply voltage. Transistor Q1 is hcavily biased on by R3, keeping its collector at near ground level. With Q1 on, SCR1's gate is clamped to ground, holding it off. When the delay circuit times out, pin 3 of U1 goes low and ties the positive end of C4 to ground. That turns Q1 off.

When Q1 turns off, the voltage at the gate of SCR goes positive, turning on the SCR and sounding the alarm. The delay time is adjustable from just a few seconds (R6 set to its minimum resistance) to about one minute ( R 6 adjusted to its maximum resistance).

## LIGHT-BEAM ALARM FOR INTRUSION DETECTION



When the light beam that falls in the CDS photocell is interrupted, transistor (EN3904) conducts thereby triggering SCR1 (O106) and activating alarm bell. SI resets the SCR. The alarm bell should be a self-interrupting electromechanical type.

## LIGHT-ACTIVATED ALARM WITH LATCH



In this circuit, light causes R5 to conduct forward-biasing Q1. R6 sets sensitivity. SCR1 is triggered from the emitter voltage on LQ1, sounding the alarm bell. When S1 is depressed, SCR1 unlatches. Be sure that a self-interrupting alarm (electromechanical buzzer or bell) is used.

## PRECISION LIGHT-ACTIVATED ALARM



WILLIAM SHEETS
FIG. 1-18

The light-sensitive CDS cell R8 configured in a bridge circuit with IC1 as a comparator causes IC1's output to go high when light strikes the CDS cell R8, triggering SCR1. This lights LED1 and turns on opto isolator IC2, which switches the load.

## DARK-ACTIVATED ALARM WITH PULSED TONE OUTPUT



FIG. 1-19
NOR gates a and b form a low-frequency oscillator that is activated when the CDS cell, under dark conditions, causes NOR gate a to see a logic zero at one input. This low-frequency ( 10 Hz ) gates a high-frequency oscillator (c and d) to oscillate at around 1000 Hz . R1 can be varied to change the pulse rate and R 2 to change the tone. R3 sets the trigger point.

## LIGHT-BEAM ALARM PREAMPLIFIER



WILLIAM SHEETS
FIG. 1-20
This circuit can be used for light bearns to 20 kHz . The gain of the operational amplifier is set for a $40-\mathrm{dB}$ gain.

## PRECISION LIGHT ALARM WITH HYSTERESIS

WILLAM SHEETS


FIG. 1-21
The TL081 is used as a comparator in a Wheatstone bridge circuit. When the CDS cell resistance decreases due to exposure to light, the output from IC2 cause the low-frequency oscillator (a) and (b) to generate a $10-\mathrm{Hz}$ square wave, gating the 1000 Hz oscillator (c) and (d) on and off. This signal drives an amplifier. R3 controls hysteresis, which reduces on-off triggering near the threshold set by R4.

HIGH-OUTPUT PULSED-TONE/LIGHT-ACTIVATED ALARM


FIG. 1-22
WILLIAM SHEETS
This circuit can produce up to 1 W of audio power to drive a speaker or horn. When the CDS cell is struck by light, its resistance decreases thus activating NOR gate (a) thereby causing (a) and (b) to produce a low-frequency ( $10-\mathrm{Hz}$ ) square wave. This pulses the $1-\mathrm{kHz}$ oscillator (c) and (d), causing it to generate a pulsed $1-\mathrm{kHz}$ tone at a $10-\mathrm{Hz}$ rate. Q1 and Q2 amplify this signal. Q2 (2N3055) drives the speaker.

## SELF-LATCHING LIGHT ALARM WITH TONE OUTPUT



WILLIAM SHEETS
FIG. 1-23
A decrease in the resistance of the CDS cell when light strikes it activates latch a and $b$, enabling tone oscillator $c$ and $d$ which produces an output of about $1000 \mathrm{~Hz} . \mathrm{R}_{\mathrm{A}}$ sets the trip level. Sl resets the circuit.

## ALARM SOUNDER FOR FLEX SWITCH



POPULAR ELECTRONICS


B

FIG. 1-24
This is a cross-sectional diagram of a flex switch. They can be used as pushbutton or even position sensors. This schematic diagram shows an oscillator, which is used as an alarm sounder, triggered by a flex switch.

## BURGLAR CHASER




1991 PE HOBEYIST HANDBOOK
FIG. 1-25

The burglar chaser makes a great accessory for any alarm system. It creates brilliant flashes of white light and a loud, irritating sound from a metal horn buzzer. Transformer T1 is connected to Q1, R1, and R2 to form a blocking oscillator. This creates a 6-Vac signal on the primary of T1. Because of Tl's large ratio of turns from primary to secondary, the 6-Vac signal is stepped up to a level of over 200 Vac, which is then rectified by D1. The resultant dc voltage is applied to storage capacitor Cl and the neon relaxation oscillator made up of R3, C2, and L1. Each time C2 charges up to a sufficient level, it ionizes L1, which causes SCR Q2 to fire. The firing SCR causes the charge on C2 to be applied to the trigger coil. The trigger coil converts the 200 V into the $4000-\mathrm{V}$ pulse that is needed to fire micro xenon strobe tube/reflector FT. The cycle repeats itself after the strobe tube flashes.

## SILENT ALARM



POPULAR ELECTRONICS
FIG. 1-26

A sensor switch triggers a set-reset flip flop and lights an LED.

## 2

## Amplifier Circuits

Thhe sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

## Difference Amplifier

Fast-Inverting Amplifier with High Input Impedance
Noninverting ac Amplifier
Inverting Summing Amplifier
Noninverting ac Amplifier
Fast High-Impedance Input-Inverting Amplifier
Nonlinear Operational Amplifier with Temperature-
Compensated Breakpoint
MOSFET High-Impedance Biasing Method
Inverting Summing Amplifier
Bootstrapped Source Follower
$30 \mathrm{M} \Omega$ JFET Source Follower
JFET Source Follower
Unity-Gain Noninverting Amplifier
JFET Amp with Current Source Biasing

Electret Mike Preamp
Difference Amplifier
General-Purpose JFET Preamp
FET Amplifier with Offset Gate Bias
Push-Pull Darlington Amplifier
Noninverted Unity-Gain Amplifier
$500 \mathrm{M} \Omega$ Input Impedance with JFET Amp
Discrete Current-Booster Amplifier
Frequency Counter Preamp
Audio to UHF Preamp
V- \& I-Protected Intrinsically Safe Op Amp
Current Feedback Amp Delivers $100 \mathrm{~mA} @ 100 \mathrm{MHz}$
General-Purpose Preamplifier
Test Bench Amplifier

## DIFFERENCE AMPLIFIER



POPULAR ELECTRONICS
FIG. 2-1
By using two inputs as shown, a difference amplifier yielding the differential between U1 and U2, times a gain factor results.

## NONINVERTING ac AMPLIFIER



POPULAR ELECTRONICS
FIG. 2-3
A general-purpose noninverting ac amplifier for audio of other low-frequency applications is shown. Design equations are in the figure. Almost any general-purpose op amp can be used for U1.

FAST-INVERTING AMPLIFIER WITH HIGH INPUT IMPEDANCE


POPULAR ELECTRONICS
FIG. 2-2
U1 is used as a voltage follower to feed inverter U2. Because U1 is in the voltage-follower configuration, it exhibits a high input impedance.

INVERTING SUMMING AMPLIFIER


$$
R 5=A 1\|R 2\| R 3 \| R 4
$$

POPULAR ELECTRONICS
FIG. 2-4
The output of Ul is the sum of $V_{1}, V_{2}$, and $V_{3}$, multiplied by $R_{1} / R_{4}, R_{2} / R_{4}$, and respectively. R1, R2, R3 are selectod as required for individual gains. R4 affects gain of all these inputs.

NONINVERTING ac AMPLIFIER


POPULAR ELECTRONICS
FIG. 2-5

NONLINEAR OPERATIONAL AMPLIFIER WITH TEMPERATURE COMPENSATED-BREAKPOINT


POPULAR ELECTRONICS
FIG. 2-7

FAST HIGH-IMPEDANCE INPUTINVERTING AMPLIFIER


POPULAR ELECTRONICS
FIG. 2-6

## MOSFET HIGH-IMPEDANCE BIASING METHOD



WILLIAM SHEETS
FIG. 2-8

High-impedance biasing method for an N channel MOSFET to form a linear-inverting amplifier.


POPULAR ELECTRONICS
FIG. 2-9

30-M $\Omega$ JFET SOURCE FOLLOWER


WILLIAM SHEETS

BOOTSTRAPPED SOURCE FOLLOWER


WILLIAM SHEETS
FIG. 2-10
This bootstrapped source follower uses an N-charnel MOSFET. It has a high input impedance.

JFET SOURCE FOLLOWER


WILLIAM SHEETS
FIG. 2-12
The circuit uses positive gate bias to improve the operating point for better dynamic range.


WILLIAM SHEETS
FIG. 2-13

Biasing methods for an N-channel MOSFET to form a unity-gain nonirverting amplifier or source-follower.


ELECTRONICS NOW

FIG. 2-15

This circuit is suitable for using an electret microphone for many applications. A $1.5-\mathrm{V}$ battery is used. C1 and R3 provide treble boost/bass cut; they can be eliminated, if desired.

## DIFFERENCE AMPLIFIER



$$
F O R R 1=R 3 \text { AND R2 }=R 4
$$

$$
V_{\text {OUI }}=\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right)
$$

$$
R 1\|R 2=R 3\| R 4
$$

## GENERAL-PURPOSE JFET PREAMP



WILLIAM SHEETS

This JFET preamplifier has a gain of about 20 dB and a bandwidth of over 100 kHz . It is useful as a low-level audio amplifier for high-impedance sources.

## PUSH-PULL DARLINGTON AMPLIFIER



FIG. 2-19

## POPULAR ELECTRONICS

This circuit has a high- $Z$ input and push-pull output via the output taken across R4 and R6.

## FET AMPLIFIER WITH OFFSET GATE BIAS



WILLIAM SHEETS
FIG. 2-18

In this amplifier circuit, the gate of the MPF102 is biased with an external voltage. This circuit achieves tighter control of the operating point and biasing conditions.

NONINVERTED UNITY-GAIN AMPLIFIER


WILLIAM SHEETS
FIG. 2-20

An op amp can be used as a unity gain amplifier by connecting its output to its inverting input as shown. Rl should be low enough so the bias current of the op amp does not cause an appreciable offset.

## 500-M $\Omega$ INPUT IMPEDANCE WITH JFET AMP



WILLIAM SHEETS
FIG. 2-21
A current source using a 2N3904 transistor plus bootstrapping, achieves an input impedance of $500 \mathrm{M} \Omega$. A second 2 N 3904 transistor can be added at X to lower the output impedance.

## DISCRETE CURRENT-BOOSTER AMPLIFIER



POPULAR ELECTRONICS
FIG. 2-22
Suitable as a line driver, this circuit is useable in many similar audio applications.

FREQUENCY COUNTER PREAMP


RADIO-ELECTRONICS
FIG. 2-23

Based on the LM733 or NE592, the preamp shown has a bandwidth of 100 MHz . The FET inputs provide about 1-M $\Omega$ input impedance. $\mathrm{Q} 4, \mathrm{Q5}$, and 1 C 2 provide signal conditioning.


The Signetics NE5204 or NE5205 can be used in this AF to $350-\mathrm{MHz}$ ( -30 dB ) preamp. If $600 \mathrm{MHz} @ 3 \mathrm{~dB}$ is needed, use the NE5205. The noise figure is 4.8 dB at $75 \Omega, 6 \mathrm{~dB}$ at $50 \Omega$. Gain is approximately +20 dB over the passband.

## V- \& I-PROTECTED INTRINSICALLY SAFE OP AMP



WILLIAM SHEETS
FIG. 2-25

The circuit is designed to drive an external load. A fault condition in the external load circuit could feed excessive current or voltage back into the line drive circuit. If excessive voltage appears from the load, the two zener diodes will clamp that voltage to a safe level, which in this case is 10 V .

The current in the zener diodes, op amp, and the remainder of the circuitry is limited to a safe level by resistors R1, R2, and R3. D1 protects the op-amp output stage from 10 V appearing across the clamp diodes under a fault condition.

The advantage of this circuit is that, although it's designed as unity gain buffer, the same techniques can be applied to inverting, noninverting, or differential gain stages.

## CURRENT FEEDBACK AMP DELIVERS 100 mA © 100 MHz



Using a NS LM6181, this IC is useful in cable drivers. The supply voltage is $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

## GENERAL-PURPOSE PREAMPLIFIER



Suitable for general audio usc, the preamp circuit uses a feedback pair. Current gain is set by the ratio of $\left(R_{4}+R_{6}\right) / R_{4}$.

## POPULAR ELECTRONICS

FIG. 2-27

## TEST BENCH AMPLIFIER



POPULAR ELECTRONICS
FIG. 2-28

This amplifier might be useful in servicing or bench testing as a signal tracer or as a building block in various systems.

## 3

## Analog-to-Digital Converter Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

ADC Poller<br>8-Charmel A/D Converter for PC Clones



## ELECTRONIC DESIGN

FIG. 3-1

Because the CS5501 16-bit-delta-sigma analog-to-digital converter lacks a "start convert" command, it converts continuously, outputting conversion words to its output register every 1024 cycles of its master clock. However, by incorporating a standard dual J-K flip-flop into the circuit, the ADC can be configured to output a single-conversion word only when it is polled.

The CS5501 converter can be operated in its asynchronous communication mode (UART) to transmit one 16 -bit conversion word when it is polled over an RS- 232 serial line (see figure). A null character (all zeros) is transmitted to the circuit and sets the flip-flop FF2. The CS5501 can then output a single-conversion word, which is transmitted over the RS-232 line as two bytes with start and stop bits.

The baud rate can be chosen by selecting the appropriate clock divider rate on the 74 HC 4040 counter/divider as the serial port clock (SLCK) for the ADC. This type of polled-mode operation is also useful when the ADC's output register is configured to operate in the synchronous-serial clock (SSC) mode. In this case, the converter will load one output word into a 16 -bit serial-to-parallel register (two $74 \mathrm{HC5} 95$ 8-bit registers) when polled to do so (see figure).

## 8-CHANNEL AND CONVERTER FOR PC CLONES

The following program causes the A-D converter to perform eight sequiential cource cote tut is wisy the result. Its witten in Turbo gasicrpate basic cource code, but if wh ruh under the GW-BASIC intelpreter is you reptice tie delay ising. These programs are avalable on the 73 BES under the fikenames ADC TIF$\infty$ BAS and ADCGN.BAS.

| If: TIALIZE: Tomarks folliow the apostrophe <br> screen 0 <br> cotor 14.0 <br> cls <br> cker <br> $\log \cos \%=2$ <br> odosign\% $=0$ | laxi mode 80 columns 'yellow on blue 'clear the streen "clear all varabless mitialize variablds |
| :---: | :---: |
| NUNORLOOP: |  |
|  oun Bes, 1 | keep going unvit they ws prescod regulater line rich |
| delay 1 | wail I secend before nexi sample |
| Ort 868.0 | "ight up the moulator |
| delay 0.54 | wat 58 miliseconos to srabilize |
| for ctry ${ }^{\text {a }}$ 10 107 | 'scan 8 chamnets |
| Out 609.8 | CShiph pin 5 |
| out 868.0 | CS low |
| out 888,2 | 'stan bit is ahrays that DA line |
| out 800,0 | chock high pin 1 ot DQ 25 printer |
| for stow\% 0 , io 1 max stow\% | '3icathes clock putime |
| out 890.1 | ctock low |
| Out 898,2 | B sirgle ended meaturements selected |
| out 890.0 | chack ligh |
| for slow\% $=0$ to 1; mext slow\% | streiches clock pudsa |
| out 850, 1 | clock low |
| Out $888.000 \mathrm{tagn} \mathrm{\%}$ | part of the charnmel selection streng |
| swap oddsign\%,10ggle\% | loggles between high mid how |
|  | clock hioh |
|  | strenctras clack puise |
| OHf 890.1 | clocet low |
| out ess, salect1\% | 'part of the channel selecition siring |
| out 890.0 | elock hagh |
| for stowtho 10 1:nexl slow\% | ssrexanes clock puisa |
| Out 890.1 | clock low |
| out ese, selectio\% | pan of the chammel selection string |
| Dut 800,0 | crock high |
| far slow $\%=0$ to 1 next slow\% | ${ }^{\text {Struchess chack }}$ putse |
| Out 690.1 | relock low |
| PEAGEITS: |  |
| 6ar toto 7 to 0 Step - 1 | MSS is first out |
| out 890.0 | 'clock hugh |
| for slaw\% $=0$ to 1 next slow\% | santelches clock pulse |
| oun 890,1 | clock low |
| ad\%minp(889) | poort 889 pin 10 7-hcw $135-\mathrm{hugh}$ |
|  |  |
| if ch \% |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| noxt ch\% |  |
| proft using <br>  |  |
|  |  |

GWBASIC Version
$10^{\circ}$ The foltowing grogram causes the A-D corveriter to pertarm eight O. sequential cormersions and display the resint 30 SCREEN 0 SOCLS
60 CLEAR
To TOGGLEK-2 intinize varables
90 IF INKEYSく $>^{n+}$ THEN END
100 OUT E8E, 1
110 OUT 888.0
120 FOR W\% $W$ TO 500 :NEXT W\%
130 FOR CHY $=0$ tO 7
140 OUT E88.8
150 OUT 898,0
180 OUT E88, 2
170 OUT 890,0
160 FOR SLOW\% $=0$ TO 1 NEXT SLOW\%
190 OUT 890,
200 OUT 868.2
210 OUT B50,0
220 FOF SLOW\% $=0$ TO 1:NEXT SLOW\%
$230047 \mathrm{EED}, 1$
240 OUT 888,ODDSICN\%
250 SWAP ODDSIGN\%.TOGGLE
260 OUY 880.0
270 FOR SLOW\% $=0$ TO 1:NEXY SLOW\% 280 OUT 890, 1
290 OUT 888,SELECT $1 \%$
300 OUT 890.0
310 FOA SLOW\% $=0$ TO 1:NEXI SLOW\%
320 OUI 890.1
330 OUT 888, SELECTO\%
340 OUT 890,0
350 FOF SLOW\% $=0$ TO 1. MEXT SLOW\% 360 OUT B80. 1
370 AEM
3 380 FOA BIT\% $=7$ 1O O STEP - 1 390 OUT B90,0
400 FOR SLOW\% =0 TO 1:NEXT SLOWY 410 OUT 880.1
$420 A D \%=1 N P(B E)$

| 410 OUT 860.1 | clock low |
| :---: | :---: |
| 420 AD\% $=1 \mathrm{NP}(889)$ | 'pon B85 pin 107 -low 135-high |
| 480 IF AD\% 6120 TH | BIT\%) | 440 NEXT BIT\%

450 IF CH\% 00 THEN SELECT1\% 00 : SELECTO\% 0 : CHOVOLIS $=$ BYTE $\%$ St 460 IF CH\% 1 THEN SELECT $1 \%=0$ : SELECTB $2=2$ : CH1VOLTS=EYTE $2 / 51$ 470 IF CH\% $=2$ THEN SEUECT $1 \%=0$ : SELECTO\% $=2$ : CHZVOLTSEBYTE $\%$ SI 480 IF CH\%=3 THEN SELECTI\% =2 : SELECTO\%=0: CHSVOLTS\&BYTE 400 IF S101F CHM THEN SELECTA\% SELECTO\% CHEVOTS BYTEOS SIOIF CH\% $5201 F$ 530 EYTE\% 0
540 next ch\%

CHMOLTS,CH5VOLTS, CHEVOLTS, CHNOLTS

## 8-CHANNEL A/D CONVERTER FOR PC CLONES (Cont.)



An A/D converter by National Semiconductor (ADC0838), converts 0 - to $5-\mathrm{V}$ analog inputs to a digital data format. A $9-\mathrm{V}$ battery is used. The converter connects to the pointer port connector via a 25 -pin connector.

## 4

## Antenna Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Dual-Band Loop Antenna For $80 \& 160 \mathrm{~m}$
VLF-VHF Wideband Low-Noise Active Antenna
VIF $60-\mathrm{kHz}$ Antenna/Preamp
Simple Balun
Wideband Anteruna Preamplifier
HF Broadband Antenna Preamp
Automatic TR Switch
Low-Power Antenna Tuncr
Loop Antenma Preamplifier

## DUAL-BAND LOOP ANTENNA FOR $80 \& 160$ m



FIG. 4-1
This antenna might help to reduce power-line noise. A plastic "hula hoop" or conduit 3 feet in diameter, covered with aluminum foil as a shield is used for L1 and L2, L1 is two turns and L2 is one turn, threaded through the loop. S1 selects 160 - or 80 -m operation. Q1 and Q2 form a preamplifier for the loop antenna. Do not transmit with this antenna-it is for receiving only.

VLF/VHF WIDEBAND LOW-NOISE ACTIVE ȦNTENNA


ELECTOR ELECTRONICS USA
FIG. 4-2
A $30-$ to $50-\mathrm{cm}$ whip antenna provides reception from 10 kHz to over 220 MHz . Tl, a dual-gate MOSFET, provides low noise, high-input impedance, and high gain. The circuit is powered via the coaxial cable used to connect the antenna to a rcceiver.

## VLF 60-kHz ANTENNA/PREAMP



73 AMATEUR RADIO TODAY
FIG. 4-3
Suitable for $60-\mathrm{kHz}$ standard frequency reception, here is a schematic for a FET preamp and anterna.

## SIMPLE BALUN



PRACTICAL WIRELESS
FIG. 4-4

An old ferrite rod from a junked broadcast receiver can be used to construct an antenna balun, as shown.

## WIDEBAND ANTENNA PREAMPLIFIER



FIG. 4-5

This wideband antenna preamplifier has a gain of around 20 dB from 40 to 860 MHz , covering the entire VHF, FM, commercial, and UHF bands. A phantom power supply provides dc to the preamp via the coaxial cable feeding the unit.

## HF BROADBAND ANTENNA PREAMP



The HF/SW receiver preamplifier is comprised of a broadband toroidal transformer (L1-a and L1-b), LC network (comprised of a $1600-\mathrm{kHz}$, high-pass filter and a $32-\mathrm{MHz}$, low-pass filter), L 2 and L3 (26 turns of \#26 enameled wire wound on an Amidon Associates T-50-2, red, toroidal core), a pair of resistive attenuators (ATTN1 and ATTN2), and a MAR-x device.

Shown here is the composition of a basic 1-dB pi-network resistor antenuator. This is the method of supplying de power to a preamplifier using only the RF coax cable.

## AUTOMATIC TR SWITCH



73 AMATEUR RADIO TODAY
FIG. 4-7

A pair of diodes and a quarter-wave transmission line are used as an automatic TR switch. D1 and D2 conduct during transmit periods, short-circuiting the scanner input. In this mode, the $1 / 4$-wave line appears as an open circuit. In receive, the circuit acts as a Wilkinson power divider.

## LOW-POWER ANTENNA TUNER



This antenna tuner is suitable for use with low-power (less than 5 W ) transmitters or SW receivers. S 2 selects inductance and S 2 connects the $365-\mathrm{pF}$ capacitor to either the transmitter or the side of the inductor. The tiny tuner is comprised of a tapped inductor (L1) and a variable capacitor (Cl), which is connected to the inductor through a center-off SPDT switch (S1). That switch arrangement permits the capacitor to be connected to either the input or the output of the circuit.

FIG. 4-8

## LOOP ANTENNA PREAMPLIFIER



73 AMATEUR RADIO TODAY
FIG. 4-9

This preamplifier has a built-in regeneration control boost gain selectivity. C 1 is a single or multigang AM broadcast-band tuning capacitor. L1 is a ferrite loop antenna, tapped at about 15 to $25 \%$ of total turns. This circuit should prove useful for low-frequency (up to 3 MHz ) reception, where a loop would be advantageous to reduce man-made noise pickup.

## 5

## Audio Power Amplifier Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

20-W + 20-W Stereo Amplifier
40-W Amplifier
Half-Watt Single-Chanmel Audio Amplifier
Dual Audio Amplifier
A 70-W Composite Amplifier
A 33-W Bridge Composite Amplifier MOSFET Power Amplifier
10-W Noninverting Composite Amplifier

10-W Irverting Composite Amplifier
LM380 Personal Stereo Amplifier
Subwoofer Amplifier
18-W Bridge Audio Amplifier
Subwoofer Crossover Amplifier
Audio Power Amplifier
Fast High-Voltage Linear Power Amp
Single-Chip 40-W Amplifier

## 20-W + 20-W STEREO AMPLIFIER



1991 PE HOBBYIST HANDBOOK

C1,C2,C12,C13 ...... $4.7 \mu \mathrm{~F}$ Electrolytic Capacitor
C3,C4,C5,C6,
C7,C14,C15 .. $100 \mu$ F Electrolytic Capacitor
C16,C17,C18,C8,
C9,C10,C19,C20,
C21 ..... $0.47 \mu \mathrm{~F}$ Mylar Capacitor
C11 ...... $3300 \mu \mathrm{~F}, 25 \mathrm{~V}$ ElectroIytic Capacitor
D1 .......... 3 Amp Rectifier
L1 ............ Red LED
R1, R11 .. 47 ohm, 1 watt Resistor R2, R12 .. 33K, $1 / 4$ watt Resistor R3,R5, R13,R14 ...... 12 ohm, 1/4 watt Resistor
R4,R19 .. 120K, $1 / 4$ watt Resistor
A6,R15.. 2K. 1/4 wett Resistor
R7,R16.. 1K, 1/4 watt Resistor
R8 ......... 680 ohm, $1 / 4$ watt Resistor
R9,A10,R17,R18 .... 3 ohm, 1/4 watt Resistor
P1,P2 .... 50K Dual Potentiometer IC1, IC2 NEC70001AB Amplifier

The $20-\mathrm{W}+20-\mathrm{W}$ stereo amp consists of two complete, separate $20-\mathrm{W}$ RMS bridge-type amplifiers. The input signal source is brought into the amplifier through the voltage divider network, which is made up of R1, R2, and P1. Resistor R1 provides a load impedance between the signal source and ground. Resistor R2 couples that signal to potentiometer P1.

The signal is coupled by capacitor Cl to the nonirverting (+) input (pin 1) of internal amplifier (A) of IC1, where the signal is greatly amplified. Capacitor C2 couples the ( + ) input of the other (B) internal amplifier of IC1 to ground. That causes the input signal, which is referenced to ground, to be coupled to both amplifiers because both the inputs and outputs of IC1 (A) and IC1 (B) are connected in a bridge configuration. Notice that the output of IC1 (A) from pin 10 is connected to one side of the speaker and the output of IC1 (B) from pin 8 is connected to the other side of the speaker. That is why the speakers used cannot have one side connected to ground. Resistors R6 and R7 set the gain of the amplifier. Resistors R9 and R10 and capacitors C 9 and Cl 0 provide frequency stability and prevent oscillation. Capacitors C6 and C7 provide "bootstrapping," which prevents distortion at low frequencies. LED L1 lights up by way of a series resistor connected from the anode to +12 Vdc when power is applied.

Power for both IC1 and IC2 is brought in through D1 (to protect amplifiers from reverse polarity). Capacitor C11 provides additional power supply line filtering. This booster is capable of producing 20 W RMS output out of each channel.

## 40-W AMPLIFIER



ELECTRONICS NOW
FIG. 5-2
This circuit uses two LM1875 devices and a de servo loop. This circuit provides 40-W output. IC3 and IC5 must be heatsinked.

## HALF-WATT SINGLE-CHANNEL AUDIO AMPLIFIER



This circuit uses an LM386 IC and will work from 6 - to $12-\mathrm{V}$ battery sources. Output is about 0.5 W into $8 \Omega$.

FIG. 5-3

## DUAL AUDIO AMPLIFIER



## SILICON CHIP



FIG. 5-4

## A 70-W COMPOSITE AMPLIFIER



## ELECTRONICS NOW



Four LM1875 devices, suitably heatsinked, and a $\pm 25-\mathrm{V}$ supply, 70 W of output are available from this circuit. IC6 is a phase inverter.

FIG. 5-5

## A 33-W BRIDGE COMPOSITE AMPLIFIER



ELECTRONICS NOW
FIG. 5-6

Two LM1875 ICs provide 33 W of audio. IC4 is used as a phase inverter. IC6 and IC2 must be heatsinked.

## MOSFET POWER AMPLIFIER



Two complementary MOSFETs are used to deliver 20 W into $8 \Omega$. A TL071 op amp is used as an input amplifier. The MOSFETs should be heatsinked with a heatsink of better than $5^{\circ} \mathrm{C} / \mathrm{W}$ capability. THD is less than $0.15 \%$ from 100 Hz to 10 kHz .

303 CIRCUITS
FIG. 5-7

## 10-W NONINVERTING COMPOSITE AMPLIFIER



## ELECTRONICS NOW

FIG. 5-8

By using an LM1875, suitably heatsinked, a 10-W amplifier that uses two IC devices can be built. IC2 must be heatsinked.

## 10-W INVERTING COMPOSITE AMPLIFIER



ELECTRONICS NOW
FIG. 5-9

Using an LM1875, a 10-W amplifier can be build using just two IC devices. The gain $=R_{4} / R_{3}$. Note that IC12 must be heatsinked.

## LM380 PERSONAL STEREO AMPLIFIER



With the simple circuit, you can use your personal stereo to drive standard $8-\Omega$ speakers.

## SUBWOOFER AMPLIFIER



POPULAR ELECTRONICS
FIG. 5-11
Designed to feed a low-frequency subwoofer speaker system, the amplifier is capable of up to 100 W into an $8-\Omega$ load. The OPA541BM op amp requires heatsinking and is manufactured by BurrBrown Corporation. A damping control and a relay to eliminate turn-on and turn-off thurnp in the speaker is included.

18-W BRIDGE AUDIO AMPLIFIER


POPULAR ELECTRONICS
FIG. 5-12

Two LM383 IC devices are used in a bridge circuit that is useful for auto sound applications.

## SUBWOOFER CROSSOVER AMPLIFIER



The electronic-crossover circuit contains a summing amplifier that combines the left and right channels from a stereo's headphone jack. Originally used in a subwoofer system, the above circuit might be useful in similar audio applications.

## AUDIO POWER AMPLIFIER



POPULAR ELECTRONICS
FIG. 5-14
The circuit, built around an LM741 op amp configured as an inverting amplifier, is used to drive complementary transistors (Q1 and Q2). The op amp's feedback loop includes the base-emitter junctions of both transistors-an arrangement that helps to reduce crossover distortion that would normally occur as-a result of the emitter-to-base junction voltage drop of about 0.6 V . Potentiometer R5 varies the amplifier's voltage gain from 1 to about 20 . As much as 0.5 W can be obtained from the circuit if a heatsink is added to the transistors.

FAST HIGH-VOLTAGE LINEAR POWER AMP


ELEGTRONIC DESIGN
FIG. 5-15

An Apex PB50 Booster Amplifier, plus an IC op amp, can be used in a high-voltage op amp that converts a small analog signal to a $180-\mathrm{V}$ p-p signal.

Apex Microtechnology manufactures a number of power op amps. The above circuit uses a PB50 booster amplifier to deliver a $180-\mathrm{V}$ p-p signal into a $90-\Omega$ load, from a $\pm 100-\mathrm{V}$ supply.

## 6

## Audio Signal Amplifier Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Headphone Amplifier<br>Audio Line Driver<br>Constant-Volume Amplifier<br>Mini Amplifier Using LM1895N<br>Audio Amplifier with Tuneable Filter<br>Audio Compressor

JFET Headphone Amplifier
Dual Preamp
Magnetic Pickup Phono Amplifier
Audio Booster
Audio Volume Limiter
Audio Distribution Amplifier

## HEADPHONE AMPLIFIER



303 CIRCUITS
FIG. 6-1

Built around Precision Monolithics Inc. OP-50 op amps, this amplifier will drive $100-\Omega$ to $1-\mathrm{k} \Omega$ headphone, is flat within 0.4 dB from 10 Hz to 20 kHz , and has a THD of less than $0.01 \%$ over most of the audio range. Amplification factor is about 6 X .

## AUDIO LINE DRIVER



303 CIRCUITS
FIG. 6-2

This line driver can drive low-impedance lines with up to 70 V p-p max. IC1 is a low-noise op amp suitable for $\pm 15-\mathrm{V}$ operation. T1 and T2 are regukators for the power supply for IC1. T3 and T4 form a complementary power output stage. Frequency response is flat up to 100 kHz .

CONSTANT-VOLUME AMPLIFIER


WILLIAM SHEETS
FIG. 6-3
The amplifier has an output level that shifts about 6 dB for a 40 - dB input variation.

## MINI AMPLIFIER USING LM1895N



With $3-\mathrm{V}$ to 9 -V supplies, this amplifier can provide from $100-\mathrm{mW}$ to $1-\mathrm{W}$ output into a $4 \Omega$ and bandwidth is approximately $20 \mathrm{kHz} @ 3 \mathrm{~dB}$. This circuit is useful for low-power and battery applications. Drain is $80 \mathrm{~mA} @ 3 \mathrm{~V}$ or $270 \mathrm{~mA} @$ 9 V at maximum signal conditions.

## AUDIO AMPLIFIER WITH TUNEABLE FILTER



POPULAR ELECTRONICS
FIG. 6-5

This audio amplifier can tune from 500 to 1500 Hz and will drive a speaker or headphones. Useful for CW reception or other receiver applications, only two IC devices are needed.

AUDIO COMPRESSOR


303 CIRCUITS
FIG. 6-6
This compressor will compress a $25-\mathrm{mV}$ p-p to $20-\mathrm{V}$ p-p audio output to input levels remaining between 1.5 V p-p to $3.5 \mathrm{~V} \mathrm{p-p}$, and has a frequency response of 7 Hz to 67 kHz . It is suitable for audio and communications applications.

JFET HEADPHONE AMPLIFIER


FIG. 6-7
This circuit can drive high-impedance headphones from a low impedance low-level source. Gain is about 5 X to 10 X depending on headphone impedance. A volume control is included.

## DUAL PREAMP



If you wish to amplify low-level signals, such as the output of a turntable, the signal must first be fed to this preamp.

1987 R-E EXPERIMENTERS HANDBOOK
FIG. 6-8

MAGNETIC PICKUP PHONO AMPLIFIER


POPULAR ELECTRONICS
FIG. 6-9

This preamp is RAA compensated for use with magnetic phone cartridges.

## AUDIO BOOSTER



POPULAR ELECTRONICS
FIG. 6-10
This circuit has a maximum gain of about 22 dB (voltage gain), and it can be used for miscellancous audio circuits.

## AUDIO VOLUME LIMITER



1992 R-E EXPERIMENTERS HANDBOOK
FIG. 6-11
ICl-a is connected as an inverting amplifier whose gain is controlled by the LDR portion of an optocoupler.

## AUDIO DISTRIBUTION AMPLIFIER



POPULAR ELECTRONICS
FIG. 6-12

Three low- $Z$ audio outputs are available from this circuit, using a quad TL084 FET amplifier. The irput is high impedance. $V_{C C}$ can be 6 to 12 V for typical applications.

## 7

## Automatic Level Control Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675 . The figure number in the box of each circuit correlates to the entry in the Sources section.

Digital Automatic Level Control (ALC)<br>AGC System for Audio Signals<br>ALC (Automatic Level Control)

DIGITAL AUTOMATIC LEVEL CONTROL (ALC)


This approach to automatic level control (ALC) makes use of digitally switched audio attenuators in the signal path. The output level of the system is sensed, compared to a reference, and audio pads are inserted via analog switches. This method is nearly instantaneous and eliminates the compromises necessary in conventional RC network ALC systems using fast attack, slow-decay approaches.


WILLIAM SHEETS
FIG. 7-2

ALC (AUTOMATIC LEVEL CONTROL)


The rectifier input is tied to the input. This makes gain inversely proportional to input level so that a $20-\mathrm{dB}$ drop in input level will produce a $20-\mathrm{dB}$ increase in gain. The output will remain fixed at a constant level. The circuit will maintain an output level of $\pm 1 \mathrm{~dB}$ for an input range. of +14 to -43 dB at 1 kHz . Additional external components will allow the output level to be adjusted.

FIG. 7-3

## 8

## Automotive Circuits

T
The sources of the following circuits arc contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

CD Ignition System for Autos
Brake and Turn-Signal Light Circuit
Vehicular Tachometer Circuit
Smart Turn Signal
Manual Headlight/Spotlight Control for Autos
Thermostat, Switch for Automotive Electric Fans
Flashing Brake Light
Power Controller (for Automotive Accessories)
Automotive Power Adapter for dc-Operated Devices
Time-Delay Auto-Kill Switch
Booster Amplifier for Car Stcrco Usc
Auto Turrl-Signal Reminder

Headlight Flasher
Automotive Audible-Turn Indicator
Engine Block Heater Minder
Headlights-On Reminder
Brake and Turn Indicator
Lamp-Switching Circuit
Autormatic Turn-Off Control for Automobiles
Alternator Regulator
Auto Generator Regulator
Lights-On Reminder
Auto Fuse Monitor
Headlight Alarm

CD IGNITION SYSTEM FOR AUTOS


## POPULAR ELECTRONICS

FIG. 8-1
At the heart of the CD4-MX is an astable multivibrator, built around Q1 and Q2, that feeds step-up transformer T1. The output of T1 is rectified by D3 to D6 and used to charge capacitor C4. When the points close, a small voltage is fed to the gate of SCR1, causing it to fire, dumping the charge of C 4 to the vehicle's ignition coil. The circuit also contains optional subcircuits to accommodate different types of auto ignitions.
$X_{15}+$ and $X_{15}$ - are alternative trigger configurations for nonpoint breaker ignition systems. R6 is not used for these systems and must be removed. Optocoupler U1 can be used (pin 4) in conjunction with $X_{15}-$ or $X_{15}+$ depending on polarity of sensor. Note that 60 to 70 kV is available from this system, so observe suitable safety precautions.

## BRAKE AND TURN-SIGNAL LIGHT CIRCUIT



POPULAR ELECTRONICS
FIG. 8-2
This circuit enables single-filament tail lights to serve as combination brake lights and turn signals.

## VEHICULAR TACHOMETER CIRCUIT



FIG. 8-3
WILLIAM SHEETS
In this automotive application, the 555 is a pulse counter. IC1 regulator provides proper operating voltage for IC2. This circuit is for vehicles with conventional breaker points.

## SMART TURN SIGNAL



STS schematic. The Q2 gate voltage increases with the charge on C3. After 15 seconds of charging, the buzzer will warble. As the charging continues, the sound will grow louder.


Circuit waveforms. Point A shows the signal from the flasher. The voltage at point $D$ will increase as long as the pin- 3 output of IC1 (point C) remains high. The C1-R2 time constant (point B) determines how long the output will be high.

SMART TURN SIGNAL (Cont.)


Flasher terminal $L$ connects to the load and $X$ connects to the 12 -volt supply. When tine driver engages the turn signal, the $L$ terminal voltage varies with the blinking lights. The STS senses the changing voltage and, after 15 seconds, it applies power to a buzzer through a current-limiting device to control loudness.

## C

This circuit reminds a driver that his turn signal has been left on for more than 15 seconds. When stopped for a light, the brake-on signal holds the warning off.

MANUAL HEADLIGHT/SPOTLIGHT CONTROL FOR AUTOS


FIG. 8-5
WILLIAM SHEETS
Pressing the START pushbutton turns on either the headlights or spotlights for a predetermined time. After 1 minute ( R 1 and C 1 determine this), the lights will shut off as the NE555 completes its cycle.

## THERMOSTAT SWITCH FOR AUTOMOTIVE ELECTRIC FANS



SLLICON CHIP

The circuit is based on a commercial temperature sensor (TS6178) and an MC3334P ignition chip. When the radiator temperature increases, the sensor pulls the base of Q2 low via Q1, which is wired as a diode. Q2's collector thus goes high and triggers IC1, which switches its pin 7 output high and turns on the fan motor via Q3.

## FLASHING BRAKE LIGHT



FIG. 8-7

When power is first applied, three things happen: the light-driving transistor (Q1) is switched on because of a low output from U2, pin 3; timer U1 begins its timing cycle, with the output (pin 3) going high, inhibiting U2's trigger (pin 2) via D2; and charge current begins to move through R3 and R4 to C1.

Wher U1's output goes low, the inhibiting bias on U2 pin 2 is removed, so U2 begins to oscillate, flashing the third light via Q1, at a rate determined by R8, R6, and C3. Oscillation continues until the gate-threshold voltage of SCR1 is reached, causing it to fire and pull U1's trigger (pin 2) low. With its trigger low, U1's output is forced high, disabling U2's triggering. With triggering inhibited, U2's output switches to a low state, which makes Q1 conduct, turning on Il until the brakes are released. Removing power from the circuits resets SCR1, but the RC network consisting of R 4 and Cl will not discharge immediately and will trigger SCR1 earlier. So, frequent brake use means fewer flashes.

Bear in mind that the collector/emitter voltage drop across Q1, along with the loss across the se-ries-fed diodes, reduces the maximum available light output. If the electrical system is functioning properly (at 13 to 14 V for most vehicles), those losses will be negligible.

## POWER CONTROLLER (FOR AUTOMOTIVE ACCESSORIES)



## ELECTRONICS NOW

FIG. 8-8
Because the power controller is powered from the vehicle's accessory switch, the load can receive power only when the ignition key is on. Using half of a dual flip-flop (CD4013), a load of up to 10 A is controlled by a momentary pushbutton. This circuit was origirally intended for automotive power control, but could have other applications as well.

AUTOMOTIVE POWER ADAPTER FOR dc-OPERATED DEVICES


1993 ELECTRONICS HOEBYIST HANDEOOK
FIG. 8-9
In the schematic diagram for the car-power adapter, note how the value of $R_{B}$ (which is R 1 and S1 in the center position) is changed by putting R 3 or R 4 in parallel with R1.

TIME-DELAY AUTO-KILL SWITCH


POPULAR ELECTRONICS
FIG. 8-10

## TIME-DELAY AUTO-KILL SWITCH (Cont.)

The automobile delayed kill switch is simple in concept. When you get out of your car, a secretly located pushbutton switch is pressed. Nothing apparently happens, but at the end of a predetermined time, a relay is pulled in and locked. When the relay is pulled in, contacts open, and the hot lead from the ignition to the coil and the hot wire from the key switch to the starter solenoid is opened or disconnected. If the engine is running, it stops immediately and the starter will not operate. When you get into the car, another pushbutton switch is pressed and the relay drops out and everything goes back to normal.

BOOSTER AMPLIFIER FOR CAR STEREO USE


1690 PE HOBBYIST HANDBOOK
FIG. 8-11

Only one channel of this circuit is shown. The other is practically a carbon copy.
The input to the circuit, taken from your car radio's speaker output, is divided along two paths; in one path, a high-power divider network (consisting of R8 through R10) provides $4.5-\Omega$ resistance to make the circuit's input impedance compatible with the output impedance of the car radio. In the other path, the signal is fed to the input of U1 through resistor LR7, trimmer potentiometer R21, and capacitor C2. Together, R7 and R21 offer a minimum resistance of $27,000 \Omega$.

Integrated circuit U1 (a TDA-2004 audio power amplifier) amplifies the signal, which is then output at pins 8 and 10 and fed to the loudspeaker. Note: This amp is designed for use only with car radios whose speaker outputs are referenced to ground: do not use it with radios that have balanced outputs.

## AUTO TURN-SIGNAL REMINDER



POPULAR ELECTRONICS
FIG. 8-12
This circuit counts turn signal flashes. At the end of about 70 flashes, a chime sounds to remind the driver to turn off the turn signal. By using various taps on U2, the period can be changed if desired. BZ1 is a buzzer or chime module.

## HEADLIGHT FLASHER



POPULAR ELECTRONICS
The headlight flasher is nothing more than a 555 oscillator/timer that's configured as an astable multivibrator (oscillator). Its input is used to drive the gate of an IRF53IND hexFET, which, in turn, acts like an on/off switch, turning the lamp on and off at the oscillating frequency ( 1 Hz ).

## AUTOMOTIVE AUDIBLE-TURN INDICATOR



POPULAR ELECTRONICS
FIG. 8-14

This little circuit should be useful to the hearing impaired. It produces a tone each time a dashboard turn indicator lights. The tone drops in frequency for as long as the indicator is lit.

HEADLIGHTS-ON REMINDER


## POPULAR ELECTRONICS

FIG. 8-16

This circuit will sound alarm BZ1 if the ignition is turned off with the headlights on.

## ENGINE BLOCK HEATER MINDER



POPULAR ELECTRONICS
FIG. 8-15

If you live in the frozen north, knowing your engine-block heater is working is a comfort. This device will let you know if yours is okay. Plug in PL1 to your power outlet. NE1 should light. Then, plug in the block heater. Depressing S1 should cause the indicator to get brighter. If not, your block heater might be open and inoperative.

BRAKE AND TURN INDICATOR


POPULAR ELECTRONICS
FIG. 8-17
This might be a quick solution to getting the two-wire truck harness to support both turn and braking indications.

LAMP-SWITCHING CIRCUIT


POPULAR ELECTRONICS
FIG. 8-18
A normally open pushbutton switch ( S 1 ) delivers a positive input pulse to pin 4 of U 1 , triggering the IC into action. The output of $\mathrm{U1}$ at pin 6 supplies base-drive current to a Darlington pair comprised of $Q 1$ and $Q 2$, activating K1. A $10-\mu \mathrm{F}$ capacitor and any resistor value of from 1 to $10 \mathrm{M} \Omega$ can be used as the timing components.

To use the circuit on an auto's headlights, connect the relay's normally open contacts across the car's headlight switch and press S1 to extend the on time. In connecting the circuit to control an acoperated lamp, turn off the ac power and connect the relay contacts in parallel with the lamp's power switch contacts.

## AUTOMATIC TURN-OFF CONTROL FOR AUTOMOBILES



WILLIAM SHEETS
FIG. 8-19
When the ignition switch is on, relay Kl is energized continuously, and the headlights can be turned on. Turning off the ignition turns on timer ICl, which keeps IC1 energized for a time determined by R1 and C1. With the values shown approximately a 1 minute delay will result. The values of Rl or Cl can be changed to vary this delay time.

## ALTERNATOR REGULATOR



RADIO-ELECTRONICS
FIG. 8-20
This alternator regulator uses a 3 -transistor dc amplifier, and is designed for a "pulled up" field system, where one side of the alternate field returns to the +12 -Vsupply, and the other end is pulled toward ground. The circuit monitors the state of the battery through a resistive divider and causes the voltage to change at the field terminal.

## AUTO GENERATOR REGULATOR



RADIO-ELECTRONICS
FIG. 8-21
This regulator is for the purpose of controlling a dc generator. The field configuration is that one side of the field is grounded. D4 prevents the battery from discharging through the generator and takes the place of the mechanical cut-out relay. R10 adjusts the system voltage setting.

## LIGHTS-ON REMINDER



POPULAR ELECTRONICS
A relay and two diodes are all that is neededthe relay performs the job of a buzzer so no annunciator is required. When the lights are left on, but the ignition is off, the normally closed relay contacts are in series with the relay coil. That means the relay interrupts its own power each time it becomes active, so it chatters and acts like a buzzer. This is a real minimalistic headlight reminder. It doesn't even require an annunciator because the relay acts as buzzer.

## AUTO FUSE MONITOR



WILLIAM SHEETS
FIG. 8-23

This circuit can quickly check a fuse in an automobile circuit. Connect across suspected fuse-either LED glows, fuse is blown. The circuit must be live for this test to work.

## HEADLIGHT ALARM



1989 R-E EXPERIMENTERS HANDBOOK
FIG. 8-24

The base of Q 1 is connected to the car's ignition circuit; the easiest point to make that connection is at the ignition switch fuse in the car's fuse panel. Also, one side of the piezoelectric buzzer is connected to the instrument-panel light fuse; when the headlights or parking lights are on, the instrument panel is lit, too. When the headlights are off, no current reaches the buzzer. Therefore, nothing happens. What happens when the headlights are on depends on the state of the ignition switch. When the ignition switch is on, transistors Q1 and Q2 are biased on, effectively removing the buzzer and the LED from the circuit.

When the ignition switch is turned off, but the headlight switch remains on, transistor Q1 is turned off, but transistor Q2 continues to be biased on. The result is that the voltage across the piezoelectric buzzer and the LED is sufficient to cause the buzzer to sound loudly and the LED to light.

## 9

## Battery Charger Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Lead-Acid Trickle Charger<br>RF-Type Battery Charger<br>Battery Charger<br>Solar-Powered Battcry Charger<br>Intelligent Battery-Charging Circuit

## LEAD-ACID TRICKLE CHARGER



POPULAR ELECTRONICS
FIG. 9-1
The charger can be used as a stand-alone charger or for emergency lighting and burglar alarm systems insing lead-acid battcries.

## RF-TYPE BATTERY CHARGER

This type of charger couples RF from $L 2$ to an external pickup coil. The pickup coil connects to a rectifier and battery to be charged. This idea is handy because no wire or contacts are required. L2 is $10 \mathrm{~T} \# 24$ wire and $L_{3} 3$ is $10 \mathrm{~T} \# 30$ wire. Both coils are mounted on a $1^{" 1} \times 1 / 4 /$ ferrite rod.


FIG. 9-2

## BATTERY CHARGER



POPULAR ELECTRONICS
FIG. 9-3

The circuit is capable of supplying either a trickle ( 50 mA ) or high-current (1-A) charge. You can select either charging method or an automatic mode that will first trickle charge a battery if it is particularly low before switching to high-current charging.

If the battery's voltage is low, Zener-diode D5 will not conduct sufficient current to produce a voltage drop across R6 to turn Q2 on. With Q2 off, R4 pulls the base of Q1 high, turning it on. That activates K1. With K1 active, the only thing between the battery and the power supply is R2 and D4 (which prevents current from flowing through the circuit from the battery).

Once the battery charges a bit, the current through D5 increases, causing a voltage drop across R6 that is of sufficient magnitude to turn on Q2. Transistor Q2, in turn, grounds the base of Q1, keeping it off. With Q1 off, K1 remains in its normally closed state. That places R1 in series with the battery, thereby reducing the current to a trickle.

## SOLAR-POWERED BATTERY CHARGER



NATIONAL SEMICONDUCTOR
FIG. 9-4
A National Semiconductor LM1577 IC is used in a step-up regulator to charge Nicad batteries from a solar panel.

## INTELLIGENT BATTERY-CHARGING CIRCUIT



## RADIO-ELECTRONICS

FIG. 9-5
Intended for a Nicad application this charging circuit can be used with a wide range of batteries. A low-battery detector is intended. The trip voltage is set via the $500-\mathrm{k} \Omega$ pot. Select $R_{C}$ for the battery you intend to use.

## 10

## Battery Test and Monitor Circuits

The sources of the following circuits arc contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the cntry in the Sources section.

Battery Tester<br>Car Battery Tester for Cranking Amps<br>Supply Voltage Monitor<br>Battery Watchdog<br>Battery Test Circuit<br>Battery Voltage Monitor<br>Battery Saver Circuit<br>0-2-A Battery Current Monitor with Digital Output<br>Car Battery and Alternator Monitor<br>Relay Fuse for Battery Charges<br>Bargraph LED Baltery Tester

## BATTERY TESTER



## 1991 PE HOEBYIST HANDBOOK

FIG. 10-1
The battery tester uses four transistors and two LEDs to indicate the condition of any battery you want to test. Q3 and Q4 are connected in a Darlington configuration that has extremely high gain. LED L2 lights when a small positive potential appears on the base of Q3. Transistors Q1 and Q2 form a directcoupled dc-amplifier circuit. The output of this stage drives the red LED L1. Rotary switch S1 is used to select different ranges (which have been previously set by adjusting trimmer resistors P1 through P5).

The positive ( + ) lead goes through the selected contacts of $S 1$ to the biasing resistors R3, R4, and R5. The negative ( - ) lead of the battery under test goes to the ground or common lead of the circuit and the (+) side to one side of P1 through P5.

| L 1 | Red LED |
| :--- | :--- |
| L 2 | Green LED |
| P1 through P5 | $5-\mathrm{k} \Omega$ trimmer resistor |
| R1 | $100 \mathrm{k} \Omega$ |
| R2, R3 | $33 \mathrm{k} \Omega$ |
| $\mathrm{R} 4, \mathrm{R} 5$ | $470 \Omega$ |
| R6 | $12 \Omega 1 \mathrm{~W}$ |
| S1 | 2 P 6 position NS rotary switch |
| S2 | NO pushbutton switch |

Depending on the position of S1, a particular trimmer resistor (wiper lead) is selected. That lead goes through the contact on S 1 to resistor R 1 and into the base of npn transistor Q1. If the battery is good enough, (+) voltage goes to the base of Q1, turning it on. This turns Q2 off, which then allows Q3 to turn on. That causes Q4 to turn on and light green LED L2.

If the battery is weak, Q1 will not turn on, which will cause Q2 to be biased on by R3, which in tum lights red LED L1. When Q1 is on, it biases the base of Q3 negative, and causes Q3 to be turned off. That prevents L2 from turning on.

The circuit operates in the same manner for all ranges except the first two, where a $9-\mathrm{V}$ battery has been added by Sl to be in series with the input voltage to allow for testing of very low voltage batteries. That is because at voltages below 2 Vdc, LEDs will not light and the circuit would be unable to set a low-voltage ( $<2-\mathrm{V}$ ) battery without the additional internal-battery voltage. A load resistor has also been included; it allows the battery under test to be connected to a load to give a better indication of its condition. That load resistor is connected across the battery when normally open (NO) switch S 2 is depressed.

## CAR BATTERY TESTER FOR CRANKING AMPS



ELECTRONICS NOW
F/G. 10-2

This circuit determines the cold cranking amps of a battery by first discharging the surface charge, then checking the internal resistance. This gives a more realistic measurement than simply measuring the instantaneous drop in voltage with a load. A constant-current source draws 2.5 A. Then, after one minute, a voltage drop measurement is made under load.

## SUPPLY VOLTAGE MONITOR



When supply voltage exceeds a preset level, the 555 oscillates, and flashes LEDI. The flash rate is controlled by varying C3.

FIG. 10-3

## BATTERY WATCHDOG



## 73 AMATEUR RADIO TODAY

FIG. 10-4
This circuit uses a pair of Zener diodes to monitor battery voltage of a 12 V battery. If below 11 $\cdot V, \mathrm{D} 1$ ceases to conduct, pin 3 of IC 2 goes high, setting FF IC2 turning on Q1, K1, and the battery charger. At excess of $14-\mathrm{V}$ battery voltage (full charge), D2 conducts, resetting FF IC2, and cutting off the battery charger.

BATTERY TEST CIRCUIT


## ELECTRONIC DESIGN

FIG. 10-5

Using this circuit, three levels of voltage can be displayed-normal ( 11 to 15 V ), high ( $>15 \mathrm{~V}$ ), and low ( $<11 \mathrm{~V}$ ). When the voltage is low, the LED glows steadily. In the normal range, the LED is off. When the voltage is high, the LED blinks at a $1-\mathrm{Hz}$ rate. This circuit is useful for assuring proper electrical system operation.

## BATTERY VOLTAGE MONITOR



When battery voltage goes low, pin 4 of U1 goes high as Q1 fails to conduct. This activates oscillator U1 and generates audio tone. R5 sets level at which the circuit activates.

FIG. 10-6

## BATTERY SAVER CIRCUIT



POPULAR ELECTRONICS
FIG. 10-7
This battery saver circuit can automatically turn off a small piece of test equipment after a desired period of time, allowing you to leave your shop worry free.

This circuit uses a CD4011 IC to act as a simple timer. One section acts as an RC discharge timer (pin 7). This causes its output to go low, holding the three other outputs high acting as a $9-\mathrm{V}$ source. After $\mathrm{Cl} / \mathrm{Rl}$ discharges approximately 10 minutes, the output drops to zero. Sl resets the circuit.

## 0-2-A BATTERY CURRENT MONITOR WITH DIGITAL OUTPUT



## LINEAR TECHNOLOGY

FIG. 10-8
IC devices by Linear Technology make up this current monitor circuit. Drain is only 70 7 A from a 3- to 6-V battery.

## CAR BATTERY AND ALTERNATOR MONITOR



| L1 | Red LED |
| :--- | :--- |
| L2 | Green LED |
| P1 | $2.5-\mathrm{k} \Omega$ trimmer resistor |
| Q1-Q4 | $2 N 3904$ transistor |
| R1 | $100-\mathrm{k} \Omega$ resistor |
| R2, R3 | $33-\mathrm{k} \Omega$ resistor |
| R4, R5 | $470-\Omega$ resistor |
| Misc. | PC board, wire |

FIG. 10-9

The monitor is a simple voltage comparator in which a car battery serves as the battery for operation. The input voltage to the comparator is set by adjustment potentiometer P1, which must be adjusted so that the green LED L2 is on when the alternator is operating properly and red LED1 is on when the alternator is inoperative.

The circuit operates as follows: When the alternator operates properly, the battery voltage is higher and P1 is set so that transistor Q1 causes Q2 to be off. That results in Q3 and Q4 being fully on, thus applying current to green LED L2. If the battery voltage is lowered (alternator moperative), transistor Q1 is turned off. That allows transistor Q2 to turn fully on, applying current to red LED L1, indicating trouble. Once Q2 is on, it causes Q3 and Q4 to go out of conduction.

## RELAY FUSE FOR BATTERY CHARGES



Charged capacitor C3 and momentary pushbutton switch S2 are used to momentarily energize relay RE2. The battery under charge energizes the relay to hold it closed. S2 will energize the relay even if the battery is too far discharged initially to energize it.

## BARGRAPH LED BATTERY TESTER



ELEKTOR ELECTRONICS USA
FIG. 10-11

The LM3914A bargraph LED is used here as a voltmeter for battery testing. The circuit is powered by a $4.5-V$ battery and compares the battery under test with an internally derived reference, sct by R1/R2/P1. Each LED of the 10 represent $10 \%$ of full scale. For best results, the battery (D.U.T.) should be loaded with an appropriate resistor.

## 11

## Buffer Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Buffer/Amplifiers<br>High Current Buffer<br>VFO Buffer Amplifier<br>MOSFET Buffer Amplifier<br>3-V Rail-to-Rail Single-Supply Buffer<br>Simple Video Buffcr<br>Low-Offset Simple Video Buffer

## BUFFER/AMPLIFIERS



FIG. 11-1

These two buffer/amplifiers that have been successfully used with VFOs: one (shown in A) is based on a pair of bipolar npn transistors, and the other (shown in B) is built around a dual-gate MOSFET.

## HIGH CURRENT BUFFER



By parallel connecting all six gates of this 4049 hex inverting buffer, you can obtain a much higher output current than would otherwise be available.

POPULAR ELECTRONICS
FIG. 11-2

## VFO BUFFER AMPLIFIER



POPULAR ELECTRONICS
FIG. 11-3

A two-transistor feedback pair provides broadband operation. The gain is approximately $R_{4} / R_{1}$.


POPULAR ELECTRONICS
FIG. 11-4
A MOSFET is used as a wideband buffer amplifier. T1 is wound on a toroid of approximately $1 / 2 /$ diameter, with material suitable for frequency (usually 1 - to $20-\mathrm{MHz}$ range). The turns ratio should be about $4: 1$ depending on load impedance. Typically, at 4 MHz , there are 18 turns on the primary, 4 turns on the secondary, and the stage gain is about $14-\mathrm{dB}$ voltage $\left(Z_{L}=50 \Omega\right)$.


ELECTRONICS NOW
FIG. 11-6

This simple emitter follower can be used as a video buffer.

## 3-V RAIL-TO-RAIL SINGLE-SUPPLY BUFFER



NATIONAL SEMICONDUCTOR
FIG. 11-5

The LMC6484 provides a 3-V p-p rail-to-rail buffer with a $+3-\mathrm{V}$ supply commonly used for logic systems.

## LOW-OFFSET SIMPLE VIDEO BUFFER



WILLIAM SHEETS
FIG. 11-7
This circuit has proved to be an effective video buffer and will easily drive a $75-\Omega$ load to $1.5-\mathrm{V}$ p-p output. BW is better than 20 MHz and there is less than $0.05-\mathrm{V}$ de offset, which is the difference in $V_{B E}$ of Q1 and Q2. The supply lines should be well bypassed, $\pm 5 \mathrm{~V}$ or more.

## 12

## Carrier-Current Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Carrier-Current Baby-Alert Transmitter
Carrier-Current Baby-Alert Receiver

CARRIER-CURRENT BABY-ALERT TRANSMITTER


1993 ELECTRONICS HOBBYIST HANDBOOK
FIG. 12-1
The baby-alert transmitter is built around an LM324 quad op amp (U1), two LMC555CM CMOS oscillator/timers (U2 and U3), and a few support components. The transmitter sends a signal on receipt of a sound at MIC1. It has a frequency of around 125 kHz and can be used to trigger an alarm receiver.

## CARRIER-CURRENT BABY-ALERT RECEIVER



1993 ELECTRONICS HOBEYIST HANDBOOK
FIG. 12-2

The baby-alert receiver is comprised of three transistors: $Q 2$, which is configured as a high-gain linear amplifier; Q3, which serves as both an amplifier and detector; and Q4, which is essentially used as a switch; and a few additional components. It sounds an alarm BZ 1 on receipt of a $125-\mathrm{kHz}$ signal from an alarm transmitter via the $120-\mathrm{V}$ power lines.

## 13

## Clock Circuit

The source of the following circuit is contained in the sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

Binary Clock

## BINARY CLOCK



## 1992 PE HOBBYIST HANDBOOK

This circuit is an unusual clock in that the LEDs are bi-color red/green displays that indicate the time in binary coded decimal form.

LEDs 21 through 24 read out seconds
LEDS 5, 18, 19, and 20 read out 105 seconds
LEDS 14 through 17 read out in minutes


FIG. 13-1

LEDs 4, 11, 12, and 13 read out in 105 minutes
LEDs 7 through 10 read out the hours
LEDs $1,2,3$, and 6 read out tens of hours
The $60-\mathrm{Hz}$ line is used as a timebase.

## 14

## Code Practice Circuits

The source of the following circuits are contained in the sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Code Practice Oscillator Uses Optoisolator Electronic CW "Bug" Keyer<br>QRP Sidetone Generator/Code Practice Oscillator<br>Morse Practice Oscillator<br>Code Practice Oscillator<br>Variable Frequency Code Practice Oscillator<br>Single-Transistor Code Practice Oscillator

## CODE PRACTICE OSCILLATOR USES OPTOISOLATOR



B
POPULAR ELECTRONICS
FIG. 14-1

A slotted-pair isolator (A) is effectively an enclosed-pair isolator with a slit that will allow an obstacle to interrupt the light path. That could be useful for building a code key (B).


73 AMATEUR RADIO TODAY
FIG. 14-2
This keyer uses skin conductivity to simulate the old-fashioned mechanical CW bug keyer. When the "dit" paddle is touched the bias on the inverter, IC1-a is shunted to ground, and it produces a logic high, causing oscillator sections C\&D to generate a low-frequency square wave keying Q1 for a series of "dits." When the "dah" paddle is touched, section b produces a logic high, driving keyer Q1 on.

ORP SIDETONE GENERATOR/CODE PRACTICE OSCILLATOR


73 AMATEUR RADIO TODAY
FIG. 14-3

For use with low-power transmitters with a positive keying voltage. Q1/Q2/Q3 form a switching amplifier. When the key is pressed, the collector of Q3 goes to ground, turning on Q5 and activating IC1, an audio oscillator. Q4 drives the speaker. For use as a code practice oscillator, insert P1 and J1 and a key in J2.


FIG. 14-4
POPULAR ELECTRONICS

A 555 timer configurcd as an astable multivibrator is used in this circuil to generate an audio notc. Cl can be changed to vary the audio note as desired.

## VARIABLE FREQUENCY CODE PRACTICE OSCILLATOR


popular electronics
FIG. 14-6

The variable frequency audio oscillator can be used as a low-level alarm sounder or a codepractice oscillator.


WILLIAM SHEETS
FIG. 14-5
The tone and volume of the sound produced when the telegraph key is depressed can be varied in this code practice oscillator.

SINGLE-TRANSISTOR CODE PRACTICE OSCILLATOR

popular electronics
FIG. 14-7
A 2 N366 is configured as an audio feedback oscillator using an audio transformer is shown. Adjusl R1 for proper operation and desired audio note.

## 15

## Color Organ Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

## 3-Channel Color Organ

## 3-CHANNEL COLOR ORGAN



1991 PE HOBBYIST HANDBOOK
FIG. 15-1

The ac line power is brought back into the circuit through F1, a protective 5-A fuse. One side of the ac line is connected to one side of each ac outlet. The olher side of the ac line is connected to each SCR or silicon-controlled rectifier. Each SCR is, in turn, connected to the other side of each ac outlet.

An audio signal is brought into the circuil from a stereo speaker by transformer T 1 . This transformer has $500-\Omega$ impedance on the primary and $8-\Omega$ impedance on its secondary. Connect T 1 so that the $8-\Omega$ side is connected to the speaker and the $500-\Omega$ side is connected to potentiometer P1.

Potentiometer P1 is used as a lovel or sensitivity control. The signal from its wiper lead is applied to each RC filter stage. Because each SCR has a different RC (resistor/capacitor) filter on its gate lead, each will respond to different frequencies. The greater the capacitance in the filter, the lower the frequency that the SCR will respond to.

## 16

## Computer Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Printer Sentry
PC Password Protection
Buffer I 2 C Data and Clock Lincs


FIG. 16-1

## PRINTER SENTRY (Cont.)



TABLE 1—PIN CORRESPONDENCE

| DB-25 <br> Connector | Centronics- <br> Styla <br> Connector |
| :---: | :---: |
| 1 | 1 |
| 10 | 10 |
| 11 | 11 |
| 12 | 12 |
| 13 | 13 |
| 14 | 14 |
| 15 | 32 |
| 16 | 31 |
| 17 | 36 |
| 18 | 19 |

Handy for monitoring printers, this circuit displays all the signals on a parallel link. It monitors the status of the lines, enabling remote monitoring of the operation of a printer, and it also gives an indication of troubles (paper empty, busy, etc.).

## PC PASSWORD PROTECTION



ELECTRONICS NOW
FIG. 16-2

With this circuit, a PC will be protected, requiring a password to boot. After three times, the computer will have to have a cold reboot and the password tried again. Software for this system is available-consult the reference for further details.

## BUFFER $1^{2}$ C DATA AND CLOCK LINES



B

FIG. 16-3

The $\mathrm{I}^{2} \mathrm{C}$ serial bus is a popular two-wire bus for small-area networks. $\mathrm{I}^{2} \mathrm{C}$ Clock and Data lines have open collector (or drain) outputs for each device on the network. Only a single pull-up resistor is needed. With this architecture, each device can "talk" on the network, rather than just "listen." In some circumstances, it might be desirable to buffer these lines to expand the network, which can sometimes be a tricky task. The obvious approach (Fig. 1) wont work because it latches in either the higher or lower state. A circuit for a noninventory nonlatching buffer is also shown.

The circuit is symmetrical about its center so that the input and output can be swapped. Q1 and Q8 are the output open collector drivers. Q2, Q3, Q6, and Q7 provide the nonlatching functions. The capacitors prevent switching glitches by ensuring the inhibit transistors turn off before the output transistors do.

Operation can be best explained by example: if the input is high, Q4 turns off, and the voltage across R8 goes to zero. This turns off Q1 and Q8. The output then goes high, which is the circuit's normal resting place. If the input is pulled low, $Q 4$ is turned on.

Diode D1 remains reverse-biased, preventing Q3 from turning off Q4. With Q4 on, current is supplied to both Q2 and Q1 to turn them on, but Q2 turns on first to keep Q1 off. This prevents the input from latching. Q4 also turns on Q8. D4 is now forward-biased, so Q6 turns on, and thus turns off Q5. With Q5 off, Q7 will not turn on. The output remains low. Fven with both the input and the output cxternally driven low, the circuit will not latch. The circuit, using the values shown in Fig. 2, reached a clock rate of 80 kHz with a VOH of 5.0 V and a VOL of 0.5 V .

## 17

## Control Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

6-Digit Coded ac Power Switch
VCR TV On/Off Control
Simple Power Down Circuit
Simple ac Voltage Control
Dual-Control Switch Uses ac Signals


ELEKTOR ELECTRONICS
FIG. 17-1

This switch uses four CD4013 BE dual flip-flops, an inverter, and an optoisolator to drive a triac. The circuit can switch 25 -A ac load current. A standard $4 \times 3$ telephone keyboard is used to enter a 6 -digit code. In case of a wrong code, a signal is available to activate an alarm. The disarming method is a secret reset button that can be any number on the keyboard.

## VCR TV ON/OFF CONTROL



1993 ELECTRONICS HOBEYISTS HANDBOOK
FIG. 17-2

This circuit senses the video from the VCR. When the VCR is turned on, video signal is amplified by U3A and B to drive Q1, activating K1. In this manner, it is not necessary to turn on and off two video devices every time. In many cases, this avoids the use of a cable box, the cable-ready VCR performing this function.


ELECTRONIC DESIGN
FIG. 17-3
This circuit adds a power-down function to analog I/O ports (for example, the AD7769 and AD7774). Moreover, the diodes ordinarily needed to protect the devices against power-supply missequencing can be climinated (see the figure).

In the circuit, MOSFETs Q1 and Q2 switch the $+5-$ and $+12-V$ supplies, respectively, in a sequence controlled by two cross-coupled CD 4001 CMOS NOR gates (UlC and U1D). The sequence in which power is applied is important: The controlled circuits may be damaged anytime $V_{C C}$ exceeds $V_{D D}+0.3 \mathrm{~V}$. Conscquently, the NOR gates must be powered from a $12-\mathrm{V}$ supply throughout the power-down sequence.

Bringing the power down control high ( +5 V ) applies power to the controlled circuit by turning on all MOSFETs. Specifically, raising the power down brings the output of U1C low, causing capacitor C1 to discharge VOL exponentially with time constant $R_{1} C_{1}$. As the voltage on Cl falls, two events occur. First, it puts a negative gate-source voltage on P-channel Q1, turning it on.

Second, it causes output gate U1D to go high. With the output of U1D high, capacitor C2 charges exponentially to VOH - about $12-\mathrm{V}$-applying a positive gate-source voltage to turn on Q2. In the power down mode, the Power Down control is brought low and the RC circuits and their delays work in reverse. Consequently, capacitor C2 discharges to the logic input of U1C before Cl can charge. Hence, Q2 turns off before Q1.

## SIMPLE ac VOLTAGE CONTROL



POPULAR ELECTRONICS

Lamp dimmers can be used for more than just. controlling lights. Just provide one with an ac line cord and a socket, and discover just how useful they can be.

## DUAL-CONTROL SWITCH USES ac SIGNALS



POPULAR ELECTRONICS
FIG. 17-5

The Dual-Control Switch uses two 6-10-Vac sources to trigger the circuit on and off; one source for each function.

## 18

## Converter Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675 . The figure number in the box of each circuit correlates to the entry in the Sources section.

One-Chip Crystal-Controlled Converter High-Performance Shortwave Converter 3-A dc-dc Converter Needs No Heatsink Simple WWV Converter for Auto Radios<br>Digital-to-Analog Converter<br>Temperature-to-Frequency Converter VLF Converter<br>$800-$ to $1000-\mathrm{MHz}$ Scanner Converter Crystal-Controlled Frequency<br>Converter Using MOSFET<br>Temperature-to-Digital Converter

Simple 2-m-6-m Transverter
Sine- to Square-Wave Converter
$439.25-\mathrm{MHz}$ ATV Downconverter
Sine-Wave-to-Square-Wave Converter
ATV Downconverter
28-Vdc to 5-Vdc Converter
Current-to-Voltage Converter
Temperature-Compensated One-Quadrant
Logarithmic Converter
$\mathrm{dc} / \mathrm{dc}$ Converter Circuit with 3.3-V
and 5-V Outputs

## ONE-CHIP CRYSTAL-CONTROLLED CONVERTER



B
FIG. 18-1

This circuit can work over a wide range of frequencies. XTAL 1 is a fundamental-frequency crystal. T1 and C1 are tuned to the imput frequency. An application of this circuit is a simple shortwave converter for AM radios, etc. A tuneable oscillator can also be used, as shown.

## HIGH-PERFORMANCE SHORTWAVE CONVERTER



1990 PE HOBBYIST HANDBOOK
FIG. 18-2
The NE602 chip, U 1 , contains oscillator and mixer stages. The mixer combines the oscillator signal with the input RF signal to produce signals whose frequencies are the sum and difference of the input frequencies. For example, an $8.5-\mathrm{MHz}$ oscillator and a $10-\mathrm{MHz}$ incoming signal will give output signals at $18.5 \mathrm{MHz}(10+8.5)$ and $1.5 \mathrm{MHz}(10-8.5)$. Recall that 1.5 MHz is 1500 kHz and an ordinary AM radio will tune to it.

The choice of crystal depends on what shortwave band you want to hear. The $9.5-$ to $10-\mathrm{MHz}$ band is less crowded and includes the time-signal station WWV. For that band, you'll need a crystal of 8.5 to 8.9 MHz . There is no standard microprocessor crystal in that range, but you can use an amateur radio crystal, have a crystal custom-made, or use a CB crystal.

Transformer T1 rejects signals that are outside the band you are interested in. Transformer Tl should pass signals from 9 to 11 MHz and attenuate all others.

The transformer, T 1 , used in the circuit is a $10.7-\mathrm{MHz}$ IF transformer salvaged from an FM radio. They are fairly easy to obtain new from parts stores and mail-order houses. Most $10.7-\mathrm{MHz}$ IF transformers will tune across the $9.5-$ to $10-\mathrm{MHz}$ band without modification; all you need to do is turn its tuning slug. To receive the $6.0-$ to $6.5-\mathrm{MHz}$ shortwave band, you'll have to add a $150-\mathrm{pF}$ capacitor.

Capacitors
C1 $\quad 150-\mathrm{pF}$, ceramic disc (see text)
$\mathrm{C} 232-\mathrm{pF}$, ceramic disc
C3, C5 220-pF, ceramic disc
C4 0.04 or $0.05-\mu \mathrm{F}$, ceramic dise
Additional Parts and Materials
U1 NE602N frequency-converter integrated circuit
D1 $\quad 6.2-\mathrm{V}, 0.4$ or $1-\mathrm{W}$ Zener diode
R1 $10,000-\Omega$ panel-mount potentiometer
$\mathrm{R2} 1000-\Omega, 1 / 4-\mathrm{W}, 5 \%$ resistor
I1, J2 RCA phono jack
S1 DPDT, toggle switch, panel mount
T1 $\quad 10.7-\mathrm{MHz}$ IF transformer (green color coded)
XTAL $1 \quad 8.5-\mathrm{MHz}$ crystal or CB channel-5 receiving crystal (see text)
XTAL $25.0-\mathrm{MHz}$ microprocessor crystal for $6-\mathrm{MHz}$ band

## 3-A dc-dc CONVERTER NEEDS NO HEATSINK



ELECTRONICS DESIGN
FIG. 18-3
This regulator delivers $90 \%$ efficiency at $12-\mathrm{V}$ input, $5-\mathrm{V}$ output. It uses an LT1158 and LT1431 by Lincar Technology, Inc. High efficiency is obtained by synchronously switching two power MOSFETs in a step-down switching regulator. The LT1431 voltage reference combines with the LT1158 half-bridge driver to form a constant off-time current mode loop.

SIMPLE WWV CONVERTER FOR AUTO RADIOS


POPULAP ELECTRONICS
FIG. 18-4

This simple frequency converter mixes the $15-\mathrm{MHz}$ WWV/WVH signal with a $16-\mathrm{MHz}$ signal from the LO to convert it down to 1 MHz so that it can be heard on AM-band receiver.

## DIGITAL-TO-ANALOG CONVERTER



## 1992 f-E EXPERIMENTERS HANDBOOK

FIG. 18-5
Figure $A$ is an $R / 2 R$ resistor ladder. Each switch that is closed increases the amount of current at $I_{\text {our }}$. A simple channel A/D converter is shown in Fig. B. The voltage reference (D2) is common to all channels, but the value of the dropping resistor (R9) varies as the number of DACs installed in the system. IC15 is a DAC0808 A/D converter chip. ICI6A is an op amp to interface the output current from the D/A convert to an analog voltage output.


## RADIO-ELECTRONICS

FIG. 18-6
In this circuit an LM34 or LM35 produces a frequency proportional to temperature. Reference current $(138 \mu \mathrm{~A})$ is set via R3. The output can be used to drive a display, frequency counter, or other indicating device for temperature readout.

## VLF CONVERTER



303 CIRCUITS
FIG. 18-7
This converter converts 10 kHz to 150 kHz to 4.01 to 4.15 MHz for use with a shortwave receiver for VLF reception. A $4-\mathrm{MHz}$ L. O. frequency is used. X1 can be a microprocessor XTAL or another suitable type. The antenna should be as long as possible.

## 800- TO 1000-MHz SCANNER CONVERTER



RADIO-ELECTRONICS
FIG. 18-8

This converter enables reception of 800 to 1000 MHz on any scanner covering the 40010500 MHz range. The converter can be set up to cover either 800 to 900 MHz or by readjustment 900 to 1000 MHz . Sensitivity is very high because of the GASFET front end. For best results, the scanner should be of a programmable variety. A completc kit is available from North Country Radio, P.O. Box 53, Wykagyl Station, NY 10804.

## CRYSTAL-CONTROLLED FREQUENCY CONVERTER USING MOSFET



POPULAR ELECTRONICS
FIG. 18-9

The second gate (G2) of a MOSFET can be used to incorporate a crystal oscillator into the same stage as a frequency mixer. Although old hat with tubes, this scheme is seldom seen in dual-gate MOSFET circuitry. L3, C3, and X1 form the crystal oscillator, and T2 is an IF output transformer. T1 and O 1 are tuned to the converter input frequency. This circuit should be useable up to 25 MHz or so, or higher with third-overtone crystals.

TEMPERATURE-TO-DIGITAL CONVERTER


NATIONAL SEMICONDUCTOR
FIG. 18-10

The devices shown from National Semiconductor are used in digital temperature circuit sensor LM35 and reference LM385 fced A-D converter ADC08031.

## SIMPLE 2-m-6-m TRANSVERTER



73 AMATEUR RADIO TODAY
FIG. 18-11
Using the bilateral properties of a balanced mixer this transverter will produce 6 -m output with 2 -minputs. Y1 is a $90-\mathrm{MHz}$ crystal. Note that the input on 2 m is 143 to 144 MHz for 53 to $54-\mathrm{MHz}$ output. This avoids possibility of extraneous 2-m reception during receive periods. If your radio will not transmit below 144 MHz , then use a 93 - or $94-\mathrm{MHz}$ crystal frequency.

## SINE- TO SQUARE-WAVE CONVERTER



This 555-based Schmitt trigger circuit is useful for creating clock pulses from analog signals since it readily converts sine waves into square waves.

FIG. 18-12


73 AMATEUR RADIO TODAY
FIG. 18-13
Most ATV (Amateur Television) transmitters transmit a DSB signal and commercial television stations use a VSB (Vestigial Sideband) signal. This fact is made use of in this converter to use the lower sideband. This results in less interference from repeaters that occupy the 440 - to $445-\mathrm{MHz}$ portion of the band. However, this approach might suffer from VHF image responses from channel 29, if that channel is active in your area.

## SINE-WAVE-TO-SQUARE-WAVE CONVERTER



This circuit turns a sine wave into a square wave. It is comprised of a single 2 -input NAND) Schmitt trigger that's configured as an inverter with a trigger level adjustment at, its input. As the imput voltage rises above the gate's trigger point, the output snaps to its alternate state, producing a square-wave output.

FIG. 18-14

## ATV DOWNCONVERTER



## ELECTRONICS NOW

FIG. 18-15

This RF converter converts amateur TV signals in the 420 - to $450-\mathrm{MHz}$ region to VHF channel 3 or 4 , allowing reception of those signals on a standard TV receiver. RF amplifier Q1 feeds mixer M1, and Q3 acts as an IF amplifier. Q2 is an oscillator operating around 378 MHz and is tuneable over about a $30-\mathrm{MHz}$ range. A complete kit is available from North Country Radio, P.O. Box 53, Wykagyl Station, NY 10804.

## 28-Vdc TO 5-Vdc CONVERTER



NATIONAL SEMICONDUCTOR
FIG. 18-16
The National Semiconductor LM1575-5.0 allows a very simple switching regulator, with $>80 \%$ efficiency, operating as a $5-\mathrm{V}$ source (@) 1 A from a +28 -V bus.

## CURRENT-TO-VOLTAGE CONVERTER



POPULAR ELECTRONICS
FIG. 18-17

## TEMPERATURE-COMPENSATED ONE-QUADRANT LOGARITHMIC CONVERTER



POPULAR ELECTRONICS
FIG. 18-18
A logarithmic converter used to produce an output voltage that is proportional to the logarithm of an input current is shown. $R_{S}$ is the input impedance of the input sonrce.

## dc/dc CONVERTER CIRCUIT WITH 3.3-V AND 5-V OUTPUTS



LINEAR TECHNOLOGY CORPORATION 199S
FIG. 18-19

Input voltages can range from 8 V to 30 V . The load range on the 5 V is 0.05 A to 5 A while the $3.3-\mathrm{V}$ load range is 0.1 A to 1 A . The circuit is self-protected under no-load conditions. Over all load and line conditions, including cross regulation, the $3.3-\mathrm{V}$ output varies from 3.25 V to 3.27 V . The $5-\mathrm{V}$ output varies from 4.8 l V to 5.19 V under the same conditions.

In a typical application to 0.5 A on the 3.3 V and 0.25 A on the 5 V , efficiency is typically $76 \%$. With an input voltage of 30 V and a full-load condition, the efficiency drops to $66^{\%} \%$. In normal operating regions, efficiency is always better than $70 \%$. The $5-\mathrm{V}$ ripple is less than 75 mV and the $3.3-\mathrm{V}$ ripple less than 50 mV over all line and load corditions.

## 19

## Counter Circuits

T
The sources of the following circuits are containcd in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

2-MHz Frequency Counter<br>$10-\mathrm{MHz}$ Frequency Counter

## 2-MHz FREQUENCY COUNTER



FIG. 19-1

## 2-MHz FREQUENCY COUNTER (Cont.)



1993 ELECTRONICS HOBBYIST HANDBOOK

This is a schematic and block diagram of a $2-\mathrm{MHz}$ frequency counter. It uses and LSI counter/display driver, LCD readout, and a few logic chips for timebase and timing pulse circuitry. Q2 and Q3 form a signal (input) amplifier.

The circuit contains a crystal oscillator built around U3-c and XTAL1, which provides the primary timing-reference signal. That signal is then divided twice to provide two additional timing references, giving the circuitry three selectable timing references. The ICM7224IPL is an integrated circuit that consists of the counter and display driver to drive the LCD. 004 display.

## 10-MHz FREQUENCY COUNTER



FIG. 19-2

The circuit consists of an ICM7208 seven-decade counter (U1), an ICM7207A oscillator controller (U2), and a CA3130 biFET op amp (U3). Integrated circuit UI counts input signals, decodes them to 7 -segment format, and outputs signals that are used to drive a 7 -digit display. Integrated circuit U2 provides the timing for UI, while U3 conditions the input signal to provide a suitable waveform for input to U1. The $5.24288-\mathrm{MHz}$ crystal frequency is divided by U 2 to produce a $1280-\mathrm{Hz}$ multiplexing signal at pin 12 of U 2 . That signal is input to U 1 at pin 16 and is used to scan the display digits in sequence. The cathodes of each digit are taken to ground several times each second, activating any segments of the digits whose anodes are high as the result of decoding by U1. The crystal frequency is further divided to produce a short "store" pulse at pin 2 of U2, followed (after about 0.4 $\mathrm{ms})$ by a short "reset" pulse at pin 14 of U 2 . The frequency of the pulses is determined by the state of U2 pin 11.

When pin 11 of U 2 is taken to ground through S 1 , the pulses occur every 2 seconds and cause U2 pin to go high for one second, which prevents additional input signals from entering UI. That causes the count latched in U1's internal counters to be transferred to the display.

Integrated circuit U2 pin 13 then goes low for one second, allowing a new count to be entered into the seven decade counters of U1. That cycle is repeated, continuously updating the display every two seconds.

When U2 pin 11 is taken to the positive supply rail ( +5 V ), the "store" and "reset" pulses occur at 0.2 -s intervals, resulting in a $0.1-\mathrm{s}$ count-period. Ten input pulses must be counted in order for a " 1 " to appear on the first digit, D1, so that the frequency being measured is obviously 10 times larger than the frequency that is shown on the display. In that mode, the decimal points are driven by M and visually indicate that the $0.1-\mathrm{s}$ count period is being used.

The display must have at least seven 7 -segment common-cathode multiplexed LED digits. Any common-cathode seven-segment display can be used; no particular display is specified.

## 20

## Crystal Oscillator and Test Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Low-Frequency Crystal Oscillator<br>Crystal Oscillator<br>Easy Crystal Impedance Checker<br>Hex Buffer Crystal Oscillator<br>Multi-Output Timebase<br>Crystal Activity Tester<br>$10-$ to $1-\mathrm{Hz}$ Timebase<br>Crystal Tester<br>Wide-Range Crystal Oscillator<br>Pierce Oscillator<br>Crystal-Controlled Hartley Oscillator

## LOW-FREQUENCY CRYSTAL OSCILLATOR



RF DESIGN
FIG. 20-1

Q1, Q2, and the associated circuitry form a modified astable multivibrator in which the loop gain is automatically adjusted to the threshold of oscillation by means of field effect transistor Q3. Q4 linearly amplifies the signal present at the collector of Q2 and isolates the oscillator section of the circuit from the output. This stage features wideband operation and delivers a clean $2.5-\mathrm{V}$ amplitude sine wave into a resistive load greater than or equal to $20 \mathrm{k} \Omega$. The stage comprising Q5 has a voltage gain of 1 and its sole purpose is to isolate the nonlinear effects of rectifier D1 from the output.

## CRYSTAL OSCILLATOR



WILLIAM SHEETS
The CMOS amplifier is biased into the linear region by resistor $\mathrm{R}_{\mathrm{B}}$. The pi-type crystal network (C1 and C2, and XTAL) provides the $180^{\circ}$ phase shift at the resonant frequency which causes the circuit to oscillate.


ELECTRONIC DESIGN
FIG. 20-3

On occasion, microprocessors/microcomputers and microprocessor crystals just aren't compatible with each other. Many microprocessor data sheets specify maximum values for a crystal's equivalent series resistance ( $\mathrm{R}_{\mathrm{S}}$ ) that aren't met by some crystals advertised for microprocessor/ microcomputer use. As a result, a crystal with an $R_{\mathcal{S}}$ value greater than the maximum specified for the chip might, cause problems, such as a balky or even inoperative clock oscillator.

To tackle this problem, a suspectcd crystal can be given a quick check for $R_{S}$ with a simple test setup that consists of a sweep generator, oscilloscope, and three resistors (see the figure). When the frequency source is brought to the crystal's frequency, output 2 will maximize. If it exceeds the amplitude of output 1, the crystal's $R_{s}$ value will be less than the $R_{s}$ reference resistor's value. If it doesn't exceed output 1's amplitude, the crystal's $R_{S}$ value is too large.

HEX BUFFER CRYSTAL OSCILLATOR


A 4049 single section acts as a crystal oscillator, driving another section as a buffer, leaving four sections for other use. Use a 32 - or $20-\mathrm{pF}$ parallel resonant fundamental crystal.

FIG. 20-4

## MULTI-OUTPUT TIMEBASE



## RADIO-ELECTRONICS

FIG. 20-5

A $1-\mathrm{MHz}$ oscillator drives a binary counter to produce pulse widths from 2 to $65,536 \mathrm{~ms} . V+$ is any CMOS suitable level ( 5 to 15 V , etc.).


73 AMATEUR RADIO TODAY
FIG. 20-6

This circuit will check a crystal for activity. Two sections of a 7400 act as an oscillator and its output is rectified and drives an npn transistor that switches an LED (Fig. A). In Fig. B, a meter replaces the LED.

## 10- TO 1-Hz TIMEBASE



73 AMATEUR RADIO TODAY
FIG. 20-7

This system uses an MM5369 IC to derive a $60-\mathrm{Hz}$ signal from a TV burst crystal ( 3579 MHz ). V8 and V9 produce a $10-\mathrm{Hz}$ and $1-\mathrm{Hz}$ signal from this $60-\mathrm{Hz}$ signal. Y1 can be any parallcl-mode $3.579-$ MHz crystal.

## CRYSTAL TESTER



73 AMATEUR RADIO TODAY
FIG. 20-8
Q1 acts as a Colpitts crystal oseillator, and if the crystal under test is operational, the RF signal is rectificd by D1 and D2, turning on Q2 and lighting indicator LED2. LED1 is a power indicator.

## WIDE-RANGE CRYSTAL OSCILLATOR



A circuit using one 7400 TTL IC can use crystals of the fundamental type, from 1 to about 13 MHz . Output is rich in harmonics, making this oscillator useful for calibrations and test applications.

## PIERCE OSCILLATOR



FIG. 20-10

This Pierce oscillator uses a fundamental-mode $65-\mathrm{MHz}$ crystal.

## CRYSTAL-CONTROLLED HARTLEY OSCILLATOR



FIG. 20-11

## 21

## Current-Source Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Current Source for Low-Resistance Measurements<br>Precision Positive Current Source<br>Bilateral Current Source<br>Precision Negative Current Source

## CURRENT SOURCE FOR LOW-RESISTANCE MEASUREMENTS



1993 ELECTRONICS HOEBYISTS HANDBOOK
FIG. 21-1
Uscful for low-resistance measurements, this 1-A current source will produce 1 A in unknown resistance $R_{x}$. For best results, $R_{x}$ should be less than 1 to $2 \Omega$, because only 3 V are available. U1 is a flyback converter to generate 9 V for U 2 .

## PRECISION POSITIVE CURRENT SOURCE



An LM4431 precision 2.5-V reference and an LMC6062 op amp to make a positive current source, from 1 mA to 10 mA .

## BILATERAL CURRENT SOURCE



POPULAR ELECTRONICS
FIG. 21-3

Using two op amps, this circuit produces current proportional to $V_{I N}$.

## PRECISION NEGATIVE CURRENT SOURCE



A National Semiconductor LM4431 reference and an LMC6062 op amp make up a negative current source. Current range is $1 \mu \mathrm{~A}$ to 1 mA .

FIG. 21-4

## 22

## Current Limiter and Control Circuits

The sources of the following circuits are contained in the sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Offset-Adjusting Current Source
Inrush Current Limiter


1. Though this setup can act as a cost-effective current source with an output accurate to $1 \%$, the voltage offset will turn on the current source even when $V_{c c}$ equals $V_{\text {in }}$.

A

2. Modifying the configuration of Flgure 1 can rectify the problem of the current source being turned on by the voltage offset. The addition of $\mathrm{R}_{7}$ allows an adjustment that guarantees turn-off for any op-amp offset specification.

B
FIG. 22-1
By carefully choosing components, you can create a cost effective circuit for a current source with an output that's accurate to $1 \%$ (Fig. A). $I_{\text {OIT }}$ (the current flowing from the collector of Q1) is $V_{C C}{ }^{-} V_{\text {IN }}$ (the voltage at the wiper of R3) divided by the value of $R_{2}$.

In some instances, it's important to be able to turn off the current source (within the limits of $I_{C E O}$ for Q1). Unfortunately, in about half of these cases, the offset voltage ( $V_{O S}$ ) of the op amp will turn the current source on even when $V_{C C}=V_{\mathrm{N}}$. That's because the offset voltage (when the noninverting input needs to be at a higher potential than the inverting input to get an output of 0 V from the op amp) is impressed across R2. This offset voltage forces Q1 to turn on enough to yield a collector current of $V_{O S}$ divided by $R_{2}$.

Figure B offers a fix for this predicament. The addition of R7 presents the emitter of Q2 with a Thevenin equivalent voltage and resistance represented by:

$$
\begin{gathered}
V_{T H}=\frac{V_{C C}\left(1-R_{5}\right)}{R_{5}+R_{7}} \\
R_{7 Y I}=\frac{R_{5} \times R_{7}}{R_{5}+R_{7}}
\end{gathered}
$$

The difference between $V_{C C}$ and $V_{T H}$ is $V_{C C}\left(R_{\overline{5}} / R_{5}+R_{7}\right)$. If $V_{C C}\left(R_{5} / R_{5}+R_{7}\right)$ is set equal to the maximum $V_{O S}$ spec for the op anp in question, the circuit is then guaranteed to turn off. This circuit has an output current of $V_{T H}-V_{I N}$ divided by $R_{T T}$.

The compromise of Fig. B does present another error term in the circuit. The term ( $V_{T H}-V_{T N}$ ) will have to be $2 \times V_{O S}$ to guarantee a current output for whole population of the op amp chosen. This error can be made arbitrarily small (but not zero) by increasing the voltage of D2 and $V_{C C}$ while raising the value of D 2 and $V_{C C}$ while also raising the value of the equivalent resistance $R_{T H}$.

## INRUSH CURRENT LIMITER



ELECTRONICS NOW
FIG. 22-2
Q1 is an npn Darlington and Q2 is a phip Darlington. MOV1 is a metal-oxide varistor and R8 is an NTC thermistor for limiting irrush current.

This circuit limits ac line current to a load. When a prodetormined interval has passed, RY1 shorts out thermistor or resistance $R B . R 4$ can be $150 \mathrm{k} \Omega$ if $R 9$ is not used. If power is removed, the circuit is ready for immediate rostart.

## 23

## Delay Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

Power-On Delay Circuit



| DELAY TIMES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Switches S $S_{1}$ |  |  |  | Time (s) |
| 1 | 2 | 3 | 4 |  |
| 0 | 0 | 0 | 0 | 0.0 |
| 0 | 0 | 0 | 1 | 5.1 |
| 0 | 0 | 1 | 0 | 10.2 |
| 0 | 0 | 1 | 1 | 15.4 |
| 0 | 1 | 0 | 0 | 20.5 |
| 0 | 1 | 0 | 1 | 25.6 |
| 0 | 1 | 1 | 0 | 30.7 |
| 0 | 1 | 1 | 1 | 35.8 |
| 1 | 0 | 0 | 0 | 41.0 |
| 1 | 0 | 0 | 1 | 46.1 |
| 1 | 0 | 1 | 0 | 51.2 |
| 1 | 0 | 1 | 1 | 56.3 |
| 1 | 1 | 0 | 0 | 61.4 |
| 1 | 1 | 0 | 1 | 66.6 |
| 1 | 1 | 1 | 0 | 71.7 |
| 1 | 1 | 1 | 1 | 76.8 |

ELEKTOR ELECTRONICS
FIG. 23-1

Using an IC to count ac mains pulses, the circuit produces 16 various delay times, where ac power is applied to a load after a preset interval.

## 24

## Detector, Demodulator, and Discriminator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Bug Detector<br>FM Demodulator<br>555 Missing Pulse Detector<br>Simple Full-Wave Envelope Detector<br>Open-Loop Peak Detector<br>Closed-Loop Peak Detector<br>Fast Pulse Detector<br>Air-Flow Detector<br>Negative Peak Detector<br>Low-Drift Peak Detector<br>$455-\mathrm{kHz}$ FM Demodulator

## BUG DETECTOR



1992 PE HOBBYIST HANDBOOK
FIG. 24-1
The circuit, built around a single integrated circuit (U1, an MC3403P quad op amp), three transistors (Q1-Q3), and a few support components, receives its input from the antenna (ANT1). The signal is fed through a high-pass filter, formed by C1, C2, and R1, which eliminates bothersome 60Hz pickup from any nearby power lines or line cords located in and around buildings and homes.

From the high-pass filter, the signal is applied to transistor Q1 (which provides a $10-\mathrm{dB}$ gain for frequencies in the 1 - to $2000-\mathrm{MHz}$ range) for amplification. Resistors R 2 , R 3 , and R 4 form the biasing network for Q1. The amplified signal is then ac coupled, via capacitor C 4 and resistor R 7 's (the sensitivity control) wiper, to the inverting input (pin 2) of U1-a. Op amp U1-a is configured as a very high gain amplifier. With no signal input from ANT1, the output of U1-a at pin 1 is near ground potential.

When a signal from the antenna is applied to the base of Q1, it turns on, producing a negative-going voltage at the cathode of D1. That voltage is applied to pin 1 of U1-a, which amplifies and inverts the signal, producing a positive-going output at pin 1 . Op amps U1-b and U1-c along with C8, R10 through R18, and Q2 are arranged to form a voltage-controlled oscillator (VCO) that operates over the audio-frequency range. As the output of U1-a increases, the frequency of the VCO increases. The VCO output, at pin 8 of U1-c, is fed to the input of U1-d, which is configured as a noninverting, unity-gain (buffer') amplifier. The output of U1-d is used to drive Q3, which, in turn, drives the output speaker.

## FM DEMODULATOR



ELECTRONICS NOW
FIG. 24-2

An LM311 comparator converts a small analog signal to a digital level for the DC4046 phase-locked loop, which is corfigured as a first-order FM demodulator. This demodulator works with a $50-\mathrm{kHz}$ FM modulated input signal. It has applications in FM light beam receivers or in remote control applications. Pin 1 of IC3 can be used to squelch the receiver if it is lifted from ground; if not desired, leave it grounded.


WILLIAM SHEETS
FIG. 24-3
This missing pulse detector can use an LED or relay output.

## SIMPLE FULL-WAVE ENVELOPE DETECTOR



## ELECTRONIC DESIGN

FIG. 24-4
Simple, yet sensitive, this amplifying full-wave detector circuit has an almost zero rectification threshold. It presents a highly linear RF load to the final IF stage. The gain for the collector output is given (approximately) by $r_{c} / r_{e}$ The emitter output gain is slightly less than unity.

## OPEN-LOOP PEAK DETECTOR



LINEAR TECHNOLOGY
FIG. 24-5

In this open-loop design, the detector diode is D1, and a level shifting or compensating diode is D2. Load resistor $R_{L}$ is connected to -5 V , and an identical bias resistor $R_{l}$, is connected to -5 V , and identical bias resistor $R_{B}$ is used to bias the compensating diode. Resistors with equal values ensure that the diode drops are equal. Low values of $R_{L}$ and $R_{B}(1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega)$ provide fast response, but at the expense of poor low-frequency accuracy. High valucs of $R_{L}$ and $R_{R}$ provide good low-frequency accuracy, but cause the amplifier to slew rate limit, resulting in poor high-frequency accuracy. A good compromise can be made by adding a feedback capacitor $C_{F B}$, which enhances the negative slew rate on the ( - ) input.

## CLOSED-LOOP PEAK DETECTOR



LINEAR TECHNOLOGY
FIG. 24-6

This closed-loop peak detector circuit uses a Schottky diode inside feedback loop to obtain good accuracy. The $20-\Omega$ resistance $R_{o}$ isolates the $0.01-\mu \mathrm{F}$ load and prevents oscillation. The de value is read with a DVM. At a low frequency, the error is small and dominated by the decay of the detector capacitor between cycles. As the frequency rises, the error increases because capacitor charging time decreases. During this time, the overdrive becomes a very small portion of a sinewave cycle. Finally, at approximately 4 MHz , the error rises rapidly because of the slew-rate limitation of the op amp.

## FAST PULSE DETECTOR



LINEAR TECHNOLOGY
FIG. 24-7

A fast pulse detector can be made with this circuit. A very fast input pulse will exceed the amplifier slew rate and cause a long overload recovery time. Some amount of $\mathrm{dv} / \mathrm{dt}$ limiting on the input can help this overload condition, however this will delay the response.

${ }^{2}$ SELF HEATING IS USED TO DETECT AIR FI OW

FIG. 24-8

Two precision temperature sensors are used to detect a small temperature difference. When air flow occurs, self-heating of the LM335 is reduced, and the output of the two temperature sensors is unequal. This is amplified by Ul.

## NEGATIVE PEAK DETECTOR



POPULAR ELECTRONICS
FIG. 24-9

## LOW-DRIFT PEAK DETECTOR



POPULAR ELECTRONICS
FIG. 24-10

## 455-kHz FM DEMODULATOR


*C3 IS REQUIRED TO ELIMINATE POSSIBLE OSCILLATION IN THE CONTROL CURFENT SOURCE

Free-rumning frequency of $V \mathrm{CO}: \int_{n^{s}}=1.2 / 4\left(h_{1}\right)\left(C_{1}\right)$

$$
\begin{aligned}
& \text { lock range } f_{1}= \pm 8 f_{0} / V_{C C} \\
& \text { capture range } f_{0}= \pm 1 / 2 \pi \sqrt{\frac{2 \pi F_{L}}{r}} \\
& \text { where } r=\left(3.6 \times 10^{3}\right)(C 2)
\end{aligned}
$$

Useful for NBFM reception on older shortwave receivers lacking this capability, this circuit uses a PLL IC, an N 565 N , to achieve this. It was originally used with an old Hammarlund HQ - 170 receiver, for both 6- and $10-\mathrm{m}$ FM reception.

## 25

## Digital Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Digital Entry Lock<br>Digital Audio Selector<br>Digital Multiple-Gang Potentiometer Control<br>Digital Rcsistance Control<br>Digital Capacitance Control<br>BCD Rotary Switch

## DIGITAL ENTRY LOCK



The LS7220 keytess lock (a phout of which is shown here) is a specialpurpose ic designed to accept a four-digit sade.


FIG. 25-1

A block pinout diagram of the LS7220 keyless-lock IC is shown. The keypad must provide each key with a contact to a common connection. In this case, the common connection goes to the positive supply rail so that when a key is pressed, a positive voltage is passed through to the wire associated with that key. Each of the 12 keys are brought out to separate wires, and each wire is connected to a different pin of a 24-pin socket ( $\mathrm{SO1}$ ).

To activate (unlock) the circuit, a preprogrammed four-digit access code must be entered in the proper sequence. The four-digit access code must be entered in the proper sequence. The four-digit access is programmed into the circuit by connecting jumpers between terminals of a 24 -pin plug-in header.

When the correct access code is entered (in the proper sequence), positive voltages appear at pins $3,4,5$, and 6 of Ul. That causes Ul to output a positive voltage at pin 13, which is fod through resistor R 2 to the base of Q1, causing it to conduct. With Q1 conducting, its collector is pulled to ground potential, energizing relay K1. The normally open relay contacts close, switching on any external device.

Capacitor C 2 controls the total time that the output of U 1 at pin 13 is positive after the release of the first key. With a value of $3.3 \mu \mathrm{~F}$ for C 2 , active time after release of the first key is about two seconds, assuming a $6-\mathrm{V}$ supply or four seconds with a $12-\mathrm{V}$ supply. Therefore, if you push the subsequent keys too slowly, the relay might not close at all! To increase the time allotted for code entry, you will have to increase the capacitance of C 2 .


303 CIRCUITS
FIG. 25-2
This circuit uses switched emitter followers, rather than the usual analog switch CMOS chips. This yields better reduction of crosstalk between channels. This circuit can handle up to $4 \mathrm{~V}_{\mathrm{rms}}$ with less than -80 -dB crosstalk.

DIGITAL MULTIPLE-GANG POTENTIOMETER CONTROL


WILLIAM SHEETS
FIG. 25-3

A 555 timer can be configured to simulate a multi-gang potentiometer by controlling the markspace ratio. The switching rate should be at least twice the maximum expected signal frequency the potentiometer has to handle.

## DIGITAL RESISTANCE CONTROL


$R=500 \Omega$ to $500 \mathrm{k} \Omega$
$P_{\text {total }}=0$ to 15R
A, B, C, D $=$ Logic input
1C - CD4016 or CD4066

WILLIAM SHEETS
FIG. 25-4

Digital resistance control is possible with bilateral switches. Do not forget that analog switches have "on" resistance.

## DIGITAL CAPACITANCE CONTROL

ICt - 4066B
Quad analog switch


Digital capacitance control is possible with bilateral switches. Do not forget to consider "ON" resistance of the analog switches.

## BCD ROTARY SWITCH



## ELEKTOR ELECTRONICS USA

FIG. 25-6

This circuit allows a simple rotary switch to emulate a BCD switch. The circuit draws about 200 mA . A 10-position rotary switch is used.

## 26

## Display Circuits

T
The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

4033 Display Circuitry Common Cathode<br>Cascaded 4026B Counter/Display Driver Circuit<br>Large LCD Display Buffering Driver<br>7-Segment LCD Driver<br>LED Display Leadirg-Zero Suppressor<br>7-Segment Common-Cathode LED Display Driver<br>7-Segment (LED) Display Driver<br>4543B 7-Segment LCD Driver<br>Gas Discharge Tube or Display Driver<br>4511B Common-Anode Display Driver<br>Fluorescent Tube Display Driver<br>4543B Comunon-Cathode LED Driver

## 4033 DISPLAY CIRCUITRY COMMON CATHODE



To drive two or more common-cathode displays two or more 4033 decode counters can be cascaded.

## CASCADED 4026B COUNTER/DISPLAY DRIVER CIRCUIT



## WILLIAM SHEETS

FIG. 26-2
Two or more 4026 B counters can be cascaded as shown to give a multiple-digit display. Two, three or more displays can thus be connected.

LARGE LCD DISPLAY BUFFERING DRIVER


ELECTRONIC DESIGN
FIG. 26-3
Large LCD devices of 1 " or more exhibit a large driving capacitance to the driver circuits. To solve this problem, the drive circuit shown (sce the figure) introduces a buffer amplifier for each of the three common lines. Each amplifier can be programmed independently for a quiescent current of 10,100 , or $1000 \mu \mathrm{~A}$. In this application, the bias network applies a voltage that sets the three quiescent currents to $100 \mu \mathrm{~A}$.

The display driver and triple op amp operate between 5 V and ground, and the COM signals range from 5 V to $\approx 1 \mathrm{~V}$. To ensure that these signals remain within the amplifiers' common-mode range, the signals are attenuated by one-half and the buffers operate at a gain of two. The circuit drives eight 1 -inch displays, and is suitable for ambient temperature variations of $15^{\circ} \mathrm{F}$ or less. At the highest expected temperature, R1 should be adjusted so that no "off" segments are visible.

## 7-SEGMENT LCD DRIVER

exclusive OR gates or equivalant


WILLIAM SHEETS
FIG. 26-4
This circuit shows how a 7448 IC is used to drive a 7 -segment LCD display. An external $50-\mathrm{Hz}$ square wave supplies necessary phase signals to the back plane of the display.

LED DISPLAY LEADING-ZERO SUPPRESSOR


The diagram shows how to connect 7447 type IC devices for leading-zero suppression in an LED display.

## 7-SEGMENT COMMON-CATHODE LED DISPLAY DRIVER



FIG. 26-6
WILLIAM SHEETS
A CD4511B CMOS LED display driver can be used to drive a common cathode LED display. Current limiting resistors limit the segment current to the rated value at maximum supply voltage. A sample calculation is shown.

## 7-SEGMENT (LED) DISPLAY DRIVER



An IC1 like a 7447 drives a 7 -segment common anode LED display. Current limiting resistor R should limit the segment current to the rated value at maximum supply voltage. A sarmple calculation is shown.

4543B 7-SEGMENT LCD DRIVER


The circuit shows a frequently-used method of driving an LCD display. A square-wave drive is necessary for this application.

## GAS DISCHARGE TUBE OR DISPLAY DRIVER



To drive the display, $R_{A}$ should provide a drive of about 1 mA to the gas discharge tube. $R_{B}$ is a current-lirniting resistor.

4511B COMMON-ANODE DISPLAY DRIVER


The use of a switching transistor (like a 2 N 2222 or 2 N 3904 ) allows use of the CD4511B with a common-anode display. $R_{3}$ should bc chosen to provide about 1 mA to drive Q 1 and $R$, should provide enough current to drive the display. For this circuit, the transistor gain $\left(H_{F E}\right)$ should be at least the ratio of the segment drive current to the current through $\mathrm{R}_{\mathrm{y}}$.

FIG. 26-10
FLUORESCENT TUBE DISPLAY DRIVER


RADIO-ELECTRONICS
FIG. 26-11


A fluorescent tube or display can be driven with a 4543B IC; as shown.

## 4543B COMMON-CATHODE LED DRIVER

This circuit shows a way of driving a com-mon-cathode display segment or an LED) with a CD4543B.

## 27

## Doorbell Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Electronic Doorbell
'Iwin Bell Circuit
Electronic Door Buzzer

ELECTRONIC DOORBELL


POPULAR ELECTRONICS
FIG. 27-1
When the doorbell switch is pressed, the two monostable stages are activated in sequence, applying bias to a pair of voltagecontrolled resistor stages. These then modulate the outputs from a pair of tone generators. The resulting signals are fed to an audio amplifier, then to the speaker.

## 303 CIRCUITS

TWIN BELL CIRCUIT


Tr1 $=$ bell transformer
FIG. 27-2
It is often desirable for a single doorbell to be opcrated by two buttons, for instance, one at the front door and the other at the back door.

The additional button, $S 2$ in series with the break contact, of relay Re 1 , is connected in parallel with the original bell-push, $S 1$. When $S 2$ is pressed, the bell voltage is rectified by D1 and smoothed by C1. After a time, $\mathrm{t}=R_{1} R_{2} C_{2}$, the direct voltage across C 2 has risen to a level here 'Tl switches on. Relay Re1 is then energized and its contact breaks the circuit of $S 2$ so that the bell stops ringing. After a short time, Cl and C 2 are discharged, the relay returns to its quiescent state and the bell rings again.

In this way, S1 will cause the bell to ring continuously, while S2 makes it ring in short bursts, so that it is immediately clear which button is pushed.

## ELECTRONIC DOOR BUZZER



This simple electronic door buzzer draws no quiescent current. When S1 is pressed the speaker produces a tone. The NE555 (U1) generates signal.

## 28

## Fax Circuit

The source of the following circuit is contained in the sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

Fax Mate

## FAX MATE



FIG. 1-BLOCK DIAGRAM for the Fax-Mate. The upper path is for data, and the lower one is the decode and control path.


FIG. 2-SCHEMATIC for the Fax-Mate. Notice how it closoly resembles the block diggram.

## FAX MATE(Cont.)

The fax mate separates the fax machine from the phone line, rings the fax machine on command, connects equipment to incoming lines, and senses the end of the message. When a touch tone pound signal (\#) is detected, it actuates a ring groater and driver for the fax machune (the \# signal is not used in ordinary dialing). The comect signal is inhibited for this time (ring cycle). 1 C 46 runs for 15 s and drives part of the connect IC. Then the fax or modem has fired up and is sending out a handshake tone. IC6 connects the equipment for initial hookup and keeps the connect section powered. When the fax machine hangs up, the loop current detector turns off, and resets the system.

## 29

## Field-Strength Meter Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Remote Ficld Strength Meter Amplified Field Strength Meter Simple Amplified Field Strength Meter<br>Simple Field Strenggth Meter I<br>Siruple Field Strength Meter II

## REMOTE FIELD STRENGTH METER



## 73 AMATEUR RADIO TODAY

FIG. 29-1
This field strength meter consists of a tuned crystal detector producing a de output voltage from a transmitted signal. The de voltage is used to shift the frequency of a transmitter of $100-\mathrm{mW}$ power operating at 1650 kHz . The frequency shift is proportional to the received field strength. This unit has a range of several hundred feet and is operated under FCC part 15 rules (100-mW max power into a 2 -m-long antema between 510 and 1705 kHz ).

AMPLIFIED FIELD STRENGTH METER


73 AMATEUR RADIO TODAY
FIG. 29-2
FET Q1 acts as an RF amplifier to boost sensitivity of the usual diode detector field strength meter.

## SIMPLE AMPLIFIED FIELD STRENGTH METER



This circuit uses a FET as a do amplifier in a bridge circuit. R4 is set for meter null with Jl short circuited. Any surplus $50-\mathrm{mA}$ meter can serve in this circuit. RFCl is any suitable RF choke for the band in use. A $2.5-\mathrm{mH}$ RF choke will do for broadband operation, R1 is a sensitivity control. The antenra can be any small whip antenna ( 2 ft or less).

FIG. 29-3

## SIMPLE FIELD STRENGTH METER I



Useful for checking transmitters and antennas, this circuit uses a voltage-doubling detector D1 and D2 (HP 5082-2800 hot carrier types). D1 and D2 can also be type IN34 or IN82. M is a 100mA metcr movement.

FIG. 29-4

## SIMPLE FIELD STRENGTH METER II



POPULAR ELECTRONICS

This simple field-strength meter provides a cheap way to monitor an amateur radio or CB transmitter (or even an antenna system) for maximum output.

## 30

## Filter Circuits

TThe sources of the following circuits are contained in the Sources section, which begins on page 675 . The figure number in the box of each circuit correlates to the entry in the Sources section.

Active Low-Pass Filter
High Q Notch Filter
Universal Stale Variable Filter
Adjustable Q Notch Filter
Fourth Order High-Pass Butterworth Filter
Tunable Notch Filter
High Q Bandpass Filter
Simulated Inductor
Bandpass Filter
Fourth Order Low-Pass Butterworth Filter
Active High-Pass Filter
$400-\mathrm{Hz}$ Low-Pass Butterworth Filter
Bandpass Filter
Active Low-Pass RC Filter
Passive L Filter Configurations
Passive Pi Filter Configurations
Four-Output Filter
Variable Q Filter for 400 Hz
Twin T Notch Filter for 1 kHz
Variable Bandpass Audio Filter
Active Fourth-Order Low-Pass Filter

Audio Notch Filter for Shortwave Receivers
Active Second-Order Bandpass Filter
Variable-Frequency Audio BP Filter
Variable Low-Pass Filter
Variable High-Pass Filter
$1-\mathrm{mV}$ Offset, Clock-Tunable, Monolithic 5-Pole Low-Pass Filter Unity-Gain Second-Order High-Pass Filter Active Unity-Gain Second-Order Low-Pass Filter Active Fourth-Order High-Pass Filter for 50 Hz Simple High-Pass (HP) Active Filter for. 1 kHz Equal Second-Order HP Filter
Second-Order Low-Pass Filter for 10 kHz
Simple Low-Pass (LP) Active Filter for 1 kHz
Current-Driven Sallen Key Filter
$455-\mathrm{kHz}$ Narrow-Band IF Filter
Audio-Range Filter
BI-Quad RC Bandpass Filter
Passive T Filter Configurations
Full-Wave Rectifier/Averaging Filter
$1-\mathrm{kHz}$ Tone Filter

ACTIVE LOW-PASS FILTER


POPULAR ELECTRONICS FIG. 30-1

HIGH Q NOTCH FILTER


FIG. 30-2

UNIVERSAL STALE VARIABLE FILTER


POPULAR ELECTRONICS
FIG. 30-3



## BANDPASS FILTER



POPULAR ELECTRONICS
FIG. 30-8
popular electronics
FIG. 30-9

FOURTH ORDER LOW-PASS BUTTERWORTH FILTER

## ACTIVE HIGH-PASS FILTER



POPULAR ELECTRONICS
FIG. 30-10 POPULAR ELECTRONICS
FIG. 30-11

## 400-Hz LOW-PASS BUTTERWORTH FILTER



POPULAR ELECTRONICS
FIG. 30-12
Designed for a $400-\mathrm{Hz}$ cutoff frequency, the cutoff can be scaled by varying the element values proportionally to frequency

BANDPASS FILTER


POPULAR ELECTRONICS
Appropriate center frequency of this circuit is:

$$
\begin{gathered}
\frac{1}{R_{4} C_{2}} \\
C_{1}=C 2, R_{1}=R_{4}
\end{gathered}
$$

PASSIVE L FILTER CONFIGURATIONS


POPULAR ELECTRONICS


FIG. 30-15

ACTIVE LOW-PASS RC FILTER


POPULAR ELECTRONICS
FIG. 30-14

The circuit shown has a cutoff frequency at about $1 \mathrm{kHz} . \mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 can be scaled to change this to any other desired frequency.

PASSIVE PI FILTER CONFIGURATIONS


POPULAR ELECTRONICS


FIG. 30-16

## FOUR-OUTPUT FILTER



B

## ELECTRONIC DESIGN

FIG. 30-17

The classic "state-variable" (two-integrator) filter (see Fig. A) is famous for its insensitivity to device parameter tolerances, as well as its ability to provide three simultaneous separate outputs: high pass, bandpass, and low pass. These advantages often offset the fact that a quad operational amplifier is needed to implement the circuit.

A modification of the classic scheme that applies the input voltage via amplifier $U_{D}$, rather than $\mathrm{U}_{\mathrm{A}}$ provides a bandpass output with a fixed peak gain that docsn't depend on the $Q$ of the filter. It was found by using that configuration, a fourth notch-filter output can be obtained if $R_{1}=R_{6}$ (see Fig. B).

If $R_{1}=R_{6}=R_{2}$, the gains of both the notch and bandpass outputs are unity, regardless of the $Q$ factor, as determined by $\mathrm{R} 3, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 4, \mathrm{R} 5$, and R 6 . The resonant (or cutoff) frequency is given by $\omega_{1}-1 / \mathrm{R}_{0} \times \mathrm{C}_{0}$. Depending on the capacitor values and frequency $\omega$, resistance $R_{0}$ might also share the same monolithic network for maximurn space economy. As with the classic configuration, resonant frequency $\omega$ can be electrically controlled by switching resistors $R_{o}$, or by using analog rultipliers in series with the integrators.

VARIABLE Q FILTER FOR 400 Hz


WILLIAM SHEETS
FIG. 30-18

A bootstrapped twin $T$ notch filter in this circuit can yield an effective $Q$ of up to $10 . R_{S}$ adjusts the feedback, hence the $Q$. Values of $C_{1}$ and $C_{2}$ can be changed to alter the frequency. $R_{F}$ is a finetune null control.

TWIN T NOTCH FILTER FOR $\mathbf{1} \mathbf{k H z}$


WILLIAM SHEETS
FIG. 30-19

The circuit shown uses a twin $T$ notch filter and an amplifier. Used to remove unwanted frequency.

## VARIABLE BANDPASS AUDIO FILTER



ELECTRONICS NOW
FIG. 30-20

This circuit is a variable audio bandpass filter that has a low cutoff variable from about 25 Hz to 700 Hz and a high cutoff variable from 2.5 kHz to over 20 kHz . Rolloff is $12 \mathrm{~dB} /$ octave on both high and low ends. R2-a-b and R6-a-b are ganged potentiometers for setting lower and upper cutoff frequencies, respectively.

## ACTIVE FOURTH-ORDER LOW-PASS FILTER



IC1 $\mathrm{a}, \mathrm{b}$ op amp $=$ LM1458
WILLIAM SHEETS
FIG. 30-21

This circuit is a fourth-order low-pass filter with values for kHz . The values of $R_{1}, R_{2}, C_{1}$ and $C_{2}$, and $R_{3}, R_{4}, C_{3}$ and $C_{4}$ can be scaled for operation at other frequencies. Roll-off is $24 \mathrm{~dB} /$ octave.


POPULAR ELECTRONICS
FIG. 30-22

The notch filter can be added to just about any receiver to atteruate a single frequency by more than 30 dB . This filter should be handy for reducing heterodynes and whistles.

ACTIVE SECOND-ORDER BANDPASS FILTER FOR SPEECH RANGE


WILLIAM SHEETS
FIG. 30-23

This filter circuit which uses LM1458 or similar op amp has a response of 300 Hz to 3.4 kHz with $12 \mathrm{~dB} /$ octave roll-off outside the pass band. Section $A$ is the high-pass one, followed by low-pass section B. Values of either section can be scaled to alter the pass band.


A


The fither can be wired mot an existing amplifier by insermig the filier circun betaecn the ump's preamp und oupur stages as shoman here.

FIG. 30-24

This variable-frequency, audio bandpass filter is built around two 741 op amps that are connected in cascade. Two 741 op amps are configured as identical RC active filters and are connocted in cascade for better selectivity. The filter's tuning range is from 500 Hz to 1500 Hz . The overall voltage gain is slightly greater than 1 and the filter's is about 5 . The circuit can handle input signals of 4 V peak-to-peak without being overdriven. The circuit's input impedance is over $200 \mathrm{k} \Omega$ and its output impedance is less than $1 \mathrm{k} \Omega$.


WILLIAM SHEETS
FIG. 30-25

This second-order low-pass filter uses a 741 op amp and is tuneable from 2.5 kHz to 25 kHz . This circuit is useful in audio and tone control applications. R1 and 2 are ganged potentiometers.


The LTC1063 is the first monolithic low-pass filter that simultaneously offers outstanding dc and ac performance. It features internal or external clock tumability, cutoff frequencies up to $50 \mathrm{kHz}, 1-\mathrm{mV}$ typical output de offset, and a dynamic range in excess of 12 bits for over a decade of input voltage.

The LTC1063 approximates a 5-pole Butterworth low-pass filter. The unique internal architecture of the filter allows outstanding amplitude matching from device to device. Typical matching ranges from 0.01 dB at $25 \%$ of the filter passband to 0.05 dB at $50 \%$ of the filter passband.

An internal or external clock programs the filter's cutoff frequency. The clock-to-cutoff frequency ratio is 100:1. In the absence of an extemal clock, the LTC1063's internal precision oscillator can be used. An external resistor and capacitor set the device's internal clock frequency.

LINEAR TECHNOLOGY CORP.
FIG. 30-27

## UNITY-GAIN SECOND-ORDER HIGH-PASS FILTER



WILLIAM SHEETS
FIG. 30-28

This filter circuit has a cutoff frequency of 2900 Hz with the values shown.

$$
\begin{gathered}
f_{\text {cutorf }}=\frac{1}{2.83 \pi R C} \\
R=R_{1} \\
R_{2}=2 R_{1} \\
C=C_{1}=\mathrm{C}_{2}
\end{gathered}
$$

## ACTIVE UNITY-GAIN SECOND-ORDER LOW-PASS FILTER



FIG. 30-29
This second-order Butterworth filter cuts off near 10 kHz . The values of $C_{1}$ and $C_{2}$ can be changed to alter the frequency, or else calculated from the formula.

$$
\begin{aligned}
f_{\text {cutoff }} & =\frac{1}{2.83 \pi R C} \\
C_{1} & =2 C_{2} \\
R_{2} & =R_{3}=R
\end{aligned}
$$

## ACTIVE FOURTH-ORDER HIGH-PASS FILTER FOR 50 Hz



This circuit which uses an LM1458 or similar op amp is a fourth-order high-pass filter with a 24 $\mathrm{dB} /$ octave roll-off. The values of $R_{1} / R_{2}, R_{3} / R_{4}$, $C_{1} / C_{2}, C_{3} / C_{4}$ can be scaled to suit other cutoff frequencies.

WILLIAM SHEETS
FIG. 30-30

SIMPLE HIGH-PASS (HP) ACTIVE FILTER FOR $1 \mathbf{k H z}$


WILLIAM SHEETS
FIG. 30-31
This simple 1 kHz filter uses a voltage follower and an RC section for a filter element. For other frequancies $f_{3} \mathrm{~dB}-1 / 6.28 R_{1} C_{1}$. The response drops $6 \mathrm{~dB} /$ octave below $f_{3} \mathrm{~dB}$.

## SECOND-ORDER LOW-PASS FILTER FOR 10 kHz



WILLIAM SHEETS
FJG. 30-33
This circuit uses equal value capacitors. The cutoff frequency $\left(f_{c}\right)$ is

$$
f_{c}=\frac{1}{2.83 \pi R C}
$$

## EQUAL COMPONENTS SECOND-ORDER HP FILTER



WILLIAM SHEETS
FIG. 30-32
This filter circuit uses equal value components and is shown for 1500 Hz . The values can be scaled for other frequencies.

$$
\begin{gathered}
f_{\text {cutoff }}=\frac{1}{2.83 \pi R C} \\
R=R_{1} \\
R_{2}=2 R_{1} \\
C=C_{1}=\mathrm{C}_{2}
\end{gathered}
$$

SIMPLE LOW-PASS
(LP) ACTIVE FILTER FOR $1 \mathbf{k H z}$


IC1 1/2 LM1458 or gerreral-purposa op amp

FIG. 30-34
This simple filter uses an RC section for a filter element, with a voltage follower for other frequencies $f_{3} \mathrm{~dB}=1 / 6.28 R_{1} C_{1}$. Response drops 6 $\mathrm{dB} /$ octave above $f_{3} \mathrm{~dB}$.

## CURRENT-DRIVEN SALLEN KEY FILTER



ELECTRONIC DESIGN
FIG. 30-35

The low-pass Sallen-Key filter is staple for designers because it contains few components (A). By redesigning the filter, a current to voltage conversion can be avoided when the input signal to be filtered is in current form (B).

## 455-kHz NARROW-BAND IF FILTER



86442-1
303 CIRCUITS
FIG. 30-36

This filter uses five $455-\mathrm{kHz}$ ceramic resonators. The impedance is $330 \Omega$, the bandwidth is 800 Hz , and the ultimate rejection $\geq 60 \mathrm{~dB}$. The ceramic resonators could be replaced by crystals.

AUDIO-RANGE FILTER


NATIONAL SEMICONDUCTOR
FIG. 30-37

The LMF380 switched audio filter by National Semiconductor is used here to obtain a third-octave filter set that covers the entire audio range.


## FULL-WAVE RECTIFIER/AVERAGING FILTER



POPULAR ELECTRONICS
FIG. 30-40

The input signal is rectified by D1 and D2 op amp U1-a, and fed to output amp U2. R8 is set for correct circuit calibration.

## 1-kHz TONE FILTER



The Wien-bridge based filter has a variable bandwidth and a center frequency of 900 Hz . The circuil will oscillate if the $10-\mathrm{k} \Omega$ pot is set too low.
(A) - Most any IC op amp LM1458, LM324, etc.

## 31

## Flasher Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Sequential Flasher<br>36 LED Flasher Driver<br>LED Flashers<br>Dark-Activated LED Flasher<br>Super LED Flasher<br>LED Flasher for 2 tol0 LEDs<br>Flash Signal Alarm<br>LED Christmas Tree Light Flasher



R-E EXPERIMENTERS HANDBOOK
FIG. 31-1

A 555 timer, ICl , drives a 4017 CMOS decado counter. Each of the 4017 's first four outputs drives a CA3079 zero-voltage switch. Pin 9 of the CA3079 is used to inhibit output from pin 4, thereby disabling the string of pulses that the IC normally delivers. Those pulses occur cvery 8.3 ms , i.e., at a rate of 120 Hz . Each pulse has a width of $120 \mu \mathrm{~s}$.

Because of the action of the CA3079, the lamps connected to the triacs turn on and off near the zero crossing of the ac waveform. Switching at that point increases lamp life by reducing an inrush of current that would happen if the lamp were turned on near the high point of the ac waveform. In addition, switching at the zero crossing reduces radio frequency interference (RFI) considerably. Caution: The CA3079s are driven directly from the 117-Vac power line, so use care.

## 36 LED FLASHER DRIVER



POPULAR ELECTRONICS
FIG. 31-2

Originally intended as a 3 -bell animation circuit for Christmas decorations, the circuit can be used for many other purposes that require a flasher of this kind. By re-connecting U2 (see the data manual), more than three outputs can be be obtained.


A 555 is used to switch an LED on and off. C1 determines the flash rate. Single ended (one LED) and double-ended (alternating) flashers are shown.

WILLIAM SHEETS
FIG. 31-3
DARK-ACTIVATED LED FLASHER


FIG. 31-4
This circuit can be used as a small beacon or marker light, and toys or novelty items. R1 is an LDR that has $\geq 10 \mathrm{kS}$ dark-resistance, or a CDS photocell. 01 determines the flash rate.


C1, C4 .........4.7 $\mu \mathrm{F}$ Electrolytic Capacitor
C2, C3.....330 pF Disc Capacitor D1 D1 ...... Yellow LED ........................ Red LED D4 ........................... Green LED IC1, IC2 ................ 555 Timer IC F1, R4 ............ 100 ohm Resistor R2, R5 .................. 82 k Resistor R3, R6 ................... 33 k Resistor

## 1991 PE HOBEYIST HANDBOOK

FIG. 31-5
The super LED flasher is actually two complete LED flasher circuits on one circuit board. The first LED flasher is made up of IC1 and LEDs D1 and D2. IC1 is a 555 timer IC configured as an astable (free-running) multivibrator with its output on pin 3.

The frequency of the 555 's oscillation is controlled by R2, R3, and C1. Resistor R1 limits the input voltage to a low enough level to prevent damage to the IC. As the 555 IC oscillates, the output of pin 3 goes high ( + ) then low ( - ) When the output is high it supplies current to D1, which lights up. When it is low, pin 3 sinks current and D2 lights up. This happens because LEDs are polarity-sensitive (like all other diodes, they permit current flow in only one direction) and one lead of each LED has been connected to the respective polarity needed to light that LED.

The second LED flasher, made up of IC2 and LEDs D3 and D4, operates in the same way as the first LED flasher.

LED FLASHER FOR 2 TO 10 LEDs


$$
\begin{gathered}
A_{1}, R_{z}=\frac{V_{c c}-2(\# \text { LEDs })}{I_{\text {LED }}} \\
\text { Typically } V_{c c}=12 \mathrm{~V} \\
\text { \#LEDs }=2 \\
\text { LLED }=30 \mathrm{~mA} \\
\text { (\# LEDS } 1 \text { to } 5 \text { per side } \\
A_{1}, A_{2}=\frac{12-2(2)}{0.03}=267 \Omega \\
\text { Use } 270 \Omega
\end{gathered}
$$

WILLIAM SHEETS
FIG. 31-6
Thus LEI) flasher has double-ended output connection. The circuit can be used with 1 to 5 LEDs on each side as indicated.


RADIO-ELECTRONICS

This circuit is useful if you need a low-energy flashing alarm. The 200 to 400 -dc supply should have enough internal resistance to charge the 0.5 $\mu \mathrm{F}$ capacitor between flashes, about 2 or 3 time constants, which means about $500 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ for a 1 -s rate. Use lower values for higher rates.

LED CHRISTMAS TREE LIGHT FLASHER


R-E EXPERIMENTERS HANDBOOK
FIG. 31-8
Three individual flashing circuits that use an LM3909 LED flasher/oscillator IC create the appearance of a pseudo-random firing order. The combination of $C_{1} / R_{4}, C_{2} / R_{5}$, and $C_{3} / R_{6}$ control the blink rate, which is between 0.3 and 0.8 s , and the inherent wide tolerance range ( $-20 \%$ to $+80 \%$ ) of standard electrolytic capacitors add to the irregularities of the blink cycles. The continuous current drain is about 10 mA ; however, if you decrease the values of R 4 through R 6 or C 1 through C3 in order to increase the blink rate, the current will then increase proportionally.

Note in particular that external current-limiting resistors aren't needed for LED13 through LED18; the resistors are built into the ICs. LED10, which serves as the tree's "star;" is a special kind of flashing LED that blinks continuously at a fixed rate.

## 32

## Frequency Multiplier Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

Frequency Multiplier Without PLL

## FREQUENCY MULTIPLIER WITHOUT PLL



An input rectangular signal is differentiated and short impulses are formed from its cdges. These impulses write the content of counter A to a latch that clears the counter after a very short time. Counter A counts impulses of the frequency $f_{0}$ that are much greater than that of the input signal. The pulses come from an impulse generator. Thus, the number, which is written to the latch, expresses the number of these impulses between the edges of the input signal. The impulses from the same generator pass to (rcversc) counter B. The carry impulse loads the content of the latch to counter B. The tatch is connected with the reverse counter such that the rurnber written to this counter is $2 M$ times smaller than the number introduced to the latch. This can be readily achieved by omitting $M$ most significant bites of counter $B$. Because the number loaded to counter $B$ is $2 M$ times smaller than the number in the latch, the carry impulses of counter B have frequency $2 M$ times greater than the frequency of the impulses at the output of the differentialor. The carry impulses are fed to a $D$ flip-flop, which divides their frequency by two. In this way, the output frequency is $2 M$ greater than input frequency $f_{l}$ as long as the frequency of impulse generator $f_{g}$ is much greater than $2 M f_{o}$.

## 33

## Function and Signal Generator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Function Generator<br>100-dB Dynamic-Range Log Gencrator<br>Function Generator<br>Fast Logarithm Generator<br>Triangle-Wave Generator<br>555 -Based Ramp Generator<br>Triggered Sawtooth Generator<br>Signal Generator<br>Transistorized Schmitt Trigger<br>Linear Sawtooth Generator<br>Capacitance Multiplier<br>Triangle-Wave Oscillator<br>Clock-Driven Triangle-Wave Generator<br>Triangle- and Square-Wave Generator<br>Root Extractor

FUNCTION GENERATOR


ELECTRONIC DESIGN
FIG. 33-1
This function generator, based on an LT1016 high-speed comparator, will generate from a single $+5-\mathrm{V}$ supply. The slow rate of the op amps used determines the maximum useable frequency of this circuit.

100-dB DYNAMIC-RANGE LOG GENERATOR


POPULAR ELECTRONICS
FIG. 33-2
$E_{\text {OUT }}=$ constant $\times\left(\log E_{1 \mathrm{~N}}\right)$. This circuit has $100-\mathrm{dB}$ dynamic range, which is five decades of voltage change at the input.

FUNCTION GENERATOR


73 AMATEUR RADIO TODAY
FIG. 33-3

A quad op amp makes up the heart of this function generator. Ul-a generates a square wave, and outputs this to $J 3$. J 1 and J 2 are pulse outputs obtained by dilferentiating the square wave. Integrator U1-b generates a triangle-wave shaper to obtain a sine wave. Q1 is an outpulamplifier.

FAST LOGARITHM GENERATOR


POPULAR ELECTRONICS
FIG. 33-4

In this circuit, $E_{\text {OUT }}=($ constant $) \times \log E_{\text {IN }}$. The circuit should be useable with op amps other than the ones illustrated.

## TRIANGLE-WAVE GENERATOR


pOPULAR ELECTRONICS
FIG. 33-5

This is a simple triangle-wave generator using two lC devices and a transistor. The triangle wave is used as feedback to the square-wave generator. S1 allows range switching in three ranges from 100 Hz to 100 kHz . Extra positions could be used to extend the range to lower frequencies, using larger values of capacitance.

## 555-BASED RAMP GENERATOR



This circuit is used to generate a ramp voltage for tuning a radio receiver. An NE555, running at about 0.1 Hz , is used as an astable multivibrator.

FIG. 33-6

## TRIGGERED SAWTOOTH GENERATOR



WILLIAM SHEETS
FIG. 33-7

Two 2N3904 transistors and a 555 form a triggercd sawtooth generator. A sawtooth or other rising voltage input provides a pulse output when the trigger point is reached.


WILLIAM SHEETS

TRANSISTORIZED SCHMITT TRIGGER


POPULAR ELECTRONICS
FIG. 33-9

## LINEAR SAWTOOTH GENERATOR



WILLIAM SHEETS
FIG. 33-10

The 2 N 3906 transistor is used as a constant-current source, to assure that the 555 -based sawtooth generator generates a linear ramp waveform.


POPULAR ELECTRONICS
FIG. 33-11

Capacitance multiplicr uses the gain of an op amp to produce an effective capacitance-in this case $100,000 \mu \mathrm{~F}$.

TRIANGLE-WAVE OSCILLATOR

THAESHOLD DETECTOR


POPULAR ELECTRONICS
FIG. 33-12

U1-b acts as an integrator while U1-a is a threshold detector. R2 sets the trip level and therefore the amplitude. R3 controls charging current of Cl and the frequency.

## CLOCK-DRIVEN TRIANGLE-WAVE GENERATOR



## ELECTRONIC DESIGN

FIG. 33-13
U2-a, C3 and R2 operate as an integrator. Q2 and Q3 are altcrnately switched at 256 cycles. U2-b, Q4, Q5, and R8 through R11 are a constant current gencrator, and R11 is set for a symmetrical triangular waveform.

## TRIANGLE- AND SQUARE-WAVE GENERATOR



## WLLIAM SHEETS

FIG. 33-14
The circuit will generate precision triangle and square waves. The output amplitude of the squarc wave is set by the outpul swing of op $\operatorname{amp} \mathrm{A} 1$, and $R_{1} / R_{2}$ sets the triangle amplitude. The frequency of oscillation in cither case is approximately $1 / 0.69 R C$.

The squarc wave will maintain $50 \%$ duty cycle-even if the amplitude of the oscillation is not symmetrical. The use of a fast op amp in this circuit will allow good square waves to be generated to quile high frequencies. Because the amplifier runs open-loop, compensation is not necessary. The triangle-generating amplifier should be a compensated type. A dual op amp, such as the MC1458, can be used for most applications.

## ROOT EXTRACTOR



POPULAR ELECTRONICS
FIG. 33-15

This circuit produces a voltage that is proportional to the root of the input. This gives a logarithmic response, $\log V_{\mathrm{IN}}{ }^{N}=N \log V_{\mathrm{IN}}$.

## 34

## Game Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Electromagnetic Ring Launcher<br>Quiz Master

Electronic Slot Machine

## ELECTROMAGNETIC RING LAUNCHER



1993 ELECTRONICS HOBBYIST HANDBOOK
FIG. 34-1

The electromagnetic ring launcher is comprised of four subcircuits: a clock circuit (built around U5, a 555 oscillator/timer configured for astable operation), a count-down/display circuit (built around U3), a 74190 synchrorous up/down counter with BCD outputs that is configured for countdown operation; U4, a ECG8368 BCD-to-7-segment latch/decoder/display driver; and DISPl, a com-mon-cathode seven-segment display), a trigger circuit (comprised of U6), an MOC3010 optoisolator/ coupler with Triac-driver output; TR1, an SK3665 200-PIV, 4-A Triac; and a few support components), and a reset circuit (comprised of U1, a 7400 quad 2 -input NAND gate; U2, a second 555 oscillator/timer configured for monostable operation; and a few support components).

This circuit is that of a repulsion coil (L1) used to demonstrate the principle of electromagnetic repulsion by propelling a metal ring around the core of L1 through the air. A countdown circuit is provided to count seconds before launch.

## QUIZ MASTER



1991 PE HOBBYIST HANDBOOK
FIG. 34-2

Up to eight players each have their own answer button to press, corresponding to the four Red Team and four Green Tearn LEIDs on the master control board. As soon as the first contestant who thinks that he knows the answer presses the button, a loud tone sounds, all other contestants are locked out, and the contestant's indicator LED lights on the control board so that it's obvious who buzzed in first.

The control board also featires two sclectable "time ont" periods-each adjustable from 3 to 15 seconds, setting specified time intervals in which the player must answer before the "time's up!" tone sounds. Fight SCRs form the heart of the circuit. The anode of each SCR has a positive ( + ) bias on it by way of an LED and a negative ( - ) bias on cach cathode. As soon as a contestant depresses his or her switch button ( $S 4$ through $S 11$ ), a positive bias is applied to the respective SCR gate. That bias latches the contestant's SCR on, which in turn lights up the appropriate LED on the master control board. At the same time, the activity of the SCR latching on turns on the answer buzzer (BZ) and locks out all other contestants. The lockout occurs because relay K 2 contacts operate to remove the availability of a bias voltage to the gate of the other SCRs.

The other circuitry consists of a timer circuit and a "time'sup" tone-generating circuit. The timer circuit consists of transistor Q1, capacitor C1, resistors R1 through R3, and trimmer resistors P1 and P2. Depending on the adjustment of the trimmer resistors and selection switch S 3 , a specific time period can be set. The tirne's-up tone-generating circuil is made up of IC1, transistors Q2 and Q3, and the associated resistors and capacitors. The "on" time of the tone can be set by P3. Relay K1, which is opcrated by the timer circuit, scrves to reset the entire unit for the next question.

## ELECTRONIC SLOT MACHINE



1991 PE HOBBYIST HANDBOOK
FIG. 34-3

The slot machine's realistic action is provided by seven ICs and three displays, as shown. Two 555 CMOS timer ICs generate pulses. IC1 is used to generate the clock pulses for the entire electronic slot machine. The pulses are coupled from the output (pin 3) to the clock inputs of IC4, IC5, and IC6, the display-driver ICs.

The displays are common-cathode 7-segment LED types. They are wired to display three differont symbols, an "L," a "7," and "bar." When all three displays show the same symbols, 107 (a 4023 triple 3-input NAND gate) decodes a wimer and sends a signal to pin 5 of IC3. That IC is a 4001 CMOS NOR gate and it turns on IC2, a 555 timer IC. IC2 actually produces the winner tone on its outpul, pin 3.

Transistors Q4 through Q12 are used to drive the common-cathode displays. An LED is used to indicate the clock pulscs, and a variable resistor is provided for each of these fumctions. Trimmer resistor P1 controls the overall clock rate, P2 controls the "winner" tone, and P3 controls the display brilliance.

## 35

## Gas Detector Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Explosive Gas Detector
Combustible Gas Detector

## EXPLOSIVE GAS DETECTOR



POPULAR ELECTRONICS
FIG. 35-1

A gas sensor (TGS823 from Allegro Electronics, Cornwali Bridge, CT 06754) conducts in the presence of explosive gases. U5 is a voltage-to-frequency converter that produces a frequency proportional to the sensor conductance. The output frequency ranges from 100 Iz in clean air to 8 kHz in a contaminated atmosphere. The de voltage from the sensor also drives bar graph LED U7 and comparators U4-b and U4-c to sense present caution and danger levels. U1 drives an ac load up to 100 mA (relay, indicator, alarm, ete.).

## COMBUSTIBLE GAS DETECTOR



100-MESH SUS 316 stainless steel gauze (double)


THE GAS SENSOR is mainly composed of tin dioxide on a ceramic base; the resistance of the sensor varies depending on the concentration of reducing gases in the air.

The circuit shown is useful for the detection of dangerous levels of combustible furmes or gases. It uses a comparator circuit to trigger an alarm buzzer. The sensor's resistant element is connected in series with resistor Rl to form a voltage-divider circuit; R1 is specifically matched to each gas sensor by the manufacturer.

## 36

## Gate Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

AND Gate

## AND GATE



## POPULAR ELECTRONICS

FIG. 36-1

A left-over section of a quad op amp can be used to save cost and eliminate an extra logic chip for this AND gate.

## 37

## Geiger Counter Circuits

The sources of the following circuits are contained in the Sources section, which begins an page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Geiger Counter I
Geiger Counter II

## GEIGER COUNTER I



POPULAR ELECTRONICS
FIG. 37-1
The circuit is built around a 4049 hex inverter (U1), a pair of 555 oscillator/timers (U2 and U3), two transistors, a Geiger-Muller tube, and a few additional support components. The first 555 (U2) is configured for astable opcration. The output of U 2 (a series of negative-going pulses) at pin 3 is fed to three parallel-connected inverters (U1-a, U1-b, and U1-c). The positive-going output pulses of the inverters are fed to the gate of Q1, causing it to toggle on and off.

The output of Q1, which is connected in series with the primary of step-up transformer T1, produces a stepped-up serics of pulses in Tl's secondary. The output of T1 (approximately 300 V ) is fed through a voltage doubler (consisting of D1, D2, C3, and C4), producing a voltage of around 600 V . Three series-connected Zener diodes (D3, D4, and D5) are placed across the output of the voltage doubler to regulate the output to 500 V , fed through R 4 (a $10-\mathrm{M} \Omega$ current-limiting resistor) and J2 to the anode of the GM tube. The limiting resistor also allows the detection ionization to be quenched.

The cathode side of the tube is connected to ground through a $100-\mathrm{k} \Omega$ resistor, R5. When a particle is detected by the GM tube, the gases within the tube ionizc, producing a pulse across R5. That pulse is also fed through C5 and applied to the base of Q2 (a TIP120 npn transistor), where it is amplified and clamped to 99 V . The output of Q2 is inverted by gate U1-d, then it is used to trigger U3 (the second 555, which is configured for monostable operation). The output of U3 at pin 3 causes LED1 to flash, and produces a click that can be heard through speaker SPKR1 or headphones. The circuit is powered by a $9-V$ alkaline battery and draws about 28 mA when not detecting radiation.

## GEIGER COUNTER II




Q1 is a pnp power transistor used in conjunction with a ferrite transformer to form a blockingtype oscillator. This oscillator is a fixed-frequency type, and the feedback to sustain oscillations is from capacitor Cl . Because of the turns ratio of Tl , the small ac voltage produced on its primary is converted to a large ac voltage on its secondary. That high-voltage ac is applied to the voltage tripper stage, which consists of capacitors C2, C3, and C4 and diodes D1, D2, and D3. The resultant voltage is now over 800 V and it is regulated by neon lamps L 1 through L6. Diode D4 rectifies the high voltage and applics it to the cathode lead of the GM tube. The positive (+) bias on the GM tube is applied to the anode by way of load resistors R 4 and K 5 . Each time a radioactive particle strikes the GM tube, it causes the gas inside to ionize. This ionization of the gas creates a pulse, which drives the piezo speaker and is also coupled by diode D5 to the base of Q2. Transistor Q2 is a pnp type and is used to "integrate" the pulses in conjunction with capacitor C6. That produces a dc voltage level, which is in proportion to the quantity of pulses arriving at the base of Q 2 . The collector of Q 2 is connected through resistor R 8 to the $(+)$ terminal of the meter. The other side of the meter goes directly to $(-)$ of the battery.

## 38

## Hall Effect Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the ontry in the Sources section.

The Talking Compass
Unusual Hall-Effect Oscillators

## THE TALKING COMPASS

TABLE 1-74ST88 TRUTH TABLE

| Diractiory | Inpul |  |  |  |  |  |  |  |  | purt |  |  |  | Detimal Equivalent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Morth | A4 | A3 | A2 | $\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{H} \end{aligned}$ | $\begin{gathered} A 0 \\ H \end{gathered}$ | $\begin{array}{\|c\|} \hline 80 \\ 0 \end{array}$ | $\begin{gathered} 81 \\ 0 \end{gathered}$ | $\begin{gathered} 82 \\ 0 \end{gathered}$ | $\begin{gathered} 83 \\ 0 \end{gathered}$ | $\begin{gathered} B 4 \\ 0 \end{gathered}$ | $\begin{gathered} 85 \\ 0 \end{gathered}$ | $\begin{gathered} 86 \\ 0 \end{gathered}$ | $\begin{gathered} B 7 \\ 1 \end{gathered}$ | 1 |
| N.W. | L | L | $\underline{L}$ | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | H | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 20 |
| West | $L$ | 1 | H | H | H | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 40 |
| S.W. | L | L | H | H | L | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 60 |
| South | L | H | H | H | L | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 80 |
| S.E. | $L$ | H | H | L | L | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 100 |
| Eant | $L$ | H | H | $L$ | H | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 120 |
| N.E. |  | H | L | L | H | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 140 |



1993 ELECTRONICS HOBBYISTS HANDBOOK
FIG. 38-1

A talking compass is made up using a Hall-effect direction sensor (MOD1) and an ISD1016 ana$\log$ audio storage device. It is possible to program eight two-second annoumcements, for each of the eight main compass directions.

The Talking Compass is comprised of a digital compass (MOD1), and ISD1016 analog storage device (U2), a 745188 preprogrammed PROM (U3), and a handful of additional components.

## UNUSUAL HALL-EFFECT OSCILLATORS



FIG. 38-2

Although not intended for this application, Hall-effect switch can be used as the basis for a rather urusual oscillator. The oscillator can be reconfigured, as shown in Fig. B, to allow the circuit's oscillating frequency to be controlled via an RC network, comprised of R1 and C1.

## 39

## Infrared Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit corrclates to the entry in the Sources section.

Remote-Control Analyzer
IR-Pulse-to-Audio Converter
IR-Controlled Remote A/B Switch
Simple IR Detector
Infrared Receiver
Sclective Preamplifier for Infrared Photodiode
Wireless IR Headphone Transmuitter

Wireless IR Headphone Rccoiver
Infrared Remote-Control Tester
Pulsed Infrared Transmitter for On/Off Control
Very Simple IR Remotc-Control Circuit
IR Receiver
Remote-Control Tester

## REMOTE-CONTROL ANALYZER



## POPULAR ELECTRONICS

FIG. 39-1

A schernatic diagram for the remote analyzer is shown. The circuit is powered from a simple $5-\mathrm{V}$ supply, consisting of PL1, S1, T1, a bridge rectifier (comprised of D1 through D4), capacitor C1, and a common $5-V$ regulator, U1. Switch $S 1$ is the on/off control and is optional. The power-supply transformer used in the prototype is a 12.6 -Vac unit, but any transformer that can supply at least 5.6-Vac will do. The $12.6-\mathrm{V}$ unit was used solely because of its availability.

The output of T 1 is full-wave rectified by diodes D 1 through D 4 and filtered by Cl . The bumpy dc output from the capacitor is regulated down to 5 V by U1, a 7805 integrated regulator. LEDI acts as a power indicator to let you know that the circuit is active.

The 5 -Vdc powers a GPIU52X infrarcd-detector module* (MOD1), which demodulates the 40 kHz carrier used by most infrared remotes. After demodulation, the resulting logic pulses are sent to an oscilloscope via PL2, a BNC connector.
*Radio Shack part \#276-137

## IR-PULSE-TO-AUDIO CONVERTER



POPULAR ELECTRONICS
FIG. 39-2
If your ear is good, you can use this IR-pulse-to-audio converter to troubleshoot infrared remotecontrols. It is also a good project for detecting infrared-light sources. A photo cell module (Radio Shack P/N 276-137) detects IR radiation and drives audio IC U1. This circuit is useful for troubleshooting IR remote controls.

## IR-CONTROLLED REMOTE A/B SWITCH



RADIO ELECTRONICS
FIG. 39-3
Useful for $A / B$ control, the $I R$ receiver shown controls a relay from an infrared beam that has a pulsed tone-modulated signal. Q1 is the photo receptor feeding op amp ICl, tone decoder IC2, and flip-flop ICB. IC5 turns off the indicator LEDs after about 15 seconds.

## SIMPLE IR DETECTOR



POPULAR ELECTRONICS
FIG. 39-4
Useful for IR detection, this circuit uses an op amp of the 741 family (or similar) to detect and amplify IR pulses.


WILLIAM SHEETS
FIG. 39-5
The circuit operates from a $5-\mathrm{V}$ supply and has a current consumption of 2 mA . The output is a current source that drives or suppresses a current of more than $75 \mu \mathrm{~A}$ with a voltage swing of 4.5 V . The $Q$-killer circuit eliminates distortion of the output pulses because of the decay of the tuned input circuit at high input voltages. The input circuit is protected against signals of more than 600 mV by an input limiter. The typical input is an AM signal at a frequency of 36 kHz .

## SELECTIVE PREAMPLIFIER FOR INFRARED PHOTODIODE



WILLIAM SHEETS
FIG. 39-6
The circuit uses a tuned circuit to achieve frequency selection. Values are for operation at about 51 kHz . The 2N3565 amplifics the output developed by the tuned circuit.

WIRELESS IR HEADPHONE TRANSMITTER


POPULAR ELECTRONICS
FIG. 39-7
The transmitter for the wireless headphones is built around a CD4046 CMOS phase-locked loop, coupled with a driver transistor, and a pair of infrared LEDs. Although the CD4046 is comprised of two phase comparators, a voltage-controlled oscillator (or VCO), a source follower, and a zencr reference, only its VCO is used in this application.

## WIRELESS IR HEADPHONE RECEIVER



POPULAR ELECTRONICS
FIG. 39-8
IR detector diode D1 intercepts the IR signal at around 40 kHz and feeds it from U1, a high-gain preamp, to PLL, U2, a 4046 configured to serve as an FM detector. U3 is an audio amplifier that feeds a pair of headphones or a speaker.

## INFRARED REMOTE-CONTROL TESTER



1991 PE HOBBYIST HANDBOOK
FIG. 39-9
The infrared remote-control tester uscs a sensitive PN-type solar sensor that is connected directly to a Darlington amplifier made up of transistors Q1 and Q2. Biasing is provided by R1 and P1, a variable resistor that serves as a sensitivity control. The collector lead of Q1 is the output lead of the Darlington amp, and it is connected to a red LED and the primary of transformer 'Tl. The function of Tl is to convert the low-voltage output signal to a level high enough to drive a small piezo disc. That disc makes a clicking sound when the sensor picks up an infrared signal that is varying in frequency or amplitude. The infrared sensor will also pick up visible light. The use of an IR filter (Wratton \#87) is recommended.

| BZ | Piezo Disc |
| :--- | :--- |
| L1 | Jumbo Red LED |
| P1 | 2-M Trimmer Resistor |
| Q1 | 2N3904 Transistor |
| Q2 | 2N3906 Transistor |
| R1 | 270- $\Omega$ Resistor |
| S1 | Solar Sensor |
| T1 | Audio Transformer |

PULSED INFRARED TRANSMITTER FOR ON/OFF CONTROL


## radio electronics

FIG. 39-10
This transmitter consists of an oscillator and LEDs. It generates a pulsed tone of around 850 Hz .


POPULAR ELECTRONICS


B

Here is a complete IR remote-control system that consists of a simple transmitter (A) and an equally simple receiver (B).

## IR RECEIVER



ELECTRONICS NOW
FIG. 39-12
This circuit is just about the simplest IR receiver you can build. The parts are cheap, the layout is not critical, and a 9-V battery will last a long time.

REMOTE-CONTROL TESTER


FIG. 39-13

The IR Tester circuit lets you know if the button you press on a remote control is working. Q1 is a photo transistor that is activated by IR energy.

## 40

## Indicator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Polarity Indicator<br>Tri-Color Indicator

## POLARITY INDICATOR



POPULAR ELEGTRONICS
FIG. 40-1

This circuit consists of a tri-color LED, a resistor, wire, and a coin-size test plate. You will have to build two such circuits-one for cach black clamp on a set of auto battery jumper cables. The author installed the circuits inside the black clamps themselves using lengths of wire to make the connections to the red clamps.

The first step is to connect one rod clarmp to what you believe is the positive post on the okay battery. Then, louch the test plate on the black clamp at the end of the cable to the negative terminal on the good battery. The LED will light red if the red clamp is on the wrong terminal. If so move the clamp to the other post and check again. If all is woll, the LED will light green. Pick up the other black clamp and connect it to the remaining post on the good battery.

Connect the remaining red clamp to what you assume to be the positive terminal on the bad battery. Now, touch the test plate on the remaining clamp to the engine block or a bare area on the dead car's frame. If the LED appears or docsn't glow, switch the red clamp to the other terminal and test again. When the LED glows green, attach the black clamp to the car's frame (which will prevent any sparks from occurring near the battery). When you remove the clamps, take the clamps off in reverse order to avoid sparks.

## BI-COLOR INDICATOR



With S1 open, base bias is supplied to Q2 through a voltage divider (formed by R2 and R3), thus turning on the green element in the LED. That indicates that power is being supplied to the project. If you close S 1 , current through R1 biases Q 1 on, thereby grounding the voltage divider and turning off Q2. That reverses the flow of current through the LED, which causes its red element to light. That indicates that the circuit is under power and S1 (really a DPDT switch), whose remaining section controls another circuit, is active. In this circuit, a bi-color LED is used to indicate when a circuit is under power and the status of S1. In that way, the LED does the job of two indicators

## 41

## Instrumentation Amplifier Circuits

The sources of the followirg circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

LMC6062 Instrumentation Amplifier
LM6218 High-Speed Instrumentation Amplifier

## LMC6062 INSTRUMENTATION AMPLIFIER



FIG. 41-1

Useful for $+5-\mathrm{V}$ single-supply applications, this op amp circuit fcatures low drain (around 1 mA ), high input resistance ( $10^{14} \Omega$ ), and low bias current $\left(\approx 10^{-14} \Lambda\right.$ ).

## LM6218 HIGH-SPEED INSTRUMENTATION AMPLIFIER



NATIONAL SEMICONDUCTOR
FIG. 41-2

This amplifier features $400-\mu \mathrm{sec}$ settling time (to $0.01 \%$ ), $140-\mathrm{V} / \mu \mathrm{sec}$ slow rate, and $17-\mathrm{MHz}$ gain-bandwidth product. The supply voltage can be $\pm 5$ to $\pm 20 \mathrm{~V}$.

## 42

## Integrator Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

Fast Integrator

## FAST INTEGRATOR


$V_{\text {Out }}$ is the integral of $V 1$ in this circuit.

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{1}{C_{3}} \frac{V_{\text {IN }}(A)}{R} d t .
$$

## 43

## Intercom Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

One-Way Voicc-Activated Intercom
Very Simple 'Telephone Intercom Circuit Telephone Intercom

## ONE-WAY VOICE-ACTIVATED INTERCOM



POPULAR ELECTRONICS
FIG. 43-1
An omnidirectional electret microphone can be used to pick up the sound and convert it into an electrical signal. The output of the microphone is fed along two paths. In the first path, the signal is sent to the inverting input at pin 6. In the second path, the microphone signal is fed to the non-irverting input of U2, where it is amplified and output to the speaker, SPKR1.

## VERY SIMPLE TELEPHONE INTERCOM CIRCUIT



POPULAR ELECTRONICS
FIG. 43-2
'Iwo telephonos can be used as an intercom by using this circuil. Older stylc rotary phones that are nonelectronic might work bost in this application. Also, handsets only might be powercd this way.

## TELEPHONE INTERCOM



POPULAR ELECTRONICS
FIG. 43-3
An intercom using dual-modular wall jacks is shown in this circuit. If the wires are available in the home telephone cable, this systern can be installed with little trouble.

## 44

## Interface Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Audio-to-ADC Interface<br>Process-Control Interface<br>Relay Interface for Amateur Radio Transceivers<br>Receiver Interface Circuit for Preamps<br>Microcomputer-to-Triac Interface

## AUDIO-TO-ADC INTERFACE



## RADIO-ELECTRONICS

FIG. 44-1
This simple general-purpose driver for an analog/digital converter uses two 741 IC devices with adjustable gain and offsct. Other op amps might be substituted, but some circuit adjustments might be needed.

PROCESS-CONTROL INTERFACE
PRECISION PROCESS-CONTROL INTERFACE


POPULAR ELECTRONICS
FIG. 44-2

This circuit can be used to interface a 2-wire transmitter/sensor combination to an external device or measurement setup.

## RELAY INTERFACE FOR AMATEUR RADIO TRANSCEIVERS



The relay power in the linear is obtained from the $-120-\mathrm{V}$ bias supply, and the transmit keying output from the Kenwood is +12 V at 10 mA maximum. The key ingredient in the circuit is the pnp driver transistor, which must be capable of handling at least 150 V at about 250 mA .

## RECEIVER-INTERFACE CIRCUIT FOR PREAMPS



POPULAR ELECTRONICS
FIG. 44-4

The purpose of the receiver/interface circuit is to pass RF to the receiver through capacitor C9, while adding dc power to the feedline through R2 and RF choke L7.

## MICROCOMPUTER-TO-TRIAC INTERFACE



RADIO-ELECTRONICS
FIG. 44-5
A microcomputer-to-triac interface uses a phototriac optoisolator to let safety-isolated logic signals directly control high-power loads. Depending on the input waveforms and the load, this circuit can be used in either an on/off switch or a proportional phase control. A low input powers the lamp.

## 45

## Inverter Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuil correlates to the entry in the Sources section.

250-W Inverter
Digital Inverter
dc-to-ac Inverter
Power MOSFET Inverter


ELECTRONICS NOW
FIG. 45-1
A 555 timer (IC1) generates a $120-\mathrm{Hz}$ signal that is fed to a CD4013BE flip-flop (ICl-a), which divides the input frequency by two to generate a $60-\mathrm{Hz}$ clocking frequency for the FET array (Q1 through Q6). Transformer T1 is a $12-/ 24-\mathrm{V}$ center-tapped $60-\mathrm{Hz}$ transformer of suitable size.

DIGITAL INVERTER


A CMOS digital inverter is formed by connecting two MOSFETS, as shown.

FIG. 45-2

## dc-to-ac INVERTER



POPULAR ELECTRONICS
FIG. 45-3

A multivibrator circuit drives a pair of 2 N 3055 power transistors. T1 is a $12.6-\mathrm{V}$ CT filament transformer with a $120-\mathrm{V}$ primary.

## POWER MOSFET INVERTER



POPULAR ELECTRONICS
FIG. 45-4

T 1 is a suitable transformer for the voltage desired, with a $12.6-\mathrm{V}$ CT winding.

## 46

## Ion Generator Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

Negative Ion Gencrator


1993 ELECTRONICS HOBBYIST HANDBOOK
FIG. 46-1
This oscillator-driver induces a high voltage in the windings of T2.

## 47

## Laser Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuil correlates to the entry in the Sources section.

Efficient Laser Supply<br>Laser Power Supply and Starting Circuit<br>Handheld Laser<br>High-Voltage Power Supply<br>Fantastic Simulated Laser<br>Laser Power Supply



FIG. 47-1

Driving Helium-Neon Lasers can be simplified considcrably using this power-supply configura tion. When power is applied, the laser doesn't conduct and the voltage across the $190-\Omega$ resistor is zero. However, a rcsonant circuit and a voltage tripler then produces over 10 kV to turn on the laser.

## LASER POWER SUPPLY AND STARTING CIRCUIT



## 73 AMATEUR RADIO TODAY

FIG. 47-2

This circuit delivers 10 kV pcak, then limits current to $7.5 \mathrm{~mA} @ 2 \mathrm{kV}$. The resistors shown provide ballasting. The starting circuit cannot maintain the 10 kV under load and appears as a seriespass circuit with little drop in voltage.

## HANDHELD LASER



1992 R-E EXPERIMENTERS HANDBOOK
FIG. 47-3
A laser diode TOLD9200 (Toshiba) is used as a source of laser light. Q3, Q2, and S1 form a touch switch to control the laser. L1 is an RF pickup coil to pick up energy from an RF-type battery charger. It is 10 turns of \#18 wire on a $1 / 2{ }^{1 / 4}$ diameter.

a-f Six sections
CD4049 or 74C04

## WILLIAM SHEETS

FIG. 47-4
The high-voltage power supply is a CMOS-based oscillator that pulses a high-voltage ignition transformer. The transformer output is around 20 kV .

FANTASTIC SIMULATED LASER


| C 1 | $=1 \mu \mathrm{~F}$ |
| :--- | :--- |
| IC 1 | $=555$ |
| L 1 | $=$ Bright LED |
| P1 | $=50 \mathrm{k} \Omega$ pot. |
| R1, R 2 | $=4.7 \mathrm{k} \Omega$ |
| R3 | $=$ NO push button |

1991 PE HOBBYIST HANDBOOK
FIG. 47-5
The circuit uses a 555 timer IC to power an ultrabright LED. The output is a pulsing red light that can be projected using lenses. An ultrabright Stanley LED, capable of 300-millicandle output, is tied to pin 3 of the 555 timer IC. That IC has been configured as an astable multivibrator. The frequency of this multivibrator is controlled by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{Cl}$, and P 1 . You can vary the frequency by adjusting Pl , which changes the output from a slow blinking to a fast pulsating light. Resistor R3 is used to limit the current flowing into the circuit to a safe value, to prevent the LED and the IC from burning out. Switch S 1 applies power to the circuit when its button is pressed.


## POPULAR ELECTRONICS

FIG. 47-6
This supply generates an initial high voltage for ignition purposes. Alter ignition, the supply generates about 1300 to 1500 V . If a higher ignition voltage (than the 6000 V supplied) is necessary, more multiplicr stages can be added to D5 and D8.

## 48

## Lie Detector Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

Simple Lie Detector

## SIMPLE LIE DETECTOR



The circuit uses a two-transistor direct-coupled oscillator that has a frequency determined by $\mathrm{C} 1, \mathrm{R} 2$, and the (skin) resistance across the touch pads. Since C1 and R2 are fixed values, only the skin resistance across the touch pads can vary the sound of the oscillator. To sustain oscillations, C1 feeds a portion of the output from Q2 back to the input of Q1 through resistor R1.

Transistor Q1 is an npn type and transistor Q2 is a pnp type. The output of Q2 is fed into a small speaker. The circuit relies on the fact that the human skin conducts electricity.

C1 $\quad 0.01-\mu \mathrm{F}$ Capacitor
Q1 2N3904 Transistor
Q2 2N3906 Transistor
R1 $4.7 \mathrm{k} \Omega$ Resistor
R2 $\quad 82 \mathrm{k} \Omega$ Resistor

## 49

## Light Beam Communication Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Modulated Light Transmitter<br>Modulated Light Receiver<br>FMLight-Bearn Receiver<br>FM Light-Beam Transmitter<br>Light-Wave Voice-Communication Transmitter<br>Light-Wave Voice-Communication Receiver<br>Visible-Light Audio Transmitter<br>Visible-Light Receiver

## MODULATED LIGHT TRANSMITTER



POPULAR ELECTRONICS
FIG. 49-1
A light-bulb filament can be modulated with audic as a method of optical transmission. Amplifier Q1/Q2/Q3 drives emitter-follower TR4. Adjust R10 for the $Q$ point (light bulb) giving best results. It should have a filament with low thermal inertia for best audio responses.

## MODULATED LIGHT RECEIVER



POPULAR ELECTRONICS
FIG. 49-2
Using a phototransistor, this receiver will detect and demodulate a modulated light beam. R6 affects sensitivity.


## ELECTRONICS NOW

FIG. 49-3
This receiver will pick up IR or light beams that are frequency modulated on a $50-\mathrm{kHz}$ carrier. Q2/Q1/Q3/Q4 from an active filter and amplifier and differential amp Q5/Q6 provide more gain.

FM LIGHT-BEAM TRANSMITTER


## ELECTRONICS NOW

FIG. 49-4
This transmitter uses two-stage amplifier Q1/Q2 to frequency modulate an NE555 (configured as a VCO) operating at about 50 kHz . The resultant FM-modulated pulse train is converted to light pulses via LED1 through LED4, driven by Q3 and Q4.

## LIGHT-WAVE VOICE-COMMUNICATION TRANSMITTER



WILLIAM SHEETS
FIG. 49-5
This transmitter uses a 741 op amp as a high-gain audio amplifier, which is driven by a microphone. The output of the 741 is coupled to Q1, which serves as the driver for a LED. Potentiometer R1 is the amplifier's gain control. Miniature trimmer resistor R6 permits adjustrnent of the base bias of Q1 for best transmitter performance. Gain control R1 can be eliminated if Cl and R 2 are connected directly to pin 2 of the 741 . For maximum sensitivity, increase the value of $R_{2}$ from 1 to 10 $\mathrm{M} \Omega$ and use a crystal microphone with a large diaphragm.

## LIGHT-WAVE VOICE-COMMUNICATION RECEIVER



FIG. 49-6

This light-wave receiver consists of a 741 operated as a preamplifier and an LM386 operated as a power amplifier. Potentiometer R2 is the gain control. Various kinds of detectors can be used as the front end of the receiver. Phototransistors are very sensitive, but they do not work well in the presence of too much ambient light. A $100-\mathrm{k} \Omega$ series resistor is required if you use a phototransistor. Solar cells, photodiodes, and LEDs of the same semiconductor as the transmitter all work well in this circuit.


## POPLLAR ELECTRONICS

This receiver for amplitude-modulated light signals uses phototransistor Q1 mounted in a parabolic reflector (to increase range). Any npn phototransistor should work. Emitter-follower Q2 drives amplifier Q3. The output from Q3 feeds volume control R7 and audio amplifier U1. A 9 - to $12-\mathrm{V}$ supply is recommended for the receiver.

## VISIBLE-LIGHT AUDIO TRANSMITTER



In the visible-light transmitter, a 7805 voltage regulator is connected in a variable-voltage contiguration, and an audio signal is fed to the common input, to modulate the output voltage. The modulated output voltage is used to transmit intelligence via an incandescent lamp.

POPULAR ELECTRONICS
FIG. 49-8

## 50

## Light Control Circuits

The sources of the following circuits are contained in the sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Light Sequencer<br>Holiday Light, Sequencer<br>Automatic Porch-Light Control<br>Dimmer for Low Voltage Loads<br>Three-Power-Level Triac Controller<br>Phase-Controlled Dimmer<br>120-ac Shimmering Light

Simple Triac Circuit<br>Running Light Sequencer<br>MOS Lamp Driver<br>CMOS Touch Dimmer<br>Neon Lamp Driver for 9-V Supplies<br>Sensitive Triac Controller<br>Halogen Lamp Protector

## LIGHT SEQUENCER



1991 PE HOBEYIST HANDBOOK
FIG. 50-1
The light sequencer uses two ICs and 10 SCRs to create an ac sequerteer. The first IC, a 555 timer, is used to provide clock pulses for 1 C 2 . The IC is configured as an astable multivibrator, and its output is on pin 3 .

Capacitors Cl and C 4 , along with resistor R 2 and potentiometer P 1 , control the frequency of the pulses. IC2 is a 4017 Johnson counter, which shifts a high-signal level to each one of its 10 output pins in sequence. Each output pin is resistively coupled to the gate lead on an SCR. When the respective output pin on the 4017 is high and the positive half of the ac cycle is on the anode lead of the SCR, it turns on. The lamp that is connected to its anode lights.

Power is brought into the PC board by the line cord, then the circuit is fuse-protected. Diode LD1 changes the ac to pulsating, which is smoothed by C 2 and C 3 . R23 limits the current, and zener diode D 2 limits the de voltage to 6 Vdc .

| CI, C4 | $0.1-\mu \mathrm{F}$ Capacitor |
| :--- | :--- |
| C2 | $100-\mu \mathrm{F}$ Capacitor |
| C3 | $47-\mu \mathrm{F}, 350-\mathrm{V}$ Electrolytic Capacitor |
| D1 | 1 N 4007 Diode |
| D2 | $6-\mathrm{V}$ Zener (M747814) |
| $\mathrm{IC1}$ | 555 Timer IC |
| IC 2 | 4017 CMOS IC |
| P1 | $500-\mathrm{kS}$ Potentiometer |
| Q1-Q10 | 106 SCR |
| R1 | $560-\Omega$ Resistor |

R2, R4, R6, R8, R10, R12,
R14, R16, R18
R20,R22 100-k R Resistor
R3, R5, R7
R9, R11, R13
R15, R17, R19
R21
R23
$2.2-\mathrm{k} \Omega$ Resistor
$15-\mathrm{k} \Omega 7$-W Resistor

## HOLIDAY LIGHT SEQUENCER



FIG. 50-2

## HOLIDAY LIGHT SEQUENCER (Cont.)

Integrated circuit U1 (a 555 oscillator/timer) is wired as a conventional pulse generator. The frequency of the pulse generator is controlled by potentiometer R11. Resistor R2 puts a reasonable limit on the highest speed attainable.

The output of the pulse generator is fed to the common clock input of U2, a 74 C 175 quad D-type flip-flop. Each flip-flop is configured so that its Q output is coupled to the D input of the subsequent flip-flop.

Information on the $D$ input of each flip-flop is transferred to the $Q$ (and $Q$ ) outputs on the leading edge of each clock pulse. Switch 52 allows you to invert the information on the D input of the first flip-flop at any time during the cycle. This allows you to create a number of different sequences, which are determined by the state of the CQ output at the time of the switching.

Some of the possible sequences are:

- 1 through 4 on, 1 through 4 off;
- I of 4 on sequence;
- 1 of 4 off sequence;
- 2 of 4 on sequence;
- 1 and 3 on to 2 and 4 off;
- and other instances when the sequence of events is difficult to determine.

However, if S2 is switched to position B while all outputs are high or all are low (which seldom occurs), the sequence stops and the outputs remain either all on or all off. If that happens, you only need to switch back to position $A$ for at least one pulse duration, then back to position $B$ again.

Likewise, S 2 should be in position A (pin 4 connected to pin 14) each time the power is turned on. This is because the data on pin 4 must be a logic 1 in order to start a sequence; otherwise all outputs remain at logic 0 , regardless of the clock pulses.

Each output of the sequencing circuit is connected to an MOC3010 optoisolator/coupler (U3 through U6), which contains an infrared-emitting diode with an infrared-sensitive diac (triac driver or trigger) in close proximity The diac triggers the triac, which carries the 117 -volts ac.

Each time that the infrarcd-emitting diode receives a logic 1 , it turns on and causes the diac to conduct. With the optoisolator/coupler's irternal diac conducting, the triac turns on, and power is supplied to whatever load is plngged into the corresponding ac socket. So, the sequencing circuit and the $117-\mathrm{V}$ ac outputs are "optically coupled" and are effectively isolated from each other.

Power for the sequencing circuit is provided by a 6.3-V miniature transformer. The output of the transformer is rectified by a four-diode bridge circuit, the output of which is filtcred by $\mathrm{Cl}(1000-\mu \mathrm{F}$ electrolytic capacitor). Capacitor C3 is added at the supply pin of U2 to suppress transients.

## AUTOMATIC PORCH-LIGHT CONTROL



1993 ELECTRONICS HOBBYISTS HANDEOOK
FIG. 50-3
The antomatic porch-light control circuit holds a triac on until a 4020 divider counts a number of $60-\mathrm{Hz}$ powerlinc pulses. The circuit turns off a light after a predetermined time by using pins other than pin 3 of U1. Vartous times can be set. Consult the 4020 data sheet for information.

DIMMER FOR LOW VOLTAGE LOADS


303 CIRCUITS
FIG. 50-4
This circuit controls a low voltage de supply by pulse width modulation. The switching rate is 200 Hz . Input supply voltage should be +5 to +30 V . Ip to 5 A can be controlled.

## THREE-POWER-LEVEL TRIAC CONTROLLER



## ELECTRONIC DESIGN

FIG. 50-5
Three power levels are supplied by the two logic inputs of this enhanced circuit. R5, D4, D5, and C2 form a power supply for the logic IC. They can be omitted if another source of low voltage is available.

## PHASE-CONTROLLED DIMMER



A phase-controlled dimmer delays the triac: turn-on to a selected point in cach successive ac half cycle. Use this circuit only for incandescent lamps, heaters, soldering irons, or "universal" motors that have brushes.

WARNING: Exireme shock hazard!

## 120-ac SHIMMERING LIGHT



FIG. 50-7
You can turn any ordinary household bulb into one that shimmers or blinks. This circuit works on any incandescent light up to 200 W , and runs on standard 120 Vac . The circuit uses an SCR to cause an ordinary lamp to shimmer. Note that one side of the lamp is comected directly to 120 Vac , and the other side of the lamp goes to the cathode of the SCR. As ac voltage is brought into the circuit through the line cord, it is full-wave rectified by diodes D1 and D2. That changes the ac to dc, and a portion of that dc. voltage is applied to capacitor C1 through R2. Diode D3 blocks the ( + ) dc voltage so that only the voltage from the path of R1 and D3 is clear. That forms an oscillator, which has a frequency determined by the setting of potentiometer P1 (because the other components have fixed values).

Remember to use extreme caution when using a device that connects to the ac line. Never use it outside or near watcr and always mount the entire kit inside a woodon or plastic (insulated) box to prevent any contact with the ac voltage.

## SIMPLE TRIAC CIRCUIT



A triac can be used as a line-operated ac power switch that can directly control lamps, heaters, or motors. A brief and small current pulse into the gate turns the triac on; it remains on until the main current reverses.

## RUNNING LIGHT SEQUENCE



303 CIRCUITS
FIG. 50-9
This ruming light sequencer drives 16 LEDs and runs from a $12-\mathrm{V}$ supply. Cl can be varied to alter the rate of operation.

MOS LAMP DRIVER


POPULAR ELECTRONICS
FIG. 50-10
The circuit shows a way of using a MOSFET as a load driver. Il can be a lamp, or any other load, that does not exceed the current rating of Q1.

## CMOS TOUCH DIMMER



## ELEKTOR ELECTRONICS

FIG. 50-11
A Seimens SLB05864 IC allows the construction of a simple touch-controlled dimmer circuit. The circuit controls a triac ac switch, which allows control of loads from 10 to 400 W .

## NEON LAMP DRIVER FOR 9-V SUPPLIES



RADIO-ELECTRONICS
FIG. 50-12
This circuit is for driving a neon lamp from a 9-V supply. The 555 generates an ac signal (stepped up by T1), and lights the neon bulb. T1 is any small audio output transformer.

## SENSITIVE TRIAC CONTROLLER



ELECTRONIC DESIGN
FIG. 50-13
The single transistor connected between the capacitor and the common side of the ac line aliows a logic-level signal to control this triac power circuit. Rcsistor $R 2$ prevents false triggering of the triac by the trickle current through the diac.

HALOGEN LAMP PROTECTOR


303 CIRCUITS
FIG. 50-14
This circuit produces a soft turn-on for halogen lamp filaments upon powering up. MOSFET used is a BUZ10, which has $0.2 \Omega R_{D S}$ on. $\mathrm{R} 1, \mathrm{R} 2$, and C 1 set the turn-on rate and Dl discharges Cl at turn-off.

## 51

## Light-Controlled Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Light-Dependent Sensor for Multiple Inputs Simple Light-Activated Alarm<br>Precision Dark-Activated Switch with Hysteresis<br>Combined Light-/Dark-Activated Switch<br>Outdoor Light Controller<br>Dark-Activated Relay with Hysteresis<br>Porch Light Control<br>Dark-Activated Switch

Photoelectric Sensor<br>Precision Light-Sensitive Relay Switch<br>Self-Latching Light-Activated Switch<br>Simple Nonlatching Photocell Switch<br>Light-Controlled Oscillator<br>Phototransistor Circuits<br>Dark-Activated Relay



This light-dependent sensor uses LDRs to detect the presence or absence of light. As long as the light source striking the LDRs remains constant, the alarm does not sound. But when the light is interrupted, the alarm is triggered.

POPULAR ELECTRONICS
FIG. 51-1

## SIMPLE LIGHT-ACTIVATED ALARM



A cadmium-sulfide photocell conducts when a light beam strikes it. This triggers the SCR and activates the alarm device.


FIG. 51-3

A CdS cell is one leg of a bridge circuit. Potentiometer R6 in another leg sets the trip point. Potentiometcr R5 provides hysteresis adjustment to prevent "chattering" or hunting of the relay. The light level has to increase noticeably before the 2N3904 turns off and the circuit deactivates.

COMBINED LIGHT-/DARK-ACTIVATED SWITCH


Set R4 so 1/2 of Ycc appeare across R3. Set R2 for dark trip point.
Set Fit tor light tinp point.

## WILLIAM SHEETS

FIG. 51-4
Two op amps used in a bridge circuit configuration detect high and low light levels. Potentiometer R2 sets the dark lovel and R1 controls the light level. R3 is set so that about $1 / 2$ the supply voltage appears across R4 at the desired light level. R1 and R2 set the trip point of the optoisolator IC2 at darker or lighter ambient levels, as required.

OUTDOOR LIGHT CONTROLLER


## WILLIAM SHEETS

FIG. 51-5
A reon bulb and a CdS photocell enclosed in a light-tight enclosure form an optocoupler. A diac/triac combination is used to provide the snap-switch effect. A second CdS photocell acts as the main sensor.

As darkness approaches, the resistance of R 4 begins to increase. At a threshold level, the diac triggers the triac and causes the neon bulb to light. This reduces the resistance of R6, causing the diac to trigger the triac, which lights the neon bulb and provides power to the load,

As morning light comes up, the process is reversed. The neon bulb goes out and the SCR turns off.
DARK-ACTIVATED RELAY WITH HYSTERESIS


WILLIAM SHEETS
FIG. 51-6
The hysteresis of a 555 IC can be used to advantage for sensing a drop in light. An LDR or CDS cell with about 2 to 8 k resistance at desired light level should be used.

PORCH LIGHT CONTROL


WILLIAM SMEETS
FIG. 51-7

This circuit can control the on/off cycle of a light via a CDS photocell, and turn it off after a preset period. The light can only be turned on when CDS cell is in darkness, and it stays on for a time determined by the 555 circuit. On time depends on R1 and C1 and is about 80 seconds with the values shown.

## DARK-ACTIVATED SWITCH



WILLIAM SHEETS
FIG. 51-8

In this circuit, lowering of the light level on the CDS cell turns on Q1 and Q2 which switches on the load which could be a relay, light, etc.

## PHOTOELECTRIC SENSOR



The circuit can be used as a sensor that can trigger an alarm without direct contact being made by the intruder. In this circuit, a visible or invisible light source radiates on the sensor, kecping the detection loop in what could essentially be called a nomally closed condition.

As long as the light source striking R5 remains uninterrupted, the switch remains closed. But if an intruder passes between the light source and the sensor, the circuit goes from closed to open, and triggers the alarm.

A light-dependent resistor (LDR), whose resistance varies inversely in with the amount of light hitting its sensitive surface, is used. A bright light aimed at K 5 causes its internal resistance to drop as low as a few hundred ohms; in total darkness, the unit's resistance can rise to several megohms. The light-dependent resistor (R5) is connected between the $+V$ supply and the base of Q1. As long as R5 detects light, it, supplies ample base current to cause Q1's collector to saturate to near ground level. That also pulls the base of Q2 (a 2 N 3906 general-purpose pnp transistor) to near ground level, turning it on and clamping its collector to the $+V$ rail.

## PRECISION LIGHT-SENSITIVE RELAY SWITCH



WILLIAM SHEETS
FIG. 51-10

A CDS cell in a bridge circuit with an op amp provides a simple means of operating a relay at a predetermined light level. Potentiometer R 4 sets the sensitivity.


LIGHT-CONTROLLED OSCILLATOR


POPULAR ELECTRONICS

FIG. 51-13
This circuit can be used as a light detector and possibly as an aid for the visually handicapped. The frequency of the oscillator is determined by the amount of illumination striking LDR4.

PHOTOTRANSISTOR CIRCUITS



Photodiode mode

FIG. 51-14

Here are four ways to connect a phototransistor for general use in phototransistor circuits.

DARK-ACTIVATED RELAY


WILLIAM SHEETS
FIG. 51-15
Configuring a 555 IC as shown yields a dark-activated relay with low hysteresis. CDS or LDR should be in the 2 k to 8 k range at desired light level.

## 52

## Light Sources

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Battery-Operated Black Light
Solid-Statc Light Sources

## BATTERY-OPERATED BLACK LIGHT



FIG. 52-1

The battery-operated black light uses a "U"-shaped, unfiltered, black-light tube, which requires approximately 250 Vac to operate. To create the 250 Vace $6-\mathrm{V}$ batlery, the circuit uscs a one-transistor blocking oscillator that drives a ferrite inverter transformer. A blocking oscillator turns itself off after one or more cycles. In this circuit, it consists of C1, P1, Q1, R1, and T1. The oscillations are sustained because the base of Q1 is convected to one of the windings on T1.

Transformer T1 is a step-up transformer that consists of a ferrite core, which has a few turns on the primary and many turns on the secondary. The oscillating (ac) output of Q1 is fed to Tl, which, because of its large turns ratio, converts the low-voltage signal into a high-voltage alternating current, which is coupled through resistor R2 to the black-light tube. Resistor R1 and trimmer resistor P1 limit the current flowing through the circuit. As the control on P1 is rotated, more current flows in the circuit, producing a brighter light output.

## SOLID-STATE LIGHT SOURCES



In A we show two LED output curves derived by experiment. The circuit in B was used to get the data for the short-circuit current plot, while the circuit in $C$ yielded the data for the open-circuit vollage plot.


Since LED intensity is linearly related to the input current this circuit can be used to vary the LED's brightness via R2.

POPULAR ELECTRONICS


You can drive an LED with an open-collector TTL inverter. The inverter shown must grount the LED to turn it on.

FIG. 52-2

The 12 LED circuits shown are usefull for experiments and applications of LED devices. The captions are self-explanatory and illustrate many common LED applications.


A totem-pole TTL output can drive an LED by grounding the LED's cathode, much like the open-collector driver.


This driver circuit will work for either CMOS or TLL gates, but you don't need A3 in a CMOSdriven circuit.


This is a bipolar output indicator that lets you know if one voltage is greater than, less than, or equal to another.


You can "roll your own" optocoupler by using some heat-shrink tubing, an LED, and optical transistor, and silicon sealant as shown here.


Unlike TTL devices, integrated circuits made with CMOS technology can source enough current to power an LED as shown here.


A CMOS-based gate can sink current much like a TTL gate in order to activate an LED.


This simple polarity checker is easy to build and can be of help if you don't know much about a circuit's wiring or grounding convention.


This is a simpler voltage-level sensor than that shown back in Fig. 9. To use it you have to know the polarity of the voltage it is to monitor.


This high sensitivity Darlington LED driver circuif can be used as a simple logic probe. You may have to vary the value of R1 to suit the circuit under test.

## 53

## Load-Sensing Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Load-Sensing Solid-State Switch<br>Load-Sensing Trigger

## LOAD-SENSING SOLID-STATE SWITCH



When this triac circuit senses current flow through $\mathrm{SOl-a}$, it activates the device plugged into SO1-b. The values of the resistors must be chosen for the specific dovices to be plugged in.

FIG. 53-1

## LOAD-SENSING TRIGGER



Triacs can be controlled by low-poner circuits through
Triac-driver optoisolators as shown here.


B
FIG. 53-2

A device plugged into SO 1 causes a voltage-limited gate trigger for triac TR1, and causes power to be applied to SC2.

## 54

## Mathematical Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Second-Ordcr Polynomial Generator<br>Polar-to-Rectangular Converter and Pattern Generator for Radio Direction Finding Root Extractor

## SECOND-ORDER POLYNOMIAL GENERATOR



ELECTRONIC DESIGN
FIG. 54-1

By using a circuit built with a single analog multiplier and five precision resistors, an output voltage $\left(V_{0}\right)$ can be made to create a second-order polynomial.

The circuit implements the following quadratic:

$$
V_{o}=a+b V_{x}+c V_{x}^{2}
$$

The input terminals of ICl are connected to create a positive square term and present the $V_{\gamma}$ signal to the output with a $1-10-\mathrm{V}$ scale factor. Incorporating the voltage-divider network (resistors R3 and R4) in the input signal path provides additional attenuation adjustment for the cocfficicnt (c) of the square term in the quadratic. Then, the passive adder (resistors R1, R2, and $R_{o}$ ) is wired to IC1's internal summing circuit to generate the polynomial's other two terms; the offset term ( $a$ ) and the linear coefficient (b).

# POLAR-TO-RECTANGULAR CONVERTER AND PATTERN GENERATOR FOR RADIO DIRECTION FINDING 



73 AMATEUR RADIO TODAY
FIG. 54-2

In order to display polar quantities (magnitude and direction of a received radio signal), a sine and cosine voltage proportional to an angle (antenna direction) is needed. In this case, a sine-cosine potentiometer coupled to a directional antema and a sample of a voltage proportional to received signal is used to display relative magnitude and direction of a received signal.

## ROOT EXTRACTOR



FIG. 54-3

## 55

## Measuring and Test Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Energy Consumption Monitor<br>Harmonic Distortion Analyzer<br>Watch Tick Timer<br>Visual Continuity Tester<br>RC Decade Box<br>Digital Altimeter<br>Electronic Scale<br>Radar Calibrator<br>Cable Tester<br>Simple Curve Tracer<br>Voltage Level Circuit<br>Low-Drift de Vollmeter<br>Light Meter<br>Mercury Switch Tilt Detector<br>$50-\mathrm{MHz}$ RF Bridge<br>ac Watts Calculator<br>Audio-Frequency Meter Circuit<br>One-IC Capacitance Tester<br>Transistor Checker<br>Low-Current Ammeter<br>Analog Frequency Meter<br>Electromagnetic Field Sensor<br>Magnetic Proximity Sensor<br>High-Impedance Voltmeter<br>Signal Generator<br>Simple Signal Tracer<br>DVM Adapter for PC<br>Simple Digital Logic Probe<br>S Meter for Communications Receivers<br>LED Expanded Scale Voltmeter<br>$1-\mathrm{kHz}$ Harmonic Distortion Meter<br>Line Voltage-to-Multimeter Adapter<br>Audible Logic Tester<br>Shorl Tester for 120-V Equipment<br>Digital Pressure Gauge<br>Simple Short Finder<br>Voltage Monitor<br>Linear Inductance Meter<br>DeBounce Circuit<br>ac Wiring Locator<br>Audible Continuity Tester<br>ac Outlet Tester<br>JFET Voltmeter<br>Check for Op-Amp dc Offset Shift<br>Continuity Tester for Low-Resistance Circuits<br>Supply Voltage Monitor<br>Audio-Frequency Meter<br>Zener Diode Test Set

ENERGY CONSUMPTION MONITOR

radio-electronics
FIG. 55-1

The ECM circuit consists of four sections, as shown in the block diagram. A power converter generates a voltage that is proportional to the true of real power consumed by the load. That voltage feeds both a bargraph and a voltage-to-pulse converter. The bargraph gives an approximate indication of the amount of power used, and the voltage-to-pulse converter produces a pulse whose frequency is proportional to the power. The pulse triggers the counter module, which displays the cost of powering the monitored load.


## RADIO-ELECTRONICS

FIG. 55-2

The circuit includes a low-distortion, $1-\mathrm{kHz}$ oscillator and will measure THD at a user selected voltage level for voltage amplifiers, or for checking amplifiers of power levels to 600 W . It will detect THD levels of $.005 \%(-86 \mathrm{~dB})$. A built-in one-percent THD calibrator is included. The output device is a digital multimeter (DMM).

## WATCH TICK TIMER



## WILLIAM SHEETS

FIG. 55-3
This circuit adapts a frequency counter to measure intervals. It was originally used as a shutter speed checker for a photo application. The watch ticks are clipped and shaped and formed into a square wave. This square wave is used to gate an accurately known clock ( $1-\mathrm{MHz}$ TTL XTAL OSC) and an external counter is used to directly count the clock pulses during the interval to be measured. A $1-\mathrm{MHz}$ clock can be used to measure to a resolution of $1 \mu \mathrm{sec}$. Accuracy $= \pm$ time base $\pm 1 \mu \mathrm{~s} \pm 1$ count LSB.


POPULAR ELECTRONICS
FIG. 55-4
By judging the rate at which a particular LED flashes, you'll be able to estimate the resistance. The circuit consists of two IC's ( 14011 CMOS quad 2-input NAND gate, U1; and a 4024 binary counter, U2), seven LEDs, and a handful of additional components. All of the gates in U1 are wired as inverters.

Two of the inverters (U1-a and U1-b) comprise an astable-multivibrator (free-running oscillator) circuit, whose operating frequency depends on the amount of resistance detected between the test probes. Feedback from the output of the oscillator (at pin 4 of U1-b) back to the input of the circuit (at U1-a, pins 1 and 2) is provided via Cl. Resistor, R1, along with the unknown resistance between the test probes, completes the RC timing circuit. The frequency of the oscillator decreases as the resistance between the test probes increases.

The output of the oscillator is fed to pin 12 and 13 of Ul-c, the output of which then divides along two paths. In the first path, U1-e's output is applied to the clock input of U2 (a 4024 binary counter) at pin 1 ; in the other path, the signal is fed through D 2 and across capacitor C 2 , causing it to begin charging. The charge on C 2 is applied to U1-d at pins 8 and 9 . The output of that inverter (U1-d) is fed to the reset terminal ( $\operatorname{pin} 2$ ) of U 2 . If there is continuity or a measurable resistance between the test probes, U2's reset terminal is pulled low, triggering the counter and allowing it to process the input pulses (count).

The rate of the count is proportional to the resistance between the test probes. If the resistance between the test probes is low, the counter advances slowly. The counter provides a 7 -bit binary output that is wired to seven LEDs.

When the test probes are placed across a short circuit, LED7 flashes. If the tester is placed across a resistance of, for example, $2 \mathrm{M} \Omega$, LED1 will flash. In either case, the LED whose assigned value most closely corresponds to the resistance connected between the two probes will flash continually at a steady pace, while the other LEDs will seem to flash intermittently.

## RC DECADE BOX



## RC DECADE BOX (Cont.)



THE VARIOUS CONFIGURATIONS are set using S13: (a) resistor only and (b) capacitor only (both in position Ac); (c) series RC (position SER); (d) paraliel RC (position PAR); (e) Low-Pass Filter (position LPF); and (f) High-Pass Filter (position нPF). The terminal numbers listed are those of bindinq-posts BP1-BP6.
table 1-decabox terminal connections

| Configuration | S13 Position | IN/GND | OUT/GND |
| :---: | :---: | :---: | :---: |
| Resistance | R/C | IN: BP1 | OUT: BP2 |
| Capacitance | R/C | IN: BP5 | OUT: BP6 |
| Series RC | SER | IN: BP1 | OUT: BP6 |
| Parallel RC | PAR | N : BP 1 | OUT: BP6 |
| Low Pass Filler (integrator) | LPF | $\begin{aligned} & \hline \mathrm{N}: \mathrm{BP1} \\ & \mathrm{GND}: \mathrm{BP} 3 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { OUT: } \mathrm{BP6} \\ \text { GND: } \mathrm{BP4} 4 \\ \hline \end{array}$ |
| High Pass Filter (Differentiator) | HPF | $\begin{aligned} & \text { IN: BP6 } \\ & \text { GND: } \end{aligned}$ | $\begin{aligned} & \text { OUT: } \mathrm{BP} 1 \\ & \text { GND: } \mathrm{BP} 4 \end{aligned}$ |

This decade box can be set for any resistance value between $10 \Omega$ and $11.1 \mathrm{M} \Omega$ in $10-\Omega$ stops. A switch can be used to configure several RC configurations. Usc close tolerance components in the circuit. If possible, check components with an accurate bridge or other means to ensure accuracy.

## DIGITAL ALTIMETER



RADIO- ELECTRONICS
FIG. 55-6

A pressure sensor (IC4) is used with a do amplifier to convert the bridge output (IC4) to a sin-gle-ended voltage. ICld provides a reference voltage for setting barometric pressure. ICB is an ADD converter manufactured by Intersil. This drives an LCD module. Calibration reads out in fact. A vacuum pump and a water-based manometer can be used for sensor calibration.

## ELECTRONIC SCALE



## ELECTRONICS NOW

FIG. 55-7

An electronic scale using a pressure transducer (load cell) and an analog-digital (A/D) converter to drive a digital display is shown. The scale range depends on load cell. Display is calibrated in appropriate units. Components are on main circuit and display boards. The off-board controls are on the front panel and case. The cell in this scale is rated for 1.3 pounds ( 600 grams ).


RADIO-ELECTRONICS
FIG. 55-8
This circuit is basically a system that generates a pulsed modulation signal for a Gunn diode microwave oscillator. Several speed settings are preset ( S 3 a and b ). A 555 timer is used with a frequency divider chain to produce Doppler shift equivalents of 25,35 , and 55 mph , for both X- and D-band radars.

## CABLE TESTER



POPULAR ELECTRONICS
FIG. 55-9

At the heart of the cable tester are two op amps, which are used as a window comparator to indicate a short- or open-circuit condition. A third op-amp comparator is used to indicate a good circuit (i.e., neither open nor shorted). Colored LEDs are used to show the condition of individual conductors within the cable under test; a red one to indicate a short between conductors, a ycllow one to identity an open conductor, and a green one to signify that the conductor is okay. Individual LEDS of a bar-graph display are used to show which conductor in the cable is being tested.

SIMPLE CURVE TRACER


This is a simple block diagram of the EZ-Curve. Current-limited AC signals are passed through both the device under test and a precision resistor to yield current and voltage readings.


POPULAR ELECTRONICS
FIG. 55-10
Useful for checking diodes, transistors, triacs, SCRs, resistors, and LEDs, this curve tracer should prove useful in the experimenter's lab. It displays the volt-ampere characteristic of a two-terminal device on an oscilloscope.

Voltage level circuit


The variable voltage divider shown here can be used with the circuit to allow a wide range of input voltage settings.

## B

FIG. 55-11
A DC op amp and a comparator with a ladder reference divider allow a de input voltage to light one or more LEDs, depending on voltage levels.

## LOW-DRIFT dc VOLTMETER



## WILLIAM SHEETS

FIG. 55-12
This voltmeter uses a pair of JFETs in a balanced-bridge sourcc-follower amplifier circuit. Q1 and Q2 should be matched within $10 \%$ for $I_{D S S}$. This minimizes meter drift and maintains bridge balance over tomperature.

## LIGHT METER



The outputs from the comparators will swing, in sequence, from high to low as the input voltage rises above the reference voltage applied to each comparator. The output LEDs will then switch on in sequence as the voltage rises.

The inverting inputs of the comparators are connected in common to the collector of phototransistor Q1. When Q1 is illuminated, its collec-tor-emitter junction conducts, thereby placing all the inverting inputs within a few millivolts of ground. For most settings of R1, each of the four reference voltages exceeds the value. Thcrefore, when Q1 is illuminated, the output from each comparator is high and its respective indicator LED is off.

## MERCURY SWITCH TILT DETECTOR



If the mercury bulb in this circuit is tipped, U1-a will light LED1 by going low, indicating a "tilted" condition.

## 50-MHz RF BRIDGE



The bridge shown was used for measurements on $50-\mathrm{MHz}$ amateur radio antennas. Rl is a miniature $500 \Omega$ linear potentiometer. The unknown impedance is compared to $R 2$, a $51-\Omega$ resistor. An external signal source is required.

## ac WATTS CALCULATOR


$R_{5} \ll$ Load



By properly adjusting $\mathrm{A}_{\theta}$, the vector diagram of voltages $V_{s}, V_{d}$, and $V_{r}$ forms an isosceles triangle, which simplifies the power calculation.

FIG. 55-16

The method basically consists of determining the power factor of the load-the cosinte of the phase angle between the voltage across the load and the load circuit. Using a simple circuit, that angle can be calculated quite simply.

This circuit uses a $1: 1$ isolation transformer to prevent direct contact with the linc. It is wise to proceed with caution whenever voltages of this magnitude are utilized in a lost setup, even though the voltages that will be measured are usually below 1 V .
$R_{s}$ is a circuit-sense resistor and $R_{r}$ is a multi-turn potentiometer. The voltage across $R_{r}$ is approximately $0.5 \%$ of the line voltage, which should be sufficient for most applications.
$R_{r}$ is adjusted so that $\left|V_{r}\right|=\left|V_{s}\right|$, then $V_{d}$ is measured. In the vector diagram according to Kirchhoff's voltage law, $V_{s}, V_{d}$, and $V_{r}$ form a triangle, which becomes isosceles by adjusting $R_{r^{\prime}} V_{s}$ is in phase with the load current and $V_{r}$ is essentially in phase with the load voltage.

The power delivered to the load can be calculated as follows:

$$
\begin{aligned}
P_{L} & =V_{L} \times I_{L} \times \operatorname{Cos} \theta \\
& =V_{L} \times\left(V_{s} / R_{s}\right) \times \operatorname{Cos}\left[2 \operatorname{Sin}-1\left(V_{d} / 2 V_{s}\right)\right] \\
{[\theta 2 \psi} & \left.=2 \operatorname{Sin}-1\left(V_{d} / 2 V_{s}\right)\right]
\end{aligned}
$$

## AUDIO-FREQUENCY METER



POPULAR ELECTRONICS
FIG. 55-17

This meter differs from the norm in that it does not use a D'Arsonval movement or digital display to give a reading of the input frequency. Instead, the measured frequency is read from a hand-calibrated dial.

Any audio signal applied to the circuit is armplificd by U1 and the resulting output is divided along two paths. In one path, the output signal is applied to the mixer; in the other path, the signal is applied to the input of U2 through Sl (a normally open pushbutton switch).

The portion of the amplifier signal that is fed to the mixer is applied to the base of Q1, causing it to toggle on and off at the signal frequency. In the other path, when S 1 is pressed, a portion of the op amp's output is applied to U2. If the signal is within the range of U2's internal oscillator's operating frequency, LED1 lights, and a signal is fed to the base of Q2. If the two signals arriving at the mixer do not match exactly, LED2 and LED3 light. That means that the circuit must be fine tuned, which is accomplished by releasing S1 and fine tuning R13 until LED2 and LED3 go out. The dial setting at that point gives the frequency of the irput signal to within 1 Hz (or as close as the calibrated dial will allow).

## ONE-IC CAPACITANCE TESTER



RADIO-ELECTRONICS
FIG. 55-18

This circuit can be used to match capacitors, etc. The de output voltage is related to the capacitance values of $C_{X}$. The circuit values shown are for capacitors in the $0.01-\mu F$ order of magnitude, but they can be changed for lower or higher values.

## TRANSISTOR CHECKER



POPULAR ELECTRONICS
FIG. 55-19

The circuit is built around a 741 general-purpose op amp that is configured as a voltage follower; with the components shown, the op amp has a voltage gain of one. The output of the 741 is used to drive a $50-\mu \mathrm{A}$ meter movement. Potentiometer $R 7$ is used to zero the meter and R6 sets the meter's full-scale reading.

Calibrating the meter is a snap. With no input applied to the circuit, set R6 to mid-position and adjust R7 to zero the meter. Once that is done, apply a positive 1 -Vdc voltage to the input and adjust. R6 for a full-scale reading. The voltmeter can be adjusted to read both positive and negative voltages by adjusting $R 7$ for a center scale reading at the meter's zcro position and a positive $1-V$ reading at the meter's full-scale position.

## LOW-CURRENT AMMETER



303 CIRCUITS
FIG. 55-20
Without using high-value precision resistors, this circuit uses a current mirror, T1a/T1b. Currents of 100 pA can be measured with this circuit. M1 is a $100-\mathrm{mA}$ meter. Make sure to use a highquality PC board and low-leakage circuit construction.

## ANALOG FREQUENCY METER



WILLIAM SHEETS
FIG. 55-21
This $1-\mathrm{kHz}$ linear-scale analog frequency meter circuit uses the 555 as a pulse counter. Frequency is read on M1, (or 1 mA meter) which can be calibrated to read 0 to 1 kHz .

## ELECTROMAGNETIC FIELD SENSOR



WILLIAM SHEETS
FIG. 55-22

A telephone pick-up coil is used as a sensing coil. Any $60-\mathrm{Hz}$ hum picked up by the sensing coil is rectified, amplified, and detected, and then drives a meter.

## MAGNETIC PROXIMITY SENSOR



POPULAR ELECTRONICS
FIG. 55-23

A magnetic need switch enables a 555 oscillator, which drives a speaker. C2 can be varied for different tone frequencies.

HIGH-IMPEDANCE VOLTMETER


FIG. 55-24

FAST VIDEO SIGNAL AMPLITUDE MEASURER


## ELECTRONIC DESIGN

FIG. 55-25
Video-signal amplitude can be measured with this simple circuit, which is basically a modified standard peak detector. The device can verify RGB gencrated by video RAMDACs. U1 is a high-specd buffer and U2 is a latched comparator. C1 is a hold capacitor. Reset is performed by Q3. U2 has a latch that maintains the last comparator state. The reset holds the comparator output low during the resct operation. The dc output voltage is equal to the signal's maximum amplitude.

## SIGNAL GENERATOR



POPULAR ELECTRONICS
FIG. 55-26
Useful for troubleshooting audio, video, and lower frequency RF amplifiers, this circuit generates a signal that is rich in harmonics.

SIMPLE SIGNAL TRACER


POPULAR ELECTRONICS
FIG. 55-27
In this circuit, C1/D1/R1 form an envelope detector. C2 couples audio to the base of Q1. R2 can be adjusted for the desired gain.

DVM ADAPTER FOR PC


POPULAR ELECTRONICS
FIG. 55-28
The adapter consists of a voltage to frequency adapter with a signal conditioner and protection circuit. J2 connects to the game port of a PC. See reference listed for software for use with this circuit.

SIMPLE DIGITAL LOGIC PROBE


The design of the digital logic probe centers around a pair of complementary bipolar transistors, which, in this application, are used as electronic switches.

FIG. 55-29

## S METER FOR COMMUNICATIONS RECEIVERS



## 303 CIRCUITS

FIG. 55-30
Because many amateur receivers are fitted with an $S$ meter that functions far from logarithmically, the proposed circuit should be a welcome extension of such receivers. Although ICs such as the CA3089 or the CA3189 are not in common use anymore, they serve a useful purpose in the meter circuit, because, apart from a symmetric limiter, a coincidence detector, and an AFC amplifier, they contain a very good logarithmir amplifier-detector.

As is seen, the circuit is fairly simple, but remember that these ICs operate up to about 30 MHz ; the wiring of the meter and its connections in the receiver should be kept as short as possible.

## LED EXPANDED SCALE VOLTMETER



73 AMATEUR RADIO TODAY
FIG. 55-31
A $10-\mathrm{V}$ zener diode is used to expand the scale of a 0 - to $5-\mathrm{V}$ voltmeter to a 10 - to $15-\mathrm{V}$ voltmeter. The LED bar graph lights one segment per 0.5 -V input above 10 V . The 7805 IC provides a 5 - V reference and 5 V for the bar graph LEDs.

## 1-KHz HARMONIC DISTORTION METER



## WILLIAM SHEETS

FIG. 55-32
The circuit useful for distortion measurements notches out the fundamental frequency of 1 kHz to allow measurement of the residual levei of harmonics. First a true RMS meter is used to measure the $1-\mathrm{kHz}$ input level $E_{\text {in }}$ by setting $\mathrm{S}_{\mathrm{A}}$ to the input position. Then, $\mathrm{S}_{\mathrm{A}}$ is placed in the distortion position and the 2 k potentiometer is adjusted for a null. The residual reading is noted. The THD is then calculated based on the formula:

LINE VOLTAGE-TO-MULTIMETER ADAPTER


POPULAR ELECTRONICS
FIG. 55-33
This ac line-to-multimeter adapter can make checking line voltage safer. You can use it to find taxing loads on your household wiring.


FIG. 55-34

The tester provides an audible indication of the logic level of the signal presented to its input. A logic high is indicated by a high tone, a logic low is indicated by a low tone, and oscillation is indicated by an alternating tone. The input is high impedance, so it will not load down the circuit under test. It can be used to troubleshoot TTL or CMOS logic.

The input section determines whether the logic level is high or low, and enables the appropriate tone generator; it consists of two sections of an LM339 quad comparator. One of the comparators (IC1-a) goes high when the input voltage exceeds $67 \%$ of the supply voltage. The other comparator goes high when the input drops below $33 \%$ of the supply. Resistors R1 and R2 ensure that neither comparator goes high when the input is floating or between the threshold levels.

The tone generators consist of two gated astable multivibrators. The generator built around IC2-a and IC2-b produces the high tone. The one built around IC2-c and IC2-d produces the low tone. Two diodes, D1 and D2, isolate the tone-generator outputs. Transistor Q1 is used to drive a low-impedance speaker.

## SHORT TESTER FOR 120-V EQUIPMENT



POPULAR ELECTRONICS
FIG. 55-35
Do you deal with old equipment in unknown condition? If so, this little circuit could keep you from causing further harm to already shorted devices.
$\qquad$ $\square$

## DIGITAL PRESSURE GAUGE



1992 R-E EXPERIMENTERS HANDBOOK
FIG. 55-36

This electronic pressure gauge uses a Wheatstone bridge-type pressure sensor to drive a $3 / 2$ digit $\mathrm{A} / \mathrm{D}$ converter and a display. IC1 is a pump (quad) that interfaces the bricge sensor to the AD converter. R16 provides zero adjustment and R6 provides full-scale calibration. D1 thru D4 provide temperature compensation.

## SIMPLE SHORT FINDER



ELECTRONIC DESIGN
FIG. 55-37
Transistors Q1 and Q2, together with resistors R1 through R7, make up the input balancing stage, which senses the resistance between points X and Y . The input stage is essentially a bridge, consisting of $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 6, \mathrm{R} 7$, and the resistance between points X and Y .

Transistors Q3 and Q4 and their associated passive components form a buzzer, which sounds when the tester detects a short. The buzzer is controlled by the ontput from Q2. When the input resistance is high (rnore than about $10 \Omega$ ), Q2 turns on, so its collector potential is close to ground, and the buzzer remains off. When the input resistance is sufficiently low, Q2 turns off, and the buzzer sounds. The frequency of the sound, which is about 1000 Hz , can be adjusted by varying the value of capacitor (C).

VOLTAGE MONITOR


The adjustable voltage monitor can be used to check whether the voltage in a circuit remains within a given range.
POPULAR ELECTRONICS
FIG. 55-38
If the do voltage is less than the voltage at pin 5 of U1-B, then LED 1 will light. If the voltage is over 5 V , LED2 will light. If the voltage is within the window set by R 4 and R 5 , neither LED will light. This circuit is useful as an under-or-over voltage moritor.

## LINEAR INDUCTANCE METER



73 AMATEUR RADIO TODAY
FIG. 55-39

Using the fact that in an RL circuit, the pulse width seen across the inductor is proportional to the inductance, this circuit reads this indirectly on a DVM. The range is about 5 to $250 \mu \mathrm{H}$.

## DEBOUNCE CIRCUIT



POPULAR ELECTRONICS
FIG. 55-40

This debounce circuit will keep the electrical noise generated by the mecharical switch (S1) from reaching the next circuit in line.

## ac WIRING LOCATOR



This circuit uses a pick-up coil to sense the $50-$ or $60-\mathrm{Hz}$ field around wiring carrying ac. L 1 is a telephone pick-up coil with a suction pad. D1 (LED) lights during positive half waves, indicating that ac current is present.

## AUDIBLE CONTINUITY TESTER



This 555 oscillator sounds a tone when continuity exists between the probes. Oscillator frequency is determined by the values of Rl and Cl .

## ac OUTLET TESTER



C 1
$50 \mu \mathrm{~F}$ Electrolytic
Capacitor
C2,C3 .. . $047 \mu \mathrm{~F}$ Disc Capacitor
D1 1N4003 Diode
IC1 ....................... 555 Timer IC L1 ................. Jumbo Red LED
R1 ............3.9K, 1 watt Resistor
R2 ...........2K, 1/4 watt Resistor
R3 ....... 4.7K, $1 / 4$ watt Resistor
SPK ........ Piezoelectric Speaker
1991 PE HOBBYIST HANDBOOK
FIG. 55-43
The tester consists of a rectifier cirenit and a multivibrator circuit. The ac voltage is half-wave rectified by diode D1 and storcd in capacitor C1. Resistor R1 is used to limit the current through D1 to a safe value. The voltage stored across C1 supplics ICI operating power. The IC, the versatile 555 timer, is configured to operate as a multivibration whose operating frequency is determined by C 2 , R2, and R3. The output of IC1, on pin 3, is coupled to a piezoelectric speaker (SPK), which gives ant indication of the presence of ac. An LED (Ll) also lights when ac is present.

JFET VOLTMETER


WILLIAM SHEETS
FIG. 55-44

This very simple voltmeter circuit uses a $50-\mu \mathrm{A}$ meter in a bridge circuit. It is useful for noncritical applications.

## CHECK FOR OP-AMP dc OFFSET SHIFT



ELECTRONIC DESIGN
FIG. 55-45

The dc valucs of op-amp offsets can't always be taken for granted when delivering ac outputs. No device is ever exactly symmetrical for maximum positive slew rate versus maximum ncgative slew rate. Consequently, there is always some range of output slew rates in which the device used limits in one direction more severely than in the other. What results in rectilication of the ac signal and an apparent shift of the de offset.

This test circuit can check for the shift phenomenon. The accompanying table and graph illustrate the results obtained for four devices, all of different types. As lrequency and slew rate are increased, the effect can be either relatively abrupt (LF412CN and NE55532N) or relatively gradual (LF358J and TL082CP).

## CONTINUITY TESTER FOR LOW-RESISTANCE CIRCUITS



POPULAR ELECTRONICS
FIG. 55-46

The continuity tester is little more than a battery and a lamp connected in series, with one end of the string terminated in an alligator clip, and the other end connected to the probe tip.

## SUPPLY VOLTAGE MONITOR



Excessive voltage causes U1 to oscillate, causing LED1 to flash. R6 sets the desired trip level.

POPULAR ELECTRONIGS
FIG. 55-47

## AUDIO-FREQUENCY METER CIRCUIT



This simple tachometer circuit uses a pulse shaper Q1 to drive M1, a 0 - to $1-\mu \mathrm{A}$ meter. Cl can be varied to optimize operation.

POPULAR ELECTRONICS
FIG. 55-48

## ZENER DIODE TEST SET



POPULAR ELECTRONICS
FIG. 55-49
This versatile circuit can be used to test zener diodes or act as a stand-alone power supply. It requires a voltmeter to work as a zener tester.

## 56

## Metal-Detector Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of cach circuit correlates to the entry in the Sources section.

Metal Pipe Detector<br>Low-Cost Metal Detector for Experimenters<br>Metal Locator

METAL PIPE DETECTOR

0.7 . . 0.3 mm die.
on forrite rod 200 mm long and 10 mm die.
303 CIRCUITS
FIG. 56-1
Thus circuit uses a $15-\mathrm{kHz}$ oscillator coil. When metal placed in the energy field is withdrawn, the oscillator voltage is rectified and compared to a reference. A drop in oscillator voltage therefore operates comparator IC2 and D4 (LED) extinguishes.

## LOW-COST METAL DETECTOR FOR EXPERIMENTERS



This circuit is on oscillator with L1 being a $4^{\prime \prime}$ diameter coil of 35 turns of \#26 magnet wire. Metal in proximity to Ll will cause the oscillator to shift frequency. An AM transistor radio is used to detect the frequency shift.

## METAL LOCATOR



1991 PE HOBBYIST HANDBOOK
FIG. 56-3

The metal locator uses a one-transistor oscillator and an AM radio to detect metal. Transistor Q1 is a pnp transistor that is connected to an oscillator. Resistor R1 provides the correct basc bias and capacitors C3 and C4 and the search coil determine the frequency of oscillation.

Capacitors C 3 and C 4 are fixed in value, but the search coil is an inductor that varies in inductance (and thus varies the oscillator frequency) as metal is brought near it. The oscillator frequency is rich in harrmonics and its output falls within the AM broadcast band. The metal detector works by combining its output with the local oscillator of the AM radio. The resulting net output of the radio is a low-frequency audio tone that changes-gets higher or lower-as metal is brought near or taken away from the search coil. Commercial metal detectors use two oscillators, so they don't require an AM radio. This metal locator provides an inexpensive alternative to an expensive commercial metal locator.

| C1, C2 | $0.01-\mu \mathrm{F}$ Capacitor (103) |
| :--- | :--- |
| C3, C4 | $0.001-\mu \mathrm{F}$ Capacitor |
| Q1 | 2 N 3906 Transistor |
| R1 | $47-\mathrm{k} \Omega$ Resistor |
| R2 | $100-\Omega$ Resistor |

## 57

## Miscellaneous Treasures

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Voice Disguiser
Soldering Iron Control
Furnace Fuel Miser
Personal Message Recorder
Four-Input Minimum/Maximum Selector
Soil Heater for Plants
Key Illuminator
Radio Commercial Zapper
Audio Limiter
Analog De-Glitch Circuit
Acoustic Field Generator
Suppress Jitter with Hysteresis
Heartbeat Monitor
Self-Retriggering Timed-On Generator
Frequency Divider for Measurements
Video, Power, and Channel-Select,
Signal Carrier
7805 Turn-On Circuit
AF Drive Indicator
Phase-Locked Loop
Capacitance Multiplier
Practical Differentiator
Hum Reducer for Direct-Conversion Receivers Preamp Transmit-Receive Sequencer
dc Output Chopper
ac Isolation Transformers Use
Inexpensive 12-V Transformers
ac Line Voltage Booster
Octal DA Converter
1-dB Pad
Pseudo-Random Bit Sequence Generator
Simple External Microphone Circuit
for Transceivers
JFET Chopper Circuit
Audio Memo Alert
Octave Equalizer
Complementary or Bilateral ac
Emitter-Follower Circuit.
Capacitor Hysteresis Compensator
Amplifier Cool-Down Circuit I
NE602 Input Circuits
NE602 Output Circuits
Basic Latch Circuits
Bootstrap Circuit
Simple Schmitt Trigger
Amplifier Cool-Down Circuit II
NE602 dc Power Circuits
Inrush Current Limiter


POPULAR ELECTRONICS
FIG. 57-1

A complete schematic diagram of the voice disguiser is shown. Microphone MICl picks up the voice signal and feeds it to an audio amplifier, consisting of Q1 and Q2, and a few support components. The amplifier has a low-pass gain response that limits the voice frequencies to 5 kHz or lower.

## VOICE DISGUISER (Cont.)

The voice signal is then fed to the input of the first balanced modulator, which is comprised of $\mathrm{U} 1-\mathrm{a}, \mathrm{U1}-\mathrm{b}, \mathrm{U} 2-\mathrm{a}$, and $\mathrm{U} 3-\mathrm{a}$. The output of the first $4-\mathrm{kHz}$ oscillator, built around $\mathrm{U} 3-\mathrm{f}$ and $\mathrm{U} 3-\mathrm{e}$, is fed to the carrier imput of the first modulator. The frequency of the first oscillator is controlled by the setting of potentiometer R13. The modulator output-a double-sideband suppressed-carrier signal centered on 4 kHz -is then filtered by the first $5-\mathrm{kHz}$ low-pass filter, formed by U2-b, which eliminates the upper-sideband signals.

At this point, the voice frequency spectrum is inverted (e.g., the frequencies that were low now become high, and vicc versa), making the voice signal completely unintelligible. The output of the first low-pass filter is fed to a second modulator formed by U1-c, U1-d, and U3-b, where it is frequency modulated with the output of the second carrier oscillator, comprised of U3-C and $\mathrm{U} 3-\mathrm{d}$; the frequency of the second oscillator is controlled by potentiometer R36.

The output of the second modulator is fillered by the second low-pass filter, which consists of U2-d and few support components, and amplified by Q3. The voice output signal from Q3 is fed to U4 (an LM386 low-voltage, audio-power amplifier) through an impedance-matching transformer, T1. The output of $\mathrm{U4} 4$ is then used to drive SPKRI (an $8-\Omega$ speaker).

In operation, if both carrier oscillators are set to the same frequency, the voice signal from the spcaker will be an exact duplicate of the input signal from the microphone. However, if the frequency of the second oscillator is varied (via R36), the output voice signal also shifts in frequency. That makes the voice reproduced by the speaker sound higher- or lower-pitched than normal.

## SOLDERING IRON CONTROL



A current control to temperature regulate a soldering iron uses a high-voltage integrated regulator, TL783 (U1). WIth the component values specificd, the circuit should be used with a soldering iron of 25 W or less.

FIG. 57-2

FURNACE FUEL MISER


B

## POPULAR ELECTRONICS

FIG. 57-3
A timer (LM555CN) and decode counter is used to generate duty cycles from $10 \%$ to $100 \%$ to control the time a heating system can operate. V2 is a decode counter that can be switched from $10 \%$ to $100 \%$ duty cycle. V3A and B form a latch that drive A1, LED1, and V4. The triac TRI is used as an ac switch, in series with the thermostat that controls the heating system.

FURNACE FUEL MISER (Cont.)


When the circuir is working properly. the output circuitry can be checked using a 24 -volt step-down transformer, a $l k$ resistor and an IED. Together those components simulate the load that the Fuel Miser sees during normal operation.


This drawing shows the Fuel Miser connected in series with the thermostat of a two-wire gas furnace that's powered by a 24 -volt transformer.


Some oil-fired systems use threewire thermostats to control the operation of the burner motor and ignition system by artivating a relay: This is a typical installation for such systems.


Electric-heating systems may or may not use a relay in the thermostat circuit. Those that do have a relay can be controlled by the Fuel Miser by wiring its output circuit in series with the relay coil connections as shown here.


Electric-heating systems that do not contain a low-current thermostat (as in the prevous installation), use a heavydury thermostat that directly feeds current to the heuting element.For such systems, it will be necessary to install a heavy-duty relay ( $K$ ) in this example) to control the heavy heating-element current.

## PERSONAL MESSAGE RECORDER



POPULAR ELECTRONICS
FIG. 57-4


The personal message recorder is built around an ISD1016 CMOS voicc messaging system, which does away with the cumbersome and expensive analog-to-digital and digital-to-analog conversion circuits.

A functional block diagram of the ISD1016 is shown. The ISD1016 contains all of the functions necessary for a complete messagc-storage system. The preamplifier stage accepts audio signals directly from an external microphone and routes the signals to the ANA OUT (analng out) terminal. An automatic-gain control (AGC) dynamically adjusts the preamplifier gain to extend the input signal range. Together, the preamp and AGC circuits provide a maximum gain of 24 dB . The internal clock samples the signal and, under the control of the address-decoding logic, writes the sampling to the analog-storage array. Eight extemal input lines allow the ISDI016's message space to be addresserd in 160 equal segments, each with a 100 -millisecond duration. When all address lines are held low, the storage array can hold a single, continuous, 16 -second message.

However, there is a special addition to the power down input (pin 24) of U1. If the interrial memory becomes full during recording, an overflow condition is generated in order to trigger the next device. Once an overflow occurs, pin 24 must be taken high and then low again bcfore a new playback of record operation can be started.

Transistor Q1, C3, R5, and R6 form a one-shot pulse generator that automatically clears any overflow condition cach time that start switch (S1) is pressed. Switch S 2 selects cither the playback or the record mode. Switch S4-an 8-position (a-h) DIP switch - is included in the circuit to allow the circuit's record/playback time to be varicd from 0 to 16 seconds. The maximum time available is when all 8 switch positions are closed (or set to the on position). Resistor network R8 (a-h) is included in the circuit to provide a pull-up function for the address lines, which thercby controls U1's record/playback time.

## FOUR-INPUT MINIMUM/MAXIMUM SELECTOR



WILLIAM SHEETS
FIG. 57-5

This circuit outputs the maximum (or the minimum) of the four input voltages $V_{1}, V_{2}, V_{3}$, and $V_{4}$. Each of these input voltages is in the range 0 to 5 V .

The output of the unit is the maximum of $V_{1}, V_{2}, V_{3}$, and $V_{4}$ if the control voltage input is 5 V (i.e., logical 1). The output is the minimum of $V_{1}, V_{2}, V_{3}$, and $V_{4}$ if the control input is zero.

By cascading $N$ such units, one can select the maximum (or the minimum) of $3 N+1$ input voltages.

Thus if $k$ is the number of input voltages, we need $[(k+1) / 3]$ units.

SOIL HEATER FOR PLANTS


F/G. 57-6

A TDA1024 electronic thermostat senses soil tempcrature via thermistor R6. The circuit uses zero-crossing switching of the heater. The heater is made of elastic-coated steel wire. Pl is used to set the temperature. The heater should have $2 \Omega$ or more resistance and operate from the 9 -V transformer. About 40 W of heat is available.

## KEY ILLUMINATOR



POPULAR ELECTRONICS
FIG. 57-7

## RADIO COMMERCIAL ZAPPER



FIG. 57-8


BLOCK DIAGRAM OF THE COMMERCIAL KILLER: The envelope of the signal is used to vary the pulse rate trom IC2-c. The pulses are integrated; the resulting signal controls the gains of a pair of VCA's.
The L\&R inputs are summed, dated and drive a comparator. The comparator senses level and generates a transition when audio inputs go above or below preset thresholds. The number of these transitions (corresponding to rapid volume changes) are integrated and feed voltage controlled amplificrs. This device actually senses dynamic range.


## RADIO ELECTRONICS

FIG. 57-9
An optoisolator is used as an attenuator in this circuit. When the LM386 draws more current on audio signals, the 2 N 3638 turns on, which biases the optoisolator on, and reduces the volume.

## ANALOG DE-GLITCH CIRCUIT



FIG. 57-10

## ANALOG DE-GLITCH CIRCUIT (Cont.)

Low-frequency signals produced by transducers, measurement equipment, or data loggers often appear like the first waveform in the figure. The circuit shown operates as a tracking sample-hold, and the transients are replaced in the output by the stored value of the current signal at the instant of the transient.

The input signal is buffered and inverted by IC1a, and the differentiated result shown at 2 applied to the inputs of two comparators IC2-a and IC2-b. VR1 and VR2 set levels to prevent false or unnecessary operation. Either comparator output triggers the mono IC3 from positive or negative signal transients. When IC3 has not been triggered, TR1 and TR2 'p' channel JFETs are on, and IC1b operates as an integrator with a high leakage, and tracks the input signal. When the mono is triggered as at 3, TR1 and TR2 turn off and the previous signal value is held constant, as shown at 4. The resulting output waveform can then be easily filtered to remove the harmonics from the restoring step at the end of the mono period, if needed.

The criteria for successful operation are:

$$
\begin{aligned}
& t_{2}>t_{1} \text { (mono period longer than glitch) } \\
& t_{2} / T \text { small (to optimize output waveform) } \\
& \text { Signal bandwidth } f_{o}=\frac{1}{2 \pi C R} \\
& \text { Signal phase } 0=\tan ^{-1} 2 \pi f C R
\end{aligned}
$$

The signal range is approximately $\pm 5 \mathrm{~V}$, depending on the transient amplitude and polarity. The mono period shown is 100 mS , but this can be optimized in practical applications. The shorter the mono period in relation to the signal waveform, the better the quality of the result.

## ACOUSTIC FIELD GENERATOR



THE AFG IS MADE UP OF 10 relatively simple circuit elements.

## R-E EXPERIMENTER'S HANDBOOK

FIG. 57-11
Referring to the simplified schematic in A, the AFG is made up of 10 relatively simple circuit elements. IC1-c and IC1-d arc corfigured as unity-gain noninverting buffer amplifiers.

The summing ( $L+R$ ) amplifier, IC2-c, combines equal amounts of the left and right signals, via R14 and R15, to develop a total composite signal. Left- and right-channel signals are applied equally through R13 and R12 to IC2-d, the difference ( $L-R$ ) decoder. Any common to both channels is canceled by IC2-d, which exactly balances the inverting and noninverting gains of the amplifier for a perfect null.

The stereo width-enhancement circuit made up from IC1-a and IC-b works similarly to the ( $L-R$ ) decoder, except that C25 and C26 have been added in the inverting inputs of each op amp. IC1-b develops the "left wide" signal because its inverting and noninverting inputs are connected to the left

## ACOUSTIC FIELD GENERATOR (Cont.)



THE CENTER-CHANNEL SPEECH FILTER is buill by cascading a 3-kHz low-pass filter with a $\mathbf{3 0 0 - H z}$ high-pass filter to form o band-pass filter.


AN ACTIVE CROSSOVER NETWORK for driving a high-power subwoofer system is made from IC3-a and IC3-b.

C
and right channels opposite that of IC1-a. The output of the width-enhancement circuit is routed to S4, which selects cither the "wide" or the bypass signal for feeding the front-channel amplifier.

The center-channel dialogue filter is built by cascading a $3-\mathrm{kHz}$ low-pass filter with a $3-\mathrm{Hz}$ highpass filter to form a band-pass filter. It has a sharp - $18 \mathrm{~dB} /$ octave cutoff, a flat voltage and power frequency rosponse, and minimum phase change within the passband.

In C, IC3-a and IC3-b form an active crossover notwork for driving a subwoofer. IC3-a sums signals from the left- and right-channel buffer amps, it inverts the summed signal 180 degrees, and provides a low driving impedance for the following filter stage. IC3-b and its associated RC network form a $75-\mathrm{Hz}, 3 \mathrm{rd}$-ordcr low-pass filter. The filter irverts the signal another 180 degrees, so the signal that appears across R79 (which is the output-level control) is back in phase with the original imput signal.

The delay section of the AFG, shown in D, is built, around the MN3008 bucket brigade device (BBD), and the MN3101 two-phase variable-frequency clock generator. The amouri of delay required in this system varics between approximately 5 to 35 milliseconds. The delay time of a BBD is equal to the number of stages dividcd by twice the clock frequency. Values were chosen for R53, R54, R77, and C44, to produce a clock frequency, adjustable via R77, which varies from about 30 kHz to 130 kHz .


In A, S 1 selects the signal to be delayed; either the difference signal ( $L-R$ ) from IC2-d in the matrix mode or the sum signal $(L+R)$ from IC2-c in the concert mode. The selected signal is fed from S 1 to the delay section (D) where IC4-d is configured as an inverting amplifier; R75 adjusts the gain between unity and X3. Integrated circuits IC4-a and IC4-b, along with their assoicated RC networks, are identical 3 rd -order $15-\mathrm{kHz}$ low-pass filters. Cascading two filters produces a very sharp cut off ( -36 dB per octave). Potentiometer R 76 adjusts the bias voltage required by the BBD to exactly one half the supply voltage, as required.

The power supply of the AFG , shown in G , is of conventional design. A $25-\mathrm{V}$ center-tapped transformer, along with diodes D1 and D2, produces about $\pm 18$-V unregulated dc. Two $2200-\mu \mathrm{F}$ filter capacitors provide ample energy storage to meet the high-current demands of the audio output amplifier ICs during high output peaks.

## ACOUSTIC FIELD GENERATOR (Cont.)



A 3rd-ORDER 7-kHz LOW-PASS FILTER is made from IC3-c and its associated RC nelwork.


THE SURROUND CHANNEL POWER AMPLIFIERS are designed around a pair of LM1875 monolithic power-ampifier K's.


TO RIGHT POWER AMP


## ELECTRONIC DESIGN

FIG. 57-12
When the comparator's output changes its state from low to high, the rising edge of the output pulse, differentiated by the C1/R1 chain, opens Q1. This blocks comparator M via its strobing input and sustains its output in the H state for a period of time, defined by the time constant $R_{1} C_{1}$. After C 1 is charged by the current flowing through R1, Q1 is shut off and the comparator is relcased. When the comparator's output state changes from high to low, a similar process, involving elements R2, C2, and Q2, occurs. In many applications, the output transition in only one direction is of vital importance, and the elements, which provide temporal hysteresis for the opposite direction transition, can be omitted.

HEARTBEAT MONITOR


FIG. 57-13
An IR photodiode, which senses IR skin reflectivity as a result of increased blood volume during the periods that the heart forcibly contracts, is used to pick up a signal that is correlated with the heartbeat. A transistor and op amp raise this to a level suitable to trigger logic circuitry or to be displayed on a scope.

## SELF-RETRIGGERING TIMED-ON GENERATOR



POPULAR ELECTRONICS
FIG. 57-14
When power is first applied to the circuit, C2 begins to charge via LED1, R3, and R4. When the voltage across C 2 reaches Ul's input trigger level, the output of U1 at pin 6 goes positive for a period that is determined by the values of $C_{1}$ and $R_{1}$. That turns Q1 on, discharging C 2 through D1 and Q1.

At the end of the set period, the output of U1 at pin 6 goes low, turning Q1 off and allowing the current to begin flowing through LED1, R3, and R4 to gain charge C2, causing the cycle to repeat. The repeat time is deterruined by the values of $R_{3}, R_{4}$, and $C_{2}$. The previous formula won't be as accurate for this circuit, but it will at least get you close enough for the capacitor value; then $R_{4}$ can be firle-tuned to obtain the desired timing period.

FREQUENCY DIVIDER FOR MEASUREMENTS


73 AMATEUR RADIO TODAY
FIG. 57-15
This circuit is meant to be driven by a $1-\mathrm{MHz}$ standard signal of a few volts amplitude. U1 through UБ are 7490 decade counter/divider and produce a division ratio of $100,000: 1$. Successive divisions of 10 can be tapped off, if desired, between stages. One or more stages can be added for still lower frequencies.

VIDEO, POWER, AND CHANNEL-SELECT SIGNAL CARRIER


B

## VIDEO, POWER, AND CHANNEL-SELECT SIGNAL CARRIER (Cont.)

In the video system of Figs. A and B, a single coaxial cable carries power to the remote location, selects one of eight video channels, and returns the selected signal. The system can choose one of several remote surveillance-camera signals, for example, and display the picture on a monitor near the interface box.

The heart of the multiplexer box (A) is a combination 8 -channel multiplexer and amplifier (IC1). C11 couples the multiplexer's baseband video output to the coax, and L1 decouples the video from de power arriving on the same line. This power-approximately 30 mA at 10 V -supplies all circuitry in the multiplexer box.

In interface box (B), a desired channel is encoded by three bits, set either by switches as shown or by an applied digital input. Momentary depression of the send button triggers downconverter IC1 and gated oscillator IC2A to initiate a channel-selection burst.

## 7805 TURN-ON CIRCUIT



A logic level can control a 7805 regulator with this circuit. Q2 is a series switching transistor controlled by Q1. Q1 is turned on by a logic voltage to its base.

FIG. 57-17

## AF DRIVE INDICATOR



This circuit was used with an audio power amplifier to detect the point at which output is -3 dB from maximum, indicated by LED D5, and at clipping, shown by LED D6. The indicator can be used with any amplifier operating from a $\pm 30$ to $\pm 70 \mathrm{~V}$ symmetrical supply.

PHASE-LOCKED LOOP


POPULAR ELECTRONICS
The PLL will lock onto an imput signal. Both triangle- and square-wave outputs are available. A quad op amp can be used in this circuit, which should be useful in the audio and LF radio region.

PRACTICAL DIFFERENTIATOR


POPULAR ELECTRONICS
FIG. 57-21

A differentiator has a high-pass characteristic. Components are chosen by using the design equations.

## CAPACITANCE MULTIPLIER



POPULAR ELECTRONICS
FIG. 57-20

HUM REDUCER FOR DIRECT-CONVERSION RECEIVERS


POPULAR ELECTRONICS
FIG. 57-22

One cure for ac power line hum and ripple (caused by leakage current) is to use a well-regulated and filtered 9 - to 18 -Vdc power supply with a balancing choke ( T 1 in this illustration) between the power supply and the DCR.

## PREAMP TRANSMIT-RECEIVE SEQUENCER



73 AMATEUR RADIO TODAY
FIG. 57-23

This circuit is useful in amateur radio VHF and UHF work where a mast-mounted antenna preamp is used for receiving. The kit controls T-R switching and change-over relay sequencing so that high RF levels are prevented from accidentally being applied to the preamplifier during switching intervals.

## dc OUTPUT CHOPPER



## electronic design

FIG. 57-24
Any dc voltage source in the $2-$ to $15-\mathrm{V}$ range can be chopped into a unipolar square wave that has a peak amplitude nearly equal to the dc source voltage with circuit (lightly loaded CMOS will swing within a few millivolts of each rail at low frequencies). Depending on the actual voltage of the supply, the programmable-unijunction-transistor (FUT) relaxation oscillator produces $2000-\mathrm{Hz}$ trigger pulses. These pulses operate the cascaded $74 \mathrm{C107}$ flip-flop, producing a square wave.

## ac ISOLATION TRANSFORMERS USE INEXPENSIVE 12-V TRANSFORMERS

"Safety first" is a good motto to follow when you play with electricity. You can follow that adage more closely with this homebrew isolation transformer.


POPULAR ELECTRONICS
FIG. 57-25

## ac LINE VOLTAGE BOOSTER

When incoming ac power drops, you can bring the voltage back up with this booster circuit. It adds the transformer's secondary voltage to the ac line voltage.


POPULAR ELECTRONICS
FIG. 57-26

## OCTAL D/A CONVERTER



## ELECTRONIC DESIGN

FIG. 57-27

This octal digital-to-analog converter operates on 5 V and provides eight output voltages, each digitally adjustable from supply rail to supply rail ( 0 to 5 V ). Each output's resolution is $20 \mathrm{mV} / \mathrm{LSB}$. The DAC chip (IC1) requires 3.5 V of "headroom" between its $V_{D D}$ and reference voltages. However, a voltage-doubler charge pump (IC2) removes this limitation by gencrating an approximate $10-\mathrm{V}$ supply for $V_{D I}$. All of the converter references are connected to the $5-\mathrm{V}$ supply. IC2 doubles the $5-\mathrm{V}$ input to an unregulated $10-\mathrm{V}$ output that has arn output impedance of less than $10 \Omega$. It can dcliver 100 mA , which enables the eight DACs to issue their maxirnum output currents simultaneously ( $8 \times$ $5 \mathrm{~mA}=40 \mathrm{~mA}$ ).

## 1-dB PAD


'The 1-dB pad is useful as a termination in RF work to limit possible mismatch range between system blocks, etc.

FIG. 57-28


ELECTRONIC DESIGN
FIG. 57-29
In this circuit, an additional exclusive-OR gate is connected after the modulo-2 feedback, with Cl and R 2 applying the supply turn-on ramp into the feedback loop. This provides sufficient transient signal so that the PRBS generator can self-start a power-up. A shift-register length $n$ of 10 is shown with feedback at stages 3 and 10 , providing crue and inverted maximal length sequence outputs.

This technique applies an input directly to the feedback loop. Therefore, it's considered more reliable than applying an RC configuration to the shift-register reset input to create a random turnon state.

SIMPLE EXTERNAL MICROPHONE CIRCUIT FOR TRANSCEIVERS


Used originally for an Icom ICZAT handie talkie, this circuit mught prove useful in other applications.


WILLIAM SHEETS
FIG. 57-31
A JFET (MPF102) is used to chop a de signal for amplification in an ac coupled amplifier. Q3 is the chopper element and Q1-Q2 forms the multivibrator to derive a chopping signal. $R_{B}$ sets the bias on the FET to keep the drive to MPF102 as low as possible.

## AUDIO MEMO ALERT



POPULAR ELECTRONICS
FIG. 57-32

This device prevents paper notes and memos from being overlooked. A paper note placed between two fingers made of a conducting matcrial (metal or conductive plastic) breaks the circuit, allowing pair 1 of U1-a to go high. This causes U1-c \& Ul-d to act as an oscillator, pulsing piezo buzzer BZ1.

## OCTAVE EQUALIZER



PRECISION MONOLITHICS INC.

| 10 ( $\mathrm{Hz}_{2}$ ) | $c_{1}$ | $\mathrm{C}_{2}$ |
| :---: | :---: | :---: |
| 32 | $0.18{ }_{\mu} \mathrm{F}$ | $0.018{ }_{\mu} \mathrm{F}$ |
| 64 | $0.1 \mu F$ | $0.01 \mu \mathrm{~F}$ |
| 125 | 0.047 ${ }_{\mu} \mathrm{F}$ | $0.0047{ }_{\mu} \mathrm{F}$ |
| 250 | $0.022 \mu \mathrm{~F}$ | $0.0022 \mu$ |
| 500 | $0.012 \mu \mathrm{~F}$ | $0.0012 \mu \mathrm{~F}$ |
| 1k | 0.0056 ${ }^{\text {F }}$ F | 560pF |
| 2k | 0.0027 ${ }_{\mu} \mathrm{F}$ | 270pF |
| 4k | 0.0015 ${ }^{\text {F }}$ F | 150pF |
| 8k | 680pF | 68pF |
| 16k | 360pF | 36pF |

FIG. 57-33

This circuit is one section of an octave equalizer used in audio systems. The table shows the values of C 1 and C 2 that are needed to achieve the given center frequencies. This circuit is capable of 12 dB boost or cut, as determined by the position of R 2 . Because of the low input bias current of the OP-08, the resistors could be scaled up by a factor of 10 , and thereby reduce the values of Cl and C 2 at the low-frequency end. In addition, 10 sections will only draw a combined supply current of 6 mA maximum.

## COMPLEMENTARY OR BILATERAL ac EMITTER-FOLLOWER CIRCUIT



WILLIAM SHEETS

CAPACITOR HYSTERESIS COMPENSATOR


This noninverting circuit uses a pair of complementary npn (2N3904) and pnp (2N3906) transistors.

FIG. 57-35

## AMPLIFIER COOL-DOWN CIRCUIT I



This cool-down relay circuit uses an IC timer to drive a relay, which keeps the blower on for a time delay from timer U3. The value of $C_{2}$ can be changed to lengthen or shorten the time, as needed.

## NE602 INPUT CIRCUITS



73 AMATEUR RADIO TODAY
FIG. 57-37
Input circuits for the NE-602.

## NE602 OUTPUT CIRCUITS



FIG. 57-38
Output circuits for the NE-602.

(A) Retay converted to latch

(B) Inverter pair used as latch.

(C) Alternate action pushbutton.

ELECTRONICS NOW
FIG. 57-39
Some simple latches and alternate action circuits.

## BOOTSTRAP CIRCUIT



Bootstrapping the substrate of a JFET amplifier reduces the distortion caused by the nonlinlearity of the JFET input capacitance. In the figure, a second feedback divider bootstraps the substrate of U1. With $R_{1}=500 \mathrm{k} \Omega$ (source impedance), THD at 10 kHz was reduced an order of magnitude.

## ELECTRONIC DESIGN

FIG. 57-40

## SIMPLE SCHMITT TRIGGER



A 555 IC is shown configured to function as a Schmitt trigger. Inputs above and below the threshold level will turn the circuit on and off producing a square wave output.

FIG. 57-41

## AMPLIFIER COOL-DOWN CIRCUIT II



High-power amplifiers used in RF service, using vacuum tubes, often benefit from leaving the blower air flow on after removal of filament/heater voltage.

## NE602 dc POWER CIRCUITS



73 AMATEUR RADIO TODAY
FIG. 57-43
The dc power supply circuit for the NE-602.

## INRUSH CURRENT LIMITER



POPULAR ELECTRONICS
FIG. 57-44

A 7805 can be configurcd as a constant-current regulator, to serve as an inrush current limiter. R1 will have 5 V across it at all times so the total current through Il will be $5 \mathrm{~V} / R_{1}+5 \mathrm{~mA}$, the 5 mA being the regulator operating current. In this casc, $R_{1}=5 \mathrm{~V} / 95 \mathrm{~mA}=52.6 \Omega$ for I 1 current $=100 \mathrm{~mA}$.

## 58

## Mixer Circuits

The sources of the following circuits are contained in the Sources scction, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Low-Noise 4-Channel Guitar Mixer<br>Audio Mixer<br>FET Microphone Mixer<br>Unity-Gain Four-Input Audio Mixcr<br>FET Op Amp Microphone Mixer

## LOW-NOISE 4-CHANNEL GUITAR MIXER



## SILICON CHIP

IC1-a, IC1-b, IC2-a, and IC2-b all function with a gain of about 19 . Their outputs are mixed via the level-control pots and the resulting signal amplified by IC3-a and fed to tone-control stage IC3-b. Finally, the output from IC3-b is fed to unity-gair buffer stage IC4-a via volume-control potentiometer VR8.


FIG. 58-1

## AUDIO MIXER



Designed around an LM3900 quad op amp, this mixer combines 2-line and 2-mike inputs and sums them at the output terminal. R 7 through R 10 can be changed to vary the gain (around +23 dB ).

## FET MICROPHONE MIXER



WILLIAM SHEETS
FIG. 58-3

A JFET transistor is used as a high-lo-low impedance converter and signal mixer. Input impedance is approximately $500 \mathrm{k} \Omega$ but it can be increased by increasing R 5 to R 8 as high as $10 \mathrm{M} \Omega$. Output $Z$ is about $2 \mathrm{k} \Omega$, but it can be increased or decreased by changing the value of $R_{10}$. Use 560 or 680 $\Omega$ to feed a $600-\Omega$ input; use $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ for high impedance.


The circuit has four inputs. The voltage gain between each input and the output is held at unity by the relative values of the $470 \mathrm{k} \Omega$ imput resistor and the 470 kS feedback resistor.

$$
\mathrm{E}_{\mathrm{OUT}}=-(\ln \# 1+\ln \# 2+\ln \# 3+\ln \# 4)
$$

ICi $=$ LM741, etc.
FIG. 58-4
FET OP AMP MICROPHONE MIXER


FIG. 58-5

## 59

## Modulator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure numbor in the box of each circuit correlates to the entry in the Sources section.

FM Modulator<br>$455-\mathrm{kIIz}$ Modulator<br>555 FM Circuit

C4. 100 uF . 16 V electrolytic
D1, D2 - Motorola MV-209
Li- arwound, 6 turns, $3 / 16^{\prime \prime}$ dia.. $5 / 16^{\prime \prime}$ long, 20 AWG
C3-500 pF, silver mica

rf design
The FM modulator is built with a Motorola MC1648P oscillator. Two varactors, Motorola MV209, are used to frequency modulate the oscillator. The $5000-\Omega$ potentiometer is used to bias the varactors for best linearity. The output frequency of approximately 100 MHz can be adjusted by changing the value of the inductor. The output frequency can vary as much as 10 MHz on each side. The output level of the modulator is -5 dBm . In this prototype, the varactor bias was 7.5 $V$ for best linearity; but this could be different with other varactors.

FIG. 59-1


This circuit shows how to frequency-modulate the oscillator using a 555 . Oscillator frequency is set with the $5-\mathrm{k} \Omega$ potentiometer and the modulation signal is dc-coupled.

## 455-kHz MODULATOR

FIG. 59-2

## 555 FM CIRCUIT

## IC-1 - Motorola MC-1374P

IC-2 - Natıonal LH0002C
L1. L2 - Mouser Electronics \#421IF200
C1. C2 - silver mica, 300 pF
All 0.1 uF cap., ceramic disc, 16 V
C3-100 uF, 10 V , electrolytic
All resistors $5 \%, 0.25 \mathrm{~W}$
ADJUSTMENT: Adjust R1 for minimum carrier: signal from function generator should generate 500 mVpp at pin 8 of IC-2 (suppressed carrier double sideband). Adpust R ? and function generator level to achieve 800 mVpp at pin 8 of $1 \mathrm{C}-2$ (standard AM with carrer). Adjust L2 for 455 kHz . Adjust L1 for maximum output.


Circuit for applying a dc-coupled FM or PPM to a 555 configured as an oscillator.

## 60

## Monitor Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Room Monitor<br>Baby Monitor<br>Bird Feeder Monitor<br>Acid-Rain Monitor

ROOM MONITOR


SILICON CHIP
FIG. 60-1

The circuit uses Q1 to buffer the right-channel balance output while Q2 and Q3 form a VOX circuit. When the signal level from the microphone goes high, the output of the VOX also goes high and the multiplexer inside IC1 switches the high-gain left-channel output through to a following buffer stage. This signal is then ac-coupled via C3 into an RF mixer stage and thence to an RF amplifier, which is tuned by C2 and L2.

## BABY MONITOR



A


POPULAR ELECTRONICS
FIG. 60-2

## BABY MONITOR (Cont.)

Transmitter operation. Operating power for the transmitter circuit is derived directly from the ac line. The de power to operate the circuit is generated in two stages, one for an RF power-amplifier stage, and the sccond for the remainder of the circuit.

The ac line voltage is applied to D1, which half-wave rectifies the ac input. The resulting de voltage (approximately 30 V under load) is fed across an RC filter (comprised of $\mathrm{R1}$ and $\mathrm{C1}$ ) and used to operate amplifier, Q1. The second stage of the power supply (composed of LED1, R2, D2, D3, C2, and C3, which forms a regulated $+13.6-\mathrm{V}$, conter-tapped supply) feeds the remainder of the circuit. LED1 is connected in series with R 2 and is used as a visual power-on indicator for the transmitter.

An electret microphone element (MIC1) is used as the pick-up. The output of the microphone is ac coupled through C5 to U1-a (a noninverting op amp with a gain of about 100). The output of U1-a at pin 1 is ac coupled through C 4 to the noninverting input of $\mathrm{U1}-\mathrm{b}$ (which provides an additional gain of 48) at pin 5. The output of U1-b at pin 7 is then fed through D4 and R10, and across R11 and C6 to the inverting input of U1-c which is biased to a positive voltage that is set by SENSITIUTY-control R19. This represents at threshold voltage at which the output of U1-c switches from high to low.

During standby, the output of U1-c at pin 8 is held at about 12 V when the voltage developed across C 6 is less than the bias-voltage setting at pin 10 . When a sound of sufficient intensity and duration is detected, the voltage at pin 9 of U1-c exceeds the threshold level (set by R19), causing U1-c's output at pin 8 at go low. That low is applied to pin 2 of U2 (a 555 oscillator/timer configured as a monostable multivibrator). This causes the output of U2 to go high for about one second, as determined by the time constant of R12 and $\mathrm{C7}$. The output of U 2 at pin 3 is applied to pin 4 of U 3 (a second 555 ascillator/tiner that is configured for astable operation, with a frequency of about 125 kHz ). That causes U3 to oscillate, producing a near square-wave output that is used to drive Q1 into conduction. The output of Q1 is applied across a parallel-tuned circuit composed a T1's primary and C8. The tuncd circuit, in turn, reshapes the $125-\mathrm{kHz}$ signal, causing a sine-wave-like signal to appear across both the primary and the secondary of T 1 .

The signal appearing at 'T1's secondary (about 1 or 2 V peak-to-peak) is impressed across the ac power linc, and is then distributed throughout the building without affecting other electrical appliances connected to the line. Transient suppressor D7 is included in the circuit to help protect Q1 from voltage spikes that might appear across the power line and be coupled to the circuit through T1.:

Receiver operation. Power for the receiver, as with the transmitter, is derived from a traditional half-wave rectifier (D5). The resulting dc voltage is regulated to 27 V by D6 and R20, and is then filtered by C11 to provide a relatively clean, de power source for the circuit. A light-emitting diode, LED2, connected in series with R20 provides a visual indication that the circuit is powered and ready to receive a signal.

The $125-\mathrm{kHz}$ signal is plucked from the ac line and coupled through R21 and C12 to a paralleltuned LC circuit, consisting of C 13 and L1. That LC circuit passes $125-\mathrm{kHz}$ signals while attenuating all others. The $125-\mathrm{kHz}$ signal is fed through C14 to the base of Q2 (which is configured as a highgain linear amplifier), which boosts the relatively low amplitude of the $125-\mathrm{kHz}$ signal. The RF output of Q2 is ac coupled to the base of Q3 through C15. Transistor Q3 acts as both an amplifier and detector. Because there is no bias voltage applied to the base of Q3, it remains cut off until driven by the amplified $125-\mathrm{kHz}$ signal. When Q 3 is forward biased, its collector voltage rises.

Capacitor C16, connected across Q3's collector resistor, filters the $125-\mathrm{kHz}$ signal so that it is essentially dc. When the voltage at the collector of Q3 rises, Q4 is driven into conduction. That causes current to flow into piezo buzzer BZ1, producing a distinctive audio tone that alerts anyone within carshor that the baby needs attention.

## BIRD FEEDER MONITOR



POPULAR ELECTRONICS
FIG. 60-3

The first amplifier circuit is a bird phone. In this circuit, the electret mike (MICl) is mounted in the neck of a large plastic funnel. The amplifier, built around an MC34I19 (which is available from D.C. Electronics, P.O. Box 3203, Scottsdale, AZ 85271-3203; Tel. 800-467-7736, and elsewhere), is then placed outside of the funnel with the pickup facing a nearby bird feeder. The output of the amplifier is then connected to a $16-\Omega$ speaker.

The amplifier's voltage gain is determined by the values of the input resistor (R1) and the feed-back resistor (R3 and R4, respectively). The differential gain of the amplifier is given by: $R_{3}+$ $R_{4} / R_{1} \times 2$. With the component values shown, the maximum voltage gain is about 270 . This permits listening to the activity at the bird feeder.

## ACID-RAIN MONITOR



R-E EXPERIMENTERS HANDBOOK
FIG. 60-4
The drain-to-source resistance of $Q 1$ varies dcpending on the acidity of the sample presented to Q1's gate circuit. That variable resistance varies the current flowing through the bridge; that current is proportional to pH .

## 61

## Moisture- and Fluid-Detector Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Water-Activated Alarm<br>Simple Flood Alarm<br>Moisture Detector

## WATER-ACTIVATED ALARM



POPULAR ELECTRONICS
FIG. 61-1

When sensor gets wet, it conducts, forward-biases Q1, and activates audio oscillator U1. A tone is heard from the speaker.

## SIMPLE FLOOD ALARM



POPULAR ELECTRONICS
FIG. 61-2
A common collector amplifier drives a 2 N3904 switch to sound alarm BZ1. The wire leads to water sensor or sump pit, level switch, etc. and used to allow the alarm to operate and be mounted in a dry place.

## MOISTURE DETECTOR



1991 PE HOBBYIST HANDBOOK
FIG. 61-3
The moisture detector uses two transistors and a piezoelectric transducer to sound an alarm tone when water is present. Transistor Q1 forms a crystal-controlled oscillator, using a portion of piezoelectric transducer XDC-which contains two piezoelectric crystal regions-as the crystal. The transducer has three separate leads. One lead goes to each of the crystals, and the third lead is common to both.

The smaller intemal crystal region sets the frequency of operation and the larger element is driven by Q1 (when it is biased "on") to provide the loud tone output. To turn the pnp transistor Q1 (used as an oscillator) "on" pnp transistor Q2 (used here as a switch) must be on. To turn it "on" with the biasing that is normally connected, you would only need to connect a resistor from the collector of Q2 to the base, which gives the base a negative (-) bias. The resistor used is the water that is to be detected. That turns Q2 on, which, in turn, turns on Q1. The result when water touches the probe is that the transducer emits a loud sound.

| $\mathrm{C1}, \mathrm{C} 2$ | $0.1-\mu \mathrm{F}$ Mylar Capacitor |
| :--- | :--- |
| Q1, Q2 | 2 N 3906 Transistor |
| R1 | $6.8-\mathrm{k} \Omega$ Resistor |
| R2 | $33-\mathrm{k} \Omega$ Resistor |
| R3 | $200-\Omega$ Resistor |
| XDC | Piezoelectric Transducer |

## 62

## Motion Detector Circuit

ThThe source of the following circuit is contained in the Sources section, which begins on page 675 . The figure number in the box of the circuit correlates to the entry in the Sources section.

Microwave Motion Detector

## MICROWAVE MOTION DETECTOR



## POPULAR ELECTRONICS

FIG. 62-1
Operating at around 1.1 GHz , the detector senses field disturbance in the neighborhood of the anterna. The Doppler signal from detector D1 is amplified and drives a power MOSFET switch. The antenna is a short (2 to 3 ") length of wire.

## 63

## Motor-Control Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of cach circuit correlates to the entry in the Sources section.

Blender-Control Circuit<br>PWM Motor-Drive Circuit<br>Speed-Control Switch Circuit<br>Piezo Motor Drive<br>Pulsc-Width-Modulated Motor-Speed Control<br>Speed-Control Switch

## BLENDER-CONTROL CIRCUIT



RADIO-ELECTRONICS
FIG. 63-1

A 10-speed touch-control blender circuit that uses the low-cost LS314 chip by LSI Systems. The 11th touch pad is for power off.


RADIO-ELECTRONICS
FIG. 63-2
This circuit will drive a small dc motor over a wide range of specds without stalling by controlling the duty cycle of the motor, rather than the supply voltage.

SPEED-CONTROL SWITCH CIRCUIT


POPULAR ELECTRONICS
FIG. 63-3
A center-tapped $240-\mathrm{V}$ transformer is used with two SCR devices to provide rectified ac (pulsating dc) to MOT1. Q1 is a UJT ramp generator used to generate trigger pulses for SCR1 and SCR2.

PIEZO MOTOR DRIVE


## ELECTRONIC DESIGN

FIG. 63-4
Using two Apex Microtechnology PA41 devices in a bridge circuit, this piezo motor driver delivers 0 - to $630-\mathrm{V}$ output.

## PULSE-WIDTH-MODULATED MOTOR-SPEED CONTROL

POPULAR ELECTRONICS


Connected in this manner, an LM317 1-A adjustable-voltage regulator can be used to control the specd of a miniature de motor or vary the brilliance of a small lamp. The circuit does so by controlling the pulse width, and therefore the current, to the load device.

To set the desired maximum output voltage, momentarily close S 1 and adjust R3. Connect either a lamp or small de motor (as is shown in the schematic to the circuit's output) and adjust R4 for the desired results. Any device that is driven by this circuit should have a current requirement of 1 A or less. And you should be sure to use good-sized heatsink for the LM317 regulator IC.

SPEED-CONTROL SWITCH


The speed-control switch offers reasonably good control and stability to both ends of its operating range. This circuit uses two SCR devices in a full-wave configuration to control the dc power to a motor. A center-tapped transformer is used to supply the SCRs.

## 64

## Multiplexer Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675. The figure number in the box of the circuit correlates to the entry in the Sources section.

32-Channel Analog Multiplexer

## 32-CHANNEL ANALOG MULTIPLEXER



FIG. 64-1
Using two Siliconix DG506 multiplexer chips, this 32 -channel analog multiplexer selects 1 of 32 channels, depending on the data inputs $A_{0}-A_{4}$.

## 65

## Multivibrator Circuits

TThe sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Improved CMOS Multivibrator
Very Low Frequency Mullivibrator
Monostable Multivibrator I
Astable Multivibrator or Free-Running
Square-Wave Oscillator
Astable Multivibrator I

Monostable Multivibrator II
Astable Multivibrator II
One-Shot Multivibrator
Flip-Flop or Bistable Multivibrator with Pushbutton Triggering
Free-Running Multivibrator Using Op Amp

## IMPROVED CMOS MULTIVIBRATOR



This circuit uses a protective resistor $R 2$ in conjunction with feedback resistor $R 1$. Together, they form a voltage divider to reduce the input voltage amplitude for ICl-a so that the protective diodes never conduct. This improves temperature and voltage stability of the multivibrator.

## VERY LOW FREQUENCY MULTIVIBRATOR



JFETs Transistor: N-channel (MPF 102, elc.)
WILLIAM SHEETS
FIG. 65-2

The use of JFETs permits, high resistance and long time constants in this very low frequency multivibrator. The values shown are for 0.15 Hz operation.

## MONOSTABLE MULTIVIBRATOR I



WILLIAM SHEETS
FIG. 65-3
This circuit is activated when SW1 is pushed to ground the base of transistor Q2. The pulse rate is approximately equal to $0.7(\mathrm{R} 3 \times \mathrm{C} 1)$.

## ASTABLE MULTIVIBRATOR OR FREE-RUNNING SQUARE-WAVE OSCILLATOR



## WILLAM SHEETS

FIG. 65-4
This free-running square-wave oscillator uses two npn transistors. Output frequency is approximately 300 Hz with the values shown.

## ASTABLE MULTIVIBRATOR I



WILLIAM SHEETS
FIG. 65-5
In this multivibrator circuit frequency and pulse width can be separately controlled by using steering diodes (INS14) and two potentiometers.

## MONOSTABLE MULTIVIBRATOR II


$T \approx 1.1 月 C$

## WILLIAM SHEETS

FIG. 65-6
The time constant of $R_{A} X C$ determines the period of the monostable multivibrator. A negative pulse at pin 2 of the 555 starts the cycle.


WILLIAM SHEETS
FIG. 65-7

An astable multivibrator based on the 555 is shown. Freq is approximately 975 Hz as determined by the values of $R_{B}$ and $C$.

FLIP-FLOP OR BISTABLE MULTIVIBRATOR WITH PUSHBUTTON TRIGGERING


ELECTRONICS NOW
FIG. 65-9

FIG, 65-10

## 66

## Musical Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 575 . The figure number in the box of each circuit correlates to the entry in the Sources section.

Precision Audio Generator for Musical Instrument Tune-Up Perfect Pitch<br>Musical Instrument Digital Interface (MID) Receiver<br>Electronic Metronome<br>Musical Instrument Digital Interface (MIDI) Transmitter<br>Melody Circuit<br>Top Octave Generator

## PRECISION AUDIO GENERATOR FOR MUSICAL INSTRUMENT TUNE-UP



1993 ELECTRONICS HOBBYIST HANDBOOK
FIG. 66-1

One section of the precision audio frequency generator uses an electret microphone element to pick up audio from the piano. That signal is then processed and sent to one chamnel of a dual-trace oscilloscope. The other section of the circuit is used to produce a variable-frequency signal that is fed to a digital frequency counter. After conditioning, the audio signal is presented to the second channel of the scope and output to a set of stereo headphones.

## PERFECT PITCH



ELECTRONICS NOW
FIG. 66-2

Perfect pitch, which is based on the 8751 H microprocessor, is an incxpensive and easy-to-build instrument tuner/frequerky counter with a built-in headphone amplifier and a visual metronome. Perfect pitch converts the audio signal from your instrument to a digital signal, and displays the musical note you are playing and its frequency in real time on a 16 -character liquid-crystal display. It also has an auxiliary audio input for radio, tape, or CD players so that you can tune up and play along with your favorite artists.


## ELEKTOR ELEGTRONICS

FIG. 66-3
Receiver photodiode SFH250 is used to convert optical data pulses at 32.5 Kb to electrical signals. Buffer T2 feeds the signals to cascade amplifier T3-T4, then to op amp IC4, and buffers IC5-f and IC5-e. IC6 supplies 9 V for the circuit.

## ELECTRONIC METRONOME


$R_{A}$ sets the rate while $R_{B}$ sets the volume of clocks in the speaker. The 555 is configured as a low frequency oscillator. The circuit is powered by a 6 V battery.

## MUSICAL INSTRUMENT DIGITAL INTERFACE (MIDI) TRANSMITTER



## elektor electronics

FIG. 66-5
Used for digital control of musical instru ments, this transmitter converts the digital data signals to equivalent optical signals for fiberoptic cable interface. Optocoupler IC1 provides isolation, and drives $\mathrm{IC} 2-\mathrm{a}$ and -b and Tl , and finally provides a cable driver LED (SFH750).

## MELODY CIRCUIT



RADIO-ELECTRONICS
FIG. 66-6

A high-quality melody circuit. The slow decay waveform produced will create chime-like notes. Pitch, tempo, and duration are all adjustable.

TOP OCTAVE GENERATOR
inputs and outputs are 12 volt square waves


## OUTPUT TONES

## RADIO-ELECTRONICS

FIG. 66-7
Using an MK50240, this circuit produces 12 top octave tones. The input and output lines can be divided using a binary divider IC to obtain the lower notes.

## 67

## Noise-Generator Circuits

T The figure number in the box of the circuit correlates to the entry in the Sources section.

Noise Generator

## NOISE GENERATOR



303 CIRCUITS
FIG. 67-1
This circuit generates noise pulses that are suitable lor test purposes, etc. A zener diode is used as a noise source. IC1 is a relaxation oscillator. P1 determines noise bandwidth, and P2 and P3 the noise amplification. Current consumption is $10 \mathrm{mAA} @ 12 \mathrm{Vdc}$.

## 68

## Noise-Limiting Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Audio Dynamic Noise-Reduction System<br>Armplified Noise Limiter for SW Receivers<br>Receiver AF Noise Limiter for Low-Level Signals<br>Simple Noise Limiter for Receivers

## AUDIO DYNAMIC NOISE-REDUCTION SYSTEM



## POPULAR ELECTRONICS

FIG. 68-1
Ul is a dedicated IC (National Semiconductor) that achieves up to 10 dB noise reduction by an adaptive bandwidth scheme and a psycho acoustic masking technique.

## AMPLIFIED NOISE LIMITER FOR SW RECEIVERS



73 AMATEUR RADIO TODAY
FIG. 68-2
The noise lirviter circuit has a preamplifier clipper, and a switchable audio bandpass filter. Audio levels in the $5-$ to $50-\mathrm{mV}$ range are amplified-in a prearnp to several volts p-p, fed to a clipper, voice band filter, then to a narrow band aclive filter which can be switched in and out of the circuit.

## RECEIVER AF NOISE LIMITER FOR LOW-LEVEL SIGNALS



73 AMATEUR RADIO TODAY
FIG. 68-3
A preamplifier in the audio frequency range amplifies a noisy audio signal to drive a diode clipper. Suitable audio input levels would be in the $10-\mathrm{mV}$ to $1-\mathrm{V}$ range.

## SIMPLE NOISE LIMITER FOR RECEIVERS



73 AMATEUR RADIO TODAY
FIG. 68-4

This circuit uses a diode series clipper to limit noise peaks on a received signal. It is best used where several volts $p-p$ of audio signal are available.

## 69

## Operational-Amplifier Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Polarity Gain Adjustment<br>Fast Composite Amplifier<br>Non-Linear Operational Amplifier with<br>Temperature-Compensated Breakpoints<br>Power Op Amp<br>Variable Gair Op-Amp Circuit<br>Low Noise and Drilt Composite Amp<br>High-GBW Op Amp<br>Single Op-Amp Full-Wave Rectifier

## POLARITY GAIN ADJUSTMENT



## ELECTRONIC DESIGN

FIG. 69-1

By adjusting one potentiometer, this circuit's output can be varied from a positive-going version of the input signal, smoothly through zero output, then to a negative-going version of the input (see the figure). If the input signal is a positive pulse of, for example, $+2-\mathrm{V}$ peak, the output pulse amplitude can be smoothly varied from $+2-\mathrm{V}$ through ground (no output) to a -2 -V peak.

Taking a closer look at the setup, assume that the signal has a $+2-\mathrm{V}$ peak input. The A section of the quad op amp is an irpput buffer, op amp $C$ provides a fixed negative-going output of $-4-V$ peak, and op amp $B$ supplies a positive-going output that varies from $+2-V$ to $+6-\mathrm{V}$ pcak. The D section adds the B and C outputs. Thus, by varying the B output, the circuit output varies smoothly from $-2-V$ to $+2-V$ peak.

The circuit can, of course, also be used as a $0^{\circ} / 180^{\circ}$ phase switcher. For instance, with a groundcentered sine-wave input of 4 V p-p, the output varics from $4-\mathrm{V} p-\mathrm{p}$ in phase with the input, smoothly through 0 V , to 4 V p-p $180^{\circ}$ out of phase with the input.


FIG. 69-2
An ultra-low-noise, low-distortion op amp-the AD797-is combined with the AD811 op amp, which offers a high bandwidth and a $100-\mathrm{mA}$ output drive capability. The composite-amplifier circuit serves quite well when driving high resolution ADCs and ATE systems.

The fast AD811 operates at twice the gain of the AD797 so that the slower amplifier need only slew one-half of the total output swing. Using the component values shown, the circuit is capable of better than -90 dB THD with $\mathrm{a} \pm 5-\mathrm{V}, 500-\mathrm{kHz}$ output signal. If a $100-\mathrm{kHz}$ sine-wave input is used, the circuit will drive a $600-\Omega$ load to a level of 7 V rms with less than -109 dB THD , as well as a $10-\mathrm{k} \Omega$ load at less than -117 dB THD.

The device can be modified to supply an overall gain of 5 by changing both the $R_{f} / R_{\text {in }}$ ratio and $R_{3} / R_{2}$ ratio to 4:1. This raises the gains of AD811 and the total circuit while maintaining the AD 797 at unity gain. If only the $R_{f} / R_{\mathrm{m}}$ ratio is changed, the circuit might become unstable. In contrast, if only the $R_{3} / R_{2}$ ratio is varied, the AD797 will then opcrate at gain. Subsequently, the circuit will have a lower overall bandwidth. $R_{1}$ should be equal to the parallel combination of $R_{\mathrm{in}}$ and $R_{f}$.


## POWER OP AMP



## ELECTRONIC DESIGN

FIG. 69-4
This circuit from Apex Microtechnology can deliver 180 V p-p @ 90 kHz into a $4-\Omega$ load. The PA04 can deliver $400-\mathrm{W}$ RMS into an $8-\Omega$ load with low THD at frequencies beyond 20 kHz .

## VARIABLE GAIN OP-AMP CIRCUIT



ELECTRONICS NOW
FIG. 69-5


ELECTRONIC DESIGN
FIG. 69-6

This circuit offers the best of both worlds. It can be combincd with a low input offset voltage and drift without degrading the overall system's dynamic performance. Compared to a standalone FET input operational amplifier, the composite amplifier circuit exhibits a 20 -fold improvement in voltage offset and drift.

In this circuit arrangement, Al is a highspeed FET input op amp with a closed-loop gain of 100 (the source impedance was arbitrarily chosen to be $100 \mathrm{k} \Omega$ ). A2 is a SuperBeta bipolar input op amp. It has good de characteristics, biFET-level input bias current, and low noise. A2 monitors the voltage at the input of A1 and injects current to Al's null pins. This forces Al to have the input properties of a bipolar amplifier while maintaining its bandwidth and low-input-bias-current noise.

MAXIM ENGINEERING JOURNAL
FIG. 69-7
You can build a composite amplifier featuring high gain, wide bandwidth, and good dc accuracy by cascading the sections of a dual video amplifier and adding two appropriate phase-compensation components. The op amp drives a $150-\Omega$ load and provides a closed-loon gain of 40 dB .


## SINGLE OP-AMP FULL-WAVE RECTIFIER



MAXIM ENGINEERING JOURNAL
FIG. 69-8

This circuit operates from +5 V and uses a single op amp to deliver a full-wave rectified output of the input signal.

## 70

## Optical Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Optical Proximity Detector<br>Photoreceiver Optimized for Noise and Response<br>Optoisolator and Optocoupler Interface Circuits<br>Optocoupler Circuits<br>Optical Direction Iiscriminator<br>Optical Safety Cireuit Switches<br>Simple Amplifier for Phototransistors<br>Variable-Sensitivity Phototransistor Circuit

## OPTICAL PROXIMITY DETECTOR



POPULAR ELECTRONICS
FIG. 70-1
A "reflector" isolator (A) detects the presence of an object by bouncing light off of it. This technique is useful in circuits that detect when an object is close enough to the sensor (B).

PHOTORECEIVER OPTIMIZED FOR NOISE AND RESPONSE


[^0]FIG. 70-2

OPTOISOLATOR AND OPTOCOUPLER INTERFACE CIRCUITS


C

Interfacing equipment, whether TTL, RS-232C, or 20=mA current-loop based, with oploisolators.

FIG. 70-3

## OPTOISOLATOR AND OPTOCOUPLER INTERFACE CIRCUITS (Cont.)



B

Very heay loads, which can'l be powered directh bs an optotsolator. might r'quire the use of a relos as shown in A. You citn sometimes pet asay with using a corcult like that shown in $B$. but it won't turn itsely off

A circuit for isolating a variable resistor is shown. An optoisolator that has an LED and a photoconductive cell (or photoresistor) is used. The current through the LED controls its brightness, which in turn determines the resistance between terminals A and B. The LED current is set by the voltage of the dc power supply and the value of the two resistors (R1 and R2). The fixed resistor (R1) is used to limit the current to a maximum of 20 mA (when the resistance of the potentiometer, $R_{2}$, is set to zero ohms), otherwise, the LED might burn out.

## OPTOCOUPLER CIRCUITS



POPULAR ELECTRONICS
FIG. 70-4
This circuit is a TTL-to-TTL isolator circuit. The driver circuit is an open-collector TTL inverter (U1). When the input is high, then the output of the inverter is low. Thus, when the input is high, the output of U1 grounds the cathode end of the LED and causes the LED to turn on.


FIG. 70-5
The very simple circuit uses only two CD4001 packages, i.e., eight NOR gates and operates in the following way: Pulse strearns are fed to an RS flip flop generating an output waveform which has a small or large duty cycle depending on the direction of rotation. The same input pulses are also fed to a NOR gate, which "adds" the two pulse trains.

The rising edges of this waveform are used to produce short positive pulses from the circuit consisting of R1, C1, D3, and a NOR gate used as an inverter. This is used to "sample" the outputs of the flyp flop to detect the direction of rotation. The output, whose duty cycle is large, forces the sampling NOR gate to generate a pulse train which sets (or resets) the second RS flip-flop continuously giving a permanent indication of the direction of rotation.

## OPTICAL SAFETY CIRCUIT SWITCHES



POPULAR ELECTRONICS
FIG. 70-6
Use of two LDR devices replaces the two pushbuttons used in safety switches. The lamps provide light sources for the LDR devices.

## SIMPLE AMPLIFIER FOR PHOTOTRANSISTORS



ELECTRONICS NOW
FIG. 70-7
This simple amplifier will work well with just about any phototransistor. The 741, although designed to operate with a split supply, will work with a single-sided supply as well.

VARIABLE-SENSITIVITY PHOTOTRANSISTOR CIRCUIT


ELECTRONICS NOW
FIG. 70-8
A variable resistor is used to vary the light-level resporse of a phototransistor. Phototransistors are more light sensitive than photodiodes, but they generally have poorer frequency response.

## 71

## Oscillator Circuits

TThe sources of the following circuits are containcd in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

| NE602 Local Oscillator Circuits | Local Oscillator for Double Balanced Mixers |
| :--- | :--- |
| LC Audio Oscillator | Precision Audio-Frequency Generator |
| Colpitts Oscillator | CMOS VFO |
| MOSFET Mixer-Oscillator Circuit for | Frequency Switcher |
| AM Reccivers | Precision Gated Oscillator |
| Simple RF Test Oscillator | Wien-Bridge Audio Oscillator |
| AF Power Oscillator | Variable Duty-Cycle Oscillator |
| Gated 1-kHz Oscillator (Normally Off) | Adjustable VFO Temperature Compensator |
| Gatcd 1-kHz Oscillator (Normally On) | 4093 CMOS Astable Oscillator |
| Precision LF Osillator | Simple Audio Test Oscillator |
| Basic Oscillator Circuits | 4093 CMOS VFO |
| Variable Wien-Bridgc Oscillator |  |

## NE602 LOCAL OSCILLATOR CIRCUITS



73 AMATEUR RADIO TODAY
FIG. 71-1

Local oscillator circuits for the NE602.

## LC AUDIO OSCILLATOR



FIG. 71-2

COLPITTS OSCILLATOR


## MOSFET MIXER-OSCILLATOR CIRCUIT FOR AM RECEIVERS



FIG. 71-4
This circuit is an improved front end for upgrading a transistor AM receiver. This front end is useful when the radio is to be used as a tumeable IF amplifier with shortwave converters.

## SIMPLE RF TEST OSCILLATOR



## POPULAR ELECTRONICS

A simple oscillator for IF alignment ( 455 kHz ) can prove useful in ficld testing or where a standard signal generator is available. L1 should resonate at the desired output frequency with the series combination of C 2 and C 3 .

## AF POWER OSCILLATOR



RADIO ELECTRONICS
FIG. 71-6

An LM386 audio power IC is set up as a feedback oscillator. Any supply from 6 to 12 V can be used. The circuit can drive a loudspeaker.


## GATED 1-kHz OSCILLATOR (NORMALLY ON)

ELECTRONICS NOW
FIG. 71-7
This gated $1-\mathrm{kHz}$ oscillator offers "press-to-turn-on" operation, A, and waveforms at the output of pin 3 and across C1, B.


ELECTRONICS NOW
FIG. 71-8
This gated $1-\mathrm{kHz}$ oscillator offers "press-to-turn-off" operation, $A$, and waveforms at the output of pin 3 and across C1, B.

## PRECISION LF OSCILLATOR



$$
\begin{array}{rlr}
\frac{R_{D}}{R_{C}+R_{D}} & =\left(\frac{V_{C C}}{3}+0.6\right) \\
T & \approx \frac{1.44}{\left(R_{A}+2 R_{B}\right) C} &
\end{array}
$$

FIG. 71-9
Using R1, R7, and D1 to preset C1 to one third of the supply voltage, this circuit avoids a longer first cycle period than subsequent cycles.

## BASIC OSCILLATOR CIRCUITS



## ELECTRONICS NOW

F/G: 71-10
Five basic types of LC oscillators are shown. The frequency can be changed by using the formula:

$$
f=\frac{1}{2 \pi L_{\text {effective }} C_{\text {effective }}}
$$

where $L_{\text {effectuv }}=$ equivalent inductance
$C_{\text {effective }}=$ cquivalent capacitance

## VARIABLE WIEN-BRIDGE OSCILLATOR


$A 1, A 2=1 C 1=T L C 272, T L O 72, O P-221$

## 303 CIRCUITS

FIG. 71-11
This circuit uses a single potentiometer to tune a $300-$ to $3000-\mathrm{Hz}$ range. A FET op amp is used at A1 and A2. The upper frequency limit is determincd by the gain-bandwidth product of the op amps.

LOCAL OSCILLATOR FOR DOUBLE BALANCED MIXERS


73 AMATEUR RADIO TODAY
FIG. 71-12
This circuit has an amplifier to supply +10 dBm to an SBL series (Mini-circuits) or similar type doubly-balanced mixer assembly. This circuit has values shown for $=80-$ to $90-\mathrm{MHz}$ crystals, although values of oscillator circuit constants can be scaled for higher or lower frequencies.


POPULAR ELECTRONICS
FIG. 71-13A
The precision andio-frequency generator consists of several subcircuits-an audio-amplifier/filter circuit, an automatic level control, a variable voltage-controlled oscillator, a frequency divider circuit, an integrator, and an audio output amplificr.

An electret microphone element is used to pick up the audio tone produced by the instrument. That signal is then fed to an amplifier/filter/level-controlled circuit and output via channel 1 (CHI) to an oscilloscope for display.

The variable voltage-controlled oscillator ( VCO ) is used to produce a signal of from less than 10 kHz to more than 99 kHz . The VCO output is fed to a digital frequency counter for display, and is also routed to a chain of frequency dividers, where the signal is divided by 10,100 , or 1,000 , depending on the setting of a selector switch.

PRECISION AUDIO-FREQUENCY GENERATOR (Cont.)

| Nole/ | Key/ | Hertz | Stretch <br> in Cents | Notel <br> Octave | Key\# | Hertz | Stretch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Octave |  |  |  |  |  |  |  | in Cents

-Standard pitch. A49= 440 Hz
Values shown are stretched for the average piano
FIG. 71-13B
From there, the selected signal frequency divides along two paths; one going to CH2 (which feeds the oscilloscope's sweep synchronization input) and to an integrator that converts the squarewave output of the divider into a triangular waveform. The output of the integrator is then amplified and fed to a set of stereo headphones via an audio output jack.

One section of the precision audio-frequency generator uses an electret microphone element to pick up audio from the piano. That signal is then processed and sent to one channel of a dual-trace oscilloscope. The other section of the circuit is used to produce a variable-frequency signal that is fed to a digital frequency counter and, after conditioning, is presented to the second channel of the scope and output to a set of stereo headphones.


POPULÁR ELECTRONICS
FIG. 71-14
The circuit shown has a frequency range of 2 Hz to $30 \mathrm{kHz} . \mathrm{R} 2$ is a linear or $\log$ potentiometer.

## FREQUENCY SWITCHER



POPULAR ELECTRONICS
FIG. 71-15

This transistor can achieve frequency switching in this CMOS astable oscillator.


ELECTRONICS NOW
FIG. 71-16

A $1-\mathrm{kHz}$ gated oscillator with no long "turn-on" cycle is shown. R2, R3, and DI preset the voltage on turing capacitor C1 to th of the supply voltage.


POPULAR ELECTRONICS
FIG. 71-17
For variable-frequency operation, R1 and R2 can be replaced by a dual potentiomeler.

VARIABLE DUTY-CYCLE OSCILLATOR


$$
T=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

NOTE: Diodes have the effect of slightly reducing the observed frequency-especially if $V_{C C} \leq 10 \mathrm{~V}$ as a result of 0.6 V offset.

## ELECTRONICS NOW

FIG. 71-18
Using a potentiometer and steering diodes, this $1.2-\mathrm{kHz}$ oscillator will provide $1 \mathrm{to} 99 \%$ duty cycle. Vary Cl to change frequency.

## ADJUSTABLE VFO TEMPERATURE COMPENSATOR



POPULAR ELECTRONICS
FIG. 71-19
Use of a differential capacitor allows temperature compensation of LC circuit using an NPO and N1500 ceramic. C6 is a differential capacitor that has two stators and one common rotor. When one capacitance (stator) is maximum, the other is minimum. $\mathrm{L} 1, \mathrm{C} 1, \mathrm{C} 2$, and C 3 are tuning, trimming, and fixed capacitors, respectively.

## 4093 CMOS ASTABLE OSCILLATOR



Two gates of the Quad 4093 are used to make an oscillator. $R_{r}$ can be from about $5 \mathrm{k} \Omega$ to around $10 \mathrm{M} \Omega . C_{r}$ can be from about 10 pF to many $\mu \mathrm{F}$, the limit being set by the leakage of the capacitor. Frequency is approximately $2.8 / R_{r r} C_{r}$ ( $\mathrm{R} \mathrm{M} \Omega$, Cmfd).

POPULAA ELECTRONICS
FIG. 71-20

## SIMPLE AUDIO TEST OSCILLATOR



An $88-\mathrm{mH}$ surplus telephone toroidal coil is used in a $1-\mathrm{kHz}$ oscillator. Up to 8 V p-p into a high- $Z$ load is available. THD is $0.9 \%$.


POPULAR ELECTRONICS
FIG. 71-22
Two gates of a Quad 4093 are used in an astable multivibrator. Cl is a three-gang 365 pF variable capacitor with sections paralleled. S3 and S4 switch in optional extra capacitors.

## 72

## Oscilloscope Circuits

Tho sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of cach circuit correlates to the entry in the Sources section.

Oscilloscope Preamplifier<br>Simplc Spectrum Analyzer Adaptor for Scopes<br>Simple Oscilloscope Timebase Gencrator<br>Trigger Selection Circuit for Oscilloscope 'limebase<br>Variable Gain Amplifier

## OSCILLOSCOPE PREAMPLIFIER



## RADIO ELECTRONICS

FIG. 72-1

An oscilloscope front-erd amplifier can be built with low-cost transistor and video amp ICs. This preamp uses a FET input and compensated attenuators, and has approximately $100-\mathrm{MHz}$ bandwidth, which is adcquate for most general-purpose oscilloscopes.

## SIMPLE SPECTRUM ANALYZER ADAPTOR FOR SCOPES



Block diagram of a spectrum analyzer.

tuning network for the spectrum analyzer.


## POPULAR ELECTRONHCS

FIG. 72-2
Suitable for monitoring an amateur band or a segment of the radio spectrum, this simple adaptor uses an NE602 mixer-oscillator chip to produce a $455-\mathrm{kHz}$ IF signal, which U2 amplifies, then feeds to detector D2 and the Y axis of an oscilloscope. $V_{T}$ is used to drive the horizontal axis input of a scope. L2 and L3 are coils suitable for the frequency range in use. For this circuit, coils are shown for the $10-$ to $15-\mathrm{MHz}$ range. L2 and L3 are wound on Amidon Associates, T-37 or T-50 toroidal cores, and L1 is a commercial or homemade variable inductor, ete.


ELECTRONICS NOW
FIG. 72-3
The 555 timer generates both a linear ramp and an output for Z -axis modulations of the CRT electron beam.

## TRIGGER SELECTION CIRCUIT FOR OSCILLOSCOPE TIMEBASE



FIG. 72-4

## VARIABLE GAIN AMPLIFIER



ELECTRONICS NOW
FIG. 72-5
This circuit uses $1 / 4$ of an LM3900 to build a simple variable-gain front end for an oscilloscope. R7 is the gain control. Also shown is a simple preamp if you need more than 10X of gain.

## 73

## Pest-Control Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Pest Repellicr

Ultrasonic Pest Repeller


1992 PE HOBEYIST HANDEOOK

The two timers in the bug repeller have some interesting characteristics. Both of them have their thresholds externally set; the oscillator on the left has a $50 \%$ duty cycle and the oscillator on the right acts as a VCO.

ULTRASONIC PEST REPELLER


199才 PE HOBEYIST HANDBOOK
FIG. 73-2
This circuit uses two transistors and onc IC ( 555 timer IC) to produce a pulsating ultrasonic frequency. Transistors Q1 and Q2 are connected in a direct-coupled oscillator. The frequency of that óscillator is set by capacitor C1. The oscillator output is taken from the emitter of Q2 to pin 7 of IC1. Transistor Q1 is an npn transistor, and Q2 is a pnp transistor. The signal of pin 7 on IC1 causes the cutput signal appearing on pin 3 to be modulated or varied by the audio frequency developed by Q1 and Q2. The IC itself is connccted as a stable multivibrator with a frequency that is determined by C3. Capacitor C3 sets the basic frequency to be well above the human hearing range (ultrasonic). The combined modulated ultrasonic frequency appears on pin 3 of IC1, where it is coupled by capacitor C 4 to the piezoelectric transducer.

| C1, C2 | 0.1- -F Mylar Capacitor | R2 | 3.3-M $\Omega$ Resistor |
| :--- | :--- | :--- | :--- |
| C2 | $1-\mu$ F Electrolytic Capacitor | R3, R6 | $10-\mathrm{k} \Omega$ Resistor |
| C3 | $0.001-\mu \mathrm{F}$ Mylar Capacitor | R4, R5 | $100-\Omega$ Resistor |
| IC1 | 555 tirner IC | R7 | $18-\mathrm{k} \Omega$ Resistor |
| Q1 | 2N3904 Transistor | R8 | Potentiometer |
| Q2 | 2N3906 Transistor | XDC | Piezoelectric Transducer Disc |
| R1 | 4.7-k $\Omega$ Resistor | Misc | IC Socket, 9-V Snap, PC Board |

## 74

## Phase Shifter Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Long-Tailed Pair Phase-Splitter
Phase-Splittcr Circuit
Phase Shifter with Eight Outputs

## LONG-TAILED PAIR PHASE-SPLITTER



WILLIAM SHEETS
FIG. 74-1
The single-phase input produces out-of-phase outputs at the collectors of Q1 and Q2.


Qt: 2N2222, etc.

This phase splitter uses a 2N2222 (or other general purpose npn transistor) to achieve outputs that are $180^{\circ}$ out of phase.

## PHASE SHIFTER WITH EIGHT OUTPUTS



ELECTRONIC DESIGN
FIG. 74-3
The circuit consists of eight cascaded identical cells, each coll being a dc-controlled active phase shifter. Because the do control is common for all shifters, the circuit is adjusted by trimming $R_{A}$ so that the phase difference between $V_{01}$ and $V_{2}$ is zero. As a result, each shifter will introduce a phase difference of exactly $\pi / r$. The cight signals for PSK are available at the op amps' outputs.

Phase accuracy is acceptable for $1 \%$-tolerance resistors and $5 \%$-tolerance $100-\mathrm{nF}$ capacitors. Also, the amplitude of $V_{i}$ (which is a $1700-\mathrm{Hz}$ sine wave), should not exceed 1 V .

## 75

## Photography Related Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Time-Delay Flash-Trigger Circuit<br>Photo Flash Slave Unit<br>Enlarging Light Meter<br>Photo Strobe<br>Darkroom Timer<br>Photo Strobe Slave Trigger<br>Strobe Light<br>Enlarger Exposure Meter

TIME-DELAY FLASH-TRIGGER CIRCUIT


1992 PE HOBBYIST HANDBOOK
FIG. 75-1
The circuit is built around a single 4093 quad 2-input NAND Schmitt trigger. Two gates from that quad package (U1-a and Ui-b) are configured as a set-reset flip-flop.

## PHOTO FLASH SLAVE UNIT



POPULAR ELECTRONICS
FIG. 75-2
Phototransistor Q1 receives a light pulse from a photoflash unit. The pulse is ac-coupled to arnplifier Q2. It then triggers SCR1, which triggers a flash unit that is connected to J1.

ENLARGING LIGHT METER


## POPULAR ELECTRONICS

FIG. 75-3
Meter M1, a $+/-50-\mu \mathrm{A}$ zero-center D'Arsonval meter movement is driven by U1, a TL081 FET op amp, through R3. The gain of U1 is set at 11 by R1 and R2, while capacitor C1 is used to restrict the bandwidth of U1 to 1.6 Hz . Power for the circuit is derived from a simple dual-polarity $12-\mathrm{V}$ power supply (consisting of $\mathrm{Tl}, \mathrm{D} 3, \mathrm{D} 4, \mathrm{C} 2$, and C3).

A light-dependent resistor (LDR), R16 (which is a semiconductor element whose resistance decreases as it is exposed to increasing illumination), is used as a light-sensing device. One end of R16 is comected to the negative supply rail through R12, and the other end is connected to pin 3 of U 1 , applying a negative current to U 1 . A variable (over a $4: 1$ range) positive current determined by the settings of R14 and S1 (and derived from the positive supply rail) is also fed to pin 3 of U1.

When the two currents (of opposite polarities) are equal, they cancel each other out, so effectively ro current is applied to pin 3 of U 1 . With no current applied to pin 3 , the output of Ul is zero and meter M1 registers accordingly, indicating a null. However, when light striking R16 causes its resistance to decrease, the current through the device increases, making the negative current groater than the positive current. Undcr that condition, the negative current causes the oulput of Ul to swing negative, causing the pointer to swing in the negative direction.

That indicates that the light intensity must be reduced by using a smaller lens opening on the enlarger (smaller f/stop). The opposite occurs if the light is too dim. Lamp 11, a $12-\mathrm{V} 60-\mathrm{mA}$ "grain of wheat" unit, is used to illuminate the meter scale, and R15 is used to limit the meter's illumination to a faint glow that is just bright enough so that the face of M1 can be plainly seen in a photo darkroom.

## ENLARGING LIGHT METER (Cont.)

Resistors R3 and R4 should be selected for the meter used. With a dual supply of $+/-12 \mathrm{~V}$, U1 produces an output voltage of 10 V peak-to-peak. The resistance of R3 can be found by dividing the peak voltage (i.e., $10 / 2$ ) by the full-scale moter current (in amps); i.e., $R_{3}=(10 / 2) / 0.0005=100,000 \Omega$. R4, the shunt resistor, should be selected to have a value equal to the rneter's internal resistance.

PHOTO STROBE


ELECTRONICS NOW
FIG. 75-4
Sound or light sensors connected to J2 produce a voltage that is amplified by IC1-a and ICI-b. A positive trigger voltage that is developed by D 1 and D 3 and amplified by 1 Cl 1 -d, drives IC 2 and ICl to trigger SCR1. SCR1 is connected to a strobe. This device is handy for photographic purposes to take pictures of events that involve sound, such as impacts, ctc.


1991 PE HOBBYIST HANDBOOK
FIG. 75-5
The electronic darkroom timer is built around a 555 oscillator/timer, a pair of general-purpose transistors, a buzzer, and an LED. The 555 (U1) is configured as an astable multivibrator (frce-ruming oscillator). The frequency of the oscillator is determined by the values $R_{1}$ through $R_{3}$ and $C_{1}$ through $C_{4}$.

Switch S 1 is used to divide the capacitor network to vary the time interval between beeps; when S 1 is closed, the circuit beeps at intervals of 30 seconds. With $S 1$ closed, it beeps at 15 -second intcrvals.

When power is applied to the circuit (by closing switch $\$ 2$ ), the output of $U 1$ at pin 3 is initially high. That high is applied to the base of transistor Q1 (an MPS2907 general-purpose pnp device), keeping it turned off. That high is also applied to the anode of LED1 (which is used as a power on indicator) through resistor.R7, turning it on.

Timing capacitors C1 through C5 begin to charge through timing resistors R1 through R3. de voltage is applicd to BZ1's driver input through R5 and to its feedback terminal (through R4), which is also connected to Q2's base terminal. The $V+$ voltage that applied to Q2's base causes it to turn on, tying BZ1's common terminal high.

When the timing capacitors are sufficiently charged, a trigger pulse is applied to pin 2 (the trigger input) of U2, causing U1's output to momentarily go low. This causes LED1 to go out and transistor Q1 to turn on. That, in turn, grounds the common lead of buzzer BZ1, causing BZ1 to sound. Afterward, the output of U1 returns to the high state, turning off Q1, and turning on LED1, until another tirne interval has elapsed and the process is repeated.

The circuit is powered by a 9 -Vac adapter, which plugs into a standard $117-\mathrm{V}$ household outlet. Because the circuit draws only about 10 to 15 mA , a 9 -V alkaline transistor-radio-battery can also be used to power the circuit.

## PHOTO STROBE SLAVE TRIGGER



1991 PE HOBEYIST HANDBOOK

The photo strobe slave trigger circuit uses a solar cell and an SCR to flash any strobe when you trigger your "master" strobe. The tiny solar cell produces a very small voltage when light falls on its surface.

## STROBE LIGHT



| $\mathrm{C} 1, \mathrm{C} 2 .$ | $10 \mu \mathrm{~F} 160 \mathrm{~V}$ Electrolytic Capacitor |
| :---: | :---: |
| $C 4, C 5, C 6$ | 6 ... $160 \mu \mathrm{~F} 200 \mathrm{~V}$ ElectroIytic Capacitor |
|  | $0.5 \mu \mathrm{~F} 250 \mathrm{~V}$ Mylar Capacitor |
| D1, D2 | 1N4004 Diodes |
| Ft | 1 Amp Pigtail Fuse |
| FT1 | Giant Xenon Strobe Tube |
| $L$ | Neon Lamp |
| P1 | 10 Meg Potentiometer |
| Q1. | 106D1 SCR |
| R1 | 20 ohm 10 Watt Power Resistor |
| R2 | 270K 1/4 Watt Resistor |
| S1 | Slide Switch |
| T1, T2 | Trigger Coil |

1991 PE HOBBYIST HANDBOOK
FIG. 75-7

This strobe light operates from standard 120-Vac power. R1 limits the amount of current applied to the voltage doubler stage, which is comprised of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{D} 1, \mathrm{D} 2, \mathrm{C} 4, \mathrm{C} 5$, and C 6 . Capacitors $\mathrm{C} 1, \mathrm{C} 2$, and C3 are connected in parallel and form a capacitance of $30 \mu \mathrm{~F}$ at 160 V . Capacitors $\mathrm{C} 4, \mathrm{C} 5$, and C6 are connected in series and form an equivalent capacitor of about $53 \mu \mathrm{~F}$ at 480 V . Diodes D1 and D2 not only rectify the ac voltage, but also complete the voltage doubler stage, which converts the incoming 120 Vac to the appropriately 300 V that are required by the xenon strobe tube.

The next stage of the circuit is the neon relaxation oscillator and trigger stage. This stage is made up of R2, P1, C7, L1, Q1, T1, and T2. As the storage capacitor (made up of C4, C5, and C6) reaches its full-capacity charge, the voltage divider (made up of R2 and P1) applies voltage to capacitor C7. As C7 charges up, it reaches a threshold voltage level, SCR Q1. When Q1 has a positive pulse on its gate, it fires (causes a short from anode to cathode). That firing action discharges most of the energy stored in C7 into trigger transformers T 1 and T 2 (which have secondaries connected in scries to developer 8 kV . The frequency of the $8-\mathrm{kV}$ pulses is determined by the setting of Pl and the value of $C_{r}$. Because C 7 is a fixed capacitor, only the setting of $P 1$ adjusts the flash rate in this circuit.

As soon as an $8-\mathrm{kV}$ pulse is applied from the secondary of T 2 (trigger wire) to the trigger lead of FT1, it discharges storage capacitors C4, C5, and C6, which causes it to ionize (flash). The cycle then repeats itself until the power is removed from the circuit board by turning "off" Sl or removing the line cord.

## ENLARGER EXPOSURE METER



Two gates of a 4011 are uscd as a comparator. Wher the resistance of R 4 decreases the voltage at pin 1 and 2 increases, producing a logic zero at pin 3 , causing pin 4 to go high and activating the LED. R3 is calibrated in light units, or seconds exposure time. To calibrate, set pot R3 so as to just be on the LED ON/OFF threshold. With a light level that is suitable to correctly expose a photographic print, use a known enlarger and a known negative.

## 76

## Piezo Circuits

The sources of the following circuits are contained in the sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

CMOS Piczo Driver<br>CMOS Piezo Driver Using 4049<br>Piezo Driver<br>Piezo Micropositioner Driver<br>555 Oscillator for Driving a Piezo Transducer

## CMOS PIEZO DRIVER



POPULAR ELECTRONICS
FIG. 76-1

## CMOS PIEZO DRIVER USING 4049



FIG 76-2

A CMOS-gate and transistor buffer can be used as an effective driver for a piezoelectric transducer.

## PIEZO DRIVER


electronic design
FIG. 76-3

Using a PA41 from Apex Microtechnology, this monolithic amplifier is capable of $350-\mathrm{V}$ operation and delivers 660 V p-p in a bridge circuit.

## PIEZO MICROPOSITIONER DRIVER


electronic design
FIG. 76-4

The PA41 from Apex Microtechnology is used here to drive a piezoelectric micropositioner. The drive voltage is less than 20 V p-p at input.

## 555 OSCILLATOR FOR DRIVING A PIEZO TRANSDUCER



POPULAR ELECTRONICS
FIG. 76-5
A 555 -timer oscillator is perhaps one of the most popular circuits for driving a piczoelectric transducer.

## 77

## Power Supply Circuits-High Voltage

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

High-Voltage dc Generator<br>Fluorescent Tube Power Supply<br>Photomultiplier Supply<br>Negative Voltage Supply<br>Photomultiplier Circuit<br>Single-Chip de Supply for 120-240 Vac Operation<br>High-Voltage Supply<br>Cold-Cathode Fluorescent-Lamp Power Supply



1990 PE HOBBYIST HANDBODK
FIG. 77-1
In the miniature high-voltage do generator, the input to the circuit, taken from a 12 -Vdc power supply, is magnified to provide a $10,000-\mathrm{Vdc}$ output causing a pulsating signal, of opposite polarity, to be induced in Tl's secondary winding.

The pulsating de output at the secondary winding of Tl (ranging from 800 to 1000 V ) is applied to a 10-stage voltage-multiplier circuit, which consists of D1 through D10, and C3 through C12. The multiplier circuit increased the voltage 10 times, producing an output of up to $10,000 \mathrm{Vdc}$. The multiplier accomplishes its task by charging the capacitors (C3 through C12); the output is a series addition of the voltages on all the capacitors in the multiplier.

In order for the circuit to operate efficiently, the frequency of the square wave, and therefore the signal applied to the multiplier, must be considered. The output frequency of the oscillator (U1a) is set by the combined values of $R_{1}, R_{5}$, and $C_{1}$ (which with the values specified is approximately 15 kHz ). Potentiometer R5 is used to fine tune the output frequency of the oscillator. The higher the frequency of the oscillator, the lower the capacitive reactance in the multiplier.

Light-cmitting diode LED1 serves as an input-power indicator, and neon lamp NE1 indicates an output at the secondary of T1. A good way to get the maximum output at the multiplier is to connect an oscilloscope to the high-voltage output of the multiplier, via a high-voltage probe, and adjust potentiometer R5 for the maximum voltage output.

## FLUORESCENT TUBE POWER SUPPLY



FIG. 77-2
A 2 N 3055 oscillator (Q1) drives a homemade transformer, wound on a $\overline{76} \times 1 /{ }^{1 / \prime \prime}$ ferrite rod. S 2 is used as a filament switch and it can be eliminated, if desired. A $20-\mathrm{W}$ fluorescent tube is recommended. The supply is 12 V .

PHOTOMULTIPLIER SUPPLY


## 73 AMATEUR RADIO TODAY

FIG. 77-3
A Cockcroft-Walton voltage multiplier supplies the stepped voltage required for the dynodes of the PMT without the power-wasting voltage-divider resistor string that is traditionally used.


POPULAR ELECTRONICS
FIG. 77-4
The combination Hartley oscillator/step-up transformer shown in A can gencrate significant negative high voltage, especially if the voltage output of the transformer is multiplied by the circuit.

## PHOTOMULTIPLIER CIRCUIT



73 AMATEUR RADIO TODAY
FIG. 77-5
This circuit is typical of the way that a photomultiplier tube is used. The circuit shown is ac coupled, but if dc coupling is needed, the capacitor can be omitted and a suitable interfacing method used. A typical tube is the widely available 931/931A.


## ELEKTOR ELECTRONICS

FIG. 77-6
Dircet derivation of 5 to 24 Vdc from ac mains, without a transformer is possible with this circuit, Note that a direct mains connection to the de output exists. Suitable safety precautions musl be taken.

## HIGH-VOLTAGE SUPPLY



POPULAR ELECTRONICS
FIG. 77-7
This circuit uses a transistor oscillator and a voltage multiplier to charge C10 and C11 to a high voltage. When the spark gap breaks down, T2 produces a high-voltage pulse via the capacitance discharge of ClO and C 11 into its primary. T 2 is an auto ignition coil.

## COLD-CATHODE FLUORESCENT-LAMP POWER SUPPLY



FIG. 77-8
This circuit is a 92\%-efficient power supply for cold-cathode fluorcscent lamps (CCFLs), which are used to backlight LCD in portable equipment. The efficiency depends heavily on the component types, particularly C1, Q1, Q2, L1, and T1, whose manufacturers are noted.

## 78

## Power Supply Circuits-Low Voltage

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.
Tracking Double-Output Bipolar Supply Universal Laboratory Power Supply $+5 \mathrm{~V} /+3.6 \mathrm{~V}$ from 4 AA Cells Inductorless Switching Regulator
Single LTC Power Supply Configurable Power Supply Combination Voltage and Current Regulator HV Power Supply with 9 -to 15 -Vdc Input Inductorless Power Supply Converter Simple Negative Supply for
Low-Current Applications
Inverting Power Supply
Multivoltage Power Supply
Current-Limiting Regulator
Neon Lamp Driver for 5 - to $15-\mathrm{V}$ Supplies
13.8-Vdc 2-A Regulated Power Supply
0 - to 12-V, 1-A Variable Power Supply
Voltage Doubler Supply
Adjustable 20-V Supply
Switching Regulator Convertcr

5-V to 3.3-V Switching Regulator $24-\mathrm{V}$ to 3.3 -V Switching Regulator Laptop Computer Power Supply
Subwoofer Amplifier Power Supply
Dual Voltagc-Rectifier Circuit
Dual Audio Amplifier Power Supply
Diodeless Rectifier
Regulator Loss Cutter
Synchronous Stepdown Switching
Regulator with $90 \%$ Efficiency
$\pm 5$ - to $\pm 35$-V Tracking Power Supply
8-V from 5-V Regulator
+1.5 -V Supply for ZN416E Circuits
Antique Radio dc Filament Supply
Inexpensive Isolation Transformer
(Impromptu Setup)
5-V UPS
$+5-\mathrm{V}$ Supply
Add 12-V Output to 5-V Buck Regulator
Telecom Converter - 48 V to $+5 \mathrm{~V} @ 1 \mathrm{~A}$

## TRACKING DOUBLE-OUTPUT BIPOLAR SUPPLY



## ELECTRONICS NOW

FIG. 78-1
This circuit is useful for a bench supply in the lab. Separate or tracking operation is possible. The regulators should be properly heatsinked. Tl is a 24 -Vac wall transformer of suitable current capacity.


1992 R-E EXPERIMENTERS HANDEOOK


The value of the design lies in the use of IC1, an LM317HVK adjustable series-pass voltage regulator, for broad-range performance remainder supplies voltage-setting and current-limiting functions. The input to ICl comes from the output of BR1, which is filtered by C1 and C2 to about +60 Vdc, and the input for current-sense comparator IC2 comes from BR2, which also acts as a negative bias supply for regulation down to ground. The output voltage is determined by:

$$
\left(V_{\text {OUT }}-1.25+1.3\right) /\left(R_{15}+R_{16}\right)=1.25 / R_{g}
$$

Thus, the maximum value from each variable supply board is:

$$
V_{\mathrm{OLT}}=\left(1.25 / R_{8}\right) \times\left(R_{15}+R_{16}\right)=50.18 \mathrm{Vdc} .
$$

FIG. 78-2

## +5 V/+3.6 V FROM 4 AA CELLS



## -ELECTRONIC DESIGN

FIG. 78-3
With this unique logic-power-converter design (see the figure), a switchable 3.6 or 5 V at 200 mA can be attained by using four AA cells. The supply incorporates a MOSFET switch that can switch to a lithium backup battery, providing a 3.4 V output when the main battery is dead or removed. The supply consumes only $380 \mu \mathrm{~A}$ under no-load conditions.

The circuit operates in a somewhat novel mode as a step-up/step-down converter. When the cells are fresh (from about 6 V to about 5.2 V ), the LT1173's gain block drives the p-channel MOSFET, which turns the circuit into a linear voltage regulator. This might seem inefficient, but the batteries are quick to drop from 6 V to 5 V . With a 5 - V imput, the efficiency (for the 3.6 V outpul) is $3.6 / 5$ or $72 \%$, which is reasonable. As the battery-pack drops in voltage, efficiency increases, reaching greater than $90 \%$ with a $4.2-\mathrm{V}$ inpul.

At a point below a 4-V input, the circuit switches to step-up mode. This mode squeezes the batteries for all of their available energy. In this case, efficiency runs between $83 \%$ at approximately a $4-\mathrm{V}$ input to $73 \%$ at a $2.5-\mathrm{V}$ input.

The supply can deliver 200 mA over its entire operational range. In its linear mode of operation, the supply has no current spikes that, because of the fairly high internal resistance of the alkaline cells, can reducc battery life. The topology delivers over 9.3 hours of $3.6-\mathrm{V} 200-\mathrm{mA}$ output power, compared to just 7 hours using the traditional flyback topology that is used in other designs.

## INDUCTORLESS SWITCHING REGULATOR



Substituting the diode-capacitor nerwork shown for an inductor allows this switching-regulator IC to deliver 2mA at comparable line and load regulation, with somewhat reduced efficiency.

A


Introducing an MOS driver (IC2) enables the Figure I circuit to defiver as much as 20 mA .
B
maxim engineering journal
FIG. 78-4

In conventional applications, switching-regulator ICs regulate $V_{\text {OUT }}$ by controlling the current through an external inductor. The IC in A, however, driving a diode-capacitor network in place of the inductor, offers comparable performance for small loads. The network can double, triple, or quadruple the input voltage.

Feedback from the $\mathrm{R} 1 / \mathrm{R} 2$ voltage divider enables IC 1 to set the regulated-output level. (As shown, the circuit derives 12 V from a 5 - to $12-\mathrm{V}$ input and provides as much as 2 mA of output current.) Adding a noninverting MOS driver (B) boosts the available output current to 20 mA . Substituting the diode-capacitor network shown for an inductor allows this switching-regulator 10 to deliver 2 mA at comparable line and load regulation, with somewhat reduced efficiency.

## SINGLE LTC POWER SUPPLY



LINEAR TECHNOLOGY
FIG. 78-5
One LTC 1149 synchronous switching regulator can deliver both 3.3 - and 5 -V outputs. The design's simplicity, low cost, and high efficiency make it a strong contender for portable, battery-powered applications. The circuit described accepts input voltages from 8 to 24 V , to power any combination of $3.3-\mathrm{V}$ and $5-\mathrm{V}$ loads totalling 17 W or less. For input voltages in the $8-\mathrm{V}$ to $16-\mathrm{V}$ range, the LTC1148 may be used, reducing both quiescent current and cost.

## CONFIGURABLE POWER SUPPLY



POPULAR ELECTRONICS
FIG. 78-6
The adjustable supply can easily be reconfigured by altering the value of $V_{2}$ and beefing up somo other components, as is necessary.

The output voltage is given by $V_{0 U T}=1.25\left(1+R_{2} / R_{1}\right) . R_{2}$ can be changed, as is necessary.

## COMBINATION VOLTAGE AND CURRENT REGULATOR



## POPULAR ELECTRONICS

FIG. 78-7
This voltage-regulator/current-limiter combination can be made from two 7805 regulators as shown. R1, R2, and R3 should be selected for a 5 -V drop at the maximum allowable current limit. S1 selects one of the three current values. Do not forget that U 1 requires 5 mA to operate and this means that the minimum current limit setting should be 10 mA or more ( $R_{1}=1.25 \mathrm{k} \Omega$ ). Resistor values are as follows:

$$
R_{x}(\mathrm{k} \Omega)=\frac{5 \text { volts }}{(\text { current limat } \mathrm{mA}-5 \mathrm{~mA})}
$$

For 100 mA ,

$$
R_{x}=\frac{5}{100-5}=\frac{5}{95} \mathrm{k} \Omega \text { or } 52.5 \Omega
$$

## HV POWER SUPPLY WITH 9-TO 15-Vdc INPUT



POPULAR ELECTRONICS
FIG. 78-8
The combination Hartley oscillator/step-up transformer shown in A can generate significant negative high voltage, especially if the voltage output of the transformer is multiplied by the circuit in $B$.

INDUCTORLESS POWER SUPPLY CONVERTER


Using a 555 timer and voltage doubler, this circuit will supply $\geq 50 \mathrm{~mA}$ at 20 Vdc . T 1 and T 2 act as power amplifiers to drive the voltage doubler. Frequency of operation is approximately 8.5 kHz .


WILLIAM SHEETS
FIG. 78-10
This de negative-voltage generator based on the 555 produces a negative output voltage equal to approximately 2 x the dc supply voltage.

INVERTING POWER SUPPLY


## 73 AMATEUR RADIO TODAY

FIG. 78-11
This circuit will provide a negative de voltage that is approximately equal to the positive input voltage at no load and about 3 V less at 10 mA load. $V_{\mathrm{IN}}$ is from +5 to +15 Vdc . Do not exceed 15 V or Ul might be damaged.

## MULTIVOLTAGE POWER SUPPLY



POPULAR ELECTRONICS
FIG. 78-12
This dual-polarity, multivoltage power supply can be built for a very small investment. The circuit is built around 78 XX and 79 XX series $1-\mathrm{A}$ voltage regulators, four 3 -A diodes, a $24-30-\mathrm{V} 2-6-\mathrm{A}$ transformer, and eight filler capacitors.

## CURRENT-LIMITING REGULATOR



Floating adjustable regulators can be used as current limiters. Resistor R1 programs the current flowing through R 2 .

NEON LAMP DRIVER FOR 5- TO 15-V SUPPLIES


## WILLIAM SHEETS

FIG. 78-14
This neon-lamp driver based on the 555 T 1 can be wound on an old TV llyback transformer core.
13.8-Vdc 2-A REGULATED POWER SUPPLY


1981 PE HOBBYIST HANDBOOK
FIG. 78-15
This regulated power supply consists of step-down transformer T1, a full-wave rectifier bridge (D1 through D4), and a filtering regulator circuit made up of C1, C2, R1, R2, R3, D5, and Q1. When 120 Vac is provided, the neon-lamp asscmbly L1 lights up, and transformer T1 changes 120 Vac to about 28 Vac . The rectifier bridge, D1 through D4, rectifies the ac into pulsating dc, which is then filtered by C1. Capacitor C1 acts as a storage capacitor. Zener diode D5 keeps the vollage constant across the base of Darlington regulator Q1, causing constant voltage across resistor R3 and the ( + ) and ( - ) output terminals, where the load is connected. Fuse F2 is used to open ("blow"), if the current through the output terminals is too high. Make sure to take proper procautions when using projects powered by 120 Vac .

## 0-TO 12-V, 1-A VARIABLE POWER SUPPLY



FIG. 78-16

This 0-to 12 -Vde variable power supply uses anl IC voltage regulator and a heavy-duty transformer to provide a reliable dc power supply. Looking at the schematic shown, you can sec that transformer T1 has a $120-\mathrm{V}$ primary and a $28-\mathrm{V}$ secondary.

Filtered de is fed to the input (pin 2) of the LM317T voltage regulator, IC, which keeps the voltage at its output constant (pin 3) regardless (within limitations) of the input voltage. Pin 1 of the LM317T is the adjustment pin, Varying the voltage on pin 1 (via P1) varies the output voltage.

Diodes D5 through D7 and LEDs L1 through L3 give an approximate indication of the output, voltage. Each LED/diode path has a limiting rosistor to liruit the current to a level that is safe for the LED.

## VOLTAGE DOUBLER SUPPLY



POPULAR ELECTRONICS
FIG. 78-17

The voltage doubler is built around a pair of diodes (D1 and D2) and a pair of capacitors ( Cl and C2) that are fed from, in this casc, a 12-V, 1-A step-down transformer (T1).

## ADJUSTABLE 20-V SUPPLY



## SILICON CHIP

FIG. 78-18
This circuit can deliver 3 A or more and a maximum de voltage of a little over 20 V . It is designed around the readily available LM317'I adjustable 3-tcrminal regulator and has a prp power transistor to boost the current output.

The transformer has an 18 -V secondary rated at, 6 A ; this feeds to bridge rectifier and two 4700$\mu \mathrm{F}$ capacitors to yield around 25 Vdc . This voitage is fed to the emitter of the MJ2955 transistor and to the input of the LM317 via a $33-\Omega$ resistor.

## SWITCHING REGULATOR CONVERTER



MAXIM ENGINEERING JOURNAL
FIG. 78-19
The Max 650 switching regulator produces a regulated 5 V from large negative voltages, such as the -48 V found on telephone lines. The resulting power supply operates with several exterral components, including a transformer, and it delivers 250 mA . The device includes a $140-\mathrm{V} 250-\mathrm{mA}$ pnp transistor, short-circuit protection, and all necessary control circuitry.

## 5-V TO 3.3-V SWITCHING REGULATOR



## NATIONAL SEMICONDUCTOR, LINEAR EDGE

FIG. 78-20

A National Semiconductor LM2574 is used to derive 3.3 V at 0.5 A from a $5-\mathrm{V}$ logic bus. The duty cycle is:

$$
\frac{V_{O U T}+V_{I J}-V_{I N I}}{V_{\mathrm{IN}}-V_{S A T}+V_{D}-2 V_{I N D}}
$$

$V_{D}=$ diode $\operatorname{drop}(0.39)$
$V_{V I)}=$ inductor de drop
$V_{S A T}=$ saturation voltage of $\mathrm{LM} 2574(0.9 \mathrm{~V}$ typical $)$
This circuit should be uscful to derive 3.3 V for logic devices from existing $+5-\mathrm{V}$ buses.

24-V TO 3.3-V SWITCHING REGULATOR


## NATIONAL SEMICONDUCTOR. LINEAR EDGE

FIG. 78-21
The National Semiconductor LM2574 delivers 3.3 V out at 0.5 A from a 24 -V source. The duty cycle is:

$$
\frac{V_{\mathrm{OUT}}+V_{D}-V_{I N D}}{V_{\mathrm{IN}}-V_{S A T}+V_{D}-2 V_{I N D}}
$$

$$
\begin{aligned}
& V_{D}=\text { diode drop }(0.39) \\
& V_{I N D}=\text { inductor dc drop } \\
& V_{S A T}=\text { saturation voltage of } L \text { LM2574 (0.9 V typical) }
\end{aligned}
$$

LAPTOP COMPUTER POWER SUPPLY


Note: Any output voltage value greater than 10 V requires a higher input voltage than 13.6 V . In addition capacitor working voltage ratings will have to be increased accordingly. Allow a minimum of 2.5 times the voltage expected to appear across the capacitor as a standard for the working voltage.

Table 1. Resistor value/voltage matchup.

A laptop computer supply that has $9-V$ output, crowbar overvoltage protection, and operates from a $12-\mathrm{V}$ supply is shown above. The supply voltage should be at least 3.6 V above the expected output voltage. Q1 should be heatsinked appropriately. R5 should have a value of $1.5 \mathrm{k} \Omega$ for $9-\mathrm{V}$ output. Table 1 gives values for other voltages.

## SUBWOOFER AMPLIFIER POWER SUPPLY



## POPULAR ELECTRONICS

FIG. 78-23

Although intended to power a 100-W low-frequency amplifier, this power supply should handle many mono or stereo amplificrs in the medium power range that require $\pm 301035 \mathrm{~V}$.

## DUAL VOLTAGE-RECTIFIER CIRCUIT



POPULAR ELECTRONICS
FIG. 78-24

This stepped-up dual voltage supply provides $\pm 15$ to $\pm 18 \mathrm{~V}$ urregulated.

## DUAL AUDIO AMPLIFIER POWER SUPPLY



A dual audio amplifier that will deliver 50 W per channel is shown in the schematic. It includes preamp and tone controls, and also includes a headphone amplifier. The circuit depicts the power supply that supplies $\pm 38.5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ regulated for the dual 50 watter.

## DIODELESS RECTIFIER

(a)

(b)


2


3


Holes:
 recommended. .

3. A5 and $\mathrm{R}_{6}$ are pain resision ( $k=\mathrm{H}_{8} \mathrm{R}_{5}+1$ ). In lisis example $x=2$, thus the ampiliude of the output signal is twice as high as 01 input signad. $R 6=0(k=1)$ gives us equal inpul and oulput amplitudes. The gain can be increaste (fit needed) lor small inpuil levels.

It's common knowledge that when working with single-supply op amps, implementing simple functions in a bipolar signal environment can be difficull. Sometimes additional op amps and other electronic components are required.

Taking that into consideration, can any advantage be attained from this mode? The answer lies in this simple circuit (A). Requiring no diodes, the circuit is a high-precision full-wave rectifier with a high-frequency limitation equalling that of the op amps themselves. Look at the circuit's timing diagram (B) to see the principle of operation.

The first amplifier rectifies negative input levels with an inverting gain of 2 and turns positive levels to zero. The second amp, a noninverting summing amplifier, adds the inverted negative signal from the first amplifier to the original input signal. The net result is the traditional waveform produced by full-wave rectification.

In spite of the limitation on the input signal amplitude (it must be less than $V_{C C} / 2$ ), this circuit can be useful in a variety of setups.

## REGULATOR LOSS CUTTER



## ELECTRONIC DESIGN

FIG. 78-27
Large input-to-output voltage differentials, caused by wide input voltage variations, reduce a linear regulator's efficiency and increase its power dissipation. A switching preregulator can reduce this power dissipation by minimizing the voltage drop across an adjustable linear regulator to a constant $1.5-V$ value.

The circuit operates the LT1084 at slightly above its dropout voltage. To minimize power dissipation, a low-dropout linear regulator was chosen. The LT1084 functions as a conventional adjustable linear regulator with an output voltage that can be varied from 1.25 to 30 V .

Without the preregulator (for a $40-\mathrm{V}$ input and a $5-\mathrm{V}$ output at 5 A ), it would be virtually impossible to find a heatsink large enough to dissipate enough energy to keep the linear-regulator junction temperature below its maximum value. With the preregulator technique, however, the linear regulator will dissipate only 7.5 W under worst-case loading conditions for the entire inputvoltage range of 15 to 40 V . Even under a short-circuit fault condition, the $1.5-\mathrm{V}$ drop across the LT1084 is maintained.

## SYNCHRONOUS STEPDOWN SWITCHING REGULATOR WITH 90\% EFFICIENCY



Ci(TA)
$\mathrm{C}_{\mathbb{N}}$ AVX (TA) TANO $15 B R O 25 R L$. $E S R=0.3 \Omega$ IAMS $=0707 \mathrm{~A}$ $C_{\text {CUIT }}$ AVX (TA)TAJE227KO1ORLA ESR $=0.08 \cap$ IMMS $=1.4 \mathrm{~A}$



01 MOTOROLA SCHOTTKY, $V B R=40 \mathrm{~V}$
$R_{\text {SENSE }}$ IRC LR2512-01-RO50J $P_{D}=1 W$
L1 COKETRONICS CTX62-2-MP. OCR $=0.035 \Omega$, MPP CORE (THROUGH HOLE) L1-1 COILTRONICS CTXO2-11715-2, DCR = 0.1152. FERRITE CORE (SURFACE MOUNT) ALL OTHER CAPACITORS ARE CERAMIC

A LTC1148 (5.5V-13.5V to $5 \mathrm{~V} / 2 \mathrm{~A})$ surface mount


B LTC 1148-5: 5.5V to 13.5 V efficiency

## LINEAR TECHNOLOGY

FIG. 78-28

A shows a typical LTC1148 surface-mount application providing 5 V at 2 A from an input voltage of 5.5 V to 13.5 V . The operating efficiency, shown in B , peaks at $97 \%$ and exceeds $90 \%$ from 10 mA to 2 A with a $10-\mathrm{V}$ input. Q1 and Q2 comprise the main switch and synchronous switch, respectively, and inductor current is measured via the voltage drop across the current shunt. $R_{\text {SENSE }}$ is the key component used to set the output current capability according to the formula $I_{\text {OUT }}=100 \mathrm{mV} / R_{\text {SENSE }}$. The advantages of current control include excellent line and load transient rejoction, inherent shortcircuit protection and controlled startup currents. Peak inductor current is limited to $150 \mathrm{mV} / R_{\text {SENSE }}$ or 3 A for the circuit in A.


OUTPUT VOLTAGE IS VARIABLE FROM $\pm 5 \mathrm{~V}$ TO $\pm 35 \mathrm{~V}$. negative output tracks positive output to WITHIN THE RATIO OF R6 TO-R7.

POPULAR ELECTRONICS
FIG. 78-29

This supply is designed to operatc from a $\pm 40$ V nominal unregulated power source (bridge rectiffer, etc.).

## 8-V FROM 5-V REGULATOR



POPULAR ELECTRONICS
FIG. 78-30

If you have trouble locating an 8 -V regulator, although they are commonly available, a $5-\mathrm{V}$ unit can replace it by connecting the regulator, as is shown here.

## +1.5-V SUPPLY FOR ZN416E CIRCUITS



POPULAR ELECTRONICS
FIG. 78-31

This regulator can be used with a $+6-\mathrm{V}$ source to supply ZN416E low-voltage TRF radio-rcceiver IC the necessary +1.5 V . R3 sets output voltage.

## ANTIQUE RADIO dc FILAMENT SUPPLY



POPULAR ELECTRONICS
FIG. 78-32

This de supply is great for operating battery-powered antiquc radios, because it is designed to prevent harming the tube filaments. The circuit is uscful for powering filaments of $00-\mathrm{A}, 01-\mathrm{A}, 112 \mathrm{~A}$, and 71 A tubes, which require 5 V at 250 mA .

## INEXPENSIVE ISOLATION TRANSFORMER (IMPROMPTU SETUP)



FIG. 78-33

Using two 12-V filament or power transformers, an impromptu isolation transformer can be made for low-power (under 50 W ) use in testing or servicing. SOl is an ordinary, duplex ac receptable. Use heavy-wire connections between the $12-\mathrm{V}$ windings because several amperes can flow.

## 5-V UPS



## ELECTRONIC DESIGN

FIG. 78-34
A 9-V wall adapter supplies $V_{\text {IN }}$ IC2 contains a low-battery detector circuit that senses $V_{\mathrm{IN}}$ by means of R6 and R7. The detector output (pin 7) drives an inverter (Q1), which in turn drives the shut-down inputs $I_{C}$ of IC1 and SHDN of IC2. These inputs have opposite-polarity active levcls. The common feedback resistors, R2 and R3 enable both regulators to sense the output voltage, $V_{001}$

When IC2 shuts down, its output turns off. However, when IC1 shuts down, the whole chip assumes a low-power state and draws under $1 \mu \mathrm{~A}$. L1, D2, C1, C2, R2, and R3 are part of the $250-\mathrm{mW}$ switching regulator. Diodes D3 and D4 wire-OR the power connection to IC2, and C3 improves the linear regulator's load regulation.
+5-V SUPPLY


## ELECTRONICS NOW

FIG. 78-35
The power supply shown is designed to operatc from a wall transformer. This circuit can be used in conjunction with a variable supply to test circuits in the lab, etc. T2 is a $12-\mathrm{V}$ wall transformer.

ADD 12-V OUTPUT TO 5-V BUCK REGULATOR


## ELECTRONIC DESIGN

FIG. 78-36
By adding a flyback winding to a buck-regulator switching converter (see the figure), which is essentially a $5-\mathrm{V}$ supply with a $200-\mathrm{mA}$ output capability, a $12-\mathrm{V}$ output ( $V_{p p}$ ) can be produced. The flyback winding on the main inductor (forming transformer T1) enables an additional low-dropout linear regulator (IC2) to crcate the $12-\mathrm{V}$ output voltage that's needed to program EEPROMs. The required input voltage is 8 to 16 V .

## TELECOM CONVERTER -48 V TO +5 V @ 1 A



NATIONAL SEMICONDUCTOR, LINEAR EDGE
FIG. 78-37
The circuit supplies 1 A at +5 V from the $-48-\mathrm{V}$ supply commonly used in telephone equipment. The National Semiconductor LM2575 is a simple switching regulator.

## 79

## Probe Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Simple Voltage Probe<br>ac Voltage Probe

## SIMPLE VOLTAGE PROBE



POPULAR ELECTRONICS
FIG. 79-1
This simple voltage probe can be helpful in checking and troubleshooting solid-state circuitry.

## ac VOLTAGE PROBE



POPULAR ELECTRONICS
FIG. 79-2

This simple probe can save your life by warning you of live circuitry. It's ideal for times when more than one person is working on a device.

## 80

## Protection Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuil corrclates to the entry in the Sources section.

Speaker Frotector<br>Electronic Fuse<br>Safety Circuit<br>Overload Indicator<br>Relay Fuse for Power Supplics<br>Speaker Protector<br>Modem Protector<br>Overvoltage Protection Circuit<br>Timed Safety Circuit<br>Modem/Fax Protector for Two Computers<br>Ear Protector<br>Loudspeaker Protector<br>Simple Safety Circuit

## SPEAKER PROTECTOR



POPULAR ELECTRONICS
FIG. 80-1

Most of the transistors in this speaker protector function as switches. Normally, Q4, Q5, and K1 are on and the speakers are connected to the amplifier. However, if a large dc voltage appears at an amplifier output, either Q3, or Q1 and Q2 turn on, biasing Q4 off. That action turns Q5 off, de-energizes the relay, and disconnects the speakers from the amplifier. Components I1, D2, and Q6 form the overdrive-protection circuit.

## ELECTRONIC FUSE



RADIO-ELECTRONICS
FIG. 80-2

Basically, this circuit is an adjustable electronic circuit breaker, containing a toroidal transformer that senses $60-\mathrm{Hz}$ load current. T1 has a two-turn winding for primary, and 100 turns of \#30 gauge wire for the secondary. A high-low range switch selects 0.1 to 6 A or 1 to 12 A . The primary winding of T1 carrics full load current and voltage; should be suitably insulated, as should be RY1.

## SAFETY CIRCUIT



POPULAR ELECTRONICS
FIG. 80-3
Because of the finite hold-on time of delay circuits R1/C1 and R2/C2, both S 1 and S 2 must be pressed at the same time to power up the load.

OVERLOAD INDICATOR


Two op amps are used as comparators to indicate excessive magnitude of an AF signal, either positive or negative, even if the sigral is asymmetrical. P1 sets the reference voltage for both op amps. This circuit is uscful for audio-amplifier and op-amp circuits using split power supplics.

FIG. 80-4

## RELAY FUSE FOR POWER SUPPLIES



A method of adding overload protection to a power supply using a relay is shown. In each circuit, the relay must be reset by a momentary switch using a charge on capacitor C2. This prevents overload if the short still cxists.

FIG. 80-5

## SPEAKER PROTECTOR



A speaker system can be protected against amplifier failure when dc voltages (on speaker line $a-b$ ) are sensed by the circuit. Fither positive or negative de voltages are sensed. A relay opens in this case, removing the de from the speakers. About 12 V at 50 mA is needed to power the circuit, depending on the relay.

FIG. 80-6

## MODEM PROTECTOR



This protector uscs surge voltage protectors rated at $230-\mathrm{V}$ breakdown. An effective ground should be used.

FIG. 80-7

## OVERVOLTAGE PROTECTION CIRCUIT



When testing a circuit, a source of voltage that is variable and has overvoltage shutdown is very useful. In this circuit, R1 is adjusted to 1 to 2 V below the eventual shutdown threshold. R 2 sets the trip voltage. When this voltage is reached, the circuit shuts the voltage to the circuit under test down. To reset, reduce R1 below trip threshold and depress reset switch S1.

## TIMED SAFETY CIRCUIT



POPULAR ELECTRONICS
FIG. 80-9

When S1 is closed, pin 9 of U1 goes low, turning on Q1 for a preset period. If S2 is closed during this period, Q2 is tumed on for a preset period. R11 and R13 set the two time periods.

## MODEM/FAX PROTECTOR FOR TWO COMPUTERS



VARIATION OF THE MODEMFAX PROTECTOR for use in tetophone line connections between PC or terminal and larger diatant computer.

## ELECTRONICS NOW

FIG. 80-10
This modem/fax protector can be used in telephone-line connections between a PC or a terminal and a distant computer. In this circuit, the SVPs (surge voltage protectors) are rated at 230 V . A good ground is a must for effective opcration.

## EAR PROTECTOR



POPULAR ELECTRONICS
FIG. 80-11
The ear protector is actually a peak audio-detector/shutdown circuit thai disables the amplifier through its chip-disable input when the output volume of an amplifier reaches the set level. The circuit, although intended for the MC34119 amplifier, should work with similar IC devices or applications.


## SILICON CHIP

FIG. 80-12
Transistors Q1, Q2, and Q3 monitor the two outputs of the stcreo amplifier. If the offsets exceed $\pm 2 \mathrm{~V}, \mathrm{Q} 7$ is turned off, which turns off Q8 and the normally on relay. Diodes D2 and D5, together with Q4, provide a mains voltage monitor. As soon as the ac input voltage disappears, as when the amplifier is turned off, Q4 turns off and Q5 turns on. This turns off Q7, Q8, and the relay. Hence, the loudspeakers are discomected immediately after the amplifier is turned off.

## SIMPLE SAFETY CIRCUIT



The simple two-hand safety-control switch shown here is little more than two pushbutton switches connected in series; both must be depressed in order to energize the relay.

FIG. 80-13

## 81

## Proximity Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Proximity Alarm I<br>Proximity Alarm II

## PROXIMITY ALARM I



1991 PE HOEBYIST HANDEOOK
FIG. 81-1

ICl contains several oscillators and an amplifier. The low-frequency audio-signal oscillator is used to supply an input to the amplifier. That signal is the audio tone that is amplified, then supplied to the speaker by the amplifier.

The high-frequency oscillator is purposely set to be very unstable. It is dormant or "off" until the resistor-capacitor ( RC ) network is changed. The resistance ( $R$ ) in this case is made up of R2 and P1. As the resistance of P1 is decreased, the unit becomes more sensitive (more unstable), and less capacitance $(C)$ is needed to cause the oscillator to oscillate.

The capacitance required is provided by C2 and by any capacitance introduced via the antenna loop. When you come near that loop, your inherent body capacitance causes the high-frequency oscillator to begin to oscillate, which then causes the low-frequency oscillator to be "switched on" internally. Once the alarm is sounding, the IC is designed so that it "latches", that is, it stays on until the power to it is switched off.

C1 $\quad 1-\mu \mathrm{F}$ Axial Capacitor
C2 27-pF Silver Mica Capacitor
C3 $\quad 0.1-\mu \mathrm{F}$ Mylar Capacitor
ICl CM1001N IC
P1 $\quad 50-\mathrm{k} \Omega$ Trimmer Resistor
R1 75-k $\Omega$ Resistor
R2 $200-\Omega$ Resistor
R3 100-k』 Resistor
S1 SPDT Switch
Spk Small Speaker
Misc IC Socket, Battery Snap, Ground Plate, Wire, PC Board

## PROXIMITY ALARM II



POPULAR ELECTRONICS
FIG. $81-2$
A CMOS logic gate is used to make up this circuil. When an object is near the antenna, the change in oscillator output is detected by D1 and D2 and amplified by U1C, which drives Q1, sounding alarm BZ1.

## 82

## Pulse-Generator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Add-On Pulse Gcnerator<br>Pulse Generator<br>Logic Pulser<br>Precise Onc-Shot<br>Digitally Controlled Sawtooth Pulse Generator<br>Delayed Pulse Generator<br>Pulse Generator with Variable Duty Cycle

## ADD-ON PULSE GENERATOR

| $C \mu \mathrm{~F}$ | Pulse width |
| :---: | :---: |
| 4.7 | 40 ms to 540 ms |
| 0.47 | 4 ms to 54 ms |
| 0.047 | 400 ms to 5.4 ns |
| 0.0047 | $40 \mu \mathrm{~s}$ to $540 \mu \mathrm{~s}$ |
| 470 pF | $4 \mu \mathrm{~s}$ to $54 \mu \mathrm{~s}$ |

## WILLAM SHEETS

FIG. 82-1
This pulse generator can supplement a standalone pulse generator. Using a transistor and a 555 timer, pulse widths of $<5 \mu s$ to $500 \mu \mathrm{~s}$ can be produced. The value of $C_{3}$ is approximately found from the formula:
$C_{3} \mu \mathrm{~F}=1.1 \times 10^{-5} \mathrm{~T} \quad$ where $T$ is the shortest pulse width $(\mu \mathrm{s})$ desired in a $10: 1$ range
( $T$ should be greater than $5 \mu \mathrm{~s}$ )
The capacitor values and consequent pulse width range are shown.

## PULSE GENERATOR



Pulsewidth $T=1.1$ RC
In this circuit $T \approx 7.4 \times 10^{-3} C_{\mu}=100.117 \times C_{\mu F}$ seconds with $C=0.1 \mu \mathrm{~F} \quad T=740 \mu \mathrm{~s}$ to 11.7 ms

## WILLIAM SHEETS

FIG. 82-2
By using a 556 dual timer with IC1A acting as a waveshaper and IC1B as a pulse generator, a 10:1 range of pulse widths can be generated.

A sine wave can be used to trigger this circuit.

## LOGIC PULSER



1990 PE HOBEYIST HANDBOOK
FIG. 82-3

The logic pulser generates pulses at 500 Hz or 0.5 Hz . When the pulser's tip connects to an input that is already being driven high or low, the pulser senses the logic state and automatically pulses the input briefly to the opposite state.

## PRECISE ONE-SHOT



A more precise and stable one-shot pulse is generated by this circuit (a). When a trigger pulse is present, the flip-flop initiates a one-shot pulse whose width is a multiple of the clock period (b).


This simple one-shot circuit has a pulse width of one clock period and is more precise and stable than a multivibrator.

## PRECISE ONE-SHOT (Cont.)

This approach uses a flip-flop, a shift register, and two gates (A). Before the one-shot pulse, the output of the NOR gate is 0 . Consequently, the data input of the D-type flip-flop is equivalent to the trigger. When a trigger pulse is present, the flip-flop initiates the one-shot pulse, and the $n$-stage shift register controls the pulse width, $t_{w}$, which is a multiple of the clock's period (B).

The precision of the one-shot pulse is determined by the clock period, which is inversely proportional to its frequency. For the circuit to work properly, the width of the trigger pulse, $t_{w}$, should be greater than one clock period.

The OR gate masks the trigger's effect when the circuit is generating the desired pulse. The net result is a circuit that functions as a nonretriggerable multivibrator.

When the pulse needs to be only one-clock-period wide, the circuit can be simplified. All that's required are two D-type flip-flops and an AND gate. However, despite its simplicity, this circuit generates a more stable and precise one-shot pulse than a multivibrator.

## DIGITALLY CONTROLLED SAWTOOTH PULSE GENERATOR



FIG. 82-5

Use of an analog switch as shown allows digital control of a UJT oscillator.

## DELAYED PULSE GENERATOR



WILLIAM SHEETS
FIG. 82-6
Three 555 IC timers are used in this circuit to construct a simple delayed-pulse generator. IC1 acts as a waveform shaper to produce a rectangular waveform. IC2 produces a delaying pulse to trigger IC3 on the trailing edge of the delaying pulse. Rl controls delay time and R 2 controls pulse width. As much as a 10:1 range can be generated.

Delay: $\quad C 1=1.1 \times 10^{-5} \mathrm{~T}$ delay $\quad \mathrm{c} \mu \mathrm{F}$
Pulse: $\quad C 2=1.1 \times 10^{5} \mathrm{~T}$ pulsc $\quad \mathrm{T} \mu \mathrm{sec}$

## PULSE GENERATOR WITH VARIABLE DUTY CYCLE



WILLIAM SHEETS
Using only one IC and six passive components, this pulse generator has a frequency range. of 400 to 4000 Hz and an adjustable duty cycle of 1 to $99 \%$. A threshold detector (ICA) and an integrator (ICB) generate a triangular waveform. A
positive voltage at the output of ICA causes the output of ICB to become a negative-going ramp. When the output of this ramp reaches a certain value, ICA, by virtue of its positive-feedback network, changes state; its output becomes negative, and the integrator generates positive ramp. This process continually repeats. A voltage follower (ICC) and a $100-\mathrm{k} \Omega$ potentiometer provide a variable $\pm 0.18-\mathrm{V}$ reference voltage. This reference voltage, diong with the triangular waveform, feeds into the positive and negative inputs, respectively, of comparator ICD. You can set the comparator's trip voltage at any point on the triangular waveform; ICD's output changes at that point. Varying the reference voltage alters the duty cycle of the comparator's output by adjusting the potentiometer at the negative input of the integrator, thereby varying the integration time without altering the duty cycle.

## 83

## Receiver Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Simple Direct-Conversion<br>Receiver for 160 to 20 M<br>$27.145-\mathrm{MHz}$ NBFM Receiver<br>VLF Whistler Receiver<br>Basic AM Receiver Circuit<br>Simple 1.5-V AM Broadcast Receiver CMOS Line Receiver

NE602 Direct-Conversion Receiver<br>80- and 40-M CW/SSB Receiver<br>NE602 RF Input Circuits<br>Super-Simple Shortwave Receiver<br>Transistorized AM Radio<br>NE602 Superhet Front Erd

## SIMPLE DIRECT-CONVERSION RECEIVER FOR 160 TO 20 M



Table. Component Values for Different Bands

| Ban | C1 | C2 | C3 | T1 |  | T2 BKXN-K3333R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 220 pF | 10 pF | 220 pF | 8KXN- | K3333R |  |
| 80 | 47 pF | 3 pF | 47 pF | BKXN | к3333R | BKXN-K3333R |
| 40 | 100 pF | 8.2 pF | F 100 pF | BKXN- | K3334R | BKXN-K3334R |
| 30 | 47 pF | 3 pF | 47 pF | BKXN- | K3334R | SKXN-K3334R |
| 20 | 100 pF | 3 pF | 100 pF | BKXN- | K3335R | BKXN-K3335 |
| $\mathrm{VC1}+\mathrm{ClO}_{10} \mathrm{CA}_{4}$ |  |  | C5 C8 | T3 |  | BKXN-K33338 |
| All | ctions + | 00 pF | $0.001 \mu \mathrm{~F}$ | $0.001 \mu \mathrm{~F}$ | 560 pF |  |
| All Sections + |  | 00 pF | $0.001 \mu \mathrm{~F}$ | $0.004 \mu \mathrm{~F}$ | 560 pF | BKXN-K3334R |
| 1 Section |  | 47 pF | 560 pF | 560 pF | 270 pF | BKXN-K417340 |
| 1 Section + |  | 68 pF | 680 pF | 680 pF | 220 pF | BKXN-K3335RBKXN-K3335R |
| 1 Sec | O + | 68 pF | 220 pF | 220 pF | 68 pF |  |

Note that T 1 and T 2 are TOKO, including part numbers for the coils T1 and T2. The direct-conversion receiver shown uses a double-tuned input network made from readily available TOKO coils. IC1, an NE602, acts as a VFO and mixer, with the output being an IF frequency in the audio range. IC 2 is an audio amplifier, R 4 is a volume control.

### 27.145-MHz NBFM RECEIVER



FIG. 83-2

Using a Motorola MC3363 LSI one-chip FM receiver, the circuit is a dual-conversion FM receiver with a $10.7-\mathrm{MHz}$ IF chairı. IC4 provides power to drive a small speaker.

## VLF WHISTLER RECEIVER



POPULAR ELECTRONICS
FIG. 83-3
The VLF whistler receiver is intended to listen to natural radio noise and signals that occur below 20 kHz . L1 is a large loop anterna that is 250 to 300 turns \#26 gauge wire on a form 3 diameter. L1 should be mounted well away from power lines and is oriented for minimum $60-$ and $120-\mathrm{Hz}$ pickup.

BASIC AM RECEIVER CIRCUIT


POPULAR ELECTRONICS
FIG. 83-4
Using a single ZN416E IC and a ULN3718M, this simple TRF receiver can drive a loudspeaker. Two $1.5-\mathrm{V}$ cells power the circuit.

## SIMPLE 1.5-V AM BROADCAST RECEIVER



POPULAR ELECTRONICS
FIG. 83-5

This receiver uses the ZN416E made by GEC Plessey. The tuning is via Cl .

CMOS LINE RECEIVER


INTEGRATED CIRCUITS DATA BOOK
FIG. 83-6

This circuit will interface a line input to CMOS. The supply current is $>1 \mathrm{~mA}$ at +5 V .

## NE602 DIRECT-CONVERSION RECEIVER



Table 1-- CAPACITOR SELECTION

| Band (meters) | Capacilor values (picolarads) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cc | Cd | Ce | Cl | Cg | Ch |
| 75/80 | 1000 | 1000 | 470 | 120 | 365 | 270 |
| 40 | 330 | 330 | 120 | 150 | 365 | 68 |

POPULAR ELECTRONICS
FIG. 83-7

An NEC602 is used as a mixer with a zero IF frequency output. 42 acts as an audio amplifier. This receiver is primarily for SSB and CW signals. T1 and T2 are $10.7-\mathrm{MHz}$ IF coils used in AM/FM transistorized radios, etc. or in any similar indicator.

## 80- AND $40-\mathrm{M}$ CW/SSB RECEIVER



73 AMATEUR RADIO TODAY
FIG. 83-8

This direct-conversion receiver uses a TDA7000 IC and it drives an LM386 audio amplifier. The TDA7000 is used for its mixer and L.O. section. The frequency control can be either with an air variable capacitor or a varactor diode.

## NE602 RF INPUT CIRCUITS



A


POPULAR ELECTRONICS
FIG. 83-9

Here are a few of the many possible RF input circuits for the NE602. Just about any tuned or broadband circuit will work.

## SUPER-SIMPLE SHORTWAVE RECEIVER



FIG. 83 -io

Integrated circuit U1 (an NE602 double-balanced mixer) is a combination oscillator and frcquency mixer. Signals from the anterna input (at J1) are fed through dc-blocking capacitor Cl to the RF -gain control, Rl , and fed to the input of U1 at pins 1 and 2.

The local-oscillator frequency, which varies with the settings of R 2 and L 2 , is mixed internally within Ul , resulting in an outpul. The mixer output at pin 4 of Ul is applied to a tunable $260-\mathrm{kHz}$ band-pass intermediate-frequency (IF) transformer, L3, through dc-blocking capacitor C7. Therefore, signals that are roughly 260 kHz above and below the local-oscillator frequency are passed while others are effectively blocked. The IF frequencies are now amplified by Q2 and Q3. The AM audio signal is detected by D2 and its associated components, which bypass the RF signals, and leave only the audio signals. The signals are preamplified by $\mathrm{U1}-\mathrm{a}$ (half of an LM358 dual op amp). The audio is then hoosted to speaker level by the LM386 low-voltage audio power amplifier, U3.

## TRANSISTORIZED AM RADIO



Shown is a schematic of a typical transistor AM radio. This circuit uses npn transistors. The circuit is "generic;" therefore, no specific values are given for some components. This circuit is for reference, to serve as a starting point for experimenters.

## NE602 SUPERHET FRONT END



FIG. 83-12

By using an NE602 with a filter and an MCl350P IC, a front end and an IF system for a basic superheterodyne receiver can be built with few parts. T1 is any suitable IF transformer for 262 kHz , $455 \mathrm{kHz}, 10.7 \mathrm{MHz}$, ete.

## 84

## Relay Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675 . The figure number in the box of each circuit correlates to the entry in the Sources section.

Solid-State Latching Relay<br>Solid-State Relay Circuit<br>Solid-State Relay Circuits<br>Time Delay Relay<br>Sensor-Activated Relay Pulser



ELECTRONIC DESIGN
FIG. 84-1

This simple circuit provides a solid-state equivalent of the electromechanical latching relay (see the figure). What's more, the switching is clean, highly resistant to vibration and shock, and isn't sensitive to magnetic fields or position.

The circuit operates as follows: a set pulse to the 4043 RS latch takes its output high and turn on the 2N3904 transistor. Current will then flow through the photovoltaic relay's LED and the resistance between D1 and D2 will fall from scveral gigaohms to less than $30 \Omega$. The PVR will remain in this state until a reset pulse is received by the 4043 RS latch.

## SOLID-STATE RELAY CIRCUIT



## RADIO ELECTRONICS

FIG. 84-2
R1 limits input current while Q1 acts as a current sink to protect IC1. D1 serves as a polarity protector. IC1 provides a triac output to trigger the main triac, TR1.

SOLID-STATE RELAY CIRCUITS


WILLIAM SHEETS
FIG. 84-3
This dark-activated relay switch can be used to turn on walkway or other outdoor lighting at dusk. By using alternate connections to A and B , increasing illumination, high and low temperatures can be sensed.

TIME DELAY RELAY


## ELECTRONICS NOW

Using a 4060 CMOS binary divider and buill-in clock oscillator, a long-duration timer can be made very simply. The solid-state relay can be sized for your application, and can be replaced with a mechanical relay if a suitable power supply is available. With the components shown, a $4.5-\mathrm{Hz}$ clock frequency is generated. Divided outputs are available from $\div 4$ to 16384 (about 4 hours).

## SENSOR-ACTIVATED RELAY PULSER



Either $R_{A}$ or $R_{B}$ can be sensors, as desired. A decrease in $R_{B}$ or an increase in $R_{A}$ will cause the NE555 to flash I1. $R_{A}$ and $R_{B}$ should be $\leq 100 \mathrm{k} \Omega$ max.

A sensor turns on Q1 to activate the low-frequency 555 oscillator, which pulses LAMP I1. Sensor may be sensitive to changes in light or temperature.

## 85

## Remote-Control Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Remote-Control Transmitter<br>Remote-Control Recciver<br>Interface Circuits for the Remote-Control Transmitter<br>Remote-Control Extender<br>Ultrasonic Remote-Control Transmitter<br>Remote-Control Transmitter<br>Ultrasonic Remote-Control Receiver

REMOTE-CONTROL TRANSMITTER


IR TRANSMITTER SCHEMATIC. The $40-\mathrm{kHz}$ carrier is derived by dividing ict's oscillator frequency ( 6 MHz ) by 15 , to gat 400 kHz . which is divided by 10 by IC3.

## ELECTRONICS NOW

FIG. 85-1
This transmitter sends an FM signal in the 88 -to $108-\mathrm{MHz}$ range, with a tone of 19 kHz . This can be used to activate the FM MPX pilot carrier indicator, which can be interfaced to external devices. L4 is for use with a 15 CM wire antenna. L1 is 9 turns of \#26 enamelled wire on a $1 / 4-W 10-\mathrm{k} \Omega$ resistor (carbon type), L2 is 2 turns wound over LL. L3 is 7 turns of \#26 enamelled wire on a $10-\mathrm{k} \Omega / 4-\mathrm{W}$ resistor.

## REMOTE-CONTROL RECEIVER



ELECTRONICS NOW
FIG. 85-2

This circuit is based on the Sharp GP1U52X IR module and INS8048L microproccssor. The GP1U52X is a hybrid IC/infrared detector that provides a strong clean signal for later filtering and demodulation.

INTERFACE CIRCUITS FOR THE REMOTE-CONTROL TRANSMITTER


POPULAR ELECTRONICS
FIG. 85-3

Shown here are several possible interface circuits that can be used with the remote-control transmitter. The one in A illustrates a typical FM stereo MUX decoder with a load connected directly to the open-collector output of a TA7343 PLL. The circuit in B illustrates an optoisolator-coupler output driving a $12-\mathrm{V}$ relay coil via a general-purpose transistor. C shows the gate of an N -channel power MOSFET connected to the output of a 4 N 33 . The final circuit, D, is a toggle flip-flop that allows push-on/push-off control.

## REMOTE-CONTROL EXTENDER



## 1991 R-E EXPERIMENTERS HANDBOOK

FIG. 85-4
A signal from an IR remote control is converted from IR radiation to a frequency pulse that can be transmitted through coaxial TV cable or any other two-conductor wire to another room, where it's converted back into an IR signal.

## ULTRASONIC REMOTE-CONTROL TRANSMITTER



POPULAR ELECTRONICS
FIG. 85-5

A GC Electronic P/N J4-815 ultrasonic transducer is used in this $40-\mathrm{kHz}$ transmitter for remotecontrol application.

## REMOTE-CONTROL TRANSMITTER



POPULAR ELECTRONICS
FIG. 85-6
This transmitter can be used for a variety of purposes. An INS8048L microprocessor generates various codes depending on keypad presses. The codes are modulated on a $40-\mathrm{kHz}$ carrier. Q1 drives IR LEDs LED1 and LED2.

ULTRASONIC REMOTE-CONTROL RECEIVER


POPULAR ELECTRONICS
FIG. 85-7

A GC Electronics $\mathrm{P} / \mathrm{N} \mathrm{J} 4-815$ transducer is used to receive $40-\mathrm{kHz}$ acoustic remote-control signals. The receiver drives a relay for control of another circuit.

## 86

## RF Amplifier Circuits

T
The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sourcos section.

HF Preamplifier
VHF/UHF Preamp Using MAR-x
Broadband RF Amplifier
Low-Noise GASFET Preamp for 435 MHz
Broadcast-Band RF Amplifier
$70-\mathrm{MHz}$ RF Power Amplifier
Miniature Wideband Amplifier
$30-\mathrm{MHz}$ Amplifier
$20-\mathrm{W} 450-\mathrm{MHz}$ Amplifier
Wideband Power Amplifier
TV Sound System
10-W 10-Meter Linear Amplifier
2-Meter FET Power Amplifier for HTs
Receiver/Scanner Preamp Using MAR-1 MMIC
20-W 1296-MHz Amplifier Module
Simple $455-\mathrm{kHz}$ IF Amplifier
UHF Amplifier
$144-$ to $2304-\mathrm{MHz}$ UHF Broadband Amplifier
$455-\mathrm{kHz}$ IF Amplifier
Switchable HF/VHF Active Antenna
$455-\mathrm{kHz}$ IF Amp for 1.5-V Operation
$5-\mathrm{W} 7-\mathrm{MHz}$ RF Power Amplifier
LC Tuned Amplifiers
Wideband Preamp
RF Preamplifiers
$45-\mathrm{MHz}$ IF Amplifier with crystal filter

Receiver/Scanner Preamp Using MAR-1 MMIC $20-\mathrm{W} 1296-\mathrm{MHz}$ Amplifier Module Simple $455-\mathrm{kHz}$ IF Amplifier UHF Amplifier
144- to $2304-\mathrm{MHz}$ UHF Broadband Amplifier $455-\mathrm{kHz}$ IF Amplifier
Switchable HF/VHF Active Antenna
$455-\mathrm{kHz}$ IF Amp for $1.5-\mathrm{V}$ Operation
5-W 7-MHz RF Power Amplifier
LC Tuned Amplifiers
Wideband Preamp
RF Preamplifiers
$45-\mathrm{MHz}$ IF Amplifier with crystal filter

## HF PREAMPLIFIER



## POPULAR ELECTRONICS

FIG. 86-1

This HF SW receiver proamplifier is comprised of a broadband toroidal transformer (L1-a and L1-b), a complex LC network (comprised of a $1600-\mathrm{kHz}$, high-pass filter and a $32-\mathrm{MHz}$, low-pass filter), L2 and L3 (26 turns of \#26 enameled wire wound on an Amidon Associates T-50-2, red, toroidal core), a pair of resistive attenuators (ATTN1 and ATTN2), and of course, the MAR-x device. External power for the preamp cani be 9 to 12 Vdc . R1 can be increased in valuc for higher voltages.


## POPULAR ELECTRONICS

FIG. 86-2

The MAR-x preamp shown will cover up to 1.5 or 2 GHz with the correct MAR-x IC. ATTN1 should be omitted for low noise-figure applications. ATTN1 and ATTN2 provide a means of limiting possible termination range, for less chance of device instability.

## BROADBAND RF AMPLIFIER



POPULAR ELECTRONICS
FIG. 86-3
The use of a FET gives this amplifier a high input impedance. The bandwidth should be adequate for LW through HF use (dc- 30 MHz ), as an active antenna preamplifier.

## LOW-NOISE GASFET PREAMP FOR 435 MHz



WILLIAM SHEETS
FIG. 86-4
This circuit is a low-noise preamplifier for the $435-\mathrm{MHz}$ amateur satellite frequencies. The circuit uses a Mitsubishi MGF1302. A 28-Vdc source is shown, although by changing the $400-\Omega 5$-W resistor lower voltages can be used.

## BROADCAST-BAND RF AMPLIFIER



## R-E EXPERIMENTERS HANDBOOK

FIG. 86-5
The circuit has a frequency response that ranges from 100 Hz to 3 MHz ; the gain is about 30 dB . Field-effect transistor Q1 is configured in the common-source self-biased mode; optional resistor R1 allows you to set the input impedance to any desired value. Commonly, it will be $50 \Omega$. The sigial is then direct-coupled to Q2, a common-base circuit that isolates the input and output stages and provides the amplifier's exceptional stability. Last, Q3 functions as an emitter-follower, to provide low output impedance (about $50 \Omega$ ). If you need higher output impedance, include resistor R8. It will affect impedance according to this formula: $R_{8} \approx R_{\text {OUT }}-50$. Otherwise, connect output capacitor C4 directly to the emitter of Q3.

70-MHz RF POWER AMPLIFIER


PRACTICAL WIRELESS
FIG. 86-6
The SD1143 transistor provides a gain of about 14 dB in this circuit. It uses the fact that a 175 MHz device has a much higher gain when used at lower frequencies. The amplifier was originally designed to be used with a transverter. The output is 8 to 10 W for a $300-$ to $500-\mathrm{mW}$ input.

## MINIATURE WIDEBAND AMPLIFIER



SINCE THE NE5205 FUNCTIONS as a gain block, two or more can be easily cascaded to provide additional amplitication. In this circuit, which uses two NE5205s, the overall gain is 60 dB.


IF THE POWER SUPPLY is fed through the signal-carrying coaxial cable, the amplifier can be mounted in a weatherproof enclosure directly at the antenna.

R-E EXPERIMENTERS HANDBOOK
FIG. 86-7

Except for the coupling and decoupling capacitors, ICl is a complete wideband amplifier that has a fixed gain of 20 dB to 450 MHz . No external compensation is required.

## 30-MHz AMPLIFIER



## ELECTRONIC DESIGN

Using a CLC406 op amp, this video amplifier has a voltage gain of +2 and is flat to 30 MHz . The circuit should be useable in video switching and interfacing applications.

## 20-W 450-MHz AMPLIFIER



73 AMATEUR RADIO
FIG. 86-9
Delivering 20-W output, this amplifier has a gain of 21 dB at 450 MHz . A $12-\mathrm{V}$ supply powers this circuit.

## TV SOUND SYSTEM



POPULAR ELECTRONICS
FIG. 86-11

An LM2808 performs IF amplification of the $4.5-\mathrm{MHz}$ sound subcarrier, limiting, detection, and audio amplification. If the conter frequency must be changed, then change Ll/C4. Audio output is 0.5 W . R 3 is the volume control.

## 10-W 10-METER LINEAR AMPLIFIER



Table 1. Output filter values for other bands.
Eand (meters) C1,C3 C2 L1,L2

| 12 | 117 pF | 220 pF | 8 turns, T-50-6 toroid |
| ---: | ---: | ---: | ---: |
| 15 | 138 pF | 270 pF | 9 turns, T-50-6 toroid |
| 20 | 138 pF | 420 pF | 12 turns, T-50-6 toroid |
| 30 | 289 pF | 579 pF | 12 turns, T-50-2 toroid |
| 40 | 400 pF | 800 pF | 14 turns, $T-50-2$ toroid |
| 80 | 700 pF | 1415 pF | 19 turns, $\mathrm{T}-50-2$ torold |

Note: use 26 wire for C1 and C2. Use capacitors that are closest to these suggested values. As the operating frequency decreases, the gain will increase as well as the possibility for instability. You may have to use RC feedback to negate this effect. Values for the above table were obtained from the ORP Notebook by Doug DeMaw.

This linear amplifier delivers $10-\mathrm{W}$ PEP output with $1.25-\mathrm{W}$ drive on 10 m . T1, T 2 , and T3 are 10 turns of bifilar windings on an FT-50-43 toroidal core. The transformers are broadband. Filters for other bands, if desired, are shown.

## 2-METER FET POWER AMPLIFIER FOR HTs



73 AMATEUR RADIO TODAY
FIG. 86-13
Using a power MOSFET, this amplifier can boast a 2 -W handic-talkie power level to around 10 W on 2 meters. A transmission-line RF switch is used for T/R switching.

RECEIVER/SCANNER PREAMP USING MAR-1 MMIC


The low-cost Mini-Circuits MAR-X series of chips offer the RF builder a real advantage, with their inherent $50-\Omega$ input and output impedances (needed for RF systems). An MAR-1-based receiver/scanner preamplifier is shown. C 1 and C 2 are chip capacitors. Use $0.01 \mu \mathrm{~F}$ for $\mathrm{HF}, 0.001$ for VHF, and 100 pF for above 100 MHz , depending on the low-frequency limit that you desire. C3 can be a ceramic disc of $0.01 \mu \mathrm{~F}$ or $0.001 \mu \mathrm{~F}$, depending on frequency range. L 1 is an RF choke that is suitable for the frequency range that you desire ( 0.1 to $10 \mu \mathrm{H}$ ).

## 20-W 1296-MHz AMPLIFIER MODULE



73 AMATEUR RADIO
FIG. 86-15
Using a Mitsubishi M57762 amplifier module, this amplifier delivers $20-\mathrm{W}$ output on 1296 MHz . A single $12-\mathrm{V}$ nominal power supply can be used.

## SIMPLE 455-kHz IF AMPLIFIER



POPULAR ELECTRONICS
FIG. 86-16
The ZN416E can be configured as a simple $455-\mathrm{kHz}$ IF amplifier. In this case, the circuit's center frequency and bandwidth are set by RES1 (a Murata CSB455E ceramic resonator).


POPULAR ELECTRONICS
FIG. 86-17

| Dovice | Max. mA | Norma! Current mA. | Approx. Galn 1.GHz |
| :---: | :---: | :---: | :---: |
| MAR-1 | 40 | 20-30 mA | 18 dB |
| MAR-2 | 60 | $30-40 \mathrm{~mA}$ | 13 dB |
| MAF-3 | 70 | $30-50 \mathrm{~mA}$ | 12 dB |
| MAR-4 | 85 | $50-70 \mathrm{~mA}$ | 8 dB |
| MAR-6 | 50 | 15-25 mA | 17 dB |
| MAR-7 | 60 | 25-40 mA | 13 dB |
| MAR-6 | 65 | 30-50 mA | 23 dB |
| Table 2. |  |  |  |
| MMIC Amplifier Pertormance |  |  |  |
| 144 MHz |  | 18.2 dB | $2.7 \mathrm{~dB} \mathrm{N/F}$ |
| 220 MHz |  | 16.3 d日 | $2.6 \mathrm{~dB} \mathrm{N/F}$ |
| 432 MHz |  | 16.5 dB | 2.8 dB N/F |
| 902 MHz |  | 15.0 dB | $2.9 \mathrm{~dB} \mathrm{N/F}$ |
| 1296 MHz |  | 13.0 dB | $3.5 \mathrm{~dB} \mathrm{~N} / \mathrm{F}$ |
| 2304 MHz |  | 88 dB | $4.2 \mathrm{~dB} \mathrm{N/F}$ |



73 AMATEUR RADIO
FIG. 86-18
Based on an MAR-6 preamp, this circuit yields low noise figures and uscful gairt for the $144-\mathrm{MHz}$ to $2304-\mathrm{MHz}$ amateur bands.

## 455-kHz IF AMPLIFIER



Up to 60 dB of gain at 455 kHz is available with the MC1350P. RES1 is a ceramic resonator, LC, or crystal filter. Keep the leads to pins, 1, 2,3, and 7 short.

## SWITCHABLE HF/VHF ACTIVE ANTENNA



POPULAR ELECTRONICS
FIG. 86-20
The AA-7 active antenna contains only two active elements: Q1 (an MFE201 N-channel dualgate FET) and Q2 (a 2SC2570 mpn VHF silicon transistor), which provide the basis of two independent, switchable RF preamplifiers.

455-kHz IF AMP FOR 1.5-V OPERATION


POPULAR ELECTRONICS
FIG. 86-21
The ZN416E can be configured as a simple $455-\mathrm{kHz}$. IF amplifier. In this case, the circuit's center and bandwidth are set by RESI (a Murata CSB455E ceramic resonator).

## 5-W 7-MHz RF POWER AMPLIFIER



73 AMATEUR RADIO TODAY
FIG. 86-22
The circuit shown will produce up to $5-W$ RF output in the $40-\mathrm{m}(7 \mathrm{MHz})$ amateur bard. The coils shown are wound on toroidal cores (Armdon Associates Inc.). The part numbers are given in the schematic. The circuit requires about $20-\mathrm{mW}$ drive and a $13-\mathrm{V}$ supply.

LC TUNED AMPLIFIERS


WILLIAM SHEETS
FIG. 86-23
This basic tuned LC amplifier can be used with three output coupling methods. They are capacitive coupling output, capacitive tapped output, or link-coupled output.

## WIDEBAND PREAMP

Table 1.

|  | Vcc | Vd | ld | Ro |
| :---: | :---: | :---: | :--- | :--- |
| MWA110 | 5 VOC | 2.9 Voc | 10 mA | $210 \Omega$ |
|  | 6 |  |  | $310 \Omega$ |
|  | 12 |  |  | $910 \Omega$ |
| MWA120 | 5 | 5.0 | 25 | $1 \Omega$ |
|  | 6 |  |  | $40 \Omega$ |
|  | 12 |  |  | $280 \Omega$ |
| MWA130 | 5 | 3.2 | 25 | $85 \Omega$ |
|  | 6 |  |  | $120 \Omega$ |
|  | 12 |  |  | $360 \Omega$ |



$$
\begin{aligned}
& V_{C C}=12 \mathrm{Vdc} ; \mathrm{C} 1 \text { to } \mathrm{C} 5=0.1 \mu \mathrm{~F} ; \mathrm{RB} 1=910 \mathrm{n} \\
& \mathrm{RB} 2=280 \Omega ; \mathrm{U} 1=\mathrm{MWA} 110 ; \mathrm{U} 2=\mathrm{MWA} 120
\end{aligned}
$$



PC board layout (shading ropresents copper) and parts layout. " $X$ " is the feedthrough wire to the gound plane. All capacitors are $0.1 \mu F$. Keep all leads short.

Motorola MWA 110,120 , or 130 are wideband amplifier ICs. This wideband preamp circuit can be used in many applications. Kccp the leads short when constructing the circuitry.

## RF PREAMPLIFIERS

table 1-MAA-X CAPABILITIES

| OEVICE | MAX. FREQ. <br> (MHz) | GAIN (100/50/1000 MHz) | N.F. | COLOR |
| :--- | :--- | :--- | :--- | :--- |
| MAR-1 | 1,000 | $18.5 / 17.5 / 15.5$ | 5 | Brown |
| MAR-2 | 2,000 | $13 / 12.8 / 12.5$ | 6.5 | Red |
| MAR-3 | 2,000 | $13 / 12.8 / 12.5$ | 6 | Orange |
| MAR-4 | 1,000 | $8.2 / 8.2 / 8$ | 7 | Yellow |
| MAR-6 | 2,000 | $20 / 19 / 16$ | 2.8 | White |
| MAR-7 | 2,000 | $13.5 / 13.1 / 12.5$ | 5 | Violet |
| MAR-8 | 1,000 | $33 / 28 / 23$ | 3.5 | Blue |



In this basic MAR-x-based circuit, both the input and output are comprised of a single dcblocking capacitor (C1 and C2 for the input and output, respectively). The de power-supply network (comprised of L1 and R1) is attached to the MAR-x via the RF-output terminal (lead 3).

FIG. 86-25

## 45-MHz IF AMPLIFIER WITH CRYSTAL FILTER



WILLIAM SHEETS
FIG. 86-26
A 40673 dual-gate MOSFET is matched to a crystal filter at 45 MHz . The filter impedance is around $2 \mathrm{k} \Omega$. The $+4-\mathrm{V}$ source can be made variable for gain control (about +4 to -4 V .)

## 87

## RF Oscillator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

$6.5-\mathrm{MHz} \mathrm{VFO}$<br>RF Signal Generator<br>NE602 RF Oscillator Circuits<br>A Shortwave Pulsed-Marker Oscillator Ham Band VFO

## $6.5-\mathrm{MHz}$ VFO



QST
FIG. 87-1
Fixed-value capacitors are disc ceramics. C1, C4, C5, C6, and C8 are NPO ceramic or polystyrene. C2 is a $25-\mathrm{pF}$ ceramic trimmer and C3 is a $15-\mathrm{pF}$ miniature air variable capacitor. The resistors are $1 / 4-\mathrm{W}$ carbon film or composition. The RF chokes are miniature Mouser Electronics No. 43LR103 units. For L1, use 32 turns of \#28 enamel wire on an Amidon Assoc. T50-6 (yellow) toroid. L2 has 25 turns of \#28 enamel wire on an Amidon Ft-37-61 ferrite toroid.


FIG. 87-2A
This circuit uses a VFO operating from 15 to 18 MHz (U1), which feeds a balanced mixer (U2). A fixed oscillator signal is mixed with this signal to generate an output from 0.4 to 33 MHz . FL1 and FL2 are low- and high-pass filters that are used to eliminate undesired mixer products. Amplifier U3/Q3 supplies up to 200 mV rms to the output jack.

## RF SIGNAL GENERATOR (Cont.)



## NE602 RF OSCILLATOR CIRCUITS



Just about any standard oscillator (such as a Colpitts or Hartley configuration) can be used to gencrate the LO (local oscillator) frequency needed by the NE602.

## A SHORTWAVE PULSED-MARKER OSCILLATOR



73 AMATEUR RADIO TODAY
FIG. 87-4
A useful marker oscillator can be made using an NE555 to pulse the oscillator at an audio rate. This makes it easy to find the signal in the presence of interference. The crystal can be any suitable frequency from 1 to 30 MHz .


POPULAA ELECTRONICS
FIG. 87-5
This basic VFO for the $3-$ to $6-\mathrm{MHz}$ range is commonly used in amateur applications, using a Colpitts circuit. For 5 to $5.5 \mathrm{MHz}, C_{1}=C_{2}=70 \mathrm{pF}$ and for 3.5 to 4.0 MHz , use 1000 pF . C3 is typically 10 to 220 pF , depending on the frequency. $\mathrm{C4}, \mathrm{C5}$, and C 6 , together with C 3 , determine the frequency along with L1. C6 can be made up of several smaller values, paralleled to get the exact required value.

## 88

## Sample-and-Hold Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Sample-and-Hold Circuit I
Sample-and-Hold Circuit II

## SAMPLE-AND-HOLD CIRCUIT I



POPULAR ELECTRONICS
This circuit demonstrates the principle of the sample-and-hold circuit. S1 can be replaced by electronic switches (FET, etc.) in an actual application.

FIG. 88-1
SAMPLE-AND-HOLD CIRCUIT II


MAXIM ENGINEERING JOURNAL
FIG. 88-2
Driving a $D / A$ converter with an $A / D$ converter provides an overall analog-hold function, which though liruited in output resolution, offers zero voltage droop and infinite hold time. The A/D converter shown (IC1) includes a 12 -bit compatible track/hold at its input. The track/hold specifies a $6-\mathrm{MHz}$ fullpower bandwidth, a $30-\mathrm{ns}$ aperture delay, and a 50 -ps aperture jitter. The direct connections shown allow the $\mathrm{D} / \mathrm{A}$ converter to reconstruct signal levels within the input range of 0 to 5 V .

## 89

## SCA Circuit

The source of the following circuit is contained in the Sources section, which begins on page 675 . The figure number in the box of the circuit correlates to the entry in the Sources section.

Subcarrier Adapter for FM Tuners

## SUBCARRIER ADAPTER FOR FM TUNERS



1990 PE HOBEYIST HANDBOOK
FIG. 89-1
Op amp U1 and its associated components comprise the $67-\mathrm{kHz}$ bandpass filter. A twin-T network, comprised of four $1100-\Omega$ resistors and four $0.0022-\mu \mathrm{F}$ capacitors, is connected in the feedback network of the op amp. That gives some gain at 67 kHz and heavy attenuation for frequencies above and below that frequency.

An additional passive filter at the input to the twin-T network (containing a 220 pF capacitor and a $10,000-\Omega$ resistor) provides some additional roll-off for frequencies below 67 kHz .

In practice, the bandpass-filter action covers a frequency range of about 10 kHz above and below the $67-\mathrm{kHz}$ center frequency. Resistor R18 sets the gain of the bandpass-filter stage.

Integrated-circuit U2 is a National LM565 phase-locked loop that modulates the $67-\mathrm{kHz}$ fre-quency-modulated (FM) signal from U1. The LM565 PLL consists of a voltage-controlled oscillator (VCO) set to 67 kHz , and a comparator that compares the incoming frequency-modulated $67-\mathrm{kHz}$ signal at pin 2 with the VCO signal that is fed into pin 5 .

The output of the comparator represents the phase difference between the incoming signal and the VCO signal. Therefore, the output is the audio modulated by the subcarrier. A treble deemphasis of $150 \mu \mathrm{~s}$ is provided by a $0.033-\mu \mathrm{F}$ capacitor (at pin 7).

The free-running VCO frequency is determined by the $0.001-\mu \mathrm{F}$ capacitor at pin 9 and by the resistance between the positive rail and pin $8(100 \Omega$ in series with R19). Variable-resistor R19 adjusts the oscillator frequency (also known as the center frequency) so that the incoming signal is within the lock range of the PLL.

## 90

## Shutdown Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Resettable Shutdown Circuits<br>Shutdown Circuit

## RESETTABLE SHUTDOWN CIRCUITS



POPULAR ELECTRONICS
FIG. 90-1
If your circuits experience frequency overvoltage conditions, continually replacing blown fuses can get pretty expensive. However, this shutdown circuit overcomes that deficiency by replacing the fuse with a relay and a low-current SCR.

When the imput voltage rises above the threshold set by the Zener diode (D1), a current of sufficient magnitude is applied to the gate of SCR1, which turns it on. That draws current through the relay coil and energizes it, which swings its commutator to its normally open contact, and disrupts power to the circuit under power. Switch S1, a normally closed pushbutton switch, is used to reset the circuit; it does so by interrupting power to the relay. When S1 is pressed, the relay's wipor arm returns to the normally closed position, restoring power to the connected circuit.

If you deal with a number of circuits that have different burn-out levels, try the circuit in B. That circuit variation, a variable trip-point shutdown circuit, allows you to adjust the shutdown threshold to whatever level you desire. The circuit adjustment allows for the $30 \%$ variance in the trip point. The zener diode should be selected to have a voltage rating that is slightly lower than the minimum desired threshold voltage.

## SHUTDOWN CIRCUIT



POPULAR ELECTRONICS

Many modern devices have shutdown circuits that are designed to remove power from the device under power when the voltage rises above a predetermined threshold. This one blows a fuse to protect the device under power.

FIG. 90-2

## 91

## Sine-Wave Oscillator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources scction.

Highly Stable 60-Hz Sine-Wave Source<br>Simple Sine-Wave Oscillator<br>Wien-Bridge Sine-Wave Oscillator<br>Battery-Powered Sine-Wave Generator<br>$1-\mathrm{Hz}$ Sine-Wave Oscillator<br>Simple Sine-Wave Generator<br>Sinc-Wave Generator<br>Sine-Wave Shaper<br>Pure Sine-Wave Generator

## HIGHLY STABLE 60-Hz SINE-WAVE SOURCE



A highly-stable $60-\mathrm{Hz}$ sine wave can be delivered with this circuit, which offers a different and much simpler approach to gaining a stable amplitude. Capacitor coupling the last stage removes any dc component caused by unequal zener voltages in the clipping circuit that follows the comparator.

## SIMPLE SINE-WAVE OSCILLATOR

- SEE TEXT

| $C_{x}$ | $L_{x}$ | $f_{0 u T}$ |
| :---: | :---: | :---: |
| .018 | 50 mH | 9 KHz |
| .018 | 2 mH | 14 kHz |
| .047 | 5 mH | 5.5 kHz |
| 1 | 1 H | 300 Hz |
| 1 | 10 H | 100 Hz |



POPULAR ELECTRONICS
FIG. 91-2
Using an LC circuit, this CMOS oscillator generates sine waves.

## WIEN-BRIDGE SINE-WAVE OSCILLATOR



POPULAR ELECTRONICS
FIG. 91-3

This Wien-bridge sine-wave oscillator uses a 2N3819 as an amplitude stabilizer. The 2N3819 acts as a variable-resistance element in the Wien bridge.

## BATTERY-POWERED SINE-WAVE GENERATOR



ELECTRONICS NOW
FIG. 91-4
The quality of the sine wave depends on how closely you match the components in the twin-T network in the op amp's feedback loop.

$$
f=\frac{1}{2 \pi R C}
$$

## 1-Hz SINE-WAVE OSCILLATOR



## POPULAR ELECTRONICS

FIG. 91-5
This circuit produces a $1-\mathrm{Hz}$ sine wave using two op amps. A single-chip dual op amp could be used as well.

## SIMPLE SINE-WAVE GENERATOR



## R-E EXPERIMENTERS HANDBOOK

FIG. 97-6

A 555 timer operating in the astable mode generates the driving pulses and two 4518 dual BCD (binary coded decimal) counters provide the square waves. A TL081 op amp serves as an output buffer-amplifier, and potentiometers R1 and R2 are used in order to control the pulse's frequency and amplitude, respectively.

The output-frequency range can be varied by changing $C_{X}$. For example, a value of $0.1 \mu \mathrm{~F}$ gives a range from about 0.1 to 30 Hz , and a value of 470 pF gives a range from about 10 Hz to 1.5 kHz . The maximum output frequency is 30 kHz .

## SINE-WAVE GENERATOR



## ELECTRONIC DESIGN

FIG. 91-7
In this circuit, a square wave is filtered by a high-order low-pass filter so that a -3 -dB frequency will eliminate most harmonics of the waveform. As a result, the filter outputs a fundamental sine wave. This method is applied to generate a sine wave by using a switched-capacitor filler (MAX292) (see the figure). This circuit offers wide frequency range ( 0.1 Hz to 25 kHz ), low distortion, and constant output amplitude throughout the whole frequency range.

## SINE-WAVE SHAPER



Unlike most sine-wave shapers, this circuit is temperature stable. It varies the gain of a transconductance amplifier to transform an input triangle wave into a good sine-wave approximation.

FIG. 91-8

## PURE SINE-WAVE GENERATOR



NOTES:
VOD IYPICALLYIS $5 V$
Vss IYPICALLY IS -5 V

MAXIM ENGINEERING JOURNAL
FIG. 91-9

A TTL counter, an 8-channel analog multiplexer, and a fourth-order low-pass filter can generate $10-$ to $25-\mathrm{kHz}$ sine waves with a THD better than -80 dB . The circuit cascades the two second-order, continuous-time Sallen-Key filters within IO 3 to implement the fourth-order low-pass filter.

To operate the circuit, choose the filter's cutoff frequency, $f_{C}$, by tying IC3's $D_{0}$ through $D_{6}$ inputs to 5 V or ground. The cutoff frequency can be at 128 possible lcvels between 1 and 25 kHz , depending on those seven digital input levels. Because the circuit ties $D_{0}$ through $D_{6}$ to ground, $f_{C}$ equals 1 kHz . The $100-\mathrm{k} \Omega$ potentiometer adjusts the output level between $V_{D D}-1.5 \mathrm{~V}$ and $V_{S S}+1.5 \mathrm{~V}$.

## 92

## Sound- and Voice-Controlled Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of cach circuit correlates to the entry in the Sources section.

Vocal Stripper<br>Sleep-Mode Circuit<br>Sonic Kaleidoscope<br>Automatic Fader<br>Voice Identifier for Ham Radio Usc<br>Whistle Switch<br>Audio Light<br>Voice-Activated Switch and Amplifier<br>Audio-Controlled Switch<br>Speech Scrambler<br>Audio-Controlled Mains Switch

## VOCAL STRIPPER



FIG. 92-1A


VOCAL STRIPPER (Cont.)


FIG. 92-1C
Right- and left-channel signals pass through 1C4-a and -b buffer amps into active crossover IC5; low frequencies are sent to the lC6-c mixer, and middle and high frequencies are sent to the analog delay lines of 1 Cl and 1 C 2 . That, output passes through 1 C 6 -a and -d to filter high-frequency sample steps. IC6-b signals are remixed with low frequencies by IC6-c and are sent to fimal out via IC4-c and -d buffers.

One channel ( R ) is a variable-delay circuit, using an analog bucket-brigade device and a variable clock frequency. This is compared in amplitude and phase to the L channel (fixed delay). The local can therefore be nulled out via R36.

## SLEEP-MODE CIRCUIT



## ELECTRONIC DESIGN

FIG. 92-2
The HA7210 oscillator IC combines with an ICL7642 quad CMOS op amp to produce a sleep-mode control circuit. The circuit is put into the sleep mode with a logic high applied to the Reset input or with an RC timer for automatic reset. The system is awakened by a signal from the microphone/sensor.

## SONIC KALEIDOSCOPE



POPULAR ELECTRONICS
FIG. 92-3

The microphone input, MIC1, is fed through C3 and R4 to inverting amplifier U2-a; the gain of $\mathrm{U} 2-\mathrm{a}$ is controlled by potentiometer R 5 . The output of $\mathrm{U} 2-\mathrm{a}$ is fed through C 4 to the remaining opamps (U2-b, U2-c, U2-d), which are all configured as band-pass filters. Each filter is tuned to pass a different range of frequencies by its resistor/capacitor combination. With the values shown, U2-b, U2-c, and U2-d have center frequencies of roughly 100,1000 and 1500 Hz , respectively.

Resistors R6, R9, R12 control the bandwidth and gain of their respective filter circuits, and can range in value from 10 to $15 \mathrm{k} \Omega$. The output of U 2 -b is capacitively coupled via C 11 to the input of U3, with R15 serving as the load resistor for U2-b. That resistor also keeps U3's outputs from "floating" in the absence of a signal. Connected as shown, U3 uses its own internal voltage reference to make a full-scale display of 1.2 V .

## SONIC KALEIDOSCOPE (Cont.)

Each of the nine outputs of U3 (output 1 is not used) sinks four, series-connected (red) LEDs. Op amps U2-c and U2-d are similarly connected to U4 and U5, respectively, driving green and yellow LED strings. Resistors R18, R19, and R20 control the brightness of their corresponding LED arrays, and they must be adjusted accordingly; different colors of LEDs usually vary in brightness. A lower value of resistance will make the LEDs glow brighter.

Power for the circuit is supplied by a $500 \mathrm{~mA}, 12-15-\mathrm{Vdc}$ wall-pack transformer, via $\sqrt{ } 1$. The output of the transformer is filtcred by Cl and is regulated by Ul ; regulation is necessary to keep powerline ripplc from affecting the display. The supply pins of U 2 through U 5 are bypassed by capacitors C14 through C17 to further ensure stability. An on/off switch was deemed unnecessary because the power supply should be unplugged when the unit is not in use.

AUTOMATIC FADER


POPULAR ELECTRONICS
FIG. 92-4

In this circuit, audio fed to the control channel is amplified and rectified by D1 and D2. This dc level activates LED D3 via Q2. The light from D3 causes R9, a light-dependent resistor to decrease resistance. As R11 (audio gain) is set higher, more audio is present at the output of Q1. Audio fed into J2 is shunted to ground via R9 and less of this audio appears at J3. Therefore, audio at J1 controls the audio level fed to J 3 from J 2 and produces a fade effect.

## VOICE IDENTIFIER FOR HAM RADIO USE



FIG. 92-5

Using an ISD1016 audio record/playback chip (Information Storage Devices, Inc.), this circuit records and plays back messages on command. Although intended for use with transmitters, it can be used as an electronic notepad, etc. Consult the ISD1016 data sheet for other applications.

WHISTLE SWITCH


## POPULAR ELECTRONICS

FIG. 92-6
At the heart of the whistle switch are a pair of tone detectors, each of which is built around an LM567 tone decoder, which are supported by a minimum of additional components. This whistle switch is designed to respond to only two or more occurrences of a specific tone, or sequence of tones, within a specified period to prevent false triggering. Depending on the relay used, various ac loads can be controlled. Microphone MIC1 picks up the sound and U2 amplifies the signal and feeds it to tone decoders U3 and U4. These devices trigger U5-a and U5-b and the logic circuits that drive relay K1.

## AUDIO LIGHT



## RADIO ELECTRONICS

FIG. 92-7

This circuit will produce an output when the sound exceeds a preset level. The LM3915 is a logoutput bar graph driver. Use the transistor driver shown for higher current loads. To drive heavycurrent loads with an LM3915 output, you must add a transistor, as shown in B.

## VOICE-ACTIVATED SWITCH AND AMPLIFIER



## POPULAR ELECTRONICS

FIG. 92-8
In certain applications, such as transmitter or other commumications and control applications, this circuit should be useful. Both audio output and dc control outputs are provided. R9 sets the control threshold.

## AUDIO-CONTROLLED SWITCH



POPULAR ELECTRONICS
FIG. 92-9

The audio-controlled switch combines a pair of 741 op amps, two 2 N 2222 general-purpose transistors, a hexFET, and a few support components to a circuit that can be used to turn on a tape recorder, a transmitter, or just about anything that uses sound.

SPEECH SCRAMBLER


## ELECTRONICS NOW

FIG. 92-10
Using digital techniques, this circuit accomplishes the frequency-inversion algorithm via digitization of the audio, inversion of the sign of every alternate sample, and $D / A$ conversion of the resultant data. The result is an inverted frequency spectrum. Because the circuit has two channels, this system can be used in a full duplex two-way telephone scrambler.

A complete kit of parts is available from North Country Radio, P.O. Box 53, Wykagyl Station, New Rochelle, NY 10804-0053A.

## AUDIO-CONTROLLED MAINS SWITCH



## 303 CIRCUITS

FIG. 92-11
This circuit will switch off the line supply to audio or vidco cquipment if there has been no input signal for about 2 seconds. S1 provides manual operation and $\$ 2$ acts as a reset. This circuit allows for time to change a tape or compact disc. About 50 mV of audio signal is necessary.

## 93

## Sound-Effects Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Canary Sound Simulator<br>110-dB Beeper<br>Siren Alarm<br>$1000-\mathrm{Hz}$ Pulsed-Tone Alarm<br>Tone Chime<br>Spaceship Alarm<br>10-Note Sound Synthesizer<br>Space-Age Sound Machine<br>Electronic Gong<br>Alarm Tone Generator<br>Dual-Tone Sounder<br>Low-Level Sounder<br>Sound-Effects Generator<br>Siren<br>Simple Multi-Tone Generator<br>Siren Oscillator

CANARY SOUND SIMULATOR


POPULAR ELECTRONICS
FIG. 93-1
This circuit generates the sound of two canaries singing in a cage. Two LM324 quad amps make up seven oscillators. One oscillator is an onoff control, the other six generate the sounds of two canaries. A $9-\mathrm{V}$ supply powers the circuit.

## 110-dB BEEPER



ELECTRONIC DESIGN
FIG. 93-2

This circuit will generate an car-splitting 110 dB from 9 V . The setup uses a single 74 Cl 4 (CD40106B) CMOS hex inverting Schmitt-trigger IC, which must be used with a piezoelectric device with a feedback terminal. The feedback terminal is attached to a central region on the piezoelectric wafer. When the beeper is driven at resonance, the feedback signal peaks.

Onc inverter of the 74 C 14 is wired as an astable oscillator. The frequency is chosen to be 5 times lower than the 3.2 kHz resonant frequency of the piezoelectric device. Feedback from the third pin of the beeper reinforces the correct drive frequency to ensure maximum sound output.

Four other inverter sections of the IC are wired to form two separate drivers. The output of one section is cross-wired to the input of the second section. The differential drive signal that results produces about $18-\mathrm{V} p$-p when measured across the beeper. The last inverter section is wired as a second astable oscillator with a frequency of about 2 Hz . It gates the main oscillator on and off through a diode. For a continuous tone, the modulation circuit can be deleted.

SIREN ALARM


WILIAM SHEETS
FIG. 93-3
The ramp voltage from the low frequency oscillator Cl modulates IC 2 thereby producing a rising and falling tone like the siren wail of police cars.

1000-Hz PULSED-TONE ALARM


WILLIAM SHEETS
FIG. 93-4
ICl generates a pulse that modulates the $1000-\mathrm{Hz}$ tone generated by IC2. This circuit can be used to gencrate warning or alert signals.

## TONE CHIME



POPULAR ELECTRONICS
FIG. 93-5
A positive pulse input to R1 causes the active filter U1-a to "ring." If the gain is set too high (R6), the circuit will oscillate. $R 6$ controls the positive fecdback and the $Q$ of the circuit. $C 1$ and $C 2$ can be changed to adjust the tone frequency.

## SPACESHIP ALARM



WILLIAM SHEETS
FIG. 93-6
By using two 555 timers this circuit produces a low frequency tone that rises to a high frequency tone in a little over 1 second. Then the sound stops for about 0.3 seconds, thereafter the cycle repeats. To produce the alarm sound of the Star Trek spaceship.



FIG. 93-7

As shown, three ICs are used to produce the sounds. IC1 is a 555 timer that generates clock pulses. It is configured as an astable multivibrator. The frequency of the clock pulses is set by trim: mer potentioneter P1. These clock pulses are coupled to the input of IC3 (a 4017 CMOS Johnson counter) on its clock input pin 14. Each clock pulse causes IC3 to shift a "high" to each of its output pins in sequence. A trimmer resistor, which can be adjusted to set a different frequency for each note, is connected to each of IC3's output pins. One side of each of the trimmers is connected to pin 5 (the control voltage pin) of IC2.

IC2, another 555 timer IC, creates the tone; the overall pitch of the tone can be varied by P2. As the output sequences from the 4017 , that tone, which is changed in frequency by each output shift is applied to a small speaker from pin 3 of IC2. An LED, which flashes with each clock pulse, is connected to pin 3 of IC1. Switch S2 is used to vary the sound between "flowing" and distinct notes.

## SPACE-AGE SOUND MACHINE



PE HOBBYIST HANDBOOK
FIG. 93-8

The space-age sound device uses a 556 dual-times IC to produce a phasor sound. That $1 C$ is actually two 555 timer ICs in one 14 -pin package, as shown in the schematic. Each timer inside the 556 is connected in an astable multivibrator mode.

The first timer has its frequency set by R1, R2, and C1. Its output appears on pin 5 and it is coupled through C 2 and R 5 into the trigger input of the second timer. The second timer has an adjustable frequency that is controlled by P1, R6, and C8.

In the second timer, the first frequency mixes with the second frequency and produces the pha-sor-like sounds. The output of the second timer, which has the two signals mixed together, is brought from pin 9 through limiting resistor $R 7$ to the input of Q1. The function of pnp germanium power transistor Q1 is to amplify the signal to the level that is needed to drive the speaker. The green LED, L1, converts electrons directly into visible photons (light) in time with the pulses from the speaker. The purpose of resistor R8 is to limit the current through the LED to a safe level.

## ELECTRONIC GONG



FIG. 93-9
WILLIAM SHEETS
The electronic gong is comprised of an oscillator (built around half of a 74 COON quad 2 -input NAND gate), an active twin-T lilter (built around a TLO81), and will drive an audio amplifier IC such as an LM386N. Pulses from astable multivibrator ICl cause the twin-tee active filter U2 to rings, producing a damped sinusoidal output. C1 varies rate and C2-C3 vary gong frequency. Adjust R1 for best "tone" sound.


FIG. 93-10
In this alarm tone generator, a TIP41 transistor is used as a speaker driver. R1, R2, and Cl determines the frequency which is 1400 Hz with the values shown.

## DUAL-TONE SOUNDER



FIG. 93-11
An outside horn-type speaker works best with the circuit. However, such devices require a great deal of power, so this sounder should only be used in alarm circuits where at least a 6-A SCR is used as the sounder driver.

A single CMOS 4001 quad 2-input NOR gate, two 2 N3904 general-purpose npn transistors, and a single MJE3055 power transistor combine to generate a two-tone output. Gates U1-a and U1-b are configured as a simple feedback oscillator with R 2 and C 2 setting the oscillator's frequency. With the values shown, the circuit oscillates at about 500 Hz .

Gates U1-C and U1-d are connected in a similar oscillator circuit, but they operate at a much lower frequency. The oscillator frequencies (and thus the tones that they produce) can be altered by increasing or decreasing the values of $R_{1}$ and $C_{1}$ for the low-frequency oscillator and $R_{2}$ and $C_{2}$ for the high-frequency oscillator. Decrcasing the values of those components will increase the frequency; increasing their values will decrease the frequency.

The two oscillator outputs are connected to scparate amplifiers (configured as emitter followers), whose outputs are used to drive a single power transistor (Q3, an MJE3055). A $10-\Omega, 5-\mathrm{W}$ resistor, R5, is used to limil the current through the speaker and Q3 to a safe level. To boost the sound level, R5 can be replaced with another speaker.

## LOW-LEVEL SOUNDER



POPLLAR ELECTRONICS

This is a simple low-level noise maker that's ideally suited to certain alarm applications. When the sounder is located in another part of the building, the sound level is loud enough to be heard, but is not loud enough to warn off an intruder. A single 2 N3904 npn transistor is connected in a Hartlcy audio oscillator, with a $1 \mathrm{k} \Omega$ to $8-\Omega$ tran-sistor-output transformer doing double duty.

The circuit produces a single-frequency tone theat can be varied in frequency by changing the value of either or both $R_{1}$ and $C_{1}$. Increasing the value of either component will lower the output frequency and decreasing their values will raise the frequency. Don't go below $4.7 \mathrm{k} \Omega$ for Rl be-
FIG. 93-12 cause you could easily destroy Q1.

## SOUND-EFFECTS GENERATOR



## 1989 R-E EXPERIMENTERS HANDBOOK

FIG. 93-13
The circuit consists of four parts: a binary counter, a $\mathrm{D} / \mathrm{A}$ converter, a VCO, and an audio output amplifier. The speed at which the counter counts depends on the frequency of the output of the VCO, which in turn is determined by the output of the counter. That feedback loop gives this circuit its characteristic output.

The initial frequency of oscillation is determined by potentiometer R11. The VCO first oscillates at a relatively low frequency, and it gradually picks up speed as the control voltage supplied by the D/A converter increases.

The D/A converter is simply the group of resistors R1 through R8. When none of IC1's outputs is aclive, little current will flow into the base of Q1, so the VCO's control voltage will be low. As more and more counter outputs become active, basc current increases, and so does the VCO's frequency of oscillation.

The VCO itself is composed of $1 \mathrm{C} 2-\mathrm{a}, \mathrm{IC} 2-\mathrm{b}$, and Q 1 ; the timing network is D 1 through $\mathrm{D} 4, \mathrm{Cl}$, R10, and R11. The diode bridge functions basically as a voltage-controlled resistor. The buffer amplifier is made up of the four remaining gates from IC 2 , all wired in parallel. The volume is sufficient. for experimental purposes, but you might want to add an amplifier, speaker, or both.


## SIREN

An LM380 audio IC is configured as a feedback audio oscillator. A transistor astable modulates this oscillator at a low frequency, which produces a siren tone.

NATIONAL SEMICONDUCTOR
FIG. 93-14


1989 R-E EXPERIMENTERS HANDBOOK
FIG. 93-15
A two-tone generator that is alternately switched ON provides a high/low output as might be heard from a traffic vehicle like a police car or ambulance.

IC1, CD4011, quad 2-input NAND gate is a two-tone oscillator in which each side, pins 1 through 7 and 8 through 13 set the tone frequencies. Changing the values of $C_{2}$ and $C_{1}$ determines the high/low tones. The outout frequencies are coupled to IC2, CD4011, of which one side (pins 1 through 6) acts as a buffer. The buffer is necessary to prevent loading on the outputs that would occur if one tried to go directly to the LM386 amplifier. The other side of IC2, pins 8 through 13, is a slow pulse oscillator of approximately 8 Hz per second. The output at pin 10 is connected to IC4 as a clock.

IC4, CD4027, is a dual J-K master-slave flip-flop that is wired to perform as a toggle switch in which Q1 and 15, and Q1 (NOT) pin 14, go high and low alternately (flip-flop). The clock input from IC2 pin 10 is connected to pin 13 of IC4, and the outputs at pins 15 and 14 changes the flip/flop state with each positive pulse transition. The CD4027 functions in toggle mode when the set and reset inputs, pins 9 and 12 , are held low or grounded. Also, J-K inputs, pins 10 and 11, must be held high or to the positive. The outputs Q1 and Q1 (NOT), pins 15 and 14 are connected to pins 13 and 1 respectively of IC1 that enables or disables. Thus, each tone oscillator is turned on and off alternately. IC3 is a straightforward low-voltage audio amplifier.

## SIREN OSCILLATOR



303 CIRCUITS
FIG. 93-16
A CD4093 chip and a few components make up a siren oscillator, which drives power MOSFET T1. A 4- $\Omega$ speaker is driven directly from this device. The siren is enabled by a logic high applied to the ENABLE input.

## 94

## Square-Wave Generator Circuits

T
The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Square-Wave Oscillator<br>Schmitt Trigger or Sine-to-Square Wave Converter $60-\mathrm{Hz}$ Square-Wave Generator<br>Squarc-Wave Oscillator<br>Schmitt Trigger SineSquare Generator<br>$10-\mathrm{Hz}$ to $10-\mathrm{kHz} \mathrm{VCO}$ with Square- and Triangle-Wave Outputs

## SQUARE-WAVE OSCILLATOR



POPULAR ELECTRONICS
FIG. 94-1
An op amp with positive feedback generates a square wave. The period of the oscillator is determined by R3 and C 1 .

$$
T=T_{1}+T_{2} \approx 0.69 \times 2\left(R_{33} C_{1}\right) \quad T_{1}=T_{2}
$$

## 60-Hz SQUARE-WAVE GENERATOR



POPULAR ELECTRONICS
FIG. 94-3
This generator circuit uses an overdriven amplifier to produce a $60-\mathrm{IIz}$ square wave from the $60-\mathrm{Hz}$ ac line. The circuit can be used in lineoperated applications as a clock source.

## SCHMITT TRIGGER OR SINE-TO-SQUARE-WAVE CONVERTER



WILLIAM SHEETS
FIG. 94-2
This sine-wave triggered circuit produces two square-wave outputs that are $180^{\circ}$ out of phase.

SQUARE-WAVE OSCILLATOR


POPULAR ELECTRONICS
FIG. 94-4

Positive feedback is via R3 and R4 and R1 and Ol determine period.


WILLIAM SHEETS
FIG. 94-5
This simple square-wave gencrator produces a variable frequency output of 2800 Hz to 80 kHz with the values shown. Frequency is adjusted with potentiometer R1.

## SCHMITT TRIGGER SINE-/SQUARE-WAVE GENERATOR



WILLIAM SHEETS
FIG. 94-6

A sine wave input can produce a square wave output by this Schmitt trigger circuit based on a 555 IC.

## 10-Hz TO 10-kHz VCO WITH SQUARE- AND TRIANGLE-WAVE OUTPUTS



POPULAA ELECTRONICS
FIG. 94-7

## 95

## Stepper Motor Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit, correlates to the entry in the Sources section.

Bipolar Stepper Motor Drive Circuit<br>Stepper Motor Circuit with FET.Drivers<br>Dual Clock Circuit for Stepper Motors

## BIPOLAR STEPPER MOTOR DRIVE CIRCUIT



POPULAR ELECTRONICS
FIG. 95-1

A 4017 decade counter/divider driven from a low-frequency oscillator (U1-a and U1-b) is used to drive transistor switches to sequence the windings, as is needed. MOT1 is a 12 V stepper motor. R9 and R10 are selected for the motor's current rating. A 3.3-Hz signal from U1 will cause the notor to run at 1 rpm , a $33-\mathrm{Hz}$ signal will result in 10 rpm , etc.

## STEPPER MOTOR CIRCUIT WITH FET DRIVERS



POPULAR ELECTRONICS
FIG. 95-2
This motor-driver circuit replaces the eight bipolar transistors of the previous circuit with four IFR511 power hexFET's (Q1 through Q4).

## DUAL CLOCK CIRCUIT FOR STEPPER MOTORS



POPULAR ELECTRONICS
FIG. 95-3
This oscillator can be used to drive a stepper motor circuit at two preset speeds with override to shut the motors off.

## 96

## Stereo Circuits

The sources of the following circuits are contained in the Sources scction, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

FM Stereo Transmitter
Stereo TV Decoder
Crystal-Controlled FM Stereo Transmitter
Stereo TV Decoder
One-Chip Stereo Preamp with Tone Control
Audio Expander
Mini Stereo Amplifier
Stereo Balance Meter
Stereo Preamplifier
Stereo Phono Amplifier with Bass Tone Control

FM STEREO TRANSMITTER


WARNING. Be sure to curment limit the $A U X$ input with an axtomal 1 K reslatort

## RADIO ELECTRONICS

FJG. 96-1
A BA1404 IC is used to generate a complete FM MPX signal. The chip contains all of the necessary circuitry. C1 and R3, and R4 and C4 provide pre-emphasis. The transmitter runs on a single AA cell. I 33 is 3 turns of \#20 wirc on a ${ }^{3 / 16^{\prime \prime}}$ drill (for a form). L3 is $1 / 4^{\prime \prime}$ long. L4 is 4 turns \#20 wire on $3 / 16^{11}$ drill bit, spaced to $3 / 8^{\prime \prime}$. If monophonic operation is wanted, omit C5 and the $38-\mathrm{kHz}$ oscillator components.

## STEREO TV DECDDER



1989 R-E EXPERIMENTERS HANDBOOK
FIG. 96-2
A block diagram of the stereo-TV decoder is shown in A. It shows the overall relationships between the separate sections of the circuit; $B$ through $E$ show the details of each subsection. The decoder section centers around IC1, a standard $4.5-\mathrm{MH} \%$ audio demodulator. The output of IC1 is routed to S 1 , which allows you to choose between the internally demodulated signal and an externally demodulated one. Buffer amplifier IC2-a then provides a low-impedance source to drive IC3, an LM1800 stereo demodulator.

When IC3 is locked on a stereo signal, the outputs presented at pins 4 and 5 are discrete left- and right-channcl signals, respectively. In order to provide noise reduction to the $L-R$ signal, you must recombine the discrete outputs into sum and difference signals. Op amp IC4-a is used to regenerate the $L-R$ signal. It is wired as a difference amplifier, wherein the inputs are summed together $(+L-$ $R$ ). Capacitor C18 bridges the left- and right-channel outputs of the demodulator. Although it decreases high-frequency separation slightly, it also reduces high-frequency distortion.

The $L+R$ signal is taken from the LM1800 at pin 2, where it appears at the output of an internal buffer amplifier. The raw $L-R$ signal is applied to IC4-b, a $12-\mathrm{kHz}$ lowpass filter. The $L+R$ signal is also fed through a $12-\mathrm{kHz}$ low pass filter in order to keep the phase shift undergone by both signals equal.

Next, the $L-R$ signal is fed to Q2. It allows you to add a level control to the $L-R$ signal path; it provides a low source impedance for driving the following circuits, and it inverts the signal $180^{\circ}$. Inversion is necessary to compensate for the $180^{\circ}$ inversion in the compander.

Next comes the expander stage. At the collector of Q2 is a $75-\mu \mathrm{s}$ de-emphasis network (R27 and C29) that functions just like the network that is associated with Q1. Note that Q2 feeds both Q3 and

## STEREO TV DECODER (Cont.)



THE DECODEA STAGE converts the multiplexed audio signal Into $L+R$ and $L-R$ signals.
IC5-a, a $-12-\mathrm{dB}$ per octave high-pass filter. The output of that filter drives the rectifier input of IC6, an NE570. The $75-\mathrm{Hz}$ high-pass filter at the rectifier input helps to prevent hurn, $60-\mathrm{Hz}$ sych buzz, and other low-frequency noise in the $L-R$ signal from causing pumping or breathing.

The NE570 contains an on-board op amp; its inverting input is available directly at pin 5 and via a $20-\mathrm{k} \Omega$ series resistor at pin 6 . The $18-\mathrm{k} \Omega$ resistor ( R 30 ) combines with the internal resistor and C 32 $(0.01 \mu \mathrm{~F})$ to form a first-order filter with a $390-\mu \mathrm{s}$ time constant. Because the internal op amp operates in the inverting mode, the $-(L-R)$ signal is restored to the proper ( $L-R$ ) form.

The output of the expander drives another $75-\mathrm{Hz}$ high-pass filter, but this one is a third-order type that provides -18 dB per octave rolloff. It is used to keep low-frequency noise from showing up at the output of the decoder. At this point, the ( $L-R$ ) signal has been restored, more or less, to the condition it was in before it was dBx companded at the transmitter.

## STEREO TV DECODER (Cont.)

The $L+R$ signal from IC3 is fed to a $12-\mathrm{kHz}$ low-pass filter, IC2-b, with a -12 dB per octave slope. The output of the high-pass filter is applied to a $75 \mu \mathrm{~s}$ de-emphasis network (R22 and C26). The $L+$ $R$ audio signal is now restored properly. Q1 is wired as an emittor follower to provide a high load impedance for the de-emphasis network and a low source impedance for level control Ra3. Next, the $L$ $+R$ signal is fed to the matrix decoder.

Op amps IC7-a and IC7-b are used to recover the individual channcls. First, IC7-b is configured as unity-gain difference amplifier. The ( $L+R$ ) signal is applied to its inverting input, and the ( $L-R$ ) signal is applied to the noninverting input. Therefore, the output of IC7-b can be expressed as $-(L+$ $R)+(L-R)=-L+L-R-R=-2 R$. Similarly, IC7-a is configured as a mixing inverting amplifier. Here, however, both sum and difference signals are applied to the inverting input. So, the output of IC7-a is $(L+R)-(L-R)=-L-R-L+R=-2 L$. Because both channels have been inverted, the stereo relationship is preserved.

The two op amps in IC8 provide an additional stage of amplification to drive a pair of stereo headphones. If you don't plan to use your headphones, or if you are content to use only your stereo's headphone jack, all components to the right of linc-output jacks J 3 and J 4 can be deleted.


THE NOISE-REDUCTION STAGE de-compands the $L-R$ signal, and emulates dbx-style processing. As described elsewhere in this article (see box), true dbx processing is not-currently possible in a home-builitcircuit due to the inavailability of the dbx IC's.

## STEREO TV DECODER (Cont.)



THE MATRIX STAGE separates the $L+R$ and $L-R$ signals into the left- and right-channel components. Op-amp IC8 and associated components provide an optional headphone output. If you do not.wish to drive a pair of headphones, or plan to use your amplifier's headphone jack for that purpose. all components to the right of jacks J3 and J4 can be deleted.


## CRYSTAL-CONTROLLED FM STEREO TRANSMITTER



## ELECTRONICS NOW

FIG. 96-3
In this application, a BA1404 is used to generate an FM MPX baseband signal. This modulates a crystal oscillator (Q3) via a dual varactor series modulator. This transmitter can be to play CD audio on an existing FM auto radio.

## STEREO TV DECODER



POPULAR ELECTRONICS
FIG. 96-4
Q1 is an audio amplifier and U1 is used as a $31.5-\mathrm{kHz}$ subcarrier, which is similar to $38-\mathrm{kHz} \mathrm{FM}$ MPX. Pilot frequency is 15.734 kHz .

## ONE CHIP STEREO PREAMP WITH TONE CONTROL



A Motorola TCA5500 or TCA5550 can provide a stereo preamplifier system with tone controls. This circuit provides a gain of about 10 X , a $14-\mathrm{dB}$ tone-control range, a $75-\mathrm{dB}$ volume control range, and it can operate from 8 to 18 Vdc . IC 2 provides 15 V for IC1, and the input of IC2 can be supplied from the power amplifier's power supply ( + ) rail. D1 and R5 should be used if over 30 V input will be used.

## AUDIO EXPANDER



FIG. 96-6

This audio processor is based on the Signetics/Philips TDA3810N stereo, spatial, pseudo-stereo processor, IC. This processor uses a Philips TI)A3810IC device, and it functions as an expander, pseudo stereo processor, and audio enhancer. Pseudo stereo is obtained by routing various frequencies to each channel via active filters.

## MINI STEREO AMPLIFIER



303 CIRCUITS
FIG. 96-7
Using a Thomson TEA2025, this stereo amplifier provides 1 W per chanmel into $4 \Omega$ with a 9 -V supply. Input sensitivity is 25 mV p-p for full output. Note that pins $4,5,12$, and 13 of IC1 should be effectively grounded to a ground plane and heatsinked.

## STEREO BALANCE METER



POPULAR ELECTRONICS
FIG. 96-8
When $\mathrm{L} \& \mathrm{R}$ signals are equal, no output is present, from U1, and pin 6 is at a steady 4.5 V . Unbalanced audio causes the LEDs to vary in brightness, which causes a difference that corresponds to unbalance between channels.

## STEREO PREAMPLIFIER



POPULAR ELEGTRONICS

FIG. 96-9

A building block for audio work, the circuit can be used as a general-purpose preamp. Use two circuits for stereo applications.

## STEREO PHONO AMPLIFIER WITH BASS TONE CONTROL



FIG. 96-10

## 97

## Switching Circuits

T
The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Simple Video/Audio Switcher dc-Controlled Switch Using Optoisolator Widebard Video Switch for RGB Signals Eight-Channel Audio Switcher<br>Electronic Safety Switch<br>Audio-Controlled Switch<br>Oscillator Triggered Switch

Load-Disconnect Switch<br>Typical Two-Way Switch Wiring HexFET Switch<br>dc-Controlled FET Switch<br>Remote Two Way ac Switch Hookup<br>Dual-Control HexFET Switch

## SIMPLE VIDEO/AUDIO SWITCHER



RADIO ELECTRONICS
FIG. 97-1
This channel selector sclects video and stereo audio from any one of three different sources. The circuit should be constructed on a PC board with plenty of ground plane to minimize noise.

## dc-CONTROLLED SWITCH USING OPTOISOLATOR



This de-controlled switch uses an optoisolator/coupler, U1, to electrically isolate the input signal from the output-control device.

## WIDEBAND VIDEO SWITCH FOR RGB SIGNALS



NATIONAL SEMICONDUCTOR
FIG. 97-3

The switch shown selects 1 to 2 inputs and uses a National LM1203. The slew rate is $4-\mathrm{V}$ p-p into $390 \Omega$ in 5 to 7 ns.

## EIGHT-CHANNEL AUDIO SWITCHER



POPULAR ELECTRONICS
FIG. 97-4
This source is selected by pressing momentary-contact pushbutton switch $S 1$. Switch $S 1$ is connected to the trigger of a 555 oscillator/himer (U1) configured as a monostable multivibrator, which gencrates one short output pulse for each press of Sl . That pulse turns on LEDl to give a visible indication that the 555 is working correctly. That pulse is also used to clock U2 (a 4017 CMOS divide-by-1-counter/divider).

Both LED1 and its associated current-limiting resistor R3 arc optional and can be left out of the finished project without any affect on circuit operation. The 4017 advances by one clock pulse each time S 1 is pressed, turning on its corresponding output. Pin 9 (corresponding to output 8) of U2 is directly connected to its own reset terminal at pin 15 . This allows the counter to count from zero to seven, and then reset to zero on the eighth count.

## EIGHT-CHANNEL AUDIO SWITCHER (Cont.)

Pin 13 , the cnable input of U2, is tjed to ground to allow the counter to operate. Outputs zero through seven are connected to eight indicator LEDS and the control pins of the two LM1037s (U33 and U4). When an output is sclccted, its LED lights and the corresponding control input on the LM1037 is brought high.

The LM1037 has extremely high-impedance inputs and low-impedance outputs, so interconnection between various types and brands of equipment should not be a problem. That, together with a wide-frequency response and low distortion, makes it ideal for use with good-quality, home-entertaimment systems. The prototype of the andio switcher has a usable frequency response of from just a few hertz to over 100 kHz .

Power for the switcher is provided by a rather simple circuit. Because the switcher only draws between 20 and 30 mA , a simple circuit using the popular 7812 or 78 L 12 (a low-power version) voltage regulator works quite well.

## ELECTRONIC SAFETY SWITCH


 IRFSII hexFFT.


The relay-replacement (if uit (shown here) can be uned to operate inductive or ressistive loads.

S1 and S2 must be depressed within 200 ms of each other to activate K 1 . The hold time is adjustable via R7. S1 and S2 overlap time can be changed by changing Cl and C 2 or Rl and R 2 .

## AUDIO-CONTROLLED SWITCH



POPULAR ELECTRONICS
FIG. 97-6
This audio-controlled switch combincs a pair of 741 op amps, two 2 N 2222 general-purpose transistors, a hexFET, and a few support components to a circuit that, can be used to turn on a tape recorder, a transmitter, or just about anything that uses sound.

OSCILLATOR TRIGGERED SWITCH


An oscillator is used here to generate a $9-\mathrm{V}$ bias to switch Q1. This removes the need for a battery as a bias source.

FIG. 97-7

## LOAD-DISCONNECT SWITCH



MAXIM ENGINEERING JOURNAL
FIG. 97-8

Deep discharge can damage a rechargeable battery. By disconnecting the battery from its load, this circuit halts battery discharge at a predetermined level of declining terminal voltage. Transistor Q1 acts as the switch. The overall circuit draws about $500 \mu \mathrm{~A}$ when the switch is closed and about 8 $\mu \mathrm{A}$ when the switch is open.

## TYPICAL TWO-WAY SWITCH WIRING



When the light is off, it can be turned on with either switch. When it's on, it can be turned off with either switch.

## HEXFET SWITCH



POPULAA ELECTRONICS
FIG. 97-10
The hexFET can switch dc power to relays (as shown in A), motors, lamps, and numerous other devices. That arrangement can even be used to switch resistors in and out of a circuit, as shown in B. R1, R2, and R3 represent resistive loads that can be switched in and out of the circuit.

## dc-CONTROLLED FET SWITCH



POPULAR ELECTRONICS
FIG. 97-11

This de-controlled switch uses an optoisolator/coupler, U1, to electrically isolate the input signal from the output-control device.

REMOTE TWO WAY ac SWITCH HOOKUP


POPULAR ELECTRONICS
FIG. 97-12

This switching arrangement is the type of arrangement used in both domestic and industrial environments to allow a light or other acoperated device to be controlled from more than one location.

## DUAL-CONTROL HEXFET SWITCH



POPULAR ELECTRONICS
FIG. 97-13

This dual-control switch uses two 6 to 10 -Vac sources to trigger the circuit on and off; one source for each function.

## 98

## Sync Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Sync Gating Circuit<br>Sync Combiner

## SYNC GATING CIRCUIT



RADIO ELECTRONICS
FIG. 98-1
This circuit guarantees that only one type of sync pulse is generated at a time. During vertical sync periods, horizontal sync is disabled.

## SYNC COMBINER



This circuit, combines $H$ and $V$ sync signals at TTL or CMOS levels and produces an NTSC video sync output.

## 99

## Tachometer Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Analog Tachometer Circuits<br>Analog Tachometer Circuit

## ANALOG TACHOMETER CIRCUITS



C

POPULAR ELECTRONICS
FIG. 99-1

The four circuits shown are: a passive and active integrator, an analog tachometer, a scaling amplifier, and a capacitance meter.

In $\mathrm{B}, \quad T=1.1 R_{1} C_{1}$ (output pulse duration)
In $\mathrm{C}, \quad V_{o}=V_{\text {in }}\left(1+\frac{R_{2}}{R_{1}}\right)$

## ANALOG TACHOMETER CIRCUIT



WILLIAM SHEETS
FIG. 99-2
In this tachometer circuit a 555 is used as a pulse shaper. The dc value of the integrated pulse train is read by M1 which is calibrated to read frequency. With the values shown, the meter will read $0-1 \mathrm{kHz}$.

## 100

## Telephone-Related Circuits

T he sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit, correlates to the entry in the Sources section.

Telephone Ringer<br>Automatic Telephone-Call Recording Circuit<br>Music on Hold<br>Telephone Ring Converter<br>Phone-In-Use Indicator<br>Emergency Telephone Dialer<br>Telephone Bell Simulator<br>Simple Telephone Ring Indicator<br>Phone-Line Interface<br>Music-On-Hold Box<br>Speakerphone Adapter<br>Telcphonc Voice-Mail Alert

Telephone Scrambler<br>Phone Pager<br>5-V Dial-Tone Circuit<br>Phone Pager<br>Alarm Dialer<br>Telephone Audio Interface<br>Caller ID Circuit<br>FCC Part 68 Phone Interface<br>Telephone Amplifier<br>Telephone Hold Circuit<br>Telephone Circuit<br>Telephone-Line Toster

## TELEPHONE RINGER



## RADIO-ELECTRONICS

FIG. 100-1
Using an AMI chip P/N S2561, this telephone ringer can be powered directly off the telephone line. Audio output is about 50 mW when powered from a $10-\mathrm{V}$ source.

## AUTOMATIC TELEPHONE-CALL RECORDING CIRCUIT



## RADIO-ELECTRONICS

FIG. 100-2

The de voltage present on a telephone line is usually around 45 to 50 V on-hook and 6 V off-hook. This circuit uses this drop in voltage to activate a relay. The relay controls a cassette tape tecorder. Audio is taken off through a network to the microphone input of the cassette.

## MUSIC ON HOLD



RADIO-ELECTRONICS
FIG. 100-3

When an asterisk * is pressed on the touch-tone phone, IC1 a DTMF decoder, controls on-hold logic. Audio from the FM receiver IC4 is placed on the telephone line when a hold condition is present. RY2 is a DPDT $12-\mathrm{V}$ relay. To place a caller on hold, press the asterisk button on the touch-tone phone and hang up the handset.

## TELEPHONE RING CONVERTER



POPULAR ELECTRONICS
FIG. 100-4
The circuit is based on the TCM1506 ring detcctor/driver integrated circuit. It is a monolithic IC specifically designed to replace the telcphone's mechanical bell. The chip is powered and activated by the telephone-line ring, which can vary from 40 to 150 V rms at a frequency of from 15 to 68 Hz . No other source of power is required. Again, referring to the figure shown, C1 through C5 are placed in parallel to form a $0.5-\mu \mathrm{F}$ capacitor that conducts the ac ring voltage to pin 1 of the TCM1506, but blocks any de component. Of course, hose capacitors can be replaced by a single 0.47 - to $0.5-\mu \mathrm{F}$ capacitor provided that it has al least a 400 -WVde rating. Resistor R1 is in series with the capacitor network and is used to dissipate power from any high-voltage transient that might appcar across the line. The diluted ac voltage that reaches pin 1 on U1 powers the chip.

Capacitor C6 is used to prevent "bell tapping." That is an annoying ringing of the bell that occurs when a phone on the same line is used to dial an outgoing call. The capacitor prevents the short dial pulses from triggering the ring detector, but still allows the much longer ring signal to activate it.

Potentiometer R2 is uscd to vary the tone of the ring signal from below 100 Hz to over 15 kHz . Potentiometer R4 is the volume control; adjusting that potentiometer to its lowest resistance will mute the piezo element (BZ1). When a ring signal is present on the phone-line, it powers U1. The IC then generates a tone (with a frcquency that is determined by R2 and an amplitude set by R4) that is reproduced by BZ1.

## PHONE-IN-USE INDICATOR



POPULAR ELECTRONICS
FIG. 100-5

EMERGENCY TELEPHONE DIALER


POPULAR ELECTRONICS
FIG. 100-6
This system will alert you or anyone chosen by automatically dialing a programmed phone number. This is accomplished by monitoring an open-loop or closed-loop sensor switch located in the protected arca. When the sensor detects a problem (such as a break-in, fire, heating system failure, flood, etc.), Teleguard dials whatever telephone number has been programmed into its memory. When the phone is taken off the hook, Teleguard emits an unusual tone to alert, the party on the receiving end that something is amiss.

The circuit is not hampered by busy signals when a call is placed; it automatically redials the number again and again (about once a minute) until it gets through. In addition, Teleguard can also automatically dial a nurnber in the event of a medical emergency; for instance, where a mobility-impaircd person is unable to dial the telephone. That can be accomplished by adding a "panic" switch to the circuit.


303 CIRCUITS
FIG. 100-7
This circuit is intended for use in a small private telephone installation. The ringing tone sequencc is 400 ms on, 200 ms off, 400 ms on, 2 ms off. In the accompanying diagram, N1 and N2 form an oscillator that operates at a frequency of 5 Hz , which gives a period of 200 ms . The oscillator signal is fed to two decade scalers, which are connected in such a manner (by N3 and N4) that the input signal is divided by 15 . The second input of N4 can be used to switch the divider on and off by logic levels. If this facility is not used, the two inputs of N4 should be interconnected.

SIMPLE TELEPHONE RING INDICATOR


A neon lamp can easily be added to the phone line to act as a ring indicator. It's perfect for times when you can't hear the phone.

## PHONE-LINE INTERFACE



POPULAR ELECTRONICS
FIG. 100-9
This circuit should be useful for interfacing phone projects to the telephone line. It has a ringer, can interrupt the wiring, and isolates project from the phone line.

## MUSIC-ON-HOLD BOX



POPULAR ELECTRONICS
FIG. 100-10
U1, an LS3404 melody chip is activated when "hold" S1 is pressed, which causes SCR1 to conduct and hold the telephone line via T1, R1, and LED1. The voltage across R1 and LED1 is used to activate the melody chip. Q1 and Q2 form a restart circuit to keep the melody chip going during hold.

## SPEAKERPHONE ADAPTER



BLOCK DIAGRAM. The talk path goes left to right on the upper half of the drawing, and the receive path goes from right to left.

Using a Motorola MC34118 speakerphone IC, this adapter can be used with a regular telephone to provide speaker capability. This device is powered from the phone line, but it can be powered via an external power supply if the line loop current is marginally low. An external phone is needed for ringing and dialing functions.

SPEAKERPHONE ADAPTER (Cont.)


TELEPHONE VOICE-MAIL ALERT


## 1993 ELECTRONICS HOBBYIST HANDBOOK

FIG. 100-12
The circuit is built around a couple of low-cost ICs: an H11C4 optoisolator/coupler with an SOR output (U1) and an LM3909 LED flasher (U2). It is connected to the phone line in the same mamer as any extension phone. A ring signal on the telephone activates the optoisolator/SCR, and causes U2 to flash LED1. This flash signifies that a ring signal has been received.


POPULAR ELECTRONICS
FIG. 100-13
Two hybrids (11 and T2) are used to allow direct connection to a telephone line. This circuit uses the common speech-inversion algorithm where the frequency of an audio signal is inverted about a center frequency. An LM1496 balanced modulator is used to heterodyne the speech range against a $3.58-\mathrm{kHz}$ signal.

PHONE PAGER


POPULAR ELECTRONICS
FIG. 100-14

This pager allows you to use your in-house phone wiring as a PA system. It uses two tone decoders to detect a particular touch-tone key. This key enables an audio amplifier.


B2C54 PROGRAMMING INFORMATION

| OUT | BASE, $76 n$ | Set up channel 1 as sqr wave |
| :---: | :---: | :---: |
| OUT | BASE+1, DIVISOR low byte | Enter divisor for 350 Hz , low byte |
| OUT | BASE+1, DIVISOR high byte | Enter divisor for 350 Hz , high byte |
| OUT | BASE, 0 b6h | Set up channel 2 as sqr wave divider |
| OUT | BASE 2 , DIVISOR law byte | Enter divisor for 440 Hz , low byte |
| OUT | BASE+2, DIVISOR high byte | Enter divisor for 440 Hz , higin byte |
|  | For 1.8432 MHz Clock, 350 <br> For 1.8432 MHz Clock, 440 | divisor $=5266$ or 1492 hex. <br> divisor $=4189$ or 105 d hex. |

## ELECTRONIC DESIGN

FIG. 100-15
This circuit uses inexpensive, common components to generate a precise dial tone for phone applications (see the figure). U1 (an Intel 82C54 timer-counter) generates 350 - and $440-\mathrm{Hz}$ square waves that are filtered by $R_{1} / C_{1}$ and $R_{3} / C_{2}$, and mixed together by resistors R2 and R4.

An operational amplifier configured as a $395-\mathrm{Hz}$, Sallen-Key, second-order bandpass filter (halfway between 350 and 440 Hz ) removes unwanted signal harmonics. Almost any timer-counter can be used as the signal source, so long as it produces roughly square-wave outputs.

## PHONE PAGER



FIG. 100-16

This pager works with DTMF phones. It displays a number and sounds an alert as the number on the display corresponds to a specific message.

## ALARM DIALER



SILICON CHIP
FIG. 100-17
This circuit dials a stored DTMF tone sequence from EPROM when a control line is taken to 0 V . ICl is a Schmitt trigger oscillator, running at around 2 Hz . It clocks a 4024 binary counter. The counter's outputs connect to the address leads of the EPROM. A 2716 was used here, but the choice of EPROM is by no means critical.

Normally, the counter is held reset by a logic 1 on its reset pin (pin 2). When the trigger input is sent low, pin 10 of Cl goes low, pin 3 goes high, and the reset is removed from the counter. It then begins to clock, incrementing the EPROM. When moved from address 000000 , the data on bit D0 of the EPROM changes to a logic 1 and holds the circuit running. The last address should have data 11111110 to reset the circuit to standby.

TELEPHONE AUDIO INTERFACE


POPULAR ELECTRONICS
FIG. 100-18
Used to record and play back tapes via the phone lines, this simple circuit has an audio level switch (Sl).

## CALLER ID CIRCUIT



## RADIO-ELECTRONICS

FIG. 100-19
This caller ID circuit uses the Motorola MC145447 IC chip. This service must be available from your local phone company in order for this circuit to be used.

## FCC PART 68 PHONE INTERFACE

The transformer is $1: 1$ 600 Ohms, with a 1500 volt breakdown rating.

The zener diodes are
3.9 volt devices, such as a type 1N5228.


## RADIO-ELECTRONICS

FIG. 100-20
An FCC Part 68 interface is required any time you connect any circut of your own to the phone line.

## TELEPHONE AMPLIFIER



POPULAR ELECTRONICS
FIG. 100-21

Section Ul-a is configured as a high-gain inverting voltage amplifier that is inductivcly coupled to the phone line via L1. Inductor L1 is a homemade unit that consists of 250 turns of fine, enamelcoated wire that is wound on an iron core. The op amp receives the few mV produced by L] via C1 and R1 and amplifies the signal. Capacitor C1 acts as the nogative-feedback component that limits the circuit's high-frequency gain, while R3 limits the low-frequency gain. Resistor R3 is particularly important because without it, the amplifier would saturate.

Op amp Ul-b is configured as a difference amplificr. It receives a signal from U1-a via C 3 and R 4 and amplifies the difference between it and half of the supply voltage. Transistor Q1 is configured as a common-collector amplifier ensuring sufficient signal to drive the speaker. Capacitor C 5 is used to remove any dc component provided by transistor Q1.

## TELEPHONE HOLD CIRCUIT



When Sl is pressed, the SCR fires, and places LED1 and R1 across the phone line. The line voltage drops to about 20 V , which holds the connection to the phone company's central office.

FIG. 100-22

## TELEPHONE CIRCUIT



FIG. 100-23

This circuit is useful for checking out old telephoncs by providing them with the do voltage that they require for operation.

## TELEPHONE-LINE TESTER



POPULAR ELECTRONICS
FIG. 100-24

The telephone-line tester consists of nothing more than a meter (that's used to measurc line voltage in the on- and off-hook state), thrce resistors (one of which is variable), a pushbutton switch, and a modular telephone connector. When the circuit is connected to the telephone line, a meter reading of 5 to 10 V (when $S 1$ is pressed) indicates that the line is okay.

## 101

## Temperature-Related Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Temperature Compensation Adjuster<br>Thermometer for 5-V Operation<br>Hook Sensor on 4- to 20-mA Loop<br>Basic Digital Thermometer<br>Remote Temperature Sensing<br>Temperature Sensor<br>Low Temperature Sensor<br>Electronic Thermostat

TEMPERATURE COMPENSATION ADJUSTER


## ELECTRONIC DESIGN

FIG. 101-1
The circuit shown delivers +10 to $-10 \mathrm{mV} / \mathrm{C}$ output using an Analog Devices' AD590 temperature transducer. $R_{x}$ is a scaling resistor.

## THERMOMETER FOR 5-V OPERATION



303 CIRCUITS
FIG. 101-2

At the heart of this simple circuit is the well-known type KTY10 temperature sensor from Siemens. This silicon sensor is essentially a temperature-dependent resistor that is connected as one arm in a bridge circuit here. Preset P 1 functions to balance the bridge at $0^{\circ} \mathrm{C}$. At that temperature, moving coil meter M1 should not deflect, i.e., the needle is in the center position. Temperature variations cause the bridge to be unbalanced, and hence produce a proportional indication on the meter. Calibration at, say, $20^{\circ} \mathrm{C}$ is carried out with the aid of P 2 .

The bridge is fed from a stabilized $5.1-\mathrm{V}$ supply, based on a temperature-compensated zenerdiode. It is also possible to feed the thermometer from a $9-\mathrm{V}$ battery, provided D1-D3, R1 and Cl are replaced with a Type 78 L 05 voltage regulator, because this is more economic as regards to current consumption.

## HOOK SENSOR ON 4- TO 20-mA LOOP



Here's an effective for a temperature sensor to receive power from a 4 -to- 20 mA loop without actually affecting the loop current (sec the figure). This particular temperature sensor IC (AD590F) conducts $1 \mu \mathrm{~A} / \mathrm{K}$ when powered by a supply in the range of 4 V to 40 Vdc .

The scheme uses a 5-V Zener diode (D1) to regulate the power source for AD590F. Most of the current flows through the Zener diode and a small current flows through AD590F. A high-impedance device can read the tomperature information across R 1 , which is a $1 \mathrm{mV} / \mathrm{K}$ in the range of $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. The waste of power is negligible in this arrangement.

## BASIC DIGITAL THERMOMETER



|  | R | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $\mathrm{R}_{3}$ | $\mathbf{R}_{4}$ | $\mathrm{H}_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathrm{F}$ | 9.00 | 4.02 | 2.0 | 12.4 | 10.0 | 0 |
| ${ }^{\circ} \mathrm{C}$ | 5.00 | 4.02 | 2.0 | 5.11 | 5.0 | 11.8 |
| $\sum_{n=1}^{5} R_{n}=28 \mathrm{k} \Omega \text { nominal }$ <br> All values in $\mathrm{k} \Omega$ |  |  |  |  |  |  |

The ICL 7108 has a $\forall_{\mathbb{N}}$ span of $\pm 2.0 \mathrm{~V}$, and a $V_{C M}$ range of ( $\mathrm{V}^{+}-0.5$ ) Volts to $\left(V^{-}+1\right)$ Votta; in is scaled to bring each renge withen $V_{c u m}$ while not exceecing $V_{I N}$. $V_{\text {REF }}$ for both acales is 500 mV . Maximum reading on the Celsius range is $199.9^{\circ} \mathrm{C}$, firuted by the (short-term) maximum allowable sensor temperature. Maxifium reaching on the Fahrenheit range is $195.9^{\circ} \mathrm{F}$ ( $83.3^{\circ} \mathrm{C}$ ), limited by the number of disalay digits See note next page.

INTERSIL
FIG. 101-4

## REMOTE TEMPERATURE SENSING



## RADIO-ELECTAONICS

FIG. 101-5
An AD590 or AD)592 makes it easy to transmit temperature data over a pair of wires. The circuit produces $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (or $1 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ using the values in parentheses).

## TEMPERATURE SENSOR



303 CIRCUITS
The LM35 temperature sensor provides an output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for every degree Celsius over $0^{\circ} \mathrm{C}$. At $20^{\circ} \mathrm{C}$ the output voltage is $20 \times 10=200 \mathrm{mV}$. The circuit consumes $60 \mu \mathrm{~A}$. The load resistance should not be less than $5 \mathrm{k} \Omega$. A 4 - to $20-\mathrm{V}$ supply can be used.

## LOW TEMPERATURE SENSOR



A nogative bias current can produce the offset needed for below-zero readings using the LM3 4 or LM35 temperature sensor.

## ELECTRONIC THERMOSTAT



## TABLE 1-RESISTOR VALUES

Temperature Range (Degrees C)

| -50 to -30 | $10 K$ |
| :---: | ---: |
| -30 to -10 | $9.1 K$ |
| -10 to 15 | $8.2 K$ |
| 15 to 35 | $7.5 K$ |
| 35 to 55 | $6.2 K$ |
| 55 to 75 | $5.1 K$ |
| 75 to 95 | $4.3 K$ |
| 95 to 115 | $3.3 K$ |
| 115 to 135 | $2.2 K$ |
| 135 to 155 | $1.2 K$ |

RADIO-ELECTRONICS

| R14 | R15 | R16 |
| ---: | ---: | ---: |
| 10 K | 1 K | $330 \Omega$ |
| 9.1 K | 1 K | 1.2 K |
| 8.2 K | 1 K | 2 K |
| 7.5 K | 1 K | 3.3 K |
| 6.2 K | 1 K | 4.3 K |
| 5.1 K | 1 K | 5.1 K |
| 4.3 K | 1 K | 6.2 K |
| 3.3 K | 1 K | 6.8 K |
| 2.2 K | 1 K | 8.2 K |
| 1.2 K | 1 K | 9.1 K |

FIG. 101-8
A diode, such as a IN4148, has a typical $-2 \mathrm{~m} \mathrm{~V} /{ }^{\circ} \mathrm{C}$ temperature coefficient at a 1 mA diode current. Q1 and Q2 form a constant current source. D1 is the temperature sensor. ICl-a and -b are dc amplifiers, with IC1-c a temperature reference voltage supply. IC1-d is a comparator with variable hysteresis. R14, R15, and R16 are chosen depending on the thermostat range desired. Q3 is a relay driver (2N3904). The relay used should handle the load current or an optoisolator triac combination can bo used.

## 102

## Timer Circuits

The sources of the following circuits are containcd in the Sources section, which begins on page. 675. The figure number in the box of each circuit correlates to the entry in the Sourcos section.

Reflex Timer<br>Tele-Timer<br>Three-Stage Sequential Timer<br>2- to 2000-Minute Timer<br>Long Period Timer<br>Wide-Range Timer-1 Minute to 400 HRS<br>Long Delay-Period Timer<br>Count-Down Tiner<br>Extended On-'Time Timer

## REFLEX TIMER



ELECTRONICS NOW
FIG. 102-1

This timer circuit uses a 555 IC timer and three 74 LS 193 counters to drive an LED display. S 1 is activated by one person, who turns on piezo buzzer BZ1 via Q1 and also starts the clock; S 1 is activated by the other person being timed. This shuts off the timer, and the number of LEDS lit indicate, in binary form, the elapsed time.

## TELE-TIMER



POPULAR ELECTRONICS
FIG. 102-2
'The circuit is built around a 555 oscillator/ timer. The circuit provides two time periods. The long-running time period is adjustable from about 1 to 10 minutes, and the short time period is preset to about three seconds.

Here's how the dual timer operates. When the power is switched on, C2 begins to charge through R3, R1, D1, and R4 to start the longterm timer period. When the voltage across C2 reaches the 555 's internal switching point, the long-term timer times out, discharging C 2 through R2, D2, and pin 7 of the 555. During that time, pin 3 of the 555 is pulled to ground, activating the piczo sounder.

To set the short time period to about four seconds, use a 10 k resistor for R 2 , and for about twenty seconds use a 47 k resistor. The timing capacitor, C2, should be a good-quality, low-leakage unit.

THREE-STAGE SEQUENTIAL TIMER


## WILLIAM SHEETS

FIG. 102-3
By using throc 555 ICs , three sequential pulses can be generated. Output 3 can be connected back to trigger input to achieve astable operation.

## WIDE-RANGE TIMER-1MINUTE TO 400 HRS



This ultra wide range timer uses a 555 timer base, two 4017 Bs and a 4020 B that act as frequency dividers that can be switched in and out. S 1 is a SP3T range switch.

## LONG-DELAY-PERIOD TIMER



FIG. 102-7

This method of obtaining a 4 to 40 hour timing period from a 5551 C can be further expanded to produce even longer delays with equal accuracy.

## COUNT-DOWN TIMER



1991 PE HOBBYIST HANDBOOK

| C 1 | $100-\mu \mathrm{F}$ Electrolytic Capacitor |
| :--- | :--- |
| C 2 | $0.0047-\mu \mathrm{F}$ Mylar Capacitor |
| C 3 | $1-\mu \mathrm{F}$ Electrolytic Capacitor |
| P 1 | $2-\mathrm{M} \Omega$ Trimmer Resistor |
| Q1, Q2, Q4, Q4 | 2 N 3904 Transistor |
| Q33 | 106 SCR |
| Q5, Q6 | 2 N 3906 Transistor |
| R1 | $1-\mathrm{M} \Omega$ Resistor |
| R2 | $10-\mathrm{k} \Omega$ Resistor |

FIG. 102-8

With switch S 1 in the off position, as shown, battery voltage is applied across timing-capacitor Cl, which stays charged while the rest of the circuitry has no power supplicd to it. Transistor Q1, and thus transistors Q2 through Q4, are kept in an of condition as long as C1 has a sufficient charge.

EXTENDED ON-TIME TIMER


POPULAR ELECTRONICS
FIG. 102-9
Half of a Motorola MC14538B dual, precision, retriggerable monostable multivibrator is used to form an extended on-time timer circuit. That type of circuit can be used as a switch debouncer. Such circuils are often used in digital circuitry, where cach and every bounce of a switch contact is seen as a separate digital input.

The delay on time (established by C 1 and R 1 ) is easily set using the formula, $C_{1} \times R_{1}=T$, where $C_{1}$ is in microfarads, $R_{1}$ is in megohms, and $T$ is in seconds.

## 103

## Tone Circuits

TThe sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Rcpeater-Tone Burst Generator
Two-Tone Encoder

## REPEATER-TONE BURST GENERATOR



Fig. 2: Pulee and liming diagram, tee the tert for mora details.

Fig. 1: The circuit, based on a single e.m.o.s chip and a few other components.

PRACTICAL WIRELESS
FIG. 103-1
Integrated circuit gates IC1-a and ICl-b form a monostable, whose time constant is determined by C2 and R3. When the transmitter is dekeyed (and then almost immediately rekeyed) point TX+ goes low and takes pin 1 low for a short time. This triggers the start of the timing period controlled by $C_{2} / R_{3}$. The capacitor C 2 , charges via R 3 until the trigger point of gate IC1-b is reached. At this point, the monostable changes state and pin 3 goes low again. On the prototype, this time was about. 700 ms . The pulse occurs cach time after dekeying and it is normally inaudible. If, however, point TX+ goes high again (as in immediate rekeying) the monostable is still in the enabled state and the oscillations of IC1-c are present in the transmission. During this time period, the buffer gate, IC1-d, is enabled and the tone is therefore passed to the output.

## TWO-TONE ENCODER



73 AMATEUR RADIO
FIG. 103-2
Using an XR2206 oscillator, this circuit can generate two audio tones. Switching between tones can be done with a logic level to either the base of the PN2222 or pin 9 of the XR2206.

## 104

## Tone-Control Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Combined Bass and Treble Controls
Treble Tone Control
Bass Tone Control

## COMBINED BASS AND TREBLE CONTROLS



1993 ELECTRONICS HOBBYIST HANDBOOK
FIG. 104-1
Bass and treble circuits can be combined to form a two-control tone-adjust circuit, as shown here.

TREBLE TONE CONTROL


1893 ELECTRONICS HOBEYIST HANDBOOK
FIG. 104-2
The treble control has capacitors placed in series with the potentiometer.

BASS TONE CONTROL


1993 ELECTRONICS HOBBYIST HANDBOOK
FIG. 104-3
The frequency dependence of the capacitor's impedance permits this circuit to boost the bass frequencies.

## 105

## Touch-Control Circuits

The sources of the following circuits are contaired in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Bridging Touch Plate Sensor

Touch Switch I
Touch Switch II
Touch On-Only Switch
Latching Touch Switch
Single Plate Touch Sensor

## BRIDGING TOUCH PLATE SENSOR



POPULAR ELECTRONICS
FIG. 105-1

In this circuit, two 567 tone decoders are used. One is an oscillator, the other is a detector. Bridging TP1 and TP2 causes U2 to receive Ul's signal, which causes pin 8 of U2 to go low. This action lights LED1 and drives the output of Q2 high.

## TOUCH SWITCH I



FIG. 105-2

Two NAND Schmitt triggers are connected in a flip-flop configuration to produce a bridged touch-activated switch.

## TOUCH SWITCH II



POPULAR ELECTRONICS

When the touch-on contacts are bridged, pin 6 of U1-b goes low, which forces its output (the set output) at pin 4 to go high. That high divides along two paths: in one path, the output is applicd to pin 2 of $41-\mathrm{a}$, which causes its output at pin 3 to go low. That low is, in turn, applied to pin 5 of U1-b, which latches the gate in a high output state. In the other path, the output of U1-b is used to drive Q1. When Q1 turns on, U2's internal LED lights, which turns on its intemal, light-sensitive, triac-driver (diac) output element. The triac driver feeds gate current to TR1, causing it to turn on, and light the lamp (11).

Wher the off contact is bridged, U1-a's output switches and latches high, causing U1-b's output to go low, turning off the lamp.

FIG. 105-3

HANDS-ON ELECTRONICS
FIG. 105-4
This touch on-only switch can be triggered into conduction by electrical means, and can only be reset by way of a mechanical switch. When the touch terminal is contacted by a finger, the SCR turns on and illuminates LED1.
 y driven high, and the control voltage goes high, which latches the switch. When S2 is activated, R4 goes low and the control voltage gocs low, which deactivates the switch.

## SINGLE-PLATE TOUCH SENSOR



FIG. 105-6
This system operates on the principle that capacitance loading of an oscillator will lower its frequency. When a foreign body comes into contact with touch plate, the frequency of U1 is lowered. This removes the oscillator signal from U1 from U2's passband, which causes U2 to lose lock, turns off the LED, and causes the collector of Q1 to go low.

## 106

## Transmitter Circuits

TTh 675. The figure number in the box of each circuit correlates to the entry in the Sources section.
27.125-MHz NBFM Transmitter 10-M DSB QRP Transmitter with VFO
ATV JR Transmitter 440 MHz
6-W Economy Morse-Code Transmitter for 7 MHz
Simple FM Transmitter
Vacuum-Tube Low-Power 80/40-Meter Transmitter Tracking Transmitter

49-MHz FM Transmitter<br>QRP Transceiver for 18,21 , and 24 MHz<br>1750-Meter Transverler<br>10-Meter DSB Transmitter<br>Low-Power 40-Meter CW Transmitter •<br>FM Radio Transmitter<br>Low-Power 20-Meter CW Transmitter

### 27.125-MHz NBFM TRANSMITTER



## ELECTRONICS NOW

FIG. 106-1
Using a Motorola MC2833 one-chip FM transmitter, a few support components, and an MPF6660 FET RF amp, this transmitter delivers about 3 W into a $50-\Omega$ load. It is capable of operation over about 29 to 32 MHz with the components shown.

## 10-M DSB QRP TRANSMITTER WITH VFO



FIG. 106-2

## 10-M DSB QRP TRANSMITTER WITH VFO (Cont.)



The three schematics represent thrce building blocks for a 10 -meter SSB transmitter. Or these blocks can be used separately as circuit modules for other transmitters. The VFO board uses an FET transmittal oscillator, the VFO signal is mixed in an NE602 mixer and is amplified by Q2 to a level sufficient to drive an SBL-1 mixer in the transmit mixer stage $(+7$ to $+10 \mathrm{dBm})$. In the balance mixer/modulator board, an $11-\mathrm{MHz}$ crystal oscillator drives a diode balanced mixer. Audio for modulation purposes is also fed to this mixer. The DSB signal feeds a $28-\mathrm{MHz}$ BPF. The $1-\mathrm{W}$ amplifier board consists of a 3 -stage amplifier and transmit/receive switching circuitry.

## ATV JR TRANSMITTER 440 MHz



## WILLIAM SHEETS

FIG. 106-3
This low-power video transmitter is useful for $\mathrm{R} / \mathrm{C}$ applications, surveillance, or amateur radio applications. Seven transistors are used in a crystal oscillator-multiplier RF power amplifier chain, and a high-level video modulator. A 9 - to 14 -Vdc supply is required. Output is 0.4 to 1.2 W , depending on supply voltage. A complete kit of parts is available from North Country Radio, P.O. Box 53, Wykagyl Station, New Rochelle, NY 10804-00530

## 6-W ECONOMY MORSE-CODE TRANSMITTER FOR 7 MHz



## POPULAR ELECTRONICS

FIG. 106-4
The vacuum tube is still alive and useful in some applications, as in this CW transmitter. The circuit was built in old-fashioned breadboard style on a wooden base. Old table radios are a good source of parts for this circuit. V3 is used as a ballast resistor-a $75-\Omega$ or $100-\Omega 5-\mathrm{W}$ resistor conld be substituted. L1 is 15 turns of hookup wire on a $\%_{8}^{\prime \prime}$ form $2^{\prime \prime}$ long. L2 is 7 turns of the same wire. L2 is wound over L1. Be careful as up to 160 V is present on V1 and V2.

SIMPLE FM TRANSMITTER


## RADIO-ELECTRONICS

FIG. 106-5
Running from a 9-V battery, this transmitter can be used as a wireless microphone with an ordinary 88 - to $108-\mathrm{MHz}$ FM broadcast receiver. Keep the antenna length under 12 inches to comply with FCC limits. L1 is 6 turns of \#24 wire wound around a pencil or a $1 / 4 "$ form, with turns spaced 1 wire diameter. C 6 is a gimmick capacitor of about 1 pF .

## VACUUM-TUBE LOW-POWER 80/40-METER TRANSMITTER



73 AMATEUF RADIO TODAY
FIG. 106-6
Using a 6BW6 vacuum tube, the above transmitter delivers about 5 W output. Cl is adjusted for cleanest CW note. C 8 and C 9 are 365 pF and dual- 365 pF (paralleled) tuning capacitors. L1 is 35 turns of \#24 enamelled wire on a $1^{H}$ plastic tube. FT-243 crystals for 3.5 or 7 MH , are used. Do not use this circuit to produce a $7-\mathrm{MHz}$ output from a $3.5-\mathrm{MHz}$ crystal-it is not intended to "double over" crystal frequencies.

## TRACKING TRANSMITTER



## 1993 ELECTRONICS HOEBYIST HANDBOOK

FIG. 106-7
This tracking transmitter consists of four distinct subassemblies; a free-running multivibrator, a transmit switch, an audio-tone generator, and an FM transmitter. The multivibrator (which produces a pulse width with a pulse seraration of 1500 ms ) is built around $Q 1$ and Q 2 . The multivibrator output is coupled through R5 to the base of Q3, whose emitter feeds Q4, which controls the circuit's transmitter section.

## 49-MHz FM TRANSMITTER



1993 ELECTRONICS HOBBYIST HANDBOOK
FIG. 106-8

This 49-MHz FM transmitter consists of an audio amplifier, a low-pass filter, three RF stages, and a regulated-de power supply. The output is about 16 mW into a $50-\Omega$ load. This transmitter can be used in many $49-\mathrm{MHz}$ applications, such as in a baby monitor, cordless telephone, or in conjunction with a scanner as a one-way voice link.

QRP TRANSCEIVER FOR 18, 21, AND 24 MHz



This CW transceiver has 1.25 to 4 W RF output, a direct-conversion receiver, full break-in, and SW sidetone generation. The power supply is 13.8 V , which makes this transceiver suitable for mobile or portable operation.

FIG. 106-9


This circuit was described in a recent edition of an amateur radio magazine. It allows operation in the $160-$ to $190-\mathrm{kHz}$ band with up to 1 W (license free) in any mode (CW/SSB/FM, etc.). It consists of a receiving converter for 5 kHz to 450 kHz and a transmitting converter to convert the 3.66 - to $3.69-\mathrm{MHz}$ ( 80 meter) range to 160 to 190 kHz . A 12 - to $24-\mathrm{V}$ power supply can be used.

## 10-METER DSB TRANSMITTER



73 AMATEUR RADIO TODAY
FIG. 106-11
A DSB transmitter is much cheaper to build than an SSB transmitter because no filter or phasing networks are required. This circuit produces up to 1 -W output on the 10 -meter band. The frequency 28.322 MHz is used, which is a commonly available clock frequency crystal. CW operation is also provided. A doubly balanced mixer assembly is used as a modulator and CW keyer.

## LOW-POWER 40-METER CW TRANSMITTER



73 AMATEUR RADIO TOOAY
FIG. 106-12

This CW transmitter has an output of up to 3 W . By using 24 V on Q2, up to 10 W output can be obtained. If a $24-\mathrm{V}$ supply is used, Q1 must not see more than 12 V . Connect 12 V between junctions C3, R2 and L2, and remove L5. Li should be a low-Q 18- to $20-\mu \mathrm{H}$ inductor. R6 can be used (up to $47 \Omega$ ) to reduce the $Q$ further.

FM RADIO TRANSMITTER


## R-E EXPERIMENTERS HANDBOOK

FIG. 106-13
An FM radio generates an interference signal that can be picked up on another FM radio tuned 10.7 MHz above the first one. The $50-\mathrm{k} \Omega$ potentiometer adjusts the modulation level to maximum without distortion. The RC network improves the fidelity of the transmitted signal and provides dc isolation. The component values shown are provided as a starting point. They can vary somewhat for different radios. Note that if you can't get the signal at 10.7 MHz above the frequency setting of the first radio, try tuning at 10.7 MHz below. Also, note that both tuned frequencies must be unused. Otherwise, you will hear your audio on top of the audio that is already there. You might have to play with both frequencies until you find two blank spots that are 10.7 MHz apart.

## LOW-POWER 20-METER CW TRANSMITTER



## 73 AMATEUR RADIO TODAY

FIG. 106-14
The transmitter has a VXO circuit to drive an amplifier that is keyed. The keyed amplifier drives an MRF 476 final amplifier, which delivers about $2-W$ output. A solid-state T-R switch is included for the receiver. The parts values shown are for the 20-meter band.

## 107

## Ultrasonic Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Doppler Ultrasound Transmitter<br>Doppler Ultrasound Receiver<br>Ultrasonic Cleaner

## DOPPLER ULTRASOUND TRANSMITTER



## RADIO-ELECTRONICS

FIG. 107-1
The $2.25-\mathrm{MHz}$ oscillator Q1 drives amplifier Q2 and XTAL1, an ultrasonic transducer. The transducer is a lead zirconate-titanate type. Taps on T 1 and T 2 provide low-impedance drive points.

## DOPPLER ULTRASOUND RECEIVER



XTAL1 drives amplifier Q3/Q4, which is tuned to 2.25 MHz . The detected signal is fcd to audio amplifier IC1. A 9-V supply is used. The circuit operatos at 2.25 MHz and is designed to be used with an ultrasonic sound transmitter at this frequency.

## ULTRASONIC CLEANER



## ELECTRONICSNOW

An ultrasonic cleaner is useful to clean certain items. This circuit uses a microcontroller to control timing and give a digital readout, but only the basic oscillator can be used, if desired. RES1, RES2 are piezoelectric transducers driven by power oscillator Q1. Q1 is powered by a bridge rectifier-capacitor input filter that operates directly off the ac: line. The frequency is 40 to 60 kHz .


FIG. 107-3

## 108

## Video Circuits

$\mathrm{T}_{\text {he sources of the following circuits are contained in the Sources section, which begins on page }}$ 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Gencral-Purpose Output Amplifier<br>4.5-MHz Sound IF Amplifier<br>Simple Video Amplifier<br>ATV Video Sampler Circuit<br>Multiple-Input, Video Multiplex Cable Driver<br>Two-Input Video Multiplex Cable Driver<br>Differential Video Loop-Through Amplifier Video Fader<br>Electronically Controlled Variable-Gain<br>Video Loop-Through Amplifier

Video de-Restore Circuit
Combination Sync Stripper and
Universal Video Interface
Video Selector
Video Preamp
Video Master
Simple Video Line/Bar Generator Video Amplifier

## GENERAL-PURPOSE OUTPUT AMPLIFIER



FIG. 108-1

This general-purpose amplifier has a bandwidth of approximately 20 MHz and it uses an LM733/NE592 video amp IC. This circuit can be used as a line driver or as a LAN line driver.

## 4.5-MHz SOUND IF AMPLIFIER



RADIO-ELECTRONICS
FIG. 108-2

An NE592 is used as a $4.5-\mathrm{MHz}$ amplifier sound subcarrier in video applications. XTAL1 is a 4.5MHz crystal or ceramic resonator.

SIMPLE VIDEO AMPLIFIER


## 303 CIRCUITS

FIG. 108-3
Useful for interfacing B/W TV sets with a camera or computer, this amplifier has a bandwidth of $\geq 10 \mathrm{MHz}$ and a gain of 3 X .

## ATV VIDEO SAMPLER CIRCUIT

SPEC-COM


FIG. 108-4
This unit picks up your ATV signal by sampling the transmission line with negligible inscrtion loss. It uses 2 " N " connectors for input and output connections. A BNC connector is used on the video output. The detected output is connected to your monitor and scope so that you can accurately adjust your transmitter for proper video and synch levels. Two different models are provided. Both have relative power output meters, but one has greater accuracy. There are two PC controls, one for video level and the other for power output.

## MULTIPLE-INPUT VIDEO MULTIPLEX CABLE DRIVER



LINEAR TECHNOLOGY

## TWO-INPUT VIDEO MULTIPLEX CABLE DRIVER



FIG. 108-6

CMOS logic levels select one of two video inputs with this circuit. The op amps are Linear Technology LT1190s.

DIFFERENTIAL VIDEO LOOP-THROUGH AMPLIFIER


## LINEAR TECHNOLOGY

FIG. 108-7
An LT1194 is used as a differential amplifier for video applications, where low cable loading is needed.

## VIDEO FADER



LINEAR TECHNOLOGY
FIG. 108-8
Using two LT1228 transconductance amplifiers in front of a current feedback amplifier forms a video lader. The ratio of the set currents into pin 5 determines the ratio of the inputs at the output.

## ELECTRONICALLY CONTROLLED VARIABLE-GAIN VIDEO LOOP-THROUGH AMPLIFIER



FIG. 108-9

An LT1228 transconductance amplifier is used in this application. The gain is adjustable from -12 to +8 dB .

## VIDEO de RESTORE CIRCUIT



Linear technology
FIG. 108-10
This circuit restores the black level of a monochrome composite video signal to 0 V at the beginning of every horizontal line. This circuit is also useful with CCD scanners to set the black level.

## COMBINATION SYNC STRIPPER AND UNIVERSAL VIDEO INTERFACE



## RADIO-ELECTRONICS

FIG. 108-11

This combination sync stripper and universal video interface can solve a lot of problems for you, including Super-Nintendo-to-anything interfacing, video overlay and scope TV frame locking. Kits, fully tested units, and custom cable assemblies are available through Redmond Cable. This unit uses an LM1881 (NS) synch separator IC.

## VIDEO SELECTOR



FIG. 108-12

This circuit selects one of two channels with a logic signal. The unused channel is shorted out, which minimizes crosstalk. The bandwidth at -3 dB is about 8 MHz . It is advisable to buffer this circuit because there is some loss in the switches when feeding a $75-\Omega$ load.

VIDEO PREAMP


RADIO-ELECTAONICS
FIG. 108-13

An NE592 or LM733 is used as a general-purpose video amplifier in this schematic. J2 and J3 provide two anti-phase outputs. R2 is a gain control. The bandwidth is about 100 MHz .

## VIDEO MASTER

UPCONVERTEA SECTHOH

$\qquad$
1.0. $+708 \mathrm{~m}$


ELECTRONICS NOW
FIG. 108-14
The video master consists of a scries of converters that place all your video sources on umused UHF channels, which then combines them with normal TV channels (terrestrial or cable into one cable). That one cable can then feed several TV sets for whole-house coverage. The desircd video source is selected with the TV set's tuner. All of the TV's remote-control features are retained.

A complete kit of parts is available from North Country Radio, P.O. Box 53, Wykagyl Station, New Rochelle, NY 10804-0053A.

## SIMPLE VIDEO LINE/BAR GENERATOR



303 CIRCUITS
FIG. 108-15

A 555 and a dual 556 timer generate a rudimentary video signal, as shown in the schematic. The first timer gencrates $4.7-\mu$ s synch pulses operating in the astable mode with a $64-\mu$ s period. The second timer generates a delay pulse, which triggers the third timer to generate a bar. The second timer sets the bar position and the third sets the bar width.

VIDEO AMPLIFIER


## 109

## Voltage-Controlled Oscillator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Sirusoidal 3-Hz to $300-\mathrm{kHz}$ VCO<br>Simple TL082 VCO<br>$10-\mathrm{Hz}$ to $10-\mathrm{kHz} 3$-Decade VCO<br>Sine-wave VCO<br>VCOI<br>VCO II

## SINUSOIDAL 3-Hz TO $300-\mathrm{kHz}$ VCO



ELECTRONIC ENGINEERING
FIG. 109-1

This circuit uses Analog Devices' AD6339 universal trigonometric function generator to convert a triangle waveform, the basic waveform of the VCO ilself, into a very low-distortion sine wave.

By using the AD639 in its frequency tripler mode [2], the frequency range 3 Hz to 300 kHz is now covered. The circuit has bcon drawn here so that the oscillator loop, consisting of Q1, the integrator and the LT1011 comparator, is clearly shown.

When Q1 is off, the input amplifier, which is adjusted to have a gain of exactly -1 , pulls a current $V_{\mathrm{IN}} / R$, where $R$ is $5.1 \mathrm{k} \Omega$ in series with two JFETs, and Q2 and Q3, out of the virtual earth of the integrator. The output of the integrator thus rises at a rate of $V_{\mathbb{N}} / C R$, where $C=470 \mathrm{pF}$. At a level that can be adjusted by the 5 -kS potentiometer, the comparator flips and turns on Q1.

A current of exactly $2 V_{\mathrm{IN}} / R$, is now supplied to the virtual earth of the integrator because there are now two $5.1-\mathrm{k} \Omega$ resistors in parallel and only a single $J F E T$ in between the virtual earth and $\mathrm{V}_{\text {iri }}$ The integrator output now falls at a rate of $V_{\mathrm{IN}} / C R$ and the cycle repeats. Any offset in the current to the virtual earth of the integrator, duc to circuit board leakage, etc., can be corrected by adjusting the $50-\mathrm{k} \Omega$ potentiometcr. It follows that the symmetry of the triangle wave at the integrator output can be corrected by adjusting the $2-\mathrm{k} \Omega$ potentiometer, and the $50-\mathrm{k} \Omega$ potentiometer at VLF, and the frequency can be trimmed with the 5 -k $\Omega$ potcntiometer.

## SINUSOIDAL 3-Hz TO 300-kHz VCO (Cont.)

The $1-\mathrm{k} \Omega$ potentiometer variable is adjusted to give the input level to the AD 639 needed to drive it over $\pm 270^{\circ}$ and so produce a sinusoidal output at three times the frequency of the triangle-wave input. Offset correction for the AD639 is made at the input to the voltage follower by means of the $20-\mathrm{k} \Omega$ potentiometer.

Once a symmetric triangle wave has been obtained by adjusting the $2-\mathrm{k} \Omega$ and $50-\mathrm{k} \Omega$ potentiometers, and the correct frequency of 100 kHz has been set for $V_{\mathrm{IN}}=10 \mathrm{~V}$, by adjusting the $5-\mathrm{k} \Omega$ potentiometer, the triple-frequency sine-wave output can be set, up by adjustment of the $1-\mathrm{k} \Omega$ and $20-\mathrm{k} \Omega$ potentiometers.

This is best done by triggering the CRO from the triangle wave, and then viewing at least three complete cycles of output. Having adjusted for a clean-looking sine wave, the final adjustment of the $1-\mathrm{k} \Omega$ and $20-\mathrm{k} \Omega$ potentiometers should be made on a single sinusoidal cycle display, using internal trigger so that the three slightly different parts of the output cycle lie one upon the other and can be made co merge. Q1, Q2, and Q3 are 2N4391s, the two Schottky diodes are 5082-2810, and the other nine diodes are 1 N 914.

All devicc power supply pins should be decoupled with $0.33 \mu \mathrm{~F}$. Resistors associated with the inputs of the devices should be $1 \%$ high-stability parts.

## SIMPLE TL082 VCO



WILLIAM SHEETS
FIG. 109-2

This circuit uses a dual operational amplifier (Th082) to form a voltage-controlled oscillator (VCO). With the component values showr, the output-frequency range is 100 Hz to 10 kHz when the inpul control voltage is between 0.05 and 10 V .

## 10-Hz TO 10-kHz 3-DECADE VCO



SINE-WAVE VCO


FIG. 109-4
A dc control voltage varies the effective resistance in feedback network $\mathrm{C} 4 / \mathrm{C} 3 / \mathrm{C} 1$ and $\mathrm{R} 12 / \mathrm{R} 3$. Q2/Q3 are the oscillator transistors.

VCO I


This circuit gives both triangle- and squarewave outputs. The frequency range is determined by C1.

FIG. 109-5

## vco II



## WILLIAM SHEETS

FIG. 109-6
The output frequency of this simple low-cost active voltage-controlled oscillator circuit is based upon the inherent frequency dependent characteristics of our operational amplifier.

The oseillator circuit shown uses a TL082 op amp. When power is applied, the circuit generates a sinusoidal wave. The frequency of oscillation can be changed by varying the bias supply.

## 110

## Voltage Converter/Inverter Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.
$\mathrm{dc} / \mathrm{dc}$ Converter
Simple do/ac Inverter

## dc/dc CONVERTER



FIG. 110-1
This low-power converter will supply about 100 mW of dc to a load and it is useful to isolate or derive de voltages. It operates at around 200 kHz . L1 is wound on a $22-\mathrm{mm}$ diameter $\times 13$-mum high pot core with \#32 magnet wire. The primary is 80 turns and the secondary is 80 turns (for $12-\mathrm{V}$ nominal output). The two windings should be insulated for the expected voltage difference between input and output in insulation applications.


WILLIAM SHEETS
FIG. 110-2
This dc-to-ac inverter is based on the popular 555. A 555 oscillator circuit drives a buffer amplifier consisting of Q1, Q2, and Q3. The circuit operates at 150 to 160 Hz . T1 can be a $6.3-\mathrm{V}$ or $12.6-\mathrm{V}$ filament transformer as applicable. The frequency can be changed by changing the values of R1 and/or C1.

## 111

## Voltage Multiplier Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of each circuit correlates to the entry in the Sources section.

Low-Power de Tripler
Low-Power dc Quadrupler
Low-Power dc Doubler


WiLliam sheets
FIG. 111-1
This dc voltage-tripler circuit based on the 555 can produce a dc output voltage equal to approximately $3 \times$ the de supply voltage.

## LOW-POWER dc QUADRUPLER



WILLIAM SHEETS
FIG. 111-2
This de voltage-quadrupler circuit based on the 555 can produce a dc outpul voltage equal to approximately $4 \times$ the de supply voltage.

## LOW-POWER dc DOUBLER



WILLIAM SHEETS
FIG. 111-3
This dc voltage-doubler circuit based on the 555 can produce a dc output voltage equal to approximately $2 \times$ the de supply voltage.

## 112

## Window Comparator and Discriminator Circuits

The sources of the following circuits are contained in the Sources section, which begins on page 675. The figure number in the box of cach circuit correlates to the entry in the Sources section.

Window Comparator<br>Multiple-Aperture Window Discriminator

## WINDOW COMPARATOR



WILLIAM SHEETS
ICl-c functions as a noninverting comparator, and IC1-a operates as an inverting comparator. Potentiometer R1 and fixed resistors R2 and R3 form a divider chain that delivers slightly different voltages to the two comparators. These voltages define the upper and lower limits of the circuit's switching "window," which can be changed easily by varying R2 and R3. The LED glows only when the input voltage falls within the window region.

## MULTIPLE-APERTURE

 WINDOW DISCRIMINATOR

POPULAR ELECTRONICS
FIG. 112-2
V1 through V4 are reference voltages that are derived from separate sources or from a common voltage divider.

## Sources

## Chapter 1

Fig. 1-1. Reprinted with permission from Popular Electronics, 1/92, p. 80. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 1-2. Reprinted with permission from Popular Electronics, 1/92, p. 80. (c) Copyright Gernsback Publications, Inc., 1992
Fig. 1-3. Reprinted with permission from Popular Electronics, 1/92, p. 79. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 1-4. Reprinted with permission from Popular Electronics, 1/92, p. 79. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 1-5. Reprinted with permission from Popular Electronics, 1/92, p. 79. (c) Copyright Gernsback Publications, Înc., 1992.
Fig. 1-6. Reprinted with permission from Popular Electronics, 2/92, pp. 65-66. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 1-7. Reprinted with permission from Popular Electronics, 11/93, p. 53. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 1-8. Reprinted with permission from PE Hobbyist Handbook, 1992, pp. 93-94. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 1-9. William Sheets.
Fig. 1-10. Reprinted with permission from Popular Electronics, 2/92, pp. 70-71. (c) Copyright Gernsback Publications, Inc., 1992.

Fig. 1-11. Reprinted with permission from Popular Electronics, 12/92, p. 68. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 1-12. William Sheets.
Fig. 1-13. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 31-32. (r) Copyright Gernsback Publications, Inc., 1991.
Fig. 1-14. Reprinted with permission from Popular Electronics, 8/92, p. 71. (c) Copyright Gernsback Fublications, Inc., 1992.
Fig. 1-15. Reprinted with permission from Popular Electronics, 2/92, p. 66. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 1-16. William Sheets.
Fig. 1-17. Reprinted with permission from Electronics Now, 7/92, p. 66. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 1-18. William Sheets.
Fig. 1-19. William Sheets.
Fig. 1-20. William Sheets.
Fig. 1-21. Willian Sheets.
Fig. 1-22. William Sheets.
Fig. 1-23. William Sheets.
Fig. 1-24. Reprinted with permission from Popular Electronics, $3 / 93$, p. 42. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 1-25. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 19-20. (c) Copyright Gernsback Publications, Inc., 1991.

Fig. 1-26. Reprinted with permission from Popular Electronics, 1/92, p. 78. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 2

Fig. 2-1. Reprinted with permission from Popular Electronics, Fact Card 255, (c) Copyright Gernsback Publications, Ine.
Fig. 2-2. Reprinted with permission from Popular Electronics, Fact Card 254, (c) Copyright Gernsback Publications, Inc.
Fig. 23. Reprinted with permission from Popular Electronics, Fact Card 254, (c) Copyright Gernsback Publications, Inc.
Fig. 2-4. Reprinted with permission from Popular Electronics, Fact Card 253, (c) Copyright Gernsback Publications, Inc.
Fig. 2-5. Reprinted with permission from Popular Electronics, Fact Card 254, (c) Copyright Gernsback Publications, Inc.
Fig. 2-6. Reprinted with permission from Popular Electronics, Fact Card 254, (c) Copyright Gernsback Publications, Inc.
Fig. 2-7. Reprinted with permission from Popular Electronics, Fact Card 253, (c) Copyright Gernsback Publications, Inc.
Fig. 2-8. William Sheets.
Fig. 2-9. Reprinted with permission from Popular Electronics, Fact Card 253, (c) Copyright Gernsback Publications, Inc.
Fig. 2-10. William Sheets.
Fig. 2-11. William Sheets.
Fig. 2-12. William Sheets.
Fig. 2-13. William Sheets.
Fig. 2-14. William Sheets.
Fig. 2-15. Reprinted with permission from Electronics Now, 7/92, p. 36. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 2-16. Reprinted with permission from Popular Electronics, Fact Card 255, (c) Copyright Gernsback Publications, Inc.
Fig. 2-17. William Sheets.
Fig. 2-18. William Sheets.
Fig. 2-19. Reprinted with permission from Popular Electronics, Fact Card 223, (c) Copyright Gernsback Publications, Inc.
Fig. 2-20. William Sheets.
Fig. 2-21. William Shects.
Fig. 2-22. Reprinted with permission from Popular Electronics, Fact Card 264, (c) Copyright Gernsback Publications, Inc.

Fig. 2-23. Reprinted with permission from Radio-Electronics, 6/92, p. 59. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 2-24. Reprinted with permission from 73 Amateur Radio Today, 4/92, p. 71.
Fig. 2-25. William Sheets.
Fig. 2-26. Reprinted with permission from National Semiconductor, Linear Edge, Spring 1992.
Fig. 2-27. Reprinted with pernission from Popular Electronics, Fact Card 206, (c) Copyright Gernsback Publications, Inc.
Fig. 2-28. Reprinted with permission from Popular Electronics, 9/93, p. 47. (c) Copyright Gernsback Publications, Inc, 1993.

## Chapter 3

Fig. 3-1. Reprinted with permission from Electronic Design, 3/93, p. 67.
Fig. 3-2. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 42.

## Chapter 4

Fig. 4-1. Reprinted with permission from Popular Electronics, 12/91, p. 63. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 4-2. Reprinted with permission from Elector Electronics USA, 10/92, p. 14.
Fig. 4-3. Reprinted with permission from 73 Amateur Radio Today, $5 / 90$, p. 47.
Fig. 4-4. Reprinted with permission from Practical Wireless, 6/91, p. 36.
Fig. 4-5. Reprinted with permission from Elektor Electronics, 12/91, pp. 88-89.
Fig. 4-6. Reprinted with permission from Popular Electronics, 6/98, p. 55. (c) Copyright Gernshack Publications, Inc, 1993.
Fig. 4-7. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 34.
Fig. 4-8. Reprinted with permission from Electronics Hobbyists Handbook, 1993, p. 89.
Fig. 4-9. Reprinted with permission Irom 73 Amateur Radio Today 10/92, p. 28.

## Chapter 5

Fig. 5-1. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 65-66. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 5-2. Reprinted with permission from Electronics Now, 11/92, p. 42. (c) Copyright Gernsback Publications, Inc., 1992.

Fig. 5-3. Reprinted with permission from Electronics Now, 12/92, p. 14. (c) Copyright Gernsback Publications, Ine., 1992.
Fig. 5-4. Reprinted with permission from Silicon Chip.
Fig. 5-5. Reprinted with permission from Etectronics Now, 11/92, p. 43. (c) Copyright Gcrnsback Publications, Inc., 1992.
Fig. 5-6. Reprinted with permission from Electronics Now, 11/92, p. 41. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 5-7. Reprinted with permission from 303 Circuits, p. 42.

Fig. 5-8. Reprinted with permission from Electronics Now, 11/92, p. 39. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 5-9. Reprinted with permission from Electronics Now, 11/92, p. 39. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 5-10. Reprinled with permission from R-E Experimenters Handbook, 1987, p. 74.
Fig. 5-11. Reprinted with permission from Popular Electronics, 1/92, p. 36. (c) Conyright Gernsback Publications, Inc., 1992.
Fig. 5-12. Reprinted with permission from Popular Electronics, Fact Card 243, (c) Copyright Gernsback Publications, Inc.
Fig. 5-13. Reprinted with permission from Radio-Electronics, 1/92, p. 35. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 5-14. Reprinted with permission from Popular Electronics, 4/92, p. 69. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 5-15. Reprinted with permission from Electronic Design, 3/89, p. 100.

## Chapter 6

Fig. 6-1. Reprinted with permission from 303 Circuits, p. 22.

Fig. 6-2. Reprinted with permission from 303 Cireuits, p. 10.

Fig. 6-3. William Sheets.
Fig. 6-4. Reprinted with permission from 303 Circuits, p. 40.

Fig. 6-5. Reprinted with permission from Popular Electronics, 6/92, p. 68. (c) Copyright Gernsback Publications, Inc., 1902.
Fig. 6-6. Reprinted with permission from 303 Circuits, pp. 12-13.
Fig. 6-7. William Sheets.
Fig. 6-8. Reprinted with permission from R-E Experimenters Handbook, 1987, p. 74.

Fig. 6-9. Reprinted with permission from Popular Electronics, Fact Card 267, (c) Copyright Gernsback Publications, Inc.
Fig. 6-10. Reprinted with permission from Popular Electronics, Fact Card 267, (c) Copyright Gerasback Publications, Inc.
Fig. 6-11. Reprinted with permission from R-E Experimenters Handbook, 1992, p. 37.
Fig. 6-12. Reprinted with permission from Popular Electronics, Fact Card 263, (c) Copyright Gernsback Publications, Inc.

## Chapter 7

Fig. 7-1. Reprinted with permission from 73 Amateur Radio Today, 8/92, p. 36.
Fig. 7-2. William Sheets.
Fig. 7-3. Reprinted with permission from RF Communications Handbook, 1989, pp. 2-14.

## Chapter 8

Fig. 8-1. Reprinted with permission from Popular Electronics, 9/92, p. 33. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 8-2. Reprinted with permission from Popular Elcctronics, 3/92, p. 75. (c) Copyright Gernsback Publications, Inc., 1092.
Fig. 8-3. William Sheets.
Fig. 8-4. Reprinted with permission from Electronics Now, $9 / 93$, p. 63. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 8-5. William Sheets.
Fig. 8-6. Reprinted with permission from Silicon $\mathrm{Chip}_{2}$ p. 27.

Fig. 8-7. Reprinted with permission from PE Hobbyist Handbook, 1990, pp. 86-87. (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 8-8. Reprinted with permission from Electronics Now, 11/92, p. 59. (c) Copyright Gcmsback Publications, Inc., 1992.
Fig. 8-9. Reprinted with permission from Electronics Hoobyist Handbook, 1993, p. 22.
Fig. 8-10. Reprinted with permission from Popular Electronics, 10/93, p. 64. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 8-11. Reprinted with permission from PE Hobbyist Handbook, p. 73. (c) Copyright Gernsback Publications, Inc.
Fig. 8-12. Reprinted with permission from Popular Electronics, 3/93, p. 62. (c) Copyright Gernsback Publications, Inc., 1993.

Fig. 8-13. Reprinted with pennission from Popular Electronics, 11/93, p. 72. (c) Copyright, Gernsback Publications, Inc., 1993.
Fig. 8-14. Reprinted with permission from Popular Electronics, 3/92, p. 73. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 8-15. Reprinted with permission from Popular Electronics, $3 / 92$, p. 75. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 8-16. Reprinted with permission from Popular Electronics, 3/92, p. 75. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 8-17. Reprinted with permission from Popular Electronics, $3 / 92$, p. 75. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 8-18. Reprinted with permission from Popular Elcetronics, 12/92, p. 71. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 8-19. William Sheets.
Fig. 8-20. Reprinted with permission from Radio-Electronies, 12/91, p. 75. (c) Copyright Gernsback Publications, Inc., 1991
Fig. 8-21. Reprinted with permission from Radio-Flectronics, $5 / 92$, p. 82. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 8-22. Reprinted with permission from Popular Electronics, 4/92, p. 71. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 8-23. William Sheets.
Fig. 8-24. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 158.

## Chapter 9

Fig. 9-1. Keprinted with permission from Popular Electronics, 6/93, p. 76. (c) Copyright Gernsbaek Publications, Inc., 1993.
Fig. 9-2. Reprinted with permission from R-E Experimenters Handbook, 1992, p. 122.
Fig. 9-3. Reprinted with permission from Popular Electronics, $4 / 92$, p. 71 \& 88. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 9-4. Reprinted with permission from National Semiconductor, Linear Edge, Summer 1992.
Fig. 9-5. Reprinted with permission from Radio-Electronics, 5/92, p. 12. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 10

Fig. 10-1. Reprinted with permission from PE Ilobbyist Handbook, 1991, pp. 44-45. (c) Copyright Gernsback Publications, Ine., 1991.

Fig. 10-2. Reprinted with permission from Electronics Now, 7/92, pp. 57-62. (c) Copyright, Gernsback Publications, Inc., 1992.
Fig. 10-3. Reprinted with permission from Popular Flectronics, Fact Card 198. (c) Copyright Gernsback Publications, Inc.
Fig. 10-4. Reprinted with permission from 73 Amateur Radio Today, 5/92, p. 26.
Fig. 10-5. Reprinted with permission from Electronic Design, $7 / 93$, p. 78.
Fig. 10-6. Reprinted with permission from Popular Electronics, Fact Card 198. (c) Copyright Gemsback Publications, Inc.
Fig. 10-7. Reprinted with permission from Popular Electronics, 11/91, p. 20. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 10-8. Reprinted with permission from Lincar Technology, Design Note 60.
Fig. 10-9. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 63-64. (c) Copyright Gemsback-Publications, Inc., 1991.
Fig. 10-10. Reprinted with permission from Elektor Electronics, 12/91, p. 72.
Fig. 10-11. Reprinted with permission from Elektor Electronics USA, 12/91, p. 36.

## Chapter 11

Fig. 11-1. Reprinted with permission from Popular Electronics, $8 / 93$, p. 79. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 11-2. Reprinted with permission from Popular Electronics, 6/93, p. 70. (c) Copyright Gemshark Publications, Inc., 1993.
Fig. 11-3. Reprinted with permission from Popular Electronics, 8/93, p. 79. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 11-4. Reprinted with permission from Popular Electronics, 8/93, p. 79. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 11-5. Reprinted with permission from National Serniconductor, Linear Edge, Issue \#5.
Fig. 11-6. Reprinted with permission from Electronics Now, 9/92, p. 96. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 11-7. William Sheets.

## Chapter 12

Fig. 12-1. Reprinted with permission from Electronics Ilobbyist Hlandbook, 1993, p. 58.
Fig. 12-2. Reprinted with permission from Electronics Hobbyisl Handbook, 1993, p. 59.

## Chapter 13

Fig. 13-1. Reprinted with permission from PE Hobbyist Handbook, 1992, p. 49. (c) Copyright Gernsback Publications, Inc.

## Chapter 14

Fig. 14-1. Reprinted with permission from Popular Electronics, 3/93, p. 44. (c) Copyright, Gernsback Publications, Inc., 1993.
Fig. 14-2. Reprinted wilh permission from 73 Amatcur Radio Today, 5/92, p. 20.
Fig. 14-3. Reprinted with permission from 73 Amatemr Radio Today, 5/92, p. 18.
Fig. 14-4. Reprinted with permission from Popular Electronics, Fact Card 206, (c) Copyright Gernsback Publications, Inc.
Fig. 14-5. William Sheets.
Fig. 14-6. Reprinted with permission from Popular Electronics, 10/93, p. 73. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 14-7. Reprinted with permission from Popular Electronics, Fact Card 206, (c) Copyright Gerrisback Publications, Inc.

## Chapter 15

Fig. 15-1. Reprinted wilh perruission from PE Hobbyist Handbook, 1991, pp 24-26. (c) Copyright Gernsback Publications, Inc., 1991.

## Chapter 16

Fig. 16-1. Reprinted with permission from Popular Electronics, 3/92, p. 60. (c) Copyright Gernsback Publications, Ine., 1992.
Fig. 16-2. Reprinted with permission from Electronics Now, 7/92, p. 51. (c) Copyright Gernsback Publications, Inc., 1992
Fig. 16-3. Reprinted with permission from Electronic Design, 3/93, pp. 67-68.

## Chapter 17

Fig. 17-1. Reprinted with pormission from Elektor Electronics, 12/91, pp. 78-79.
Fig. 17-2. Reprinted with permission from Elcetronics Hobbyist Handbook, 1998, p. 84.
Fig. 17-3. Reprinted with permission from Electronic: Design.
Fig. 17-4. Reprinted with permission from Popular Electronics, 11/91, p. 20. (c) Copyright, Gernsback Publications, Inc., 1991.
Fig. 17-5. Reprinted with permission from Popular

Electronics, 6/93, p. 72. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 18

Fig. 18-1. Reprinted with permission from Popular Electronics, 12/91, p. 58. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 18-2. Reprinted with permission from PE Hobbyist Handbook, 1990, pp. 34-36. (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 18-3. Reprinted with permission from Electronic Design, 5/92, p. 91.
Fig. 18-4. Repririted with permission from Popular Electronics, 6/92, p. 57. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 18-5. Reprintcd with permission from R-E Experimenters Handbook, 1992, p. 92.
Fig. 18-6. Reprinted with permission from Radin-Electronics, 3/92, p. 50. (c) Copyright Gernsback Publications, Inc, 1992.
Fig. 18-7. Reprinted with permission from 303 Circuits, p. 197.
Fig. 18-8. Reprinted with permission from Radio-Electronics, 2/92, p. 42. (c) Copyright Gemshack Publications, Inc, 1992.
Fig. 18-9. Reprinted with permission from Popular Electronics, 12/91, p. 58. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 18-10. Reprinted with permission from National Semuconductor, Linear Edge, Issue \#4, Summer 1992.

Fig. 18-11. Reprinted with permission from 73 Amateur Radio Today, 2/93, p 28.
Fig. 18-12. Williant Sheets.
Fig. 18-13. Reprinted with permission from 73 Amateur Radio 'lbday, 3/92, p. 24.
Fig. 18-14. Reprinted with permission from Popular Electronics, 7/92, p. 70. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 18-15. Reprinted with permission from Electronics Now, 9/92, p. 79. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 18-16. Reprinted with permission from National Semiconductor, Linear Edge, Spring 1992.
Fig. 18-17. Reprinted with permission from Popular Electronics, Fact Card 259, (c) Copyright Gemsback Publications, Inc.
Fig. 18-18. Reprinted with permission from Popular Electronics, Fact Card 257, (c) Copyright Gernsback Publications, Inc.

Fig. 18-19. Reprinted with permission from Linear Technology Corporation, 1993, Design Note 69.

## Chapter 19

Fig. 19-1. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 47.
Fig. 19-2. Reprinted with permission from PE Hobbyist Handbook, 1990, p. 101. (c) Copyright Gernsback Publications, Inc., 1990.

## Chapter 20

Fig. 20-1. Reprinted with permission from RF Design, 5/92, p. 80.
Fig. 20-2. William Sheets.
Fig. 20-3. Reprinted with permission from Electronic Design, 11/92, p. 61.
Fig. 20-4. Reprinted with permission from Electronics Now, 12/92, p. 12. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 20-5. Reprinted with permission from Radio-Electronics, 2/92, p. 89. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 20-6. Reprinted with permission from 73 Amateur Radio Today, 5/92, p. 64.
Fig. 20-7. Reprinted with permission from 73 Amateur Radio Today, 8/92, p. 48.
Fig. 20-8. Reprinted with permission from 73 Arnateur Radio Today, 1/92, p. 22.
Fig. 20-9. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 60.
Fig. 20-10. William Sheets.
Fig. 20-11. Reprinted with permission from Popular Electronics, Fact Card 229, (c) Copyright Gernsback Publications, Inc.

## Chapter 21

Fig. 21-1. Reprinted with pormission from Electronics Hobbyist Handbook, 1993, p. 78.
Fig. 21-2. Reprinted with permission from National Semiconductor, Linear Edge, Issue \#5.
Fig. 21-3. Reprinted with permission from Popular Electronics, Fact Card 257, (c) Copyright Gernsback Publications, Inc.
Fig. 21-4. Reprinted with permission from National Semiconductor, Linear Edge, Issue \#5.

## Chapter 22

Fig. 22-1. Reprinted with permission from Silicon Chip.
Fig. 22-2. Reprinted with permission from Electronics Now, 12/92, p. 49. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 23

Fig. 23-1. Reprinted with permission from Elektor Electronics, 12/91, p. 81.

## Chapter 24

Fig. 24-1. Reprinted with permission from PE Hobbyist Handbook, 1992, p. 70. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 24-2. Reprinted with permission from Electronics Now, 12/92, p. 61. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 24-3. Reprinted with permission from Electronics Now, 12/92, p. 65. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 24-4. Reprinted with permission from Electronic Design, 5/92, p. 95.
Fig. 24-5. Reprinted with permission from Linear Technology, Design Note 61.
Fig. 24-6. Reprinted with permission from Linear Technology, Design Note 61.
Fig. 24-7. Reprinted with permission from Linear Technology, Design Note 61.
Fig. 24-8. Reprinted with permission from Popular Electronics, Fact Card, 270, (c) Copyright Gernsback Publications, Inc.
Fig. 24-9. Reprinted with permission from Popular Electronics, Fact Card, 269, (c) Copyright Gernsback Publications, Inc.
Fig. 24-10. Reprinted with permission from Popular Electronics, Fact Card, 270, (c) Copyright Gernsback Publications, Inc.
Fig. 24-11. Reprinted with permission from 73 Amateur Radio Today, 8/89, p. 48.

## Chapter 25

Fig. 25-1. Reprinted with permission from PE Hobbyist Handbook, 1992, pp. 63-64. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 25-2. Reprinted with permission from 303 Circuits, p. 14.
Fig. 25-3. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 58.
Fig. 25-4. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 57.
Fig. 25-5. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 57.
Fig. 25-6. Reprinted with permission from Elector Electronics IUSA, 12/91, p. 36.

## Chapter 26

Fig. 26-1. Reprinted with permission from Radio-Electronics, 5/92, p. 72. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 26-2. Reprinted with permission from Radio-Electronics, 5/92, p. 71. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 26-3. Reprinted with permission from Flectronic Design, 8/92, p. 70.
Fig. 26-4. Reprinted with permission from Radio-Electronics, 5/92, p. 69. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 26-5. Reprinted with permission from Radio-Electronics, 5/92, p. 69. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 26-6. Reprinted with permission from Radio-Electronics, 5/92, p. 70. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 26-7. Reprinted with permission from Radio-Electronics, 5/92, p. 69. (c) Copyright Gernsback Publications, Ine., 1992.
Fig. 26-8. Reprinted with permission from Radio-Electronics, 5/92, p. 70. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 26-9. Reprinted with permission from Radio-Electronics, 5/92, p. 71. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 26-10. Reprinted with permission from RadioElectronics, 5/92, p. 70. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 26-11. Reprinted with permission from RadioElectronics, 5/92, p. 71. (c) Copyright Gemsback Publicalions, Inc., 1992.
Fig. 26-12. Reprinted with permission from RadioElectronics, 5/92, p. 70. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 27

Fig. 27-1. Reprinted with permission from Popular Electronics, $9 / 93$, p. 42. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 27-2. Reprinted with permission from 303 Circuits, p. 266.
Fig. 27-3. Reprinted with permission from Popular Electronics, 6/93, p. 63. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 28

Fig. 28-1. Reprinted with permission from R-E Experimenters Handbook, 1992, p. 65.

Fig. 28-2. Reprinted with permission from R-E Experimenters Handbook, 1992, p. 65.

## Chapter 29

Fig. 29-1. Reprinted with permission from 73 Amateur Radio Today, $3 / 92$, p. 44.
Fig. 29-2. Reprinted with permission from 73 Amateur Radio Today, 1/92
Fig. 29-3. Reprinted with permission from 73 Amateur Radio Today, $5 / 90$, p. 80.
Fig. 29-4. Reprinted with permission from 73 Amateur Radio Today, $9 / 90$, p. 9.
Fig. 29-5. Reprinted with permission from Popular Electronics, 11/93, p. 73. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 30

Fig. 30-1. Reprinted with permission from Popular Electronics, Fact Card, 226, (c) Copyright Gernsback Publications, Inc.
Fig. 30-2. Reprinted with permission from Popular Electronics, Fact Card, 226, (c) Copyright Gernsback Publications, Inc.
Fig. 30-3. Reprinted with permission from Popular Electronics, Fact Card, 226, (c) Copyright, Gernsback Publications, Inc.
Fig. 30-4. Reprinted with permission from Popular Electronics, Fact Card, 227. (c) Copyright Gernsback Publications, Inc.
Fig. 30-5. Reprinted with permission from Popular Electronics, Fact Card, 227. (c) Copyright Gernsback Publications, Inc.
Fig. 30-6. Reprinted with permission from Popular Electronics, Fact Card, 227. (c) Copyright Gernsback Publications, Inc.
lig. 30-7. Reprinted with permission from Popular Electronics, Fact Card, 227. (c) Copyright Gernsback Publications, Inc.
Fig. 30-8. Reprinted with permission from Popular Electronics, Fact Card, 228. (c) Copyright Gernsback Publications, Inc.
Fig. 30-9. Reprinted with permission from Popular Electronics, Fact Card, 228. (c) Copyright Gernsback Publications, Inc.
Pig. 30-10. Reprinted with permission from Popular Electronics, Fact Card, 228. (c) Copyright Gernsback Publications, Inc.
Fig. 30-11. Reprinted with permission from Popular Electronics, Fact Card, 228. (c) Copyright Gernsback Publications, Inc.

Fig. 30-12. Reprinted with permission from Popular Electronics, Fact Card, 225. (c) Copyright Gernsback Publications, Inc,
Fig. 30-13. Reprinted with permission from Popular Electronics, Fact Card, 224. (c) Copyright Gernsback Publications, Inc.
Fig. 30-14. Reprinted with permission from Popalar Electronics, Fact Card, 223. (c) Copyright Gemsback Publications, Inc.
Fig. 30-15. Reprinted with permission from Popular Electronics, Fact Card, 231. (c) Copyright Gemsback Publications, Inc.
Fig. 30-16. Reprinted with permission from Popular Electronics, Fact Card, 231. (c) Copyright Gomsback Publications, Inc.
Fig. 30-17. Reprinted with permission from Electronic Desigrl, 2/93, p. 75.
Fig. 30-18. Reprinted with permission from Electronics Now, 8/93, p. 73. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 30-19. Reprinted with permission from Electronics Now, 8/93, p. 72. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 30-20. Reprinted with permission from Electronics Now, 4/93, p. 72. (c) Copyright: Gernsback Publications, Inc., 1993 .
Fig. 30-21. Reprinted with permission from Electronics Now, 8/93, p. 70. (c) Copyright Gernsback Publications, Ine., 1993.
Fig. 30-22. Reprinted with pernission from Popular Electronics, 6/92, p. 68. (c) Conyright, Gemsback Publications, Inc., 1992.
Fig. 30-23. Reprinted with permission from Electronics Now, 8/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 30-24. Reprinted with permission from Popular Electronics, 6/92, p. 67. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 30-25. Reprinted with permission from Electronics Now, 8/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 30-26. Reprinted with perrrission from Electronics Now, 8/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 30-27. Reprinted with permission from Linear Technology Corporation, 1993, Advertisement, Circle No. 51.
Fig. 30-28. Reprinted with permission from Electronics Now, 8/98, p. 70. (c) Copyright, Gernsback Publications, Inc., 1993.
Fig. 30-29. William Sheets.

Fig. 30-30. William Sheets.
Fig. 30-31. William Sheets.
Fig. 30-32. William Sheets.
Fig. 30-33. William Sheet.s.
Fig. 30-34. William Shects.
Fig. 30-35, Reprinted with permission from Electronic Design, 7/92, p. 62.
Fig. 30-36. Reprinted with permission from 303 Circuits, p. 185.
Fig. 30-37. Reprinted with permission from National Semiconducter, Linear Edge, Summer 1992.
Fig. 30-38. Reprinted with permission from Popular Electronics, Fact Card 224. (e) Copyright Gernsback Publications, Inc.
Fig. 30-39. Reprinted with permission from Popular Electronics, Fact Card 231. (c) Copyright Gernsback Publications, Inc.
Fig. 30-40. Reprinted with permission from Popular Electronics, Fact Card 242. (c) Copyright Gernsback Publications, Inc.
Fig. 30-41. William Sheets.

## Chapter 31

Fig. 31-1. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 159.
Fig. 31-2. Reprinted with permission from Popular Electronics, 12/91, p. 80. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 31-3. William Shects.
Fig. 31-4. William Sheets.
Fig. 31-5. Reprinted with permission from PE Hobbyist Handbook, 1991, p. 10. (r) Copyright Gernsback Publications, Inc., 1991.
Fig. 31-6. William Sheets.
Fig. 31-7. Reprinted with permission from Radio-Electronics, 11/89, p. 12. (c) Copyright Gernsback Publications, Inc., 1989.
Fig. 31-8. Reprinted with permission from R-F. Experimenters Handbook, p. 28.

## Chapter 32

Fig. 32-1. Reprinted with permission from Electronic Enginecring, $9 / 89$, p. 30.

## Chapter 33

Fig. 33-1. Reprinted with permission from Electronic. Design, $7 / 93$, p. 76.
Fig. 33-2. Reprinted with permission from Popular Flectronics, Fact Card 254. (c) Copyright, Gernsback Publications, Inc.

Fig. 33-3. Reprinted with permission from 73 Amateur Radio Today, 1/92, p. 28.
Fig. 33-4. Reprinted with permission from Popular Electronics, Fact Card 253. (c) Copyright Gerrisback Publications, Inc.
Fig. 33-5. Reprinted with permission from Popular Electronics, 11/91, p. 22. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 33-6. Reprinted with permission from Elektor Electronics, $3 / 92$, p. 58.
Fig. 33-7. William Sheets.
Fig. 33-8. William Sheets.
Fig. 33-9. Reprinted with permission from Popular Electronics, Fact Card 230. (c) Copyright Gernsback Publications, Inc.
Fig. 33-10. William Sheets.
Fig. 33-11. Reprinted with permission from Popular Electronics, Fact Card 257. (c) Copyright Gernsback Publications, Inc.
Fig. 33-12. Reprinted with permission from Popular Electronics, Fact Card 243. (c) Copyright Gernsback Publications, Inc.
Fig. 33-13. Reprinted wilh permission from Electronic Design, 7/93, p. 76.
Fig. 33-14. William Sheets.
Fig. 33-15. Reprinted with permission from Popular Electronics, Fact Card 258. (c) Copyright Gernsback Publications, Inc.

## Chapter 34

Fig. 34-1. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 33.
Fig. 34-2. Reprinted with permission from PE Hobbyist Handbook, 1991, p. 47. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 34-3. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 36-37. (c) Copyright Gernsback Publications, Inc.., 1991.

## Chapter 35

Fig. 35-1. Reprinted with permission from Popular Electronics, 11/93, p. 33. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 35-2. Reprinted with permission from Electronics Now, 7/93, p. 40. (c) Copyright Gemsback Publications, Inc., 1993.

## Chapter 36

Fig. 36-1. Reprinted with permission from Popular Electronics, Fact Card, 268. (c) Copyright Gernsback Publications, Inc.

## Chapter 37

Fig. 37-1. Reprinted with permission from Popular Electronics, 7/92, pp. 42-43. (c) Copyright Gerns back Publications, Inc., 1982.
Fig. 37-2. Reprinted with permission from PE Hobbyist Handbook, 1901, p. 59. (c) Copyright Gemsback Publications, Inc., 1991.

## Chapter 38

Fig. 38-1. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 81.
Fig. 38-2. Reprinted with permission from Popular Electronics, 7/93, p. 75. (c) Copyright, Gernsback Publications, Inc., 1993.

## Chapter 39

Fig. 39-1. Reprinted with permission from Popular Electronics, 6/92, p. 39. (c) Copyright Gcrnsback Publications, Inc., 1992.
Fig. 39-2. Reprinted with permission from Popular Electronics, 1/92, p. 24. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 39-3. Reprinted with permission from Radio-Electronics, 10/89, p. 43. (c) Copyright Gernsback Publications, Inc., 1989.
Fig. 39-4. Reprinted with permission from Popular Electronics, 1/92, p. 24. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 39-5. William Sheets.
Fig. 39-6. William Sheets.
Fig. 39-7. Reprinted with permission from Popular Electronics, 12/93, p. 32. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 39-8. Reprinted wilh permission from Popular Electronics, $12 / 93$, p. 32. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 39-9. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 75-77. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 39-10. Reprinted with permission from RadioFlectronics, 10/89, p. 43. (c) Copyright Gcrnsback Publications, Inc., 1989.
Fig. 39-11. Reprinted with permission from Popular Electronics, $3 / 93$, p. 43. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 39-12. Reprinted with permission from Electronics Now, 5/93, p. 12. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 39-13. Reprinted with permission from Electronics Now, 3/93, p. 83. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 40

Fig. 40-1. Reprinted with permission from Popular Electronics, 4/92, p. 88. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 40-2. Reprinted with permussion from Popular Electronics, 4/92, pp. 70-71. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 41

Fig. 41-1. Reprinted with permission from National Semiconductor, Linear Edge, Spring 1992.
Fig. 41-2. Reprinted with permission from National Semiconductor, Linear Edge, Summer 1992.

## Chapter 42

Fig. 42-1. Reprinted with permission from Popular Electronics, Fact Card 255. (c) Copyright Gernsback Publications, Inc.

## Chapter 43

Fig. 43-1. Reprinted with permission from Popular Electronics, 4/92, p. 67. (c) Copyright Gernsback Publications, lnc., 1992.
Fig. 43-2. Reprinted with permission from Popular Electronics, 8/91, p. 75. (c) Copyright Gernsback Publications, lnc., 1991.
Fig. 43-3. Reprinted with permission from Popular Electronics, 8/92, p. 76. (c) Copyright Gernsback Fublications, Inc., 1992.

## Chapter 44

Fig. 44-1. Reprinted with permission from Radio-ElecIronics, 2/92, p. 66. (c) Conyright, Germshack Pub)lications, Inc., 1992.
Fig. 44-2. Reprinted with permission from Popular Electronics, Fact Card 265. (c) Copyright, Gernsback Publications, Inc.
Fig. 44-3. Reprinted with permission from 73 Arnateur Radio Today, 4/89. p. 87. (c) Copyright Gernsback Publications, Inc., 1989.
Fig. 44-4. Reprinted with permission from Popular Electronics, 6/93, p. 55. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 44-5. Reprinted with permission from Radio-Electronics, 7/90, p. 64. (c) Copyright Gernsback Publications, Inc., 1990.

## Chapter 45

Fig. 45-1. Reprinted with permission from Electronics Now, 10/92, p. 76. (c) Copyright Gernsback Publi cations, Inc., 1992.

Fig. 45-2. William Sheets
Fig. 45-3. Reprinted with permission from Popular Electronics, Fact Card 267. (c) Copyright Gernsback Publications, Inc.
Fig. 45-4. Reprinted with permission from Popular Electronics, Fact Card 266. (c) Copyright Gernsback Publications, Inc.

## Chapter 46

Fig. 46-1. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 14.

## Chapter 47

Fig. 47-1. Reprinted with permission from Electronic Design, 10/93, p. 73.
Fig. 47-2. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 62.
F'ig. 47-3. Reprinted with permission from R-E Experimenters Hauldbook, 1992, p. 122.
Fig. 47-4. William Sheets.
Fig. 47-5. Rcprinted with permission from PE Hobbyist handbook, 1991, pp. 42-43. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 47-6. Reprinted with permission from Popular Electronics, 6/93, p. 78. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 48

Fig. 48-1. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 89-90. (c) Copyright Gernsback Publications, Inc., 1991.

## Chapter 49

Fig. 49-1. Reprinted with permission from Popular Electronics, Application Circuit 215. (c) Copyright Gernsback Publications, Inc.
Fig. 49-2. Reprinted with permission from Popular Flectronics, Application Circuil 215. (c) Copyright Gernsback Publications, Inc.
Fig. 49-3. Reprinted with permission from Electronics Now, 12/92, p. 60. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 49-4. Reprinted with permission from Electronies Now, 12/92, p. 59. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 49-5. Wiliiam Sheets.
Fig. 49-6. William Sheets.
Fig. 49-7. Reprinted with permission from Popular Electronics, 3/92, p. 71. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 49-8. Reprinted with permission from Popular

Electronics, 3/92, p. 71. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 50

Fig. 50-1. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 79-80. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 50-2. Reprinted with permission from PF Hobbyist Handbook, 1990, pp. 45-47. (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 50-3. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 64.
Fig. 50-4. Reprinted with permission from 303 Circuits, p. 238
Fig. 50-5. Reprinted with permission from Electronics Design, 5/92, p. 93.
Fig. 50-6. Reprinted with permission from Radio-Electronics, $7 / 90$, p. 65. (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 50-7. Reprinted with permission from T'E Hobbyist Handbook, 1991, p. 82. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 50-8. Reprinted with permission from Radio-Electronics, 7/90, p. 64. (c) Copyright Germsback Publications, Ine., 1990.
Fig. 50-9. Reprinted with permission from 303 Circuits, p. 251.
Fig. 50-10. Reprinted with permission from Popular Electronics, 11/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 50-11. Reprinted with permission from Elektor Electronics, 12/91, p. 87.
Fig. 50-12. Reprinted with permission from RadioElcetronics, 10/89, p. 12. (c) Copyright Gernsback Publications, Inc., 1989.
Fig. 50-13. Reprinted with permission from Electronic: Design, 5/92, p. 93.
Fig. 50-14. Reprinted with permission from 303 Circuits, p. 63 .

## Chapter 51

Fig. 51-1. Reprinted with permission from Popular Electronics, 8/92, p. 73. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 51-2. Willian Sheets.
Fig. 51-3. William Sheets.
Fig. 51-4. William Sheets.
Fig. 51-5. William Sheets.
Fig. 51-6. William Shects.
Fig. 51-7. William Sheets.
Fig. 51-8. William Sheets.

Fig. 51-9. Reprinted with permission from Popular Electronics, 2/92, p. 90. (c) Copyright Gemsbark Publications, Tnc., 1992.
Eig. 51-10. William Sheets.
Fig. 51-11. William Sheets.
Fig. 51-12. William Sheets.
Fig. 51-13. Reprinted with permission from Popular Electronics, $3 / 93$, p. 43. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 51-14 William Sheets.
Fig. 51-15. William Sheets.

## Chapter 52

Fig. 52-1. Reprinted with permission from PE Hobbyist Handbook, pp. 93-94.
Fig. 52-2. Reprinted with permission from Popular Electronics, 6/92, p. 33. (c) Copyright Gemsback P'ublications, Inc., 1992.

## Chapter 53

lig. 53-1. Reprinted with permission from Popular Electronics, 12/91, p. 22. (c) Copyright Gerrisback Publications, Inc., 1991.
Fig. 53-2. Reprinted with permission from Popular Electronics, $12 / 91$, p. 18. (c) Copyright Gernsback Publications, Inc., 1991

## Chapter 54

Fig. 54-1. Reprinted with permission from Electronic Design, $2 / 93$, p. 83.
Fig. 54-2. Keprinted with permission from 73 Amateur Radio Today, 11/92, p. 34.
Fig. 54-3. Reprinted with permission from Popular Electronics, Fact Card 258. (c) Copyright Gernsback Publications, Inc.

## Chapter 55

Fig. 55-1. Reprinted with permission from Radio-Electronics, 12/91, pp. 31-36. (c) Conyright Gernsback Publications, Inc., 1991.
Fig. 55-2. Reprinted with permission from Radio-Elec.tronics, 12/91, p. 48. (c) Copyright Gemsback Publications, Inc., 1991.
Fig. 55-3. William Sheets.
Fig. 55-4. Reprinted with permission from Popular Electronics, 2/92, pp. 53-54. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 55-5. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 39.
Fig. 55-6. Reprinted with permission from Radio-Electronics, 5/92, p. 52. (c) Copyright Gernsback Publications, Inc., 1992.

Fig. 55-7. Reprinted with permission from Electronics Now, 7/93, p. 45. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 55-8. Reprinted with permission from Radio-Electronics, 8/86, p. 42. (r) Conyright, Gernsback Publications, Inc., 1986.
Fig. 55-9. Reprinted with permission from Popular Electronics, 4/92, p. 53. (c) Copyright Gernsback Publications, Ine., 1992.
Fig. 55-10. Reprinted with permission from Popular Electronics, 12/91, p. 26. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 55-11. Reprinted with permission from Popular Electronics, 9792, p. 72. (c) Copyright Gernsbark Publications, Ine., 1992.
Fig. 55-12. William Sheets.
Fig. 55-13. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 101.
Fig. 55-14. Reprinted with permission from Popular Electronics, 3/93, p. 42. (c) Copyright Gernsback Publications, Ine, 1993.
Fig. 55-15. William Sheets.
Fig. 55-16. Reprinted with permission from Flectronics Hobbyist Handbook, 1993, p. 90.
Fig. 55-17. Reprinted with permission from Elcctronic Design, 4/93, p. 94.
Fig. 55-18. Reprinted with pormission from RadioElectronics, 12/91, p. 51. (c) Copyright Gemsback Fublications, Inc., 1991.
Fig. 55-19. Reprinted with permission from Popular Electronics, 5/92, p. 75. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 55-20. Reprinted with permission from 303 Circuits, p. 308.
Fig. 55-21. Reprinted with permission from Electronics Now, 12/92, p. 64. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 55-22. William Sheets.
Fig. 55-23. Reprinted with permission from Popular Electronics, 3/93, p. 42. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 55-24. Reprinted with permission from Popular Elcetronics, Fact Card 110. (c) Copyright Gernsback Publications, Inc.
Fig. 55-25. Rcprinted with permission from Electronic, Design, 4/93, p. 56 .
Fig. 55-26. Reprinted with permission from Popular Electronics, Fact Card 221. (c) Copyright Gernsback Publications, Inc.
Fig. 55-27. Reprinted with permission from Popular

Flectronics, Fact Card 221. (c) Copyright Gernsback Publications, Inc.
Fig. 55-28. Reprinted with pernussion from Popular Electronics, 11/93, p. 42. (c) Copyright. Gernsback Publications, Inc., 1993.
Fig. 55-29. Reprinted with permission from Popular Electronics, 9/93, p. 45. (c) Copyright Gemsback Publications, Ince, 1993.
Fig. 55-30. Reprinted with permission from 303 Cir cuits, p. 187.
Fig. 55-31. Reprinted with permission from 73 Amateur Radio Today, 5/92, p. 62.
Fig. 55-32. Reprinted with permission from Electronics Now, $8 / 93$, p. 73. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 55-33. Reprinted with permission from Popular Electronics, 11/91, p. 18. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 55-34. Reprinted with permission from R-E Experimenters Handbook, 1989, pp. 156-157.
Fig. 55-35. Reprinted with perrission from Popular Electronics, 3/93, p. 75. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 55-36. Reprinted with permission from R-E Experimenters Handbook, 1992, p. 31.
Fig. 55-37. Reprinted with permission from Electronic Design, 5/92, p. 92.
Fig. 55-38. Reprinted with permission from Popular Electronics, $9 / 92$, p. 72. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 55-39. Reprinted with permission from 73 Amateur Radio Tnday, 1/92, p. 38.
Fig. 55-40. Reprinted with permission from Popular Electronics, $3 / 93$, p. 42 (c) Copyright Gerrisback Publications, Inc, 1993.
Fig. 55-41. Reprinted with permission from 303 Circuits, p. 248.
Fig. 55-42. William Sheets.
Fig. 55-43. Reprinted with permission from PE Hohbyist Handbook, 1991, p. 14. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 55-44. William Sheets.
Fig. 55-45. Reprinted with permussion from Electronic Design, $3 / 93$.
Fig. 55-46. Reprinted with permission from Popular Electronics, $9 / 93$, p. 46. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 55-47. Reprinted with permission from Popular Electronics, Fact Card, 198. (c) Copyright Gernsback Publications, Inc.

Fig. 55-48. Reprinted with pernission from Popular Electronics, Fact Card, 221. (c) Copyright, Gemsback Publications, Inc.
Fig. 55-49. Reprinted with permission from Popular Electronics, $3 / 93$, p. 73 . (c) Copyright Gemsback Publications, Inc., 1993.

## Chapter 56

Fig. 56-1. Reprinted with permission from 303 Circuils, pp. 249-250.
Fig. 56-2. Reprinted with permission from Popular Electronics, 3/89, p. 69. (c) Copyright Gernsback Publications, Inc., 1989.
Fig. 56-3. Reprinted with permission from PE Ilobbyist Handbook, 1991, pp. 71-72. (c) Copyright Gernsback Publications, Inc., 1991.

## Chapter 57

Fig. 57-1. Reprinted with permission from Popular Electronics, $12 / 92$, pp. 53-54. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 57-2. Reprinted with permission from Electronics Hobbyist Handbook, 1992, p. 93.
Fig, 57-3. Reprinted with permission from Popular Electronics, 3/93, p. 36. (c) Copyright Gernsback Publications, Inc, 1993.
Fig. 57-4. Reprinted with permission from Yopular Electronics, 10/92, pp. 39-40. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 57-5. William Sheets.
Fig. 57-6. Reprinted with permission from 303 Circuits, p 265.
Fig. 57-7. Reprinted with nermiscion from Popular Electronics, 11/93, p. 55. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 57-8. Reprinted with permission from R-E Experimenters Handbook, 1989, pp. 38-39.
Fig. 57-9. Reprinted with permission from Radio-Elcctronics, 1/92, p. 82. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 57-10. Reprinted with permission from Electronic Engineering, 11/89, pp. 21-22.
Fig. 57-11. Reprinted with permission from R-E Experimenters Handbook, pp. 118-120.
Fig. 57-12. Reprinted with permission from Electronic Design, 8/92, p. 70.
Fig. 57-13. Reprinted with permission from Electronics Now, 7/92, p. 10. (c) Copyright Gernsback Publications, Inc., 1992.

Fig. 57-14. Reprinted with permission from Popular Electronics, $12 / 92$, p. 70. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 57-15. Reprinted with permission from 73 Amateur Radio Today, 8/92, p. 48.
Fig. 57-16. Reprinted with permission from Maxim Engineering Journal, Volume 4, pp. 11-12.
Fig. 57-17. Reprinted with permission from RadioElectronics, 10/89, p. 13. (c) Copyright Gernsback Publications, Inc., 1889.
Fig. 57-18. Reprinted with permission from Elektor Electronics, $3 / 92$, p. 20 .
Fig. 57-19. Reprinted with permission from Popular Flectronics, Fact Card 223. (c) Copyright Gernsback Publications, Inc.
Fig. 57-20. Reprinted with permission from Popular Electronics, Fact Card 257. (c) Copyright Gernsback Publications, Inc.
Pig. 57-21. Reprinted with permission from Popular Electronics, Fact Card 259. (c) Copyright Gernsback Fublications, Inc.
Fig. 57-22. Reprinted with permission from Popular Elcetronics, 11/93, p. 80. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 57-23. Reprinted with permission from 73 Amateur Radio Today, 3/92, p. 8.
Fig. 57-24. Reprinteri with permission from Electronic Design, 4/93, p. 93.
Fig. 57-25. Reprinted with permission from Popular Flectronics, 11/91, p. 18. (c.) Copyright Gemsback Publications, Inc., 1991.
Fig. 57-26. Reprinted with permission from Popular Electronics, 11/91, p. 18. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 57-27. Reprinted with permission from Electronic Design, 7/92, p. 59.
Fig. 57-28. Reprinted with permission from Popular Electronics, 6/93, p. 55. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 57-29. Reprinted with permission from Electronic Design, 10/93, p. 74.
lig. 57-30. Reprinted with permission from 73 Amateur Radio Today, 4/89, p. 87.
Fig. 57-31. William Sheets.
Fig. 57-32. Reprinted with permission from Popular Electronics, 9/92, p. 72. (c) Copyright Germsback Publications, Inc., 1992.
Fig. 57-33. Reprinted with permission from Precision Monolithics Inc., 1981. Full Line Catalog, pp. 6-59. Fig. 57-34. William Sheets.

Fig. 57-35. Reprinted with permission from linear Databook, 1986, pp. 8-12.
Fig. 57-36. Reprinted with permission from QST, 3/89, p. 36.

Fig. 57-37. Reprinted with permission from 73 Amateur Radio Today, 2/93, p. 46. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 57-38. Reprinted with permission from 73 Amateur Radio Today, 2/98, p. 48. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 57-39. Reprinted with permission from Electronics Now, 10/92, p. 80. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 57-40. Reprinted with permission from Electronic Design, 5/92, p. 94.
Fig. 57-41. William Sheets.
Fig. 57-42. Reprinted with permission from QST, $3 / 89$, p. 35.

Fig. 57-43. Reprinted with permission from 73 Amateur Radio Today, 2/93, p. 46.
Fig. 57-44. Reprinted with permission from Popular Electronics, 3/92, p. 70. (c) Copyright Gemsback Publications, Inc., 1992.

## Chapter 58

Fig. 58-1. Reprinted with perrission from Silicon Chip, p. 56.
Fig. 58-2. Reprinted with permission from Electronics Now, 10/93, p. 12. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 58-3. William Sheets.
Fig. 58-4. William Sheets.
Fig. 58-5. Reprinted with permission from Popular Electronics, Fact Card 264. (c) Copyright Gernsback Publications, Inc.

## Chapter 59

Fig. 59-1. Reprinted with permission from RF Design, 3/93, pp. 92-93.
Fig. 59-2. William Sheets.
Fig. 59-3. Reprinted with permussion from RF Design, 3/93, p. 92.

## Chapter 60

Fig. 60-1. Reprinted with permussion from Silicon Chip, p. 46.
Fig. 60-2. Reprinted with permission from Popular Electronics, 10/92, pp. 31-32. (r) Copyright Gernsback Publications, Inc., 1992.
Fig. 60-3. Reprinted with perrussion from Popular Electronics, 10/93, n. 72. (c) Copyright Gernsback

Publications, Inc., 1993.
Fig. 60-4. Reprinted with perrission from R-E Experimenters Handbook, p. 41.

## Chapter 61

Fig. 61-1. Reprinted with permission from Popular Electronics, Fact Card 198. (c) Copyright Gernsback Publications, Inc.
Fig. 61-2. Reprinted with permission from Popular Electronics, $9 / 92$, p. 75. (c) Copyright Gernsbark Publications, Inc., 1992.
Fig. 61-3. Reprinted with permission from PE Hobbyist Hardbook, p. 12. (c) Copyright Gernsback Publications, Inc.

## Chapter 62

Fig. 62-1. Reprinted with permission from Popular Electronics, 10/93, p. 31. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 63

Fig. 63-1. Reprinted with permission from Radio-Electronics, 7/90, p. 66. (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 63-2. Reprinted with permission from Radio-Electronics, 2/92, p. 12. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 63-3. Reprinted with permission from Popular Flectronics, 6/93, p. 73.
Fig. 63-4. Reprinted with permission from Apex Microtachnology Corporation.
Fig. 63-5. Reprinted with permission from Popular Electronics, 3/92, p. 72. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 63-6. Reprinted with permission from Popular Electromics, 6/93, p. 73. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 64

Fig. 64-1. William Sheets.

## Chapter 65

Fig. 65-1. William Sheets.
Fig. 65-2. William Sheets.
Fig. 65-3. William Sheets.
Fig. 65-4. William Sheets.
Fig. 65-5. William Shects.
Fig. 65-6. William Sheets.
Fig. 65-7. William Sheets.
Fig. 65-8. Reprinted with permission from Popular Electronics, Fact Card 259. (c) Copyright Gerns-
back Publications, Inc.
Fig. 65-9. Reprinted with permission from Electronics Now, 10/92, p. 69. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 65-10. Reprinted with permission from Popular Electronics, Fact Card 268. (c) Copyright Gernsback Publications, Inc.

## Chapter 66

Fig. 66-1. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 17.
Fig. 66-2. Reprinted with permission from Electronics Now, 6/93, p. 47. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 66-3. Reprinted with permission from Elektor Electronics, 3/92, p. 15.
Fig. 66-4. Reprinted with permission from Electronics Now, 11/92, p. 63. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 66-5. Reprinted with pernussion from Elektor Electronics, $3 / 92$, p. 14.
Fig. 66-6. Reprinted with permission from Radio-Electronics, $7 / 90$, p. 66. (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 66-7. Reprinted with permission from Radio- Electronics, $3 / 92$, p. 77. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 67

Fig. 67-1. Reprinted with permission from 303 Circuits, p. 312.

## Chapter 68

Fig. 68-1. Reprinted with permussion from Popular Electronics, Fact Card 242. (c) Copyright Gernsback Publications, Inc.
Fig. 68-2. Reprinted with permission from 73 Amateur Radio Today, 11/92, p. 12.
Fig. 68-3. Reprinted wilh permission from 73 Amateur Radio Today, 11/92, p. 12.
Fig. 68-4. Rcprinted with permission from 73 Amateur Radio Today, 11/92, p. 12.

## Chapter 69

Fig. 69-1. Reprinted with permission from Electronic Design, 1/03, p. 116.
Fig. 69-2. Reprinted with permission from Electronic. Design, 4/93, p. 93.
Fig. 69-3. Reprinted with permission from Popular Electronics, Fact Card 253. (c) Copyright Gernsback Publications, Inc.

Fig. 69-4. Reprinted with permission from Electronic Design, $3 / 89$, p. 100.
Fig. 69-5. William Sheets.
Fig. 69-6. Reprinted with permission from Electronic Design, 1/93, p. 63.
Fig. 69-7. Reprinted with permussion from Maxim Engineering Journal, Volume 3, p. 17.
Fig. 69-8. Reprinted with permission from Maxim Enginecring Journal, Volume 3, p. 28.

## Chapter 70

Fig. 70-1. Reprinted with permission from Popular Electronics, $3 / 93$, p. 45. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 70-2. Reprinted with permission from Electronic Engineering, 8/93, p. 18.
Fig. 70-3. Reprinted with permission from Popular Electronics, 10/92, pp. 55-56. (c) Copyright Gernsback Publicalions, Inc., 1992.
Fig. 70-4. Reprinted with permission from Popular Electronics, 10/92, p. 56. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 70-5. William Sheets.
Fig. 70-6. Reprinted with permission from Popular Electronics, $9 / 93$, p. 76. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 70-7. Reprinted with permission from Electronies Now, 11/92, p. 14. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 70-8. William Sheets.

## Chapter 71

Fig. 71-1. Reprinted with permission from 73 Amateur Radio Today, 2/93, p. 48.
Fig. 71-2. Reprinted with permission from Popular Electronics, Fact Card 229. (c) Copyright Gernsback Publications, Inc.
Fig. 71-3. Reprinted with perrassion from Popular Electronics, Fact Card 230. (c) Copyright Gernsback Publications, Inc.
Fig. 71-4. Reprinted with permission from QST, 2/89, pp. 33-35.
Fig. 71-5. Reprinted with permission from Popular Electronics, 11/91, p. 21. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 71-6. Reprinted with pernission from Radio-Electronics, $12 / 91$, p. 12. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 71-7. William Sheets.
Fig. 71-8. William Sheets.
Fig. 71-9. William Sheets.
Fig. 71-10. William Shects.

Fig. 71-11. Reprinted with permission from 303 Circuits, p. 323.
Fig. 71-12. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 59.
Fig. 71-13. Reprinted with permission from Popular Electronics, 2/92, pp. 29-31. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 71-14. Reprinted with permission from Popular Electronics, 12/93, p. 70. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 71-15. Reprinted with permission from Popular Electronics, 12/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 71-16. William Sheets.
Fig. 71-17. Reprinted with permission from Popular Electronics, Fact Card 260. (c) Copyright Gernsback Publications, Inc.
Fig. 71-18. William Sheets.
Fig. 71-19. Reprinted with perrnission from Popular Electronics, 8/93, p. 79. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 71-20. Reprinted with permission from Popular Electronics, 12/93, p. 68. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 71-21. Reprinted with permission from Popular Electronics, 11/91, p. 21. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 71-22. Reprinted with permission from Popular Electronics, 12/93, p. 70. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 72

Fig. 72-1. Reprinted with permission from Radio-Electronics, 6/92, p. 60. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 72-2. Reprinted with permission from Popular Electronics, 12/91, p. 77. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 72-3. William Sheets.
Fig. 72-4. William Sheets.
Fig. 72-5. Reprinted with permission from Electronics Now, 7/92, p. 88. (c) Copyright Gernsback F'ublications, Inc., 1992.

## Chapter 73

Fig. 73-1. Rcprinted with permission from PE Hobbyist Handbook, 1992, p. 61. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 73-2. Reprinted with permission from PE Hobby-
ist Ilandbook, 1991, pp. 69-70. (c) Copyright Gernsback Publications, Ine, 1991.

## Chapter 74

Fig. 74-1. William Shents.
Fig. 74-2. William Sheets.
Fig. 74-3. Renrinted wilh permission from Electronic Design, 1/93, p. 62. (c) Copyright Gerrıback Publications, Inc., 1993.

## Chapter 75

Fig. 75-1. Reprinted with permission from PF Hobbyist Handbook, 1992, p. 41. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 75-2. Reprinted with permission from Popular Electronics, Fact Card 198. (c) Copyright Gernsback Fublications, Inc.
Fig. 75-3. Reprinted with nermission from Popular Electronics, 4/92, p. 31. (c) Gopyright Gernsback Publications, Inc., 1992.
Fig. 75-4. Reprinted with permission from Electronics Now, 11/92, p. 32. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 75-5. Reprinted with permission from PE Hobbyist Handbook, 1991, p. 38. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 75-6. Reprinted with permission from PE Hobbyist Handbook, 1991, p. 73. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 75-7. Reprinted with permission from PE Hobbyist Handbook, 1991, p. 54. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 75-8. Reprinted with permussion from Popular Electronics, Fact Card 198. (c) Copyright Gernsback Publications, Inc.

## Chapter 76

Fig. 76-1. Reprinted with permission from Popular Electronics, 5/92, p. 60. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 76-2. Reprinted with permission from Popular Electronics, $5 / 92$, p. 60. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 76-3. Reprinted with permission from Apex Microtechnology Corporation.
Fig. 76-4. Reprinted with permission from Apex Microtechuology Corporation.
Fig. 76-5. Reprinted with permission from Popular Electronics, 5/92, p. 60. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 77

Fig. 77-1. Reprinted with permission from PE Hobbyist Handbook, 1990, p. 92 . (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 77-2. Reprinted with permission from Popular Electronics, 6/93, p. 77. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 77-3. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 62.
Fig. 77-4. Reprinted with permission from Popular Electronics, 6/93, p. 77. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 77-5. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 62.
Fig. 77-6. Reprinted with permission from Elcktor Electronics, 12/91, p. 94.
Fig. 77-7. Reprinted with permission from Popular Electronics, 7/93, p. 76. (c) Copyright Gemshack Publications, Inc., 1993.
Fig. 77-8. Reprinted with permission from Electronic Design, 6/93, p. 76.

## Chapter 78

Fig. 78-1. Reprinted with permission from Electronics Now, 10/93, p. 53. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 78-2. Reprinted with permission from R-E Experimenters Handbook, p. 60.
Fig. 78-3. Reprinted with permission from Eler tronic. Design, 2/93, p. 71.
Fig. 78-4. Reprinted with permission from Maxim Engineering Journal, Volume 3, p. 16.
Fig. 78-5. Reprinted with permission from Lincar Technology, Design Note 72.
Fig. 78-6. Reprinted with permussion from Popular Electronics, 6/93, p. 48. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 78-7. Reprinted with permussion from Popular Electronics, 3/92, p. 72. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 78-8. Reprinted with permission from Popular Electronics, 6/93, p 77. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 78-9. Reprinted with permission from 303 Cir cuits, p. 283.
Fig. 78-10. Reprinted with permission from Electronics Now, 12/92, p. 66. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 78-11. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 60.

Fig. 78-12. Reprinted with permission from Popular Electronics, 5/92, p. 73. (c) Copyright Gerrsback Publications, Inc., 1992.
Fig. 78-13. Reprinted with permission from PE Hobbyist Handbook, 1993, p. 93 . (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 78-14. William Sheets.
Fig. 78-15. Reprinted with permission from PE Hobbyist Handbook, 1991. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 78-16. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 28-29. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 78-17. Reprinted with perruission from Popular Electronics, $11 / 93$, p. 71. (c) Copyright Gernsback Publicalions, Inc., 1993.
Fig. 78-18. Reprinted with permission from Silicon Chip, pp. 63-64.
Fig. 78-19. Reprinted with permission from Maxim Engineering Journal, Volume 4, p. 19
Fig. 78-20. Reprinted with permission from National Semiconductor, Linear Edge, Issue \#5.
Fig. 78-21. Reprinted with permission from National Semiconductor, Lincar Edge, Issue \#5.
Fig. 78-22. Reprinted with permission from 73 Amateur Radio 'loday, 3/92, p. 54.
Fig. 78-23. Reprinted with permission from Popular Electronics, 1/92, p. 37. (c) Copyright Gemsback Publications, lnc., 1992.
Fig. 78-24. Reprinted with permission from Popular Electronics, 11/33, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 78-25. Reprinted with permission from SiliconChip, p. 10.
Fig. 78-26. Reprinted with permission from Electronic Design, 2/93, p. 72.
Fig. 78-27. Reprinted with permission from Electronic Design, 8/93, p. 84.
Fig. 78-28. Reprinted with permission from Linear Technology, Design Note 68.
Fig. 78-29. Reprinted with permission from Popular Electronics, Fact Card 260. (c) Conyright Gernsback Publications, Inc.
Fig. 78-30. Reprinted with permission from Popular Electronics, 11/93, p. 54.
Fig. 78-31. Reprinted with permission from Popular Electronics, 8/93, p. 88. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 78-32. Reprinted with permission from Popular Flectronics, 3/93, p. 74. (c) Copyright Gernsback Publications, Inc., 1993.

Fig. 78-33. Reprinted with permission from PE Hobbyist Handbook, 1993, p. 61. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 78-34. Reprinted with permission from Electronic Design, 2/93, pp. 75-76.
Fig. 78-35. Reprinted with permission from Electronics Now, 10/93, p. 54. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 78-36. Reprinted with permission from Electronic Design, 4/93, p. 54.
Fig. 78-37. Reprinted with permission from National Semiconductor, Linear Edge, Spring 1992.

## Chapter 79

Fig. 79-1. Reprinted with permission from Popular Electronics, 9/92, p. 71. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 79-2. Reprinted with permission from Popular Electronics, 11/91, p. 22. (c) Copyright Gernsback Publications, Inc., 1991.

## Chapter 80

Fig. 80-1. Reprinted with permission from Popular Electronics, 3/92, p. 42 . (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 80-2. Reprinted with permission from Radio-Electronics, 12/91, p. 63. (c) Copyright Gerrısback Publications, Inc., 1991.
Fig. 80-3. Reprinted with permission from Popular Electronics, 9/93, p. 69. (c) Copyright Gernsback Fublications, Inc., 1993.
Fig. 80-4. Reprinted with permission from Flektor Electronics, 12/91, p. 73.
Fig. 80-5. Reprinted with permission from Elektor Electronucs, 12/91, p. 72.
Fig. 80-6. Reprinted with permission from Elektor Electronics, 12/91, p. 85.
Fig. 80-7. Reprinted with permission from Electronics Now, 12/92, p. 45. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 80-8. Reprinted with permission from Electronic Design, 7/93, p. 87.
Fig. 80-9. Reprinted wilh permission from Popular Electronics, 9/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 80-10. Reprinted with permission from Electronics Now, 12/92, p. 46. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 80-11. Reprinted with permission from Popular Electronics, 10/93, p. 73. (c) Copyright Gernsback

Publications, Inc., 1993.
Fig. 80-12. Reprinted with permission from Silicon Chip, p. 64.
Fig. 80-13. Reprinted with permission from Popular Electronics, $9 / 93$, p. 69. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 81

Fig. 81-1. Reprinted with permission from PE Hobbyist Handbook, 1991, pp. 85-86. (c) Copyright Gernsback Publications, Inc., 1991,
Fig. 81-2. Reprinted with permission from Popular Electronics, Fact Card 270. (c) Copyright Gemsback Publications, Inc.

## Chapter 82

Fig. 82-1. William Sheets.
Fig. 82-2. William Sheets.
Fis. 82-3. Reprinted with permission from PE Hobbyists Handbook, 1990, p. 120. (c) Copyright Gernsback Publications, Inc, 1990.
Fig. 82-4. Reprinted with permission from Electronic Design 1/93, p. 61.
Fig. $82-5$. William Sheets.
Fig. 82-6. William Sheets.
Fig. 82-7. William Sheets.

## Chapter 83

Fig. 83-1. Reprinted with permission from 73 Amateur Radio Today, 10/91, p. 8.
Fig. 83-2. Reprinted with permission from Electronics Now, 10/92, p. 37. (c) Copyright Gernsback Publications, Inc, 1992.
Fig. 83-3. Reprinted with permission from Fopular Electronics, 10/93, p. 74. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 83-4. Reprinted with permission from Popular Electronics, 8/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1943.
Fig. 83-5. Reprinted with permission from Popular Electronics, 8/93, p. 70. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 83-6. Reprinted with permission from Integrated Circuits Data Book, 3/85, pp. 5-16.
Fig. 83-7. Reprinted with permission from Popular Electronics, 3/93, p. 79. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 83-8. Reprinted with permission from 73 Amateur Radio Today, $8 / 93$, p. 32.
Fig. 83-9. Reprinted with permission from Popular

Electronics, 6/92, p. 55. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 83-10. Reprinted with permission from Popular Electronics, $8 / 93$, p. 32. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 83-11. Reprinted with permission from QST, 2/89, p. 34.

Fig. 83-12. Reprinted with permission from Popular Electronics, 6/92, p. 57. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 84

Fig. 84-1. Reprinted with permission from Electronic Design, 8/92, p. 69.
Fig. 84-2. Reprinted with permission from Radio-Electrouics, 5/92, p. 47. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 84-3. Willian Sheets.
Fig. 84-4. Reprinted with permission from Electronics Now, $3 / 93$, p. 69. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 84-5. William Sheets.

## Chapter 85

Fig. 85-1. Reprinted with permission from Electronics Now, 11/92, p. 53. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 85-2. Reprinted with permission from Electronics Now, 11/92, p. 54. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 85-3. Reprinted with permission from Popular Electronics, 8/93, p. 56. (r) Conyright Gernsback Publications, Inc., 1993.
Fig. 85-4. Reprinted with permission from R-E Experimenters Handbook, 1991, p. 30.
Fig. 85-5. Reprinted with permission from Popular Electronics, 3/93, p. 45. (c) Copyright Gemsback Publications, Ince, 1993.
Fig. 85-6. Reprinted with permission from Popular Electronics, 8/93, p. 53. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 85-7. Reprinted with permission from Popular Electronics, $3 / 93$, p. 45. (c) Copyright. Gernsback Publications, Inc., 1993.

## Chapter 86

Fig. 86-1. Reprinted with permission from Popular Electronics, 6/93, p. 55. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 86-2. Reprinted with permission Crom Popular

Electronics, 6/93, p. 56. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 86-3. Reprinted with permission from Popular Electronics, Fact Card 225. (c) Copyright Gernsback Publications, Inc.
Fig. 86-4. William Sheets.
Fig. 86-5. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 156.
Fig. 86-6. Reprinted with permission from Practical Wircless, 6/91, p. 34.
Fig. 86-7. Reprinted with permission from R-E Experimenters Handbook, p. 33 .
Fig. 86-8. Reprinted with permission from Electronic Design, 6/93, p. 83.
Fig. 86-9. Reprinted with permission from 73 Amateur Radio Today, 5/90, p. 78.
Fig. 86-10. Reprinted with permission from 73 Amateur Radio Today, 5/90, p. 78.
Fig. 86-11. Reprinted with permission from Popular Flectronics, Fact Card 241. (c) Copyright Gernsback Publications, Ine.
Fig. 86-12. Reprinted with permission from 73 Amatour Radio Today, 11/91, pp. 52-56. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 86-13. Reprinted with permission from 73 Amateur Radio "loday, 10/92, p. 20.
Fig. 86-14. Reprinted with permission from Popular Electronics, 11/93, p. 81. (c) Copyright Gernshack Publications, Inc., 1993.
Fig. 86-15. Reprinted with permission from 73 Amateur Radio, 5/90, p. 78.
Fig. 8616. Reprinted with permission from Popular Electronics, $8 / 93$, p. 72. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 86-17. Reprinted with permission from Popular Electronics, Fact Card 262. (c) Copyright Gernsback Publications, Inc.
Fig. 86-18. Reprinted with permission from 73 Amateur Radio, $5 / 90$, p. 77.
Fig. 86-19. Reprinted with permission from Popular Electronics, $8 / 93$, p. 72. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 86-20. Reprinted with permission from Popular Flectronics, $3 / 93$, p. 47. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 86-21. Reprinted with permission from Popular Electronics, $9 / 93$, p. 83. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 86-22. Reprinted with permission from 73 Amateur Radio Today, 2/93, p. 60.

Fig. 86-23. William Sheets.
Fig. 86-24. Reprinted with permission from 73 Amateur Radio Today, 5/90, p. 31.
Fig. 86-25. Reprinted with permission from Popular Electronics, 6/93, p. 54. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 86-26. William Sheets.

## Chapter 87

Fig. 87-1. Reprinted with permission from QST, 6/91, p. 18.

Fig. 87-2. Reprinted with permission from 73 Amateur Radio Today, 7/92, p. 30.
Fig. 87-3. Reprinted with permission from Popular Electronics, 6/92, p. 56. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 87-4. Reprinted with permission from 73 Amatcur Radio Today, 3/92, p. 16.
Fig. 87-5. Reprinted with permission from Popular Electronics, 7/93, p. 80. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 88

Fig. 88-1. Reprinted with permission from Popular Electronics, 11/93, p. 73. (c) Copyright Gernsback Publications, Inc., 1093.
Fig. 88-2. Reprinted with permission from Maxim Journal, Vol. 3., p. 22.

## Chapter 89

Fig. 89-1. Reprinted with permission from PE Hobbyist Handbook, 1990, p. 21. (c) Conyright Gernsback Publications, Inc., 1990.

## Chapter 90

Fig. 90-1. Reprinted with permission from Popular Electronics, 5/92, p. 74. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 90-2. Reprinted with permission from Popular Electronics, 5/92, p. 74. (c) Copyright Gernsback Publications, Inc., 1992.

## Chapter 91

Fig. 91-1. Reprinted with permission from Electronic Design, 11/92, p. 62.
Fig. 91-2. Reprinted with permission from Popular Electronics, 12/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 91-3. Reprinted with permission from Popular Electronics, Fact Card 256. (c) Copyright Gems-
back Publications, Inc.
Fig. 91-4. Reprinted with permission from Electronics Now, 6/93, p. 14. (c) Copyright Gemsback Publications, Inc., 1993.
Fig. 91-5. Reprinted with permission from Popular Electronics, Fact Card 256. (c) Copyright (iernsback Publications, Inc.
Fig. 91-6. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 160.
Fig. 91-7. Reprinted with permission from Electronic Design, 10/93, p. 74.
Fig. 91-8. Reprinted with permission from Popular Electronics, 11/91, p. 22. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 91-9. Reprinted with permission from Maxim Engineering Journal, Vol. 4, p. 15.

## Chapter 92

Fig. 92-1. Reprinted with permission from R-E Experimenters Handbook, 1992, p. 98.
Fig. 92-2. Reprinted with permission from Electronic Design, 6/93, p. 82.
Fig. 92-3. Reprinted with permission from Popular Electronics, 10/92, p. 58. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 92-4. Rcprinted with permission from Popular Electronics, Fact Card 201. (c) Copyright Gernsback Publications, Inc.
Fig. 92-5. Reprinted with permission from 73 Amateur Radio Today, 11/91, p. 11.
Fig. 92-6. Reprinted with permission from Popular Electronics, 6/93, p. 59. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 92-7. Reprinted with permission from Radio-Electronics, $1 / 92$, p. 12.
Fig. 92-8. Reprinted with permission from Popular Electronics, Fact Card 255. (c) Copyright Gernsback Publications, Inc.
Fig. 92-9. Reprinted with permission from Popular Electronics, 6/93, p. 72. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 92-10. Reprinted with permission from Electronics Now, 12/93, p. 39. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 92-11. Reprinted with permission from 303 Circuits.

## Chapter 93

Fig. 93-1. Reprinted with permission from Popular Electronics, $1 / 92$, p. 43. (c) Copyright Gernsback

Publications, Inc., 1992.
Fig. 93-2. Reprinted with permission from Electronic Design, $8 / 93$, p. 81.
Fig. 93-3. William Sheets.
Fig. 93-4. William Sheets.
Fig. 93-5. Reprinted with permission from Popular Electronics, 12/91, p. 81. (c) Copyright Gernsback
Publications, lnc., 1991.
Fig. 93-6. William Sheets.
Fig. 93-7. William Sheets.
Fig. 93-8. Reprinted with permission from PE Hobbyist, 1991, p. 77. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 98-9. William Sheets.
Fig. 93-10. William Shcets.
Fig. 93-11. Reprinted with permission from Popular Electronics, 2/92, p. 67. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 93-12. Reprinted with permission from Popular Electronics, 2/92, p. 66. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 93-13. Reprinted with parmission from R-E Experimenters Handbook, 1989, p. 155.
Fig. 93-14. Reprinted with permission from Nationtal Semiconductor, Linear Applications Handbook.
Fig. 93-15. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 161.
Fig. 93-16. Reprinted with permission from 303 Cir cuits, p. 257 (\#221).

## Chapter 94

Fig. 94-1. Reprinted with permission from Popular Electronics, Fact Card 223. (c) Copyright Gernsback Publications, lnc.
Fig. 94-2. William Sheets.
Fig. $94-3$. Reprinted with permission from Popular Electronics, Fact Card 221. (c) Copyright Gernsback Publications, Inc.
Fig. 34-4. Reprinted with permission from Popular Electronics, Fact Card 243. (c) Copyright Gernsback Publications, Inc.
Fig. 94-5. William Sheets.
Fig. 94-6. William Sheets.
Fig. 94-7. Reprinted with permission from Popular Electronics, Fact Card 263. (c) Copyright Gernsback Publications, Inc.

## Chapter 95

Fig. 95-1. Reprinted with permission from Popular Electronics, $3 / 93$, p. 71. (c) Copyright Gernsback

Publications, Inc, 1993.
Fig. 95-2. Reprinted with permission from Popular Electronics, 3/93, p. 72. (c) Copyright Gernsback Publications, Ince, 1993.
Fig. 95-3. Reprinted with permission from Popular Electronics, 3/93, p. 72. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 96

Fig. 96-1. Reprinted with permission from Radio-Electronics, 6/92, p. 71. (c) Copyright Gernsback Publications, Ine, 1992.
Fig. 96-2. Reprinted with permission from R-E Experimenters Handbook, 1989, pp. 12-15.
Fig. 96-3. Reprinted with permission from Electronics Now, 7/92, p. 33. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 96-4. Reprinted with permission from Popular Electronics, Fact Card 261. (c) Copyright Gernsback Publications, Inc.
Fig. 96-5. Reprinted with permission from 303 Circuits, p. 49.
Fig. 96-6. Reprinted with permission from Electronics Now, 3/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 96-7. Reprinted with permission from 303 Circuits, p. 41.
Fig. 96-8. Reprinted with permission from Popular Electronics, Fact Card 261. (c) Copyright Gems back Fublications, Inc.
Fig. 96-9. Reprinted with permission from Popular Electronics, Fact Card 241. (c) Copyright Gernsback Publications, Inc.
Fig. 96-10. Reprinted with permission from Popular Electronics, Fact Card 262. (c) Copyright Gernsback Publications, Inc.

## Chapter 97

Fig. 97-1. Reprinted with permission from Radio-Electronics, 12/90, pp. 72-73.
Fig. 97-2. Reprinted with permission from Popular Electronics, 6/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 97-3. Reprinted with permission from National Semiconductor, Linear Edge, Summer 1992.
Fig. 97-4. Reprinted with permission from Popular Electronics, 12/92, p. 32. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 97-5. Reprinted with pernussion from Popular Electronics, $9 / 93$, p. 70. (c) Copyright Gernsback

Publications, Inc., 1993.
Fig. 97-6. Reprinted with permission from Popular Electronics, 6/93, p. 72. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 97-7. Reprinted with permission from Popular Electronics, 6/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 97-8. Reprinted with permission from Maxim Engincering ,Iournal, Vol. 4. p. 10.
Fig. 97-9. Reprinted with permission from Electronics Now, 6/93, p. 14. (c) Copyright Gernsback Publications, Inc.
Fig. 97-10. Reprinted with permission from Popular Electronics, 6/91, p. 71. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 97-11. Reprinted with permission from Popular Electronics, 6/93, p. 71. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 97-12. Reprinted with permission from Popular Electronics, $9 / 92$, p. 70. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 97-13. Reprinted with permission from Popular Electronics, 6/93, p. 72. (c) Copyright Gernsback Publications, Ine, 1993.

## Chapter 98

Fig. 98-1. Reprinted with permission from Radio-Electronics, $6 / 90$, p. 71.
Fig. 98-2. Reprinted with permission from Radio-Elec-tronics, $6 / 90, p .71$.

## Chapter 99

Iig. 99-1. Reprinted with permission from Popular Electrorics, 7/92, pp. 60-61. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 99-2, William Sheets.

## Chapter 100

Fig. 100-1. Reprinted with permission from RadioElectronics, 7/90, p. 8.
Fig. 100-2. Reprinted with permission from RadioElectronics, 10/89, p. 8.
Fig. 100-3. Reprinted with permission from RadioElectronics, 11/91, p. 59.
Fig. 100-4. Reprinted with permission from Popular Electronics, 4/92, p. 38. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 100-5. Reprinted with permission from Popular Electronics, p. 75. (c) Copyright Gernsback Fublications, Inc.

Fig. 100-6. Reprinted with permission from Popular Electronics, 9/92, pp. 38-40. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 100-7. Reprinted with permission from 303 Circuits, 226, p. 263.
Fig. 100-8. Reprinted with permission from Popular Electronics, 8/92, p. 76. (c) Copyright Gemisback Publications, Inc., 1992.
Fig. 100-9. Reprinted with permission from Popular Electronics, 9/92, p. 74. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 100-10. Reprinted with permission from Popular Electronics, 12/91, p. 53. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 100-11. Reprinted with permission from RadioElectronics, 1/93,.p. 43. (c) Copyright Gernsback Fublications, Inc, 1993.
Fig. 100-12. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 26.
Fig. 100-13. Reprinted with pernission from Popular Electronics, 9/93, p. 33. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 100-14. Reprinted with permission from Popular Electronics, 11/93, p. 38. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 100-15. Reprinted with permission from Electronic Design, $8 / 93$, p. 86.
Fig. 100-16. Reprinted with permission from Electronics Now, 5/93, p. 47. (c) Copyright Gernsback Fublications, Inc., 1993.
Fig. 100-17. Reprinted with permission from Silicon Chip, p. 62.
Fig. 100-18. Reprinted with permission from Popular Electronics, 12/93, p. 62. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 100-19. Reprinted with permission from RadioEilectronics, 3/92, p. 74. (c) Copyright Gernsback Publications, Inc., 1992.
Fig 100-20. Reprinted with permission from RadioElectronics, $2 / 92$, p. 81. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 100-21. Reprinted with permission from Popular Electronics, 2/92, p. 70. (c) Copyright Gemsback Publications, Inc., 1992.
Fig. 100-22. Reprinted with permission from Electronics Now, 11/92, p. 45. (c) Copyright Gemsback Publications, Inc, 1992.
Fig. 100-23. Reprinted with permission from Popular Electronics, 7/92, p. 74. (c) Copyright Gemsback Publications, Inc., 1992.

Fig. 100-24. Reprinted with permission from Popular Electronics, 11/92, p. 72. (c) Copyright Gerrsback Publications, Inc., 1992.

## Chapter 101

Fig. 101-1. Reprinted with pernission from Electronic Design, 5/92, p. 94.
Fig. 101-2. Reprinted with permission from 303 Circuits, \#229, pp. 264-265.
Fig. 101-3. Reprinted with permission from Electronic Design, 11/92, p. 62. (c) Copyright Gernsback Publications, Ince, 1992.
Fig. 101-4. Reprinted with permission from Intersil, Component Data Catalog, 1987, pp. 6-10.
Fig. 101-5. Reprinted with permission from RadioElectronics, 3/90, p. 50. (c) Copyright Gernsback Publications, Inc., 1990.
Fig. 101-6. Reprinted with permission from 303 Circuits, \#228, p. 364.
Fig. 101-6. Reprinted with permission from RadioElectronics, $3 / 92$, p. 50. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 101-7. Reprinted with permission from RadioElectronics, 6/92, p. 54. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 101-8. Reprinted with permission from RadioElectronics.

## Chapter 102

Fig. 102-1. Reprinted with permission from Electronics Now, 10/92, p. 43. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 102-2. Reprinted with permission from Popular Electronics, 5/92, p. 75. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 102-3. William Sheets.
Fig. 102-4. William Sheets.
Fig. 102-5. William Sheets.
Fig. 102-6. William Sheets.
Fig. 102-7. William Sheets.
Fig. 102-8. Reprinted with permission from PE Hobbyist Handbook, 1991, p. 57. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 102-9. Reprinted with permission from Popular Electronics, 12/92, p. 68. (c) Copyright Gemsback Publications, Inc., 1992.

## Chapter 103

Fig. 103-1. Reprinted with permission from Practical Wireless, 2/91, p. 49.

Fig. 103-2. Reprinted with permission from 73 Amateur Radio, 7/88, p. 14.

## Chapter 104

Fig. 104-1. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 101.
Fig. 104-2, Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 101.
Fig. 104-3. Reprint.ed with permission from Electronics Hobbyist Handbook, 1993, p. 100.

## Chapter 105

Fig. 105-1. Reprinted with permission from Popular Electronics, 8/02, p. 74. (c) Copyright Gomsback Publications, Inc., 1992.
Fig. 105-2. Reprinted with permission from Popular Electronics, Fact Card 266. (c) Copyright Gernsback Publications, Inc.
Fig. 105-3. Reprinted with permission from Popular Electronics, $8 / 92$, p. 74. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 105-4. Reprinted with permission from Popular Electronics, 12/93, p. 71. (r.) Conyright Gemsback Publications, Inc., 1993.
Fig. 105-5. Reprinted wilh permission from Popular Electronics, 7/92, p. 70. (c) Conyright Gemsback Publications, Inc., 1992.
Fig. 105-6. Reprinted with permission from Hands-On Electronics, $9 / 87$, p. 88.

## Chapter 106

Fig. 106-1. Remrinted with permission from Electronics Now, 10/92, p. 36. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 106-2. Reprinted with permussion from 73 Amateur Radio Today, 10/91, pp. 14-22.
Fig. 106-3. William Sheets.
Fig. 106-4. Reprinted with permission from Popular E: ectronics, 8/92, p. 46. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 106-5. Reprinted with permission from RadinEiectronics, 11/91, p. 85. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 106-6. Reprinted with permission from 73 Amateur Radio Today, 11/92, p. 8.
lig. 106-7. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 24.
Fig. 106-8. Reprinted with permission from Electronics Hobbyist Handbook, 1993, p. 52.

F'ig. 106-9. Reprinted with permission from QST, 10/89, p. 25.
Fig. 106-10. Reprinted with permission from 73 Amateur Radio Today, 4/92, p. 36.
Fig. 106-11. Reprinted with permission from 73 Amatour Radio Today. 7/92, p. 20.
Fig. 106-12. Reprinted with permission from 73 Amat.eur Radio Today, 4/92, p. 25.

Fig. 106-13. Reprinted with permission from R-E Experimenters Handbook, 1989, p. 158.
Fig. 106-14. Reprinted with permission from 73 Amateur Radio Today, 4/93, p. 53.

## Chapter 107

Fig. 107-1. Reprinted with permission from RadioElectronics, 11/91, pp. 49-57. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 107-2. Reprinted with permission from RadioElectronics, 11/91, p. 49. (c) Copyright Gernsback Publications, Inc., 1991.
Fig. 107-3. Reprinted with permission from Electronics Now, 3/93, p. 33. (c) Copyright Gernsback Publications, Inc., 1993.

## Chapter 108

Fig. 108-1. Reprinted with permission from RadioElectronics, 6/92, p. 61. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 108-2. Reprinted with permission from RadioElectronics, 6/92, p. 59. (c) Copyright Gernsback Publications, Ine., 1992.
Fig. 108-3. Reprinted with permission from 303 Circuits, p. 307.
Fig. 108-4. Reprinted with permission from SpecCom, 5/01, p. 15.
Fig. 108-5. Reprinted with permission from Linear Technology Design Note \#57.
Fig. 108-6. Reprinted with permission from Linear Technology Design Note \#57.
Fig. 108-7. Reprinted with permission from Linear Techrology Design Note \#57.
Fig. 108-8. Reprinted with permission from Linear Technology Design Nole \#57.
Fig. 108-9. Reprinted with permission from Linear Technology Application Note \#57.
Fig. 108-10. Reprinted with permission from Linear Technology Application Notc \#57.

Fig. 108-11. Reprinted with permission from RadioElectronics, 4/92, p. 64. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 108-12. Reprinted with permission from 303 Circuits, \#303, p. 332.
Fig. 108-13. Reprinted with permission from RadioElectronics, 6/92, p. 59. (c) Copyright Gernsback Publications, Inc., 1992.
Fig. 108-14. Reprinted with permission from Electronics Now, 8/93, p. 39. (c) Copyright Gernsback Publications, Inc., 1993.
Fig. 108-15. Reprinted with pernission from 303 Circuits, \#300, p. 331.
Fig. 108-16. Rcprinted with permission from Popular Electronics, Fact Card 268. (c) Copyright, Gernsback Publications, Inc.

## Chapter 109

Fig. 109-1. Reprinted with permission from Electronic Engineering, 9/89, p. 28.
Fig. 109-2 William Sheets.
Fig. 109-3. Reprinted with permission from Popular Electronics, Fact Card 269. (c) Copyright Gernsback Publications, Inc.
Fig. 109-4. Reprinted with permission from Popular Electronics, Facl Card \#241. (c) Copyright Gernsback Frublications, Inc.
Fig. 109-5. Reprinted with permission from Popular Electronics, Fact Card 224. (c) Copyright Gernsback Publications, Inc.
Fig. 109-6. William Sheets.

## Chapter 110

Fig. 110-1. Reprinted with permission from 303 Circuits, p. 280.
Fig. 110-2 William Sheets.

## Chapter 111

Fig. 111-1. William Shects.
Fig. 111-2. William Sheets.
Fig. 111-3. William Sheets.

## Chapter 112

Fig. 112-1. William Sheets.
Fig. 112-2. Reprinted with permission from Popular Electronics, Fact Card 259. (c) Copyright Gernsback Publications, Inc.

## Index

Numbers preceded by a "I,", "II," "III,", "IV," or "V" are from Encyolopedia of Llectronac Curcuits Vol. I. II, III, IV, or V respoctively

## A

absolute-value circuits, $1-37$, IV-274 amplifier, 1-31
full wave rectificr, 11-528
Norton amplifier, III-11
precisior, I-37, IV-274
ac motors (see also motor control circuits)
control for, $\mathrm{II}-375$
power trake, II-451
three-phase driver lor, II-38.3
two-phase driver for, I-45e, II 382
ac/de inditator, TV-214
ac to de converters, I-165
fixed power supplies, IV-395
full-wave, IV-120
high-irupodance precision rectifier, J-164
acid rain monitor, IT-245, III-361, V-371
acoustic field generator, V-338-341
acoustic sound receiver/transmitler, IV-311
aclive anterulas (see antenmas, active)
active filters (see also filter circuits) band reject, II-401
bandpass, II-190, II-221, II-223
variable bandwidth, I-286
digitally tuned low-power, II-218
five pole, $\mathrm{I}-279$
fourth-order low-pass, V-184
high-pass, V-180, V-188
fourth-order, V-188
second-order, 1-297
low-pass, V-178, V-181, V-188
digitally sflected break frequency, II-215
unity-gain, V-187
low-power
digitally selectable center frequency, III-186
digitally tumed, I-279
programmable, III-185
RC , up to $150 \mathrm{kHz}, \mathrm{I}-294$
sperch-range filter, V-185
state variable, III-189
ter-band graphic equalizer using,
II-684
three-amplifier, 1-289
tunable. $1-289$
universal, II-214
adapters (see also corversion and converters)
de transceiver, hand-held, III-461
line-voltage-to-multimeter adapter, V-312
program, second-audio, 111-142
traveller's shaver, 495
adder circuits, IL1-327
binary, fast-action, IV-360-261
AGC (see automatic gain control (AGC)
air conditioner, auto, smart, clutch for, 117-46
air motion and pressure
flow-detector, 1-235, IT-240-242, III-202-203, VV-82, V-154
flow-meters (anemnmeters)
hot-wre, III-342
thermally based, II- 241
pressure change detector, IV-144
motion detecter, 1-222, III-364
airphate propeller sound effect, IT-592
ahnys (see also annuciators;
sirens), 1-4, II-3-9, N-84-89, V-1-16
555-based adarm, V-11
alamithone generator, V-563
audiu-sensor alarm, V-8
auto burstar. 1-3, I-7, J-10, II-2, III-4, IV-5.3
automatic-arming, IV-50
automatic turn-off, 8 minute delay, TV-52
CMOS low-current, IV-56
hom as loudspeaker, [V-54
motion-actuated car/motorcycle, 1-9
security system, I-5, IV-49-56
sngle-IC, III-7, IV-55
auto-arming autornotive alarm. IV-50
automatic torn-off, IV-54
8 minute delay, IV - 52
baby-alert transmitter/receiver, V-85-96
bells, electronic, II-33, I-636
blown fuse, $1-10$
boat, I-9
burglar alarms, [11-8, III-9, [V-86
burglar chaser, $V-16$
latching circuit, 1-8, I-12
NC and NO switches, IV-87
NC switches, IV-87
one-chip, 111-5
sclflatching, IV-85
timed shutoff, V-85
camera trıgered, III-444
alarms (cont.)
capacitive sensor, III-515
eurrent nenitor and, $111-338$
dark-activated alarm, pulsed tone outprut. V-13
delayed alarm, V-4
differential vollage or current, II-3 cligital clock circuit with, Ill-84
doorralar, II-284, II-46
Hall-effect circuit, III-256
door minder, V-5
doorbells (see annuciators)
driver, high-power alarm driver, $V$ 2
exit delay for burglar alarms, V-10
fail-safe, semiconductor, II- 6
field disturbance, I1-507
flasher signal, V-197
flex switch alarm sounder. V-15
floud, J-390, II-206. IV-188, V-374
freezer meltdown, [-13
headlights-on, III-52, V-77
heat-activated alarm, V-9
hugivlow-limit, 1-151
hanc sccurity system, 1-6, IV-87
ne formation. II-b8
infiared wireless system, [V-222-223
hght-activated, V-9, V-273
high-output, pulsed tone, V-1.4 precision design, V-12 precision with hysteresis, V-14 sclf-latch, tone outpul, V-1E with latch, V-12
hight-bean intruder-detectorn alarm, V-11, V-13
loop circuit alarms closed-loop, V-3 multi-loop parallel alarrn, V-2 parallel, V-3 series/paralle1, V-3
low-battery disconnect and, III-65
low-battery waming, III-69
low-valls, 11-433
multiple circuit for, 11-2
no-doze alarm, V-8
one-chup, Tll-5
photoelectric, II-4, II-31.9
piezoelectric, $\mathrm{I}-12, \mathrm{~V}-10$
power failure, I-581, I-582, II1-511
printer error, IV-106
proxirnty, II-506, III-517, V-485-486
pulsedtone, $\mathrm{I}-11, \mathrm{~V}-569$
purse-snatcher, capacitance
operated, 1-134
rain, 1-442, 1-44], IV-189
road ice, $11-57$
security, $\mathrm{t}-4, \mathrm{II}-\mathrm{3}-\mathrm{S}$
self-arming, $\mathrm{I}-2$
shutoff, automatic, I-4
sigral-reception, receivers, III-270
silent alurm, V-16
siren, V-559
smoke alarms, IL-278, III-246-253 gas, 1-332
ionization chamber, J-332-333
line=operated, $\mathrm{V}-140$
operated zonization type, 1-590
photoelectrie, line-operated, 1506
SCR. TIT 251
solar powered, T-13
sonic defenders, IV-324
spaceship adarn, V-560
speed, I-95
Star Trek red alert, II-577
strobe flasher alarm, IV-180, V-6-7
tamperproof burglar, 1-8
temperature (see also temperature-related circuits), H1-4, 11-643
adjustable threshold, 11-644
light, radiation sensitive, II-4
timer, $\mathrm{II}-674$
trouble tone alert, II-3
varyng-frequency warning. II-570
wailing, 11-578
warbling, II-573, $\mathrm{V}-7$
watchdog timer/alarm, $\mathrm{V}-584$
water leakage/level (see also fluid and moisture), 1-389, N-190, V374
allophone generator, III-733 alternators
batrery-altemator monitor, car, III6.3
regulator for automobile alternator, V-76
allimeter, digital readout, V-296
AM radio-related eircuits, 1-544
amplitude modulator, II 970
broadcast band agnal generator, IV-302
car radio to shortwave converter, IV-500
demodulator, $\mathrm{IF}=160$
envelope diptector, IV-142
microphone, wireless AM microphone, I-679
madulation monitor, IV-299
power amplifier for, 1 - 77
recelvers, II-525, III-81, III 529, III 585, $\mathrm{V}-455, \mathrm{~V}-496$
1.5 V broadcast, V0497
mixer/oscillator for AM recerver, V-412
trausistor rado, V-502
tarrier-current, III-81
integrated, III- 685
signal generators, IV-301, IV-302
AMFM-related circuits
clock radio, II-543, 114-1
squeich circuit, II-547, IIl-1
amateir radio related oircuits
linear amp, $2-30 \mathrm{MHz}$ 140-W, IJJ-260
receiver for, III-534
rf variable-frequency oscillator (VFO), V-5te
transceiver relay interface, V-243
transmitter, 80 M III-675
voice identifier, V-550
ambence amphfier, rear speaker, II 458
arrbient light effects, cancellization circuit, II-328
ambient light-ignoring optical sensor, III-413
ammeter, I -201
low-curremb, V-307
nano, 1-202
pico, II-154, II-157, [-202
guarded input crocut, II-156
six-derade range, II-155, II-15
amplifiers (see olso audio amplifiers), II-5-22, III-10-21
V-17-26
1 watt/2.3 GHz, $11-540$
2 to 6-W, with preamp, IT-451
$2 \mathrm{ta}, 30 \mathrm{MHz}, 140 \mathrm{~W}$ amateur rado linear, I-555
4 W bridge, $1-79$
5W output, two-meter, 1-567
6W 8 -ohm output-transformerless. 1.75

10 dB-gain, III-543
10 W power, I-76
$10 x$ buffer, I-128
12-W low-distartion power, 1-76
16 -W bridge, $1-82$
255-watt, IT-452
$30 \mathrm{MHz}, 1-567$
40 dB gain, IV-36
$60 \mathrm{MHz}, \mathrm{I}-667$
80 MLIz cascade, $1-567$
80W PEP broadband/imear, 1-557
$100 \mathrm{MHz} / 400 \mathrm{MHz}$ neutralized common sorurce, $1-565$
100W PEP $420-450 \mathrm{MHz}$ push-pull. 1-554
100x buffer, I-128
135 to $175 \mathrm{MHz}, \mathrm{I}-564$
160W PEP broadband, I-556
200 MHz neutralized common source, I-568
450 MHz common-50urce, I-568
$600-\mathrm{W}$ rf power, $1-559$
absolute-value, 1-31
as amplifier, romenverting, V-18, $\mathrm{V}-10$
ac servo, bridge type, III-387
ac-coupled, dynamic, III-17
ucoustic field generator, V-338-341
AF drive indicator, V- 346
AGC, II-17
squelch control, III-33
wide-band, ILI-15
adustable-gain noninverting, 1-91
amateur radio, linear, 2 to 30 MHz , $140 \mathrm{~W}, \mathrm{~T}-555$
ambience, rear speaker, [I-458
AM radio power, I-77
attenuator and, digitally controlled, [-63
audio (see audio amplifiers)
andio converter, two- to four-wire, II-14
audio limuter, low-distortion, II-15 audio power amps (see andio and sound circuits, power arups)
audio signal amps (see audio and sound circuits, signal amps) audio-w-UHF preamp, V-24 autumatic lade carcuit for, II-42 automatic level control, II-30 automotive audio amplifier, IV-66
Av/200, stereo, I-77
balance, 11-46
inverting. I-33
loudness control. TI-47, [I-395
bootstrap circuit, V-356
bridge, $1-74$
1 watt, I-79
16 watt, 1-82
ac servo, 1-458
audio power, T-81
high-impedance, $1-353$
transducer. III-71, II-84, 1-351
broadband
low-noise, $1-562$
PEP, 160W, 1-556
Linear/PEP, 80W, 1-557
buffers
$10 x_{1} \mathrm{I}-128$
$100 \times \mathrm{I}-128$
ac, single-supply, $[-126$
battery-powercd, J-351
rf arnp with modulator, IV-490
sine-wave outpur., I-126
unity-gain, stable decign, II-6
car stereo booster amp, V-72
cascade, III-13
$80 \mathrm{MHz}, 1-567$
cascode, rf amplifiers, TV-488
CD4049 audıo signal amp, IV-40
chopper, $+/-15 \mathrm{~V}$., III-12
chopper channel, 1-350
stabilized, LI-7
clamp-limuilirg, active, III-15
color video, 1-34, 111-724
common source
$450 \mathrm{MHz}_{1} 1-568$
low-power, IJ-84
tomplementary-symunetry audio, I78
composite, II-8, IIT-18
compressor/amphfier, 1owdistortion, IV-24
constant-bandwidth, 11]-21
cool-down circuit, V-354, V-357
current leedback amp, V-100 ma at 100 MHz , V-25
current-shumt, III-21
current collector head, I1-11, II-295
current-to-voltage, high-speed, 1-35
Darlington, pusk-puli, V-92
de servo, 1-457
dc-stabilized, fast, TIT -18
de-to-video log, $5-38$
detector, MC1330/MC1362, TV 1F, I-688
difference axtpliticr, V-18, V-21
differential, I-38, III-14
high-impedance, I-27, I-354
high-input, high-impedance. 11-19
instrumentation. 1-347. III-283
instrumentation, blomedical, III282
programmable gain, III-507
two op amp bridge type, II-83
discrete current-booster, V-23
distribution amplifiers
audio, $1-39,11-39, V-59$
sigmal, 1-39
dual power supply, V-465
dynamic, ac-roupled, III-17
ear protector circuit. V-482
electret microphone prcamp, V-21
electrometcr, overload protected, II-155
last-inverting, high-mput impedance, V-18
FET input. [1-7
offset gate bias, V-22
video, cascade, I-691
flat response, T-92, TTI-673
forward-current booster, III-17
four-quadrant photo-conductive detector, I-359
frequency counter preantp, V-24
gain, $10 \mathrm{~dB}, 1 \mathrm{II}-543$
gain-controlied, III-34
gatc, 1-36
guitars, matching ando signal ampes, IV 38
harmonic distortion aralyzer, V-291
harmonic distortion meter, V. 312
hiulil compander as, [I-12
hi-fi expandor, IT-13
high-frequency amplfiers, III-259265
$29-\mathrm{MHz}, 11-262$
$3-10-30 \mathrm{MHz}, 80-\mathrm{W}, 12.5-1.3 .6 \mathrm{~V}$, 111-261
arateur radio, linear, $2-30 \mathrm{MHz}$ $140 \mathrm{~W}, \mathrm{III}-260$
norunverting, $28-\mathrm{dB}, \mathrm{IIJ}-263$
RF, broadcast bund, III-284
UHF, widetand with highperformance FF,Ts, ITI-264
wideband, III-265
high-impedance/high-gaimhighfrequency, I-41
high-impodancelow-copacitanre, 1-691
hyb-input-high-mpedance amplifiers, II-19, II-44
IF amplifiers, I-690, IV-459
$455-\mathrm{kHz}, \mathrm{V}-522, \mathrm{~V}-623, \mathrm{~V}-524$
$45-\mathrm{MHz}$, crystal filter, $\mathrm{V}, 527$
AGC system, IV-458
preame, $\mathrm{V}-460$
receiver $\mathrm{V}-459$
quadrature detector, TV sound $\mathrm{IF}^{2}$, I-690
two-stage, $60 \mathrm{MH} 4,1-563$
wideband, $\mathrm{I}-689$
infinite sample and hold, IT-658
input-inverting, fast, hight impedance, V-19
input/output buffer for analog multiolexers, IIT- I
instrumentatoon amplifiers, $\mathrm{I}-346$, I-348, 1-349, I-352, II-293-295,
III-278-284, IV-229-234, V-233 235
$+/-100 \mathrm{~V}$ common mode range, 111-294
current collector head amplifier, IT-299
differential 1-347, 1-349, 1-353, 1354, III-282, ILI-283
exteruded cummon-mode design, IV-2 34
high-impedance low-drift, I-355
nigh speed, I-354
low-drift/low-noise de amplifier, IV-292
law-signal levelhygh-mpedance, 1-350
low-power, III-284
meter driver, I[-296
preamps, III-343. IV-330-231
precision FET inpul. 1-355
saturated standerd cell amplifier, I1-296
strain gauge, $111-280$
triple on amp, 1-847
ultra-precision, III-279
variable gaun, differential input I-349
very high-impedance, [-354
wideband, III-281
mverring, I-42, [1-41, III-14
ac, high-gain, I-92
balancing circuil in, I-33
gain of 2 , lag-lead compensmion, UHF, I-566
low-power, digitally selectable gam, II-733
power amplifier, 1-79
programmable-gainı, IIF-ธ̃0
unity gain amplifier, I-80
widebard uvity gam. I-35;
isolation
caparituve load, 1-34
level-shifting, $1-348$
medical lolemetry, 1.362
rf, 11-547
JFET, V. 20
500-Mohm input impedance. V-23
bipolar cascade video, I-692
current source biasirg, $V .21$
preamplifier, V-22
line amps, $111-37$
duplex, telophone, ITT-610
amplifiers (comt.)
universal design, [V-39
linear amplifiers
$2-30 \mathrm{MHz}, 140 \mathrm{~W}$ PEP amateur radio, I-555
100 W PEP $420-450 \mathrm{MHz}$ push puli, l-ธ54
160 W PEP broadband, $1-556$
amateur radio, $2-30 \mathrm{MHz} 140-\mathrm{W}$, III-260
audio power amplifiers, V-51
CMOS inverter, II-11
inverter, linear amp from inverter, 11-11
r, IV-480-481, IV-484-485
load-line protected, 75 W audio, 1.73
logarithmic amplifiers, $1-29,1-35$, II-8
dc to video, I-38
lug-ratio amplifier, I-42
logic antuplifiers. II-332-335
low-power binary, to 10n gain low-frequency, IT-333
low-power inverting, digitaily selectable gain, II-333
low-power normverting, digitaily selectable input and gain, II-334
precision, digitally programuable imput and gain, IT-335
programmable amplifier, IT-334
log ratio, I-42
loudness control, II-46
low-level video detector circuit and, I-687
low-horse desyn, IV-37
medical telemetry, isolation, I-352
meter-driver, rf, $1-\mathrm{MHz}$, $\mathrm{IT}-545$
miero-powered, high-inputhighimpedance, 20 dB , II-44
mero-sized, MI-36
microphone, $\mathrm{I}-87,111-34$
electronically balanced mput, $\mathrm{T}-86$
microwave amplifiers, IV-315-319
$5.7 \mathrm{GH} 2, \mathrm{IV}-317$
bias supply for preamp, IV-318
preannliliers, IV-316-310
min-stereo amplifier, V-583
monostable, II-268
MOSFET, high-mpredance biasing method, V-19
neutralized common source, $1-565$, 1-568
noninverting amplifiers, I-32, $1-30$. I-41, III-14
ac power, $1-79$
adjustuble gain, 1-91
comparator with hysteresis in, J-153
high-frequency, $28-\mathrm{dB}, \mathrm{II}-263$
hysteresis in, $1-153$
low-power, digitally selectable inpul and gain, II-334
power, 1-79
programnable-gainl. III-505
singin supply, I-74
split supply, 175
Norton, absolute-value, III-11
op amp (see operational amplifiers)
oscilloscope sensitivity, IIt-436
output, four-channel D/A, III-165
phono, 1-80, 1-81, 1-89
photadode, I-361, II-324, III-19, III-672
phototransistor amplifier, V-409
phayback, tape, III-672
polarity-reversing low-power, III-16
power (see power annss)
power supply, V-464, V-465
pre-amps (spp preamplifiers)
precision amplifier, 1-40, 11-335
programmable amplifiers, II-334, 111-504-508
differential-input, programmable gain, M1.507
inverting, programmable-gam, III-505
norinverling, programmable-gain, III-505
precision, digital control/programming, In-506
programmable gain, $1-32$, I1-9
variable-gain, wide-range digtal control, III-50e
programmatle gain, 1-32, II-9
pulse-width proportional controller circuit for, II-21
push-pull
Darlington, V-22
PEP 100-W, $420-400 \mathrm{MHz}, \mathrm{T}-554$
PWM servo, III-379
recording amplifier, 1-90
reference voltage, $1-36$
remote, 1-91
rf (see ri amplifiers)
sample-and-hoid, I-587, II-558
selectable input, programmable gann, I-32
servo amplitiers (see also motor controls), 1-452
$400 \mathrm{~Hz}, \mathrm{II}-386$
bridge type ac, $1-458$
dc. $1-457$
molor drive amplifier, H-384
signal anplifiers, audio, 11-41-47, TV-34-42
signal distritntion. 1-39
sound-activated, gain-controlled, IV-528
silicon-controlled amplifiers (SCA). V-585-536
decoder, I-214, IT-16f, II-170
demoduator, II-150, 11I-565
subcarrier adapter, FM tuner, V536
sinewave output buffer, 1-126
sound mixer and, II-37
source follower
bootstrapped, V-20

JFET, V-20
speaker amplifiers, II-16, IIT-39
speech compressor, II-15
stereo amplifiers, I-77, II-9, III-34
bass tone control, V-584
subwoofer power supply, V-464
summing, I-37, III-16
fasl-action, 1 -30
inverting, V-18, V-20
precision design, $1-36$
video, clamping carcuit and, III710
switching power, $1-83$
tape playback, 1-92, IV-36
tupe recording. 1-90
telephone, IL-6221, IV-555, IV-560, V-614
test bench amplifier, V-26
thermosouple, I -6is4, ITI-14
cold junction compensation in, 11-649
hught-stability, 1-355
transducer, T-85, III-669-673
transformerless, iow, 8 -ohin output, 1-76
transistonzed, 1-85, 11-43
tremolo circuil, voltage-controlled, I-598
tube amplfier, hugh-voltage isolation, $\mathrm{V}-426$
TV audio, III-39
two-meter, I-662, I-567
two-stage, I-563, I-689
Ulif, 1-560, 1-565
unty gain, 1-27, 11-7
nonnverting, V-21, V-22
variable-gan, for ascilloscopes, V-426
V1H', single-device, 80-W/50-ohm, I-558
viden, I-692, III-708-712, V-655, V$656, \mathrm{~V}-657, \mathrm{~V}-658, \mathrm{~V}-662$
75 -ohm video pulse, $\mathrm{m}-711$
buffer, low-distortion, II-712
celor, 1-34, 111-724
de gain-control, 11-711
FET cascade I-691
gain block, HI- 722
[F, low-level video detector circuit, 1-689, II-687
JFET bipolar cascade, 1-692
line driving, III-710
log amplifier, 1-98
RGB, 111709
summing, clamping circuit and, $111-710$
voice activated switch, $1-608$
voice-operated circuits, $V-5.54$
voltage, differential-to-singleended, III-570
voltage-controlled (see voltagecontrolled amplifiers)
vollage-follower, signal-supply operation, 111-20
volume, II-46
walkman, $\mathrm{IT}-456$
write, III-18
amplitude modulation (see AM
radio-related circuits; AM/FM)
analog circuits
counter circuit, II-137
delay line, echo and reverb, IV-21
multiplexers, $\mathrm{II}-431,111-396$
multiplicr, Il-392
switch, differential analog switch, [-622
analog-to-digital converter, II-23-31,
III-22-26, IV-5-6, V-27-30
3-bit, high-speed. 1-50
8-bit, 1-44, 1-46
8-bil successive approxmation, I-4T
10-bit, JT-28
10 -bit semal output, 11-27
12-bit, high-speed, II-29
16-bil, H-46
board desigu, IV-5
buffer, higl-speed 6-bit, I-127
canacitance meter, 3.5 digit. III- 76
ryelic, II-30
differential input systern lor, II-31
eight-ctuanci, for PC clones, V-39-30, V-39
fast precision, 1-49
four-digit ( 10,000 count), II-25
half-flash, III-26
IC, low-cost, $1-50$
LCD display, 3.5 digit, 1-49
puller, V-28
successive approximation, II-24, 11-30, 1-45
swiched-capacitor, III-23
three-decade logarithuic, $1-48$
threc-IC, lew-cost, I 50
tracking, IIT-24
viden converter, N-610-611
analyzer, gas, $11-281$
AND gate, I-395, V-216
large fan-in, 1-305
ancmontiters (set also air motion/pressure)
hot-wire, $\mathrm{HIT}-342$
thermally based, II-241
angle-vf-rotation detector, $11-283$
arnunciators (see ulso alarms; sircris). Il-32-34, II-27-28, N-710
ac line-voltage III-730
bell, electronic 1-636, IL-33, IV-9
buzzers, I-11, 1-12, N-8, V-170
chime circuil, low-cosl, 11-33
door buzzer, IV-8
doorbelis/chimes. $1-218, \mathrm{f}-443, \mathrm{IV}-8$
bunzer, V-170
buzzer, two-door, IV-10
musical-tone, IV-522
rain alarm, $1-443$
single-chip design, IV-524
slading tone, II-34
twn-bell, V-170
large fan-in, I-395
SCR circuit, self-interrupting loard, 1V-9
twin-bell doorbell, V-170
two-door annumeiator, V-10
answering machines (see alsu
(clephone-related circuits)
becper, NV -5.59
antemas, IV-11-11, V-31-38
artive. III-1-2, IV-1-4
wideband rod, IVO4
with gan. IV-2
balun, V-34
115 broadband anterna preamp. V. 36
HF/VHF switchable active antenna, V.524
bop antenna,
$3.5 \mathrm{MHz}, 1 \mathrm{~V}-12-13$
dual band, 80-16-M, V-32
preamp, V. 38
preamps
HF broadhand, V-36
VLF $60-\mathrm{kHz}, \mathrm{V}-33$
wideldand atterma, V-35
selector switch, IV-538-039
TR surch, alltomatic, V-37
tmer
1- to $30-\mathrm{MHz}$, IV- 14
low-power, V-38
VLF 60-kliz anterna preanip, V. 33
VLP'VLIF wideband, low-nose, active, V. 38
wideband antenna, prearmp. V-35
antetheft device, I-7
arc lamp, $25-\mathrm{W}$. power supply for, II-476
are welding inverter, ultrasome, 20 KHz . $\mathrm{IIT}-700$
are-jet power supply, starting circuit, III-479
astable multivibrators, II-269. Ii-510, IIL-196, III-233, III-238, V-387, V-388
op amp, $\mathrm{mI}-221$
free-munning square-wave oscilator, V-386
programmable-frequency, It--237
square wave gereration with, II-597
attendance counter, II-138
attemuators, Im-29-31
analog signals. microprocessorcontrolled, III-101
dgetally programmable. III-30
digitally selectable, precision design, 1-52
programmable, $1 \mathrm{II}-30$
programmable ( 1 to 000001), J-53
rf, IV-322
variable, I-52
voltage-controlled, TT-18, III-31
audio amplifiers (see also amplifiers, audio and sound circuits, audio power amplifiers), II-41-47, LII-32-39. NV $34-42$

40 dib gain dessgn, $\sqrt{7}-36$
AGC, squelch control, III-33
andin compresser. II-44
automotive slereo system, highpower, N-66
balance, II-46, IT-47, TV-215
Bavandall tone-controt, [V-688
booster, $20 \mathrm{~dB}, \ldots 1-35$
CD4049 design, IV-40
circuil bridge load dnve. ITT-35
complementary-symmerry, I-78
compressor, II-11
distrmbution, I-38, IT-39
electric guitar, IV-38
fader, autonatic, 11-43
fixed power supples, IV-398, IV407
bigh-slew rate power op amp, 1-82
gain-rontralled. stereo, III-34
line amplifier, III-37, IV-39
load tine protection, 76 W, , 73
loudness, II-46
low-nnise design, $\sqrt{ }-37$
low-power, [I-454
micro-sized, III-36
mícrophore, 11-45, 111-34
mucropower hagh-mput-impedance 20-dB amplifier, 11-44
mum-stereo, III-38
power (see audio power amplifiers)
power supply, V-465
pre-amps
1000 x , low-noise, IV 37
sereral-purpose, IV-42
mpedance-matrhing. IV-37
how-nose, IV. 41
magnetic phono cartridge, IV-35
microphone, IV-37, IV-41, IV-42
NAB tape playbark, professional, III-38
phono. III-37, TV-35, IV-36
RIAA. IIL-38
stereo, II-43, $11-45$
Q-nultiplier, IK-20
signal (ste audio signal amplifers)
speaker, hand-held transceivers, III-39
tape playback amplifiers, $\mathrm{V}-35$
television type. III-39
tone contris, $11-686$
Lratrsistur headphone amplifier, II-13
ultra- Hgh h-gam. T-87
volume indicator. II-46, IV-212
audio and sound circuits (see adso audu amplifiers; sound
generators; somin-operated carcums)
acoustic field generator, V-338-341
acoustic sound
receiver/ransmuitler, IV-311
AF drive indicator, V. 346
auplifiers (see audio amplifiers)
audro-frequency generator, V-41b417
audio and sound circuits (comi.)
atudio-frequency meter, V-305,

## V-520

audio-rf signal tracer probe, I-527
audio-sensor alarm, V-8
andio-test oscillator, V-420
audio-to-ADC intertace, V-242
audio-to-TTHF preame, V-24
automatic gan control (AGC), I-17 automatic level control (ALO), V-62
AGC systam for CA3028 IF amp, V-458
rf amplifier, wideband adjustable. $111-545$
squelch control, III-3a
wide-band amplifier. III-15
booster, 11-455, [11-35
biquad filter, III-185
brige load drive, II- 85
carrier-current transmitter, IIT-79
cluper, precise, II-394
compressor, II-44
contmuity tester, I-550
converter, two- to four-wire, 11-14
distribution amplifier, $\mathrm{I}-39$, II- 39
expander, V-582
fillers (see filters)
frequency doubler, IV-16-17
frequency meter, $L$ - 311
genevators (see sound gencrators)
LED bar peak program meter display, 1-254
level meters, sound levels, III-346, IIL-614, IV-305, IV-307
limiters, II-15, V-13 35
mullivoltnieter, M1-767, III-769
mixers (see mixers)
notch filter, II-400
octave equalizer, V-353
nscillators, $1.64,11-24$, III-427. IV 371. IV-275

20 Hz to 20 kHz , variable, $1-727$
light-sensitive, III-365
sine wave, II-502
puwer (see audio power amplifiers)
power meter, 1-488
Q multiplier, II-20
renemers (see recemers)
If signal tracer probe, 1.527
scramblers, [V-25-27
sclecter, digital, V-158
signal amplifers (see audio signad amplitiers)
sine wave generator, 115604
squeleh, $11-394$
switchus
eight-chanrial, V-588-589
video/aurbo switch, V-586
switching/mixing, slent, I-59
transmitters (see transmitters)
waveform generators, III-230
audio gencrators (see sound generators)
andio-operated creuits (ser soundoperated circuits)
audio power amplifters, IT-451. III454, IV-28-33
6 W, with prearap, 111-454
18-W brige, V-49
20-w, III-456
33-W bridge composite. V-4is
39-51, v-39
40 W. V-41
50-W, TII-451
70 W , composite, V-44-45, V 44
audio amplifier, IV-32
basic design, V-51
bridge, 1-81, V-45
bridge composite. V-46
bull horn, IV-31
composite,
33-w bridge, V-46
70 W. V-44-45
nvertus 10W, V-47
noninverting $10 \mathrm{~W} . \mathrm{v}-47$
dual, V-42-13, V-42
general-purpose, 5-W, ac, $\sqrt{\text { W }} \mathbf{- 3 0}$
hadf-watt, single-channel, V-41
inverting composite. V-10W, V-47
linear, fast, high-voltagc, V-z1
MOSFET, V-47
noninverting composite $10 \mathrm{~W}, \mathrm{~V}-4$ ?
op arnp. simple design, IV-33
personal-sterec type, V-48
receiver audo cireuit, IV-31
sterco amp, IV-39, V-40
qubwoofer anp, V-49, V-50
ando signal amphfiers. II-41-47, [V-34-42, V-52-59
booster, V-58
compressor, audio, V-57
constant-volume, $\mathrm{V}-55$
distribution amplifier. V. 59
dual preamp, V-Fs
headphone amplifier, V-53
headphone amplifier. JFET, V-5?
lue driver, V-54
mım-annp. V-55
phonograph, maguetuc puckup, V-58
tumable-filter design, $V$ - -3
volume limiter, $V .59$
audio-frequency generator, V-416-417
auric-frequency muter, $V-305, ~ \vee-390$
audio-to-THF preamp, V-24
audio/video switcher circuit, [V-540-541
aute-advance projector, II-444
autodrum sound effect, IL-691
aluto-fade c.ernut, IT-42
auto-flasher, 1-299
auto-zeroing scale bridge rircuits, 111-69
automatic main control (AGC). il-17
AGC systern for CA3028 1 F ump. N-458
rf amplifier. wdeband adjustable,

111-545
squeteh conlrol, III-33
wide-band amplifier, $111-15$
antomatic level control ( ALC ), V-60-62
AGC system for audio signals. V 62
basic desiest, V-62
digital design, V-61
automotive cirents, 11-48-63, II-40-
52. [V-43-67, V-63-77
accessory-power controller, V-70
adims (set colso alarms/security
circuits), V-1
automatic-arming, $\sqrt{ } \mathrm{V}-50$
automatic turn off, IV-52
CMOS design, low-current, IV-56
horn as loudspeaker, IV-54
single-1C design, IV-55
dir condilioner smarl clutch, III-46
altematorfbattery montor, 111-633, V-88
alternator regulator, V-76
A radio to shortwave converter, [V-500
amphfer, booster for car sterco. V-72
analog expanded-scale meter, $\mathrm{N}-46$
audio-amplifier, high-power, IV-66
back-up becper, III-49, IV-51, [V-56
bar-graph voluneter, 11-54
battery chargers/moritors (see also battery-related circuits)
charger, ni-cad, t-115
condition checker, $\mathrm{t}-108$
current analyzer, T-104
clectric vehuele battery saver, II-67
monitor, $\mathrm{I}-106, \mathrm{I}-222,111-60-67$
supply circuit, $+/-15-$ and $5-\mathrm{V}$, [V.391
bathery cranking-amps tester, V-84
batteryfalternator monitor, V-88
hrake and turn indicator, V -74
brake lights, V-65
delayed extra, IIT-44
flashing, V-69
flashing third, III-51
inght-satety hght for parked car, TV-61
third brake light, IV-60
burglar alarms, $\mathrm{I}-3, \mathrm{~T}-7,1-10,11-2$, III-4, III-7, IV-53
cassette recorder power circuit, IV-548
courtesy lights
delay swirch, IIT-42
light extender, III-50
dc power adapter, V-70
diki-tich II, II-61
directional sugnals monitor, Ш-48
Aoor ajar monitor, Ill-46
electric veheles, battery saver, III-67
Qectrical tester, IV-45
clectronic circuts, IV-63-67
engine-block heater reminder, V-74
exhaust emissions analyzer, 11-51
fan thermostatic switch, V-68
fog light controller whth delay, V-59
fuel gange, digital readout, IV-46
fuse monitor, V-77
garage stop light, 11-53
dererator regulator, V-76
slow-phu trwer, [L-52
headlights, IV-57-62
alarm, [I]-52, V-77
automatic-off concrober, N-61, V-75
delay circut, $\mathrm{I}-107$, III-49, II-59
dimmer, II-57, It-6.3
flasher, V-73
on-lights reminder, V-74, V-77
switching curcuil. V-75
headight/spotlight control, V-67
hush-speed warning device, 1 -101
ice formation alarm, II-58
ignition circuit, V-64
cut-off, IV-53
electrunic ixnútion, JV-65
substitute ignition, III-41
tirtuing light, II-60
immobilizer, II-50
kill-switch for battery, timedelayed, V-71-72
light circuils, IV-57-62
lights-on warnuig, II-55, IIT-42, [V-58, W-60, N - 62
locator, automobile locator, III-43
night-saiety light for parked car, N-61
oil pressure gauge, dikital readout, IV-44, IV-47
FTC thermistor automotive temperature indicator, II-56
radio recelver, II-635
radio WWV converter, V-119
rcad-head pre-ainplifier, IIT-44
road ice alarm, IT-57
security system, I-5, IV-49-56
spotiight/headight control, V-67
fachormeters, 1-94, 1-100, 1-102, II-175, $111-335,111-340, \mathrm{III}-347$, V-65
artalog readous, IV-280
calibraten, $\mathrm{ILT-598}$
closed loop feedback control, 11-390
digital readout, II-61, III-45, [V-268-269, IV-278
dwell metertachometer, m-45
feedback control, IT-378, IL-390
frequency counter. I-310
low-frequency. $\mathrm{IL}-596$
minimum-component design, I-405
motor speed controllers, II-378, 11. 589
optical puck-4p, IIn-347
set pont, III-47
temperature gauge
digital readout, $1 V-48$

PrC thermistor, 11-56
thermostation switch for auto fans, V-68
turn signals, V-65
audible reruuder. V-74
monitor, IT-48
sequential flasher for, II-109, III-1
smart, V-66-67. V-66
reminder $\mathrm{V}-75$
vacuurs gape, didital readout. V-45
voltage gauge, $\overline{\mathrm{V}}-47$
voltage regulator, III-48. IV-67
voltrneter, bargraph, I-93
water temperature gauge, IV-44
windsheld wiper circuits, I-105. 11-55, II-62
control cireait. T-103, I-105, It-62
delay chrout, 11-5h, IV-64
hesitation control unit, I-105
intermittent, dynamic braking, 11-49
interval controller, N - 67
slowr-sweep control. II-55
windsheld washer fluid watcher, I-107
WWV converter for radio, V-119

## B

B-feld measurer, V - 272
baty monitor, V-370-371
baby-alert transmitter/receiver, V-95-96
back-biased GaAs LED Lght sensor, [1-231
back-EMF PM metor speed control, 11.379
backup-light beeper. car, IV-51, IV-56
bagpipe sound effert TV-521
balance indicator, andio amps.「V-215
balance meter, stereo, V-583
balancer, stereo, 1-610
balance ampliticrs, $\mathrm{HI}-46$
loudness control m , II-395
batance indicator, hridge mrenit, II-82
halun, V-34
hand reject filter, active, II-401
bandpass filter (see also filter circuits), 11 -222, V-180, V-181
01 to $101 \mathrm{Lz}, \mathrm{T}-296$
$160 \mathrm{~Hz}, \mathrm{I} 296$
actuve, IT-221, II-223. III-190
$1 \mathrm{kHz}, \mathrm{I}-284$
20 kHz 1.297
60 dB gam, $1 \cdot 284$
varmable handwidth, $\mathrm{I}-286$
buquad, I-285, III-188, V-190
Chebyshev fourth-order, 111-191
high-Q, 1-287, V-179
MFB, multichamel tone decoder, $1-288$
multiple feedhack, $\mathrm{F}-285$, I-297, II-224
notch, II-223
Saler-Kcy, $500 \mathrm{~Hz}, \mathrm{I}-291$
second-order bquad, III-188
speerh-range filter, V-185
state variable, I-290
tunable, IV-171
variable bandpass, V-184
vanable-frequency, V-186
hang-bang power controllers, $\mathrm{V} \cdot 380$
har-rode scanner, [II-363
bar-expanded scale meter, II-186
bar graphs
ac signal indicator, Il-187
voltmeters, II-54, II-99
barricade flasher, 1-299
harometer, IV-273
bass tone control in stereo amplifier, V-584
bass tuner, II-362
$12 \mathrm{~V}, \mathrm{~T}-111$
200 mA -hour, 12V Nu-Cad. I-114
automatic shutoff for, 1-113
batlery-operated equipnent (see also battery-related circuits)
at power control switch, IV-387
automatic shutoff. III-61
bipolar power supply, 11-475
black light, V-281
buffer amplilier for standard cell, 1-451
calculators/radios/cassette players, power pack, 1509
cassette deck power circuit, car, IV-548
fance charger, $11-202$
flasher, hiph-powered, II-229
lantern circut, $\mathrm{I}-380$
light, capacitance operated, I-131
On indicator, IV-217
undervoluge indicator for, 1123
warting light. II-320
battery-related circuurs (see also -hattery-operated equipment), V-82-89
AA cells, $+5 \mathrm{~V} /+36 \mathrm{~V}$ power supply. V-452
batcry life extenders, IV.72, V-87 9-V. III-62
discomnect switch, N-75
elentric veholes, III-67
capacity tester, III-66
car battery/altentator monitor, V-88
chargers, l-113, II-64, IT-69. II-5359, ए- 48 -72, V-78-81
12-V charger, IV-70
constant vollage, current linited. I-11E
intelligeat circuit, V-81
moble charger, +12 Vde, IV-71
mi-cad, 1-112, I-116, III-57
rf type, V-79
solar-powered, V-81
temperalure sorsing charger, IV-77
battery-related circuits (cont.) trirkle charger, lead-acid, V-79 checkers (see battery monitors, below)
condition checker, I-108, I-121
control for $12 \mathrm{~V}, \mathrm{l}-112$
converter, de-to-dc., $\mathrm{N}-119$
cranking-amp test circut, V-84
current limuted 6V, $\mathrm{M}-118, \mathrm{IV}-70$
current monitor, 0.2 A batteries, V-87
disconnect switch, life-extender, IV-75
dynamic constant current test, $\mathrm{JF}-75$
fixed power supply, $12-\mathrm{VDC} / 220$ VAC, III-464
gel cell, II-66
high-voltage generator, [II-482
indicators (see hattery monitors, below)
internal resistance tester, [V-74
kill-switch, time-delayed, V.71-73
lead/acid, III-55
level inducator, II-124
lithium, II-67
charge indicator, 1I-78
low-battery delection/warning, [124, II-77, 111-56, $111-59,111-63$, TIT-65, TV-56, IV- 80
low-cost trickle for 12 V storage, I-117
monitors, I-106, I-222, II-74-79, III-60-67, [V-73-80, V-82-83
si-čad batlerics, $1-118$
analyzer for, III-64
charger, 1 -112, F-116, III-5? $12 \mathrm{v}, 200 \mathrm{~mA}$ per hour, I-114 current and voltage limiting, 1-114 last-uthing, 1-118 portable. IV-69 temperature-sensing, IV-77 thermally controlete, IT-68
packs, automotive charger for, I-115
portable, III-47, IV-69
protection circuit, II-62
simph-ead, T-112
temperature-sensing charger, IV-7?
test circuit. $\mathrm{V}-79$
thermally controlled, 1 -68
zappers, [-6, II-66, II-68
power supply and, 14V, IT-73, III42
protection circuit, ni-cads, III-62
PUT, IIL-54
regulator, T-117
relay fuse. V-88
saver circuit, V-87
sensor, quick deactivating, H11-61
simpli-cakt, I-112
solar cell, 11-71
splitter, III-66
status modicator, II-77
step-up switching regulator, 6-V. 11-78
supply-voltage monitor, $V$ - 85
test circunts, $\mathrm{V}-78$, V-83. V-86
LED bargraph, V-89
ni-cuad, IV-79
thermally controlled ni-cua, 11-68
threshold indicator, J-124
LITT, III-5n
undervoltage indscator, I-123
universal battery, III-56, III-58
versatile batury, 11-72
voltage ndeators/motuitors, 11-79. JV-80, V-86
autamotive batteries, IV-47
detector relay, II-76
HTS. I-122
reguator, IV-77
solid-state desigr, 1-120
watchoog circuit, V-85
wind powered, II-70
zapper, simple ni-cad, [-116
Baxandall tonic-control audo amp, IV-588
BCD rotary switch, digital. V-150
BCD-to-analog converter, I-160
BCD-to-parallel converter, multiplex, I-169
beacon transmither, $111-68{ }^{3}$
berp transformer, III-555, III-566
beeners, I-19, III-49
bells, electrome (seo also alams; annuchators), [-636, TT-33
bench top power supply, II-472
bucycle speedometer, IV-271, IV-282
bilateral current source, 111-469
binary counter, $11-135$
biomedical instrumentation differential amplifier, III-282
bipolar de-de converter with no nductor, II-132
hipolar power supply, II-475
bipolar voltage reference scrurce. III-774
biquad audio filter, III-185
second-order bandpass, I11-188
RC active bandpass, 1-285
brod-chirp sound effect, III-577, II-588
burd feeder montor, V-371
bistable multivibrators, $\mathrm{I}-183$, TT-465 inverter. III-103
debouncer, IV-108
hasher, I-299, 11-234
lamp iriver, V-160
pushbutton trigeer, V-38s
RS flip-flop, 1-305
SCR, $11-367$
SR ILp-Llop, IV-651
touch-triggered, I-183
bit grabher, computers. IV 105
black light, battery-operated, V 281
blender-motor control circuit, V- 379
blinkers (see flashers and blinkers)
blown-fuse alam, 1-10
boler control, I-6.38
bongos, electronic, H -587
boosters
12nts, II-97
ar lime voluge boost, V 949
audo, $11-455$, III- $85, \mathrm{~V}-58$
boosler/buffer for reference current, IV-425
electronc, high-speed, II-96
forward-current, TIJ-17
LED. I-307
power booster. of amp design. IV-358
ri anp, broadeasl band boost. IV-487
shortwave FET, I-563
bootstrap circuit, V.356
source follower, V-20
cable, 1-34
brake lights (seef automotive cronts)
brake, PWM speed control/energy recovering, III-380
breakers
121s, 11-97
high-speed electronic, $11-96$
breaker power dwell meter, F - 102
breakout box, buffer, IJ-120
breath alert alcohol tester. III-359
breath monitor, III-350
bridge balance indicator, $11-8^{2}$
brudge circuits, 1-552, 11-80-85, IJI-68.71, W-81-83
ar, II-81
ac servo amplifier with, III-387
accurate rull/variable gain creuit. III-69
ar-flow-senseng themistor, IV 82
auto-zeroing scale. IIT-69
balance indicator. II-82
bridge transducer amplifier, [II-71
ervstat-controlied oscillator, IV-127
afferential amplifer, two op-unt II-83
inductance bridge. N-8:
load driver, andin carcuirs, inl-35
low-power common source anplifier, IL-84
one-power supply design, IV-8;3
QRT SWR, IH. 336
rectifier, fixed power sumply, T-898
remote sensor loop transmitter, 111-70
rf bridke, V-50-MLIz, V-300
strain gauge signal conditoner, II-85, iil-7]
transducer, amplifier for, $\mathrm{II}-84$
Wien-bridge (see Wien-bridge)
brightuess controls, 111-308, 111-316
contrast meter, $1-472$, I1-447
LETS, -250
low-loss, $7-377$
broadband commumiatons (seep radio/rf circuits)
buck converter, $5 \mathrm{~V} / 0.5 \mathrm{~A}, \mathrm{1}-494$
buck/boosl converter, 111 -113
bucking regulators
add 12-V output to 5i-V. V-472
high-voltage, III-481
buffer amplifiers, V-91
10x, 1-128
100x, J-128
ar, single supply, T-126
hatrery powered, standard cell, II-351
MOSFET dosign, V. 93
sinte wave output. [-126
VFO design, V-92
buffers, IV-88-90, V-90-93
amplifiers (see buffer amplifiers)
ac, single-supply, high speed,
1-127-128
ADC irpul, high-resolution, 1-127
MI), 6-bit, high-speed, [-127
booster/buffer for reference ciurrent, TV-425
capacitance buffers
low-input. IL-498
stabilized low-input, III-502
data/clock line serial bus for T'Cs, V-110
hex-buffer crystal ascllator. V-136
high-current, $v .92$
inputoutput, for analog mulliplexers, 11 -11
invertins, II-299, IV-90
oscullator buffers, IV-89
prepsion-micreasing design, $\mathrm{V}-89$
rall-to-rail sungle-supply huffer, V-93
rf amp, buffer amp with modulator, IV-490
stable, high-impedance, 1-128
unty gam, stable, good speed, high-input umpedance, II-6
VFO buffer amplifier, V-92
video buffer, 11 -712, V. 93
wideband. high-impedancerlowcapacitance, J-127
buffered breakont box, II-120
bug detector, IIT-365, V-150
bug tracer, III 358
bull horn, II-453, VV-31
burglar alarms (see alarms: arruciators; sirctis)
burst generators (see also function generators; sound generators; waveforra generators), II-86-90, III-72-74
multi-, square wavelorm, II-88
rf, portable, ITI-73
single timet TC square wave, It-89
single tone, II-87
strobe tone, II- 90
tone, II-30, III-74
bursi power comrob, II-362
bus interace, eight bit uP, II-114
Butter oscellators
aperiodic, 1 -196
common base, 1-191
crystal, I-182
emitter follhower, IT -190-191, П-194
Butterworth filters
fourth order high-pass. I-280, V-179
fourth order low-pass, $V$ - 180
order low pass, V-181
buzzers (sen ammulators)

## C

cable
bootstrapping, 1-34
test circuit, III-539, V-299
calibrated circuit, DMM auto, I-714
calibrated tachometer, III-598
calitrators
crystal, $100 \mathrm{kHz}, \mathrm{I}-185$
electrolytic-capacitor reforming, 1V-276
ESR measurer, TV - 279
ossilloscope, $\mathrm{TT}-433, \mathrm{II}-436$
portable, I-644
square wave, $5-\mathrm{V}, 1-423$
standard for calibration, 1-406
radio calbrator, V-298
tester, IV-265
wave-shaping, high-slew rates, IV-650
cameras (sete photography-related (ircuits; television and video)
canary sound simulator, V-557
canceller. central image, III-358
capamtance buffers
low-input. III-498
stabilized low-input, III-502
capacitance controller, digital, V-159
capacitance rocters, 1-400, 11-91-94, III-75-77
A/D), 3.5 digit, III-76
capacitance-to-voltage, II-92
digital, 11-94
capacilance mutipler, 1-416, 11-200, V-205. V-347
capacitance tester, one-IC design, V-306
capactance-to-pulse width converter, II-126
capacitance-to-voltage meter, $\mathrm{L}-92$
capacitor discharge
high-voltage gentrator, 711-485
igration system, TT-103
capacitors, hysteresis compensation, V-353
capacily lester, ballery, $111-66$
car port, automatic light controller for, IT-308
cars (see automotive circuits)
carrier-current circuits (see also radio/rf circuits), III-78-82, IV-91-93, v-94-96
AM receiver, III-81
audio transmitter TIT-79
bahy-alert recelveritransmitter, $V$ $95, \mathrm{~V}-96$
data receiver, IV-93
data transmitter, IV-g2
FM receiver, III-80
intercom, I-146
power-line modern, Ill-sz
receivers, 1-141, I-148
IC, 1-146
single transistor, ${ }^{1} 14 \mathrm{th}$
relay, I-575, IV-461
remote control, 1-146
transmitters, 1-144
IC, 1-145
on off 200 kHz line, $\mathrm{T}-142$
cascaded amplifer, III-13
cassette blas oscillator, II-426
cassette interface, telephone, III-618
centigrade thermometer, $1-6 \boxed{0} 6$, 11-648, 11-662
central image canceller; III-358
charge pool power supply, III-409
charge pumps
positive input/negative output, 1-418, 111-360
regulated for fixed power supply, IV-396
chargers (see battery-related circuits, chargers)
chase circuit, III-197, $1-328$
Chebyshev lilters (see also hilter curcuits)
bandpass, fourth-order, IIF-191
fifth order multiple feedtack lowpass, II-219
high-pass, fourth-order. II-191
chime circuit, low-cost, II-33
chopper circuits
amplifier, II-7, III-12, 1-350
dc output, V-349
JFET, V-352
checkers (see measurement/test carcuils)
chroma demodulator with FGB matrix, IIt-716
chug-chug sound generator, III-576
circuit breakers (see also protection circuits)
$12 \mathrm{~ns}, 11-97$
act, III-512
high-speed slectronic, IT 96
trip circuit, N -423
circuit protertion (seef protection circuits)
clamp-on-current probe compensutor, 11-501
clamp-limiting amplifiers, active. III- 15
clamping circuits
video signal, 1II-726
video surmang ampliticr and, III-710
class-D power amplifier, IIT-459
clippers, 11-394, IV-648
audio-powered noise, n-396
audio-clipper/limiter, IV-355
clippers (cont.)
zener design, fast, symmetrical, [V-329
clock circuits, 11-100-102, 111-83-85, V-97-99
60 Hz clock pulse generator, It-102
adjustable TTL, $\mathrm{T}-614$
bunary clock, V-98-99
bulfer serial bus, V-110
comparator, 1-156
crystal ascillator, micropower,
IV-122
digital, with alarm, III-84
gas discharge displays, III-12-hour, J-25!3
oscillator/clock gencrator, $111-8 \overline{0}$
phase lock, $20-\mathrm{Mhz}$ to Nubus, III-105
run-down clock for games, W-205
sensor touch switch/clock, IV-591
single op amp, III-85
source, clock source, 1-729
stepper motors, V-573
three-phase from reference, II-101
TTL, wide-frequency, III-85
Z80 computer. II-121
clock generators
oscillator, 1-615
precision, 1-193
pulse generator, $60 \mathrm{~Hz}, \mathrm{II}-102$
clock radio, 1.542, I-543
CMOS circuits
555 astable true rail-to-rail square wave generator, II-596
9-bit, III-167
coupler, opticas. III-414
crystal oscillator, III-1.34
data acquisition system, II-117
dimmer, V-270
Ilasher, III-199
mverter, linear amplifier from, II-11
hne receiver, V-497
mixer, I-57
multivibrators, V-385
optical coupler, [11-414
oscillator, 1-615, 1-187, 1-199. III-429, III-430, V-420
pienoelectric driver, $\mathrm{V}-440$
programmable precision timer, II1-652
short-pulse generator, III-523
touch swilch, [-137
universal lokic probe, 111-499
varible-frequency oscillator (VFO), V-418
coaxial cable
drivers, coaxial cable, [-266, 1-560
five-transistor pulse booster, II-191
test crrcut, V-299
Cockeroft-Walton cascaded voltage doubler, [V-635
code-practice oscillators, 1-15, I-20, I-22, LI-428-431, IV-373, IV-375, IV-376, V-100-103
keyer, "bug" type, V-102

Morse code practice, V-103
optolsolator design, V -101
QRP sidetone generator, V -102
single-transistor design, V-103
VEO design, V-103
coil drvers, current-hmuting, III-173
coin flpper circuit, III-244
color amplifier, video, III-724
color-bar gencrator, IV-614
color organ, II-583, II-584, V-104105
color video amplifiter, T-34
Colpitts crystal oscillators, $\mathrm{I}-194, \mathrm{I}-$
572, II-147, V-411
$1-10-20 \mathrm{MHz}, \mathrm{IV}-123$
Ircequency checker, IV-901
harmone, I-189-190
two-frequency, N-127
combination locks, electromic, II-196
three-dial, II-195
commutator. four-chamel, 11-364
companders (see compressor/expander circuits)
comparators, $\mathrm{HI}-86$-90, II-103-112, I157
demonstration circuit, IL-109
diode Feedback, 1-150
display and, II-105
double-ended limit, II-105, I-156
dual limit, $\Gamma$-151
fonr-channel, III-90
frequency, II-109, II-110
frequency-detecting, III-88
hiph-impodance, 1-157
hiph-mput impedance window comparator, IT-108
high-low-level comparator with one op amp, IT-108
hysteresis, $\mathrm{I}-157$
merting, I-154
noninverting. I-153
inverting, $1-154$
jitter suppression, V-342
latch and, III-88
LED frequency, 11-110
limit, II-104, I-156
low-power, less than 10uV hysteresis, 11-104
merovolt
dual limit, IIT-89
hysteresis, III-88
monostuble using. $11-268$
opposite polarity input voltage, I155
oscillator, tunable signal, I-69
-power supply overvoltage, glitches detection with, II-107
precision
balanced input/vanable offset, In89
photodiode, I-360, I-384
time out, 1-153
TTL-compatible Schmill trigger, II111
three-mput and gate, op amp design, N-3n3
variable hysteresis, I-149
voltage comparator, IV-659
voltape monitor and, II-104
wnolow, I-152, I-154, II-108, III-87, III-90, III-776-781, IV-656-658
compass
digital design, $\mathrm{N}-147$
Hall-elfect, III-258
talking Hall-effect compass, V-221
compensator, clamp-on-current probe, II-501
composite amplifier, II-8, III-1'3
composite-video signal text adder, 111-716
compressor/expander circuits, III-91-95, IV-94-97
amplifier/compressor, lowdistortion, W -24
audio, $11-44, V-57$
audio compressor/audio-band splitter, IV-9F
clock circunt, 1-156
guitar, sound-effect circuit, IV-519
hi-fi, Il-12, IL-13
de-cmplusis. ILI-95
pre-emphasis; 1II-93
low-voltage, III-92
protector circuit, IV-351
speech, II-2
universal design, ГV-96-97
variable slope, III-94
computatarra, $1-2$
computer circuits (see also interfaces), II-113-122, III-90-108, V-106-110
ADC, eight-channel, for PC clones, V-29-30
analog signal attenuator, II-101
alarm, 1-8
ASCII triplex $100 \mathrm{D}, 8048 / \mathrm{M} 80 \mathrm{C} 48$, II-116
bit grabber, IV-105
buffered breakout box, 11-120
buffer seriul-bus for datavelock lines, V-110
bus interface, 8 bit uP, $\mathrm{IT}-114$
clock phase lock, 20-Mhz-to-Nubus, III-105
CMOS data acquisition system, 11-117
CPU interface, one-shot, IV-239
data separator for fleppy disks, II-122
deglitcher, IV-109
display, cight-digit, III-106
dual 805 Is execute in lock-step circut, IV-99
DVM adapter for PC, V-310
EEPROM pulse generator, 5Vpowered, III-99
eight-channel mux/demux system, 11-115
eight-digt moroprocessor display, III-106
flip-flop inverter, spare, 1IL-103
high-speed data acquisition system, II-118
interface, $680 \mathrm{x}, 650 \mathrm{x}, 8080$ families, $\mathrm{II}-98$
interval timer, programmable, 11-678
keyboard matrix interface, IV 240
laptop computer power supply, V-463
line protertors, 3 uP I/O, IV-101
logic-level translators, IV-242
logic line monitor, ILI-108
tong delay line, logic signals, III-107
nemury/pretector power supply monitor, [V-425
memory saving power supply, II-486
microcomputer-to-triac interface. V-244
mucroprocessor selected pulse width control, 11-i16
modem protestor circuit, V-479
modemfax protector for two computers, V-482
multiple irpuls detector, 111-102
one-of-cight channel transmission system, III-100
oscalloscope digital levels, IV-108
pasword protection circuit, V-109
power supply watchdog, II-494
pulse width control, 11-116
printer error alarm, 1 V - 106
printer sentry, V-107-108
reset protection, chaildproof, IV-107
RGR blue box, III-99
RS-232 dataselector, automatic, III-97
RS-232C line-driven CMOS circuits, N-104
RS-232-to-CMOS line recelver, III-102
RS-232C LED circuit, III-103
short-circuit sensor, remote data Hies, IV-102
signtal attenuator, analog, III-101
sleep-mode sound-operated circuits, V-547
socket debugger, coprocessor, III-104
speech synthesizer for, III-732
stalled-oulput detector, IV- 109
switch debouncer, $\mathrm{N}-105$
anto-repeating, $N-100$
triac array driver, II-410
Vpp generator for EPKOMs, II 114
XOR gates, IV-107
up/down comter, II-105
780 bus monitor/debugger, IV-103
780 clock, II-121
contact switch, I-136
continuity testers, 1-550, 1-551, id 5333, I1-535, 111-345, 111-538540, IV-287, IV-289, IV-296
audible, II-536, V-317
buzz box, 1-551
cable tester. III-539
latching design, $\mathbb{V}-295$
low-resstance circuits, V-319
ohmmeter, linear, IIH-540
PCB, $11-342,11535$
rationetric, 1-550
RC decade box, V-294-295
resistance-ratio detector, II-342
single chip checker, [I-E34
visual. V-293
contrast meters, 11-447
automatic, I-472
brightness controls, 1-250, 1-377, III-308
control circuits (see fluid and moisture, light-contralled circuils; motor control cireuits; speed controllers; temperaturerelated circuits; tone controls)
controler circuit, IV-142
conversion and converters, 1-503, 11-123-132, Ill-109-122, IV-110120, V-116-128
3-to-5 V regulated eutput, III-739
$4-$ to- $18 \mathrm{MHz}, \mathrm{III}-114$
4-to-20 mA rument loop, IV-111
5V-to-isolated 5V at 20MA, ILI-474
5V-to-0.5A buck, 1-494
9 -to-5-V convericr, IV-119
12-to-9V, 7.5 , or $6 \mathrm{~V}, 1-508$
12 -to- $16 \mathrm{~V}, 111 \mathrm{~F}-747$
28-to-5 Vdc converter, V-127
50+ V feed forward switch mode, I-490
$50+V$ push-pull switched mode, 1-494
$100 \mathrm{MHz}, \mathrm{IT}-130$
100 V-to-10.25 A switch mode, I-501
$800-$ to- 1000 MHz scarner converter, V-182
ac-tu-de converters, I-165
lixed power supplies, IV-395
full-wave, $\mathrm{V}-120$
high-mpredance precision rectifier, I-164
analog-to-digital (see analog-todigital conversion)
ATV downconverter, V-125, V-126
ATV fi recerver/converter, $\mathrm{V}-420$
BCD-to-analog, $\mathrm{I}-160$
BCD-to-parallel, multiplexed, 1-169
buck/boost, III-113
calculator-to-stopwatch, I-153
capacitance-to-pulge witth, II-126
crystal-controlled, one-chip, V-117
curtent-to-frequency, V-113
wide-range, I-164
current-to-vollage, 1-162, 1-165, V-127
grounded blas and sensor; IJ-126
photodiode, II-188
dc automobile power adapter, V-70
deto-dc, IV-118, V-119, V-128
1-to-5 V, IV 119
3-to-5 V battery, IV-119
3-to-25 V. III-744, IV-118
bipolar, no inductor, $11-132$
fixed 3- to 15-V supply, IV-400
isolated $+15 \mathrm{~V}, \mathrm{~m}$-115
push-pull, 400 V/60 W; J-210
regulating, I-210, I-211, IL-125, III-121
step-up/step-down, III-118
delac merter, V. 669
dote converter, V.fig
digtal to-analing (see digital-toanalog conversion)
fixed power supply, II-470
flyback, 1-21]
self oscillating, 1-170, II-128, 111-748
voltage, high-efficiency, III-744
frequency, I-159, V-123
frequency-to-voltage (see frequency-to-voltage converson)
high-to-low-imperance, I-41
intermittent converter, power saver, [V-112
IR-pulse-to-audio converter, V-224
light intersity-to-frequency, 1-167
line-voltage to rnultimeter adapter, V-312
logarithmir
fast-action, J-169
temperature-compensated, V-127
low-frequency, III-111
oluns-to-volts, I-168
oscilloscope, 1-471
perod-to-voltage, V - 115
pico-ampere, 70 V with gain, $\mathrm{I}-170$
PIN photodiode-to-frequency, [II-120
polar-to-rectangular converter/pattern generator, V-288
polarity, I-166
positive-to-negative, III-112, LII-113
power supplies, inductorless, V-456
pulse height-to-width, III-119
pulse train-to-sinusoid, III-122
mulse with-to woltage, III-117
radio beacon converter, IV-495
rectangle-to-triangle waveform, IV-110-117
requated $15-\mathrm{Vout} 6-\mathrm{V}$ driven, III-745
resistance-to-voltage, 1-161-16'
rf converters, IV-494-501
ATV receiver/converter, 420 MHz , tow-noise, IV-496, IV-497
radho beacon converter, V -495
receiver frecuency-converter stage, TV-499
SW converter for AM car radio, IV-500
conversion and corverters (cont.)
two-meter, TV-498
up-converter, TVRO subcarrier reception, [V-501
VLF converter, IV-497
WWV-to-SW converter, IV 499
receivng converter, 220 MHz , IV-500
RGB-composite video sugnals. [LL-714
HMS-to-de, 11-129. 1-167
$50-\mathrm{MHz}$ thermial, $11 \mathrm{l}-117$
RGR-to-NTSC, N-6ll
sawtonth wave converter, IV 114
scanner converter, V-800-to- 1000 $\mathrm{MHz}, \mathrm{V}-122$
shortwave, ILI-114, V-118
simple LF, $1-546$
sine-to-square wave, 1 -170, IV-120.
V-124, V-125, V-569, V-570
square-to-sime wave, III-118
square-to-miangle wave, TTL, II-123
temperature-to-digital, V-123
temperature-to-fruucncy, 1-168, V-121
temperamure-to-time, III-632-6.33
transverter, V-2-to-6 meter, V-124
triangle-to-sine wave, II-127
TTTL-Lo-MOS log1c, II-125, I-170
two-wire to lour-wire audio, II-14
mempor-to-dual voltage supply, III-743
video converters
a/d and d/a, IV-610-fill
RGB-to-NTSC, N -611
VL' corwerters, 1-547, V-121
ff converter, JV-497
voltage (see voltage converters)
voltage multrpliers, V-6f8-669, V-668
WWV converter. car radios, V-119
WWV-to-SW r] converter, IV-193
cool-down circuit. V 354, V-354
coprocessor socket debugger, H-104
countdown timer, II-680
counters (see also dividers), II-133139, 11]-123-130, V-129-133
armalos circuil, 11-137
attentance, 11-138
binary, II-135
divide by-N
$1+\mathrm{GHz},[\mathrm{V}-15 \mathrm{~F}$
$1.5+$ divide-by-n, $\Gamma$ - 156
CMOS programmable, $1-257$
7490 -divided-by-n, $\mathrm{IV}-154$
divde-by-odd number, TV-153
frequency counters
$2 \mathrm{MHz}, \mathrm{V} \cdot 130 \mathrm{~m} 131$
$10 \mathrm{MLz}, \mathrm{V}-132-133, V-132$
preamp, V- 24
frequency idividers, $I-258$, I-25l II-254, II-213-218, II-340, II-768
$1.2 \mathrm{GHz}, \mathrm{II}-129$
$10-\mathrm{MHz}, \mathrm{T}$ I- 126
clock input. V-151
decale. $1-252$
divide-by-1.5, 111-215
lew-cost. III-124
low-frequency, II-253
preamp. III-128
programmable, IV-152-153
staircase generator ard, 1-730
tachompter and, $7-310$
geiger. 1-536-5.3?, V-217-219
microfarad counter, N-275
minimum/maximum selector, fourinput. V-3ys
odd-rumber divider aud, JII-217
preamplifier, oselloscope, III-438
precision frequency, $1-253$
programmable, low-power widerange, III-126
rug counters
$20 \mathrm{kl} 2 \mathrm{z}, 11-135$
itwandescent lamp, 1-301
low-cost., T-301
low-power pulse circuit, IV-437
SCR, 111-105
variable tiving, II-134
time base. function gentrators, 1
Hz, [V-201
univetsal
$10-\mathrm{MHz}, 1-256, \mathrm{II}-139$
$40-\mathrm{MHz}$. III-127
upidowit counters 8-digit, 11-134
extreme count lroezor, M11-125
XOR gate, ITl 105
rompler curcuits
linear conplers
ac analog, [1-412
altalos, $11-413$
dc, II 411
optocoupler, mstmumantation, II-417
optical couplers/optocouplers, $V-407$
CMOS desigrt, Ill-414
interiace circuits, V-406-407
Imear. mstrumentation, II-417
grable, II-409
TTL design, III-416
photon, 11-412
transmiller oscilloseope for CB signtals, J-473
courtesy lights (ser automotive crrcints)
CRO doubler, III-439
cross fader, II-312
cross-hateh senerator, color IV, 711-724
crossover nerworks, $71-35$
5V, I-518
do/de lines, electronic, $1-515$
uelive, 1-172
asymmetrical third order
Rutterwonth, 1-173
elertronir circuit for. II-36
crowbars, 1-516
electric, III-510
electronic, $\mathrm{H}-99$
SCR, 11-496
erystal oscillators (see alsu
oscillators), J-180, I-183-185, I-
195. I-198, II-140-151, III-131-
$140, \mathrm{JV}-121-128, \mathrm{~V}-134-140$
1-t $0-20 \mathrm{Md} \mathrm{z}, \mathrm{TYL}$ design, $\mathrm{JV}-127$
1-to-4 MHz, CMOS design, JV-125
$10 \mathrm{MHz}, \mathrm{IT}-141$
$10-5,0-150 \mathrm{kHz}, \Gamma \mathrm{V}-125$
$10-10-80 \mathrm{MHz}, \mathrm{N}-125$
$50-10-150 \mathrm{MHz}, \mathrm{TV}-126$
$96 \mathrm{MLL}_{1}$ 1-179
150-to-30,000 klz, 1 U 126
380 MHz, IV-125
activncy tester, V-198
aperiodic, parallel-mode, l-106
basic design, V-135
bridse, crystal-controlled. IV-127
Butler oscillator. I-182
calibrator, $100 \mathrm{kHz}, \mathrm{F}-185, \Gamma \mathrm{~V}-124$
ceramic, 10 MHz , varactor tumet, II-141
clock, micropower design, IV-122
CMOS erystal oscillators, $1-187$, III-134
I-to-4 MHz, TV-125
Colpitts crystal oscollators, 1-194, I-572, IT- 147
$1-$ to- $20 \mathrm{MHz}, \mathrm{N}-123$
frequency checker, IV-301
harmeruicic, 1-189-190
two-frequency, IV-127
crystal-controlled oscillator as, II-147
erystal-stabilized IC timer for subharmonic frequencies, II-1̄1
erystal tester, I-178, 1-186, 11-151
foubler and, T-184
easy start-41, [II-132
FET. 1 MHz, II-144
fundainental-frequency, JII-132
Hartley oscillator, V-140)
hex-bulfer, V-106
high-frecuency, I-175, II-148
high-frequency signal generator as, II-150
IC-compatible, II-145
impedarce checker. V-136
LO for SSB Lransimituer controlled by, II-148
low-frequenry, I-184, II-146, V-135
10 kHz to $150 \mathrm{kHz} . \mathrm{II}-146$
low-noise, $11-145$
marker gentrator, lll-1.38
mercury cell crystal-controlied oscillator as, $\mathrm{IT}-149$
OF-1 HI oscillator, intemational, I-197
Of 1 LO oscillator, intemational 1-189
overtone oscillators, I-176, 1-177, 1180. ]-183, I-185, [I-146, III-146

50 MHz to $100 \mathrm{MHz}, \mathrm{J}-181$
100 MHL, IV. 124
crystal, 1-176, I-180, I1-146
crystal switching, 1-183
fifth-overtonc, 1-183
third-overtone oscilator, TV-123
Pierce oscillator, V-140
1-MHz, $11 \mathrm{I}-134$
crystal, J-195, II-144
harmonic, 1-190, 11-192
JFET', 1-198
low-irequency, IIT-133
quartz, two gate, III-136
reflection oscillator, arystab-
controlled, III-136
Schmitt trigger, [-181
signal source controlled by, II-143
since-wave oscollator, $\mathrm{T}-198$
stáble fow-frequency, I-198
standard, 1 MHz. J-107
temperature-compensated, 1-187, II-142, 111-137
Lest ciretit. V-199
third overtone, I-186, IV-123
time hase, III-133, IV-128, V-137, V-138
TTL design, J-179, IV-127
TTL-compatible, J-197
transistorized. T-188
tube-type, 1192
VHF crystal oscillator, III-138-140
voltage-controlled (VC(O), III-135, IV-124
wide-range, $V$ - 139
crystal switching overtone oscllator with, I-183
courent analyzer, anto battery, 1-104
current booster, 1-30, 1-35
current collector hedel amplifier, II11, II-295
current feedback amp, V-100 mA at $100 \mathrm{MHz}, \mathrm{V}-25$
current Limiter, V-146
mrush current, $V$ - 358
current loops
4-to-20-nid converter, [V-111
controller, SCR design, $\sqrt{N}-387$
current meters and monitors, $\mathrm{I}-203$. IT-152-157, III-255, III-338, JV. 284, V-144-146
alarm and current montor, III-3.38
ac current inducator, $V-290$
current sensing in supply rails. II-15:3
electrometer amplifier with overlsad protection, II-125,
Hall-cffect sensors, ITI-255, IV-284
high-gam crirrent sensor, [V.291
Ime-current monstor. H1-341
picoammeter. I-202, 1L-154, II-15?, III-338
guarded input, II-156
range unneter, six-decade. II-153, II-156
current readoul, ri, 1-22
current sensith, supply rals, 1l-153
current sink, I 206
1 ma for fixed power supplies. [V-402
voltage-montrolled IV-620
current sources, $\mathrm{I}-205,1-697$, V-141-143
0 -tn-200-nA, $\mathrm{V}-427$
bilateral, II-469, I-694-645, V-143
ripolar sources
inverting, 1-697
noninverting, $1-695$
constant, I -697, $1 \mathrm{II}-47^{2}$
lixed power supplies
bootstrapped amp, IV-406
differential-mput, fast-acting, IV-405
low-rurrent source, IV-399
limiter, V-146
low-resistance measurements, V . 142
negative, V-143
offset-adjusting, V -145
positive, V-142
precision, 1-205, 1-206
regulator, variable power supply, III-490
variable power supplies, voltageprogranmable, IV-420
voltage-conirolled, yrounded sourcelvad, IIl-468
current-firtiting rezulator, V-4:8
current-shunt auplifiers, III-21
current-to-iresuency converter, 1v-113
wide ranse, I-154
current-to-voltage amplifier. highspeed. $1-35$
current-to-voltage converter, J-162, 1-165, V-127
grounderi bras and sensor in, IL-126
photodione, II-128
curve tracer, V-300
diodes, IV-274
FET. 1-397
CW-related circuits
CW/SSB receiver, V -80- and 40meter, V-499
filter, razor sharp, $11-319$
keying circinits, $\mathrm{N}-244$
offset indicator, N-213
SSR/CW yrotuct detector, IV - 13y
transceiver, $5 \mathrm{~W}, 80$-meler, IV-602
transmitters
1-W, III-678
20-M low-power, V-649
40-M, T11-684. V-648
$902-\mathrm{MHz}$, III-686
HF low-fower, IV-601
QRP, III-690
cyclir AD converter, $11-30$

## D

Dark-activated (see light-controlled circuils)
darkrom equipment (see photograriny-related circuts)
Farlington amplifier, push-pull, V-22
Darlington regulator, variable power supplies, IV-421
data-manipulation circuits, IV-129133
acquisiLon circuits, $\mathrm{TV}-1,31$
CMOS system, II-117
four-channel, [-421
high-speed system, 1I-118
analug signal transmission isolator, IV-1.3.3
link, IR type, 1-441
prescaler, low-frequency, V-132
read-type areut, 5 MHz . phaseencoded, ll-365
receiver carrer-current circuit design, N-93
receiver/messape demuxer. three. wire, TV-130
selector, RS-232, II-97
separator, floppy disk, IT-122
transmission circuits, IV. 92
dc adapteritransceiver, hand-held, III-461
dc generators, high-voltage, 111 -481
to motors (see also motor control circuils)
direction control, 1-452
driver controls
fiberopuc control, II-206
tixed speed, Tr-3̂̀7
servo, bipolay, II- 385
reversible, 11-381, III-388
speed control, 1-452, 1-454, II-377, III-380, III-388
de restorer, video, III-723
de scrvo drive, bipolar control input, II- 385
de static switch, II-367
dr-to-ar inverter, V-247, V-669
dr-to-de conversion, [V 118, V-b69
1-to-5 V, [V-119
3-w-5 V battery, $\mathrm{IV}-119$
${ }^{3} 3-\mathrm{w}-25 \mathrm{~V}, \mathrm{III}-744, \mathrm{JV}-118$
3.3- and 5 -V outputs, V- 128

3 A. no heatsink, V-119
bipolar, no inductor, 1-132
fixed 3- to $15-\mathrm{V}$ supply, $\mathrm{V}-400$
isolated +15 V , IIT-115
push-pull. $400 \mathrm{~V} / 60 \mathrm{~W}, 1-210$
regulating, $1-210,1-311, \mathrm{II}-195$, [II-121
step-up/step-down, III-118
de-to-dc SMPS variable power supply, II-480
debounrers. III-592, IV-105, V-316
ailo-repeat, $N=106$
computer applications, IV-105, IV. 106, IV-108
debouncers (cont.)
Ilip-flop, IV-108
debugger, coprocessor sockets, III-104
decibel level detector, audio, with meter driver, IIL-154
decoders, II-162, III-141-145
$10.8 \mathrm{MHz} \mathrm{FSK}, \mathrm{I}-214$
24-percent bandwidth tone, 1-215
direction detector, III-144
dual-tone, I-215
encoder and, 111-144
frequency division multiplex stereo, II-169
PALNTSC, with RGB mput, III-717
radio control receiver, 1.574
SCA, 1-214, III-166, II1-170
second-audio program adapter, III-142
sound-activated, III-145
stereo TV, Il-167
time division multiplex stereo, П-168
tone alert, 1-213
tone dial, I-630, I-6.31
tone decoders, 1-231, II-143
24\% bandwidth, J-215
dual time constant, IJ-166
relay output, $\mathrm{I}-213$
tone-dial decoder, 1-630, 1-631
video, NTSC-to-RGB, IV-613
weather-alert detector/decoder, IV-140
deglitcher circuit, N -109, V-336-337
delay circuits/ delay units, III-146-
148, V-147-148
adjustable, III-148
analog delay line, echoo and reverb effects, V -21
door chimes, 1-218
acho and reverb effects, anallog delay line. IV-21
ext delay for burglar alarms, V-10
headlights, I-107, II-59
leading-edge, III-147
long duration time, I-217, I-220
power-on delay, V-148
precision solid state, I-664
pulse, dual-edge trigger, III-147
pulse generator, II-509
relay, ultra-prerise long time, II-211
timed delay, I-6668, II-220
constant-current charging, II-668
windshield wiper delay, 1-97, 11-55
demodulators, II-158-160, III-149-150
5 V FM, $\{233$
12V FM, I-233
$665 \mathrm{SCA}, 11 \mathrm{-} 150$
AM demodulator, 11-160
chroma, with RGB matrix, II-716
FM demodulator, I-544, II-161, V. 151, V-155
nartow-band, camrier detect. [II-159
linear variable differential trausformer driver, $\mathrm{I}-403$

LVDT demoriulators, II-337, III-323-324
stered, II-159
telemetry, I-229
demonstration comparator corcuit, II-109
demultiplexers (see also multiplexers), if-394
differential, $1-425$
eight chamel, 1-426, 1J-115
descramblers, II-162
gated pulse, II-165
untband, 11-164
sine wave. II-163
derived center chauiel stereo system, IV-23
detect-and-hold circuit, peak, I-685
detectors (see fluid and moisture, light-controlled circuits; motion and proxirnity; motor control circuits; peak detectors; smoke detectors; spieed controllers; temperature-related circuits; tone controls; zero-crossing)
deviation meter. IV-303
dial pulse indicator, telephone, III-613
dialers, telephone
pulse-dialing telephone, III-610
pulse/tone, single-chip, III-603
Lelephone-line powered repertory, I-633
tone-dialing telephone, 111-607
dice, electronic, 1-325, IIL-245, N-207
differential amplifiers, $1-38$, IIT-14, $V$. 18, V-21
high-impedance, I-27, I-354
high-input high-impedance, II-19
instrumentation, I-347, III-283
instrumentation, hiomedical, IIT-282
programmable gain, III-507
two op amp bridge type, II-83
differential analos switch, 1-622
differential capacitance measwrement circuit, Il-665
differential haild, I-589, II-3655
differential multuplexers
demultiplexert, I-425
wide band, I-428
differential thermometer, II-661, III-638
differential voltage or current alarm, II-3
differentiators, I-423, V-347
negative-edge, $1-419$
positive-edge, I-420
digital-capacitance meter, II-94
digital-IC, tone probe for testing, 11-504
digital-frequency meter, III-344
digital-logic probe, III-497
digital audio tape (DAT), ditherizing circhit, $\mathrm{V}-23$
digital circuits, V-156-16n
audio selector, V-158

BCD rotary switch, V-160
capacitance control, V-159
entry lock, V-157
inverters, V-246
potentiometer control, V-158
resistance control, V-159
digital multimeter (DMM), [V-291, V-291
digital voltmeters (DVM), III-4
3.5-digit, 1718, III-761
3.75 -digit, $1-711$
4.5-digit, 1-717, III-760
auto-calibrate circuit, 1-714
autornatic nulling, I-712
calibrated circuit, DVM auto, I-714
interface and temperature sensor, II-647
LED readout, V - 286
digital-to-analog converters, I-241,
II-179-181, III-163-169, V-120
0 -to -5 V output, resistor terminated, I-239
3 -digit, BCD, 1-239
8-bit, I-240-241
high-speed, i-240
output current to voltage, 1-243
to 12-bit, two, II-180
9 -brt, CMOS, III-167
10-bit, 1-238
4-quad, offset binary coding, multiplying, I-241
+10 V full scale bipolar, 1-242
+10 V full scale unipobar, I-244
12-bit
binary two's complement, III-166
precision, I-242
variable step size, IH-181
14-bit bivary, I-237
16-bit bmary, I-243
fast voltage output, I-238
high-speed voltage output, I-244
multiplying, Ill-168
octul converter, V-350
output amplifier, four-channel,

## III-185

viden converter, IV-610-61]
digitizer, tilt meter, III-644-646
dimmer switches, I-369, II-309, IV-
247, IV-249
$800 \mathrm{~W}, 11-309$
de lamp, II-307
four-quadrant, IV-248-249
halogen lamps, III-300
headlight, II-57, II-63
low-cost, 1-373
soft-start, $800-\mathrm{W}$, [.-376, 111-304
tandem, 11 - 312
triac, $1-375, \mathrm{II}-310, \mathrm{III}-303$
diode emitter drver, pulsed
infrared, II-292
diode tester, 1-402, II-343, II1-402
gomo-go, 1-401
zener dindes, 1-406
doode-matching circuit, V-280
dip meters, I-247, IL-182-183
basie grid, I-247
dual gate IGFET, 1-246
little dipper. II-183
varicap tuned FET, $1-246$
diplexer/mixcr, IV-335
directiun detectors/finders, IV-146-149
compasses
digital design. IV-147
Hail effect, 111-258
talking Hall eifect, V-221
decoder, III-144
directional-sugnals monitor, auto, IT1-48
optical direction diserimunator, $V$ 408
thermally operated, IV-135
radio signal direction finder, IV-148-149
direction-of-rotation circuit, $11-235$
directional-signals monitor, auto, 111-48
disco strobe light, If-6 60
discrete current bonster, II-30
dserete sequence oscillator, 1ll-421
diseriminators
multiple-aperture, window $\mathrm{III}-781$
pulse amplitude, $111-356$
pulse width. II-227
waidow, III-776-781
display circuits, IT-184-188, III-170171, V-161-167
$31 / 2$ digit DVM common anode, II-713
60 dB clot mode, IT-852
audio, LETI har neak program meter, II-254
bar-graph indicator, ac signals, II-187
brightuess contro, 17T-316
tascaded counter/diaplay driver, V-163
common cathode, 4033 -based. V-162
common-arode, V-16?
comparater and, IF-105
exclamation point, 1 I- 254
expanded scale meter, dot or bar. 11-186
fluorescent tube, $\mathrm{V}-167$
gas-discharge tube, V-167
LCD
7 -segment, $V$-165
large-size. V-164
LED
7 -segment. V-166
audio, peak program meter, II-254
common-cathode, V-167
driver: II-188
leading-zero suppressed, V-165
two-variable, III-171
oscilloscope, cight-charmel voltage, III-435
dissolver, lamp, solid-state, [II-304
distributuon cireuts. II-35
distribution amplifiers
audio, T-39. प-39. V-59
signal, I-39
dividers, $\mathrm{IV}-150-156$
butary chairi, $\mathrm{I}-258$
divide-by 2 -or- 3 cmount, $\sqrt{2}-154$
divde-by-N
$1+\mathrm{OHz} .[\mathrm{V}-155$
$1.5+$ divide-by-n, $N-156$
CMOS prourammable, $\mathrm{T}-257$
7490-divided-by-n, IV-154
dívide-by-odd number, IV-153
frequency dmaders, I-258, II-251, il254, III-213-218, III-340, 111-768, V-343
$1.2 \mathrm{GHz}, 111-129$
10-MLL $\mathrm{III}-126$
clock input, $\mathrm{VV}-151$
decade, I-259
divide-by-1.5, $\mathrm{IL}-316$
low-cosh, 111-124
low-Irequency, $11-25.3$
preant, If-128
programmable, IV-152-153
starcase generator and, 1-730
tachometer and. $1-510$
mathertutital, one trim, TIT-326
odd-number counter and, III-217
pulse, non-integer programmable, II 511, ITI-226
Dolby nose reduction circuts, 11 - 399
decode mode, III-401
encode mode, $\mathrm{III}-400$
doorbells/chumes (seo annuciators)
door-open alarm, II-284, III-46, III-256
door opener, III-366
door minder security circuit, V-5
dot-expanded scale meter, IT-186
double-sideband suppressed-carsier
modulator, 77 - 377
rif II-366
doublers
0 to $1 \mathrm{MHz}, \mathrm{II}-252$
150 to $300 \mathrm{MHz}, \mathrm{l}-314$
audio-frequency doubler, $\mathrm{V}-16$-17
broadband frequency, [-313
CRO, oscilloscope, III-439
erystal oscillator, I-184
frequency, $\mathrm{I}-313_{\text {r }}$ Ill-215
broadband. 1-313
digital. III-216
GASFET design, $\operatorname{VV}$ - 324
single-chip, III-218
low-frequency, 1-314
voltage doublers, III-459, [V-635
cascueded, Cockeroft-Watton, IV-635
trac-controlled, III-468
downbeat-emphasized metronume, III-353-354
drivers and drive circuits, $1-260$, II-183-193, 111-172-175, IV-157-160

50 ohm, 1-262
alarm driver, high-power, V- 2
bar-graph driver
LED, II-188
transistorized, N-213
BIFET cable, 1-264
bridge loads, audıo curcuits, III-35
capacitive load, t-263
Christmas lights driver, V-254
coaxial cable, $\mathrm{I}-266, \mathrm{I}-560$
five-transistor pulse boost, II-191
coll, curren-limuting, III-173
CRT deflectuon yoke, I-2A5
demodulator, lmear vanable differentral transformex, 1-40
diode-emitter driver, II-292
FET driver, IV-241
fiberoptie, $50 \mathrm{Mb} / \mathrm{s}, \mathrm{IIL}-1 \mathrm{~F} 8$
flash slave, I-483
dow-plug, II-52
high-impedance meter, 1-265
indicator lamp driver. IL1-413
instrumentation meter, IJ-296
Lanp drivers, I-880
llip-flop independent design, N-160
low-frequency flasher/relay, 1-300
optical coupling. III-413
neon lamps, 1379
short-circut-proof, 1 I- 310
laser cliode, hugh-speed, I-263
LED drivers
bar granh, I-188
emitter/follower, IV-159
line drivers, $\mathrm{I}-262$
50-shur irunsmission, IT-192
600 -ohm balanced, II-192
audio, V-54
piezoelectric driver, V 440
555 oscillator, V-441
CMOS, V-440
microposthoner, V-440
full rail excmrsions in, II-190
hagh-outpit 600 -ohm, II-193
synchronized, III-174
video amplifier, IL1-710
line-synuturonued, III-174
load drivers
audio, III-35
tirning threshold, III-648
LVDT demodulator and, 11337 , III-323-324
meter drivers, $11-296$
rf amplifier, $1-\mathrm{MHz}, \mathrm{III}-545$
meroprocessor triac array, II-410
motor drivers (see motor control, drivers)
multiplexer, hijgh-speed line, I-264
ncon lamp, 1-379
op amp power driver, [V-158-159
optoisolated, high-voltage, III-482
nower driver, op amp, IV-158-159
pulsed infrared diode emitter, II-292
drivers and drive circuits (cond.) relay, I-264
delay and controls closure time, [1-530
low-frequency. I-300
with strube, 1-266
xf drivers, low-distortion, IT-538
RS-232C, low-power, III-175
shift register, 1-418
solenoid, I-265. III-571-573
SSB, low-distartion 1.6 to 30MH, 11-538
stepuing rontor. II-376, IIT-390, N-349, [V-350
three-phase motor driver, II-383
totem-pole, with bootstrapping, III-175
transformer driver, I-403
triac array driver, IT-410
two-phase motor driver, I-4.56, II-382
VCO driver, op-amp design, IV-362
drop-voltage recovery for long-line systems, IV-328
drum sound effect, IT-59!
dual-tone decoding, II-620
dual-tracking regulator, III-462
duplex line amplifier, telephonc, [11-616
dutv-cycle related circuits
detector, IV-144
meter, TV-275,
monitor, III-329
multivibrator, 50 -percent, III-584
oscillators
50-percent, 111-426
variable, fixed-frequancy, IIT-422
INM adapter for PC , V-310
dwell meters
breaker point, $1-102$
digital, III-45

## E

car prolector, V-482
eavesdropper, telephone, wireless, IIT-620
echo effect, analog delay line, IV-21 edge detector, I-266, III-157
EEPROM pulse generator, 5 V powered, $111-99$
EKG simulintor, three-chep, III-350
elapsed-time timer, II-680
electrio-fence charger, I -202
electric-vehicle battery saver, 111-67
electrolytic-capacilor reloming circuit, IV- 276
electromagnetic-field sensor, V-308 electrometer, IV-277
amplifier. overload protected, I1-155
electrostatic detector, $\mathrm{HI}-3137$
emergency Lights, 1-508, I-378, IV-250
crussions analyzer, automotive exhaust, [I-51
emitter-follower chrcur,
complementary/bolateral ar. V. 35
emulators, II-198-200
capacitance multoplier. IT-200
IFET ar compled integrator. II-200
resistor multuplicr, 11-199
simulated moductor. II-1,99
encoders
decoder and, III-14
telephone handset tone dial, I-6.31, III-613
tone encoders, $\mathrm{i}-67,1-629$
two-wire, II-364
two-tinne, V-629
enlarger timer, 11-446, 111-445
envelope detectors, III-155
AM signals, IV-142
full-wave, V-152
low-level diodes, $1 \mathrm{~V}-141$
envelone generator/modulator, musical. JV-22
EPhOM, Vpp gernemator for, II-114
equalizers, I-671, IV-18
octave equalizer, V-353
Len-band, graphic, active filter in, II-684
ten-band, octave, III-658
equipment-on reminder, 1-121
exhaust emissions analyzer, It-5)
exit. delay for burglar alarms, V-10
expanded-scale metcrs
aralos, III-774
dot ar bar, IT-186
expander circuits (see (compressor/expander circuts)
extended play crrcult, taperecorders, III-600
extractor. squarc-wave pulse, III-584

## F

555 timer circuits (sep also timers) alarm based on 565 timer, V-11 astable, low-duty cycle, II-267 beep transformer, 111-566 FM modulator, V-367 integrator to muitiply, II 669 mussing-pulse detector, V-152 ramp generator, V -203 RC, audio oselliator from, II-567
square wave generator using. II-595
fader circuils, $1 \mathrm{l}-42,11-312, \mathrm{NV}-17$. V 658
rat safe semernductor alarm, IIt-6) fans
infrared heat-controlled fan, IV-226
speced controller, autumatie, III-382
thermostatic swrech, V 68
Fahrenheit thermometer. I-658
fault monitor, single-supply, III-495
fax circuits, V-171-173
modernfax protector for wo compulers. V-482
fax/elephone switch, reniotecontrolled, $\sqrt{-552553}$
feedback oscillator, I-67
fence chargers, II-201-203
batcerv-powered, II-202
electric, TT-202
solid-state, II-203
FET circuts
amplificr, offsel gate bias, V-22
de controlled switch, V-592
hexFET switch. V-592, V-593
dual-trace scope switch, II-432
mput amplfier, $\mathrm{IT}-7$
aucrophone mixer, V-363, V-364
probe III-501
voltmeter, III-765, III-770
fiberoptics, II-204-207. III-176-181
driver, $\mathrm{LED}, 50-\mathrm{Mb} / \mathrm{s}, \mathrm{III}-178$
interfare for. II-207
lonk, I-268, I-269, T-270, III-179
motor control. de, II-206
receivers
$10 \mathrm{MHz}, \mathrm{II}-205$
50-Mb/s. III-181
clgital, III-178
hugh-sensitivity, 1-270
low-cost, $100-\mathrm{M}$ tsuad rate, 111-180
low-sensilivity, 1-271
very-high-sensilivity, low-speced, 3nw, 1-269
repeater, $1-270$
speed control, 11-206
(ransinittcr, III-177
field disturbance scrisor/alumin, II-507
field-strenglh moters, $11-208$-212, III-
182-183, N-164-166, V-174-176
1.5-150 M11z, 1-275
adjustable sensitivity mdeator, $\mathrm{T}-274$
amplified feld, V-175
hish-sensitivity, IT-211
LF or HF, IT-212
microwave, low-cost, I-273
remote, V-175;
If smffer, IT-210
sensitwe, I-274, III-183
signal-strength meter, IV-166
simple design, three versions, V-176
transmission madicator; II-211
tuned, T-276
I'HF fields, IV-165,
untuned, $\mathrm{I}-276$
filter circuits. II-213-224, 111-184-
192. IV-167-177, V-177-191
active (soe active filters)
antialiasing/sync-compensation.
IV-173
audio filters
biquad, 1-292-2933, III-185
turable. IV-169
audio range filter, $\mathrm{V}-190$
bandpass (see bandpass filters)
band-reject, active. Ii-401
biquad, 1-292-293
audio, 1-292-29:3, III-185
RC active loandpass, $\mathrm{T}-285, \mathrm{~V}-190$

## bridge filter, twin-T,

programmable, II-221
Butterworth
high-pass, fourth-order, 1-280, V-179
low-pass, lourth-order, V-180, V-181
Chebyshev (see Chebyshev filters)
CW, razor-shary, II 219
dynamic filter, IIF-190
rour-output filter, V-182
full wave rectifier and averaging, 1-229, V-191
high-pass (see high-pass filters)
IF filters, narrow-band, V-189
L filters, V-181
low-pass (seo low-pass filters)
networks of, 1-291
norse, dyamic, III-190
norsy signals, $717-188$
notrh filters, $7-289$, II-397-403,
111-402-404
$4.5 \mathrm{MHz},[-282$
$550 \mathrm{Hx}, 11-393$
1800 114, $11-398$
active band reject, IT-401
arjustable Q, 1 -398, V-179
andic, IT-400
bandpass and, 11-223
high-Q, III-404, V-178
selectable bandwidth, 1-281
three-amplifier design, $1-281$
tiunable, II-399, II-402, V-179 passive-bridged differentiator, II-403
hum-suppressing. 1.280
op amp, 11400
twin-ntoch for $1 \mathrm{kHz}, \mathrm{V}-18 \mathrm{~s}$
twinl-T, $111-403$
shortwave receivers, V-185
Wien bridge, 1-402
passive L fillers, V-181
passive PI filters, V-181
passive T Tilcers, V-190
Pi fleters, V-181
progranmable, twin-T bridge, II-221
rejection, 1-283
ripple suppressor, $\mathrm{IV}-175, \mathrm{IV}-396$
rurnble. 111 -192, 11-660, IV-175
LM387 in, 1-297
turntable, IV-170
rumble/seratch, III-660
Sallen-Key filters
$10 \mathrm{kHz}, \mathrm{I}-279$
500 Hz bandpass, $1 \cdot 291$
current-driven, V-189
low-pess, active, N -177
low-pass, equal component, I-292
scratch filters, III-189, III-660, IV-175
LM287 in, 1-297
simulated inductor, V - 180
speech filters
bandpass, 300 HEz 3 kliz , I-295
second-order, $300-\mathrm{to}-3,400 \mathrm{~Hz}$, TV-174
two-section, $300 \mathrm{-to-3}, \mathbf{0}, 00 \mathrm{~Hz}$, N-174
speech-range filter, bandpass, V-185
state-variable filters, It-215, IIT-189
multiple outputs, III-190
second-order, $1 \mathrm{kHz}, \mathrm{Q} / 10,1-293$
umersal, $1-290$
T filters, V-190
tone filter, V-1 kHz, V-191
turbo, ghtich free, III-186
twit-T brige filter, II-22
Wien-bridge, IIT-firs
variable Q filter, V-183
variable-frequency bandpass filter, V-186
warrable-state, universal, V-178
voltage-controlled filters, 111-187. IV-176
fixed power supplies, M1-457-477, 1V-300-408
12-VDC battery-operated $120-\mathrm{VAC}$, III-464
$+24 \mathrm{~V} \cdot 1.5 \mathrm{~A}$ supply from +12 V source. IV-401
+-35 Vac. IV-398
+-35 V, 5 A , motile, IV-407
15 V isolated to $2,500 \mathrm{~V}$ supply, IV-407
ac motors, V - -3 z 5
automotive battery supply, $+/-15 \mathrm{~V}$ and 5 V. IV. 391
auxiliary supply, $\mathrm{N}-394$
bias/reference applications, auxiliary negative de supply, [V-404
bilateral curent source, IIT-469
bridge recther, JV- 898
charge pool, III-469
charge pump, regulated. IV-396
constant-current somite, siffe. 711-472
converter, III-470
5V-to-isolated 5V at 20MA, 11 - $-\frac{1}{2} 74$
ac-to-de, IV-395
de-to-de, 3-10-15V, IV-400
current sink, I nA, IV-402
current sources, IV-399. IV-405, IV. 406
de adapter/transceiver, hand-held, III-461
dual-trackng regulator. III-462
GASFET power supply, IV-406
general-purpose, III-465
inverter, 12 Vimput, IV-395
isolared feedback, III-460
LCD display power supply, N-302, IV-403
linear regulator, low-cost, lowdropout, IIL-459
low-current source, IV -399
low-power inverter, III-466,
negative rail, GET. with CMOS gates, IV-408
negative supply from +12 V source. IV-401
negative voluge from positive suyply, IV-39?
outpul stabilizer, IV-59:3
portable-adio 3 V power supply, 1V-307
positive and mogative voltage power supplies. IV -402
mp regulator, zener increases veltage gutput, II-484
prograrmable. IIL-467
rectilers, ill-471. IV-398
regukted supplies, II-462, IIL-463, N-401
ripple suppressor, IV-396
RTTY machune current supply, IV-400
stabilzer, CMOS diode network, IV-400
switchung surplies, III-45.8, III-473, IV-403, N-401, N-408
threp-rail. III-466
uninternaptible +5 V , ITI-477
voltage doubler, III-459, III-468
voltage regulators (see voltage regulators)
veltage-controlled curtent: somrce/grounded somrcefoad. [II-468
fixed-frequancy generator, III-231
flame ignitor, III-362
flame monitor, III-313
flash/flashbulb circuits (see photography-related circuits)
flashers and blinkers (sef' also liyhicontrolled circuits: photography-related circuits), I304. 11 -225, 111-193-210, N -178183. V-192-197
1.5 V , minimurn power. I -308

1 kW flip-11op, $11-234$
1A lamp, I-306
2 kW , photocledric control in, $\mathrm{U}-232$
3V, 1-306
ac. III-196
alternating, I-307, II-227
astable multivibrator, III-196
auto, I -39\%
autoriatic salety, I-302
automotive turn signal, sequential, I-109
bar display with alarm, I-252
banricade, 1-290
boat. $1-243$
brake light llasher, V-69
Christmas tree light flasher, V-197, V-264-265
CMOS, III-199
flashers and blinkers (cont.)
dc. adjustable on/off timer, I-30
dual LED CMOS, [-302
electrunu, 11228
fmergency lantern, $1-308$
fast-acton. I-306
flash light, $60 \mathrm{OW}, \mathrm{HII}-200$
flicker light, IV-183
Hip-flop, I-299
four-parallel LED, 1-307
headlight flasher. V-73
high-efficiency parallel circuit, 1-308
high-voltage, safe, I-307
hisht-power balleyy operated, 4-2ey
incandescent bulb, III-198, 1-306
LED flashers, IV-181, V-195, V-196
2-to 10-TED, V-196
alternating, III-198, III-200
Christmas tree lights, V-197
control circuil, IV-183
dark-actuvated. V-195
druer, V-194
multwibrator design, IV-182
PLTT used in, II-239
ring-around, III-194
sequential, reversible-direction, [V-182
three-year, III-194
UTT used in, II-231
low-current consumption, $11-231$
low-voltage, 1 - $305,11-226$
minialure ransistorized, $11-227$
nitimum-cumpotent, H-201
neon Mashers, 1-303
five lamp, TIT-198
two-state osculator, $111-200$
tube. I-304
oscillator/lashers
hugh-drive, II-285
low-frequency, It-234
photographe flashes
slave-flash mgger, SCR design, [V-380. IV-382
time-delay flash trigger. V-380
relay driver, low-frequerty lamp, F. 300
ruming lightes, V-269
SCR flashers. II-280, III-197
chaser, III-197
relaxation. II-230
ring courter, 111-195
sequencer, V-263, V-264-265
secuential, IT-233, IT-238, IV-181, V-193
pseudorandom simulated, IV-170
signal alam, V-197
smgle-lamp. III-196
strobe alarm. V-180
telephone, II-629, IV-wne, V-rine,
[V.559. TV.561
transistonzed, 1-303, II-236, 111-200
variable, $\mathrm{I}-308$
xenon Lighl, IV-180
flashight finder, I-300
flex switch, alarm sounder circuit, V-15
hip-flops (sée bistable multinbrators)
flood alarm, $\mathrm{I}-390, \mathrm{II}-206$, $\mathrm{V}-188$
flow-detectors, II-240-242. 111-202-203
air, $\mathrm{Li}-242$
lecuids. II-248, IIT-202-203
low-rate thermal, iTI-203
thermally hased anemometer, II-241
fluid and moisture detectors, $1-388$.
I-390, $1-442.11-2443-248,112-204-$
210, IV-184-191, V-373-375
acid rain monitor, $11-245, ~ V-371$
alarm, water-activated, V-8r4
Cherker, III-209
control, I-388, III-200
cryogenic flud-level sensor, I-386
dua, 111-307
flood alarm, III-206, IV-188, V-374
flow-of liqud, IT-248, TII-202-203
full-bathtub indicator, IV-187
full-cup detector for the blind, N-180
hamidily, II-285-287, III-266-267
indicator, II-244
level of liqued, $\mathrm{F}-107, \mathrm{I}-235, \mathrm{I}-387, \mathrm{~T}$ 388. I-389, I-390, 11-174, I1-244, I1-246. III-205, III-206. III-207, III-209, II1-210, IV-186, IV-100, V-191
moisture detector, I-442, N-188, V. 375
montor. ITT-210
plant water, II-245, II-248, III-208
pump controller, single-chip, 11-247
rame alarm, 11-244. IV-189
sensur and control, $11-246$
soil monsture, $\mathrm{TI}-245, \mathrm{It}-248, \mathrm{HI}-20 \mathrm{~s}$
temprature montor, II-64,3. III-206
water-leak alarm, IV-190
windshield-washer level. 1-107
fluorescent lamps
Ligh-vultage power supplies, coldcathode design, IV-411
mverter, 8 - $\mathrm{W}, \mathrm{IIT}-306$
varuim, fluorescent display, II-185
flyback converters, $1-211$
self oscillating, I-170, II-128, III-748
vollage, high-efficiency, I11-744
IHyack regulator. oli-iine, II-481
FM-related crcuits (see also radio/rf circuirs)
5V, 1-233
$12 \mathrm{~V}, 1293$
clock radio, AMFM, 154
demodulators, I-544, II-159, IT-161. V-151
IF amplifier with quadrature detector. TV sound IF, 1-690
generators, low-frequency. Iti-2es
modubtors, V-366
855-based creut, V-367
radio, 1-545
receivers
$27.145 \mathrm{MHz}, \mathrm{V}-495$
carrier-current circut, IIt-80
light-beam, V-259
MPX/SCA receiver, II-530
narrow band, 111-532
optical receiver/transmitter, 50
$\mathrm{kHz}, \mathrm{I}-361$
zero center indwator, T-338
SCA subcarrier adapter, V-536
snooper, III-680
speakers. remote, carrier-current sustem, I-140
squelch circuit for AM, [-547
stereo demodutation system, 1-544
transmitters, 1-681, V-641
27.125 MHz NBFM, V- 637
$49-\mathrm{MHz}, \mathrm{V}-643$
infrared, voice-motulated pulse, [V-228
light-beam, V-259
multiplex, 111-688
one-transistor, IL1-687
oplical, 1-367, 11-417
optical receiver/tranimitter, 50
$\mathrm{kHz}, \mathrm{I}-361$
radio. V-648
snooper, 11 -680
stereo, V-575, V-580
voice, Ill-678
tuncr, 1-231, III-529
wireless mícrophone, III-682, III685, III-691
FM/AM rlock racho, I-543
fog-ight controller, automotive, IV-69
foldback current, HV regulator

## limuting, II-478

followers, III-211-212
mverting, high-frequency, II-212
noninverting, high-frequency, III-212
source. photodiode, III-410
unity gain, 1-27
voltase, $\mathrm{HI}-212$
lorward-current booster, II-17
free-running multivibrators, IT-485
$100 \mathrm{kHz}, \mathrm{I}-465$,
programmable-frequency, III-235
free-running oseillators, I-531
square wave, $1-615$
freczer, voltage, [II 763
treezer-meltdown alarm, T-13
frequency comparators, 1-109, III-88
LED. II-110
frequency conlrol, telephone, II-623
Irequency converter, 1-159
frequency counters, III-340, III-768,
IV-300, V-129-133
12 GHz, III-129
$2 \mathrm{MHz}, \mathrm{V}-130-131$
10-МHz, II-126, V-132-133
100 Mitz , period and, 11-196
low cost, III-124
preamp, III-128, V- 24
precision, I-253
tachometer and. 1-310
frequency detectors, II-177, III-158
beat indicator, [-336
boundary detector, III-156
comparator, III-88
digitul, III-158
limit, frequency Lunit, II-177
wndow, frequency window, III-7??
frequency divders, I-258, II-251, II-254, III-213-218, III-340, III-768, V-343
1.2 Gilz, $111-129$
$10-\mathrm{MHL}, \mathrm{III}-126$
clock input, [V-15]
decade, I-259
divide-by-1.5, III-216
low-cost. III-124
low-frequency, $11-25$ ?
ргеапир, III-138
programmable, N-152-153
staircase generator and, 1-730
tachometer and, I-310
frequency-division multiplex stereo decoder, [1-169
frequency doublers, [-313, 117-215
broadhand, 1-313
digital, III-216
GASFET design. IV-324
low-frequency, I-314
single-chup, 41 -218
to $1 \mathrm{MLL}, \mathrm{II}-252$
frequency generators, fixedfrequency, III-231
frequency indicator, beat, $1-336$
frequency inverter, $111-297$
frequency meters, 1-310, 11-249-260, IV-282, V-301
analog, V-307
audio-frequency meter, V. 305 , V-320
audio, 1-311
linear, 1-310
low-cost, I[-250
power, IT-250
frequency multipliers, II-251, III-213-218, V-198-199
counter, odd-number, Im-217
doublers, 1-313. 111-215
bruadbund, I-313
digital, III-216
GASFET design, N-324
single-chip, III-213
low-frequency, 1-314
to $1 \mathrm{MH} \mathrm{Lz}, \mathrm{Il}-252$
pulse-width, $\mathrm{TI}-214$
truler, nonselective, IT-252
frequency-boundary detector, III-156
frequency oscillator, tunable, II-425
frequency-ratio moniloring circuil, IV-202
frequency-shift key (FSK) commomeations
data receiver, $111-533$
decodcr, $10.8 \mathrm{MHz}, 1-214$
gencrator, low-eost design, III-227
keying circuts, $\operatorname{VV}-245$
frequency synthesizer, programmable voltage controlled, 11-265
frequency-co-voltage converter, 1-318. IT-255-257, ITI-219-220
dr, $10 \mathrm{kHz}, 1-310$
digutal meter, 1-317
optocoupler input, $\mathrm{IV}-193$
sample-and-hold crevil, IV-194
single-supplydesign IV-195
zener repulated, I-317
fuel gauge, antomotive, $\mathrm{N}-46$
fill-wave rectifiers, $\mathrm{IV}-328$, $\mathrm{V}-650$
absolute value, II-528
averaging filler. V-191
op amp circuil, $V$-403
precision, $\mathrm{T}-2344, \mathrm{III}-537$
silicon-controlled (SCR) I-375
function generators (see also burst gencrators; sound gencrators: wavelorm sencrators), 1-729, II-271. III-221-242, III-258-274, IV-190-202,V-200-207, V-309
555 astable, low-duty cycle, II-267
acoustic field generator, V-338-341, V- 338
AM broadeast band signal senerator, IV-302
$\Lambda \mathrm{M} / \mathrm{F}$ signal genemtor, 455 kHz , IV-301
astable multwibrators, II-269, II-510, II-697, III-196, III-224, III-234, 111-237, 111-238
uudio function generator, IV-197
audto-frequency genemator, V-416417, V-410
bistable multivibrators, $\mathrm{I}-133$, I200, 1-395, 11-367, 11-465. II-103, IV-108, IV-651
bistable multivibrators, J-193. II-465
capactance multpler, V-205
clock generator/osellator, 1-19\%. 1-615
complementary signals, XOR gate, III-22 5
DAC controled, 1-722
debouncer, IV-108
emutter-coupled RCo oscillator. II-2 2 他
fixed-frequency, [II-231
flasher. I-299. II-2:34
FM, low-frequency, III-228
free-runtang multivibrator, programmable-frequency, TIT-235
frequency-ratio monitoring circut, IV-202
frequency synthesizer, programmable voltage controlled, II-265
FSK. low cost, TTR 227
harmonir generators, 1-24, 111-228, IV-849
high-frequentey. It 150
merter, [II-103
lamp driver, IV-160
linesbar generator, ndeo, v-602
linear ramp. 11-270
lincar trianglessquare wave voo. II-263
logarithmir
dymamie-range, V-201
fast acting, V-202
monostable multivibrators, 1-465,
111-239. $111-230,11-235,111-297$
mput lockout, I - 464
linear-ramp, TII-237
photocell, monostable, $11-329$
posive-triggered, $\mathrm{HI}-229$
TTL, monostable operation, 1-464
UJ'r, monostabie operation, 1-463
video amplifier and comparator, II-268
multiplyng pulee width circul, II-264
multivibrators
low-liequency. JI-297
single-supply, III-232
nonlinear potentiompter outputs, IV-188
one-shots, $\mathrm{F}-465$
digitally controlled, $1-720$
precesion, $11-222$
retriggerable. JII-238
oscilatorfanplifier, wide frequency range, IT - E \&
pattern generator/polar-to-rect. converter, V-288
polynemial gencrator. V-287
potentiometer-position V/F converter, N -200
precise wave. II-274
programmed. [-724
pscude-randon bilsequence Rencrator, V-351
pulse generators, II508-511
2-nhm, Tr -231
$300-\mathrm{V}, \mathrm{III}-521$
555 -circuit, IV-439
astable multivibrator, 11-510
cluck, 6012. $11-102$
CMOS short-pulse. ULI-623
delayed-pulse, II-nog, IV-440
divider, programmahle, IT-511, III-226
EEPROM, 5V-powered, 11199
Tree rumuix, IV-438
irterruptíng pulse-generation. 1-357
logic. III-520
logic troublestooting applicalions, IV-4:36
progranumable I-529
sawtooth-wave generator and, IIT-241
smgle, II-175
train, pulse train, $1 \%-202$
function generators (cont.)
transistorized, IV-437
two-phase pulse, $1-532$
unijuction transistor destg, T-isio
very low-duty-cycle, III-i) 21
voltage-controller and, ILI-524
wide-ranging, III-522
quad op amp, four simultancous synchronized wavelorm, IJ-259
ramp generators, $\mathrm{I}-640,11-521-523$, [II-525-527. TV-443-447, 555 based, V 203
accurate III-526
mtegrator, initial condilion reset, III-527
linear, LI-270
variable reset level, IT-267
voltage-controlled, II-523
rf osenlator, V-530-531
root extractor, V-207, V-988
RS flip-flop, I-345
sawhooth yenerators, V-491
linear. V-205
triggered, V-204
sawteoth and pulse, III-241
Schmutt trigger-transistorized, V-204
SCR, 1J-367
self-retriggermg timed-on generator, V - 343
sigral generators, V-204
AM broadcast band, IV-302
AM/F, $455 \mathrm{kHz}, \mathrm{IV}-301$
high-frequency, II-150
square-wave, 111 -583-585
staircase, IIT-556-588
two-function, TH -234
sme-wave generators, IV-505,
[V-506. V-542, V-543, V-544
$60 \mathrm{~Hz} . \mathrm{IV}-507$
audio, II-564
battery power, V-541
LC, TV-507
LF, IV-512
oscillator, audiu, II-559
square-wave and, lunable oscillator, III-232
VLF audio tone, IV-508
sinetosine ( $0.1-10 \mathrm{kHz}$ ), $11-260$
sine/square wave oscillators, 1-65
TTL design, IV-512
tunable, $1-65,111-232$
single control, III-298
suggle supply, 1 -273
square-wave generators, 11-594-600. II-225, III-239, 111-242, 111-583585. IV-529-536, V-568-570
$1 \mathrm{kHz}, \mathrm{IV}-536$
2 Milz using two TTI، gates, M-598
555 timer, $(T-595$
astable curcurt, V 534
astable multivibrator, II-597
CMOS 555 astable, true rail-torail. II-596
duty cycle multivibrator. WI-50percent, III-584
four-decade design, TV-535
high-current oscillator, MI-585
line frequency, $11-599$
low-frequency TTL ascillator, II-595
multiburst generator, II-88
multinbrator. IV-536
oscillators, I-612-614, I-616, 11-596, II-597, II-616, IV-532, IV-533
phase-tracking, three-phase, II-598
pulse extractor, TII-584
quadrature-outputs oscillator, ITT-585
sme-wave and, tunable oscillator. III-232
three-phase, $11-600$
torle-burst generator, single timer 1C. 11.89
triangle-wave and, III-239 precision, III- 242
progranumble, $111-285$
wiste-range, III-242
TTLL, LSTTL, CMOS designs, IV-530-532
variable duty-cycle, T- 533
varable-frequency, [V-535
SR flip-flop, IV-651
starcase gencrators, 1-730, 11-601602, 111-586-588. N-443-447
sweep generators, [-472, IIT 438
timebase
i Hz , readout and counter applications, V-201
oscilloscopes, V-425
time-delay generator, [-217-218
tone burst generator, repeater, V-629
triangle-wave, $\mathrm{m}-234, \mathrm{~V}-203, \mathrm{~V}-205$
clock-driven. V-206
square wave, 111-225, III-239, IIT-242
Limer. Bincar, III-222
triangle/square wave generator, V-206
t.matble, wide-range, III-241
two-function. III-234
UJT monestable circuil inscrisitive to changing bas voltage, II-268
variable duty cycle tumer ontput, III-240
voltage controlled high-speed one shat, II-256
waveform (see wavelorm generators)
white nose generator, rV-201
funk tox, II-593
furnace exhaust gas/smoke delector,
temp monitorflow-supply
detection, JIl-248
furnace fucl miser, V-328.320
lusces
battery-charger relay fuse, V-88
electromic, V-477
momitor for car fuses, $V$ - 77
relay fuse, $V-478$
fuzz box, 11-575
lizz sound effect, IT-iso

## G

GaAsFET circuils
amplifier, power, with single supply, II-10
fixed power supplies, IV-405
gas control curcuits
amplifier, stereo, gain-controlled, II9. III-34
automatic audio gain control, II-17
autonatic gain control (AGC), IT-17
AGC system for CA3028 IF amp, TV-4.5\%
rf amplifier, wideband adjustable, III-545
squelch control. Ill-33
wide-band anplifier, ITT-15
gain block, video, ItI-712
game feeder controller, II-360
game roller, I-326
games, II-275-277, II-243-245, IV-203-207, V-208-211
coin flipper, III-244
clectronic dice, III-245. IV-207
electronic roulette, II-276, IV-205
lie detector, II-277, IV-206
quz master, V - 210
reaction timer, IV-204
ring launcher, electromugnetic, V-209
roulete, 11-276, IV-205
run-down clock/sound generator, IV205
slot machine, V-211
Wheel-of-Forture, IV-206
whe's first, III- 244
Harage stop ight, II-53
gas detectors (see also smoke alarms and detectors), [-332, 11-278-279. III-246-253. 11 -246, V-213-214
amalyzer and, $11-281$
combustible gas detector, V-214
explosive gas detector V-213
furnace exhanst, temp monitorflowsurply detection, III-248
methane concentration. linearized output, Ill-250
toxic. II-280
SCR, IIT-251
amoke/gas/vapor detector, 1II-250
gated oscillator, last-cycle completing. III-427
gated-pulse descranbler, T -165
gates, V-216-216
AND. I-395, V-810
OR, T-395)
programmable, [-394
sync gating circuil, V-595
XOR gate, IV-107
geiger counters, I-536-537, V-217-219
high-voltage supply, 11-489 pocket-sized, II 514
gel cell charger, $11-66$
generators, electric-power
corona-wind gencrator, IV 6313
de generator, V-443
high-woltage generators, IV-113
ion generator, V-248-249
battery-powered, III-482
capactor-discharge, III-485
dc voltage, 11 - 481
nesative-ions. IV-634
regulater for attomoble generator, V-75
ultra-high-voltages, II-488
generators (see function generators: sound genterators; waveform senerators)
glitch-detector comparator, $\mathbf{I}-107$
glow-plug drwer, II-52
gong, electronic, V-563
graphic equalizer ten-band, active filter m. [1-684
grud dip meters, $\mathrm{T}-247$, $\mathrm{T}-182-183$
bandswרeched, N-298
basic grid, I-247, IV-298
dual gate IGFET, 1-246
little dipper. II-183
varicap tuned FET, I-246
ground tester, 11 -345
ground-fault Hall detector, N-208-209
ground-noise probe, batterypowered, ill-000
suitar's
compressor some-effect circint, IV-519
matching audio signal amplifiers, [V-38
mixer, tow-toise, four-charnel, V-360-361
treble hoost for, it-683
tumer, II-362
gun, laser, visible red and continuous, 111 -310

## H

hall-duplex information transmission link, 11 -f79
half-flash analog-to-digital converters, III-26
half-wave ac phase controlled circut, I-377
half-wave rectifitere, I-230, IIL-528, IV-325
fast, $1-228$
Hall-effect circuits, 11-282-284, III-254-258, V220-222
angle of rotation detertar, II-283,
compass. III-2;8
compass, talking. V-221
current monitor, III-255, IV-284
door open alara, H-284
growndault detcetor IV 208209
oscillatara, V-gey
secmenty door-ajar alarm. III-256
switches using, III-257. IV- $\mathbf{3} 36$
halogen lanus
dinuter for 77.300
protector, $\mathrm{V}-27 \mathrm{I}$
handitalkies, J-19
two-meter preamplfice for, 1-19
hands-free telephone, H1-605
Hands-off intercom, III-291
handset encoler, telephone, III-613
harmonir distortion
analyzer, V-291
meter. V-\$12
hannoric germerators, $1-24,11228$. IV-649
Hartley oscmator, T-571, V-140
HC-based oscillators, III-423
HCT/HTG-based oscillator, III-426
headights (see andomotive circuits. hadighes)
headphones
aroplifier for, IT-43
ear protector circuit. V-482
infrared (IR) receiver, V-2827
infrared (IR) transmitler. V-227
signal amplilier, V-65. V-57
lieart mate montor, TT-948, II-349, V-342
heat-activated alarm, V-9
heat sniffer, electronic, 111-627
heaters/heater controls (set also temperature-related circuits). 1-6.39
element constroler, 11-642
induction heater, ultrasonc, $120-$ $\mathrm{KHz} 800-\mathrm{W}, \mathrm{II}-704$
protector circuil, servo-sensed, 111-62
temperature sensitive, 1 - 640
hee-haw suren. II-378, III-665
hexFET switch. V-592
duat-control. V-59:3
hi-fi circuits (see' sterco circuits)
high-pass filters, I-296
active, $\mathrm{I} 296, \mathrm{~V}-180, \mathrm{~V}-188$
fourth-order, V-188
second-order, I-297
Butterworth, fourth-order, $\mathrm{I}-280$, V-179
Chebyshev, fourth-order, III-191
equal conponents second-order, V-188
fourth-order, $100-\mathrm{Hz}, \mathrm{IV}-174$
second-order, 100-1La, 1V-175
sixth-order elliptical, III-191
unty-gain serond-order, V-187 variable, V-186
wideband two-pole, II-215
high-voltage power supplies (see ako gencrators, clectricad power; power supplies), II-487-490, II 486, N-409-413, V.442-447
$9-$ to 15 -Vde imput, V-406
$10,000 \mathrm{~V}$ dc supply, V - 838
arc-jet power supply, starting circuit, 111-479
bastc circuit, $\mathrm{V}-446$
battery-powered generator. III-482
bucking regulator. III-481
de generator, 111-481, V-443
de supply, 120-240 Vde, single chp crevit, V-44
fluorescent-lamp supply, V-444
whldeathode design, IV-411, V-447
geiger counter supply. I1-480
generators (see gencrators, atectrical power)
inverter, $\mathrm{HI}-484$
$40 \mathrm{~W} .120 \mathrm{Vac}, ~ I V-4!0-411$
laser circuits, V-253
negative supply, V-44
negatuve-ion gencrator, IV 634
optoisolated driver, III-482
photomultapher supply, V-444, V-445
preregulated, III-480
pulse supply, V -412
regulators. ILI-485
Fokdback-current liruting, II-478
sohd-state remote adjustable, III-486
strobe power supply. IV-413
tube amplifier, high-volt isolation, IV-426
ultra high-voltage generator, II-488
hotby circuits (see model and hobby circuts)
hok button, telephome, 612, II-628
home security systems (see alarms, annuciators)
horn, autmonbile, Ill-50. IV-54
howitme delay sampling circut, 11668
Howland current pump, II-648
hum reducer circuit, neceivers, V-347
kumuidity sensur, IL-285-287, 111-266-267
hybnd power amphfier. III-455

## I

IC product deteetors, IV-143
[C timer, crystal-stabilized, subharmonie Irequencies For, II-151
ice formation alarm, $1-100,1 \mathrm{~T}-57$, 11-58
IOOM IC-2A battery charger, $11-66$
LF amplifiers, L-690, IV-459
AGG system, IV 4.58
preamp, IV-460
receiver, IV-459
quadrature detector, TV sound IF, 1-690
Iwo-stage, $60 \mathrm{MHz}, \mathrm{I}-563$
wideband, I-689
igntion circunts, antomotive, V-64 caparitor discharger, 1-103
cut-off circuit, automotive, IV-53
ignitions circuits, autonotive (cont) electronic, IV-65
substitute ignition, III-4I
timing light for ignition system, II-60
ignitor, III-362
illumination stabilzer, machine vision, II-306
image canceiler, ITI- 358
immobilizer, $\mathrm{II}-50$
impedance checker, V-136
impedance coriverter, tugh-to low. I-41
impedance sensor, nancampere, 100 megohm input, I-803
mdicators (see measurement/test circuits)
in-use indicator, telephone, II-639
inductance meter, linear, V-316
induction heater, ultrasonic, 120 $\mathrm{KHz} 500-\mathrm{W}, \mathrm{tII}-704$
inductors
active, 1-417
simubated, II-199, V-180
infrared circuits (see also lightcontrolled circints; remote control devices), II-288-292, [II-271-277, V-219-228. V-223229
data link, I-341
detector, II-289, III-276, IV-224, V. 225
emitter drive, pulsed, II-292
fan controller, $\mathrm{V}-226$
filter circuit, narrow-band, V-180
headphone receiver, $V$ - 227
headphone transmitter, V-227
IR pulse-to-andio converter, V-224
laser rife, invisible pulsed, II-291
long-range object detector. IL1-273
loudspeaker link, rernote, [-343
low-nolse detector for, [I-289
object detector, img-range, IT-273
penple-detector, N-225
preamplifier for IR photodiode, V-226
proximity switch, infraredaclivated, IV-345
receivers, I-342, II-292, IJ-274, TV-220-221, V-226, V-229
remote $\mathrm{A} / \mathrm{B}$ swatch, $\mathrm{V}-225$
remote controller, I-342, N-224. V-22
remote-control analyzer, V-224
remote-control tester, V -228, V 228, V-229
remote-extender, IV-227
transmitters, 1-343, 11-289, 11-290,
III-274, III-276, III-277, N-226-227
dugital III-275
pulsed for onioff rontrol, $\mathrm{V}-228$
remote control, I-342
voice-modulated pulse FM, IV-228
wireless speaker system, 111-272. IV-222-223
injectors
three-m-one set: logic probe, signal tracer, injector, $\mathrm{V}-429$
injector-tracers, 1-621, J-520, 11-500
input sclectors, audio, lowdistortion, TT-38
imputoutput buffer, analog multiplexers, III-11
inputoutput circuits, Ne602-based, V-355
itustrumentation amplifers. T-846, I348, I-349, I-352, II-293-295, III-278-284, IV-229-234, V-233-235
$+1-100 \mathrm{~V}$ common mode range. III-294
current collector hoad amphitier: II-295
differential, $1-347,1-354$, III-283 binmedical, III-282
high-gain, I-353 input, $1-554$ variatble gain, I-349
extended common-mode design, IV-234
high-impedance low-drift. I-355
high-speed, I-454
LM6218-based, high-speed, V-235
LMC6062-based, V-234
low-drift/low-nowse do amplifier, IV-232
low-signal levelhigh-impedance, I-350
low-power, II-284
meter driver, $11-296$
preamps
oscilloscopt, IV-230-231
thermocouple, III-28:3
precision FET input, I-1555
saturated standard cell amplifer, [I-296
strain gange, III-280
triple op amp, $1-347$
ultra-precision. II-279
variable gain, differentaal iuput, 1-349
very high-impedatlee, I-354
wideband, III-281
instrumentation meter dinver. II-296
integrators, II-297-300, III-285-286, V-236-237
active. inverting buffer, $11-299$
JFET ac coupled, 12-200
gamena ray pulse, 1 -536
long time. II-300
low-dnft, 1-423
nonnverting, improved, 1-298
photoeurrent, 11-326
programmable reset level, II-286
ramp generator, mithal condtion reset, III-52?
resettable, III-286
intercoms, $1-415$, II-301-303. $\mathrm{H} 1 \mathrm{l}-287$ 292, V-238-240
bidirectional, III-290
tarrier current, F-146
hands-off, III-291
party-line, II-303
pocket pager, 111-288
telephone-intercoms, V-557, V-239, V-240
two-way. III-292
two-wire design. IV-245-297
voice-activated, one-way, V-239
intercoms (see calso telephonerelated curcuts), V-238
unterfaces (see also computer circuits) IV-238-242, V-241-244
$680 \mathrm{x} .850 \mathrm{x}, 8080$ farnilies, $111-98$
annatcur radio transceiver, relay uterface, V-243
audio-to-ADC interface, V-242
cassette-to-telephone, IIL-618
CPU interface, one-shot design, IV-239
LNM, temperature sensor and. II-647
FET drver low-level power FET, IV-241
fiberoptic, II-207
keyboard metrix interlace, IV-240
lugic-level translators, IV-242
microcomputer-to-triac interface, V-244
optical sensor-to-TTL, III-314
optocouplers, V-406-407
optoisolators, V-406-407
prearm reeciver interface, $\mathrm{V}-243$
process control, I-30, V-242
remote-control transmitter interface. V-5 11
tape recorder, II-614
telephone
audio intertace, V-612
telephone-line interface, V-605
video interface with syne stripper, V-650
interrupter, ground fault. 1-580
interval hincer, low-power.
microprocessor programmable, II-678
intruder-detector, light-hearn activated, V-11
preamp, V-13
inverters, III-293-298, V-245-247
250 watt $V-246$
de-to-ac. V-247
de-to-dchar, 1-200
digital, V-246
fast. I-422
fixed power supplies. 12 V mput, N-395
flip-fion. ITT-103
fluorescent lamp, 8-W, III-300
frequency inverter, III-297
hagh-voluge, 111-484
$40 \mathrm{~W}, 180 \mathrm{Vac},[\mathrm{V}-410411$
low-power, fixed power supples, IIT-466
on/off switch, III-594
picture, video circuits, III-722
power, III-298
$12 \mathrm{VDC}-\mathrm{to}-117 \mathrm{VAC}$ at 60 Hz , III-294
medium, ILI-296
MOSFET, III-295, V-247
rectifer/nverter, programmable op-arap design, [V-364
ultrasonic, arc welding, 20 kHz , [1-700
variable frcquency, complementary output, HI-297
voltage, precision, III-298
inverting amphfiers, I-41-42, III-14
ac, high-gain, I-92
balancing circuit in, I-33
gain of 2 , lag-lead compensation, UHF, 1-566
low-power, digitally selectable gain, II-333
power amplifier, 1-79
programmable-gain, III-505
unity gain amplifier, $1-80$
widehand unity gain, I-35
ion generator, V-248-249
isolated feedback power supply, 111-464)
isolation anplifiers
capacitive load. I-34
level shifter, 1-348
medical telemetry, 1-352
rf, 11-547
isolation and zero voltage swntching logic, II-415
isolation trunsformer, V-349, V-470
isolators
analog data-signal transmission, IV-133
digital transmission, II-414
stimulus, III-351


JFET
ac coupled integrator, III-200
amplifiers
500-Mohm input imedance, V-23
current sourcc biasing, V-21
chopper circtat, V-352
headphone audio signal amplifiers, V-57
preamplifier, V-22
source follower, V-20
voltmeter, V - 318
jitter suppression, V-342

## K

kaleïdoscope, soric, V-548-549
Kelvin thermoncter, J-655
zero adjust, III-661
key illuminator, V-333
keyer, electronic CW "bug" keyer, V-102
keying circuits, IV-243-245
autonatic operation, II-15
automatic TMT morse code, 1-25
CW keyer, V-244
electronic, 1-20
Prequency-shifl keyer, IV-245
negative key line keyer, IV-244

Jimp-control circuits (see lights/light-activated and controlled circuits)
laser circuits (see also lights/lightactivated and controlled circuits; optical circmits), ז1-313317, III-309-311, V-250-254
diode senser, IV-321
discharge current stabilizer, II-316
gum, visible red, III- 310
handheld laser, V-252
light detector, $11-314$
power supply, IV-636, V-251, V-254
high-voltage, $V-253$
with starter circtit, V-252
pulsers, laser diode, 1-416, JII-311
receiver, IV-368
rifle, invisible IR pulsed, II-291
simulated laser using LED, V-253
latches, V-366
12-V, solenoid driver, III-572
comparator and, III-88
latching relays, de, optically coupled, IIl-417
latching switches
double touchbutton, I-138
SCR-replacing, UI-593
LCD display
7-segment, V-165s
fixed-power supply, IV-392, IV -403
large-size, V-164
lead-acid batteries (see also batteryrelated circuts)
battery chargers, IT1-55
life-extender and charger, N-72
low-battery detector, III-56
leading-edge delay circuit, III-147
LFD cricuits
7 -segment, V. 166
ac-power indicator, [V-214
alternating flasher, III-198, III-200
back-biased GaAs LED hght sensor, I-321
bar graph driver, Il-188
battery-charger test circuit, V-89
brightmess, l-250
Christmas tree light flasher, V-197
conmon-cathode display, V-167
ariver, emiter/follower, IV-159
flashers, V-195, V-196
alternating, III-198, III-200
Christmas tree hghts, V-197
control circuit, IV-183
dark-activated, V-195
driver, $\mathrm{V}-194$
multwhrator design, iV-182
PUT used in, II-239
ring-around, III-194
scquential, reversible-direction, IV-182
three-year, [II-194
UJT used in, [I-231.
frequency comparator, IT-110
light sensor, back-biased GaAsFET, II-321
leading-zero suppressed display, V-165
matrix display, two-variable, IIT-171
millivoltmeter readout, $\mathrm{V}-294$
multiplexed common-cathode display ADC, III-764
panel meter, III-347
pealmeter, III-333
ring-around flasher, III-194
RS-232C. computer circuit, IIT-103
simulated-laser circuit, V-253
three-year flasher, III-194
voltmeter, JV-286
VU meter, IV-211
level, electronic, II-666, IV-329
level contrullers/detectors (see also fluid and moisture), II-174
alarm, water, I-389
audio, automater, 11-20
audio (ALC), V-60-62
cryogenic fluid, I-386
hystercesis in, 1-235
level of liquid, 1-107, 1-235, I-387, T-388, I-389, 1-390, 11-174, 11-244, II-246, IT-205, III-206, III-207, III-209, III-210, FV-186, IV-100, [V-191
meter, LED baridot, I-251
peak, 1-402
sound, 1-403
three-step, $\mathrm{I}-336$
visual, III-269
warnings
audio output, low, I-891
high-level, 1-387
level shifter, negative to-pusitive supply, I-394
LF or HF feld strength meter, II-212
LF receiver, IV-451
Lie detector, II-277, IV-206, V-255-250
light-bearn communication circuts, V-257-261
receivers
audio, visible-light, V-261
FM light-beam, V-259
noodulated light, V-258
woice-commurication, V-260
transmitters
audio, visible-light, V-261
FM light-beam, V-259
modulated light, V-258
voice-commurication, V-260
light-controlled circuits (see olso laser circuits; optical circuits), II-304-312, 11-318-331, 111-312$319, \mathrm{~V}-262283$
lipht-controlled circuits (comt.) 860 W limited-range hght control. 1-376
alarms, V-9. V-2T3
dark-uctivated dirm, pulsed tone. V 13
high-ontput, pulse-tone. V-14 precision design. V-12 self-latch, tore outpul, V-15 wilh hysteresis, V-14 with latch, V-12 light-beam intruder-derection V-11, V-13
ambient-light cancellization circuil, 11-328
ambient-light isnoring uptical sensor, III-413
audio nscillator, light-sensitive, 1IT-315
back-biazed GaAs LED sensor. 11321
Llack lisht, battery-operated, V-281
logarithmic light, I-966
nntical interruption sensor, $\Gamma$ - 366
battery-powered light. capacilance operated. [-131
bryhtness control, 1-377, III-316
carport light, automatic, II-808
chaser lights, sequential actuvation, IV-251, $\mathrm{V}-252$
Christmas light driver, [V-254
Christmas tree lights sequencer. V-264-265
complementary, I-372
controller, IV. 252
cross fader, II-312
detentors of light, $1-362$, , $V-369$
dimmers, I- $-369,11-309$, IV-247, N-249, V-266
800 W, $71-309$
CMOS tonch dimmer, V- 270
dc lamp, II-307
four-quadrant. IV-248-249
halogen lamps, Hil-300
headight, II-57, II-63
Low-cost. 1-373
phase-controlled, V-267
soft start, 800 W, I-376, III-304
tandem, II-312
triac, I-375, II-310, III-303
dissulver, solid-state, III-304
drivers, lamp drivers, $1=380$
flip-flop independent design, N-180
low-frequency flasher/relay, I-300
MOS lamp driver, V-269
optical couping, ITY-413 neon lamps, 1-379, V-270, V-459 short-circuit-proof, 17-310
emergency light, 1-378, I-581, il320, 11--317, I11-415, IV-250
cxposure meter, photo enlarger. V-438
flame monitor. III-313
flasher, dark-activated, V-195
floodlamp power, I-373
fluoresceat-lantp hiph-vultage power supplies. IV-411, V-444, V-447
Itulugen binp protector, V-271
holiday lights sequencer, V-261265. V-264
indecator-lamp driver, ontically coupled, III-412
intrared circuits (spe mfrared circuits; remote control)
interruption detector, 1.864
merter, fluorescent, 8 -W, III-306
key Ilummator, V-33?
LETD (sep LED) carcuts)
level of light, J-365s, I-367, I-376, I37t, T-380, I-389, III-313, ILI-316
life-extender for lightbulbs. III-302
light-bulb changer, automatic design, IV-253
lights-on warning. IV-58. IV-62. IV-250
light-seeking robot, II- 325
logarithmic light serser, $1-366$
logie circuit, 1-39'3
machine vision illumitation stahilizer, II-306
marker light, ITT-317
meters. light-meters. I-382, I-383, V-305
photo criargers, V-434-485
modubtor. III-302
morustable photocell, sell-adjust trigger, II-329
mooring light, automatit, 11-323
neon light drivers, $1-379, V-270$. V-459
rught lights
automatic, I-360. III-306
telephome-rontrolled, III-604
ondoff relay, T-366
orvofl reminder
aulonedive liphts, I-109
with ice alarm, 1-106
one-shot timer, 11 -317
oquctal interruption sensor, IV-366
nscillator. Leght-controlled, V-27s
outdoor light comtrol, V. 275
phase control, II-303, 11-305
photo alarm, $\pi-319$
photocell, monostable, self adjust trugser, II-329
photocurrent integrator, $11-326$
photodiode sensur aroplifier, II-324
photoelectric contruller, IV-369
photoelectric sensor. V-277
photoelectric switches, II-321, II-826. ILI-319
phototransstor, V-279
porch light control, V-26t, V-276
projector-lanp voltage regulator, [1-305
power outage light. line-operated, III-415
pulse-gereration interruption, 1-357
relays. I-366, V-275, V $278, \mathrm{~V}-279$
remote-rontroler, I-370
robot.
eyes, II-327
Lght-sceking robot, II-325
runuing light sequencer, V-269
sensors, T-367
ambent-light ignoring, III-413
hack-btased GaAs LED, [1-321
logarithmic, I-366
multiple-inpui, $V$ - 273
optical senser-to-TTL interface. III-314
photoelentric, V-277
sequencer, V-263,
holiday lights, V-264-265
pscuderandem, III-301
runturg light, V -269
shimmering light, V-268
short-circuit proof lamp driver, II-310
signal condilioner, photodiode desisn, 11330
solid-state hght sources, V-282-283
soumd-controlled lights, I-609, V-5552
speed controller. IV-247
strohe
high-voltage power supplics, N-413
phatu strobe, V-435, V. 437
trigger, V-43n
variable, III-589-590
sun tracker, IIL-318
switches, $11-320$, III-314
adiustable, I-362
capacitanre switch. I-132
dark-actwated, V-274, V-276
light-/dark activated, V-274
light-activaled, self-latchüs, V-278
light-controlled, IF-320, III-314
photoelectric. IT-321, TI-326, III-319
solar triggered, III-318
zero-point triac, II-311
tarry light, I-679
telephore in-use light, II-625
three-way light control, N-251
touch lamp, three-way, IV-247
triac circuit, V-268
triac controller, V-267, V-271
triac switch, inductive load, IV-253
turn-off circut, SCR capacitor design, $\mathrm{V}-2 \mathrm{~F} 4$
twinght-trigered_circuit, II-322
video, Jow-level video IT aruplificr, 1-687-689
voluge resulator tor projection lump, II-305
wake-up call hght, II-324
warning lights, II-320, III-317
lighl-sceking robot, 11-325
hrit comparators/detectors, 1-156, 1II-106
alarm, high/low, 1-151
double ended, $1-230,1-233,1-156$. 11-105
micropower, I-155
frequency-hmot detector, 11-177
limiters, III-320-322, N-255-257
audio limiter, V-335
clipper/imiter, [V-355
low-distortion, 11-15
dyramic noise reduction circuit, III-321
hold-corrent, solenoid dmver, III-573
noise, III-321, II-395
onc-zenter design, IV-257
output, III-322
power-consumption, III-572
transmut-time limuter/timer, N-580
voltage limiter, adjustable, IV-256
line amplifiers, III- 37
duplex, telephore, 111-616
uxiversal design, IV-39
line trivers, I-252
50 -nhm transmission, IT-192
600-ohm balanced, II-192
audio signal amplifiers. V-54
full rail excursions in, II-190
high-output 600 -otun, $11-193$
synctronized, III-174
video amplfier. III-710
bime-dropont detertor, $11-98$
line-frequency square wave generator, II-599
line receivers
digital data, III-534
low-cost, IIL-532
line-sync, noise immune 60 Hz . 11-367
line-current detector/monitors, III-341
optically coupled. III-414
line-hum touch switch, III 664
hine-synchronzed driver circuit, III-174
line-voltage announcer, ac, III-730
hne-voltage morutor, 111 -511
line-voltage-to-multimeter adapter, V-312
linear amplifiers
$2-30 \mathrm{MHz}, 140 \mathrm{~W}$ PEP amateur radio, 1-555
100 W PEP $420-450 \mathrm{MHz}$ push-pull, I- 554
160 W PFP broadband. I-556
amateur radio, $2-30 \mathrm{MHz} 140-\mathrm{W}$, III-260
audio power amplifiers, V -51
CMOS inverter, $1 \mathrm{I}-11$
inverter, linear amp from inverter. 11-11
rf amplifiers
6-m. 100 W, IV-480-481
903 MHz , IV-484-485
ATV. $10-\mathrm{to}-15 \mathrm{~W}, \mathrm{IV}-481$
lincar couplers
ac untor, I-412
analog, II-413
Ite, II-411
optocorpler, instrumentation, II-417
linear IC siren, III-0.64
linear ramp generator, II-270
link, Hibcroptic, 111-179
hqud-level detectors (see fluid and monsture detectors)
lithium batteries
charger for, II-67
state of charge indicator for, II-78
little dipper dip meter, II-183
load-sensmg carcuts, V-284-285
locator, lo-pats treasure, $1-409$
locks, electrone, II-194-197, /V-161-163
combination. I-58:3, II-196
disitad citry luck, N-162, V-157
keyless design, JV-163
three-dial combination, II-195
locomotive whistle, II-589
logarithme amplifiers. 1-29. I-35, II-8 dc to video, 1 -38
log-ratio amplifier. I-42
logarithruc converter, fast, 1-163
lugaritheruc light sensor, $[-366$
logarithme sweep VCO, IIT-738
logic/logic aronts
amplifers logic amplifiers, 11-3:33-3:35
low-power binary, to 10 n gain low-frequency, II-333
low-power inverting, digitally selectable gain. II-333
low-power noninverting, digitally selectable inpul and gain, $11-334$
precision, digitally programmble input and gain, II-335
programmable amplifier, IT-9;34
audible pulses, II-345)
converter, TTL to MOS, I-170
four-state. single LED indicator. 11-361
isolation and zero voltage swtching, IT-415
level shifter, negatuve-to-positive supply, I-394
light-activated, 1-393
line monitor, III-108
overvoltage protection, $\mathrm{F}-517$
probes, Iogic probes, $1-520, \mathrm{~T}-52 \mathrm{~F}$, I-526, IV-430-431, IV-4.34
CMOS, I-523, I-526, III-499
digital, 11 -4 $497, \mathrm{~V}-310$
four-way operation, IV-432
memory-tester, installed, I-525
single-IC design, IV-433
three-in-one set: probe, signal tracer, mjector, IV-429
pulse generator for logictroubleshooting, IV-436
pulyer, 111-520, V-489
signals. lons delay line for, III-107
testers
audible, III-343. V-313
TTL, I-527
translators, logic-level translators, IV-242
long-duration tiner, PUT, II-675
lons-range object detector, III-273
loop antennas
3.5) MHz, IV-12-13
dual band, $80-160 \mathrm{~m}, \mathrm{~V}-32$
preamp, V-38
loop transmitter, remote sensors, HI. 70
lonp-thru video amplifier, N -616
loudness controls, II-46, II-47
amplifier, loudness amp, Il-46
balance anplifier with, 11-395
loudspeakers
coupling carcuit, I-78
hom as loudspeaker, IV-54
protector circuit. V-483
remote link, I-343
low-distortion input selector for audio use, II-38
low-frequency oscillators, Ill-428
crystal, I-184, II-146
oscillator/flasher, 11 -234
Plerce oscillator, III-133
TTL oscillator, II- 595
low-pass tiluers, 1-287
active, V-178, V-181. V-188 digitaliy selected break frequency, II-216
fourth-order, V-184
Butterworth, V-180, V-181
Chebyshev, fifth-order, multifeedback, II-219
clock-tunable, monolithic, 1 mV , V-187
pole-acrive, 1-295
fast-response, fast settling, IV-168-169
fast-sectling. precision, II-220
precision, fast settling, II-220
Sallen-Key $10 \mathrm{kHz}, \mathrm{I}-279$
active, IV-177
equal component, I-292
second order, I-289
second-order, V-188
second order Sallen-Key, I-289
unity-gair second-order, V-187
variable, V-186
low-voltage abarrindicator, $\mathrm{l}-224$, II-493, III-769
low-voltage power disconnector, 11-97 LVDT circuits, Il-336-339, IL-323-324
driver demodulator, II-387
signal conditioner, II-338

## M

machine vision, illumination stabilizer fer, II-306
magnetoncter, II-341
magnets
current sensor, magnefic currents, [II-341
electromagnetic-field sensor, V-308
permanent-magnet detector, W-281
preamplifiers, magnelice, 1-89, 1-91, II-37. H-673, IV-35, IV-36
proxiruity sensor, V-308
transducer, magnetic transducer, 1-233
mains-failure indicator, IV-216
marker gencrator, 111-138
narker light, III-317
mathematical circuits, III-325-327,
[V-258-263, V-286-288
adder circuits, [II-327
binary, fast-action, JV-260-261
divider circuits, IV-150-156
binary chain, I-258
divide by-2-or-3 circuit, IV-154
divide hy-N $1+\mathrm{GHz}, \mathrm{V}-155$ 1.5+ divide-by-n, $\mathrm{VV}-156$

CMOS progrannrable, 1-267
7490 -divided-by-n, IV-154
divide-by-odd number, IV-15.3
frequency divnders, I-258, II-251, II-254, $\mathrm{HI}-213-218, \mathrm{IIL}-340, \mathrm{HI}-768$ $1.2 \mathrm{GHz} . \mathrm{III}-129$
$10-\mathrm{MHz}, \mathrm{JII}-126$
clock input, IV-151
decade, I-2599
divide-by-1.5, III-216
low-cost, III-124
low-frequency. II-253
preamp, 111-128
programmable, IV-152-153
staircase generator and, [-730
tachometer and, T-3.0
odd-number counter and, III-217
one trim, III-325
pulse, nor-integer prosrammable, II-511 1, III-226
minimurnaximam selector, fourinput, V-332
multiplier circuits. IV-325
Low-lrequency multiplier, IV- 325
precose conmutating amp, (V-262-263
voltage multipliers, IV-631-637 2.000 V low-current supply, IV-636-637 $10,000 \mathrm{~V}$ de supply, F - 683 corona whd genemator, $\mathrm{N}-6.33$
doultlers, III-459, N-635
cascaded, Cockereit-Walton, IV. 635
triae-controiled, III-468
laser power supply, lV-636
negative-ion generator, highvoltage, IV. 634
tripler, iow-current, N-637
polar-to-rectangular
converter/pattem generator, radio di, V-288
polynomial generator, V-287
root extractor, V-207, V-288
slope integrator, programmable, IV. 25.9
subtracter, III-327
MC1330/MC1352 television $1 \mathrm{~F}^{\circ}$ ampleficr, 1-688
measurement/test circuts (she aiso monitors; probes), II-340,
III-268-270, III-328-348, IV-210-
218, IV-264-311, V-230-232.
V-284-321
$100 \mathrm{~K}_{\mathrm{K}}$ megaohm dc, F -524
3 -in-1 test set, TIT-830
absohote-value circuit, IV-274
ac hot wire, J -581
ac-current indicator, JV-290
ac-power indicator, LED display, IV-214
ac/de indicator, $\mathrm{V}-214$
ac outlet tester, V-318
ac wring locator, V-317
ac-watts calculator, V-304
acoustic-sound receiver, IV-311
acoustic-sound transmitter. IV-311
activity tester, crystal oscillators, V-138
alarm and, I-337
altimeter, digitaj, V-296
ammeler, low-current, V-307
antmometer, hot-wire, III-342
audible logic tester, ITT-343
audible TTL, [-524
audio frequency meter, $\mathrm{I}-311$, V-305, V-320
audio millivost, IIL-767, 111-769
audio power, I-488
audio-rf signal tracer, I-527
automatic contrast, 1 -479
automotive electrical tester, IV-45
automotive-temperature indicator.
PTC therruistar, $11-56$
B-hicld measurer, IV-272
balance indicator, IV-215
balance meter for stereo, V-593
barometer, IV-273
batory indicators/testers, 1-108, 1-121, 1-122, 1-124, V-74, W-78. [V-79
beat frequency, I-336
breath alert alcohol tester, III-353
broadband ac active rectifier, IV-271
buzz box continuity checker, I-55l
cable tester, III $539, \mathrm{~V}-299$
calibrator (see calibrators)
capacitance buffer
low-intwul, III-498
stabilized low-mpet, IIT-502
capacitance meters, I-400, II-91-94, 1JIJ.75-77
AD, 3.5 digit, 111 - 76
capacilance-to-voltage, JI-92
digital, IJ-94
capacitor festers, [V-265, N-279, V-30f
clamp-on-current compensator, 11-501
OMOS logic, $1-523$
cortiruity testers, I-550, I-551, II-342, II-535, II-584, IT-5355, IIT-345, TIT-538-540, V-287, [V-289, TV-295, IV-206, V-293, V-317, V-319
crystal tester, 1-178, 1-186, 11-151, V-139
current meters and monitors, [-203, II-152-157, III-338 ac current indicator, IV-290
current sersing in supply rails, II-153
electrometer amplifier with overload protection, 11-155
Hall-effect sensors, II-255, IV-284
high-gain current sensor. IV-291
picoarnmeter, 1-202, 11-154, 11-157, HI-338
guarded input. JI-156
range anmeter, six-decade, II-153, 11 -156
curve tracer, I-397, [V-274, V-300
CW offset indicator, IV-213
devidion meter, /V-303
dia] pulse, ITI-613
digital frequency meter, III-344
digital multimeter (DMM), IV-291, V-291
digital volmelers (UVM), III-4
3.5-digit, I-713, III-761
3.75-digit, 1-711
4.5-digit, 1-717, III-760
adapter for PC, V-310
auto-calibrate circuit, I-714
automatic nulling, $1-713$
interface and temperature sensor, II-647
LED readout, IV-286
temperature sensor and DVM, 647
diode tester, I-401, 1-402, I-406, 11-4333, 111-402
dip meters, [-247, TT-182-18is
bandswitched, IV-298
basic grid, $1-247$, IV-298
dual gate IGFET, I- 246
little dipper, I-183
varicap tured FET, J-246
durection-of-rotation circult, IIT-335
dinde curve tracer, IV-274
diode-matching circuit, IV-280
dosage rate, 1-534
driver, meter-driver rf amplifier, 1-M1z. Ill-545
duty-cycle meter, 111-329, IV-265, V-275, V - 280
dwell meter I-102, III-45
$\mathrm{E}, \mathrm{T}$, and R measurement/test circuits, IV-233-206
electrolytic-capacitor reforming circuit, IV. 276
electromagnetic-field sensor, V-308
electrometer, [V-277
electrostatic detector, III-337
energy consumption monitor, V-290
expanded-scale asulog meters. II186, ILL-774, IV-46
FET probe, IIT-501
FET voltmeter, III-765, $111-770$
field-strength meters, 11-208-212, III-182-183, IV-164-166. V-174-176
$1.5-150 \mathrm{MHz}, \mathrm{L}-275$
adjustable sersitivity indicator, 1-274
high-sensitivity, II-2II
LF or HF, H -212
microwave, low-cost, 1-273
rf sniffer, [1-210
sensitive, I-274, ITI-183
signal-strength meter, N -166
transmission indicator, II-211
tuned, $\mathrm{I}-276$
UHE ficlds, JV-165
untured, I-276
filter analyzer, audio filters, IV309
flash exposure meter, $1-484$, III 446
frequency counter, 1II-340, IV-300
frequency meters, 1-310, II-249250, $\mathrm{T}-282, \mathrm{TV}-301$
analog, V-307
audio, I-311
Lincar, I-310
low-cost, II-250
power, II-250
power-hne, F311
frequency shift keyer tone generator, I-72:3
geiger counters, I-536-537, II-489, 11-514, V-217-219
general purpose rf detector, II-500
go/no-go test circuits, I-401, I-157
grid-cip meters, I-247, IV-298
ground, I-580, II-345
ground-noise, battery-powered, III-500
harmonic distortion
analyzer, V-291
meter, V-312
impedance checker, V-136
in-wse indicator, telephone ${ }_{3}$ II-629
inductance meter, linear, V-316
infrared detector, low-rioise, II-289
injectors, $\mathrm{N}-429$
high-frequeney and ri tester, JV-297-803
LC checker, III-334
LEL meters, I-251, III-347
level indicators (see fluid and moisture, level)
line-current monitor, TII-341
light meters, I-382, I-383, V-302
line-voltage-to-multimeter adapter, V-312
logic probes, $1-520,1-525,1-523$, IV-430-431, IV-434
CMOS, T-523, l-526, III-499
digital, III-497, V-310
four-way operation, IV-432
mernory-tester, installed, [-525
single-IC design, IV-4e3
three-in-one test set: probe, signal tracer, imjector, IV-429
logic tester, I-527, II-345, III-343, V-313
low-current measurement, III-345
low-ohms adipter, TV-290
low-voltage, III-769
magnet/magnetic detectors, III341, [V-266, IV-281, V-308
magnetometer, II-341
mains-failure indicator, IV-216
measuring gauge, lincar variable differential tramsformer, 1-404
meter tester, V - 270
metronomes, [-411-413, IT-353-355, III-353-354, IV-312-314, V-392
microammeter, dc, four-range, IV-292
microfarad counter, IV-275
microvnlt, IT-499
millivoltmeters, III-767, III-769, IV-289, IV-294, IV-295
ac, 1-716
audo, III-767, Iil-769
dc, W. 295
four-range, N-289
high-input impedance, I-715
LED readout, IV-294
modulation monitor, III-375, IV-299
mono audio-level meter, IV-310
motion sensor, unidirectional, II-346
motor hour, 111.340
multiconductor-cable tester, IV-288
multimeters, IV-291, IV-293
nomse generator, [V. 308
ohmmeters, [-549, III-540, IV-290
On indicator, IV-217
onthe-air, III-270
ap-amp de offset shift tester, V-319
optical light probe, IV-369
ose illoscope adapter, four-trace, N-267
overspeed, I-108
overvoltage protection. $\mathrm{F}-150, \mathrm{I}$
517, II-96, II-107, II-496, II-513, 111-762, IV-380
paper sheet discriminator, copying machines, ITI-838
peak detectors, II-174, 11-175, II-434-436, III-771. JV-138. IV-143,
analog, with digital hold, III-163
decibel peak meter, III-348
digital, ITT- 160
high-bandwidth, $\mathrm{IIF}-161$
high-frequency peak, II-175
high-speed peak, 1-232
LED design. peak meter, III-333
level detector, 1-402
low-drift, III-156
negative, T-225, T-234
op amp, IV-145
positive, I-225, 1-235, 11-435, 111-169
true rms, I-228
ultra-low-drat peak, 1-2837
voltage, precision, 1-226
wide-bandwidth. III-162
wide-range, III-152
pH tester, I-399, III-601
phase detection/manipulation circuits
detectors, T-406, T-476, T1-544, II-439, II-441, II-442, III-440-442, [V-127
10-bit accuracy, II-176
diyital VOM, IV-277
phase-difference detector, 0 - to 180-degree, II-344
phase selector/sync. rectifier/balanced mndulator, III-441
sequencers, phase sequetce. 1476, II-437-442, 1IT-441 rc curcuit, phase sequence reversal detection, II-438 reversal, re circuit to detect, 11-4.38
three-phase tester, II-440
shifters, phase shitters, IV-647
0-180 degree, I-477
0-360 degree, I-477
single-transistor design, 1476
splitter, precision, 111-582
tracker, there-phase square wave generator 11 -598
picoarmmeters, 1-202, IT-154, III-938
circuit for, II-157
guarded input circuit, II-156
polarity indicalor, V-231
power gan meter, $60 \mathrm{MHz}, 1-489$
power line frequency tester, I-311
power meter, $\mathrm{I}-489$
power supply test load, constantcurrent, IV-424
presculer, 650 MHz amplifying, II-502
pressure gauge, digital, V. 314
measurement/test circuits (corve)
probes, 4-to-220 V, III-499
proximuty sensor, magnetic, V-308
pulse-width meter, III-336
QRP SWR bridge, III- 336
RC decade box, V-294-295, V-294
recenver-signal alarm, 1H-27)
reflectometer, I-16
remote-control infrared device, V-228
resistance measurement, II-342, [V-285
resistance/continuity meters (see continuity tester, above)
rf bridge, V-303
rf output indicator, IV-299
rf power indicator, 1-16 wide-range, III- 332
rf probe, I-523, IIL-498, 111-502, [V-433
rf test oscillator, V-412
rf voltmeter, TII-76n
rf-actuated relay, III-270
$S$ meter for communications recelvers, V-311
scale, electronic, V-297
SCR tester, $\mathrm{JIJ}-344$
short-tester, V-31:3, V-315
shutter, 1-485
signal generators, V-309
AM broadcast-band, IV-302
AM/F, 455 kHz , IV - 301
signal strengul meter. III-342, IV-166
signal tracer, IV-429, V-309
simulated, 1-417
single mjector-tracer, II-500
soil moisture, III-208
sound-level meters. III-346, IV-305, IV-307
telephone, III-614
sound sensor, $\Gamma$ V-218
somnd-test circuits (see also sound generators), TV-304
speedometer, bike, IV-271, IV-282
static detector, IV-276
sterco test circuits
audio-level meter, $\mathrm{V}-310$
audio-power meter, חII-331, N-306
balance indicator, I-618-619
reception indicator, $111-269$
stud finder, III-309
supply-vollage monitor, V-320
suppressed zero, T-716
SWR power, I-16, I-22, IV-263
tachorneters, I-94, I-100, 1-102, II-175, III-335, III-340, III-347, V-65, V-596-598
analog readout, IV-280
calibrated, III-598
closed loop feedback control, II-390
digital readout, II-61, III-45, N-268-269, V-278
dwell meter/tachometer, ILI-45
feedback control, II-378, II-390
frequency counter, I-310
low-frequency, III-596
minumurn-cornponent design, $\mathrm{I}-405$
motor speed controllers, If-378, [1-389
optical pick-up, III-347
set point, III-47
telephone
in-use indicator, [1-629, V -560, IV-563
lime-tester, V-6is
off-hook, I-633
temperature (see temperaturerelated circuils)
temperaure indicator, IV-570
lest probe, 4-220 V, III-499
tester, IV. 270
themometers, III-637-643
three-in-one set, logic probe, signal tracer, injector, IV-429
three-phase tester, I-440
till meter, III-644-646, V-302
tone, digital IC testring. II-504
transistor tester, I-401, IV-281, V-306
transmitter-output indicalor, IV-218
tri-color indicator, $\mathrm{V}-232$
TTL logie tester, I-527
universal test probe, $\mathrm{V}-4.3$ !
UHF source dipper, TV-299
undervoltage, battery operated equipment, I-123
universal test probe, IV-431
vibration meter, I-404
video-signal amplitude measurer, v-309
visual modulation, $\mathrm{T}-430$
nsual level, ILI-269
voltage level indicators, $1-935$, I-337, I-338, 1-718, III-758-772, V-301, V-315
voltage probes, $\mathrm{V}-474$
voltmeters, ITT-758
3.5 digit, $\mathrm{I}-710, \mathrm{I}-713, \mathrm{III}-761$
4.5-cigit. III-760

5-digit: III-760
-ac, I-716, III-765, III-772
add-on thermometer for, 11t-640
bar-graph, I-99, IJ-54
dc, $17-762$, III-763, V-301
digital voltmeters (DVM). III-4
3.5 -digit, common anode display. 1-713
3.5-digit, full-scale, fror-decade. II- 761
3.75-digit, 1-711
4.5-digit, III-760
4.5-digit, LCD display, I-717
auto-calibrate circuit, 1-714
automatic nulling, $1-712$
imterface and termperature
sensor, II-647
LED readout, IV-286
temperature sensor and DVM, 647

PET, I-714. III-765, 111-770
high-input resistance, III-768
TFET, V-318
LED expanded scale, V-311
nuilivoltmeters (see millivoltmeters)
rf, I-405, III-766
voltohmmeters (VOM)
field strength, I-276
phase meter, digital readout, IV-277
volume indicator, andio amplifier, IV-212
VOR signal simulator, IV-273
VII meters, 1-715, 11-487, 111-487. IV-211
watehtick tuncr, V-292
watcr-level measurement circuit, IV-191
wavemetar, tumed RF, IV-302
wideband test amplifier, $\mathrm{lV}-303$
wire tracer, II-343
zener diode test set, V-321
zener diode tester, $1-400,1-406$
zero center, FM receivers, I-388
medical elentronic circuits, II-347349, III-349-352
biomedical instrumentation differential antp, JII-282
breath monitor, III-350
EKG simmlator, three-chn, III-350
heart rate monitor, IT-348, II-349, V- 342
preamplifier for: II-349
stimulator, constant-curreut, 111-352
stirmulus isolator, ILL-351
thembuncter, implantable/ingest:ble, 711 -641
melody generator, single-chip design, IV-520
merno alert, V-352
memory-refated circuits
EEPROM pulse generator, ivpowered, II-99
memory protector/power supply momtor, TV-425
memory-saving power supply, 11-486
metal detectors, IL- $350-362, \mathrm{~N}-137$, V-322-324
low-cost design, $\mathrm{V}-32$ :
núcrapower, 1408
pipe detector, V-323
meters (see measurement/ucst circuits)
methume concentration detpetor. linearized output, III-250
metronomes, T-413, II-353-355, III-358-354, V-312-314, V-392
top octave generator, V - 393
ac-line operated uijunction, $11-855$
accentuated beat, I-411
downbeat-emphasized, IIT-353-354
electroric, V- 313
low-power design, N-313
novel design, $\mathrm{V}-314$
sight and sound, I-412
simple, 11-354
version II. II-355
mirroammeter, dr, four-range, $\mathrm{N}-292$
microcontroller, musical organ, preprogranuned single-clup, 1-600
microphone arcuits
amplifiers, 1-87, III-34
electronic balanced input I-86
electret, preamp circuit, V-21
external mic circuit for transceivers. V-351
FM wireless,.III-682, III-685, III-691
muser, IL-37, V.363, V-364
preamplifiers, II-45, [V-37, IV-42
low-impedance, IV-41
tone control for, II-687
transformeriess, unbalanced mput, $1-88$
transformerless, unbalanced input, I-88
wireless, IV-653-654
AM wircless, 1-679
microprocessors (see computer circunts)
merovolt comparators
dual limit, III-89
hysteresis-including, III-88
microvalt probe, II-499
microwave amplifers, $\mathrm{N}-315-319$
$5.7 \mathrm{GHz}, \mathrm{IV}-317$
bias supply for preamp, $\mathbb{I V}-318$
preamplifiers
2.3 GHz, ГV-316
3.4 GHz, IV- 316
bias supply, IV-318
single-stage, 10 GHz, IV- 317
two-stage, 10 GHz, V- 319
microwave field strength meter, I-273
MIDI (see musical circuits)
Miller uscillator, 1-193
millivoltmeters, $\mathrm{III}-767$, III-769, IV-289, IV-294, V-295
ac, $\mathrm{T}-716$
audio. III-767, III-769
dc, IV-295
four-range, IV-289
high-input impedance, 1-715
LED readout, IV-294
mini-stereo audio amplifiers, III-38
minimum/maximum selector, fourinpul, V-332
muxers, III-367-370, IV-330-336, V-369-364
1- MHz, I- 427
audio, I-23, I-59, II-35, IV-335., V-362, V-364
CMOS, 1-57
common-saurce, 1-427
digital mixer, IV-334
diplexer, $\mathrm{V}-335$
doubly balanced, I-427
dynamic audio mixer, IV-331
four-chamel, 1-56, 1-60, II-40, III369, IV-333
four-mput, I-55, IV-334
guitar mixer, low-nolse, fourchannel, V-360-361
111' (ranseciver/nixer, IV-457
hybrid, 1-60
ingut-buffered, III-369
local oscillator, domble balanced mixer, V-415
microphone, II-37, V-3633, V-364
mixer/oscillator for AM receivers, V-412
multıplexer, I-427
one-transistor design, $1-59$
passive, I-58
preamplifier with tone control, I-58
sigual combincr, 11L-368
silent audio switching, I-59
sound ampleiter and, IL-37
stereo muxer, pan controls, $\mathrm{V}=332$
unity-gain, four-input, IV-334
ulility-design mixer, IV-336
uriversal stage, III-370
video. hugh-performance operation, [V-609
moble equpment, $8-\mathrm{amp}$ regulated power supply, II-461
model and hobby cireuits, IV-337-340
controller, model-lrain and/or slotcar, IV-338-340
rocket lanncher, II-358
modems
power-line, carrier-current circuit, III-82
protector, V-479, V-482
modulated readback systems, disc/tape phase, 1-89
modulation indicator/monitor, I-430
CB, $\mathrm{I}-431$
modulators, $1-437,11-368-372$, III-371-377, V-365-367
$455-\mathrm{kHz}, \mathrm{V}-366$
+12 V do single supply, balanced, I-437
AM, I-438, II-370
balanced, 111-376, 111-441
double-sideband suppressedcarrier, III-377
FM, V-366, V-367
linear pulse-width, [-437
monitor for, III-375
musical crivelope generator, $\mathrm{l}-601$
pulse-postiom, 1-435, III-375
pulse-width, I-435, I-430, I-438-440, III-376, IV-326
rf, I-436, II-369, III-372, III-374
saw oscillator. IIL-373
TTL uscillator for television display, I-372
TV, I-439, II-433, II-434
VHF, I-440, III-684
video, $\mathrm{I}-437, \mathrm{II}-371, \mathrm{Il}-372$
moisture detector (see fluid and moisture detectors)
monitors (see also alarms; flud and moisture; light-controlled circuts; motor control circuits, speed controltcrs; tumperaturerelated circuits; tone controls), V-368-372
anad ram, IIT-361, V-371
baby monitor, V-370-371
battery monitors, I-106, I-222. II-74-79, III-60-67, IV-73-80
bird feeder moniter, V-371
blinking phone light, II-624
breath monitor, IIT-3F0
current, III-255, IV-284
alarm and, III-338
directional signads, aute, 111 -48
door-ajar, autonotive circuits, III-46
duty cycle, III-329, IV-275
flames, IIT-313
home security system, I-6
line-current, 111-341
line-voltage, III-511
logic line, III-108
modulation, III-375, IV-299
overvoltag protection, I-150, I-517, II-96, II-107, II-496, III-513, III-762, IV-389
power-supply monitors, II-491-497. III-493-495, IV-422-427
backup supply, drop-m manactivaterl, IV-424
balance monitor, III-494
boosterbuffer, boosts reference current, $\mathrm{NV}-425$
circuit breaker, trip circuit, IV-423
connections montor, ac lines, III-510
fault monitor, single-supply, III-495
memory protectar/supply monitor, [V-425
polarity-protection relay, TV-427
SCR design, $\mathrm{V}-385$
test load, constant-current, IV-424
triac for ac-voltage control, IV-426
tube amplifier, high-voltage isolation, IV-426
voltage monitors (see voltage monitors)
room montor, V-369
monostable multivibrators, I-465. 111-229, $111-230, \mathrm{HI}-235, \mathrm{H}-237$. V-386, V-387
mput lockont, I-464
linear-ramp, III-237
photocell, monostable, II-329
positive-triggered, III-229
TTL, monostable operation, I-464
UJT, monostable operation, 1-463
video amplifier and comparator, 11-268
mooring light, automatic, Il-323
MOSFETs

MOSFETs (cont.)
amplifier, high-impedance biasing, V-19
audio power amplifiers, V-47
blasing, high-impedance method, V-19
buffer arnplifier, $\mathrm{V}-93$
frequency converter, V-123
mixer/oscillator for AM receivers. V-412
power control switch, [V-386
power inverter, II-295, V-247
mosquito repelling circuit, I-684
motion/proxirnity detectors, I-135-136, I-344, II-135, II-136, II-505-507, ITT-514-518, TV-341-346, V-376-377, V-484-486
acoustic Doppler motion detector, IV-343
aburrn for, [1-506
auto alarm, 1-9
baby monitor, V-370-371
capacitive, III-515
field disturbance sensur/alarm, 11-507
infrared-reflection switch, FV-345
light-beam intruder-detection alarm, V-11, V-13
low-current-drain design, IV-342-343
magnetic, V-308
microwave circuit, V-377
moturcycle alarm, 1-9
object detector, long-range, III-273
optical detector circuit, V-405
optical interruption sensor, IV-368
people-detector, infraredactivated, IV-225
proximity switch, infrared-
activated, IV-345
relay-output, ГV-345
room monitor, V-369
SCR alarm, III-5I7
self-biased, changing field, $1-135$
switeh, III-517
LHF, III-516, TV-344
midirectional, $\amalg-346$
motor control circuits, JV-347-353, V-378-381
40011 z servo arnphfier, J1-386
at motors, It-375
ac servo amplifier, bridge-type, III-387
bidirectional proportional control, 4-374
blender control rircuit, V-379
compressor protector, $\mathrm{V}-351$
de motors
direction controls, 1-452
driver controls, fixed speed, III-387 reversing, IT-381 servo, bipolar control input, 11-385)
specd-controlled reversible, III-389
fiberoptic controls, II-206
direction controls
de notors, 1452
series-wound motors, 1-448
shunt-wound motors, $\mathrm{I}-456$
stepper motor, [V-350
driver controls
ac motors
three-phase, II-383
twe-phase, I-450, II-382
constant-speed, III-386
de motors
fixed speed, $111-38$ ?
reversing, $11-381$
serve, bipolar control input, 11-385
speed-controlied reversible, III-388
N-phase motor, II-382
piezo drive, V-280
HWM, V-380
reversing, de control signals, ll-381
servo motor amplifier, I-452, II-384
stemper motors, 111-390
half-step, IV-349
quarter-step, IV-350
two-phase, II-456
Fiber-optic, de, vanatile, II-200
hours-in-use meter, [IT-340
induction motor, I-454
load-dependent, universal motor, 1-451
ruri-drill control, IV-348
model train and/or car, $1-453$, T-455
phase control, hysteresis free, $\mathrm{I}-373$
piezo motor drive, V-380
power brake, ac, II-451
power-factor controller, threephase, II- 388
power-tool torghe, I-458
PWM motor controller, III-389
PWM servo amplifier, ILI-379
PWM speed control, $11-376$
PWM speed control/energyrecovering brake, IIL-380
self-timing control, built-im, universal motor, I-45I
servo motor amplifier, ]-452, II-384
servo system, III-384
speed control (see speed controllers)
start-and-zun motor rireutt, III-382
stepper motors, V-571-573
half-step, V - 349
quarter-stce, IV-380
spued and direction, JV-350
tachometers, T-94, I-160, I-102, II-175, III-385, III-340, III-347, V-65, V-596-598
analog readout, IV-280
calibrated, III-598
closed loup feedback control, 11-390
digital readout, II-61, 111-46, IV-368-269, IV-278
dwell meter/tachometer, III-45
feedback controi, II-378, II-390
freguency counter, I-310
low-frequency, 111-596
ruinumin-component design, $[405$
miotor speed controllers, 11-378, [1-2899
optical pick-up, III-347
set point, III-47
three-phase controls, II-383, JI-388
two-phase controls, I-456, II-382
motorcycle alarm, motion actuated, 11-9
moltiburst generator, square waveform, II-88
multirneters (see also cigital multimeters (DMM), TV-291, IV-293
multuple-input detector, III-102
multiplexers, [I-391-397, V-382-383
1-of-8 chamel teansmission system, [11-305
analos, $11-392$, V-383
001 percent, II-392
buffered input and output, IL1-896
input/output buffer for, lli-11
single-to four-trace converter, 11-431
capacitance, II-200, $1 \mathrm{I}-416$
common-cathode LED-display ADC, III-764
de-, III-394
differential multiplexer, 1-425, 1-428, $11-428$
driver, high-speed line driver, I-264
eight-channel mux/demux, J-426. II-115
four-channel, low-cost, III-394
frequency, III-213-218
line driver, $\mathrm{T}-264$
mathernatical, one trim, 111-326
oschloscopes, add-on, III-437
pulse-width, III-214
resistor, II-199
sample-and-told, three channel, 111-396
two-tevel, III-392
video, 1 -of-15 cascaded, III-393
widehand differential, II-428
multipher circuits, IV-325
capacitance inutiplier, V-205, V-34?
3ow-frequency multiplier, [V-325
photomultipliers, high-volt power supply, V-444, V-445
precise commulatiry amp, IV-262-263
voltage multipliers, IV-631-637
2,000 V low current supply, TV-636-6837
$10,000 \mathrm{~V}$ de supply, IV-633
corona wind generator, IV-633
doublers, II-459, [V-635
cascaded, Cockeroft-Walton, IV-635
thac-controlled, III-468
laser power supply, IV-630
negative-ion gencrator, highvolase, IV-634
tripler, low-current, IV-637
multivibrators, V-384-388
100 kHz free rurning, II-485
astable multivibrators, II-269,
II-510, II-597, III-196, III-224,
III-233, II-237, III-238, V. 386 -388
bistable nultiviorators, T-133, II-465
inverter, III-103
debouncer, IV- 108
flasher, I-239, I1-234
lamp driver, JV-160
puskbutton trigker, V-388
RS flip-flop, 1-395
SOR, II-367
SR flip-flop, IV-651
touch-triggered, 1-133
car battery, II-106
CB modulation, IT-431
CMOS, $\mathrm{V}-285$
current, IL-203
duty-cyele, 50 -percent, III-584
free-ruming
$100 \mathrm{kllz}, 1-465$
programmable-frequency, III-235
with op amp, V-388
low-frequenry, ITI-237
low-voltage, II-123
modulation, II-430
monostable multivibrators, 1-465, IIL-229, III-230, III-235, ITI-237, V-386, V-387
mput lockout, I-464
linear-ramp, III-287
photocell, monostable, 11-329
positive-triggered, III-229
TTL, monostable operation, 1-464
UJT, monostable operation, I-463
videc araplifier and comparator. II-268
one-shot, I-465, 1-720, II-265, II-465, III-223, 111-238, III-317, U11-654, V-388
oscilloscope, II-474
single-supply, TII-232
sound level, II-403
square-wave generators, IV-5.36
tolephone line, II-628
very-low-frequency, V-385
wideband radiation, II-535
music circuits (see also sound generators), V-389-393
envelope gencratorimplubator, IV-23
instrument tune-up, ando generator, V-390
melody circuit, V-393
melody generator, singie-chip design, IV-520
metronome (sec metronomes)
MIDI recewer, $V$-392
MID transmutter, V-393
multi-tone generator, V.565
muste maker circuit, III-360, IV-521
musical chmes, $1-640$
musical envelope. modulator, I-601, IV-22
octave equalizer, $V .853$
perfect pitch circuit, V-391
synthesizer, V-10 note, V-561
telephone musce-on-hold cucnit. V-601. V-605
mux/demux (see multiplexers)

## N

N-phase motor drive, II-382
NAB preamps
reeord. III-673
two-pole, III-673
NAB tape playback pre-aup, iII-ds
mano anumeter, I -202
NE602
de power circuit, V-358
mput/output circuits, V-355
negative-ion generator, IV-634
neon flashers, 1-303
five-limp, III-198
two-state oscillator, III-200
tube, 1-304
networks
crossover networks, [-172-173, 11-35
EV, I-518
ac/de lines, electronic, 1-515
active, I-172
asymmetrical third order
Butterworth, 1-173
electronic circuit for, H -36
filter, 1-291
speech, telephone, IT-633
nu-cad batteries, T-118
analyzer for $1 \mathrm{II}-64$
charger, 1-112, 1-116. III-57
$12 \mathrm{v}, 200$ mA per hour, 1-114
current and volkuge limiting, I-114
fast-acting, 1-118
portatle, IV. 69
temperature-sensing, IV-77
thermally controlled, II-68
packs. automotive charger for, I-115
portable III-47, IV-69
protection circuit, $111-62$
simpl-cat, T-112
temperature-sensing charger, IV77
test circuil, IV-79
thematly controlled. II-68
zappers, I-6, I-66, II-68
night lghts (ser lights/lightactivated and controlled cremes)
no-doze alarm. V-8
noise generators (see sound generators)
noise reductron circurs, $\mathrm{II}-393-396$, III-398-401, IV-354-356, V-396-398
amplified noise limiter for SW receivers, V-397
audio clipper/imiter, IV-356
audio dynamic systent, V-39?
audio shunt noise limuter, [V-355
audio squelch, IT-394
balance ampiliee with loudness control, II-395
blanker, IV-356
clipper, II-394
audio-powered, III-396
Dolby B , decode mode, II-401
Dolly B , encode mode, III-400
Dolby B/C, II-399
dynamic noise reduction, II-321
filters (see filters)
limiter, II-395, III-321
low-level signal nose, V-398
rereiver application. V-398
shortwave receiver noise limiter, V-307
noninverting auplifiers, I-32, I-35, I-41, III-14
ac power, I-79
adjustable gain, I-91
comparator with hysteresis in, 1-15.3
high-frequency, $28-\mathrm{dB}, \mathrm{HI}-263$
hysteresis in, 1-153
low-power, digitally selectable input and gam, IT-334
power, 1-79
programmable-gain, Ill-505
single supply. 1-74
split supply, 1-75
nonselective frequency tripler, transistor saturation, II-252
Norton amplifier, absolute value, III-11
notch filters (see also filter circuits), 1-283, [1-397-403, III-402-404
$4.5 \mathrm{MHz}, \mathrm{I}-282$
$550 \mathrm{Hx}, \mathrm{II}-399$
$1800 \mathrm{~Hz}, \mathrm{II}-398$
active band reject, II-401
adjustable $Q_{1}$, 11-398, V-179
audio, $1 \mathrm{I}-400$
baudpass and, 71.223
high-Q, III-404, V-178
selectable bandwidth, 1-281
shortwave receiver filter, V-185
three-amplifier design, $1-281$
turable, II-999, 17-402, v-179
passive tondged differentiator, II-408
hum-suppressing, 1-280
op amp, II-400
twin-notch for $1 \mathrm{kHz}, \mathrm{V}-183$
twint-T, III-403
Wien bridge, II-402
NTSC-to-ROB video decoder, IV-613
nuclear particie delector, 1-537
null circuit, variable gam, accurate. III. 69
null detector, 1-148. III-162

## 0

actal D/A converter, V 350
ohnuleters, 1-549
lintear, III-540
mear scale, 1-549
five-range, V -290
ohms-to-volts converter, 1-168
oil-pressure gauge, autarmotive, IV-44, IV-47
onveli control, I-665
onvoff inverter. TIT-594
onfoff touch switches, II-691. JII-663
one-of-eight channel transmission system, III-100
onc-shot function generators. T-465, V-388
digitally controlled, 1-720
precision, III-222
pulse generator, V-490-491
relriggcrable, 11 - 238
are-shot timers, III-654
light controlled, IIT-317
voltage-controlled hugh-speed, I-266
ор amps, II-404-406. IIL-405-406,
IV-357-364, V-300-403
x10, $1-37$
$\times 100,1-37$
astable multivibrator, TII-224
auclio amplifier, IV-33
bidurectional compound op amp, [V-361
claroping for, $11-22$
clock circuit using, $\mathrm{IF}-85$
comparator, three-mput and gate comparator, IV-363.
composite amplifier, V-401. $\vee-403$
compound op-anup, IV 364
de olfset-shilt tester, V-919
drwer. TV-1:58-159
feedbark-stabilized amplifier, IV-300
free-running multivbrator, V-388
full-wave rectifier design, $V-403$
gant-controlked op amp, [V-361.
high-gonloandwidth, V-403
intrinsically safe protected, III-12
inverter/rectıfier, programmable, IV-364
mücrophone mixer, V-864
onvoff switch, transistorized, $\mathrm{\Gamma}$-546
polarity gain adjustment, V-400
power op amp. V-402
power booster, IV.dis
power driver circut, IV-158-159
quad. simultaneous waveform generator using, [7-259
single potentiometer to adjust gain over bipolar range, II-406
swing rail-ray, LM324, IV-363
temperature-compensated breakpoint, nonlinear. V-19, V-40I
tunable notch filler with, $11-400$
V - and 1 -protected, V - 25
variable gair, II-405, V-102
VCO driver, $\mathrm{N}-362$
video op amp circuils, IV-615
optical circuits (stec also lasers;
liynts/light-activated and controlled cireats), T1-407-419, ГV-365-369, V-404409
50 kHz center frequency F'M transmitler, 11-417
ac relay. 11l-418
two photon couplers, T -412
ac: switcher, high-voltage, IJJ-408
ambent light-ignoring optical sensor, III-413
CMOS equpler, 111-414
conumuncation system, $\mathrm{H}-416$
couplers/optocouplers, II-408, II-417
analog coupler. linear ac, II-412
analog coupler lincar, II-413
CMOS design, $1 \mathrm{H}-414$
de litecar coupler, 11-411
instrumentation, linear, IT-417
optocomplers, II-409, II-417
stable. II-409
7TL design, III-416
de latching relay, ILI-417
digital transidussion isolator, II-414
direction discrimmator, $V$-408
high-sensitivity, NO, two-terminal zero voltage switch, IT-414
indicator lamp driver, III-413
integrated solid state relay, 11-408
interfaces, optocouplers/optonsolatiors, V-406-107
interruption sensor. IV-366
isolation and zero voluge switching logic, [1-415
isoletors/optoisolators, IV-475 driver. high-voltage, 111-482 telephome status momtor using. $1-126$
light-detector, [V-369
line-current detector, III-414
microprocessor trac array driver, II-411
optoccupler, V-40?
interface circuits, V-406-407
optoisolator
interlace circuits, V -406-40\%
relay crome, [V-475
paper tape reader, II-41.4
photoelectric hght controller, IV-369
photoreceiver, oplinized noiscresponse, V-405
photutransistors
amplifier, V-409
variable-sensitivity, V-409
power oulage liyht, line-operated, III-415
probe, N - 36 g
proxinaty detector, V-405
pyrometer, 1-654
reccivers, $\mathrm{I}-364$, II-418
50 kHz FM optrial transmitter, 11-418
light receiver, IV-36i7
optical or laser light, IV-367, IV-368
relays, III-412, III -417, IIT-418
de solid-state, oper/closed, ILI-412
safety-circuit, swtech, V-409
Schmitt trigger. I-362
sensor ambient light ignorins, III-413
scrisur-to-TTLimterface, IIT-314
source follower, photodiode, III-419
telephone ring detector, $111-611$
transmitter, L-363, 1-367, IV-368 Light iransmitter, V-368
tngsering SCR series, III-411
TThe coupler, optical, III-416
zero-voltage switching
closed half-wave, $111-412$
solid-state, III-410
sulid-state relay, III-416
optocouplers (see optrat circunts, couplers)
optoisolators (sese optical circuits, isolators)
OR gate 1-3I5
organ, musical, 1-415
preprogranumed single ckiy microcontroller for, I -600
atylus, I-420
oscillators, $11-420-429,111-420-432$, lV-370-377, V-410-421
$1 \mathrm{kHz}, \mathrm{II}-427$
$10 \mathrm{MHz}, 1-571$
$2 \mathrm{MHz}, \mathrm{II}-571$
5-V, III-432
$50 \mathrm{kHz}, \mathrm{I}-727$
$400 \mathrm{MEz}, \mathrm{I}-571$
$500 \mathrm{MHz}, \mathrm{I}-570$
$800 \mathrm{~Hz}, \mathrm{I}-68$
adjustable nver 10:1 range, II-423
AF power oscillator, V-412
astable, [-462, V-420
audio, 1-245, 111-315, III-427,
IV-374, IV-375
audio-frequency generator, V-416417
audio-test oscillator, $\mathrm{V}-420$
basic designs, V-414
beat-lirequency andio generator, IV-371
buffer circuits, IV-89
Butler
aperiodic. 5106
common base, 1-191
crystal, I-182
emitter frilower, 1-190-191; II-194
cassette bias, II-426
clock generator, $[-615,111-86$
CMOS, l-615, IIl-429, JIL-450
1 MHz to $4 \mathrm{MHz}_{2} \mathrm{I}-199$
crystal, 1-187
rode practice, I-15, I-20, I-22,
II-428, III-431, IV-373, IV-375, IV-376, V-100-103
Golpitts crystal oscllators, 1-194.
I-572, II-147, V-411
1-to-20 MHz, TV - 123
frequency checker; IV-301
harmonic $1-180.190$
two-frequency, [V-127
crystal (see crystal oscillators)
double Ircquency output, $1-314$
discrete sequence, IIT-42)
duty cyele
50 percent. IIT-426
variable, fixed-frequency, 111-422
emiller-conpled
bis loop, II-422
[C, 11-266
exponential digtally conmrolled; $1-728$
feedback, I-67
flasher and oscilator
high-drive, $11-235$
low-frcquency, II-234
frce-ruruing, I -531
square wave, I-615
frequency doubled output from, II $425, \mathrm{II}-596$
frequency swatcher, $V-418$
gated, J-728, V-413, V-419
last-cycle completing, M11-42
Hall effert circuts, V. 222
Hartley, 1-571, V-140
hc-based. III-423
$\mathrm{HCU} / \mathrm{HCD}$-based, $\mathrm{III}-426$
kigh-current, square-wave genetator, III-585
high-frequency, IIT-420
crystal, 1-175, IL-148
LC audio oscillator, V-411
LF oscillator, V.413
light-combrolled, V-279
load-switching, $100 \mathrm{~mA}, \mathrm{~T}-730$
locar oscillator double-talanced mixer, V-415
low-distortion, I-570
low-duty-cyele pulse eireuit, IV-439
low-frequency oseillators, III-428
crystal, I-184, TI-146
oscillator/flasher, II-234
Pierce oscillator III-133
TTL oscillator. II-505
low-noise crystal, 11-145
Miler, l-193
MOSEET mixev/ascillator for AM receivers, V-412
NE602 local oscillator, V-411
neon flasher, two-state, H1-200
one-second, $1 \mathrm{kHz}, \mathrm{II}-423$
one-shot, voltage-controlled highspeed, [1-266
overtorte oscillators, $[-176,[-177$, I-180, 1-183, 1-186. II-14 $\mathrm{t}, \mathrm{ILI}-146$
50 MHz to $100 \mathrm{MHz}, \mathrm{I}-181$
100 MHz , IV-124
erystal I-176, I-180, It-146
crystal switrhing, 1-183
fifth-overtone, 1-182
third-overtone oscilator, $1 \mathrm{~V}-123$
phase-locked, 20-M13z, IV-374
Pierce oscillator, V-140
1-M1Iz, III-134
crystal, II-144
harmonic, 1-199, IT-192
JFET, I-198
low-frequency, III-133
quadrature, 1-729, 111-428 square-wave yenerator, III-585
quartz, III-136
R/C. I-612
reflection, crystal-controlled, III-136
relaxation, IV-376
SCR, III-450
resistance-controled digital, II426
rf oscillators, $1-550-551,1-572$, V-528-5.32
6.5 MHz VFO, V-529
5. $\mathrm{MHz} \mathrm{VFO}, \mathrm{II}-551$
ham band VFO, V-532
NE602 circuil, V-531
rf-genic, II-421
shortwave pulsed-marker, V-ri32
sidetome, rf-powered, I-24
signal generator, $\mathrm{V}-530-531$
test uscillator, V-412
transmitter and, 27 MHz and $49 \mathrm{MHz}, \mathrm{I}-680$
RIG, III 428
sawtooth wave, modulator, ILI-373
Schmitt trigger crystal, I-181
sine-wave (sey sinte-wave oscillators)
siric-wave/square wave, tunable, I-65, III-232, ГV-512
single op amp, $\mathrm{T}-529$
siren oscillator, V $\sim 567$
square-wave, I-613-614, II-597, II-616, IV-632, IV-535, V-569 $0.5 \mathrm{~Hz}, \mathrm{I}-616$
1 kHz , 1-612
astable multivibuator and, V-386 start-stop oscilator pulse circuit, IV-438
switch, oscillator-triggered, V-590
switching, 20 ns, I-729
tempetature-compensated, $\mathrm{II}-137$
crystal, I-187
low-power 5V-driven, II-142
temperature-stable, II-4 47
third overtone, 1-186, 1V-123
time base, crystal, IIT-133, FV-128
timer, 500 timer, $1-581$
tome burst, decoder and, $1-726$
transmitter and, 27 MHz and 49 MHz rf, $\mathrm{t}-680$
triangle-wave oscillator, V-205
triangle/square wave, 1-616, II-422
'TV'TL, I-179, I-613, IV-127
1 MHz to $10 \mathrm{MHz}, \mathrm{I}-178$
1 MHz to $20 \mathrm{MHz}, \mathrm{V}-127$
crystal, ITL compatiole, J-179
sine wave'square oscillator, IV-512
television display using, II-372
tube type crystal, I-192
tunable frequency. II-425
tunable single comparator, $1-69$
varactor turted 10 MHz ceramic resonator, IJ-141
varroble oscillators, II-421
amfic, 20 Hz to $20 \mathrm{kHz}, 11-727$
four-decade, single controlfor, LI-4 4
sine-wave uscillator, super lowdistortion, III-558
wide range, $5-730, I I-429$
variable-duty cycle, III-422, V-419
varable-frequency oscillator (see variable-frequency oscillators (VHO)
VHF crystal oscillator
$20-\mathrm{MH} \angle$, III- 138
$50-\mathrm{MHz},[\mathrm{II}-140$
$100-\mathrm{MHz}$, IH1-139
voltage-controlled (VCO) (see voltage-controlled uscillators)
wide-frequency range, II-262
wide-range, I-69, III-425 vamahie, J-730, II-429
Wien-bridge oscillators, 1-62-63, I-66, I-70, I-566, II-489, LI-668, IV-371, IV-377, IV-511, V-415, V-419
cMOS chip in, II-568
low-distortion, thermally stable, [11-5557
low-voltage, III-432
sine wave, I-66, I-70, I-566, IV-510, IV-513
single-supply, III-558
thermally stable, III-557
three-decade, $\mathrm{N}-510$
variable, III-424
very-low-disturtion, IV-513
XOR-gate, HI-429
yelp, II-577
osciloscopes, II-430-433, III-433-439, V-422-426
analog multiplexer, single- to fourtrace scope converter, 11-431
bearn splituer, 1-474
calibrator, [I-433, II]-436
comverter, I 471.
CRO doubler, III-430
oscilloscopes (comt.)
eight-charnel voltage display, III-435
extender, III-434
FET dual-trace switch for, II-432
four-trare oscilloscope adapter, IV-267
monitor, I-474
multiplexer, add-on, III-437
preamplifier, III-437, V-423
comer, III-438
instrumentation amplifiers, IV-230-231
sensitivity amplifier, III-436
spectrum analyzer adapter, V-424
timbease penerator, V-425
trisger selector for timebase, V-425
trygered sweep, III-438
variable-gain amp, V-426
voltage-level dual readout, V -108
outband descrambler, 11 -164
out-of-bounds pulse-width detector, III-158
outlet tester, V-318
output limiter, III-322
output-gating circut, photomultiplier, II-516
output-stage booster, III-452
over/under temperature monitor, dhal output, IL-646
overload indicator, V-478
overload protector, speaker, II-16
overspeed indicator, I-108
overtone uscillators, 1-176, 1-177,
I-180, I-183, I-186, II-146, III-146
50 MHz to $100 \mathrm{MHz}, \mathrm{T}-181$
$100 \mathrm{MHz}, \mathrm{N}-124$
crystal, [-176, J-180, II-146
crystal switching, J-183
fifth-overtone, I-182
thrd-overtone osculator, IV-123
overvoltage protection, $\mathrm{T}-150, \mathrm{I}-517$, II-96, II-107, II-496, III-513, III-762, IV-389, V-480
contparator to detect, $\mathrm{IH}-107$
monitor for, III-762
protection circuit, II-96, II-496, III-513
undervaltage and, indicator, [-150, III-762

## P

pager, pocket-size, III-288
PALNTSC decoder, RGB input, III-717
palette, video, III-720
panning circuit, two-channel, I-67
paper-shect discriminator, copying machunes, III-339
paper-tape reader, II-414
parallel cornections, telephone, III-611
party-line intercom, [1-303
password protection circuit, PCs, V-109
pattern generator/polar-torectangular converter for radio direction, V-288
PCB continuity tester, $11-342$, II-535
peak detectors, II-174, II-175, II-434436, III-771, IV-138, IV-143
analog, with digital hold, H1-153
closed-loop, V-153
decbel peak meter, III-348
digital, III-160
high-bandwidth, III-161
high-frequency peak, II-175
high-speed peak, I-232
LED design, peak meter, 111-333
level detector, I-402
low-drift, III-155, V-155
negative, I-225, I-234, V-154
op amp, IV-145
open-loop, V-153
positive, I-225, 1-235, II-435, III-169
true rms, I-228
ultra-low-drift peak, I-2227
voltage, precision, 1-226
wide-bandwidth, III-162
wide-range, III-152
peak program detector, III-771
peak converter, precision ac/de. [1-127
people-detector, infrared-activated, IV-225
period counter, 100 MHz , frequency and, 11-136
period-to-voltage converter, IV-115
pest-repeller, ultrasonic, IIJ-699, ITI-706, III-707, TV-605-606, V-427-428
pH meters/probe, I-390, 111-501
phase detection/manipulation circuits
detertors, T -40f, I-476, II-344, II-439, II-441, II-442, III-440-442, N-127
10-bil accuracy, 11-176
disital VOM, IV-277
phase-difference detector, 0 - to 180-degree, IT-344
phase selector/sync rectifier/balanced modulator, III-441
sequervers, phase sequence, 1-476, II-437-442, III-441
rc circuit, phase sequence reversal detection, II-438
reversal, re circuit to detect, II-438
threc-pluase tester, 11-440
shifters, phase shifters, IV-647, V-429-4,31
$0-180$ degree, $1-477$
0-360 degree, 1-477
eight-output, V-431
single-transistor design, 1-476
splitter, III-582, V-430
long-tail pair, V-430
phase-locked loop, V-347
tracker, three-phase square wave gencrator, 11-698
phasor gen, I-606, IV-523
phonograph-related ciromts (sere stereo/phonograph circuits)
photo-conductive detector amplifier, four quadrant, I-359
photo memory switch for ac power control, I-363
photo stop action, 1-481
photodiode/photoelectric circuits ac power switch, III-319
alarm systern, I-13, II-4
anplifiers, I-361, III-19, II-324, IIL- 672
battery charger, solar, II-71, V-327
comparator, precision, I-360
controller, [V-369
current-to-voltage converter, II-128
flasher, photocell-controlled, II-232
integrator, photocurrent, II-326
level detector, precision, [-365
light eontruller, IV-369
monostable photocell, self-adiust trigger, II-329
output-gating circuit, photomultiplier, II-516
PIN, thermally stabilized signal conditioner with, 11-330
PIN-to-frequency converters, [1L-120
preamplifier for IR phetodiode, V-226
sensor amplifier, [1-324
smoke alarm/detectors, I-595, I596
suurce follower, 111-419
switches, II-321, II-326, III-318, III-319
photoelectnc sensor, V-277
photography-related circuits, 11-443449, III-443-449, $\mathrm{IV}-378-382$, V-4:32-438
auto-advance projector, II-444
camera alarm trigger, III-444
camera trip circuit, V -381
contrast meter, II-447
darkroom enlarger timer, III-445
darkroom timer, V-436
electronic Dlash trigger, II-448, III-449
enlarger exposure meter, V-438
enlarger light meter, V-434-435
endarger timer, II-446
exposure meter, I-484, V-438
flash meter, IIT-446
flash slave driver, I-483
flash slave unit, V-433
flash triggers
electronic, 11-448
remote, I-484
sound-trisgered, II-449
time delay, V-433
xenon flash, III-447
hght meter, endargers, V-484-435
photo-event iimer, IV-379
photoflesh, electronic, III-449
picture fixerfinverter, III-722
shutter speed tester, 11-445
slave-flash unil trigger, IV-380, IV-382, V-433, V-436
slide projector auto advance, IV-381
slide-show timer, III-444, III-448
sound trigger for flash unit, II-449, IV-382
strobe, V-435, V-435, V-437
time-dclay flash trigger, $\mathrm{IV}-380$, V-483
photomultipliers
high-voltage power supply, V-444, V-445
phototransistor, V. 279
amplifier, V-409
variable-sensitivity, V-409
timer, I-485
xenon flash trigger, slave, ITI-447
picoammeters, I-202, II-154, III-338
circuit for, II-157
guarded mput circuit, 11-156
picture fixerinverter, III-722
Pierce oscillators, V-140
$1-\mathrm{MHz}, \mathrm{II}-134$
crystal, I-195, II-144
harmonie, [-199, II-192
JFET, [-198
low-frequency, III-133
plezoelectric circuits
439-441
alarm, I-12, V-10
drivers, V-440
555 osciliator, V-441
CMOS, V-440
micropositioner, $\mathrm{V}-440$
t.emperature controller, fan-hased, III-627
PIN pholodiode-to-frequency converters, IIT-120
pirk roise generator, I-468
pipe detector, metal pipes, V-323
plant-watering accessories, $\mathrm{I}-443$, II-245, II-248
playback anmplifier, tape, 1-77
PLLIBC recelver, 11-526
pocket pager, III-288
polar-to-rectangular converter/patlern generator, radio direction finder, V-288
polarity converter, T-166
polarity gain adjustment, op amp circuit, V-400
polarity indicator. V-231
polarity-protection relay, [V-427
polarity-reversing amplifiers, lowpower. III-16
poller, analug-to-digital converters, V-28
polynomial generator, V-287
position indicator/controller, tape recorder, Il-615
portive input/negative output. charge pump, IIT-360
positive regulator, NPN/PNP boost, III-475
potentiometers, digital control, V-158
power amplifiers, 11-450-459, [II-450-456
2- to 6-watt audio amplifier with prearnp, II-451
$10 \mathrm{~W}, \mathrm{I} 76$
12 W low-iistortion, I-76
$25 \mathrm{~W}, \mathrm{II}-452$
90 W , safe area protection, 11-459
AM radio, 1-77
audjo, II-451, IIT-4544, IV-28-33
20-W, III-456
$50-W$, IIT-451
6-W, with preanne, III-454
booster, $11-455$
bndige audio, $\mathrm{I}-81$
bull horn, 11-453
class-1), $[11-458$
GaAsFET with single supply, IT-10
hybrid, II-455
inverting, 1-79
low-disturtion, $12 \mathrm{~W}, \mathrm{I}-76$
low-power audio, II-454
noninverting, 1-79
op amp/andio amp, high-slew rate, I-82
output-stage booster, III-452
portable, III-452
rear spcaker ambience amplifier, 11-458
rf power amplifier
$1296-\mathrm{MHz}$ solid state, 17 I .542
5W, II-542
600 W. I-559
switching, I-3;
two-meter $10 \mathrm{~W}, \mathrm{I}-562$
walkman amplifier, II-456
power supplies (see also voltage indicators/meters). II-460-486, III-464, V-448-472
+1.5-V supply for ZN416E circuits, V-469
+5 V sumply, V-471
$\pm 5$ to $\pm 35$ V tracking, $V-469$
0) to $12-\mathrm{V}, \mathrm{V}-1$ A variable, V-460
13.8 -Vdc, V-2 A regulated, V-459
$20-\mathrm{V}$ adjustable, V 461
5 V power supply with momentary barkup, IT-464
5V, 0.5A power supply T-491
8 - from 5 -V regulator, V -469
$2,000 \mathrm{~V}$ low-current supply, IV-636-637
A A cells, $+5 \mathrm{~V} /+3.6 \mathrm{~V}, \mathrm{~V}-452$
ac outlet tester, V-318
ac wiring locator, V-317
ac-matts calculator, V-304
adjustable current limut and output voltage, I-505
adjustable $20-\mathrm{V}, \mathrm{V}-461$
amplifers, audm,
dual power supply, V-465
sutwoofer power supply, V-464
antique radio de lilament supply. V-470
arc lamp, 25W, II-476
are-jet, starting circuit, IL1-479
automotre-accessory power controller, V-70
backup supply, drop-in mainactivated, IV-424
balance indicator, III-494
ballcry (sec battery-related circuits)
battery charger and, 14V, 4A, 11-73
battery power pack, I-509
bench top, II-472
benchtop, dual ontput, I-505
bipolar
battery instruments, 11-475
tracking double-output, V-449
booster, I-28, I-33, V-349
buck regulator, add $12-V$ output to $5-\mathrm{V}, \mathrm{V}-472$
charge pool, III-469
configurable, V-455
connections-monitor, ac lines, MII-510
consumption limiters, IIT-572
consumption monitor, V-290
controllers, IV-383-389, V-111-115
ac switches, $V$ - $-387, V-112, V-115$
ac voltage control, V-114
automotive-accessory power, V-70
beng-bang controllers, IV-389
burst-type control. III-362
current-loop control, SCR design, N-387
dual-control ac switch, V-115
high-side switches, 5 V supplies, [V-384, [V-385
monitor, SCR design, IV-383
MOSFET switch, $\mathrm{VV}-386$
overvoltage protection, $1-150$,
1-517, II-96, II-107, 11-496, III-513, II-762, IV-389
power controller, uriversal design, JV-388
power-down circuit, V-114
pushbuston switch, IV-388
three-phase, power factor control, II-388
converter, inductorless, V-456
current limiter, V-146, V-358, V-458
current sources, l-206, I-697, V-141-143
0-to-200-nA, V-327
bilateral, III-469, 1-694-695, V-143
bipolar sources, J-695, I-607
power supplies (comt)
constant, I-697, III-472
fixed power supplies, TV-405, IV-406
low-current source, IV-399
low-resistance, V-142
negative, V-143
offset-adjusting, V-145
positive, V-142
precision, 1-205, I-206
regulator, vamable power supply, [II-490
variable power supplies, voltageprogrammable, IV-420
voltage-controlled, grounded source/load, L1-468
de-to-de SMPS variable 18 V to 30 V out at 0.2A, 11-480
de power circuit, NE 602 -based, $\mathrm{V}-358$
delay circuit, V-148
disconnector, low-voltage, 1197
dual polarity, [-497
dual power supply, amplifiers, V-465
failure/outage alarms/monitors, 1-581-582, I1-107, II-486, II-175, II-491-497, III-493-496, II-511, IV-422-427
hackne supply, drop-in mamactivated, IV-424
balance monitor. III-194
booster/buffer, boosts reference. current, IV-425
crcuit breaker, trip circuit, IV-423
connections monitor, ac lines, III-510
fault monitor, single-supply, IL:-495
menwory prolectar/supply monitor, IV-425
polarity-protection relay, IV-427
SCR design, TV-385
test load, constant-cirrent, IV-424
triac for ac-voltage control, TV-426
tube armplilier, thigh-voltage isolation, IV-42e
voltage sensor, TV-423
fixed power supphes (sce fixed power supplies)
frequency, power/frequency meter, U-250
fuses, V-477, V-478
gain, powfr-gam test curcuit, 60 $\mathrm{MHz}, \mathrm{I}-489$
gencral-purpose, III-465
glitches in, comparator to detect, II-107
high-voltage (see high-voltage power supplies)
increasing zener drode power rating, II-485
inductorless converter, V-456
inverters, Ill-208, V-45?

12 VDC-to-117 VAC at 60 Hz , III-294
medium, ITI-296
MOSEET, III-295
isolated feedback, III-460
isolalion lransformer, V-349, V-470
laptop-computer supply, $V-463$
laser power supplies, IV-636,
V-251, V-259, V-253, V-254
level sensor, voltage level, III-770
loss detector, II-175
Luw-ripple, $1-500$
LTC, single supply, V-454
meters, power meters, 1-489
andmo, T-488
frequency and, $[5-250$
rf, 1-16
SWR, 1-16
memory save on power down, II 486, TV-425
micropower bandgap reference, II-470
nicroprocessor power suppiy watchcog, II-494
modem, power-1ine, III-82
monitors, II-491-497, III-493-495, [V-422-427
backup supply, drop-in mainaclivated. IV-424
balintee inonitor, 11 -494
booster/bufler, bousts reference current, IV-425
circuit breaker, trip circuit, IV-483
connections monitor, ac lines, III-510
full moritor, single-supply, 111-495
memory protector/supply monitor, $\mathrm{V}-425$
polarity-protection relay, IV-4 27
SCR design, $\Gamma$ - 385
test had, constant-current, TV-424
friac for ac-voltage contrul, IV426
tube amplifier, high-voltage isolation, $\mathrm{TV}-426$
voltage monitors (see voltage irudicators/meters)
multivoltage supply, V-458
negative supply, V-457
neon lamp driver, $V-5-$ to $15-\mathrm{V}$ supplies, V-459
oulage light, line-operated, III-415
overload indicalor, V-478
overvoltage protection, 1-150, 1-517, ІІ-96, П-107, 1J-496, III-513, III-762, IV-389, V-480
power-down circuit, V-114
programmable, III-467
protection circuits, $1-515,1-518$, II-98, I1-107, II-474, I1-486, II-496, II-497, IIL-511, IV-425. IV 427
push-mul, 400V/60W, II-473
rectifiers, V-464, V-46t
reference, 0 -Ło-20 V, [-694
regulated power supplies 8-amp, for mobile equipotent operation, 71-461
10 A , current and themial protection, II-474
$12-14 \mathrm{~V}, 3 \mathrm{~A}, 11-480$
$13.8-V d c, V-2$ A. V-459
+15 V 1-A, III-462
$-15 V$ I-A, IIT-163
split, I-492
regulator loss cutter, V-467
regulators (see voltage redulators)
reset orcuit, II-366
short-tester, V-31
split, I-512
stand-by, non-volatile CMOS RAMs, $11-477$
subwoofer amplifier power supply, V-464
supply-voltage monitor, V-320
switching power supplies, II-466, Ш-470, III-458, V-453, V-461, V-462, V-468
$50-\mathrm{W}$ off-line, III-473
500 kHz switching inverter for 12V, II-474
complementary ac swich, 1-379
power-switching circuit, $11-466$
variable, 100 kKHz multipleoutput, llI-488
synchronous stepdown switchurys regnlator, V-468
telecom converter -18 to +5 V at. 1 A. V-472
three-rail 111-466
undervaltage detectorimoiltor, III-762, TV-138
uninterruptible, I1-462, 1II-477, V-471
universal laboratory supply, V-450 451
variable power supplies, III-487492, V-414-421
0- to 12-V, V-1 A, V- 460
rurrent somree, voltageprogrammable, IV-420
de supplies, IV-418
duai universal supply, 0 -to- 50 V , $5 A_{,} \Gamma-416-417$
switch-selected fixed-voltage supply, ГV-419
switching regulator, low-power, Ill-490
switclurg, $100-\mathrm{KHz}$ Inultipleontput, III-488
Tracking preregulator, III-492
transformeriess supply, TV-420
universal 3-30V, III-489
voltage regulators for variable supplics, $111-490$, II-492, IV-421
voluage doubler, V-460
voitage probes, V-474
voltage/current regulator, V-455
voltage regulators (see vottuge regulators)
voltage sensor, power supphes, TV-423
voltage-level. III-770
voltage sources
millivoh, zenerless, 1-696
progrunurable, 1-694
voltage splitter, III-738
preamplifiers, $\mathrm{F}-41, \mathrm{~V}-26$
antenna preamp
HF broadband, V-36
loop antenna, V-38
VLF 60-kIL, V-sis
wideband, $\mathrm{V}-35$
6-meter, 20 dB gain and low-NF, 11-543
1000x, low-noise design. V. 37
audio premmplifiers, IT-45
2- to 6 -watt, $1 \mathrm{H}-45,1$
6-W and, III-454
andio-to-UHF preamp, V- 24
bias supply, IV-318
dual audio signted amplifiers, V-68
etectret microphone preamp, V-21
equalzed, for magnetic phono cartridges, III-671
frequency counter/divider. $11-128$, V-24
GaAsFET, rf amplitiers, V-515
general purpose, I-84. IV-42
handitalkies, two-meter, I-19
HF , rf amplifiers, V-515
IF $.30 \mathrm{MHz}, \mathrm{IV}-460$
IR photodiode prcamp, V-225
innocdance-natchung, ГV-37
instrumentation amplifier, IV-230-231
JFET, V-22
light-beam actwated alarm cireuit, V-13
LM382 phono, [-91
low-noise. I-88, I-561, IV-41
megnetic, I-89, I-91, II-37, III-673, IV-35, IV-36
medical instrument. 11-349
microphone preantuliliers. Il-45, IV-37. IV-42
low-impedance, IV-41
tone control for, II-687
transformerless, unbalauced input, 1-88
translormertess, unbalanced input, $1-88$
microwave preamplifiers, IV-316-319
mixers, 1-58
NAB preamplifiers
tape playback, professional, JIT-38
record, III-673
two-pole, III-673
oscilloscope prearndifiers, III-437, III-438, IV-230-231, V-423
oscilloscope/counter, III-438
power arnplffer with preamp,
II-451, III-454
read-head, autonothe circuits, IL1-4 4
receiver intrunface, V-243
rf amplifiers, V-626, V-527
RIAA, III-38
RIAANAB conmpersation, 1 -92
stcreo/phonograph preamps, 1-91, II-43, II-45, V-684
low-nowe, IV-36
magnetic, I-91. III-37, ILI-673, IV-35, V-36
tone control, $V-581$
tape, 1-90
Uhernocouple mastrumentation amplifier, III-283
tome control preamplificrs, 1-675
high-level, II-688
IC, 1-678, III-657
mixer, I-58
transmin/receive sequencer, V-348
IHFF-TV, III-546
ultra-low-leakage, 1-38, 11-7
VHF, I-560
VHF/ULIF, rfamplifiers, $\mathrm{V}_{-515}$
video. V.660
preregulatoms
high-voltage power supplies, $111-480$
tracking, II-492
prescalers
data circuils, low-frequency, TV-132
probe, eurphifying, $650 \mathrm{MHz}, \mathrm{II}-502$
preselectors. if amplifiers. IV-483, IV-485, V-488
pressure gauge, V-314
printer-error alarm, computer circuits. N- 106
prmters
primter-error alarm, V- 106
printer sentry, computer circuits, V-107-108
two-shects in printer detector, IV-136
probes (soo aiso measurementitest crents), II-498-504, 11-406-503, IV-428-434, V-473-474
100 K megaohm de, $1-524$
ac hol wire, $1-581$
audible Trt, I-524
audio-rf signal tracer. I-527
capacitance buffer
low-inpul, 111-498
stabilized low-input, IIt-in)
chanp-on-current compensator, 11-501
CMOS logic, $1-523$
FET, III-601
general purpose ri detector, IT-500
ground-nuise. battery-poweren, III-500
loger probes, $1-520,1-525,1-326$,
IV-430-431, $\mathrm{V}-4 ; 34$
CMOS, 1-523, 1-52
diputal, IIT-497
four-way operation, IV-432
memory-tester, installed, $1-525$
single-IC desizn, TV. 433
three-in-one test spt: probe, signal tracer, injector, $\mathrm{V}-429$
microvolt, II-499
netucal light probe. [V.364
pH, I-309, 111-501
prescalcr, 650 MHz amplitying, H1-50'
rf. I-523, III-498, III-502, IV-433
smgle injector-tracer, II-500
test, $4-220 \mathrm{~V}, \mathrm{III}-49$
three-in-once lest set: logic probe, signal trater, injector, IV-429
tone, dgital IC testing, $\mathrm{I}-504$
umiversal test probe, $\Gamma$ - 431
process control interfacc, $[-30, \mathrm{~V}-242$
processor, CW sipnal, I-18
product detector, T-223
programunable amplifiers, Il-334, II-504-508
differential-input, programmable gain, IIl-507
inverting, progratuable-gain, 111-505
noruverting, programmable-gain. III-505
prension, digtal control/programminus. IIL-506
programmable-gair, selectable uput, $1-22$
variable gain, wicle-range digital enntral, III-506
projectors (see photography-related circuits)
protection circults, IT-95-99. IIT-509513, V-475-483
12ns corent breaker, 11-97
automatic power down, $11-98$
circuit breakers
ac, $111-512$
electronic, high-speed, II-96
compressor protector. IV-351
crowbars. electronie, II-99, 111-510
ear protector. V-482
fuse, electronic, V-477
halogen lamp protcctor. $\mathrm{V}-27 \mathrm{~J}$
healer prutector, servo-senser, II1-624
line protectors, computer J/O. 3 us, IV-101
line dropout detector, 11 -98
linc-voltage monitor, III-511
loudspeaker protector, V-483
law-voltage power disconnector, II-97
modem protectar, $\vee-479$
modemfax protectur for two computers, V-482
protection circuits (cont.)
eptical safety-circutt switch, V-409
overload indicator, V-478
overvoltage protection, $\mathrm{F}-150$, 1-517, II-96, 11-107, [1-496, III-515, TII-762, ГV-389, V-480
password protection for $\mathrm{PCs}, \mathrm{V}-109$
polarity-protection relay for power supplies, IV-427
power-dawn, Il-98
power-falure alarm, 11 -51
power-the connections monitor, ac, III-510
power supply, 11-497, I-518
relay fuse, V-478
reset-protection for computers, IV-100
safety rimouit, V-477, V-483, V. 589
timed, V-48ı
short-tester, V-313, V-315
shutdown circuits, V-537-538
speaker protector, V-476, V-479
proximity sensors (see motion/proxinsty detectors)
pseudorandom sequencer, III-301, V-351
pulse circuits, IV-435-440
amplitude diseriminator, ILI-356
coincrdence detector, II-178
converters
height-to-width, III-119
pulse train-to-sinusoid converters, 111-122
counter, ring counter, low-power, IV-437
delay, dual-edge trigger, III-147
detectors
fast pulse, V-164
nussing pulse, V-152
out-of-bounds pulse width, III-158
sequence detector, II-172
divider, non-integer programmable, II-511, III-226
extractor, square-wave, $111-584$
generators, pulse generators, II-508-511, V-487-492
2-ohm, III-2.31
$300-\mathrm{V}, \mathrm{III}-521$
555-circuit, IV-439
add-on, V-488
astable nultivibrator, 11-510
basic, V-488
clock, $60 \mathrm{~Hz}, \mathrm{II}-102$
CMOS short-pulse, III-523
delayed-pulse, 11-509. IV-440, V-492
divider, prograrmable, I1-511, III-226
EEPROM, 5V-powered, III-99
free running, IV-438
intcrrupting pulse-generation, I-357
logic, III-520, V-489
logic troubleshooting applications, TV-436
onc-shot. V-400-491
progranmable, $\mathrm{I}-529$
sawtooth-wave generator and,
II-241, V-491
single, II-175
train, pulse trairn, $\mathrm{IV}-20^{2}$
tramsistorized, N-437
two-phase pulse, I-632
unijunction transistor design, I-530
variable duty cycle, V-492
very low-duly-cycle, 111-521
voltage-controller ard, III-524
wide-ranging, III-523
missing-pulse detector, V-152
modulators
pulse-position, III-375
pulse-width (PWM), III-376. TV-326
bnghtness controller, III-307
control, microprocessor selected, II-116
motor speed control, II-376, III-389
multiplier circuit, 11-264, 11-214
out-of-bounds detector, III-158
proportional-controller circuit, II-21
servo amplifier, III-379
speed control'energy-recovering brake, III-380
very short, measurement arcuit, ITT-836
oscillators
fast, bow-duty-cycle, TV-439
starl-stop, stable design, IV-438
pulse-position modulator, $111-375$
stretchers, IV-440
negative pulse stretcher. [V-436
positive puise stretcher, IV-438
supply circuit, high-voltage power supplies, IV-412
width, out-af-bounds pulse widtk detector, III-158
pulse-diaing telephone, IIt-610
pulse-width-to-voltage converters, [11-11?
pulse-width modulators (FWM), III-376, N-326
brightness controller, $11 \mathrm{H} 30^{7}$
control, moroprocessor selected, [I-116
motor speed control, 11-376, III-380
multiplicr circuil, 11-264, II-214
out-of-bounds detector, III-158
proportional-controller corcuit, 11-21
servo anplifier, II-370
speed controlenergy-recovering brake, III-380
very short, measurement circuit, III- 336
pulse/tone dialer, single-chip, III-603
pulsers, laser diode, III-311
purnp circuils
controller, single ehip, il-247
positive inputínegative output charge, 1-418
push switch, onfoff, electronic, 11-359
push-pull amplifier, Darlington, V-22
push-pull power supply, 400V/60W, I-473
pushbutton power control switch, [V-388
PIJT circuits
battery chargers, III-54
long-duration timer, II-675
pyrometer, optical, 1 -654

## Q

Q-multipliers
andro. II-20
transistorized, 1-566
QtiP cacults
18., V-21-, V-24-MHz, V-644-645, V. 644

CW transmitter, III-690
sidetone generator/code practice oscillators, V-102
SWR bridge, III-336
transmitters, V-10-M DSB with VFO, V-638-639
quad op amp, simultaneous waveform generator using. 11-259
quadrature uscillators, $111-428$
square-wave generator, III-585
quy master game, V-210

## R

race-car motor/crash sound gencrator, 111 -578
radar detectors, II-518-520, IV-441-442
one-chip, II-519
radation detectors, II-512-517
alarm, II-4
micropower, II-513
monttor, wideband, I-5\%5
photomultiplier ontwut-gating circuit, 11-516
pocket-sized Geiger counter, II-514
radionf circuits
AM radie
car-radio to short-wave radio converter, IV-500
demodulator, II-160
power amplifier, I-77
receivers, $11-525, \mathrm{JL}-81$, III-529, TII-535, [V-455, V-496, V-497, V-502
AM/FM radio
clock radio, 1-543
squeleh circuit, 11-547, 111-1
amateur radio, III-260, III-534. III-675
transceiver relay interface, V-248
VFO, V-582
voice identifier, V-550
amplifiers (see rf amplifiers)
antique radio de milament power supply, V-470
attenuator, IV-322
automotive recenver, II-525
bridge, $\mathrm{V}-50 \mathrm{MHz}$ bridge circuit, V-303
broadband, II-546, III-264, IV-271
bursi generators, portable, III-73
calibrator, V-298
carrer-current circuits, 111-78-82, IV-91-93
AM receiver, Ill-81
audio tramsnuiter, III-79
data receiver, IV-93
data transmitter, N -92
FM receiver, [II-80
intereom, I-146
power-line modern, IIL-82
receivers, I-141, 1-143, I-145, I-146
relay, 1-575, IV-461
remote control, I-146
transmitters, I-144
IC, I-145
on off 200 kHz line, I-142
clock, I-542
converters, JV-494-501
ATV recelver/converter, 420 MHz , low-noise, IV-493, [V-497
radio beacon converter, IV - 495
receiver frequency-converter stage, IV-499
SW converter for AM car radio, IV-500
two-meter, /V-498
ur-eonverter, TVRU subcarricr reception, IV-501
VLF converter, IV-497, V-121
WWV for car radio, V-1!9
WWV-to-SW converter, [V-493
recerving converter, 220 MHz , N-500
current readout, $1-22$
CW-rclated circuits
filter, razor sharp, II-219
keyng circuits, ГV-244
offaet indicator, IV-213
SSB/CW product detector, IV-139
SSB/CW receiver, V-499
transceiver, $5 \mathrm{~W}, 80$-meter, V -fin2
transmitters, III-678, III-684,
III-686, III-690, IV-601
detertor, [L-500, IV-433
direction finder, radio signals, [V-148-149
polar-to-rectangle converter/pattern generator, V-288
double-sideband suppressedcarrier
modulator, III-377
rf, II-366
FM radio, 1 -54ts
$5 \mathrm{~V}, \mathrm{I}-233$
12V, I-233
clock radio, AM/FM, 1-543
demodulators, I-544, II-159, II161
IF amplifer with quadratore detector, TV sound [F, I-690 generators, low-frequency, III-228
receivers, $1-338$, $1-361$, III- 80 , III-530, 1II-5'32, V-495
snooper, III-680
speakers, remote, carrier-current system, I-140
squelch circuit for AM, I-547
stereo demodulation system, I-544, II-159
transmitiers, I-361, I-367, I-681, II-417, III-687-688, TV-228
tuner, I-231, III-529
wireless microphone, III-682,
III-685, III-691
genie, II-421
input circuits, NE602, V-500
measurement/rest circults, IV-297303, V-412
modulators, $\mathrm{I}-436,11-369,111-372$, III-374
oscillators, I-550-551, J-572, V-528533
$5 \mathrm{MHz} \mathrm{VFO}, \mathrm{II}-551$
6.5 MHz VFO, V-629
ham band VFO, V-5s9
NE602 circuit, V-5:31
transmilter and, 27 MHz and $49 \mathrm{MHz}, \mathrm{J}-680$
ri-gente, II-421
shortwave pulsed-marker, V-E32
sidetone, rf-powered, I-24
signal generator, V-530-531
outpul indicator, IV-299
power meters, I-16, I-24, III-332, III-592
portable-radio 3 V fixed power supplies, IV-397
probe, I-523, III-498, III-502
radio beacon converter, $\Gamma$ V-495
radio-cornmercial zapper, V.334-335
receivers
AM radio, II- 525 , II-81, 111-529, III-535, IV-455, V-496, V-497, V-502
automotive receiver, F - 525
carner-current, T -141, 1-143, 1-145, I-146
CW/SSB receiver, V-80- and 40meler, V-499
data receiver, IV-93
FM racho, I-338, 1-361, III-80,
IT-529, III-530, III-532, V-495
old-time design, IV-453
radio-control reeciver\%decoder, [-574
reflex radio receiver, $\mathrm{V}-452$
short-wave receiver, JV-454
superheterodyne, V-503

TRIF radio receiver, $\mathrm{IV}-452$
VLF whistler, V-496
shortwave transmissions
converters, III-114, IV-500
FET booster, $1-561$
recerver, JV-454
single-sideband (SSB)
communications
CW/SSB producl detector, IV-139
driver, low-distortion 1.6 to 30 MHz , II-538
generators, IV-323
transmitter, crystal-controlled LO for, IL-142
signal tracer probe, audio. 1-527
sniffer, II-210
static detector, $\mathrm{V}-276$
superheterocyne receivers, V-503
switch, low-cost, III-361
VHFUHF diode switch, IV-544
VLF converter, V-121
VLF whistler receiver, V-496̊
valmeter, 1-405, 111-766
WWV converter for car radio, V-119
radio beacon converter, IV-495
radio-contral circuits (see also remote contral devices)
audio osellator, IT-567, III-655
motor speed controller, 1-576
phase sequence reversal by, II-438
osicillator, emitter-coupled, II-266
receiver/decoder, 1-574
single-SCR design, [T-361
radioactivity (sce radiation detectors)
rain warning beeper, II-244, IV-189
RAM, non-volatile CMOS, stand-by power supply, II-477
ramp generators, $1-540$, II-521-523, गTI-к2г-527, N-443-447
555 based, V-203
accurate, III-526
integrator, inilial condition reset, [II-527
lincar, II-270
variable reset level, II-267
voltage-controlled, II-523
ranging system, ultrasonic. 11-697
RC decade box, V-294-295
reaction tiner, IV-204
read-head pre-amphifier, ant motive circuits, III-44
readtack system, disc/tape phase modulated, J-89
receivers. (see olso transcelvers; transmitters),
II-524-526, ITI-628-535, IV-448-460, V-493-503
50 kHz FM optical transmitter, I-361
acoustic-sound receiver, IV-311
AGC system for CAB028 IF amplifier, IV-458
delay mud controls clesure time, II-530
wth strobe, $1-266$
fise, V-478
latching relay, solid-state, V-505
hght-bcum operated on/off, 1-366
light-sensitive, V-278
monostable relay, low-consumption resign, IV-473
optically coupled relays
ac, III-418
de latching III-417
optoisolator, V-475
polarity-protection for power supplies, IV-427
pulser, sensor-activated, V-507
rf-actuated, III-270
ringer, tolephone, III-606
sulid-state relays, 1-365, I-623, II-408, III-412, III-416, II-569570, IV-472, IV-474, V-505-506
sound actuated, $\mathrm{I}-576, \mathrm{l}-610$
telcphune, I-631
time delayed, $\mathrm{T}-219, \mathrm{I}-663, \mathrm{~V}-506$
tone actuater, $5-576$
TR circuit, $11-532$
trar, contact protection, II-531
remote control devices (see also infrared; radio-control circuits), N-224, V.229, V-508-513
NB switch, IR-controlled, V-225
ac switch hookup, two-way, V-592
amphtier, I-99
analyzer, V-224
carrer, current. 1-146
drop-vollage recovery for iong-line systems, IV-728
extender, infrared, IV-227, V-512
fax/telephone switch, JV-56"-553
infrared circuit, IV-224
lamp or appliance, I-370
loudspeaker via IR link, I-343,
loop transmitter for [II-70
on/off switrh, $1-577$
receiver, V-510, V-513
ringer, telephone: III-614
sensor, temperature transiducer, I-649
servo system, I-575
telephone monitor, II-626
temperature sensor, II-654
tester. mirared, $\mathrm{V}-228, \mathrm{~V}-228, \mathrm{~V}-229$
thermometer, II-659
transmiller, V-509, V-813
interface, V-511
ultrasonic. V-512
transmitter/receiver, $[R, 1-342$
video switch, [V-619-62l
repeaters
beeper, 1-19
Eurupean-type, tone burst generator for, ItI-74
tuberoptic 1nk, 1-270
telephone, III-607
reset buttons
child-proof computer reset, $\mathrm{N}-107$ power-on, II-366
protection circuit for computer, IV-100
resistance controller, digital, V-159
resistancecontinuity testers, I-500, I-551, IT-342, IT-533, II-534, II-535, III-345, III-538-540,
[V-287, IV-289, IV-295, IV-296
andible, V-317
audible, adjustable, II-596
buzz box, $1-551$
cable tester, III-539
latching design, V -295
bow-resistance circuits, V-313
ohmmeter, linear, III-640
PCB, II-342, II-535
rationelric, $1-550$
RC decade box, V-294-295
resistance-ratio detector, II-342
single chup checker, II-534
visual, V-293
resistance-to-voltage converter, I-161-162
resistor multiplier, II-199
resistors, voltage-controlled, I-422
resonator oscillator, varactor tured
10 MHz ceramic, $11-141$
restorer, video de, III-723
reverb effeci
aralog delay line, IV-21
stereo system, T-602, I-606
reversing motor drive, dc control signal, 11-381
rf amplifiers, II-537-549, III-542-547, N-476-493, V-514-527
$1 \mathrm{~W}, 2.3 \mathrm{GHz}, \mathrm{TI}-540$
2 meter FET power amplifier, V-521
$10 \mathrm{~W}, 225-400 \mathrm{MHz}, \mathrm{II}-548$
$10-\mathrm{W}, 10-\mathrm{M}$ linear amplificr, V-520
$10 \mathrm{~dB}-\mathrm{gain}, 11 \mathrm{~L}-543$
2- to $30 \mathrm{MLL}, \mathrm{III}-544$
4 W amp for 900 MHz , IV -477
$5 \mathrm{~W} 150-\mathrm{MHz}, \mathrm{ITT} 546$
5 W power, II-542
6-meter kilowatt, II-645
6 -meter preamp, 20dB gain and low-NF, II-543
$20 \mathrm{~W}, \mathrm{~V}-1296-\mathrm{MHz}$ module, V-522
$20 \mathrm{~W}, \mathrm{~V}-450 \mathrm{MHz}$ amplufier, V-519
$30 \mathrm{MHz}, \mathrm{V}-519$
$60 \mathrm{~W} 225-400 \mathrm{MHz}, \mathrm{IL}-547$
$125 \mathrm{~W}, 150 \mathrm{MHz}$. $\mathrm{IJ}-544$
$465-\mathrm{kHz}$ IF amplifer, V-522, V-523, V. 524
$500 \mathrm{MHz}, \mathrm{IV}-491$
$1,296 \mathrm{MH}_{2}, \mathrm{IV}-486$
$1,500 \mathrm{~W}$, IV-478-479
AGC, wideband adjustable, III-545
breadcast-band, III-264, II-546, N-487, V-516, V-517
buffer amplifer with modulator, IV-490
cascode amplifier, [V-488
common-gate, $450-\mathrm{MHz}$, $\mathrm{III}-544$
GaAsFET preamplifier, V. 435 MHz , V-516
HF preamplifier, V-515
HF/NHF switchable active anteruea, V-524
IF amplifier, $\mathrm{V}-455-\mathrm{kHz}, \mathrm{V}-522$, V-523, V-524
IF ampifiers, $V-45 \cdot \mathrm{MHz}$, crystal filter, V-527
isolation arnplifier, 11-647
LC tuned, V-526
linear amplifiers, IV-480-485, V-520
low-distortion 16 to 30 MHz SSB driver, 11-538
meter-driver, 1-MHz, III-545
MOSFET rf-amp stage, dual-bate, IV-489
power ampliners, I-559, I-542, III-542, V-517, V-519, V-521, V-525
preamplifiers, V -527
GaAsFET, V-616
HF, V-515
receiver'scanner with MAR-1 MMIC, V-521
VHFATHF, V-515
wideband, V-526
preselectors, IV-483. IV-485. IV-488
receiver/scauter preamp with MAR-I MMIC, V-521
TV sound system, V-519
UHF, V-523
IJHF-TV amp/preamp, III-546, [V-482, IV-48:3
Vhe/UHe' preamplifier, V-515
wideband amplifiers, $\mathrm{N}-479, \mathrm{~V}$ 469. TV-4.40-493, V-518, V-519, V-526
rf circuits (see radiorf)
RGB video amplificr, III-709
RGB-composite video signal converter, III-714
RGB-to-NTSC converter, IV-611
ring counters
20 kHz , II-1.35
incandescent lamps, I-301
low-cost, I-301
pulse circuit, Jow-power, IV-437
SCR, 111-195
variable timing, $11-134$
ring launcher game, electromagnetic, V-209
ring-around lasher, LED, III-194
ringers, telephone, $1-628$, IV-556
detectors, ring detectors, 1-634,
I-635, III-611, III-619
extension-phone ringer, IV-561
high-isolation, II-625
multi-tone, remute programmable, 11-634
musical, II-619
rivgers, telephone (cont.)
piezoelectric, 1-656
plug-in, remote, II-627
relay, III-606
remote, II-627, III-614, IV-562
silencer, IV-567
tone, I-627, I-628, II-630, II 631
ripple suppressor, 1V-175
fixed power supplies, $\Gamma$ - 390
RLC oscillator, III-423
rmus-lo-dc converter, I-167, II-129
therrmal, $50-\mathrm{MHz}, \mathrm{II}-117$
true rms detector, I-228
road sce alarm, $\mathrm{I}-57$
robots
eyes for, II-327
light-seeking, II-325
rocket launcher, $11-358$
room monitor, V-369
root extracter, V-207, V-288
rotation detector, $11-283$
roulette, electronic. [1-276, IV-205
RS-232 interface
CMOS-to, line receiver, III-102
dataselector, automatic, IIL-97
drive erchit, low-power, H-175
LED circuit, III-103
line-driven CMOS circuits, IV-104
KS Hy-flop, 1-395
RTD signal conditioners
5 V powered hnearized platirum, II-650
prerision, linearized platimum, II-639
RTTY machines, fixed current supply, [V-400
rumble filters, III-192, II-660. [V-175
LM387 in, 1-297
turntable, IV-170

## S

S meter, III-342, V-311
safe arca protection, power anplifier with, II-459
safety circuits (see protection circunts)
safery flare, II-f08
Sallen-Key filters
$10 \mathrm{kHz}, \mathrm{I}-279$
500 Hz bandpass, I-291
current driven, V-189
low-pass
active, [V-177
equal component. 1-292
second order, I-289
sample-and-hold circuits, I-690, II-5n2-559, IIT-548-563, V-502-503, V-533-5.34
x 1000, I-589
charge-compensated, II-559
de-glitch circuit, V-336-337
last and precise, $11-5056$
filtered, III-550
frequercy-to-voltage conversion, IV-194
high-accuracy, 1-590
high-performance, 11-557
hagh-speed, 1-587-588, 1-590, II-550
infinite, II-568
inverting, $111-552$
JFET, 1-586
low-dnft, $[-586$
offset adjustrment, for, 1-588
three-channel mutinlexer with, III-396
track-and-thold. IIL-549, 1II-552
samplinu circut, hour tine delay. 11. 668
saturated standard cell amplifier, II-209
sawtooth waves
converter, IV-114
generator,
digital design, IV-444, IV-446, V-491
linear, V-205
triggered, V -204
oscillater modulator, M-373
pulse generator and, III-241
SCA (see silicon-controlled amplifiers)
scale, I-398, V-297
scaler, inverse, 1-423
scanner, bar codes, III-363
scanuers, receiver/scanner preamp with MAR-I MMIC, V-521
Schmite triggers, $\mathbf{I - 5 9 3}$, III-153, V-356
crystal oscillator, T-181
programmable hysteresis, 1-592
square-wave generators, V-56̈9, V. 570
transistorized, V-204
TTL compartble, II-1|1
without hysterests, 1-592
SCR (see silicon-controlled rectifiers)
scramblers, audio (see also somd generators; volce-activated (ircuits), N-25-27
telephone, 11-618
voice scrambler/descrambler, IV-26, V-27
scratch fillers, III-189, IV-175
LM287 in, 1-297
second-audio program (SAP) adapter, ITI-142
security circuits (see alarms; aununciators)
sense-of-slope tilt meter, 11-664
sensors (ser alarms; fluid and mosisture; light-controlled circuits; motion/proximity detectors; motor control circuits; smoke detectors; speed controllers; temperature-related circuits; tone controls)
sequence indicator, phase, 1-476
sequencer, pseudorandom, III-301
sequential flashers, I-109, II-233. [1-238
sequential tirner, III-651
series commectors, telephone, 111-609
servo amphfiers (see also motor controls), $\mathrm{I}-452$
$400 \mathrm{~Hz}, 11-386$
bridge type ac, 1-458
dc, $\mathrm{F}-457$
motor drive amplifier, I1-384
servo systems (see also motor controls)
controller, III-384
remote control, $\mathrm{I}-575$
shaper, sine wave, $11-561$
shift regusters, I-380, IL-366
driver for, $\mathrm{I}-418$
shifter, phase (see phase)
ship siren, electronic, II-576
short-circuit proof lamp driver, II-310
short-circuit tester/sensor, V-315
computer remote data lines, IV-102
for $120-\mathrm{V}$ equipment, $\mathrm{V}-313$
shortwave Lransmissions
converters, Ill-114, IV-500, V-118
FET booster, I-561
noise limiter, V-397
notch filter, V-185
pulsed-marker rf oscillator, $\mathrm{V}-532$
receiver, IV-454, V-501
shumt, multimeter shunt, IV-293
shutdown circuils (see protection circuits)
shutoff, automatic, battery-powered projecte, III-61
shutter speed tester, II-445
sidetone oscillator, rf-powered, I-24
signal amplifiers, audio, II-41-47, N-34-42
signal attenuator, analog, microprocessor-controlled, III-101
signal cumbiner, 111 -368
signal conditioners, IV-649
5 V powered linearyed platinum RTD, IT-650
bridge circuit, strain gauge, JI-85
linearized RTD, precision design, [1-639
LVDT, 11-338
thermally stabilized PIN photodiode, It-330
signal distribution amplifier, I-38
signal generators (see function generators; sound generators; waveform generators)
signal injectors, III-554-555
signal sources, rrystal-controlled, II-143
signal tracer. V-309
Lhree-in-one set: logic probe, signal tracer, injector, 1V-429
signal-strength meters, ITI-342 JV-166
silent alarm, V-16
silicor-controled amplificrs (SCA), V-535
decoder, I-214, IT-166, II-170
demodulator, II-150, III-565
MPX-SCA receiver. III-630
subcarricr adapter for FM twiess. V-536
silicon-controlled rectifiers ( BCR ) circuits
annunciator, self-interrupting load, IV-9
chaser. IIL-197
crowbar, I1-496
flashers, II-230, III-197
chaser, III-197
relaxation, II-230
ning counter. III-195
flip-flop, Il-36?
tull-wave, I-375
gas/smoke retertor, III-2ri
preregulator, IL-482
proximity alarm, III-617
radio control using. [1-36]
relaxation flasher, II-230
relaxation oscillator, III-430
ring counter, 111-195
tester, III-344
time delay circuit with, II-670
triggering series, optically coupled, [1I-411
sirnubators
EKG, three-chip, III-350
inductor, 11-199
VOR signals, IV-273
sine-to-square wave converter, IV-120, V-124, V-125, V-569, V-570
sine-wave descrambler, IT-163
sine-wave generators, $\mathrm{V}-505$,
IV-506, V-542, V-543, V-544
60 Hz , IV-507
audio, Ll-564
bathery powered, V-b41
LC, JV-50?
LF, IV-512
nscillator, ando, III-559
square-wave and, tunable oscillator, III-232
VLF audio tonc, IN-508
sme-wave oscillators, I-65, II-560-$570,111-550-559$, ITI-560. IV-501513, V-539-544
1-Hz, V-543
60-Hz, highly stable, V-540
555 used as RC audio oscilator, II-567
adjustable, $11-508$
audio, II-502, II-564, III--559
generators (see sine-wave generators)
LCoscillator, low-freguency, IV-50s
low-distortion, II-561
one-IC audio generator, II-569
phase-shift, audio ranging, IV-610
prugranumable-frequency, III-424
relaxation, modified IJJT for clean audio sinusoids, II-566
shaper, sine-wave, V - 543
sine wave shaper, 11.561
sine/square wave TTL oscilator, TV-512
two-tone generator, II-570
two-transistor design, IV-508
variable, super low-distortion, [11-558
very-lew-distortion desipn, IV-509
voltage-controlled oscillator, V-666
Wen-brogge, 1-66, 1-70, IT-586, IV-510, IV-513, V-541
sine-wave output buffer amplifier, $1-126$
sire/cosine generator, 0.1 to 10 kHz , [1-260
sne/square wave converter, 1-170
sine/square wave oscillators, I-65
easily tuned, I-65
TWL design, IV-512
turable, III-232
sugle-pulse generator. IT-175
angle-sideband (SSB) communications
CW/SSB product detector, IV-139
CW/SSB recerver. V-499
driver, low-distortion 1.6 to 30 MIIz , II-538
generators, N-B23
transmitter, crystal-controlled LO for, II-142
strens (set also alarms; sound geterators), [-606, IT-571, [II-560-568
alarm using, $11-572,11-573$, [V.514-517
7400. II-575
adjustable-rate programmablefrequerty, [ir-ze3
electronic, III-566, IV-515. IV-517
generator for $11-572$
hee-haw, II-578, III-565
hgh-power, II-578
linear 1C, III-564
low-cost design, IV-516
rultifunction system lor. IL-574
ship, electronic, $\left[\begin{array}{l}-576 \\ \hline\end{array}\right.$
sonc defender, IV-324
Star Trek red alert, II-577
tonce gericrator, 11-573
toy, II-575
TTL gates m, IT-576
two-state. III-567
two-tone, III-562
varying frequency warning alarm, II. 579
wailing, 211-563
wirble-tune siren, IV-515, IV-516, V-7
whooper, V -517
yelp oscillator, II-577, III-562
slave-flash trigger, IV-380, IV-382
slide timer, III-444, IIT-4.48
slot machine, electrome, V-211
smart clutch, auto air conditioner, 111-46
smoke alarms and detectors, II 278,
TII-246-258
gas, 1-332
ionization chamber, 1-332-333
line-operated, IV-140
operated ionization type, ]-590
photuelectric, 1-595, I-596
sniffers
heat, electronic, III-697
rf, II-210
snooper, FM, IIl-680
sockel debugger, coprocessor, III-104
soil heater for plants, V-2\%h
soll mossture meter, III-208
solar circuits (see photodode/photoelectre (ircuits)
soldering iron control, V-327
soldering station, IR-controlled, IV-285
solenoid drivers, 1-265, 1II-571-573
12-V latch. III-572
hold-current limuter, 11 -573
power-consumption Luniter. III-572
soled-state devices
ac relay, IIT-576
electric fence charger, II-203
high-voltage supply, remote adjustable, ill-486
Light sources, V-282-283
load-sensmg switch, V -28,5
relays, III-569-570, V-505, V-506
stepwing switch. 11-612
switch, line-delivated, whephone, -IIL-617
sonie defender, N-324
somind activated circuits (cree sombd operated circuits)
somit effects (seo sound generators)
sound generators (see also burst gencrators; furction generators; sirens; waveform generators), 1-605, T1-585-593, $717-559-568$, III-575, IV-15-24, IV-518-524, V-394-305, V-556-667
acoustic field generator, V.338-341 alam-tone generator. V-5fis
amplifier, voltage-controlled. IV20
amplifier/compressor, lowdistortion. IV-24
allophone. Ill-733
audio-Irequency generator, V 416. 417
audo tone generator, VTF, V-508
sound generators（cont．）
autodrum，II－591
bagpipes，eiectronc，III－561，IV－521
beat－frequency，IV－371
beeper，V－558
bird chirp，1－605，11－588．111－577
hongos，IT－587
camary smulator，V－557
chime geterator， $11-604$, NV－72 24
chug－chug，111－576，
dial tone．L－fose，1II－600
ditherizingeseuil，diglal audio use．IV． 33
dombell，musical tones，IV－622
doubler，audio－frequency doubler． V－16－17
dual－tone sounder．V－564
echo and reverb，analog diday lune． IV 21
electronir，III－860
envelope generator／modulator． II－601
equalizer，IV－18
fader．IV 17
frequency－shift keyef，tone－ generator test circurt，T－723
funk box，II－593
fuzz box，II－590，III－575
gung，clectronic．V－663
gutar compressor IV－519
harmonic generator，I－84，IV－649
high－frequency signal，III－150
hold for telephore，IT－62：3
instrument tune－1up，audio generator．V－390
low－level sounder，V－564
noise generators， $1-467,1-468$ ．
：－169，IV－308，V－395
octave－shifter for musical efferts． IV－523
une－1C design， $1[-569$
perfect pitch circuit．V－391
phasor sound generator JV－5 23
pank nome， $1-468$
portable，1－625
pulsed－tone alarm，V－55，
race－car motor／crash．III－578
run－down clock for games．IV－205
sound eliects，1ll－574－578
siren，V－559，V－555，V－567
sonnd－effects generator，V－665
space－age sound machme．V－5ha
spaccship alarm．V－560
speech delectors， $\mathrm{H}-617$ ． II －615
steam loconotive whiste，II－589，
III－F68
steam train／prop plane，II－592
stereo system．derived center－
chanmel，IV．2：3
super，III－564
synthesizer II－599，V－561
telephome call－tone generator， IV－562
telephone ringer，IV－619
tore burst genevator repeater． V－620
tons chime， V －560
tone generators，1－604，1－625
top oftave genevator．V 893
Touchtone dal－tone，telephone． 1II－60\％
rrain cluiler， 11 －ธ8s
tremolo orecuts．III－692－695．IV－ 5.89
rwang－twang．It－5：92
two－tone，IJ－570．V－629
ulirasonic sourd source．IV－605
wery－low－freguency，1－64
vocal elmmator，IV－19
voice circuits，II 729.734
wan－waa circuit，It－590
warbling tone II－573
white noise．IV－201
sumad－uperated circuils（seef obso
mitrasome arcuits；verc－
opurated rimuits），II－580－584， IIT－579－580，N－525－528， V－545－555
amplificr，gan－controlled． $\mathrm{IV}-\mathrm{b} 98$
color oryan，11－583，11－584
dernder，III 145
farler．V－ri 9
flash triggers．I－181，H－419，IV－882
kaleidoscope，sonic．V－i48－549
lights． $1-609 . V-552$
memo alent，V．35＇s
nowe chipere $1-396$
relay．T－608． 1610
sleep－made cmomt，$V-547$
switch，II－581．III－580，III－600．
ILI－601，IV－526－527．V－553，
V－595，V－ 990
ar，IT－581
fwo－kay，1－610
Fole－nperated，II－580，IV－127
spoceh activity detector． tevephone．III－615
voict－operated swith $111-580$
vax bow，11－552
whistle－activated swith $V$－551
sources（sere current sources：
voltage sources）
source followers
bookstrapped．$V-20$
J゙じざ，V－2゙）
photodiade，11I－419
SPDT swith，ar－static，It－612
space－age sound machme，Vine
space war．1－606
spaceshe adam，V－560
speaker sustems
FM narmer currant remote， 1140
hand－held ratserever ampifiers． III－39
overload protector for 11－16
protcetion circuil．V－476，V－479
wreless 112 ． $11-272$
speakerphone：L1－611，111－608

Trectrum andelvzer adapter， nsimilosropes，V－424
speech－related creuts．
autivily detector．II－617，III－619
contpressor，11－15
filter
$300 \mathrm{~Hz}-3 \mathrm{kHz}$ bandpass， 1 － 295
second－order， $300-\mathrm{to}-3.400 \mathrm{~Hz}$ ． IV－174
speech－range bandpass filter， V 185
two－section， $300-\mathrm{ro}-3,000 \mathrm{~Hz}$ ． IV－174
network，II－683
scrambler，$V-554$
speed adarm，1－95
speed controllers（seez chso motor control）I－459，［－453，II 378， II－379，IT－45t，v－380．V－381
back EMF PM．I－379
cassctu－deck motor speed catieratur，IV－353
Graserl－hoop，ITI－385
fons．automatuc，III－382
feedback speed．I－447
de motors， $\mathrm{I}-452, \mathrm{I}=454 . \mathrm{III}-377$ ． 111－380， 11 －388
dee vamble，Hberoplie，11－206
feredhark．I 447
fixed，MII－387
high－efficiency，III－390
high－torque notor，I－449
light－activated／controlled．IV－247
load－dependert．1－451
model truins andor cars，1－453， I－455，IV 398340
motor（see motor controls； tachometers）
power tool torque，1－458
PWM，II－376．111－380，V－381
radio－controlled，1－576
series－wound motors，7－448，TT－456
shunt－wound notors．IT－456
stepper motors，direction and speed control， $1 \mathrm{~V}-350$
switched－rnode． 112 －38 4
tachoneters．1－94，1－100，1－102．II－ 175，TII 3．35，IIL－340．III－347
analog reariout．IV 880
calbrated．III－598
closed loop feedback control， 11－390
digital readeut，11－61．III－45，IV－ 268－269，एV－278
dwell meter／tachometer，IIT－45
feedback control，II－378，II－390
Irequericy counter， $1-310$
bow－frequency， $1 \mathrm{H}-596$
minmurt component desigh． 1－40
motor speed controllers，II－378， II－389
optical pick－up，III－347
sed point，111－47
tachometeriess, III-386, IV-349
tools and appliances, 1-446
universal motors, 1 -457, II-451
speed warning device, $[-96,1-101$
speedometers, bicycle. IV-271, IV-282
splitters, III-681-582
bathry, 11 -66
phase, precision, IIT-582
precisien phase, 1-477
voltage, III-738, III-743
wideband, II-582
squarer, precision, 1-615
suaare-wave yenerators, II-594 600, [II-583-585, N-529-536, V-568-570
$1 \mathrm{kHz}, \Gamma \mathrm{V}-536$
2 MHz using two TTL gates, IT-598
$10-\mathrm{Hz}$ wo 10 kHz VCO, $\mathrm{V}-5 \%$
60-IL2, V-569
555 timer, $1 \mathrm{H}-595$
astable circuit, II-597, IV-634
CMOS 555 astable, true rail-to-rall, [1-596
duty-cycle nultivibrator, III-50percent. III-584
four-derade design, IV-535
high-current oscillator, III-585
line frequency, II-500
Low-frequency TTM osciletor, 11-595
multiburst generator, II-88
multivibrater, TV - 536
oscilators, $\mathrm{I}-\mathrm{613-614}, \mathrm{II}-597$. II-616, IV-532, N-533, V-569
0.5 Hz, 1-616
$1 \mathrm{kHz}, 1-612$
trequency doubled output, II-596
phase-tracking, three-phase, II-598
pulse extractor, III-584
quadrature-outputs oscillator, III-585
Schrnitt trigger, V.669, V-570
sine-wave and, tumable oscillator, IIT-232
sine-to-square wave converter, V-569, V-570
three-phase, $11-600$
tone-burst generator, single timer IC, II-89
triangle-wave and, III-289
precision, III-242
programmable, III-225
wide-range, IIl-242
TTL LSTTL CMOS designs, N-530-532
variabie duty-cycle, TV-533
variable-frequency, IV-535, V-570
square-wave uscillator
astable muitivibratur and, V-386
square-to-sme wave conventers, III-118
squelch circuits, II-304
AM/FM. I-547
woice-activated circuits, IV-624
squib Iring circuits, 11-357
stabilizers, fixed power supplics, IV393 , IV-406
staircase generators, (serr olso function generators; waveform generators), 1-730, II-601-602, III-586-588, IV-443-447
stand-by power supply, non-volatle CMOS RaMs, IT-477
standard, precision calibration, 1-406
standard-cell amplifier. saturated, 11.296
standing wave ratio (SWF)
meter, TV 269
power meter, I-16
QRP bridge, ILL-336
warning indicator, $\mathrm{I}-22$
Star Trek red alerl siren, 11-577
start-and-run motor crrcuit, III-382
stateof-charge indicator, lithium battery, II-78
state-variable filters, II-215, III-189
multiple oulputs, III-190
second-order, $1 \mathrm{kHz}, \mathrm{Q} 10,1-299$
universal, T-200
statio detertor, $N-276$
steam locomotive sound effects. II-589, II-593, $111-568$
step-up switchuy regulator, 8 V battery, II-78
step-up/step-down dc-dc converters. [1I-1 18
stepper motors (see also motor control circuits), V-571-573
direction conlrol. IV-350
drivers, $\mathrm{H}-376$, II-390
bipolar, V. 572
FET-hased, V-573
half-step, IV-349
quarter-step, IV 350
dual clock circut, $V-573$
speed and drection, IV-850
stepping switch, solid state, II-612
stereo/phonograph (h-fil) circuits, V-574-584
acoustic field gencrator, V-938-341
amplifiers, 1-77, 1-80-81, 1-89, 1-670, II 9, II- 43, II- 45, III-34, III-37, TIT-38. N-29, TV-35, JV-36, N-66
bass tone eontrol, V-584
min-stereo amplifier, V-583
audio level meter, IV:310
sudio power duplifiers, V-40, V. 48
audio power meter, IV-306
audio signal amplifier, V- 58
balance circuits, 1-618-619, 11-603605, V-583
booster amphifer for car steren, V-72
cormpander, IT - $12, \mathrm{II}-93, \mathrm{III}-95$
expander, II-13, III-93, III-95, V-582
decoders, II-18, II-167-169
demodulators, 1-544, 11-159
derived conter chanmel stereo system, IV-23

FM stereo transmitter, V-575, V-580
frequency decoder, II-169
frequency division multiplex, II-169
loudspeaker protector circuit, V-483
mixers, I-66, IV-332
power neter, III-331
preamphifiers, I-90, 1-91, II-43,
II-45, III-37, III-671, III-673,
IV-35, IV-36, V-581, V-684
receplion indieator, 11 -269
reverb systems, $1-602, \mathrm{I}-606$, II-9
speaker protection circuit, V-476, V-479
TDM decoder, II-168
test circuits, i-618-619, [1]-269, ILL-331, IV-306, IV-310
tone control circuit, hush-Z input,「-676
TV-steren decoder, II-167, V-576579, V-580
stimukator, constant-current, III 352
stimulus isolator, III-351
stop hight, garage, II-5
strain gauges
brndge excitation, III-71
bridge signal conditioner, 11-85
instrumentation amplifier, III-280
strabe circuits, II-606-610
alarm system, Vfi-7
disco-, II-610
high-voltage power supplies,「V-413
safety flare, II-608
twhe burst generator, II 90
trip switch, sound activated, 1-483
variable strobe, III-589-590
stud finder, III-339
subhamonic frequencies, crystal-
stabilized IC tmer, IT-151
subtractor circuit, III-827
subwoofer amplifier, V-49, V-50
successive-approximation AD
converter, 1-45, 11-24, 11-30
sururnirs amplifiers, I-37, III-16
fast action, $\mathrm{I}-36$
inverting, V-18, V-20
precision design, 1-36
video, clamping circuit and, III-710
sun tracker, III-318
superheterodyne receiver, 3.5 -to-10
MHz, IV-450-451
supply rails, current sensing in, II-153
suppressed-carrier, doublesidcband, modulator, III-377
sweep generators (see aiso function generators; wavefore generators)
$10.7 \mathrm{MHz}, 1-472$
add-on triggered, 1-472
oscilloscope-trighered, III-438
switches and switching orcuts, IT-611-612, II-5.91-594, N-5.37, V-585-593
switches and switching circuits (cms)
ac switches, III-408, IV-387
ac power switch, V-112, V-115
analog switches, I-621, I-622, III593
antenna selector, electronic, IV-538-539
audio switch, eight-chanmes, V-588-589
audio-controlled switch, V-590
audio/video switcher circuit, IV-540-541
auto-repeat switch, bounce-free, IV-545
bidirectional relay switeh, IV-472
bistable switch, mechanically controlled, TV-545
contact, $\mathrm{I}-136$
controller, III-383
dark-activated, V-274, V-276
dc controlled, V-586, V-592
de static, II- 367
debouncers, III-582, V-105, IV-106, IV-108, V-316
delay, auto courtesy light, III-42
dimuler switches, I-369, II-309, IV-247, IV-249
800 W, 11-309
do lamp, II-307
four-quadrant, IV-248-249
halogen lamps, II-300
headlight, 11-57, 11-63
low-cost, 1-373
soft-start, 800-W, I-376, [IT-304
tardem, II-312
triac, I-375, II-310, III-303
DTL-TTL controlled.buffered analog. I-621
faxtelephone switch, IV-552-553
FET, de contralled, V-592
FET dual-trace (oscilloscope), II-432
flex switeh, wharm sounder circuit, V-15
frequency switcher/oscillators, V-418
Hall-effect, III-257, IV-539
headlight switching circuit, V-75
hexFET switch, V-598, V-593
high--Frequercy, I-622
high-side power control switch, 5 V supply, IV-384, IV-385
infrared-activated, IV-345
IR-controlled A/B switch, V-225
kill-switch for batteries, V-71-72
latching, SCR-replacing, 111-593
light-operated, II-320, III-314, V-274, V-278
adjustable, 1-362
capacitance switch, 1-132
light-controlled, $\mathrm{II}-320$, III-314
photoelectric, II-321, II-326, III-319
self-latchong, V-278
solar triggered, III-s18
zero-point triac, 11-311
load-disconnect switch, V-591
load-sensing, solid-state, V-285
mercury-switch tilt detector, V-302
MOSFET power control switch, IV-386
on/off inverter, III-594
ondoff switch, I-577, IT-359, IV-543, V-546
optical safery-circuit switch. V-409
optically coupled, III-408, III-410
oscillator-triggered switch, V-590
over-tenuperature switch, IV-571
photocell memory, ac power contrel, I-863
photoelectric, II-321, II-326
proximity, III-517
push orvaff, 11-359
pushbutton power control switch, IV-388
remote switches, I-630, 1-577, V-592
rf switches, 111-361, III-592
rotary switch, BCD digital, V-160
salety switch, V-589
satelite TV audio switcher, IV - 543
solar-tnggered, III-318
solid-state stepping, II-612
sonar transducer/, H1-703
sound-activated, I-610, II-581, III-580, 111-600, 111-601, IV-526-527, V-553, V-555, V-590
speed, 1-104
SPOT, ar-static, II-612
swatching controller, III-383
temperature control, low-power, zero-voltage, II-640
thermostatic, for auto fan, V-68
tone swith, narrowband, N - 542
touch switches, I-131, I-135-136.
[IL-650-693, 111-661-666.
[V-500-594, V-270
touchomatic, II-693
TR switch for antennas, automatic, V-37
triac switches, I-623, II-311, [V-253
two-channel, I-623
two-way switch wiring, V-591
ultrasonic, 1-683
under-temperature switch, TV-570
VHF/JHF diode rf swatch, $\mathrm{V}-544$
video switches, III-719, III-725,
III-727, III-728, IV-618-621. V-587
video/audio switch, V-586
wice-operated, 1-608, III-580, [V-527, V-553
whistle-activated switch, V-551
wiring for two-way switch, V. 591
zero crossing, $\mathrm{I}-732$
zero point, I-373, II-311
zero-voltage switching, $1-623$, III-410, III-412
switched-mode power supplies, II-470, III-458
24-to3.3-V, V-462
5 - to 3.3-V, V-462
50 W , off-line, III-473
100 kHZ , multiple-output, II-488
converter, V-461
synchronous stepdown regulator, V-468
voltage regulators for switched supplies, V-453
3 A. III-472
$5 \mathrm{~V}, 6 \mathrm{~A}, 25 \mathrm{uHz}$, separate ultrastable reference, $\mathrm{I}-497$
6 A variable output, I-513
$200 \mathrm{kHz}, \mathrm{l}-49 \mathrm{l}$
application circuit, $3 \mathrm{~W}, \mathrm{I}-492$
fixed power supplies, 3 A, IV-408
high-current inductorless, III-476
low-power, III-490
multiple output MPU, [-513
positive, 1-498
step-ciown, 1-493
step-up, 6V batter, II-78
converter, +50 V push pull, $\mathrm{I}-494$
merter, $500 \mathrm{kHz}, 12 \mathrm{~V}$, II- -474
nower amplifier, 1-33
switched light, capacitance, I-132
switching/mixing, silent audio, 1-69
syne circuits, V-694-595
combiner, V-595
gating circuit, V-595
separators, III-715, IV-616
synthesizers (see also musical circuits; sound generators)
four-chazulel, 1-603
frequency, programmable voltagecontrolled, [1-265
music, 1-599

## $T$

tachometers, 1-94, I-100, I-102, II-175, II-335, [1I-340, III-347, V-65, V-596-598
analog readout, $\mathrm{V}-280, \mathrm{~V}-597-598$
calibrated, III-698
closed loop feedback control, 11-390
digital readout, II-61, III-45,
IV-268-269, 下- 278
dwell meter/tachometer, III-45
feedback control, II-378, II-390
frequency counter, 1-310
low-frequency, 1II-596
minimum-component design, 1-405
motor speed controllers, 11-378, 11-389
optical pick-up, HI-347
set point, III-47
tandem dimuner, II-312
tap, telephone, III-622
tape-recorder circuits, $\mathrm{I}-21, ~ \mathrm{I}-419$, III-599-601, JV-547-548
amplifiers, I-90, IV-36
audio-powered controller, IV-548
automatic tape-recording switch, I-21, [1-21
automotive-battery power circuit, IV-548
casselte-deck motor speed calibrator, IV-353
extended-play circuit, III-600
flat-response amplifier, III-673
interface for, II-614
personal inessuge recorder, V-330331
playback amplifier, III-672, IV-36
position mdicatar/controller, II-615
preamplifier, I-90
sound-activated switch, III-600, III-601
starter switch, telephone-activated, I-632
telephone-actrvated starter switch, I-632, II-622, III-616
telephone-to-cassette interface. III-618
telecom converter -48 to +5 V at 1 A, V-472
telemetry demodulator, $\mathrm{I}-229$
telephone-related circuits (see also interconts), Il-616-635, III-602-622, IV-549-564, V-699-615
alarm dialer, V-612
amplifier, III-621, IV-560, V-614
answering machine beeper, IV-559
auto answer and ring indicator, 1-635
automatac recording device, II-622
basic telephone carcmit, V-615
bell simulator, V-604
blinking phone light monitor, II-624, II-629
call-tone generator, IV-562
caller ID, V-613
cassette interface, III-618
decoder, touch-tone. IV-555
dial pulse indicator, $111-613$
dial-tone circuit, 5-V, V-610
dialed-phone number vocalizer, III-731
dialer
emergency dialer, V-603
pulse/tone, single-chip, III-603
dual tone decodiry, 11-620
duplex audio link, IV-554
duplex line amplifier, III-616
eavesdropper, wireless, III-620
emergency dialor, V-603
fax-machine switch, remote-
controlled. IV-552-553
flashers, IT-629
phone-message, [V-556
tell-a-bell, IV-558
visual ring indicator, IV-559, (N-561
frequency and volume controller, II-623
hands-free telephone, III-605
handset encoder, T-634, III-613
hold button, II-628, III-612
hold circuit, V-614
in-use indicator, II-629, JV-560, IV-563, V-602
intercom, IV-557, V-239, V-240
interface
audio. V-612
FCD Part 68, V-613
for phone-line, V. 605
light for, II-625,
line interface, autopatch, I-635
line monitor, I-628
line tester, V-615
message-taker, IV-563
monitors, 1-625, II-626
musical hold, II-623,.V-601, V-605
musical ringer, II-619
night light, telephone controlled, 11I-604
off-hook indicator, I-633
optoisolator status monitor, 1-626
pager, V-609, V-611
parallel connection, III-611
personal message recorder, V-330-931
precoelectric runger J -636
power switch, ac, IV-550
pulse-dialing, III-610
recording calls, I-632, III-616,
IV-553, IV-558, V-600
redial, 111-506
relay, I-631
remote monitor for, II-626
repeater, [II-607
repertory cialer, line powered, [-633
ring converter, V-602
rins detectors, II-623, III-611,
IIL-619, IV-564
ring indicator, V-604
ringers, $\mathrm{N}-556$, V-600
extension-phone ringer, JV-561
hight-isulation, $11-625$
ruult-tone, remote
programmable, II-634
musical, 11-619
piezoelectric, I-636
plug-in, remote, $\mathrm{H}-627$
relay, IL2-606
remote, II-627, III-614, IV-562
tone, I-627, I-628, II-630, IT-631
scrambler, II-618, V-608
series connection, 111-609
silencer, IV-557
sound level meter monitor, III-614
speaker amplifier, IV-550
speakerphone, II-632, IIT-608
speakerphone adapter, V-606-607
speech activity detector, II-617, 111-615
speech network, II-633
status monitor using optoisolator, I-626
switch, solid-state, line-activated, III-617
tap, III-622
tape-recorder starter controlled by, 1-632
telecom converter -48 to +5 V at 1

$$
A, V-472
$$

timer, tele-timer, V-623
woll-tutalizer, IV-551
tone-dialing. III-607
tone ringers, $\mathrm{I}-627, \mathrm{I}-628,11-630$, II-681
Touchtone generator, III-609
touch-tone decoder, [V-555
vocalizer, dialed-phone number, 111-731
voice-mail alert, V-607
television (see video circuits)
temperature-related circuits (see also thermometers), I-641-643, - I-648, I-657, II-645, III-629-631, IV-565-572, V-616-620
$0-50 \mathrm{C}$, four channel temperature, I-648
alarms, II-4, II-643, II-644, V-9
autonotive water-temperature gauge, II-56, IV-44, IV-48
boiler temperature control, J-638
compensation adjuster, V-617
control circuits, I-641-643, II-636644, III-623-628, IV-567
defrost cycle, IV-566
heater clement, Il-642
heater protector, servo-sensed, III-624
heat sniffer, electronic, IIT-627
liquid-level monitor, II-643
low-power, zero-voltage switeh. II-640
piezoelectric fan-based, III-627
proportional, III-626
signal conditioners, 11-639
sirgle setpoint, I-641
thermocoupled, IV-567
zero-point switching, III-624
converters
logarithmic, V-127
temperature-to-digital, V - 123
temperature-to-frequency, I-646, 1-168, 1-656, 11-651-653, V-121
temperature-to-time, III-632-633
cool-down circuit for amplifiers, V-354, V-357
defrost cycle and control, IV-566
differential temperature, I-654, I655
flame temperature, III-313
furnace fuel miser, V-328-329
heater control, I-639, I-640, II-642, III-624
heat stiffer, III-627
hillo sensor, II-650
hook sensor on $4-$ to $20-\mathrm{mA}$ loop, V-618
temperature－related circuits（cont）
IC temperature，I－649
indicator，IL－56，IV－570
isolated temperature，1－651
logarithutic converter，V－127
low－temperature sensor．V－ 519
measuring circunt／sensors，TT－65．3． IV－572
melers／monilors，I－647，II－200． IV－569
op arop，temp－compensated meakpoint，V－401
oscillators temperature－controlled． 1－187．II－427，III－137
over－temperature switch，IV－571
aver／under sertsor，dual output， 11－646
remote sensors，I－649，I－654，V－619
sensors，I－648，I－657，II－645－650， III－629－631，TV－568－572，V－619
0－50－dogree C four channel，I－648
0－63 degrees $C$ ，［17－691
5 V powered linearized platimum RTD signal conditioner，II－6，0
automotive－ternperature indicalor，PTO thermistor，II－56
Centigrade thermometer，11－648
coefficient resistor，positive， $1-657$
differential，1－654，1－655
over／under，dual outmit，II－646
DVM interface，II－647
hillo， $11-650$
integrated circuit，1－649
isolated，［－651，III－63］
Inw－temperature，V－619
remote，$I-649, I-654, V-619$
soil heater for plants，V－333
soldering irom control，V－327
thermal montor，［V－569
thermocomple amplifier，cold junction compensation，II－649
thermocouple multiplex system， 111－630
zero－crossing detcetor，1－733
signal conditioners，II－639
sungle－setpoint，temperature，1－641
temperature－to－digital converter， V－123
temperature－to－frequency converter，1－646，1w168．1－656， II－651－653，V－121
temperature－to－time converters， III－632－633
thermocouples
armplilier，cokd junction compensation，II－649
control， $\mathrm{TV}-567$
multiplex system，III－fiso
thermometers（see themometers）
（ticrmostat（see thermostats）
thernostatic fan switeh，V－68
transconducer，1－646，I－649
under－temperature switch，IV－570
zero－crossing detector，I－733

Lemperalure－to－frequency converter， I－168，［－656，II－65］－653
temperature－to－frequency transcondincer，Imear，I－6A6
temperature－tortime converters， 11－622－633
ten－band graphuc equalzer，wetive filter，II－684
Tesla coils，III－034－636
Lest bench amplifier，V－26
Lest circuils（see measuremenh／est creuirs）
text adder，composite－video sighal， III－716
theremins， $11-654-650$
digital，II－656
clectroric， $11-655$
therinal flowricter，fow－rate flow， III－2n？
thermocomple circunts
amplifiers，f－355．I－654，II－14，11－649
digital thermometer using，II－658
multoplex，temperature semsor system，1H－630
pre－amp using，IIT－28，3
themometers（see also temperature－ related circuits），II－657－602， U1－6！ $57-643$, IV－573－577
0.50 depree $F$ ，I－6．56

O－100 degree C，T． 556
5－V operation，V－617
adapter，III－642
add－on for SMM digital voltmeter， 111－640
comidrade．1－635，11－648，11－662
calibvated． 1650
ground－referred，1－657
differential，［－652，II－661，ILI－638
山先位，I－651，I－658，V－618
temperature－reporting，11－638
thermocouple，II 658
11 P controlled，$[-6 \mathrm{n} 0$
electronic，II－600，IIT－639，IV－575． IV－576
l＂ahurenheit，1－658
ground－relerred，1－650
high－acouracy desugn，IV．577
implantable／ingestible，II－641

linear，III－642，IV．574
low－power，1－655
neter，trinmed oulput，1－655
remote，II－659
single－dic supply，TV 575
variable offset，I－652
thermostats，1－639，1－640，V－60
thind－overtone oseillitor．1－186， 15－129
threp－1n－one test set，III－san
three－minute timer，III－654
three－rail power supply，III－466
thresthold detecters，precision， 111－157
tilt meter．II－663－666，111－644－646
differential capacitance
moasuremem circuil，11－665
mercury－switch，V－302
sense－of－slope，IT－6f4
ultra－simple level，II－666
ume bases
erystal oscillator， $111-133,1 V-128$ ， V．187．V 139
finction generators， 1 Hz ， readout／counter applicatıons， ［V－201
oscilluscopues tirnebase generator， V－425
trigger selector for oscilloscopes tmelbase．V－425
tome delays，I－668，II－220，IT－667－670， III－647－649
circuil，preciston solid slate．I－664
corstant current charging，II－668
electrome，III－648
generator，1－218
hour sampling circuit．II－668
intcgrator to rnultiply 555 timers， low－cost，II－b69
long－duration，J－220
relay，I－219，1－fitio
timing threshold and load drwer， II－670，III－648
i．me division multiplex stereo decoder，II－168
timers（see also 555 trmer carcuts）， T－666，T－668， $11-671-681$, IIT－650－ 6555，IV－578－586，V－621－627
0.1 to 90 second．$[-663$

2－102000－minute，V－624
555－based alarm，V－11
741 tumer，I－667
adjustable，ll－681，［V－585
alarrs．11－674
appliance－culoff timer，IV－683
CMOS，progratutable procision， III－652
countclown，V－627
darkroom，$I-480, V-130$
elapsed time／counter timer，II－680
cicelronic egg， $1-665$
enlarger tumer，11－446，111－445
extended on－time，V－627
TC，crystal－stahtuzed，I1－15］
interval，prograramable，I－fifio， II－678
long delay．I－319，V－620
long duration，11－675．IV 585
long－miterval，T－667，W－581，VV－582
long－period，$V-624$
long－term，11－679，II－65s
mams－powored．IV－575
（use－shot，II－266，1II－317，IIL－654
photographic．T－485
darkroom enlarger，III－445
photo event timer．IV－379
reaction timer，game circuit，V－204
reflex timer，V－622
SCR desism．IV－583
self-retriggering timed-on Efrlerator, V-343
sequential, $1-681-662,1-663$. III-651, V-623
slide-show, III-144, III-448
solid-state, incustrial applications, 1-664
tele-timer, V-623
ten-minure (D) timer, W-584
three-minute, III-6554
three-stage sequential, V-623
Huribwheel-type, programmable fiterval, 1-660
time-out circuit, IV-580, IV-586
triangle-wave generator, linear. T11-222
variable duty-cycle ontput, III-240
voltage-controlled, programmable, LI-676
washer, I-668
watch tick timer, V-292
watchdog timer/alarm, IV-584
wide-range, V-1-minute to 400 hours, $V-625$
termeng light, ifnition, 11-60
timmg threshold and load driver, III-648
tone alert decoder, T-2L3
tone annunciator, transformerless, 111-27-28
tone burst generators, I-664, II-90, III-74
tone circuits (see function generators; sound generators)
tone controls (see also somnd generators). I-677, IL-682-689, ILl-656-660, IV-587-589, V-334, $\mathrm{V}-630-631$
$500-\mathrm{Hz}, \mathrm{III}-154$
active control, IV-ris8
audio amplifier, II-686
automatic lovel control (ALC), V-60-62
buss,.. $-670, V-584, V-631$
bass and treble, $1-674$, V-631
Bexandall tone-comtrol audio aroplifier, $I V-588$
decibel level detectors, III-154
equalizers, III-658, II-684
filter circuil, V-1 kHz, V-191
guitar treble bouster, I1-583
high-quality, $1-675$
high-z input, hi fi, [-67f
level meters, sound levels, III-346, III-614, IV-305, IV-307
loutmess, 11-46
microphome preamp, $-675,1 I-687$
mixer preamp, T-is
passive circuit, II-689
preamplifiers, $[-68$, I-673, I-675, 11-687, II-688, III-657
rumble/scrateh filter, II-660
stereo preamp with tone conirol, V. 581
threa-hand active. 1676, 111-658
three-thanmel, I-672
trebel control, V-631
tremolo circuit, IV-589
volume limiter, audio signal amplifiers, $V-59$
Wien-bridge filter, JIT-6.59
tone decoders, I-231. III-14.3
dual unte conseant, II-166
24 percent bandwidth. $1-215$
relay output, [-213
rone-dial decoter, I-630, [-631
tone detectors, $500-\mathrm{Hz}, 711-154$
tone-dial generator, I-629
Lone-dialing telephone, IIf-607
tone cneoder, 1.67
subaudible, 1 - 23
tone-dial encoder, I 629
twomire, II-36A
lone generators (see sound kentrators
tone probe, divital $1 C$ testing with, 11-504
tone ringer, telephone, II-630, Tf-631
totem-pole driver bootstrapping, III-175
touch switchos, 1-131, 1-135-136, I137, II-690-695, 111-661-665, IV-590-594, V-692-635
CMOS, I-137
bistable multiviorator, touchtriggered, 1-133
bruging touch plate sensor; V-634
dimmer, CMOS based, V-270
double button Latching, 1 -138
hum-detecting touch sensor, [V-594
lamp control, three-way, IV-247
low-currert, 1-132
OnOit, II-691. LIL-663, IV-593
latching switch, V-635
line-hum, TH-604
momentary operation, 1-1:33
negative-trisgered. III-662
url-only swatch, V-635
pusitive trigered, $11-662$
sensor switch and cluck, IV-591
single-plate sensor V-6a3
swhtch, V-633. V.634, V-635
time-on touch switch, IV-594
touchomatic, II-693
two-terminal, III-603
Touchtone gerurator, tetephone, 111-609
toxic gas detentor, II-280
loy siren, II-575
TR tircuil. IL-532
TK switel for andennas, automatic, V.; 7
tracers
allio reference signal, probe, $1-527$
bug: IIL-328
closed-loop, III-356
ruceiver, IIL-307

Yrek-and-hold circuits, III-667, 111-6688
sample-and-hold circuil, 111-549, III-552
tracking circuits, III-606-668
posilive/negative voltage reference. III-667
preregulator, TII-492
track-and-hold, II-6n7, II-668
train chuffer sound effect. It-588
transceivers (see also recalvers, (tunsmillers), 1V-505-603
transceivers
1750 -meter, V-646
C5, 20-m, TV-596-596
CW, $5 \mathrm{~W}, 80$-meter, IV-602
extemal microphone circut, $V, 351$
thand-ficld, III-39, III-461
HF eransceiver/mixer, IV-457
ultrasonic, III-702, III-704
transducer amplifiers, J-86, III-669-673
fat-response, tape, II-673
NAB preamp, Ill-673
photodiode amphfier, III-672
preamp, magnetic phono, ITI-671, III-679
tape playback, III-672
voltage, differential-to-singleencled, LIL-670
transducers, I-86
bridge type, amplilier, $\mathrm{LI}-84$, IIL-71
detector, magnetic transducer, 1-233
sonar, switch and, III-708
temperalure, remote sensor, I-649
translommers, isolation transformer. V-349, V-470
transistors and transistonzed circuits
hashers, 11-536, 111-200
frequewey tripler, nonsclectues, saturated, II-252
hadphone ampolifier, II-43
on/off switch for on amb, IV-54
phototransistor, V-279
amplifier, V-409
variable-sensitivity, V-409
pulse gencrator, IV-4:37
sorter, 1-401
tester, [-401, N-281, V-303
turn-on creuit, V-345
transmission indicator, $11-211$
Lransmithers (see also receivers: transceivers), 111-674-691, N-595-603, V-636-649
2-meter, V - 600 - 601
10 -meter DSB, V-647
$27.125-\mathrm{MHz}$ NBFM, V-637
atoustic-sound transmitter, $1 V-311$
amateur radio, $80 \mathrm{M}, \mathrm{LI}-675$
amateur TV, ए-599
ATV IR transmitter: $V-440 \mathrm{MHz}$, V-640
transmutters (cont.)
audio, visible-light, V-261
baby-alert, carrier-current carcult. V-9.5
bearon, IIT-65.3, N-603
broadcast. 1-to-2 MHz. I-680
carrier current, 1-144, J-145. III-79
computer circait, 1-ot-8 channel, III-100
CW transmitters, [-6i81, III-684, III-686, III-678, III-690, V-601. V-648, V-649
DSB. 10-meter, V-647
ibecroplic, 111-177
MM transmuters, 1-681, V-641
27 125-NHz NRFM, V-637
$49-\mathrm{MHz}, \mathrm{V}-643$
infrared, voice-modulated pulse, [V. 228
bitht-bean, V-259
multiplex, TIT-688
one-transistor design. III-687 optical. [-361, I-367. I[-417
radio, V-648
snooper, $111-680$
stereo, V-575, V-580
voice, ITT-678
wireless microphone, III-682, III-685, III-691
half-duplex information transmussion link, low-cosst, 111-679
1II', low-power, [V-598
infrared, [-342, 1-343, II-288, 11-290, III-275, III-277, JV-226-227, [7.228
headphones. V-227
pulsed lor unvoll control, V-228
line-carner. whth on/off, 200 kHz , I-112
low frequency, III-682
MIDI transmitter, V-393
modulated-light transmitcer. V-258
Murse-cule transmitter. V-6-W Ior 7. MHz, V-641
multuplexed, 1 -of-8 channel, III-395
negative key-line keyer. IV-244
optacal, $\mathrm{I}-381, \mathrm{~J}-363$, I1-417, II-418. IV-368
oscillator and, 27 and 49 Milz. 1-680
oumput minicator, IV-218
QRP. V-638-639, V-644-645
remote-control, V-509. V-513
interface, $V$ - 511
ultrasonc, V-512
remote sensors, loop-type, It -70
television, III-676
tracking transmitter, $V-642$
transceiver, V-1750-meter, V-646
transnuilreccive sedumeter. preaunp, V-348
ultrasonic, $40 \mathrm{kHz},[-685$
ultrasound. Doppler, V-65)
vacuum-tube, low-power. V-80/40M, V-642
vore-commumation, light-heam, V-260
VHF. III-681, 111-684
transverter, V-3-to-6 meter, V-124
treasure locator, lo-parts. I-409
treble booster, gutar, II-683
tremolo circuits, I-59, T-098, III-690-695, IV-689
tri-color indicalor. 1 -232
triac circuits, V268
ac-voltage controller, 1V-426
contart protection, [I-531
controller circuit, V.267. V-271
dimmer swiches. l-375, II-310. 1II-30.3
drive interfuce, direct de, $\mathrm{I}-266$
rucrocomputer to triac interface; V-244
meroprocessor array, II-410
relay-contact prolection with, $11-531$
switch, inductive load, IV-253
trigger, 1-421
voltage doubler, $77-468$
zempont switch, II-311
zero voltage, 1-623
triangle-to-sine converter. II-127
triangle/square wave uscillator, 11-422, V. 206
triangle-wave generators, ITI-234, V 203
$10-\mathrm{Hz}$ to $10-\mathrm{kHz}$ VCO. V- 570 clock-driven, V-206
square/triangle-wave. 11L-235, 111-239, $111-242$
tutes, linear, III-222
triangle-wave oscillator, V-205
trickle charger. 12 V battery, I-117
triggers
50-MHz, III-364
canera alarm, JII-444
flash, photograply xenon flash, IIJ. 447
Ioarl-sensing. V.285
optical Schmitt, I-362
oscilloscope-triggered sweep, III-438
renote flash, 1-484
SCR series, optically complec, IIT-41I
sound/light flash, I-482
triac, 1-42]
triggered sweep. add-on, I-472
topler, nomselective, transistor satruation, [L-252
trouble tone alert, II-3
TTL circuits
clock, wide-frequency, III-85
coupler, uptucal. III-416
gates, siren usirg, 17-576
Morse code keyer, IT-25
square-to-triangle wave converter. II-125

TTI to -MOS lagir converter, II-125
TTL oscillators. I-179, I-613, IV-127
1 MHz to $10 \mathrm{MHz}, \mathrm{l}-178$
1 MHz to $20 \mathrm{MIF}, \mathrm{IV}-127$
crystal, TTL-compatible, I-179
sme wave/square oscillator, IV-512
television display using, 1I-372
tube amplifier, high-voltage isulation, IV-426
tuners
antenna tuner, IV-14, V-38
FM, 1-231
guitar and bass, II-362
turbo circuits, glitch free, III-186
turn-on circuit, V-345
twang-twang circut, II-592
twilidht-miggered circuit, II-322
twin-T notch filters, III-403
twi-state siren, III-667
two-tone genmator, 11570
two-tarke siren, III-562
two-way intercom, III-292
two's complement, D/A conversion system, binary, 12 -bit, 11I-166

## U

UA2240 staircase generator, 115-587
UHF-related corcuits (sere also radio/ff circuits)
amplifier, I-560-565
aucin-to-UHF preamp, V-24
broadband rf amplifiers, V-523
feid-sirength meters, V - 165
If amplifiers, UHF TV-line
aunplifier, IV-482, NV-483
source dipper, $\mathrm{IV}-299$
TV preamplifier, III- 346
VHF/UHF ri diode switch, IV-544
VIIFUHIF ri preamplifier, V-515
wideband amplifier, I-560, III-264
UJT errents
battery chargers, III-66
metronome, II-355
monostable circuil, bias voltage change insensitive. II-268
ultrasoruc circuits (see also soundoperated circuits), IIT-696-707,「V-604-606, V-650-653
ars welding inverter, 20 kHz , III-700
cleaner, V-652-653
induction fuater, $120-\mathrm{KHz} 590-\mathrm{W}$, III-704
nest control/repel, I-684, II-685, III-699, JII-706, III-707, IV-605606
ranging system, IIl-697
recerver, $\mathrm{II}-698, \mathrm{III}-70 \mathrm{~m}$
Doppler ultrasound, V-651
remote-control receiver, V - 513
remote-control transmitter, V-512
sonar transducer/swicch, hl-708
sound source, IV-605
switeh, 1-683
transceplver, IIT-702, III-704
transmitter, T -f85
Doppler ultrasound, V-651
undervoluage detector/monitor, III-762, IV-138
mintermptible power supply, II-462, III-477, V-471
unily-gain amplifiers
irverting, $1-35$, , -80
nominverting, V-21, V-23
ultra high-Z, ač, II-7
imity-gain buffer
stable, speed and high-mpout impedance, 11-6
unúty-gain follower, I-27
universal counters
$10 \mathrm{MHz}, \mathrm{I}-25 \overline{5}, \mathrm{II}-1 ; 39$
$40-\mathrm{MHz}, \mathrm{IIT}-127$
universal mixer stage, III-370
universal power supply, $3-30 \mathrm{~V}$, 11i-489
up/down counters
8-digit, 11-134
extreme count freezer, 7II-125
XOR gate, III-105

## $v$

vacuum fluorescent display circuil, 11-185
vacuum gange, automotive, IV-45
vapor detector, II-279
varactor-tuned 10 MHz ceramic. resonator oscillator, II-141
variable current source. 100 mat to 2A. II-471
variable frequency inverter, complementary output, ITI-297
variable-frequency oscillators (VFO)
5 MHz desient II-551
4093 CMOS, V-421
adjustable temperature compensation, V-420
amateur radio, $\mathrm{V}-532$
buffer amplifier, V-92
CMOS design, V-418
code practice oscillators. V-103
rf, V-6. $5 \mathrm{MHz}, \mathrm{V}-524$
variable-gan amplifier, voltagecontrolled, 1-28-2.
variable-gain and sign op amp, II-40:
variable-gain circuit, accurate null, III-69
variable-state filters
universal, V-178
variable oscillators, II-42
audio, 201 zz to $20 \mathrm{kHz}, 11-727$
rluty-cycle, III-422
four-decade, single control, II-424
sine-wave oscillator, low-distertion, III-558
wide range, II-429
variable power supplies, III-487-492, [V-414-421
0 - to $12-\mathrm{V}, \mathrm{V}-1 \mathrm{~A}, \mathrm{~V}-460$
current source, voltage-
programuble, 1V-430
die supply
SCR varable, $\mathrm{N}-418$
step variable, [V-418
dual uriversal supply, 0 -to- $50 \mathrm{~V}, 5$ A, ГV-416-417
regulated supple, 2.5 A, 1.20-to25 V
switch-selected fixed-voltage supply, IV-419
switching regulator, low-power, 111-490
switching, $100-\mathrm{KH} /$ multipleoutpht, ILI-488
tracking preregulator, III-492
transformerless supply, IV-420
universad $3-30 \mathrm{~V}, 111-489$
voltage regulators for varable sumples, IIT-490. II-492, IV-421
variable current source. 100 mA to 2A, II-471
voltage regulator. 111-491
VCDTV on/orr eontrol, V-113
vehicles (ceer autometive circuits)
VHF-related circuits (seo also radioff; television; (JHF)
amplifiers, 1558
crystal oscillators, III-138-140
IIPNIIl: switchable active antenna, V-524
modulater. 1-440, 111-684
tone transmitter, III-681
transmitters, III-68!, III-684
VHF/LHF dode rf switch, N-544
VIL/LHE rf preamplifier. V-615
video crrcuts, ill-713-728, IV-607621, V-654-662
amateur TV (ATV) down converter, V-125, V-126
anpliticrs, video. l-688, I-690. I-692, 111-39. 111-708-712, V-482, IV 483. V-656, V-662
Ti-- ohm video pulse, III-711.
buffer, low-distartion. IIT-712
color, [-34, III-724
de gain-control. III-711
differonial video loop-through, V-657
FET caseade, I-691
gam block, IIT-712
IF, I-689, II-687, V-655
JVET bipolar cascade, 1-692
line drivins, $111-710$
log amplitier, I-38
ourput, V-655
RGB, III-709
swuruing, clamping circuit and, III-710
TV amplifers, $1-688,1-690$, II-39.下'482, N.483
variable-gain voleo loop-through, V-658
ATV video sampler circuir, V-656
ando/video switeher circult. IV-540-541
autonatic TV turn-off. I-577
bulfers, V-93
camera-image tracker, analug voltage, TV-608-609
camera link, wireless, III-718
chroma dernodulator with RGB matrix, 111-716
color amplifier, III- 724
color-bar generator, IV-614
commerctal zapper, V-334-385
composite-video signal text aditer. III-716
converters
ROB-tu-NTSC, IV-611
viden add and da, IV-610-611
cross-hatch generator, color TV, III-724
data interface, TTL oscillator. il-372
ric restorer, III-723, V-669
decoders
NTSC-to-RGB. TV-613
stereo TV. II-167. V-576-579. V-680
detectors
IF. MC130/MC1352 desijnt, 1-688
low-level video, 1-687689
differental video loop-through ampifiter, V-657
fader, V-658
high-performance video switch. III-728
TF amplifier, $\mathrm{V}-45-\mathrm{MHz}$ suond, V-65\%
IF detector, amplifier, MC130/MC1352, $1-688$
Ine pulse extractor, $[\mathrm{V}-612$
linedar generator, V-662
loop-thru amplifier, VV-816
master circuit, video master. V-6äl
mixer, high-performance video mixer, IV-609
modulators, [-437, 1-439, 11-371. IT-372, 11-433. IT-434
montors. ROR , blue box. III-94
monochrome-partern genevator, [V-617
multiplexer, caseaded, 1-of-15, ITT-393
MUX cable druer
multi-input, V-657
two-mput, V-657
op amp circuits. IV-615
output amplifier, V-655
PAI/NTSC decoder with RGB inpurt, III-71ヶ
palette, III-720
picture fixer/inverter, III-722
preamplifier, III-546. V-660
rf amplifiers, TV sound systern, V-519
video circuits (comt.)
rl up-converter for TVRO subcarrier reception, IV-601
RGB-composite converter III-714
sampler circuir, ATV video, V. 656
satellite TV audio switcher. [V-543
selector, V-660
signal-amplitude measurer, V-309
signal clamp, III-720
sound, IF/FM IF amplifier with quadrature, 1 -690
stereo-sound decoder, $11-167$
stereo TV decoder, V-576-579, V. 580
switching curcuits, IIt-719, III-725, III-727, IV-618-621
video/audio switch, V- 586
wideband for RGD signals, V-587
sync separator, III-715, [V-616
sync stripper/vifleo mterface, V-659
transmitter. TV, III-676, IV-599
TV sound system, of ampifiers, V. 519
variable-grein video loop-through amplitier, V-658
VCR/TV on-eff control, V-133
video power, channel-select signal carrier, V-344-345
wireless camera link, III-71
VLF/NHE wideband antenna
low-noise, active, V-is
vocal elifumator, IV. 19
veice communications
light-beam transmitter/receiver, V-200
personal messugg recorder. V-3:30-3:31
vnce-mail alert for telephone, V. 607
voice scrambler/descrambler, IV-26. [V-27
voice subsuitute, crectroric, $111-734$
voice-activated circuits (see also sound-operated cments; telephone-related circints), Iil-729-734, IV-622-624, V-545-555
ac line-voltage announcer, III-700
allophone generator, 111-733
amplifer/switch, 1-608
computer speech synthesizer, III-732
dialed phone nurnber vocalizer, III-731
disguiser for voices, $V-326-327$
intercoms, V-289
scanner voice squetrh, $\mathrm{V}-624$
scrambler, V-554
speech detector, II-617, II-615
stripper. vocal stripper, V-546-5 47
switches, 11 -680, IV-527
swhthamplifer, I-608. V-503
vocal stripper, V-54b-547
voiec identifer for amateur radio use, V-550
volce substitute, electronic, $111-734$
VOX ircuit, IV-623
voltage-controlled armplificr (VCA), L-31, 1-598, IV 20
attenuator for, $11-18$
differential-to-single-ended, III-670
reference, I-36
tremolo circuit, I-508
variable gain, 1-28-89
voltage-controlled oscillators (VCO), T-702 704, II 702. IIT-735,「V-625-630, V-663-667
$3-5 \mathrm{~V}$ regulated output converter, III-739
10Hz to 10kHz. 1-701, 1LI-735-741
threc-decade, V666
555-vCO, IV-627
ando-frequency VCO, IV 626
basic ememt, V-666, V-667
erystal oscillator. III-135, IV-124
curent sink, vellagc-controlied, IV-629
driver, op-amp rlesign, IV-362
linear. I-701. N-628
triangle/square wave, II-203
logarithmic sweep, III-738
one-shot, II-266
precision, 1-702, 111-4:31
restricted-range, N-627
sine-wave oscillator. V-656
smusordal 3. Hz to $300-\mathrm{kHz}$, V-6in4665
stable, N-372-373
square-wave generators, $\mathrm{V}-570$
supply voltage spliter, 11-738
three-decade I-703
Th.a82-based, V-665
TMOS balanced, $\mathrm{HI}-736$
two-decade, high-frequency, 1-704
varactorless. IV-650
variable-capacilance diodesparked, III-737
VHF oscillator, voltage-timed, IV-628
waveform generator. III-737
wide-range, $\mathrm{TV}-627$, IV-620
voltage-controller pulse genorator. III-524
voltage converters/mverters, IIT-742748, V 668 -669
12 -to- $16 \mathrm{~V}, \mathrm{III}-747$
de-to-ac inverter, V-669
de-tu-dc, LI-744, III-746, V.669
flyback, high-efficrency, III-744
flybark-switching, self-oscllating, IIL-748
negative voltage, $u$-controlled, IV-117
oftline, $15-\mathrm{W}, 111-746$
regulated 15 -Vout 6 V driven, III-745
splitter, III-748
unpolar-to-dual supply, III-743
voltage-to-curtent converters,
I-163, I-166, II-124, III-110,
IIF-120, IV-118
voltake-to-lrequency converters, 1707, III-749-757. N-6i38-642
$1 \mathrm{~Hz}-\mathrm{to}-10 \mathrm{MHz}, \mathrm{II}-754$
1 Hz -10-30 MHz, ILI-750
1 Hz -to-1. 25 MHz . $\mathrm{II}-755$
5K1Lz-10-2M1Ez, 11-752
10 Hz to $10 \mathrm{kHz}, \mathrm{I}-706$, III-110
accurate, $\mathrm{TI}-75 \mathrm{~m}$
differentral-input, III-750
function generators, potentiometer-position. IV-200
low-cost, III-751
low-frecquency converter, IV-641
negative input, 1-708
optocoupler, IV-642
positive input, 1-707
prection, [1-13]
preserved irpul, 1II-753
ultraprecision, [-708
wide-range, III-751, ITI-752
voltage-to-pulse duration converter, II-124
voltage-ratio-to-frequency converter. III-116
voltage delectas relay, battery charger, II-76
voltage doublers, III-459, IV-6355, V-460
cascaried, Cockeroft-Walton. T-635
triac-controlled, III-468
voltage followers, $1-40,111-212$
last, I-34
nomnverting, $\mathrm{I}-33$
signal-supply operation, amplifier, III-20
vollage inverters, precision, III-298
voltige indicators/meters (seo also voltmeters), IIT-758-772, IV-42.3
autornotive battery voltage gauge, IV-47
battery-voltage measuring regulator, IV-77
comparator and, $11-104$
five-step level detector, I-337
irequency counter, $117-768$
HTS, preeision, I-122
level detectors, $\mathrm{I}-338, \mathrm{I}-172$, III-750, 111-770
low-voltage indicator, III-769
momitor, V-915
multiplexed common-cathode LED ADC, $111-764$
over/under monitor, 111-762
peak prograxn detcetor, 11-771
solid-stale battery, I-120
ten-step level detector, 1335
visible, I-338. III-772
voltage freezer, III-763
voltage-level circuit, V-301
voltage multiphers, $\Gamma$ V-631.637, V-670-672
$2,000 \mathrm{~V}$ low-current supply, IV-636637
$10,000 \mathrm{~V}$ de supply, IV-633
corona wind generator, $\Gamma$. 633
doublers, II- 459 . IV-635
cascaded, Cockeroft-Walton, TV-695
dc. V-672
thac-rontrollerl, IIf-468
laser power supply, IV-6i36
low-frequency multipler, IV-32-
negative-ion generator, hughwoltage. IV-634
quadrupler, dc, V-671

voltage probes, V-174
voltage references, III-773-775
bipelar source, III-774
digitally controlled, 11 - 775
expanded-scale analog moter. III-774
positive negative, tracker for, 111-667
vartable-voltage refcrence source, TV-827
voltage regulators, I-501. 1-511, II-484, III-48:5
0 - to $10-\mathrm{V}$ at 3 A , adustable, $\mathrm{I}-511$
0- $1022-\mathrm{V}, \mathrm{I}-\mathrm{E} 10$
0- $1030-\mathrm{V}, \mathrm{I}-510$
3 A, III-472
i) V, low-dropout, III-461
$5 \mathrm{~V}, 1$ A. -500
5 V , ultrastable reference, 1-497
3 A. variable output switching. I-513
8- from 5-V regulator, V-469
10 A, $\mathrm{I}-510$
10 A , adjustable, III-492
10 V , high-stability, 71-468
10 V, 1 A, remote sense, I-499
15. V, slow-turn-on, $111-477$
-15 V regative, I-499
$45 \mathrm{~V}, 1$ A switching, 1-499
90 V rms voltage regulator with PUT, 11-479
100 Virns. 1-496
$200 \mathrm{kHz}, 1-491$
ac. III-477
adjustable output, I-506, I-512
application circuit, 1-492
automotuve cireuits, III-48, IV-G7
hattery power supplicre, I-117, N-77
bucking, high-voltage, [IT-481
combination voltage/rument regulator. V-456
conumin hot-lcad regulator. $\sqrt{V}-467$
constant voltage/constant current. 1.608
current and thermal protection, 10 amp, II-474

Darlington, IV-421
dual-tracking, III-462
efficiency-mprovis, switching, IV-10
fuxed pnp, zener dionde increases outpul. II-484
fixed-currert regulator, IV-467
fixed supples, III-461, III-468. III-471-177, IV-408. IV-462-467
flyback. off-line, II-481
foldback-current limiting, IT-478
hight or low-yput reguiator, IV-46h
hugh-stability, 1-493, I-502, III-468
high-voltage power supulies, $i-609$,
[1-178, III-485, III-490
inductorless, III-476
LM317 design, IV-46f
loss cuiler. V-467
low-dropeut, 5-V, III-461
low-power, 1695, IIL-490
low-voltage, $1-502,1-511$
linear. II-468, II 459
nubile, 1-498
MP'U, mailiple oulput, 1-513
negative, I-498, 1-499, 111-474, N-16.5
npn/pnp beost, Tit-475
off-line flyback regulator, IT-481
puip. 11-484
positive, 1-498, III-47, 1H-475
pre regulators, $1 \mathrm{H}-482,11 \mathrm{H}-480$, ITI-492
programmable, $\mathrm{V}-470$
projection lampe II-30:2
PUT, 90 V rms, [i-479
radiation-hardened 125A linear regulator, 11-468
remote shutiown, I-510
SCR preregulator for, II-482
single supply voltage regulator, II-471
senser, LM317 regulator sensing, TV-466
short-circuit protection, lowvoltage, I-502
single-ended. [-493
single-supply, 11-471
slow-turn-ert 15 V. 1-499
step-down, J-49:3
step-112, IT-78
switching supplies, 1-491, 1-492. [-493. I-497, I-498, I-513, II-78, III-472, III 476. III-490, IV-408, IV-463. V-453
3-A, 111-472
3 W , application circunt, $1-492$
$5 \mathrm{~V}, 6 \mathrm{~A} 35 \mathrm{kHz}$. separate ultrastabic reference, 1-497
6 A. variale outpul, 1-513
200 kHz. I-491
high-airrent inductorless, III-476
low-power. III-190
multiple output, for use with MPU, 1-613
step down, 1-493
variable current source wilh
voltage regulation, N-470
variable supplies, III-490, II1-491, III-492, IV-421, IV-468-470 current source, 111 -490
zener design, programuable, 1V-470
vollage sources
millivoli, zenerless, [-696
progranumable, 1-694
voltage splitter, $111-738$
voltmeters, IIT-758
3.5 digit I-710
full scale, III-761
true rms ac, 1-713
$4.5-\mathrm{digil}, 111-760$
5 -digit, III-760
acs, III-765
wide-band, $1-716$
wide-range. III-772
add-on themometer for, [II-640
bar-graph, I-99, IL-54
de, III-76.3
high input resistance, IIJ.762
Iow-drift, V-301
digital voltmeters (DVM), III-4
3.5 -digit, comurnon anode display. 1.713
B.5-digit, full-scale, four-decade, III-761
3.75 -digit, I-711
4.5-digit, III-760
4.5-diyit. LCD display, I-717
auto-calibrate circuil, 1-714
automatic nullug, I-712
interface and temperature sensor, II-647
LED reudoul, IV-286
temperature sensor and DVM, 647
FETT 1-714, IIT-765, III-770
high-input resistance, III-768
JFET, V-318
LED expanded scale, V-311
mulivoltmeters. III-767, III-769, [V-289, IV-294, IV-295
ac. $1-716$
andio, III-667, ITT-769
dc. $[\mathrm{V}-295$
four-range, V - 289
high-input impedance, 1-715
LEI) readout, IV-204
rf, 1-40n, ITT-766
voltohmmeters (VOM)
field strength, I-276
phase metcr, digital readout, N-277
volume ampliñer, II-46
volume control circuits, IV-643-645
telephone, II-623
volume indicator, audic amphifer, IV-212
volune limiter, audio signal amplifiers, V-59

VOR signal simulator, [V-273
vox box, II-582, IV-623
Vpp generator, EPROM, II-114
VU meters, III-487
extended range, II-487, I-715
LED display, IV-21.

## W

waa-wa circuit, [15-590
wailers (see alarms; sirens)
wake-up call, electronic, $1 \mathrm{H}-324$
walkinual amplifier, II-466
warblers (see alarms; sirens)
warning devices
auto lights-on waming, II-55
high-level, I-387
high-speed, I-101
light, 11-320, 111-317
low-level, audio output, 1-391
speed, T-96
varying-frequency alarm, II-579
water-level sensors (see fluid and moisture detectors)
water-temperature gauge, automotive, V -44
wattmeter, 1-17
wave-shaping circuits (see clso waveform generators), JV-646-651
capacitor for hizh-slew rates, IV-650
clipper, gatch-free, IV-648
flip-flop, S/R, TV-651
harmonic generator, IV-649
phase shifter, IV-647
rectifier, full-wave, IV-650
signal conditioner, IV-649
waveform generators (see also burst generators; function generators; sound generators: square-wave generators; wave-shaping circuits), II-269, II-272, V-200-207
AM broadrast-band, N-302
$\mathrm{AM} / \mathrm{F}, 455 \mathrm{kHz}, \mathrm{N}-301$
audio, precision, IIL-230
four-output, III-223
harmonic gererators, 1-24, III-228, [V-649
high-frequency, IT-150
high-speed generator, I-723
pattern generator/polar-to-rect. converter, V-288
precise, II-274
ramp generators, $1-540,71-521-523$, III-525-527, IV-443-447
555 based, V-203
accurate, IIL-626
integrator, initial cordition reset, III-527
linear, IT-270
variable reset level, II-267
voltage-controlled, II-523
sawtooth generator, ILI-241, IV-444, IV-446, V-204, V-205, V-491
sine-wave generators, IV-505,
V-506, V-541, V-542, V-543, V.544
$60 \mathrm{~Hz}, \mathrm{IV}-507$
audio, II-564
LC, $\mathrm{V}-\mathrm{SO} 7$
LF, IV-512
oscillator, audio, ill-559
square-wave and, tunable oscillator, $\mathrm{ITI}-232$
V.er audio tone, IV-508
sune/square wave generators, $1-65$, III-232, IV-512
square-wave generators, II-594-600, III-225, III-239, III-242, IH-583585, IV-529-536, V-568-570
$1 \mathrm{kHz}, \mathrm{V}-6 \mathrm{ak}$
2 MFz using two TTL gates, II-698
555 timer, II-565
astable circuit, $1 \mathbf{V}-534$
astable multwibrator, $11-59$ ?
CMOS 255 astable, true ral-to-rail, IT-596
duty-cycle multivibrator, 111-50percent, III-584
four-decade design. V-585
high-current ascillator, III-585
line frequency, IT-599
low-frequency TTL oscillator, 11-595
multiburst gencrater, II-88
multivibrator, IV-5:36
oscillators, I-613-614, I-616, II-596, IT-597, II-616, TV-532, [V-5.33
phase-tracking, three-phase, 11-608
pulse extractor, III-584
quadrature-outpres ostillator, III-585
sine-wave and, tunable oscillator, III-232
trree-phase, II-600
tone-burst generator. smgle timer IC, II-89
triangle-wave and, III-225, IH-339, III-242
TTL, LSTTL, CMOS designs, 1V-530-632
variable duty-cycle, $\mathrm{N}-583$
variable-frequency, IV-535
staucase generators, I-730, II-601-602, III-586-588, IV-443-447
stepped wavelorms, IV-447
sweep generators, I-472, III-438
triangle wave, III-234, V-203, V -205, V-206
square wave, $1-726,111-225$, IIL-299, II - $242, \mathrm{~V}-206$
timer, linear, III-222
two-function, III-234
VCO and, IIT-737
waverneter, tuned RF, IV-302
weather-alert decoder, IV-140
weight scate, digital, IT-398
Wheel-of Fortune game, IV-200
whistle, steam locomotive, LI-589. III-568
who's first gane circuit, 111-244
wide-range oscillators, I-69, T-730, IIT-425
wide-range peak detectors, 111 - 152
hybrid, $500 \mathrm{kHz}-1 \mathrm{GHz}$. $11 \mathrm{I}-265$
instrumentation, $11-281$
miniature, III-265
UHF amplifiers, high-performance FETs, III-264
wideband amplifiers
low-noisellow-drift, 1-38
two-stage. I-689
rf, JV-489, IV-490, IV-491
HF, N-492
JPET, TV-493
MOSFET, IV-492
two-CAB100 op amp desisxn, IV-491
urity gair invertius, $\mathrm{I}-35$
wideband signai splitter, II-582
wideband two-pole high-pass filter, II-215
Wien-bridge filter, III-6e9
notch filter, 11-402
Wien-bridge oscillators, I-62-63, I-66, I-70, II-566, III-429, III-558, N-371, N-377, N-511, V-415, $\mathrm{V}-419, \mathrm{~V}-541$
CMOS chir, in, II-568
low-distortion, thermally stable, H1-557
low-volatge, III-432
sine wave, $\mathrm{I}-56, \mathrm{I}-70,11-566, \mathrm{~V} 510$. TV-513
single-supply, III-558
thermully stable, IJ-557
Liree-decade, JV-510
variable, III-424
very-low-distortion, IV-513
wind-powered battery charger, II-70
windicator, $1-330$
window circuits, Il 106 , III 90, III-776-781, , V 655-659, V-673-674
comparator, IV-656-657, IV-658, [V-659, V-299, V-674
Hetector, I-235, IIT-776-781, IV-658
digital frequency window, 111-777
discriminator, III-781, V-674
gencrator, IV-657
hugh-input-impedance, Il-108
windshield wiper circuits (see
automotive circuits)
wire tracer, $11-343$
wireless microphones (see microphones)
wireless speaker system, IR, III-272
wiring
ae outlet tester, V-318
ac wiring locator, V 317
two-way switch, V 591
write amplifiers, III-18

## X

xenon flash trijger, slave, ILi-447
XOR gates, IV-107
complementary signals generator, 115-228
oscillator, III-429
up/down counter, III-105

## Y

yelp oscillator/siren, II-f777, III-562

## z

280 clock, II-121
zappers, battery, II-64, II-66, II-68 zener diudes
clipper, last and symuetrical, IV-329
increasing power ratins, 1-496, 11-485 limiter using one-zener design. IV257
test set, V-321
tester, T-400
variable, I-507
voltage regulator, programmable. IV-470
zero crossing detector, $1-732,1-733$, 1I-173
zero meter, suppressed, I-716
zern-point switches temperature control, III-624 triac, ll-311
zero-voltage switches
closed contact half-wave, III-412
solld-state, III-410, III-416

# COMPLETE YOUR ELECTRONIC CIRCUITS LIBRARY WITH VOLUMES 1 THROUGH 4 



If you can imagine it, it's in here. The more than 4,000 circuit schematics found in volumes 1 through 4 of the Encyclopedias of Electronic Circuits will complete your Electronic Circuits library, providing all you need on any circuit Imaginable. You'll get clear. concise data on each circuit's configuration and function for your projects, designs or applications. Each guide is meticulously indexed and cross-referenced for easy application.

## YOU GET:

## Volume 1:

Featuring circuits from alarms to zero cross detection 768 pp. 1.762 illus. \#157332-4 \$60.00

## Volume 2:

Circuits covered range from fiber optics to thermal reactors $732 \mathrm{pp} ., 1,100$ illus \#155949-3 \$60.00

## Volume 3:

Covers everything from antenna to voltage circuils.
840 pp . 1,300 illus \#155814-4 \$60.00

## Volume 4:

Volume 4 How-tos on using: automotive, security, computerreloted, audio. ultrasonic, and video circuits. Also included is an Index to find the circuits you need in any of the four volumes. 768 pp., 1,000 illus $\# 011042-5 \$ 60.00$.
$\$ 39.951$
"Outstanding. . . All of the circuits use the latest in state-of-the-at technology and my be used in the home or industry."
-Electron
"A virtual treasure-house of circuits . . an invaluable reference foal for every hobbyist, technician, student, and design protessional."
-Electronics for You

> SAVE 40\%-Get thousands of circuits and project ideas in the 4-volume set for only $\$ 149.95$ (regularly \$240.00)


3 Easy Ways to Order

1. CALL 1-800-822-8158
2. FAX 1-717-794-5291
3. Mall Thls Order Form to: MeGrow-Mill, Ine. Blue Ridge Summit, Pa. 17294

| Boan | Oty | Title | Price |
| :---: | :---: | :---: | :---: |
| \% 5861488 |  | Encyetopedia ot Flectionic Clicums Vol If |  |
| 157312 4 |  | (aypempedia al Electromi Citcuits Vol I |  |
| 155949 3 |  | Increlodetia of Electronic Circuits vol 2 |  |
| 1558144 |  | Erayelapedia of Electronic Criculs Vol 3 |  |
| 00110425 |  | Eneyctopedia of Electronic Cricutis Voi 4 |  |
| Charg |  |  | \$5.75 |

Acct $\#$ $\qquad$ Exp $\qquad$
Signature
$\square$ Check or money order enclosed made payable to McGraw-Hill

Name $\qquad$
Address
City $\qquad$
State $\qquad$ Zip $\qquad$
Signature
(ffler invalid without signature) Codo $=S$ P94ZZA
-Ortefl outile the U.S. and Cansde muat be propald in U.S. collars drawn on U.S banka and inctude an acditional $\$ 6.00$ for pootige and handing.


[^0]:    ELECTRONIC ENGINEERING

