

RMC "HEAVY DUTY" BY-PASS DISCAPS

SPECIFICATIONS

POWER FACTOR: 1.5% MaX. @ 1 KC (initiol)

POWER FACTOR: 2.5\% Max. @ 1 KC (after humidity)
WORKING VOLTAGE: 1000 V.D.C.
TEST VOLTAGE (FLASH): 2000 V.D.C.
LEADS: No. 22 tinned copper (. 026 dia.)
INSULATION: Durez phenolic-vacuum waxed
INItIAL LEAKAGE RESISTANCE: Guaranteed higher than 7500 megohms

AFTER HUMIDITY LEAKAGE RESISTANCE: Guaranteed higher than 1000 megohms

Type B DISCAPS meet or exceed all EIA RS-198 specifications for Z5U ceramic capacitors. Designed for by-passing, coupling, or filtering applications, Type B DISCAPS are manufactured in capacities between .00015 and .04 MFD.

A heavy ceramic dielectric element provides a safety factor where steady or intermittent high voltages occur. Type B DISCAPS show a minimum capacity charge between $+10^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ (see curve).

ELECTRONIC INDUSTRIES

HERE it is! The Ninth Annual Microwave Issue of Electronic Industries.

On our cover we have tried to capture the latest in the way of microwave developments. It shows an optical maser, one using ruby to be specific. The background depicts the energy level diagram of the ruby.

Microwaves

 in 1962!In our lead story, Dr. Tomiyasu treats briefly on the history of the industry, dwells at length on the most recent de-
velopments, and rationalizes on present day speculation. All in all, technologically, he considers microwave as a most fertile field. Dr. Tomiyasu's article "Microwaves, Past, Present, and Future" starts on page 90.

But, although the field is so promising in this aspect, there are some clouds. These are on the business horizon. It is generally conceded that none of the big manufacturers is getting a reasonable return on his investment in the commercial microwave field. This is due to bad pricing policies rather than to special features which customers may require.

Commercial customers are somewhat like government customers-they place too much emphasis on the low bid and too little on reliability and overall cost including maintenance.

Even the largest suppliers of commercial microwave systems are making only a marginal profit when engineering is considered. One of the big reasons for this lack of profit is that each system is treated as something new. Apparently very little thought is given to standardizing the components and the systems. In other words, it is a job shop operation instead of a production line.

In a recent report, "Microwave Communications: Commercial Possibilities in
the 60 's," members of our industry were warned not to expect too much from private microwave communications over the next two or three years.

This report was prepared and published by eight graduates of the Harvard Business School under the name of Micom Associates, P. O. Box 1306, Grand Central Sta., New York 17, N. Y.

In support of what we have just stated, the report goes on to state that the commercial end of the microwave business has been characterized by bitter competition. Profits, the report feels, among the systems manufacturers, selling equipment to the private market are negligible because there are too many in too small a market.

The report suggests that the manufacturers can help to ensure survival by a combination of right-of-way, military, and common carrier business to support their research and development programs.

Another interesting tid-bit from this report is that a recent study shows that there is little immediate demand among businessmen for high-speed data transmission facilities.

To round out this issue, and to help a little in the standardization of microwave products, we present our verified directory of manufacturers and their specific products in this field. Also, considerably expanded, and equally import-ant-up-dated, is our Summary of Microwave Electron Devices. This chart, beginning on page 139, gives the complete specifications of power generating or amplifying devices in the region above 500 MC .
R. G. S.

ROBERT E. McKENNA, Publisher BERNARD F. OSBAHR, Editor

CREIGHTON M. MARCOTT Managing Editor RICHARD G. STRANIX
JOHN E. HICKEY Jr. Associate Editors SMEDLEY B. RUTH LOUIS S. GOMOLAK Assistant Editors
DR. ALBERT F. MURRAY Contributing Editor
ROLAND C. DAVIES Washington News Elmer Ketterer IDA M. GOOD Editorial Secretary MAE E. MOYER Readers' Service

EDITORIAL CORRESPONDENTS
Washington-1093 National Press Bldg. GEORGE BAKER
NEIL R. REGEIMBAL
BUSINESS DEPARTMENT
ELMER DALLTON
Circulation Manager
DONALD J. MORAN Marketing Manager GORDON HERNDON Production Manager
REGIONAL SALES MANAGERS
Philadelphia (39)-56th \& Chestnut Sis. (Areo Code 215) SHerwood 8-2000 JOSEPH DRUCKER
HERMANN W. BOZARTH New York (17)-100 Elified Advertising) (Area Code 212) OXford $7-3400$

GERALD B. PELISSIER Metropoliton N. Y.
MENARD DOSWELL III
Chicago (1)-360 N. New England (Area Code 312). RAnchigan Ave. 2) RAndolph 6-2166

Cleveland (15) -930 GEORGE H. FELT (Area Code 216) SUperior I-2860 Los Angeles SHELBY A. McMILLION (Area Code 213) DUnkirk $7-4337$ San Francisco (3)- WESLEY OLSON (Area Code 415) UNderhill I.7107
Atlanta (9)-1776 Peachtree DON MAY N.W. 875-1255
Dallas (6)- JOHN W. SANGSTON
JOHN W. SANGSTON
(Area Code 214) Way at Milton
HAROLD E. MOTT
EUROPEAN SALES OFFICES
London. S.W. (1)-67/68 Jermyn St:
MAX F. HOLSINGER
Dusseldori-Hüttenstrasse 17
Am Ernst-Reuter-Plotz
MAX F. HOLSINGER
JOHN H. KOFRON
Chilton Research Director

> G. C. BUZBY, President
> Vice Presidents: P. M. Fahrendorf, Leonard V. Rowlonds, George T. Hook, Robert E. McKanna; Treasurer, Stanley Appleby: Secretary, James A. Montgomery: Directors: 'Maurice E. Cox, Fronk P. Tighe, Everit B. Terhune, Jr., Russell W. Case Jr., George E. Cameron, William H. Vallar.
> I. C. Holloway, Asst. Secretary.

Coble Address-"CHILTON PHILADELPHIA"
ELECTRONIC INDUSTRIES, November, 1961. Vol. 20. No. 11. A monthly publication of Chilton fices at Chestnut \& 56 th Sts., Phila. 39 Po. Controlled circulation postage paid of Philadelphia, Pa. Si a copy; Direćtory issue (June). $\$ 5.00$ o copy. Subscription rotes U. S. and U. S. Possessions: 1 yr. $\$ 10.00$ 2 yrs. $\$ 18.00$. Canada 1 year, $\$ 12.00$ i 2 yrs. $\$ 20.00$. All other countries year, $\$ 18.00$: 2 yrs. $\$ 30.00$. Copyright 1961 by Chilton Compony. Title Reg. U. 5 . Pat. Off. Reproduction or reprinting prohibited except by written
outhorization.

ELECTRONIC INDUSTRIES

Vol. 20, No. 11

November, 1961
COVER: In this month's foreground we portray the optical maser. As the helical flash lamp "pumps" (concentric rings) the chrominum atoms of the ruby rod to higher energy levels, the wave grows. Mirrors reflect the wave (arrows in rod) and it continues to grow. The coherent output beam is emitted through a partially silvered mirror. In the background is the energy level diagram of the ruby. The uby's chromium atoms are pumped to one of two energy levels; fall to a metawhen stimulated by when stimulated by other chromium atom photons, emit photons of a characteri ic wavelength and fall to the ground state

MONTHLY NEWS ROUND-UP

Radarscope: What's ahead for the Electronic Industries 4
As We Go To Press . 7
Electronic Shorts . 8
Coming Events . 11
Electronic Industries News Briefs 21
Snapshots . . . of the Electronic Industries. 22
TOTALS: Late Marketing Statistics 27
International News 32
Next Month in Electronic Industries . 89
Washington News Letter 220

Ediforial: Microwaves In 1962!.. 1
Microwaves-Past, Present, and Future Dr. K. Tomiyasu 90
Radar Antenna Test Load J. Russell 94
Modern TWT Focusing Methods............................. C. L. Cuccia 96 High Power Microwave Component Testing

Thermal Drift in Microwave Power Meters.........R. F. Pramann 102
Eliminating Distortion in the TWTDr. W. R. Ayers 106
Equating 'Noise-Temperature' with 'Noise Figure'
What's New
110
High Power TWT's with Wide BandwidthsA. W. Scott 112
Solid State Control of MicrowavesDr. R. W. Damon 115
Engineer's Notebook \#60 Transmission Line Nomograph.A. Lytel 117
NEREM 61-Microwave Clearing House............................. 119
1962 Summary of Microwave Electron Devices 139
1962 Directory of Microwave Manufacturers
International Electronic Sources203

Electronic Operations 213
Measurement of VSWR in Coaxial Systems
...L. O. Sweet and R. A. Lebowitz 214
Professional Opportunities... 225
Cataloging Technical Articles.............................. S. C. Gioia 226
NEW PRODUCTS \& TECH DATA
New Tech Data for Engineers . 122
New Products . 130

DEPARTMENTS

Tele-Tips 44
Letters 55
Personals 66
Books 72

Industry News 200
Systems-Wise 213
Cues for Broadcasters 223
News of Mfrs. Representatives. 232

Highlights

of this issue

Microwaves-Past, Present, and Future

page 90
Being a technique, microwaves are useful in many fields of technology, such as radio, physics, and optics. The areas which deserve the most attention, because of growth potential, are high power microwaves and optical masers.

Radar Antenna Test Load

page 94
Designed for use in final radar system tests, this space type load presents a constant magnitude, variable phase, reflection to the transmitter. It is useful in studying the effects of transmitter-to-antenna mismatch caused by abnormal weather, such as icing conditions.

Modern TWT Focusing Methods

page 96
The heart of many microwave systems is the traveling-wave tube. Integrally packaged TWT's used today employ three focusing techniques. The features of each are presented here, in a concise manner, as an aid to proper selection.

High Power Microwave Component Testing

page 100
The recent experiments of Frankford Arsenal have shown that high power RF Testing of microwave components is necessary to ensure that performance is accurately assessed.

Thermal Drift in Microwave Power Meters

page 102
Although bolometer type microwave power meters have been around for 15 years, not till recently have compensated devices been designed to overcome their thermal drift sensitivity. Here's how to achieve a realistic design goal of 100 times less detector mount drift than previously available.

Eliminating Distortion in the TWT

page 104
Strange that with an art advanced to tubes with octave bandwidths, megawatts of peak power, and 2 db noise figures, we should apparently step backwards to a 10% bandwidth and 5 kw peak power. But the reason is simple-the new systems can tolerate very little distortion. Here's one approach!

Equating 'Noise-Temperature' with 'Noise Figures' page 108

With the increased use of masers and parametric amplifiers, the term "effective noise temperature" is replacing "noise figure." Since this causes two sensitivity figures, there is much confusion-mainly in converting equations with one term to the other. Here's how to use each -and how the relationship is derived.

High Power TWT's
page 112
In the past, traveling-wave tubes were available for either high power or wide-band applications. Now, with new techniques described here, both desirable features are available in one package.

High Fower TWT's

Microwave Component Testing

Flat Response TWT

RADARSCOPE

SPACE KITCHEN

How to hold food down while it is being cooked under conditions of weightlessness is just one of the problems that is solved in this experimental space kitchen designed by Whirlpool Corp. This model is a permanent part of the Aries space station, featured in the "Man in Space" exhibit at N.Y.'s Museum of Natural History.

BIOMEDICAL ENGINEERING seminar course, the first of its kind in the U.S., is being given this semester at the Univ. of Rochester. The biomedical program of research and graduate training was recently established at the University of Rochester under a 5-year National Institutes of Health grant totaling $\$ 254,407$. The program of graduate studies will lead to a Ph.D. degree in engineering with special application in the fileds of medicine and life sciences.

UNITED KINGDOM EXPORTS of electronic products in the U.S. in the first quarter of this year totaled over $\$ 4.5$ million, up 6% from the same period of 1960, according to the Electronics Div., Business \& Defense Services Administration, U.S. Dept. of Commerce. Exports of record playing mechanisms accounted for over one half of the total value of electronic products to the U.S. They increased by 26% in this first quarter, but exports of record players, radios, and phonographs dropped sharply. The United Kingdom exports of electronic products to all countries during January to March 1961, totaled 48.7 million, a 26% increase over the 38.5 million total in the first quarter of 1960 . The U.S. was the largest single market, followed closely by Canada.

RESEARCH AND DEVELOPMENT performed by private industrial firms in 1960 amounted to 10.5 billion, according to the National Science Foundation. This represented a 10% increase over the 9.6 billion total for 1959. Of the 10.5 billion, 58% was financed by the Federal Government. A few industries far surpassed all others in funds for R\&D performance; the aircraft industry with 3.5 billion and the electrical-electronic equipment and communications, 2.4 billion.

FUEL CELLS will serve as power sources in special applications within the next 5 years, if the present heavy research is continued. And fuel cells to furnish electricity at home are "entirely conceivable." This opinion was delivered to the AIEE Fall General Meeting by James D. Flynn of Cincinnati Gas \& Electric Co. Backing up this view, he pointed out that more than 60 government and industrial fuel cell projects, costing $\$ 28$ million annually, are now under way.

NEW SATELLITE INSTRUMENTATION is under development at Armour Research Foundation for the Air Force. Instrumentation will measure manmade microwave frequency interference encountered by space vehicles and communication satellite. When put into orbit, electronic gear will measure electromagnetic environment in outer space, providing information for selection of frequency bands for future space communications systems.

LUNAR ROVERS

At the American Rocket Society exhibitions in New York's Coliseum, Mrs. Judith Wrona introduces two of RCA's strange moon devices, known as "Lunar Rovers," designed for exploration on the Moon.

THE RENEGOTIATION BOARD has adopted a streamlined single form to be used by defense subcontractors in reporting renegotiable business. The board currently receives approximately 4,000 filings per year from firms having an excess of $\$ 1$ million of renegotiable business in a fiscal year.

SOLDERING ALUMINUM to stainless steel at low temperatures is now possible through a fluxfree method developed by the Atomic Energy Commission. The new solder joint provides a gas-tight durable bond. Using other soldering techniques, occlusion of flux invariably destroys the joint through electrolytic action.

NEW MATERIALS RESEARCH program has been initiated on a $\$ 11$ million contract to the University of North Carolina. The Advanced Research Projects Agency of the Dept. of Defense is putting up the money. The government is establishing eight of these inter-disciplinary laboratories at universities around the country. These new ventures in which the universities will assemble faculties and students and create advanced facilities, will, for the first time, combine modern progress and solid state physics, chemistry, metallurgy, mechanics, applied mathematics and other related fields.

MIAMI'S MUCH-TROUBLED CHANNEL 10 will have a new licensee next month. The FCC has refused to renew the license of Public Service Television, Inc., a sub. of National Airlines, which has been transmitting on Channel 10 for 4 years. It is the first time the Commission has taken away a license of an operating television broadcaster. The reason given was its back-door tactics in obtaining the channel. Of the four original applicants, the FCC found that three had employed unethical methods in competing for the franchise. Only one, L. B. Wilson, Inc., was found free of taint.

THE CHICAGO AREA ELECTRONICS INDUSTRY heard the reports at the National Electronics Conference that they are not keeping pace with East and West Coast industries in advanced research developments. The results of a Northwestern University survey point out definite deficiencies in the Chicago Area Research in the new areas of electronics such as solid-state components, electronic data processing, microwave systems, weapon systems, command and control systems, and sophisticated instrumentation. The lack of emphasis on R\&D accounts for some of the area's failure to recruit and retain the outstanding researchers and scientists, the report indicates. The situation is attributed in part to the lack of adequate programs with local universities for company-sponsored advanced degrees, cooperative research projects, and participation in research seminars.
new ceramic-metal coatings called Nucerite are available on limited production basis from Pfaudler Co. Nucerite coating is a ceramic-metal composite consisting of ceramic structure characterized by large number of very small crystals physically and chemically bonded to structural substrate. They possess good resistance to high temperature, corrosive attack at temperatures between 500° and $1500^{\circ} \mathrm{F}$.

CURRENT R\&D in the field of automatic character reading equipment for data processing machines is characterized as "progress, paradox and promise" by the National Bureau of Standards. Progress, says NBS, has not been what might be expected, considering the great potential of this equipment. The Bureau has released a new state-of-the-art report, automatic character recognition, which is available through the Office of Technical Services, Business \& Defense Administration, U.S. Dept. of Commerce, Washington 25, D.C. While admitting that "there has indeed been progress," it has been rather less than might have been expected because "the domain of potential applicability (of such technique) is so widespread."

FAR OUT POWER

Technician at Hughes Aircraft Co.'s Research Lab., Malibu, Calif., works on an experimental ion engine. Designed for powering exploratory space flights to the farthest planets, the engine uses electrostatic propulsion to gain thrust by ionizing cesium atoms and accelerating them from the rear of the engine.

Powerlytic* Capacitors are packed with capacitance!

Designed specifically for applications requiring maximum capacitance in small physical size, Sprague Type 36D Aluminum Electrolytics find wide use in power supplies for digital computers, industrial controls, high-gain amplifiers, and allied equipment. Furnished in case sizes ranging from $1^{3 / 8^{\prime \prime}}$ dia. x $21 / 8^{\prime \prime}$ long to $3^{\prime \prime}$ dia. $\times 45 / 8^{\prime \prime}$ long, Powerlytic Capacitors are available with capacitances which were previously impossible to obtain in the various case sizes.

Engineered for 65 C Operation

In Powerlytics, Sprague's many years of research, design, and production experience have produced a capacitor which allows the equipment designer maximum space economy for operating temperatures up to 65 C . This encompasses the great majority of applications in transistorized digital equipment and similar apparatus.

Outstanding Performance Characteristics

Powerlytic Capacitors have not only low ESR and low leakage currents but offer extremely long shelf life as well. Furthermore, they have the ability to withstand unusually high ripple currents.
Superior Seal and Safety Vents
Type 36D Powerlytics use the most reliable seal that Sprague has developed for aluminum electrolytic
capacitors. This consists of crimping a beaded aluminum can onto a rubber gasket recessed in a rigid molded cover. Pressure-type safety vents employing silicone rubber are used on all case covers.

Choice of Terminal and Insulating Tube Styles
Tapped terminal inserts, often preferred for strap or bus bar connections, are available as well as solder lug terminals for use with permanently wired connections. In addition to the standard bare case, Powerlytic Capacitors may also be obtained with a new clear skin-tight plastic tube which adds very little to the bare case dimensions. They are also available with a Kraftboard tube.

Broad Range of Standard Ratings

Sprague's standard line of Powerlytic Capacitors includes 183 ratings covering capacitance values from 45 to $150,000 \mu \mathrm{~F}$, in voltages from 3 to 450 WVDC. Each rating is the maximum capacitance available for a given case size.

For complete technical data on Type 36D Powerlytic Capacitors, write for Engineering Bulletin 3431 to Technical Literature Section, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.
*trademark

"Sprague' and "(1)" are ragitered tradamarks of the Spratue Electric Co.

As We Go To Press

Univac Dedicates Engineering Center

Remington Rand Univac recently dedicated their new engineering center in Blue Bell, Pa. The $\$ 20$ million research center, containing 300,000 square feet, employs over 1,050 people. Of this total 700 are engineers, scientists and technicians working in 25 separate laboratories. They are engaged in basic and advanced research, product design, quality assurance and human engineering projects.
Speakers at the dedication ceremonies included Pa. Lt. Gov. John Morgan Davis, Dr. Gaylord P. Harnwell, president of the University of Pa.; Dause L. Bibby, president of the Remington Rand division of the Sperry Rand Corp.; and J. Presper Eckert and Dr. John W. Mauchly, co-inventors of the Eniac and Univac computers.

GEM FACTORY

Scientist observes growth of synthetic ruby crystal through a flame fusion process at Hughes Aircraft Company's research labs at Malibu, Calif. The labs make experiments with ruby gems for use in its laser, a device that emits a "coherent" light beam.

Form Data Systems Group

Radio Corporation of America has formed a data systems division in Van Nuys, Calif. It has been organized out of the West Coast missile and surface radar division which for the past two years has been operating out of the Van Nuys plant. The new name will replace that formerly used and the new division will absorb activities of the former division. Harry R. Wege has been named vice president and general manager of the division.

GUN CONTROL SYSTEM

Engineers use Servoscope (${ }^{(1)}$ servo system analyzer to make dynamic analysis of tank gun elevating and turret traversing control system developed by Minneapolis-Honeywell. Test instrument made by Servo Corp. of America, Hicksville, L. I., N. Y., was key check-out for analyzing electrical characteristics and performance of gyroscope-stabilized "dynamic gun/turret control system."

Railway Expands Microwave System

GE has been contracted to expand microwave facilities of the Southern Railway System. The railroad is already engaged in installing the largest industrial microwave system in the U.S.

GE's Communication Products Department, Lynchburg, Va., will supply a multi-channel transistorized communications design built for high channel capacity. It will be used in a new microwave network to be installed by Southern between Cincinnati, Ohio; Atlanta, Ga.; and Birmingham, Ala.

Midget MISSILE MASTER Accepted by the Army

A midget MISSILE MASTER, much cheaper than its large size counterpart and which can be operated with a tremendous saving in electric power and personnel, has been accepted for use by the Department of the Army. Installation of the first of 19 such pocket-sized air defense coordination systems, designed to help protect military installations, or cities in the 600,000 population class, has been completed.

The new transistorized system, called BIRDIE, processes and distributes information about aircraft to guided missile batteries and coordinates Nike Ajax and Nike Hercules missile fire. It can operate independently in its own area or as part of an over-all system. The average Martin Co. BIRDIE costs approximately half a million dollars.

Jet Simulator Contract Awarded

A contract for more than $\$ 1,000$,000,000 has been received by the Link Division of General Precision, Inc., Binghamton, N. Y., from United Airlines for the manufacture of a jet simulator of the Boeing 727 turbo-jet transport.

United Airlines is currently operating two Link DC-8 simulators and a Link 720 simulator at their Denver, Colorado training center. This center has one of the world's largest concentrations of electronics equipment for flight crew training.

More on Page 8

MODEL SATELLITE

Bell Telephone Laboratories engineers B . R. Cheo (left) and W. D. Baker prepare developmental model of a Bell System communications satellite for transmission experiments. The satellite is scheduled for launching next spring.

Electronic

SHORTS

- Largest commercial sale of electronic data processing equipment ever made, and the signing of a patent licensing and technical information agreement, have been announced by the Radio Corporation of America and Compagnie des Machines Bull of Paris, France. Under the multimillion dollar international agreement, Machines Bull has placed an initial order with RCA for the purchase of a minimum of 50 and a maximum of 100 RCA data processing systems.
- A technical study to establish requirements for an airborne data processing system for fixed-wing anti-submarine warfare aircraft has been awarded to Loral Electronics Corporation by the U. S. Naval Air Development Center, Johnsville, Pa. Two subcontractors, Cornell Aeronautical Laboratories, Buffalo, N. Y., and Amelco, Inc., Los Angeles, Calif., will assist in the study.
- Bureau of Naval Weapons has awarded Vocaline Co. of America, Inc. a contract to operate and maintain a quality control test range for sonobouys at the company's facilities in Maine. Sonobuoys are electronic submarine detecting devices used in anti-submarine warfare.
- Page Communications Engineers, Inc., will design and build two longdistance VHF ground-air-ground antenna arrays for the Federal Aviation Agency. They will be used in tropospheric-scatter experiments to determine if this type of communications can be used in long-distance air traffic control.
- A manipulator designed to operate in outer space has been developed by The General Mills Electronics Group at Minneapolis. Design studies have established the feasibility and delivery of a remotely controlled manipulator which could operate on the surface of the moon.
- World's most powerful ion accelerator is now being installed by Langley Research Center of the National Aeronautics \& Space Agency, Langley Field, Va., and will be used to study the effects of radiation in space on space vehicle equipment. The electron beam accelerator was manufactured by Radiation Dynamics, Inc., Westbury, N. Y.
- Optics Technology, Inc., Belmont, Calif. has received an Air Force contract calling for research and development in infrared fiber optics. The project will include investigations in methods of extending coated and uncoated crystalline fibers, methods of hot drawing coated fibers, and the fabrication of infrared fiber optics devices.
- The Armament Div. of the Universal Match Corp., St. Louis, Mo., has received a $\$ 2.1$ million contract from the Army Ballistic Missile Agency (ABMA) for quantities of Transporter-Erector-Launchers (TEL) for the Pershing Missile. The rugged mobile units are designed for fast and efficient handling and launching of the Pershing, a solid propellant sur-face-to-surface ballistic missile.
- U. S. Air Force has selected Federal Electric Corp., service associate organization of I. T. \& T., as prime contractor for tropospheric-scatter communication equipment for use in Europe. The multi-million dollar project will provide tropospheric-scatter communications to augment existing Air Force communication facilities.
- A study contract for design of a new electronic aid to aviation safety has been awarded The Martin Company's Orlando Division by the Federal Aviation Agency. Contract involves design of an automatic method for transferring aircraft in flight from the control of an air route traffic center to an airport control tower.
- Three Two-Way Doppler Tracking Systems for shipboard operation on the Pacific Missile Range will be produced by General Dynamics/ Electronics, Rochester, N. Y. The systems will include tracking antennas, UHF transmitters, extremely sensitive phase-lock receivers, and data processing and recording equipment.
- NASA has awarded Electro-Optical Systems, Inc., Pasadena, Calif., a contract for a feasibility study of a laser beacon for daylight tracking and navigational purposes. Work will be performed by the company's Quantum Physics Division.

Sampler Explores Upper Atmosphere

Successful operation of an advanced upper atmosphere sampling system has been announced by the Aerolab Development Co. in Pasadena, Calif. Known as the Cryogenic Sampler, the collector was rocket launched at White Sands Proving Ground to 50 miles altitude by the U. S. Navy Aerobee Launch Facility. It was developed under a contract to Aerolab from the Geophysics Research Directorate of the Air Force Cambridge Research Labs.

After the nose cone of the rocket is discarded, the door of the sampler is opened at about 25 miles altitude. All air, particles, and organisms encountered by the open diffuser mouth as the rocket rises are gulped in and stored. As the volume of the sample chamber is limited, the sample is reduced in size by cooling down the atmospheric gases as fast as they come in to liquid hydrogen temperature. The total sample in the form of frozen slush and some remaining gases can be contained in the sampler, although in rising to 50 miles everything in 21,000 cubic feet of air has been collected.

At the end of sampling the door is closed and the sampler returns to ground by parachute. The system is designed to retain the sample under high pressure as it warms up and returns to a gas. Laboratory analysis can later be performed.

U of P Receives Large Contribution

University of Pennsylvania has received contributions having a value of more than $\$ 1$ million from the Remington Rand division of Sperry Rand Corp. Contributions were in appreciation of the University's pioneering role in the developing of the electronic computer industry.

A Univac Solid-State 80 computing system was the major contribution. It will supplement a Univac I which was presented to the University by Remington Rand in 1957.

In addition to the new computer system, four fellowship grants will be provided. Also, a group of advanced computer experts will be assigned to the University for the advancement of the institution's computer research and education programs.

we don't know yet all the things

*MYKROY
glass bonded mica

can do

but we do know
it gives perfect dimensional stability to printed circuits, switching devices, slip rings, and commutators

- . . and to every other component where you need stability.
Mykroy glass-bonded mica has a host of unique properties. It doesn't bend, warp, or shrink. It won't change its shape. Mykroy is an arc-proof, fire-proof, moisture-resistant, and radiation-resistant ceramoplastic. Thanks to metal-cladding techniques developed exclusively by Molecular Dielectrics, you can now build this unique combination of Mykroy properties into your circuitry, printed, modularized, miniaturized, and otherwise. You can buy Mykroy in metal-clad sheets and metal-clad rods, or give us your prints and we'll make the component for you - one or thousands of perfectly identical machined or molded parts.
If you need design help, speak up. We'll work with you or for you. Or we'Il send you our designer's sample kit . . . then you can do your own experimenting with metal-clad Mykroy, etchants, and resists:
molecular dielectrics, inc. IO: CLIFTON BLVD. CLIFTON.N.J. Electronic Mechanics, Inc. Mykroy, Inc. Mykroy Mfg. Co., Inc.

If you're now designing for thermoelectric heating-Cooling

+

Now is the time to contact STEVENS FOR THERMOSTATIC CONTROLS

Stevens Type MX thermostats, either hermetically sealed (left) or semi-enclosed (right), help you avoid complicated control circuits in thermoelectric devices.

One method is to apply a Type MX thermostat to the cold plate with a spot of epoxy and have the thermostat control the input, either through a relay or by controlling AC input to a rectifier which feeds the thermoelectric cooling unit. Simple and reliable? You bet. Inexpensive, too! Check us for full details while your product is in the design stage.

STEVENS manufacturing company, inc.

P. O. Box 1007 • Mansfield, Ohio

Coming

Events
 in the electronic industry

Nov. 7-10: Packaging Machinery Mfgs. Institute Show of 1961; Cobo Hall, Detroit, Mich.
Nov. 8-9: Symp: Prototype \& Short Run Tooling Methods: ASTME; Belmont Plaza Hotel, New York, N. Y.

Nov. 8-11: 62nd Mtg. Acoustical Soc. of America, the Tech. Committee on Sonics and Ultrasonics Eng'g., IRE (PGUE); Cincinnati, Ohio.
Nov. 9-10: Mtg. Operations Research Soc. of America; Jack Tar Hotel, San Francisco, Calif.
Nov. 9-10: 5th Annual Display of the Aerospace Electrical Soc.; Balboa Park, San Diego, Calif.
Nov. 9-11: 2nd Power Industry Computer Application Conf., AIEE; Chase Hotel, St. Louis, Mo.
Nov. 13-16: 7th Annual Conf. on Mag netism and Magnetic Materials, AIEE, AIP, ONR, IRE, Metallurgical Soc. of AIME; Hotel Westward Ho, Phoenix, Ariz.
Nov. 14: Symp. on Electronic Systems Reliability (MAECON scheduled only on even years), Kansas City Sec. IRE; Kansas City, Mo.
Nov. 15: Vinyl Plastics in the Household, N. Y. Sec. with Cooperation of Vinyl Plastics PAG; Statler-Hilton Hotel, New York, N. Y.
Nov. 15-17: 19th Annual Aerospace Electrical Soc. Display; Pan Pacific Auditorium, Los Angeles, Calif.
Nov. 15-18: Annual Mtg. Soc. of Naval Architects and Marine Engineers; Waldorf Astoria Hotel, New York, N. Y.

Nov. 16: 35th Annual Mtg. of NEMA; The Plaza Hotel, New York, N. Y.
Nov. 17-18: Mtg. American Mathematical Soc.; Milwaukee, Wis.
Nov. 20-21: 1961 Electron Devices Mtg.; IRE (PGED); Shoreham Hotel, Washington, D. C.
Nov. 24-25: American Physical Soc. Mtg.; Chicago, Ill.
Nov. 26-Dec. 1: Annual Winter Mtg. ASME; Statler-Hilton Hotel, New York, N. Y.
Nov. 27-Dec. 1: 28th Exposition of the Chemical Industries; Coliseum, New York, N. Y.
Nov. 30-Dec. 1: Conf. of Professional Group on Vehicular Communications, IRE; Radison Hotel, Minneapolis, Minn.
Nov. 30-Dec. 2: Conf. Technical Progress in Communication - Wire \& Cables Symp., U. S. Army (Sig. R\&D Labs.); Berkeley - Carteret Hotel, Asbury Park, N. J.

INTERNATIONAL

Nov. 8-10: Conf. on Non-Destructive Testing in Electrical Engineering, Institution of Electrical Engineers (BRIT.) ; London, England.
Nov. 13-18: 9th Factory Equipment Exhibition; Earls Court, London, England

Highlights of '61

Nov. 14-16: 1961 Northeast Electronics Research and Eng'g. Mtg. (NEREM), IRE; Commonwealth Armory and Somerset Hotel, Boston, Mass.
Dec. 12-14: 1961 Eastern Joint Computer Conf. AFIPS, IRE (PGEC), AIEE, ACM; Sheraton Park Hotel, Washington, D. C.

DECEMBER

Dec. 1: Plastics Screw Injection Molding, Cleveland Sec. SPE; Cleveland Eng'g. Soc. Bldg., Cleveland, Ohio.
Dec. 2-5: 5th Annual Internat'l. Visual Communications Congress, Soc. of Reproduction Engineers, AID, ARMA; Biltmore Hotel, Los Angeles, Calif.
Dec. 6-7: Symp. Electric Machining \& Forming, ASTME; Statler-Hilton Hotel, Hartford, Conn.

Highlights '62

IRE Internat'l. Conv., Mar. 2629, Coliseum \& Waldorf-Astoria Hotel, New York, N. Y.
WESCON, Aug. 21-24, IRE, WEMA; Los Angeles, Calif. Nat'l. Electronics Conf., Oct. 911, IRE, AIEE, EIA, SMPTE; Chicago Ill.
NEREM (Northeast Res. \& Eng. Mtg.) Nov. 13-15, IRE; Boston, Mass.

Dec. 6-8: 65th Annual Congress of American Industry, NAM; Waldorf Astoria, New York, N. Y.
Dec. 6-8: 19th Electric Furnace Conf., AIME; Penn-Sheraton Hotel, Pittsburgh, Pa.
Dec. 18: Wright Brothers Lecture, IAS; Washington, D. C.
Dec. 26-31: Annual Mtg. and Exposition of Science and Industry, American Assoc. for the Advancement of Science; Denver-Hilton Hotel, Denver, Colo.

Dec. 27-29: Mtg. of the American Physical Soc.; Los Angeles, Calif.
Dec. 27-30: Annual Mtg. American Statistical Assoc.; Roosevelt Hotel, New York, N. Y.

1962

Jan. 9-11: 8th Nat'l. Symp. on Reliability \& Quality Control, IRE; Statler-Hilton Hotel, Washington, D. C.

Jan. 29-Feb. 2: Winter General Mtg. \& Electrical Engineering Exposition, AIEE; Coliseum, New York, N. Y.

Feb. 6-7: Symp. on Redundancy Techniques for Computing Systems, ONR(ISB); Dept. of the Interior Auditorium, Washington, D. C.
Feb. 7-8: Automatic Production-Numerical Control, ASTME; StatlerHilton Hotel, Cleveland, Ohio.
Feb. 7-9: 1962 Winter Conv. on Military Electronics, IRE (PGME), L. A. Sec. IRE; Ambassador Hotel, Los Angeles, Calif.
Feb. 14-16: 9th Annual Internat'l. Solid-State Circuits Conf., IRE, AIEE, U. of Pa.; Sheraton Hotel and Univ. of Pennsylvania campus, Philadelphia, Pa.
Mar. 10-13: Internat'l. Watchmakers and Mechanical Instrumentation Cong.; Hotel Commodore, New York, N. Y.
Apr. 9-13: The Business Equipment Exposition, OEMI; McCormick Place, Chicago, Ill.
Apr. 11-13: 1962 Southwestern IRE Conf.; Houston, Tex.
Apr. 25-29: Western Space Age Industries \& Eng'g. Expos./Conf.; Cow Palace, San Francisco, Calif.
May 1-3: Spring Joint Computer Conf., AFIPS; San Francisco, Calif.
May 8-10: 1962 Electronic Components Conf., AIEE, EIA, IRE; Marriott Twin Bridges Motor Hotel, Washington, D. C.
June 17-22: Summer General Mtg. AIEE; Denver, Colo.
June 25-27: 6th Nat'l. Conv. on Military Electronics (MIL-E-CON); Shoreham Hotel, Washington, D. C.
Sept. 18-19: 1962 Conf. on Rectifiers in Industry, AIEE; Deshler-Hilton Hotel, Columbus, Ohio.
Oct. 7-12: Fall General Mtg. AIEE; Chicago, Ill.
Oct. 15-19: 17th Internat'l. Instru-ment-Automation Conf. \& Exhib. and ISA Annual Mtg.; Coliseum, New York, N. Y.
(Continued on page 12)

LONG LINES NEED STRONG SIGNALS

THE 3S-G SULICON
SEMICONDUCTOR STRAIN-GAGE

For remote pressure measurement via long lines-under water or above ground -you need a transducer that delivers a high-output signal without additional amplification. The only answer is the new Fairchild $3 S$-G. It has a 5 v. d.c. output. And it uses semiconductor materials with piezoresistive characteristics as a sensing element.

Extraordinarily accurate ($\pm .003 \% /$ degree F error band is not uncommon) in the roughest environment, the tough 3S-G has infinite resolution, self-contained calibration, temperature compensation, and unexcelled repeatability. It is also available with low output (5 mv . to 5 v . d.c.), low-pressure gage and absolute ($0-10$ to $0-100$ p.s.i.), high-pressure gage and absolute (0-100 to 0-10,000 p.s.i.), and highline low-differential (± 10 to $\pm 10,000$ p.s.i.d.). All versions operate from -65° to $250^{\circ} \mathrm{F}$ in practically all gaseous and liquid media, including liquid oxygen, strong alkalies, corrosive acids, and highenergy fuels. All are designed to replace strain-gage pressure transducers now being used by industry and the military.
For more information about the 3S-G sili-con-semiconductor strain-gage pressure transducer, write Dept. 51 El.

a Subsidiary of Fairchild Camera \& Instrument Corporation 225 PARK AVE., HICKSVILLE, L. I., NEW YORK 6111 E. WASHINGTON BLVD., LOS ANGELES, CAL.
another fine product of fairchild research

Coming Events

(Continued from page 11)

ENGINEERING EDUCATION

Short Courses af leading instifutions, of interest to Electronic engineers.

Michigan State University, East Lansing, Mich., Electrical Eng'g Dept. \& Computer Lab. Fall Quarter Seminar - Nov. 14: An Algebraic Compiler for the Mistic; Nov. 21: Factory Simulation by Computer; Nov. 28: A Drum Translating Compiler; Dec. 5: FM Multiplex. Information on the above may be obtained from Dr. R. J. Reid, Seminar Chairman at the above address.

University of Wisconsin, Extension Div., offers an Industrial Engineering Seminar Nov. 14-15. For information write to Engineering Institutes, 3030 Stadium St., Univ. of Wis., Madison 6, Wis.

University of Michigan, Ann Arbor, Mich. offers a seminar "Effective College Recruiting" Dec. 7-8. For information contact Clark C. Caskey, program director, U-M Bureau of Industrial Relations, Ann Arbor, Mich.

University Extension, University of California, Los Angeles 24, Calif. offering an intensified 10 day short course "Engineering and Management." Aim: To prepare individuals for more effective design, installation and administration of systems coordinating men, materials, machines and money. Date: Jan. 22-Feb. 1. Further information available from Reno Cole, coordinator of the course, at the above address.

CALL FOR PAPERS

1962 PGMTT Nat'l. Symp., May 2224, 1962, Boulder Labs., Boulder, Colo. Papers to deal with research development and applications in all areas of the microwave field. Deadline: Dec. 18, 1961 for both 50-100 word abstracts and $500-1000$ word summaries with up to 6 illustrations. Forward to: R. W. Beatty, Chairman, Technical Program Committee, 1962 PGMTT Nat'l. Symp., National Bureau of Standards, Boulder, Colo.
1962 Internat'l. Congress on Human Factors in Electronics, May 3-4, Lafayette Hotel, Long Beach, Calif. Papers to deal with human factors in Automatic Control, Biological Science, Communications, Computers, Cybernetics, Electrical Engineering, Information Theory, Mathematics, Medicine, and Psychology are solicited. Send 2 copies of an abstract of 300 words. Deadline: Jan. 1, 1962, to Mr. John W. Senders, Technical Program Committee Chairman, Minneapolis - Honeywell Regulator Co., 2600 Ridgeway Rd., Minneapolis 40, Minn.

Do you have any of these transient analysis problems?

Development of a unique new instrument-the Hughes Highfrequency Memo-scope ${ }^{\oplus}$ Oscilloscope-now makes solving transient analysis problems quicker, easier and more economical. Secret of this instrument is its ability to freeze high frequency impulses until intentionally erased. It is the only instrument on the market today that can give you stored response at fast writing speeds! Here are six case histories which demonstrate the types of problems which can be solved:
Low Level Signal Data Processing-A leading West Coast research facility used the Memo-scope oscilloscope for passive satellite tracking. The instrument was able to integrate very small signal levels over a very high random noise level. Result: the company was able to track satellites in an environment where the noise amplitude actually exceeded the signal amplitude.
Quality Control Inspection-A large Eastern firm uses the Memo-scope oscilloscope to dramatically improve the reliability levels of incoming components and systems which were subject to transient behavior. Typical items tested included relays, switches, coils, capacitors, diodes, transistors, transformers, and complete computer and servo systems.
Shock and Impact Testing-A well-known missile manufacturer used the Memo-scope oscilloscope to calibrate accelerometers. Using a Model 105 Memo-scope oscilloscope, with a Multitracer Unit, this firm was able to compare a shock signal from a "calibrated standard" accelerometer against newly purchased units and those undergoing their periodic checks.
Medical Research-A large Texas medical institution used this unique Hughes instrument for a study of the human nervous system. They were able to obtain an early diagnosis of nervous system deterioration by measuring the exact elapsed time that an electrical pulse takes to pass between two points in the central nervous system.

Welding Control-To permit high-reliability welding of metals, a leading Southern California aircraft and missile

manufacturer uses the Memoscope oscilloscope as a precision monitoring device. They were able to precisely control heat, pressure and time throughout the entire welding process.

System Check-out: Production and Field-A wellknown aircraft manufacturer used the Memo-scope oscilloscope as a key element in a check-out console. The communications and radar automatic gain controls, as well as the servo systems adjustments, were precisely monitored. It was also used in cross-talk analysis; interference monitoring; stress, vibration and flutter analysis; and general trouble-shooting.

SPECIFICATIONS

Conventional Mode:

- DC to 10 mc Band Pass
- Sweep Range: 0.1μ secs/ division to 1 sec/division; $5 \times$ Magnifier for speeds to 02μ secs/division; Multiplier for sweeps long as 10 secs/ division
- Rise Time: 35 nanoseconds
- Built-in Delay Line (0.25μ secs)
- Numerous Trigger Selections
- Plug-in Preamplifiers

Storage Mode:

(All features of Conventional Mode, PLUS:)

- One million inches per sec Writing Speed
- Unlimited Storage Time
- Fast Erase (less than 150 millisecs)
- X-Y Plotting
- Single Shot Trigger
- Photographor Trace Directly Off Scope Face

If you have a transient analysis problem and would like a complete technical data sheet, you are urged to write: Memo-scope Oscilloscope, Vacuum Tube Products Division, Hughes Aircraft Company, 2020 Short Street, Oceanside, California.

As We Go To Press .. .

ARTIFICIAL SUN

D. Bickler, solar measurements specialist, takes readings from a monochrometer and verifies that light output from solar simulator developed by Hoffman Electronics Corp. has the same qualities as actual sunlight in outer space.

NASA Names Industrial Executive to Key Post

D. Brainerd Holmes has been named Director of Manned Space Flight Programs by the National Aeronautics and Space Administration. The announcement was made by James E. Webb, space agency administrator.

Mr. Holmes is an industrial executive known for his ability to bring multi-million dollar government projects in on time and within predictable costs. He is at present General Manager, Major Defense Systems Division, a unit of RCA Defense Electronic Products, Moorestown, N. J. He has served in this capacity for three and one-half years as RCA's project manager of the Ballistic Missile Early Warning System (BMEWS).

Corporation to Fulfill Army's Research Needs

The Research Analysis Corporation, Bethesda, Md., a private, nonprofit organization of experienced scientists, has begun operations to help bolster the strategic, tactical and management capabilities of the U. S. Army through scientific research and analysis.

RAC has contracted to perform the major portion of the Army's Operations Research. Mr. Frank A. Parker, Jr., formerly Assistant Director of Defense Research and engineering in the office of the Secretary of Defense, heads the new research organization. RAC is strictly a scientific advisory organization. Conclusions of its studies take the form of findings and recommendations which are intended to assist the Army's decision-makers.

Signal Corps Award To General Instrument

U. S. Army Signal Corps has presented to General Instrument Corp.'s Semiconductor Division its special award for quality production. It is the second consecutive year that the RIQAP (Reduced Inspection Quality Assurance Plan) certificate has been awarded to General Instrument. It was given for "consistent production of highquality electronic products for the armed forces" and the most rigid internal quality control procedures, which reduce the amount and cost of product inspection by the Government. The General Instrument Semiconductor Division has principal plants at Newark, N. J., Hicksville, L. I. and Woonsocket, R. I.

RATE CONTROLLER

Automatic Digital Rate Controller (ADRC) built by Computer Control Co., Los Angeles, will help simulate earth's movement in this environmental space lab being built by Minneapolis-Honeywell Regulator Co. It will be used to test space reconnaissance vehicles.

Comb-Filter System Contract Awarded

Bell Telephone Laboratories has awarded a contract to Itek ElectroProducts Co., Cambridge, Mass., for design and manufacture of two comb-filter spectrographic systems for AT\&T's space communications program.

The systems will be installed in the Rumford, Me., ground station and will detect the tracking beacon of the first commercial communications satellite, to be launched in April, 1962, and its successors. Systems will survey a frequency spectrum supplied by a receiver, detect any Doppler returns, and identify their frequency within a few cycles.

Itek will supply the precision narrow-band crystal filters, and the detector, threshold, post-detection. and amplifier circuits for the 300 channels used in the Bell Labs equipment.

RADAR AIDS SMALL PLANES

Lois Martin of RCA's Aviation Equipment Department holds indicator unit for new RCA AVQ-55 system. Designed especially for small twin-engined aircraft the system's three basic units - the indicator, the trans-mitter-receiver and antenna - have a combined weight of less than 40 pounds.

ASTM Changes Name

Name of the American Society for Testing Materials has been officially changed to the American Society for Testing AND Materials. Signing of a court decree amended the Society's Charter originally granted in 1902 by the Commonwealth of Penna. Inclusion of the word "and" in the Society's name places added emphasis on the Society's research work in seeking knowledge of the nature of materials, according to ASTM President Miles N. Clair.

The Most Widely-Used Logic Transistor, Type 2NI499A, Now Has a Smaller Brother...

TYPE 2N979 ${ }^{1 /=}$
 LOW-COST LOGIC TRANSISTOR

Here is a new Sprague Transistor that is smaller in size, yet identical in performance with the wellknown 2N1499A Logic Transistor.

Designed for use in saturated switching circuits, this low-cost, hermetically-sealed MADT ${ }^{\circledR}$ Transistor is capable of switching at frequencies in excess of 10 megacycles.

In addition to computer applications, this rugged transistor is ideally suited for data processing and instrumentation equipment.

There are two major reasons why The Sprague 2 N 979 , as with the 2 N 1499 A , is earning a high level of acceptance:

1. DEPENDABLE PERFORMANCE - Specifi-

 cally designed with parameters intended for logiccircuits, these transistors consistently show low storage time, low saturation voltage, high beta, high switching speed. Their cases are cold welded to insure reliability.
2. ATTRACTIVE PRICE - Available in production quantities, these transistors are first-run devices, not "fall-outs". They are produced on FAST (Fast Automatic Semiconductor Transfer) lines with direct in-line process feedback, especially programmed to insure high production yields.

Here are some key parameters:

$\mathrm{I}_{\text {CBO }}$	$1 \mu \mathrm{atyp}$.
$\mathrm{BV}_{\text {Сво }}$	20 V min.
$\mathrm{BV}_{\text {CeS }}$	20 V min.
f_{T}	0 mc min.

For application engineering assistance without obligation, write Transistor Division, Product Marketing Section, Sprague Electric Co., Concord, New Hampshire. FUNCTIONAL DIGITAL CIRCUITS
interference filters PULSE TRANSFORMERS piezoelectric ceramics PULSE-FORMING NETWORKS

no other line of MICROWAVE POWER AMPLIFIERS offers you all these characteristics

- Permanent magnet focusing on all tubes eliminates need for tube alignment - also eliminates need for heavy solenoids and solenoid power supplies.

Ruggedly built for long service under rough conditions . . . heavy gauge aluminum construction.

- Three separate meters for simultaneous indications of beam current, beam voltage and grid voltage.
- Continuously variable gain controls.
- CW, pulsed or AM modulated operation.
- Designed for safety of personnel and tube . . . high voltage interlocks . . . overcurrent and filament protection.
. . . also note characteristics and prices noted below

Two complete lines of TWT Amplifiers from AEL

An. EXTREMELY BROADBAND medium power amplifiers

total bandwidth
. . . with 1 watt output guaranteed over 5 to 11 Gc... with 50 db small signal gain.

MODEL TGO2
10 to 20 gc total bandwidth
. . . with more than 1 watt output guaranteed from 12 to 18 Gc. Although not guaranteed at this time, 1 watt output may be expected over the entire range 10 to 20 Gc . Gain guaranteed to exceed 30 db from 12 to 18 Gc .
 price: \$3,990.

price: \$4,950.

LOW POWER AMPLIFIERS
Specifications and prices

Model Number	T603	T604	T605	T606
Frequency, Gc	$1-2$	$2-4$	$4-8$	$8-12$
Min. Pwr. Out, Milliwatts	15	10	10	5
Min. Small Sig. Gain, db	35	35	35	35
Price	$\$ 1,795$.	$\$ 1,795$.	$\$ 2,100$	$\$ 2,100$.

Creative engineers are urged to investigate the rewarding opportunities of AEL

American Electronic Inaboratories, Inc.
RICHARDSON ROAD, COLMAR, PENNSYLVANIA
Just north of Philadelphia

Now Mincom offers the industry extended

bandwidth and improved predetection

recording...the MINCOM Series CM-1OO

Instrumentation Recorder/Reproducer

At 120 ips the Mincom Series CM-100 now delivers $1.5 \mathrm{mc}^{*}$-and also makes possible predetection recording/reproducing with dropouts virtually reduced to zero. This superb improvement in predetection performance is accomplished by redundant data recording. The two carrier tracks are fed through a new and exclusive Tracklok ${ }^{\circledR}$ to eliminate skew, and thence as a single track into a demodulator to recover the original information. It's well worth seeing, especially if you need reliable operational predetection at your facility-and need it in FM/FM modulation, PCM and PCM/FM.
*Optional
 megacycles* ... at 120 ips

Frequency response of 1.5 mc is obtained in the single-rack CM-100. A second auxiliary rack houses a demodulator, an oscilloscope monitor unit, and Mincom's new and exclusive Tracklok.

tunnel diode amplifiers with parametric noise figures
the simple approach to low noise

GALLIUM ANTIMONIDE TUNNEL DIODE AMPLIFIERS: Stable, high gain GaSb Tunnel Diode Amplifiers with noise figures from 2.5 to 3.5 db are now available. These units cover frequency ranges from 125 to 1400 .mc
with bandwidths to 6%. Octave bandwidth units are also available. The over-all quality of these amplifiers is a direct result of Micro State's creative capability and integrated design approach.

Circle 11 on Inquiry Card
FROM BASIC MATERIAL - TO SEMICONDUCTOR DEVICE - TO MICROWAVE COMPONENT
micro state elecironics corporation
152 FLORAL AVENUE. MURRAY HILL. NEW JERSEY CR 7.6600 GALLIUM ARSENIDE MATERIAL - GERMANIUM YUNNEL DIODES
SOLIE STATE UHF AND microwave amplifiens and oscillaters o callium arsenide varactors

GaSb TUNNEL DIODES: These diodes have cutoff frequencies up to 4 KMC. Shot noise constants as low as 0.7 , compared to 1.3 for germanium, permit the construction of tunnel diode amplifiers with parametric noise figures.

GaSb MATERIAL: Single crystal GaSb is offered for device applications. Undoped material, and tellurium, or zinc doped GaSb is available for the fabrication of low noise tunnel diodes.

FLAG BOOTS

THERMOFIT

RAYCLAD TUBES
I NCORPORATED

Asunstinne or

OAKSIOE AT
NORTHSIDE

- REDWOOD

CITY•CALIFORNIA

Capsule summaries of important happenings in affairs of equipment and component manufacturers

EAST

CBS LABORATORIES, Stamford, Conn., and GUlton industries, inc., Metuchen, N. J., have completed arrangements whereby CBS Labs has granted world-wide rights for the manufacture and marketing of a pocketsized, rechargeable dictating device to Gulton Industries.

FREQUENCY STANDARDS, Asbury Park, N. J., has changed its name to FREQUENCY ENGINEERING LABORATORIES.

SPRAGUE ELECTRIC CO., North Adams, Mass., has purchased all the equipment previously used by CBS Electronics for the manufacture of electro-chemical precision-etch transistors. The purchase included fast automatic semiconductor transfer lines and testing equipment for manufacturing MADT and MAT transistors.

LFE ELECTRONICS, DIV. LABORATORY FOR ELECTRONICS, INC., Boston, Mass, has been awarded two contracts by the U. S. Air Force totalling approximately $\$ 1.8$ mil lion. Contracts call for ground support equipment for flight line checkout of the AN/APN131 self-contained, airborne Doppler navigation systems.

HI-G, INC., Windsor Locks, Conn., has announced a $\$ 250,000$ building expansion program which will double their present production space to $46,000 \mathrm{sq}$. ft.

JERROLD ELECTRONICS CORP., Philadelphia, Pa., has acquired TECHNICAL AP PLIANCE CORP. (Taco), Sherburne, N. Y. through purchase of its assets for $\$ 2,700,000$.

GENERAL INSTRUMENT CORP., HARRIS ANTI-SUBMARINE WARFARE DIV., Woodbury, Conn., has received a $\$ 2,002,206$ United bury, Conn., has received a $\$ 2,002,206$ United
States Navy contract for the manufacture of States Navy contract for the manufacture of
sonar transducers used in long-range undersonar transducers used
water detection systems.

MAXSON ELECTRONICS CO., New York N. Y., has acquired HOPKINS ENGINEERING CO., San Fernando, Calif., for an undisclosed amount of Maxson stock, and will operate Hopkins as a wholly-owned subsidiary of Maxson Electronics Corp.

MELPAR, INC., SPECIAL PRODUCTS DIV., is opening new plant production facilities in Arlington, Va. to produce plastic sheeting for acoustical damping in Navy ships, in consequence of an award of $\$ 83,000 \mathrm{by}$ the Military Industrial Supply Agency in Philadelphia, Pa.
burnell \& Co., INC., Pelham, N. Y., has acquired 80% of the common stock of gle Electronics, inc., Bristol, Conn GLP will operate as a subsidiary of Burnel \& Co.
allied chemical corp., general CHEMICAL DIV., has moved its Technical Service Laboratory to new headquarters at the Company's Morris Township, N. J. Research Center. The new address is P. O. Box 405, Morristown, N. J.

AMPHENOL-BORG ELECTRONICS CORP., has dedicated a new plant at the Fair Lawn Industrial Park, N. J., part of its $\$ 41 / 2$ million expansion program. This is the first plant of expansion program. This is the first plant of
the newly-created AMPHENOL-EASTERN the newly-created AMPHENOL-EASTERN production of wire connecting devices.

ADLER ELECTRONICS INC., New Rochelle, N. Y., has received a contract of over $\$ 600,000$ for the production of high freq., SSB, dual diversity receivers, in the 2.8 to 28 mc freq.

GENERAL ELECTRIC CO.'s MISSILE AND SPACE VEHICLE DEPT., Phila., Pa., has re-
ceived a $\$ 882,600$ contract from the Air Force's Aeronautical Systems Div., to develop an aerospace test capsule for testing a 50 w fuel cell battery.

TELECHROME MFG. CORP., Amityville, N. Y., has received a U. S. Army Signal Corps award contract for $\$ 224,000$ for 300 AN/URM80 frequency metera.

RAYTHEON CO. has announced plans to expand its semiconductor operations and consolidate its silicon transistor, rectifier and Circuit-Pak activities at Lowell, Mass. The Semiconductor Div. will establish headquarters and other offices in the $204,000 \mathrm{sq}$. ft. former CBS Electronics plant.

MIDWEST

MIRATEL ELECTRONICS, iNC., has added $10,000 \mathrm{sq}$. ft. of assembly work space to its New Brighton, Minn. plant

CENTRALAB, ELECTRONICS DIV. GLOBE-UNION INC., has completed acquisition of WILRITE PRODUCTS, INC., Cleveland, Ohio. Wilrite will operate as a whollyowned subsidiary of Centralab.

SANGAMO ELECTRIC CO., Springfield, Ill., in keeping with their program of realignment and relocation of production facilities, is expanding their Pickens. So. Carolina plant by 65,000 sq. ft., transferring their capacitor production from Marion, Ill. to Pickens. It is also beginning construction of a $150,000 \mathrm{sq}$. ft . plant in Walhalla, S. C., for the manufacture of certain types of singlephase electric meters.

GOULD-NATIONAL BATTERIES, INC., St. Paul, Minn., has been awarded a contract by the U. S. Navy in excess of $\$ 2.5$ million for submarine batteries.

The Board of Directors and stockholders of MIDWEST FOAM PRODUCTS CO., Evanston. III, and the Board and stockholders of SHELLEY URETHANE INDUSTRIES, INC., Los Angeles, Calif., have approved a plan of merger. The new corporation will be known as URETHANE INDUSTRIES INTERNATIONAL, INC., with headquarters in Evanston, 111 .

COLLINS RADIO CO., TEXAS DIV., Dallas, Tex., has received a $\$ 4$ million contract from the U. S. Army Signal Corps for an unfrom the U. S. Army Signal Corps for an un-
disclosed number of portable scatter communication terminals, AN/TRC-80.

WEST

CONTINENTAL ELECTRONICS MFG. CO., SUB. OF LING-TEMCO-VOUGHT, INC., has received a $\$ 3$ million contract to design a multi-megawatt radar transmitter for the Army's tactical NIKE-ZEUS antimissile system.

SYSTEM DEVELOPMENT CORP. has dedicated its $\$ 3$ million Systems Simulation Research Laboratory at Santa Monica, Calif.

FAIRCHILD SEMICONDUCTOR CORP., has started construction on a new $\$ 1.5$ Research and Development Center in Stanford Industrial Park, Palo Alto, Calif. The 65,000 sq. ft. building is located on Junipero Serra BIvd.

EITEL-McCULLOUGH, INC., San Carlos Calif., has received a contract for $\$ 1,567,141$ for the manufacture of 3CX100A5 power-gri electron tubes from Procurement Headquarters, Gentile U. S. Air Force Station, Dayton, Ohio.

AMPEX CORP., Redwood City, Calif., has received a $\$ 3,600,000$ order from PHILCO CORP. for an undisclosed number of advanced memory devices

HOFFMAN ELECTRONICS CORP.. SEMICONDUCTOR DIV., El Monte, Calif., will consolidate all operations in its El Monte, Calif. plant. Fifty thousand additional sq. ft. of floor space will be devoted to manufacturing and reliability testing.

THE BENDIX CORP.. North Hollywood, Calif., has been awarded a follow-on contract in excess of $\$ 5$ million for helicopter-borne sonar systems from SIKORSKY AIRCRAFT DIV., UNITED AIRCRAFT CORP. The systems AN/AQS-10 "dunking sonar," will be installed in the Navy's HSS-2 all-weather anti-submarine helicopter.

ALFRED ELECTRONICS, Palo Alto, Colif., hos completed their new 32,000 sa. ft. plant located at 3176 Porter Drive, Stanford Industrial Park.

DATA SENSORS, INC., Gardena, Calif, has been formed to engage in the research, development, engineering design and manufacture of electrical, electronic and electromechanical instruments used in the acquisition, conditioning and interpretation of data for military, space, and industrial programs. The company is located in a $10,000 \mathrm{sq}$. ft The company is located in a 10,000 sq. ft
building at 13112 Crenshaw Blvd., Gardena. Calif.

DAYSTROM, INC., PACIFIC DIV., Los Angeles, Calif., has received follow-on orders totaling $\$ 170,000$ for special gyroscopes for AEROJET-GENERAL CORP. sounding rockets.

HUGHES AIRCRAFT CO., SEMICONDUCTOR DIV., Newport Beach, Calif, has received a $\$ 125,000$ study contract to investigate high freq. transistors and circuits from the U. S. Navy's Bureau of Ships.

TRANSDATA, INC.. El Cajon, Calif., has received through the TELE-TRONICS CO., an order from the Navy's BuShips for the manufacture of single sideband receivers AN/-WRR-2() and AN/FRR-59(). The contract is in excess of $\$ 1$ million.

HEWILETT-PACKARD CO.. Palo Alto. Calif., has formed a new affiliated company to engage in solid-state research and develonment. The new firm will be known as HP ASSOCIATES and will be headquartered in Palo Alto.

'AUTOBANKER"
Teller and customer of the First National Bank of Waukesha, Wis can exchange conversation, cash and banking documents using Auto banker, designed by The Mosler Safe Co, and engineered by ITT Corp Closed circuit television and pneumatic tubes allow customers to transact most of their banking business from their automobiles

IMAGE INTENSIFIER ORTHICON

Specialist 5/c A. D. Porter focuses TV camera on "enemy" tank in the dark. Camera is equipped with special tube, developed by the Radio Corporation of America for the U.S. Army Engineers, which needs only starlight, moonlight or skyglow to operate. Diffused natural light reflected from the target is intensified to present an image.

SPACE POWER SYSTEM
Niles F. Schuh, Westinghouse Electric section manager, is shown with a model of a nuclear thermoelectric power system for space, moon and other uses requiring long-lived, maintenance-free operation. System uses spontaneous decay of a radioisotope to produce heat which is converted to electricity by thermoelectric principles.

Snapshots

 of the Electronic Industries

PHOTOCONDUCTOR TEST
At Leadquarters of Sylvanies Electronic Tube Division, Emforiam, Pa. hermetically sealed photoconductor devices are lifetested on company-designed agig equipment.

WORLDS LAREEST
Workers platform is suspended Fom a $\overline{50} \mathbf{f t}$. cane over the worlds largest raiome on Hayslack Hill, Tyngsborc, Nass. Ccastructed under drection of the USAF's Bectronic Systems Div., it will house a sensitive radio commanications and space raserch anlenna.

SPACE VACUUM

High efficiency, triple chambe- cold traps, slown being fused together b) G. R. Neff Hughes Aircraft Co. reszarcher, will be filled with Gquid nitrogen and used with mereury drasuion and ion pumping to preduce vacuum $(0-12 \mathrm{~mm} \mathrm{Hg})$ required in space stadies.

FILAMENT VINDING MACHINE
Vathe will altomatically manufactane weund fiberglass roshet argie cases and missile fael traks for advanced types of ballistic nisales. Mactine is controled by Thompaon Ramo Wooldridge, Ime. M chigan Cite ndiana) al-tıaristorizec nunerical control sysem.

calculated

SPECTROL MODEL 860
1'3/" diameter precision potentiometer Linearity Tolerance $\pm 0.25 \%$ Standard Resistance Range 50Ω to 500 K (to 1 Meg at extra cost)

These two Spectrol 10 -turn precision pots are not specials in any way. They're standard production items in two popular sizes, tailor-made to fit almost all 10 -turn requirements. Here's where Spectrol excels to give you the best pot for your 10 -spot:
END RESISTANCE Spectrol's low end resistance is achieved by tap welding terminations to the turn of resistance wire nearest the mechanical stop. In addition, Spectrol provides an extra turn of helical resistance element beyond the stop insuring electrical continuity under all conditions.
ROTOR MASS Spectrol's lightweight rotor reduces inertia and starting torque, as well as minimizing the effects of shock and vibration.
WIPER MASS A wiper that's the lightest we've seen in any 10 -turn pot allows lower contact force with resultant long life and superior performance under shock and vibration.

SHAFT SUPPORT Spectrol pot shafts are supported by bearings at both ends and have provision for rear shaft extension.
STOPS Spectrol uses 750 oz . in. stops on Model 860; 50 oz . in. on Model 510 , the strongest you'll find.
LIDS SECURED BY INTERNAL SNAP RING Use of snap rings gives 360° lid support as opposed to other methods of attachment. Another exclusive feature: Remove or replace lids without damaging unit.
POWER RATING Model 860, 8 watts, and Model 510,3 watts; at $40^{\circ} \mathrm{C}$ ambient.

SPECIAL FEATURES AVAILABLE

Additional taps up to 111 on Model 860; up to 49 on Model 510. Special front shaft configurations and rear extensions. Special linearity and resistance tolerances.

More Data Avallable For complete electrical and mechanical specifications, and quantity discounts, contact your Spectrol representative or call or write the factory.

ELECTRONICS CORPORATION
1704 South Del Mar Ave. - San Gabriel, Calif. • Phone: ATlantic 7.9761 Adams Court - Plainview, Long Island, N.Y. - Phone: WElls 8-4000 P. O. Box 130 - Brampton, Ontario, Canada

PHIIEO QPITXXI SIIOUN MISAA

2N2087; ABSOLUTE MAXIMUM RATINGS

Storage BV ${ }^{\text {cer }}$	$-300^{\circ} \mathrm{C} .$ $80 \text { volts }$
BVCbo..	20 volts
BVEB	5 volts
Collector Curr	500 m
Total Device Dissipa	2 watts
Total Device Dissipa	$100^{\circ} \mathrm{C}$.). . 1 watt
Total Device Dissipa	$25^{\circ} \mathrm{C}$.) 0.6 watt

ELECTRICAL CHARACTERISTICS (@) $25^{\circ} \mathrm{C}$.)

Characteristics $h_{\text {fe }}$	Conditions $V_{C E}=1 \mathrm{~V}$. $l_{c}=150 \mathrm{ma}$.	Min. 40	Max. 120	
$V_{\text {BE }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma} . \\ & \mathrm{I}_{\mathrm{B}}=15 \mathrm{ma} . \end{aligned}$		1.2	volts
$V_{\text {ce }}(S A T)$	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma} . \\ & \mathrm{I}_{\mathrm{B}}=15 \mathrm{ma} . \end{aligned}$		0.5	volts
f_{T}	$\begin{aligned} & l_{c}=50 \mathrm{ma} . \\ & V_{C E}=10 \mathrm{~V} . \end{aligned}$	150		me
Cob	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{E}}=0 \mathrm{ma} . \end{aligned}$		12	pf
Icbo	$\begin{aligned} V_{c} & =60 \mathrm{~V} . \\ \mathrm{T} & =25^{\circ} \mathrm{C} . \end{aligned}$		2	$\mu \mathrm{a}$
Icbo	$V_{c}=60 \mathrm{~V}$.		150	$\mu \mathrm{a}$
BV $\mathbf{C E R}$	$\begin{aligned} \mathrm{R} \leqq & 10 \Omega \\ \mathrm{I}_{\mathrm{c}}= & 20 \mathrm{ma} . \\ & \text { pulsed } \end{aligned}$	80		volts
$\mathbf{t r}_{\mathbf{r}}$			85	nsec
t^{*}			100	nsec
t_{4}			55	nsec

FIRST TO COMBINE 120 V ($\mathrm{BV}_{\text {(880) }}$) 0.5 V(SAT) 150 mc. ft

You would expect Philco, as inventor of industry's most capable germanium logic transistor-the MAD', to design silicon memory components with extra capability, too. And Philco has done it. 2N2087 and 2N2086 Philco epitaxial silicon mesa transistors offer incomparable combinations of parameters that may well be the special design solutions you require.

The 2 N 2087 combines $120 \mathrm{BV}_{\mathrm{CBO}}, 40 \mathrm{~h}_{\mathrm{FE}} \mathrm{min}$., $0.5 \mathrm{~V} . \max . \mathrm{V}_{\mathrm{CE}}(\mathrm{SAT}), 150 \mathrm{mc}$ min. $\mathrm{f}_{\mathrm{T}}, 12 \mathrm{pf} \max$. C_{ob}, and 100 nsec max. t_{s}.

The 2N2086 combines h_{FE} of 20 min ., 0.7 max. V_{CE} (SAT), $120 \mathrm{BV}_{\text {cbo }}, 150 \mathrm{mc} \min . \mathrm{f}_{\mathrm{T}}, 12 \mathrm{pf} \max . \mathrm{C}_{\mathrm{ob}}$, and 100 nsec max. t_{3}.

These new Philco epitaxial silicon mesa transistors deliver optimum drive for computer memory planes, serve as medium power switches in airborne control systems, and are ideally suited to a wide variety of other applications such as small power supplies, servo amplifiers, and automation controls. For complete information, write Dept. EI1161.

Both types 2N2087 and 2N2086 are immediately available from your Philco Industrial
Semiconductor Distributor.
Circle 18 on Inquiry Card
E] Famous for Quality the World Over

GOVERNMENT ELECTRONIC
 CONTRACT AWARDS

This list clossifies and gives the volue of electronic equipment selected from contracts owarded by government agencies in September, 1961.

Alarm set

Anolyzers
Antenna
Relays
124,961
28,0019
31,680
36,502
239,431
14,450
$3,727,011$
15,699
$4,465,291$

540,682
Resistors
Signal generators
Spectrum analyzer
Switch
Synchros
Systems …...........................3,727,011
Telemetering equipment Test equipment

4,465,291
192,182
Batteries
171,777
Beacon array
Cable assembly
Capacitor
Coders
Communications equipment
Computers
Connectors
Coupler, directional
Direction finders
Filter
Fuses
Indicotors
Intercom equipment
Meters
Monitor, signal data
Multicouplers
Oscillographs
Oscilloscopes
Recorders/Reproducers
Relay armature

835,979

66,768
823,146
1.404,281 863,705 55,329 30,880
186,237
25,326
29,428
66,333
69,778
48,901
247,961
214,48
43,154
239,847
1,649,061
172,957

NASA Expenditures for R\&D-1953 to Date (Millions of Dollars)

Year Ending June 30	Total	Conduct of R\& D	Increase in R \& D Plant
1953	\$78.6	\$49.5	\$29.1
1954	89.5	47.6	41.9
1955	73.8	43.4	30.4
1956	71.1	50.5	20.6
1957	76.0	55.2	20.8
1958	89.2	72.0	17.2
1959	145.5	114.7	30.8
1960	401.0	346.7	54.3
$1961{ }^{\text {E }}$	770.0	678.0	92.0
$1962{ }^{\text {E }}$	965.0	834.0	131.0

- Estimate.

Source: Executive Office of the President, Bureau of the Budget, Estimate Division, Budget of the U. S. Govt." (Annual)

United Kingdom: Domestic Exports of Electronic Products to the United States, 1957-1960

Product	Quantity in thousands of units				Value in thousands of dollars ${ }^{1}$			
	1957	1958	1959	1960	1957	1958	1959	1960
total					12,831	17,184	21,974	19,645
Radio receivers, complete	10.9	4.4	9.7	7.5	232	135	292	200
Radio phonographs, complete	0.9	3.6	2.4	2.0	115	304	232	190
Speakers and microphones.					285	479	532	699
Phonographs, electronic, and record players.	3.9	4.6	4.7	19.6	160	160	147	362
Phonograph parts and accessories					935	904	1,207	727
Record playing mechanisms:								
With record changer	699.8	926.3	1,251.7	861.1	6,816	8,678	11,739	7,920
Without record changer	12.9	125.2	102.2	38.3	133	520	623	219
Electronic and nucleonic valves and tubes ${ }^{2}$:								
Complete.	3,308.5	5,375.7	4,591.0	4,558.5	1,345	2,303	2,381	2,501
Components and parts Communications, navigation, and radar equipment.								
					952	1,221	1,243	1,458
					1,014	1,388	2,178	2,813
Other electronic products.	\ldots	$\ldots .$.		844	1,082	1,303	2,250

[^0]
Mew Sarkes Tarzian

Sllicon Rectifiers

for plug-in sockets and printed circuits

This new series of silicon rectifiers is especially suited for use in printed circuit assemblies, or can be plugged directly into special sockets to facilitate assembly and servicing. Insulated case $-11 / 32^{\prime \prime} \times 3 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}$ high—eliminates many mounting problems. Leads are on $7 / 32^{\prime \prime}$ centers.

Reliability is excellent-in part because the construction minimizes axial strain on the junction. Special Tarzian oversize junctions increase inrush current protection, contribute to low voltage loss, and lengthen useful life in this as in other Tarzian silicon devices. Prices are realistic.

Complete line catalog available. Application engineering assistance is also available without obligation. Send for data sheet.

Tarzian Type	Amps DC $\left(85^{\circ} \mathrm{C}\right)$	PIV	Maximum RMS Volts	Maximum Recurrent Peak	Amps Surge $(4 M S)$
12	.75	200	140	7.5	75
14	.75	400	280	7.5	75
16	.75	600	420	7.5	75

SARKES TARZIAN, INC.

World's Leading Manufacturers of TV and FM Tuners • Closed Circuit TV Systems • Broadcast Equipment • Air Trimmers • FM Radios • Magnetic Recording Tape : Semiconductor Devices

presenting 130 high quality
 (4FULTRANGE

Your (4p) representative offers two very important advantages

a complete (and rapidly expanding) microwave line

(50) makes sure you get what you pay for by rigid quality control plus 100% electrical testing using (7 developed methods including reflectometer and swept frequency techniques. (top) knows when a parameter is out of spec; never gambles your money and time that 3 or 4 sample measurements taken across an instrument's range truly indicate its full-range performance.
See your (5) rep now for FULL-RANGE TESTED microwave equipment . . . get what you pay for.

New Microwave Catalog A new 32-page Hewlett-Packard Microwave Instrumentation catalog is yours for the asking. Contact your rep or write direct for this catalog which discusses theoretical and how-to-do-it techniques and includes a complete listing of microwave instruments and their specifications.
 EQUIPMENT

布 344A Noise Figure Meter
Quickly, accurately measures noise figure of operating radar sets. Automatic operation; simple front panel calibration. Militarized, transistorized, reliable in extreme environments, minimum size and weight. Continuous noise figure presentation on most radar receivers. Extremely high sensitivity permits decoupling noise source up to 20 db from main transmitter line to minimize system degradation. Provision for automatic alarm, remote noise figure monitoring, modulating. Meter scale/excess noise options; 25 or 30 MC input frequency, 1 MC bandwidth, 75 ohms input impedance. Approx. $\$ 1,600.00$ (depending on options, modifications).

(40) 340B/342A Noise Figure Meters General - purpose instruments making possible, in minutes, receiver and component alignment jobs that once took hours. Simplifies accurate alignment; encourages better maintenance, performance.
640B automatically measures, continuously displays IF or receiver noise figure at 30 or 60 MC ; other frequency on order. $\$ 715.00$ (cabinet), $\$ 700.00$ (rack). 342A, similar, operates on $30,60,70$, 105, 200 MC .30 MC and 4 other frequencies between 38 and 200 MC on order.
$\$ 815.00$ (cabinet), $\$ 800.00$ (rack). (Note: Models 340B and 342A available only in the U.S.A. and Canada.)
943A VHF Noise Source,temperature limited diode broadband source, 10 to 600 MC, 5.2 db excess noise, $\$ 100.00$.
445B IF Noise Source, 30 or 60 MC (others to order); 4 impedances, 5.2 db excess noise. $\$ 100.00$.
\$347A Waveguide Noise Source, Argon gas discharge tubes in waveguide section; frequencies 2.6 to $18.0 \mathrm{GC}, 15.2$ db excess noise. $\$ 200.00$ to $\$ 300.00$. sp 349A UHF Noise Source, 400 to 4,000 MC, wider with correction. 15.2 excess noise. $\$ 325.00$.

Basic test, power and impedance measuring equipment

Complete line of FULL-RANGE

BASIC TEST EQUIPMENT

382A/B/C Broadband Precision Waveguide Attenuators
Dielectric loading in new S832, X382 produces long electrical length for high accuracy with short physical dimension, provides hitherto unknown convenience. Calibrated range, 0 to 60 db . Degree-ofrotation scale allows accurate small changes at high attenuation and accurate resetting to high values of attenuation. (7) 382B models calibrated to 0.1 degrees: 382 C models to 0.01 degrees. 382A series rotary-vane attenuators, 3.95 to 40 GC, attenuation 0 to $50 \mathrm{db}, \$ 275.00$ to $\$ 800.00$; $382 \mathrm{~B} / \mathrm{C}$ models, $\$ 295.00$ to $\$ 650.00$.

532/536A Frequency Meters

Comparable wideband, direct reading convenience are offered by 532 series, 3.95 to 40 GC, and 1 536A, 1 to 4 GC coaxial, Frequency Meters. Comprise high Q resonant cavity tuned by choke plunger; no sliding contacts. Transmit virtually full power at resonance. 532 series, $\$ 175.00$ to $\$ 325.00$; ${ }^{(7)} 536 \mathrm{~A}, \$ 500$.

-422A, 421A, 420A/B Crystal Detectors
High sensitivity ($0.05 \mathrm{v} / \mathrm{mw}$), flat frequency response ($\pm 2 \mathrm{db}$) and accurate square-law char acteristics ($\pm 1 \mathrm{db}$ from -3 to - 40 dbm) are available with new ${ }^{\text {to }}$ 422A Crystal Detectors (pictured), K and R bands, 18 to 40 GC. $422 \mathrm{~A}, \$ 200.00$ each, available in matched pairs for reflectometer systems, $\$ 420.00$ a pair. (7) also offers high sensitivity detectors covering a wide frequency range: $421 \mathrm{~A}, 7$ to 18 GC, $\$ 75.00$ to $\$ 130.00 ; 420 \mathrm{~A}$ for Type N coax lines, 10 MC to $12.5 \mathrm{GC}, \$ 50.00$ each: 420 B for reflectometer systems, matched pair, $\$ 150.00$.

Full frequency coverage, 1 to 40 GC is available from waveguide or coaxial moving loads. Model 914 series, 2.6 to 40.0 GC , are waveguide sections containing sliding, tapered, low-reflection loads. Plunger controls load position, travels $1 / 2$ wavelength at lowest

POWER MEASURING EQUIPMENT

fif 434A
Calorimetric Power Meter
Connect and read powers 10 mw to 10 watts, dc to 12.4 GC. No barretter, thermistor needed, no external terminations or plumbing. Measures CW or pulsed power. Two simple controls. DC input impedance 50 ohms approx.; input SWR less than 1.7 full range, less than 1.3 to 5 GC. Accuracy within 5% full scale. $\$ 1,600.00$ (cabinet); $\$ 1,585.00$ (rack mount).
(431A Microwave Power Meters. 478A/486A Thermistor Mounts

Now end tedious zero setting with new 431A Power Meter (pictured). Measures $10 \mu \mathrm{w}$ to 10 mw full scale in 7 ranges, also reads in dbm. $\pm 3 \%$ accuracy all ranges, drift less than $2 \mu \mathrm{w} /{ }^{\circ} \mathrm{C}$! One zero setting for all ranges, good for hours. Provides additional sensitivity of 10 db over previously available instruments. Operates with (6) 478A, 486A Thermistor Mounts. (7. $431 \mathrm{~A}, \$ 345.00$. New (5) 478A (center, above) covers 10 MC to 10 GC without tuning, is truly temperature compensated, contains two thermistor pairs for use with dual bridge of 431 A . SWR less than 1.5, high accuracy, drift-free operation. $\$ 145.00$. New (67 X486A Waveguide Mount, also temperature compensated, gives high accuracy, new convenience. 8.2 to 12.4 GC without tuning, SWR less than 1.5 $\$ 145.00$.

IMPEDANCE MEASURING EQUIPMENT

Models 809B and 814B are precision built mechanical assemblies operating, respectively, with 4810 B and 815 B series slotted sections.
Combination of the 809B carriage and 810 slotted sections covers 2.6 to 18.0 GC. Combination of 814B carriage and 815 B series sections covers 18.0 to 40.0 GC .

On either carriage, waveguides can be interchanged in seconds. Only one probe (for each carriage) covers full frequency range. Manufacture is of highest quality, assures positive mechanical positioning of interchangeable waveguides and precise installation of mating 1 probes. 809B has vernier scale reading to 0.1 mm , is equipped for dial gauge mounting. (4) 814B has dial read directly to 0.01 mm 809B, $\$ 175.00$, $814 \mathrm{~B}, \$ 225$.

444A/446B Untuned Probes (5) 444A (shown) is modified crystal (1N76 or 1N26) plus small antenna in convenient housing. Probe penetration easily variable; locks in position. No tuning; sensitivity superior to elaborate single, double tuned probes. Range 3.0 to 18.0 GC ; fits $3 / 4^{\prime \prime}$ bore. (4) 446B for 4814 Probe Carriage, similar but covers 18.0 to 40.0 GC. $\$ 444 \mathrm{~A}, \$ 40.00$. (6) 446B, $\$ 145.00$. el 440A, for barretter or crystal, Type N coaxial, $\$ 85.00$.

TESTED waveguide and coaxial equipment

752 Multi-Hole Coupler Precision directional couplers provide coupling factors of 3,10 or 20 db . Coupling accuracy ± 0.4 db or 0.7 db . Directivity better than 40 db full range, SWR less than $1: 1(752 \mathrm{~A}), 1: 05(752 \mathrm{C} / \mathrm{D})$ Cover frequencies 2.6 to 40 GC . $\$ 100.00$ to $\$ 375.00$.

372 Precision Attenuators

Rugged, broadband fixed attenuators retaining precise calibration regardless of humidity, temperature or time. Invariant attenuation assured, by permanent, "multi-hole coupler" joining of two waveguides. 10 and 20 db models, 2.6 to 18.0 GC. $\$ 110.00$ to $\$ 400.00$.

Dual Directional Couplers
Ideal for reflectometer systems, these coaxial couplers are flat to $\pm 0.5 \mathrm{db}$ over 4 -to- 1 frequency range. Directivity is 35 db (760D) and 30 db (761D). Feature high power capacity, low insertion loss and SWR. (4) $760 \mathrm{D}, 250 \mathrm{MC}$ to 1 GC , $\$ 200.00$; ${ }^{(1)} 761 \mathrm{D}, 1$ to $4 \mathrm{GC}, \$ 185.00$.

-375A
 Variable Flap Attenuators

Simple, convenient for adjusting waveguide power or isolating source and load. Max. SWR less than 1.15 full range; attenuation variable 0 to 20 db , dissipates average powers up to 0.5 or 1 watt. S through R bands, 2.6 to 40.0 GC. $\$ 90.00$ to $\$ 190.00$.

870A/872A Slide Screw Tuners

For waveguide, coaxial (872A shown) applications. Probe position, penetration sets up reflection cancelling existing reflection. Lead screw or micrometer varies probe insertion for 870A Tuners, 2.6 to 40 GC, $\$ 125.00$ to $\$ 300.00$. Micrometer drive varies insertion on 872A, 500 MC to $4 \mathrm{GC}, \$ 525.00$.

(1) 362A Low Pass Filter

Compact models increase SWR measurement accuracy by suppressing harmonics; feature low insertion loss, broad stop band. 8.2 to 40.0 GC (includes N band model) . $\$ 325.00$ to $\$ 385.00$.

430C Microwave Power Meter中. $476 \mathrm{~A} / 477 \mathrm{~B} / 485$ Mounts

(5) 430 C reads rf power direct in dbm or mw, requires no calculations. Covers 2.6 to 40.0 GC , operates with ${ }^{4} 476 \mathrm{~A}, 477 \mathrm{~B}, 485$ bolometer, thermistor or detector mounts; also with (47) 487 Broadband Waveguide Thermistor Mounts (see alongside). (tp 430C, (cabinet), $\$ 250.00$; 菏 430 CR , (rack mount), $\$ 255.00$. (47) 476A Universal Bolometer Mount, 10 to $1,000 \mathrm{MC}$ without tuning, $\$ 85.00$. (4) $477 B$ Coaxial Thermistor Mount, 10 MC to 10 GC without tuning, $\$ 75.00$. (4) 485 Detector Mounts available in three basic series: S485A 2.60 to 3.95 GC , no tuning; $485 \mathrm{~B}, 3.95$ to 12.4 GC; $485 \mathrm{D}, 2.6$ to 8.2 GC. 485 models, $\$ 75.00$ to $\$ 185.00$

(4) 487 Waveguide

Thermistor Mounts
Models covering 2.6 to 40.0 GC. Each covers full range of guide; no tuning, SWR 1.35 to 2.0 . 10 mw max power. Uses permanently installed 100 ohm negative coefficient thermistor; 18.0 to 40 GC models use 200 ohm thermistor. $\$ 75.00$ to $\$ 225.00$.

810/815B Slotted Sections

810B Slotted Sections. (7) 810B, for 809B carriage, flanged, waveguide section with accurately machined slot. Slot tapered at ends to minimize reflection. 3.95 to 18.0 GC . $\$ 90.00$ to $\$ 125.00$.
5810A. Complete slotted section assembly including probe carriage. In 2.6 to 3.95 GC (S-band) size only. $\$ 450.00$.
815B Slotted Sections. For mounting in 814B carriage. Available in two bands, 18.0 to 40.0 GC. Accurately machined; easy interchange, precise positioning. $\$ 265.00$.
806B Coaxial Slotted Section. 3-12 GC, fits 809 B, Type N connectors. $\$ 200.00$.

805C/D Slotted Lines

Utmost mechanical rigidity, less leakage, greater accuracy, SWR 1.02 or 1.04. Range 500 MC to 4 GC , reads in cm and mm to 0.1 mm . (4) 805C, for 50 ohm Type N , (14) 805 B , for 46.3 ohm RG $44 / \mathrm{U}$. (4) 805 C , $\$ 525.00$; 805D, $\$ 600.00$.

(4) 415B operates with all $\$ 4$ waveguide and coaxial slotted sections, gives readings in SWR or db. Low noise level, $0.1 \mu \mathrm{v}$ full scale sensitivity, 60 db calib. attenuator. $\$ 200.00$ (cabinet), $\$ 205.00$ (rack). New 415C (pictured) offers similar characteristics but is transistorized, incorporates revolutionary four-times expansion of readings at any point on any scale. Price on request.

416A
Ratio Meter
Displays ratio between two signals, irrespective of common amplitude variations. Especially useful for swept frequency measurement of VSWR, reflection coefficient, gain, insertion loss and other microwave parameters. Calibrated in VSWR, \% reflection, db. See offer for (4) Application Note 42 elsewhere in this advertisement. $\$ 550.00$ (cabinet), $\$ 535.00$ (rack).
HEWLETT-PACKARD COMPANY
1074B Page Mill Road
Palo Alto, California, U.S.A.
Cable "HEWPACK" DAvenport 6-7000
Field representatives in all principal areas
HEWLETT-PACKARD S. A.
Rue du Vieux Billard No. 1 Geneva, Switzerland Cable "HEWPACKSA" Tel. No- (022) 26.43.36

El's International News

World Markets for Microwave Developments

Information supplied by the U.S. Chamber of Commerce indicates that a considerable interest is underway in the development of better communication services all over the world

For the benefit of our readers we have condensed the pertinent data in a brief run-down of the present markets, and indicated where the best potential lies for U.S. manufactured products.

Australia

Australia is handicapped by duties for U.S. products. In spite of this there are several marketing possibilities. All government-ordered equipment which is unobtainable locally is duty free. The field covers electric test equipment, VHF radio. teletype equipment, and surveillance radar of simple design. The major customer will be the government.

Nepal

Nepal is considering the use of protected microwave links for internal telephone communications to replace the existing lines which are persistently stolen by the local hill people.

Netherlands

In the Netherlands the communications systems are practically complete, as the Parliament is considering the establishment of commercial television. No authority is yet established to proceed with this project.

Norway

The Norwegian government is considering a nation-wide microwave radio relay network consisting of 60 relay stations and one television channel or 960 telephone channels, all to be completed before 1965.

Portugal

A substantial expansion is under way in Portugal. At present, microwave is only used by the government communications. The Ministry of Defense has a long range plan for the gradual shift of VHF and UHF equipment and several new television projects are planned.

Rhodesia and Nyasaland

Rhodesian Television plans to set up its first station in Northern Rhodesia before December, 1961. Federal Ministry of Postal and Telegraphs plans to install 2.8 million dollars worth of forward scatter equipment to be supplied by a consortium of British firms. The best potential customer for U.S. equipment is the Department of Civil Aviation for long range radar, and HF forward scatter equipment. The Federation Airline and Central African Airways uses modern communications equipment.

Saudi Arabia

After the exploitation of the vast oil resources of Saudi Arabia, the economy has risen greatly. There are maintenance problems for radio communications equipment in the vast desert wastes. In addition, technicians do not relish, even with high salaries, the heat of the climate. However, specific plans have been made to improve communications by broadcasting and dial telephones, and for jet aircraft air-toground communications equipment. Other countries are contemplating this market. United States equipment is recognized and accepted. The major customer will be the Saudi Arabian government.

South Africa

Government Agencies comprise the largest market for radio communications equipment. The military contracts are already under

USA COMPANY LICENSES COMMON MARKET

Mr. Jack Goodman (center) Vice President of JFD Electronics Corp., Brooklyn, N. Y., announces the signing of a sales and license agreement between JFD's Components Div. and Le Condensateur Ceramigque (LCC) of Paris. The agreement covers six countries in the European Common Market.
exclusive rights to S. A. Phillips of the Netherlands. Certain equipment has been purchased by the government for two-way radio equipment for the South African police and it is likely that the Air Force would purchase U.S. equipment.

Switzerland

There is strong competition in Switzerland for communications equipment. However, U.S. airborne equipment is favorably accepted. It is likely that mobile radio communication can find a good United States market. It is recommended by the U.S. Consul in Switzerland that direct American representation would pay dividends for prospecting business in the various Swiss markets.
(Continued on Page 34)

THIS IS A
PRECISION PROOUCT . . .

Thousands of minute potential iransistors or diodes undergo diffusion simulaneously in this high-temperature electric furnace at the Fairchild Semiconductor diode plant in San Rafael. California, It's a precision process that demands precision voltage control. That's why Fairchild engineers specified General Electric Inductrol voltage regulators for this and a number of other exacting manufacturing and testing operations.

> Inductrol regulators may also be the ideal solution to your critical voltage problem. Operating on the inherently simple, inherently reliable, induction voltage regulation principle. Inductrol

THIS IS A
PRECISION PROCESS

regulators can be used to hold fluctuating voltage to precise limits or, in other instances, to provide a variable voltage output from a relatively constant supply.

These advanced General Electric voltage regulators are available in three basic types-automatic, motor-driven, and hand-operated-and a wide range of ralings to meet your exact needs. Ask your C.E Sales Engineer for full information. Or write for Bulletin GEC-1450 to General Electric Company, Section 457-06, Schenectady 5, N. Y. Voltage Regulator Products Section, Pittsfield, Mass.

THIS IS
PRECISION VOLTAGE

CONTROL BY G.E.

INDUCTROL REGULATOR FEATURES

- Reliable design and operation
- Automatic 1% control accuracy
- Stepless, drift-free controls
- 100% overload capacity up to one hour
- 9 ? to over 99% efficiency
- Load, power-factor and frequency compensated
- $25 \times$ normal short-circuit capabilities
- No harmful waveform distortion
- Rugged, compact design

Pragress /s Our Most Impontant Pradud GENERAL
electric

A CELCO YOKE WILL DO ITI

Be it a yoke for specialized character display or one of the many standard units currently being manufactured there's a Celco Yoke and Focus Coil for all of your display problems. When ordinary precision deflection yokes cannot meet your requirement, specify "deflectron" . . the greatest advancement to enter the field of precision CRT displays.

- ULTRA HIGH RESOLUTION
- SPOT RECOVERY TO 0.1% IN $10 \mu \mathrm{~s}$
- SPOTS SMALLER BY 25%
- CRITICAL RECTILINEARITY OF

SPOT SWEEP

- MORE INFORMATION PER UNIT AREA PER UNIT TIME
Write for the new "DEFLECTRON" data and standard yoke catalog, "Your Guide To Better Displays".

YOUR GUIDE TO BETTER DISPLAYS!!

Constantinc Enginecring Laboratories Qo.

[^1]
International News

MICROWAVE MARKETS

Kenya

There is a similar demand for radar in Kenya. A large expansion of the radio call service through the widely distributed population in rural areas is expected. Several agents are interested in representation of the U.S. HF equipment.

Angola

A six-year telecommunication project for $\$ 1.4$ million is now under way for HF and VHF and UHF communications. The information about these plans may be obtained from the Ministry of Defense in Lisbon.

Hong Kong

A limited market exists in Hong Kong for United States manufactured retail and communication equipment. Two way radio systems are being used extensively and sales to the government and commercial operators are favorable.

West Germany

In West Germany almost all domestic radio and television stations and the Federal German Postal Authority are setting up new transmitters and relay stations.

Bermuda

Two-way radio systems have excellent prospects for government and commercial operators in Bermuda.

Mexico

In Mexico the industrial economy is rapidly rising because of the government's desire to promote development. There is a moderate potential for radio communications equipment; and the field at the moment is almost untouched.

Mozambique

In Mozambique the underdeveloped nature of the economy and industrial complex provides a similar opportunity as part of the Second Development Plan, which allocates approximately half million dollars for radio communications.

More News on Page 40

Ultra-high purity B \& A^{\circledR} "Electronic Grade" chemicals
 help maintain process uniformity; increase efficiency of devices that convert light into electrical energy.

TIROS II weather satellite utilizes 9260 International Rectifier silicon solar cells for auxiliary power (Photo courtesy of RCA). International Rectifier silicon readout cells are widely used in computers; photocells in automatic exposure "electric eye" cameras.

In addition to being a major supplier of semiconductor diodes and rectifiers, International Rectifier Corporation has been a pioneer and leader in the development and production of photoelectric cells and silicon solar cells for applications ranging from satellites to computers to cameras.

The high efficiency and reliability of photovoltaic devices depend upon technology, infinite care and immaculate processing. In the processing phase, where high purity and uniformity in chemicals is a critical need, International Rectifier relies on B\&A "Electronic Grade" chemicals.

If chemical purity and reliability affect the quality of your products, you ought to know the full B\&A quality story. A request on your company letterhead will bring detailed information.

GENERAL CHEMICAL DIVISION
40 Rector Street, New York 6, N. Y.

HOW TO GET THE POWER TRANSISTORS YOU NEED?

JUST ASK DELCO. For even though our catalog lists only a handful of germanium power transistors, there is only a handful out of all those ever catalogued that we don't make. And those only because nobody ever asked for them.
We've made, by the millions, both large and small power transistors. Both diamond and round base. Both industrial and military types. And each in a wide variety of parameters that have proved themselves reliable in nearly every conceivable application.

You get Delco transistors fast. You get Delco transistors in any quantity. And for all their high reliability, you get them reasonably priced. All you have to do is contact our nearest sales office-and ask for them. UPton 0-8807

OAK HIGH SPEED RELAYS -

Oak engineers have spent years of research in designing this reliable high-speed relay. When used in computer, multiplexing, or telemetering applications, this SPDT, break-before-make relay will provide combined pull-in and drop-out times ranging from 600 to 1000 micro-seconds. Most important, however, is the care taken in design and manufacture to assure minimum life of 5×10^{8} operations over specified environmental conditions. This care extends not only to the design and the selection of materials but also includes accurate assembly in the new Oak Relay White Room to assure performance to these rigid specifications. For complete specifications, contact your local Oak sales representative.

AMBIENT TEMPERATURES: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, operating; $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, storage
VIBRATION: 5 to $500 \mathrm{cps}, 10 \mathrm{G}$, per Method 204, MIL-STD-202A
SHOCK: 15 G for $11 \pm 1 \mathrm{millisec}$
ALTITUDE: $50,000 \mathrm{ft}$. per Method 105, MIL-STD202A
CORROSION: $50-\mathrm{hr}$ salt spray per Method 101A, MIL-STD-202A
HUMIDITY: Method 196, MIL-STD-202A
CONTACT RATING: 1 ma max, 35 VDC
BOUNCE: 100 microseconds max
NOISE: Less than 100 microvolts, peak-to-peak, when tested according to EIA Standards Proposal No. 701

Creative Engineering - Quality Components

OAK MANUFACTURING CO.

CRYSTAL LAKE, ILLINOIS • Telephone: Crystal Lake, 459-5000
Plants in Crystal Lake, Illinois • Elkhorn, Wisconsin
SUBSIDIARIES: OAK ELECTRONICS CORPORATION, Culver City, Calif. - MCCOY ELECTRONICS CO., Mt. Holly Springs, Pa.
ROTARY AND PUSHBUTTON SWITCHES - TELEVISION AND FM TUNERS • VIBRATORS APPLIANCE CONTROLS • ROTARY SOIENOIDS • CHOPPERS - CONTROL ASSEMBIIES

The First Major Variable Resistor

In load life, freedom from resistance change under mechanical wear and aging, Stackpole Controls with new STABILITE* Elements surpass any general purpose variable resistors produced since
the early days of radio!

By achieving far greater variable resistor stability-at no increase in cost-the new Stackpole Stabilite elements provide greater circuit design freedom while assuring maximum dependability for the equipment in which they are used.

Available in all Stackpole Control

Advance in STABILITY in Years

types, Stabilite elements handle higher loads with an absolute minimum of derating. And they maintain their tolerance through years of hard use!

Stabilite elements result from entirely new techniques in applying carbon dispersions to a specially-developed base material. The accompanying data tells its own story of truly remarkable performance under pertinent conditions of normal use.

For complete details and engineering samples, call your local Stackpole sales engineer or write on company letterhead to: Electronic Components Division, Stackpole Carbon Company, St. Marys, Pennsylvania.

VARIABLE composition RESISTORS

[^2]| 011 | ompare this performance with any controls you've ever used before! |
| :---: | :---: |
| Performance test | |
| LOAD LIFE @ $25^{\circ} \mathrm{C}, 1000$ hours | |
| 500 volts, dc. 750 volts, dc. | $\left.\begin{array}{l}\text { dc. } \ldots \ldots \ldots \ldots . .3 / 4 \text { to } 1 \text { watt } \\ \text { dc. } \ldots \ldots \ldots .1 / 2 \text { watt, Min. }\end{array}\right\} \begin{aligned} & \text { depending } \\ & \text { on value }\end{aligned}$ |
| LOAD LIFE @ $70^{\circ} \mathrm{C}, 1000$ hours | |
| 500 volts, dc. 750 volts, dc. | |
| SHELF | Unlimited |
| NOISE | .3 to 8 millivolts, values below 500,000 ohms. 8 to 12 millivolts, values above 500,000 ohms. |
| Average Percent Resistance Change | |
| ZERO LOAD @ $100^{\circ} \mathrm{C}$ for 1000 hours
 $\pm 4 \%$, values to $100 \mathrm{k} ; \pm 2 \%$, values above 100 k . | |
| VOLTAGE COEFFICIENT
 Less than $\pm 0.01 \%$ per volt. ($\pm 0.005 \%$ per volt, avg.) | |
| TEMPERATURE CHARACTERISTIC $\pm 3 \%$ from $20^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ | |
| HUMIDITY: 95% RH @ $40^{\circ} \mathrm{C}$ for 240 hours $\pm 4 \%$ to $\pm 5 \%$, values to $250 \mathrm{k} ; \pm 6 \%$ to $\pm 9 \%$, values above 250k. | |
| | |

Control "Mechanics" Have Been Improved Too!

- New rear bearings assure wobble-free shaft operation.
- 70\% less backlash on "ordinary" tandem controls. Zero backlash on tandems for stereo.
- Close-tracking or matched element controls available for stereo.
- Full line of switches for most types-rotary, pushpush, pull-push.
- Built-in solder flux guards on switches of miniature, 5/e" diameter types.

How do you select a soldering iron?

...by wattage or delivered heat?

The wattage of an uncontrolled iron is no indication of delivered heat. Tip temperature varies under load from too hot to too cool. Sound connections require proper soldering temperature within a controlled range. With a high wattage iron that sags into the proper range, you pay an unnecessary premium and risk damage from too high heat.

A Weller Magnastat iron is temperature controlled at the tip. Efficient soldering temperature is maintained continuously by a thermo-magnetic sensing device. The iron never overheats . . . saves current when idling ... and holds within $\pm 3 \%$ variance of the specified temperature. Interchangeable tips provide either 750,700 or $600^{\circ} \mathrm{F}$. temperatures.

...by the pound or for operator efficiency?

With only half the weight, a Weller Magnastat iron does the work of an uncontrolled iron of much higher wattage. A 55 watt Magnastat iron weighs only 3 ounces. Operator efficiency is also aided by a delicate balance and constantly cool handle.

Veller MAGNASTAT

temperature controlled soldering irons

MODEL TC-852, 55 watts, for heat-sensitive soldering $\$ 900$ MODEL TC-602. 75 watts, for medium soldering $\quad \$ 1000$ mODEL TC-1202. 120 watts, for heavy soldering $\$ 1150$
Prices shown are for Magnastat Iron with tip and 2-wire cord. 3 -wire cords available. Over 50 tip styles available in 3 temperature ranges.
SEND FOR NEW BULLETIN ON MAGNASTAT IRONS

Ballistic Camera Synchronization System

A Ballistic Camera Synchronization System designed cooperatively with the Ballistic Research Laboratories and developed and manufactured by the Electronic Engineering Co. of California, Santa Ana, Calif., has been formally accepted by BRL, Aberdeen Proving Ground, Md. Tests on the system were conducted cooperatively with NASA and Army Ballistic Missile Agency at the Cape Canaveral Firing Range. The system is capable of synchronizing Ballistic Cameras with rotating shutters to within 0.1 msec . Cameras for tracking space vehicles or capsules may be located as much as 200 miles apart and still retain this accuracy.

Communication System Links Computers

A 68-mile long telephone cable and microwave network now links the IBM data processing facilities in NYC and Poughkeepsie, N. Y.

Specially-developed IBM 1945 magnetic tape transmission units send information between the two points in either direction or both ways simultaneously, at a rate of 15,000 characters per second.

The new 1945 unit can send and receive as fast as IBM computers read and write magnetic tape, a rate ranging up to 62,500 charac-

Communication system utilizes an IBM 1945 magnetic tape transmission unit (left) at each location, telephone cable and a Bell System microwave network.
ters/second. Such speed will allow a large company or organization to distribute various jobs among its multiple computer facilities without regard to physical distance.

Programmers at either end of the link can test and revise their programs on computers at the other location by transmitting the appropriate data there and receiving back processed results for evaluation. Output is in the form of punched cards, magnetic tape or printed copy.

TE MTEGRATED SOURGE

INSIDE LOOK AT ALITE-

Write todoy for Bulletin A-40R-Full technical dato an standard and special Alite ceramic-ta-metal seals.

In all phases of planning for high-alumina ceramic-to-metal seals you can rely on Alite for the "know-how" and "do-how" required to produce highest quality for critical applications.

From design to finished part, every manufacturing step - including formulating, firing, metalizing and testing - is handled within our own plant and carefully supervised to assure strict adherence to specifications, utmost uniformity and reliability.

To simplify design problems and speed delivery, Alite terminals, feed-throughs and cable end seals are available in over 100 standard sizes.

ALITE DIVISION

PUT

HIEH CONDUCTANCE, 2 NSEC SWITCHNIG,LDW LEAKAGE CURRENT

ELECTRICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C}$

Breakdown Voltage at $I_{R}=5 \mu \mathrm{a}$
Forward Voltage at $I_{F}=50 \mathrm{ma}$
Reverse Current at $\mathrm{V}_{\mathrm{R}}=-50$ volts
Reverse Current ($150^{\circ} \mathrm{C}$) at $V_{R}=-50$ volts
Reverse Recovery Time, $I_{f}=$ $10 \mathrm{ma}, \mathrm{I}_{\mathrm{r}}=10 \mathrm{ma}$

Reverse Recovery Time, $I_{f}=$ $10 \mathrm{ma}, \mathrm{V}_{\mathrm{r}}=-6 \mathrm{v}, \mathrm{R}_{\mathrm{L}}=100 \Omega$
Capacitance at $V_{R}=0$ volts

B_{V}	75 volts min.
V_{F}	1 volt max.
t_{R}	. $05 \mu \mathrm{armax}$.
I_{R}	$50 \mu \mathrm{max}$.
$\dagger_{\text {rr }}$	4 nsec. max.
$t_{r r}$	2 nsec. max.
C_{0}	2 pf max.

FOR FAST DELIVERY OF PEP DIODES AT FACTORY-LOW PRICES CALL YOUR G-E SEMICONDUCTOR DISTRIBUTOR

 Test results to date under MIL-R-10509D show a reliability probability of: 98.78% for temperature coefficient $\left(-55^{\circ} \mathrm{C}\right)$; 98.99% for temperature coefficient $\left(+165^{\circ} \mathrm{C}\right) ; 99.99 \%$ for short-time overload; 99.48% for moisture cycle; and 99.28% for load life. The Vamistor meets all MIL specs.

PREMIUM QUALITY AT NO EXTRA COST

1. HIGHEST WATTAGE DISSIPATION . . . you get $1 / 2$-watt ratings in $1 / 4$-watt size units at $125^{\circ} \mathrm{C}$.
2. LOWEST NOISE ... -30 dbm average at $0.032 \mu \mathrm{v} / \mathrm{v}(-50 \mathrm{dbm}$ at $0.0032 \mu \mathrm{~V} / \mathrm{v}$ upon request).
3. HIGHEST RANGES . . . 50% greater voltage and resistance ratings than any other type of metal film resistor.
4. SUPERIOR FREQUENCY RESPONSE . . . negligible impedance from DC to over 100 Mc .
5. and HIGHEST STABILITY.

Free evaluation samples and applications assistance available through Weston field representatives. Write today for technical information and life test data.

DAYSTROM, incorporated

weston instruments division newark 12 . New Jegser
Reliability by Design

Waryon

Tele-Tips

THE RELIABILITY STANDARD for space, according to Aerojet General Corp.'s scientists will be fifty years. Orbiting satellite equipment will be expected to function continuously for that period without defect.

A JERK, by any other name-is still "a vector that specifies the time rate of change of the acceleration; jerk is the third derivative of the displacement with respect to time." (According to the American Standard Acoustical Terminology-S1.1-1960.)

FIRST ISOTOPE - POWERED automatic weather station will soon go into operation in the Canadian Arctic, fulfilling a long time dream of weather men around the world. Power to operate the station will be provided by an isotope of strontium-90. Station and power source are housed in a cylindrical insulated container approximately 8 ft . long.

UNIQUE TRAFFIC CONTROL

 system developed by General Motors Research Laboratories has a series of lighted speed signs that tell the motorist to speed up or slow down in order to arrive at the next traffic signal while it is green. The motorist entering the system at either end need only obey the lighted speed signals which vary from 25 to 45 miles per hour.MORE SOLAR ENERGY research has been urged on the Government by Senator Hubert H. Humphrey (D., Minn.). Humphrey emphasizes "the tremendous potential of solar power devices to our Nation's program overseas." One of the items that Humphrey has in mind is a solar power device known as "the Community Listening Center" developed by Hoffman Electronics. This solar powered device is a small radio and amplifier which could be dropped into remote areas. The International Cooperation Administration has purchased four of the units for experimental uses in villages in Paraguay, India, Afghanistan, and Pakistan.

Tele-Tips

"TRUE-MOTION" RADAR that duplicates the navigation scene as it appears from the ship's pilot house and eliminates most of the prodding required of conventional radar is now being turned out by RCA. The new type radar provides the ship's navigator with a forward view picture of his own vessel moving "up" on the radar screen. The nuclear powered " N . S. Sylvana" will get the first set.

CAMPUS RECRUITERS often reject the student with the liberal arts background, avoid the nonconformist, mislead the student about work requirements and don't know the future manpower needs of their own companies, charges George S. Odiorne of the University of Michigan. "Particularly lamentable," he says, "is that while lip service is paid by senior company officers to the idea of hiring liberally educated men, it is the professionally trained person who gets the most attractive job offers. And this has a tangible effect on the student's emphasis on the more academic subjects, especially in the classics, literature, and the arts courses."

THE PATENT OFFICE last month granted its $3,000,000$-th patent; this one issued to Dr. Kenneth R. Eldridge, a staff scientist of Stanford Research Institute. The patent is assigned to GE's Computer Dept., Phoenix, Ariz. The invention covered a magnetic reading device, developed for the Bank of America's electronic data system for processing bank checks at a speed of 750 per minute.

FALLOUT from the Russian atmospheric tests is being closely watched here. The Weather Bureau is keeping a close eye on the high altitude winds that are spreading the radio active debris from the Russian tests around the world. Wind is only one of the factors; the others are the season of the year when the blast occurs, the altitude to which radioactive debris is carried, and the latitude of the earth at which the test is conducted.

HOUSING: ceramic DIELECTRIC: vacuum RESULT: Better vibration performance - Greater shock resistance • Higher current ratings • Smaller size

Jennings Vacuum Capacitors already have the unmatched advantage of 19 years of production experience behind them. Now to the proven advantages of a high vacuum dielectric we've added a high strength ceramic envelope for applications that require higher shock, vibration, and current ratings. The lower loss ceramic permits operation at much higher frequencies and temperature levels. High strength ceramic also minimizes problems of physical damage. New design makes mounting easier since the new units are standardized with respect to their mounting rings.

As an example of their capabilities, note the ratings achieved by our ceramic vacuum type CFDB 320 mmfd fixed capacitor.

Size: $23 / 8^{\prime \prime} \times 23 / 8^{\prime \prime}$
Peak Test Voltage (60 cycle): 15 kv
Continuous current - $65^{\circ} \mathrm{C}$ rise: $65 \mathrm{amps} @ 12 \mathrm{kv}$
(4 mc) $\quad-100^{\circ} \mathrm{C}$ rise: $75 \mathrm{amps} @ 14 \mathrm{kv}$
Vibration: 30 G to $2,000 \mathrm{cps}$
Shock: 75G 11 msec.
Capacitance change $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$: 15 ppm .

We will be pleased to send further details about these new capacitors at your request

[0]
 Bendix Craftsmanship at work for you

LARGEST LINE OF MILLIMETER WAVE LENGTH BWO Bendix ${ }^{\text {® }}$ bwo tubes

 for higher frequency transmission. These Backward-Wave Oscillator Tubes -exclusive with Bendix-generate microwave energy over the largest continuous frequency range. Ideal for advanced multichannel telephone and television systems, microwave spectroscopy, high definition short range radar, highly directive communications, and many other applications needing low power, voltage-tuned millimeter wave length radio frequency energy. Write today for complete information. Electron Tube Products, The Bendix Corporation, Eatontown, New Jersey.Output Flange Maximum Diameter Length. Mounting Position
Weight.
-Without magnet (tube only). Magnets are available.

MECHANICAL DATA
Special adapter to RG-98/U (50-75 Gc)

Red Bank Division

Look to Westinghouse for Silicon Power Transistors with lowest saturation resistance LSR $=.037$
 Lowest saturation resistance ratings in the industry enable design engineers to obtain threefold increases in power-handling capability. Now-with these higher performance specifications you can replace germanium units and gain the silicon power transistor advantages of reduced heat sink size . . . higher allowable ambient . . . improved control range . . . and upgraded reliability in almost all circuits.

	I_{c}	$V_{C E}$	Typical $R_{C r}$ (SAT)
$2 N 1809.2 N 2109$ series	30 A	$50-200 \mathrm{~V}$.037
$2 N 1015.2 N 1016$ series	7.5 A	30.200 V	.25
W×118 series	10 A	50.150 V	.22

2N1809-2N2109 series. New 30-amp "Rock-Top" transistors . . . world's most powerful! With 30 -amp, 200-volt, 250-watt ratings these newest Westinghouse series 2N1809 and 2N2109 transistors are designed to meet the most exacting high power applications. Ger-manium-level saturation resistance (. 037 ohms), and freedom from secondary breakdown mean highest efficiency and operating reliability.

WX118 series. World's highest gain power transistors provide current gain of 400 at 10 amps! New Westinghouse Type WX118 high-gain silicon transistors simplify circuitry, increase reliability, reduce cost of assembly. They're ideal for application in high power, high efficiency regulators, inverters and switching circuits. Saturation resistance is only 0.22 ohms.

2N1015-2N1016 series. Highest reliability from production-proved 150 watt designs. Get maximum circuit reliability at no extra cost by specifying the Westinghouse 2N1015-2N1016 series. These popular transistors have
been field-proven in thousands of operating equipments. They can replace lower rated transistors (2N1489. 2N1490, 2N1069-2N1070, 2N389 and others), and give you up to twice-thepower derating margin. In addition to the exclusive rating characteristics of these transistors, you get greater assurance of performance reliability from:

- True voltage ratings. Westinghouse transistors can be operated continuously at their full published ratings into highly inductive loads. True Voltage Ratings are verified by 100% Power Testing.
- $\mathbf{1 0 0 \%}$ Power Testing. Each Westinghouse transistor is 100% Power Tested before leaving the plant. Tests are conducted over the full operating range-under all conditions of base bias and collector current at maximum rated dissipation.
For more information or technical assistance, see your nearest Westinghouse representative or write: Westinghouse Electric Corporation. Semiconductor Department, Youngwood, Penna. You can be sure. . . if it's Westinghouse. SC-1054

For immediate "off-the-shelf" delivery, order from these Westinghouse Distributors:

EASTERN
ACK SEMICONDUCTOR INC
CAMERADIO Birmingham 5, Ala./FA 2-0588 CRAMER ELECTRONICS. INC. BOSton. Mass./CO $7-4700$
ELECTRONLC WHOLESALERS, INC ELECTRONIC WHOLESALERS, INC, GENERAL RADIO SUPPLY CO., $\begin{gathered}\text { Meibourne, Florida/PA 3-1441 } \\ \text { Camden, N.J./WO } 4.8560\end{gathered}$ GENESEE RADIO PTS. CO Camden, N. Bultalo, N.Y./TR 3-9661 KANN-ELLERT ELECTRONICS, INC. Baltimore, MO/TU 9-4242 MILGRAY ELECTRONICS New Yoth, N.Y/RE 2-4400 RADIO \& ELECTRONIC PTS. CORP Cleveland, 0./UT 1-6060 SChweber electronics Long Isiand, NY/PI $6-6520$ Silver Spring, Md/JU 5.7023

MIDWESTERN

E.C.I. SEMICONDUCTORS, INC

Kansas City, Mo./WE 1.0829

ELECTRONIC COMPONENTS FOR INDUSTRY CO HALLMARK INSTRUMENTS CORP. Louis, Mo./WO 2-9916 Dallas, Texas/R1 7.8933 NTER.STATE RADIO \& SUPPLY CO.
LENERT CO. $\quad \begin{aligned} & \text { Denver 4 Colo. /TA 5-8257 }\end{aligned}$ MDLAND SPECIALTY CO Houston, Texas/CA 4.2563 El Paso, Texas/KE 3.9555 Phoenix, Ariz/AL 8-8254
Albquerque, $\mathrm{AM} / \mathrm{MH} 7.0236$ RADIO OISIRIB. CO. Indianapolis. Ind./ME 7-5571 SEMICONDUCTOR SPECIALISTS. INC.
S. STERLING CO. $\begin{array}{ll}\text { Chicago. II./NA 2.8860 } \\ \text { Detrout, Mich /BR 3-2900 }\end{array}$ $\begin{array}{ll}\text { S. STERLING CO. } & \text { Detroit, Mich./BR } \\ \text { UNITED RADIO, INC. } & \text { Cincinnati, } 0 \text { /MA 1-6530 }\end{array}$

WESTERN

ALMAC ELECTRONICS CORP. ELMAR ELECTRONICS HAMHLTON ELECTRO SLS.
 NEWARK ELECTRONICS CO. Inglowood, Cal/OR 4-8440

Armco Ni-Fe Alloys Give You

Magnetic Control and Amplification

Armco 48 Orthonik and 4.79 Ni offer advantages for wide range of electronic components. Now available in cost-reducing wider widths.

For cores that require high permeability at low and moderate inductions, a rectangular hysteresis loop, and extremely low coercive force, these Armco Magnetic Alloys provide a useful range of product-improving properties. Armco 48 Orthonik-Very high B_{r} to B_{m} ratio near saturation and high saturation induction permit design of efficient power components. amplifier and control devices. Available in thicknesses from 6 to $1 / 4 \mathrm{mils}$.
Armco 4-79 Ni -Advantageous for computer circuits and high frequency amplifiers because of its extremely low coercive force, rapid flux change and relatively good temperature stability. Produced in thicknesses of $1 / 2,1 / 4$, and $1 / 8$ mils.

New Economical Widths

These Armco Magnetic Alloys, in thicknesses of $1 / 2 \mathrm{mil}$ and less, are now available in wider coils that mean added savings. Width of $1 / 2 \mathrm{mil}$ coils is now $31 / 8^{\prime \prime}$, and width of $1 / 4$ and $1 / 8$ mil material is increased to $3^{\prime \prime}$.

Write for complete information on Armco 48 Orthonik and Armco 4-79 Ni. Armco Division, Armco Steel Corporation, 3641 Curtis St., Middletown, Ohio.

ARMCO Armco Division

ELECTRON TUBE NEWS from SYLVANIA

Recording data on film with fiber optic CRT

- 30 times itioreased light output - improved image resolution

Low drain heater-cathode design for battery-powered applications . . . Now in 3 CRT families!

Typical of continuing Sylvania advancements in the "state of the art" is the remarkably efficient heatercathode assembly employed in Sylvania-3BGP-, 3BMP-, SC-3016. With a rating of 1.5 V @ 140 mA , it consumes only 0.2 watts and enables battery life of 400 hours from a \#6 dry cell operating up to 2 hours daily. Further, it possesses extremely low mass ($0.05^{\prime \prime}$ dia., $0.011^{\prime \prime}$ thick), thereby enhancing resistance to shock and vibration, so vital for reliable, portable operation. Significantly, this unusual development is adaptable to virtually any existing CRT design.

Key Characteristics	3BGP—	3BMP-	SC-3016	Units
Anode \#3 Voltage		6600^{*}		Vdc
Anode \#2 Voltage	2750^{*}	2200^{*}	2750^{*}	Vdc
Anode \#1 Voltage	1100^{*}	1500^{*}	1100^{*}	Vdc
Face Dimension	$11 / 2 \times 3$	3	$11 / 8$	Inches
Over-All Length	$91 / 4$	10	6	Inches

*Absolute maximum ratings

Low grid drive! Low current heater!
Sylvania-10ANP for radar display

Sylvania-10ANP is ideally suited to compact radar equipment. Here's why: small yoke for increased sensitivity, low grid voltage requirements and 300 mA heater enable excellent performance from transistorized power supplies; further, it features small, $0.840^{\prime \prime}$ diameter neck, short over-all length of only $16^{\prime \prime}$ and 9 -pin miniature base.
Sylvania-10ANP offers magnetic deflection and focus, aluminized screen and a wide range of phosphors. Currently under development at Sylvania are $5^{\prime \prime}, 7^{\prime \prime}$ and $12^{\prime \prime}$ versions of the 10ANP.

If your design demands specialized cathode ray tubes, call on the high quality-quantity capabilities of Sylvania. For technical data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc., 1100 Main Street, Buffalo 9, New York.

N:EEI) IID Now:

Radiation-Resistant Components!

Few reliability studies hold such great import for national security as those investigating radiation effects on electronic components. Will, for example, electronic components withstand continuous radiation from the reactor of a nuclear-powered craft?

Intense radiation is known to have disastrous effects on solid-state performance. How, then, do you design for reliable, compact circuitry without imposing prohibitive weight penalties of massive shielding?
One good way: design around radiation-resistant Sylvania Gold Brand Subminiature Vacuum Tubes. All Gold Brand Subminiature types are rated for steady state radiation resistance. Extensive testing prove them capable of withstanding 10^{12} neutrons/sq. $\mathrm{cm} . / \mathrm{sec}$. dose rate
for a total dosage of 10^{16} neutrons/sq. cm . Further, Gold Brand Subminiature Tubes tolerate pulses of pure gamma radiation of approximately $10^{6} \mathrm{R} . / \mathrm{sec}$. Compare this with the gamma dose rate of $0.1 \mathrm{R} . / \mathrm{sec}$. absorbed $3 / 4$ mile from a 20 KT bomb-it's well within the operating capability of Gold Brand Subminiature Tubes.

Vacuum tubes are compatible not only with nuclear environments but extreme shock and excessive temperatures. Extended periods of storage, too, have little or no effect on vacuum tubes. Ask your Sylvania Sales Engineer for complete information on the many remarkable capabilities of electronic tubes. He can supply you with detailed documentation of Sylvania Gold Brand Subminiature Tube reliability.

bright performance lights up sales when you design around . . . SYLVANIA CdS Photoconductors

Sylvania-8100 is the first of a new family of Cadmium Sulfide photoconductive devices for industrial-commercial light-actuated control applications. Proven in self-adjusting TV brightness and contrast controls, Sylvania- 8100 features two foot-candle resistance of 5000 Ohms and a minimum dark resistance of 200,000 Ohms.
Sealed-in-glass techniques provide a moisture-resistant device, protect wafer, assure long, reliable life.
Blue Dot Protection on light-sensitive wafer indicates device is vacuum-tight. If the unusual occurs and a leak develops, blue dot turns to pink . . . a special confidence feature on all Sylvania photoconductors. Hydrogen-Filled after thorough evacuation; improves

dissipation characteristics, enhances stability and uniformity.
Automated Techniques provide excellent control of physical characteristics such as the configuration of electrodes on the CdS wafer, assure superior characteristics of uniformity.
If your design area includes lighting, sorting, door controls, headlight dimmers, data processing, fire or smoke detection or similar work, contact your Sylvania Sales Engineer. He will give you complete information on this and other photoconductors under development at Sylvania. For technical data on Sylvania-8100, write Electronic Tubes Division, Sylvania Electric Products Inc., 1100 Main St., Buffalo 9, N. Y.

Letters
 to the

Engineers Salaries

Editor, Electronic Industries:
I was surprised to read on Page 4 of the August issue of Electronic Industries that graduates in Electrical Engineering with an interest in electronics are receiving offers at the average of $\$ 490$ per month with a high of $\$ 528$ per month. Actually, the news item relating to this matter is somewhat garbled and it was obvious from the news item itself that these items cannot be taken at face value. Our engineering graduates this year are averaging $\$ 540$ per month and this is in line with reports from other major schools of engineering.

George R. Town Dean
GRT/fc
Iowa State University of Science and Technology Ames, Iowa

Dear Mr. Town:
A combination of a typing error and the fact that the error was not detected before going into print accounts for the mistake.

Ed: Starting with the second sentence, the item should have read:
"Fifty CSPE graduates accepted offers from industry with an average of $610 / m o .$, with a high of $900 / m o$. and a low of $525 / m o$. Seven graduates accepted offers from Federal Government installations at an average of $490 /$ mo., with a high of $528 / \mathrm{mo}$., (GS-7) and a low of 444/mo. (GS-5)." SR/alm

What Price RELIABILITY?

Editor, Electronic Industries:
I am currently working on a high reliability system for air borne equipment. Your article What Price Reliability, (September 1961) fully summarizes the major problems and difficulties in this field.

I feel this article is of great interest to this department. Please send me six (6) copies so that I can distribute them to the other members of my group.

Sherman Cheu Engineer
Philco Corporation
Government and Industrial Division Western Development Laboratories 3875 Fabian Way
Palo Alto, Calif.

Editor, Electronic Industries:
Having read and enjoyed your timely article, What Price Reli(Continued on page 56)

PORTABLE

The BH190 Portable D.C. Voltmeter is a digital indicating instrument with accuracy previously available only in laboratory equipment. The unit is a continuous null balance slide-wire potentiometer with a simple and direct analog-to-digital conversion system.
It is completely self-contained...including power supply, servo unit, slidewire and amplifier. Weighs less than 10 lbs .
Transistorized, it requires no warm-up

for checking systems and components in

 GROUND SUPPORT FLIGHT DECKTELEMETRY TEST CELLS

- ACCURACY 0.1%
time! Operates from 115 volts, 60 or 400 cycles, 20 VA . as specified.
CALIBRATION-The instrument is available with a maximum of four ranges. Ranges increase by a factor of $\overline{10}$. The minimum range is zero to .020 v.d.c.; maximum range is zero to 10,000 v.d.c. For example: 0-.0500;

$$
0-.5000 ; 0-5.000 ; 0-50.00
$$

Produced by the makers of JETCAL ${ }^{\oplus}$ jet engine Analyzer...in worldwide military and airline use.

Full information is available for the asking!

HOWELL INSTRUMENTS, INC.

formealy bah instrument co., ine.
3479 WEST VICKERY ELVD. F FORT WORTH $7, T E X A S$

Sales-Engineering Offices:
ATLANTA, GA., COMPTON, CAL., DAYTON, OHIO, VALLEY STREAM, L.I., N.Y., WICHITA, KAN. TORONTO, ONT. (George Kelk (td.) MITCHAM, SURREY, ENGLAND (Bryans Áeroquipment Lfd.)

From the industry's only manufacturer devoted predominantly to backward-wave oscillator technology, the tubes described below represent a major advance in design. Focused by integral permanent magnets, they eliminate the need for solenoids and their associated power supplies, and provide a significant saving in space. They do not require forced-air cooling.
The Stewart trade-mark on these new X-band tubes carries with it the same implications of sustained high levels of performance and stability expected of all Stewart tubes. Typical life of Stewart BWOs is 5000 operating hours without loss of performance.

Inquiries are invited on the tube types described here, and on other standard and special BWOs in frequency ranges from 1 through 40 Gc . PM focused tubes for other bands are in process of development.

TYPE	SE 201	SE 202
Frequency range and minimum power output	$7.0-12.4 \mathrm{Gc}, 10 \mathrm{mw}$ Maximum tuning voltage	$8.2-12.4 \mathrm{Gc}, 10 \mathrm{mw}$
Cathode current	2000 v	$\mathbf{1 5 0 0 \mathrm { v }}$
Grid cutoff voltage	$4-7 \mathrm{ma}$	4.7 ma
Power Variation, Max. p-p	-15 v	-15 v
Weight, Max.	6 db	3 db

STIETMARET
STEWART ENGINEERING COMPANY
Santa Cruz 9, California

Letters

to the
(Continued from page 55)
ability? in the September 1961 issue of Electronic Industries, I would appreciate twelve (12) reprints for distribution within Ryan Electronics.
Advance thanks for your cooperation.
D. M. Paff

Reliability Engineering
Kyan Electronics
Div. Ryan Aeronautical Co.

San Diego 12, Calif.

Editor, Electronic Industries:
I would like to request reprints of two fine articles in your September 1961 issue. The articles are: Checklist for Marketing a New Product and What Price Reliability.

George A. Needham
Mgr. of Administration Integrated Circuits
Motorola, Inc.
5005 East McDowell
Phoenix, Arizona
Editor, Electronic Industries:
Would you please forward five reprints of the article entitled What Price Reliability? which appeared in the September 1961 issue of Electronic Industries.
H. J. Rounds, Jr.

Executive Vice President
Benson-Lehner Corp.
1860 Franklin St.
Santa Monica, Calif.

Editor, Electronic Industries:

Our Reliability Engineering group would appreciate receiving, if possible, six reprints of the article What Price Reliability by John E. Hickey, Jr. The article appeared in the September 1961 edition of Electronic Industries.
D. G. De Jong

Reliability Engineering
The Hallicrafters Co.
5th and Kostner Avenues
Chicago 24, Illinois
Editor, Electronic Industries:
Please send to the writer a reprint of the article, What Price Reliability? which appeared in the September issue of Electronic Industries.
Quote, please, the cost of reprints of this article in quantities 2-100 copies.
T. E. Tucker, Design Engineer Tantalytic Foil Capacitor Engineering
General Electric Co.
Capacitor Department
Irmo, South Carolina
(Continued on page 60)

A flll line of capacities from 10 -a 52 points. Capable of mill ons of steps without adjustment.

Fast "Off-The-Shelf" delivery

Overnight delivery on many items at factory prices

When standard CLARE relays or switches meet your needs, distributor service saves you time, costs you no mare.

Top quality

-the same fine design and long life you get in CLARE custom-built relays and switches.

Easy purchasing

-you can order CLARE relays at the same time you purchase other components... have them delivered together.

Engineering assistance

-always available from CLARE field engineers who work in close cooperation with CLARE distibutors.

NOW AVAILABLE

... mercury-wetted contact relay modules
for mounting on your own printed circuit board
Type HGM relay module (left) with cut-away (right) showing mercury-wetted switch capsule and coil potted in steel enclosure.
Your nearby CLARE distributor can now supply you with the new CLARE mercurywetted relays, sieel erclosed and ready for mounting. They combine the famous CLARE billion-operation reliability with unusual ease of handling and application. You can choose either the standard CLARE HG relay module or the HGS, super-fast and super-sensitive. Each module contains the CLARE mercury. wetted contact switch capsule with contacts continually wetted by capillary action. They never bounce, never get dirty, never weld and never wear out.

A compact telephone type relay of unequaled long life and superior performance.

A highly reliable switching device for single or multiple circuit control....wide mounting versatility.

Single or multiple switch capsules potted in steel container. Gives billions of operations with no maintenance.

A crystal can relay with unusual flexibility and a variety of mounting styles.

of top-quality Clare relays

PACIFIC COAS:

1. Puget Electro Products 5319 Fourth Ave., South Seattle 8, Washington Seattle 8, Washington
Tel: Parkway $5-9700$
2. Bell Electronic Corporation 1070 O'Brien Drive Menlo Park, Callifornia Tel: Davenport 3-9431

2 Bell Electronic Corporation 306 E. Alondra Gardena, California Tel: Faculty 1-5802

2 Bell Electronic Corporation 8072 Engineers Road San Diego 12. California Tel: Browning. 8-4350

SOUTHWEST
3. Radio Specialties Co., Inc. 6323 Acoma Road, S.E. Albuquerque, New Mexico Tel. Amherst 8-3901
3. Radio Specialties Co., Inc. 209 Penn Avenue Alamogordo. New Mexico Tel: Hemlock 7-0370
4. Engineering Supply Co. 6000 Denton Drive
Dallas 35, Texas
Tel: Fleetwood 7-6121

From these distributors

EAST
7. R\& D Supply, Inc.
$1-92$ Highland Ave.
Needham 92, Mass.
Tel: Hillcrest 4-4500
8. Avnet Electronics Corp 70 State Street Westbury, L.I. New York Tel: Edgewood 3-5800
9. Electronic Wholesalers, Inc. 1301 Hibiscus Boulevard P. O. Drawer 1655 Melbourne, Florida Tel: PA 3-1441
9. Electronic Wholesalers, Inc. 9390 N.W. 27th Ave.
Miami 47, Florida
Tel: Oxford 6-1620
P. O. Box 1505

Houston 1, Texas
Tel: Capital 4-9131
6. Engineering Supply Co. 1124 East Fourth Street Tulsa 20, Ohlanoma Tel: Luthel 3-8121

CミNTRAL

10. Relay Sales, the.
P. O. Box 186

Wēst Chicago, Illinois Tel: 231-1100
11. Srepco, Inc.

314 Leo Street Daytion 4, Ohio Tel: Baldwin 6-2546
12. Pioneer Electronics Supply Co. 5403 Prospect Avenue Cleveland 3 , Ohio Tel: 432-0010
13. M G Electronics \& Equip. Co. 201-3 South 18th Street Birmingham 3, Alabama Tel: FA 2-0449
C. P. Clare \& $\overline{\text { Co. }}$. 3101 Fratt Blvd.,

Chicago 45, lllinois. Cable Address: CLARELAY In Canada: C. P. Clare Canada Limited 840 Caledonia Road, Toronto 19, Ontario.

In Europe: Europelec, les Clayes-sous-Bois (S.et O.), France.

C. P. CLARE \& CO.

Relays and related control components

Letters

to the

(Continued from page 56)

New Product Treatment

Editor, Electronic Industries:
In the September issue of Electronic Industrifs you included a product release on our new coaxial pill varactors

For the benefit of design engincers I used a photograph of models to show the configuration most accurately. The actual diodes were pictured next to a postage stamp for size.
Someone on your staff took the time to identify the models as such on the photograph (see page 181) before you made your cut. It was a simple gesture but like the high editorial caliber of your magazine, the high caliber of your editing staff does not go unnoticed.

Robert J. Allen
Advertising and Public Relations Manager
Microwave Associates
Burlington, Massachusetts

Many Thanks-

Editor, Electronic Industrifs:
Electronic Industries for April 1961 is a fine issue. In fact EI quality and utility has been climbing for a solid year.
W. L. Anderson

Research Specialist
United States Air Force
Box 530
Devine, Texas

New Skill—Writing!

Editor, Electronic Industries:
I enjoyed reading the editorial Writing-Newest Engineering Skill, by Harry Baum, in the March 1961 edition of Electronic Industries, page 278 and 279.
As Mr. Baum states, there are some people who can write letters or papers that one can enjoy reading, while others write in such a manner that it is a tough struggle following their train of thought.

Day by day, I find I am called upon to write letters and reports that should be well written and easy to read.
The writer would certainly appreciate a reprint of this article for his own personal file and future benefit.

Frank H. Johnson Field Engineer
The Unitec Corporation
P. O. Box 5754

4003 Seven Mile Lane
Baltimore 8, Maryland
(Continued on page 64)

When the chips are down, reliability is a crucial concern in the selection of a semiconductor source. Yet when you explore this parameter, you'll find a variety of vendor claims about the reliability of their devices. The statements run a wide gamut of values - and all the claims may be legitimate. One can easily find limself faced by the paradox: 2.0% can be better than 0.001% (for failure rates in \%/1000 hours).
How come? Just how reliable are reliability figures anyway? Let's shake ourselves free of the emotion of claim and counter-claim and look at the logic of methodologies. The paradox exists because of basic differences in the different approaches used to reach a final value. In order to reach that final reliability figure, several assumptions must be made. One can be conservative or liberal in the assumptions he chooses to use. Thus, the 2.0% figure may be based on conservative assumptions, the 0.001% on liberal assumptions.
Now that you've come this far, let's dig in deeper. Obviously, a raw reliability figure is not enough - and should not be accepted on face value alone. We should ask what assumptions were made in reaching that figure. What assumptions should one look for? The following are the basic ones:

1. DEFINITION OF FAILURE: Just how is failure defined? Is it so strict as to call any deviation from initial values, however slight, a failure? Is it so liberal as to call any device which still passes current an acceptable one? You can see that the definition of failure becomes a screening system. How coarse or fine one makes that definition is a variable which affects the final reliability figure.
2. Failure rate over the course of time: Here is where one gets hung on the horns of dilemma. What normally happens is that data is taken for a base period of time (usually 1000 hours) and extrapolated. A good family of devices doesn't provide enough failure data in any reasonable length of time for a valid fit to any of the mathematical models of failure rate distributions. What happens then is that the reliability people make one of two assumptions. They may assume a constant failure rate . . . or they may assume a decreasing failure rate. The differences are much like academic arguments, one chooses his side according to his persuasion. The underlying dilemma is that the same set of data can give us two radically different failure rate values . . . depending on which assumption is used. It suffices to say that the constant failure rate assumption is the conservative one. 3. CONFIDENCE LEVEL: The statisticians will talk about the confidence level of the figures provided. Let's take the mystery out of the term. While the mathematicians will take exception to our forced simplification, after a moment's reflection they'll agree. A 90% confidence level, in the long run, means that 90% of the shipments will meet the specified standards and a 60% confidence level means that only 60% will get through. If that is what is wanted, an extra decimal place or two can be squeezed into that reliability figure by reducing the confidence level. The higher the confidence level, the more conservative the resulting reliability statements will be. 4. TESTING PROCEDURES: Just where are the test points? How many and which parameters are to be ob-
served? To what stresses are the devices carried? What methodologies are used? We don't mean to imply that one approach is intrinsically superior to another. But we do mean to say that given exactly the same device, one can get different results according to the testing procedures used. Sometimes the differences can be quite gross. In comparing reliability data, one can't go wrong asking just how conservative or liberal the testing procedures are.
3. ARTIFICIAL ACCELERATION FACTORS: The rack lifetesting used to determine reliability values is basically accelerated testing. In "normal". use, devices are not usually subjected to similar strains. Some vendors use the test data exactly as derived. In order to make the failure rate look better, others choose to apply an artificial acceleration factor. Their justification is that such a factor equates the data to normal usage. Obviously, using the the data as derived is the conservative procedure.
4. WHICH QUALITY CONTROL PROCEDURES: Most of the commonly used lot acceptance procedures for semiconductors follow Mil. Std. 105. But an alternate is permissible - MIL-S-19500B, Method B. This is the Lambda (λ) concept which specifically limits customer risk. The consumer specifies reliability assurance at a fixed confidence level and shifts the risk to the producer. In terms of the consumer's viewpoint, the Lambda (λ) approach is the conservative one.
If you're enchanted by the complexities of reliability, your own reliability experts would welcome the opportunity to explain the mysteries - and the problems of their profession.

We'll sum up by stating our position. The Raytheon Semiconductor Division has a set policy of always making the conservative assumption. We prefer to present you with the conservative figures which derive from the device itself rather than those based on a projected use of the device.

And when you see reliability ratings, make it a point to read between the lines, that's where real differences exist. If you would like to know more about Raytheon Reliability, call or write the nearest Raytheon office for any or all of the following Quality \& Reliability Bulletins:

Bulletin \#221 - "Reliability — Fact or Fancy?" - an illuminating explanation of how to read and analyze reliability ratings.
Bulletin \#222 - "Raytheon Reliability Assurance Program" - an informative discussion of how reliability assurance is generated and maintained. Bulletin \#223 - "Reliability of Raytheon PNP Germanium Alloy Junction Transistors" - facts and figures on the reliability of this popular family of devices.
Bulletin \#224 - "A.Q.L. — What Is It?" - an enlightening report on the application of basic sampling inspection concepts to the task of specifying quality requirements.
Bulletin \#225 - "Reliability of Raytheon High Current, High Frequency PNP Alloy Junction Germanium Transistors" - another comprehensive, fact-filled bulletin on a widely used family of devices.

A complete line of antennas and antenna components

60 -foot ground mounted troposphericantenna. It's an offset paraboloid desisn, is fabricated of galvanized steel, and features maximum interchangeability and standardization of the various members.

This is a 30 -foot, mesh surface parabaioid (Model 101) which was designed for wide use in the fields of radio astron. omy, tropospheric scatter propagation, tracking, and experimental test installations. The maunt was also designed by ASI, and features azimuth and elevation adiust ments at the foot plates where they can te easily reached

This is the most accurate production antenna of comparable size ever built. It'sa 30 -foot, solid surface dish (Model 103) and boasts a static surface tolerance of +0.045 center 15 diameter, and +0.080 outside 15^{\prime} diameter. It can be used at frequencies above $10,000 \mathrm{mc}$, and is rugged enough to at frequencles above $10,000 \mathrm{mc}$, and is rugged enough to withstand 150 mpl wind with $4^{\prime \prime}$ of ice. Special mo
available with a surface tolerance of ± 0.020 RMS.

This 30 -foot mobile scatter antenna (Madel 111) is a completely self contained unit mounted on a steel flati bed trailer. It is easy to assemble, and can be ereded by a winch or a hydraulic lifting device. When in teansit, all surface panels, hardware, feed supports, guys, etc. nest compactly on the top of the trailer and can be tightly secured in order to withstand transport over rough terrain. The pictures show (1) the antenna completely packed end ready for transit, (2) assembled but not erected, (3). completely erected.

ASI has available as part of their complete antenna service a wide range of spun parabolic reflectors. This method of metal forming eliminates the use of expensive toots thereby reducing costs and manufacturing time.

ASI's complete line of RF components for many different bands includes straight sections, bends, liybrids, slide screw tuners, dummy loads, transitions, stub tuners, diplexers and feed horns. They are all designed to handle high power with low VSWR, and all flange surfaces are machined after welding to assure excellent electrical contact.

ASI has a complete catalog available that contains specifications on their antennas and antenna components. Also available are a tacilities booklet that gives background information about the people and capabilities, and a 20 -page booklet of wavelength tables from WR 430 through WR 2300.

For the answers to problems in the design, fabrication, and installation of antennas, antenna components, or complete antenna systems in the fields of scatter communications, missile tracking, space tracking, radar and surveillance, radio astronomy and special antenna projects ... ASK ASI

RNTENNA SYSTEMS INC
HINGHAM, MASSACHUSETTS

Versatile Enough to"Specialize"

1521-A Graphic Level Recorder... \$995

* Frequency Range: 20 cps to 200 kc for level recording; dc recording (with accessory d-c pot), dc to 10 cps .
* Recording Range: 0 to $40 \mathrm{db}(20-\mathrm{db}$ and $80-\mathrm{db}$ pots available as accessories); 0 to 0.8 v with d-c pot.
* Input Sensitivity: 1 mv (corresponds to 0 db). Can be varied from 1 mv to 1 v in steps of 10 db with $60 \cdot \mathrm{db}$ input attenuator
* Accuracy: $\pm 1 \%$ of full scale.
* Input Impedance: 10,000 ohms as ac level recorder, 1000 ohms as dc recorder.
* Pen Writing Speed: $20 \mathrm{in} / \mathrm{sec}(200$ $\mathrm{db} / \mathrm{sec}$) max. with $40 \cdot \mathrm{db}$ pot with less than 1 db overshoot. Slower speeds (1,3 , or $10 \mathrm{in} / \mathrm{sec}$) selectable by switch to provide mechan.
ical filtering of rapidly fluctuating levels.
* Paper Speed: 2.5 to $75 \mathrm{in} / \mathrm{min}$; slow speed model available with speeds from 2.5 to $75 \mathrm{in} / \mathrm{hr}$.
+ Price: $\$ 995$ with 40 -db pot. (accessory $20-\mathrm{db}$ and $\mathrm{d}-\mathrm{c}$ pots $\$ 55$ each; 80 -db pot $\$ 155$)
Accessories Needed for Frequency Response Recording
Type 1304-B Beat.Frequency Generator, $\$ 680$... Couples to recorder for completely automatic response recording
Type 1521.P10 Drive Unit, $\$ 72$.
Power take off from Recorder to drive generator
Type 1521-P11 Link Unit, \$18...
Couples Drive Unit to Generator

A ANECHOIC-CHAMBER INVESTIGATIONS CBS Laboratories finds the 1521-A Recorder and 1304-B Generator combination indispensable for anechoic chamber investigations of microphones, amplifiers, and other acoustical equipment. With this system, frequency response curves over the full audio range can be made in less than a minute.

\triangle EQUALIZER NETWORK MEASUREMENTS 1521-A Recorder chaincoupled to a G-R 1304-A Beat-Frequency Generator records the frequency response of equalizer networks. The chain coupling drives the generator's dial in complete synchronism with the recorder to produce a continuous logarithmic response curve. The system is automatic and has far greater accuracy than methods requiring meter watching and point-by-point plotting.

4 RECORDING-HEAD RESPONSE CHECKS Detailed fre-quency-response characteristics of magnetic recording heads are obtained quickly with the G-R Graphic Level Recorder. The measurement involves the use of a series of wavelength dependent nulls which are a function of the effective gap of the recording head.
Photos Courtesy of CBS Laboratories, A Division of Columbia Braadcasting Syslems, Inc.

Write for Complete Information GENERAL RADIO COMPANY

WEST CONCORD, MASSACHUSETTS

NEW YORX, WOrth 4-2722 District Office in Ridgefield, N. J. Whitney 3-3/40	CHICAGO Oak Park Village 8-9400	PHILAOELPHIA Abington HAncock 4-7419	WASHINGTDN, D. C. Silver Spring Jยาiper 5-1088	SYRACUSE Syracuse GLenview 4.9323	SAN FRANCISCO Los Altos Whitecliff 8-8233	LOS ANGELES Los Angeles Hollywood 9-6201	ORLANDO, FLA. Orlando GArden 5-4671	IN CANADA Toronto CHerry 6-2171

BALLANTINE True RMS VTVM model 350

For highly accurate voltage measurements, the uncertainty introduced by waveform distortion limits the use of average and peak-responding instruments. The Model 350 is a 0.25% accurate, true rms-responding instrument designed to overcome this limitation. It provides the engineer with a rugged, reliable and easy-to-use laboratory or production line instrument. It will measure a periodic waveform in which the ratio of peak voltage to rms is not over 2 .
The method of measurement with the Model 350 is similar to balancing a bridge: four knobs are set for minimum indication and the unknown voltage is read directly from a 4 to 5 digit NIXIE $($ B in-line readout. The precision exceeds the stated accuracy by 5 to 10 times.

Price: $\$ 720$.

SPECIFICATIONS

Voltage Range...... 0.1 V to 1199.9 V
Accuracy. $1 / 4 \%, 100 \mathrm{cps}$ to $10 \mathrm{kc}, 0.1 \mathrm{~V}$
to $300 \mathrm{~V}_{\mathrm{i}} 1 / 2 \%$ outside these limits

Frequency Range...... 50 cps to 20 kc
Max Crest Factor
..................... 2
Input Impedance 2 Ms2 shunted by
15 pF to 45 pF

Boonton, New Jersey

CHECK WITH BALLANTINE FIRST FOR LABORATORY AC VACUUM TUBE VOLIMEIERS, REGARDLESS OF YOUR REQUIREMENTS FOR AMPLITUOE, FREQUENCY, OR WAVEFORM. WE HAVE A LARGE LINE, WITH ADDIIIONS EACH YEAR. ALSO AC DC AND DC/AC INVERTERS, CALIBRATORS, CALIBRATED WIDE BANO AF AMPLIFIER, OIRECT-READING CAPACITANCE MEIER, OTHER ACCESSORIES.
ASK ABOUT DUR LABORATORY VOLIAGE STANOAROS TO 1,000 MC.

Heq4ATS

to the Editor

(Continued from page 60)

Survey of Thin Films

Editor, Electronic Industries:
I have read your article "A Survey of Thin Film Technology" in the September issue of Electronic IndusTRIES with some degree of interest. Although your second part has not yet been published, your introduction indicates that you are seemingly unaware of several important processes that are part of the thin film technology.
First, there is no material that is too refractory for evaporation by electron bombardment techniques. This type of an evaporator is extremely simple and would in no case be termed elaborate. Pictures of a relative simple electron bombardment evaporator and the vacuum system with which it is used is enclosed for your information. We find sputtering is not mandatory for the deposition of refractory materials and we are not alone in the use of this process.
Secondly, chemical processes for the fabrication of thin film circuits have been shown to be relatively economical of costs and capital equipment. The Microsystems Electronics Department of the Lockheed Missile and Space Co. has developed chemical processes for the fabrication of thin film circuits from titanium. This refractory material was selected and the processes were developed to meet the requirements of the Aerospace Industry with respect to reliability, producibility, size and weight reduction and competitive costs. This program is in the pilot plant development phase and the initial requirements are being fulfilled.

There is enclosed for your information a copy of the paper on Titanium Thin Film Circuits that will be presented at NEC in Chicago in October 1961. This is just one of the many papers that have been prepared by members of the MSE Department that range from reports on the "evolution of electronics" through electroluminescense, electron beam processes, and refractory semiconductors, that have been presented at technical meetings.
Distributed parameter RC networks for thin films circuits are also one of the important parts of the thin film technology, and this part has been the subject of intensive study within the MSE Department.
W. D. Fuller

Manager, Microsystems Electronics
Lockheed Aircraft Corp.
Missile \& Space Div.
Sunnyvale, Calif.

first with solid state 100 -watt d-c amplifier

Inland's new Model $579.35 \mathrm{~d}-\mathrm{c}$ amplifier has a high power output of 100 watts when used with low impedance loads requiring direct current. And this completely transistorized amplifier is packaged in a hermetically sealed can only $21 / 2^{\prime \prime} \times 33 / 6^{\prime \prime} \times 21 / 2^{\prime \prime}$.

Designed for use with d-c torquers, in one typical application Model 579.35 provides 65 db power gain between the output of a d-c driver stage and the input terminals of a permanent magnet torque motor. This amplifier has these outstanding performance characteristics:

- The d-c output has magnitude and polarity proportional to the input signal.
- All amplifier circuits use a combination of silicon and germanium transistors (allsilicon models also available).
- Amplifier null and gain are stable and independent of temperature.
Inland also makes a complete line of rotary amplifiers for matched use with Inland's distinctive pancake shape d-c torquers.

A brochure on this new high-power amplifier is available. For your copy and complete data on Inland torquers and amplifiers, write Dept. 8-11.

TYPICAL SPECIFICATIONS

Maximum Power Output, watts (6 ohm load)	100
Power Gain	$4,000,000$
Current Gain	200,000
Voltage Gain	15
Frequency Response	DC to 1000 cps
Input Impedance, ohms	50,000
Dimensions, inches	$21 / 2$ wide
	$33 / 16$ long
	$21 / 2$ high

Operating Temperature Range in ${ }^{\circ} \mathrm{C}$ minus 50° to plus 50°

Aerovox Corp., New Bedford, Mass., announces the following appointments: David Palamountain named Director of Quality Control and Robert W. Orr-Chief Engineer for High Voltage and Mica Capacitors and Filters.

Dr. Martin E. Dempsey-appointed Supervisor of Advanced Physical Development, Research Dept., Automatic Electric Laboratories, Inc., Northlake, Ill.

Simon Stopek-appointed Sr. Engineer, Semiconductor Div., Microwave Associates, Inc., Burlington, Mass.

S. Stopek

Dr. B. Friedland
Dr. Bernard Friedland-appointed Sr. Staff Consultant, Melpar, Inc., Applied Science Div., Watertown, Mass.

RCA Electron Tube Div., Microwave Tube Operations, announces the following appointments: Markus Nowogrodzki - Manager, Product and Equipment Engineering; Herbert J. Wolkstein-Manager, Microwave Design and Development; and Edward J. Homer - Manager, Microwave Engineering Administration and Data Systems Development.

Fred Carlson-named Sr. Reliability Engineer, Reliability Engineering Dept., International Resistance Co.'s St. Petersburg (Fla.) Div.

Frequency Engineering Laboratory (formerly Frequency Standards), Asbury Park, N. J., announces the following appointments: Robert E. Williams-named Manager, Systems Engineering; and Robert F. Slevin named Manager, Microwave and Antenna Engineering.
Dr. Jan A. Rajchman - appointed Director of the Computer Research Laboratory, RCA's David Sarnoff Research Center, Princeton, N. J.

Instruments for Industry, Inc., Hicksville, N. Y., has announced the following appointments: Lawrence I. Algase-promoted to Director of Engineering; and Anthony M. Barbella -promoted to Chief Systems Engineer.

Data Sensors, Inc., Gardena, Calif., announces the following appointments: Joseph M. De Stefano-appointed Chief Engineers; Frank L. Schulte-appointed Manager, Application Engineering; and W. V. Young -appointed Manager, Quality Assurance.

Willis C. Goss-has joined the Technical Staff at Electro-Optical Instruments, Inc., Pasadena, Calif.

Steven M. Sussman - appointed Head of the Communications Theory Laboratory, Melpar Inc., Applied Science Div., Watertown, Mass.

General Electric Co., Missile and Space Vehicle Dept., Phila., Pa., announces the following appointments: Edward Ray-Project Manager for Space Power; and Victor E. Boccelli Manager of Technical Facilities, Projects Planning and Special Programs Operation.

Comer L. Davies-named Technical Adviser, Instrument Corp. of Florida, Melbourne, Fla.

G. L. Davies

F. W. Harvey

Frank Wood Harvey - named Sr. Member of the Staff of Image Instruments, Inc., Newton, Mass., in the position of Video Systems Engineer.

James Wagner - appointed Chief, Outside Procurement Quality Control, The Garrett Corp., Los Angeles, Calif.

Consolidated Electrodynamics Corp., Data Recorders Div., Pasadena, Calif., announces the following appointments: John J. Smith and Edgar E. Hotchkin-appointed Assistant Directors of Engineering and Lewis B. Browder - named Manager of Advanced Development.

George De Maio-appointed Quality Control Manager, Fairchild Controls Corp., Fairchild Camera and Instrument Corp., Hicksville, L. I., N. Y.
M. Michael Moss-named Director of Reliability, Radio Receptor Co., Inc., sub. General Instrument Corp., Westbury, L. I., N. Y.
J. E. Kalfus-appointed Chief Engineer, Essex Electronics of Canada Istd., Div. Nytronics, Inc., Berkeley Heights, N. J.

ATLANTA, GA.
Ack Radio Supply Co.
331 Luckie St., N.W.-JAckson 4-8477

BALTIMORE, MD.

Electronic Wholesalers
3004 Wilkens Ave.-WIlkens 5-3400
BIRMINGHAM, ALA.
Ack Semiconductors, Inc.
Ack Semiconductors, Inc.
3101 Fourth Ave. - FAirfax 2.0588
BOSTON, MASS.
Cramer Electronics
811 Boylston St.-COpley 7.4700
BUFFALO, N. Y.
Summit Distributors
916 Main St. -TT 4-3450
CHICAGO, ILL.
Newark Electronics
223 W. Madison St.—STate 2.2944
DETROIT, MICH.
Rissi Electronic Supply
14405 Wyoming Ave.-TExas 4-8420
GLENDALE, CALIF.
R.V.Weatherford Co
6921 San Fernando Red.
VIctoria 9-2741
LOS ANGELES, CALIF.
1501 S. Hill St.—RIchmond 8-1271
MELBOURNE, FLA.
Electronic Wholesalers
1301 Hibiscus-PArkway 3-1441

MIAMI, FLA.

Electronic Wholesalers
61 Northeast Ninth St.
FRanklin 7-2511
NEW YORK, N. Y.
136 Liberty St.—REctor 2-4400
Milo Electronics
530 Canal St.-BEekman 3-2980
Terminal-Hudson
236 W. 17th St.-CHelsea 3-5200
OAKLAND, CALIF.
Elmar Electronics
14011 th St.-HIgate 4-7011
PHILADELPHIA, PA.
Radio Electric Serv. Co.
701 Arch St. -WAlnut 5-5840
SEATTLE, WASH.
Seattle Radio Supply, Inc.
2117 Second Ave.-MAin 4.2341
WASHINGTON, D, C.
2345 Sherman Way, N,W
2345 Sherman Way, N.W
HUdson 3-5200
Bendix Semiconductor Division

HOLMDEL, N. J.

Absolute Maximum Ratings:	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \mathrm{VdC} \end{aligned}$	$\begin{aligned} & V_{\mathrm{CB}} \\ & \mathrm{~V}_{\mathrm{dc}} \end{aligned}$	I_{C} Adc	$\begin{gathered} P_{C}{ }^{*} \\ W \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{stg}} \\ { }^{\circ} \mathrm{C} \end{gathered}$	T_{j} ${ }^{\circ} \mathrm{C}$
2N1651	60	60	25	100	$-6010+110$	110
2N1652	100	100	25	100	-60 to +110	110
2N1653	120	120	25	100	-60 to +110	110

${ }^{*} P_{C}$ is the maximum average power dissipation. It can be exceeded durlng the
switching time.

Another BUSS sub-miniature fuse and holder combination

EXTREME RELIABILITY UNDER HIGH SHOCK AND SEVERE ENVIRONMENTAL CONDITIONS.
Rigid construction of fuse and holder assures extraordinary reliability under high shock and vibration conditions. Fully insulated ceramic body isolates fusible element from effect of dust, corrosion, moisture and vapors.
designed for space-tight applications
Panel Mounted. Holder can be mounted on panel by hand. No special tool required to run down holding nut.

Prong type contacts on fuse make it easy to install or replace.

A knob for the holder may be used to make holder water proof from front of panel.
holder can be mounted in printed circuits
Terminals of holder can be inserted into holes and soldered on printed circuit board without additional forming.

If desired, GMW fuse may be used without holder and mounted directly into printed circuit boards.

AVAILABLE RATINGS FOR GMW FUSES.
Fuses are made in sizes from $1 / 10$ to 5 amperes for use on circuits of 125 volts or less where fault current does not exceed 50 amperes.

Transparent window in end of fuse body permits visual inspection of fusible element.

Before crystallizing your design using subminiature fuses be sure to get full data on the Buss GMW fuse and HWA holder combination.

IN THE BUSS LINE, you'll find the type and slze fuse to fit your every need... plus a companion llne of cllps, blocks and holders.

BUSSMANN MFG. DIVISION, McGraw-Edison Co., UNIVERSITY AT JEFFERSON, ST. LOUIS 7, MO.

C TYPE MAGNETS in a wide range of sizes to meet your design needs in *Transverse Field Isolators * Differential Phase Shifters * Duplexers

Arnold C-type Alnico Magnets are available in a wide selection of gap densities ranging from 1,000 to over 7,500 gausses. There are six different basic configurations with a wide range of stock sizes in each group.
The over-all size and gap density requirements of many prototype designs can be met with stock sizes of Arnold C Magnets, or readily supplied in production quantities.
When used in transverse field isolators, Arnold C Mag. nets supply the magnetizing field to bias the ferrite into the region of resonance, thus preventing interaction between microwave networks and isolating the receiver from the transmitter. These magnets are also used in differential phase shifters and duplexers, and Arnold is prepared to design and supply tubular magnets to provide axial fields in circular wave guides.

A feature of all Arnold C Magnets is the excellent field uniformity along the length of the magnet. Versatility in design may be realized by using multiple lengths of the same size magnet stacked to accomplish the needs of your magnetic structure.

Let us work with you on any requirement for permanent magnets, tape cores or powder cores. ©or information on Arnold C Magnets, write for Bulletin PM-115. Address The Arnold Engineering Company, Marengo, Illinois.

ADDRESS DEPT. El-11
742 B в

BRANCH OFFICES and REPRESENTATIVES in PRINCIPAL CITIES Find them FAST in the YELLOW PAGES

Special Pliers

 for the
Highly Specialized Electronics Field

When the early transmission lines were strung in this country a century ago, it was Klein Pliers in the hands of linemen that helped do the job.

Klein has kept pace with the development of the electrical field, meeting each new challenge with tools specially designed to do the wiring job better . . . more economically.

Shown here are a few of the many highly specialized Klein Pliers carried in stock to meet the needs of electrical and electronics manufacturers.

You will find your assemblies go together more smoothly and wiring is done more rapidly when the right Klein Plier is used.

SEE us at the NEREM MEETING, BOOTH 1712

SEE YOUR DISTRIBUTOR

Mathias $/\ulcorner$ ㄷ 1 \& Sons
 Established 1857
 incorporated
 7200 Mecormick road, chicago 45, ill.

Mathias Klein \& Sons, Inc. 7200 McCormick Road, Chicago 45, III. Please send me the Klein Plier Catalog and information.

Name	
Title-	
Company	
Address	
City	State__

LOW COST / SILICON 2N957

Fairchild Industrial Transistor for

- VHF AND IF AMPLIFIERS
- OSCILLATORS
- MIXERS AND CONVERTERS - HIGH SPEED SWITCHING CIRCUITS

FAST SWITCHING—HIGH FREQUENCY—200 mc GAIN BANDWIDTH

First low cost, high frequency NPN silicon transistor on the industrial market, the Fairchild 2N957 is rated at 0.8 watts ($25^{\circ} \mathrm{C}$ case temperature) and 0.3 watts ($100^{\circ} \mathrm{C}$ case temperature). Guaranteed parameters include: $\mathrm{BV}_{C B O}$ of 40 volts; BVCEO^{2} of 30 volts; BVEBO of 3.0 volts; minimum D.C. Beta of 45 ; minimum A.C. Beta at 1 mc of 40 ; maximum C_{ob} of $6.0 \mu \mu \mathrm{f}$.
The Fairchild 2N957 offers silicon performancehigher reliability, broad temperature range, parameter stability-at low cost. This enables you to build amplifiers, oscillators, mixers, converters, and switching circuits with silicon advantages at no price premium. Contact your Fairchild Distributor or sales office for off the-shelf delivery.

A 2N957 APPLICATION:
10.7 MC, STAGGERED, TRIPLE TUNED IF AMPLIFIER FOR F.M.

FAIRCHILD
SEMICDNDUCTOR
545 Whisman road, mountain yilw, CALIF. YORKSHIRE 8-8161- TwX: Mn WW CAL 853
A oivision of iainchilo cameranno instrument conporation

NWL HIGH IMPEDANCE TRANSFORMER

Fits any application where current limiting is needed such as:
∇ large electronic filament tubes

- industrial lamps
- arc wellders
- high impedance tube circuits
\checkmark rectifiers
∇ short circuit limiting
Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you according to your individual requirements.

NOTHELFER WINDING LaBORATORIES, INC., P. O. Box 455, Dept. El-11, Trenton, N. J.
(Specialists in custom-buillding)

Books

ASM Metals Handbook. 8th Edition. Vol. 1-
Properties and Selection of Metals By 1335 Metals Specialists. Edited by Taylor Lyman. Published 1961 by the American Society for Metals, Metals Park, Novelty, Ohio. 1300 pages. Price $\$ 30.00$
This volume of the new ASM Metals Handbook is a complete presentation in istelf on the properties and selection of all metals. It is the first volume of a projected series, each volume of which, when completed, will serve as a complete and comprehensive tributary to the mainstream of present knowledge of metals and metalworking.
The Handbook devotes a series of articles to magnetic, electrical and other special purpose materials. In addition to its through coverage of permanent magnet and magnetically soft materials, expert coverage is provided the electrical resistance alloys for instruments and controls, as well as electrical contact materials. Other conventional electrical materials, such as copper, aluminum and certain of the precious and pure metals, have been expanded into separate sections of this reference.
Compared to the previous edition, the new Metals Handbook offers nearly six times as much numerical information, as distinguished from descriptive text, in the form of charts, graphs and tables, on properties and selection. A completely cross-referenced 64 page index makes information searching easier and less timeconsuming.

Semiconductor-Diode
 Parametric Amplifiers

By L. A. Blackwell \& K. L. Kotrebue. Published 1961 by Prentice-Hall, Inc., Englewood Clifts N. J. 191 pages. Price $\$ 9.00$.

This book is a theoretical treatment of the major types of parametric devices, aimed at showing the design engineer how and why parametric amplifiers work, and when they can be used to best advantage.

Beginning with the general energy transfer properties of nonlinear reactances, the authors develop the basic theory of the principal types of parametric amplifiers and harmonic generators. Although the semiconduc-tor-diode type is currently the most popular form of parametric amplifier, the book presents many concepts that go beyond the boundry of diode devices. Since the low-noise characteristics of parametric amplifiers account for their current popularity, the authors devote extensive coverage to noise and its effect on system performance. Design considerations are discussed, and several examples of actual microwave hardware are given
(Continued on page 76)

Sylvania offers the industry's most comprehensive line

MIXER•DETECTOR•VARACTOR TUNNEL DIODES IOO MC TO I40,000 MC!

SYLVANIA MICROWAVE DIODES

utilize the point-contact structure in those units specifically for Mixer and Detector service, and Mesa structure in the Varactor types. Tunnel Diodes are of germanium alloy construction and are packaged especially for operation at microwave frequencies as mixers, amplifiers and oscillators. Advanced processes and techniques developed by Sylvania assure Microwave Diodes capable of withstanding the most severe environmental conditions of shock, vibration and temperature. Extraordinary quality controls assure low-noise figures, high sensitivity and high Q where those characteristics are essential to equipment design.

If you are designing radar, countermeasure, missile control, TV or telephone relay, test or special-purpose equipment operating at microwave frequencies, send now for your copy of "Sylvania Microwave Diode Product Guide." This valuable new booklet contains data for more than 400 Sylvania Microwave Devices, the most comprehensive line in the industry. Write to Semiconductor Division, Sylvania Electric Products Inc., Dept. 1910, 1100 Main St., Buffalo 9, N. Y.
For sales information on any Sylvania Semiconductor Device, contact your local Sylvania Field Office or your local Sylvania Semiconductor Distributor.

SYLVANIA MICROWAVE DIODE PACKAGES 1. Min-Coaxial 2. Double-Ended 3. Micro-Min 4. Waveguide Block 5. Cartridge 6. Coaxial 7. Tripolar-Coaxial 8. Micro-Min Varactor 9. Tunnel Diode 10. Pill Varactor chunk of your shipping cost? Then take a few minutes to talk with your local United Agent about SAFE-GUARD . . . the moving service that combines economy with safety. Let him show you how cushion-soft padding, special handling techniques and custom-designed vans eliminate the need for crating on most shipments. See how much you'll save in man-hours and money compared with bulky crate-and-ship methods.

Get the full facts today from your nearby United Agent. Just look for the the Yellow Pages.

United Van Lines

MOVING WITH CARE EVERYWHERE® INTERNATIONAL HEALDQUARTERS. ST. LOUIS 17, MISSOURI

New Bourns Precision Potentiometer Resolves the Quality-Price Dilemma!

Here is military reliability in a competitively priced industria potentiometer. Bourns wirewound 10 -turn Model 3500 measures just $7 / 8^{\prime \prime}$ in diameter by $1^{\prime \prime}$ long-shorter by $1 / 2^{\prime \prime}$ than units available elsewhere-yet has a resistance element 20% longer than that of comparable potentiometers.
Fully meeting military requirements for steady state humidity Model 3500 can also be provided at a 10% premium to meet the cycling humidity specs of MIL-STD-202, Method 106. It's the only $7 / 8$ " 10 -turn potentiometer guaranteed to meet this spec. its published characteristics incorporate wide safety margins. Reliability insurance is provided by the exclusive Bourns Silverweld ${ }^{8}$ bond between terminal and resistance wire. Virtually indestructible under thermal or mechanical stress, this termination
eliminates a chief cause of potentiometer failure. lin addition, a special clase-tolerance rotor almost completely does away with backlash.
Model 3500 is also subjected to the rigorous doutble-check of Bourns' exclusive Reliability Assurance Program. In short, every possible step is taken to ensure that the perfarmance you specify is the performance you get. Write for complete data

[^3]

Manufacturer

DIRECTIONAL COUPLERS • RF LOAD RESSTORS COAXIAL TUNERS• RF WATTMETERS•VSWR METERS

Micriotlotact

RF Power and VSWR measuring instruments are rugged and accurate in both field and laboratory use. The patented circuit produces an output essentially independent of frequency. Over 3800 models of coupler units available. MICROMATCH instruments meet highest government and commercial standards, combine highest quality with low cost.

For more information, write:

M. C. JONES ELECTRONICS CO., INC.

Books

(Continued from page 72)

Advanced Calculus, 2nd Edition

By David V. Widder. Published 1961 by PrenticeHall, Inc.. Englewood Cliffs, N. J. 520 pages. Price $\$ 12.00$.
In this revision, the author has retained the best features of the original edition and has made many improvements. Advanced Calculus is especially designed for the reader who has some familiarity with the manipulations of elementary calculus and wishes to advance into the theoretical aspects of the subject. To aid this progression, the author emphasizes first the type of manipulative problems the reader has been accustomed to, and gradually proceeds to more theoretic problems. Readers grasp ideas quickly because they are presented in the form of precise statements.

Electronic Radio and Microwave Physics

By D. E. Clark \& H. J. Mead. Published 1961 by The MacMillan Co., 60 Fitth Ave., New York 11 ,
A reference work for experienced technicians and for teachers in the fields of physics and electronic engineering, and a primary textbook for students in those fields. Book is divided into fifteen chapters:
Mathematical Introduction; Principles of Electromagnetic Theory; Transmission Lines; Waveguides; Spectroscopy at Radio and Microwave Frequencies; Properties of Dielectrics and Ferrites; Radiation and Propagation of Electromagnetic Waves; Artificial Lines and Filters; Thermionic Emission and Thermionic Valves; Amplification and the Single Stage Amplifier; Multi-Stage Amplifier; Oscillators; High Frequency Systems and Klystrons; Traveling Wave Tubes and Magnetrons; Noise.

Books Received

ABC's of Model Radio Control

By Allan Lytel. Published 1961 by Howard W. Sams \& Co., Inc., 2201 East 46 th St., Indian: apolis 6, Ind. 96 pages. Price $\$ 1.95$.

Radio Control Manual

By Edward L. Sofford, Jr. Published 1961 by Gernsback Library, Inc., 154 West 14 th Street New York 11, N. Y. 192 pages. Paperbound
Price $\$ 3.20$.

First-Class Radiotelephone License Handbook

By Edward M. Noll. Published 1961 by Howard W. Sams \& Co., inc., 2201 t. 46th St., Indign apolis 6, Indiana. 304 pages. Paperbound. Price $\$ 4.95$.

Essentials of Radio-Electronics, Second Edition

By Morris Slurzberg and William Osterheld. Published 1961 by MeGraw-Hill Book Co., Inc. 330 West $42 n d$ St., New York 36, N. Y. 716
pages. Price $\$ 10.00$.
(Continued on page 82)

Where even a water mark can cause trouble, ultrasonic cleaning makes the crucial difference...

and in ultrasonic cleaners-

can make the clean difference!

Ultrasonic cleaning is only as good as the solvent you use! In critical precision guidance and electronic components, foreign matter $1 / 40$ th the diameter of a human hair can cause malfunction. Fingerprints, water marks, specks of dust, lint, epidermis and many other contaminants are potential trouble makers. Your ultrasonic cleaning material must itself be super clean . . . and effective against
a wide range of contaminants, while non-injurious to the parent material.
genesolv d Fluorocarbon Solvent offers the exceptional purity you need... plus these other specific advantages in ultrasonic cleaning operations:
\checkmark extremely low undissolved and dissolved residue
\checkmark selectivity
\vee low toxicity
\checkmark nonflammability
\checkmark low surface tension (increased wettability, with minimum dragout)

- quick drying

Find out now about GENESOLV D's special effectiveness. Our Technical Service constantly is developing new data, and would be pleased to work with you on your cleaning problems. Write or phone your nearest General Chemical Office.

GENERAL CHEMICAL DIVISION
40 Rector Street, New York 6, N. Y.

For more than 20 years, this company has made frequency standards and fork oscillators within the range of 30 to 30,000 cycles for applications where consistent accuracy and rugged dependability are demanded. A few examples are shown and described here.
Some users integrate these units into instruments of their own manufacture. Others rely on our experience and facilifies to develop complete operating assemblies to meet their special needs.
You are invited to submit any problems within the area of our activities for study by our engineering staff.

AND TUNING FORK OSCILLATORS

TYPE K-5A FREQUENCY STANDARD

Size, $31 / 2^{\prime \prime} \times 3^{\prime \prime} \times 1^{3 / 4^{\prime \prime}}$
Weight, $11 / 2 \mathrm{lbs}$.
Frequency: 400 cycles
Accuracy: $.03 \%,-55^{\circ}$ to $+71^{\circ} \mathrm{C}$
Input: 28 V DC $\pm 10 \%$
Output: 400 cy. approx. sq. wave
at 115 V into 4000 ohm load (approx. 4 W)

TYPE 2007-6 FREQUENCY STANDARD

Transistorized, Silicon type
Size, $1 \frac{1}{2 \prime \prime}$ dia., $\times 31 / 2^{\prime \prime}$ H., Wt., 7 oz.
Frequencies: 360 to 1000 cy .
Accuracies:

$$
\begin{aligned}
& 2007-6 \pm .02 \% \\
& R 2007-6\left(-50^{\circ} \text { to }+85^{\circ} \mathrm{C}\right) \\
& \mathrm{W} 2007-6 \pm .002 \% \\
&\left(+15^{\circ} \text { to }+35^{\circ} \mathrm{C}\right) \\
&\left(-65^{\circ} \text { to }+85^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Input: 10 to $30 \mathrm{~V} D C$ at 6 ma .
Qutput: Multitap, 75 to 100,000 ohms

TYPE 25 PRECISION FORK

Size, $5 /{ }^{\prime \prime}$ dia. $\times 2 \%{ }^{\prime \prime}$
Weight: 2 ounces
Frequencies: 200 to 1000 cy . (specify)
Accuracies:
R-25T and R-25V $\pm .002 \% ~\left(15^{\circ}\right.$ to $35^{\circ} \mathrm{C}$)
25 T and $25 \mathrm{~V} \pm .02 \%\left(-65^{\circ}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
For use with tubes or transistors.

TYPE 15 FREQUENCY STANDARD

Similar to Type 10 (illustrated) except with silicon transistor, hermetically sealed and vibration resistant.
Size, $1^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ high
Tolerance, $\pm .01 \%$ from $-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Outpuf: .IV at 50,000 ohms source impedance.

American Time Products, Inc.

Sylvania introduces the new CT4251 . . opening a dramatic new approach to the design of very compact, low-cost counting equipment in the $0-50 \mathrm{KC}$ frequency range.
Utilizing a new dome-shaped T-9 bulb evacuated from the base, Sylvania CT4251 offers significant reductions in seated height. CT4251 features 10 output cathodes, offering the versatility and advantages of tube types previously available only in the T-11 bulb. Examples: electrical information can be fed from all 10 cathodes, enabling preselection of a count from 0-9; the diameter of the ring of cathodes is identical with that of types in the T-11 outline, providing excellent visibility of readout information.
Sylvania CT4251 is the lowest cost cold cathode Decade Counter Tube available. Combining electrical and visual readout functions, it offers extensive economies in circuitry and associated components. Sockets, too, for its 13-pin
circle are as much as one-half the cost of sockets normaliy required for $\mathrm{T}-11$ types. In addition, this new 13-pin circle makes it possible for Sylvania CT4251 to be designed into equipment using transistorized and printed circuit techniques.
Tests to date of Sylvania CT4251 indicate superior quality performance even under stand-by operation for 500 hours.
Your Sylvania Sales Engineer will be pleased to tell you more. Contact him or write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. 1911, 1100 Main St., Buffalo 9, N.Y.

Sylvania Type	Total Anode Current (mA)	Min. Anode Supply Voltage (Vdc)	Min. Double Pulse Amplitude (V)	Min. Double Pulse Width ($\mu \mathrm{sec}$)	
	Min.	Max.	M		
CT4251	0.65	0.8	400	-70	4

©
Not a usual combination. The sensitivity and toughness included in every Honeywell panel instrument is a result of the irfinite patience and superior techrical know-how of our designers and engineersRuggedized Honeywell panel instruments are available with external zero adjuster. They are sealed, dustproof, moistureproof and immune to the hazards of climate and atmosphere. Built to withstand the most severe tests of shock, vibration and strain - and still give accurate, reliable readings - they're another reason why the name Honeywell and the word dependability are synonymous.Perhaps a quality instrument from Honeywell can help you do a job better and faster. Just get in touch with our representative in your area - he's listed in the classified pages of your telephone directory. Or contact us direct: PRECISION METER DIVISION, Minneapolis-
Honeywell Regulator Company, Manchester, New Hampshire, U.S.A. In Honeywell Regulator Company, Manchester, New Hampshire, U. S. A. In
Canada, Honeywell Controls Limited, Toronto 17, Ontario. Honeywell International Sales and service offices in all principal cities of the world.

NO TWIST, TURN OR OFF-CENTER SEATING OF CONTACTS IN THIS CONNECTOR

The AMPin-cert* Blade Connector is staked down for stand pat positioning on the board . . gives you positive alignment and perfect contact at all times! No board warpage either! The tab housing acts as a rigidizing member . . . keeps the board straight, level and true regardless of environmental conditions and repeated insertions and extractions. These are just two of the answers that AMPin-cert Blade Connectors have for maximum reliability, lowest installed costs and trouble free performance. There are many more, for instance:

- no paid-for but unused contacts with AMP's crimp type, snap-in design
- guaranteed individual contact forces
- large contact areas reduce connector pressures, avoid hard wear on plating and increase contact life
- raised barrier sections and large contact cavities prevent moisture entrapment
- recessed cavity construction eliminates need for sleeving
- rigid metal guide pins assure perfect connector mating during insertion

ALL IN ONE INSTRUMENT

NEW

SWEEP SIGNAL GENERATOR

Here's the last word in versatility and precision, the ultimate instrument for all your IF-VHF-UHF requirements. The new Jerrold 900B offers unusual stability in sweep widths as narrow as 10 kc and as wide as 400 mc . Frequency range 500 kc to 1200 mc .

$$
\$ 198000 \text { f.o.b. Philadelphia** }
$$

*Illustration of scope at left shows typical communications receiver re sponse 4 kc bandwidth at 7 mc . Illustra tion at right shows typical distributed
amplifier response $2-220 \mathrm{mc}$.
**Prices and specifications subject to change without notice.

- Built-in crystal-controlled harmonic markers at 1,10 , and 100 mc intervals.
- Each marker output individually controls from front panel.
- Built-in variable-gain dc-coupled scope preamplifier with 200X gain.
- Built-in precision attenuator from zero to 50 db in 10 db steps.
- Accurately calibrated frequency dial.
- High-level metered output.

Write for complete technical data.

ELECTRONICS CORPORATION

Industrial Products Division, Dept. ITE-118.
The Jerrold Building, Philadelphia 32, Pa.
Jerrold Electronics (Canada) Ltd., Toronto •
Export Representative: Rocke International, New York 16, N.Y.

Books

Crossed-Field Microwave Devices Vol. 1, Principal Elements of Crossed-Field Devices
Published 1961 by Acodemic Press, Inc., 111 Fifth Ave., New York 3, N. Y. 648 poges. Price
$\$ 22.00$.

Crossed-Field Microwave Devices, Vol. 2, Principal Types of Crossed-Field Devices Analysis of Oscillator System Performance Regional Progress and Trends
Published 1961 by Academic Press, Inc.. 111 Fifth Ave., New York 3, N. Y. 520 poges. Price $\$ 18.00$.
Information Theory, Statistical
Decision Functions, Random
Processes
Published 1961 by Acodemic Press, Inc., 111 Fitth Ave., New York 3, N. Y. 843 pages. Price \$22.00. Transactions of the Second Prague Con
ference, June $1-6,1959$, Liblice near Prague.

Progress in Astronautics and
Rocketry, Vol. 3, Energy Conversion for Space Power
Edited by N. W. Snyder. Published 1951 by Academic Press, Inc. 111 Fitth Ave., New York 3,
N. Y. 779 pages. Price $\$ 7.25$.

Progress in Astronautics, and Rocketry, Vol. 4, Space Power Systems

Edited by N. W. Snyder. Published 1961 by Aco. demic Press.: Inc., 111 Fifth Ave., New York

Progress in Astronautics ond
Rocketry, Vol. 5,
Electrostatic Propulsion
Edited by D. B. Langmuir, E, Stuhlinger \& J. M. Sellen, Jr. Published 1961 by Acodemic Press poges. Price $\$ 5.75$. New York 3, N. Y. 579

Two-way Mobile Radio Maintenance By Jack Darr. Published 1961 by Howard W. apolis 6, Indiana. 256 pages. Price $\$ 4.95$. 2201 .

Troubleshooting Amateur Radio Equipment
By Howard S. Pyle, W70E. Published 1961 by Howard W. Sams \& Co., Inc., 2201 Ea:t 46th St.

Servicing Transistor Radios, Vol. 9
Published 1961 by Howard W. Sams E Co., Inc., 2201 East 46th St.. Indianapolis 6, Indiana. 160

Basic Electronics Series:
Amplifier Circuits
By Thomas M. Adams. Published 1961 by Howard W. Sams \& Co., Inc., 2201 East 46 th St ${ }^{\prime}$ Indi-

Instruments and Measurements,
Vol. 1, Automatic Process Control Physical Methods of Chemical Analysis
Edited by Helge von Koch and Gregory Liung. berg. Published 1961 by Academic Press, 506 poges. Price $\$ 16.00$. Proceedings of the Fifth International Instruments and Measurements Conference, Sept. 13-16, 1960. Stockholm,
Sweden.

now

available
on many
FUSITE
TERMINALS

Never before has a glass been developed that is so compatible for use with 52% nickel alloy leads.

The result is a compression between the glass and pins so tight that twisting and bending of the pins to the breaking point will not cause rupture or leakage. (Determined by Veeco Leak Detector with sensitivity at 10^{-10} std. cc /sec.) Thermal shock is excellent with this new TR-Glass. Salt spray resistance exceeds 100 hours.

Every performance feature is well in excess of Mil Specs. The use of TR-Glass may be considered for all types of Fusite solid glass headers as well as many other style terminals.

Samples on request. Write Fusite, Department G-5

Fusite Corporation, Cincinnati, 0.
Woodford Mfg. Co., Versailles, Ky.
Fusite N. V., Konigweg 16, Almelo, Holland
Fusite GmbH, Dieselstrasse 5 Karlsruhe, W. Germany

LOW POWER
 ENVIRONMENTALLY PROVED . . .AVAILABLE NOW!
 Delco Radio's new silicon digital modules operate on less than 4 mw . of power

SILICON DIGITAL MODULES per logic stage. They are rugged enough to withstand extreme environmental conditions and are small and lightweight. Encapsulated in light foamy epoxy, each module weighs less than 12 grams and occupies less than one-half cubic inch. The basic set of modules includes a bistable multivibrator, a diode NOR gate, a power driver, a monostable multivibrator and an astable multivibrator. From these basic units larger computer subassemblies can be assembled, such as shift registers, adders, binary counters, decimal counters and timing devices. A range of applications-from small scale switching circuits to large computers can be satisfied with these modules. Environmentally proved to:

OPERATING TEMPERATURE RANGE $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ STORAGE OR STERILIZATION TEMPERATURE
$-65^{\circ} \mathrm{C}$ to $+125 \circ \mathrm{C}$
ACCELERATION
20G's

Data sheets are available. Just write or call our Military Sales Department.
Physicists and electronics engineers: Join Delco Radio's search for new and better products through Solid State Physics.

K erutane
 BEAD TYP E THERMISTORS

Unit Type	R (a) 000	R @ $25^{\circ} \mathrm{C}$	R (3) $37.8^{\circ} \mathrm{C}$	R.@. $104.4{ }^{\circ} \mathrm{C}$
L0503-184-59*	700	280.5	184	31.2
L0503-329-59*	1,252	500	329	55.8
L0503-550-71	2,400	872	550	77.5
L0503-1220-81	6,110	2,010	1,220	150.6
L0503.1500.88	7,940	2,520	1,500	170.5
L0503.2900.76*	13,260	4,680	2,900	381.5
L0503-5K.97	28,300	8,590	5,000	515
L0503.9K. 102	52,000	15,600	9,000	882
L0503.16920-112	105,300	30.000	16,920	1,511
L0503-33.3K-125	217,500	60,000	33,300	2,665
L0503-55.3K-125	365,500	100,000	55,300	4,420
L0503-180K-145	1,273,000	333,000	180,000	12,400
L0505-400K-145	2,830,000	740,000	400,000	27,600
L0504-523K-155*	4,060,000	1,000,000	523,000	33,750
-These unitu proctsed for opel		on to $150^{\circ} \mathrm{C}$ maximum; all others, to $260^{\circ} \mathrm{C}$ maximum.		

Representative Keystone Bead Type Thermistors AVAILAELE FROM STOGK
-These untr proctsed for opefition to $150^{\circ} \mathrm{C}$ maximum; all others, to $260^{\circ} \mathrm{C}$ maximum.

FAST RESPONSE in temperature measurement...temperature measurement and control...liquid level sensing...

PLUS the most uniform operating characteristics of any bead types known!

- Add versatility to these Keystone advantages in low power bead-type thermistors-and you have every good reason for making Keystone your key source for thermistor production requirements!
- The table at left lists basic Keystone units in stock. An almost infinite number of special units can be engineered and furnished to meet your needs. These can be supplied with a wide variety of lead materials to meet your design requirements. Protective coatings, such as glazes, silicone varnishes, durex and cycleweld can be applied, enabling operation in many environmental conditions.
- Due to the special nature of our production processes, our L0503 and L0505 size units provide more uniform operating characteristics than any bead types previously known.
These types have a basic unit nominal diameter of $.050^{\prime \prime}$ and thickness of $.030^{\prime \prime}$ and $.050^{\prime \prime}$ respectively. Various configurations call out a time constant of approximately 5 seconds and a dissipation constant of 0.62 milliwatts per degree Centigrade.
- These units can be fabricated in any special configurations, including silver probes, stainless steel probes, glazed ceramic probes, units mounted in headers, on transistor bases, etc.
- Keystone Bead Type Thermistors are available in close-tolerance patterns. Resistancetemperature tolerances are maintained in regular production within the same tolerance limits as other Keystone types.
\square May we have your requirements?

THIS IS HOW RESISTORS OUGHT TO LOOK. THIS IS HOW RESISTORS OUGHT TO WORK. CORNING NF RESISTORS DO.

Glass-enclosed, fusion-sealed Corning NF resistors have boiled merrily in salt water for days without showing a jot of change in their electrical characteristics.

These are resistors that are rugged, completely moisture resistant, highly vibration resistant . . . in short, resistors that exceed the requirements of MIL-R-10509C, Char. B, better than any we've seen or heard of

The key to such fortitude is our NF structure. We start with glass rods with metal oxide applied under heat. This in itself makes a moisture-resistant, almost abnormally stable resistor, as you well know if you have ever used our regular N -style resistors.

We encapsulate this basic unit in a glass envelope and apply glass-to-metal seals at the leads . . . comparable to those in a vacuum tube.
IMMEDIATE DELIVERY • There are two models of this
gem in production, ready for quick shipment: the $1 / 8$-watt NF-60 and the $1 / 4$-watt NF-65. Resistance ranges from 100 ohms to 360 K ohms. Voltage ratings are 250 v and $300 v$. Full rating at $70^{\circ} \mathrm{C}$. with derating to $150^{\circ} \mathrm{C}$. More typical values:

Load life 0.3%
Voltage coefficient $0.001 \% / \mathrm{V}$
Temp. coefficient $0.015 \% /{ }^{\circ} \mathrm{C}$
Insulation resistance 100,000 megohms
To get these and other data for your file, just write and ask for Data Sheet CE-2.02. Address: Corning Glass Works, 546 High Street, Bradford, Pennsylvania.

CORNING

in direct writing recording systems

only Brush designs

 specifically for mil specs

From every nut and bolt to the shipping crate, fully militarized Brush Direct Writing Recording Systems are originally built to meet military specifications.
That's why they are performing every imaginable task of data acquisition and recording at U.S. and NATO installations throughout the world. These electric writing systems have proved their unexcelled reliability .. from the Operations Monitor that will record 120 separate operations at the instant they occur . . to the Analog and Sequence Recorder that simultaneously records both analog data and sequential events. And, they are built for maximum performance in the hands of non-technical personnel.
Brush equipment is already at work putting evaluation data in writing for a whole new generation of weapons. When the weapons become operational, Brush MIL Recorders are a vital part of the system. This experience is unique in the industry. Before prototype design becomes a problem-call, write or wire Brush for complete details.

Checking Computer Storage Units

 with aTektronix Dual-Beam Oscilloscope

CHARACTERISTICS

Independent X and Y Deflec

 tion - DC-to-30 MC, 12-nsec Risetime with Fast-Rise Plug. In Units - 21 Calibrated Sweep Rates from $0.1 \mu \mathrm{sec} /$ cm to $5 \mathrm{sec} / \mathrm{cm}$ - 5 X Magnifier - Single-Sweep Provision - Calibrated Sweep Delay . Amplitude-Level (Manual) Selection or Fully Automatic Triggering Facilities • $10-\mathrm{KV}$ Accelerating Potential - 4cm by $10-\mathrm{cm}$ Display for Each Beam, with $2-\mathrm{cm}$ Overlap. Amplitude Calibrator.
CAPABILITIES

With a Tektronix Type 555 Dual-Beam Oscilloscope, you can control either or both beams with either time-base generator. You can operate one time-base unit as a delay generator-hold off the start of any sweep generated by the other for a precise interval from one-half microsecond to 50 seconds-and observe both the original display and the delayed display at the same time.

By interchanging any combination of 17 letterseries plug-in units, you have signalhandling versatility in such applications as dual-beam pulse-sampling . . . transistor risetime testing . . . semi-conductor-diode-recoverytime studies . . strain gage and other transducer measurements . . . differentialcomparator displays . . . as well as multiple-trace work in general laboratory exper.ments.
The Type 555 can mean better engineering for you-in less time.
Type 555.
$\$ 2600$
Includes Indicator Unit, Power Unit 2 Time-Base Units, 4 Probes, FimeBase Extension, 7 other accessories. Base Extension,

Engineers at the Los Alamos Scientific Laboratory in New Mexico presently use a Tektronix Type 555 Dual-Beam Oscilloscope for checking out the magnetic-core storage units in Stretch, the new high-speed computer. Upper trace is a storage pulse from one of the units. Lower trace is freerunning, awaiting the next storage pulse switched in by the computer.

Six of these magnetic-core storage units constitute the basic memory of Stretch, reputed to be the world's most powerful computer. The computer memory can store 98,304 words of information, equivalent to more than $1,500,000 \mathrm{deci}$ mal units-with data retrievable electronically from any unit in approximately 2 microseconds.

Designed and built for the Laboratory by IBM, in cooperation with the Laboratory's Theoretical Division staff members, Stretch permits scientists to work with far more realistic weapons simulations than in the past, and to analyze the vast amount of data gathered during the tests of nuclear rocket propuision reactors.

For your own scientific tests and measurements-in analyzing waveforms in the dc-to- 30 mc range-you will find a Tektronix Type 555 Dual-Beam Oscilloscope extremely adaptable and reliable. You can use it to display almost any signal in almost any laboratory application.

To observe the signal-handling ease and capabilities of this dual-beam oscilloscope in your own laboratory application, please call your Tektronix Field Engineer. He will gladly arrange a demonstration for you at your convenience.

[^4]
- ELECTRONIC MATERIALS—NOW AND IN THE FUTURE!

Within just the last two yecrs there has been a new comprehension of the inherent electrical properties of materials. Stemming from the science of solid-state techniques a deeper appreciation of the behavior of the electron and its reactions to its environments is taking place. We now know that it reacts to pressure, strains or molecular and crystalline structures, and that it reacts to temperature changes, or to a degree of light. Research along these lines is creating new families of materials, and paving the way for electronic progress in the coming years.

- SURVEY OF LOW-NOISE MICROWAVE AMPLIFIERS

The development of low-noise microwave amplifiers such as the maser and varactor diode parametric devices are opening up new possibilities for military and commercial electronics. This article examines some of the major aspects of this radically new approach.

- CONNECTORS AND GALVANIC CORROSION

Many factors must be considered when predicting connector reliability. Of these, the destructive galvanic corrosion of mating metals is probably the most difficult to determine. This article presents the results of environment simulating test which greatly aids in this determination.

- 1962 ELECTRONIC SPECTRUM CHART

For well over a decade ELECTRONIC INDUSTRIES has been noted as the source of information on frequency assignments. The colorful El Frequency Charts are one of industry's most familiar sights, adorning the walls of all major electronic laboratories. This year, the chart is being brought up to date, to include the international frequency agreements determined at the recent Geneva conference, and covering the new high frequency bands.

Plus all other regular departments

Our regular editorial departments are designed to provide readers with an up-to-the-minute summary of world wide important electronic events. Don't miss Radarscope, As We Go To Press, Elec-
tronic Shorts, Coming Events, El Totals, Snapshots of the Electronic Industries, El International, News Briefs, Tele-Tips, Books, Representatives News, International Electronic Sources, Personals, etc.

COMING SOON

- VACUUM TUBE VOLTMETERS

Most engineers at some time or other have occasion to use the old standby-_the Vacuum Tube Voltmeter! But then the questions arise-What VTVM's are available to the industry? What are their capabilities? What companies manufacture VTVM's? As a result of an industry-wide survey by ELECTRONIC INDUSTRIES these questions are answered in next month's issue. Company's name, instrument model number and specifications of the instrument are presented in chart form.

Companies throughout the industry, both here and abroad, have been queried and have answered. Manufacturers in the United States, Australia, Canada, Denmark, France and Great Britain have contributed to help make this a valuable reference piece.

Being a technique, microwaves are useful in many fields of technology, such as radio, physics, and optics. The areas which deserve the most attention, because of growth potential, are high power microwaves and optical masers.

MICROWAVES_

Fig. 1: Normalized attenuation as a function of waveguide dimension. A large reduction in attenuation is possible using oversized rectangular waveguide. The comparative "low-loss" feature of the $T E$ " ${ }^{0}$ mode can be attained when the circular waveguide is significantly oversized.

BECAUSE sources and detectors were relatively easily obtained, the evolution of electromagnetic technology began at the low and extremely high frequency ends of the spectrum.

At the low frequency end, circuit dimensions are small compared to wavelength. The analytical procedures are based on lumped constant elements; and, the engineering entities, such as, voltages and impedances, have unique significance.

At the extremely high frequency end of the spec-trum-infrared and visible radiation-circuit elements have dimensions which are often many thousands of wavelengths. The tangible entities are quantities such as focal length, aperture, polarization, etc.

Between these limits, circuit elements may have dimensions comparable to wavelength. This is the portion which is broadly referred to as the microwave band. The band may cover from 100 Mc to 100 KMC with greater engineering importance between 1 and 35 кмс.

At microwave frequencies, the low-frequency lumped constant elements are replaced by distributed constants. And, many optical principles can be applied directly. Microwave power can be transmitted inside a single hollow conductor or waveguide, unlike the two conductors necessary at low frequencies. Like light, microwaves can be confined and transmitted by a straight waveguide; but unlike light, microwave power flow direction can be changed, easily, by the wave-guide-without loss in power.

In microwave circuits, voltages and currents are no longer unique; and, these quantities are often re-

DR. TOMIYASU is a member of the IRE-PGMTT Administrative Committee and served as Chairman of that group during 1960-61. Prior to his election as Chairman, he was Editor of the IRE Transactions on MTT. He is currently on the IRE Editorial Board.

placed by electric and magnetic fields. Impedances no longer have unambiguous definitions and their calculations often involve stored energies in evanescent modes.

The earliest work at microwave frequencies used incoherent sources, such as spark gaps and radiant lamps. It was fairly clear that many important uses had to await the development of a more powerful coherent source. Such a source was invented by Varian in 1938. This later became the klystron. With the new tube, a new era of engineering developments followed, leading to the success of radar and numerous other achievements.

Microwave is popularly discussed in terms of its more dramatic use-radar. The importance of microwaves is actually much broader than for radar alone. The theory and techniques, being so vastly different from either radio frequency or optics, have found powerful applications in many diverse fields of science and engineering. The extent of the application is gradually widening, the rate being limited primarily by the speed of cross communication between unique technical disciplines.

As many scientific and engineering technologies have demonstrated explosive growth during the past 10 to 15 years, microwave has been no exception. During this period, many new technical developments have emerged, such as microwave spectroscopy, microwave communication, ferrites, microwave maser, parametric amplifier, microwave plasma diagnostics, high power microwaves, optical maser, etc. The present era of technological revolution can be attributed to many factors, among which are recognition of scientific importance to social advancement, exploitation of latent technical capabilities, rapid and relative ease in technical communication through journals and conventions.

What is the future of microwaves?-especially after so many advances have been made! Instead of making debatable general predictions, let's discuss a few specific areas and highlight some of the barrier problems and trends towards further development.

Ferrite

Following the unbelievable 1952 achievement of non-reciprocal behavior in a microwave solid state device using ferrite, the use and production of ferrite components appeared very quickly-within $11 / 2$ years. Until then unattainable performance such as circuit isolation and non-reciprocal phase shifters uncovered other developments and stimulated further device study. Some recent components are ferrite power limiter, ferrite amplifier, isomodulator, etc. In less than a decade, ferrites have attained product maturity; the forecast is steady growth. New materials are being studied which should optimize present components and possibly suggest new ones.

Varactor Diode

Perhaps one of the most simple, intriguing and versatile circuit elements is the semiconductor diode. In an ideal lossless form, it becomes a variable capacitance or varactor. The breadth of circuits and uses appear virtually limitless and analytical papers published match this breadth.

Although parametric circuit principles have been known for many decades, recent developments make frequent reference to the Manley-Rowe relations published in 1956. Perhaps the characteristic that gave the parametric circuit a surge of interest is its capability of amplifying weak microwave signals with virtually no added noise. The critical need for simple low-noise microwave receivers, required for space

Microwaves (Continued)

communication and improved ground communication systems, appears to be met by the solid-state parametric amplifier.

Further improvements will rest primarily on improved varactors in terms of higher Q, higher cutoff frequencies, higher power along with low production costs. Certain uses suggest multiplicity of elements and an eventual form of a continuous distributed configuration.

While many present applications of varactors will continue into the foreseeable future, the overall field will likely expand considerably-limited only by device improvements.

High Power Microwave
The term, high power, is a relative quantity. Most present-day microwave applications can use higher power, and, if higher powers can be generated, new applications can be found.

It is clear that the technological limits of high power generation have not yet been reached. The capabilities can be extended to higher peak power, higher average power, and higher frequencies. The most serious problems facing the tube designer are efficiency, beams, thermal problems, long life, output windows and spurious-free outputs. Other problems may be bandwidth, linearity, amplitude and phase stability.

After the successful development of a super power tube, tube applications will depend heavily on the mutual compatibility and design dependence of source, components, techniques and system. In advance testing of components and technique development, profitable use is often made of resonant cavities and travel-ing-wave resonators to simulate the anticipated peak powers. Some caution is required since the source impedance cannot be simultaneously simulated.

Fig. 2: Surface resistance normalized to free-space impedance (377 ohma) as a function of frequency for four common materials.

In the design of super power components, even minute insertion losses in db become significant in terms of watts. New approaches are required which can be readily fabricated and meet the eventual operational environment. Any components oversized in dimensions compared to wavelength must consider mode conversion problems to be encountered under the operating conditions.

Super power levels raise the natural question of breakdown. What is the highest power level that any component can carry? Breakdown in vacuum cannot be reliably predicted. At above-atmospheric pressures, the effects of non-uniform electric fields have not been fully studied. In the presence of appreciable amounts of spurious frequency power, the breakdown phenomenon has not been investigated at all.

One component which often arcs or "sizzles" under high power is the waveguide coupling flange. Spurious and harmonic frequencies probably contribute to the sizzling. Although the problem carries much engineering significance, it does not seem to have received sufficient attention. Perhaps this is due to its relatively mundane nature and because no single flange design can meet most packaging and environmental requirements.

The wireless transmission of megawatts of average microwave power over distances of ten miles is being studied by Raytheon for a space platform application. Fairly efficient generation and radiation of the microwave power has been designed, and energy conversion at the receiver involves a thermal cycle. Power converters which will convert microwaves into dc are now being studied by Raytheon and Purdue University. Very efficient converters especially at the highest power levels are still needed. A device which can convert microwaves into mechanical power, i.e., a microwave motor, should find many applications.

During the past few years, solid-state devices such as transistors and junction diodes have replaced some of the low power thermionic tubes. It does not appear that solid-state devices are an obvious threat to replace high power tubes. However, recent pulsed ferrite experiments offer some bases for speculation.

Phase Shifter

Among microwave components, that which often forces the microwave designer to an uncomfortable position of compromise, is the electronically-controllable phase shifter. Some of the desired specifications are: (1) accuracy, (2) phase range, (3) fast response, (4) small drive power, (5) high microwave power, (6) light weight, (7) small volume, (8) small insertion loss, (9) bandwidth, etc. Ferrites and junction diodes have been used in phase shifters but there is much room for improvement, especially at high microwave power levels.

Although not continuously variable, a discharge in the form of a switch can be used in a digital-type phase shifter. The discharge switch can be externally controlled but the microwave power levels must be relatively small, lest the microwaves will control the discharge. Among discharge type switches, the multipactor is the only one which can be either initiated or quenched while the high level is applied. In addition to this feature, the switch has fast response time and
requires small drive power; hence it should be beneficial for digital phase shifting of high power microwaves.

Microwave Maser

With the impetus on microwave technology during the early 1940 's, and with the predicted and verified K-Band absorption due to water vapor, a new field of microwave spectroscopy was launched. Much of this early work on extremely high resolution spectroscopy was carried out by Professor C. H. Townes, Columbia University. These studies contributed immensely to the knowledge on structure of matter. From this work arose the development of the K-Band maser, which is a microwave amplifier using a beam of ammonia molecules instead of a beam of electrons. The maser provided unprecedented low noise figures, bordering the ideal. Subsequent developments led to solid-state masers using ruby, rutile and emerald. These devices are tunable using a magnetic field.

Though initially handicapped by narrow bandwidth, recent solid-state traveling wave structures provide practical bandwidths. The low temperatures required will prevent universal application but the microwave maser is irreplaceable in specific applications such as primary frequency standards, radio astronomy receivers, etc.

Optical and Infrared Maser

One of the most startling achievements in modern physical science is the generation of coherent light. A coherent signal is defined as one which is monochromatic, unipolarized and uniphased across an aperture. In rapid succession three materials were announced, viz, ruby, impurity-doped calcium fluoride, and helium-neon gas mixture, which generate coherent waves at red and infrared wavelengths. The principles of these masers were published by Townes and Schawlow in 1958 and the first optical maser was announced in 1960 by Hughes Research Laboratory.

One of the predicted uses of the optical maser is wideband communication where, in theory, a 1% bandwidth can handle simultaneously one million television channels! The realization of this capability will however require very extraordinary advances in modulation and demodulation techniques. Other factors to be considered are signal-to-noise ratio, channel capacity, inter-channel interference and terminal equipment.

Due to the combination of high output power and narrow emission linewidth (narrow radiation beam) it should be possible to communicate over astronomical distances through space. The narrow radiation beam should make it possible to search the moon with a ten-mile diameter beam using an optical maser transmitter on earth.

Inasmuch as the emitted linewidth is so narrow, the energy can be focused into a spot size comparable to a wavelength. By focusing the high power output from a ruby optical maser, small holes have been drillin razor blades. Under strong focused fields, quartz exhibits non-linear behavior, and a second-harmonic blue light has been generated by extremely intense red light emitted from a ruby optical maser.

The only maser using gas delivering continuous
power in the infrared region is the one which uses a mixture of helium and neon announced by Bell Telephone Labs in January 1961. The infrared emission linewidth is significantly less than that from the ruby and it should be possible to make interferometric measurements over distances of 18 miles!

The present vigorous search for new maser materials will likely continue for many years. Without doubt there are countless applications of optical masers and practical uses will be found for all devices regardless of the emitted wavelength and whether pulsed or continuous output. Perhaps it is significant to note that maser technology has jumped from microwave to optical wavelengths. The microwave-infrared gap is still relatively undeveloped and until more powerful sources and more sensitive detectors become available, advancements in this gap will be meagre.

Despite the current explosive activity on, and study of, optical masers, there are many technical areas which demand scientific and engineering attention. These are elimination of relaxation oscillations, high overall efficiency, wide range in power output, wide range in emission wavelengths, continuous output, high peak power, etc.
A REPRINT
of this article can be obtained by writing on company letterhead to
The Editor
ELECTRONIC INDUSTRIES, Chestnut G 56th Sts., Phila. 39, Pa.

The early optical and infrared masers are selfexcited oscillators. Although oscillators are regenerative amplifiers, it was not obvious that a coherent amplifier could be built. However, such an amplifier using ruby was successfully built by Bell Telephone Labs during the spring of 1961. Power gains of two were obtained. Further areas of development would be to achieve higher power gain, lower signal sensitivity, higher S / N ratio and tunability.

The optical maser and its applications are in a stage of infancy. While the technical problems are numerous, there is general agreement that the expected rewards justify the effort.

Other Devices and Applications

As a diagnostic tool, microwave signals have been used to probe high density plasmas. High power at millimeter wavelengths is required to probe extremely dense plasmas. NASA is speculating that interaction of plasmas may generate extremely high power microwaves useful for space communication.

Microwave phonons which can freely propagate in quartz at cryogenic temperatures have been useful in studying the structure of matter. Intense microwave phonons have been demonstrated to amplify parametrically microwave signals through induced nonlinearity in quartz.

References

1. Edson, William A., "Future Trends in Microwave Beam Tulbes," Electronic Imdustries. Vol. 19, pp. $70-7 \%$ Nov. 1960 . 2. Hansen, R. C., and Weiss, M. T., "Report on Advances in Microwave Thenty and Techniques-1960,"IRE Transactions on M.T.T., Vol. MTT-9, pp. 278-290; July 1961

Designed for use in final radar system tests, this space type load presents a constant magnitude, variable phase, reflection to the transmitter. It is useful in studying the effects of transmitter-to-antenna mismatch caused by abnormal weather, such as icing conditions.

Radar Antenna Test Load

DETERMINING the effect that abnormal operating conditions have upon a radar is an important part of a radar testing program. Transmitter-to-antenna mismatch is one undesirable situation that abnormal weather-such as icing conditions-can cause. Severe transmitter to antenna mismatch may shift the transmitter frequency enough to cause the radar to malfunction. It is probable that a shift in the transmitter frequency due to mismatch is a function of both the magnitude and phase of the reflected wave.

Here we discuss a space type load that presents a

Fig. 1: The radar antenna under test was located in a radome.

Fig. 2: A maximum vswr of 1.4 was introduced when the radome was placed against an infinite ground plane.

By THOMAS J. RUSSELL
Electronics Engineer-Orgn. 8612
The Bendix Corporation
Kansas City 41, Mo.

constant magnitude, variable phase, reflection to the transmitter. This antenna load is to be used in a final radar system test. An output not more than 25 db down from the antenna input is to be incorporated in this antenna load. This output will be used with a transponder to provide the antenna with an echo signal.

This antenna load was required to provide a constant magnitude, variable phase, reflection coefficient at the antenna input terminals. The reflection coefficient is to be continuously variable through 360°. This 360° reflection coefficient phase variation causes the antenna input impedance to traverse a constant VSWR circle on a Smith transmission line chart. It was assumed, for this work, that 1.7 would probably be the maximum VSWR caused by severe weather conditions. Thus, the required load would cause the antenna input impedance to traverse a 1.7 VSWR circle on a Smith transmission line chart.

The antenna for this radar is located in a radome as shown in Fig. 1. The antenna provides a vertically polarized broad beam radiation pattern that is symmetrical about the radome axis. Over the operating frequency band the antenna and transmitter are matched to the 50 ohm line connecting them. The operating frequency bandwidth is about 4% of the center frequency.

It was found that a rather severe discontinuity in

A REPRINT

of this article can be obtained by writing on company letterhead to The Editor
electronic industries, Chestnut \& 56th Sts., Phila. 39, Pa.

the space surrounding the radome was necessary to produce a 1.7 VSWR in the antenna input line. This is illustrated by the fact that 1.4 was the maximum VSWR introduced when the radome was placed against an infinite ground plane as shown in Fig. 2.

One approach to the problem used a parallel plate metal lens as shown in Fig. 3. The theory was to collect the antenna energy and transform it into a plane wave with the lens. The phase of the reflected wave could then be adjusted by varying the distance d to a metal reflecting plate. This system was unsuccessful due to wide VSWR variations with changes in d. This was probably largely due to antenna to lens mismatch.

A common difficulty encountered in several approaches tried was the collection and reflection of enough energy to give a 1.7 VSWR. It was decided to collect all of the antenna energy and attempt an an-tenna-to-rectangular-waveguide match as shown in Fig. 4. The vertically polarized field produced by the antenna is compatible with the generation of a TE_{10} mode in the waveguide. The mouth of the horn was covered with a metal plate with a hole in the center fitted to the metal housing. The transition from antenna input to horn output could then be considered a lossless two-terminal pair network. If the antenna were matched to the waveguide and a waveguide load Z transversed a constant VSWR circle on a Smith transmission line chart, the antenna impedance would traverse the same constant VSWR circle. The system shown in Fig. 5 would provide the required Z. The antenna input VSWR varied between 1.3 and 1.4 over the frequency band with the waveguide in Fig. 4 terminated in Z_{0}.

Let ρ equal the input VSWR with the waveguide in Fig. 4 terminated in Z_{0}. It has been shown that the antenna input VSWR, with the waveguide terminated in Z of Fig. 5, will vary between 1.7ρ and $1.7 / \rho$ as l is varied through $1 / 2$ wavelength. ${ }^{1}$ A ρ of 1.1 would allow the input VSWR to vary between 1.54 and 1.87. Thus, to maintain a reasonably constant input VSWR, it was necessary to match the antenna to the Z_{o} terminated waveguide within a 1.1 VSWR over the frequency band. The problem was then reduced to designing a matching network to match the horn output impedance to the waveguide.

[^5]Fig. 4: To increase antenna vswr an antenna - to - rectangu-lar-waveguide match was tried.

Fig. 5: Illustrated is a variable length of waveguide terminated in an impedance that presents a 1.7 vswr.

Fig. 6a: The horn outputadmittance curve, $\mathrm{Y}_{\text {. }}$ is shown plotted on a Smith chart.

Fig. 6b: This curve and the one above show how the matching network transforms the horn output admittance into the 1.1 vswr circle.

Fig. 6c: The waveguide matching network was used to match horn output to the waveguide.

L. INDUCTIVE WINDOW

C. CAPACITIVE WINDOW

Fig. 7: Block diagram shows the antenna load system used.

Test Load (Concluded)

The output admittance of the horn can be found by the following procedure. ${ }^{2}$

1. Record the standing-wave ratio S and position of the minimum in the input line with the horn output terminated in Z_{0}.
2. Determine the distance in guide wavelengths from the horn output to a short in the waveguide such that the corresponding minimum in the input line coincides with that in measurement 1.
3. Enter a Smith transmission line chart at $1 / S$ and travel counter-clockwise on a constant VSWR circle the number of wavelengths determined in 2 .
4. The point reached in 3 is the output admittance of the horn normalized with respect to Z_{0}.
The horn output admittance curve, Y_{o}, is shown in Fig. 6a.

The waveguide matching network shown in Fig. 6 was used to match the horn output to the waveguide. The curves in Fig. 6 show the manner in which the matching network transforms the horn output admittance into the 1.1 VSWR circle.

The complete antenna load system is shown in Fig. 7. The insertion of a small output probe in the waveguide presented no difficulties. Fig. 8 shows the antenna input impedance curve obtained at f_{o} as l was varied through $1 / 2$ wavelength.

The author wishes to thank Mr. Lyle A. Robinson for his many valuable suggestions.

[^6]Fig. 8: Antenna input impedance curve provided by the system.

By C. LOUIS CUCCIA

Electron Tube Div. Radio Corp. of Americo Harrison, N. J.

Modern

T1HE earliest traveling-wave tubes used magnetic focusing fields provided by heavy, cumbersome solenoids. Solenoids are still widely used with certain types of traveling-wave tubes, such as very-low-noise tubes, tubes requiring very strong magnetic fields, or tubes designed to deliver power outputs in the tens-of-kilowatts or megawatt range.

During the 1950's, however, under the impetus of the growth of electronic radar countermeasures and other airborne systems, intensive study of different focus structures resulted in the development of small, light-weight integrally packaged tubes containing the focus structure within the tube capsule.

Integrally packaged TWTs now employ at least three modern focus techniques: uniform-magneticfield focusing provided by miniaturized solenoids or permanent magnets, electrostatic focusing, or periodic-permanent-magnet focusing. This article describes the features of each type of structure.

Frequency Coverage \& Power

Integrally packaged TWTs have been developed to amplify over wide frequency bands from the 500 to 1000 MC octave to the 12,000 to $18,000 \mathrm{MC}$ band, and to provide saturated power outputs ranging from milliwatts to more than ten kilowatts. Such tubes, in general, weigh from 2 to 6 lbs. for low-power and low-noise types up to 15 to 20 lbs . for the highestpower tubes-a far cry from the early solenoid-focused units which weighed several hundred pounds and consumed kilowatts of solenoid power.

REFERENCE PAGES

The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders.

The heart of many microwave systems is the traveling-wave tube. Integrally packaged TWT's used today employ three focusing techniques. The features of each are presented here, in a concise manner, as an aid to proper selection.

TWT Focusing Methods

Fig. 1 relates frequencies from 500 to $18,000 \mathrm{MC}$ to the highest power-output levels obtainable from both periodic-magnetic and electrostatically focused TWTs developed by the microwave industry in the last few years, with the major activity directed toward periodic magnetic focusing. In the very active radarfrequency ranges in mid S-band and lower X-band, tubes having saturated power outputs up to the tenkilowatt level have been developed. At lower powers (i.e., 1 watt and less), a wide variety of very-wideband tubes have been developed to cover all the frequency bands indicated. Integrally packaged uniformfield tubes (not shown) are used primarily for very-high-power and low-noise applications.
Fig. 2 compares the appearance of integrally packaged TWTs using the three modern focus structures

Fig. 1: Frequency coverage and power output of commercially available traveling-wave tubes using two types of beam focusing.

electrostatic focusing

Fig. 2: Comparison of TWT's with various focusing methods.

Fig. 3: A miniature TWT solenoid making use of aluminum foil.

ELECTROMAGNETIC WAVE TRAVELS
FROM LEFT TO RIGHT ALONG HELIX
Fig. 4: The basic structure of a traveling-wave tube is shown.

TWT Focusing (Continued)

with that of the 6861 low-noise tube and its $40-\mathrm{lb}$. solenoid. The photograph shows the large reduction in size resulting from the modernization of the focus structure.

Basic TWT Structures

The basic structure of a TWT is shown in Fig. 4. The tube contains a slow-wave structure, such as a helix, along which the wave to be amplified travels, and an electron gun which projects an electron beam through the helix to the collector. The essential components of the TWT are the electron gun, the helical slow-wave structure, the collector, the circuits used to couple r-f energy to and from the helix. The focus structure has to focus the beam for many inches without appreciable helix interception.

For frequencies in L-, S-, C-, and portions of X-band, the r-f signal is applied to or extracted from the helix by a helical coupler. The coupler consists of an external helix wound in a threaded Teflon sleeve and coupled through the tube envelope to the main helix. For frequencies in X -band and above, a waveguide coupler is coupled through the tube envelope to an antenna at one end of the helix. Because both types of couplers are separate from the electron-tube portion of the TWT, and are small in dimension, their use in modern focus systems is attractive.

Uniform-Field Focusing

The solenoids and permanent magnets used for focusing TWTs have normally consisted of large heavy structures. A wire-wound solenoid, even of modern design (typified by the solenoid shown in Fig. 2), weighed in the order of 40 lbs . when designed for

Table 1

Saturated Power Output (watts)	Gain (db)	Beam Current (ma)	Helix Volts	Length (inches)	Diameter (inches)	Weight (Ib)
0.015	35	1	475	$157 / 8$	$11 / 16$	3
0.01	35	3	600	$153 / 16$	$11 / 16$	$23 / 4$
0.1	35	4	600	$143 / 16$	$11 / 16$	$21 / 4$
1	33	19	1100	$153 / 16$	$11 / 16$	$23 / 4$
10	25	60	2100	$181 / 2$	$11 / 2$	4
100	30	250	3700	$195 / 8$	$21 / 2$	$121 / 2$
1000	30	1500	7800	21	$21 / 2$	15

use with S-band tubes. Permanent-magnet focus structures of the "football" type, designed for similar tubes, weighed considerably more.

The advent of aluminum-foil types of solenoid has made possible miniaturized uniform-field focus structures of substantially reduced weight and size. Fig. 3 is a photograph of an aluminum-foil solenoid structure illustrating these features. This structure weighs 6 lbs., is $21 / 2$ inches in diameter and $131 / 2$ inches long, and has a focus region 0.850 inch in diameter. Such solenoids have been successfully used for L- and Sband low-noise tubes. ${ }^{1}$ They are small enough to permit integral packaging of the focus structure and electron tube, as illustrated.

At C- and X-band, the reduced size of the electrontube structure permits the use of miniaturized "foot-ball"-type permanent magnets weighing less than 15 lbs. X-band integrally packaged low-noise tubes have been developed ${ }^{2}$ with package weights comparable to that of the miniature-solenoid-focused tube of Fig. 3.

Fig. 5a: Cross-sectional view of bifilar-helix type structure.

Fig. 5b: Forces exerted on an electron in focus structure

Fig. 5c: Cross-sectional of periodic permanent-magnet focusing.

Periodic Focusing

A TWT can be periodically focused by means of the bifilar-helix structure ${ }^{3-5}$ shown in Fig. 5a. This structure consists of a pair of interleaved helices having the same diameter and turns-per-inch ratio. When the two helices are operated at different potentials, they produce the same effect as a series of closely spaced lenses. The electrostatic focusing action is therefore periodic, being repeated at very small intervals and used to balance the outward radial force on the electrons. The forces exerted on an electron and the resulting electron trajectory are shown in Fig. 5b. The bifilar helix not only provides focusing action, but has the same wideband characteristics and the same ability to couple to helical couplers as a single-helix slow-wave structure. Consequently, its use in a TWT results in no degradation of performance.

The technique of focusing the electron beam in TWTs by means of periodically spaced, permanent ring magnets ${ }^{6-9}$ has gained the widest acceptance of all focusing methods to date. Such periodic-focus structures are easily miniaturized, operate over wide ranges of ambient temperature, require no focusing power, and produce negligible stray magnetic fields and helix interception.

Fig. 5c shows a portion of a structure of ring magnets and steel shims designed to produce a periodic magnetic field. Each ring magnet is magnetized so that north and south poles are produced on its side faces. The ring magnets are then stacked between steel shims with the similarly polarized faces of each pair adjacent. The facing south poles of adjacent ring magnets produce a south pole in the steel shim between them, and the facing north poles of adjacent ring magnets produce a north pole in their common steel shim. The strength of the magnetic field along the axis of the structure thus varies periodically, being zero in a plane through the center of each steel shim, and maximum in a plane through the center of each ring magnet.

An electron beam passing along the beam axis, and provided with sufficient accelerating voltage, is constrained most in regions where the force exerted by the magnetic field is at a peak positive or negative value, and constrained least in regions where the magnetic field passes through zero.

Fig. 6: Tube is designed for use with a periodic permanentmagnet focus structure and for electrostatic focusing.

Fig. 7: Final package and the principal TWT components.

Fig. 6 is a photograph of 10 -watt S-band TWTs designed for use with a periodic-permanent-magnet focus structure (which is included in the photograph) and for electrostatic focusing by use of a bifilar helix (which is inside the tube envelope). The feature of minimum bulk is evident from these structures.

Fig. 7 is a photograph of the final package and the principal tube components of a TWT. It illustrates the structures generally representative of the components of the tubes using periodic-permanent-magnetic focus structures.

Table 1, which lists the pertinent electrical and mechanical characteristics of selected S-band TWTs, illustrates the wide range of beam currents and helix voltages representative of tubes having saturated power outputs from 10 mw to 1 kw , and operating in the frequency range from 2000 to 4000 Mc .

References

1. Cuccia, Wolkstein, and Napoleon, "Miniaturized Low-Noise Traveling-Wave Tubes for Airborne Applications," 1959 IRE WESCON Record, Pt 3.
2. Falconer, Krenz, Lindley, and Schumaker, "Construction and Performance of Metal Ceramic Tubes for C and X -bands,"
IRE PGED Conference, Washington, D. C., October 1958.
3. Blattner and Vaccaro, "The Estiatron-An Electrostatically Focused Medium-Power Traveling-Wave Amplifier," IRE 1958 National Convention Record, Vol. 6, Pt. 3.
4. K. K. N. Chang, "Biperiodic Electrostatic Focusing for Ifigh-Density Electron' Beams," Proc. IRE, November 1957.
5. Blattner, Vaccaro, Cuccia, and Johnson, "Medium Power L-band S-band Electrostatically Focused Traveling-Wave Tubes," RCA Review, Sept. 1959.
6. Mendel, Quate, and Yocom, "Electron-Beam Focusing with Périodic J'ermanent Magnet Fields," Proc. IRE, May 1954.
7. K. K. N. Chang, "Beam Focusing by Periodic and Complementary Fields," Proc. IRE, January 1955; K. K. N. Chang, Beam Focusing," RCA Review, March 1955 .
8. Siekanowicz and Sterzer, "A Developmental Wide-Band 100-Watt 20-db S-band Traveling-Wave Amplifier Utilizing Periodic Permanent Magnets," Proc. IRE, January 1956.
9. Sterzer and Siekanowicz, "The Design of Periodic Permanent Magnets for Focusing of Electron Beams," RCA Review, March 1957.
[^7]> The recent experiments at Frankford Arsenal have shown that high power RF testing of microwave components is necessary to ensure that performance is accurately assessed.

High Power

Microwave Component Testing

By ARTHUR C. METZGER*

Kearfott Division, General Precision, Inc.
and LEON FIELD
Frankford Arsenal

T1HE merits of high- versus low-power RF testing have been argued pro and con for a long time. In order to eliminate the necessity for high power RF testing, many attempts have been made to correlate both these techniques; unfortunately, few high power test facilities have been available to conclusively resolve this question.

Recently, however, due to the construction of a new high-power test facility at Frankford Arsenal, it has been possible to conduct positive comparison tests on components such as waveguide rotary joints and waveguide sections by using both low and high power test facilities. These components checked out well on the low power VSWR test equipment. Then, to simulate a minor environmental change, a few grains of fine sand were blown into the rotary joint, which was again tested on the VSWR test set-up with no resulting change. However, when the rotary joint was tested with the high power test set, arcing occurred at half power. The rotary joint was immediately retested on low power and again no change was found from the original condition. Similar results were obtained on a wave-guide section containing a slight deformation on the wall of the guide. Thus it can be seen that, in this situation at least, low power test results cannot be extrapolated to high power conditions.

Dummy Loads

A particular waveguide component which, in the past, has seldom been adequately tested under high power conditions is the waveguide dummy load. ${ }^{1}$ A
dummy load is designed to simulate the lumped characteristics of an electrical circuit and to dissipate energy in the form of heat for measurements or maintaining RF silence. The load must perform its function within the following limitations: ${ }^{2}$
(1) Minimum voltage standing wave ratio.
(2) Minimum heat reflections from load into associated equipment.
(3) No electrical or mechanical breakdown of load.
(4) No arcing within load or system.
(5) No breakdown in system from gases and water emitted from load.
It is known that the power distribution within a load will vary with frequency, design configuration and material used. A well-designed load will have maximum power dissipation near the mounting flange, but sufficiently distributed to keep heat reflection from the load to the system at a minimum. It is also recognized that heat transfer is a function of the absorbing, bonding and outer shell materials as well as the physical configuration. Where a bonding material is not used, heat transfer will vary directly with the surface area contact of the absorbing and outer shell materials.

Temperature Effects

Referring to Fig. 1, the temperature t_{1} at a given point on the inner surface of the load will be a func-

[^8][^9]tion of the frequency and power output (input to the load) of the system under test, in addition to the internal configuration of the load. For good design of a load the temperature differential $t_{1}-T$ should be minimized. The temperature differentials are given by
$$
\Delta l_{n}=\frac{P_{i} \|^{-}}{K A}(n=1,2,3)
$$
where $P=$ power dissipated; $W=$ wall thickness; $A=$ inner surface area, and $K=$ thermal conductivity of dissipative material. The ratio P / A is the power dissipated per unit of inner surface area.

The outer shell surface temperature T will be a function of the ambient temperature and of the heat transfer:

$$
T={ }^{t} \text { ambient }+\Sigma \perp l_{n}
$$

It should be recognized that a rise in t_{1} will not only increase the temperature of the dissipative materials but will also increase the temperature of the atmosphere within the load. The amount that t_{1} increases will be determined from the inability of the dissipating material to remove the heat from the inner surface of the load. If the dissipating material has a high thermal barrier, heat will be forced by conduction, convection, and radiation inward to the atmosphere in the load. This will cause air circulation within the waveguide system, thereby increasing the inner atmospheric temperature and creating the possibility of system breakdown. Moisture or water in the load prior to the application of power will vaporize. The air circulation will transform the vapor back again to moisture elsewhere in the system where it can cause breakdown or arcing.

Fig. 1: Temperature Distribution in a Dummy Load.

Materials and Moisture Control

Concerning the inner materials, good load design requires that the following be considered.
a. High moisture absorptive materials (e.g., wood without impregnant or sealer) will retain a large amount of moisture under humidity or actual soaking conditions. Sudden application of high power from a system would have a tendency to drive this moisture out of the load so rapidly as to create an explosion. This was vividly demonstrated when such an explosion occurred in the test program for the preparation of Specification MIL-D-14454(ORD) Dummy Load, Electrical. Excessive moisture in the load will cause arcing, breakdown and a change in the VSWR.
b. When an improper impregnant is used, testing has shown that repeated power cycling will change the physical and electrical characteristics of the impregnant, resulting in the same failures as indicated for materials without impregnants.
c. Dissipating materials themselves may undergo physical or electrical changes as a result of power cycling. Where an improper plastic absorptive material or an incompletely cured absorptive material is used, power cycling may thermally stress this material, resulting in mechanical and electrical failure of the load and system. Further, the material thermal conductivity may also be affected by a change in its bonding chemical during power cycling. Some materials also have elastic properties which result in a change of VSWR and thermal conductivity as a function of the applied power.

The area between the inner and outer shells may be filled with a bonding material or may be dependent on direct surface contact for heat transfer. A temperature differential will result in either a temporary or permanent separation in the area, thereby reducing K and increasing Δt_{2}. Where a bonding material is used, temperature changes may result in its physical breakdown, causing deterioration of the material and contamination of the system. Arcing or breakdown results, as demonstrated with the sand particles.

Power Cycling

Power cycling in a closed system will cause a temporary or permanent deformation of the outer shell material due to the combined effects of temperature and pressure. Deformation could cause bonding separation between the inner and outer shells, thus increasing Δt_{3}; pressure leaks could develop resulting in system arcing and breakdown.

The limiting factors in RF breakdown in a system using a dummy load are: ${ }^{3}$
a. Maximum peak power.
b. Pressurization of the load-system.
c. Inner surface condition of the load (surface roughness).
d. Inner surface dimensional stability of the load (temperature coefficient of expansion).
e. Frequency.
f. Pulse width.
g. Pulse repetition rate.
h. Electrical field configuration.
i. Impurities within waveguide (dirt, moisture).
j. Internal temperature of system (load air).

Average power limitations of a load are:
a. Physical changes of material through heating (deterioration).
b. Electrical changes of material through heating.
c. Thermal shock.
d. Safety (heat transfer should not be harmful to human and equipment).
e. Damaging differential temperatures.

References

1. "Military Standardization of Dummy Loads", Electronic Design, Feb. 1, 1957; Leon Field and Arthur C. Metzger.
2. "Design Characteristics of High Power RF Dummy Loads in Silicone Bond", RADC-TR-57-5; Eric Winkler.
3. "Handbook of Microwave Measurements", Polytechnic Institute of Brooklyn.

Thermal Drift

in Microwave Power Meters

Abstract

Although bolometer type microwave power meters have been around for 15 years, not till recently have compensated devices been designed to overcome their thermal drift sensitivity. Here's how to achieve a realistic design goal of 100 times less detector mount drift than previously available.

A^{s}S microwave energy is absorbed by a bolometer element, it is dissipated as heat. The effect of this heat on the element itself is measured and stated in terms of power received. However, ambient temperature also affects the bolometer element; and, this ambient heat effect is erroneously measured along with the microwave power. The extent of this error can be realized by considering what happens when the temperature of a commonly used coaxial thermistor mount changes $1^{\circ} \mathrm{C}$. This is equivalent to a 300 mw

change in microwave power. Thus, ambient temperature grossly limits the usefulness of $100 \mu \mathrm{w}$ ranges found on commonly available devices.

There are two possible approaches to this problem:

1. Isolate the bolometer mount by temperature control.
2. Design a circuit able to cancel out first order temperature effects.
Conventional power meter circuitry could be used for the first alternative. However, temperature control would have to be extremely good-because only one one-hundredth degree centigrade change would cause a 3 mw drift! Also, suppose the operating range was $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. This requires an oven at $60^{\circ} \mathrm{C}$ and thermistor control at that temperature. This is rather impractical.

Look at the second alternative. A better solution is to use two bridges containing thermistors tied to a common heat sink and biased by a common power source. The effect is analogous to the common mode rejection of a differential amplifier.

Very basically, such a circuit would consist of two bridges, each containing thermistors. Each bridge would be designed with feedback to maintain balance. Both thermistors would be biased by a
common power source (the only source of power in the zeroed condition). Microwave current applied to the first thermistor, in the first bridge, would be communicated to the second bridge, and dc current of equal magnitude would be applied to the thermistor in that bridge. In effect, we would have a 1 to 1 microwave current to dc current converter. The dc current applied to the second thermistor, of course, would be easy to meter and state in terms of microwave power.

Circuit Proposal

For a more detailed description of this circuit see Fig. 1. AC amplifier \#1 amplifies the unbalanced signal at the bridge. This amplifier contains a circuit tuned to 10 kc . The output of amplifier \#1 is fed back to the primary of bridge transformer \#1. This is positive feedback, and forms an oscillator which oscillates at 10 Kc . The amplitude is controlled by the characteristics of the thermistor. Steady state is reached when the resistance of the thermistor is just slightly greater than 99.9Ω resistor in the other arm of the bridge. If amplifier \#1 has greater than a 60 db gain, the resistance of the thermistor is less than $1 / 10 \Omega$ greater than the 99.9Ω resistor. Note that the primary of bridge transformer \#2 is now in series with the primary of bridge transformer \#1. This means that ac amplifier \#1 is providing the bias

Fig. 2: Thermal technique used to overcome temperature gradients.
for the thermistors in both bridges. The potentiometer in the other arm of bridge \#2 is used to trim for any slight variation in the characteristics of the two thermistors, and establish zero.

The unbalanced signal, appearing at the center tap of bridge transformer \#2 is amplified, detected by a synchronous detector, dc amplified, and fed back to bridge transformer \#2 through the metering circuitry.

Basic Circuit Operation
Now let us trace what happens during operation of this circuit. First, the power meter is zeroed. The only power used to bias the thermistors to 10 kc power, supplied by ac amplifier \#1. When microwave power is applied to thermistor \#1, it heats it. This starts to unbalance the bridge. To regain a steady state balance, the ac signal, $I_{10 K O}$ in Fig. 1, must be reduced. The reduction in 10 KC power applied to this thermistor is equal to the microwave power applied. This reduction in $I_{10 K O}$ is also applied to thermistor \#2, unbalancing it. This bridge circuit regains balance only when $I_{d c}$ supplies sufficient power to thermistor \#2 to bring it back to balance. This is when the dc current supplied to thermistor \#2 is equal to the microwave current applied to thermistor \#1, since $I_{10 \mathrm{KC}}$ is common to both through identical transformers.

Thermal Stability
Now let's consider how the circuit reacts to temperature changes. If the temperature goes up, ther-

> A REPRINT
> of this article can be obtained by writing on company letterhead to
> The Editor
> ELECTRONIC INDUSTRIES, Chestnut \& 56 th Sts., Phila. $39, \mathrm{~Pa}$.
mistor \#1 needs less electrical power to bias it to the 100Ω resistance which is required to maintain bridge \#1 in a balanced condition. This means that $I_{10 \kappa \sigma}$ decreases in value. This same temperature change also occurs to thermistor \#2 because it is in the same thermal environment as thermistor \#1. If it is identical to thermistor \#1 it also needs the same decrease in electrical power. It receives this decrease in power because $I_{10 K o}$ is applied to both thermistors through the primaries of their respective bridge transformers. This means that a temperature change would cause no change in $I_{d o}$ which is the current used to activate the metering circuitry. It is important, however, that both thermistors share the same thermal heat sink.

Heat Sink

If the thermistor mount is connected to a piece of equipment being cycled in an environmental chamber, for instance, heat will travel up and down the waveguide or cable and the mount will tend to follow with an increase or decrease of temperature. The temperature change is a problem previously discussed, but also because flow of heat is involved there must also be temperature gradients present. If this gradient is $0.01^{\circ} \mathrm{C}$. between the respective thermistor leads, a power meter drift of $3 \mu \mathrm{w}$ will result. The thermal technique to overcome this effect is shown in Fig. 2. The leads of all thermistors are returned to the same thermal heat sink which is thermally isolated from the main thermal mass of the mount. Use of this technique makes it much more difficult to develop temperature gradients within the sink. It means that if the temperature of the main mass varies, the system would work as a thermal filter, greatly attenuating the thermal fluctuations which appear in the heat sink.
(Continued on the following page)

Fig. 3: Details of metering

Other Design Benefits

Such an approach to thermal stability will also allow one to realize these other important advantages:

1) Greater sensitivity. A hundredfold decrease in thermal drift makes a more sensitive range possible.
2) Grounded recorder output. The current supplied by this recorder output would have to be linear in relation to the power being measured, so that microwave power would be a direct reading plot.
3) Zero set common to all scales. The device could be zeroed on the most sensitive scale and zero would be common to all higher scales.
4) A design capable of greater accuracy than the $\pm 5 \%$ commonly available.
5) Portability. Battery operate the power meter so that it could be used in field applications.
The factor limiting power meter sensitivity is thermal drift. By making a hundredfold reduction in drift a ten times increase in power meter sensitivity would become reasonable, and measurements of as little as $1 \mu \mathrm{w}$ feasible.

Fig. 3 shows the details of the metering circuit and the recorder output, driven by a current linear with the microwave power. $I_{d c}$ is the dc current which is fed back to bridge \#2. It is also equal to the rMS value of the microwave current. Microwave power is proportional to $\left(I_{d c}\right)^{2}$. Therefore, a current proportional to $\left(I_{d c}\right)^{2}$ is desired to drive a front panel meter and the recorder. The output of the dc amplifier, E_{3}, is applied to the bases of both transistor A \& B. The emitter of transistor B is applied to a square root circuit which solves the formula

$$
E_{d c}^{2}=K I_{m}
$$

With the non-linear load in the emitter, it means that the collector current I_{m} is proportional to $\left(I_{d c}\right)^{2}$ and, therefore, I_{m} would be proportional to the microwave power.

In Fig. 3, the zero is common to all ranges. Range changes are made by switching in the correct scale factor resistor into the emitter circuit of transistor A. When the meter is zeroed, $I_{d c}$ is equal to zero; therefore, the voltage across the range switch resistor is also zero. Thus, the zero is common to all ranges.

Improved accuracy is obtained because each feedback loop has at least 60 db of gain. Accuracy is primarily dependent on the specification of various passive circuit elements. It can be expected to be better than $\pm 3 \%$.

Semiconductors make portability feasible. As active elements in this circuit design, transistors are an excellent prospect because of the circuit's low impedance levels; also, because the maximum frequency demands do not exceed the 10 kc of the oscillator circuitry.

Thus, using self-balancing bridge methods, coupled with newer thermal compensations and feedback circuit stabilization, an improved microwave power measuring design is possible with stable sensitivity on the order of $1 \mu \mathrm{w}$.

By DR. W. REVIS AYERS
Wave Tube Development Dept. Varian Associates
611 Hansen Way
Palo Alto, Calif.

Sophisticated Systems are . . .

Eliminating

THE traveling-wave tube (TWT) amplifier is used mostly where broad bandwidths are required. Depending on the needs, tubes may be designed to provide large bandwidth (several tubes now exceed one octave bandwidth), high peak power (above 5 megawatts), or low noise figure (2db). Other needs may also affect design.

This article describes a tube for use in an application requiring 10% bandwidth and 5 kw of peak power. The noise figure is not a limiting factor.

What's so novel about a tube which falls so short of the state of the art in power? bandwidth? and noise figure? Stability, ruggedness, long life, and the ability to withstand environmental extremes may also limit use. All these factors, while important, have little to do with separating this tube from most others. It is for use in a system which can permit very little signal distortion. This requirement, while not unusual, is one of ever-increasing importance. It is especially so as more sophisticated systems are devised.

Gain and Phase
A distortion-free amplifier must have constant gain over the range of frequencies considered, as well as

[^10]

Strange that with an art advanced to tubes with octave bandwidths, megawatts of peak power, and 2 db noise figures, we should apparently step backwards to a 10% bandwidth and 5 kw peak power. But the reason is simple -the new systems can tolerate very little distortion. Here's one approach!

Distortion in the TWT

Fig. 1: Schematic of a transmission system with two reflections.
constant time delay, or a linear phase relationship with frequency independent of the drive level. Also, it must be free of intermodulation distortion. Fortunately, the physical phenomena which govern TWT operation do provide, to a first approximation, constant gain and linear phase. Gain is constant because a TWT is not a resonant device; phase is linear because all signals traverse the tube at about the beam velocity.

Gain and phase variation with input drive is not so well under control since a power amplifier must operate near saturation to provide reasonable electronic efficiency. The need to operate near saturation will also exert a profound influence on intermodulation distortion. However, this can be lessened some if the harmonics generated in the beam are negligibly coupled to the circuit.

Reflections

A major cause of distortion which can be brought under control is that which arises due to multiple reflections of the signal in the tube. If small reflections are set up at two points along a propagating system, they will act to set up a small additional wave which adds vectorially to the carrier.

Look at the system of Fig. 1. A signal from the
generator propagates down a transmission line with small reflections at points A and B. Since the reflections are assumed to be small, the signal transmitted through the reflection points will be negligibly perturbed. The signal at the receiver will be the sum of the generated signal plus the small signal which has been reflected at the two reflection points. If V_{1} is the generator signal at point B , and V_{2} is the total signal transmitted through point B, we may write

$$
\begin{equation*}
V_{2}=V_{1}+V_{2} \rho_{B} \rho_{A} \tag{1}
\end{equation*}
$$

where, ρ_{A} and ρ_{B} are the voltage reflection coefficients at points A and B, respectively. Both reflection coefficients have included in them a phase factor corresponding to the phase shift between points A and B.

Eq. (1) may be rearranged in the form

$$
\begin{equation*}
V_{2}=\frac{V_{1}}{1-\rho_{A} \rho_{B}} \tag{2}
\end{equation*}
$$

which is approximately

$$
\begin{equation*}
V_{2} \cong V_{1}\left(1+\rho_{A} \rho_{B}\right) \tag{3}
\end{equation*}
$$

The received wave is a distortion of the unperturbed transmitted waves which can be represented in a vector diagram, Fig. 2. The amplitude and phase of V_{2} differ from that of V_{1} in a cyclic manner which depends on the phase of the doubly reflected signal rela-

Fig. 3: Varian Associates' VA133 with type N adapter has 10% bandwidth, centered at 1320 MC ; it's a $5-\mathrm{kw}$ peak, 300 watt avg. amplifier.

Eliminating Distortion(Continued)

tive to the phase of V_{1}. A frequency change which will increase or decrease the effective distance between A and B by $\lambda / 2$ will cause one complete rotation of the reflected signal vector.

The maximum excursion of the amplitude of V_{2} is given by

$$
\begin{equation*}
\frac{V_{2 \max }}{V_{2 \min }}=\frac{V_{1}\left(1+\rho_{A} \rho_{B}\right)}{V_{1}\left(1-\rho_{A} \rho_{B}\right)} \tag{4}
\end{equation*}
$$

which may be expressed approximately in db in the form

$$
\begin{equation*}
د V=17.4 \rho_{A} \rho_{B}(\mathrm{db}) \tag{5}
\end{equation*}
$$

In the same manner, the maximum phase excursion may be written approximately

$$
\begin{equation*}
\Delta \phi=115 \rho_{A} \rho_{B} \text { (degrees) } \tag{6}
\end{equation*}
$$

The frequency interval over which the amplitude or phase will move from its maximum to minimum value is that for which the equivalent distance between reflections is changed by $\lambda / 4$, i.e.

$$
\begin{equation*}
\frac{\Delta f}{f}=\frac{\lambda}{4 L} \tag{7}
\end{equation*}
$$

As a numerical example, consider the case where the reflections have VSWR's of $1.2: 1$ and the distance between reflection is 10 wavelengths. Then from Eqs. (5), (6) and (7) we obtain approximately,

$$
\begin{aligned}
\Delta V & =0.143 \mathrm{db} \\
\Delta \phi & =0.95^{\circ}
\end{aligned}
$$

and

$$
\frac{\Delta f}{f}=2.5 \%
$$

Voltage and Loop Gain

If the signal were amplified in traveling from A to B and unattenuated in traveling from B to A, the situation would resemble that which exists in a TWT. Then Eqs. (5) and (7) would take the form

$$
\begin{equation*}
\Delta V=17.4 G \rho_{A} \rho_{B}(\mathrm{db}) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \phi=115 G \rho_{A} \rho_{B} \text { (degrees) } \tag{9}
\end{equation*}
$$

where G is the net voltage gain between A and B.

[^11]Where attenuation exists in the return path, G would be taken as the net loop gain. While the number of wavelengths along the forward path need not equal that along the return path, this fact is of little consequence to the foregoing argument and would usually result in a slight correction to Eq. (7) .

A TWT may possess many internal reflections in addition to those at the input and output transitions. Each reflection must be minimized for optimum performance. The amplitude and phase change with frequency rate increases with the distance between reflections. Hence, the greatest effort should be made to minimize the reflections which are farthest apart. This is somewhat complicated because most TWTs contain one or more internal severs which prevent any of the signal reflected at the output from returning to the input. In any TWT, one is apt to find a lossless circuit section with 15 to 20 db of gain. If G is 10 and the two ends of the section cannot be matched to VSWR's better than 1.4:1, then the resultant amplitude excursion will be almost 5 db and the phase excursion will be about 32°.

Input and output transitions and internal terminations have been designed for this tube which possesses VSWR's less than 1.1:1 across the operating frequency band.

The tube, Fig. 3, is a 5 -kw peak, 300 -watt average power amplifier with 50 db minimum gain and 10% bandwidth, centered at 1320 MC . It is intended to operate with less than 1 db output power variation over the band with constant drive. Beam focusing is achieved using a periodic permanent magnet (PPM) stack.

PPM focusing was chosen for this tube because the required degree of beam confinement can rather easily be achieved using this method; because it is light and rugged; and, because it eliminates the need for a focusing supply. If a tube like this should be required for airborne service, a lighter PPM assembly could be designed to reduce overall weight to approx. 40 lbs . The tube, including magnet, has an overall length of 48 in . and a diameter of 4 in . It weighs 60 pounds and is water cooled.

Construction

The circuit used in the tube, Fig. 4, is a ring-bar structure. It was chosen because it possesses a high interaction impedance at a beam voltage suitable to the task of providing 5 kw of peak power. This circuit has a relatively low backward-wave impedance, an important factor in minimizing instability due to backward-wave oscillation. The circuit is supported by three ceramic rods which fit snugly inside the tube's vacuum envelopes. The circuit is made in three sec-
tions with two severs. Suitable lossy materials in the neighborhood of the severs act to terminate the r-f wave on the circuit.

Outside the tube envelope, but inside the focusing magnet pole pieces, is a water jacket which cools the tube envelope. This is run in series with the watercooled collector. A water jacket inside the focusing magnet materially affects the size of the magnets required to focus the beam, because the body cooling system is occupying space which could be used by the magnet pole pieces. Therefore, the water jacket is designed to fit the tube as tightly as possible, consistent with obtaining the required coolant flow.

The outer jacket, surrounding the PPM stack, is a soft iron shield. This shield minimizes the effect of external magnetic fields as well as shields external equipment from the magnet fields of the PPM stack.

The electron gun is a convergent flow gridded gun using an oxidecathode. The grid bias for cutoff is about 1 volt per 100 volts of anode potential. The grid is pulsed 150 volts positive with respect to the cathode to obtain 2 amps of beam current.

Fig. 5 is a typical saturation curve showing the peak output power as a function of drive. The small signal gain is 60 db whereas the saturated gain is about 53 db . The maximum output power is 6.4 kw , an electronic efficiency of 30%.

Because the beam current and beam voltage are independently controlled, it is possible to vary the gain, bandwidth, power and efficiency over a wide range. The highest power is obtained at the low frequency end of the band with high beam voltage and current. The highest efficiency occurs near band center at slightly elevated beam voltage. The best broadband performance is achieved at lower beam voltage and higher beam current. Fig. 6 shows two curves of gains versus frequency at constant drive. At 10 kv beam voltage, the maximum variation in gain over the band is 0.4 db , whereas at 10.2 kv this figure rises to about 0.6 db . These curves show no significant fine structure. This small variation in gain attests to the adequacy of r-f matching.

A strong harmonic signal is a disadvantage in many applications. Since it may be inconvenient to filter out the harmonics, it is best that the amplifier produce a signal with negligible harmonic content. Fig. 7 is representative of the total second and third harmonic output. The harmonic content shown in this figure is low enough for most applications and small enough to guarantee that other power measurements made on a total power basis do not suffer in accuracy due to neglecting it.

Future Developments

The development of this tube will form the basis for further work which is expected to yield a tube with the following characteristics:

Min. Peak Power	5 kw
Min. Average Power	1 kw
Bandwidth (1 db)	25%
Min. Gain	50 db
Min. Efficiency	30%
Max. Pulse Length	1 msec

Fig. 5: Typical saturation curve showing the peak output power as a function of drive. Maximum output is 6.4 kw ; efficiency, 30%.

Fig. 6 (above) : Small variation in gain attests to the adequacy of the r-f matching.

Fig. 7 (right): This curve is representative of the total second and third harmonic output in tube.

Further in the future is the expectation of the resolution of thermal problems which presently limit the average power. There is little reason to doubt that this work will pave the way to the development of a $10-\mathrm{kw}$ cw tube weighing no more than 40 lbs. including the PPM focusing stack. We believe that such a tube can be built with an overall efficiency in excess of 50%.
The author is indebted to Messrs. N. Vanderplaats and D. Lin for their invaluable assistance.

With the increased use of masers and parametric amplifiers, the term "effective noise temperature" is replacing "noise figure." Since this causes two sensitivity figures, there is much confusionmainly in converting equations with one term to the other. Here's how to use each-and how the relationship is derived.

In the Radar Range Equation...

Equating 'Noise-Temperature'

with

THE new low noise receivers for long range radar and communications systems require a second look at the present receiver terminology; especially, a look at the receiver noise figure. With the advent of masers, parametric amplifiers, tunnel diode amplifiers, etc., the term noise figure lost much of its significance. The term effective noise temperature has been replacing it.

Because there are now two receiver sensitivity notations, there is widespread confusion. The main problem is converting those which use noise figure to those using effective noise temperature. The expression for radar range is one such equation.

The old approximate equation

$$
R_{\max }=\sqrt{\frac{P_{t} G_{t} G_{R} \lambda^{2} \sigma}{(4 \pi)^{3} k T_{o} B F}}
$$

where,
$P_{t}=$ peak transmitted power
$G_{t}=$ transmitter antenna gain
$G_{R}=$ receiver antenna gain
$\lambda=$ wavelength
$\sigma=$ target area
$k=$ Boltzman's constant
$B=$ bandwidth
$F=$ receiver noise figure
$T_{0}=290^{\circ} \mathrm{K}$
is completely erroneous because it sets the effective system temperature at $290^{\circ} \mathrm{K}$. For many systems, however, especially those which employ low noise receivers, or scan at high elevations, this assumption is not true.

Elemental Question

The elemental question is-what is the maximum range which an arbitrary target can be discerned above external noise plus receiver noise. For a MDS (minimum discernible signal), target just distinguishable in the noise, the signal power and noise power (external plus receiver) ${ }^{1}$ are about equal. In some systems, the signal power to noise power, S / N_{0}, must be a value greater than one to perform signal processing functions. Therefore, this ratio, S / N_{o}, is one of the main parameters to be considered. The factor S for radars is, of course

$$
S=\frac{P_{t} G_{t} C_{1 R} \lambda^{2} \sigma}{(4 \pi)^{3} R^{4}}
$$

and N_{o} is the total noise power contributed by all sources in the receiving system. Therefore, if

$$
\frac{S}{N_{0}}=\mathcal{I}_{0} S=N_{0} X
$$

then the maximum range, $R_{\text {max }}$, may be expressed in terms of noise power and signal-to-noise ratio. $R_{\text {max }}$ is then

$$
R_{\text {max }}=\sqrt{\frac{\Gamma_{t} G_{i} G_{R} \lambda^{2} \sigma}{(4 \pi)^{3} N_{0} X}}
$$

${ }^{1}$ This assumes that the recejver has enough gain to mask the noise of the succeeding stages.

By DONALD W. MacGLASHAN
Project Engineer
Bendix Radio Div., Bendix Corp.
Baltimore 4, Md.

'Noise Figure'

$$
R_{\max }=C_{1} \sqrt[4]{\frac{1}{N_{0} X}} \text { where } C_{1}=\sqrt[4]{\frac{P_{t} G_{i} G_{R} \lambda^{2} \sigma}{(4 \pi)^{3}}}
$$

Now $N_{o}=k B T_{E}$, and $T_{E}=T_{A}+T_{B}$
where
$T_{E}=$ effective noise temperature of receiving system
$T_{A}=$ antenna noise temperature
$T_{s}=$ effective noise temperature of the receiver including lossy components between antenna and receiver
The antenna temperature, ${ }^{2} T_{A}$, is a function of what the antenna "sees," but generally consists of galactic, sun, earth, and absorption noise. The "noise power" that the antenna receives depends on the gain of the antenna and the direction in which it is pointing; or, in mathematical notation is
where $\overline{G_{i}} \frac{\Delta \theta_{i}}{4 \pi}$ and $\overline{T_{i}}$ are average gain figures and temperatures, respectively, in the direction interval $\Delta \theta_{i}$.
One point which should be stressed is the noise received through the sidelobes, a deceiving amount, since a large percentage of the radiated energy is contained in the sidelobes.

Derivation

The effective noise temperature of the receiver can be derived from the basic definition of receiver noise figure.

[^12]

Long range search radar antenna made by Bendix for the AIR Force.

$$
F_{R}=\frac{\frac{\text { signal power in }}{\text { noise power in }}}{\frac{\text { signal power out }}{\text { noise power out }}}
$$

If the noise power out is greater than the amplified input noise power then F_{R} will be greater than unity indicating a more noisy receiver. Expressing this in terms of the above notation

$$
F_{R}=\frac{\frac{S}{N_{i n}}}{\frac{W_{p} S}{W_{p} N_{i n}+W_{p} N_{D}}}
$$

where
$N_{\text {in }}=$ noise power into receiver
$N_{D}=$ equivalent input noise power generated by receiver
$W_{p}=$ gain of receiver

$$
F_{R}=1+\frac{N_{D}}{N_{i n}} \quad \text { or } \quad N_{D}=\left(F_{R}-1\right) N_{i n}
$$

Now since both N_{n} and $N_{i n}$ may be considered forms of Johnson noise they are also equivalent to

$$
\text { and } \quad \begin{aligned}
& N_{i n}=k B T_{o} \\
& N_{D}=k B T_{R}
\end{aligned}
$$

thus giving

$$
\begin{aligned}
k B T_{R} & =\left(F_{R}-1\right) k B T_{\circ} \\
T_{R} & =\left(F_{R}-1\right) T_{o}
\end{aligned}
$$

T_{o} by IRE definition is $290^{\circ} \mathrm{K}$.
Therefore, the receiver noise temperature in terms of noise figure is

$$
T_{I l}=(F-1) 290^{\circ} \mathrm{K}
$$

Noise Temperature (Concluded)

The noise temperature of the lossy components is by analogy

$$
T_{L}=(L-1) 290^{\circ} \mathrm{K}
$$

However, T_{L} and T_{R} cannot be directly added to T_{A} to determine T_{E}, the overall system noise temperature. The reason is as follows: When two elements are cascaded, the composite noise figure is generally expressed

$$
F_{1+2}=F_{1}+\frac{F_{2-1}}{G_{1}}
$$

Here the losses, L, and the receiver noise figure, F, combine to give a composite noise figure, F_{s}, of
$F_{s}=L+L(F-1) \quad L$ multiplies $(F-1)$ since it is actually a negative gain.
This reduces to

$$
F_{\mathrm{s}}=L(1+F-1)=L F
$$

Again, by analogy,

$$
T_{s}=\left(F_{g}-1\right) 290=(L F-1) 290
$$

This can be expanded to

$$
\begin{aligned}
T_{s} & =(L F-1+L-L) 290 \\
& =[(L-1)+L(F-1)] 290 \\
T_{s} & =(L-1) 290+L(F-1) 290
\end{aligned}
$$

T_{s} then is $T_{s}=T_{L}+L T_{R}$
Therefore,

$$
\begin{aligned}
T_{E} & =T_{A}+T_{S}=T_{A}+T_{L}+L T_{R} \\
& =T_{A}+(L-1) 290+L(F-1) 290
\end{aligned}
$$

also

$$
T_{E}=T_{A}+(L F-1) 290
$$

The range equation can now be expressed

$$
\begin{gathered}
R_{\max }=C_{1} \sqrt[4]{\frac{1}{k B X} \cdot \frac{1}{T_{A}+T_{S}}} \\
R_{\max }=C_{1} \sqrt{\frac{1}{k B X} \cdot \frac{1}{T_{A}+T_{L}+L T_{R}}}
\end{gathered}
$$

or in terms of noise figure

$$
R_{\max }=C_{1} \sqrt[4]{\frac{1}{k B X} \cdot \frac{1}{T_{A}+(L-1) 290+L(F-1) 290}}
$$

A more manageable form would be

$$
R_{\max }=\sqrt{\frac{P_{t} G_{t} G_{R} \lambda^{2} \sigma}{(4 \pi)^{3} k B X} \cdot \frac{1}{T_{A}+(L F-1) 290}}
$$

The equation is now in terms of the important parameters, S / N_{o}, noise figure, and/or effective noise temperature.

REFERENCE PAGES

The pages in this section are perferated for easy removal and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED
An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders.

What's New

New Engineering Cuts Drafting

A^{N}NEW engineering method promises cuts in engineering, design and drafting costs from $33-50 \%$.
Called the Panoramic Design Technique, the method was originated by T A B Engineers, Inc., 520 N. Michigan Ave., Chicago 11, Ill. It does away with drawings made by using conventional drawing boards, parallels, and T-squares. Instead, engineers now put their designs directly on wall-size blackboards and record them photographically.

T A B estimates that if the new technique were universally adopted, private industry and the government could slice at least $\$ 6$-billion from their estimated annual $\$ 22$-billion engineering, drafting, and research and development expense.

In its own use of the method, T A B has slashed both cost and time to complete projects for clients by approximately 50 per cent. On a special packaging machine for a food processor, T A B estimated it would take six months and $\$ 80,000$ to engineer and build the machine conventionally.

Using the new technique, the completed machine was delivered in 90 days at a cost of $\$ 48,000$.
The technique, developed over the past five years, is similar to "brainstorming" sessions used in advertising agencies.
In conventional engineering practice, the individual designer makes drawings of his ideas on his drawing board then submits them for approval or revision. There could have been as many as 10 or 20 engineers and designers working on parts of a design at the same time. And, the chief engineer has to look at their work individually.
When the basic design is developed, the work is turned over to detailers who spend hours preparing the detail and assembly drawings for use in making a pilot model.

Records show that an average of 78% of engineering time previously spent on a project was devoted to layout, detailing and revisions. This same drafting work, using the new method, is slashed to 34%.

With this new method, he continued, the fabrication of a better-engineered machine can be started much faster.
With the T A B method, the engineers and designers work together as a group at a huge blackboard. Each man is assigned a specific part of the design to develop, and his ideas are constantly on display as he progresses.

The director of engineering or project manager can see the project in its entirety instead of inspecting individual drawings one at a time. If a change is indicated, it can be made just by erasing the chalk and sketching a new version.

The change in the engineers' efficiency is revolutionary. By seeing how his portion of the design fits the whole pattern, he is stimulated to work better himself. And he can frequently help his fellow engineers on the board by suggesting improvements for their phase of the project.

One caution. While the technique sounds simple, in actual practice it takes considerable skill to conduct properly. Getting the engineers and designers to accept the new method and acquire the proper new habits is one of the biggest challenges.

The blackboard technique has one important advantage which some engineers and designers may not want to acknowledge: It forces them to work.

It's hard to tell if a man at a drowing board or desk is studying a design or daydreaming or sleeping. He may puzzle over an idea for days before lifting a pencil. But he can't be idle at the blackboard. If he stands still, others will notice and they'll pitch in to help him. This is one of the big cost-saving advantages of the technique.

By sketching the basic design on the blackboard full-size or larger, the engineer can visualize the design more easily. He can also see how its component parts fit together. This in turn speeds the process of creative design.

When a satisfactory design is developed, a detailed drawing can be made immediately by the use of a plastic overlay which is already ruled and on which the engineer can sketch the other views and add dimensions.

Drawing boards are conspicuously missing in this engineering room where the Panoramic Design Technique is shown in action. Engineer at camera is preparing photograph design for a permanent record.

Instead of transferring this work to a drawing board, photographs are taken of the design.

First plans were to make blue-print size enlargements of the photographic print. But shop people found that the dimensions could be read right off the standard pocket-size print.

The requirements for the Panoramic Design Technique are wall size blackboards, drawing instruments made for blackboard use, photographic equipment, and the patience and skill to make the change from conventional engineering and design methods.

3,000-WPM Printer

Another high speed page printer, capable of producing 3,000 words per minute, has entered the field.

Developed for military teleprinter use and being readied for industry applications, the new unit is made by Motorola's Communications and Industrial Electronics Div., 4501 W. Augusta Blvd., Chicago 51, Ill. Designed for operation over cable, radio or telephone channels, it can

Interior of the new page printer shows the details of this completely dry process.

be used in connection with computer print-out, and communications applications, where rapid transfer of records or information is required.

Speed and high reliability are achieved through the use of solid state electronics and a simplified non-impact mechanical operation. The printer provides a completely dry process, increasing reliability by eliminating any fixing step; the sheets can be instantly read while printing is taking place.

The basic system consists of a message buffer, translator and the printer. In a typical system, the information is stored in an external message buffer in its entirety prior to a print cycle. The print cycle may be simultaneous with the loading of another message in an alternate buffer.

Any data code can be used with the printer. Data code is converted to print code by the translator. These signals are then fed to
a moving printing head where the alphanumeric characters are formed.

The unit has 3 separate, evenlyspaced, printing heads, which are attached to an endless belt running at a slow rate on an idler and driven pully. As one is leaving the right hand margin, the next head is entering at the left hand margin to print the next line.

All alphanumeric characters are composed out on a 35 -dot matrix. The printing head has 7 "fingers" (styli) which sweep across the page forming the dots on white coated conductive paper. With the "Moving Matrix," print head, the fingers are brushed clean after each line of printing by passing the heads over brushes held in a miniature vacuum cleaning hood removing residue as quickly as it is formed.

Use of a "Moving Matrix" print head eliminates the need to set up a separate print head for each character position, reducing the extent of electronics and mechanics involved.

THE traveling-wave tube has always been known for its large bandwidth capability. However, present traveling-wave tubes which exhibit bandwidths comparable to that of waveguide or other passive microwave components are limited in power to only a few watts of average power. These power limitations arise from the use of a helix for the tube's interaction structure. A conventional TWT helix is shown in Fig. 1. Typically, the helix wire is only a few thousandths of an inch in diameter. It is supported inside the tube envelope on ceramic rods. The fragile nature of the helix and the poor heat dissipation capability of the supporting rods limits the average power which the TWT can generate.

To reach higher average power in a TWT a narrowband periodically loaded waveguide has been used in place of the helix. A drawing of this type of interaction structure is shown in Fig. 2, and a photograph of the structure itself is shown in Fig. 3. To form this structure, a circular waveguide is periodically loaded with diaphragms which contain a center hole through which the electron beam passes, and a kidney-shaped microwave coupling hole. The details of this diaphragm can be seen in Fig. 3. The microwave signal propagates through the coupling hole, across the waveguide, and through the coupling hole on the opposite side of the next diaphragm, etc.

An alternate way of looking at this structure is to consider it as formed from a number of cylindrical microwave cavities periodically coupled by the kidney shaped coupling hole. Because of this latter way of picturing the structure, it is commonly called a "coupled cavity" interaction structure. The periodic nature of the loading results in a filter-type propagation characteristic, that is, propagation is only possible in a series of passbands.

Bandwidth Limitations

The rugged nature of this loaded waveguide, or coupled cavity, interaction structure has made possible the generation of kilowatts of average power from a TWT. However, until recently the bandwith of these high power tubes has been limited to only 10%, rather than waveguide bandwidth of about 40% which are typical of helix-type traveling-wave tubes.

To understand the reasons for the bandwidth limitations of the coupled cavity interaction structure, the basic process of TWT interaction must be considered. This basic process is that the microwave signal and the electrons in the electron beam "travel" through

Fig. 1: Helix is the conventional type found in normal TWT's.

By ALLAN W. SCOTT
Asst. Mgr., R \& D
Microwave Tube Div.
Hughes Aircroft Co.
11105 S. La Cienega BIvd.
Los Angeles 45, Calif.

High Power

the interaction structure with the same velocity. Therefore, a given phase of the microwave field and a given bunch of electrons stay together and can interact over a considerable length of travel.

Fig. 2: Narrow-band periodically loaded waveguide has been used in place of a helix to reach higher average power.

Unlike the klystron-type of microwave amplifier, no resonant cavities are needed to form strong interaction fields over a short region, so the TWT by its very nature operates with non-resonant wide band structures. However, the interaction fields of the nonresonant TWT structure are much weaker than those of a klystron and so the interaction must occur over a long region in space. It is, therefore, necessary that the electron bunches stay in phase with the micruwave signal for a long distance, and this requires that the velocity of propagation of the microwave signal must be very nearly the same as the velocity of the electron beam. It is this problem of synchronism between the velocity of the propagation of the microwave signal and the velocity of the electron beam that has limited the bandwidth obtainable from the coupled cavity interaction structure to only 10%.

The velocity of propagation of the microwave signal through the helix of Fig. 1 and the narrowband coupled cavity structure of Fig. 3 are compared in Fig. 4. The microwave propagation velocity is shown as a function of the frequency of the microwave signal. Shown for comparison along the bottom of Fig. 4 is the typical operating bandwidth of standard waveguide. As the frequency of the microwave signal is changed, its velocity of propagation through both the helix and through the coupled cavity-type of TWT interaction structure changes. However, the change

Fig. 3: Close - up shows the type of structure used in Fig. 2.

In the past, traveling-wave tubes were available for either high power or wideband applications. Now, with new techniques described here, both desirable features are available in one package.

TWT's with Wide Bandwidths

is much less for the helix, in fact over the entire waveguide bandwidth the change is only about 10%.

An Improved Structure

Until recently, therefore, the user of a travelingwave tube was limited to one of two choices. He could have either bandwidth comparable to waveguide and other passive microwave components at low average power levels, or, he could have high average power by using the coupled cavity-type TWT, but only at bandwidths of about 10%. Now, however, the bandwidth capabilities of the coupled cavity structure have been greatly improved, to become comparable to those of a helix. The improved structure which makes this possible is compared to the old type of structure in Fig. 5. The section on the left is the same as that shown in Fig. 3 and is limited in bandwidth to only 10%. The improved section is shown on the right.

The propagation velocity of this improved broadband circuit is compared to the older narrowband loaded waveguide circuit and to the helix in Fig. 4. The improved circuit is seen to have even less variation in propagation velocity than the helix over the entire waveguide bandwidth range. This improvement has been obtained by increasing the coupling between the cavities to increase the bandwidth of the structures propagation passband, and by shaping the coupling hole to obtain the desired propagation velocity characteristics.

Design improvements were also necessary to match from external waveguide to the broader band structure and to suppress spurious oscillations. These improvements have been accomplished with the result that the bandwidth, heretofore possible only with the fragile helix structure, can be obtained
with the rugged power handling capability of the coupled cavity interaction structure.

A typical application of this type of broadband coupled cavity interaction structure to a high average power traveling-wave amplifier is shown in Fig. 6. This traveling-wave amplifier provides 1 kw of peak output power over the X -band frequency range from 7.8 to 11.4 kmC . The tube has 40 db gain and so can be driven from a 100 mw source. The electron gun is grid controlled so that the high power electron beam can be modulated on and off with the application of a pulse voltage of only about 250 volts. The electron beam is focused with periodic permanent magnets, so that the entire tube, including its focusing structure, weighs only 15 lbs. The tube is air cooled. It can be operated at an average output power of 50 watts, this limitation being imposed by the gridded gun and not by the interaction structure. A cross sectional drawing of this tube is shown in Fig. 7. The electron beam

Fig. 4: The velocity of a microwave signal through various structures are compared.

Fig. 5: The narrow-band and wide-band structures are compared. The wide-band cavity structure has the larger opening.

Fig. 6: The application of a broad-band structure is shown.

Fig. 7: Cross sectional drawing of the TWT shown in Fig. 6.

Fig. 8: Further details of the design which combines the ppm focusing into the broad-band couplied cavity is shown.

High Power TWT's (Concluded)

is formed by the electron gun and focused by the periodic permanent magnets through the interaction structure to the collector. The input microwave signal enters through the input window, interacts with the electron beam in the interaction structure, and the amplified signal passes out through the output window. Also, the tube is equipped with an integral electronic vacuum pump to insure that the tube can never become gassy.

Further details of the design which combines the periodic permanent magnet focusing into the broadband coupled cavity structure are shown in Fig. 8. The cavity of the microwave interaction circuit is formed with copper spacers and iron pole pieces. The copper spacer forms the outer wall of the cavity and also serves as a vacuum seal. Outside this spacer, and so outside the vacuum system, fit ferrite ceramic magnets. The magnetic field is carried from the magnets by the pole pieces to the electron beam. Using the r-f drift tubes for the ferrules of the periodic focusing structure permits the magnet period to be made very short, which results in very tight focusing.

Another type of traveling-wave amplifier made possible by the use of the broad-band coupled cavity interaction structure is shown in Fig. 9. In this X-band traveling-wave amplifier the periodic permanent magnet focusing is replaced by solenoid focusing, and the entire interaction structure made of copper to increase its heat dissipation capability. This tube provides the same 1 kw of peak power over the same wide bandwidths with the same 40 db of gain as the previous tube. However, as a result of the all copper construction and solenoid focusing, this tube can be operated at any duty cycle up to CW, to provide as high as 1 kw of average X -band power. This is several orders of magnitude more average power than could be obtained from a helix-type tube.

Conclusions

The broadband coupled cavity-type of TWT interaction structure described above has made possible traveling-wave amplifiers with bandwidths comparable to that of waveguide, or other passive microwave components commonly used in microwave systems at the kilowatt average power level. Already this circuit has been incorporated into practical X -band travelingwave tubes, with the result that the microwave system designer now has high average power transmitter tubes available whose bandwidth is comparable to that of the other microwave components in his system.

Fig. 9: Another type of TWT made possible by the use of the broad-band coupled cavity interaction structure.

> Solid state devices have many new applications for the control of microwave energy. Methods for improving transmission rates, reduction of weight and size, and increased reliability are discussed.

Solid State Control of Microwaves

By Dr. RICHARD W. DAMON
Microwave Associates, Inc., Burlington, Mass.

MOST publicity in the advances of solid state electronics has emphasized the transistor. The semiconductor junction diode has found great use as a power rectifier, and a fast switch for computer applications. The importance of point-contact diodes for microwave detection is also well recognized. More recently, semiconductor diodes have been used for the control of microwave energy, permitting the construction of novel types of switches, phase shifters, duplexers, and other microwave components. These components provide the reliability of solid state devices required in electronic systems; they have the speed of operation necessary for high transmission rate communication systems, and are light and compact for airborne and missile applications.

Typical applications include the use of a single-pole single-throw switch as a variable attenuator for amplitude modulation of r-f energy, and of multiplethrow switches to connect between multiple loads or feeds. Semiconductor switches can also be used in stepping types of phase shifters or a continuously variable phase shifter can be constructed by utilizing the variable reactance properties of junction diodes. The reactance of these diodes is also a function of r - f power level and this effect can be utilized to construct crystal-protecting power limiters, or complete diode duplexing systems.

Typical performance capabilities of available solid state devices are as follows:

1. Switches: Switches having bandwidths of from 5% to over an octave have been constructed with power handling capability of 150 -watts peak and several watts CW. Frequency of operation of these switches is from 100 Mc to $12,000 \mathrm{Mc}$, and the switches have been constructed in both coaxial line and waveguide. Special switches have been constructed which can handle up to 10 kw peak power.
2. Limiters: Power limiters have been constructed with bandwidths of from 5% to 30% having power capability of 5 kw peak, and 30 watts CW. Output power is limited to safe levels for detector crystals. Frequency of operation of these devices has been from 100 to 3000 Mc .
3. Duplexers: Duplexers having bandwidths of from 5% to 20% with power handling capabilities of 10 kw peak and 30 watts CW have been built. Frequency of operation of these devices is from 200 to 1500 Mc .
When a diode is inserted in series or in shunt in a transmission line, r-f power incident on the diode is reflected by, absorbed in, or transmitted past the diode. In an ideal diode switch the incident power is

Fig. 1: Shunt switch schematic.

Fig. 2: Capacitance vs. bias voltage.

Control of Microwaves

(Concluded)

either completely reflected or completely transmitted and practical diode switches absorb very little of the incident power. As an example, consider a switch which uses a variable reactance type diode (varactor) in shunt with a coaxial line. As shown in Fig. 1, if the diode exhibits high impedance it has little effect on the power transmitted to the load. For an impedance, Z, the insertion loss obtained with the generator, and the load matched to the characteristic impedance of the line is

$$
\text { I. } L .=1+\frac{Z_{0}^{2}}{2 Z}
$$

The switching properties of the network can be evaluated by inserting this equation the appropriate impedance values for the diode network in both the "on" and "off" conditions. A typical diode capacitanc .-

Fig. 3: Single pole- single throw S-band diode switch characteristics.

Fig. 4: Coaxial line varactor limiter, characteristic frequency, $1,000 \mathrm{Mc}$.

Fig. 5: Semiconductor diode duplexer.

voltage characteristic is shown in Fig. 2. Under forward bias conditions, the diode exhibits a large capacitance and resulting low reactance; thus most of the power is reflected because the diode impedance is much less than the load impedance. Under reverse bias conditions, the diode exhibits a small capacitance, or a high reactive impedance, allowing the power to be transmitted to the load with small loss.

Other types of semiconductor switches utilize different circuit configurations or different diode properties depending on the switch characteristics desired, such as, insertion loss, switching isolation, bandwidth and switch configuration. Fig. 3 shows the performance characteristics of a typical broadband switch for a device operating at S-band. Within the range of operation of the diode switches, they offer significant advantages over other devices. Most striking is the switching speed, which is on the order of nanoseconds. These switches are characterized by very small size and light weight, and the driving power to obtain switching action is only tens of milliwatts. Thus, multiple-throw switches requiring relatively modest switching power and with light weight and small size become feasible.
The varactor diode exhibits a change in impedance in response to an applied r-f voltage, in addition to the dependance on applied DC voltage. Thus, the diode impedance changes as a function of r-f power level. By placing such a diode in shunt across a transmission line, a limiter can be constructed having characteristics as shown in Fig. 4. At low power levels, the varactor reactance is tuned with a shunt inductance and presents a very high impedance across the line; thus, the insertion loss is very small. At power levels above a few milliwatts the diode capacitance increases (decreasing the shunt impedance) and the insertion loss increases with increasing power. This maintains the power output essentially constant. This simple limiter is of great value as a receiver protector.

The varactor power limiter, similar to the semiconductor switch, operates by reflecting the incident power. This makes possible the construction of a complete solid state duplexer by utilizing a circuit such as that shown in Fig. 5. At high power levels, the varactor diode reflects the transmitter power and the output emerges from the antenna terminals. The low power received by the antenna passes through the shunt diodes with low loss and emerges at the receiver terminals.

This technique permits the construction of completely solid state duplexers of very light weight and fast response.

The devices described here are only representative of the many new components which can be constructed with the help of new semiconductor technology. Current development work is aimed at improving the performance of these devices, extending operation to higher frequency with lower insertion loss, and obtaining suitable performance at higher peak and average power levels. These devices have already found an important place in electronic systems as substitutes or replacements for mechanical switches and gas devices. In some cases, equivalent performance could not be obtained with previously existing devices.

Engineer's Notebook

\#60-Transmission Line Nomograph

By ALLAN LYTEL
Manager-Publications
Electronics and Ordnance Div.
Avco Corporation
2630 Glendale-Milford Rd.
Cincinnati 41, Ohio
Chart 1 shows θ, L, F, and i.
To find the length of a section of transmission line knowing wavelength in centimeters and stub length in centimeters.

Set rule over stub length L and λ to read θ in degrees. If $\lambda=50 \mathrm{~cm}$ and the stub is $12.5 \mathrm{~cm}, \theta$ is 90°. The stub is 90 electrical degrees long or $1 / 4 \lambda$.

If $\lambda=80 \mathrm{~cm}$ and the stub is $10 \mathrm{~cm}, \theta=45^{\circ}$.
Chart 2 shows $Z_{i n}$ in terms of Z_{o} and θ.
Case I: $Z_{L}=\infty$ (open line).

1. Using chart 1 , set rule at F which is also λ.
2. Read λ in cm .
3. Set rule over λ and L to read θ or line length in degrees.
4. Measure θ in degrees on Chart 2. Where θ crosses $Z_{L}=\infty$, this is the $Z_{i n}$ for an open-circuited line.

Example A: $F=80 \mathrm{mc}, L=10 \mathrm{~cm} ., Z_{L}=\infty$.

1. The line from F to L shows $\theta=45^{\circ}$ on Chart 1 .
2. On Chart 2, 45° in and down to $Z_{L}=\infty$ shows $Z_{\text {in }}=-1.0 Z_{o}$. If $Z_{o}=100, Z_{i n}=-100 \Omega$ or $100 \Omega X_{c}$.

Case II: $Z_{L}=0$ (shorted line).

1. With the same steps as above read the intersection of θ and $Z_{L}=0$. For the same values as above (Case I) $Z_{i n}=+100 \Omega$ or $100 \Omega X_{L}$.

Chart 1 (left): Colored rules show how to use graph. Unlettered rule is basic example; letters refer to specific examples in text.

Chart 2 (below): Again the letters refer to specific examples in text.

Transmission Line

Nomograph (Concluded)

Case III: $Z_{L}=\infty$ (open line).

1. Find X_{O} or X_{L}.
2. Read in Chart 2 until the first corresponding X_{L} or X_{C} is reached. This is β or length of "apparent stub" which is exactly equal to $\pm X$, the termination of the real line.
3. Find θ, actual length, as in Case I above.
4. Add θ and β to get new total angle \varnothing.
5. Read, from Chart 2, the $Z_{i n}$ for a line of this
length with either $Z_{L}=\infty$ or $Z_{L}=0$ depending upon which resulted in step 2.
6. This is the line which behaves exactly as does the problem where $Z_{L}= \pm X$.
Example B: $F=300 \mathrm{Mc}, X_{L}=100 \Omega, Z_{o}=100 \Omega$, $L=12.5 \mathrm{~cm}$.
7. Read 100Ω on first X_{L} curve (solid line) and find this is 45° or β.
8. From Chart 1, with $L=12.5 \mathrm{~cm}$ and $F=300$ $\mathrm{MC}, \theta=45^{\circ}$.
9. $\theta+\beta=\varnothing 90^{\circ}$.
10. From Chart 2, 90° in on solid line is infinite X_{L} which is parallel resonance.
11. Thus, this line, terminated by X_{L} is a parallel tuned circuit resonant at 300 mc .

Computer Inquiry Features Automatic Voice Replies

AN economical computer inquiry device enables transmission of quiries to a UNIVAC Real-Time Computing System from a remote location and-for the first time in the history of data communica-tions-reception of stored com-puter-generated voice replies to the questions.

Unicall was introduced by the Remington Rand UNIVAC Div. of Sperry Rand Corp. during the dedication of the new Remington Rand UNIVAC Engineering Center at Whitpain Township, Pa. It is expected to simplify and accelerate updating and reporting of changes in inventory, production, distribution and sales in many businesses and industries.

[^13]

Unicall is a by-product of the Airline Interline Development System (AID), also originated by Remington Rand UNIVAC. Adoption of the AID plan could eliminate many of the difficulties and delays which now plague interline reservations or the sale of space between airlines.

Answers to pertinent questions which can be posed are stored on a magnetic drum at the computer site. After a message has been processed, the computer selects the appropriate reply from the drum and sends it back over the telephone lines. Less than 5 seconds are required for this whole transaction.

Forty sliding levers on the face of the set can be positioned to correspond to individual letters or numerals in a specific message or query. This lever-setting operation is simplified by a format guide mounted at the top of the panel. A message display window enables the operator to corroborate his selection of numerals and letters before the message is transmitted. This feature is made possible by a digit display wheel which is geared to each positioning lever.

After the appropriate lever selections have been made, the operator is ready to send his message to the computer. This is done by dialing the computer on the telephone. When the connection has
been made with the computer, an acknowledgement signal is fed back into the set. Receipt of this signal trips a scanning mechanism and the message itself is transmitted at the rate of 20 characters per second over the telephone network.

Responses to queries are made in seconds. The transfer of information from the Unicall set to the computer can be completed in 2 seconds. Then the voice reply begins immediately and takes from 3 to 5 seconds to transmit. A few of the checks which the computer makes before answering each message are:

1) Determines if 44 valid characters have been received, i.e., 3 identification digits, 40 message digits, and 1 "end-of-message" or "more follows" digit.
2) Makes sure that the message itself is complete and complies with the required format associated with the particular type of transaction.
3) Establishes whether additional messages relating to the ones received are or are not forthcoming.
4) Corroborates that the message is not a duplication of a previous transaction.

When these message validity checks are completed, the computer selects and transmits the appropriate voice reply to the telephone connected with the Unicall set. As soon as the pre-recorded answer has been transmitted, another signal is generated which disconnects the set from the line and makes the line available to other users.

ELECTRONIC INDUSTRIES'

1962 Directory of

Microwave Equipment Manufacturers

Abstract

Names and addresses of electronic companies making the principal microwave products for foday's markets. Section 1 gives complete alphabetical listing of all active compgnies. All these firms have

provided verified product listings. In Section 2 these firms are again listed and identified with the specific products that they manufacture.

ACF Electronics Div ACF Industries Inc Adams Russell Coramus NJ eth St Cam dridge 42 Mass Inc 200 6th St Cam-d-Yu Electronic
Ad-Yu Electronics Lab Inc 249 Terhune Ainslie Corp 531 Pond St S Braintree 85
Airborne Instruments Lab Div Cutler $\mathrm{NY}^{\mathrm{H}} \mathrm{mmer}$ Inc Comac Rd Deer Park LI
Aircraft Arniaments Inc Industry Lane Cockeysville Md
Airtron a division of Litton Ind 200 E Hanover Ave Morris Plains N.
Airtec Inc 139 E 1st Ave Roselle NJ
Airtronics Inc 5522 Dorsey Lane Bethesda Md
Alford Mfg Co 299 Atlantic Ave Boston 10 Mass
Alfred Electronics 879 Commercial St
Plpar Alto Calif 220 Demeter St Palo
Alpar Mfg Corp 220 Demeter St Palo American Machine \& Foundry Co Gen Eng Labs 11 Bruce Pl Greenvich Conn Main St Denville NJ
Amperex Electronic Corp 230 Duffy Ave Hicksville N
Amn Inc Capitron Div 155 Park Ave Elizabethtown Penna
Andrew Antenna Corp 606 Beech St Andrew Antenna Corp
Andrew Corn PO Box 807 Chicago 42 Ill Andrew California Corp 931 Marylind Ave Claremont Calif
Antenna \& Radome Research Assoc 1 Bond St Westbury NY
Antenna Specialists Co 12435 Euclid Ave Cleveland 6 Ohio
Antlab Inc 6330 Proprietors Rd WorthARF Prorluct
ARF Products Inc 7627 Lake St River Forest III
Associated Electrical Industries Ltd Carholme Rत Lincoln England
Associater Electrical Industries 33 Grosenor Place London SWL, Great Britain romation Dvilamies Corp 255 County Rd Tenafly NJ
Autonetics Div North American Aviation Inc 9150 If Imperial Hwy Downey Calif Beauchaine $\&$ Sons Inc Lakeport NH
Belz Industries Inc 89 Union St Mineola LI NY
Bendix Cory Bendix Pacific Div 11600 Sherman Way N Hollywood Calif
Bendix Corp 1104 Fisher Bldg Detroit 2 nendix
Bendix Corp Red Bank Div RT 35 EatonBirdair Str
irdair Structures
Buffalo 12 NY
$\mathbf{N Y}$
1800
Broadway

Blaw-Knox Co 300 6th Ave Pittsburgh 22 Penna
Bogart Mfg Corp 315 Seigel St Brooklyn
Bomac Labs Inc Salem Rd Beverly Mass Boonton Radio Corp Intervale Rd Boon-
bon NJ
Breeze Corp 700 Liberty Ave Union NJ
Brooks \& Perkins Inc 1950 W Fort Street Detroit 16 Mich Inc 1950 W Fort Street
Dinkin Budd Stanley Co 43-01 22nd St Long Island City NY
Budelman Filectronics Corp 375 Fairfield Ave Stamford Conn
Burndy Corp/Omaton Div Richards Ave
Norwalk Conn
Cable Flectric Products 234 Daboll St
Cable Flectric
Providence 7
$R I$
Providence ${ }^{7}$ RI
Canadian Applied Research Ltd 750 Law
rence Ave W Toronto Ont Canada
Canadian Marconi Co 2442 Trenton Ave Montreal 16 Que Canada
Canoga Div Underwood Corp 15330 Oxnard St Van Nuys Calif
Cascade Research Div Lewis \& Kaufman Electronics Corp 5245 San Fernando Rd W Los Angeles Calif
Caswell Electronics Corp 414 Queens Lane San Jose 12 Calif
Chu Associates PO Box 387 Whitcomb Ave Littleton Mass Chemalloy Electronics Corp Gillespie Aircommunications Co 300 Grecp Ave Coral Gahles Fla
Control Flectronics Co Inc 10 Stepar Pl Funtington Sta NY
Co-Operative Industries Inc 100 Oakdale Rd Chester NJ
Corbin Corporation 26 Primrose Lane Tevittown NJ
Corning Electronic Components Pradford Penna
Cubic Corporation 5575 Kearny Villa Rd San Diego 11 Calif
Custom Components Inc PO Box 248 Caldwell N.J
CWS Waveguide Corp 301 W Hoffman Ave Lindenhurst NY
Dage Flectric Co Inc Beech Grove Ind
Dahlstrom Metallic Door Co Bufialo \& Danistrom Metalic Door Co Buffalo \& DRM Research Corp PO Box 521 Cocoa Beach Fla Demornay-Bonardi Corp 780 S Arroyo Dittmore-Freimuth Corp 2517 E Norwich St Milwaukee 7 Wis
Dow-Key Co PO Box 711 Thief River
Dresser Ideco Co 8909 S Vermont Tos Angeles Calif

Dumont Labs Inc Allen B 750 Bloomfleld Ave Clifton NJ
Dymec Div Hewlett Packard Co 395 Page Mill Rd Palo Alto Calif
Mill Rd Palo Alto Calif Dynatronic In
Edgerton Germeshausen \& Grier Inc 160 Brookline Ave Boston 15 Mass
Egan Laboratory 107-56 113th St Rich
Egan Laboratory
mond Hill 19 NY
mond Hill 19 NY 301 Industrial Way
San Carlos Calif
Electro Impulse Lab Inc 208 River Street Red Bank NJ
Electromagnetic Technology Corporation 1375 California Ave Palo Alto Calif
Electronics Development Co $\mathbf{3 7 3 4} \mathrm{Ca}$
huenga Blvd N Hollywood Calif
Dlectronic Specialty Co 5121 San Fer
Flectronic Specialty Co 5121 San Fer-
nando Rd Los Angeles 39 Calif
nando Rd Los Angeles 39 Calif
Elliott Brothers London Ltd Radar Div Elliott Brothers London Ltd Radar Div Flstree Way
shire England
Shire England
Emerson \& Cuming Inc 869 Washington St Canton 1 Mass
Fimpire Devices Products Corn 37 Pros pect St Amsterdam NY
Wnflo Corp Fellowship Rd Route 73 Maple
Farinon Flectric Co 416 D St Redwood
City Calif $\quad 30$ Rockefeller
Ferranti Electronic Inc 30 Rockefeller
Filmohm Corporation 48 West 25 St New York 10 NY
Filtron Co Inc Western Div 10023 W Jef erson Blvd Culver City Calif
Filtron Co 131-15 Fowler Ave Flusling Co 2464 S Archer Ave Chicago 16 Il
Foto Video Labs 36 Commerce Pal Cedar Grove N.J
Trermency Standards Div Harvard Thdus tries Inc Box 504 Asbury Park NJ
FNR Ine 25-2 5 50th St Woodsite 77 NY Y
Cabriel Electroncs Div Gabriel Co Millis Mass
Gavitt Wire \& Cable Co 455 N Quince St Faconclido Calif 730 3.d Ave New
General Cable Corp 730 3rd Ave New York 17 NY
General Communication Company 67 General Electric Co Power Tube Dept Palo Alto Calif
General Electric Co HMEE Dept Syra cuse NY
General Electric Co Communication Prod General Mi Lynchburg Va
neapolisils Inc 1620 Central Ave Min neapolis 13 Minn

Microwave
 Manufacturers, A-Z

(Continued)

General Radio Co 22 Baker Ave West Concord Mass John Webro Rd Clifton omb
Goodrich Sponge Products B F Div B F Goodrich Co Canal St Shelton Con
Gorham Electronics Div Gorham Mfg Co 333 Adelaide Ave Providence 7 RI PL Div General Precision Inc 63 Bed ford Rd Pleasant ville NY
Granger Associates 966 Commercial St Palo Alto Calif
Gulton Industries Inc 212 Durham Metuchen NJ
Hallamore Electronics Co 714 N Brookhurst Anaheim Calif
Hallicrafters Co 4401 W 5th Ave Chicago 26 Ill
Hammarlund Mfg Co 460 W 34th St New York
Hazeltine Electronics Div/Hazeltine Corp 59-25 Little Neck Ykwy Little Neck 62
Hitemp Wires Co/Div Simplex Wire $\&$ Cable Co 1200 Shames Dr Westbury NY Hoffman Electronics Corp 3761 S Hill St Los Angeles 7 Calif
Hughes Components Diy Bldg 20 Room Hycon Culver City Cali
ycon Mrg Co 1030 S Arroyo Pkwy Pasa-
Hycon Mfg Co 700 Royal Oaks Drive Monrovia Calif 135 Orange St Bloomfield NJ
ITT Labs 500 Washington Ave Nutley NJ ITT Federal Div ITT Corp 100 Kingsland Rd Clifton N
I-T-E Circuit Breaker Co 601 E Erie Ave Phila 34 Penna
J-V-M Microwave Co 9300 W 47 th St Brookfield Ill
$\underset{\text { Kay }}{\text { Klectric Co Maple Ave Pine Brook }}$
Kearfott Div General Precision Inc 1150 McBride Ave Little Falls NJ
Kearfott Div General Precision Inc 253 Kearfott Div General Precision
Kearfott Div General Precision Inc 14844 Oxnard St Van Nuys Calif
Kepco Inc 13138 Sanford Ave Fushing
for Electronics Inc 719 Rea con St Boston 15 Mass
Lavoie Labs Inc Matawan-Freehold Rd Morganville NJ
Lel Inc 380 Oak St Copiague NY
Lieco Inc 130 Eileen Way Syosset LI NY Ling Electronics Inc 9937 Jefferson Blvd Culver City Calif
Litton Industries Maryland Div 4900 Calvert Rd College Park Md
Litton Industries Electron Tube Div San Carlos Calif
Loral Electronics Corp 825 Bronx River Ave New York ${ }_{297}{ }^{7}$ Hudson St Hackensack NJ
Manson Laboratories Inc 375 Fairfield Ave Stamford Conn Cargo Ave Skokie
Mark Products Co 5439 Fargo Ave Skokie Mayson Instruments Div Maxson ElecMC Jones Electronics Co Inc 183 North Main St Bristol Conn
Mectron Co 166 Ridge Ave North Plainfield NJ
McMillan Industrial Corp Brownville Ave
Ipswich Mass
Melabs Dept M7
3300
Hillview Ave Palo Alto Calif
Melpar Inc Special Products Dept 3200 Arlington Blvd Falls Church Va
Menlo Park Eng'g 611 Hamilton Ave Menlo Park Calif
Meridan Metaleraft Inc 8739 S Millergrove Dr Whittier Calif
Merrimac Research and Development 517 Lyons Ave Irvington NJ
Metavac Inc 45-68 162 nd St Flushing 58 Micacraft Products Inc 701 McCarter Hwy Newark 5 NJ
Mico Instrument Company 80 Trowbridge St Cambridge 38 Mass
Microflect Co 2300 S 25th St Salem Ore
Micro State Electronics Corp 152 Floral
Ave Murray Hill NJ
Microtech Inc 1400 Milldale Rd Cheshire Conn
Microwave Associates Inc South Ave Burlington Mass
Microwave Development Labs 92 Broad St Rabson Park Wellesley 57 Mass

Microwave Electronics Corp 4061 TransMort St Palo Alto Calif 11105 Anza Ave Los Angeles 45 Calif
Miller Associates PO Box 369 Lakeville Conn
Moran Instrument Corp 170 E Orange Grove Blvd Pasadena Calif
Nat'l Berylia Corp 1st Ave Haskell NJ
ichols Products Co 325 W Main St Moorestown NJ
Norden Div United Aircraft Corp 58 Commerce Rd Stamford Conn
Northeast Scientific Corp 30 Wetherbee St E Acton Mass
Panoramic Radio Products 520 S Fulton Ave Mt vernon N
arker Seal Co Div Parker-Hannifin Corp asb Jefferson B Culver City Calip
Peschel Electronics Inc Towners Rt 216 Paterson N
Philco Corp Tioga \& C Sts Phila 24 Penna Polarad Electronics Corp 43-20 34th St PRD Electronics Inc 202 Tillary St Brooklyn 1 NY
Precision Tube Co Church Rd \& Wissahickon Ave North Wales Penna Broa Premier Instrument Corp 33 New Broad St Port Chester NY
Prodelin Inc 305 Bergin Ave Kearny NJ
Production Research Corp Thornwood NY
Pye Canada Ltd 82 Northline Rd Toronto 16 Ont Canada
Radar Design Corp PO Box 38 Pickard Dr syracuse 11 NY
Radar Measurements Corp 190 Duffy Ave Hicksville LI NY
Radiation Engineering Laboratory Main St Maynard Mass
Radio Eng'g Labs Inc 29-01 Borden Ave Long Island City 1 NY
Raytheon Co Microwave \& Power Tube Div Foundry Ave Waltham 54 Mass Reed \& Reese Retron Corp 717 N Lake Ave Pasadena Calif
Reeves Instrument Corp East Gate Blvd Roosevelt Field Garden City NY
Remanco Inc 1805 Colorado Santa Monica Calif
Resdel Eng'g Corp 330 S Fair Oaks Ave
R Pasadena Calif F Produch Amphenol-Borg Elec tronics Corp 33 E Franklín Danbury Conn
Rockbestos Wire \& Cable Div Cerro de Pasco Corp 285 Nicoll St New Haven Conn
Sage Laboratories 3 Huron Drive East Natick Industrial Park Natick Mass
Sanders Assoc Inc 95 Canal St Washua NH
Saratoga Industries Congress \& Ballston Aves Saratoga Springs NY
Sarkes Tarzian Inc East Hillside Dr Bloomington Ind
Saxton Products Inc 4320 Park Ave New York NY
Scientific Atlanta Inc 2162 Piedmont Rd NE Atlanta 9 Ga
F-D Laboratories 800 Rahway Ave inion N
Sierra Electronic Corp Div Philco Corp
3885 Bohannon Dr Menlo Park Calif
Sivers Lab Kristallvagen 18 Hagersten Sweden
Skitron Electronics \& TV Corp 180 Varick New York N
Specialty Automatic Machine Corp 80 Cambridge St Burlington Mas
Sperry Microwave Electronics Co PO Box 1828
Stainless Inc North Wales Pa
ewart Engineering Co 467 Bean Creek RdSanta Cruz calis
Stoddart Aircraft Radio Co 6644 Santa Monica Blvd Hollywood 38 Calif
Sunnyvale Development Center Sperry Gyroscope Co Div Sperry Rand Corp plvania Flectric Products
Sylvania Electric Products Inc Special Tube Operations 500 Evelyn Ave Mountain View Calif
Sylvania Electric Products Inc 100 Sylvan Rd Woburn Mass
Sylvania Electric Products Inc E 3rd St Williamsport Penna
Tamar Electronics Inc 2045 W Rosecrans Ave Gardena Callf
Technical Appliance Corp 1 Taco St PO
Box 38 Sherburne NY
Technicraft Div Electronic Specialty Co Thomaston Conn Corp 28 Ranick Dr Telechrome Nity Corp 28 Ranick Dr Telecomputing Corp 915 N Citrus Ave Los Angeles Calif american Bosch Arma 5000 Parkside Ave P Telerad Mfg Corp 1440 Broadway New York 18 NY
Telonic Engineering Corp 773 Broadway Laguna Beach Calif
Telonic Industries Inc 60 N 1st Ave Beech Grove Ind
exas Instruments Inc/Apparatus Div 6000 Lemmon Ave Dallas 9 Texas orngren Co C W 236 Pearl St Somerville 45 Mass
Tower Construction Co 2700 Hawkeye Dr sloux City 2 lowa
Trak Microwave Corp Sub Trak Electronics Co 5006 N Coolidge Tampa Fla Transco Products Inc 12210 Nebraska Ave Los Angeles 25 Calif
Transonic Inc 80816 th St Bakersfield Calif
TRG Inc 2 Aerial Way Syosett LI NY
Triex Tower Corp 2920 W Magnolia Blud Burbank Calif
ru-Connector Corp 416 Union St Lynn Mass
Turbo Machine Co Lansdale Penna
niversal Transistor Products Corp 36 Sylvester St Westbury LI NY Alto Calif
Acline Inc 35 S St Claír St Dayton 2 Ohio
Waltham Electronics Corp 751 Main St Waltham Mass
Waveguide Inc 1769 Placentia Costa Mesa Calif
Waveline Inc PO Box 718 W Caldwell NJ
Wave Particle 150 South 2nd Street Richmond Calif
Wayne Kerr Corp 1633 Race St Phila 3 Penna
Webcor Inc-Electronics Div 816 N Kedzie Chicago 51 Ill
Weinschel Eng'g 10503 Metropolitan Ave Kensington $\mathbf{M d}$
Western Int'l Co 45 Vessey St New York 7 NY
Westinghouse Electric Co Div Air Arm Div PO Box 746 Baltimore Md
Westinghouse Electric Corp 3 Gateway Center PO Box 2278 Pittsburgh 30 Penna

Products \& Manufacturers

Listing firms and the specific
 products they manufacłure

AMPLIFIERS

Amplifiers, bolometer 1
Amplifiers, klystron . 2
Amplifiers, maser . 2

Amplifiers, parametric
Amplifiers, radar
Amplifiers, TWT
Amplifiers, wideband
Adams-Russell Co.
Airborne Instruments Lab
Airtron A div of Litton Ind
irtronics Inc
Amred Electronics
American Machine \& Foundry Co
American Microwave \& TV Corp
Anplab Ine
Antlab Inc 1-3-9-13
Applied Technology Inc
Associated Electrical Industries
The Bendix Corp
Budelman Electronics Corp.
Canadian Marconi Co
Canoga Electronics Corp
Coopertronics Inc
Corbin Corp
DBM Research Corp
Demornay-Bonardi Corp
Dorne \& Margolin Inc
Dynatronics Inc
Egan Laboratory
Eitel-McCullough Inc
Electronic Specialty Co
Elliott-Litton Limited
Farinon Electric
General Communication Company
General Dynamics/Electronics
General Electric Co
General Radio Co
GrL Division
Hallamore Electronics Div
Hallicrafters Co
Hazeltine Corp
Hughes Aircraft Co
ITT Federal Laboratories

NOMENCLATURE

PLUG	RECEPTACLE	RETAINING RINGS
3 contacts 204-92-03-047	$131-13-12-095$	$441-00-11-082(105)$
4 contacts 204-92-04-048	$131-14-12-096$	$441-00-11-082(105)$
5 contacts 204-92-05-049	$131-15-12-097$	$441-00-11-082(105)$
6 contacts 204-92-06-050	$131-16-12-098$	$441-00-11-083(105)$
7 contacts 204-92-07-046	$131-17-12-099$	$441-00-11-084(105)$

Maximum Rated Voltage AC-RMS Contact to contact 300 volts Contact to ground.......... 500 volts Capacitance

Measured from one contact to all other conducting parts. . 1.5 m.m.f. (Max.)

ELECTRICAL RATINGS

$$
\begin{aligned}
& \text { Insulation loss factor } \\
& \text { Maximum. } 0.50 \text { Dry } \\
& \text { Insulation Resistance } \\
& \text { Measured from one contact to all } \\
& \text { other conducting } \\
& \text { parts.... } 50,000 \text { Megohms (Min.) } \\
& \text { ContactResistance. } 0.50 \text { Ohms (Max.) } \\
& \text { Safe Operating Temperature } \\
& \text { Maximum.......................... }
\end{aligned}
$$

nitlal Insertion and Extraction Force
3 contact (Max)......... 6 lbs 4 contact (Max) 7 lbs 5 contact (Max, 8 lbs 6 contact (Max.) 9 lbs. 7 contact (Max.) 10 lbs Individual Contact Retension Force Minimum Gauge Weight. ... $1 / 2$ ounce

WRITE FOR FULL INFORMATION TODAY! Complete engineering data and detailed specifications on this line of low cost plugs

Cinch Manufacturing Company
1026 South Homan Avenue, Chicago 24, Illinois
Division of United-Carr Fastener Corporation, Boston, Massachusetts

for Engineers

Microwave Antennas

Telerad, Div. of The Lionel Corp., Route 69-202, Flemington, N. J., is offering a 42 -page catolog on microwave products covering coaxial transmission line equipment, antennas, waveguide, accessories, components and systems. Photographs, schematics, cut-aways, specs and engineering data are included.

Circle 316 on Inquiry Card

Directional Couplers

Microlab, 570 W. Mt. Pleasant Ave., Livingston, N. J., is offering a tech. catalog No. 10 A to supplement Catalog No. 10 on coaxial components, featuring directional couplers and crystal mixers. Characteristic charts, outline drawings, photographs, and specs are included.

Circle 317 on Inquiry Card

Microwave Components

Airtron, a div. of Litton Industries, 200 E. Hanover Ave., Morris Plains, N. J., is offering tech. data on their microwave components, which includes isolators, ferrite devices, circulators, mechanical switches, dummy loads, cavity devices, antenna components, r-f assemblies, and flexible waveguide.

Circle 318 on Inquiry Card

DC Null Sensor

Verco Inc., 1430 130th N.E., Bellevue, Wash., is offering data on their solid state electronics for measuring and monitoring. Included is information on a hazardous current monitor, voltage limit detector, freq. source, overspeed indicator, battery voltage tester, ripple meter, load meter and linear ammeter.

Circle 319 on Inquiry Card

Delay Lines

Computer Devices Corp., 6 W. 18th St., Huntington Sta., N. Y., is offering a 4-page dissertation on delay lines entitled, "An Introduction to Delay Lines." This paper provides a simple, non-technical presentation about delay lines.

Circle 320 on Inquiry Card

Microwave Antennas

Canoga Electronics Corp., 15330 Oxnard St., Van Nuys, Calif., have tech. brochures on their AN/MPS-26 range instrumentation radar system rotary joints and their R10E-3A expanded metal radar reflectors, and tech. information on their S- and Cband cavity antennas, aerodynamic blade antennas, X-band lens antennas, in-line waveguide to coaxial adaptors, and rotary joints.

Circle 321 on Inquiry Card

Microwave Accessories

Antlab, Inc., 6330 Proprietors Rd., Worthington, Ohio, has a short form catalog including antenna pattern recorders, microwave receivers, boresight systems, antenna pattern integrators, radome mounts and forkcontrolled oscillators. Schematics, photographs, outline drawings and specs are included.

Circle 322 on Inquiry Card

Strain Recording

Brush Instruments Div. of Clevite Corp., 37th \& Perkins, Cleveland 14, Ohio, is offering a 20 -page illustrated booklet entitled, "Strain Recording with Brush Direct Writing Recorders." Described are applications of strain gages and strain gage based transducers for measuring strain, tension, thrust, load, torque, etc. Photographs, circuit charts and diagrams are included.

Circle 323 on Inquiry Card

Power Supplies

Power Sources, Inc., Northwest Industrial Park, Burlington, Mass., is offering tech data on their modular transistor regulated power supplies, for laboratory and prototype work.

Circle 324 on Inquiry Card

Microwave Measurement

Wiltron Co., 717 Loma Verde Ave., Palo Alto, Calif., has an article on analysis and measurement of phase characteristics in microwave systems. This article contains phase information valuable to engineers doing work with microwave tubes, components, and semiconductors and in physical science research areas such as linear accelerators.

$$
\text { Circle } 325 \text { on Inquiry Card }
$$

Rotary Joint Design

Sage Laboratories, Inc., 3 Huron Dr., E. Natick Industrial Park, Natick, Mass., is offering 3 new tech. discussions entitled, "Microwave Crystal Diodes," "Noise Figure \& Sensitivity of Mixers \& Video Detectors" and "Rotary Joint Design." The discussions include outline drawings, schematics, diagrams, and characteristic charts.

Circle 326 on Inquiry Card

UHF Power Oscillator

Maxson Instruments Div., Maxson Electronics Corp., 475 Tenth Ave., New York 18, N. Y., is offering tech data on their uhf wide range power oscillator and power supply. Features are power at 40 w .; stability of a precision coaxial cavity and a range of 200 to 2500 mc , continuously variable in 2 bands.

Circle 327 on Inquiry Card

Power Conversion

Varo, Inc., 2201 Walnut St., Garland, Tex., is offering tech data on their frozen-diode power blocs. Schematics, photographs, explanations, specs and general information is included.

Circle 328 on Inquiry Card

Diodes

Microsemiconductor Corp., 11250 Playa Court, Culver City, Calif., is offering tech information on their fast recovery micro-diodes, ultra-fast recovery micro-diodes, general purpose diodes, and rectifiers. Some characteristics include recovery times at 1.5 nsec., power dissipation at 0.300 w . (@) $25^{\circ} \mathrm{C}$ and average rectified current, up to 0.200 a. @ $25^{\circ} \mathrm{C}$: 0.060 a . @ $150^{\circ} \mathrm{C}$.

Circle 329 on Inquiry Card

UHF Bandpass Filters

Melpar, Inc., Special Products Div., Sub. of Westinghouse Air Brake Co., 3000 Arlington Blvd., Falls Church, Va., is offering tech data on their line of uhf bandpass filters featuring center freqs. of 400 to 1500 mc ; bandwidths of 5 to 20% and signal rejection greater than 20 db at one bandwidth from filter center freq.

Circle 330 on Inquiry Card

Microwave Receiver

Sperry Microwave Electronics Co., Div. of Sperry Rand Corp., Clearwater, Fla., is offering tech. information on their Microline (TM) Model 61A1 parallel i-f substitution receiver system. This model is offered in 3 output freq. ranges: S-band, 2-4 GC; C-band, 4-8 GC; and X-band, 8-12.4 GC.

$$
\text { Circle } 331 \text { on Inquiry Card }
$$

Microwave Information Kit

Andrew Corp., P. O. Box 807, Chicago 42, Ill., is offering an antenna system information kit for microwave engineers. Included are catalogs on Heliax flexible air dielectric cable, microwave antennas and accessories, rigid coaxial transmission lines, hubloc antennas, microwave log periodic antennas covering 300 to 3000 mc , and a tech. bulletin entitled, "Performance Aspects of Dish Radomes" plus a parabolic antenna system computer and transmission line and waveguide selector. The parabolic antenna system computer is for calculating parabolic antenna radiation, characteristics, performance of passive repeaters, free space and tropospheric forward scatter, propagation attenuations and thermo noise and equivalent noise in.

Circle 332 on Inquiry Card

How to find laminations when you need them fast!

High permeability lamination stock list goes out to purchasing agents and engineers semimonthly

A stock list, mailed every other week, pinpoints the quantities and sizes of our high permeability laminations that are immediately available from stock. It's sent to purchasing agents and interested engineers throughout the country. To get your regular copy, just address a request to Magnetics Inc., Department EI-94, Butler, Pa.
What makes the stock lisi important? Depleted inventories or stepped-up production means that when laminations are needed, they're needed fast-and in perfect condition. Magnetics Inc. stock list shows what types are available for immediate shipment. In addition, the stock list contains information or the new higher permeability " E " grade laminations. What's more, stocks listed reinforce those maintained at regional outlets on the east and west coast (all connected by teletype to assure fast delivery) What makes Magnetics Inc. high permeability lamina-
tions special is the fact that they are the heart of high performance audio transformers, chokes and countless other fast response magnetic devices. They're burr-free, precision-sized and flat (thanks in part to a standardized $9^{\prime \prime}$ long carton that keeps the laminations undistorted during shipment and stocking). For more information, write to Magnetics Inc., EI-94, Butler, Pa.
Magnetics Inc. also publishes a bi-weekly stock list on tape wound cores and permalloy powder cores. It's available to you along with the laminations stock list. Ask for it.

The authority in the field of physical distribution

Freight Transportation . . . (Air, Highway, Rail, Water) . . . Materials Handling . . Industrial Packaging . . .Warehousing...

Distribution Age editorially covers the field intimately and authoritatively . . .

It originates and provides the everyday work tools needed by the Traffic and Physical Distribution Executive in his increasingly more complex job.

Every month its advertising pages are a complete market place in which the busy Traffic Man finds the information and help to make his most educated buying decisions.

So, whether you read for pertinent, authoritative information or advertise to sell your product, remember
distribution age is the choice of those who manage PHYSICAL DISTRIBUTION

A Chilton Publication, Chestnut and 56th Streets, Philadelphia 39, Pa.

New Tech Data

for Engineers

Microwave Components

Melahs, 3300 Hillview Ave., Stanford Industrial Park, Palo Alto, Calif., is offering a condensed catalog and product summary No. 861 describing their line of microwave instrumentation and special products and microwave components. Included are electronically tuned signal generators, a crystal video receiver, electronically tuned superhet receiver, low noise TWT amplifiers, parametric amplifiers, masers, telemetry receivers, antennas, satellite r-f checkout systems, band separation filters, diode switches or modulators, and isolators.

Circle 333 on Inquiry Card

Delay Lines

Bel Fuse Inc., 198 Van Vorst St., Jersey City, N. J., has data available on Nanalines ${ }^{(1)}$, new nanosec. delay lines for use with high speed circuitry. Lines are available with time delays of 5 to 100 nsec ; rise-time for a 100 nsec delay line is 9 nsec

Circle 334 on Inquiry Card

Resistors

Mepco Inc., Morristown, N. J., is offering Engineering Catalog WC-3 on precision resistors which include Mil-R-93B wire-wound resistors, packaged networks and filters, high stability instrument wire-wound resistors, printed circuit w.-w. resistors, Mil-R-10509C epoxy-cased car-bon-film resistors and resin-coated carbon-film resistors.

Circle 335 on Inquiry Card

Ferrite Components

Rantec Corp., Calabasas, Calif., is offering tech. data on their coaxial ferrite junction devices. Information is included on coaxial 4 -port circulator, coaxial isolators, coaxial 3 -port circulators, and coaxial switches, modulators and variable attenuators. Circle 336 on Inquiry Card

Tuning Fork Oscillator

Fork Standards, Inc., 1915 N. Harlem Ave., Chicago 35, Ill., has tech data available on tuning fork oscillators featuring 2 series of transistorized models. Model C custom series for exact high precision requirements and Model E economy series for less rigorous use where low cost is a requirement.

Circle 337 on Inquiry Card

Microwave Tubes

American Elite, Inc., 48-50 34th St., Long Island City, N. Y., has a tech. manual available, including specs and curve sheets, on a line of Telefunken special purpose tubes such as microwave, cathode ray, gasfilled, photo, transmitting, and vacuum capacitors.

Circle 338 on Inquiry Card

Varicaps

Pacific Semiconductors, Inc., 12955 Chadron Ave., Hawthorne, Calif., has released tech. data on 10 new High-Q Varicap (voltage-variable capacitors). The line covers from 47 pf to 6.5 pf with Q values from 50 to 125 and working voltages from 25 to 100 v .

Circle 339 on Inquiry Card

Computing System

The Bendix Corp., Computer Div., 5630 Arbor Vitae St., Los Angeles 45, Calif., is offering a tech brochure illustrating the hardware, software and service features of the G-20 computing system. Included is information on support programs, program libraries, space programming on-site maintenance teams.

Circle 340 on Inquiry Card

Resolver Bridge

Electro Scientific Industries, 7524 S. Macadam Ave., Portland 19, Ore., is offering tech. data on their impedance, resistance, comparison, synchro and resolver bridges, transformer decade voltage dividers, resistance transfer standards, standard resistors \& capacitors, and resistance decade voltage dividers.

Circle 341 on Inquiry Card

Wires \& Cables

Rockbestos Wire \& Cable Co., Div. of Cerro Corp., Nicoll and Canner Sts., New Haven 4, Conn., is offering tech data on their line of aerospace and electronic wire and cables. Included are airframe wires, hook-up wires, ground support cables, coaxial cables, and miniature high temp. wires.

Circle 342 on Inquiry Card

Frequency Meter

Measurements, A McGraw-Edison Div., Boonton, N. J., is offering tech. data on their standard frequency meter, Model 760. Specs include range, 25-475 MC; sensitivity, less than 5 mw on all ranges; crystal, oven temp. controlled type; system accuracy, ± 100 cycles with crystal adjusted to WWV.

Circle 343 on Inquiry Card

Telemetry

Applied Electronics Corp. of New Jersey, Metuchen, N. J., has tech. data available on their solid state telemetry equipment. Featured is PCM digital telemetry systems, PDM multicoders completely transistorized, PAM, Model MAH-3 series of pulse amplitude modulation multicoders, solid state commutators, and de amplifiers.

Circle 344 on Inquiry Card

Vacuum Tube Handbook

Raytheon Co., Industrial Components Div., 55 Chapel St., Newton 58 , Mass., is offering a handbook with complete descriptions of 142 miniature vacuum electron tubes for industrial, military and communications applications. Tube characteristics, tube based diagrams and connections are included.

Circle 345 on Inquiry Card

Ferrite Load Isolators

Caswell Electronics Corp., 414 Queens Lane, San Jose 12, Calif., is offering Condensed Catalog C-5 on ferrite microwave components and sub-assemblies. Included is information on variable attenuators, ferrite modulators, slide screw tuners, adjustable isolators, reversible isolators and waveguide ferrite load isolators.

Circle 346 on Inquiry Card

Transistors

Fanon Transistor Corp., 439 Frelinghuysen Ave., Newark 12, N. J., has issued tech. data on their line of npn silicon diffused-junction mesa power transistors intended for high power industrial and military use. Features are collector currents up to 7.5 a .; collector voltages up to 100 v .; power levels up to 85 w . (a) $25^{\circ} \mathrm{C}$ and 45 w. (a) $100^{\circ} \mathrm{C}$.

Circle 347 on Inquiry Card

Resistors

Corning Electronic Components, Corning Glass Works, Bradford, Pa., has tech. data on their metallic oxide resistors which meet performance requirements of Mil-R-10509. Available in $1 / 4,1 / 2,1$ and $2-w$. sizes, the units are for high gain low signal amplifiers, high freq. circuits, test equipment, and circuits subject to instantaneous overloads.

Circle 348 on Inquiry Card

Microwave Components

Diamond Antenna \& Microwave Corp., 35 River St., Winchester, Mass., is offering a catalog covering their line of antenna systems, rotary joints, microwave components, microwave test equipment, and microwave accessories. Specs, descriptions and photographs plus outline drawings are included. Also included is a section of custom components.

Circle 349 on Inquiry Card

Microwave Switch

Kearfott Div., General Precision, Inc., Little Falls, N. J., will 'send tech. data on their new line of radar test sets, isolators, filters, ultra high speed microwave switches, circulatorduplexer, ferrite amplitude modulator and variable attenuator X-band, and Delta coupler.

Circle 350 on Inquiry Card

To Contractors and Subcontractors on U. S. Government Projects

THE 1N3471 "PINHEAD"

Western Electric offers this new Microminiature Switching Diode from Laureldale

The 1 N3471 is a diffused silicon microminiature switching diode designed for high-speed operation. The size and construction of this pinhead diode suit it for high-density packaging. Controlled manufacturing conditions assure the circuit designer of uniform lot-to-lot diode characteristics with exceptional performance and reliability. (A leaded version of the 1 N3471 diode is also available.)

MAXIMUM RATINGS (Mounting Surface Temp. $100^{\circ} \mathrm{C}$)	
BV	. 40 Min .
Power dissipation	...0.5 Watt
Tstg	$-65^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$
I_{F}	120 mAdc

STRESS-TIME RELIABILITY
High-temperature life tests are conducted for 1000 hours to assure (with 90% confidence) a failure rate at $250^{\circ} \mathrm{C}$ of less than 5% per 1000 hours.
SPECIFIED LIMITS FOR ELECTRICAL CHARACTERIZATION

$\mathrm{V}_{\mathrm{f}}(\mathrm{IF}=10 \mathrm{mAdc})$	1 Volt de
Is ($\mathrm{VR}_{\mathrm{R}}=20 \mathrm{Vdc}$)	20 nAdc
$\mathrm{C}\left(\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}_{0}=100 \mathrm{kc}\right)$	3 pf
$\mathrm{BV}\left(\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{Adc}\right.$)	40 Vdc

The 1N3471 microminiature switching diode can be purchased in quantity from Western Electric's Laureldale Plant. For technical information, price, and delivery, please address your request to: Sales Department, Room 105, Western Electric Company, Incorporated, Laureldale Plant, Laureldale, Pa. TelephoneArea Code 215-WAlker 9-9411.

Silicon Transistors

Texas Instruments Incorporated, \mathbf{P}. O. Box 5012, Dallas 22, Tex., is offering a 22 -page brochure with complete specs on their germanium transistors, silicon transistors, diodes and rectifiers, solid tantalum capacitors, materials and sensors, resistors, and semiconductor networks. Complete specs are included.

Circle 298 on Inquiry Card

Microwave Test Equipment

California Technical Industries, Div. of Textron, Inc., 1421 Old County Rd., Belmont, Calif., is offering a 22page catalog on microwave test equipment which features VSWR measuring systems, magnetron r-f supplies, variable polarization antennas and automatic radome beamship measuring system.

Circle 299 on Inquiry Card

Infrared Heating

Fostoria Corp., Dept. 109, 1200 N. Main St., Fostoria, Ohio, is offering tech data on radiant heat. Brochure describes Fostoria's equipment for use of electric infrared radiant heating processes and pictures some of the many and varied applications.

Circle 300 on Inquiry Card

Traveling Wave Tubes

Microwave Electronics Corp., 4061 Transport St., Palo Alto, Calif., is offering a tech data on their traveling wave tubes. Characteristic charts, complete electrical specs, and photographs are included on low noise tubes, medium power tubes, low power tubes, and Serrodyne and special purpose tubes.

Circle 301 on Inquiry Card

Microwave Insulators

Isolantite Mfg. Corp., Warren Ave., Stirling, N. J., is offering tech information on its line of silicone alloy materials for microwave electronic applications. Physical as well as electrical properties are contained in a full page, easy-to-read chart.

Circle 302 on Inquiry Card

Transistor Cooling

IERC Div., International Electronic Research Corp., 135 W. Magnolia Blvd., Burbank, Calif., is offering a 48-page Test Report 172A giving junction and case temps., power dissipation for power transistors in a variety of natural and forced air environments. Report evaluates an advanced dissipator design said to be twice as efficient as conventional fintypes of equal volume.

Circle 303 on Inquiry Card

Cooling Devices

Rotron Mfg. Co., Inc., Woodstock, N. Y., has a condensed catalog on their line of cooling devices. Also included is information on a determinator kit for determinating correct vane size and sensitivity rating required for final equipment design.

Circle 304 on Inquiry Card

Atomic Instruments

Baird-Atomic, Inc., 33 University Rd., Cambridge 38, Mass., is offering their Atomic Instrument Catalog. Included are analytical scintillation systems, scalers, analyzers, rate and survey meters, amplifiers and power supplies.

Circle 305 on Inquiry Card

Microwave Components

Budd Stanley Co., Inc., 175 Eileen Way, Syosset, L. I., N. Y., is offering a 205-page catalog on their line of microwave test instruments and components. Some products listed include fixed waveguide attenuators, variable calibrated flap attenuators, precision multi-hole directional couplers, series Tees, standards gain horns, standard reflection waveguide terminations, shorting waveguide switches, E and H plane waveguide bends and coaxial slotted lines. Descriptions, photographs, outline drawings, electrical and mechanical specs and applicable military specs plus a section on basic principles of microwaves are included.

Circle 306 on Inquiry Card

U-Band Oscillators

Sperry Rand Corp., Sperry Electronic Tube Div., Section 101, Gainesville, Fla., is offering tech information on their 2-cavity U band oscillator family for parametric amplifier pumping and Doppler radar applications. One of the features is the constant ontput power versus beam voltage characteristic resulting in a flat top power output mode.

Circle 307 on Inquiry Card

Potentiometer

CTS Corp., Elkhart, Ind., has available tech. information on their new Series 720 compact step-driven potentiometer and switch unit. Photos, drawings and full tech. specs cover this unit which is for remote control applications.

Circle 308 on Inquiry Card

Filters

Erie Resistor Corp., Erie Electronics Div., 644 W. 12 th St., Erie, Pa., is offering tech bulletin 512 covering 6 styles of high frequency low pass filters with minimum attenuation of 45 to 50 db . Capacitance of 1000 pf to 5000 pf and working voltage of 200 to 500 vdc.

Circle 309 on Inquiry Card

for Engineers

Coaxial Connectors

The Deutsch Co., Electronic Components Div., Municipal Airport, Banning, Calif., will send a 10 -page catalog describing their line of subminiature coaxial connectors. Specs, performance characteristics, and detailed information on the techniques for assembling these all-crimp terminated r-f connectors are included. Circle 310 on Inquiry Card

Potentiometers

Borg Equipment Div., AmphenolBorg Electronics Corp., 120 S. Main St., Janesville, Wis., has available a wall chart which is a Borg Micropot ${ }^{(}$ selector chart. Under precision Micropot potentiometers, single-turns, three-turns, and ten-turns are listed with housing diameter, operating temps, electrical and mechanical environmental servo mount and bushing mount specs. Under trimming Micropot potentiometers, 5 series are listed with specs.

Circle 311 on Inquiry Card

Breadboarding

Circuit Structures Lab., P.O. Box 36, Laguna Beach, Calif., will send data on their circuit builder which is designed for breadboarding and training; it eliminates soldering; gives quick circuit change; and is for vacuum tube or solid state circuits. Circle 312 on Inquiry Card

Tubing

J. Bishop \& Co., Platinum Works, Malvern, Pa., is offering Bulletin No. 13,20 pages, which gives the sizes, specs, finishes, tolerances, chemistry and suitable uses for small dia. tubing line up to 1 in. O.D.

Circle 313 on Inquiry Card

Multiple Connectors

AMP Inc., Eisenhower Blvd., Harrisburg, Pa., has available tech. data describing their 3 separate lines of multiple connectors, Fastin-Faston $®$, AMPEEZ $®$ and AMP-LOK®. Photographs, outline drawings and specs are included.

Circle 314 on Inquiry Card

Microwave Equipment

Radio Corp. of America, Industrial Electronic Products, Camden 2, N. J., is offering the following 3 pieces of tech literature: CW-20B Microwave describing 2000 Mc microwave equipment which provides 120 channel capacity with max. economy; MM-600-6, microwave information on their 6000 MC 600 channel transcontinental microwave equipment; CT-42, transistorized tone multiplex describing their tone multiplex unit that provides telemetering, teletype, data and control channels for use with either microwave or wireline circuits.

Circle 315 on Inquiry Card

OSCILLATOR

Portable, transistorized unit covers 5.5 CPS to 600 KC in 5 bands.

Model TO uses a special Wein Bridge circuit, printed circuit wiring and diode voltage regulation. High stability components are used in the freq. determining network to provide long time stability. This unit, with the Model TR Full Transistor Voltmeter, provides all the equipment necessary to check transmission lines, carrier equipment, sound systems and other types of field and laboratory work. Stewart Bros., Div. of Instrument Laboratories, 315 W. Walton Pl., Chicago 10, Ill.

Circle 189 on Inquiry Card

PHOTOCONDUCTIVE CELLS

Cadmium sulfide units feature low cost and wide variety of uses.

The "Compactron" type (Z-2946) and the conventional-tube envelope type (7427) are all glass, while the medium size cell (Z-2963) and the miniature (Z-2755-1) are of metal-toglass construction. All the cells operate over a range of $1400 \AA$ units with the wavelength of max. response at $5500 \AA$. Both the "Compactron" type and the 7427 have essentially the same ratings. Power dissipation is about 400 mw ; max. current is 50 ma ; and max. applied voltage is 350 v . General Electric Co., Receiving Tube Dept., Owensboro, Ky.

Circle 190 on Inquiry Card

WAVEGUIDE TUNERS

Line of 6 slide screw units cover the range of 5.85 to 40.0 GC .

These slide screw tuners consist of a section of precision waveguide, slotted longitudinally in the center of one broad wall, and an accurately constructed carriage, which supports the probe assembly. Complete shielding of the waveguide slot is achieved at all times and vswr values of 20 to 1 or higher can be reduced to 1.02 without introducing appreciable insertion loss. Sufficient longitudinal travel is provided in each unit to assure any desired phase shift. Waveline Inc., Caldwell, N. J.

Circle 191 on Inquiry Card

MICROWAVE TUBES

First of a line of permanent-magnet focused BWOs from 1 to 40 GC .

These units of identical exterior appearance, feature integral perma-nent-magnet focusing, with the same reliable helix-type oscillator design used in the solenoid tubes to date. The new BWO's are both in the X-band, available either with type N or waveguide-adaptor termination at the end of RG55/U coax. cable. Significant advantages of these wideband voltage tunable devices include low cathode current, more uniform r-f power over the band, and 2 control electrodes. Stewart Engineering Co., Santa Cruz, Calif.

Circle 192 on Inquiry Card

MODULAR POWER SUPPLIES
These units are for laboratory and prototype work.

They may be operated at full ratings without heat sink at up to $35^{\circ} \mathrm{C}$ amb. temp. The mounting base temp. is $65^{\circ} \mathrm{C}$. These plug-in modular packages use all semiconductor circuits and operate isolated from the ac line, providing adjustable output. They are short circuit protected by current limiting and provide automatic recovery after short removel. Available, off the shelf, in a full line of specs. from 4.5-6.0 v . to $45-55 \mathrm{v}$. Power Sources, Inc., Northwest Industrial Park, Burlington, Mass.

Circle 193 on Inquiry Card

SPDT RELAY

Fast switching and stable contact resistance over long life.

This SPDT reed type relay designated Magnereed Class 103 is hermetically sealed inside a glass capsule in an atmosphere of inert gas. The contacts are actuated magnetically by a coil around the glass switch capsule. The gold contacts are rated 10 w . resistive load; 1 a. or 250 vac max. Both operate time and release time are less than 1 msec ., not including bounce time. Dimensions: coil, $21 / 8$ in. long, $1 / 2 \mathrm{in}$. dia.; overall including leads, $31 / 2$ in. long. Magnecraft Electric Co., 3350H West Grand Ave., Chicago 51, Ill.

Circle 194 on Inquiry Card

New
 for the Electronic Industries

CIRCULAR WAVEGUIDE FEED

The 6 to 8 GC line supplied in 4 , 6, 8, and 10 ft . parabolas.

The circular waveguide feed, employing a rectangular to circular waveguide transition section 8 in. long, allows a man to adjust polarization a full 360° in the field simply by rotating the transition section. A dual polarized adapter is available for converting a single polarized feed simply by replacing the transition section. In addition to the 6 to 8 GC line, parabolas for $450,900,2000$, and 12,500 Mc bands are available. Mark Products Co., 5439 Fargo Ave., Skokie, Ill.

Circle 195 on Inquiry Card

PREAMPLIFIER

Amplifies signals of 1 pw, power gain of $\$ 98,000$ from low level sources.

Miniature low-level "ACROSTAT" preamplifiers both-down units are in an epoxy potted, self-contained assembly operating from 115 vac $\pm 10 \%$. Model 104 is for use with thermocouples, strain gages, Hall devices and other low-level signal sources. Fully isolated input, output and power-in is provided. Repeatability at a specific environment is good. Equivalent input drift over environment is less than $50 \mu \mathrm{v}$. and less than $10 \mu \mathrm{v}$. with moderate environment. Acromag, Inc., 22515 Telegraph Rd., Southfield (Detroit), Mich.

Circle 196 on Inquiry Card

MICROAMMETER

High sensitivity panel instruments can read $2 \mu a$ full scale.

These rugged, transistorized meters are available in $11 / 2,21 / 2$ and $31 / 2$ in. sizes, and meet requirements of Mil-M-10304 specs. Designated Series HSR, these units will operate from any dc supply from 3 to 250 v . with a current drain of only 80 to 200μ a depending on supply voltage specified. Nominal input impedance is $95 \mathrm{~K} \Omega$ resistive. Accuracy is $\pm 2 \%$ of full linear scale. Instrument Div., DeJur-Amsco Corp., Northern Blvd. at 45 th St., Long Island City 1, N.Y.

Circle 197 on Inquiry Card

X-BAND FIXED ATTENUATOR

Unit provides 10 db of attenuation with only $1 / 2$ in. insertion length.

Designed to operate at 8.5-9.6 GC, this pad has an input vswr of 1.15 max. Illustrated, is model No. X218 which is used in X-band wave-guide systems or laboratory test set-ups. A molded-in attenuating element has high shock properties. Suitable for use over temp. range $\left(-55^{\circ}\right.$ to $+160^{\circ} \mathrm{C}$) it also provides high dissipation properties, up to 1 W . CW. Other models at H-band (RG 51/U) and P-band (RG/91 U) are also available on request. Microwave Components \& Systems Corp., 1001 S. Mountain Ave., Monrovia, Calif.

Circle 198 on Inquiry Card

COAXIAL HYBRIDS

Operate over a 15% bandwidth, in freq. ranges from 950 to 6000 Mc .

The new series, called the CJ type, consists of a coaxial line in the shape of a circle of $11 / 2$ wavelengths circumference with 4 branch arms. The CJ hybrids may be employed as balanced mixers, passive diplexers, power combiners, power dividers, variable phase shifters, balanced diplexers and as variable attenuators. They have a max. insertion loss of 0.2 db and an isolation of better than 25 db Microlab, 570 W. Mount Pleasant Ave., Livingston, N. J.

Circle 199 on Inquiry Card

SELENIUM DIODES

For controlling damaging voltage transients in semiconductor circuits.

Thyrector diodes are now in production and available in 6 cell sizes. The 6 cell sizes range from $9 / 32$ and $15 / 32$ in. dia. disks for mounting in tubes and $1 \times 1,2 \times 2$ and 5×6 in. plates and $43 / 8$ in. disks for stud mounting. The max. peak current in a single pulse of 4 msec . is 75 a . for the $9 / 32 \mathrm{in}$. cell; 3 a . for the $15 / 32$ in. cell; 8 a. for the 1×1 cell; 30 a . for the 2×2 cell; 100 a . for the $43 / 8$ cell and 200 a . for the 5×6 cell. General Electric Co., Rectifier Components Dept., Carroll Ave. Plant, Lynchburg, Va.

Circle 200 on Inquiry Card

TroNEW

Goobelll CAPACITORS

of the Good-All type 901 solid tantalum capacitor is assured by precise control over the processing of all basic materials. This, combined with skilled handling of critical production phases gives the 901 its superior leakage characteristics, low dissipation factor and highly reliable service life. Extreme miniaturization combined with exacting design make the 901 an ideal choice for transistor, missile, communication, or similar circuitry.

SPECIFICATIONS

Temperature Range ... $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and to $125^{\circ} \mathrm{C}$ with proper derating.

Leakage Current. . . Complete listings in our technical brochure.
Tolerance $\ldots \pm 20 \%$ and $\pm 10 \%$ (closer tolerances on special order).
Environmental Conditions . . . Will meet requirements of MIL-C-26655A.
Life Test . . Will pass 2000 hours at $+85^{\circ} \mathrm{C}$ and rated D.C. working voltage.
Dissipation Factor ... 6% for case sizes A, B and C, and 10% for case size D-at 120 cps and $+25^{\circ} \mathrm{C}$.

GOOD-ALL TYPE 901

SOLID, POLARIZED TANTALUM CAPACITOR
D.C. VOLTAGES $85^{\circ} \mathrm{C}-$ (For $125^{\circ} \mathrm{C}$, derate to 67% rated voltage) VOLTAGE CAPACITANCE 35.0047 mfd . to 47.0 mfd . $20 \quad .0047 \mathrm{mfd}$. to 100.0 mfd . 15.0047 mfd . to 150.0 mfd . 10.0047 mfd . to 220.0 mfd . $6 \quad .0047 \mathrm{mfd}$. to 330.0 mfd .

CASE SIZES4 subminiature sizes per MIL-C-26655A

New
 Products . . . for the Electronic Industries

CONTROLLED RECTIFIERS

For computer, servo, inverter, and ac/dc control uses.

Designed specifically for low power switching and control applications, new series of silicon controlled rectifiers is capable of switching up to 3 a. of current over a piv range from 25 to 400 v . Designated types 3RC2 through 3RC40, they enable rapid firing with a min. of current (2.5 ma @ $125^{\circ} \mathrm{C}$). All units feature hermetically sealed, all-welded construction, and measure approx. 1.18 in. overall length. International Rectifier Corp., 233 Kansas St., El Segundo, Calif.

Circle 273 on Inquiry Card

WIREWOUND RESISTORS

Hi-reliability wirewound unit is for microminiature use.

Designated "Aerohm," Type CE 600 measures 0.250 in . square x 0.125 in. thick and Type CE 601 measures $0.250 \times 0.500 \times 0.125 \mathrm{in}$. Specs: Max. voltage- 150 vdc ; Max. resistanceType 600-1 meg.; Type 601-1.5 meg.; Tolerance- 1% through 0.01%; Wattage rating-Type $600-0.125 \mathrm{w}$. , -55° to $+125^{\circ} \mathrm{C}$; Type 601- 0.250 w., -55° to $+125^{\circ} \mathrm{C}$; Temp. Coefficient $-0 \pm 20 \mathrm{ppm},-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; Applicable Mil Specs-Mil-R-93 and Mil-R-9444; Operating Temps. from $-65^{\circ} \mathrm{c}$ to $+150^{\circ} \mathrm{C}$. Cinema Plant, HiQ Div., Aerovox Corp., 1100 Chestnut St., Burbank, Calif.

Circle 274 on Inquiry Card

DC CRYSTAL CAN RELAY

Complete family of standardized cry-stal-can relays now available.

New 4PDT microminiature de relay ($\mathrm{JH}-12$) has contact rating of 2 a. non-inductive at $29 \mathrm{vdc}, 115 \mathrm{vac}$; low-level contacts also available. Initial contact resistance: 0.05 max. Shock: 50 g operational. Temp.: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Insulation resistance $\left(+25^{\circ} \mathrm{C}\right): 1000$ megs min. Operate time, 10 msec max.; release time, 8 msec max. at nominal coil voltage and $+25^{\circ} \mathrm{C}$. Hermetically sealed, Max. weight is 1.4 oz . Allied Control Co., Inc., 2 East End Ave., New York 21, N. Y.

Circle 275 on Inquiry Card

BWO'S

Types TWO-85A and TWO-87A operate at 70-85 GC and 85-100 Gc.

These tubes are similar in their construction and external dimensions to the TWO-66 and TWO-67, former types, and may be operated in the same focussing solenoids. They are entirely metal-ceramic in construction and hence can be rigorously processed during their exhaust cycle for max. performance and tube life. Additionally, these designs have incorporated ion pumps to maintain the necessary high vacuum within the tube throughout the life of the oscillator. The Bendix Corp., Red Bank Div., Electron Tube Products, Eatontown, N. J.

Circle 276 on Inquiry Card

IMAGE ORTHICONS

Fiber-optic face plates eliminate need for lenses.

Use of the fiber-optic face plates in some applications has achieved light transmission gains of up to 50 times that possible with conventional optics. Fiber-optic face plates up to 3 in . in dia. are available. The new fiber-optic I-O's are designated ZL-7809 and ZL-7810. The ZL-7809 has an S-10 photo surface peaking at $4500 \AA$. The ZL-7810 uses an S-20 photo surface peaking at $4250 \AA$ and has excellent red response. General Electric Co., Cathode Ray Tube Dept., Syracuse, N. Y.

Circle 277 on Inquiry Card

WELDING TOOL

For small, pin-point welds entirely from one side of a work surface.

Pressure sensing pencil probe type welding handpiece, is designated the VTA-43. Sold as a set, it includes both a pressure sensing weld probe and a ground probe. The probe is adjustable to fire the weld energy at preset pressures ranging from $1 / 2$ to 5 lbs., permitting welds of consistent quality on hard-to-get-at thin metal applications, such as those in high density electronic component assembly and strain gauge installation. The unit weighs 6 oz . without cables. Cable is supplied. Hughes Aircraft Co., Vacuum Tube Products Div., 2020 Short St., Oceanside, Calif.

Circle 278 on Inquiry Card

All 5 MIL Tantalum Foil Capacitor Sizes From OHMIT寻

meet M\|-C-3965B - all values in stock

Plain and Etched

Whether you need immediate delivery from stock on prototypes, or production quantities of tantalum foil capacitors, Ohmite can handle your requirements.

Tan-O-Mite ${ }^{\circledR}$ Series TF foil capacitors now include all five MIL sizes in both plain and etched types, polar and nonpolar units, insulated and uninsulated cases-all in ratings to 150 VDC. Capacitance values for plain foil units range to 400 mfds ; etched foil units, 580 mfds .

Write for Specification Bulletin 152G which lists 200 stock values, including all MIL values, and shows a handy scale for conversion between "equivalent series resistance," "power factor," and "dissipation factor."

Rheostats
Power Resistors
Precision Resistors
Variable Transformers
Tantalum Capacitors
Tap Switches
Relays
R.F. Chokes

Germanium Diodes
Micromodules

OHMITE MANUFACTURING COMPANY
3662 Howard Street, Skokie, Illinois

PHILCO SOLID-STATE for NEW MICROWAVE and

Whether you are designing new millimeter-wave systems, researching microwave computers, or breadboarding new equipment for established microwave applications, you will be interested in new solid-state components and concepts from Philco. The news shown on these pages, and more to come, can help you put more of the future in your designs.

In X- and K-Band Radars

Philco silicon mixer diodes, available in coaxial packages, offer premium features at no premium in price. Hermetically sealed packages and operating temperature ratings up to $150^{\circ} \mathrm{C}$. are standard features of all types in the Philco 1 N 26 and 1 N 78 series.

Proof of outstanding uniformity-unit to unit-is the fact that any two Philco 1N263 diodes will serve as a matched pair. The 1N263, an X-Band mixer, is a low-noise performer. It can be operated fixed-tuned over the 8600 to 9600 mc -range. Its symmetrical construction allows easy polarity reversal in balanced mixers. IF impedance (Z_{if}) is 140 to 210 ohms; RF impedance (VSWR) is 1.3 max; overall noise figure ($\mathrm{NF}_{\mathrm{rec}}$) is 7.5 db max. Philco also provides models P-951 and P-952 narrow band and broad band crystal mounts to accommodate this X-Band mixer diode.

A new Philco concept for Doppler radar is the 1N1838-first germanium mixer diode specifically designed for ultra-low noise performance in radar receivers employing audio frequency IF amplifiers. It operates to 14 Kmc .

POPULAR MILITARY MIXER DIODES		
Type	Applicable Military Spec.	Description
JAN IN263	MIL-S.19500/191	Germanium X-Band Mixer
JAN 1N26	MIL-E-1/659B	Silicon K-Band Mixer
USA IN26B	MIL-S-19500/128	Silicon K-Band Mixer
JAN 1N78	MIL-E-1/662A	Silicon K-Band Mixer
USA IN78C	MIL-S.19500/130	Silicon K-Band Mixer

In Millimeter-Wave Designs

Philco pioneered, and now makes available, proved-in-use millimeter-wave germanium mixer diodes. Type 1N2792 offers a representative profile of this device category-operating at 70 Kmc . The 1 N 2792 is a reversible crystal designed for optimum low-noise performance in high resolution radar, EHF video detector applications and for long-range high altitude or space communications ... atmospheric absorption prevents jamming from the ground. This crystal is of integrated waveguide construction with the diode mounted in a section of RG-98/U waveguide. It is hermetically sealed for resistance to moisture.

COMPONENTS MILLIMETER-WAVE DESIGNS

In All-Solid State Power Sources

Philco solid-state power sources represent significant advances in solid-state component capability, circuit design and efficient packaging. Lightweight and compact, these units convert low frequency signals to usable microwave signals-with crystal-controlled high frequency stability. Foremost among their present applications are local oscillators, pump sources for parametric
amplifiers, and power sources for higher frequency telemetry transmitters.

Philco VARACTOR diodes include types specifically designed for use in harmonic generators, with cut-off frequency capability to 200 Kmc . and voltage breakdown capability to 80 volts. Philco varactor types are also ideally suited to parametric amplifier applications.

In Microwave Switching

Philco originated industry's first X-Band crystal diode RF power switch-type 1N3093. This glass-packaged diode, designed to be mounted in a Philco P-901 waveguide crystal mount, switches microwave incident powers up to 500 mw . at speeds in the order of 1 nanosecond.
In the same device category, new type 1N3481 is optimized for low power applications from 1 to 5 mw ., and 1N3482 is optimized for high power applications at 1.25 w . These devices also can be used as microwave modulators or voltage-controlled microwave attenuators.

FOR SPECIFIC APPLICATION ASSISTANCE WRITE:
SPECIAL PRODUCTS OPERATION, DEPT, EII161S

Immediately available from your Philco Industrial Semiconductor Distributor

Superior Tube leads the way in cathode progress-offers you a complete line covering all needs.

THIS ADVERTISEMENT IS PRIVATEFOR ELECTRON TUBE DESIGNERS ONLY

Which of these cathode developments means most to you? Which do you need right now? Which will you need tomorrow?

1. Low-power disc cathodes. Superior's miniature disc cathodes give a satisfactory electron beam with only $1 / 2$ to $3 / 4$ the heater power required by standard sizes. New triangular hole ceramics reduce heater requirements still further, in addition to improving "warm-up" characteristics. Contact area is 60% less than with round hole ceramics.
2. Controlled E-dimension. In the man ufacture of disc cathodes, Superior Tube controls E-dimension to within . 0005 in . of specification. This permits interchangeability in tube assembly. Likewise it insures a uniformity of cut-off characteristic of tubes and permits use of a less costly fixed resistor in the grid circuit.
3. No seams. Superior's Weldrawn 8 8 process makes available no-seam cathodes in many materials not available in regular seamless form. Weldrawn cathodes are made by welding flat strip and cold drawing to desired dimensions.
4. All purpose cathode alloy. New Superior Tube Alloy X-3012 combines both the high emission capacity of active alloys and the long life normally associated with passive alloys. In addition, sublimation and interface impedance are reduced practically to zero. This alloy has twice the hot strength of ordinary nickel alloys and can take high current and overvoltage abuse. X-3012 is available in both sleeve and disc types.
5. Special alloys. The Cathaloy ${ }^{(1)}$ series of cathode alloys was developed by Superior to provide a few alloys of broad applica. tion capable of meeting any cathode requirements, plus offering certain properties not available in other cathode alloys. These alloys greatly simplify cathode alloy selection. Their composition is carefully controlled, and electron tube tests of individual heats are made in Superior's Electronic Laboratory.

Do you have a copy of Superior's catalog No. 51 covering its complete line of cathodes and other electronic tubing products? Write Superior Tube Company, 2502 Germantown Ave., Norristown, Pa.

Superior Tube (51) NORRISTOWN, PA.

Johnson \& Hoffman Mfg. Corp., Mineola, N.Y. -an affiliated company making precision metal stampingsand deep-drawn parts

reliability in volume. . .

CLEVITE TRANSISTOR
WALTHAM, MASSACHUSETTS

Factors to consider in silicon diode selection

by DAVID E. HUMEZ
Technical Advisor to the Manager of Operations
Clevite Transistor, Waltham, Mass.

If your circuit does not require the superior forward conductivity characteristics of germanium diodes or if you require extremely low reverse currents or must operate at temperatures above $50^{\circ} \mathrm{C}$, you will probably select a silicon diode.

Of the bewildering array of silicon diode types available some will almost certainly suit your circuit better than others. Current silicon diode types fall into four main categories with many sub-categories. The first category historically was the general purpose alloy junction silicon diode. These diodes are principally useful in those applications in which good high voltage characteristics, very low leakage currents, even at high temperatures, are necessary. They are available with comparatively high forward conduction and over a wide range of voltages up to several hundred volts.

The next category is that of computing application silicon diodes. These differ from the general purpose diodes in that the material from which they are made is doped or otherwise treated in such a way as to reduce its bulk lifetime. Reduction of the lifetime of the material makes possible much faster operation, that is, faster recovery when switched from the forward to the reverse condition. Such diodes have found wide application in military and commercial computing circuitry which is expected to operate at high temperatures. A price is paid, however, for higher speed since reducing the lifetime of the material results also in an increase of the reverse current and a decrease in the forward conduction.

The third and fourth groups are the most recent and employ a different method, namely, solid state diffusion for producing the PN junction. The third group, sometimes called rectifiers, are devices fabricated in either the same subminiature glass package familiar in other diode types or this glass package modified by the inclusion of a larger diameter stud at one electrode for improved heat conduction. They are large area devices compared to the diodes in categories one and two and are designed for conduction of as much as 400 milliamperes at a volt. Since their area is substantially larger, their capacitance is also larger though not as large as would be expected by the ratio of areas, since the method of producing the junction results in less capacitance per unit area than is characteristic of alloyed junctions.

SWITCHING SPEED - REVERSE RECOVERY

Units switched by mercury wetted chopper from 15 ma forward current to 1.2 volts reverse in series with a 100 ohm load resistor. Recovery to 1 ma.

Unit	Time $\mathbf{m} \mu$ sec.	Types
1N914	2.5	silicon mesa diode.
1N625	60.	high speed silicon alloy diode.
1N459	1500.	general purpose silicon diode.
1N647	8000.	silicon diffused rectifier.

The fourth and newest category is that of extremely small area devices made by the newer techniques of the mesa or planar constructions. These types are also manufactured by a diffusion process. They are designed primarily for applications in which the very fastest switching speeds are required. For this additional speed, compared to conventional computing alloyed junction types, a further price must also be paid. Because they are tiny, they are also less rugged. Because their area is smaller, both the resistance of the connecting wires and the spreading resistance are larger. Consequently, these devices as a group are characterized by somewhat poorer forward conduction than is true of the larger area computing diodes.

ELECTRONIC INDUSTRIES

STAFF REPORT

ELECTRONIC INDUSTRIES'

1962 Summary of

MICROWAVE ELECTRON DEVICES

Listing complete technical specifications on the more than 1,500 commercially available microwaves electron tubes-both foreign and domestic.

\author{

- Magnetrons
 - Planar Triodes \& Tetrodes
 - Klystrons
}

\author{

- Backward Wave Oscillators
 - Traveling Wave Tubes
 - Parametric Amplifiers
}

MAGNETRONS

Type	Description App; Du. Cy.	Frequency (kme)	Heater $\mathbf{V}: \mathbf{A}$	Anode V:A	Pull. Fac. (mc/s)	$\begin{aligned} & \text { Pls. Dur. } \\ & (\mu s) \end{aligned}$	Power Output	Type	Description App; Du. Cy.	Frequency (kme)	Heater V;A	Anode V ; \mathbf{A}	Pull. Fac. (me/s)	$\begin{gathered} \text { Pls. Dur. } \\ (\mu \mathrm{s}) \end{gathered}$	Power Output
AMPERE	ELECTRONIC CORP., 230 Duffy Ave., Hicksville, L.l., N.Y.							ASSOCIATED ELECTRICAL IMDUSTRIES, LTD-(Continued)							
5 J 26	0sc,. 001	1.22-1.35	23.5,2.2	28k,46		1	600kw	CV2313	osc,plsd	9.44-9.5]	6.3.9	16k,12		. 5	50 kw
7090	osc,cw	2.425-2.475	5.3,3.2	1.6k, . 2	5		200w	CV5167	osc,plsd	9.04-9.12	6.3,.9	17k,11		. 5	60 ww
7091	0sc,cw	2.425-2.475	5,32	$4.5 \mathrm{k}, .75$	4		2kw	CV2167	osc,plsd	9.04-9.12	6.3,.9	14k, 6		. 5	30kw
7292	osc, cw	2.425-2.475	5,32	4.5k, 75	4		2 kw	BOMAC LABORATORIES, HNC Salen Road Bevaly, Mas							
55125	OSC, CW	2.425-2.475	5.5,66	6.5k, 1.4			5kw	BOMAC LABORATORIES, INC., Salem Road, Beverly, Mass.							
5586	osc,.p	2.7-2.9	16,3	32k,70	15	1	800 kw	BL212 tun		5.4-5.9					100w
5657	0sc, 0005	2.9-3.1	16,3	32.5k, 70	15	1	800 kw	BL250 tun		5.4-5.9					150w
6589	05c, 0005	3.35-3.5	16,3	30k,50	10	1	500kw	BL243 tun		5.4-5.9					200 w
$4 J 59$	osc, 0001	6.275-6.375	12.6.3.5	19\%,30	15	1	210kw	BL242 tun		5.4-5.9					400 w
$4 J 58$	0sc, 001	6.375-6.475	12.6,3.5	19\%,30	15	1	210 kw	BLM008 tun		5.4-5.9					400 w
$4 J 57$	osc, 001	6.475-6.575	12.6,3.5	19*, 30	15	1	210kw	BLM022 tun		5.4-5.9					500 w
251A	0sc, 001	8.5-9.6	6.3,1	14k,14	18	3.4	60kw	BLM026 tun		5.4-5.9					500w
${ }^{4} 788$	osc, 001	9.003-9.168	13.7,3.5	23k, 27.5	15	1	225kw	BLMO20 tur		5.4-5.9					700 w
55032	OSC, 001	9.003-9.168	13.7,3.5	23k, 27.5	17.5	1	225kw	BL245 tun		5.4-5.9					900w
55031	osc, 001	9.168-9.345	13.7,3.5	23k,27.5	17.5	1	225kw	BL230 tum		5.4-5.9					1000w
JP97A	OSC, 0001	9.21-9.27	6.3,.6	5.5k,4.5	15	1	7 kw	BLM003 tun		9-9.5					150w
7028	0sc, 00002	9.345-9.475	6.3,5	3.5k, 2.5	14	. 1	3 kw	BLM014 tun		8.5-9					150w
2142	osc, 0001	9.345-9.405	6.3,6	5.5k, 4.5	15	1	7\%	BLM015 tun		9-9.5					350 w
JP970	OSc,. 0001	9.345-9.405	6.3,.6	5.5k, 5.5	15	. 1	8 kw	BLM024 tin		9.3-9.5					100w
JP915	0sc,. 001	9.345-9.405	6.3,6	8*,6.5	18	2	19.5kw	BL233 fix		9.375 ± 030					800 w
725 A	Osc, 0001	9.345-9.405	6.3,1	12k, 12	15	1	50kw	BLMO12 tun		8.9-9.4					lkw
6972	Osc, 0002	$9.345-9.405$	10,2.8	15k, 15	15	. 1	75\%w	BLM046 tun		8.9-9.4					1kw
4 J 52 A	0sc, 00001	$9.375+.025$	12.6,2.2	15k,15	15	5	80 kw	5780 tun		8.5-9.6					250 kw
$4 / 50$	osc, 001	9.345-9.405	13.7,3.5	23k, 27.5	15	1	225 kw	BL216 fix		15.9-16.1					100kw
55030	OSc, 0001	9.345-9.405	13.7,3.5	23k,27.5	17.5	1	225kw	BLM027 tun		16-16.4					500 w
55029	0sc, 0001	9.405-9.505	13.7,3.5	23k,27.5	17.5	1	225 kw	6551 fix		23.8-24.27					40 kw
7093	osc, 00001	34.512-35.208	5,4	15k, 15	40	. 02	30kw	BLM006 fix		23.8-24.27					40 kw
55008	0sc, 0001	34.512-35.208	5,3.9	16k, 17	40	. 02	60kw	BL235 fix		51-54					10kw
								BL236 fix		54-57					10kw
ASSOCIATED ELECTRICAL INDUSTRIES, LTD., Carlholme Rd, Lincoln, England								BL237 fix		57-60					10kw
BM1001	tun osc	2.994-3.002	8.5,10	46k,110	7	2	2 megw	BL246 fix		68-71.5					8 kw
B46787	osc, cw	.9-1	10.5,52	$4 \mathrm{k}, 9$			2.5 kw	BL22I fix		69:70					10kw
CV2320	osc,plsd	2.998	8.5,10	46k, 110		2	2 megw								
CV2168-70	osc, Plsd	S-band	8.5,10	48k, 90		2	2 megw	BRITISH INDUSTRIES CORP., 80 Shore Road, Port Washington, N.Y.							
CV2319	osc, plsd	2.98-3020	8.5,10	38k, 70		5	1.25 megw	CV76	. 001	2.95	5,2.5	2\%k,35		2	450kw
CV2117	osc,plsd	2.75-2.855	8.5,10	38k, 70		2	1.2 megw	CV160CV192	. 001	3.	6,1.25	$22.5 \mathrm{k}, 22.5$	7	1	200 kw
to CVI2123 cVl20C,B,A									. 0008	3.288$9.65-9.1$	6,1.25	21.5k,23		1	225w
${ }_{\text {cVi20C, }}$ B,A	Osc, plsd osc,plsd	$2.748-2.858$ $3-3.12$	$6,7.7$ 6,15	$27 \mathrm{k}, 40$		15	400\% ${ }^{\text {w }}$	CV192 CV214	. 0005		3,2.5	15.5k,10	13	1	45kw
CV1495	osc,plsd	3-3.12	6,1.5	$24.5 \mathrm{k}, 22.5$. 5	300 kw	CV1475 CV1476	. 0001	3.23-3.38	5,2.6	26k,40		0.5	450kw
BM4119	OSC,glsd	9.31-9.43	6.3,.9	21k,25		. 1	140kw	CV1476 CV1477	. 001	$3.23-3.38$ $3.23-3.38$	$5,2.6$ $5,2.6$	26k,40		0.5	450w
CV2333	osc,plsd	9.505-9.695	6.3,.9	13.5k, 12		. 5	50kw	CV1477 CV1478 CV1479	. 001	3.23-3.38	5,2.6	26k,40		0.5	450 kw
to CV2337									. 001	2.95-3.06	5,2.5	27k,35		2	450kw
BM4073	osc, plsd	9.42-9.5	6.3 .9	14k		. 25	40kw	CV1480	. 001	2.95-3.06	5,2.6	27k,35		2	450kw

A

statement about the Zenith electron-beam parametric amplifier-

.. A New component in Radar, Telemetry, Satellite- and Deep-Space-Probe Tracking and Ranging, Radio-Astronomy, Radio-Navigation, Phase- and Frequency-Modulation Communications Systems.

In every new development, there comes a time for a review of progress and a look into the future. That time bas come for the electron-beam parametric amplifier-the Zenith "EBPA." As a low-noise amplifier, its noise performance is in the 1 db range, with gain up to 45 db . Its utility and value bave been provided in field tests of many systems.

THIS IS WHAT THE EBPA

DOES, how it has proved itself, and what we believe it can do-

CAPSULE DESCRPPIION OF OPERRTION
The EBPA system consists of a quadrupoleamplifier tube operating in a magnetic field, an RF pump generator, and a power supply. Within the tube, the signal is coupled onto an electron beam and amplified by the action of the quadrupole structure, using energy from the RF pump generator. The power supply furnishes voltages for the tube electrodes, solenoid, and RF pump generator.

PERFORMANCE CHARACTERISTICS

Noise Figures Obtainable: From 0.6 to 1.5 db , as measured with broadband noise source. No cryogenic apparatus is required. Singlechannel noise figure depends on antenna and application-typically, 2.5 db . Mixer noise is negligible because of high gain.
Range of Center Frequencies: 350 to 1800 Mc (tubes of higher frequency are in development).
Phase Stability: Better than 1°
Amplitude Stability: $\pm 0.05 \mathrm{db}$ has been measured.
Gain: Usually operated at 25 db ; gain up to 45 db has been obtained.
Bandwidth: Up to 10 per cent of operating frequency.

OPERATING FEATURES

The EBPA not only provides low-noise performance, but also offers characteristics unattainable with other low-noise systems, such as:

- Unconditional stability with respect to input and output terminations without the use of a circulator.
- High gain, with complete freedom from regenerative effects.
- Relatively large bandwidth independent of gain; no tuning required.
- Freedom from burnout; insensitivity to overload-several watts average, several hun-
dred watts peak power.
- Fast recovery time (30 nanoseconds).

SYSIEM DESIGN CONSIDERATIONS

System Protection. The EBPA tube not only withstands large amounts of incident overload power but also reflects most of it. In radars, this characteristic means that TR tubes can be eliminated. In addition, the EBPA protects mixer crystals from "spikes," and eliminates need for harmonic filters and shutters; also, down time and maintenance are reduced.
Ease of Installation. EBPA systems have been installed in minutes and have operated immediately. Once installed, they are very stable and operate for long periods without adjustment.
Reliability. Life expectancy of the EBPA tube is of the order of 10,000 hours.
Adaptability to Systems. The EBPA is normally installed as a simple insertion unit in the system front end and does not entail radical alteration of existing designs.

APPLICATIONS

Radar: Search Type. In tests conducted on eight such radars, MDS improvements of 4 to 10 db were attained.
Radar: Phased-Arrays. The unusual phase and amplitude stability of the EBPA makes it a natural candidate for application as a preamplifier in phased-arrays. Power supply and RF pump are common to all units in such an installation to insure maximum uniformity. An experimental installation of this kind, involving 16 EBPA units, was recently delivered. (Data on this installation will be available soon.)
Tracking System. A set of three EBPA units has been completed for use in a tracking system. A common power supply and common RF pump were provided. Maximum noise figure of the equipment as shipped is 1.2 db . Lab tests indicate the equipment will meet the differential phase stability requirements for monopulse applications. (Data on this installation will be available soon.)

Radio-Astronomy. The EBPA has found its way into a number of big dishes used in radio-astronomy. It is usually installed as close to the feed as possible to cut transmission losses. It has been used for hydrogenline work at 1420 Mc , and to amplify radar returns from the planet Venus at approximately 400 Mc . The high phase stability and large bandwidth have proved particularly useful in interferometer applications.
Radio-Navigation System. When installed in a Tacan ground station receiver, the EBPA improved MDS by 4.5 db .
Radio Direction-Finder. When installed in Rawin set, the EBPA improved MDS by 15.0 db .

P-M and F-M Systems. In phase-lock receiving systems, it is feasible to use synchronous pumping with a degenerate EBPA, resulting in an effective noise figure of about 1 db . Applications are space-probe tracking, scatter communication, and in general, all systems using only phase or frequency modulation.

COMING SOON

- EBPA tubes for operation at C-band.
- Tunable EBPA tubes: single-knob tuning will cover range of over 100 Mc .
- A metal-ceramic tube for operation from 400 Mc to about 1500 Mc ; features are exrernal tuning, lower cost, and greater resistance to adverse environment.
- More compact power supply.
- Non-degenerate EBPA tubes.

If you wish more information, send for booklet The Electron-Beam Parametric Amplifier, Operation and Applications. Please address requests and any quesions or comments to the Special Products Divi-
 sion, Dept. E-11, Zenith Radio Corporation; 6001 W. Dickens Ave.; Chicago 39, 1llinois.

MAGNETRONS-(Continued)

Type	Description App; Du. Cy.	Frequency (kme)	Heater $\mathbf{V} ; A$	Anode $\mathbf{V} ; \boldsymbol{A}$	Pull. Fac. (me/s)	Pls. Dur. ($\mu \mathrm{s})$	Power Output

BRITISH	INDUSTRIES	CORP.-(Co	(inued)				
CV1481	. 001	2.95-3.06	5,2.6	27k, 35		2	450kw
CV1482	. 001	2.95-3.06	5,2.6	27k, 35		2	450kw
CV1495	. 001	3-3.12	6,1.25	21.5k,22.5	7	,	2096w
CV1496	. 001	3-3.12	6,1.25	21.5k,22.5		1	200 kw
CV1497	. 001	3-3.12	6,1.25	21.5k,22.5	1	1	200kw
CV1498	. 001	3-3.12	6,1.25	21.5k,22.5	7	1	200kw
CV1499	. 001	3-3.12	6,1.25	21.5k,22.5	7	1	200 kw
CV1500	. 001	3-3.12	6,1.25	21.5k,22.5	7	1	200kw
MAG2*	. 00025	9.35-9.5	3,2.5	1.5k, 10	15	0.25	45kw
MAG3*	pkgd, .0001	9.345-9.405	6.3,0.55	6k, 7	15	0.1	$14 \mathrm{k}{ }^{*}$
MAG4	. 001	9.345-9.405	6.3,0.55	8k,6	15	1	17.51w
MAGS	. 001	9.36-9.45	3,2.3	17k,12	15	1	60 kw
MAG7	pkg, 001	9.2-10	2,10	16k,15	15	1	80 kw
MAG8	. 004	9.2-9.6	6.3,0.2	0.95k, 025		2	800 mw
MAG ${ }^{\text {9 }}$. 001	9.335-9.485	3,2.5	13k,11	13	1	50kw
MAG10	. 0005	9.74-9.89	6.3,1.3	14.5k, 10	13	1	50kw
CV214	. 0005	9.65-9.7	3,2.5	15.5k, 10	15	1	47kw
CV370	pkgd, .001	9.21-9.27	6.3,0.55	5.7k,4.5	15	1	7.7 kw
CV2111	. 0005	9.59-9.89	6.3,1.3	14.5k, 10	15	1	50kw
CV3982	. 001	9.36-9.46	2,3.8	11.5k, 12	15	1	45kw
CV5031*	. 001	9.003-9.168	3,3.5	13.5k,12	12	1	50kw
CV5117	. 0006	3.288-3.312	6.1.25	22k, 24	7	0.5	180kw
2151A		8.5-9.6	6.3,1	14k, 14	15		50kw

CANADIAN	MARCONI CO. 2442 Trenton Ave., Montreal 16, Canada						
7138	05c, 0025	9.05-9.55	$6.3,51$	7.8k,8	15	2.5	18kw
7139	OSC, . 0025	9.05-9.55	6.3,.51	7.8k,8	15	2.5	18kw
7140	OSC, 0025	9.05-9.55	6.3,.51	7.8k, 8	15	2.5	18kw
7141	OSc, 0025	9.05-9.55	6.3,.51	7.8k, 8	15	2.5	18kw
7142	OSc, 0025	9.05-9.55	6.3,51	7.8k, 8	15	2.5	18kw
7143	0sc,0025	9.05-9.55	6.3,.51	7.8k, 8	15	2.5	18 kw
7182	OSc, 0015	2.75-2.86	12,14	33k, 185	5	6	2.5 megw
2 J 42	OSC, 00025	9.345-9.405	6.3,51	6k, 5.5	15	2.5	7 kw
2142A	05c,0025	9.345-9.405	6.3	$8 \mathrm{k}, 7.5$	15	2.5	18kw
4J50	OSC, 002	9.345-9.405		23k, 3.75	15	2.7	225kw
4J50A	0sc, 002	9.345-9.405		23k,3.75	15	2.7	225 kw
5 J26	0sc, 0025	1.22-1.35	23.5,2.2	34k,55	5	6	400 kw
5586	tun	2.7-2.9	16,3.1	30k	15	2.5	800 kw
5657	tun	2.9-3.1	16,3.1	30k	15	2.5	800 kw
6027	0sc, 0025	9.345-9.405	6.3	84,8	15	2.5	18\%
6249A	OSc, 0013	8.5-9.6	10	29k	15	2.8	200kw
62498	OSc,0013	8.5-9.6	10	29k	15	2.8	200 kw
6027H	Osc, 0025	9.345-9.405	6.3,5	84,8	15	2.5	20 kw
6764	Osc, 0025	9-9.1	6.3,.5	7.6k, 8	18	2.5	20 kw
6765	OSC, 00025	9.1-9.2	6.3 .5	7.6k,8	18	2.5	20kw
6766	OSc, 00025	9.2-9.3	$6.3,5$	7.6k, 8	18	2.5	20kw
6767	OSc,. 0025	9.3-9.4	6.3,.5	7.6k,8	18	2.5	20kw
6768	OSc, 0025	9.4-9.5	$6.3,5$	7.6k, 8	18	2.5	20 kw
6769	05c, 0025	9.5-9.6	6.3,.5	7.6k,8	18	2.5	20 kw

COMPAGNIE FRANCAISE THOMSON-HOUSTON, 6, Rue Mario-Nikis, Paris						
TH1249	osc, 001	9.05-9.15	6.3,.8	15k,15	1	40kw
TH1249A	osc,.001	9.15-9.25	6.3,7	15k,15	,	40kw
TH1249B	0sc,.001	9.05-9.25	6.3,8	15k, 15	,	36 kw
TH1250	osc, 001	8.75-8.9	6.3, 8	15k,15	1	40kw
THI250A	osc, 0001	8.85-8.95	6.3,7	15k, 15	,	40kw
TH1250B	osc, 0001	8.8-9	6.3,8	15k,15	1	36 kw
TH4J50A	Osc,.002	9.345-9.405	13.75,3.4	23k,30	1	225 kw
TH4J52A	osc,. 002	9.345-9.405	12.6,2.1	16k, 30		80 kw
THF1025	Osc, 002	8.5-9.6	12.6,2.1	17x,20	1	70kw
TH1725A	osc,,001	9.345-9.405	6.3,.8	15k,15	1	40kw
TH1725B	- osc, 0001	9.275-9.475	6.3, 8	15k,15	,	36kw
TH1725C	OSc, 0001	9.275-9.475	6.3,8	15k,15	1	36kw
THF1026	0sc, 0001	8.5-9.6	13.75,3.4	24k, 25	1	200 kw
TH2151A	Osc,. 0011	8.5-9.6	6.3,1	15k, 15.5	3.5	44 kw
THF1050	OSc,. 0012	5.45-5.825	9.5,5.5	28k,30	1	250 kw
TH1501	Osc,.0005	5.35-5.5	9.5,5.5	30k,33	1	400 kw
TH2J26	0sc, 002	2.992-3.019	6.3,1.5	22k,30	,	240 kw
TH2J27	0sc, 002	2.965-2.992	6.3,1.5	22k,30		240 kw
TH2J30	Osc, 002	2.86-2.9	6.3,1.5	22k,30	1	240 kw
TH2J31	osc, 002	2.82-2.86	6.3,1.5	22k,30	,	240 kw
TH2J32	0sc,,002	2.78-2.82	6.3,1.5	22k,30	1	240 kw
TH2J33	0sc, 002	2.74-2.78	6.3,1.5	22k,30	1	240 kw
TH2J34	osc, 002	2.7-2.74	6.3,1.5	22k,30	1	240 kw
TH5586	osc,. 001	2.7-2.9	16,3.1	32.5,70	I	800 kw
TH5657	OSC, 001	2.9-3.1	16,3.1	32.5,70	,	800kw
THF1001	osc, 0001	3.1-3.3	16,3,1	32.5,70	1	800 kw
THF1007	osc, 0001	2.97-3.03	16,3.1	32.5,70	1	1 meg W
TH1658A	osc, 001	2.9-2.93	16,3.1	32.5,70	4	1 meg W
TH1658B	osc, 0001	3.05-3.08	16,3.1	32.5,70	4	$1 \mathrm{meg}{ }^{\text {c }}$
TH5J26	OSC, 002	1.22-1.35	23.5,2.2	31,60	1	400kw
COMPAGNIE GENERALE DE T.S.F. 79 Boulevaid Haussman, Paris 8, Fiance						
4J52A	0sc,. 001	9.345-9.405	12.6,2.2	15k,15	1	75kw
4J50A	osc, 001	9.345-9.405	13.75,3.3	21.5k,27.5	. 5	240 kw
F1002	osc, 001	8.5-9.6	12.6,2.2	15k,15	1	70kw
MCV602	osc,,001	8.5-9.6	12.6,2.2	15k, 15	,	70kw
F1005	osc, 001	8.5-9.6	9,2.6	22k, 27.5	1	220kw
F1026	OSc, 001	8.5-9.6	9,2.6	22k, 27.5	,	200 kw
F1057	osc,.0005	2.925-3.525	5.3,2.6	29k, 42	1	400 kw
F1008	osc, 001	2.897-3.228	14,5.6	31k,65	2	1.2 megw
F1030	Osc, 001	2.897-3.228	14,5.6	31k,65	4	1.2megw
F1084	osc,.001	2,9-3.015	14,5.6	30k, 65	2.2	1.1megw
F1085	OSC, 001	3-3.115	14,5.6	30k,65	2.2	1.1megw
F1086	osc, 001	3.085-3.2	14,5.6	30k,65	2.2	1.lmegw
F1054	osc,. 001	2.9-3.015	14,5.6	30,65	4.4	1.lmegw

Type	Description App; Du. Cy.	Frequency (kme)	Heater $\mathbf{V} ; \mathbf{A}$	Anode $\mathbf{V} ; \mathbf{A}$	Pull. Fac. (me/s)	Pls. Dur. $(\mu \mathrm{s})$	Powor Output

COMPAGNIE GENERALE DE T.S.F.-(Continued)				
Fl055	0sc, 001	3-3.11	14,5,6	30k,65
Fl056	05c, 001	3.085-3.2	14,5.6	30k,65
$\mathrm{MCV101Cl}$	osc., 1	3.3-3.4	6.3,1.2	1.3k, 6
MCV10101	osc,. 1	3.5-3.6	6.3,1.2	1.3\%, 6
MCV85D1	osc., 1	3.5-3.6	4.5,2.1	$1.4 \mathrm{k}, .5$
MCV8502	0sc,. 1	3.6-3.7	4.5,2.1	1.4k, 5
MC567	osc,. 0015	1.27-1.37	20,13	42k, 150

4.4	l.1magw
4.4	1.1 megw
1	$.15 k w$
1	.15 kw
1	.32 kw
1	.32 kw
5	$2.5 \mathrm{mog} w$

F>P a new symbol in electronics for your single source of rf components, microwave test equipment and sub-systems

On September 22nd, Amphenol-Borg Electronics Corporation unified two of its divisions... RF PRODUCTS and FXR. The name of the new division is FXR.

What does this mean to you?

It means that in the future you can expect components that meet not only mechanical requirements but also the exacting electronics specifications of the systems and sub-systems in which they are used. It means that the specialized capabilities that have made AMPHENOL, FXR, ipC and ok hallmarks of reliability have been combined to give you integrated design across the rf spectrum. From hardware to microwave sub-systems, the new FXR insures you of more advanced, more authoritative design and engineering.

Is this important to you?
We believe that it is.
The full implications of this change are subtle and progressive. At fXR we're building for tomorrow-but our customers can profit from it today. The same representatives who served you when we were two separate organizations will continue to serve you.
If you have any questions about the products and services we can now offer, we invite you to write to us. Address your inquiries to: Vice President-Marketing, FXR, 33 East Franklin Street, Danbury, Connecticut.

FXR Microwave Components

FXR Microwave Test Equipment

FXR High-Power Electronics and Microwave Sub-Systems
${ }^{\text {R Registered Trademark }}$

MAGNETRONS-(Continued)

Type	Description App; Du. Cy.	Frequency (kme)	Heator V;A	Anode V;A	Pull. Fac. (me/s)	Pls. Dur. (μ)	Power Output	Type	Description App; Du. Cy.	Frequency (kme)	Heator V;A	Anode $V_{i} \mathbf{A}$	Pull. Fac. (mc / s)	Pls. Dur. ($\mu \mathrm{s}$)	Power Output
RAYTHEON	CO., Microw	\% \& Powar Tub	iv.,	hame Mass.				RAYTHEON	CO., -1.	99-4					
QK172	OSC, 001	9.33-9.42	Div.,	30k			440kw	6229	0sc, 003	8.9-9.4		5k, 1			400w 200 kw
QK324	0sc. 0028	15.8-16.1		30k, 14			7 CW	6249	0sc, 00013	8.5-9.6		29\%,32			200kw
QK366	Osc, 001	9.2-9.28		16\%,14.5			75w	6344 6402	OSC, 001 OSc, 0016	5.45-5.825 $3.4-3.5$		57k,55			700 kw
QK456	Osc, 001	5.3-5.4		16k,20			75\% ${ }^{\text {mw }}$	6402	OSC, 0 , 0000 OSC, 0005	3.4-3.2.9		56k,95			1.75 megw
QK470	Osc, 00012	1.2-1.3		75k, 100			$2 m w$ 100 kw	6400 6410	Osc,. 0001 OSC, 001	2.7-2.8		76\%,135			1.5 megw
QK366A	ampl, 001	$9.245 \pm .04$		15k, 13.5		0.5	100kw	6517	OSc,. 001 OSc,. 0013	1.2-1.3		70k,60			1 megw
QK665	fix, 0018	1.25-1.285	15,150	72k,150		5	9.\%\%	6841	OSC, 0 , 001	1.64-1.66		19k,16			50kw
QK666	fix. 0018	1.32-1.35	15,150	72k, 150		5	9.9\%W	5586	Osc,. 001	2.7-2.9		30k, 70			800 kw
OK735	tur, 003	5.4-5.9	5,1	$2.3 \mathrm{k}, 1.5$		4	400 w 400 kw	5657	05c,. 001	2.9-3.1		33k,70			700 kw
RK5J26	tun. 002	1.22-1.35	23.5,2.2	31k,60		4	400 kw 1000 kw	6695	Osc, 001	3.43-3.57		33k, 65			650 kw
RK6517	tun, 00013	1.25-1.35	2.5,85	70k,60		3	1000kw	6403	OSC, 001	3.43-3.57		65k,90			$2 \mathrm{mog} w$
RK4J62	tun	2.695-3.015	6.3,3.5	1.5k, 0.15		1	50 kw 240 kw	QKH517B	0sc, 00018	.535-.545		50\%,90		6	2 megw
RK2134	fix, 002	2.7-2.74	6.3.1.5	22k, 30		1	2400w	QKH626	OSc,. 0018	. $57-.63$		50k,90		6	2 megw
RK4/35	fix, 001	2.7-2.74	16,3.1	30k, 70		1	800 kw	QKH517A	OSc,. 0018	. $60-.61$		50k,90		6	2 magw
RK5586	tun, 001	2.7-2.9	16,3.1	$32 \mathrm{k}, 70$		1	700 kw	QKH517	Osc, 00018	. $67-.68$		50k,90		6	2 megw
RK2133	fix, 002	2.74-2.78	6.3,1.5	$22 \mathrm{k}, 30$		1	240 kw	QKH959	$\mathrm{cw}^{\text {c/ }}$. $95-1.525$		2.9k, 227			190w
RK4J34	fix, 001	2.74-2.78	16,3.1	30k,70		1	8800 kW	RK7484A	tun, 001	1.25-1.35		60k,90		3	2 megw
RK6410	fix, 0001	2.75-2.86	8.3,85	76k, 135		$?$	4500kw	QKH942	(un, 0018	1.25-1.35		71k, 150		5	5 magw
RK232	fix, 002	2.78-2.82	6.3,1.5	22k,30		1	240kw	OKH960	cw	$2.35-3.6$		2.96, 225			190w
RK4133	fix, 001	2.78-2.82	16,3.1	$30 \mathrm{k}, 70$		1	800 kW	RK7529	tun, 00072	2.7-2.85		62k, 115		2	3.5 megw 45 megw
RK2131	fix, 002	2.82-2.86	6.3,1.5	22k, 30		1	240 kw	OKH883	osc, 0001	2.75-2.86		70k, 130		2	45 megw
RK232	fix, 001	2.82-2.86	16,3.1	30k, 70		1	800 kw	QKH898	Osc, 001	2.846-2.866		70k, 130		2	4.5 meg
RK6406	fix, 00006	2.25-2.91	8.3,85	56k,95		2	1750kw	QKH632	Osc,. 001	5.25-5.31		35k, 60		2.5	1 megw
RK230	fix, 002	2.86-2.9	6.3,1.5	22k,30		1	${ }^{2400 \mathrm{kw}}$	QKH821	tun, 002	5.4-5.9		3.45k,2.75		0.75	2.5kw
RK\J31	fix, 001	2.86-2.9	16,3.1	30k,70		1	800 kW 700 Ww	RK7578	tun, 000	5.4-5.9		2.8k, 2		0.75	800kw
RK5657	tun, 0001	2.9-3.1	16,3.1	32.5k, 70		1	700 NW 50 w	QKH737	tun, 00003	5.43-5.57		1.67k,1.1		11	225 kW
RK4J63	tun	2.985-3.335	6.3,3.5	1.5k, 0.15			20w	QKH539	Osc, 0001	5.45-5.51		35k, 60		1	${ }_{\text {lmegw }}^{\text {lick }}$
RK2170	fix, 002	3.03-3.11	6.3.1.25	7.5k, 15			Cuw	RK7156	tun, 0001	5.45-5.825		25k,24		0.5	250kw 250 w
RK4J64	tun	3.305-3.675	6.3,3.5	1.5k,0.15			50 w	RK7460	tun, 0003	5.15-5.825		24.5\%,25		0.5	250 kw 10 kw
RK6403	tun, 0014	3.43-3.57	8.3,43	65k, 90			200 kw	RK7417	OSC, 00003	5.5-5.6		7.5k, ${ }^{4}$		0.2	10 kw
RK6177	Osc	4.268-4.35	6.3,0.6	350, 035			11w	QKH1000	tun, 0001	8.5-9.6		28k,25		2.5	200 kW
RK6344	tun, 001	5.45-5.825	11,11	24k, 30			175kw	QKH788	tun, 0001	8.5-9.6		28k,25		2.5	200 kw 200 kw
RK2151A	tun, 00011	8.5-9.6	6.3,1	16k, 15.5			40 kw	QKH1001	tun, 001	8.5-9.6		28k, 25.		2.5	200 kw 1.1 kw
RK6249	tun, 0013	8.5-9.6	9,14.4	32k, 32			200kw	RK6248	tun, 045	$8.7-8.9$ $8.9-9.4$		$3.55 k, 0.91$ $4.25 \mathrm{k}, 0.9$		${ }_{0}^{1}$	1.1kw
RK6229	tun, 003	8.9-9.4	5,0.45	5k, 1			400w	RK7521	tur, 001 tum, 001	$8.9-9.4$ $8.9-9.4$		4.25k, 0.9 4.5k,1.0		0.2 0.5	1kw
RK2J56A	fix, 001	9.215-9.275	6.3,1	16k,16			40kw	QKH790	tum, 000 tun, 0003	$8.9-9.4$ $9.13-9.27$		$.4 .5 k, 1.0$ $1.87 k, 1.1$		0.5 0.3	100kw
RK6002	fix, 0002 fix, 001	$9.230-9.404$ $9.345-9.405$	1,40 $6,3,1$	$30 \mathrm{k}, 40$ $16 \mathrm{k}, 16$			225kw	RK7718	tur,. 0003 OSc,.0009	9.13-9.27		39k,69		2	1negw
RK2155	fix. 0001	9.345-9.405	$6.3,1$ $6.3,0.5$	16k, 16			40kw	QK 7798	OSC, 0003	9.36-9.46		5.2k, 3.5		0.2	3kw
RK2 RK6841	fix, 0025 fix, 001	9.345-9.405 $16.41-16.625$	6.3,0.5	6k,5.5			7kw	RK7630	Osc. 0002	15.84-16.16		24k,12		0.35	85kw
2130	OSc, 002	3.1-2.7		22k,30			240kw	RK7449	0sc,.0003	23.78-24.3		14.,15		. 07	45kw
231	Osc,. 002	3.1-2.7		22k,30			240 kw	RK6551	OSC, 0006	23.8-24.27		14k,15		. 15	40kw
2132	Osc. 002	3.1-2.7		22k,30			240kw								
2133	OSC, 002	3.1-2.7		22k,30			240 kW								
2134	Osc. 002	3.1-2.7		22k, 30			240kw	SFD LA	BORATORIES,	INC., 800	hway Ave.,	Union, N.J.	6		
2142	Osc,.002	9.3-9.4		5.7\%,4.5			8\%w	SF0303	0sc, 001	9.375	26.8	33ky, 60	6		Imegw
2 J 51	OSc, 0012	8.5-9.6		16k,16			45kw								
2 5 5	osc, 001	9.3-9.4		16\%,16			40kw 40.kw				.0. Box	4, Elmira, N			
2156	Osc, 001	9.21-9.27		16k,16			400kw	WL6177	OSC, ${ }^{\text {anm }}$	$\begin{aligned} & \text { If lube viv., } \\ & 4.268-4.35 \end{aligned}$	6.3,0.6	315,.030	4		1w
4335	${ }^{\text {osce, }}$, 0001	2.7-2.9		$30 k, 70$ $30 \mathrm{k}, 70$			800 kw 800 kw	WL6285	OSC, 01 OSC, 0018	1.31		70k, 350		10	6.5 megw
$4 / 334$ 4133	Osc,, 001 Osc, 001	$2.7-2.9$ $2.7-2.9$		30k, 70			8000kw	WL7008	OSc, 001	8.5-9.6	13.7,3.1	22k, 27.5	10	2.8	220 kw
4 432	Osc, 001	2.7-2.9		30k,70			${ }^{800006}$	WL7796	OSC, CW	4.2-4.4	$6.3,0.6$ $6.3,0.6$	350,030 425,030			10 wp
4 J 1	osc,,001	2.7-2.9		$30 \mathrm{k}, 70$			800 kW 50 w	WL7794 WL7795	OSC, CW Osc, ${ }^{\text {cm }}$	4.2-4.4	$6.3,0.6$ $6.3,0.6$	425,0030			10wp
4 4 63	OSC	2.98-3.33		1.5k, 15			50w	WL7110	Osc, 001	8.5-9.6	13.7,3.1	22k, 27.5	10	2.8	220 kw
4.64	${ }^{\text {osc }}$ Osc,	3.3-3.6		1.5k, 15			20\% ${ }^{\text {w }}$	WL7111	osc,,001	8.5-9.6	13.7,3.1	22k,27.5	10	2.8	220kw
2 J 70	0sc,.002	3-3.1		7.5k,15			2kw	WL7112	osc,. 001	8.5-9.6	13.7,3.1	22k, 27.5	10	2.8	220 kw
4562	Osc 002	2.6-3					400kw	WL7541	osc,.001	8.5-9.6	9.0,14	28k,25	12	1.1	250 kw
5126 6002	osc, 002 osc, 002	1.2-1.3 $9.2-9.4$		30k,40			225 kw	WL62498	OSc, 001	8.5-9.6	$9.0,14$	28\%, 25	12	3.3 2.8	240 kw 220 kw
602 6177	osc,002 osc	4.2-4.3		350,.025			1w	WL6865	$\mathrm{OSC}_{4 .} 001$	8.5-9.6	13.7,3.1	22k,27.5	10	2.8	220kw.

PLANAR TRIODES AND TETRODES

Type	Deseription App; Du. Cy.	Frequency (kme)	Heater $\mathbf{V ; A}$	Anode $\mathbf{V ; M A}$	Ampl Fac	Mox. Diss.	Power Output

AMPEREX ELECTRONIC CORP., 230 Duffy Ave., Hicksville, LI., N.Y.

AMPEREX	TRON		Ave., Hid	250			
7377	twin tetr	. 96	6.3 .6	250, 2×40			5 W
TBL $2 / 500$	tri ampl	1	3.4,1.9	$2 \mathrm{k}, 400$		500w	
6907	twin telr	. 6	6.3,1.3	400, 2×50		$25 w$	15w
6252	twin tetr	. 6	6.3,1.3	400, 2x50		25 w	15w
EC157	tri ampl	4.2	6.3, 73	180,60	43	12.5\%	1.8w
ECI58	tria ampl	4.2	6.3,85	180,140	30	30 w	5w
EC88	tri ampl	. 9	6.3,.19	160,12.5	65	2.2w	

| BRITISH | INDUSTRIES | CORP. | 80 | Shore Road, Port Washington, N.Y. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2521 | tri | 1 | $6.3,0,37$ | 250,20 | 60 | 2.5 w | |
| A2244 | tri | 3 | $6.3,0.4$ | 350,150 | 30 | $10 w$ | lw |
| A2327 | tri | 3 | $6.3,0.4$ | 350,150 | 30 | 10 w | lw |
| CV2204 | tri | 3 | $6.3,0.4$ | 350,150 | 30 | 10 w | lw |

Type	Description App; Du. Cy.	Frequency (kme)	Heater V;A	Anode V;MA	Ampl Fac.	Max. Diss.	Power Oupput

BRITISH INDUSTRIES CORP.-(Continued)

BRITISH	INDUSTRIES CORP.	(Continued)					
DET22	tri	3	$6.3,0.4$	350,150	30	10 w	4w
DET29	tri	6	$6.3,0.4$	450,120	55	10 w	1.7 w
DET24	tri	2	$6.3,1$	400,600	33	20 w	10 w
ACT22	tri	1	$6.3,4$	$600,1.5 \mathrm{a}$	22	75 w	90 w
ACT25	tri	1	$13.5,2.8$	$1 \mathrm{k}, 5 \mathrm{a}$	75	400 w	300 w
ACT27	ti	0.6	$15,6.7$	$1.5 \mathrm{k}, 10 \mathrm{a}$	45	1.5 kw	1 kw

COMPAGNE FRANCAISE THOMSON-HOUSTON, 6, Rue Mario-Nikis, Paris 20 w

TH6895	tri amol			50	80	250w	20w
TH6885	tri ampl	3	$6.3,2.1$	1.20,	∞	250w	15kw
TH6886	tri ampl, 0005	3	6.3,2.1	$6 \times$			1kw
TH6942	tetr ampl	i9	5.7,24	4k, 100	17	450w	20kw
THF6001	tri ampl, 0003	1	6.3,5	8k, 150	0	1.2kw	60kw
THF6002	tri ampl, 003	1	6.3,15	8k,400	20	1.2kw	60kw

ABBREVIATIONS AND NOTES

a-ampere	es-electrostatic
a/c-forced air cooled	fix-fixed frequency
ampl-amplifier	gg-grounded grid
cav-cavity	int-intermediate amplifier
cw-continuous wave	k-thousand
em-electromagnetic	megw-megawatt
N	min-miniature

Note 1: Velocity madulated aseillators are listed under Magnetrons.
pm-permanent magnef
Ppm-periodic permonent magnet
pwr-power
refl-reflex
res-resonator
rug-ruggedized
sol-solenoid

Note 2: Pencil tubes ond other coaxial tube types are listed under Planar Triades and Tetrodes:

Quickly following up breakthroughs with good, sound, reproducible designs... RAYTHEON LISTS 201

MICROWAVE TUBE TYPES

THIS TABLE summarizes currently available unclassified tubes. Many others, both classifled and developmental, are avallable in all categories. Write for detailed information or tell us about your special requirement.

COMPREHENSIVE 72-PAGE CATALOG describes all tubes listed above and covers Raytheon complete microwave capability in tubes, magnetic components, ferrite devices and associated equipment. Write for your copy today to Raytheon Company, Microwave and Power Tube Division, Waltham 54, Massachusetts.

PLANAR TRIODES AND TETRODES-(Continued)

Type	Description App; Du. Cy.	$\begin{aligned} & \text { Frequency } \\ & \text { (kme) } \end{aligned}$	Heater V; A	Anode V;MA	Ampl Fae	Mox. Diss.	Power Output	Type	Description App; Du. Cy.	Frequency (kme)	Heoter V;A	Anode V;MA	Ampl Fac	Max. Diss.	Power Output	
CAMPAGNIE FRANCAISE THOMSON-HOUSTON-(Continued)								NIPPON ELECTRIC CO.-(Continued)								
THF6007	tri ampl	1	6.3,5	15k,150	70	600w	400 W	LD509*	tri ampl	2.5			90	230w	50w	
THF6017	tetr ampl	. 7	5,30	$5 \mathrm{k}$	15	12kw	10kw	L0531*	tri ampl	2.2	$6.3,2.3$	$1.7,350$	130	550 w	100w	
THF6019	tri ampl	. 6	6.3,10	3k,200	70	800 w		LO551*	tri ampl		$6.3,4$	$3 k, 700$		$2 \mathrm{kw}$	300 w	
7739	tri osc, 04	5	6.1,1.18	350,250		7.5w		5671°	triosc	${ }_{3}$	6.3,. 135	165,30	20	5w	. 475 w	
EITEL-McCULLOUGH, INC., San Carlos, Calif.								$5876{ }^{*}$	tio osc	1.7	6.3,.135	360,25	56	6.25w	3 w	
								$5893{ }^{\circ}$	tri osc, ampl	3.3	6, 28	320,35	27	7.5 w	$5 w$	
$\begin{aligned} & 2 \mathrm{C39} \\ & 2 \mathrm{C} 39 \mathrm{WA} \end{aligned}$	tri ampl	2.5	6.3,1.1	800,80		100w	27w	6263^{*}	tri osc,ampl	1.7	6,28	320,35 330,40	27	8 w	$7 w$	
2C39WA	tri ampl	2.5	6,1.05	800,80		100w	${ }^{27 w}$	$7552 *$	tri anpl	1	$6.13,225$	250,25	80	2.5 w	13db	
3 CPNIOA5	tri ampl, 002	3	6,1.05	3.5k,3a		10 w	1.6kw	$7553{ }^{\circ}$	tri ampl	1	6.3, 2225	250,25	80	2.5 w	14 db	
$3 \mathrm{CX100A5}$	tri ampl	2.5	6,1.05	800,80		100w	27w	7554^{*}	tri ampl	3	6.3, 225	300,25	70	2.5 w	1.6 w	
3x100A5 4×1506	tria mpl	2.5 1.5	6.3,1.1	800,80		100w	27w	A15205*	tri osc,plsd	3.3	6.3, 2225	1.25k,2k	70	2.5w	250w	
4X150G $\times 685 \mathrm{C}$	tria ampl	1.5 25	2.5,7.3	$7 \mathrm{k}, 6 \mathrm{a}$ 900		150w	17kwp	$6562 *$	tri osc	1.68	$6, .16$	120,34		3.6w	. 5 w	
X $\times 779$	tria ampl	2.5 2.5	6,1.05	900,90		100 w	15w	7533^{*}	trio OSC	1.68	6,16	130,34		3.6w	. 575 w	
L. M. ERICCSON, Stockholm 20, Sweden (State Labs., Inc., 215 Park Ave., South New York 3, N.Y.)								Al5132* tri osc,plsd		. $973-1.225$	$6, .135$ 6,28	165,38 1.75 k		$5 w$ $6 w$. 300 w	
								A15219*	tri osc	.9-1.05	6.3,.135	250,30		5 w	1.5 w	
	tri amp!		6.3,1.18	270,33	300	7.5w		A15220**	tii osc, plsd	.9-1.05	6,.28	1.75k, 3k		$6 w$	800%	
GENERAL ELECTRIC CO., Power Tube Dept., Schenectady 5, N.Y.								Al5221**	tri osc	1-1.3	6.3,. 135	250,30		$5 w$	$1 / \mathrm{w}$	
								Al5222**	tri osc, plsd	${ }_{1}^{1.1 .3}$	6, 28 6.38	1.75k,3k		6 w	600 w	
GL6848	letr ampl, cw	. 8	6.3,3.6 $6.7,14.5$	1.6k,3 7		300w	154w 1.25 kw	A15223**	tri osc	1.25-1.6	6.3,.135	250,30		5w	.8w	
GL6942	tetr ampl,cw	. 9	5.7,24	4k,700		1.5 kw	1.25 kw	Al5222**	tri osc, plsd tri ose	$1.25-1.6$ $1.55-1.9$	6,.28	1.75k,3k		6w	500w	
GL7399	tetr ampl, 001	1.5	6.3,5.6	9k, 9.2		300w	52 kw	A 15226^{*}	tri 0sc,plsd	1.55-1.9	6.3,.135 6,28	1.75k,3k		6w	. 6 W	
GL7985	tetr ampl, cw	. 8	6.7,14.5	7k, 1k		3.5 kw	3.2 kw	A 15227^{*}	tri osc	1.85-2.2	$6, .28$ $6.3,225$	1.75k,3k		6w 2.5%	400w	
ZP1018	tetr ampl	1.6		2.5k,1.3k		100w	1.6 kw	A $15228{ }^{*}$	tri 0sc, plsd	1.85-2.2	6,.28 6.3	1.75k,3k		6w	300w	
THE MACHLETT LABS., Springdale, Comecticut								Al5229*	trio osc	2.15-2.5	6.3, 2225	250,30		2.5 w	.2w	
								${ }_{\text {Al5 }}$ A 15331^{*}	tri osc, plisd	2.15-2.5	6,28	1.75k, 3k		6 w	200w	
ML2C41	tri ampl, 0025	3	6.3,1.03	3.5k,6.5k	100	35w		A 15232^{*}	tri osc, pled	$2.45-2.8$ $2.45-2.8$	$6.3,225$ 6,28	250,30 175 k		2.5w	.15w	
ML3CPN10A5	tri ampl, 0025	3	6,1	3.5k, 4.8\%	100	10 w		A15233*	tri osc trio	2.45-3.8	$\begin{aligned} & 6,28 \\ & 6.3,225 \end{aligned}$	$\begin{aligned} & \text { 1.75k,3k } \\ & 250,30 \end{aligned}$		${ }^{6 \mathrm{w}}$ 2.5w	.150w	
ML3CX100A5	tri ampl, cw	2.5	6,1	1k,125	100	100w		A15234*	tri osc, plsd	2.75-3.1	$6, .28$	$\begin{aligned} & 250,30 \\ & 1.75 k, 3 k \end{aligned}$		6 w	100 w	
ML518 ML6442	tri ampl,cw tri ampl, 001	2.5	6,1, 6	600, 125	100	100w		A 15235^{*}	tri osc	3.05-3.4	$6.3, .225$	250,30		2.5w	.05w	
ML6442	tri ampl, 001	4	$6.3, .9$ $6.3,57$	$3 \mathrm{k}, 3.75 \mathrm{k}$ 300,33	50 90	8\% 6.25 w		Al5236*	tri osc, pled	3.05-3.4	6.28	1.75k,3k		6 w	50 w	
ML 7209	tri ampl,.0033	3	6,1	3.5k,4.5k	100	35 w		SS104**	t-d OSc						. 3 mw	
ML7210	tri ampl,cw	3	6.3,85	1k,95	75	100w		SS107**	t-d osc	$.8-1.4$		$.2,35$ $.4,160$			1 mw	
ML7211	tri ampl, cw	2.5	6.3,1.3	1k,190	80	100w		- Coaxial pencil-type ranstruction.			- Solid-state osc.					
ML7289	tri amipl, cw	$2.56,1$	6,1	1k,125	100	100w										
ML7688	tri ampl, 00025	3	6.3,1.3	3.5k, 7.5 k	80	10w		STANDARD TELEPHONES \& CABLES, LTD., Brixham Rd, Paignton, Devon								
ML7815	tri ampl, 0025	3	6,1	3.5k,4.8k	100	10w		2C39A	tri ampl	2.5	6.3,1	1k,125	100	100w	27w	
ML7855	tri ampl, cw	2.5	6,1	1k, 125	30	100w		38/106 J	tri ampl,plsd	2.5	6.3,1	3.5k,2k	100	10 w	2.4kw	
NIPPON ELECTRIC CO., LTD., Tokyo, Japan								SYLVANIA, Special Tube Operations, 1891 E. Third St, Williamsport, Pa .2C36								
$2 \mathrm{C} 39 \mathrm{~A}, \mathrm{~B}^{*}$	tri ampl	2.5	6.3,1	900,90	100	100w	15w									
$2 \mathrm{C4O}$	tri ampl	3.37	6.3,. 75	250,20	35	6.5w	85 mm	2 C 37	cw ose	3.3	6,3,4	200,025	25	5w	450mw	
$2 \mathrm{C43}$	tri ampl	3.37	6.3, 9	3k,2a	48	12w	1kwp	5764	CW OSC	3.3	6.3,425	200, 025	25	5w	450mw	
5861	tri ampl	3.7	6.3,4	300,30	30	10 w	. $5 w$	5765	CW Ose	2.9	6.3,4	180, 020	25	5w	250 mm	
2C46 LD497	tri ampl	1.3	6.3,75	250,15	65	12w		5768	[88 anpl	3	6.3,.4	150,.007	90	2w	10db gain	
LD583*	tri ampl	2.5 2.5	$6.3, .3$ $6.3,1.3$	900,140 900,140	90	140 w	26w	6481 6503	${ }_{\text {cW O O }}$	3.3	6.3,4	180, 016	25	5 W	500 mm	
- Ceramic sealed					5	140 w	26W	5767	CW OSC cw osc	3.3 3.3	$6.3,4$ $6.3,4$	200,025 200,025	23 25	5w	450mw 450mw	

KLYSTRONS

Type	Deseription App; Du. Cy.	Frequency (kme)	$\begin{aligned} & \text { Heater } \\ & V ; A \end{aligned}$	$\begin{gathered} \text { Beam } \\ V ; A \end{gathered}$	$\begin{gathered} \text { Refl } \\ V \end{gathered}$	Tun Range	Powar Output	Type	Deseription App; Du. Cy.	Frequency (kme)	$\begin{gathered} \text { Heoter } \\ \mathbf{V} ; \boldsymbol{A} \end{gathered}$	Beom V; A	$\begin{gathered} \text { Refl } \\ V \end{gathered}$	Tun Range	Power Output		
DX184 DX151	refl	31-36	${ }_{3}^{6.3,8}$	${ }_{2}^{2.25 k}, 015$	300	60 mc	100 nw	BL818	tun	8.5-10.5		350			120mw		
BENDIX, Red Bank Div., Eatontom, N. J.								BL830	tun	8.69-8.79		250			15 mm		
								BL815	fix	9.142-9.152		200			30mw		
								BL831	fix	9.26		300			80 mw		
TK37	refl	${ }_{\text {34-35.6 }}$	6.3 6.3	330,01 425,04	150 400		${ }^{100 \%}$	BL832	fix	9.34		300			80 mm		
TK38	refl	5.1-5.9	6.3	330,.035	300		70 mw	${ }_{\text {BLLB12 }}$	tun	${ }_{8.5-9.5}$		400			$0.2 w$		
TK53	refl	34-35.6	6.3	400, 029	110		10 mm	BL829	fix	${ }_{8 \rightarrow 9.5}^{8.5-9.6}$		500			${ }_{0}^{60.5 \%}$		
TK58	refl	8.5-9.66	6.3	300,032	145		20 mm	BL802	tun	${ }_{8.8-9.2}$		500 250			${ }_{3}^{0.5 \mathrm{w}}$		
TK59	refl	8.5-9.66	6.3	300,.032	145		20 mm	BL819	tun	9-9.2		300			${ }^{3} \mathbf{3 0 m W}$		
TK60	refl	23.25-24.75	6.3	330,03	300		10mm	BL820	tur	$9.05-9.25$		300			${ }_{6}^{60 m w}$		
TK61	refl	10.525	6.3	300, 032	145		${ }^{20 \mathrm{~mm}}$	BL824	tun	$9.2-9.5$		300			60 Tw		
TK62	${ }_{\text {refl }}$	8.5-9.6 5.12-5.43	6.3	300 300 0036	145 160		${ }^{20 \mathrm{~mm}}$	BL84]	fix	8 8-9.5		300			60 mw		
TK69	refil	5.1-5.9	6.3 6.3	300,032 330,035	160 300		${ }^{8076 m}$	BL843	fix	8-9.5		200			20 nW		
TK78	refl	34-35.6	6.3	425,04	400		10 mw	BRITISH INDUSTRIES CORP., 80 Shore Road, Port washington, N.Y.									
TK84	refl	16-17		300, 025	180		20 mw	KLX1	4 cav	4.1, 4.8	4.1,4.8	11k,0.3		$\pm 30 \mathrm{mc}$	1130w		
TK90	refl	8.5-9.66		300, 025	150		30 mw	KLS2	3 cav	5,9.5	5,9.5	10k, 1		$\pm 50 \mathrm{mc}$	1.7\%w		
TK91	refl	8.5-9.66		300, 025	125		30 nm	COMPAGNIE FRANCAISE THOMSON-HOUSTON, 6, Rue Mario-Nikis, Paris									
TK92	refl	8.5-9.66 5×35.505		300, 0208	145		${ }^{20 n W}$										
TK97	refl refl	${ }_{8.5-9.6}^{5.35-5.95}$	6.3 6.3	300, 01032			20 mm	TH2011A	ampl	2.9-3	25,25	230k, 220		60 mc	12kw		
bomac laboratories, inc., Salem Rd., Beverly, Mass.							2 mm	TH20118	ampl	3-3.1	25,25	230k, 220		60 mc	12kw		
				INC., Salem Rd., Beverly, Mass.						TH2012B	ampl	3-3.1	25,25	$140 k, 100$ $140 \mathrm{k}, 100$		60 mc 60 mc	${ }^{10 \mathrm{~kW}}$
BL801	tun	8.5-9.6		300			30mw	TH2013	ampl	2.95-3.05	25,25	350\%,210		20 mc	5kw		
BL880A	tun	8.5-10-		${ }^{200}$			20 mw	TH2014	ampl	2.95-3.06	25,25	150\%, 105		30 mc	5kw		
BL803	tun	8.5-10		200			20 mm	TH2015	ampl	2.95-3.06	25,25	250k,250		30 mc	15kw		
BL800		8.5-10		${ }^{200}$			25 mm	TH2101	ampl	2.9-3.1	6.3,5	24k, 9		60 mc	. 1 kw		
BL811 6310	fix	$8.5-10$ $8.5-10$		210 300			${ }^{250 m}$	${ }_{\text {TH }}$ TH6975	refl	8.5-9.6	6.3,45	350,052	500		20 mw		
6312	tun	${ }^{8.5-10}$		300			70 mm	TH6116	refil	$8.5-9.6$ $8.5-9.6$	$6.3,47$ $6.3,4$	330,032 500.055	400 145		${ }_{20}^{20 n w}$		
BL806	tun	8.5-10		500			0.3w	TH2058	refl	8.5-10	6.3,1.2	330,032	1k		500 mm		
BL825	tun	8.5-10		500			0.5w	TH2K29	refl	3.4-3.96	6.3,47	300,04	250		65mw		

FASTEST SWITCHING SPEED HIGHEST CONDUCTANCE LOWEST JUNCTION CAPACITANCE MA-4121 silicon pointcontact diodes will work in 200 Mc computers

THEY'RE ALREADY AT WORK IN 100 Mc COMPUTERS

MA- 4121 computer diodes have the desired combination of parameters for use in the very fastest switching circuits.
Fractional nanosecond switching*_ typically 0.5 nsec. High forward conductance - 30 mA at 1.0 V (max.)

10 mA at 0.55 V (max.)
Low junction capacitance - 0.5 pf (max.) at zero volts bias.
They are hermetically sealed in an all-glass package with no soldered end seals, insuring no loss of hermeticity during circuit assembly.
Two years ago Microwave Associates introduced the first 4 nanosecond switching diodes on a commercial basis (1N903 series). They were rapidly adopted as industry standards.
Today the MA-4121 enables you to design computer circuits with almost an order of magnitude increase in speed. This diode is ideal for coincidence circuits, pulse circuits, ultra-high-speed switching, and all types of logic functions.
There is no substitute for capability. There is no substitute for quality. Microwave Associates computer diode technology has proven itself on both counts. We'd like to put our experience to work for you.
*Actual recovery time is so fast that the observed time in a sampling or traveling wave oscilloscope is primarily determined by the wiring configuration.

造MICROWAVE ASSOCIATES, INC. SEMICONDUCTOR DIVISION BURLINGTON, MASSACHUSETTS B BROWNING 2.3000 WESTERN UNION FAX - TWX BURLINGTON, MASS. 942

Export Sales: Microwave International Corp.
36 W. 44th St., N.Y.C., N.Y., U.S.A. Cable: Microken

Capture...then Read

THE FIRST PEAK OF ANY VOLTAGE
Single Transient Peak Reading Voltmeter
FOR: Blast Studies - Shock Studies
- Transient Voltage Measurements on Aircraft
Power Busses - Measurement of any single transient phenomena which may be characterized by a voltage pulse.

The Model PRV-4 Single Transient Peak Reading Voltmeter is designed to accept and display the first value of a positive or negative voltage pulse of arbitrary shape within specified limits. Readout is provided as a four digit decimal value directly in volts with a fifth digit for over-range indication. First peak voltage detected
blocks further input values until reset. A four line 1-2-2-4 coded output line is provided for external printout. The PRV-4 will read out peak amplitude of rectangular pulses of one microsecond or greater pulse width. Readout cycle time, 1 millisecond with accuracy of 0.5% of absolute or 10 counts. Range 30 MV . to 1000 V .

Write to Intermountain Branch for complete specifications on the PRV-4 and other models, or for information on custom units available for unique requirements.

ELECTRONICS DIVISION

Type	Description App; Du. Cy.	Frequency (kmc)	Heater V;A	Beam V;A	$\stackrel{\operatorname{Refl}}{V}$	Tun Range	Power Oułpuł
NIPPON ELECTRIC CO., LTD., Tokyo, Japan							
${ }^{2 \mathrm{~K} 26}$	refl	$6.25-7.06$	6.3,44	300, 0225	115	50mc	100mw
2K54A	refl	4.05-4.3	6.3.45	400,.025	350		500 mw
2 K 54 B	refl	3.85-4.1	6.3.45	400,.025	350		500 mw
2 K 54 C	refl	3.65-3.9	6.3,.45	400, 025	350		500 mw
2 K 54 DA	refl	4.25-4.35	6.3,45	250,012	160	35 mc	50 mw
5976	refl	6.25-7.425	6.3,44	300,025	100	60 mc	120mw
5721	refl	4-11	6.3, 68	1k, 02	150		100 mw
4 V 27	refl	3.5-4.5	6.3, 6.675	325,025	180		150 mw
6 V 200	refl	6.225-6.325	6.3,76	750,07	130	50 mc	300 mw
6 V 201	refl	5.925-6.225	6.3.76	750,07	330	35 mc	1.2 w
6 V 202	refl	6.125-6.425	6.3, 7.76	750,07	330	35 mc	1.2 w
6 V 203	refl	6.425-6.575	6,3,76	750,.07	330	35 mc	1.2w
7 V 204	refl	6.575-6.875	6.3,.76	750,07	330	35 mc	1.2 w
7205	refl	6.875-7.125	6.3,76	750,07	330	35 mc	1.2w
7 V 206	refl	7.125-7.425	6.3,76	750,07	330	35 mc	1.2w
8 V 207	refl	1.425-7.750	6.3,76	750,.07	330	28 mc	1w
8 V 208	refl	7.750-8.1	6.3,76	750,07	330	23 mc	1w
6 V 211	refl	5.985-6.285	6.3.44	300,023	100	40 mc	35 mm
6 V 212	refl	6.285-6.585	6.3,44	300,023	100	40 mc	35 mw
1 V 213	refl	6.585-6.705	6.3,.44	300, 023	100	40 mc	35 mw
TV214	refl	6.705-7.005	6.3,44	300, 023	100	40 mc	40 nW
7 V 215	refl	6.955-7.255	6.3,44	300, 023	100	40 mc	40 mw
7216	refl	7.255-7.555	6.3,.44	300,.023	100	40 mc	40 mw
8 V 217	refl	7.55-7.850	6.3,44	300,.023	100	40mc	40 mw
6 V 221	refl	5.925-6.225	6.3,76	750,07	330	35 mc	1.2w
6 V 222	refl	6.125-6.425	6.3,76	750,.07	330	35 mc	1.2w
7223	refl	6.425-6.575	6.3,.76	750,.07	330	35 mc	1.2 w
7 V 224	refl	6.575-6.875	6.3,76	750,07	330	35 mc	1.2w
1225	refl	6.875-7.125	6.3,.76	750,07	330	35 mc	1.2w
7226	refl	7.125-7.425	6.3,76	750,.07	330	35 mc	1.2w
8 V 227	refl	7.425-7.750	6.3,76	750,07	330	35 mc	1w
${ }^{8 V 228}$	refl	7.750-8.1	6.3,76	750,07	330	35 mc	${ }^{1 w}$
11v53	refl	10.7-11.7	6.3,1.1	300,028	180	40 mc	70 mw
11V53A	refl	10.7-11.7	6.3,1.1	450,.05	260	50mc	250 mw
2239/1G	refl	3.65-4.2	6.3,1	1.1k, 06	180	40 mc	1.2w
V239/1K	refl	3.78-4.04	6.3, 25	300, 035			500mw
V241C/1K	refl	4-4.24	6.3, 25	300,.035			500 mw
6 V 26 AM	refl	6.1-6.5	6.3,44	300, 025	110	60 mc	120 mw
$8 \mathrm{8V69}$	refl	7.350-7.85	6.3,44	300,025	110	50mc	${ }^{80 m w}$
11954	refl	10.7-11.7	6.3,.45	300, 028	180	40mc	70 пW
IIV55	refl	10.7-11.7	6.3,45	500,065	260	55 mc	450mw
8 V 77	refl	7.65-8.2	6.3, 34	300, 025	130	30mc	60 mw
11v54A	tefl	10.7-11.7	6.3,45	450,05	260	50mc	250 mm
LD561	refl	11.7-12.44	6.3,45	400,045	220	48mc	160 mw
POLARAD	ELECTRONICS	CORP., 43-20	34th St., Lon	g Island City	1, N.Y.		
2V1011	reff, cw	4-11	6.3,57	1.25k, 022	800	20 mc	20 mw
2V1010X	refil, cw	.95-2.8	6.3,1.1	500,06	700	6 mc	200mw
2V1021X	reff, cw	1-4	6.3,1,1	500,06	700	6 mc	200 mW
2V1009x	refl, cw	1.7-5	6.3,1,1	500,06	700	6 mc	200 mw
2V1012	sefl, cw	.5-3	6.3,.68	350,0.035	700	6 mc	50mw
ZV1010	refl, cw	,7-3	6.3,68	350,035	700	6 mc	50mw
2V1009	refl, cw	1.5-6	6.3,68	350,035	700	6 mc	50 mw
RAYTHEON CO., Microwave \& Power Tube Operations, Waltham, Mass.							
5837	OSC	0.55-3.8		325	235	12	160mw
RK5777	OSC	0.6-2.35		400	625	8	160mw
2K28A	OSC	1.5-3.75		300	277	20	140mw
RK5778	osc	1.8-4.62		300	460	8	150mw
6BL6	osc	1.6-5.5		300			121mw
5836	OSC	1.6-5.5		300		6	121 mw
5721	OSC	2-12		1250		12	150mw
6236	OSC	3.8-7.6		lk	510	10	125 mw
726C	OSC	2.7-2.96		300	135	25	100 mw
2 K 29	OSC	3.4-3.96		300	180	28	106mw
2 K 56	osc	3.84-4.46		300	150	30	100 mm
2 K 22	osc	4.24-4.91		300	180	30	115 mw
$2 \mathrm{K48}$	osc	4-11		1250	300		20 mw
6115 A	osc	5.1-5.9		300	175	30	100 mw
QK412	osc	5.1-5.9		300	150		100 mm
RK6037	osc	5.12-5.43		300	160	40	30 mw
QK549	osc	5.925-6.45		300	275	20	120 mw
5976	osc	6.2-7.425		300	158	32	100mw
QK531	osc	6.575-6.875		300	285	32	110 mw
QK532	osc	6.875-7.125		300	305	32	110mw
QK623	osc	7.125-7.65		300	380	32	110 mm
RK6390	OSC	6.87-10.75		1250	420	6	80 mw
RK6310	OSC	8.5-10		300	170	48	70 mw
RK6312	osc	8.5-10		300	170	48	70 mw
RK6316	OSC	8.5-10		300	170	48	70 mw
2 K 25	OSC	8.5-9.66		300	183	64	32mw
2 K 45	ose	8.5-9.66		300	145	70	32mw
6116	osc	8.5-9.66		300	145	70	32 mw
QK448	osc	12-13		300	275	60	85 mw
RK6178	osc	15.75-16.25		300	200	60	25 mw
RK6573	ose	15.5-17		300	210	75	25 mw
QK306	OSC	18-22		1.8k	220	40	40 mw
6253	osc	18-22		1.8k	220	40	40 mw
2 K 33	osc	22-25		1.8k	220	40	40 mw
6254	OSC	22-25		1,8k	220	40	40 mw
Qk463	osc	24.5-27.5		1,8k	250	40	40 mw
QK289	OSC			2.25k	200	45	20 mw
QK290	osc			2.25k	200	45	20 nW
QK291	osc			2.25k	200	45	18 mw
QK288	OSC	34.3-35.3		2.25 k	210	50	20 mw
Qk292	ose			2.25k	200	45	10 mw
CK293	osc	34.9-42.8		2.5 k	200		5 mm

Type	Description App; Du. Cy.	Frequency (kme)	Heater $V ; A$	Beam $V ; A$	Refl V	Tun Range	Power Output

RAYTHEON CO.-(Continued)						
QK294	ose	40-51.8	3k	200		5mw
QK295	OSC	50-60	3.5k	200		
6BM6	OSC	.55-3.0	325	355		50 mw
6BM6A	osc	.55-3.0	325	355		50mw
QKK752	OSC	7.125-7.65	300	350	25	140\%w
QKK753	OSC	7.75-8.4	300	350	25	140mw
QKK965	OSC	5.925-6.425	750	390	25	1.4w
QKK910	OSC	6.575-6.875	750	390	25	1.4w
QKK966	OSC	6.875-7.125	750	390	25	1.4w
QKK967	osc	7.125-7.75	750	390	25	1.4w
QKK968	OSC	7.75-8.4	750	390	25	1.4w
QKK826	OSC	10.7-11.7	400	350	35	100 mm
QKK869	OSC	11.7-12.2	400	350	35	100 mw
QKK822	osc	12.2-12.7	400	350	35	100.mw
QKK877	OSC	12.7-13.225	400	350	35	100mw
QKK873	OSC	13.225-14	400	350	35	100 mm
QKK874	OSC	14-15	400	350	35	100 mw
QKK878	OSC	10.7-11.7	750	700	35	700 mw
QKK899	OSC	11.7-12.2	750	700	35	700 mw
QKk978	OSC	12.2-12.7	750	700	35	700 mw
OKK880	OSC	12.7-13.225	750	700	35	700 mw
QKK881	OSC	13.225-14	750	700	35	700mw
QKK882	OSC	14-15	750	700	35	700 mw
QKK607	OSC	8.5-9.6	300, 025	200	50	40mw
OKK923	OSC	23.5-24.5	375,027	180	100	20 mw
QKK834	OSC	34-35.6	400,.027	150	120	20 mw
QKK463A	OSC	24.5-27.5	1800, 0009	300	30	25 mw
QKK892	ose	39.6-46	3000,.018	300		4mw
QKK893	OSC	45.9-50	3000, 018	300		4 mw
QKK863	OSC	50-57	1400,04	450	75	80 mw
QKK864	OSC	56-65	1400,04	450	80	60 mw
QKK865	OSC	64-74	1400,04	450	100	40mw
QKK837	OSC	67-92				40 mw
QKK369	OSC	68.75-70.75				40mw
QKK838	osc	69-73				40mw
QKK866	OSC	73-83	1400,.04	450	125	40nw
QKK867	osc	82-101	1700,.05	450	150	20 mw
QKK977	osc	$88-101$				40mw
QKK971	osc	100-120	1700,.06	450	175	20 mw

SPERRY ELECTRONIC TUBE DIV., Gainesville, Fla.

SAL219	3 res,.0025	.96-1.215	4.2,37	24k,6.2			37kw
SAL81	e res, 1	1.215-1.365	4.5,70	20k, 5			21 kw
SAL89	3 res, 2.5	.96-1.215	4.2,40	20k, 4.5			30 kw
SAL153	6 res	1.27-1.40	12,45	190k,250			14 megw
SAS28	3 res	2.6-2.7	9,13	4k, 35			225w
\$AS60,A	3 res	2.67-3.33	6.3,2	Ik, 3			25w
SAS60, B	3 res	2.7-2.93	6.3,2	1.4k, 65			20w
SAS61	3 res	2.7-2.9	6.3,6	15k,5.5			15kw
SAC9	3 res	4.97-5.09	6.3, 8	1k, 175			9w
SAC19	2 res	5.8,6.42	6,3,2	625,16			6 w
SAC33	3 res	4.8-5.3	7,6.5	5.4k, 45		$\pm 15 \mathrm{mc}$	500w
SAC41	3 res	3.7-4.2	6.3,2	750,.2			30w
SAC225	3 res	4.2-6.8	4.75,56	130k, 98			3megw
SAC285	4 res,. 1	C-band	6.3,4	33k, 2.4		100me	20 kw
SAC259	3 res, 4	C-band	6.3, 75	6.6\%, 214		$\pm 25 \mathrm{mc}$	300w
SAC246	3 res	c-band	6,3,2,8	9k, 95			60 w
SAC340	6 res	5.275-5.725	5,55	150k,116			5 megw
SAX240	$3 \mathrm{ras}, \mathrm{cw}$	X-band	6.3,2.8	6.25k,2.8			200w
SAX253	$3 \mathrm{res}, \mathrm{cw}$	10-10.5	6.3,2.8	8.75k,2.8			600w
SAU211	2 res, cw	12,6-18	6.3,1.6	1.73, 14		$\pm 75 \mathrm{mc}$	8 w
SOU242	ose	12.5-15	$6.3,4$	900,04		$\pm 10 \mathrm{mc}$	1.5w
SMS27	2 res	2,6-2.7	6,3,4	1,25k, 020		$\pm 20 \mathrm{mc}$. 5 w
SMCII	2 res	4.5-5.7	6.3,1.1	1k, 05		50 mc	IW
SMX32	3 res	9-10.5	6.3,1.6	1k, 15			3.5w
SMK40	3 res	23.5-26	6.3,2	1.5k, 17		$\pm 250 \mathrm{mc}$.6w
SOC150	3 res	4.91-5.01	$6.3,8$	1.1k, 175			11w
SOU201	2 res	12.5-15	6.3,1.6	1.7k, 14			15*
SRL7	refl	1.7-2.4	6.3,2	1k,. 22			10 w
SRLI7	refl	.75-.99	6.3,1.5	1k, 09			3 w
SRC64D1	refl	5.43-5.93	6.3, 8	900,09	750	500 mc	1.8 w
2 K 42	refl	3.3-4.2	6.3,1	1.25k, 06	750	300 mc	1.5W
2K43	refl	4.2-5.7	6.3,1	1.25k, .06	750	450 mc	1.25 w
2K44	refl	5.7-7.5	6.3,1	1.25k, 06	750	500 mc	1\%
SRX92	refl	8.5-10.5	6.3, 45	300, 30	300	2 mmc	30 mm
2K25	refl	8.5-9.66	6.3,44	300,037		90 mc	30 mm
2 K 39	refl	7.5-10,3	6.3,1	1.25k, 06	750		1w
SRU55C	refl	15.7-17	6.3, 55	300,031	350	45me	25 mw
SRU95	reft	12-4-15.5	6.3,.55	300, 032	253		52mw
\$RU210	refl	15-7-17	6.3, 55	300,035	110	50 mc	20 mw
SRV38	refl	34-35.6	6.3,.6	425,04	400	60 mc	30 mw
SRV215	osc	34.2-35.4	6.3,6	400,.04	500	110 mc	30 mw
SRU216	osc	15-17	6.3,55	300,.031	500		20 mm
SOC217	osc	4-6	6.3, 3	380,.015			300 mw
SOC258	osc	C-band	6,3,75	3,1k, 75		$\pm 25 \mathrm{mc}$	1\%
SAX151	ampl, 5 res	9-9.5	5,25	80k,45			1megw
\$0×239	OSC	8.2-12,4	6,3,5	2.9k, 017			1w
S0x241	osc	8,2-12,4	6.3,.3	900,033			1.5W
S0X254	osc	8.2-12.4	6.3,8	515,015			450mw
SRX230	refl	8.5-10.5	6.3., 45	300,.026			30 mw
SRX232	refl	7-8.6	6.3,45	400,055	300		100 mw
SRX233	refl	7-8.6	6.3,45	400, 055	300		100mw
SRX262	refl	8.2-12.4	6.3,1.3	400, 045	400		100mw
SOU245	osc	12-13.5	6,3,1,7	1.75k,14			5w
SRU226	refl	15-17	6.3,.55	300,.035	160		45 mw
SRU266	refl	15-17	6.3,55	300,.03	100		20 mw
SRX2 ${ }^{5}$	gasc	8.6	6.3,1.3	700,.058	430		I*

new pulse tubes for better definition in high power radar systems

Westinghouse offers two new High Vacuum Switch Tubes for pulse modulator service in radar systems: The WX 4450-highest power tube in the industry-is a 37 megawatt triode for very high voltage at high current. The WX 4675 delivers high voltage at mediur current. These are two of a line of tubes developed to meet the latest military radar requirements. For more information, or application engineering assistance to solve your specific problems, write on your company letterhead to: Westinghouse Electric Corporation, P.O. 284, Elmira, N.Y. You can be sure . . . if it's Westinghouse.
Examples of Westinghouse high vacuum switch tube capabilities

D.C. plate voltage	$\begin{aligned} & W X 4450 \\ & 80 \mathrm{KV} \end{aligned}$	$\begin{aligned} & W \times 4875 \\ & 75 \mathrm{KV} \end{aligned}$
Peak plate current	600 Amps (a). 01 duty	200 Amps © .01 duty
	Lp to 1400 Amps special afplications	up to 400 Amps special applications
Peak Power	37 megawatts typical, up to 90 megawatts on very short pulse width, Iow duty	14 megawatts typical, up to 26 megawatts on very short pulse width, low duty

Westinghouse

MICROWAVE ELECTRON DEVICES

Type Description App; Du. Cy. Frequency (kme) Heater $V ; A$ Beam $V ; A$ Refl V Tun Ronge Power Output

STANDARD TELEPHONES \& CABLES, LTD., Brixham Rd., Paigiton, Devon							
V218A/IK	osc,cw	1.7-2	6.3, 3	250,05	270		.5w
V231C/1K	osc, cw	3.04-3.12	$6.3,25$	200,.045	220	16 mc	50mw
V233A/1K	osc, cw	2.7-4.2	$6.3,3$	250,.065	270	2 mc	. 5 w
V235A/1K	OSc, cw	2.7-4.2	6.3,3	250,.065	270	2 mc	. 7 w
V237C1K	OSC, CW	3.5-3.8	6.3,. 26	255,.065	275	8 mc	. 4 w
V238A/ C	osc, cw	3.5-4.3	6.3, 25	325,.05	355		Iw
V239C/K	OSC, cw	3.8-4	6.3,.26	255,.065	275	8mc	. $4 w$
V243A/2F	OSC, CW	4-4.24	6.3,26	260, 065	280	8 mc	. 4 w
V245C/IK	OSC, cw OSC,	$4.2-4.4$ $4.4-4.6$	6.3,.25	255,.065	275		. 8 w
V246A/2K	osc,cw	4.65-4.86	$6.3,2$ $6.3,3$	$240, .065$ 250,065	280	17mc	. 3 w
V246C/4K	osc, cw	4.4-4.85	$6.3,3$	320,.05	340	6 mc	. 5 w
V247C/1K	osc,cw	4.6-4.8	6.3, 3	245,.065	285	17 mc	. 3 w
V249C/1K	osc, cw	4.76-5	6.3,3	265,065	285	16 mc	.3w
V26IC/1M	osc, cw	5.85-6.35	6.3, 25	530,.06	550	17me	1 w
V265A/M	osc, cw	5.85-7.1	6.3.25	330,.06	350		. 35 w
V266C/IM	OSC, CW	6.35-6.85	6.3. 25	530,06	550	17mc	I*
V271C/3M	OSC, CW	6.85-7.35	6.3 .25	530,.06	550	17mc	Iw
V275C/3M	OSC, cw	7.25-7.77	6.3, 25	530,.06	550	17 mc	1*
Z211/LG	ampl,plsd	. $96-1.21$	12.6,1.8	5k, 2.5	15k		Bkw
Z237/1K	refl	1.7-2.3	6.3,75	350, 05	250	16 mc	250 mw
Z239/1G	refl	3.5-3.54	$6.3,75$	350,.055	200	43 mc	150mw
223)/is	refl	3.6-4.2	6.3,1.1	1.1k, 07	700	45mc	1.2 w

$\underset{\times 12}{\text { VARIAN }} \underset{\text { refl }}{\text { ASSOCIATES, }} \underset{\text { Tube Div., Palo Alto, Califomia }}{12.4-17.5}$

Type	Description App; Du. Cy.	Frequency (kma)	Heater $V_{i} A$	Beam $V ; A$	Relf \mathbf{V}	Tun Range	Power Output

$\begin{array}{cr}\text { VARIAN ASSOCIATES-(Continued) } \\ \text { VA92C } & \text { refl } \\ \text { VA93 } & 12.4-14.5\end{array}$

600	$55 m c$	200 mw

VA92C	refl	$12.4-14.5$
VA93	refl	$13.3-12.7$
VA94	refl	$16-17$
VA94B	refl	$15.8-16.2$
VA96	refl	$22-25$
VA998	refl	225

$55 m \mathrm{mc}$
200 mw
20 mw

VA
VA
VA

BACKWARD WAVE TUBES

Type	Description App; Du. Cy.	Frequency (kmc)	Heater V;A	Helix \mathbf{V}	Foc. FId. (Gouss)	Power Output

BENDIX, Red Bank Div., Eatontown, N. J.						
TWO66	OLS	$61-71$	6.3	2.5 k	2 k	3 mw
TW067	OSC	$49-59$	6.3	3 k	sol	7 mw
TW082	OSC	$50-60$		2.5 k	sol	7 mw

Type	Description App; Du. Cy.	Frequency (kme)	Heater V;A	Hellx V	Foc. Fld. (Gauss)	Power Out put
BENDIX-(Continued)						
TW075	OSC	40-50		2.5k	sol	10nw
TW085	osc	70-85		3.1k	sol	4 mw
TW087	OSC	85-100		3. Ik	sol	2.5 mw

These two new plants represent the progress being made in Raytheon's continuing program for providing the industry with the broadest line of quality semiconductors. Through new facilities such as these Raytheon will continue to advance the state of the art as well as offer increased service, faster delivery, and competitive prices. The products to be produced by the two new plants include: GERMANIUM DIODES/SILICON dIODES / SILICON DIFFUSED RECTIFIERS / GERMANIUM alloy transistors / Germanium epitaxial mesa

TRANSISTORS / SILICON PNP ALLOY TRANSISTORS / SILICON NPN ALLOY TRANSISTORS / SILICON PLANAR TRANSISTORS / SUBMINIATURE TRANSISTORS / POWER TRANSISTORS / VARACTOR DIODES/ AVALANCHE TRANSISTORS / CIRCUIT-PAKS

For further information as well as complete technical data on any of Raytheon's semiconductor products, call the Raytheon office nearest you.

traveling wave tubes

Type	Description App; Du. Cy.	Freq. (kmc)	Heater V ; A	$\underset{V}{\text { Helix }}$	Foc. Fid. (Gauss)	Gain (db)	Noise Fig. (db)	Power Output
7537	ampl	4.4-5	6.3 .8	1.1k	600	34	6 w	6 w
TWC4	ampl	6-7.5		2.6k	$600 *$	40		2w
TWC5	ampl	5.9-8		1.8\%		38	30	10w
TWS6	ampl	2.5-4.1		2.4k	$500{ }^{\circ}$	20	30	0.5w
TWS7	ampl	2.7-3.5		2.4k	500°	20	30	
THX8	ampl	7-11.5		2.8k	pkgd	25	30	0.75 w
- Oersted ${ }^{\text {a }}$								
CANADIAN MARCONI CO., 2442 Trenton Ave., Mantreal 16, Canada								
N1001	ampl	1.7-2.3	6.3,1.6	2.8	400	25		16w
8202	ampl,cw	1.7-2.3	6.3,1.6	2.5k	600	40	35	10 w

Type	Description App; Du. Cy.	Freq. (kme)	Heater $V: A$	Helix V	Foc. FId (Gauss)	Gain (db)	Noise Fig. (db)	Power Output

COMP AGNIE GENERALE DE T.S.F., 79 Boulevard Haussman, Paris 8, France							
TPD101	ampl	2.7-3.3	400	pm	30	5.8	1.5 mw
TP0741	апп¢\|	3.8-4.2	400	pm	25	6.5	2TW
TP0301	ampl	8.5-9.6	800	pm	25	8	Inw
TPO153A	ampl	1.7-2.7	2.6k	pm	32		7w
TP0921	ampl	3.6-9.2	1.1k	pm	20		2w
TP0430	ampl	3.8-4.2	2 k	prim	25		6 w
TP0570	ampl	3.8-4.2	2k	pm	28.5		15w
TP0410	ampl	5.9-7.4	1.9k	pm	25		6 w
TP0925	ampl	1.215-1.35	1 k	pm	30		6.6 wp
TPO125	ampl	1.215-1.35	12k	pm	27		4kwp
TP0103	ampl	2.9-3.1	1.7 k	pm	27		10up
TP0902	ampl	2.5-4.2	260	prn	30	12	
EITEL-McCULLOUGH, INC., San Carlos, Calif.							

monoulse ANTENNA COUPLERS

WR42 four-port antenna coupler

MDL monopulse antenna couplers are designed from proven stock components, resulting in quick delivery and lower costs. Exacting quality control assures interchangeability of assemblies and simplified systems design. Each coupler is shipped with certified test results.

MDL monopulse couplers have met these general specifications:

$$
\begin{array}{ll}
\begin{array}{l}
\text { Bandwidth: } 10 \% \\
\text { At antenna ports - } \\
\text { phase relationship: } \\
\text { phase error: } \\
\text { phase deviation }
\end{array} & 0^{\circ} \& 180^{\circ} \\
\begin{array}{ll}
\text { with frequency: }
\end{array} & \mathbf{2}^{\circ} \text { max. } \\
\begin{array}{l}
\text { output unbalance: }
\end{array} & \begin{array}{l}
0.25 \mathrm{db} \text { max. }
\end{array} \\
\begin{array}{ll}
\text { Sum channel VSWR: }
\end{array} & 1.15 \text { max. } \\
\text { Difference channel VSWR: } & 1.25 \text { max. }
\end{array}
$$

What are your monopulse antenna feed requirements? Send us your specifications today for a prompt quotation.

MIcrowave Development

Laboratorles, Inc.

15 Strathmore Road - Natick Industrial Centre - Natick, Massachusetts
telephone: OLympic 5-1400 - CEdar 5-6252 - TWX: NTK 295
Circle 80 on Inquiry Card

High Power Sweep To 1250 MC From TELONIC

With a maximum output of 14 volts - 4 watts, Telonic PD Sweep Generators provide a new era in sweep techniques. They operate in 4 different modes - swept RF, modulated swept RF, CW, and modulated CW-selected by a function switch. Their display linearity is better than 1.2:1, and output is flat within $\pm 7.5 \%$ over the maximum sweep width.
The instrument's built-in turret attenuators provide a range of 0 to 59 db in 1 db steps with direct dial readout of attenuation value. Provisions for an extemal marker and fixed plug-in markers are also included.
Available in 7 models covering various frequency ranges up to 1250 mc , the PD units are ideal for high power applications. Since their output level is 100 times greater than that of other sweep generators, the usefulness of swept techniques is greatly expanded. In fact, the response of a device having as much as 60 or 70 db loss can be easily displayed on a high-gain oscilloscope with a PD unit.
Specifications on all PD models may be obtained from Technical Bulletin T-21713.

INDUSTRIES, INC.
BEECH GROVE. INDIANA - PHONE STATE 7-7241

[^14]TRAVELING WAVE TUBES-(Continued)

Type	Description App; Du. Cy.	Freq. (kmc)	Heater $V ; A$	Helix \mathbf{V}	Foc. Fld. (Gaus s)	Gain (db)	Noise Fig. (db)	Power Output

ENGLISH	ELECTRIC	VALVE	CO.,	Chel	d			
6861	ampl	1.7-3.5	5, 5	375	525	25	6.5	1 mw
N1001	ampl	1.7-2.3	$6.3,1.5$	2.63 k	450	25		15w
N1002	ampl	1.7-2.3	6.3, 36	565	450	23	9	2.5 mw
N1004	ampl	3.8-4.2	6.3, 68	2.2k	500	24		5*
N100M	ampl	3.6-4.2	6.3,36	380	350	20	9	Imw
N1013	ampl	1.7-2.3	6.3,.36	650	400	33	20	250 mw
N1016M	ampl	4.1-7	6.3,36	585	520	40	9	4.5 mw
N1017M	ampl	1.2-1.4	6.3,.36	260	450	26	6.5	2 mw
N1018M	ampl	3.6-4.2	6.3.36	600	400	33	21	100 mm
N1024M	ampl	3.6-4.2	6.3,.36	380	350	20	9	lmw
N1025M	ampl	3.6-4.2	6.3,. 36	600	400	33	21	100 mw
N1029	ampl	5.9-7.2	6.3,1.2	2.65k	600	43		9w
N1031	ampl	3.8-4.2	6.3, 36	490	550	25	8.5	2.3mw
N1032	ampl	3.8-4.2	$6.3,36$	1.45k	350	38	19	300 mm
N1033	ampl	3.8-4.8	6.3 .71	2.175 k	550	37		7 w

GEISLER LABS., P. O. Box 353, Woodland Hills, Calif.

G020P	ampl	.5-1	Pri		10mw
G050P	ampl	1-2	pm		10mw
G100P	ampl	2-4	pra	30	10mw
G200P	ampl	4-8	pm	30	10mw
G400P	ampl	8.2-12.4	pm		20 mw
G110P	ampl	2-4	Pm		30 mw
G210P	ampl	4-8	Pm		10 mw
G020	ampl	.5-1	sol		10 mm
6050	ampl	1-2	sol		10 mw
G100	ampl	2-4	sol	30	30 mw
G200	ampl	4-8	sol	30	30 mw
6400	ampl	8.2-12.4	sol	34	20 mw
G070	ampl	1-2	sol	32	10 mw
G110	ampl	2-4	sol	34	30 mw
G210	ampl	4-8	sol	32	30 mw
G410	ampl	8.2-12.4	sol		30 mw
G120	ampl	2-4	sol	30	10 mw
G420	ampl	8.2-12.4	sol		

GENERAL ELECTRIC CO., Power Tube Dept., Schenectady 5, N.Y.

GL7393	ampl, cw	4-8	6.3.3	500	pm	25	10	5mw
Z3031	ampl,cw	14-18	6.3 .3	1.2k	pm	25	14	5 mm
Z3040	ampl,cw	35-40			em	20	15	3 mw
Z3086	ampl, 005	8.5-9.6			Ppm	60		50kw
Z3088	ampl, cW	7-11	6.3 .3	780	ppm	35	15	5 mw
Z3090	ampl, 0005	8.5-9.6	4.3.8		1500	30		5kw
Z3091	ampl, 004	8.5-9.6	6,8		1700	20		250kw
ZM3092	ampl, 02	5.4-5.9			ppm	30		25kw
ZM3093	ampl, Cw	7.5-8.5	6.3.3	850	pm	25	7	3 mw
ZM3103	ampl, cw	7-11	6.3.3	850	pm	25	10	5 mw
ZMB 105	amplicw	7-11			ppm	35	15	15mw
ZM3107	ampl, cw	6-12			ppm	35		10w
ZM3110	ampl, cw	4-8			ppm	25	10	5 mw
2M3113	ampl, cw	2-4			pm	20	5	1 mw
ZM3115	ampl, cw	18-26.5			ppm	25	13	Imw
ZM3116	ampl, cw	26-40			ppm	20	15	Imw
GL7394	ampl	8-12	6.3,3	850	pm	25	10	5 mw
Z5182	ampl, cw	14-18	$6.3,31$	1.8k	ppm	30	25	150 mw
Z5183	ampl, cw	14-18	6,5	3.5k	ppm	30	30	10w
Z5184	ampl, 01	14-18			sol	25		lkw

Type	Description App; Du. Cy.	Freq. (kme)	Heater V;A	Helix V	Foc. FId. (Gauss)	Gain (db)	Noise Fig. (db)	Power Output

HUGGINS	LABORA	RIES, IN	- - Con	nued)				
HA46	ampl	12-18	5,1.4	1.3k	lk	25	12	1 mw
HA47	ampl	4-8	5,1.1	700	lk	25	10	1 mw
HA48	ampl	12-16	5,1.4	1.3k	lk	25	13	1mw
HA54	ampl	2-4	5,1	800	ppm	25	15	3mw
HA60	ampl	$8-11$	6.3,1.2	1.25k	ppm	25	17	10mw
HA61	ampl	7-14	5,1.1	1.3k	1000	25	15	1mw
HA62	ampl	2-4	5.1	500	BS-53C	25	10	5 mw
HA73	ampl	1-2	5,0.8	200	1000	25	8	lmw
HA86	ampl	0.5-1	5,1	120	800	25	7	1 mw
HA89	ampl	2-4	5,1.1	450	BS-67C	20	8	10mw
PA1		8-11	7,1.4			30		
PA3			7,1.2					
PA4	ampl, 0.1	2-4	7,1.2	950	600	33		1w
PA5		8-12.4	7,1.2					300 mw
PA6			7,1.2	lk	ppm	30		1w
PA7					1k	30		
PA8	ampl, 0.1	4-8	7,1.2	1.6k	ppm	30		1w
PA9			7,1.4					
Palo	ampl,0.1	2-4	7,1.2	1.1k	ppm	30		10w
DAI	v. tun	2-4	6.3,0.85	2.38k	250	28		
DA2	v. tun	1-2	6.3,1.2	1.02k	250	33		
DA3	v. tum	0.5-1	6.3,1.1	1065	250	30		
DAA	v. tun	4-8	6.3,1.1	2.5k	400	25		
HAl6	mult	1.76/8.8	7,1.2	1.2k	600	-10		$2 \pi w$
HA34	mult	0.4-1/2-4	6.3,1	250	550	-10		2 mw

HUGHES, Microwave Tube Div., 11105 La Cienega Blvd, Los Angeles 45, Calii.					
314 H	ampl, cw	1.9-2.1	ppm	33	2.5w
349 H	amplicw	2.2-2.4	ppm	23	10w
351 H	ampl, 01	2.3-2.9	ppm	33	1kw
362 H	ampl, 005	2.7-2.9	ppm	46	100w
363H	ampl, cw	2-4	ppm	35	1%
343H	amplew.	2.7-3.3	ppm	45	4.5w
334 H	ampl, 006	2.9-3.1	ppm	30	Ikw
354H	ampl, 02	2.9-3.1	PPm	32	1.3kw
364 H	ampl, 005	2.8-3.2	ppm	31.5	lkw
321H	ampl,006	2.85-3.15	ppm	26	250kw
312 H	ampl, 005	2-4	ppm	30	${ }^{\text {k }}$ W
374H	ampl, 006	2-4	PPTm	30	lkw
304 H	ampl, 01	2-4	ppm	30	Ikw
340 H	ampl, 01	2-4	ppm	30	1kw
311 H	ampl, 01	2-4	ppm	30	lkw
350 H	ampl, 01	2-4	ppm	30	1kw
361 H	ampl, 02	2.9-3.6	ppm	30	1kw
341 H	ampl. 01	2.5-4	ppm	33	lkw
344H	ampl, 005	3.35-3.65	ppm	32	1.5kw
306 H	ampl. 02	5.4-5.9	ppm	43	20kw
319 H	ampl, 01	8.4-9.5	ppm	54	20kw
378 H	ampl, 01	8-10	ppm	45	20 kW
337 H	ampl, 01	8.6-9.8	ppm	53	15kw
307H	ап\%1, 01	8.55-9.45	ppm	50	50kw
347H	ampl, 01	8.55-9.45	ppm.	50	50 kw
308 H	ampl, 01	8.45-9.95	ppm	52	15kw
310 H	ampl, 02	8.2-11.4	ppm	40	lkw
392H	ampl,cw	2-4	ppm	30	lw

ITT, Components Div., P.0. Box 412, Clifton, N.J.

F6658	anpl, cw	1.7-4	6.3,2.5	1.25k	750	30		5w
F6825	ampl, 005	2-4	6.3,5	8.5k	1.2k	30		2kw
F6826	ampl,. 005	2-4	6.3,5	8.5k	1.2k	30		1.5 kw
F6867	ampl, cw	8-9.6	6.3,85	1.5k	1.3k	30		100 mw
F6868	ampl, cw	1.7-4	6.3,2.5	1.5k	1k	30		10 w
F6996	ampl, cw	8-9.6	6.3,2.3	3.4k	1.3k	30		10w
F7066	ampl, cw	8-12	$6.3,85$	1.6k	900	30		50 mw
F7067	ampl, 04	8-12	6.3,2.3	4.5k	1.2k	30		1w
F7338	ampl,.005	2-4	6.3,5	8.5k	1.2k	40		1kw
F7339	ampl, 005	8.5-9.6	6.3,2.5	12k	2.8k	27		lkw
F7340	ampl, 005	$8-9.6$	6.3,5.2	12k	2.4k	30		1kw
F7341	ampl,cw	8-9.6						5 w
F7347	ampl, 005	2-4	6.3,5.2	8k	1.2k	30		1kw
F7524	ampl, cw	8-12	6.3,1.7	4k	1.2k	20		5w
F7525	ampl,cw	$8-12$	6.3,1.7	4k	sol	20		$5 *$
F7526	ampl, cw	8-12	6.3,85	1.6k	sol	30		50 mw
F7847	ampl, cw	5-6	6.3,22	3k	1.2k	27		10w
F7848	ampl, 005	5.4-5.9	6.3,5.2	17 k	2 k	27		2 kw
02004	ampl, 04	8-9.6	6.3,2.3	3.4k	1 k	25		5w
02009	ampl, 04	3.95-8	6.3,2.5	2.5k	sol	35		2w
02013	ampl, cw	8-9.6	6.3,2.3	3.4k	1.3k	33		5 w
02014	ampl, 005	8-9.6	6.3,5.2	12 c	2.4k	33		1kw
02023	ampl, 01	4-8	6.3,5	10k	2k	30		1kw
$\times 282$	ampl,cw	4-8	6.3,1.5	3k	1.2	25		10 w
$\times 354$	ampl,cw	8-12	6.3,2		pm	33		5w
$\times 368$	ampl, cw	8-12	$6.3,85$		pm	35		50 mw
$\times 370$	amplew	4-8	6.3,2		pm	33		10w
W5/1G	ampl,cw	5.8-7.15	$6.3,85$	3.2k		40		18w
W7/4G	ampl, cw	3.6-4.2	6.3,85	3.15k		42		10w
W9/LE	ampl, cw	2.5-4.1	6.3 .75	450		28	21.5	120 mw
W10/3E	ampl, cw	2.7-3.3	5,6	550		25	6.2	lw
LITTON INDUSTRIES, Electron Tube Div.e San Calos, Calif.								
L3236	ampl, cw	7-11			ppm	36		2w
L3266	ampl,cw	7-11			ppm	36		20mw
L3470	ampl, cw	4-8			ppm	36		20 mw
L3471	ampl, cw	4-8			ppm	36		2w
L3472	ampl,cw	7-11			ppm	36		10w
L3499	ampl, cw	2-4			ppm	36		2w
L3528	ampl, cw	5-11			ppm	33		5w
L3529	ampl, ow	7-11			ppm	36		20 w
(${ }^{\text {a }}$ (Continued on page 162)							page	162)

New

Products

VARIABLE ATTENUATOR

Coaxial unit for lab or for use in systems design.

Model D-1196 is continuously variable 0-25 db with an insertion loss below 0.5 db . The unit features constant attenuation for a given setting. Range is $0-500 \mathrm{mc}$. Connectors are BNC (N and TNC available), Radar Design Corp., Pickard Drive, Syracuse 11, N. Y.

Circle 281 on Inquiry Card

MICROWAVE EQUIPMENT

Features transistorized modules and $a c / d c$ operation.

Line includes MR-50 RF equipment; MC-50 multiplex; MT-50 telegraph carrier, and the MA-50 alarm system. All stages are transistorized except the r-f transmitter klystron with life expectancy of $20,000 \mathrm{hrs}$. of continuous operation. The MR-50 RF unit uses a transmitter AFC with a freq stability of $\pm 0.005 \%$. Available in nonstandby, standby, freq. diversity and space diversity models. 600 subcarrier channels of toll quality voice communications are provided through the MC-50 SSB multiplex unit. Motorola Inc., Communications Industrial Electronics Div., 4501 W. Augusta Blvd., Chicago 51, Ill.

Circle 282 on Inquiry Card

TRAK STOCK ITEM:

Our Smallest Oscillator To Tune Entire C-Band

Our smallest local oscillator to tune the entire C-Band is now in production. It features high overall power efficiency and more power output than was previously available. It can be furnished with temperature stabilities of less than 1 Mc total drift for $100^{\circ} \mathrm{C}$ temperature change.

TYPICAL SPECIFICATIONS

FREQUENCY: Tuneable from 5.2 Gc to 6.0 Gc by adjusting a screw located on one end of the C-Band Cavity.
POWER OUTPUT:

POWER INPUT:
temperature
STABILITY:
MOUNTING:
Greater than 10 mw from 5.4 to 5.9 Gc . Greater than 5 mw over the entire band.
$175 \mathrm{~V} D C$ at approximately $13 \mathrm{ma} ; 6.5$ V@240mo.
Less than $\pm 2 \mathrm{Mc}$ drift from $-20^{\circ} \mathrm{C}$ to
$+105^{\circ} \mathrm{C}$. Greater stability available.
Engineered to customer specifications.

WE'D LIKE TO TACKLE YOUR ENERGY SOURCE PROBLEMS Trak Microwave specializes in engineering and manufacture of microwave oscillators, power amplifiers and harmonic generators using both solid state and tube techniques. Inquiries invited.
PHONE COLLECT: TAMPA 876-6422 or TAMPA 876-6407.

Typical stock oscillators are included in Catalog 61-A, giving specifications, illustrations and performance curves. Immediately available upon request.

TRAK

MICROW AVE CORPORATION 5006 N. COOLIDGE AVENUE TAMPA 3, FLORIDA

Specialists In Miniature Microwave Energy Sources

IET IIILIIIES IIIMIILE YOIR

PROIII STHRT

,TECHNICAL SERVICE some tubes fit - some don't. Your system may have a socket that will take an off-the-shelf item - or it may require a small modification to an existing tube, or even a totally new design. Whether you want to start from scratch, or prefer a catalogue item, Hughes liaison engineers and the entire Division will provide just the service needed.

2RESEARCH \& DEVELOPMENT Hughes, an acknowledged leader in microwave tube research and development, is continuing the necessary gun, circuit, and materials processing research and development to provide the most advanced traveling-wave amplifiers and backward-wave oscillators for the next generation of ECM, radar, and communications systems. These advanced programs are supported by a variety of prime contractors and military agencies as well as company funds.

TRIIIEIIIGG IIIIE TILBE PROLLRLIS

9
PRODUGTION Hughes is now delivering traveling-wave tubes at annual rates that number in the thousands. This outstanding growth results from an ability to transform sophisticated development tubes into production versions rapidly and economically. It also includes the ability to deliver one off-the-shelf item or an entire communications or weapons system tube requirement, numbering in the hundreds, with equal dispatch and reliability of product.

For more information about the production TWT's shown above, or other Hughes tubes, contact your nearest district office.
NORTHEASTERN 4 Federal Street, Woburn, Mass. WElls 3-4824 EASTERN 2000 "K" Street, N.W., Washington 6, D. C. FEderal 7-6760; 13 Lloyd Avenue, West Long Branch, N. J., CApital 2-1111 WESTERN 11105 South La Cienega Blvd., Los Angeles 45, Calif. SPring 6-1515

HUGHES

TRAVELING WAVE TUBES-(Continued)

Type	Description App; Du. Cy.	Freq. (kme)	Heater V;A	Helix \mathbf{V}	Foc. Fid. (Gauss)	Gain (db)	Noise Fig. (db)	Power Output

LITTON	INDUSTRIES	(Continued)
L3611	ampl, cw	7-11
L3612	ampl,cw	7-11
L3497	ampl. 06	1.24-1.4
L3634	ampl, cw	9.1-9.5
L3615	ampl,cw	2-4
L3663	ampl,cw	2-4
L3619	ampl,cw	2-4
L3657	ampl,cw	4-8
L3658	ampl,cw	4-8
L3614	ampl, 01	8-11

 M2103N
M20130
M21032

look into Panoramic's new SPA-4a exclusive features for more reliable spectrum analysis 10 mc to $44,000 \mathrm{mc}$

2 to 4 TIMES THE USABLE SENSITIVITY

BAND -420 MC RENSITIVITY* Lower internal noise enables 1. $10-42000 \mathrm{MC}$ - 95 to- 105 dbm alysis of even smaller signals than before (see chart) . . . accurate measurement of more measurement energies. highly dispersed extremely as typified by extremely
narrow pulsed signals. 2. $350=2000 \mathrm{MC} \quad-100$ to -100 dbm 3. $9180=4500 \mathrm{MC}$ - 90 to -100 dbm 4. $1980=4.50 .88 \mathrm{KMC}=90$ to -100 dbm $5.10 .5-18.0 \mathrm{KMC}=85$ to $=90 \mathrm{dbm}$
$6.10 .88-10$ to 96
 8. 26.4 - 44.0 KMC nd noise equal $2 \times$ noise *measured when signal and noise equal $2 \times$ noise

EXCEPTIONALLY

Reduced threshold allows SPA-4a to operate allows SPA- input signal at smaller attenuated levels (and attunrelarger ones). touched screen photits show how this permise virtually spurious-free measurement-over a wide dynamic range-0 wide dynams, in-band harmonics, and other distortion, and in the weak signals in the

LOW DISTORTION

Extended dynamic range comExtended dynamis on SPA-4a. parison of +15 db over full Larger is + maller is at -28 db . scale log. -43 db from larger. on scale exceptional freedom spurious. (Photo not retouched)

Distortion analysis illustrates SPA-4a wide range linearity is odd-order diste than 50 db bemeasured mo 2 main tones (delow level of 2 mave full scale). fiected unretouched. Photo unretouched.

HIGHLY RESOLVED \& CALIBRATED

Reduced internal hum improves resolution of Res spals; closely spaces minimum also improves more highly magnified higlyses. Marker madulation permits moduly accurate nighly accurats of measureme differences frequency ding speed during high speed
analysis. See photos.

Narrow band 20 ke dispersion analysis shows unique resol tion capability. Here, 2 ke modumC FM signal with 2 first carrier lation is seen neatouched. null. Photo unretouched.

Pips of internal marker and Pips of sidebands (ext. mod. $\approx 100 \mathrm{kC}$) sidebarately measure pus. rawidth in spectrum of $10 \mu \mathrm{~S}$. dar pulse. Upper lobes setouched) dar very

Important as these advantages are, there are many more.

Easy to use, too... human engineered for simple operation, component accessibility.
The advanced new SPA-4a is unmatched for visually analyzing FM, AM and pulsed signal systems -instabilities of oscillators
-noise spectra-for detection of parasitics-studies of harmonic outputs, radar systems and other signal sources.
Write, wire, phone today for detailed SPA-4a specification bulletin and new Catalog Digest.

Sec. 2900
 the pioneer is the leader

1. ONE TUNING HEAD - 10 mc to $44,000 \mathrm{mc}$, utilizing 3 stabilized, low hum local oscillators (1 HF triode and 2 klystrons). Fundamentals to 11 kmc. Direct reading with $\pm 1 \%$ accuracy.
2. TWO INDEPENDENT FREQUENCY DISPERSION RANGES: Continuously adjustable; 0.70 mc with exceptional flatness, stable 0.5 mc for narrow band analysis. Both swept local oscillators operate on fundamentals only for spurious-free analysis.
3. PUSH-BUTTON FREQUENCY RANGE SELECTOR.
4. ADJUSTABLE IF BANDWIDTH 1 KC to 80 KC .
5. 3 CALIBRATED AMPLITUDE SCALES - $40 \mathrm{db} \log$, 20 db lin, 10 db power.
6. SYNCHROSCOPE OUTPUT WITH 40 DB GAIN.
7. SWEEP RATE ADJUSTABLE FROM 1.60 CPS. May be set free running, synchronized to the line or to external prf. Also provisions for sweep rate calibrations.

SEE US AT N.E.R.E.M. • BOOTH \#809

New
 Products

SOLID-STATE SWITCH

Dissipative type, nsec. switch for operation at 4300 MC .

This solid-state microwave switch has been developed for C-band usage. A lightweight, small volume strip transmission line configuration provides isolation greater than 20 db with insertion loss less than 1.5 db over a 6% bandwidth. Over this same bandwidth, vswr's of less than 1.5:1 can be realized. Switch times less than 5 nsec . have been observed using suitable driving sources. The Bendix Corp., Bendix-Pacific Div., 11600 Sherman Way, N. Hollywood, Calif.

Circle 351 on Inquiry Card

WAVEGUIDE SWITCH

Covers the freq. range from 5.85 to 18 gc.

Illustrated is the X -band switch for use with RD67/U guide. It has a max. vswr of 1.10:1, min. isolation of 50 db and 0.10 db insertion loss, and 250 kw peak power handling capability at 1 atmosphere from 8.5 to 9.6 GC. The RG67/U switch can be pressurized to 45 psi and is driven by a "fail safe" solenoid drive that operates from either 28 vdc or 110 vac. NRK Microwave Div., Cook Electric Co., 4601 W. Addison St., Chicago, Ill.

Circle 352 on Inquiry Card

WAVEGUIDE SWITCH

It features long life, lightweight and high reliability.

High-speed, all-solid-state waveguide switch, the MA-3470 $2 \mathrm{X1}$, is a rugged, compact unit for microwave applications in which ultra-fast switching (typically 2 nsec .) is desired. It is available as a SPDT unit for operation at X-band (9200 MC to $9600 \mathrm{Mc})$. A major advantage is the low driving power required (approximately 75 mw). Insertion loss in the "closed" position is 4.5 db max., and isolation of 60 db min. is provided in the "open" condition. It will handle 150 w . peak power, and up to 4 w . CW. Microwave Assoc., Inc., Burlington, Mass.

Circle 353 on Inquiry Card

WAVEGUIDE SWITCH

Offers long life, ability to switch under power and fast switching time.

Other features of the Transprobe ${ }^{\text {R }}$ are the small size and low actuating power. Actuator current at 28 vdc is 0.7 a. r-f switching time is less than 10 msec . Switches will meet military environmental requirements. Typical specs. for a SPDT, X-band, Transprobe are: Freq.- $8.2-12.4 \mathrm{GC}$; vswr - 1.25 max.; Insertion loss - 0.25 max.; r-f power- 10 kw peak, 10 w . average (250 kw peak, 160 w . average can be supplied) ; and Switching time -50 msec. max. Transco Products Inc., 12210 Nebraska Ave., Los Angeles, Calif.

Circle 354 on Inquiry Card

Inquire about Sperry Tubes from these convenient Cain \& Company offices

REGIONAL OFFICES

Burbank, California 2615 W. Magnolia Blvd. VI 9-6781

Great Neck, Long Island, N. Y.

260 Northern Boulevard HN 6-0600

Chicago 45, Illinois 3508 Devon Avenue OR 6-9500

St. Petersburg, Florida 410-150th Avenue Madeira Beach Prof.Bldg. 391-0151

DISTRICT OFFICES

Boston, Massachusetts
Phone VO 2-5330
Philadelphia, Pennsylvania Phone VI 8-1700

Washington, D. C.
Phone EX 3-7587
Dayton, Ohio
Phone RO 7-8661
Dallas, Texas
Phone BL 5-2050
Albuquerque, New Mexico Phone 268-5300

San Francisco, California Phone YO 8-0995

San Diego, California
Phone HU 8-0665
Seattle, Washington
Phone MA 3-3303

Sperry adds high-power pulsed TWT's to list of tubes available in $\mathbf{3 0}$ days

In a move to simplify design problems in present and future radar systems, Sperry Electronic Tube Division of Sperry Rand Corporation has added two high-power pulsed traveling wave tubes to the list of advanced microwave tubes available in 30 days.

The two tubes covered by the an-nouncement-the STL-114 and the STC-152-operate in L and C bands, respectively. They are typical of a line of pulsed TWT's ranging from P through V bands which Sperry offers on a firm delivery date basis.

EASY RADAR APPLICATION

Sperry's pulsed TWT's are admirably suited to the demands of application in phased array radars, height finders, search, ECM, and other radar applications. Widely varied in-system experience has proved that their reliability, long life, high power, high gain, and extreme broadband operation make them ideal for radar use.
Design features of this tube family minimize the necessity for system adjustments in the field. Among these features are broadband response, constant voltage operation, and short circuit stability.

VERIFIED RELIABILITY

These pulsed TWT's, produced at Sperry's Great Neck, N. Y., facility, have compiled an impressive record of in-system experience. Such experience has proved that their resistance to shock and vibration damage, their inherent indifference to ambient conditions, and their mounting flexibility make them ideal for ground or airborne application.

Place your order with your Cain \& Company representative. His phone number appears in the adjacent column. Tubes are available within 30 days after receipt of order.

FREE TECHNICAL INFORMATION ON the Sperry line of high-power pulsed traveling wave tubes may be obtained by writing to Sec. 404, Sperry Electronic Tube Division, Gainesville, Florida.

V BAND CAPABILITY

Among Sperry's other interesting activities in pulsed TWT's is the extension of capability into the V Band -26.5 to 40.0 kMc . Although these efforts are largely classified, inquiries are invited from those who have the necessary clearance and need to know.

FACTORY ALIGNMENT of a Sperry TWT within its focusing solenoid greatly simplifies field maintenance. Once this operation has been performed by a skilled Sperry technician, the assembly is self-aligning.

Typical saturated power outpui vs. frequency for a pulsed Sperry TWT.

Typical small signal gain vs. frequency for a pulsed Sperry TWT.
GTARY

High Speed - High Resolution High Sensitivity Spectrum Analysis

win Ruspan SPECTruM analyzer

Raytheon Rayspan Spectrum Analyzers, through a unique application of multiple filters, can analyze entire spectrums as wide as 33 kc at scanning rates as high as 200 times per second with excellent resolution and a dynamic range of 40 db . Frequencies as low as 8 cps can be identified. Resolution for two equal-amplitude signals is approximately 0.7% or 3% of the analysis band depending on the Rayspan model employed.

Any model can be adapted for use with high speed, helix recorders to provide permanent records of frequency versus real time. A built-in timing pulse generator allows scan-by-scan synchronization of Rayspan with an oscilloscope.
For complete technical data please write to: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

RAYTHEON COMPANY

INDUSTRIAL COMPONENTS DIVISION

TRAVELING WAVE TUBES-(Continued)

Type	Description App; Du. Cy.	Freq. (kmc)	Heoter $\mathrm{V} ; \mathrm{A}$	Helix V	Foc. (GId. (Gous s)	Gain (db)	Noise Fig. (db)	Power Output

SFERRY	ELECTRONICS TUBE		DIV. -(Continued)					
STX77	grid, cw	7-11	10.5,1.05	5k	lk	37		10%
STX186	ampl,cw	7-11	6.3,3	4k	ppm	32	40	10w
\$TX187	ampl, cw	7-11	6.3,3	$4{ }^{4}$	PPFT	35	40	20%
STX105	ampl,cw	$8.65-1$	6.3,3.4	8	1.4k	30		175w
STX182	ampl,cw	8-12	6.3,1.5	3.2k	ppm	35	35	30w

STANDARD			$\begin{array}{r} \text { CABLES, } \\ 6.3 .85 \end{array}$	$\begin{aligned} & \text { LTD., } \\ & \text { 2.9. } \end{aligned}$	Brixham Road, Paignton, Devon			
W5/1G	ampl, cw	5-8			ppm	38	27	10w
W7/3G	ampl,cw	3.6-4.2	6.3,. 85	3k	ppm	26	27	10w
W7/4G	ampl, cw	3.6-4.2	6.3, 85	2.9\%	ppm	42	27	10w
W9/1E	ampl, cw	2.5-4.1	6.3,95	420	$\mathrm{pm} / \mathrm{sol}$	28	21	120
Wg/2E	amplew	2.5-4.1	5,.55	400	sol	40	10	10 mw
W9/3E	ampl, cw	2.5-4.1	6.3,.6	200	$\mathrm{pm} / \mathrm{sol}$	15	16	.3mw
W10/3E	ampl, cw	2.7-3.3	5,.6	450	sol	23	6.7	3 mw
W13/ID	ampl,cw	1.5-3				40		30 w

SYLV	ELEC	PR	Special	ube 0	ns, M	V Vi	
6752	ampl, cw	1-2	6.3,1.5	1 l	600	33	2 w
TW4268	ampl, cw	1-2	6.3,1.5	800	ppm	30	Iw
TW4267	amipl, cw	1-2	6.3,1.5	400	ppm	35	15 mw
TW4007	ampl,cw	1-2	6.3,1.5	800	ppm	30	1w
TW4006	ampl,cw	1-2	6.3,96	400	ppm	35	15m\%
TW620A	ampl, cw]-2	6.3,1.5	lk	400	33	2w
TW538	ampl, 01	1-2	6.3,3.5	10k	600	35	lkw
TW956L	ampl,cw	2-4	6.3,1.7	1k	ppm	37	2w
6559	ampl,cw	2-4	6.3,1.5	lk	850	33	2 w
TW4260	ampl,cw	2-4	6.3,1.5	1 k	ppm	30	1w
TW4261	ampl,cw	2-4	6.3,1.5	500	ppm	35	10mw
TW4002M	amplicw	2-4	6.3,1.7	500	ppm	35	10mw
TW534B	amplew	2-4	6.3,1.5	lk	750	33	$2 *$
XTW4278	ampl,cw	4-8	6.3,1.7	3k	ppm	30	lw
XTW4281	ampl,cw	4-8	6.3,1.5	1k	ppm	35	10 mw
X丁W4273	ampl,cw	7-12.5	6.3,1.7	4k	ppm	30	Iw
TW591	ampl, 002	8-10.6	6.3,2	10\%	2.8 k	36	${ }_{1} \mathbf{k w}$
TW622	ampi,plss	$8-11$	6.3,1.5	4k	1.05k	33	2w
XTW4282	ampl, cw	8-12	6.3,1.5	1.4k	ppm	35	5 mw

VARIAN ASSOCIATES, Tube Div., Palo Alto, Cali

VAI21B	ampl,.01	$2-4$	2.25 k		30	40 w
VA125A	ampl, 002	$2.65-2.97$	120 k			2 mw
VA125B	ampl,.002	$2.92-3.25$	120 k			2 mw
VA126	ampl,.002	$5.4-5.9$	130 k			3.3 mw
VA128	ampl,.003	$2.7-3.5$	14.5 k		34	5 kw
VA131	ampl,.004	$1.15-1.55$	25 k		45	50 kw
VA132	ampl,cw	$0.5-1$	2 k			200 w
VA133	ampl, 066	$1.254-1.386$	12 k		50	5 kw
VA601	ampl,cw	$1-2$	2 k	ppm		50 w
VA134	ampl,plsd			ppm	45	5 kw

WATKINS_JOHNSON CO., 3333 hillview Ave., Palo Alto, Calif.

W J 221	amplew	.25-. 5	6.9.65	50	1000	25	3.5	
W J 212	ampl, cw	1-2	4.5.8	140	1000	25	3.5	
W $\mathrm{L}^{\text {2 }}$ 2-1	amplew	1.1-1.6	4.5.8	140	1000	25	3.6	
WJ211	ampl,cw	2-4	3.5,65	175	1000	25	4.3	
WJ211-1	ampl,cw	2.1-2.4	3.5,65	175	1000	25	3.5	
WJ211-2	ampl,cw	2.3-2.7	3.5.65	175	1000	25	3.4	
WJ21]-3	ampl,cw	2.5-3.5	3.5,65	175	1000	25	3.9	
WJ217	amplicw	2-4	6.3.75	1.86	ppm	40		12w
WJ227	ampl,cw	2-4	6.3,76	1.6 k	ppm	40		$12 w$
WJ206	ampl,.01	8.4-9.4	12.5,4	28kp	ppm	43		10 kw
WJ218	gen,cw	2-4	7.25 .5	265	ppm			2mw

PARAMETRIC AMPLIFIERS

Typ*	Description Application	Frequency (kme)	$\begin{aligned} & 8 \text { and- } \\ & \text { widdh } \end{aligned}$	Gain (db)	Pump Freq (kme)	Pump Power (mw)	Noise Fig. (db)	Power Output
KEARFOTT DIV.. General Precision, Inc, Oxnard St, Van Nuys, Cait. $\begin{array}{lllll}\text { ampl } & .8-1.2 & 10 & 3.5 & 150\end{array}$								
MOTOROLA, SPAO! LPAO1 LPA02	Scottsdale, Ariz ampl ampl ampl	$2.48-2.52$ $.18-.27$ $.4-.46$	70 mc 1.5 mc 3 mc	$\begin{aligned} & 17 \\ & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 11.3-11.7 \\ & 1.2-1.6 \\ & 1.4-1.55 \end{aligned}$	$\begin{aligned} & 150 \\ & \stackrel{1}{1.5} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.5 \\ & 2 \end{aligned}$	
$\begin{array}{llllllllll}\text { NIPPON ELECTRIC CO., LTD., Tokyo, Japan } \\ \text { RPO-2G-2A } & \text { ampl } & 1.7-1.85 & 12 m \mathrm{c} & 17 & 7.85-8 & 80 & 3 & \text { 3dbm }\end{array}$								
$\begin{aligned} & \text { RADIO CORE } \\ & \$ \$ 500 \\ & \$ \$ 100 \mathrm{~V} 1 \end{aligned}$	PORATION O t-d ampl ampl	$\begin{aligned} & \text { F AMERIC/ } \\ & 1.275-1.325 \\ & 2.19-2.21 \end{aligned}$	A, Elec 50 mc 20 mc	$\begin{aligned} & \text { n Tube } \\ & 15 \\ & 17 \end{aligned}$	Div., H de 3	son, N.J. 10 ma 400	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	Odbm $-20 \mathrm{dbm}$
RAYTHEON PKDe-1 PNS-1	CO., Microwave ampl ampl	and Power Tu 13.5 2.7-2.9	De Div. 10 mc 20 mc	20 20 17	and Ave., 27 x-band	$\begin{aligned} & \text { Itham 54, } \\ & 50 \\ & 50 \end{aligned}$	ss. 2.5 2.5	
SFD LABORATORIES, INC., 800 Rahway Ave., Union, N.J. $\begin{array}{lllllllll}\text { SFD902 } & \text { ampl } & 5.4-5.9 & 25 \mathrm{mc} & 17 & 17.8 & 135 & 3.5\end{array}$								
ZENITH RAD LB	IO CORP.. ampl	6001 West Dick .3-1.5	ens Ave. 8\%	Chicas 20	$\begin{aligned} & 039, \text { III. } \\ & 27 \end{aligned}$	100 mm	.8-1.5	20 mw

Sperry extends 30-day delivery to cover ECM and augmenter TWT's operating in L, S, and X bands

In a dramatic extension of its capability for delivering high-performance microwave tubes on short notice, Sperry Electronic Tube Division has added three system-proved traveling wave tubes to the list of those available in 30 days. Included in the move are tubes operating in L, S, and X bands. They cover a frequency range 1.1 to 11.0 kMc .

APPLICATION FLEXIBILITY

The tubes in this series are particularly suited to application in augmenters and ECM equipment. The inherent broadband characteristic and unusual ruggedness of these PPM focused tubes makes them unusually versatile in airborne applications. A full course of MIL and environment tests, as well as considerable in-sys-

A typical saturated power versus frequency curve for an L band Sperry TWT.
tem experience have verified these characteristics.

INCREASED POWER POSSIBLE

Although these tubes nominally operate in the 1-2 watt power output range, optimum tuning can increase power to as much as 5 watts. A highmu control grid adds to the versatility

Drive characteristics at mid-band for a typical Sperry ECM/augmenter TWT.
of these tubes by allowing remote switching, modulation control and gain adjustment.

SYSTEM DESIGN SIMPLIFIED

Use of these Sperry tubes greatly simplifies system design problems. Low voltage and high gain reduce power supply requirements. Application is further simplified, since ambient cooling is sufficient in most applications and the tubes may be mounted in any position.
For FREE technical information on these Sperry Traveling Wave Tubes, write to Section 403, Sperry Electronic Tube Division, Gainesville, Florida.

The L-Band tube is priced at $\$ 1,900$., the S-Band tube at $\$ 2,195$., and the X-Band at \$2,540
For application assistance and quotation, consult your nearest Cain \& Co. representative. His address and phone number appear on the opposite page.

ЕーニCTRONIC TUEE DIVISION
 GAINESVILLE, FLA. / GREAT NECK, N. Y. SPERRY RAND CORPORATION

Inquire about Sperry Tubes from these convenient Cain \& Company offices

REGIONAL OFFICES

Burbank, California 2615 W. Magnolia Blvd. VI 9-6781

Great Neck, Long Island, N. Y.

260 Northern Boulevard HN 6-0600

Chicago 45, Illinois
3508 Devon Avenue
OR 6-9500
St. Petersburg, Florida
410-150th Avenue Madeira Beach Prof.Bldg. 391-0151

DISTRICT OFFICES

Boston, Massachusetts Phone VO 2-5330

Philadelphia, Pennsylvania Phone HA 8-3700

Washington, D. C.
Phone EX 3-7587
Dayton, Ohio
Phone RO 7-8661
Dallas, Texas
Phone BL 5-2050
Albuquerque, New Mexico Phone 268-5300

San Francisco, California Phone YO 8-0995

San Diego, California Phone HU 8-0665

Seattle, Washington Phone MA 3-3303

New

Products

MICROWAVE ANTENNAS

Common carrier antennas feature good gain, pattern and performance.

Inputs are waveguide flange selected to mate with customer requirements and bleeder ports are provided to permit pressurization of the feed. Vibration dampening is obtained by guying. Taper feed is available with 8 and 10 ft . reflectors; button hook feed may be ordered with 6,8 and 10 ft . models. Freq. range covered by these antennas is from 3700 to 4200 mc. Technical Appliance Corp., Sherburne, N. Y.

Circle 279 on Inquiry Card

BANDPASS FILTER

This 9 section tunable features steep skirt selectivity.

Tunable over a freq. range of $2200-2300 \mathrm{mc}$, the filter has a rejection bandwidth of 40 and 86 Mc at 3 db and 50 db respectively. Insertion loss of the unit is 1.0 db max. and input vswr with matched load is 1.3:1. The filter is multiple-tuned with individual micrometer heads for each cavity. Type N connectors are used for both input and output connections. Frequency Engineering Labs., P. O. Box 504, Asbury Park, N. J. Circle 280 on Inquiry Card

HOW TO EARN A BONUS

SPECIFY A STANDARD JVM TRIODE CAVITY
 (YOU'LL SAVE YOUR COMPANY MONEY)

It costs money to research, design and build triode cavities. You can save your company that expense (and probably earn a bonus for yourself) by specifying a JVM. There are over 350 types in JVM's inventory. The one you need is probably there. Write for JVM's new technical brochure and see for yourself.

- This new instrument measures unknown VSWR's and transfer characteristics directly as a function of frequency. The Type 27 Plotter measures VSWR's from 100 kc to 600 mc ; transfer characteristics from 10 kc to 600 mc .
- Information is presented on a self-contained meter or on an external recorder or oscilloscope.
- Interchangeable bridges for VSWR measurements cover individual frequency ranges of $0.1-1.4 \mathrm{mc}, 1.0-2.5 \mathrm{mc}$, $2.5-250 \mathrm{mc}, 30-400 \mathrm{mc}$ and $180-600 \mathrm{mc}$.
- Unit incorporates an ampli-tude-regulating power supply for external cw oscillators and can be used with con-stant-output sweep generators.
- VSWR full-scale ranges of $\infty: 1,2: 1,1.2: 1$ and 1.07:1. Transfer-characteristic range of 80 db .
- Connectors are Type N, with reducers available to other line sizes.

ALFORD

Manufacturing Company
299 ATLANTIC AVE., BOSTON, MASS.

Get the Mark Approach to MMCROWAME ON 6 TO 8 kmc .

If you're "'going microwave", write for Bulletin 620 on significant new developments from Mark Products . . . for example:
PARABOLIC ANTENNAS with exclusive ISOPOLARIZED FEED* ... offering important electrical features along with exceptional mechanical stability and lightweight construction, provided by heliarc welded back frame and feed supports.
NEW! SIMPLE POLARIZATION ADJUSTMENT . . . ISOPOLARIZED FEED allows for 360 degrees of continuous polarization adjustment without rotating dish or feed horn!
NEW! DUAL POLARIZED ADAPTER . . . adapts the standard MARK Parabolas to dual polarization at any time in the field.
EASE OF INSTALLATION ... flexible mounting with horizontal roof mounts and vertical pipe mounts.
RELIABLE ELECTRICAL CHARACTERISTICS . . . assured by holding tight precision parts tolerances and thorough quality control at every step of the production process.
DE-ICING . . . by MARK'S Heated Radomes . . . or use MARK'S unheated radomes . . . installation stays clean either way. *Patent Number 2,996,714
MARK also manufactures antennas for 2 Way Communications in the VHF and UHF bands ... point to point Grid Parabolas for 450 to 2200 mcs . . . rail and mobile units.

> Mark Products makes the most rugged parabolic antenna structure!

MARK offers complete engineering and antenna research service

Dept. EL-11 • 5439 W. Fargo Ave. © ORchard 5-1500 • Skokie, III.

New
Products

MICROWAVE MADT's

They have operated at 3500 MC and are for use at 2000 MC in amplifiers.

The devices typically have a power gain of 8 db min. at 1000 mc . At this freq. it is possible to obtain over 10 mw of output power. At 1000 Mc the units also provide a 10.5 db noise figure, typically. The package is a hermetically sealed, coaxial type with holder matched for direct insertion into a 50ω coaxial network. Tentative specs: VCBO-20 v.; VCES-20 v.; VEBO-0.4 v.; Storage temp. $-100^{\circ} \mathrm{C}$; Total device dissipation, @ $25^{\circ} \mathrm{C}, 80$ mw. Philco Corp., Lansdale Div. Lansdale, Pa.

Circle 283 on Inquiry Card

FRESNEL ZONE PLATES

Feature low loss, light weight and freq. range from 70 to 3000 GC.

Fresnel zone plates, which have been used in the past at optical freq. are now available for use at millimeter wavelengths. These phase-correcting plates produce focusing and collimating effects similar to those of conventional parabolic reflectors and dielectric lenses. Fresnel zone plates offer the following additional advantages of economy and large apertures. In production quantities zone plates can be molded, resulting in uniform antennas at low cost. Research Div., Electronic Communications, Inc., 1830 York Rd., Timonium, Md.

Circle 284 on Inquiry Card

Polarad Model SA.84W being used to make pulse analysis of radar aboard a Pan American Boeing 707, Jet Clipper(6)

FEATURES:

Over 80 mc dispersion 1 mc to over 80 mc for narrow pulse analysis.100 kc to 7 mc for wide pulse analysis.

The Polarad Model SA-84W is the most accurate universal microwave analyzer to measure nearly all parameters - Pulse, CW, FM, VSWR, antenna patterns, bandwidths and filter characteristics.

pOLARAD

ELECTRONICS CORPORATION

C Provision for use with a multi-pulse spectrum decoder (Polarad Model SD-1)

D Log-linear amplifiers

E Expanded, direct-reading, slide rule dial.
(F) Accurately calibrated IF attenuator

POLARAD ELECTRONICS CORPORATION: 123456

Please send me information and specifications on:
\square Model SA-84W Universal Spectrum Analyzer
polarad
Model SD-1 Multi-Pulse Spectrum Selector (see reverse side of page)

My application is \qquad
Name
Title. \qquad
Company
Address \qquad
City \qquad State

COMPLEX SPECTRUM DECODING

10 to 44,000 mc.
Signal Analysis for Missiles, Telemetry, IFF, Beacons and Radar

The Polarad spectrum selector permits spectrum analysis and decoding of any selected pulse within a multiple pulse train. Sweep, gate width and position can be controlled. Model SD- 1 permits the selection and gating of a group of pulses up to $180 \mu \mathrm{sec}$. in length (Model SD-IX permits $350 \mu \mathrm{sec}$.)

Works with POLARAD Models TSA, TSA-S, TSA-W, SA-84 and SA84W spectrum analyzers.

BUSINESS REPLY CARD

First Class Permit No. 18, Long Island City I, N. Y.

POLARAD ELECTRONICS CORP

43-20 34th st., Long isiand Clity I, N. Y

MAIL THIS CARD
for specifications.
Ask your nearest
Polarad representative (in the
 Yellow Pages) for a copy of "Notes on Microwave Measurements.'

POLARAD
 ELECTRONICS CORPORATION

43-20 34th Street, Long Island City 1, N. Y.
Representatives in principal cities.

LONGER BRUSH LIFE！ Nostall．s！HOWARD

MODEL 243
UNIVERSAL and DC MOTOR
1／200 to 1／8 H．P．

For Business Machines
Vending Machines－Money Changers Gear Applications

Broached brush holders hold
close tolerances for brush align－ ment，to give increased brush life！Self－aligning sleeve－type bearings with finger－type pres－ sure plates for uniform align－ ment and extra－heavy stamped steel housing assure smooth performance．Won＇t stall even with heavy jarring！
Write for details and prices！
LENGTH：3．15／16＂DIAMETER：2．17／32＂

H．P． Continuous：	$\left\{\begin{array}{l} \text { Series-1/12 @ 10,000 RPM } \\ \text { Shunt-1/20@ 5,000 RPM } \end{array}\right.$
Intermittent：	$\left\{\begin{array}{l}\text { Series－1／8＠10，000 RPM } \\ \text { Shunt－1／12＠5，000 RPM }\end{array}\right.$
FULL LOAD	Series－5，000 to 10，000
SPEED	Shunt－2，000 to 7，000
VOLTAGES	Series－ 12 to 230 V AC／DC Shunt－6 to 120 VC

Divisions：
Electric Motor Corp．Cyclohm Motor Corp．Loyd Seruggs Co，Racine Electric Prod． HOWARD INDUSTRIES，INC．－ 1730 State Street－Racine，Wisconsin Circle 93 on Inquiry Card

Brady＇s All－New printed circuit tapes and shapes assure uniform，accurate layouts－sharp，clean outlines．Made of Brady＇s new B－225 see－thru red tape．Card－mounted for fast application．Match－ ing connector strips in rolls with ．002＂tolerance． Write for bulletin and FREE samples．
w．H．BRDY CO． 750 W．Glendale Ave．Milwaukee 9，Wis． Manufacturers of Quality Pressure－Sensitive Industrial Tape Products－Est． 1914

Circle 94 on Inquiry Card

Branches：

2547 Farrington Dallas 7，Texas

1395 W．Quincy Englewood，Colo．

NEW DAVIES PLATING CONSOLE

Why laboriously assemble your own installation for plating printed circuits，electronic components and precious metals－when you can have a Davies self－contained console？ Just set the Davies Console in position，make one power， water and drain connection－ and start plating．
Nothing else to do，because Davies did it all－tank con－ struction，coating，internal utilities ．．．the works．
Write today．Tell us your R\＆D or production needs． We＇ll offer design suggestions， free．
อ）ฺワプง
siopply \＆Manefarnoriog co．
4160 Meramec Street－MOhawk 4－9332 St．Louis 16，Mo．

OFF THE SHELF DELIVERY ON MANY OF THE MODELS LISTED BELOW:

Model 1040 ($1 \varnothing$, 3VA)
Model $1040 \mathrm{~A}(1 \varnothing, 8 \mathrm{VA})$ Model $1500(10,20 \mathrm{VA})$ Model $150(1 \varnothing, 160 \mathrm{VA})$ Model $250(1 \varnothing, 250 \mathrm{VA})$ Model $750(1 \varnothing, 750 \mathrm{VA})$

Model 1040-2 20.6 VA$)$ Model 1040A-2 (20, 8VA) Model $1500-2(2 \varnothing, 40 \mathrm{VA})$ Model 150-2 (2Ø, 320VA) Model $250-2(2 \varnothing, 500 \mathrm{VA})$ Model 750-2 (2 $\varnothing, 1500 \mathrm{VA})$

Model $1040-3(3 \varnothing, 9 \mathrm{VA})$
Model $1040 \mathrm{~A}-3(3 \varnothing, 24 \mathrm{VA})$
Model $1500-3(3 \varnothing, 60 \mathrm{VA})$
Model $150-3(3 \varnothing, 480 \mathrm{VA})$
Model $250-3(3 \varnothing, 750 \mathrm{VA})$
Model $750-3(3 \varnothing, 2250 \mathrm{VA})$

MINIATURIZED RHEOSTAT
For use in both military and commercial applications.

Streamlined R-121/2 w. power rheostat is available in both standard and special requirements. Special shafts and bushings, custom taper windings and variations in other characteristics are available as specified in this new power rheostat. Tru-Ohm Products, 3426 W. Diversey Ave., Chicago 47, Ill.

Circle 285 on Inquiry Card

TRUE RMS VOLTMETER

Provides a 1% midband accuracy and $100 \mu a \mathrm{max}$. sensitivity.

Model 910A True RMS Voltmeter also has a 10 cPS to 7 mc bandwidth for measuring true RMS value of virtually all waveforms. For added versatility an amplifier output has been provided for simultaneous oscilloscope or recorder monitoring. It also features: high input impedance, high sensitivity, and fast response. Some of the measurement applications recommended include: nose and microphonics, total harmonic and intermodulation distortion, RMS ripple voltage, and currents and losses in transformers, coils, ferrite cores, capacitors, etc. John Fluke Mfg. Co., Inc., P. O. Box 7428, Seattle 33, Wash.

Circle 286 on Inquiry Card

WHY THINK BIG?

CENTRALAB"TWO-DIMENSIONAL"
 AS SMALL AS $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ WITH VIRTUALLY NO DEPTH!

All the adjustment you need-in a fraction of space, at a fraction the cost-for military or commercial applications.

These versatile ceramic base units are available as single or multiple trimmers. Fixed resistors can be included on multiple units-either associated with, or independent of the trimmer circuitry, through the flexibility of the <PEC> technique. They can be supplied in all standard resistance values.

Centralab.

MICRO-MINIATURE (SERIES 3)

ACTUAL SIZE

Single trimmer measures only $0.250^{\prime \prime}$ square, $0.100^{\prime \prime}$ deep, rated at .05 watts at $70^{\circ} \mathrm{C}$. Multiple trimmers can include up to 5 fixed resistors, depending upon value and voltage rating.

Single trimmer measures only $0.406^{\prime \prime} \times 0.438^{\prime \prime} \times 0.125^{\prime \prime}$, rated at 0.1 watts at $70^{\circ} \mathrm{C}$. Triple trimmers can include up to 8 fixed resistors, depending on value and voltage rating.

Single trimmer measures $51 / 64^{\prime \prime} \times 454^{\prime \prime} \times 193^{\prime \prime}$. Rated at $1 / 4$ watt at $70^{\circ} \mathrm{C}$. Available with leads, solder or wirewrap terminals, in a wide range of mounting styles for modern production techniques. One to four variable resistor elements and up to 12 fixed resistors on a single plate. Knob permits adjustment by finger tip, internal or external hex wrench, or screwdriver.

For additional information on these units write for Centralab Engineering Bulletin 42-1216.

Y-6147
THE ELECTRONICS DIVISION OF GLOBE-UNION INC. 938 L EAST KEEFE AVENUE - MILWAUKEE 1,WISCONSIN In Canada: Centralab Canada Ltd., P.O. Box 400, Ajax, Ontario

(actual size)

From STC . . . A Significant Technological Breakthrough . . . Miniaturized High Power Silicon Transistors That Don't Require Heat Sinks.
STC's 2N2034 with saturation resistance under 0.3 ohms at 1.0 amps in the TO-5 package improves power switching circuit efficiency by 97% as compared with the 10 ohm 2N424 mounted in a heat sink as illustrated above. Specs: $\mathrm{H}_{\mathrm{fE}} 20$ to 60 at 1 amp ; $\mathrm{BV}_{\text {CES }} 80$ volts min ; $\mathrm{I}=3 \mathrm{amps}$.

(actual size)

The 2 N 2035 in the TO. 8 package and the 2 N 2036 in the TO. 37 package with higher power dissipation are also available.

FOR IMMEDIATE DELIVERY CONTACT THESE STC DISTRIBUTORS

In Alabama:
MG Electronics \& Equipment Co. Birmingham—FA 2-0449
in Arizona:
Southwest Industrial Electronics
Phoenix-AL 2-1741
in California:
Finn Electronics Corp.
San Carlos-LY 1-4423
Hollywood Radio \& Electronics, Inc. Hollywood-HO 4-8321
Kierulff Electronics, Inc.
Los Angeles-RI 8-2444
San Diego-BR 6-3334
Shanks \& Wright, Inc.
San Diego-BE 9-0176
in Connecticut:
N.E.E.D., Inc.

Danbury-PI 3-9844
Sun Radio \& Electronics Co., Inc.
Stamford-WH 9-7715

in Florida:

Gulf Semiconductors, Inc.
Miami-MO 5-3574
Hammond Electronics, Inc.
Orlando-GA 5-0511
in Indiana:
Graham Electronics Supply, Inc.
Indianapolis-ME 4-8486
in Maryland:
Valley Electronics, Inc.
Towson—VA 5-7820
in Massachusetts:
Durrell Electronics, Inc.
Waltham-TW 3-7020
N.E.E.D., Inc.

Watertown-WA 6-1130
in New Jersey:
Sun Radio \& Electronics Co., Inc.
Princeton-WA 1-2150

In New York:

Arrow Electronics, Inc.
Mineola, L.I.—PI 6-8686
Progress Electronics
New York-CA 6-5611
Stack Industrial Electronics, Inc.
Binghamton-RA 3-6326
Standard Electronics, Inc.
Buffalo-TT 3-5000
Sun Radio \& Electronics Co., Inc.
New York-OR 5-8600

in Pennsylvania:

Herbach \& Rademan, Inc.
Philadelphia-LO 7-4309
Philadelphia Electronics, Inc.
Philadelphia-LO 8-7444
in Tennessee:
Electra Distributing Co.
Nashville-AL 5-8444
in Texas:
All State Electronics, Inc.
Dallas-RI 1-1295
Lenert Company
Houston-CA 4-2663

New

Products

MATCHED DIODE PACKAGE

For use as ring modulator, demodulator or discriminator in SSB equip.

The 4 gold-bonded, hermetically-sealed-in-glass germanium diodes are matched in pairs and then pairs are matched to pairs to obtain a carefully balanced assembly. Matching is maintained over a wide range of voltages and freqs. Diodes are selected so as not to load down input circuits. Temp. range is $-65^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. The quad is packaged in a subminiature metal case approx. $0.325 \times 0.700 \times 0.730 \mathrm{in}$. with a 7 pin in-line single-ended plug termination. Ohmite Mfg. Co., 3640 Howard St., Skokie, Ill.

Circle 292 on Inquiry Card

WOVEN COPPER SHIELD

Shielding technique uses basket woren flat strip copper.

The technique is expected to find wide usage where flexible cables with max. efficiency shields are required to be lightweight and have a min. O.D. Used in a series of coax. cables for community TV systems, the new materials and exclusive techniques have resulted in improved attenuation, radiation characteristics and impedance uniformity. They also reduced weight by 20 to 40% Times Wire \& Cable, Div. of The International Silver Co., Wallingford, Conn.

Circle 293 on Inquiry Card

The Keithley 610A Electrometer has 64 dc ranges . . . all you need to investigate in-circuit measurements with no loading, semi-conductor parameters capacitor characteristics, photo-electric devices, piezo-electrics, properties of insulators and outputs of ion chambers. The 610A is line-operated and comes in bench or rack models. Brief specifications:

- 9 voltage ranges from 0.01 to 100 volts fs with 2% accuracy on all ranges.
- inputimpedance selectable in decade steps from 1 ohm to 10^{14} ohms
- 28 current ranges from 3 amperes to 10^{-13} ampere fs
- 27 resistance ranges from 10 ohms to $10^{14} \mathrm{ohms}$ is with provision for guard ing.
- constant current source from 1 milli ampere to 10^{-17} ampere in decade steps.
- gains to 1000 as a preamplifier, dc to 500 cps bandwidth, $10 \cdot v$ and $1 \cdot \mathrm{ma}$ outputs
- price $\$ 565.00$
other ELECTROMETERS available:
Madel 62031 ranges, battery-operated 9280.00
Madel $621 \quad 37$ ranges, line-operated $\$ 390.00$
Model 600A 54 ranges, battery-operated $\$ 395.00$
Madel $603 \quad 50 \mathrm{kc}$ bandwidth amplifier $\$ 750.00$

Send for latest catalog
K EITIIIE
INSTRUMENTS
12415 Euclid Avenue • Cleveland 6, Ohio Circle 118 on Inquiry Card

Taylor glass-base laminates pop right out as design materials in many applications

There are good reasons for investigating Taylor glass-base laminated plastics as high-strength-to-weight materials in your design. They offer light weight, corrosion resistance, electrical and thermal insulation, and ease of fabrication.

For example, glass-fabric-base laminates have the highest mechanical strength of all laminated plastic materials. They have been successfully used in the fabrication of critical parts, including aircraft parts and bases for printed circuits. They are most valuable where extremely low moisture absorption, increased heat resistance and superior electrical properties are required.

Taylor Fibre produces a number

of different glass-base grades in sheet, rod and tubular form, and copper-clad. Those with phenolic resin are recommended for mechanical and electrical applications requiring heat resistance. Those with melamine are characterized by their excellent resistance to arcing and tracking in electrical applications. They also have good resistance to flame, heat and moderate concentrations of alkalis and most solvents. Those with silicone exhibit very high heat resistance, combined with good mechanical and electrical properties. They also have highest arc resistance. Those with epoxy offer extremely high mechanical strength, excellent chemical resistance, low moisture absorption, and high strength retention at elevated temperatures.

Technical data about these and other Taylor laminated plastics are available. Ask for your copy of the Taylor Laminated Plastics Selection Guide. Taylor Fibre Co., Norristown 53, Pa.

New

Products

BROADBAND FEED

Model 761 features a freq range of 600 to $6,000 \mathrm{Mc}$.

Other specs. include: Polarizationvertical or horizontal, remotely selectable; vswr less than $3: 1$ relative to 50ω; Impedance, 50ω; Input connector -Type N; and Patterns-provides -10 db edge illumination on a parabolic reflector with f / d of 0.4 . Granger Associates, 974 Commercial St., Palo Alto, Calif.

Circle 294 on Inquiry Card

DC SERVO MOTOR

Permanent magnet unit has planetary gear reducer and de rate tachometer.

The unit can be used in a transistorized servo system and is capable of producing torques in excess of 100 in . lbs. through a speed range of at least 1 RPM to 15 RPM. Feedback is 8 vde/ 1000 RPM . The gear reducer has all bearings of the anti-friction type. The rate tachometer provides feedback information to permit control wide speed ranges. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio.

Circle 295 on Inquiry Card

FLORIDA'S ASSURANCE POLICY
"You have my personal assurance of a sunny business climate here in Florida. You have positive ness climate here in Florida. You have positive
assurance of every aid and assistance possible assurance of every aid and assistance possible
from our Florida Development Commission and from our Florida Development Commission and
from the overwhelming majority of our businessmen, industrialists, and financiers. We have everything to make your large or small enterprise healthy and successful. Write, wire or phone us today. The only thing better than a FLORIDA vacation is having your plant here."

Investigate DEBT-FREE

Governor, State of Florida

 \section*{Florida
 \section*{Florida

 ...A 10 BILLION DOLLAR

 ...A 10 BILLION DOLLAR MARKET} MARKET} -----------------------------
Mr. Wendell Jarrard, Chairman Florida Development Commission Box 4121B
Tallahassee, Florida
Please send me the facts about Florida's labor, climate, schools, natural resources, taxes, etc.
Ask about free film "Profile of Progress."

1 FIORIDA $\overline{F O R}$ CONVENTIONS - Write for free information on Florida's wonderful facilities for your group meeting.

000000
 TAPER PIN TERMINAL BOARDS

New single row Taper Pin Ter. minal Board in 10,20 or 30 feedthru type taper receptacles. Avail able in single feed-thru or various combinations of internally connected taper receptacles. Ideal for computer and data processing programming.

EASY TO
MOUNT AND STACK

Barriers across both faces increase creepage path; elongated holes facilitate mounting; nesting projection and recess aid stacking. Brass receptacles provide low contact resistance. 14 lbs. min. pull out with standard solderless taper pins. Molding compound is MAI-60 (Glass Alkyd) of MIL-M-I4E or GDI-30

New
 Products

GLASS-BONDED MICA

Metal clad Mykroy ${ }^{R}$ is arc-proof and radiation resistant.

Chief among its properties is infinite dimensional stability, for use in memory systems, switching devices, printed circuits, and micromodular packages. Mykroy glass-bonded mica will not bend, warp, or change its size or shape under extremes of temp. and humidity. Available in sheets and rods, and as custom-made insulators with finished circuitry. Also available is a designer's sample kit containing metal-clad Mykroy, etchants, resists, and instructions. Molecular Dielectric, Inc., Clifton, N. J.

Circle 295 on Inquiry Card

TIME DOMAIN EQUALIZER
Corrects waveform defects in $T V$, radar pulse or wideband signals.

A TV signal may be either color or monochrome, composite or noncomposite. The repetition rate of the other waveforms also does not matter. The defects may be in any region of the video or wideband spectrum. A very important function of this equipment is its ability to easily correct high freq. distortions such as overshoots, ringing, smears, ete. In addition to the high freq. correction facilities, circuits are provided for mid-freq. $(100-500 \mathrm{kC})$ as well as low freq. (60 CPS) corrections. Telechrome Mfg. Corp., 28 Ranick Dr., Amityville, N. Y.

Circle 297 on Inquiry Card

LOOK WHET ONE GRMANUM EPIITXEA MISA DOES IN THIS CRBCUIT!!

 PROVIDES 250 mW@ 160 mc WITH

 PROVIDES 250 mW@ 160 mc WITH 10 db POWER GAIN AND 45% EFFICIENCY

 10 db POWER GAIN AND 45% EFFICIENCY}

The latest devices to join Motorola's epitaxial mesa family are four new PNP germanium transistors, the 2N1141-2-3 and the 2N1195. These new Motorola communication amplifiers provide very high power gain and low R-F noise in the VHF-UHF frequency ranges. They not only make ideal drivers for 160 mc power mesas (Motorola 2N1692) in transmitter output stages, but they also solve critical design problems in frequency multipliers, R-F and I-F amplifiers, mixers, and oscillators.

In addition to higher power gain and lower R-F noise, the new epitaxial units also offer typically:
$\mathrm{V}_{\mathrm{CE|sat|}}=.185 \mathrm{~V} @ \mathrm{I}_{\mathrm{c}}=50 \mathrm{~mA}$;
$100 \mathrm{mc} \mathrm{h}_{\mathrm{FE}}=18 \mathrm{db}$.

MOTOROLA
Semiconductor Products Inc.
a subsidary of motorola. inc.
5005 EAST McDOWELL ROAD • PHOENIX 8, ARIZONA MOTOROLA DISTRICT OFFICES:
Belmont, Mass. / Burlingame, Calif. / Chicago / Clifton, N. J. / Dallas Dayton / Detroit / Glenside, Pa. / Hollywood / Minneapolis / Orlando, Fla. / Phoenix / Silver Spring, Md. / Syracuse / Toronto, Canada.

LOW NOISE 200 MC AMPLIFIER

5 db noise figure at 15 db power gain

And, this new Motorola 2N1141 series offers performance breakthroughs in the communication field for low-noise $\mathbb{R}-\mathrm{F}$ circuits and broad band high-frequency amplifiers. In frontend applications the low noise of this series provides new extended receiver range. A typical low noise, broad-band amplifier circuit is shown below.

LOW NOISE BROAD-BAND AMPLIFIER

Power Gain $=15 \mathrm{db}$
Noise Figure $=5 \mathrm{db}$
Note all coils $3 / 16^{\prime \prime}$ ID air core
For more complete specifications, contact your Motorola district office, or write: Motorola Semiconductor Products, Inc., Technical Information Department, 5005 East McDowell Road, Phoenix 8, Arizona

PRECISION CUSTOM-MADE RF TOGGLE SWITCHES

 exay Mega-Switches
 D.P.D.T.
 - Molded Tefion Body
 - Low Capacities
 - Solid Silver Contacłs
 - Low Inductance - Low Resistance - DC TO 500 MC And UP

Abstract

Precision manufactured with teflon body and solid silver contacts, Kay MegaSwitches provide highly stable operation over wide ranges of temperature and humidity.

Their unique physical and electrical char-acteristics-small size, low internal resisfance, inductance and capacitancopermit them to be used freely in critical RF switching application, while high cur-rent-carrying capacity (in excess of 1,000

watts) makes them excellent for use in the $d-c$ and low-frequency ranges.

Low shunt capacitance and low series inductance also enable the MegaSwitches to be used for short pulse switching with high attenuation.

The wear resistant solid silver contacts provide positive electrical connection after more than 100,000 switching operations.

Box of $12 \$ 49.50$ postpaid in U.S.

KAY ELEETRRIC COMPANY

14 MAPLE AVENUE - PINE BROOK, NEW JERSEY • CApital 6-4000
Circle 106 on Inquiry Card

(elasica GLO-MELT - RESISTANCE SOLDERING

 ... for Perfect lead-to-pin joints on All sizes of A / N and similar connections209.8

POWER UNITS • HANDPIECES - ACCESSORIES
for all jobs from Micro-Miniature to Heavy-Current connectors
WRITE FOR DESCRIPTIVE LITERATURE, PRICES AND NEAREST DISTRIBUTOR

New
 Products

SAMPLING OSCILLOSCOPE

Gives calibrated, high resolution measurement of nsec. pulse phenomena.

Model 185B features conventional controls, direct reading and brighttrace observation, and a standard 5 in. mono-accelerator CRT. When equipped with a Model 187B plug-in dual trace amplifier, the oscilloscope has a pass band from dc to 1000 mc , can be synchronized up to 1000 mc , and permits full screen presentation of signals from 0.3 nsec . to 100 nsec . Hewlett Packard Co., 1501 Page Mill Rd., Palo Alto, Calif.

Circle 290 on Inquiry Card

VARACTOR DIODES

For operation as harmonic generators up to 10 GC.

Types L-4110, L-4111, and L-4112, have the following characteristics: Max. power dissipation- $0.5 w ., 0.3 w .$, $0.1 w . ;$ Breakdown voltage (at $-200 \mu \mathrm{a})-80$ v., 40 v., 20 v.; Junction capacitance (at 100 kC and varactor biased at $1 / 3 \mathrm{~V}_{\mathrm{b}}$) $-1.0-2.0 \mathrm{pf}$, $0.35-0.7 \mathrm{pf}, 0.17-0.35 \mathrm{pf}$; Series resistance (typical; measured at 2 GC and varactor biased at $1 / 3 \mathrm{~V}_{\mathrm{b}}$) - $5 \omega, 6 \omega$, 7ω; Cutoff freq. (calculated at 1.3 $\left.V_{b}\right)-25$ GC, 60 GC, 100 GC; Lead inductance (typical; measured at 2 GC) -0.4 nh; Cartridge capacitance (typical measured at 100 kc) -0.2 pf . Philco Corp., Lansdale Div., Lansdale, Pa.

Products

TANTALUM CAPACITORS

Polar series from 0.3 to $4 n f$; nonpolar series from 0.15 to 2.0 nf .

The new solid tantalum lines have 10 Type STA in the polar series and 10 Type STAN in the non-polar series. All ratings are for 6 to 35 wvdc max. at amb. of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with linear voltage de-rating above $85^{\circ} \mathrm{C}$ values to 67% at $+125^{\circ} \mathrm{C}$. Standard production tolerances are $\pm 20 \%$ of nominal capacitance at $25^{\circ} \mathrm{C}$ and 120 cPS. They are housed in insulated, hermetically sealed cases. Rectifier - Capacitor Div., Fansteel Metallurgical Corp., N. Chicago, Ill. Circle 287 on Inquiry Card

GRID BOARDS

Two new configurations in Fotoceram printed circuit grid boards.

One has new corner mounting holes; the other has the mounting holes plus a plug section useful for computer design work. The grid boards consists of copper-clad Fotoceram glassceramic with a grid of 0.052 in . through-plated holes set 0.1 in . on center. The new boards, equipped with silicone rubber mounting grommets, are available in 4×6 and $6 \times$ 8 in. sizes. Corning Glass Works, Bradford, Pa.

Circle 288 on Inquiry Card

ULTRASONIC CLEANER

Combines self tuning, high reliability, and ruggedness with low cost.

Model MS90 requires no operator attention. The generator has a power capability of 90 (av) w., 360 w . peak. It contains a single tube in a halfwave self rectifying circuit. Generator works on a scanning principle for more efficient over-all cleaning. Input 117 vac, 60 CPS. Dimensions: 11×10 x $61 / 2$ in. Transducer MST 901 has full inside tank dimensions of $71 / 4 \times$ $9^{1 / 4} \times 4$ in. deep. Sonic Systems, Inc., 1250 Shames Dr., Westbury, N. Y.

Circle 289 on Inquiry Card

Circle 109 on Inquiry Card

Products-Manufacturers

(Continued from page 120)

Kearfott Div General Precision Inc EL Inc
Litton Industries Electron Tube Di
Mayson Industrial Corp
Megadyne riviro
Megadyne Electronics Inc
Melabs
Menlo Park Engg
Micro State Electronics Corp
hicrowave Assoc Ine
Microwave Cavity Laboratories
icrowave Tube Division
Philco Divis
Philco Cor'p
RD Electronics Inc
Radio Engineering Laboratolies Inc
Raytheon Co
CA
RCA Defense Electronic Troduct
Remanco Inc
Resdel Engg Corp
Sage Labs Inc
Scientific Atlanta Inc
S-F-D Laboratories
Sierra Electronic Corp
Sylvery Microwave Electronics Co
Sylvania Electric Products Inc
Telechrome Mig Corp
Texus Insting Corp
Texas Instruments Incorporated
TRG Inc
Varian
Varian Associated
Watkins-Jectronics
Watkins-Johnson Co.
2-3-5-6-7

Weinchel Engineering Co Inc

ANTENNAS \& ACCESS.

Antennas, helical
Antennas, bedsprings
Antennas, mounts
Antennas, parabolic
Antennas, radar
Antennas, electronic scanning
Antennas, scatter prop.
Antennas, slotted
Antenna supports
Horns, microwave
Joints, rotating
Radomes
Receivers, field intensity
Repeaters, passive

Adams-Russell Co.
Advanced Structures \qquad
A inslie Corp. $\quad 1-2-3-4-5-7-8-9-10-14$
Airtron A div of Litton Ind 8-10-11
Airtron A div of Litton Ind
Alford Mifg Co
10-11
Alford Mfg Co
1-3-5-6-8-9
Alpar Manufacturing Corp
4-7-9-14-15
American Electronic Labs $\quad 1-10$
American Microwave \& 5 5-6-7-8-9-11-15
Andrew Antenna Ce \& TV Corp
Andrew California Corp Ltd 1-3-4-7-10-12
$3-4-5-6-8-12$
$9-10-12$
The Antenna Specialists Co ${ }^{1-3-4-7-9-10-12}$
Antenna Systems lne Co
Applied Technology Inc
2-3-4-5-6-7-8-
1-14-15
Asso Antenna \& Radome Research
Issociated Electrical Industries $\quad \begin{aligned} & 5-11-12 \\ & 5-10-11\end{aligned}$ Automation Dynamics Corp 1-3-4-5-8 Autonetics Div North American
Aviation lnc
4-5-6-10
Belz Industries A Div of El-tronics
$\begin{array}{ll}\text { Inc } \\ \text { The Bendix Corp Bendix-Pacific Div } & 10 \\ 1-4-\end{array}$
Birdair Structures Inc
Blaw-Knox Equip Div
Bogart Mfg Corp
Breeze Corps Inc
Brooks \& Perkins Inc
Budd Stanley Co Inc
Canadian Marconi Co
Canoga Electronics Corp
$5-8-10-11$
$4-12-15$
$3-4-5-7.15$
$1-5-8-10-11$

Bogart Mfe Corp
Breeze Corps Inc
Budd Stanley Co Inc
Canadian Marconi Co
1-5-4-5-7-15
-6-7
Kaufm Research Div of Lewis
8-9-10-11
Chu
Corbin Corp 1-2-3-
CWS Waveguide Corp
DeMornay-Bonardi Corp
Ditmore-Freimuth Corp
Dittmore-Freimuth Corp $3-5-6-9-10-11-12$
Dorne \& Margolin Inc $1-3-4-5-6-8-9-10-11$
Dorne \& Margolin Inc $1-3-4-5-6-8-9-10-11$

24Hour Delivery
 COAST-TO-COAST

- DM Series-push-pull, meets Mil-C. 26482
- DS Series-push.pull insertable, removable crimp contacts
- DTK Series-bayonet lock, meets or exceeds applicable requirements of Mil-C-0026482A
- DRS Series-rectangular rack and panel, advanced application performance
- DC Series-push-pull, environmental, crimp-type RF connector
- DM and DH Hermeticsglass to metal seals leak proof glass to metal seals

AREOelectronics inc.

DEUTSCH CONNECTOR DIVISION
COMmunity drive, great neck, n. Y. - hunter 7.0500 TWX: GREAT NEC:K, NY 639

Snaps in-Stays in

There's mascle in that Deutsch snap-in contact...enough zo withstajd 25 pounds pull. Each pin and socke: in the DS miniature electrical connector is locked in place by a patented spring mechanism that can only be roleased by specially designed tools. Add to this a crimp that is strong as $A N \neq 18$ wire itself, and you have the completely reliable DS snap-in type connector. What's more... crimping, inserting, and remeving contacts is a quick and easy operation with Deutsch designed tools...even in the hands of unskilled operators. The DS series also features the Deutsch ball-lack coupling mechanism which operates in the direction of plug travel...just push to connect and pull to disconnect. With environmental performance that meets or exceeds MIL-C-26482, plus a wide range of shell sizes and contact arrangements,
this connector will satisfy your toughest design requirements with ease.*

Electronic Components Division . Municipal Airport - Banning, California

[^15]*For complete information contact your Deutschman or write for Data File A-11.

RELAYS: Wide range, for electro. mechanical switching. Send for Bulletin T-5000R2.

KEYS: Cam-type and push-button. Send for Bulletin T-5002R.

STEPPING SWITCHES. Fast and dependable. Bulletin T-5001R.

JACKS \& PLUGS: For many electrical and electronic uses. Send for Bulletin T-5003.

TELEPHONE HANDSETS: Standard or with switch assemblies. Send for Bulletin T-5017-R.

Dresser Ideco Co
Dynatronies Inc 3-9-15
Electronic Specialty Co. 1-4-5-6-7-8-10-1 ${ }^{4-6}$
Frequency Engineering Laboratories 1-4-5-6-8-10
FXR Div Amphenol-Borg Electronics
Gabriel Electronics
3-4-10-11-10-11
Gabriel Electronics \quad General \quad Dynamics/Electronics
General Dynamics/Electronics Mil
Prods Div
Gorh Gombos Co., Inc
$-5-8-11$
$8-10$
8-10
GPL Div General Precision Inc $\begin{aligned} 10-11 \\ 5-8\end{aligned}$
Granger Assoc
Gulton Industries Ine
Hallmore Electronics Div.
Hallicrafters Co
Hazeltine Corp
Hughes Aircraft Co
I-T-E Circuit Breaker Co
-4-8-10-12-14

ITT Federal Labs
$5-11$
$4-2-3-4-5-6-3$
$1-2-3-4-5-6$
$8-9-10-11-12$
ITT Federal Laboratories 1-4-8-10
Kearfott Div General Precision Inc $4-5$
Lieco Inc 6-8-10-11
Litton Systems Inc 1-2-3-4-5-6-7-8-9
Loral Electronics Corp 4-5-6 10-11-1.5
Loral Electronics Corp 4-5-6-10-13-11 McMillan Industrial Corp $4-5-8-10-12-13$ March Dynamics Inc
Mark Products Company $1-3-4-5-9-10-12$
Megadyne Electronics Inc
c^{1-3}
Meridian Metalcraft Inc
$6-10-14-13$
Meridian Metalcraft Inc
4-5-8-10-1
Microtech Inc
3-9-14-1
Microwave Assoc Inc
10-11
Microwave Cavity Laboratories
$10-11$
$5-10$
Microwave Development Labs Inc
The Narda Microwave Corp
Norden Div United Aircraft Cor 4-5-10 10
Polarad Electronics Corp Corp 4-5-10-11
Premier Microwave Corp $\quad 4-6-8-10-13$
Prodelin Inc $1-2-3-4-5-6-7-8-9-10-11$.
Radar Design Corp 12-14-15
Radar Measurements Corp
10
10
RCA Defense Electronic Products 1-2-3-
Reeves Instrument Corp 4 -5-6-9-12-13-14-15
R F Products Div Corp 3-5
Electronics Corp
10-11
Sage Labs Inc
4-5-6-10
Sanders Assoc Inc
3-4-5-9-10
Sivers Lab
11.

Sper'y Microwave Electronics Co
Div Sperry-Rand Corp
Stainless Inc 2-3-4-5-6-7-8 4-5
Stoddart Aircraft Radio Co Inc $4-10-13$
Tamar Electronics Inc 1-5-7-8
Technical Appliance Corp 1-3-4-6-8-9
Iechnicraft Div Electronic Specialty
Colerad Div of Lionel Corp 4-5-6-10-11-12
C W Torngran Co Inc
Tower Communications Co
Transco Products lnc 15
TRG Inc 1-2-3-4-5-6-7-8-9-10-11-12-13
Triex Tower Corp $\quad 14-15$
Yourbo Machine co $1-3-4-5-6-7-8$
$\begin{array}{lr}\text { Vought Electronics } & 1-3-4-5-6-7-8 \\ \text { Waveguide Inc } & 10-11\end{array}$
Waveguide Inc
Weinschel Engineering Co Inc
Vestinghouse risectric Corp (Air
Arm Div)
COMPONENTS
Absorbers, microwave 1
Accelerators, linear 2
Adapters, coax 3
Attenuators 4
Cavities 5
Circulators, territe 6
Crystal mounts 7
Delay lines 8
Discriminators 9
Duplexers 10
Filters 11
Filter, waveguide 12
Hybrid junctions 13
Isolators 14
Masers 15
Mixers 16
Modulators, ferrite 17
Modulators, phase 18
Modulators, magnetic 19
Modulators, pulse 20
Multiplexers 21
Multipliers 22
Phasers 23
Probes 24
Power supplies, MW 25

Circle 170 on Inquiry Card

POINT OF NO RETURNS

SPERRY SEMICONDUCTOR DIVISION

OF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

Here's where you put your experience on the line. Will the vendor you select confirm the confidence of your decision. . . or will the transistors he delivers return to haunt him - and you?
63 QC checks before and during mechanized manufacture. Our way of trying to make your confidence our only returnl

H-30 through H-42A components are manufactured and guaranteed to MIL-T-27A by full environmental testing. These units, developed for miniaturization, have been field proven for ruggedness and reliability. They are in hermetically sealed steel cases with mounting stud and hooked pin terminals. Characteristic ranges in this series are:
Power level, 10 mw to 100 mw ; Frequency, 150 to 10,000 cycles; Impedance, 50 to 90 K ohms.

IMMEDIATE DELIVERY

FROM STOCK

UNITED TRANSFORMER CORPORATION

150 Varick Street, New York 13, N. Y. PACIFIC MFG. DIVISION 4008 W. Jefferson Blvd., Los Angeles 16, Calif EXPORT DIVISION:
13 East 40 th Street, New York 16، N. Y.
WRITE FOR LATEST CATALOE

Products-Manufacturers
(Continued from patge 186)

Power supplies, radar
R-F heads
Shutter
Sliding loads
Switches, crystal
Terminations
Tuners
Tuners, klystron
Lasers
ACF Electronics Ine 5-7-10-11-12-16-
Adams-Russell Co 5-8-10-11-13-17-21 Ad-Yu Electronics Lab 1nc 10-11-13-17-21
Airtec Inc Airtee Inc $1-3-4-5-6-7-10-13-14-16-24-$ Airtron div of Litton Ind $4-5-6-10-11-$ Airtronics Inc $12-14-16-17-18-21-2,8-28-29-31$ Alford M1g Co 3-4-10-11-13-21-24-25-2-31 Alfred Electronics
American Electronic Labs 4-7-11-12-16-35 American Machine \& Foundry Co $10-11$ Amperex Electronic Corp Amp lne

8-11-20-2 $2-26$ Andrew Antemna Corp Ltd Antema Systems Inc -5-10-11-12-13 A A F Products Inc 16 AlRRA (Antenna \& Radome Rese 10-21-27 AkRA (Antenna \& Radome Research Associated Electrical Industries 1-2-3-4-17-6-1-10-11-12-13-14-16Atias Engg Co inc ${ }^{17-18-19-23-24-25-26-2 才-31}$
Autonetics Div
Aviel clectrunics Inc 3-4-8-12-29-31 Belz Industries
The Bendix Corp
3-4-7-1-10-16-27 The Bendix Corp 4-5-10-11-12-1-1-20-30 The Bendix Corp
Bogart Mig Corp
1-3-4-5-10-11-12-13-17 Bomac Labs Inc $\quad 16-20-23-27-31-32$ Budd Stanley Co Inc 1-3-4-5-7-8-9-10Budeman Electronics 11-23-27-28-29-30-31-32 Sudeman Electronics Corp \quad Canadian Marconi Co $3-4-5-7-9-10-11$ 11-12 Canoga $1: 3-16-18-20-21-45-5-7-9-10-1112-12-2$ Canoga Electronics Corp $3-5-11-12-13$ Cascade Research Diy of Lewis $\&^{20-25-26}$ Kautman Electronics Corp 4-6-13-14Caswell Electronics Corp 1-3-4-6-11-12Chemalley Electronics Corp $13-14-17-30-31-32$ Communication Control Electronics Co Inc Co Cuopertronix Inc
$9-11$
$8-11$ Corbin Corp 9-10-11-16-17-18-19-21-26 Corning Electronic Components $\begin{gathered}\text { 25-27-33-35 } \\ 8-32 \\ \text { Con }\end{gathered}$ Cubic Corporation y-10-13-16-17-18-19Custom Components Ine $\quad \begin{aligned} & 20-24-25 \\ & 1-4-6-14-31\end{aligned}$ CWS Waveguide Corp 3-4-7-10-12-13-
Dage Electric Co Inc
Dom Research Corp
Dittmore-Freimuth Corp
Dorne \& Margolin Inc
Dymec Div Hewlett-Packard ${ }^{5-10}$
Eitel-McCulloury
Electro Impulse Lab In
Electromagnetic Technology Corp
Electronics Development Corp $\quad 12$
Electronic Specialty Co 5 -10-11-12-1:3-23 Emerson Cuming Inc Empire Devices lnc 4-11-13-16-27 Saratoga Industries $\quad 5-8-19-20-25-26$ Farinon Electric
Ferranti Electric Inc
Filmohm Corp
10-21
Filtron Co Inc
1-4-5-11-24-31
The Filtron Co Inc
4-8-11-12
Frequency Engineering Laboratories $5-6$
-10-11-12-13-14-16-17-
FXR Div Amphenoi-Borg Electronics
Corp 3-4-5-7-10-12-13-14-16-17General Communication Co $\begin{array}{r}\text { 20-21-24-27-29-31-32 } \\ 1-4-5-27-31\end{array}$ General Dynamics/Electronics Military General Electric Co Power tube $\begin{gathered}7-12-16-20-2 \div-30\end{gathered}$ General Electric Co Power tube
General Electric Co Heavy Military
Electronics Dept
10-11
General Radio Co
John Gombos Co Inc ${ }^{3-4-8-11-16-20-31-33}$
14-16-21-22-27-13-

'PIG-TAILORING''
a revolutionary new mechanical process for higher production at lower costs. Fastest PREPARATION and ASSEMBLY of Resistors, Capacitors, Diodes and all other axial lead components for TERMINAL BOARDS, PRINTED CIRCUITS and MINIATURIZED ASSEMBLIES.
PIG-TAILORING eliminates: - Diagonal cuthers - Long nose pliers - Operator iudgment - 90% operator training time - Broken components Broken leads. Short circuits from clippings 65% chassis handing. Excessive lead tautness - Haphazard assembiy methods.

PIG-TAILORING provides: - Uniform component pasition - Uniform marking exposure . Miniaturization spacing control - " 5 " leads for terminals - "U" lieads for printed circuits. Individual cut and bend lengths. Better time/rate analysls - Closer cost contral . Invaluable labor saving
mmodiate cost recovery.
Pays for itself in 2 weeks
"SPIN-PIN", Closorup viows of "SPIN-PIN" illustrole fast assambly of pailored-lead wire 10 terminal.

- No Training
- No Pliers
- No Clippings
- Uniform Crimps
- 22 Sizes

PAYS FOR ITSELF THE FIRST DAYI $\$ 500$

Write for illustrated book to Dept. El-11

Circle 115 on Inquiry Card

BF Goodrich Sponge Prod Div Gorham Electronics
Granger Assoc
Gulton Industries Inc Hallamore Electronic Div Hamcrarters C Hammarlund Mfg Co
Hilger \& Watts 4-5-6-7-13-14-16-23 Hughes Aircraft Co 6-14-17-18 Hycon Mfg Co 4-6-7-10-11-13-14-16-21. I-T-E Circuit Breaker Co 10-11-12-13

ITT Federal Labs
Jones M C Electronics Co Inc J V M Microwave
$-5-10-11-16-32$ Kearfott Div General Precision Ine 1-4-5 Kearfott Div $\quad 6-7-10-11-12-13-14-17-18$ Kearfott Div General Precision 13-14 4-6-9-10-11-12-13-14-16Kepco Ine Laboratory for Electronics Inc $4-5-9-$ LEL Inc
Lieco Ine 1-3-4-7-8-10-12-13-16-21-23itton Industri Litton Industries Electron Tube Div 11-2 Litton Systems inc
Luhrs C H
McMillan Industrial Corp March Dynamics Inc $3-5-7-10-11-22-24-32$ Megadyne Electronics Inc
Melabs 5-6-7-9-10-11-12-13-14-15-26-32 Melpar Inc
Menlo Park Engg
Meridian Metaleraft Inc 4-7-8-9-10-12Merrimac Research and Development
Metavac Inc
Microlab
4-5-7-9-10-11-17-14-31 Mierotecl Ine \quad-7-9-10-11-13-16-21-31-32 Microwave Assoc Inc 1-4-5-6-7-10-2 Inc 1-4-5-6-7-10-11-12-
$13-14-16-19-20-21-25-27-$

28-29-30-31-32 Microwave Cavity Laboratories 5-11-12Microwave Development Iabs Inc 3-4-5-6-7-9-10-12-13-16-21-23-28-29-31-32 The Narda Microwave Corp

1-12-13-14-16-21-27-29-31-32
National Beryllia Corp
Norden Div United Aircraft Corp $20-26$ Peschel Wlectronics Inc
Philco Corp Lansdale Div
Polarad Electronics Corp 16-30
PRD Electronics Inc 3-4-5-7 27-32-33 Premier 15-16-24-25-27-29-31-32-33 Premier Microwave Corp 1-4-5-6-7-8-9Prodelin Inc $21-23-24-27-28-29-30-31-32-33$ Prodelin Inc

2-4-6-7-11-12-15-16-10-
Radar Design Corp 1-3-4-5-6-11-12-
Radar Measurements Corp 3-4-23-24-31-32
Radio Engineering Laboratories Inc
-9-10-11-12-16-18-22-25-27 hicrowave \& Power 6-14-15-25 RCA Defense Flectronic Products 15-16Reed \& Reese Inc Remanco Inc Inc Resdel Engineering Corp R F products

The 3-7-12-1.3 Sanders Assoc Inc
Scientific Atlanta Inc
Sierra Flectronic Corp
Spivers Lah
Specialty Flectronies 4-5-6-16-25-31-32
Development
Sperry Microwave Flectronic Co Div
Sperry-Rand Corp 3-4-5-6-1.3-14-24
Stoddart Aircraft Radio Cn Inc 4-25 Sylvania Electric Products Ine 4-6-10-

Tamar Electronics Tnc
Technicraft Div Electronics Specialtv
Co 3-4-5-7-10-11-12-13-14
16-24-28-31-32
Telecomtrol Corp 4-5-9-10-11-12-14
16-21-23-25-27-32
Tele-Dynamics Div American Bosch
Arma Corp
-10-16
Telerad Div of Lionel Corp 4-5-10-1
Telonic Engineering Corp 4-5-1
Texas Instruments Incorporated
Apparatus Div 6-11-12-16-22

MULTIPLE INDICATORS

in a compact "package"-

Ready to Install

in a minimum of space!

The DIALCO DATA MATRIX ${ }^{\circledR}$

Manufacturing Service aids you 3 ways:
(1) Supplies ultra-miniature Lamp Holders with read-out Lamp Cartridges... (2) Fabricates panels to order... (3) Assembles Lamp Holders on panels. For computers, data processing equipment, etc.
Lamp Holders accommodate DIALCO's own Lamp Cartridges. Shown $1 / 2$ size: Data Matrix No. DM-7538-40 with 40 Lamp Holders and Cartridges...Shown actual size: Incandescent Cartridge No. 39-6-1471 with short cylindrical lens; Neon Cartridge No. 38-1531 with long cylindrical lens. Many other features

Complete details in Brochure L-160B. I J J

 Foremost Manufacturer of Pilot Lights
 DTATctive
 Your Equipment"

50 STEWART AVENUE, BROOKLYN 37, N.Y. - HYacinth 7.7600

Circle 116 on Inquiry Card

MAKING ROOM AT THE TOP

See the 41 additional EICO instruments helpful for your lab and line work. Write for free catalog and name of neighborhood distributor.

> Dept. EIN-1
> 3300 N. Blvd., L.I.C. 1, N. Y.
> Export Dept.: Roburn Agencies, Inc.
> 431 Greenwich St., N. Y. 13, N. Y.

EICO creates a new, professional lab quality test instrument series at moderate prices.

AC VTVM \& AMPLIFIER \#250

Kit \$49.95, Wired \$79.95
VTVM: 12 ranges from 1 mv to 300 v rms; response absolutely flat from 10 cps to 600 kc ; input impedance $10 \mathrm{M} \Omega$ shunted by $15 \mu \mu \mathrm{f}$; accuracy
$+3 \%$ of full scale.

Note: Average responding meter calibrated in rms. Linear $0-1,0-3$ scales. Decibel scales based on $0 \mathrm{db}=1 \mathrm{mw}$ in 600Ω with 10 db interval between ranges.
AMPLIFIER: 60db gain on 1 mv range; response $+0,-3 \mathrm{db}$ from 8 cps to 800 kc ; output to 5 V rms undistorted, variable down to zero by attenuator control at output; input impedance $10 \mathrm{M} \Omega$, output impedance $5 \mathrm{~K} \Omega$; hum \& noise -40 db for signal inputs above 2 mv .
DESIGN QUALITY: All frame-grid tubes; 60 db frequency-compensated input attenuator ahead of cathode follower with $10 \mathrm{db} /$ step attenuator plifier and full-bridge meter circuit in
 one overal feedback oop; ho rifier ciradjustment required voltage-regulated power supply. 50/60 cycle operation.
EICO MODEL 255 AC VTVM
Identical to Model 250 described above, but less amplifier facility. 50/60 cycle operation.
Kit $\$ 44.95$
Wired \$72.95

IRON CORES

insert

COIL FORM

TUNING
for
Military,

Micromodular
and Special
Applications

Never a problem in meeting Mil. Specs., when your "blue print" specifies Iron Cores from Permacor*.
Also, iron core environmental tesfing facilities available.
The Original Engineered Economy
Iron Cores for
Commercial
and Military
Applications

Ours alone...ENGINEERED ECONOMY® IRON CORES at low cost from stock. Over 14 types for most threaded and insert applications. As the world's largest producers of iron cores, we have the biggest, most expert engineering staff for designing, producing and recommending those custom iron cores that are best for your jobs.

*Trade Mark

We welcome your inquiries.

The Iron Core Division of Radio Cores, Inc.
9540 Tulley Avenue, Oak Lawn, Illinois . Phone: GArden 2-3353
Circle 139 on Inquiry Card

GROMMETS

... by the Millions

Grommets for any conceivable industrial purpose from natural, all purpose (GR-S), Neoprene and Buna-N rubbers.
Western grommets come in hundreds of standard sizes, and can be ordered in any formulation from molds already prepared.

Western Rubber is fully equipped for production of either standard or custom designed grommets in any size, shape or volume. All are quality controlled and economically produced to your specifications.
Write or phone for information or a visit by our sales engineer in your area.

MOLDED AND LATHE-CUT RUBBER

PARTS FOR ALL INDUSTRIES

Products-Manufacturers

TRAK Microwave Corp
5-22-27-32 $\begin{array}{lr}\text { TRANSCO Products Inc } & 3-4-8-12-13 \\ \text { Transonic Inc } & 2-9-11-12-17-19-25-26\end{array}$ TRG Inc $1-2-3-4-5-6-7-8-9-10-11-12-13$ 14-15-16-17-18-19-20-21-23-24-25-26-27-28-29-30-31-32-33 TRU Connector Corp Turbo Machine Co 4 4-8-27-31 Universal Transistor Products Corp 25-26 Varian Assoc 2-5-9-10-14-16-20
Vought Electronics $\quad 9-10-11-12-13-$
Wacline Inc
Watkins-Johnson Co
11-25-26-27
Watkins-Johns

20-25-26-27
Waveline Ine 1-3-4-5-7-8-9-10-11-12 Weinschel Engineering Co Inc $4-5-7-16$
Western International Co 27-29-31-32
Westinghouse Electric Corp Electronic Tube Div

5-10-12

TEST EQUIPMENT, MICROWAVES

$4-6-7-8-10-12$
ACF Industries Inc
4-6-7-8-10-21
Airtec lnc
Ad-Yu Electronics Lab Inc
Ad-Yu Electronics Lab Inc
Airborne Instruments Lab 1-3-5-12-15-20
Airtronics Inc
Alford Mfg Co
Alfred Electronics
8-9-15
Allen B DuMont Lab Div Fairchild
Camera \& Inst Corp
American Electronic Labs
Amperex Electronic Corp
Andrew Corp
Antenna Systems Inc 4-6-7-10-21
ARRA (Antenna \& Radome Research
Assoc) (7010-21
Associated Electrical Industries 1-4-6-
Automation Dynamics Corp ${ }^{7-8-9-12-13-14-17-22} 8$
Belz Industries
Belz Industries
8-9-10-21
Bogart Mfg Corp
4-7-8-10-21
Bomac Labs Inc
4-7-8-13-15-19
Canadian Marconi Co 1-4-5-6-7-9-10
Carad Corp 12-13-15-17-18-19-20-21-22
Carad Corp
Caswell Electronics Corp
Chemalloy Electronics Corp
Control Electronic
Cubic Corp
Custom Components Inc
C W S Waveguide Corp
Dahlstrom Mfg Corp
DeMornay-Bonardi Corp
1-11-12-13 $\begin{array}{r}\text { 9-1 } \\ \text { 10 }\end{array}$
7-10-18-21
Dorne \& Margolin Inc
4-6-7-10-21
Dunn Engineering Corp $\quad 5-9-15-18-19-20$
$\begin{array}{ll}\text { Dunn Engineering Corp } & \text { 5-9-15-18-19-1 } \\ \text { Dymec Div Hewlett-Packard Co } & 9-16 \\ \text { Dynatronics Inc }\end{array}$
Edgerton Germeshausen \& Grier Inc
Eean Laboratory
Electro Impulse Lab Inc 2-10-15
Fmerson Cuming In
Emerson Cuming Inc
$2-10-15$
13
7-9-11-13
Epsey Mig \& Electronics Corp Div
Saratoga Ind
Foto-Video Electronics
Frequency Engineering Laboratories 4-7-
Frequency Engineering Laboratories 8 4-7-
XR Div Amphenol-Borg Electronics
Corp $2-3-4-5-6-7-8-9-10-15-16-19-21-22$
General Communication Co $\begin{array}{r}4-5-10- \\ 12-13-15-20\end{array}$

CODI

EPOXY ENCAPSULATED SILICON RECTIFIERS

New Small Size / Double Sealed All Welded Construction Low Leakage/High Current Polarized for Automatic Insertion

Specifications for CODI Rectifier Types CODI 531 to 538

Electrical Characteristics	$\begin{gathered} \text { CODI } \\ 531 \end{gathered}$	CODI	$\operatorname{coDI}_{533}$	$\begin{gathered} \text { CODI } \\ 534 \end{gathered}$	$\begin{gathered} \text { CODI } \\ 535 \end{gathered}$	$\begin{gathered} \text { CODI } \\ 536 \end{gathered}$	$\begin{gathered} \text { CODI } \\ 537 \end{gathered}$	$\begin{gathered} \text { CODI } \\ 538 \end{gathered}$	UNITS
Max. forward voltage drop @ 500 mA	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	volts
Max. reverse leakage @ rated voltage	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{A}$
Max. reverse leakage under load (Note 1)	50	50	50	50	50	50	50	50	$\mu \mathrm{A}$
Max. forward voltage drop under load (Note 1)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	volts
Maximum Ratings									
Peak Inverse Voltage	100	200	300	400	500	600	700	800	volts
Applied R M S Voltage	70	140	210	280	350	420	490	560	volts
Surge Current for one cycle	35	35	35	35	35	35	35	35	Amps
Average rectified current @ $25^{\circ} \mathrm{C}$	750	750	750	750	750	750	750	750	mA
Average rectified current @ $100^{\circ} \mathrm{C}$	500	500	500	500	500	500	500	500	mA

Operating and Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All specifications at $25^{\circ} \mathrm{C}$ unless otherwise stated.
Note 1: Average over one cycle for full wave choke or resistive circuit with rectifier operating at rated current.

> Computer Diode manufactures
> General Purpose Diodes
> 250 mW Zener Diodes
> 400 mW Zener Diedes
> Special Circuit Packages
> Nor-metallic Eppoxy Rectifiers

$$
\begin{aligned}
& 280 \text { GARIBALDI AVENUE LODI. NEW JTROEY PREBCOTE 3-2839 }
\end{aligned}
$$

where accuracy counts
In delay lines, where exacting design and construction standards apply, look to Turbo.
Turbo designs are available, with complete testing, for both fixed and variable systems, for waveguide and coaxial lines, from 1 to 26 kmc , from 0.01 to 2.5 microsecond. Write for complete specification and price data for standard units. Or ask about special designs involving problems of space, configuration, and performance.
TURBO MACHINE CO., Lansdale, Pa. Telephone: ULysses 5-5131

TURBO

Circle 120 on Inquiry Card

Non-corrosive HYDRAZINE FLUX,* used industry-wide in liquid form, has now been incorporated into core solder. This fast, efficient flux vaporizes completely at soldering temperatures. It leaves no residue which would support fungus growth. Will not corrode. Conforms to strict military requirements.
In H-32 core solder for the first time, HYDRAZINE FLUX offers more advantages than ever. When flux is normally applied, far more than is actually needed is used. Now, the exact ratio of flux to solder provides for proper wetting. Thereafter the flux decomposes and is eliminated. Cleaning and production time are saved.
TEST HYDRAZINE FLUX AND CORE SOLDER in your own plant. Write for samples of either H-Series Fluxes or H-32 coresolder form and technical literature.
*U.S. Patent No. 2,612,459
Available oniy from Fairmount and ifs sales agents

Products-Manufacturers

General Dynamics/Electronics Military Frods Div
$1-3-5-9-15-11 ;-30$
General Mills Inc
General Radio Co
John Gombos Co
Gornam Electronics
Gulton Industries
Hallamore Electronics Div
Hallierafters Co
Hilger \& Watts
Tycon Mfg Co
1TT Federal Laboratories
J V M Microwavenics Co Inc
Kay Electric Co
Eeirfott Div Gener
10-12-15-16-17-18 1-7 Lahoratory for Electronics Inc $1-7-1$
aroie Labs Inc 12-13-15-16-90
」ewis \& Kaufman Electronics Ci, 1-14-1 Lieco Inc
Litton Industries Electron Tube IJiv
ditton systems Inc
McMillan Industrial Corp $1-\overline{5}-9-11-11^{19}$
Manson Laboratories Inc $\quad 13-15-16-17-20$
Waysun Instruments Div $\quad 9-13-1 \mathrm{~S}-1$
Megadyne Electronics Inc
Melabs
1-7-9-11-12-16
Menlo Fark Engineering
Teridian Metalcraft Inc
Herrimac Research and Develonment $7-10 \overline{1}$ Mico Instrument Co Wicrotech Inc
Hicrowave Assoc Inc
Hicrowave Assoc Inc $\quad 2-6-7-10-17-2$ Microwave Cavity Laboratories
Hicrowave Development Labs Inc $\overline{-1011-21}$ iller Assoc
The Niarda Microwave Corp 2-3-扌-5-6-7

Silobls Products Co

Northeast Scientific Corp
Talloramic Electronics Ine
Dolarad Electronies Corp
IIRD Electronies Inc 2-3-4-6-7-8-9-111
I'remier Microwave Corp $\quad 12-1: 1-17-2,2$
laudar Design Corp $2-4-7-10-22$
Radar Measurements Corp 2-3-7-11
RCA Defense Electronic Products $10-1: 3-$
Pavtheon Co Microwave and Fower 14-15-16-17-20 Tube Div

10
$6-20$
liemanco Inc $1-9-15-16-00$
$\begin{aligned} & \text { Reeves Instrument Corp } \\ & \text { Andirlers Assoc Inc }\end{aligned} \quad 5-15-16-20$
Silligers Assoc Inc
Scientific Atlanta Inc
Sierra Electronic Corp - $0-18$
Sivers Lab $\quad 4-6-7-9-10-12-13-20$
Skiation Electric \& TV Corp
Epecialty Electronics 4-7-0-12-12-20 Sperry Microwave Electronics Co $1-2-3$

4-5-6-7-9-10-11-15-16-
Stodtlard Aircraft Radio Co Inc 19-20-22
Tamar Electronics Ine
Technicraft Div Electronic
Telechrome Mfg Corp
Telecomputing Corp
Telecomtrol Corp
Telerad Div of Lionel Corp $4-8-15$
Telonic Engineering Corp
Telonic Industries Inc
TRAK Microwave Corp \qquad
$15-16-17-18-20-21$
TRU Connector Corp
Turbo Machine Co
Varian Associates
Vought electronics 1-7-9-15-1ti-18-20
Walthe
Waltham Electronics Corp
Waveguide Ine
Waveline Inc
Wave Particle
Weinschel Gorrineering $\quad 2-4-1 \frac{9}{3}$
Co Ine bugineering $\begin{aligned} 1-3-4-7-9-10-11= \\ 12-15-16-18-20-2 .\end{aligned}$
Westinghouse Electric Corp 15-16
Westinghouse Flectric Corp
Electronic Tube Div
13-19

TUBES, MICROWAVE
 \& SEMICONDUCTORS

CAMBION ${ }^{\circledR}$ has all the facilities and forms - standard, printed circuit and shielded - required to wind coils to your exact specifications . . . with quick deliveries in any quantities you order. . .and quality-guaranteed like all CAMBION components. Whatever qualification testing you might require is also available in CAMBION's fully equipped environmental laboratories, for thorough checking of your coils before shipment. Technical service is as prompt as deliveries, too. Have a CAMBION Sales Engineer call to discuss your requirements for custom wound coils, or mail your blueprints to Cambridge Thermionic Corporation, 504 Concord Ave., Cambridge 38, Massachusetts.

Circle 123 on Inquiry Card

Do you know?

... a new 20-page catalog of the complete Hi-Q line of precision wire-wound resistors has just been printed. Includes performance characteristics and MIL Spec info on encapsulated units with axial and radial wire terminals, furret lug and radial lug terminals, and Hi-Q micro-miniature series. For your FREE copy write on your letterhead today to...

AEROVOX CORPORATION 1010 SENECA ST.,
OLEAN, NEW YORK
NOW ... 2 YEAR WARRANTY ON ALL RESISTORS
HI-Q CAPACITORS \& RES

Circle 124 on Inquiry Card

NEW solder discovery!

ALPHA Vaculoy ${ }^{\circledR}$ bar solder cuts printed circuit joint rejects from 1 -in- 50 to 1 -in- 5,000 . No other solder does this because no other is made this way! Above is an unretouched photograph of two solder specimensboth outgassed. Left, is a standard printed circuit solder. Note presence of impurities on surface-a sure sign of undesirable oxides. Right, is ALPHA Vaculoy.* Its bright, clear surface indicates freedom from oxide-forming elements. Result? ALPHA Vaculoy bar solder cuts dross, improves wetting, produces brighter connections. increases bath life, reduces inherent inclusions and insures reliable electrical connections. Meets Fed. Specs. QQS-571C. Get all the facts. Write for data loday!

*Formerly called "ALPHA AAA"
 c)
 58A Water St., Jersey City 4, N. J.

In Loz Angeles, Calif.: 2343 Saybrook Ave.
In Chicago, ill.: ALPHALOY Corp., 2250 S . Lumber St.
Other ALPHA products: Fluxes • Solder Preforms • High Purity Metals
Circle 125 on Inquiry Card

Experienced Hands ...a NEW NAME!

Offering YOU an Unusual Service on Unique, Fine Quality Relays

IT ISN'T often that you will find an accumulated 300 years of technical experience in a company with a brand new name. That is what we proudly have in the Mossman-Elliott Corporation . . . adding up the years our management, design and engineering, production, assembly and testing personnel have devoted to the relay business. When you combine that "know-how" background with the newest, modern facilities in plant and equipment, the result is something your company can profit by ... if you need fine quality, dependable relays ...want unique features like heavy duty bearings, glassTeflon bushings, and all-precision components that assure long operating life. These unusual features in standard-type Monitor relays are part of the quality we have to offer . . . they are not found in ordinary relays. Actually every Monitor Relay is "custom built" to your exact specifications and requirements from many available combinations. Other very important reasons for you to investigate this newest source for relays is the rapid service we can give you with most economical price quotations. Write and tell us about your relay requirements ... you will profit by it.

MOSSMAN-ELLIOTT CORPORATION

Manufacturers of

Monitor

RELAYS - SOLENOIDS
ELECTRO-MECHANICAL DEVICES

204 SOUTH LARKIN AVENUE, JOLIET, ILLINOIS, U. S. A. TELEPHONE: JOLIET 725-2241 (AREA CODE 815)

TR
Traveling wave

Airtron, a Div of Litton Ind
Allen B DuMount Lab Div Fairchild
Camera \& Inst Corp
6

Amperex Electronic Corp 8-9-10-11-13-14
Associated Electrical
The Bendix Corp
2-4-5-7-10-11-12
Bomac Labs Inc 3-7-8-11-13
Canadian Marconi Co
Edgerton Germeshausen \& 10-13
Inc
Eitel-McCullough Inc $\quad \mathbf{2 - 1 1 - 1 2 - 1 3}$
Elliott-Litton Limited $\quad 7-8-10-13-14$
Ferranti Electric Inc
$7-8-10-13$
$7-10$
Filmohm Corp
-10-13
Power Tube Dept
7-10-13
General Radio Co
$\begin{array}{r}7 \\ 5 \\ \hline\end{array}$
Hoffman Electronics Corp
Huggins Labs Inc
Kearfott Div Inc 2-3-4-5-6-7-8-9-10-11-18
Lewis \& Kaufman Electronic Corp 3-4-7
Litton Industries Electron Tube
McMillan Industrial Corp
Micro State Electronics Corp 8
$\begin{array}{lr}\text { Micro State Electronics Corp } \\ \text { Microwave Assoc Inc } & 4-5-6 \\ \text { 2-3-4-5-6-10-12-1 }\end{array}$
Microwave Assoc Inc 2-3-4-5-6-10-12-13
Microwave Development Labs Inc
Electric Prod Inc Div Syivania $10-12-14$
Microwave Electronics Corp $\quad 3-13$
Microwave Tube Div Hughes
Aircraft Co
$3-13$
$4-5-6-12$
Polarad Electronics Corp \& Power
Raytheon Co Microwave \& Power
Tube Div
1-3-6-7-8-10-12-15
Tube Div $\quad 1$
Prod 2-3-4-5-6-7-8-9-10-11-12-13-14
RCA Electron Tube Div 5-6-9-10-11-13 S-F-D Laboratories
Stewart Engg Co
Sylvania Electric Prods Inc Micro-
wave Device Div 3-4-5-6-7-8-10-13-14
Sylvania Electric Prods Inc
Semiconductor Div 4-5-6-14
Technicraft Div Electronic Specialty
Texas Instruments Incorporated
Apparatus Div
Varian Associated 2-3-4-7-8-10-12-13
Watkins-Johnson Company
2-3-4-8-10-12-13
$3-13$
Westinghouse Electric Corp
Electronic Tube Div 2-7-8-10-11-12-13

MICROWAVE SYSTEMS

Communication
 Data
 Direction finding
 Electronic Countermeasures
 Radar
 Receivers
 Scatter
 Transmitters

ACF Electronics ACF Industries Inc
Airtronics Inc

1-5-6-8
Airtronics Inc

Antlab Inc
Applied Technology Inc
A Rsociated Electrical Industries 3-4-6
Associated Electrical Industries 3-4-5-6-8
Autonetics Div North Americ
Autonetics Div North American ${ }_{1-2-3-5-6-8}$
The Bendix Corp Bendix-Pacific
Div 1-3-5-8
Budelman Electronics Corp $\quad \begin{aligned} & 1-3-5-8 \\ & 1-6-8\end{aligned}$
Canadian Applied Research Div
AV Roe Canada Ltd
1-2-5-6-7-8
Canadian Marconi Co
1-2-6-7-8
Coopertronix Inc
Corbin Corp
Cubic Corp
Dorne \& Margolin Inc
Dynatronics Inc
Flectromagnetic Technology Corp
Electronics Development Corp
Electronic Specialty Co
Tarinon Electric
Foto-Video Co Elinc
Frequency Engineering
raboratories
FXR Div Amphenol-Borg Electronic
Corp
General Communication Co
General Electric Co Communication
Prods Dept 1-2-6-8
General Dynamics/Electronics Mil
Prod Div
John Gombos Co Inc
4-5-6-8
YPL Div General Precision Ine 1-5-6-8
Granger Assoc. $\quad 1-3-4-5-6-7-8$

D $\triangle \square V A=-4$ APPLICATION REPORT NUMBER 1

30 MC OSCILLATOR

CIRCUIT PERFORMANCE
CHARACTERISTICS
OSCILLATOR EFFICIENCY 24.7% @ $-40^{\circ} \mathrm{C}$

RF POWER OUT
$23.1 \mathrm{mw} @-40^{\circ} \mathrm{C}$
20.4mw@+70․

$T_{1} \# 516$ AIR DUX OR EQUIVALENT $N_{1} 4$ TURNS; $N_{2} 7$ TURNS; ALL RESISTOR VALUES $1 / 2 \mathrm{w} 10 \%$

New TI DALMESA Transistors Give IMPROVED HF Oscillator Performance From -40 to $+70^{\circ} \mathrm{C}$

Solve your industrial communications design problems today with TI's new DALMESA 2 N2188 series. This new germanium alloy diffused mesa transistor family is specifically designed to meet your requirements for highperformance, low-noise, economicallypriced transistors for application over the entire communications band from dc to 150 mc . The extremely low, low-frequency noise corner and high alpha cutoff frequency offered by new DALMESA transistors result in low-noise performance over a very wide bandwidth -the 2 N2188 series gives you a typical mid-frequency noise figure of 1.5 db .

These new devices also give you guaranteed gain/bandwidth products of 60 and 102 mc to assure excellent performance in your IF, RF and video amplifiers. Increased high-frequency stability results from the guaranteed maximum output capacitance of 2.5 pf at 9 volts. Apply new DALMESA transistors to your communications designs today and take advantage of the increased performance capabilities of this new Texas Instruments series. These new $125-\mathrm{mw}$ transistors are immediately available through your nearest TI Sales Office or Authorized TI Distributor.

PARAMETER	TEST CONDITIONS	2N2188	2N2189	2N2190	2N2191
BVCBOt AND BVCES	$i_{C}=-50 \mu \mathrm{a}$	$40 \vee \mathrm{~min}$	$40 \vee \mathrm{~min}$	$60 \vee \mathrm{~min}$	$60 \vee \mathrm{~min}$
BVEBO	$\mathrm{I}_{C}=0, I_{E}=-100 \mu \mathrm{a}$	$2 \vee \mathrm{~min}$	$2 \vee \mathrm{~min}$	$2 \vee \mathrm{~min}$	$2 \vee \mathrm{~min}$
$\overline{h_{\text {FE }}}$	$\mathrm{V}_{C E}=-6 \mathrm{~V}^{\text {I }} \mathrm{C}=-2 \mathrm{ma}$	40 min	60 min	40 min	60 min
$\mathrm{h}_{\mathrm{fe}}(\mathrm{at} 1 \mathrm{kc})$	$V_{C E}=-6 v_{\text {, }} \mathrm{I}_{E}=-2 \mathrm{ma}$	40 min	60 min	40 min	60 min
${ }_{4}$	$V_{C E}=-9 V_{,} I_{E}=-1.5 \mathrm{ma}$	60 mc min	102 mc min	60 mc min	102 mc min
ICBO	$V_{C B}=-12 V_{\text {, }} \mathrm{I}_{E}=0$	$3 \mu \mathrm{a}$ max	$3 \mu \mathrm{a}$ max	$3 \mu \mathrm{a}$ max	3 нa max
$\mathrm{C}_{\text {CB }}(\mathrm{at} 1 \mathrm{mc}$)	$V_{C B}=-\left.9 v_{\text {, }}\right\|_{E}=1.5 \mathrm{ma}$	2.5 pi max	2.5 pf max	2.5 pf max	2.5 pf max
Noise Figures§ (at l mc)	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{E}=0.5 \mathrm{ma}$	1.5 db typ	1.5 db typ	1.5 db typ	1.5 db typ
Maximum Power Dissipation	$25^{\circ} \mathrm{C}$ Ambient	125 mw	125 mw	125 mw	125 mw

NEW

Products-Manufacturers

(Continued from page 194)
STRAIGHT WALL TANTALUM CAPACITOR CAN'T LEAK

Meets MIL C 3965-B, Style CL-64, CL-65.

A new space-saving approach to the design of wet tantalum capacitors ends mounting problems encountered with flanged types and yet will not leak.

ITT's compact, sintered slug tantaium capacitor features a wedge-shaped seal held under compression by an epoxy retainer ring formulated for thermal characteristics inverse to those of silver. Ordinary, straightwall capacitors leak along the lead when elastomer compression is reduced as the silver can expands. Not so with the new ITT design!
Th is new, compact capacitor conforms to specifications MIL C $3965-\mathrm{B}$, Style CL-64, CL-65 and provides both the compactness and rugged reliability required in missile, airborne and mobile equipment. For details, write today requesting Bulletin No. 610.

Gulton Industries Inc
Hallamore Electronics Div $1-2-3-6-8$ Hallicrafters Co
$-2-3-6-8$
$4-6-8$
Hammerlund Mfg Co
Hazeltine Cory
Hazeltine Corp
Divan Electronics Corp Mil Prod Div
Hycon Mfg Co
4-5 1-T-E Circuit Breaker Co 1-3-4-5-7 KT Federal Laboratories $1-2-3-4-5-6-7-$ Kearfott Div Gen Precision Inc LEL Inc

2-3-4-5-6-8
Loral Electronics Corp $\quad 2-3-4-5-6-8$ boral Electronics Corp McMillan Industrial Cons Systems Inc 1-2 Manson Laboratrial Corp Watkins-Johnson Co Wave Particle 1-4-5-6-8

Webcor Inc Electronics Div
Weinschel Engineering Co Inc
Westinghouse Electric Corp Air
Arm Div
Megadyne Electronics Inc

Melabs

1-2-3-4-5-6-7
Miller Assoc
Moran Instrument Corp
The Narda Mierowave Cor
Solarad Div United Aircraft Corp
Solarad Electronics Corp
Radiation lingineering Laboratory
Radio Engineering Laboratories
Inc Defense Electronic Trods
lieeves Instrument Corp
Romanco Inc
1-2-3-4-5-6-7-8
Resdel Engg
1-2-5-6-8
Sander Engg Corp
Sarkes Tarzian Inc
Scientific Arzian Inc
Sperry Microwave Electronics Co Div derry Rand Corp
Stoddart Aircraft Radio Co Inc
Sperry Phoenix Co Div of Cer of
Rand Corp ${ }_{1-5-6-8}$
Tamar Electronics Inc
Telechrome Mfg Corn
Telecomputing Corp
Telecomtrol Corp
Tele-Dynamics Div American
Boseh Arma Corp
Texas Instruments Incorporated
Apparatus Div

TRGInc

Varian Associates

TRANS. LINES \& ACCESS.
Cable, Coaxial
Cable, Low capacity
Coaxial connector
Coaxial switches
Coax-waveguide adapter
Couplers, coaxial
Detectors
Flanges
Slotted lines
-...
Waveguide, flexible
Waveguide, rigid
Waveguide stands
Waveguide switches
Waveguide windows
Waveguide bends
Waveguide seals
Waveguide tees
Waveguide twists
Coupler, rotary
Connectors 19

Adams-Russell Co
Adl-Yu Electronics Lab Inc
Ainslie Corp 8-11-15-17-18
Airtec Inc $5-6-7-8-9-10-11-12$
Airtron Div of Litton
Ind 4-6-8-10-11-13-14-15-16-17-18 Alford Mfg Co
American Electronic Labs
American Microwave \& TV Corp
American Radar Components Inc
Andrew Antenna Corp
Ltd
Andrew California
Corp 1-3-4ia
Andrew Corp $\quad 1 \begin{aligned} & 1-5-6-8-10-11-12-14-15-16-18 \\ & 1-3-4-5-8-9-10-11-\end{aligned}$
The Antenna Specialists $\begin{gathered}12-13-14-15-17-18 \\ \mathrm{Co}\end{gathered}$ Antenna Systems
Inc $5-8$-9-11-12-13-14-15-16-17-18 ARRA (Antenna \& Radome
Research Assoc) 5-6-8-10-11-15-17-18

Associated Electrical
Thu ustries 1-3-9-12-13-14-15-16-17-18 Bearchaine \& Sons Inc

3-4-5-6
Belz Industries Div $\quad 8-14$
El-Tronic Inc 5-8-11-15-17-18
Bogart Mfg Corp 4-5-6-13-14-15-17-18
Bomac Labs Inc 4-5-6-9-13-14
Budd Stanley Co
Inc 5-6-7-8-9-10-11-12-13-14-15-17-18 Burndy Corp
Cable Electric Products Inc
Canadian Marconi Co
3-6-7-8
Canoga Electronics Corp $\quad \begin{array}{r}3-6-7-8 \\ 5-6-15\end{array}$
Cascade Research Div Lew is \&
Kaufman Electronics Corp
Co-orp Corp 4-5-6-11-13-14-17
Co-operative Industries Inc $\quad 1-10$ WS Waveguide
Corp Electric Co Inc ${ }^{5-6-7-8-9-11-12-13-15-17-18 ~}$ Dage Electric Co Inc
Corp \quad 5-8-9-11-12-13-14-15-16-17-18
Corp (tmore-Fre
Dittmore-Freimuth Corp $3-5-8-10-11$
Dow-Key Co
Dunn Engrg Corp
Dynatronics Inc
Electronic Specialty Co 4-10-11-14
Formeraft Tool Co 4-10-11-14-1
Frequency Engineering Laboratories
-XR Div Amphenol-Borg Electronics
Co 1-2-3-4-5-6-7-8-9-11-12-13-15-17-18
Gavitt Wire \& Cable Co
General Cable Corp
General Communication Co
General Radio Co
Gorham Electronics 5-9-11-13-15-17-1
John Gombos Co Inc r-9-11-13-15-18
Hallamore Electronics Div
Hallicrafters Co
Hilger \& Watts 8-11-12-13-15-16-17-18
Hitemp Wires Co Div Simplex Wire
\& Cable Co
Hycon Mfg Co
$\begin{array}{ll}\text { Intaspace } & \text { 15-6-18 }\end{array}$
I-T-E Circuit Breaker
Co
$8-9-10-11-12-13-14-15-16-17-18$
ITT Federal Laboratories
I C Jones Electronics Co Inc
Judd Wire Mfg Co
JV M Microwave 5-11-13-15-16-17-18
Kearfott Div General Precision
Kearfott Division
4-13-15-17
Lieco Inc
March Dynamics Inc ${ }^{5-7-11-12-13-10-17-18}$
Mark Products Co
Mectron Co

Melabs

Meridian Metalcraft Inc 5-11-15-17-18 Merrimac Research and Development
Micacraft Prod Inc
Micro State Electronics Corp
Microtech Ine $\quad 8-9-10-11-12-13-$
Microwave Assoc Inc 6-14-15-16-17-18
Nicrowave Development 13-14-15-16-17-18
Inc $5-7-8-11-14-15-16-17-18$
Microwave Device Division
Sylvania Elec Prod Inc
varda Microwave
Corp
National Reryllia Corp 5-6-7-9-12-15-17-18
Nichols Products Corp
Parker Seal Co
Philen Corp
PRD Electronics Inc Precision Tube Co
remier Microwave Corp

5-6-7-9-12-13-15 13

Prodelin Inc
4-5-6-7-8-9-11-12

Quantatron Inc
Radar Design Corp
13-14-15-16-17-18
$4-5-13$
$5-6-7-9$
R F Products Porp $1-2-3-4-5-6-8-11$
Rockbestos Wire \& Cable Co
Sage Jabs Inc
Saxton Products Inc
cientific Atlanta Inc 1-2-3
Sivers Lab $\quad 9-13-15-17-18$
Specialty Automatic Machine Co
Div Sperry Rand Corp $5-7-9-12-13-17$
Sylvania Electric Products Inc
Microwave Device Div
amar Electronics Inc
Technical Appliance Corp
1-3-5-14
Technicraft Div Electronics Specialty
Co 1-5-6-8-9-10-11-13-14-15-16-17-18
Telecomtrol Corp
Telerad Div of Lionel
Corp Industries Inc
TRANSCO Products Ine
TRG Ine
TRU Connector Corp
Turbo Machine Co
Varian Associates
Waveruide Inc
$5-7-8-9-11-12-13$
$15-16-17-18-19$
Weinschel Engineering Co Inc $3-6-7-9$
Western International
Co
1-3-5-10-11-15-18

Flip

These magnified halves when combined in this actual size Flip Flop ㄹontain 2 transistors, 2 diodes, 6 resistors, and 2 capacitors

New General Instrument Nanocircuits

Source for Silicon Nanocircuits. Now you can design military and industrial computer circuits with high-speed, silicon Nanocircuits whose substrates measure as littie as 0.17×0.17 inches. Latest example of General Instrument's Nanocircuit Program, these new flip-flops utilize matched pairs of semiconductors and operate at speeds in the nanosecond range. The flip-flop shown, typical of the many configurations available, consists of two planar epitaxial transistors, two microdiodes, six semiconductor resistors and two silicon oxide capacitors. \square Silicon Nanocircuits need no encapsulation. Each compo-

FLIP FIOP SCHEMATIC
nent (preselected and pretested for reliability prior to bonding to the substrate) is passivated by General Instrument's unique Molecular Shield ${ }^{\text {m }}$ process. Nanocircuits are unaffected by external ambients. The coating serves only to provide mechanical rigidity. Complete details on all Nanocircuits and other General Instrument semiconductor devices to meet your specific requirements, are available at the General Instrument engineering sales office or franchised distributor nearest you, call or write today. General Instrument Semiconductor Division, 65 Gouverneur Street, Newark 4, New Jersey.

Pioneering New Oil Wells in the Laboratory...

500,000 ALLEN-BRADLEY HOT MOLDED RESISTORS

HELP MAP STRATA TO FIND "PRODUCERS"

This network of over 1,000 A-B hot molded resistors is one of hundreds of similar grids developed by the Schlumberger Well Surveying Corp. for studying ground strata to locate producing zones.
The unusually large number of resistors in use per unit makes reliability of paramount impartance. Therefore, Allen-Bradley resistors

- with their history of complete freedom from catastrophic failure-were a logical selection for this unusually critical project. The exclusive A-B hot molding process makes possible the amazing uniformity for which Allen-Bradley resistors are famous. To eliminate the probability of resistor failure in your equipment, Allen-Bradley resistors can be your only choice.

ALLEN-BRADLEY

This complex resistor network at Schlumberger's Research Center contains in its basic assembly some 150,000 of the 500,000 Allen-Bradley hot molded resistors which they have assembled into grids simulating earth formations. By inserting interchangeable grids into the network in various combinations, it is possible to simulate the borehole and formation parameters which affert resistivity measurements. Duplication of formation characteristics permits a more precise examination and interpretation of the different resistivity logs used in locating potential gas and oil producing zones.

翟

尚

 Whinh

ALLEN-BRADLEY HOT MOLDED RESISTORS are available in all standard EIA and MIL-R-11 resistance values and tolerances. Shown actual size from left to right:
Type TR $1 / 10$ watt (MIL Type RC 06), Type CB $1 / 4$ watt (MIL Type RC 07), Type EB $1 / 2$ watt (MIL Type RC 20), Type GB 1 watt (MIL Type RC 32), Type HB 2 watts (MIL Type RC 42).

A-B also makes a quality line of hermetically sealed precision resistors. Using metal grid construction, they are noninductive. Ratings are $1 / 4,1 / 2$ and 1 watt at $125^{\circ} \mathrm{C}$ with tolerances of $0.1,0.25,0.5$ and 1.0%; and TC ± 25 PPM.

MINIATURE SNAP ACTION LOW COST Time Delay Relays

For commercial use, economical Curtiss-Wright thermal time delay relays, hermetically sealed in glass, are a compact and reliable design for many control, switching and timing applications. Precision built for high performance and long life. Ambient temperature compensated. Conservatively rated, these new rugged, small sized units are preset for time delays from 3 to 60 seconds.

Write for latest complete components catalog \# 503
time delay relays - delay lines - rotary SOLENOIDS - CIGITAL MOTORS - TIMING DEVICES - dual relays - solid staie components

Electronics Division

CURTISS-WRIGHT CORPORATION

East Paterson, New Jersey
Circle 132 on Inquiry Card

Industry

News

Wilson P. Green-appointed Manager of Manufacturing Equipment for Cinch Mfg. Co., Chicago, III.

John G. Norris-appointed Assistant to the President, Fansteel Metallurgical Corp., North Chicago, Ill.

Daniel Schwarzkopf-named General Manager, Unimax Switch Div., Maxson Electronics Corp., Wallingford, Conn.

Donald A. Davis-appointed Assistant to President, Avnet Electronics Corp., Westbury, L. I.
I. Nevin Palley-elected Executive Vice President, Curtiss-Wright Corp., Wood-Ridge, N. J.

I. N. Palley

R. L. Jand

Richard L. Jandl-named Vice President and General Sales Manager, Sola Electric Co., division of Basic Products Corp., Elk Grove Village, Ill.

Raymond A. Wasson-named Manager, Radome Dept., Corning Glass Works, Corning, N. Y.

Transitron Electronic Corp., Wakefield, Mass. announces the following appointments: George C. Messenger -named Operations Manager, Transistors; Windsor H. Hunter-named Operations Manager-Diodes; Vladimir N. Chernyshov - named Operations Manager-Rectifiers; and Roderic E. Hall-named Operations ManagerSpecial Products.
Roy L. Ash - elected President, Litton Industries, Inc., Beverly Hills, Calif.
General Electric Co., New York, N. Y., announces the following appointments: Charles J. Ellis-elected Southeastern Regional Vice President and Harry P. Gough-elected Western Regional Vice President.

Rotron Mfg. Co., Inc., Woodstock, N. Y., announces the following appointments: David Carlson-appointed Manager, Special Products Section, Percy L. Lyon, Jr.-appointed Manager, Application Engineering; and Robert Raible-assigned as RMO Specialist.
(Contimued on P. 201)

CURTISS-WRIGHT

Transistorized Electronic Time Delay Relays

Curtiss-Wright "T" series relays employ advanced solid state circuitry providing better than $\pm 3 \%$ accuracy on standiard models. Adjustable or preset time delays available from 0.1 to 300 seconds . . . fast recovery following deenergization at any time. "Wearever" control circuit with no moving parts withstands 2000 cps 20 g vibration, 50 g shock and acceleration. Input voltage 22-32 VDC-reverse polarity and transient protected. Complies with applicable MIL specifications. Fast delivery on standard units. Custom designs available.

Write for latest complete components catalog \#511

time delay relays - delay lines - rotary SOLENOIDS. DIGITAL MOTORS. HIMING DEVICES - dUal relays - solid state components

Electronics Division

CURTISS•WRIGHT CORPORATION

East Paterson, New Jersey
Circle 133 on Inquiry Card

Industry
 News

Edward J. Whalen - elected Vice President and Deputy Chief Executive Office, ITT Communications Systems, Inc., subsidiary of International Telephone and Telegraph Corp., Paramus, N. J.

Dr. Bernard Wambsganss-named Assistant to President, Alfred Electronics Corp., Palo Alto, Calif.

Jerrold Electronics Corp., Phila., Pa., announces the following appointments: Robert H. Beisswengernamed General Manager, JerroldPhiladelphia; and Donald Spaniernamed General Manager, HarmanKardon.
J. R. (Bob) Stone-named General Sales Manager, C. P. Clare \& Co., Chicago, Ill.

Merle W. Kremer-appointed Vice President, Electronic Tube Div., Sylvania Products Inc., New York, N. Y.

Bruce Burnett - named Marketing Manager, Ark Electronics Corp., Willow Grove, Pa.

Edward A. Galiskis-elected President, Pitometer Log Corp., N. Y.

Freeman F. Desmond - appointed Eastern Region Sales Manager, Times Wire and Cable Co., Inc., Wallingford, Conn.

David E. McElroy-named Manager, Chemical Material \& Process Engineering Dept., International Resistance Co., Phila., Pa.

Harold W. Kaye-named Technical Assistant to the Vice President and General Manager, Adler Electronics, Inc., New Rochelle, N. Y.

General Instrument Corp., Semiconductor Div., Newark, N. J., announces the following appointments: Ronald Friedman-named Distributor Field Sales Manager and William Carlson-appointed Headquarters Distributor Sales Manager.
Charles "Chuck" Sutton-appointed National Sales Manager, Chicago Telephone of California, Inc., South Pasadena, Calif.

Resistance Values up to 100,000,000 Megohms

Model RX-1 Hi-Meg Resistor

Victoreen Hi-Meg Resistors Standard of the Industry for Over 18 Years

```
Available tolerances
1% 2% 5% 10%
```

For longer life, Victoreen $\mathrm{Hi}-\mathrm{Meg}$ Resistors are in a class by themselves, especially for all high-impedance, low-current applications. Hi-Meg Resistors have a carbon-coated glass rod element with silver-banded ends for best electrical contact . . . are vacuum sealed in a glass envelope treated with special silicone varnish that minimizes moisture effects. Always specify Victoreen Hi-Meg Resistors for the ultimate in long-term stability.

5806 HOUGH AVENUE - CLEVELAND 3. OHIO
EXPORT: 240 WEST 17TH ST. - NEW YORK IT. NEW YORK

STRIP WIRE FAST.EVEN TOUGH TEFLON*

W.W. LRAINGER.IWC.

SPECIALISTS IN ELECTRIC
MOTORS
TOP NAME BRANDS (Daytor \qquad Was̊ner

68 GRAINGER WAREHOUSES

from any wire with just a gentle, harmless squeeze. With Ideal Custom Stripmaster, matched sets of counterbored blades-precision drilled on watchmaker's equipment to fit wire sizes exactly are designed to ride on cut insulation, and eliminate wire nicking and scraping. Firm grip of jaws prevents insulation damage. Wire is stripped absolutely clean up to a full $7 / \mathbf{a}^{\prime \prime}$.

Optional transparent wire stop quickly adjusts so that you strip off the exact amount of insulation you want every time. Perfect for fast, accurate production line stripping.
Custom Stripmasters come in three models for 10 to 14,16 to 26 , or 26 to 30 wire gauges.

SOLD THROUGH AMERICA'S LEADING DISTRIBUTORS

In Canada: Irving Smith, Ltd. Montreal.
${ }^{*}$ Reg. Trade Mark of DUPONT
The Custom Stripmaster is just one of a complete line just one of a complete line Thermo-Strip and high-speed electrically powered models electrically powered models for every insulation-removal
need WRITE FOR NEW WIRE STRIPPER BROCHURE.

W.W.LRAINGER.INC.

Dept. 213-B GENERAL OFFICES, CHICAGO 12 Circle 129 on Inquiry Card

Electronic Sources

Up-to-the-minute abstracts of articles appearing in the leading foreign electronic engineering manuals

ANTENNAS, PROPAGATION

The Behavior of Short Linear Aerials on Varying the Distribution of Current, G. D'Auria and F. Todero. "Alta Frea." July 1961. 15 pp . The behavior of short linear aerials is studied by varying the distribution of current by means of loads on top of the aerials. (Italy, in English.)

An Installation to Investigate Directional Properties of an Antenna. V. D. Kuznetzov, V. K. Paramonoff. "Radiotek"' 16, No. 8, 1961. 8 pp . A simple installation is described, which can be used to investigate operationally directional diagrams of an antenna, observing them on a cathode ray tube screen, a recording screen or a photographic screen. (U.S.S.R.)

The Operation of Cage Antennas for VORStations, H. Brunswig. "Nach. Z." August 1961. 8 pp . The operation of cage antennas is explained. The cage is treated as a system of linked parallel wire lines which are interconnected by a plate thus forming the radiator. (Germany.)

C

COMMUNICATIONS

Accumulation of Noise and Fading in Single Band Radio Communication Relay Lines. V. I. Siforov, A. V. Prossin. "Radiotek" 16, No. 8, 1961. 3 pp. A method is given to calculate noise and fading accumulation in multi-channel radio-relay communication lines with single band modulation. (U.S.S.R.)

Applications of the Method of Signal Extra polation Used in Pulse Noise Suppression. A. A. Gorbatcheff, M. I. Vinogradoff, "Radiotek" 16, No. 8, 1961. 6 pp. A method to realize signal extrapolation using a stepped poly nominal is given and experimental results from using it to suppress pulse noise is presented. (U.S.S.R.)

> Limiter and Discriminator in FM Receiver, E. Paulsen. "El. Rund." Aug. 1961. 2 pp. Described is the effect of limiter and discriminator properties upon the signal/noise ratio required in the reception of two FM transmitter programs. (Germany.)
> FM Reception Under Conditions of Strong Interference, J. van Slooten. "Phil. Tech." \#11, 1961. 9 pp. Effects observed in the reception of frequency-modulated signals under conditions of strong interference are dapable of exact analysis. However, the mathematical difficulties involved, although not insurmountable, make the theory difficult to grasp. The problem is approached with the aid of simple expressions which, though not new, are seldom employed. The result is a relatively simple formula which satisfactorily describes the effects concerned. (Netherlands in English.)

Certain Relationships in a Frequency Detector Circuit Containing Two Consecutively Switched Constant Current Diodes. Y. L. Mazor. "Radiotek" 16 , No. 8, 1961. 4 pp . Cut-off angles are determined for a detector system with two consecutively switched diodes. The cut-off angles depend on the impressed high frequency voltages and a number of other param quers The operation of this circuit is eters. The operation of time constant load analyzed for both a short load. (U.S.S.R.)

Symbolic Logic for Computer Circuit Application, B. R. Willins. "El. Tech." Sept. 1961. 8 pp . The elements of Boolean algebra and 8 pp . The elements of Boolean algebra and plications considered first to verbal statements and then to the description of some awitching and computer circuits. Finally, the methods are used in a simple design problem of a type which could be met in a digital computer. (England.)

CONTROLS

Optimum Control in Second-Order Pulse-Relay System with Random Disturbances, V. N. Novoseltsev. "Avto. i Tel." July 1961. 11 pp. Optimum control in second-order pulse-relay (digital) systems is considered. (U.S.S.R.)

Automatic Optimization by Statistical Criteria, S. A. Doganovsky. "Avto. i Tel." July 1961. 12 ptatistical criteria are defined and the pp. Statistical criteria are defined and autoperformance of control systems with auto-
matic optimization by statistical criteris is matic optimization by
investigated. (U.S.S.R.)

The Design of Voltage Controlling Transductors which Act as Regulating Units in Control Systems, H. Winkler. "rt." July 1961. pp. From the load characteristics relationhips are determined and these are used for defining the complete voltage control range which is the basis for the design of the transductors. (Germany.)

Three-phase Transductors for the Supplementary Voltage Regulation of Compounded Synchronous Generators, Werner Droste and Heinz Janzen. "AEG Prog." \#7. 1961. 4 pp. A simple form of 3-phase transductor as correcting unit for the supplementary automatic control system of compounded synchronous generators of high rating is described. (Germany in English)
Video Cross-Connection Distributor. "Rundfunk." April 1961. 5 pp. The paper describes a remotely-controlled distribution installation constructed on the principle of the filter crossconnector and which incorporates transistorized video amplifiers. (Germany)

Requirements to Contactless Control and Designing for Industrial Application, E. Rohloff. "El Rund." March 1961. 4 pp. Contactless control devices are increasingly introduced in the industry because of advantages compared with contactors. Requirements to such devices are compiled, and the author shows how they can be met with transistor units. (Germany)

Control Systems with Standard Equipment, H. Sartorius, "Rt." Feb. 1961. 6 pp . The histroical development of standard control equipment is shown, taking, as an example, pneumatic control systems as utilized in the petroleum industry. (Germany)
(Continued on page 211)

REGULARLY REVIEWED

AUSTRALIA

AWA Tech. Rev. AWA Technical Review
Proc. AIRE. Proceedings of the Institution of Radio Engineers

CANADA
Can. Elec. Eng. Camadian Electronics Engi-
EI. \& Comm. Electronics and Communieations

ENGLAND

ATE J. ATE Journal
ATE J. ATE Journal Brit. C.\&E. British Communications \& Electronics
E1. Tech. Electronic Technology
GEC J. General Electrical Co. Journal
J. BIRE. Journal of the Britisi Institution of Radio Engineers
Proc. BIEE. Proceedings of Institution of
Electrical Engineers
Tech. Comm. Technical Communieations

FRANCE

Bull. Fr. El Bulletin de la Soclete Francaise des Electriciens
omadaire des Seances
Inde. L'Onde Electrique
El. et Auto. Electronique et Automatisme
Rev. Tech. Revue Technique
Telonde. Telonde
Toute R. Toute Ia Radio
Vide. Le Vide

GERMANY

AEG Pron. AEG Progress
Arc. El Uber. Archiv der Elektrischen Ubertragung
El Rund. Electronisehe Rundschau
Hochfreq. Hochfrequenz-technik und Electroakustik
Nakh. Z. Nachrichtentechnische Zeitschrift
Rt. Regelungstechnik
Rund funk. Rundfunktechnische Mittellungen
Vak. Tech. Vakuum-Technik

POLAND

Prace ITR. Prace Instytutu Tele-I Radiotechnicznego Roz. Elek. Rozprawy Electrotechnizne

USSR

Avto. i Tel. Avtomatika 1 Telemakhanika
Radio. Radio
Radiotek. Radioteknika i Elektranika
Rad. i Elek. Radioteknika i Elektranika
Iz. Acad. Bulletin of Academy of Sciences USSR.

- Photocopies of all foreign articlea are available at 75 cents per page, remitted with order. Unless otherwise indicated, articles appear in language native to country of origin.
- A reprint of this section, "International Electronic Sources" is available without charge.

Requests for the above should be sent on company letterhead, to:

Electronic Sources Editor ELECTRONIC INDUSTRIES
Chestnut \& 56th Sts.
Philadelphia 39, Pa.

NEWEST, SIMPLEST WAY TO MEASURE R-F POWER... PRD 680 CALORIMETRIC POWER METER!

BWith this new instrument you can measure power accurately and directly, from a few microwatts up to a half watt. No bolometers, barretters, thermistors, or external attenuators are necessary. Nine power ranges can be selected on the front panel dial, and direct power reading in DB or watts can be made in seconds. Instrumentation is accurate to 2%. A lightweight (20 lbs .), easily portable unit, the PRD 680 utilizes the PRD series of dry calorimeters which plug into the front panel interchangeably. Shown here is the N680, covering the range of 0 to $10 \mathrm{kmc} / \mathrm{sec}$. Waveguide plug-in units for X and K bands will be available soon. Send for data!

PRD ELECTRONICS, INC.: 202 Tillary St., Brooklyn 1, New York, ULster 2-6800;

GET THE

USE THIS FREE READER SERVICE CARD

Keep up to date-get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be glad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.

ALPHABETICAL LISTING OF

$\left.\begin{array}{cc}\text { A } \\ 142 & \text { Acoustica-Ultrasinic cleaning systems } \\ 160 & \text { Ad-Yu Electronics Lab., Inc. - Phase } \\ \text { meters }\end{array}\right\}$

Acoustica-Ultrasinic cleaning systems Ad-Yu Electronics Lab., Inc. - Phase Aerovox Corp. Hi-Q Division-Precision wire-wound resistors
Alford Manufacturing Company-VSWR Alite Division U. S. Stoneware-Ceramic to metal seals
Allied Chemical. General Chemical Divi-sion-Fluorocarbon solvent
Allied Chemical, General Chemical DiviAlpha Metals, Inc. - Printed circuit solder
Amean Electrical Heater Company-
American Electronic Laboratories, Inc. -Microwave power amplifiers
Americañ Semiconductor Corp. - Zener American Time Products, Inc.-FreMP
Antenna
Antenna Systems Inc.-Antennas tors distribution
Armeld Enginon-Magnetic alloys type alnico magnets

B
44 Ballantine Laboratories Inc. - Vacuum tube voltmeter
Bendix Corporation, M. C. Jones Electronics Co., lnc.-RF power VSWR
34 Bendix Corporation Red Bank Division, Electron Tube Products - Backwardvave oscillator tubes
46 Bendix Corporation Semiconductor Divi-sion- DAP transistors
Boehme, Inc., H. O.-Precision manum factur is Walies
Booker \& Wallstad-Rotary switches
54 Bourns, Inc.-Precision potentiometer rady Co., W. H.-Printed circuit tapes and shapes
"Pie-New York Industries Corp. Brush Instrumg" machine

- Direct writing Division Clevite Corp. Bussmann Mfg. Division-Fuse and holder combination

C

123 Cambridge Thermionic Corp.-Custom wound coils
20 Celcu Constantine Engineering Labs Co. -Yoke and focus coils
Centralab, Electronics Division of GlobeUnion ne.-Trimmer resistors
Cinch Manufacturing Company - Sub-
miniature plugs and sockets

Clare \& Company, C. P.-Relay distribution

Computer Diode Corp.-Silicon rectiflers Conrac Division - Picture/pulse croes Corning Electronic Components - Glass resistors
Curtiss-Wright Corporation - Single transient peak reading voltmeter
Curtiss-Wright Corporation-Time delay
relays relays
relays
relays
right Corporation-Time delay

Dale Electronics, Inc.-Precision resisDavies Supply \& Manufacturing Co.Plating console age power supplies Deutsch Electronic connectors
Dialight Corporation-Dial lights
Distribution Age - The authority of physical distribution

17 EICO-AC VTVM \& amplifier

Fairchild Controls Corp. - Strain-gage pressure transducer
Fairchild Semiconductor-Silicon transistor
Fairmount Chemical Co., Inc.-Hydra.
zine flux and core solder
Florida Development Commission-Industrial development opportunities
Frequency Engineering Labs.-TunableX band Altors
Fusite Corporation, The - Solid glass headers \& terminals
FXR, The RF Products \& Microwave Div. Amphenol-Borg Electronic Corp. equipment and sub-systems

BUSINESS REPLY MAIL no postage stamp necessary if maled in united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
The Computer Center
P. O. Box 1970

Camden 1, New Jersey

G

General Electric, Rectifier DivisionPlanar epitaxial diodea
General Electric, Voltage Regulator Products-Precision voltage control General Electrodynamics Corp.-Sensitive television camera tubes
General Instrument Semiconductor Divi-sion-Silicon circuit units
General Motors-Delco Radio-Germanium power transistor:
General Motors-Delco Radio-Silicon digital modules
General Radio Company-Graphic level
recorder Gecorder
pin terminal boards.
Good-All Electric Mf. Company-Tan-Good-All Electric
Grainger, Inc., W. W.-Electric Motor distribution
Graphic Systems-Visual control board Grayhitches
swi
G-V Controls Inc.-Thermal relay

H

137 Hamilton-Electrona, Inc.-Electron-beam welding
Hewlett-Packard Company - Merowave measuring instruments
Hewlett-Packard Company - Frequency
Honeywell Precision Meters - Precision
meters
Howard Industries, Inc.-Universal and DC motor
Howell Instruments Inc.-DC digital voltmeter
Hushes Aircraft Company Vacuum Tube Products-Storage type oscilloscope
83 Hughes Microwave Tube Division
Traveling wave tube

[^16]
ADVERTISERS IN THIS ISSUE

ADYERTISERS FROM WHOM YOU DESIRE FURTHER INFORMATION

96 Industrial Test Equipment Co.-Electronic generators
45 Inland Motor Subsidiary of Kollkorgen 28 ITT Corp.-D-C amplifier Dacitor Department Components Division-Tantalum capacitor

```
31 Jennings Radio Mfg. Corp. - Ceramic
60 Jerrold Electronics Corporation-Sweep
Mignal generator F.-Variable capacitors
```

PROFESSIONAL ENGINEERING OPPORTUNITIES

Circle number of company on card at right from whom you desire further information.
805 Controls Company of America
803 General Motors AC Spark Plug, Electronic Division
804 National Cash Register Company

161 Johnson Co., E. F.-Tube sockets
122 Jones Division, Howard B.-Plugs and
sockets JVM Division of Fid

K

106 Kay Electric Company-Custom made RF togele switches
118 Keithley Instruments-Electrometers
63 Keystone Carbon Company-Bead type
Klein \& Sons, Mathias-Special electronic pliers
170 Knights Company, James-Crystal and components ovens

150 Lel Inc.-Low noise mixer-preamplifier 164 Lepel High Frequency Laboratories, Inc. -Induction heating units

M

144 Magnecraft Electric Company-AC and DC power relaya Company-AC and Magnetics Mark Products Company-Parabolic an tennas Micro State Electronics Corp.-Tunne diode amplifiers
Microwave Associates, Inc. - Silicon diodes
Microwave Development Labs, Inc. Antenna couplera
Minnesota Mining \& Mfg. Co. Mincom Division - Instrumentation recorder/ reproducer
Molecular Dielectrics, Inc.-Metal-Clad glass bonded mica
Mossman-Elliott Corporation - Quality relay:
Motorola Semiconductor Products Inc.Germanium epitaxial mesa transistors

N

104 Newark Electronjes Corporation-Industrial electronics catalog
Nothelfer Winding Labs.-High imped ance transformer

92 Oak Manufacturing Company - High
71 Ohmite Manufacturing Company-Tantalum foll capacitors power supply
PRD Electronics Inc. - Calorimetric Panoramic Electronics, Inc.-Spectrum analyzers

Employment-Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 225 of this issue.

Postcard valid 8 weeks only. After that use own letterhead describing item wanted.
NOY. 1961
PROFESSIONAL ENGINEERING OPPORTUNITIES

\section*{Please send me further information on the engineering position I have circled below.
 | 801 | 806 | 811 | 816 | 821 |
| :--- | :--- | :--- | :--- | :--- |
| 802 | 807 | 812 | 817 | 822 |
| 803 | 808 | 813 | 818 | 823 |
| 804 | 809 | 814 | 819 | 824 |
| 805 | 810 | 815 | 820 | 825 |}

YOUR NAME
TITLE
HOME ADDRESS
CITY or TOWN
ZONE
STATE.
NEW Subscription Order
NOV. 1961

I wish a new complimentary subscription to ELECTRONIC INDUSTRIES

Company Name: \square
Name:
Position
Company Address:
City:
Zone State
Specific Products Manufactured
NOV. 1961
YOUR NAME
.title.
FIRM
FIRM ADDRESS
CITY OR TOWN. .. ZONE.

72 Philco Lansdale Division-Solid state
18 Pomponents
Philco Lansdale Division-Epitaxial silicon mesa transistors
Polarad Electronics Corp. - Microwave
test equipment

R

139 Radio Cores, Inc.-Custom iron cores Radio Materials Company-Ceramic ca-
pacitors plastic tubing
Raytheon Company Industrial Components Division-Spectrum analyzer 79 Raytheon Company Semiconductor Divi sion-Semiconductors
Raytheon Company Semiconductor Divi-sion-Semiconductors
Raytheon Company Microwave \& Power Tube Division-Microwave tubes
147 Rohn Manufacturing Company - Communication towers

FIRST CLASS
PERMIT NO. 2333
CAMDEN, N. J.

BUSINESS REPLY MAIL
no postage stamp necessary if mailed in united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
The Computer Center
P. O. Box 1970

Comden 1, New Jersey

BUSINESS REPLY MAIL
no postage stamp necessary if mailed in united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
Chestnut ${ }^{\text {g }}$ 56th Sts.
Philadelphia 39, Pa.
Chilton Company

FIRST CLASS
PERMIT NO. 2333
CAMDEN. N. J.

BUSINESS REPLY MAIL
no postage stamp necessary if mailed in united states
postage will be paid by
ELECTRONIC INDUSTRIES
The Computer Center
P. O. 8ox 1970

Camden 1, New Jersey

Vapor Corporation-Dual function constant voltage regulator Victoreen-Resistors for high-impedance low-current applications

W

 Western Electric Company miniature switching diode140 Western Rubber Co.-Rubber grommets
78 Westinghouse Electric Corp. Tube Divi
sion-High vacuum switch tubes
Westinghouse Electric Corp. Semiconductor Division-Silicon power transsistors
30 Weston Instruments Division, Daystrom Inc.-Precision metal fllm resistors White Industrial Division, S. S.-Industrial air abrasive unit
z
75 Zenith Radio Corporation-Electron-beam parametric amplifier

High-energy density electron-beam welding techniques, recently developed by the Zeiss Foundation of West Germany and the Hamilton-Standard Division of United Aircraft, markedly improved packaging density and production methods in the field of microelectronics.
In microcircuitry, for example, packaged circuits no bigger than a thumbnail can now be reliably produced. Electron-beam equipment now welds microelectronic components into circuits with pinpoint precision, making intra- and inter-circuit connection, and hermetically encapsulating the completed micromodule.
Only electron-beam welding, performed in a high vacuum, can offer these significant advantages for the field of microelectronics virtual elimination of contamination; a close control of penetration; low thermal distortion; and close dimensional control. The upper illustration shows weldments of $0.002^{\prime \prime}$ thick copper leads to $0.002^{\prime \prime}$ thick nickel-plated ceramic substrate. In the field of thin films difficult welds are possible with this revolutionary new equipment such as $0.002^{\prime \prime}$ gold tabs to chromium-gold films $3000-A^{\circ}$ thick. Another important use of electron-beam equipment is the welding of ceramics used in vacuum tubes which

> Electronic Giants no bigger than your thumbnail... now through electron-beam welding
require extremely high temperature performance. For these procedures, tight ceramic-to-ceramic bonds are necessary - bonds available only through high-energy density electron-beam welding. The lower illustration is a $2 \times$ magnification of two aluminum oxide ceramic wafers $1 / 2^{\prime \prime} \times 3 / 4$ " $\times .010^{\prime \prime}$ thick edge-welded by deflecting the high energy density beam of a Hamilton-Zeiss electron beam welder across the edge surface.
Hamilton-Standard, with over twenty years of metallurgical experience and meeting rigid government specifications, has exhaustively tested the welds produced with Hamilton-Zeiss equipment. The data, which are available for your inspection, demonstrate conclusively that the Hamilton-Zeiss method produces welds in miniature workpieces that are as strong as the original materials themselves. Such results are possible only by the use of high energy density and precision focusing by the Zeiss magnetic lens system which are exclusive features of the Hamilton-Zeiss equipment. Find out what this revolutionary equipment can mean in your business. For full information call Hamilton-Electrona, Inc., exclusive marketing agent for Hamilton-Zeiss equipment in the United States and Canada.

Actually less than 0.1 foot candle of illumination on the faceplate is all that's required for excellent television pickup with a GEC 7325 Vidicon.
The new GEC 7325 is the world's most sensitive Vidicon with superior low lag characteristics. It represents the latest advance in Vidicon Camera Tubes, and incorporates major improvements resulting in performance which surpasses all similar type tubes. The high sensitivity improvements have been incorporated in several other GEC Vidicons to satisfy a wide range of applications:
GEC 7226 Short length with low power heater.
GEC 7226A Ruggedized version of the 7226.
GEC 7336 Broadcast quality live pick-up with provision for dynamic focus.
GEC 7522 Electrostatic Focus and Deflection requiring no external deflection and focis components.

GEC 1343 Ruggedized Electrostatic Focus and Deflection Vidicon with same electrical characteristics as the 7522 .

GEC 7697 For industrial cameras with low target voltage requirements.
All of these tubes have the same high sensitivity and low lag characteristics found in the GEC 7325.

TYPICAL LIGHT TRANSFER CHARACTERISTIC

For complete information on these high sensitivity tubes contact GEC by writing to:

GENERAL ELECTRODYNAMICS CORPORATION 4430 FORESTLANE G GARLAND.'TEXAS. EROADWAY 6.11. 61

Magnetic Amplifiers in Rolling-Mill Drives, Edmund Fiebig and Robert Joetten. "AEG Prog." \#7, 1961. 7 pp. The application of magnetic amplifiers in combination with machines and rotary amplifiers for automatically controlled rolling-mill drives are described. (Germany in English.)

Magnetic Amplifiers for the Speed Regulation of Automatic DC Winders, Richard Floete. "AEG Prog." \#7, 1961. 6 pp. Based on the characteristics of magnetic control and limit ing amplifiers, the operation of automatically controlled de winders is described. (Gerrany in English.)

MEASURE \& TESTING
Acoustic Resonance Method for Analysis of Gaseous Mixtures, J. Kacprowski and T. Uthke. "Roz. Elek." Vol. 7, \#1. 34 pp . The subject of this paper is the development of the acoustic method for measuring the volume composition of different gaseous mixtures. The method described is based on the measurement of the velocity of sound in the mixture under investigation. (Poland.)

Feasibility of Standards for Loss-Angle Tangent of Condensers, A. Jellonek. "Roz. Elek." Vol. 7, \#1. 14 pp . The measurement of lossangle tangent being a frequent operation carried out with a variety of instruments calls for the adequate standards which would enable to concert the records compiled from various sources. (Poland.)

Correlation Measurements Relating to F'requency Diversity in the HF Region, J. Groskopi, et al. "Nach. Z." March 1961. 5 pp. The correlation of the reception areas for different values of frequency spacing has been measured on an HF link Tokio-Frankfurt/Main. The measuring arrangement and the Main. The measuring arrangement and the
method of evaluation are described. (Germany.)

A Genuine Double Pulse Generator, T. Friese. "El. Rund." April 1961. 2 pp . The generator and its application in measuring the resoluand its application in measuring the resolu-
tion of coincidence, anti-coincidence and count tion of coincidence, anti-coincidence an
ing circuits is described. (Germany.)

Field Pattern Measurements of Various HF Directional Aerials Using Aircraft, R. T. Rye. "Proc. AIRE." Dec. 1960. 7 pp . Tests which established the actual field patterns of various full scale HAD (Horizontally Arrayed Dipoles) Thombic ${ }^{2}$, Inclined Vee ${ }^{3}$ and Franklin aerials at selected frequencies are described. (Australia.)

An Omegatron for the Quantitative Analysis An Omegatron or the Quantitative Analysis Tech." \#6, 1961. 9 pp . The present tendency towards high vacua of lower and lower pressures both in laboratory equipment and in electron tubes and other industrial products, makes it important to determine accurately the composition as well as the total pressure of the residual gas. Among the various kinds of mass spectrometer used for this purpose, the omegatron is particularly well suited-as this article describes-for determining, qualithis article describes-for determining, quali-
tatively and quantitatively, the composition of tatively and quantitatively, the composition of
a gas at pressures lower than $10^{-5} \mathrm{~mm} \mathrm{Hg}$. a gas at pressures lower
(Netherlands, in English.)

Frequency Measurements of Damped Oscillations in the Presence of Interference, R. Giersiepen. "Freq." April 1961. 7 pp . After a basic comparison of the well-known frequency measurement methods with a view to the determination of the frequency of a damped wave, the paper describes the approaches taken for determining the period duration of the natural oscillation of the human arterial circulatory system from the time function of the blood pressure in the upper-thigh artery. (Germany.)

Determination of Required Frequency of Measurements in Discrete Control, E. L. Itskovich. "Avto. i Tel." Feb. 1961. 8 pp. A technique of calculation of a required frequency of measurements in discrete control of technological plants is described. (U.S.S.R.)

Some Recent Developments in Ultra-High Vacuum Technology, P. A. Redhead, E. V. Kornelsen. "Vak. Tech." March 1961. 9 pp. Various techniques developed for the production and measurement of ultra-high vacuum in small glass systems are described. (Germany.)

An Automatic Check-Out and Recording Network, R. Mansey. "Elec. Eng." May 1961. 8 pp. This article describes an existing British automatic check-out equipment designed for a missile system, which has proved suitable for any aircraft or similar system where the parameters are predominantly electrical. (England.)

A Torquemeter for Milling Investigations, J. L. Gwyther. "Elec. Eng." May 1961. 4 pp. A torquemeter for measuring the cutting torque on a milling machine is described. torque on
(England.)
The Measurement of Mechanical Oscillations Using Polarization Filters, Rudiger Hartwig. "Freq." March 1961. 11 pp. Part I: As a first step the fundamentals of this measurement method are stated; they are essentially in the field of optical techniques. Part II: The practical application of the measurement method is shown. (Germany.)

Solid-State Research at Low Temperatures. 1 . Introduction, J. Volger. "Phil. Tech." \#6, 1961. 6 pp . The author has chosen a number of instances of the work being done in this field, at the Philip Laboratories and elsewhere, which will be presented in the form of three articles. It will be the aim in each subject discussed to explain why it is so important that the properties in question should be studied at low temperature. The first article which is an introduction to the subject, begins by considering what exactly is meant by low temperature. (Netherlands, in English.)

Performance of Simple Rectifier When Measuring Non-Sinusoidal Voltages, H. Gommlich. "El. Rund." April 1961. 6 pp. The author "El. Rund." April 1961. 6 pp. The author
describes the properties of the well-known describes the properties of the well-known
rectifier circuit for measuring purposes and the performance of such circuits when nonsinusoidal voltages are measured. (Germany.)

SEMICONDUCTORS

Transistorized Line Equipment for 12-Channel and " $12+12$ " Channel Carrier-Current Telephone Systems, J. Aubert, et al. "Cab. \& Trans." Jan. 1961. 21 pp . Substitution of transistors for electron tubes allows to simplify the building of carrier-current 12- and " $12+12$ " channel telephone line equipment, resulting in noticeable cost reduction as compared with former systems. The authors study pare the more or less complex structure of the equipment depends on the choice of repeater spacing. (France.)
Transistorized " $12+12$ " Channel Telephone System with $6 \mathrm{kc} / \mathrm{s}$ Channel Spacing, G. Fuchs and J. Boulin. "Cab. \& Trans." Jan. 1961. 18 pp. A new low-cost " $12+12$ " channel carrier-current telephone system, with $6 \mathrm{kc} / \mathrm{s}$ channel spacing and transistorized equipment is described. (France.)

Minimal Clipping Levels of Semiconductor Clippers, M. E. Movshovitch. "Radiotek" 16, \#4, 1961. 4 pp . Lowest possible clipping levels are determined for two-sided semiconductor clippers. The recommended methods of analysis can also be applied to vacuum-tube clippers. (U.S.S.R.)

Frigistors-Thermopairs Consisting of Semiconductor Material for the Use as Conlers and Heating Pumps. "El Rund." March 1961. 3 pp. Research in the field of semiconductors has lately resulted in the development of bismuth-tellurium compounds having an extraordinary Peltier effect. (Germany.)
Recombination of Injected Carriers in Transistors, H. U. Harten. "El Rund." March 1961. 4 pp . The paper indicates the cause of recombination and the effect upon current amplification in a conventional alloyed transistor. cation in
(Germany.)

A Transistorized Differential Equalizer. "Rundfunk." April 1961. 10 pp . Valve circuits for emphasizing, without phase distortion, the higher frequencies of the video signal have been known for some time. As part of the beeneral trend towards the transistorization of video equipment, there has been developed a transistorized differential equalizer. (Germany.)

TELEVISION

Synchronizing and AGC Circuits in TV Receivers, E. M. Cherry. "Proc. AIRE." Feb. 1961. 16 pp . One of the problems associated with TV receivers is the designing of synchronizing circuits which will perform satisfactorily in the presence of noise interference. There are two fundamental methods for discriminating between signal and noise. The more powerful method depends on the redundancy of the synchronizing pulses; the AFC system for synchronizing the line oscillator is an example. This paper is concerned primarily with the method of amplitude discrimination. (Australia.)
The Modulation of Television Transmitters in the Intermediate-Frequency Stage. "Rundfunk." April 1961. 9 pp . The paper deala with problems of television-transmitter technique, the solution of which, by adopting the nique, the solution of which, lation, results in a number of advantages from the point of view of transmission technique. (Germany.)

A Temporary NDR Television Studio at Hanover. "Rundfunk." April 1961. 3 pp. The NDR, in December 1960, took into operation at Hanover a temporary television studio, which is intended for interviews, topical reports and the like. It is planned to originate program contributions in this studio for a certain time and later to take it out of service. (Germany.)

A New Type of Television Systems. I. L. Valik, L. I. Chromoff. "Radiotek" 16, \#2, 1961. 5 pp. The rising need and application of television methods of image transmission in various industral fields, scientific research etc., is closely paralleled with a development of new types of television systems. On the basis of previous works by the same authors, specific aspects are discussed of one of these new types of systems-systems with separated processes of recording and reading (small frame television). (U.S.S.R.)

Examining Image-Iconoscope Camera Tubes by Means of a Special Test Equipment, Albert Kaufmann. "Rundfunk." Feb. 1961. 8 pp. The paper briefly describes equipment for testing image-iconoscope camera tubes and shows its possibilities from the measurement point of view. (Germany.)

Characteristics of an Elementary Television Channel, P. M. Makovetzky. "Radiotek" 16, No. 4, 1961. 11 pp . Concepts of amplitudefrequency and frequency-frequency characteristics of an elementary channel are introduced. Discussed is a possibility of constructing a fundamentally new class of highly sensitive transmitting tubes which would not employ the principle of charge storage. (U.S.S.R.)

MEASURE 0.00001Ω

Accurately

. . . even with 100 ft . leads

Lead length and test point resistance errors are eliminated in the Shallcross 633A Kelvin Bridge-an instrument that makes accurate low resistance measurement truly practical for broad areas of lab and production uses. Measures $10 \mu \Omega$ to 100Ω, $\pm 0.25 \%$ above $100 \mu \Omega$ or $\pm 1 \mu \Omega$ below $100 \mu \Omega$ using 100 foot leads. $\$ 370$ less leads. Request Shallcross Bulletin L54.

Other Shallcross

Low Resistance Test Sets A complete line of portable and hand-heldmilliohmmelers, microhmmeters, and accessories. Full scale ranges from 0.0002Ω to 100 . Request Bulletin 139.

SHALLCROSS MANUFACTURING CO., Selma, N.C.

Circle 141 on Inquiry Card

ACOUSTICA ULTRASONICS MAY DO YOUR CLEANING JOB IN $1 / 35$ THE TIME!

Incomparably fast and thorough eleaning is yours with Acoustica ultrasonic cleaning systems. One major connector manufacturer, for example, has reduced the job of cleaning 21,000 components from 416 man-hours to 12 ! Another company cleans 600 -circuit slip rings in a 15 second ultrasonic dip. You, too, can save time, money and rejects with an Acoustica system. Write for free application data sheets.

acoustica

GENERAL ULTRASONICS DIVISION 10400 Aviation Boulevard, Los Angeles 45, Calif. 463 Old Country Road, Westhury, L.I., N. Y.

DISPLAY NUMBERS, WORDS, A versatile readout COLOR, AND SYMBOLS! employing all the above mentioned features plus a large one inch character size. Ideal for computers, electrical and electronic test equipment, control systems, and annunciation boards. Price complete from $\$ 18.00$. Write today for complete detailed specifications and quantity prices.
 Circle 143 on Inquiry Card

Precision-made pin-type armature hinge

STOCK RELAYS
Class 88R, DPDT, 15 amps.

voltage	Res. ohms	nominal power	catalog number
6VAC	--		W88ARX1
12 VAC	-	3 VA	W88ARX2
24 VAC	-		W88ARX3
115 VAC	-		W88ARX4
6 VDCC	25		W88RX1
12 VDC	100	1.5 W	W88RX2
24 VDC	400		W88RX3
115 VDC	8000		W88RX4

249 different high reliability relay models in stock for IMMEDIATE SHIPMENT.

Send for Catalogs

and many other design advancements provide adjustment stability through long life here-to-fore equalled only by top flight telephone type relays.

You can see the difference
The design refinements and heavy duty construction are strikingly apparent to the naked eye.
SPDT and DPDT models furnished for most AC and DC voltages. Models stocked for immediate shipment listed at left.

MAGNECRAFT ELECTRIC CO.
5570 N. Lynch, Chicago 30, Ill.
Ph. Area Code 312 AV 2-5500
Circle 144 on Inquiry Card

Tele-Tech's ELECTRONIC OPERATIONS

SYSTEMS—WISE . . .

- TVA is having two digital computers installed to control its Paradise Station Units 1 and 2 near Drakesboro, Ky. The computers, manufactured by TRW Computer Co., div. Thompson Ramo Wooldridge Inc., will automatically control the turbine generators, sequence monitor the steam generators, and will sequence cold start, hot restart, normal shutdown, or emergency shatdown of the units. The system is built around the RW-300 Digital Control Computer.

HELICOPTER DEFENSE SYSTEM

In field training with U. S. Marines at Twentynine Palms, Calif., is America's first helicopter-transported air defense control system. The system provides ground troops with air defense by coordinating the firing of Hawk and Terrier guided missile batteries for the destruction of enemy supersonic aircraft. Developed by Hughes Aircraft Company's ground systems group, Fullerton, Calif., each system is installed in five plastic and aluminum shelters called "helihuts." Above, a helihut, transported as far as it can go by truck, is carried skyward by a Marine helicopter for movement to mountainous ground.

- New programming aid which minimizes time and effort needed to convert punched card machine operations to the solid-state IBM 1401 computer has been announced by IBM. The FARGO system compiles 1401 programs in less than 30 sec. for the automatic preparation of business reports. FARGO (Fourteen-O-One Automatic Report Generating Operation) is a "load and go" programming system.
- Dial-o-verter Systems which transmit data over regular telephone lines at speeds up to 1,500 words per minute, will have been installed in 17 cities from coast to coast by the end of the year, according to an announcement made today by the Digitronics Corporation. Dial-o-verter Systems have already been transmitting data, complete with verification, at a speed of 1,000 words per minute, utilizing punched paper tape equipment. New installations to be made shortly will include magnetic tape terminals, which will increase the speed of transmission to 1,500 words per minute. Installations which have been functioning for several months indicate a probable error occurrence in less than 2 out of 100 blocks. However, the Dial-o-verter System automatically detects and corrects all errors, resulting in error-free receipt of data.
- Brookhaven National Laboratory has ordered a digital data logging system built by Datex Corp., Monrovia, Calif., that will record data from experimental atomic energy research and warn of improper operation of equipment. The system will monitor all active input information, warn of any input point outside of preset limits and periodically record all input information.
- TRW Computers Company, a division of Thompson Ramo Wooldridge Inc., has installed an RW-300 computer control system at the Tulsa refinery of DX Sunray Oil Company to perform on-line, closed-loop control of a new 85,000 barrel-per-day crude oil distillation unit. The new distillation unit replaces five older crude units that had a capacity of 75,000 barrels-per-day, it is the first major refinery unit to incorporate a computer control system in its original design. The RW-300 provides continuous and automatic control of the huge process-scanning 191 process instruments and adjusting 30 controller setpoints to maintain optimum efficiency. Such variables as temperatures, pressures, flow rates, and stream compositions are checked every 10 minutes and their readings are compared with predetermined limits stored in the computer's memory. Using this instrument data and a mathematical model of the process, the RW-300 exercises direct control over the distillation unit by automatically adjusting the appropriate controller setpoints.
The General Electric Comp. has been awarded a $\$ 6$ million contract to expand the facilities of the Southern Railway System. The new contract will double the Southerns use of the electronic communication system. The microwave network will be installed between Ohio; Atlanta, Ga.; and Birmingham, Ala.

The equipment will be battery operated, contributing to greater reliability as it will not be subject to transmission 'hits' associated with commercial power lines. These microwave installations replace telephone lines, and increase reliability as they are not vulnerable to snow and ice, and other bad weather.

SOLVING TIME AND DISTANCE PROBLEMS

A high-speed IBM Tele-processing system linking computer centers in Manhattan and Poughkeepsie, N. Y., was introduced by IBM and the New York Telephone Co. Here Warren C. Hume (holding magnetic tape reel), president of IBM's Data Processing Division, and Walter A. Giles, vice president of the New York Telephone Company, examine a model of a microwave tower similar to that used in the 68 air-mile transmission. Data is sent between the two IBM computer centers - in either direction or both ways at once - at a speed of 15,000 characters per second. This is more than 1,000 times as fast as human speech.

ASTANDING wave on a transmission line results from the combination of an incident and reflected electromagnetic wave. A portion of the incident wave is reflected whenever there is an electrical discontinuity, such as a dielectric bead or a change in dimensions, in the transmission line. A reflection also occurs if the line is terminated by a load that does not match the characteristic impedance of the line. Total reflected wave obtained is usually some combination of the load reflection and the small reflections resulting from the discontinuities in the line. The problem in most measurements is to accurately determine the reflections due to the load alone.

Standing wave measurements are often made by sampling the electric field along a transmission line. VSWR (voltage standing wave ratio) is taken as the ratio of the maximum to minimum voltage across the line.

Ratio of the reflected to incident wave is related to VSWR in the following manner:

$$
\left[\frac{V r}{V i}\right]=\frac{V S W R-1}{V S W R+1}
$$

It is necessary to connect the equipment or component under test to some measuring instrument when VSWR is to be measured. Thus a junction of two transmission lines is formed. At each junction or connection in a transmission line, a reflection is set up as there can never be a perfect lineup of two mating surfaces. In a wave guide system this problem can be reduced to negligible proportions. Inside dimensions of waveguide can be milled, ground or extruded to exacting dimensions, and the two flange mating surfaces can easily be made flat and perpendicular to the inside dimensions of each waveguide. Furthermore, there is no need for supports to be placed within the transmission medium since there is no inner conductor. A good example of a low reflection waveguide component is a precision milled slotted section body. Mating of two such components produces a maximum VSWR of less than 1.01 to 1 in X band. With coaxial lines, however, the connection is usually made by joining some standard connector on one line to a mating connector on the other line. These connectors re-

L. O. Sweet

R. A. Liebowitz

Measurement of

quire beads for support of the inner conductor and spring fingers, to provide contact between the inner and outer conductors on each connector. Buildups of tolerances permit only one of the conductor pairs to make a butt contact. The bead and the contact fingers at the junction between the measuring instrument and the test piece set up small reflections which combine with the reflection from the load, and create a serious problem in the measurement and ability to define coaxial line VSWR.

Types of Coaxial Line
Coaxial line can take many forms. Most common are rigid air line and solid dielectric cable.

In addition to the rigid air lines and solid dielectric cables there is a line that has an inner conductor positioned by six hollow dielectric tubes which are placed between the inner and outer conductors.

Table One

Rigid Air Lines

I.D. (lnches)	O.D. (Inches)	DESIGNATION (Inches)	Z_{0}
0.125	0.285	$3 / 8$	49.4
0.375	0.811	$7 / 8$	46.3
0.341	0.785	$7 / 8$	50.0
0.664	1.527	$15 / 8$	50.0
1.315	3.027	$31 / 8$	50.0
1.711	5.981	$61 / 8$	75.2
2.600	5.981	$61 / 8$	50.0

The resulting structure, called Spir-o-line, combines some of the features of rigid air line and cable. It is flexible, has a lower attenuation than an equivalent solid dielectric cable, and a higher power rating than an equivalent air line. Spir-o-line is manufactured as a 50 ohm cable in $3 / 8,1 / 2,7 / 8,15 / 8$ and $31 / 8$ inch sizes.

Connectors and Adapters

Type N

Type N is the most frequently used coaxial line connector. It is a matched 50 ohm general purpose connector for small and medium size r-f cables, and is completely gasketed for weatherproof operation.

Curves showing the VSWR of several different mating pairs of connectors are shown in Fig. 2. These curves were obtained with a rigid 50 ohm air line attached to the input and output of the connector pair. Thus the results do not include the effects of any cable connection. Relatively low values of VSWR that occur for the mated pairs UG-21 A/U-UG-23 A / U and UG-21 B/U-UG-23 B/U from $7-10 \mathrm{kMC}$ result from the fact that the reflection of one connectorhalf cancels the reflection of the other. If one of these connectorhalves is not connected with the proper mating half, a reflection

Manager,
Product and Component
Engineering Department,
PRD Electronics, Inc.,
202 Tillary St.
Brooklyn 1, N. Y.

VSWR in Coaxial Systems

What are the different methods of defining and measuring coaxial VSWR?
This article provides a simplified explanation.
It lists the accuracy obtainable with presently available equipment
and also brings to light the lack of standardization still present
in the measurement and specification of coaxial VSWR.
cancellation will no longer occur and the VSWR will be higher than shown. Connector-halves of the D/U types are not dependent on this cancellation to any significant degree. Curves of VSWR for the connector pairs going from rigid line to $\mathrm{RG}-5 / \mathrm{U}, \mathrm{RG}-9 / \mathrm{U}$ and $\mathrm{RG}-$ $14 / \mathrm{U}$ cable are shown in Fig. 2. The corresponding cable connectors that were used were the UG-18 C/U, UG-21 D/U, and UG-204 C/U.

Tupe C

Type C connectors were primarily designed for medium size cables such as RG-5/U, RG-7/U, etc. They have a bayonet-lock coupling which permits fast connection and disconnection. Standard design of
connectors has a peak voltage rating of 1000 volts, although several types with a 5000 volt rating are available. Rigid line to cable VSWR for a RG-5/U cable with a Type C UG-626 A/U connector, an RG$9 / \mathrm{U}$ cable with a Type C UG573/U adapter, and an RG-17/U cable with Type C UG-708/U adapter are shown in Fig. 3.

BNC

BNC connectors were designed for small flexible cable such as RG-55/U and RG-58/U. They are small in size and have bayonetlock coupling for fast connect-disconnect. All have a nominal voltage rating of 500 volts peak, and are gasketed for weatherproof op-
eration. Rigid line to cable VSWR with a BNC UG-88 C/U and a UG$89 \mathrm{~B} / \mathrm{U}$ as mating connectors is shown in Fig. 4.

Type HN

The HN connectors are high voltage (5000 volts peak) weatherproof connectors designed for use with medium sized cables. The high voltage design was based on increased leakage paths obtained by overlapping plug and jack dielectric beads, overlapping cable and connector dielectrics, and elimination of air pockets at dielectric interfaces through the use of Dow Corning No. 4 silicone grease. Maintenance of long leakage paths introduces impedance mismatches

Fig. 1. Curves showing the VSWR of several different mating pairs of type N connectors were obtained with a rigid 50 ohm air line attached to the input and output of the connector pair.

Fig. 2. Measured VSWR of type N cable connectors for connector pairs going from rigid line to RG-5/U, RG-9/U and RG-14/U cable.

Fig. 3. Measured VSWR of type C cable connectors for connector pairs going from rigid line to RG-5/U, RG-9/U and RG-14/U cable.

For Military and Commercial
 Applications

Gravhill Miniature Rotary Tap Switches

Circle 145 on Inquiry Card

Fig. 4. Curve of rigid line to cable VSWR with BNC cable connectors.

Fig. 5. Curve for rigid line to rigid line VSWR of the HN connector.

Measurement of VSWR (Continued)

which limit the upper frequency to about 4 kmc . A curve for rigid line to rigid line VSWR of the HN connector is given in Fig. 5.

Type LC and LT'

LC and LT connectors are electrically similar, are weatherproof, and may be used in exposed locations. LC connectors were designed for large r-f cables such as RG$17 / \mathrm{U}$ and $\mathrm{RG}-19 / \mathrm{U}$ while the LT connectors were designed for the high temperature cables RG-117/U and RG-118/U.

Type UHF

UHF connectors are general purpose connectors for small and medium sized cables. They are not
number in a box common to two connector types is the adapter used to connect them together. Any number other than an RG number is an IPC designation.

Philosophy

From a practical point of view, the engineer is usually interested in obtaining VSWR data that will describe the performance of a component as it is to be used. He wants the measured VSWR to include the effects of any mating connector pairs since such mating pairs must be used if the component is to be connected to anything. VSWR information that is given may be measured with a

The third is just to neglect the connector VSWR, and state the VSWR of the component when measured in air-line. Unfortunately the designers of components rarely state which of the three methods has been used as a basis for the data and measurement of the component.

Philosophy for the first method is that the use of standard connectors is universal, and that VSWR of a component should be measured and stated as it is to be used in the field where it is mated with a perfect standard connector. Thus the user can always duplicate the measurement made by the manufacturers, and predict the actual VSWR of the component when it is placed in his system. It is usual for the VSWR specified by the manufacturer that uses this

POWER
IN
SLOTTED SECTION $\# 1$

Fig. 6. Two slotted section method for measuring VSWR of a connector pair.

Fig. 7. Frequency variation method for measuring VSWR of a connector pair.
matched in impedance and therefore are not recommended for use above 200 Mc . Maximum operating voltage is 500 volts peak.

Miniature Connectors

Miniature connectors have not as yet been standardized and given military designations. Different types are available from the different connector manufacturing companies such as Industrial Products Co., Automatic Metal Products Co., Amphenol Electronics Co., and Microdot, Inc.

Adapters

There are many adapters that have been designed to permit the joining of one type of connector to another. Common types of straight adapters that are in use are best presented by Table 3. The
standard connector pair, or without any connector pair.

The design of coaxial components cannot neglect the problem of connector reflection. Residual VSWR of connector is moderately high at microwave frequencies and constitutes a major difficulty if the design is to work over a wide frequency range.

There are three common methods of measuring and specifying low VSWR coaxial components. One makes use of standard coaxial connector parts. It constructs the remainder of the components to provide cancellation of the reflections from the connectors at the frequencies of highest individual VSWR of each. Another makes use of special non-standard connectors. These contain special beads and usually require the use of a special mating connector for low VSWR.
method to be higher than that of the manufacturer adhering to either of the other two philosophies.

Philosophy behind the other two methods is simple: Do not penalize the component because of the connector deficiency. Thus one group of manufacturers redesigns the connector making it special, and the other just neglects the connector entirely. The user cannot predict the VSWR of components made by manufacturers adhering to these philosophies. When placed in the user's system the VSWR of the component may be higher or lower than that specified. The federal government usually alleviates this problem by specifying that all connectors must meet MIL-C-71; the specifications for standard connectors.
(Continued on page 218)

ROHN COMMUNICATION TOWERS STAND THE TEST!

Everyone knows that ice loading, coupled with high winds, is the severest of all tests for a tower. Here are details of how a ROHN No. 55 Communication Tower withstood such a test:

A partially erected ROHN Tower was caught in a severe Canadian ice and snow storm in December, 1960. Only 120 ft . was erected of the 250 ft . completed tower when the storm broke. It withstood the tremendous rigors of the ice and windl After the storm passed, this ROHN Tower was completed to become part of a communication system in Montana. Midwest Communications did the erection for Rohn Systems, Inc.
For Towers That Stand Rigorous Abuse, Call or Write:

ROHN Manufacturing Co.

P. O. Box 2000
Peoria, Illinois

"Pioneer Manufacturer of Towers of All Kinds"

Reprosentatiyes Coast-to-Coast:

 Circle 147 on Inquiry CardFig. 8. Sliding short method for measuring VSWR of a connector pair.

Measurement of VSWR (Continued)

Measurement of VSWR

VSWR information most commonly required is input VSWR of a one-port and the insertion VSWR of a two-port. These are usually measured through a rigid line to rigid line connector pair or a rigid line to cable connector pair.

At lower frequencies, where the connectors cause negligible effect, a slotted section or impedance bridge will measure the one-port input VSWR or two-port insertion VSWR with little error due to the connectors. At the higher frequencies the same measurement procedure is often used and the resulting total

VSWR due to the component and its connectors is measured.

When VSWR of the one-port less its connectors is required, several methods are useful. In the first method the beads are eliminated and the unknown is connected directly onto the unbeaded output end of a slotted section. Special effort is made to ensure the butting of both inner and outer connectors. PRD Type 205A, N231, and 200 series of slotted sections make provision for this measurement. There is no bead at their output connector and the center conductor is cantilevered from the input connector bead. When the load is connected,

Table Two
Common Solid Dielectric 50 Ohm Cables \& Connectors

Cable	Connector Type	Plug	Jack	Remarks
RG-5/U	N C	$\begin{aligned} & \text { UG-18 B/U, UG-18 C/U } \\ & \text { UG-626 ANU } \end{aligned}$	$\begin{aligned} & \text { UG-20 B/U, UG-20 C/U } \\ & \text { UG-630/U } \end{aligned}$	Small microwove cable; double braid
RG-9 A/U	N C HN UHF	UG-21 B/U, UG-21 C/U UG-21 D/U UG-628 A/U, UG-942 A/U UG-59 A U, UG $59 \mathrm{C} / \mathrm{U}$ UG-59 B/U, UG-59 D/U PL259 A, NT-49195 PL259, NT-49190	UG-23 B'/U, UG-23 C/U, UG-23 D/U UG-570/U UG-632/U UG-60 C/U, UG-60 B/U, UG-60 A/U, UG-60 D/U	Medium size circuit cable with high attenuation stability; double braid
RG-17/U	$\begin{gathered} \mathrm{N} \\ \mathrm{C} \\ \mathrm{HN} \\ \mathrm{LC} \end{gathered}$	$\begin{aligned} & \text { UG-167/U, UG-167 A/U } \\ & \text { UG-167 B/U } \\ & \text { UG-167 C/U } \\ & \text { UG-167 D/U } \\ & \text { UG-708 A/U } \\ & \text { UG-495 A/U } \\ & \text { UG-154/U } \end{aligned}$	$\begin{aligned} & 14850 \text { (IPC\#) } \\ & \text { UG-333 AVU, } \\ & \text { UG-333 B/U } \\ & \text { NT-49579 } \end{aligned}$	Large high power, low àttenuation transmission cable; single braid
RG-58/U	$\begin{gathered} \mathrm{N} \\ \mathrm{BNC} \\ \text { TNC } \\ \mathrm{C} \\ \mathrm{BN} \\ \mathrm{HN} \\ \mathrm{MB} \end{gathered}$	UG-536/U, UG-536 A/U UG-8 B/U, UG $88 \mathrm{~B} / \mathrm{U}$, UG-88 A/U, UG-88 C/U 79875 (IPC\#) UG-709 A/U UG-245/U 16750 (IPC\#) 45525, 49200, 61400 (IPCH)	$\begin{aligned} & 35025 \text { (IPC\#) } \\ & \text { UG-89/U, UG-89 A/U } \\ & \text { UG-89 B/U } \\ & 79450 \text { (IPC\#) } \\ & \text { UG-704/U } \\ & 18325 \text { (IPC\#) } \\ & 45575,48025,48175 \\ & 49225 \text { (IPC\#) } \end{aligned}$	General purpose small size flexible cable; small braid
RG-117/U	N IT HN C	90400 (IPC\#) UG-532/U UG-926 A/U UG-711 A/U	82-117 (Amphenol) 51325 (IPC\#)	Semiflexible cable, for $-55^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$, single braid
RG-196	(1 PC) Sub (Amphe Microd Automa Meral	ubminax 27-30, 27-34 nol) MM 58300, 58425 32-55 32-21, 32-23 ic Prod. RF-3621	$\left\lvert\, \begin{aligned} & 27-31,27-35 \\ & 54200 \text { (IPCH) } \\ & 31-34,31-53 \end{aligned}\right.$ RF-3650	Miniature cable, can be used to $200^{\circ} \mathrm{C}$

the joined center conductor is supported by the slotted section input bead at one end and the unknown at the other end. Such a situation would arise, for example, when trying to measure the VSWR of an internal load for a coaxial directional coupler or a hybrid.

In the second method, the one port is connected to the slotted section by use of standard connectors. The remainder of the one port is made to slide longitudinally in the line. It is then moved until a maximum VSWR and then a minimum VSWR are obtained in the slotted section. Maximum VSWR is then the product of the VSWR's due to the component and the connector pair, and the minimum VSWR is their quotient.

From this information, and the knowledge of the shift of minimum position in the slotted section for maximum and minimum VSWR, it is possible to calculate the VSWR of the component. If the position of

Fig. 9. Rotary Standing Wave Indicator shown is designed to cover range from 20 MC to 2 KMC with a residual VSWR of 1.03 or better.
the minimum shifts by one quarter wavelength from the maximum VSWR case to the minimum VSWR case, the VSWR of the component is greater than that of the connector pair.

Formulas for this calculation are: For one quarter wave minimum shift

$$
\begin{gathered}
r_{c}=\sqrt{r_{\max } r_{\min }} \\
r_{p}=\sqrt{\frac{r_{\max }}{r_{\mathrm{min}}}}
\end{gathered}
$$

For no minimum shift
(Continued on page 221)

"It's a big help in examining our video signal to assure perfect synchronization and to quickly determine the quality of the sync pulses," Mr. Kelly adds. "This is by far the most versatile and useful monitor we have ever used."
The new Conrac fully regulated monitor will display either sync or normal picture at the flick of a switch. The 3-position, front-panel switch permits selection between normal picture, pulse cross, and pulse cross expanded. In the last position, vertical expansion of approximately five times shows each horizontal line clearly. In both pulse cross positions, video is inverted (black is white) and auxiliary brightness is provided. Thus, pulse cross brightness can be preset at a different level from that employed when viewing the normal picture.
Mr. Kelly's appraisal of this monitor and his experience with other Conrac monitors is not unusual. Consistency in quality, dependability, and versatility are Conrac characteristics known and preferred wherever a need for monitors exists in the broadcasting industry.

FROM 8" THROUGH 27", BROADCAST AND UTILITY, EVERY CONRAC

 MONITOR HAS A COMBINATION OF UNIQUE FEATURES.* Video response flat to 10 megacycles
* DC restorer with "in-out" switch
\star Selector switch for operation from external sync
\star Video line terminating resistor and switch

conrac monitors are oistributeo by rca, general electric, ampex, and visual electronics
DIV/S/ON
Glendora, California
A DIVISION OF GIANNINI CONTROLS CORPORATION
Makers of Fine Fleetwood Home Television Systems • Telephone: Covina, California, EDgewood 5-0541

WASHINGTON

News Letter

GENERAL ELECTRIC WITHDRAWS-The General Electric Co. has withdrawn its application to enter the satellite communications field through its spe-cially-formed subsidiary, Communications Satellites, Inc. GE decided not to divert its resources in the carrier communications field but to concentrate on its "traditional role" as a manufacturer of space vehicles and allied equipment. The GE decision won praise from FCC Chairman Minow for the company's contributions of "scientific, technical, and other information in the fields of space technology and satellite communications." The FCC Chairman expressed the hope that the Commission "will continue to have General Electric's active participation in these matters in order that the important questions involved may be resolved expeditiously and wisely."

TV PROPOSAL—FCC Commissioner Robert E. Lee has proposed withdrawal of VHF televison channels in eight more areas of the country as well as speedy conversion to an all-UHF television system if the New York City tests prove the feasibility of such operations. The proposal would provide a plan to
make available added frequency space for both the Bell System's program for a nationwide, broadband common carrier mobile radiotelephone network and for a variety of public safety, industrial, and land transportation mobile radio systems. The tentative Lee proposal for deriving 34 land mobile frequency channels in the eight areas has not yet gained adoption by the FCC, but is considered a precedent for future relief for the land mobile services.

SPACE ALLOCATIONS-The special CCIR study group of the ITU to be held in Washington next spring to consider the allocation of frequencies for space communication and other space purposes will precede the International Radio Conference scheduled to be held in 1963. ITU Secretary General Gross has stated that many of the attending countries with considerable influence on the ultimate results will not have an immediate requirement for frequencies for their own space activities. But, he stressed, they will have an interest in accommodating space needs on a basis that will not prevent the use of the same frequencies for ground or earth microwave purposes. Many of them will be concerned as to whether the large countries such as the United States and the Soviet Union use the lower microwave frequencies to cause significant interference with their own ground services.

National Press Building
Washington 4

Look for . .

Amerigan SEMICONDUCTOR CORP. 3940 N. Kilpatrick Ave. Chicago 41, ill.

Newest in LEL's broad line of mixer-preamplifiers, the XBO-8 combining an Orthomode mixer and a Nuvistor preamplifier provides excellent noise figure, small size, very low power drain at lower cost. Other models are available for operating ranges from 3.95 to 10.5 KMC .

SPECIFICATIONS

Gain	22db
IF	30,60 or 70 mcs
Bandwidth	12 mcs
Noise figure	Less than 8db
Power	+40 VDC at 12 ma 6.3 VAC at 0.4amp
Size	1-7/8 $8^{\prime \prime} \times 1-1 / 8^{\prime \prime} \times 4^{\prime \prime}$
Weight10ozs.
Material	plate, rhodium flash
Send for 48 por	F Equipment Catalog

Circle 150 on Inquiry Card

VSWR (Continued)

上
$r_{p}=\sqrt{r_{\max } r_{\text {min }}}$
where $r_{c}=$ VSWR of component ess connector pair
$r_{p}=$ VSWR of commector pair
$r_{\max }=$ Maximum VSWR produced by sliding component
$r_{\text {min }}=$ Minimum VSWR produced by sliding component
A third method uses graphical analysis to obtain the reflection coefficient of a load as seen through a junction. The procedure was originally outlined by Deschamps and is described in the literature. ${ }^{1,2}$

In many cases, the important data is that of the VSWR of the connector pair between rigid lines. To obtain this data, a sliding load of moderate VSWR is connected behind the connector pair. The above formulas are also applicable to this case.

The sliding load may be replaced by a sliding short that has its travel accurately calibrated. Graphical analysis can again be used to obtain the insertion VSWR of the connector pair "two port."

Still another method of measuring a connector pair between rigid air lines is the two slotted section method (Fig. 6). The procedure is to adjust the tuner until a match is seen with slotted section \#2. Slotted section \#1 then measures the connector pair VSWR.

It is more difficult to measure the insertion VSWR of a connector pair that connects a rigid line to a cable. Two methods that can be used are a frequency variation method (Fig. 7) and a sliding short method (Fig. 8).

The frequency variation method can be used to measure both r_{1} and r_{2} and thus determine the rigid line to cable VSWR for two connector pairs simultaneously. Actually, the method is more general and r_{1} and r_{2} can represent coaxial to strip line transitions or r_{2} can be some termination whose (Continued on page 222)
${ }^{1} \mathrm{~J} . \mathrm{E}$. Storer, L. S. Sheirgold, and S . Stein, "A Simple Graphical Analysis of a Two Port Waveguide Junction,'
ings of the $1 R E$ A August 1953 . ${ }^{2}$ 'S. Hopfer, "Precision Measurements 2, No. 3, October 1953, PRD Electronics,

тне Colohite Airbrasive Unit

It may seem a Scrooge-like trick to slice up this Christmas decoration, but we think you will agree that it is a good demonstration of the ability of the Industrial Airbrasive Unit to cut fragile, brittle materials.

This unique tool is doing jobs that were up to now thought impossible. A precise jet of abrasive particles, gas-propelled through a small, easy-to-use nozzle, cuts or abrades a wide variety of materials such as germanium, fragile crystals, glass, oxides, ceramics, and many others.

Use it to make cuts as fine as $.008^{\prime \prime} \ldots$ or remove surface coatings without affecting base material...wire-strip potentiometers...deburr precision parts...adjust printed circuits... in the laboratory or on an automated production line.

Important too: the cost is low...for under $\$ 1,000$ you can set up your own Airbrasive cutting unit!

Send us your most difficult samples and 1086 we will test them for you.

SEND FOR
 BULLETIN 5705A

...complete information

S. S. WHITE INDUSTRIAL BIVISION • Dept. 19A - 10 East 40th Street, New York 16, N. Y.

Measurement of VSWR (Continued)

VSWR is desired. The line should have an electrical length greater than 50 times the length of the connector pair, and an attenuation less than 3 db . The procedure is to vary the frequency in steps and record the VSWR and minimum position for slotted section 1 with a match maintained in slotted section 2. Sufficient variation in frequency is used to establish a maximum VSWR value $r_{\text {max }}$ and a minimum VSWR value $r_{\text {min }}$.

If the positions of the minimum for both maximum and minimum VSWR's are the same, then the VSWR of the connector pair at slotted section 1 is

$$
r_{1}=\sqrt{r_{\max } r_{\mathrm{min}}}
$$

VSWR value for the connector pair at slotted section 2 modified by the attenuation of the cable is

$$
r_{2}^{\prime}=\sqrt{\frac{r_{\max }}{r_{\mathrm{min}}}}
$$

The actual value of r_{2} is obtained from

$$
r_{2}=\frac{r_{2}^{\prime}(1+A)-(1-A)}{(1+A)-r_{2}^{\prime}(1-A)}
$$

Where

$$
A=\log _{10}-1\left(\frac{\text { Cable attenuation in } \mathrm{db}}{10}\right)
$$

If the positions of the minimums are $\frac{\lambda}{4}$ apart, then

$$
\begin{gathered}
r_{1}=\sqrt{\frac{r_{\text {max }}}{r_{\mathrm{min}}}} \\
r_{2}^{\prime}=\sqrt{r_{\mathrm{max}} r_{\mathrm{min}}}
\end{gathered}
$$

An assumption made in this measurement is that the phase and mag-

Fig. 10. Set-up for the measurement of VSWR by a ratio method.

nitude of the reflections of both connector pairs do not change for the small variation of frequency. The only change is in the phase from the reflection at slotted section 2 as seen at slotted section 1 through the long length of cable.

Block diagram for the sliding short method is shown in Fig. 8. Impedance at the end of the cable near the short is purely reactive and the reflection factor has a magnitude of unity and a variable phase that depends on the position of the short. The reflection factor at the other cable end has a variable phase and a magnitude of less than unity because of the attenuation in the cable which should be between 1 and 10 db . Position of the short is varied until a maximum VSWR, $r_{\text {max }}$, is measured and the position of the minimum recorded. The short is again varied until a minimum VSWR, $r_{m i n}$, is measured and the position of the minimum noted. If the minimum positions correspond, the rigid line to cable VSWR of the connector pair at the slotted section is

$$
r=\sqrt{\frac{r_{\max }}{r_{\mathrm{min}}}}
$$

If the positions of the minima are a quarter wavelength apart,

$$
r=\sqrt{r_{\max } r_{\text {min }}}
$$

Measurement Equipment

The most common method of measuring VSWR in a coaxial line is by use of a slotted section and a standing wave amplifier. Residual ViSWR's available when using the slotted sections are usually 1.04 or better. The inaccuracy is usually due to reflections from the bead and irregularity in probe travel.

Commercial slotted sections are available to cover a range of frequencies from 50 mc to 12 kmc . Required length of probe travel is at least one-half wavelength at the lowest operating frequency. This ensures proper operation since the maximum or minimum position may fall in the center of the slotted section. Conventional slotted sections are large and cumbersome at low frequencies. For example, the
(Continued on page 235)

Table Three
Straight Adapters

	BNC MALE	BNC FEMALE	$\stackrel{N}{\text { MALE }}$	FEMALE	$\stackrel{\mathrm{C}}{\text { MALE }}$	FEMALE	UHF MALE	UHF FEMALE	$\stackrel{L C}{\text { MALE }}$	LC FEMALE	$\underset{\text { MALE }}{\text { HN }}$	HN FEMALE
BNC MALE	UG-914/U		21850	UGG-201/U	84125	UG-636/U		UG-273/U			35050	
BNC FEMALE		UG-491/U	UG-349/U	UG-1034/U	UG-636/U		UG-255/U				32750	
N FEMALE	UG-201/U	UG-1034/U		UG-57B/U	UG-564/U		UG-146/U	$\begin{aligned} & \text { UG-83A/U } \\ & \text { UG-318/U } \end{aligned}$	UG-27I/U			
C MALE	84125	UG-636/U		UG-564/U	UG-643/U			UG-637/U	82350			UG-702/U
UHF MÁLE		UG-255/U		UG-146/U			UG-299/U				UG.703A/U	
UHF FEMALE	UG-273/U		UG-83/U	UG318/U	UG-637/U							
LC MALE			UG-270/U		82350				UG-155/U		UG-217/U	
LC female			7750						UG-215/U		G-252	
HN MALE HN FEMALE	35050	32750	$\begin{aligned} & 16100 \\ & 16050 \end{aligned}$	18075		UG.703A/U			UG-21ZU	UG-252/U	11050	
					UG.702/U							16800

CUES
 for Broadcasters

An Inexpensive Remote
GLENN THOMAS, Ch. Eng.

KUSH, Cushing, Oklahoma

Many small stations with limited budgets need a remote unit which will handle records and provide speakers for the immediate area. A PA unit of about 15 to 20 watts, with a record table on the amplifier, is an inexpensive solution. Most of these amplifiers have a $4-8-16-500$ ohm output. The speakers are connected as usual and the broadcast line is connected to the 500 ohm terminals. A mike input transformer and chassis mike connector to match your broadcast mikes is about all that is needed. We added a VU meter to ours for the convenience of the announcers.

I. O. Elapsed Time Meter

STEPHEN J. STANLEY, Studio Superv.
WAST, Albany, N. Y.
This is a modification we made in our General Electric 4PC4 and 4PC11 studio and remote cameras. It gives us a check on both flament and plate hours on our image orthicon camera tubes.

There was no problem encountered in installing the elapsed time meters for the filaments. This was done right at the power supplies by shunting the meters across the power switches.

The plate meters presented a slightly more difficult problem since it was desired to have the elapsed time meters at the cameras. We first contemplated changing the $B+$ switch to a multiple pole switch, but this could not be done simply. Finally we found we could get 15 volts at the cathode of the horizontal output tube. The cathode resistor was a 5 watt, 100 ohm resistor by-passed by a 20 mfd .450 volt electrolytic capacitor. This voltage which, of course, was developed when $B+$ was turned on, was dropped to $6-8$ volts with a $1 / 2$ watt, 2700 ohm resistor. A Potter \& Brumfield, Type RS5D, SPDT relay with a 6 vdc. coil was energized with this voltage, and the contacts were used to complete a 117 vac voltage across the elapsed time meter in the camera. The elapsed time meters used were Haydon Model ED71-001, and both meters and relays were mounted in the front of the cameras just under the r-f power supplies.

Circuitry used to determine plate hours on image orthicons.

NOW...

A NEW TOWER for MICROWAVE

First and only tower of its kind
Are ordinary towers giving you antenna siting headaches? Facing this problem, Alberta Government Telephones directed Stainless, Inc., and their Canadian subsidiary, Walcan, Ltd., to muster all their engineering skills to lick it. They did just that.
The result is the unique guyed structure you see above-the first and only of its kind-one of several now in and working on a multi-hop TD-2 system in northwestern Canada! The two platforms will support up to six horn antennas per tower at any height from 25 feet to 500 . Orientation of horns is a full 360°. Normal cost of tower materials, installation and maintenance is reduced one-third.

So when you need special towers-for microwave, radio or scatter transmis-sion-call upon Stainless. Their experienced staff can handle the whole jobfrom planning to installation.

Ask today for your free booklet describing many Stainless installations.

Wanted:

ROBOT

with 28-volt electrical system

Job function: to supervise automated manufacturing
and testing of complete line of indicator lights
and lighted switches. (6,14 , and 110 -volt capability helpful.)

Experience with precision switches also required.

For detailed product data write:

PROFESSIONAL OPPORTUNITIES

Reporting late developments affeating the employment piature in the Electronic Industries

Engineering Writers
Production Engineers

Summer Communications Program To Be Expanded

University of Colorado's department of electrical engineering will direct a regional communications engineering training center for 10 Bell System telephone companies and the Long Lines Dept. of the American Telephone and Telegraph Co. beginning next August. The course will be financed by the participating companies.

The University has conducted a Communications Engineering School for Mountain States Telephone Co. engineers during each of the last two summers.

Purpose of the school is to update and refresh the academic background and proficiency of practicing communications engineers. The 20 week course will be taught by full-time faculty members of the U. of C. electrical engineering department. Approximately 50 engineers will participate in each of the two sessions scheduled during 1962.

G. E. Graduate Awards

General Electric Co. has announced a new fellowship program and continuation of the honor program for University of Arizona electrical engineering graduate students.
G.E.'s engineering section in Phoenix will sponsor two masterdegree candidates at the university for the 1961-1962 year. The candidates will receive $\$ 2,500$ plus tuition and fees for M.S. work in one of the engineering sciences related to computer engineering. "This might involve information processing, logic design, transistor circuit design, work in special computer devices, or studies in the field of mechanical engineering directly related to the peripheral equipment problems," said C. C. Lasher, general manager of the Phoenix plant.

Graduate Studies Mandatory For Many Due To Recent Technological Advances

In July the national organization, Engineers Joint Council, said that freshman engineering enrollments had suffered a serious dip, starting in 1958. Since that time, they have declined 14 per cent.

However, at Newark College of Engineering another largest-in-history freshman class has been enrolled this fall. Freshman number 586 as compared to 499 last year. Total enrollment in the undergraduate day divi-

Walter J. Zable, president and chairman of the board of Cubic Corp., has been presented the annual San Diego Junior Chamber of Commerce Aero-Space Award. He was cited as the San Diegan who made the greatest single contribution to the aero-space industry during the last year.

Suggestion Award

An award of $\$ 56,000$, believed to be the largest ever made through any employee suggestion program, has been presented to two employees of the IBM plant at Poughkeepsie, N. Y.

Equally sharing the award were technicians C. G. Glancey and L. R. Livigni for an idea which resulted in eliminating 14 printed circuit cards from a magnetic tape unit produced by IBM. The cards are used to package solid state transistors and other computer components. sion is also up, having reached 1,776 . Last year's total was 1,610 .

NCE's graduate division reported a similar upward swing. Chairman Irving P. Orens stated that a total of 726 students compared to last year's 650 are now enrolled in doctoral and master's programs.

Considering NCE's big graduate enrollment, Dr. Orens said he believed "the impact of recent advances in science and engineering, plus the acceleration of research in industry, defense and education, have made both doctoral and master's studies mandatory for many."

He said the world situation has intensified the need for qualified scholars, urging "young men and women into the frontiers of knowledge where they must transmit consequent advances to laboratories and classrooms."

Four to Share Scholarship

Four University of Colorado engineering students will share the $\$ 1,000$ Boeing Aircraft Co. scholarship for 1961-62. The grant is made to students in engineering physics, applied mathematics, or aeronautical, electrical, mechanical, or civil engineering.

The four students are Robert Miller, Colorado Springs; Peter Teets, Denver; Charles McAfee, Lewis, and David Parkhurst, Webster City, Iowa.

[^17]
NEREM '61-

Microwave Clearing House

NEREM 61 will be held in Boston, Nov. 14-16, 1961. Technical sessions will be in the Somerset Hotel and the Commonwealth Armory; the latter is also the site of the exhibits.

In recognition of the contributions to electronics made by the citizen of Massachusetts and of the number of electronic scientists and engineers that will be attending NEREM, Massachusetts' Governor John A. Volpe has proclaimed Nov. 12-19, as Electronics Week in Massachusetts.

Over 25% of the 80 technical papers to be presented will be directly concerned with microwave theory and techniques. Some of these papers are highlighted at the end of this summary.

The show has become so popular that the 420 exhibit booths were sold out within 2 weeks after the initial offering. These exhibits will occupy the entire floor of the huge armory. There will also be operational technical displays designed by the military, including the ADVENT communication satellite project, in special areas.

Among the distinguished guests at the meeting will be John L. Burns, RCA president, whose keynote address on Tuesday, Nov. 14, will be called New Directions in Electronic Research. The banquet speakers on Wednesday, Nov. 15, will be Gov. John A. Volpe and Charles H. Townes, Provost of the Massachusetts Institute of Technology.

All IRE members attending NEREM 61 will receive, at no additional charge, a letterpress conference report book-the NEREM Record-which will be about 200 pages. It will feature digests of every paper, supplemented by more than 300 key illustrations. Cost of the Record to non-IRE members attending the meeting will be $\$ 2.00$.

Microwave Features

Since this is the 9th Annual Microwave Issue of Electronic Industries, we thought it fitting to highlight some of the microwave papers which will be presented at NEREM 61. Below is a capsule summary of the ones which we feel have special merit. The number preceding the name of the paper indicate the session and paper number.

Microwave Highlights of NEREM

3.1: Generntion of Optical Harmonics
P. A. Franken, A. E. Hill
C. W. Peters, G. Weinreich

University of Michigan, Ann Arbor, Mich.
It has been recently discovered that the extremely intense beams of light provided by optical masers can be used jection through suitablenics upon prophysics of this phenomena waterial. The pussed and recent scribed.
3.2: Further Investigations on Doper Furtier investigations on Dopen
Fandide Optical Maser: Calciumi Fluoride Optical Masers
P. Sorokin P. Sorokin
N. Y Y Research Center, Yorktown, This report
This report will discuss the results of spectroscopic studies of $U+3$ ions in calcium fuoride and various types of sites. Additionally, spectroscopic studies of $\operatorname{sm}+2$ in strontium fluoride will cium fluoride. Engineering considerations in techniques related to consoperation will also be covered.
3.3: Some Properties of a Gaseons

Optical Maser
C. F. Luck, R. A. Paananen and Raytheon
The construcon Co., Waltham, Mass.
The construction of a helium neon gaseous optical maser will be described. beam, including the results the output electric mixing experiments, will be discussed.
10.1: Varactor Diodes for Microwave

Applications
K. E. Mortenson

Microwave Associates, Burlington, Mass.
A brief description of varactor microwave applications illustrating the various diode properties required will be presented. From this discussion, diodes made from different materials will made from dile will be compared and evaluated.
*13.1: Linear Beam Devices
T. D. Sege

Sperry Gyroscope Co.
Great Neck, L. I., N. Y
The unique advantages of linear beant devices for the generation of superpower will be reviewed with examples given of achieved and achievable peak and average power as well as "joules per jolt" as a function of frequency.
*13.2: The Cross-Field Approach to Microwave Super-Power
W. C. Brown

Raytheon Company, Burlington
The evolut
on the cross-field device through the stages of the magnetron

The Commonwealth Armory in Boston is again the site of the exhibits.

This, the 15th, Northeast Electronics Research and Engineering Meeting will concentrate heavily on microwavetheory, components, and systems.
Here's a capsule summary of what to look for.

the Amplitron and the new Electromagnetic Ainplifying Lens (EAL) concept will be reviewed, with special emphasis on application to superpower generation. Efficiency anode dissipa tion capability, bandwidth, and pushing characteristics will be discussed.
17.1: Geueration of Coltereut Lisint H. State

Raytheon Co., Waltham, Mass. A discussion will be given of the maser principle and its application to the generation and amplification of coherent electromagnetic radiation in the wavelength region of visible light. In addition, a description of the various solid state optical masers, their relative advantages andial emphasis will be placed on the gaseous maser which can be operated continuously
17.2: Mierowave Modulation of Lipht
by the Electrooptic Effect
I. P. Kaminow

Bell Telephone Laboratories,
Inc., Holmdel, N. J.
An experimental $10-\mathrm{kMc}$ light modula tor will be described and the proper ties of broadband, continuously operat ing electrooptic modulators discussed
17.3: Microwave Phototubes and Light Demodulators
A. E. Siegman Stanford University, Stanford, Sanfo
This paper will discuss ways of receiving and demodulating microwaremodulated light, with emphasis on amplifying microwave phot optical superheterodynes. A frequencyronic nethoight will also be proposed. modulatedngry University experimen recent stastions of a traveling-wave nicrowave phototube and optical supmicrowave phototur andion with a ruby laser, will be reviewed.

17.4: Parametric Amplifers-A Status

 ReportZenith Radio Corp., Chicago, 111. Parametric amplifiers, of the diode type as well as the electron beam type, are now in use in many low-noise receivers. This paper will review their present state of development and emphasize the properties in which each type excels. It will also touch on some interesting sidelights, such as the use of purely degenerate operation in phase-lock and radar systems.

Massachusetts' Gov. John A. Volpe (center) hands K. C. Black, NEREM general chairman, the proclamation declaring the week of Nov. 12-19, 1961, Electronics Week In Massachusetts. Witnessing ceremony are Lewis Winner, consultant (left) and Stewart K. Gibson, exhibits manager.

18.3: 'The Hyarogen Maser
D. Kleppne
D. Kleppner \quad University, Cambridge,

Harvard University, Cambridge,
Mass. The hydrogen maser has an inherent frequency precision significantly higher than previously possible with atomic resonance devices. This paper will discuss the behavior of the lyydrogen maser in practice, with emphasis on problems which arise in attempting to utilize its precision and stability.

21.1: Semiconductor Microwave Con-

Lrol Devices. Bould, M. Bloom and 12 . Tennenholtz
Microwave Associates, Inc., Burlington, Mass.
The interaction of semiconductor junctions with microwave circuits to provide a new family of microwave control devices will be presented. The devices to be considered will be multi-pole multi-throw switches, duplexers, limiters, phase shifters and voltage variable attenuators and modulators. A general theory for the interaction sented and compared with typical experimental data.
21.2: The Application of Tunnel Diode

Amplifiers
J. J. Sie
Micro State Electronies Corp. Micro State Elect.
Low-noise tunnel-diode amplifiers are applicable to a wide variety of communications and radar systems. It will be shown that different tunnel-diode amplifier characteristics are of importance for different types of system applications.
21.3: Microwave Harmonic Generators Using Varactor Diodes
M. E. Hines

Microwave Associates, Inc., Burlington, Mass
Varactor diodes are finding applications in frequency multiplier circuits for efticient transformation of energy from Thf to uhf to microwave frequencles crystal-controlled stability. Some circuits and their performance will be described.

21.4: Superconductins Magmets

S. H. Autler

MIT Lincoln Laboratories, Lexington, Mass.
Recently developed materials have permitted the fabrication of super-conducting solenodis which generate magnetic fields in the $20-30 \mathrm{kilogauss}$ range and give promise of considerably stronger fields. The properties and ap plications of these magnets will be discussed.
*These discussions will be preceded by an introduction including a description of the two fundamental techniques presently available for the generation of superpower Linear-beam and cross-field. The cies: Linear-beam and cross-fid. approaches will be reviewed as a setting for the papers to follow.

for Engineers

Parabolic Antennas

Mark Products Co., 5439 W. Fargo Ave., Skokie, Ill., is offering tech. data on their parabolic antennas for point to point relay applications, and a condensed catalog and ordering information for communications antennas and associated cable systems. Outline drawings, photographs, and specs are included.

Circle 171 on Inquiry Card

Microwave Components

The Narda Microwave Corp., 118160 Herricks Rd., Mineola, N. Y., has available their catalog which covers waveguide and coaxial attenuators, bolometers, thermistors, directional couplers, ferrite devices, ridge waveguide test equipment, special products and custom engineer devices. Included are photographs, outline drawings, descriptions, typical specs and uses.

Circle 172 on Inquiry Card

Microwave Towers

Tower Construction Co., 2700 Hawkeye Dr., Sioux City, Ia., is offering a tech catolog covering microwave towers, reflectors, buildings, and information on erection and maintainance and tower lighting kits.

Circle 173 on Inquiry Card

Backward Wave Oscillators

Stewart Engineering Corp., Santa Cruz, Calif., is offering tech data on their backward wave oscillators. Data covers 10 types of BWO's with specs on typical operation, average values, absolute min . and max. values, power output data, physical characteristics, and output connectors. Operating characteristic charts are included for each tube.

Circle 174 on Inquiry Card

Microwave Switches

Transco Products, Inc., 12210 Nebraska Ave., Los Angeles 25, Calif., is offering tech. data on microwave switches including motor actuated, solenoid actuated, DPDT, 8 r-f connector types, high and low power. Tech. data available about microwave components.

Circle 175 on Inquiry Card

Traveling Wave Tubes

Sylvania Electric Products Inc., sub of General Telephone \& Electronics Corp., 1100 Main St., Buffalo 9, N. Y., is offering a catalog which describes 23 types of TWT's and back-ward-wave oscillators. Catalog lists characteristics and dimensions for PPM and solenoid-focused TWT's operating from 1 gc to 12 gc . Two per-manent-magnet focused BWO's operating from 2 to 4 gc at 100 mw and 18 to 26.5 gc at 30 mw are also included.

Circle 175 on Inquiry Card

Microwave Oscillators

Trak Microwave Corp., sub. of Trak Electronics Co., Inc., 5006 N. Coolidge Ave., Tampa 3, Fla., has tech. data available on their miniature series L-band oscillators, SL-band oscillators, S-band oscillators, C-band oscillators, and C-band continuous wave oscillators. Photographs, dimensional drawings, characteristic charts and typical specs are included.

Circle 177 on Inquiry Card

Fixed Pad Attenuators

Applied Research, Inc., 76 S. Bayles Ave., Port Washington, N. Y., is offering tech data on fixed pad attenuators, terminations and impedance transformers (min. loss pads) for applications up to 2500 mc .

Circle 178 on Inquiry Card

Antenna Phase Systems

Scientific-Atlanta, Inc., 2162 Piedmont Rd., N. W., Atlanta 9, Ga., is offering tech information on their Model APA-1 antenna phase amplitude systems, for phase and amplitude determination of the electro-magnetic field over the aperture of an antenna. Operating freq. is 2 to 40 gc ; high sensitivity -80 dbm at 13 gc , and phase accuracy and stability $\pm 5^{\circ}$ over 40 db dynamic range.

Circle 179 on Inquiry Card

Microwave Test Units

Polarad Electronics Corp., 43-20 34th St., L.I.C., N. Y. 1, N. Y., will send tech. data on their microwave test equipment which includes signal generators (ultra broadband extended range and extremely high freq.), microwave signal sources, Model CSG electronic sweep generator, and the Model TSA spectrum analyzer, the wide dispersion spectrum analyzer, Model TSA-W, and the multipulse spectrum selector, Model SD-1. Also included is a microwave receiver, calibrated field intensity receiver and meter, microwave test antennas, miniature S-band cavities, band pass filters, klystron power supplies, servo analyzers, coded multi-freeze generators.

Circle 180 on Inquiry Card

Cavity Amplifiers

Resdel Engineering Corp., 330 S. Fair Oaks Ave., Pasadena, Calif., is offering tech data on their line of cavity amplifiers and 10 amplifiers and freq. multipliers. Characteristics, charts, specs, outline drawings and photographs are included.

Circle 181 on Inquiry Card

Microwave Calorimeter

Chemalloy Electronics Corp., Gillespie Airport, Santee, Calif., is offering tech data on their Model SMEA ruggedized microwave calorimeter to measure/absorb microwave power. Circle 182 on Inquiry Card

Ferrite Circulators

Microwave Developinent Laboratories, Inc., 15 Strathmore Rd., Natick Industrial Center, Natick, Mass., is offering tech information on 10 broadband balanced mixers with freq. ranges from 1.12 to 40.0 gc and vswr max. of 2.5 to 5.0. Also offered is information on 4 ferrite circulators with a freq. range from 8.5 to 9.6 gc .

Circle 183 on Inquiry Card

Waveguide Switches

Waveline Inc., Caldwell, N. J., has data on their direction couplers, their line of waveguide switches which cover from 3.95 to 40.0 GC and their line of waveguide slide screw tuners which cover from 5.85 to 40.0 GC .

Circle 184 on Inquiry Card

Microwave Absorber

Emerson \& Cuming, Inc., Canton, Mass., is offering tech data on their standard foams, adjusted \& artificial dielectric constant foams, rod and sheet stock, anechoic chambers and microwave chambers and wide angle radar reflectors (4 Luneberg Lens devices).

Circle 185 on Inquiry Card

Antenna Test Systems

Dunn Engineering Corp., 225 O'Brien Hwy., Cambridge, Mass., is offering tech. data on their dynamometer test stations for multiple evaluation of inertial gyro spin motors, radome and antenna test systems for automatic and manual checkout and test turntables.

Circle 186 on Inquiry Card

Waveguide Components

Microwave Components \& Systems Corp., 1001 S. Mountain Ave., Monrovia, Calif., is offering a brochure on precision microwave componentsstandard items, covering the range from 1.70 to 40.0 gc . Included are E plane bends, H plane bends, variable attenuators, step attenuators, magnetic tees, ferrite isolators and standard gain horns.

$$
\text { Circle } 187 \text { on Inquiry Card }
$$

Microwave Tubes/Devices

Microwave Associates Inc., Burlington, Mass., is offering the following microwave tech data: short form catalogs $61-\mathrm{MS}$ semiconductor products; 61-WS microwave components, waveguide components and test equipment; 61-TD microwave tubes and devices, duplexers, magnetrons, ferrite devices; 61-CD computer diodes, subminiature, microminiature and computer diodes. Also offered is a 6 -page article on solid state control and microwaves; a 12 -page brochure describing microwave pressure windows and a semiconductor data filer containing 12 microwave diodes and 15 computer diodes.

Circle 188 on Inquiry Card

ELECTRICAL-ELECTRONIC ENGINEERS!

 CHECK BOEING / WICHITA'S RESEARCH FACILITIES \& CAPABILITIESExperienced Electrical and Electronic engineers with the desire to express new ideas and theories and be given full recognition for their accomplishments will find the research facilities and atmosphere at Boeing/ Wichita ideally suited for them. In the company's continuing efforts to expand research capabilities, they have assembled lab facilities that are among the best in the nation. - Just one example of facilities is the antenna system pattern ranges. Testing is done on three pattern ranges. One range provides variable distance up to 175 ft . with model rotating provisions that allow illumination from any angle. Fixed distance, ranges of 75 foot and 300 foot lengths handle full scale antennas and adjacent structural sections weighing
up to five tons. Signal emission sources and associated automatic antenna pattern recording equipment cover the low VHF to 75 KMC range. - Along with complete facilities the engineer will find that he will work with men who have knowledge of the most up to date theories and methods in the various related technologies. - To qualify you should have a degree with a minimum of five years experience and preferably be working toward or already have an advanced degree. For specific information about assignments and living conditions in Wichita, write

Systems Manager for the Navy polaris fbm and the Air Force agena Satellite in the discoverer and midas programs. Other current programs include SAINT, ADVENT and such NASA projects as OGO, OAO, ECHO, and NIMBUS

SUNNYVALE, PALO alto, VAN NuYs, santa cruz, santa maria, california - cape canaveral. florida - haway

DEVELOPMENT EICNIFPC= Generators, Solid State Circuit Design

Several fine opportunities are now available in expanding project areas.

Generator Development Engineer

This position requires a man for design and development work on high speed alternators. A comprehensive knowledge of alternator design is needed with special emphasis on high speed, high frequency machines. BSEE and 3-5 years experience required.

Development Engineer for Advanced Motors

Prefer physicist, or EE, for work involving electromagnetic theory as applied to advanced electric motor studies. This work involves investigation of electrical, thermal and mechanical phenomena, with immediate assignment dealing with solid rotor motors.

Work will involve machine studies using modern computer techniques. Requires 3 -5 years experience.

Development Engineer for Solid State Circuit Design

This work involves design and development of solid state power conversion equipment. Experience is needed in the operation of silicon controlled rectifiers in power handling circuits. Requires BSEE and $3-5$ years experience. Garrett is an "equal opportunity" employer. Send complete resume to Mr. Thomas Watson.

AIRESEARCH MANUFACTURING DIVISION
9851 So. Sepulveda Blid., Los Angeles 45. California
$\frac{\text { News of Mirs' }}{\text { Representatives }}$

ERA Sales Training
 Seminar: Dec. 8-9

The Chicagoland Chapter of the ERA in cooperation with the Dartnell Institute will present a 17 hour course in Salesmanship for Electronic Representative Salesmen Dec. 8 and 9 at the Concord Motel, Chicago, Ill.

According to Seminar Co-Chairman Gordon Gray of Hill \& Gray, Inc., and John Lightner of Lightner Assoc., Inc., applications will be on a first come, first served basis, up to a max. of 70 enrollees.

The course will be divided into two workshops. "A" for Audio and Distributor Salesmen. "B" for Industrial Component and Instrument Representatives.

Some of the subjects to be covered include: How to organize the sales facts; How to analyze your prospects; Howt to analyze your competition; How to make an effective presentation; How to make the best use of your time and talents; and How to set up and follow a program of self-improvement.

For further information contact Bob Morgan, ERA Director of Education, Electronic Representatives Assoc., 600 S. Michigan Ave., Chicago 5, Ill.

Industrial Devices, Inc., Edgewater, N. J., has been appointed national representative by the Sylvania Electric Co. for Sylvania's line of electronic indicator lamps.

University Loudspeakers, Inc., White Plains, N. Y., announces the appointment of Butchart - Rathsburg \& Associates, Detroit, Mich., as representative for the state of Michigan.

Gulton Industries, Inc., Metuchen, N. J., announces the following representative appointments: W. R. Griffin Co., Springhouse, Pa., to cover Pennsylvania; and Long Associates, Redwood City, Calif., to cover Northern California and Nevada.

Dynamic Industries Sales Corp., Detroit, Mich., appointed as representative by Sola Electric Co., Elk Grove Village, Ill., to cover the entire state of Michigan.

MELAPS, Palo Alto, Calif., announces the following representative appointments: James R. Eberly Co, Washington, D. C. to cover Virginia, Maryland, and Delaware; Instrument Dynamics Inc., Wakefield, Mass., to cover Massachusetts, Connecticut, Rhode Island, Vermont, New Hampshire and Maine; and Perlmuth Electronic Associates, Los Angeles, Calif., to cover California, Arizona, New Mexico and Nevada.
(Continued on P. 234)

ENGINEERS ARE CHARTING A NEW COURSE AT AC

AC's newest assignment is Systems Integrator for the modified B-52C\&D Bombing Navigation System. AC's responsibility includes program and engineering integration, and coordination of associate contractors in the production phase. Other programs at AC include a new, miniaturized inertial guidance system for the TITAN II missile. In addition, AC's Los Angeles Advanced Development Laboratory is currently developing Advanced INertial Guidance Systems. AC is seeking qualified men to work on these important projects. If you have a BS, MS or PhD in Electrical Engineering, Mechanical Engineering or Physics, please contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. 5753, 7929 South Howell, Milwaukee 1, Wisconsin. An Equal Opportunity Employer. Immediate positions available:

Milwaukee

Radar Systems Engineers - Radar Test Engineers
Radar Reliability Engineers - Design Review Engineers
Contact Engineers - Field Service Engineers

Los Angeles

(Advanced Inertial Guidance Systems-Airborne Computers) Transistor Circuit Design Engineers
Sr. Digital Computer Development Engineers

- AChiever Inertial Guidance Systems for TITAN II, THOR and MACE-Bombing Navigation Systems for the B-52C\&D and B-47-AChieverfone mobile radiotelephones.

AC SPARK PLUG THE ELECTRONICS DIVISION OF GENERAL MOTORS

 milwaukee - los angeles - boston
NCR
 Chational ADVANCED DEVELOPMENT

Continued growth and lasting stability underline the excellent professional opportunities at NCR's Engineering and Research Center in Dayton, Ohio. Projects in progress require personnel for the following positions:

Electronic Engineers BSEE with 2-5 years experience with military electronic equipment. Familiar with ground based equipment development or airborne equipment development. Should have a background in one of the following areas: circuit design, logic design, electronic power supplies, electronic packaging, or test equipment design.

Mechanical Engineers BSME with 2-5 years experience in the design and development of mechanical assemblies and equipment. Should have a sound background in shock mounting and packaging of electronic equipment. Should be capable of following a developed package through the design and detail areas.

Circuit Engineers BSEE with 5-7 years experience in the design and development of electronic equipment using solid state or vacuum tube circuits. Experienced at designing circuits for reliable operation under worst case conditions.

Logic Engineers BSEE with 5 year experience in the design and development of digital logie systems. Should be acquainted with methods of achieving reliable operation with minimum circuit elements.

Communication System Engineers BSEE with $5-7$ years experience in the HF Communications area. Should have experience in long distance propagation techniques with particular emphasis on solution of multipath effects in the $2-30 \mathrm{me}$ range.

Component Engineers BSEE with 8 years experience in testing and evaluation of electronic components. Should be familiar with military component specifications and be knowledgeable in component selection.

Now is the time to revitalize your career with new and expanding opportunity. Write now to:

Mr. T. F. Wade, Technical Placement, The National Cash Register Company, South Main and K Sts., Dayton 9, Ohio
an equal opportuntty employer

Circle 804 on "Opportunities" Inquiry Card

News of Mirs"
 Representatives

Omtronics Mfg., Inc., Omaha, Nebr., announces the following representative appointments: Florence $\&$ Meyer, Inc., to cover Missouri, Kansas and Nebraska; and Lawrence Sales Co., to cover Texas, Oklahoma, Arkansas and Louisiana.
N.L.R. Associates, Philadelphia, Pa., appointed representatives by the Frequency Engineering Laboratories, Asbury Park, N. J., for Southern New Jersey and Eastern Pennsylvania.

Aerovox Corp., New Bedford, Mass., announces the following representative appointments: M. D. Hecht Associates, Phoenix, Ariz., to cover the state of Arizona; Hyer Electronics Co., Englewood, Colo., to cover the states of Colorado, New Mexico, Utah, Wyoming and El Paso, Tex.; and Snyder Electronic Distributors, Inc., Bayside, N. Y., for Metropolitan, N. Y.

Robert S. Schenck, has joined George H. Weiland to form Weiland and Schenck Associates, Flushing, N. Y., manufacturers' representatives in the New York metropolitan area.
Kitchen \& Kutchin, Inc., Lexington, Mass. and West Hartford, Conn., named representatives for the New England states by Spectrol Electronics Corp., San Gabriel, Calif.

Tru-Ohm Products, Chicago, Ill., announces the following appointments: Electronic Specialties, Phoenix, Ariz.; Radio Specialties Co., Inc., Alamogordo, New Mexico; Kann-Ellert, Baltimore, Md.; Philadelphia Electronics, Philadelphia, Pa.; Ohio Valley Sound, Evansville, Ind.; Hughes-Peters, Inc., Cincinnati, Ohio; and Ebinger Industrial Electronics Corp., St. Louis, Mo.
R. L. Pflieger Co., Inc., Palo Alto, Calif., named representative by Microwave Components and Systems Corp., Monrovia, Calif. to cover the West Coast.
Emory Design \& Equipment Co., Birmingham, Ala., has been named sales representative of Wheelock Signals, Inc., Long Branch, N. J., for Wheelock's line of military and industrial relays.

John E. Fast Co., Chicago, Ill., announces the following representative appointments: John O. Olsen Co., Inc., Cleveland, Ohio, to cover West Virginia and Western Pennsylvania; and Ray Johnston Co., Seattle, Wash., for Northwest United States, including Washington, Oregon, West Idaho and Western Montana.

Radio Electric Service Co., Philadelphia, Pa., appointed distributor by Rotron Mfg. Co., Inc., Woodstock, N. Y., in Pennsylvania and Delaware.

Other models and sizes available . or, Vāp-Air will design to your specific requirements

with regulation
 $$
\text { accuracy } \pm .5 \%
$$

This compact dual function constant voltage regulator is used in a radar analyzer application. It provides stable outputs of -150 VDC and +150 VDC from an input of 115 VAC. Small, lightweight, accurate. Provides close voltage regulation over wide temperature range. Uses solid state techniques for high reliability, optimum performance.

BRIEF SPECIFICATIONS

VÄP-AIR... COMPLETE CONTROL CAPABILITIES Entire systems and a complete line of thermal sensors, electronic controls and precise voltage regulators, electropneumatic and electromechanical valves, advanced in-line valves and regulators, electric power controllers and heat exchange equipment-for the aircraft, missiles, ground support and electronic industries.
 VĀP-AIR DIVISION VAPOR CORPORATION B0 E. Jackson Blyd. Chicago 4, III., Dept. 67-K NEW YORK • ST, PAUL • DENVER - WASHINGTON PHILADELPHIA - SEATTLE - SAN FRANCISCO hOUSTON • RICHMOND - LOS ANGELES • ST. LOUIS Circle 154 on Inquiry Card

VSWR

(Continued from page 222)

probe travel on a slotted section that operates at 50 MC is about 10 ft .

A more convenient method for measuring VSWR at low frequencies, and one that is becoming very popular, is the utilization of the rotary standing wave machine. This device can be made quite small for use between 20 and 2000 MC.

PRD Type 219 Rotary Standing Wave Indicator (Fig. 9) is designed to cover the range from 20 MC to 2 KMC with a residual VSWR of 1.03 or better. This device consists of a rotating loop in a cut-off tube that probes the field generated by a coaxial " T " section. Leg of the " T " is fed by a generator. One arm is terminated in a unit positive susceptance and the other arm is terminated in the unknown. It can be shown that the resultant magnetic field generated at the " T " junction and propagated in the cutoff tube; and thus sampled by the loop, is elliptically shaped. The major axis is proportional to the maximum and the minor axis to the minimum of the VSWR that would result if the unknown were connected to a fifty ohm transmission line.

Another method of determining VSWR is the sampling and detection of the magnitude of the incident and reflected signals in a line by the use of directional couplers, and ratiometers. The experimental set-up is shown in Fig. 10. Outputs of the two detectors are fed to separate channels of a ratiometer which compares the two outputs and determines their ratio. Any errors caused by unequal couplings, detector sensitivities, or amplifier gains are compensated for by replacing the unknown load with a short circuit and adjusting the amplifier gains until a VSWR of infinity or a reflection coefficient of unity is indicated.

Accuracy of this method of measuring VSWR is usually limited by the directivity of the couplers. For example, a directivity of 30 db causes a residual VSWR of 1.06 and a directivity of 26 db causes a residual VSWR of 1.12. In order (Continued on page 236)

CLOSER TOLERANCES AT LOWER COSTS WITH CUSTOM KEL-F ROTARY SWITCHES

By changing from other materials to Booker \& Wallestad's custom molded Kel-F® in rotary switches, Oak Manufacturing Company brought its prices into line, and achieved closer tolerances while maintaining electrical and heat requirements.

This is another example of Booker \& Wallestad's ability to work with unusual compounds having highly desirable properties (and often reputations of being "difficult" to mold). Booker \& Wallestad have developed special methods for molding compounds such as Kel-F. and Teflon ${ }^{\text {® }}$. Costs of molds have been substantially reduced. You can justify a limited quantity of quality parts for development work, and when volume production is required, you benefit proportionately.

For specialized experience in custom molding of unusual plastics-and for low-cost precision molding in any quantity, call Booker \& Wallestad first.

booker \& wallestad

DIVISION OF THERMOTECH INDUSTRIES, INC.

Unusual SKILL and ECONOMY in custom plastics molding...

3336 Gorham Ave. • Minneapolis 26, Minnesota • Dept. 301

Circle 155 on Inquiry Card

Unregulated - Series " S "
Output: $2.5 \mathrm{KV}-2$ MA up to $40 \mathrm{KV}-2 \mathrm{MA}$ Input: 115 V, AC - 60/400 cycles

From Stock

Both Del models represent the ultimate in quality. Their design and manufacture incorporate only the finest materials and workmanship to assure reliable and dependable service.

WRITE FOR DATA

DEL electronics corporation

s21 homestead avenue omount vernon, n. y. - owens $9-2000$

Circle 156 on Inquiry Card

Requires less than 0.2 sq. in. for panel or chassis mounting!

JOHNSON TYPE "U" AIR VARIABLES

Designed for use in extremely compact equipment, this tiny Type "U" air variable capacitor requires less than 0.2 square inch of space for panel or chassis mounting! Rotor and stator are precision-machined from one piece of solid brass for outstanding mechanical stability and uniformity. High " Q ", high torque-to-mass ratio, low temperature coefficient-provides absolute freedom from moisture entrapment found in trimmer capacitors of the enclosed or solid dielectric type. All metal parts silver-plated-ceramic is steatite Grade L-4 or better. Breakdown ratings: 850 volts DC on $.010^{\prime \prime}$ plate spacing; 1300 volts DC on $.016^{\prime \prime}$ spacing. Available in special types and variations in production quantities. For detailed specifications, write your copy of our newest components catalog.

NO SPECIAL TOOLS REQUIRED FOR INSTALLATION - Simply bend LocTabs into posifion. Double pierced, wide terminals facilitate wire or printed circuit use.

New Catalog

Write today for our newest electronic components catalog - complete specifications, engineering prints and current prices on:

- Capacitors - Tube sockets - Connectors - Pilot Capacitors. Tube sockets Connectors - Pilot lights - In

VSWR

(Continued from page 235)
to approach the residual VSWR of a slotted section a directivity of 40 db (residual VSWR $=1.02$) is needed. Commercial coaxial directional couplers are available from 25 MC to 1000 MC with directivities as high as 35 db . Below 120 MC the available couplers have couplings of 50 db or greater which makes their use inconvenient for low power laboratory measurements. Above 4 KMC the directivities decrease to less than 20 db .

At frequencies below 1.5 KMC , measurement of admittance or impedance is often substituted for the measurement of VSWR. There are various techniques for performing these measurements yielding accuracies of between 2% and 5%. The instruments involved usually make use of null techniques and are direct reading in impedance or admittance.

Main Errors

Because a slotted section is very frequently used to measure VSWR, main errors inherent in the use of a slotted section will be enumerated. These are residual VSWR, slope, and irregularities. Excluded from the discussion are probe and detector errors which are well referenced.

Residual VSWR of a slotted section is caused by the slight change in characteristic impedance due to the slot, and the discontinuities at the junction of the slotted and unslotted portion of the line. These effects are slight and can be approximately calculated. If one desires to experimentally measure the residual VSWR, there is a technique available for doing this. ${ }^{3}$ The procedure is based upon the tangent method for lossless structures. It involves the tracking of the position of a minimum point in the slotted line as a function of the position of a movable short circuit which is used to terminate the slotted line. The short, however, should not be connected to the slotted line with a connector pair unless the effect of connector discontinuities is required to be in-

[^18]
SINCE 1917

. . . and, we can do

> it for you, too.

Boehme practical experience in the design and manufacture of mechanical, electrical and electronic products for automation and instrumentation can solve your most exacting demands. Learn more about Boehme's prompt, efficient, economical service and how readily it applies to your needs.

H. O. Boehme, Inc.

Designers and Manufacturers
Communication Equipment
Precision Electro-Mechanical
Apparatus Since 1917
915 Broadway
New York 10, N. Y.

Circle 158 on Inquiry Card

about your Plant Location Plans

We like to work with hardboiled plant location people. The harderboiled the better. That's because we can prove the Toledo-Northwestern Ohio area offers unmatched opportunities for Electronics Industries. Our proof is contained in a survey of the area by Fantus Research, Inc., one of the nation's foremost industrial location services. For more information, write or call R. E. Johnson, Manager, Industrial Development Department, The Toledo Edison Company, Toledo 1, Ohio

THE TOLEDO EDISON COMPANY
 an investor-owned electric light and
 power company serving Northwestern Ohio

cluded in the measurement of residual VSWR.

Slope can best be defined as a uniform change in detected output as a function of probe travel. It is independent of load or residual VSWR. Slope is caused by attenuation which causes a uniform diminution of the electric field along the line, and by a non-parallel movement (either vertical or lateral) of the probe to the center line of the coaxial line. Irregularities are caused by abrupt changes in probe travel or slotted section cross-section and are characterized by abrupt changes in probe output.

Theoretically, the error caused by the residual VSWR can be evaluated, but the combined effect of slope and irregularities can produce an uncertainty in the measured VSWR. ${ }^{4}$ In actual practice, the combined effect of slope and irregularities is brought down to a VSWR of 1.01 or less on good slotted sections. Residual VSWR of

(Continued on page 238)

${ }^{4}$ H. E. Sorrows, W. E. Ryan, and R. C. Ellenwood, "Evaluation of Coaxial Slotted inge impedance Measurements," Proceedngs of the IRE, Feb. 1951.

Circle 160 on Inquiry Card

LOW-LOSS

$$
\begin{aligned}
& \text { KEL-F } \\
& \text { SOCKETS }
\end{aligned}
$$

For high power transmitting tubes such as: 4X150A; 4X150D; 4X250B; 4CX250B; 7034; 7035; 4X250F
Molded of low dielectric lossfactor Kel-F plastic, these popular Johnson sockets are designed to handle a wide selection of high power transmitting tubes. Sockets are available in several designs-with or without screen grid by-pass capacitors. Control grid contact "guide" is machined for greater alignment accuracy all contacts are low-resistance, silver-plated beryllium copper. Tube pin contacts are heat treated to provide positive contact pressure as well as extended life-annealed soldering tabs may be easily bent or formed. High quality, heat resistant, steatite chimney also available to direct air flow through tube cooling fins.

For complete specifications, write for Data Sheet 755 . . . or our newest components catalog, described below.

Bosic socket with silver-plated brass mounting saddle

New Catalog

Write today for our newest electronic components cotolog - complete prints and current priering

Socket with mounting ring and screen grid by-pass capocitor.

- Capacitors. Tube sockets. Connectors - Pilot lights - Insulators. Knobs, Dials. Inductors. Hardware

Circle 161 on Inquiry Card

Golden-Line Hoods provide disengagement of Hoods from connectors without disturbing wires. Built to close precision tolerances, highly durable, of lightweight aluminum. USC's new Golden-Line Hoods provide two different cable clamp openings readily by merely reversing clamp elements. Available in cad-mium-plated, gold-iridite finish for greater resistance to corrosive effects, Golden-Line Hoods can be used in conjunction with the USC patented REMI removable-line of connectors. Also with standard connectors on application.
U.S. COMPONENTS, INC. 1320 Zerega Ave.. N. Y. 62, New York
(Continued from page 237) most slotted sections, less the connectors, is also less than 1.01.

Conclusions

All too often a set of specifications will state that the VSWR does not exceed some maximum value but makes no mention of how the VSWR is defined or measured. This is particularly true for manufacturer's specifications of coaxial loads. Another common case occurs when a maximum VSWR is specified for a component that will ultimately be connected into a system by cables. What is really wanted is the rigid line to cable VSWR; what is invariably measured is the rigid line to rigid line VSWR; There can be a significant difference in these two types of VSWR if the frequency is high enough. A critical specification has little meaning unless the specification is clearly defined in terms of type of connectors used.

Acknowledgment
Much of the data contained in this report is based on the work performed at the Microwave Research Institute of the Polytechnic Institute of Brooklyn.

SEMICONDUCTORIZED
POWER SUPPLY
0-50 V.D.C. - 0-1.5 AMP
*All Silicon Small-Signal Transistor Amplifier u'ith lanar Difused
Junction Inpust Stage Inpiat Stage

${ }^{5} 2344^{50}$

F.O.B. FACTORY

High stability solid state DC power supply with adjustable current limiting, $.05 \%$ regulation, $500 \mu \mathrm{v}$ ripple, $.01 \Omega$ source inipedance, $50 \mu \mathrm{~s}$ response time, . 01 volts drift/24 hours, $55-440 \sim$ input. IMMEDIATE DELIVERY Write For Complete Catalog

M Poner Designs inc WESTBURY, L. I..N. Y. EDgewood 3-6200 Area Code 516

 Circle 163 on Inquiry Card

LEPEL LABORATORY SERVICE

Lepel maintains a fully equipped laboratory where experienced induction heating engineers will process your work samples and suכmit complete laboratory reports and recommendations without any obligation.

WRITE FOR NEW LEPEL CATALOG ESESLHIGH FREQUENCY 55th ST. \& 37th AVE, WOODSIDE 71, N. Y. CHICAGO OFFICE: 6246 WEST NORTH AVE.

Circle 164 on Inquiry Card

ELECTRONIC INDUSTRIES Advertisers - November 1961

This index is published as a convenience. No liability is assumed for errors or omissions.

A

Cambridge Thermionic Corp.
193

Celco Constantine Engineering Laboratories
Co.
Centralab

Clare \& Co., C. P. 58-59
Clevite TransistorInsert following p. 136
Computer Diode Corp. 191
Conrac Division
219
Controls Company of America................ 224
Corning Electronic Components 86
Curtiss Wright Corp.132, 151, 200
D
Dale Electronics, Inc. 57
Davies Supply \& Manufacturing Co. 173
Del Electronics Corp. 235
Deutsch Electronic Components Div. 185
Dialight Corp. 189

E
EICO
189

F	
Fairchild Controls Corp.	12
Fairchild Semiconductor	71
Fairmount Chemical Co., Inc.	192
Fidelitone Microwave Inc.	169
Florida Development Commission	179
Frequency Engineering Laboratories	47
Fusite Corp.	83
FXR ..	142-143

G
Garrett Airesearch Manufacturing Div. 232
General Electric Company
Semiconductor Div.
$.42-43$
Voltage Regulator
210

General Instrument Semiconductor Div...... 197
General Motors Corporation
AC-The Electronics Div. 233
Delco Radio36, 84
General Products Corp. 180
General Radio Co. 63
Good-All Electric Mfg. Co. 13
Grainger, Inc., W. W. 202
Graphic Systems 240
Grayhill Inc. 216

H

Hamilton-Electrona, Inc.	
Hewlett-Packard Co.	.29-30-31-167
Honeywell	80
Howard Industries, Inc.	3
Howell Instruments, Inc.	. 55
Hughes Aircraft Co.	
Microwave Tube Division	160-161
Vacuum Tube	

Vacuum Tube I3

Ideal Industries, Inc.	202
Industrial Electronic Engineers, Inc	183-212
Industrial Test Equipment Co.	
Inland Motor, Div, of Kollmorgen	65
ITT-Components Div.	. 196

M
Magnecraft Electric Co. 212
Magnetics, Inc. 123
Mark Products Co. 170
Micro State Electronics Corp. 19
Microwave Associates, Inc. 149
Microwave Development Laboratories, Inc... 157
Minnesota Mining \& Mfg. Co., Mincom Div. Is
Molecular Dielectrics, Inc. 9
Mossman-Elliott Corp. 194
Motorola Semiconductor Products, Inc. |8|

N
National Cash Register 234
Newark Electronics Corp. 180
Nothelfer Winding Laboratories, Inc. 72

0

Panoramic Electronics Inc. 163
Philco, Lansdale Div.26-134-135
Polarad ElectronicsInsert following p. 170
Power Designs Inc. 238
PRD Electronics, Inc.
204

R

s
Sarkes-Tarzian, Inc. 28
Shallcross Manufacturing Co. 212
Silicon Transistor Corp.176-177
Sola Electric Co. 24
Spectrol Electronics Corp. 25
Sperry Electronic Tube Div......... 164-165-168-169
Sperry Electronic Tube Div.........164-165-168-169
Semiconductor Div.187 187
Sprague Electric Co.6-15-240
Stackpole Carbon Company38-39
Stainless, Inc. 223
Stevens Manufacturing Co., Inc. 10
Stewart Engineering Co. 186
Stromberg-Carlson
Stromberg-Carlson 186
Superior Tube .. 73
Sylvania Semiconductor Div..........
Sylvania Semiconductor Div.
Electronic Tube Div. ...Insert following p. 50
T

Tektronix, Inc. Telonic Industries Inc	86 157
Texas Instruments Inc.	195
Times Wire \& Cable Division	216
Toledo Edison Co.	237
TorringtonIns	p. 16
Tower Communications Co.	184
Trak Microwave Corp.	159
Taylor Laminated Plastics	178
Turbo Machine Co.	192

United Transformer Corp.	188
United Van Lines	74
U. S. Components, Inc.	238
V	
Vap-Air Division, Vapor Corp.	234
Victoreen	201

w

Waveline Inc. 60	
Weller Electric Corp. 40	
Western Electric	127
Western Rubber Co.	190
Western Sky Industries	237
Westinghouse Electronic Tube	153
Semiconductor Div.	8-49
Weston Instruments Division	44
hite Industrial Division,	221

z

Zenith Radio Corp.
140

MANUFACTURING REPRESENTATIVES

ELECTRO-PLASTICS

Authorized Migs. Representatives
Plastic precision Thermoformer-Fabricator seeks commission sales representatives. Complete plastic facilities and design services in all phases of thermoforming and fabricating of Plexiglas, Boltaron, Styron, Royalite, Polyethylene, and related thermoplastic sheeting. Give lines carried and write to

TECHNI-PLASTICS, INC.
75.35 31 Avenue, Jackson Heights 70, N.Y. Att.: H. Jacobson Sales Manager

Aircraft Company To Hire Specialists

More than 500 scientists and engineers will be hired during the next six months by Hughes Aircraft Company's Culver City Aerospace Laboratories. In addition to these specialists the company will hire several hundred electronic designers, draftsmen, and precision machinists.

The new personnel will raise the number of scientists and engineers at the Culver City facilities to about 2,600.
How To Get Things Done Better And Faster

BOARDMASTER VISUAL CONTROL
Δ Gives Graphic Picture-Saves Time, Saves Money, Prevents Errors
A Simple to operate-Type or Write on Cards, Snap in Grooves
A Ideal for Production, Traffic, Inventory Scheduling, Sales, Etc.
今 Made of Metal. Compact and Attractive. Over 500,000 in Use.
Full price $\$ 4.50$ with cards
24-PAGE BOOKLET NO. Z-20 Without Obligation

Write for Your Copy Today GRAPHIC SYSTEMS

Yanceyville, North Carolina
Circle 166 on Inquiry Card

NEW
For Single Sideband Two-Tone Testing

DUAL SIGNAL generator

$10 \mathrm{cps}-1 \mathrm{mc}$
F.O.B. Factory

Either signal available separately or at combined balanced output terminals. Total harmonic distortion under 0.1\% - intermodulation products 60 db down. Separate calibrated 1 to 110 db step attenuators for each oscillator.

Write for Complete Specifications

RON Electioncs Cors

Circle 167 on Inquiry Card

ONE-PIECE NYLON

Simple Installation

- Snug fit-no rattle High static strength and retention characteristics - Superior wear resistance without abrasion Excellent electrical properties Greatly simplify-stocking. 4 basic lengths fit sheet gages from .025 to .250 - Grommet is merely inserted through aperture. A simple tool flares protruding shank until Induced hoop stresses flip shank back on itself. - No heat needed in installation Write or phone for name of nearest representative.

WESTERN SKY
 INDUSTRIES

Dept.EI - 21301 Cloud Way, Hayward, Callif. Circle 168 on Inquiry Card

RCA Microwave Devices

Now Available! A 16-page booklet filled with technical data on nearly 100 different RCA Microwave Tubes and Solid-State Amplifiers and Oscillators. For your free copy, write on company letterhead to Section K.50-Q, Commercial Engineering, RCA Electron Tube Division, Harrison, N. J.

RCA Electron Tube Division, Harrison, N. J.

The Most Trusted Name in Electronics

[^0]: ${ }^{1}$ Value figures converted from pounds sterling to U. S. dollar equivalents at the rate of $\hat{f}=\$ 2.80$.
 Includes transistors.
 ${ }^{3}$ Less than $\$ 500$.
 Source: Data complled by the British Radio Equipment Manufacturers' Association from Statistics of H.M. Customs and Excise.

[^1]: MAIN PLANT BOX 555, MAHWAH, N. J. DAvis 7-1123 7-1124 PACIFIC DIVISION 1150 E. Bit St. UPLAND, CALIF. YUkon 2-02: 5

[^2]: Fixed Composition Resistors - Slide \& Snap Switches - Ceramaga Ferrite Cores - Fixed Composition Capacitors - Ceramagnet Ceramic Magnets - Electrical Contacts - Brushes for all Rotating Electrical Equipment - Graphite Bearings, Seal Rings, Anodes Hundreds of Related Carbon \& Graphite Products

[^3]: Resistances
 Linearity
 Power rating
 Operating temp.
 Mech. life
 500Ω to $125 \mathrm{~K}, \pm 3 \%$, std. (ta 250 K spl .) $\pm 0.25 \%$ std.
 $2 w$ at $70^{\circ} \mathrm{C}$
 -65° to $+125^{\circ} \mathrm{C}$
 2,000,000 shaft revolutions

[^4]:
 TEKTRONIX FIELD OFFICES: Albuquerque, N. Mex. Atlanta. Ga. Baltımore (Towson) Mo. Boston (Lexiki:gton) Mass. - Buffalo, N.Y. - Chicago (Park Ridge) III. - Cleveland, Ohio - Dalas. Texas - Dayton, Ohio
 Encino - West Los Angeles) - Minneapolis, Minn. Montreal, Quebec, Canada. New York City Area (Albertson, Leatti, N.Y. Stamiord, Conn. - Syad. . Toronto (Willowdale) Ont.. Canada - Washington, D.C. (Annandale, Va.). ENGINEERING REPRESENTATIVES: Kentron Hawail Lid, Honolulu. Hawaii. Tektronix is represented in twenty-five overseas countries by qualified engineering organizations
 ENGINEERING REPRESENTATIVES: Kentron Hawall Ltd, Tonolulu, Hawall ent European and African countries, the countries of Lebanon and Thrkey, Ilease contact Overseas areas, please write or cable directly to Tektronix, Inc., International Marketing Department. P. O. Box 500, Beaverton, Oregon, U.S.A. Cable: TEKTRONIX.

[^5]: 1. G. L. Ragan, "Microwave Transmission Circuits," Vol. 9. M.I.T. Radiation Laboratory Series, 1948, p. 553.
[^6]: 2. N. Marcuvitz, "Waveguide Handbook," Vol. 10, M.I.T. Radiation Laboratory Series, 1951, p. 132.
[^7]: A REPRINT
 of this article can be obtained by writing on company letterhead to The Editor
 ELECTRONIC INDUSTRIES, Chestnut \& 56th Sts., Phila. 39, Pa.

[^8]: A REPRINT
 of this article can be obtained by writing on company letterhead to
 The Editor
 ELECTRONIC INDUSTRIES, Chestnut \& 56th Sts., Phila. 39, Pa.

[^9]: *Formerly Program Manager Frankford Arsenal

[^10]: REFERENCE PACES
 The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED
 An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders.

[^11]: A REPRINT
 of this article can be obtained by writing on company letterhead to The Editor
 ELECTRONIC INDUSTRIES, Chestnut G 56th Sts., Phila. 39, Pa.

[^12]: ${ }^{2}$ A better treatment of antenna temperature is given by Forward and Richey "Effects of External Noise on Radar Performance," Microwave Journal, Dec. 1960. Also, Hogg and Mumford, "The Effective Noise Temperature of the Sky," Microwave Journal, March 1960.

[^13]: Less than 5 seconds after the inquiry message, composed by positioning levers, is transmitted, a computer-generated voice reply is received on phone adjacent to set.

[^14]: NEED ONE NOW? 24 HOUR DELIVERY VIA TELONIC JET ORDER SERVICE

[^15]: ADVANCED SPECIFICATION MINIATUREELECTRICALCONNECTORS

[^16]: 130 Ideal Industries, Inc.-Wire stripper
 Industrial Electronic Engineers, Inc.Indicating pushbutton switch
 143 Industrial Electronic Engineers, Inc.-

[^17]: FOR MORE INFORMATION . . . on positions described in this section fill out the convenient inquiry card, page 207.

[^18]: ${ }^{3}$ A. A. Oliner, "The Calibration of the Slotted Section, for Precision Microwave Measurements," Report R-26T-52, PlB206, March 1952, for Air Force Cambridge Fesearch Ce

