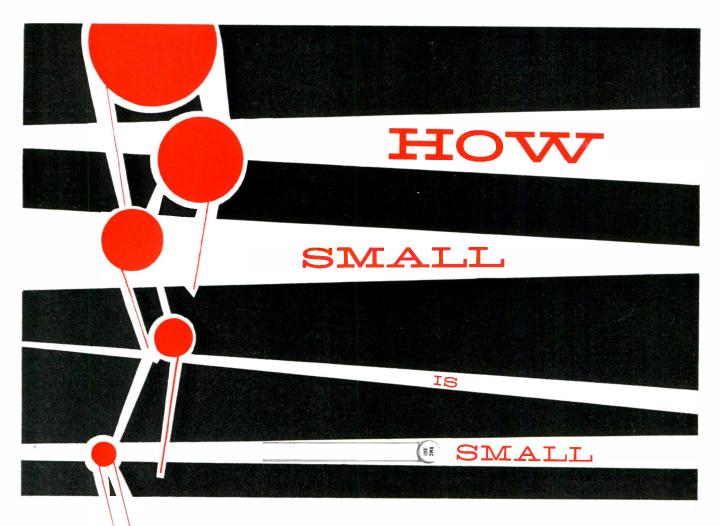
# ELECTRONIC INDUSTRIES A CHILTON PUBLICATION


Another New El Special Staff Report!

### "HUMAN FACTORS"

— In Engineering Design ..... See page 85

Digital Computing Systems For Process Control—See page 70

February 1960



### **RMC** subminiature discaps

### SPECIFICATIONS

POWER FACTOR: 1.5% Max. @

- 1 KC (initial) WORKING VOLTAGE: 500 V.D.C. TEST VOLTAGE (FLASH): 1000 V.D.C. LEADS: No. 22 tinned copper (.026
- dia)
- INSULATION: Durez phenolic (1/8" max. on leads)—vacuum waxed STAMPING: RMC—Capacity—Z5U INITIAL LEAKAGE RESISTANCE:
- Guaranteed higher than 7500 megohms
- AFTER HUMIDITY LEAKAGE RESISTANCE: Guaranteed higher than 1000 megohms

Small is a relative term and at RMC subminiature better describes Type SM DISCAPS. These DISCAPS meet the specs of EIA-RS-198 for Z5U ceramic capacitors and are available as described in the table below. Type SM DISCAPS show minimum capacity change between  $+10^{\circ}$ C and  $+65^{\circ}$ C.

| Capacity | Max.<br>Dla. | Max.<br>Lead Len. | Meas.<br>Between Leads | Tolerance      |
|----------|--------------|-------------------|------------------------|----------------|
| .800     | .235         | 11/2"             | .150                   | GMV            |
| .001     | .235         | 11/2"             | .150                   | GMV            |
| .0015    | .285         | 11/2"             | .250                   | GMV            |
| .005     | .390         | 11/2"             | .250                   | ±20% +80% _20% |
| .01      | .510         | 11/2"             | .375                   | ±20% +80% _20% |
| .02      | .675         | 11/2"             | .375                   | +80%_20%       |

CERAMIC CAPACITORS



RADIO MATERIALS COMPANY A DIVISION OF P. R. MALLORY & CO., INC. GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III. Two RMC Plants Devoted Exclusively to Ceramic Capacitors FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.

Circle 1 on Inquiry Card

# ELECTRONIC INDUSTRIES

ROBERT E. McKENNA, Publisher

Outlooks

and **Reviews** 

BERNARD F. OSBAHR, Editor

AST year, in the January issue edi-Litorial, we called attention to the excellent report issued by the Electronics Division of the Business and Defense Services Administration of the U. S. Department of Commerce. This report, entitled "Electronic Industries-Outlook for 1959 and Review of 1958," contained a wealth of statistical information that would interest all electronic marketing managers.

The new report "Electronic Industries-Outlook for 1960 and Review of 1959" has just been issued. Again, another exemplary statistical review! In the main, the overall figures in this report tend to agree with information published in our last month's annual review issue. The new report is eight pages long with four more pages of tabular data.

We were surprised to learn that this information would be made available to interested parties upon written request. We suggest that all electronic marketing managers avail themselves of this opportunity.

Our recent investigations also uncovered the fact that the Business & Defense Services Administration, U.S. Department of Commerce, Washington 25, D. C. is now issuing some 88 similar reports in other fields. Some of these are of direct interest to electronic marketing. Others have only an indirect interest, while the remainder have little or no significance. Nevertheless, in the interest of completeness and of keeping El's marketing readers fully informed, we are listing below a complete list of "Outlook for 1960 and Review of 1959" reports currently available:

We'd recommend keeping this list handy as a good starting reference for analyzing new electronic equipment markets for consumer, commercial and industrial applications. Our market research department will also maintain a complete file of reports in our Philadelphia headquarters for reader reference purposes.

- I. Air Conditioning and Refrigeration Equipment
- 2. Alkalis and Chlorine
- 3. Aluminum
- 4. Aluminum Foil Packaging
- 5. Anti-Friction Bearing
- 6. Automobile
- 7. Boating
- Bookkeeping and Accounting Machines
   Book Publishing
   Cast Iron Soil Pipe and Fittings

- 11. Chemical and Allied Products
- 12. Chemical Fertilizer
- 13. Commercial Central Station Protective Signaling
- 14. Commercial Printing
- 15. Communications Equipment
- 16 Construction
- 17. Construction Machinery and Equipment
- 18. Converted Flexible Packaging Products
- 19. Copper
- 20. Cotton Broad Woven Goods
- 21. Dairy Plant Equipment
- 22. Domestic Record Communications (Telegraph) 23. Domestic Telephone Communications
- 24. Electrical Construction Material
- 25. Electrical Equipment 26. Electrical Transmission and Distribution
- Equipment
- 27. Electronic Industries
- 28. Farm Machinery & Equipment
- 29. Ferroallov

- 30. Ferrous Castings 31. Fibre Box 32. Flat Glass

  - 33. Folding Carton 34. Food and Beverage

  - 35. Freight Car
  - 36. Games and Toys 37. Gas Turbine
  - 38. Glass Container
  - 39. Hand Tools
  - 40. Hides and Skins

  - 41. Household Appliance 42. Household Furniture
  - 43. Hydraulic Turbines
  - 44. Industrial Gases
  - 45. Integral Horsepower Motors
  - 46. International Telephone & Telegraph Communications
  - 47. Iron and Steel
  - 48. Jewelry
  - 49. Large Diesel Engine
  - 50. Lead
  - 51. Leather 52. Lumber

  - 53. Machine Tool Industry (Metal Cutting & Forming Types) 54. Magnesium

  - 55. Man Made Fibre Broad Woven Goods
  - 56. Material Handling Equipment 57. Men's and Boys' Clothing 58. Metal Can

- 59. Mining Machinery
- 60. Motion Picture
- 61. Newspaper Publishing 62. Nickel
- 63. Oil Field Equipment & Machinery
- 64. Paper and Board
- 65. Paper Bag
- 66. Paper Shipping Sack
- 67. Periodical Publishing
- 68. Photographic Products
- 69. Plastics Materials
- 70. Power Boiler
- 71. Pressed and Blown Glassware 72. Printing Trades Machinery
- 73. Pulp and Paper Machinery
- 74. Pumps, Compressors, Fans and Blowers
- 75. Scientific and Process Control Instruments
- 76. Shoes
- 77. Softwood Plywood
- 78. Steam Turbine
- 79. Steel Forging
- 80. Steel Shipping Container
- 81. Sulfuric Acid
- 82. Table Flatware and Holloware
- 83. Tantalum and Columbium 84. Textile Machinery
- 85. Titanium
- 86. Truck and Truck Trailer 87. Warm Air Furnace
- 88. Woolen and Worsted Manufacturing
- 89. 7inc

#### ROBERT E. McKENNA, Publisher BERNARD F. OSBAHR, Editor

CREIGHTON M. MARCOTT Managing Editor RICHARD G. STRANIX JOHN E. HICKEY, Jr. Associate Editors CHRISTOPHER CELENT Assistant Editor Assistant Editor DR. ALBERT F. MURRAY Contributing Editor ROLAND C. DAVIES Washington News MARIE T. McBRIDE Directory Editor ELMER KETTERER Art Editor CHARLES F. DREYER Cover Designer IDA M. GOOD Editorial Secretary MAE E. MOYER Readers' Service

#### EDITORIAL CORRESPONDENTS

Washington-1093 National Press Bldg. GEORGE BAKER NEIL R. REGEIMBAL RALPH W. CROSBY

#### BUSINESS DEPARTMENT

ELMER DALTON Circulation Manager DONALD J. MORAN Marketing Manager SORDON HERNDON Production Manager ARA H. ELOIAN Production Assistant REGIONAL SALES MANAGERS Philadelphic (39)-56th & Chestnut Sts. SHerwood 8-2000 JOSEPH DRUCKER New York (17)—100 East 42nd St. OXford 7-3400 GERALD B. PELISSIER Metropolitan N. Y. MENARD DOSWELL III New England Chicaga (1)—360 N. Michigan Ave. RAndolph 6-2166 GEORGE H. FELT Cleveland (15)-730 Keith Bldg. SUperior 1-2860 Superior 1-2860 SHELBY A. McMILLION Los Angeles (57)—198 S. Alvarado St. DUnkirk 7-4337 B. WESLEY OLSON San Francisco [3)—1355 Market St. UNderhill 1-9737 DON MAY Atlanta (3)—911 William-Oliver Bldg, JAckson 3-6791 JOHN W. SANGSTON Dallas (6)—Meacows Bldg., Expressway at Milton EMerson 8-4751 HAROLD E. MOTT

London, WI-4 Old Burlington St. D. A. Goodall Ltd. A. R. RACE GErard 8517/8/9

G. C. EUZBY, President C. C. BULET, President Vice Presidents: P. M. Fahrendorf, Leonard V. Rowlands, George T. Hook, Robert E. McKenna; Treasurer, William H. Vallcr; Directors: Maurice E. Cox, Frank P. Tighe, Everit B. Ter-hune, Jr., Russell W. Case, Jr., Charles A. S. Heinle, John H. Kofron. Washington Member of the Editorial Board, Paul Wooton.

### Comptreller, Stanley Appleby.

ELECTRONIC INDUSTRIES, February, 1960. Vcl. 19, No. 2. A monthly publication of Chilton Com-peny, Executive, Editorial & Advertising offices at Chestnut # 56th 51t., Phila. 39, Pa, Accepted as controlled circulation publication at Phila., Pa, \$1 a copy. Directory issue (June), \$5.00 a copy. Subscription rates U, S. and U, S. Posses-sions: I yr. \$10.00; 2 yrs. \$18.00 Conada I yecr., \$12.00; 2 yrs. \$30.00. All other countries I yr., \$18.00; 2 yrs. \$30.00. Copyright 1960 by Chilton Company. Taile Reg. U. S. Pat. Off. Repreduc-fion or reprinting prohibited except by written authorization.

# ELECTRONI NDUSTRIE

### Vol. 19, No. 2

### February, 1960

### MONTHLY NEWS ROUND-UP

| Radarscope: What's Ahead for the Electronic Industries 4 |  |
|----------------------------------------------------------|--|
| As We Go To Press                                        |  |
| TOTALS: Late Marketing Statistics 19                     |  |
| Snapshots of the Electronic Industries                   |  |
| Coming Events                                            |  |
| Electronic Industries' News Briefs 14                    |  |
| International News                                       |  |
| Electronic Shorts                                        |  |
| Washington News Letter                                   |  |
| Next Month in Electronic Industries                      |  |

| Editorial: Outlooks and Reviews                                  | - 3 |
|------------------------------------------------------------------|-----|
| General Purpose Digital Computing SystemsArthur H. Freilich      | 70  |
| "TPR" Recording                                                  | 76  |
| Nomographs Simplify Electron Tube Design (Pt. 2) .R. D. Reichert | 80  |
| Automation Improves Components                                   | 85  |
| Human Factors—Newest Engineering DisciplineC. Celent             | 85  |
| Human Engineering & Space Travel                                 | 88  |
| The Human as a Component                                         | 88  |
| Human Engineering in the Aircraft Industry                       | 89  |
| Early Work in Human Engineering                                  | 90  |
| Equipment Studies                                                | 91  |
| "Typical" Programs                                               | 92  |
| Designing Input Trigger CircuitsRichard Kimes                    | 101 |
|                                                                  | 106 |
|                                                                  | 106 |
| Books via Teletype                                               | 107 |
| Traveling Instrument Exhibit                                     | 107 |
| International Electronic Sources                                 | 121 |
| Electronic Operations                                            | 185 |
| 100 KW Transmitter has New Design Ideas Jo Emmett Jennings       |     |
| Professional Opportunities                                       |     |
| The R&D Personnel Administrator—What's His Role? . E. B. Gilroy  |     |

### **NEW PRODUCTS & TECH DATA**

| New | Products  | • • • • • • • • • • • • • • • • • • • • | <br>    |
|-----|-----------|-----------------------------------------|---------|
| New | Tech Data | or Engineers                            | <br>110 |

### DEPARTMENTS

| Personals      |    | Industry News | 200 |
|----------------|----|---------------|-----|
| Tele-TipsBooks |    | News of Reps  | 206 |
| Letters        | 66 | Systems-Wise  | 185 |





# Highlights

### of this issue

### General Purpose Digital Computing Systems

### page 70

page 76

page 86

Nine general-purpose digital computing systems are commercially available for the control of continuous and batch type industrial processes. For quick reference, these computers are compared in a single table. A general discussion of general-purpose digital computers and the characteristics of the nine control computer systems are included.

### "TPR" Recording

A new method for recording electrical signals on a thermoplastic film employs electron gun recorder. System has response capabilities to 50 M C. Many new military and industrial recording applications envisioned.

### Human Factors—Newest Engineering Discipline

The rapid technological advances of the last twenty years have generated problems concerning man-machine compatibility that call for an exhaustive knowledge of human behavior. Human engineering, representing a cross-fertilization between life sciences and engineering, tries to analyze the human as a component in a complex system. The effort ranges from "knob and dial" work to developing complex mathematical models of human behavior.

### **Designing Input Trigger Circuits**

### page 101

For a wide variety of jobs, the trigger circuit described offers correct reliable output information at low cost. It is virtually independent of input rise time, can handle large variations in input amplitude and dc level, and rejects noise.

### 100 KW Transmitter Has New Design Ideas

page 186

The new design ideas used in this h-f, wide range transmitter may be incorporated in other transmitters. Accurate, stable switching is obtained with vacuum relays and vacuum capacitors in the tank circuits. Over a wide frequency range, r-f chokes can be a problem. A fresh approach to this problem is fully described.

### The R & D Personnel Administrator—What's His Role? page 194

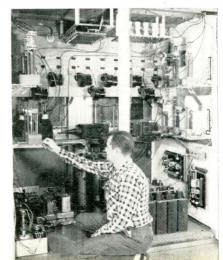
Most R&D organizations are either relatively new groups seeking new products or part of older, larger companies seeking new markets. Little tradition, precedent, or practice has been established in the former; the latter have inherited practices which may be inappropriate for the R & D environment. If these new R & D units are to survive, they must work within the general scheme of the social and economic unit. Technical brainpower generates the thought behind new products; administrative brainpower brings into being the facilities, material, money, and people who have substance to the thought.



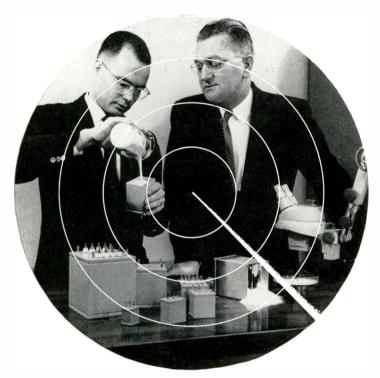
Human Engineering



**General-Purpose Computers** 




**TPR** Recording




**Trigger Circuits** 

100 KW Transmitter



# RADARSCOPE



### **DE-POTTING SIMPLIFIED**

At Bell Labs powdered alumina (aluminum oxide) is poured into container housing electronic component by R. S. Key and L. W. Kirkwood. Alumina acts as potting agent, protecting against humidity. When part is to be repaired, powder is poured out.

ANTI-SUB ELECTRONICS is one of the more lucrative fields of detection apparatus. Two hundred million dollars has been voted for ASW electronics for the fiscal year of 1960. The biggest chunk is going to sonar. Shipboard radar and magnetic anomaly detection are getting the next largest allocations.

FM IS FINALLY making the big leap, after so many disheartening false starts. In the past year FM commercial authorizations have climbed from about 690 to 825. Some 665 stations are now on the air as compared with 570 a year ago.

SEMICONDUCTOR AGREEMENT has been signed by Philco and CBS Electronics. CBS will set up two production lines to make Philco precision etched transistors this spring. CBS will market them independently.

**VACUUM TUBE IMPORTS** have raised an additional problem—how to determine the source of origin. There is some thought that imports should be marked indelibly with the country of origin. The Canadians already have made this a matter of law. An amendment that took effect on December 1, 1959 added electron tubes to the list of items that have to be marked with the country of origin.

AIR COLLISIONS can be avoided with the air navigation devices available now, if suitable datasmoothing techniques are used, says the Naval Research Lab. Use of coding and redundancy would allow many aircraft to exchange data very reliably on a radio frequency channel. Reports on a recent study of the problem are contained in "Some Probability Aspects of the Aircraft Collision Problem," by U. S. Naval Research Lab, available from Office of Technical Services, U. S. Dept. of Commerce.

23-IN. PICTURE TUBES will spearhead 1960 TV sales, predicts Admiral's Ross Siragusa.

NEW MASER of titanium dioxide, or rutile, makes higher frequency operation possible. They are being explored separately by MIT and RCA. At MIT a rutile maser, pumped by a 70 KMC klystron, amplified signal frequencies from 26 to 40 KMC. The gain bandwidth product was 10 to 40 MC. Input saturation power was 10 millimicrowatts. RCA used chromium-doped, and then iron-doped, titanium dioxide maser, operating at frequencies up to 23 KMC.

### FOR ROCKET TESTING

Calibrating the 1,500,000-lb. capacity load cell (vertical cylinder) at National Bureau of Standards. The cell will be used in tests of a 1,500,000-lb. thrust rocket engine now under development at the Rocketdyne Div. North American Aviation, Inc.



### Analyzing current developments and trends throughout the electronic

industries that will shape tomorrow's research, manufacturing and operation

**30,000,000 WORDS/SEC** can be transmitted with new systems developed by Sperry Gyroscope Co. First applications are expected to be in special communications systems. Eventually they will be applied to computers. One of the components is a microwave diode switch capable of switching 700,000,000 bits of information per second.

**CITIZENS RADIO** is only a little over a year old, but it is already finding itself in trouble. There have been so many violations that the FCC is considering more rigid specifications on equipment. Surveys show that well over half of the licensees of Class D citizens radio are violating the regulations in some way; either by exceeding the 10-mi. distance limitation, being off frequency, or overmodulating their signal. Most unhappy are the equipment manufacturers. If the FCC restrictions or requirements for their equipment become more elaborate, prices must rise as well, putting more and more of the equipment beyond the reach of the average user.

LOW COST FM RECEIVERS are flooding the market. And they are not only Japanese. A number of American manufacturers have units selling in the \$20 to \$25 range, both tuners and complete receivers. Sarkes Tarzian, marketing a \$19.95 FM receiver, is trying to interest FM stations in filling the role of a retail outlet. The idea makes sense, because both parties have similar aims. Sarkes Tarzian wants to sell receivers and the FM stations want to enlarge their audience. Cheap, readily available receivers could be a happy solution.

**ELECTRONIC IMPORTS** were up more than 250%in 1959 compared with 1958. Exports declined slightly. The rise is chiefly due to the increased shipments of radio receivers from Japan. Japanese shipments of radio receivers of all types to the U. S. have climbed from 641,000 in 1957 to almost  $5\frac{1}{2}$  million in 1959. In dollars this represents 5.3 million in '57 against 50 million in '59. From the United Kingdom the U. S. is importing more than twice as much as it is exporting. The only area of U. S. exports that is increasing is radio and TV broadcast equipment, which is up approximately 65%, largely in TV studio equipment.

EPOXY RESINS are finding increasing use in laminated plastics. Dr. Norman A. Skow, Technical Director of Synthane Corp., predicts, "Epoxies will not replace phenolics but they may eventually surpass phenolic laminates in production volume. Epoxies now open the door to usages not previously thought possible for laminated plastics." Epoxies are offering superior electrical and mechanical properties under conditions of humidity and dampness. SIMULTANEOUS BROADCAST of two or more independent transmissions on different wavelength can be made by a new shortwave radio transmitter developed by Marconi. Service on one frequency can be put on a second frequency before discontinuance on the first frequency. Transmitter uses a distributing amplifier dispensing with tuning controls. There is no complex stage-by-stage retuning of amplifiers to change frequency. One application seen is ground-to-air communications.

**NEW TV FILM TECHNIQUE** developed by Kodak Research Laboratories allows a standard 35-mm projector to be used for television use. The method changes the film "pull down" sequence of movie projector so that the projector can be used with Vidicon TV storage tubes. Conversion is less expensive than more complex systems for showing standard 35-mm films on TV. Unit prevents flicker in televised movie, since film "pull down" is synchronized with vidicon tube.

**COMPUTER SALES** will depend largely on the manufacturers' ability to develop systems tailored to the needs of individual customers. This was the message delivered to more than 200 representatives of electronic companies at a recent EIA marketing conference in New York. The conference participants were warned that the "piece meal" approach to marketing computers will create operating chaos for businesses seeking to progress through automation.

### FLIGHT SIMULATION

Flight simulator is integrated with electronic analog computer and equipment test mockup at Boeing Wichita, Kans. plant. It enables Boeing research engineers to determine both dynamic and pilot reaction characteristics during critical maneuver conditions.



#### ELECTRONIC INDUSTRIES • February 1960



SPRAGUE COMPONENTS: RESISTORS • INTERFERENCE FILTERS • PULSE NETWORKS

6

233 Marshall Street North Adams, Mass. CAPACITORS • MAGNETIC COMPONENTS • TRANSISTORS

.

\*

# As We Go To Press...

### Report on Binary Color TV System

A special EIA subcommittee studying color picture concepts advanced by Dr. Edwin H. Land, head of the Polaroid Corp., has turned in its report. They recommend that he, and others, be encouraged to continue their basic studies, but that the FCC color TV signal be left unchanged at this time.

The subcommittee stated that the FCC signal "permits continued investigation of Dr. Land's method without deterioration of pictures reproduced by receivers making full use of the information present in the signal." The FCC color signal "carries simultaneously the information for three-color reproduction and for methods outlined by Dr. Land" and "does not result in a large increase in the cost of receivers."

### 3 Dimensional X-Ray Checks Out Missiles

A simple method that allows three dimensional study of x-ray films to find faulty parts of missiles and space vehicles before launch has been perfected.

Engineers at Convair, producer of the Atlas, take two x-ray films of each component from different angles. The films are studied using two modified x-ray film viewers and a mirror system which produces a stereo-like view.

### HOURLY RATES



Scientific and engineering organizations can now rent time by-the-hour on International Business Machines Corp. 709 computers at Datacenters in midtown New York and Poughkeepsie, N. Y. Users supply their own programmers and operators. The system can handle up to 42,000 additions per second. Multiplications are 5,000 per sec.

### HIGH LEVEL PHOTOS



Radar and aerial cameras carried by this huge, 2 million ft<sup>3</sup> balloon photographed the earth's surface from over 100,000 ft. The flight, conducted by Goodyear Aircraft Corp., assisted by General Mills technicians, was part of an Air Research and Development Command research program. Engineers will study the aerial radar photographs in evaluating the characteristics of radar at stratospheric altitudes.

### Men Replace Machines in New Defense System

A new system of air defense control, developed by Boeing Airplane Co., uses men instead of machines. Called "MANTRAC" for Manual Tracking Capability, the system provides an accurate, economical method of tracking hostile airborne weapons in areas where the highly developed SAGE system or other electronic systems are not available.

MANTRAC uses simple mathematical triangulation, with positions plotted on a large plexiglas map. The map is criss-crossed with lines and lettering separating and identifying zones in the area. Plotters plot the direction of attacking aircraft on separate plexiglas panels which can be rolled into position behind the main map. The plane's position is determined by intersecting lines.

Teamwork and practice are essential to this operation and a system of electronic "war gaming" has been devised in which one part of the group serves as an attacking force and the other operates the MANTRAC system.

### Experimental 3-D TV Shown In Chicago

Westinghouse Electric Corp. demonstrated an experimental three-dimensional TV at the recent Home Furnishings Show in Chicago.

The 3-D TV requires two cameras equipped with Westinghouse's "Permachon" tube. Each camera stores and transmits separate images which appear side-by-side on the receiver tube.

The viewer uses a pair of polarized glasses to get the three-dimensional effect.

Westinghouse also demonstrated a Civil Defense, two-band radio equipped with an automatic radiation detector, and a portable TV set powered by a thermoelectric generator. The thermoelectric generator is powered by a butane gas flame.

### Warning Network To Aid in Rescue Work

The Office of Civil and Defense Mobilization's National Warning System (NAWAS) has been ordered to assist military and civil authorities in rescue operations for downed aircraft. The system has already been used for this purpose on three different occasions.

The NAWAS net has 276 warning points from coast to coast. It maintains round - the - clock readiness to flash warning of the approach of hostile craft.

### FOR EXCEPTIONAL SERVICE



Top Honorary Dept. of Defense medal was presented to Wladimir A. Reichel (center) chief of basic design for Norden Div., United Aircraft Corp. James H. Wakelin, Asst. Secretary of the Navy (left) presented the medal. Vice Admiral John T. Hayward, Deputy Chief of Naval Operations looks on.

### **ELECTRONIC SHORTS**

▶ Naval research lab has developed ferromagnetic waveguide dummy loads for radar bands that can operate at all temperatures up to the present military limits.

▶ The Federal Aviation Agency is reorganizing its Bureau of Research and Development. The new structure has 10 divisions—5 program and 5 staff divisions. Program divisions are concerned with research and development of new FAA systems. Staff divisions advise and assist the director of the bureau.

• Emerson Radio & Phonograph Corp. demonstrated new high and low altimetry techniques for the Navy Dept. The demonstrations are in the art of absolute radar altimetry from touchdown to maximum operating altitudes. Discussions included applications like navigation of aircraft and missiles, parachute release devices, drone control, and scoring systems.

▶ The "prime detector" in the Navy's high-altitude balloon observations of the planet Venus, which yielded evidence of water vapor and the possibility of life on Earth's nearest planetary neighbor, was a multiplier photo tube developed by ITT Corp.

▶ A portable water purification and demineralization system for use with supersonic aircraft has been delivered to the Air Force. The F-105 uses water injection to get an extra ton of thrust on initial take-off. The unit, built by Republic Aviation Corp., will be used as ground support equipment for the F-105 Thunderchief, now in service with TAC. The demineralizer is designed for use at "austere sites" where water needs must be supplied from rivers, streams, or swamps.

▶ The new Army-developed material, gallium phosphide, may solve the heat barrier problem faced by electronic parts in nose cones of missiles. It has been used in a diode which has withstood temperatures seven times higher than silicon and germanium. One projected use is in building solar-cell power plants for space stations.

▶ The General Services Administration is selling a Government-owned industrial property near Huntington, West Virginia. The building had been used to build electronic devices for the Navy and is still equipped for electronic production. The plant has approx. 140,000 feet of factory space.

▶ Teflon insulated wire is being color coded with a new technique that uses rapid evaporation of a duPont solvent to stabilize coating inks so they will not migrate. With the new process, developed by Spectra-Strip Wire & Cable Corp., uncolored wire can be stocked and coded almost any color at the point of use.

▶ The EIA has approved "in concept" Department of Defense Instruction 3232.7—"Uniform Technical Documentation for Use in Provisioning End Items of Material." The EIA Spare Parts Committee said that "the instruction has encouraged some agencies of the military services to expand documentation requirements," although the opposite effect had been anticipated.

▶ Infrared detecting cells of indium antimonide will be produced on a pilot line basis under a contract awarded Lansdale Tube Co. by Manufacturing Methods Div. of Air Materiel Command's Aeronautical Systems Center.

▶ Missile and satellite fasteners made from the nearest thing to an antigravity structural metal yet developed will be produced in a new Exotic Metals Laboratory just opened by Standard Pressed Steel Co., Jenkintown, Pa. The \$100,000 pilot plant operation is the first in the fastener industry to fabricate featherweight beryllium—one-fourth the weight of steel and currently more costly than gold—into threaded parts.

▶ The Navy has turned to electronic data processing to keep track of its weapons and ammunition in shore bases and ships located around the world. The Navy's RCA 501 system will become a chief logistics aid to the newly established Bureau of Naval Weapons.

### As We Go To Press (cont.)

### CHANNEL SELECTOR



Westinghouse Electric Co. engineers work on development of new TV channel selector. The Company's forecast for TV sales during 1960 emphasized that the basic consumer demand was still for well-operating TV sets that look nice. Gimmicks, the Company says, are secondary factors, especially if they increase the cost.

### More for Defense Dollar Seminar

A seminar of top-level representatives of the country's defense administration, military services, Congress, and industry is being arranged in Washington. They will meet to develop specific proposals for giving taxpayers more defense per dollar.

The seminar will be held March 15 in the Statler-Hilton Hotel. It is expected to be attended by several hundred persons from government and industry with responsibility for marketing and planning in the defense area. Seminar will precede EIA's Spring Conference March 16-17 which will feature the association's annual Government-Industry Dinner March 17. The seminar is being sponsored by EIA's Military Products Div. under the chairmanship of Sidney R. Curtis, Sr., Vice President of Stromberg-Carlson.

### **WESCON** Deadline

Papers for the 1960 Western Electronic Show and Convention technical sessions should be registered by May 1. Complete texts (or detailed summaries) plus 100-200 word abstracts should be sent to: Chairman of the Technical Program, Richard G. Leitner, WESCON Business Office, 1435 South La Cienega Blvd., Los Angeles 35, Calif. WESCON, 1960 is August 23-26.

## 4 day delivery: Fused Silicon Diodes 110645 110646 110647 110648 110649

### Hughes now offers you immediate delivery on five medium power fused silicon glass diodes—types 1N645, 1N646, 1N647, 1N648, and 1N649.

These Hughes diodes feature a Dumet-stud heat sink for small size and the popular Hughes glass package for proven reliability. Widely used in power supplies, magnetic amplifiers and similar circuits, these Hughes diodes are specially designed to meet the severe environmental requirements of such military equipment as missile telemetering links, airborne radar, and communication gear.

For immediate delivery of these Hughes diodes write, wire or phone the Hughes distributor or Semiconductor Division Sales Office nearest you...or write Hughes Semiconductor Division, Marketing Dept., Newport Beach, California.

### **Specifications**

| Туре   | Max. Working<br>Voltage | Min. Forward Current<br>@ specified voltage* | Max. Reverse Current<br>at working voltage*<br>(سA) | DC Current<br>Io (µA) | ar Pa |
|--------|-------------------------|----------------------------------------------|-----------------------------------------------------|-----------------------|-------|
| 1 N645 | 225V                    | 400 mA @ 1.0V                                | .2                                                  | 400                   |       |
| 1 N646 | 300V                    | 400 mA @ 1.0V                                | .2                                                  | 400                   | PI    |
| 1N647  | 400V                    | 400 mA @ 1.0V                                | .2                                                  | 400                   |       |
| 1 N648 | 500V                    | 400 mA @ 1.0V                                | .2                                                  | 400                   |       |
| 1N649  | 600V                    | 400 mA @ 1.0V                                | .2                                                  | 400                   |       |

• @ 25° C

SEMICONDUCTOR DIVISION

HUGHES PRODUCTS

the West's leader in advanced ELECTRONICS

© 1959 Hughes Aircraft Company

### **Resolution up to 800 lines per diameter possible with new HUGHES flat-face TONOTRON® Tubes!**

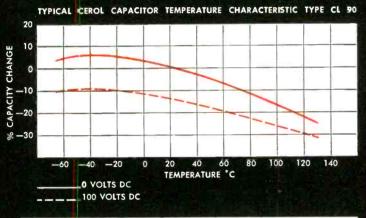
These newest products of HUGHES are especially designed to give you dramatically improved resolution in applications such as: shipborne and ground based radar, sonar, air traffic control, instrumentation, industrial TV, and many others.

HUGHES flat-face storage tubes, now available in quantity, enable you to increase display capability by a factor of 4. Display readouts are easier and more accurate because of the new picture clarity, sharper focus and finer detail provided by the optically-flat face and high light output of these new TONOTRON® Tubes from HUGHES. Write today for full information and engineering assistance on your applications: HUGHES, Vacuum Tube Products Division, International Airport Station, Los Angeles 45, California. For export information, please write: Hughes International, Culver City, California.


### FEATURES:

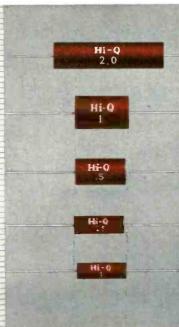
- Axial writing gun
- Electrostatic focusing
- Electromagnetic deflection
- P20 aluminized phosphor

HUGHES


Creating a new world with ELECTRONICS

© 1960 HUGHES AIRCRAFT COMPANY VACUUM TUBE PRODUCTS DIVISION




### An entirely NEW concept in ceramic capacitors

## HIGH CAPACITY HIGH RELIABILITY ROLLED CERAMIC CAPACITORS\*



| Specifications for Cerol Capacitors, Type C190 |           |               |               |  |
|------------------------------------------------|-----------|---------------|---------------|--|
| Part<br>Number                                 | Cap. Mfd. | D Max.<br>in. | L Max.<br>in. |  |
| CL90V104AM                                     | .1        | .210          | .690          |  |
| CL90V254AM                                     | .25       | .260          | .690          |  |
| CL90V504AM                                     | .5        | .350          | .690          |  |
| CL90V105AM                                     | 1.0       | .480          | .690          |  |
| CL90V205AM                                     | 2.0       | .400          | 1.44          |  |

Cap. Tol. =  $\pm 20\%$ P.F. = 2% Max. T.C. (0 Voltage) =  $\pm 15\% - 25\%$  over temperature range of  $-55^{\circ}$ C. to 125 °C. T.C. (100 V. applied) =  $\pm 15\% - 35\%$ Working Voltage = 100 VDC at 85 °C. derate to 50 VDC at 125 °C. Test Voltage = 300 VDC Insulation Resistance = 100 Meg.-Mfd. minimum Series Resistance < .25 ohms at 8 to 10 mc. Other requirements per MIL-C-110158 Leads axial = 22 gauge 11/4"  $\pm$  %" long



New from Hi-Q... a major breakthroughin the design and construction of ceramic capacitors that provides extremely high capacity ceramic units in ranges previously unattainable. CEROL capacitors are rolled ceramic capacitors in the high capacitance range of paper and plastic film dielectrics but in much smaller physical sizes and with superior electrical characteristics.

Designed for general applications in bypass-coupling, filtering and blocking circuits, CEROL capacitors offer excellent electrical characteristics for critical applications in decoupling and pulse circuits where low series resistance at high frequencies together with extremely min iature sizes are required. The extremely low series resistance of CEROL capacitors makes them ideal for compute applications.

CEROL capacitors are currently available in capacitance ratings of .1, .25, .5, 1.0 and 2.0 mfd for operation at 100 VDC at temperatures between --55°C to 85° and at 50 VDC up to 125°C. Capable of withstanding severe environmental corditions CEROL capacitors will meet or suppass all the applicable requirements cf MIL-C-11015B.

Write today for detailed information on these remarkable new capacitors to ....



**AEROVOX CORPORATION** 

OLEAN, NEW YORK

# Coming Events in the electronic industry

A listing of meetings, conferences, shows, etc., occurring during the period January-March that are of special interest to electronic engineers

- Jan. 31-Feb. 5: Winter General Meeting, AIEE; Hotel Statler-Hilton, New York City.
- Feb. 1-4: Instrument Automation Conf. and Exhibits, Instrument Society of America; Sam Houston Coliseum and Rice Hotel, Houston, Tex.
- Feb. 1-4: 2nd Southwest Heating & Air-Conditioning Exposition, American Soc. of Heating, Refrigerating and Air-Conditioning Engineers, Inc.; Memorial Auditorium, Dallas, Tex.
- Feb. 1-5: Committee Week, American Soc. for Testing Materials; The Sherman Hotel, Chicago, Ill.
- Feb. 2: The Handling of Radioactive Samples for Emission Spectroscopy and Spectroscopic Properties of Photographic Emulsions, Society for Applied Spectroscopy; New Yorker Hotel, New York City.
- Feb. 3-4: 6th Annual Midwest Welding Conference, Armour Research Foundation, American Welding Society; Illinois Institute of Technology, Chicago, Ill.
- Feb. 3-5: Winter Meeting, IRE (PGMIL); Biltmore Hotel, Los Angeles, Calif.
- Feb. 4: Seminar Automation and Your Production Program, ASTE; Detroit. Mich.
- Feb. 5-6: Industrial Management Engineering Conf., Illinois Institute of Technology; Illinois Institute of Technology, Chicago, Ill.
- Feb. 10-12: Solid State Circuits Conf., AIEE, IRE, Univ. of Pennsylvania; University of Pennsylvania & Hotel Sheraton, Phila., Pa.
- Feb. 11-12: Cleveland Electronics Conf., IRE, AIEE, ISA, Physics Society, Case Institute of Technology, Western Reserve Univ.; Engineering and Scientific Center, Cleveland, Ohio.
- Feb. 11-12: Winter Meeting, Relay Committee, Pennsylvania Electric Assoc.; Bellevue - Stratford Hotel, Phila., Pa.
- Feb. 11-13: 1st ERA National Convention, Electronic Representatives Assoc.; Drake Hotel, Chicago, Ill.
- Feb. 14-18: Annual Meeting, AIME; Hotels Sheraton-McAlpin and Statler-Hilton, New York City.

- Feb. 16: Educational Seminar, Assoc. of Electronic Parts & Equipment Manufacturers, Inc.; Niles, Ill.
- Feb. 16-18: 1st National Symposium on Nondestructive Testing of Aircraft and Missile Components, Soc. for Nondestructive Testing, Southwest Research Inst.; Hilton Hotel, San Antonio, Tex.
- Feb. 18-19: Symposium Engineering Aspects of Magnetohydro-Dynamics, AIEE (Basic Sciences Committee); Univ. of Pennsylvania, Phila., Pa.
- Feb. 18-20: Winter Meeting, National Society of Professional Engineers; Broadview Hotel, Wichita, Kans.
- Feb. 18-21: Distributor, Representative, Manufacturer Conf., Electronic Representatives Assoc.; El Mirador Hotel, Palm Springs, Calif.
- Feb. 19-23: 3rd International Electronic Parts Show, National Fed-eration of French Electronic Industries, Paris, France.
- Feb. 20-29: Component Parts and Electronic Tubes International Exhibition; Porte de Versailles, Place Balard, Paris, France.
- Feb. 22-26: Engineering Materials & Design Exhibition & Conf.; Earls Court, London, England.
- Feb. 24: Reliability Symp., American Society for Quality Control, Los Angeles Section; Statler Hilton Hotel, Los Angeles, Calif.
- Feb. 24-26: Seminar-Cost Reduc-Tooling, tions Through Plastic ASTE; St. Louis, Mo.
- Feb. 25-26: Semi-Annual Meeting, Univac Users Assoc.; Greenbrier Hotel, White Sulphur Springs, West Va.
- Feb. 25-26: Scintillation Counter Symposium, IRE, AIEE, AEC, NBS; Washington, D. C.
- Mar. 1-2: Seminar-Optical Tooling Methods in Manufacturing, ASTE; Los Angeles, Calif.
- Mar. 3-4: Seminar-Metal Forming Methods for Tomorrow's Manufacturing, ASTE; Los Angeles, Calif.
- Mar. 4-5: Meeting, The American Physical Society; Houston, Tex.
- Mar. 6-9: Gas Turbine Power Conf. & Exhibit, ASME; Rice Hotel, Houston, Tex.
- Mar. 8: Annual Meeting, Assoc. of

Electronic Parts & Equipment Manufacturers, Inc.; Chicago, Ill.

- Mar. 8-9: Seminar-Some Problems of Machining Space Age Metals, ASTE: San Francisco, Calif.
- Mar. 8-11: Audio Engineering Soc. Convention; Alexandria Hotel, Los Angeles, Calif.
- Mar. 9-11: Temperature Measurement Symposium, ISA; Deshler Hilton Hotel, Columbus, Ohio.
- Mar. 9-11: 3rd Navy Science Symposium, "Naval Problems in Electromagnetic Radiation," Office of Naval Research; Naval Ordnance Test Station, Pasadena, Calif.
- Mar. 10-11: National Flight Propulsion Meeting (Classified), IAS; Cleveland, Ohio.
- Mar. 17-18: Synchro Design and Testing Symposium, U. S. Navy, Bu-reau of Naval Weapons; Dept. of Commerce Auditorium, Washington 25, D. C.
- Mar. 21-24: IRE National Convention, IRE (All PG's); Coliseum & Waldorf Astoria Hotel, New York City.
- Mar. 21-24: Meeting, The American Physical Soc.; Detroit, Mich.
- Mar. 22: 9th Annual SSB Dinner & Hamfest, SSB Amateur Radio Assoc.; Hotel Statler-Hilton, New York City.
- Mar. 23-26: Electrical Industry Show and Lighting Exposition, Electrical Maintenance Engineers Assoc. of Calif.; Shrine Exposition Hall, Los Angeles, Calif.
- Mar. 29: Spring Meeting, The Material Handling Institute, Inc.; Pittsburgh-Hilton Hotel, Pittsburgh, Pa.

#### Abbreviations

### **AEC:** Atomic Energy Commission

- AIEE: American Institute of Electrical Engineers
- ASTE: American Society of Tool Engineers
- IAS: Institute of the Aeronautical Sciences
- IRE: Institute of Radio Engineers
- ISA: Instrument Society of America



### FROM SYSTEM SPECS TO BREADBOARD TO FINISHED PRODUCT IN 75 DAYS!

That's the record set by the manufacturer of this complex airborne Time Code Generator - thanks to the compatibility of proven EECO T-Series Circuit Modules and the flexibility of the EECO Breadboard Kit.



Airborne Time Code Generator illustrates high-density packing obtainable with T-Series circuits.

Hinged arrangement of mounting panel facilitates accessibility.

The finished package weighs only 20 lbs.; measures 5" x 8" x 203/a". Unit generates 14-digit Point Mugu code, modulating a 1 kc carrier plus a dc time code. Three sine wave and four pulse outputs are also provided, all with only 96 T-Series circuits and 77 watts of input power.

Designed and developed for testing the fire control of manned supersonic aircraft under actual flight conditions at altitudes up to 80,000 feet, this Time Code Generator employs T-Series circuits throughout. Required accuracy of 1 part in 10<sup>s</sup> was easily obtained.

### HIGH DENSITY, LIGHT WEIGHT

The total package contains 96 T-Series Circuits, 14 filament-type EECO Minisig Indicators, and power converters (the beginning of our line of compact 12-volt EECO Power supplies for use with T-Series circuits) - all within a volume of 1/2 cubic foot. In spite of this terrific packing density, the equipment still retains extreme ease of accessibility and weighs only 20 lbs. No cooling is required

### T-SERIES VS. VACUUM TUBE CIRCUITS

The use of T-Series transistorized Germanium circuits throughout resulted in great savings as against equivalent equipment designed around vacuum tube circuits. Here are some startling comparisons:

|        | T-SERIES                                | VACUUM TUBE                             |
|--------|-----------------------------------------|-----------------------------------------|
| SIZE   | 800 cu. in.                             | 8,000 cu. in.                           |
| WEIGHT | 20 lbs. (including<br>power converters) | 160 lbs. (plus fan<br>and power supply) |
| POWER  | 77 watts                                | 650 watts (plus power for fan)          |

### SAVE TIME AND MONEY

You, too, can develop the most complex equipment in record time with these proven EECO circuits and systems development aids. They'll save you time and money in four major areas:

- 1 DESIGN You can devote full time to system design problems or unusual circuit requirements, knowing that routine circuit detail has been compatibly pre-engineered and packaged for you
- 2 BREADBOARD --- The unique EECO Breadboard Kit and plastic circuit cards enable you to set up, change, or take down experimental arrangements quickly --- without waste of time or materials. Unit contains all necessary permanent wiring to accommodate any regular T-Series circuit. All other circuit interconnections are made by patch cords or plugs, with prepunched circuit cards to guide you.
- 3 PRODUCTION Your production problem is reduced to one of mounting sockets on panels or chassis and providing simple socket to socket wiring. Plug in the appropriate circuits and the system is complete.
- 4 CHECKOUT The extreme reliability of T-Series circuits eliminates the need for circuit "debugging." Checkout time is reduced to a bare minimum.

Why not let proven EECO T-Series circuits and systems development aids help you solve your equipment design problems?

If you have not already requested your copy of our new Catalog No. 859, write us today on your company letterhead.

### ENGINEERED ELECTRONICS COMPANY

(a subsidiary of Electronic Engineering Company of California) 506 East First Street • Santa Ana, California

Look for us at the ISA Instrument-Automation Conference / Houston, Texas, February 1-4

### Electronic Industries' News Briefs

### Capsule summaries of important happenings in affairs of equipment and component manufacturers

### EAST

NORTH HILLS ELECTRIC CO. will soon move into their own newly designed factoryoffice building in Glen Cove, L. I., N. Y.

**REPUBLIC ELECTRONICS,** Farmingdale, L. I., N. Y., has just been awarded a \$362,000 contract from Army Ordnance Corps, Rossford Arsenal. Contract is for design and production of a portable electronic engine ignition analyzer for use in field maintenance of Army aircraft engines.

METALIZING INDUSTRIES, INC., subsidiary of Accurate Specialties Co., Inc., has located in a plant at 338 Hudson St., Hackensack, N. J. The new subsidiary was formed to produce a complete line of metalized ceramic components. They also have facilities for plating conductive coatings on various materials.

THE GABRIEL CO., Electronics Div., has opened their new \$2 million electronics plant in Millis, Mass. The new research-engineering and manufacturing center will employ 275 people and will replace present facilities in Needham Heights, Mass.

TUCOR, INC., has acquired Wiltec Electronics, Inc., of So. Norwalk, Conn. Wiltec manufactures various types of special-purpose gaseous and vacuum miniature and subminiature thyratrons, indicating devices, and other special type of tubes.

PERMACEL, New Brunswick, N. J., is marketing its new Permacel 423 Teflon Film Tape, a two mil Teflon tape with a pressuresensitive adhesive.

HAZELTINE CORP., Little Neck, N. Y., has received a follow-on contract for 32,000 sonobuoys by the United States Navy. Including repair kits, the contract totals more than \$4 million. Hazeltine is currently producing 12,000 sonobuoys for the Navy's anti-submarine warfare program.

ACF INDUSTRIES, INC., Erco Div., has been awarded a \$2,732,000 Navy contract for the production of 5 electronic flight and tactics simulators. The simulators are for the Naval Training Device Center, Port Washington, N. Y.

WALTHAM PRECISION INSTRUMENT CO. has purchased the Electric Motor Div. of the Advanced Products Co., North Haven, Conn. This division is being moved to Waltham where it will resume full scale production in the very near future.

TEXTRON ELECTRONICS, Providence, R. I. and MIDWESTERN INSTRUMENT, Tulsa, Okla., jointly announced that if Midwestern stockholders consent Textron Electronics will acquire Midwestern for exchange of stock shares.

FILTORS, INC., Port Washington, N. Y., manufacturers of sub and micro-miniature relays, announced that its licensee in Canada, Marsland Engineering Co., is now in volume production of their line of relays under their license agreement.

PHILCO CORP. has awarded a construction contract for their Research Center, to be located on a 25-acre site in Blue Bell, Montgomery County, Pa. The 2-story structure will provide 200,000 sg. ft. of space.

SYLVANIA ELECTRIC PRODUCTS, INC., has announced plans for construction of a multi-million dollar electron tube manufacturing plant in Brookville, Pa. The 100,000 sq. ft. installation will replace 3 existing facilities totaling 60,000 sq. ft. in Brookville. POLARAD ELECTRONICS CORP. has added 85,000 sq. ft. to its Long Island City facilities to meet the growing demand for its line of industrial microwave instruments. This brings the company's plant area to about 240,000 sq. ft.

UNION CARBIDE CORP., Silicones Div., has placed on sale 2 new type of low shrink silicone rubber stock for cable and wire insulation. The 2 new types are designated K-1347 and K-1357.

U. S. TRANSISTOR CORP., Syosset Industrial Park, L. I., has started production of germanium pnp alloy junction transistors.

LIFSCHULTZ FAST FREIGHT have announced freight reductions in several areas for the handling of electronic equipment.

GENERAL ELECTRIC CO.'s Power Tube Dept. has received an order for ignitrons valued at approximately \$2 million. They will be used in 66 rectifier-type electric locomotives ordered by the Pennsylvania Railroad.

RAYTHEON CO.'s Industrial Tube Div. has changed its name to the Industrial Components Div. to reflect an expansion of its product lines. The expansion will be achieved both by building a line of non-microwave electronic components and by broadening the scope of the tube lines.

WESTINGHOUSE ELECTRIC CORP. has been awarded a \$15 million contract by Rome Air Material Area to develop a new radar system. The new radar system will be capable of providing 3-dimensional warning information 6 hrs. after air delivery to their sites. Equipment is so designed that a complete system with all auxiliary equipment including heaters, air conditioners, and shelters, can be transported by helicopter.

### MID-WEST

AVCO CORP., Crosley Div., has received a \$900,000 letter contract for prime research and development to update its ASG-15 fire control system. The contract was let by the U. S. Air Force's Aeronautical Systems Center at Wright-Patterson Air Force Base.

ZENITH RADIO CORP., Chicago, Ill., has begun construction of a new \$1,250,000 addition to the company's 1500 N. Kostner Ave. manufacturing plant.

THOMPSON RAMO WOOLDRIDGE INC., has acquired Radio Industries, Inc., producer of transformers used extensively in radio and TV products, and ceramic disc capacitors. Radio Industries, Inc. has their headquarters in Des Plaines, Ill. with other plants in Chicago and Marshall, Ill.

EITEL-McCULLOUGH, INC., manufacturer of Eimac electron-power tubes, has reached an agreement that will make National Electronics, Inc., and Industrial Tubes, Inc., of Geneva, Ill., wholly owned subsidiaries.

HARRIS-INTERTYPE CORP., Cleveland, Ohio, has completed an agreement for the acquisition of Polytechnic Research and Development Co. from the Polytechnic Institute of Brooklyn. The acquisition is the 6th since 1953 for Harris-Intertype.

SEL-REX CORP., Nutley, N. J., has purchased the Meaker Co., Chicago, Ill. The Meaker Co. is a pioneer manufacturer of automatic systems for continuous and batch metal processing or finishing.

### WEST

INTERNATIONAL ELECTRONIC RE-SEARCH CORP., Burbank, Calif., has announced the change of their name of Electronics International Co. to ELIN Div. of International Electronic Research Corp.

SMITH-FLORENCE INC., has organized a new electronics manufacturing corporation, located in the Commodore Industrial Park in Seattle, Wash. It will specialize in precision industrial and laboratory electronic test instruments for the military and commercial markets.

TECHNOLOGY INSTRUMENT CORP. of California has opened a new environmental test laboratory in Newbury Park to serve the electronics, missile and aircraft industries in Southern California.

HUGHES AIRCRAFT CO., Newport Beach, Calif., has announced price reductions of up to 10% on all their pnp fused junction transistors.

LOCKHEED AIRCRAFT CORP. will form a new subsidiary, the Lockheed Electronics Co. Goal of the expansion program is further diversification in electronics. The new corporation will include the recently acquired Stavid Engineering, Inc., and the Lockheed Electronics and Avionics Div. (LEAD).

CONSOLIDATED ELECTRODYNAMICS CORP., DataTape Div., has delivered a magnetic tape recorder/reproducer built to the National Aeronautics and Space Administration to record telemetered data from Project Mercury, the nation's first manned orbital space flight.

TELEMETER MAGNETICS, INC. of Los Angeles, Calif., has been awarded a contract to develop airborne digital programmers for a space exploration vehicle. It was awarded by the Jet Propulsion Laboratory of the California Institute of Technology.

PHOTOCIRCUITS CORP., Glen Cove, N. Y., has started construction of a new plant at Anaheim, Calif. The new half-million-dollar facility will be handy to the West Coast electronic and aviation industries.

FAIRCHILD SEMICONDUCTOR CORP. is expanding its distributor sales program. The distributors will assure off-the-shelf availability of all Fairchild semiconductors. These distributors have been chosen because of their ability to stock the full range of products, the size and activity of their industrial sales force, and their strategic location.

DOUGLAS AIRCRAFT CO., INC., has established the Douglas Computing Service to sell excess computing machine time to other corporations. They have established a scale of hourly rates for each type of machine they have available.

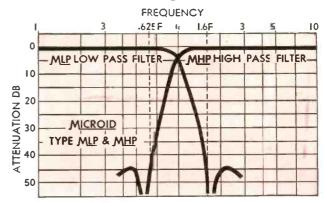
BLAINE ELECTRONETICS, Van Nuys, Calif., has just delivered major antenna equipment to the Douglas Aircraft Co. The equipment will be used by Douglas's El Segundo Div. at their antenna pattern measurement range.

AUTONETICS, div. of North American Aviation, Inc., has received a \$350,000 contract from the Air Force. Contract is for an inertial guidance system of the type produced for the Navy's Polaris subs. This system will be used to improve tracking of the Army's Pershing missile during missile test flights.



### Good anywhere in or out of this world

This system adds greatly to your credit when applied to the development of communications, telemetering, control and other devices. Under terms of membership, a wide range of toroids, filters and related networks are available. These include a complete line of inductors, low pass, high pass and band pass filters employing the new micro-miniature MICROID ® coils so valuable in transistorized circuitry. Type MLP and MHP MICROIDS are micro-miniature counterparts of the popular Burnell types TCL and TCH low pass and high pass filters. The band pass filter results when cascading a TCL with a TCH filter.


### MHP MICROIDS

Sizes of <u>MLP</u> and  $(400 \text{ cps to } 1.9 \text{ kcs} - \frac{11}{16} \text{ x } 1\frac{15}{16} \text{ x } \frac{12}{12})$  $2\,kcs$  to  $4.9\,kcs$  –  $^{11}\!\!\!/_{16}$  x 1% x  $^{1}\!\!/_2$  $5 \text{ kcs and up} - \frac{5}{8} \text{ x} \frac{15}{16} \text{ x} \frac{1}{2}$ 

Weight of all MLP and MHP Microids-approx. .3 ozs. each Send now for your free membership card in the Space Shrinkers Club. And if you don't already have our



Catalogue #104 describing Burnell's full line of toroids, filters, and related networks, please ask for it.



Note: First informal meeting of Club members will be held in Burnell Booths 2919-2921 during the IRE Show, New York Coliseum, March 21-24. See you there.



# Miniaturization means

# only active components

# G-E subminiatures use

# to give miniaturization

### HOFFMAN TACAN: MEETS 780% - HIGHER AGREE\* SPEC!

\*Advisory Group on Reliability of Electronic Equipment, which has set a new standard of 150 hours mean-time-to-failure for TACAN.

General Electric subminiature tubes with heat-resistant glass have played a key role in advancing the reliability of Hoffman Electronics Corporation's new ARN-21C to nine times that of older TACAN equipment.



Compactness is a feature...transmitter, receiver, and electronic computer functions all are grouped in one "black box" that measures only 8 by 11 by 17 inches. Heat build-up necessarily is substantial.

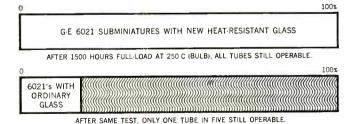
In General Electric subminiature tubes, Hoffman found the answers to their pressing need for tubes that would stand up to heat with no sacrifice in reliability. 28 G-E subminiatures are used in the ARN-21C.

# heat. Tubes

# are the

# that can withstand heat.

# new heat-resistant glass


# with reliability.

ACTUAL SIZE

GRanite 9-7765

### WHAT TESTS SHOW

Life tests of G-E subminiatures with new heat-resistant glass prove that high-temperature operation has no adverse effect on reliability. Check the total absence of failures with G-E type 6021 after 1500 hours at 250 C, against the high failure rate of ordinary 6021's under the same conditions!

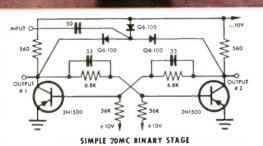


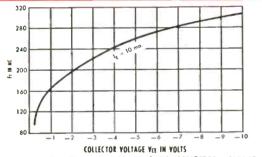
Type 6021 is a key tube in Hoffman's TACAN circuit. Glass electrolysis-cause of 90% of tube failures at high temperatures-has virtually been eliminated by General Electric in the 6021 and other subminiature receiving tubes.

### SPECIFY FOR RELIABILITY

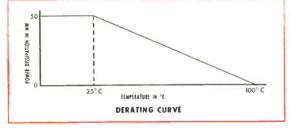
Small...smaller...smallest! The trend in electronic equipment is down in size, up in reliability requirement. Heat is the gremlin ready to play hob with your circuitry, unless you take steps to specify devices that are completely dependable when temperatures rise sharply.

General Electric subminiature tubes are proved performers at high temperatures. And their small dimensions give you the extra compactness you need to meet tight equipment size limitations. Telephone your nearest General Electric Receiving Tube Department office below!


CHICAGO LOS ANGELES NEW YORK Wisconsin 7-4065,6,7,8 SPring 7-1600


Progress Is Our Most Important Product GENERAL (978) ELECTRIC

Circle 8 on Inquiry Card


# PHILCO ANNOUNCES NEW ULTRA HIGH-SPEED SWITCHING TRANSISTOR

WITH CADMIUM ELECTRODES .... IN TO-9 PACKAGE









\*MADT . . . TRADEMARK PHILCO CORPORATION for Micro Alloy Diffused-base Transistor.

### New MADT\* 2N1500 Provides Increased Power Dissipation

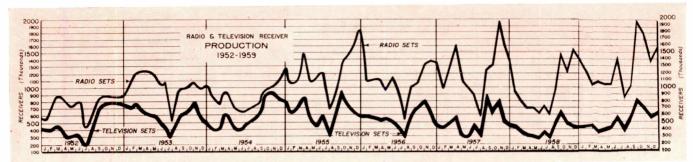
Here is another Philco "break-through" in the design and manufacture of high frequency, ultra high-speed switching transistors! This new Micro Alloy Diffused-base Transistor (MADT\*) uses cadmium electrodes in place of indium. The higher thermal conductivity of cadmium insures cooler-running junctions for any given power dissipation and provides an extra margin of safety as added assurance of reliable performance.

The new 2N1500 offers the designer these important advantages:

- 100° C maximum junction temperature
- high Beta and excellent Beta linearity with temperature and current
- low collector capacitance
- Intering with tempera and current
  low hole storage time
- low saturation voltage
- low hole storage time (Typical: 7 mµsec)

In electrical characteristics, the 2N1500 is similar to 2N501, which has been thoroughly field-proven in many military and industrial computer applications. It is manufactured on Philco's exclusive fully-automated production lines to the highest standards of uniformity. For complete specifications and applications data, write Dept. **El-260.** 

| Max.                     | Ratings                  |                 | Турі                    | cal Paran      | neters                     |                               |
|--------------------------|--------------------------|-----------------|-------------------------|----------------|----------------------------|-------------------------------|
| $_{^{\circ}C}^{T_{STG}}$ | V <sub>CB</sub><br>volts | $t_r m \mu sec$ | t <sub>s</sub><br>mµsec | $t_f$<br>mµsec | $\mathbf{h}_{\mathbf{FE}}$ | V <sub>CE</sub> (SAT<br>volts |
| 100                      | -15                      | 12              | 7                       | 4              | 35                         | -0.1                          |


AVAILABLE IN PRODUCTION QUANTITIES... and in quantities 1-99 from your Philco Industrial Semiconductor Distributor.





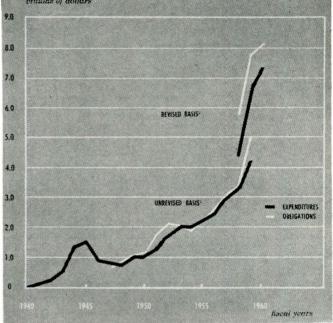
### Facts and Figures Round-Up February 1960





### **GOVERNMENT ELECTRONIC** CONTRACT AWARDS

This list classifies and gives the value of electronic equipment selected from contracts awarded by government agencies in December, 1959.


| A 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accelerometers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34,815                                                                                                                                                                                                                                                          |
| Accelerometers<br>Adapter, coax to waveguide<br>Amplifiers, a-f                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14,220                                                                                                                                                                                                                                                          |
| Amplifiers of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29,086                                                                                                                                                                                                                                                          |
| Analyzers, spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 147,816                                                                                                                                                                                                                                                         |
| Antennas & systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,247,182                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |
| Batteries, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 497,455                                                                                                                                                                                                                                                         |
| Batteries, storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 363,310                                                                                                                                                                                                                                                         |
| Beacon, antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68,862                                                                                                                                                                                                                                                          |
| Cable assemblies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 155,455                                                                                                                                                                                                                                                         |
| Cable, electronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 163,034                                                                                                                                                                                                                                                         |
| Cable, telephone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26,334                                                                                                                                                                                                                                                          |
| Capacitors<br>Cells, solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25,143                                                                                                                                                                                                                                                          |
| Cells, solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47,660                                                                                                                                                                                                                                                          |
| Coils, r-f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52,475                                                                                                                                                                                                                                                          |
| Connectors & connector adapters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 106,754                                                                                                                                                                                                                                                         |
| Connectors & connector adapters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 443,248                                                                                                                                                                                                                                                         |
| Decoders, audio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76,199                                                                                                                                                                                                                                                          |
| Diodes semiconductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.615                                                                                                                                                                                                                                                          |
| Filters, band-pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 174,600                                                                                                                                                                                                                                                         |
| Fuseholders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47,319                                                                                                                                                                                                                                                          |
| Fuses, cartridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97,188                                                                                                                                                                                                                                                          |
| Handsets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51,447                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89,672                                                                                                                                                                                                                                                          |
| Insulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81,916                                                                                                                                                                                                                                                          |
| Loudspeakers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 501,710                                                                                                                                                                                                                                                         |
| Measuring system, electronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 502,181                                                                                                                                                                                                                                                         |
| Meters, frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 726,796                                                                                                                                                                                                                                                         |
| Meters, ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29,215                                                                                                                                                                                                                                                          |
| Microphones<br>Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32,910                                                                                                                                                                                                                                                          |
| Oscillators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85,750                                                                                                                                                                                                                                                          |
| Oscilloscopes<br>Oscillographs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25,690                                                                                                                                                                                                                                                          |
| Oscillographs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55,608                                                                                                                                                                                                                                                          |
| Power supplies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 522,178                                                                                                                                                                                                                                                         |
| Radomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170,635                                                                                                                                                                                                                                                         |
| Radar sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,802,000                                                                                                                                                                                                                                                       |
| Receivers radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 173,391                                                                                                                                                                                                                                                         |
| Receiver/transmitters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93,650                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |
| Rectifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44,920                                                                                                                                                                                                                                                          |
| Rectifiers<br>Recorders/reproducers &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44,920                                                                                                                                                                                                                                                          |
| Recorders/reproducers &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44,920                                                                                                                                                                                                                                                          |
| Recorders/reproducers &<br>accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44,920<br>456,019                                                                                                                                                                                                                                               |
| Recutifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44,920<br>456,019<br>327,060                                                                                                                                                                                                                                    |
| Recutifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44,920<br>456,019<br>327,060<br>138,432                                                                                                                                                                                                                         |
| Recutifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44,920<br>456,019<br>327,060<br>138,432<br>196,851                                                                                                                                                                                                              |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Sianal generators                                                                                                                                                                                                                                                                                                                                                                                                                        | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878                                                                                                                                                                                                   |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators                                                                                                                                                                                                                                                                                                                                                                                                                        | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025                                                                                                                                                                                         |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators                                                                                                                                                                                                                                                                                                                                                                                                                        | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246                                                                                                                                                                               |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators                                                                                                                                                                                                                                                                                                                                                                                                                        | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682                                                                                                                                                                    |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators                                                                                                                                                                                                                                                                                                                                                                                                                        | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163                                                                                                                                                         |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches<br>Switches, pressure                                                                                                                                                                                                                                                                                                                                                        | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496                                                                                                                                               |
| Recorders/reproducers &<br>accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554                                                                                                                                    |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic                                                                                                                                                                                                                                                                                               | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351                                                                                                                          |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic                                                                                                                                                                                                                                                                                               | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>16,5351<br>3,000,000                                                                                                            |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic                                                                                                                                                                                                                                                                                               | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000                                                                                                             |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches<br>Switches, waveguide<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Synchros<br>Tape, magnetic                                                                                                                                                                                                                                   | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>66,250                                                                                        |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, thermostatic<br>Systems, radar<br>Synchros<br>Tape, magnetic<br>Telepeintere                                                                                                                                                                                                                             | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>161,000                                                                                       |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, thermostatic<br>Systems, radar<br>Synchros<br>Tape, magnetic<br>Telepeintere                                                                                                                                                                                                                             | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>165,351<br>3,000,000<br>115,060<br>66,250<br>161,000<br>31,815                                                                  |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, thermostatic<br>Systems, radar<br>Synchros<br>Tape, magnetic<br>Teleprinters<br>Test sets, radar<br>Test sets, radar                                                                                                                                                                                     | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>66,250<br>161,000<br>31,815<br>49,942                                                         |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Synchros<br>Tape, magnetic<br>Teleprinters<br>Test sets, radar<br>Test sets, radar<br>Test guipment                                                                                                                                                | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>66,250<br>161,000<br>31,815<br>49,942<br>418,993                                              |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Synchros<br>Tape, magnetic<br>Teleprinters<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar                                                                                                                                             | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>161,000<br>31,815<br>49,942<br>418,993<br>518,042                                             |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Synchros<br>Tape, magnetic<br>Teleprinters<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar                                                                                                                                             | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>66,250<br>161,000<br>31,815<br>49,942<br>418,993<br>518,042<br>234,963                        |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Systems, radar<br>Teleprinters<br>Test sets, radar<br>Test sets, radar<br>Transformers<br>Transponders | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>161,000<br>31,815<br>49,942<br>418,993<br>518,042                                             |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Systems, radar<br>Teleprinters<br>Test sets, radar<br>Test sets, radar<br>Transformers<br>Transponders | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>66,250<br>161,000<br>31,815<br>49,942<br>418,993<br>518,042<br>234,963<br>58,560<br>6,166,527 |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, rotary<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Systems, radar<br>Teleprinters<br>Teleprinters<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar<br>Transformers<br>Transponders<br>Tubes, electron                                              | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>66,250<br>161,000<br>31,815<br>49,942<br>418,993<br>518,042<br>234,963<br>58,560<br>6,166,527 |
| Recorders/reproducers &<br>accessories<br>Regulators, voltage<br>Relay, armature<br>Resistors<br>Signal generators<br>Solenoids<br>SSB equipment<br>Switches, waveguide<br>Switches, pressure<br>Switches, pressure<br>Switches, rotary<br>Switches, rotary<br>Switches, thermostatic<br>Systems, radar<br>Tape, magnetic<br>Teleprinters<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar<br>Test sets, radar<br>Transformers<br>Transponders                     | 44,920<br>456,019<br>327,060<br>138,432<br>196,851<br>196,878<br>31,025<br>72,246<br>316,682<br>168,163<br>97,496<br>116,554<br>85,351<br>3,000,000<br>115,060<br>66,250<br>161,000<br>31,815<br>49,942<br>418,993<br>518,042<br>234,963<br>58,560              |

I. Data include funds for both conof duct research and development and aevelopment and increase of R&D plant. Pay and allowances of mili-tary personnel in R&D included in totals in 1955 and subsequently.

Last month's Contract Awards appear on page 182.

### billions of dollars

TRENDS IN FEDERAL EXPENDITURES FOR R & D<sup>1</sup>



-Bureau of the Budget, National Science Foundation

### TOTAL INDUSTRY SHIPMENTS ELECTRICAL MANUFACTURING INDUSTRY

(All data in millions of dollars. Includes Exports and Interplant Transfers)

| ELECTRICAL PRODUCTS                                     | 1958       | 1959<br>Preliminary | 1960<br>Forecast |
|---------------------------------------------------------|------------|---------------------|------------------|
| Consumer Products*                                      | \$ 5,406.1 | \$ 6,029.8          | \$ 6,301.1       |
| Lighting Equipment*                                     | 1,313.7    | 1,442.1             | 1,538.8          |
| Industrial Electronics and Communications<br>Equipment* | 5,266.0    | 5,843.6             | 6,332.8          |
| Industrial Equipment *                                  | 3,006.8    | 3,462.8             | 3,750.8          |
| Building Equipment                                      | 688.0      | 748.5               | 797.2            |
| Insulating Materials *                                  | 316.9      | 403.7               | 441.4            |
| Insulated Wire and Cable                                | 1,307.5    | 1,503.6             | 1,654.0          |
| Generation, Transmission and Distribution<br>Equipment* | 2,047.0    | 2,079.4             | 2.242.3          |
| Total Electrical Manufacturing Industry                 | \$19,352.0 | \$21,513.5          | \$23,058.4       |

\* The definition of electrical products included in these groups has been changed as of December 1959. Therefore data previously released are not comparable.

The data contained in this table, for 1958, 1959 and 1960 are comparable. -NEMA Statistical Department

# El's International News

### JAPAN

### **Japanese Firm Expands**

Tokyo—The Tokyo Shibaura Electric Co., Ltd. will add 10 billion yen to its current capitalization of 15 billion yen—approximately \$70 million dollars. The company is offering to its stockholders the right to subscribe to three additional shares for each five held. Approximately 10% of the shares are U. S. owned.

Toshiba is one of Japan's leading producers of electronic and electrical equipment. Its major overseas research contact is with international General Electric, a div. of General Electric Co. Sales to the U. S. (mostly transistors and transistor radios), totaled \$10 million this year.

The ten billion yen will be divided between consumer and industrial products with consumer goods production and research getting 60% and industrial 40%.

### UNITED KINGDOM

### **Buy British Klystrons**

Chelmsford, Eng.—The Collins Radio Company, Cedar Rapids, Iowa has placed a \$100,000 order with the English Electric Valve Co., Ltd., Chelmsford, England, for their Klystron type K350 which will be used in American-built Doppler Navigation equipment.

The K350 is a forced-air cooled, two-resonator klystron oscillator with mechanical tuning covering the frequency range from 8500 to 10,000 MC. An output power of approximately 1 watt is available.

### Open New Plant

Gloucester, Eng.—Daystrom, Inc. has opened a new manufacturing plant in Gloucester, England. William H. Westphal, President of Daystrom International Operations Group said that it will be operated by the company's British subsidiary, Daystrom, Ltd. The company has been using leased facilities in England for over a year.

The new facilities will be used to produce and distribute the company's do-it-yourself electronic kits. The first offerings include test equipment, high fidelity and stereo components, and amateur radio transmitters.

### EUROPE

### Form New Subsidiary

Zug, Switzerland — Varian Associates, Palo Alto, Calif., has formed a new Swiss subsidiary, Varian, A.G., with main offices at Zug, Switzerland and research and amplications laboratories at Zurich. The company's product areas include: microwave tubes, scientific instruments, and high vacuum devices.

Dr. Warren Proctor, formerly director of the instrument div. in Europe, is Managing Director and Chairman of the Board. Other members of the new firm's board are: Dr. Hugo E. Frey, of Niederer, Kraft, & Frey, Zurich; and Dr. Oswald Aepple, legal adviser of Swiss Credit Bank.

### Acquire Share of Italian Firm

Turin, Italy — Hamilton Standard, Div. of United Aircraft Corp., Windsor Locks, Conn. has completed nego-

**Reports on Hungarian Trip** 



D. B. Sinclair, (center), General Radio Co., V.P., presents a report on his recent trip to Budapest, Hungary, where he attended a Colloquium on Microwave Communication, at the invitation of the Hungarian Academy of Sciences. Panel mem-bers of the International session at NEREM look on. (Left to right): T. Isobe, Univ. of Tokyo; A. P. H. Barclay, Philips Electronic Industries, Ltd., Canada; and C. H. Zierdt. Jr., General Electric Co., Syracuse, N. Y.

tiations leading to the purchase of a 50% interest in Microtecnica, Inc., of Turin, Italy. Microtecnica, in existence since 1928, manufactures marine and aviation navigation instruments, optical, mechanical testing instruments and servo-mechanisms.

### Jailed For Export Law Violation

From time to time reports are received of convictions of people or firms who have violated the provisions of the U. S.'s Export Control Law. The penalties often involve suspension of export privileges, fines, reprimands etc. However, a jail sentence was meted out in a recent case.

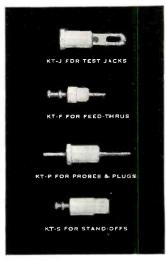
Minthorne International Co., Inc., an export company of New York City, and Edwin J. Sorkin, the company's office manager, were sentenced recently by Judge Edward J. Dimock, in the Federal Court for the Southern District of New York. Minthorne was fined \$5,000 and Sorkin was sentenced to 60 days.

The two-count indictment charged the defendants with having exported in 1956 a strategic electronic tube, valued at about \$440, without obtaining the required validated export license from BFC, and with having falsely described the tube on the Customs export declaration as a different tube, valued at about \$15, which could be shipped to West Germany without prior application to BFC.

The tube was shipped to a firm identified as Germar Weiss, Frankfurt, Germany. BFC had notified the defendents that it would reject all applications for licenses to export goods to this firm, because of its activities in trans-shipping goods to Soviet bloc destinations.

### PUERTO RICO

### Branch Plant on Mainland Reverses Puerto Rican Trend


San Juan—Reversing the trend which has seen American industry open hundreds of affiliates in Puerto Rico under the Commonwealth's industrial program, one of the plants has opened a branch plant in New Orleans.

The plant, a branch of Caribe Electric Battery Corp., will produce batteries for export to Latin America. The parent plant in Puerto Rico produces batteries mainly for the island market.

(Continued on Page 26)

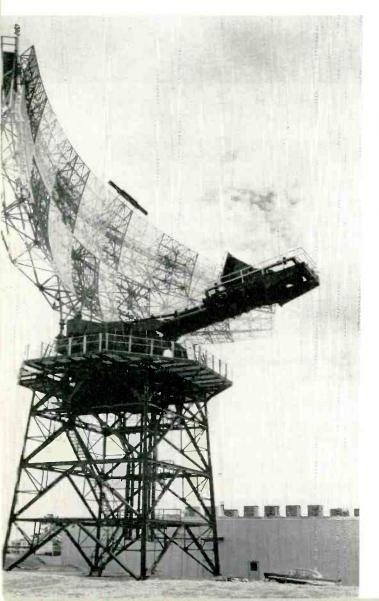


### EASE OF INSERTION - RELIABLE PERFORMANCE - "TEFLON" INSULATION



PERMANENTLY INSTALLED IN 4 SECONDS OR LESS by pressing the self-fastening insulator through pre-drilled mounting holes. The resilient properties of the "Teflon" insulation secures the terminal and provides permanent vibration proof installation, with no soldering or screw attachment needed to hold terminal in place. New Cannon "KT" Terminals offer simplified electrical connection especially adapted for circuitry in microwave communications, radar, scientific instrumentation and other crowded space applications. • VOLTAGE RATINGS FROM 2380 V. TO 4250 V. (Sea Level) depending on size of terminal. Special types are available where higher operating voltages are encountered. • TEFLON BUSHINGS available in diameters of 0.148" to 0.264." Terminal lengths range from 0.120" to 2.500." Standard pin diameters are 0.040," 0.046," 0.050," and 0.078." Pin material is brass with 0.0003" silver plate. A wide variety of finishes, colors and soldering

lugs can be supplied to order. • "KT" Terminals are immediately available in a wide variety of sizes and shapes. Cannon also produces special configurations for specific applications: Write for Cannon Catalog KT-1. Please refer to Dept. 201 Cannon Electric Company— 3208 Humboldt Street, Los Angeles 31. Factories in Los Angeles, Santa Ana, Salem, Toronto, London. Paris, Melbourne and Tokyo. Distributors and Representatives in the principal cities of the world.




Circle 10 on Inquiry Card



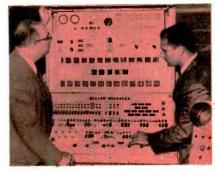
#### LANDS ON A DIME

Lockheed Aircraft's Boundary Layer Control C-130 Hercules can land with a ground roll as short as 460 ft. Note the 90-degree angle of the flaps. They can be swung down vertically for sharp take-offs and landings.



# Snapshots ... of the Electronic Industries

### EYE FOR AIR DEFENSE


Giant rotating radar antenna reflector is 120 ft wide and 36 ft high. It is part of the prototype AN/FPS-24 Search Radar designed for the Air Force by General Electric Co's Heavy Military Electronics Dept., Syracuse, N. Y.

#### **STANDARDS SEMINAR**

General Radio Co., West Concord, Mass., sponsored this seminar-workshop clinic on precision inductance and capacitance measurements at low frequencies. Over 20 specialists from the U. S. and Canada attended the  $3\frac{1}{2}$  day symposium.



ELECTRONIC INDUSTRIES • February 1960



#### MOBIDIC ON DISPLAY

Sylvania engineers, Robert Thomas (left) and Jyvania engineers, Koperr Inomas (left) and Lawrence O'Connor inspect the MOBIDIC console at the Company's Data Systems Operations, Needham, Mass. The Army Signal Corps has ordered the computer sys-tem for the Seventh Army Stock Control Context in Work Communication Center in West Germany.

### RESEARCH NEAR ABSOLUTE ZERO

Transferring nitrogen into stainless-steel, helium research dewar at Naval Research Lab. Objective is the investigation of the longitudinal and transverse magneto-resistance of copper. Dewar was built by Hofman Labs., Inc.



#### LANGUAGE TEACHER

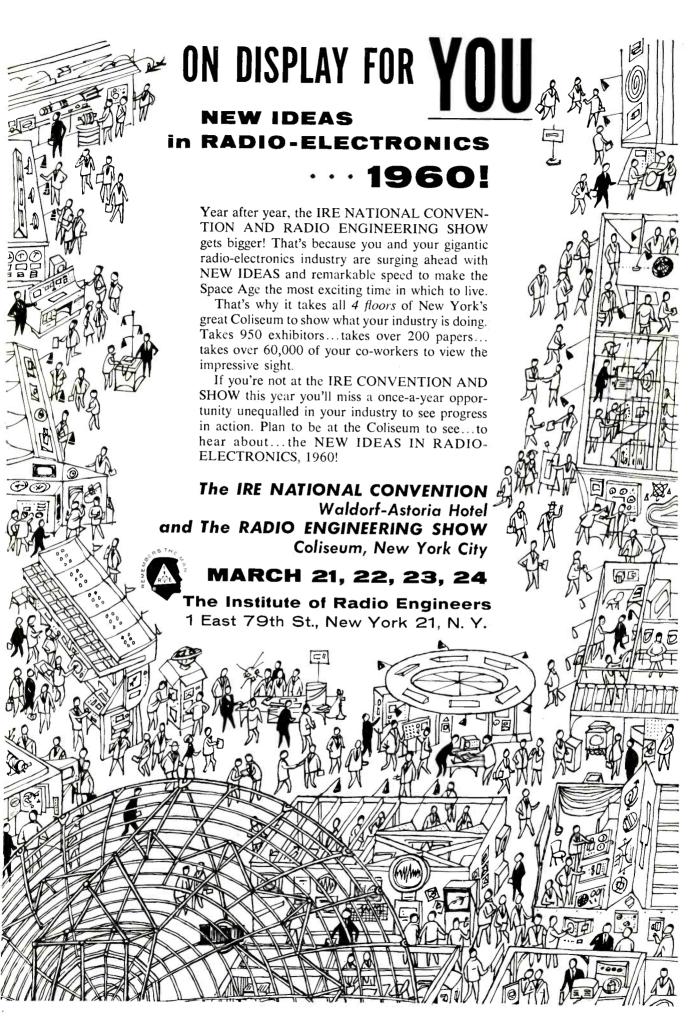
New method of teaching foreign languages, the electronic language laboratory, is demonstrated on TV station KTLA, Los Angeles. Pre-recorded daily lessons are fed into 32 separately controlled positions. The student can play back his own recordings and compare his pronunciation with his instructor's.

#### STEEL "RING" FOR ATOMIC REACTOR

Cone-like "ring," part of a gas and radiation sealing system, is fitted and electric arc-welded in eight sections so it can be accurately re-assembled at the Enrico Fermi Atomic Power Plant, Monroe, Mich. The R. C. Mahon Co., is building the ring.






Largest single shipment of General Electric computers-more than \$4,000,000 worth-is loaded for shipment to Bank of America sites and a Gov't installation in Southern California.



### INSTALL COMPUTER

IBM RAMAC 650 is installed in Endicott Johnson Corp's main shoe plant in Endicott, N. Y. Frank A. Johnson (standing) said that the computer would slash delivery time by 75%. It will eventually control work flow through the company's 27 plants.





# The beauty of <u>this</u> Capacitor is more than skin deep!

100

5%



Allen-Bradley Type A capacitors are available in the mast frequently used types and capacitance values.

General Purpose Type in capacitance values fram 10 mmf to .01 mmf. Stable Type in capaci-

tance values from 10 mmf to 0.1 mmf.

Temperature Compensating Type in characteristics from N4700 ta P100, and in capacitance values from 10 mmf ta 510 mmf.

7.5

5%

10

5%

Type A Capacitor...

N1500

100

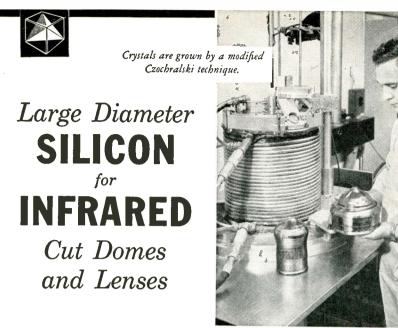
5%

560

10%

One size for all values ...

Designed for high speed assembly


Compare the attractive Allen-Bradley Type A ceramic capacitors with all the rest....you'll see instantly why more and more engineers are specifying them and will not accept substitutes — because there aren't any! The exclusive "Auto-Coat" process makes possible—for the first time—a capacitor of real beauty, precise physical uniformity, plus consistent and reliable quality and performance.

The smooth, tough insulating coating and the inherent mechanical uniformity of Type A capacitors permit easy hand or accurate automatic insertion on printed boards. Also, the "Auto-Coat" process prevents rundown on leads—costly wire cleaning and crimping to prevent soldering failures are unnecessary.

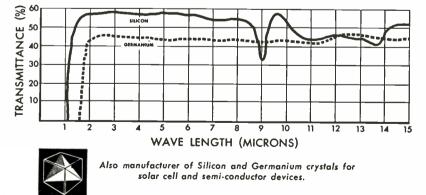
For full information on the *superior* **p**hysical and electrical properties of A-B Type A capacitors, send for Technical Bulletin 5401.

### **ALLEN - BRADLEY** *Quality* Electronic Components

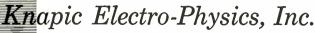
Allen-Bradley Co., 1342 S. Second St., Milwaukee 4, Wis. In Canada: Allen-Bradley Canada Ltd., Gat, Ont.



Silicon cut domes and lenses to 8" diameter, with IR transmission to 97% (coated), are now available in production and evaluation quantities. Diameters up to 19" will be available in the near future.


These significantly larger diameters can now be grown as a result of recent Knapic research and experimental growing programs. Temperature gradient, pressure, and impurity evaporation controls, as well as unique growing methods, are the result of original Knapic laboratory work.

### Germanium lenses and domes are also available


### **SPECIFICATIONS**

| SILICON                       | GERMANIUM                                                                                                                                                   |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 750-2000 (Knoop)<br>Excellent | 692 (Knoop)<br>Excellent                                                                                                                                    |
| 3.50 high                     | 4.10 high                                                                                                                                                   |
| 1420° c<br>Excellent          | 958°c<br>Fair                                                                                                                                               |
| 2.3 gm/cm <sup>3</sup>        | 5.34 gm/cm <sup>3</sup>                                                                                                                                     |
| Excellent—very hard           | Good                                                                                                                                                        |
| About 20 microns<br>Excellent | About 23 microns<br>Excellent                                                                                                                               |
| Good                          | Good                                                                                                                                                        |
| Excellent                     | Excellent                                                                                                                                                   |
|                               | 750-2000 (Knoop)<br>Excellent<br>3.50 high<br>1420°c<br>Excellent<br>2.3 gm/cm <sup>3</sup><br>Excellent—very hard<br>About 20 microns<br>Excellent<br>Good |





Write for specifications sheet



936-938 Industrial Avenue, Palo Alto, Calif. • Phone: DAvenport 1-5544

### International News

(Continued from Page 25)

### CANADA

### **Build Units for SAGE**

Waterloo, Ont. — Raytheon Canada, Ltd., Waterloo, Ont., has been awarded a \$1,350,000 contract from the Canadian Commercial Corp., a government agency, to produce 60 transistorized position indicator units for the SAGE air defense system. They will be installed at SAGE centers in the U. S. to monitor early warning data received from radar installations on the Arctic DEW line, the southermost U. S. sites, and coastal stations.

### MIDDLE EAST

### Add Israel to Telex Net

Tel Aviv—RCA Communications, Inc., has added Israel to its global telex network, establishing customer-to-customer teleprinter service between this country and the U. S.

Telex service is somewhat similar to overseas telephone except that subscribers communicate by teleprinter instead of telephone instruments. U. S. Telex service is available to more than 40,000 commercial firms and government agencies equipped with RCA or TWX teleprinters. The service is provided in Israel by the Ministry of Posts, Telegraphs, Telephones and Radio.

### SOUTH AMERICA

### Joint U. S., Brazilian Venture

A new plant for the manufacture of appliance controls will be built in suburban Sao Paulo, Brazil, by a newly formed subsidiary of Robertshaw-Fulton Controls Co., Richmond, Virginia. The subsidiary, to be known as Robertshaw-Fulton Controls do Brasil S/A Industria E Eomercio, will be owned by Robertshaw-Fulton and several Brazilian firms including Serma-Maguinas Contabeis E Servicos Gerais S/A Sao Paulo, Metalurgica Wallig S/A, Porto Alegre; Metalurgica Paulista S/A, Sao Paulo; Fun-dicao Brasuk S/A, Sao Paulo; and Parmet Participacoes Metalurgicas S/A, Rio de Janeiro.

The plant will be built in the community of Guarulhos on Rodovia Presidente Dutra, a superhighway connecting Sao Paulo and Rio de Janeiro. First production is scheduled for early 1960.

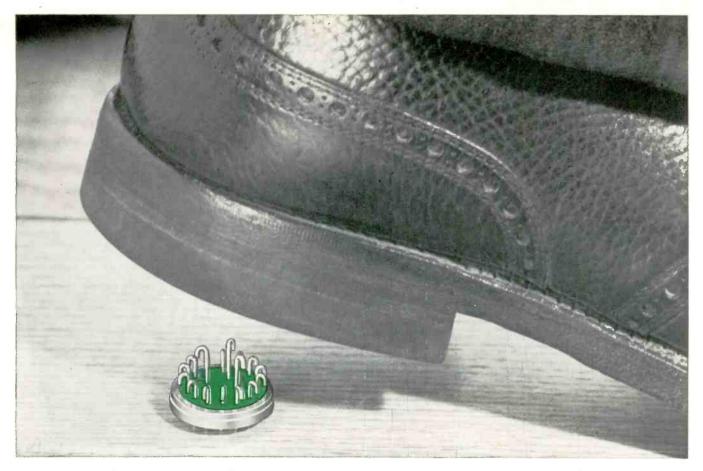
# **SPRAGUE CUP TYPE**

# TANTALEX<sup>®</sup> CAPACITORS

### now better than ever!

General Sprague's NEW "Cup Type" Liquid-Electrolyte Sintered-Anode Tantalex Capacitors offer several major improvements in cup capacitor design: elimination of fluctuation in capacitance during operation; elimination of "early failures" from internal shortcircuiting as sometimes occurs with other brands of cup capacitors; and large values of capacitance in small physical size. But there's more...

■Rated for -55 C to +85 C operation without voltage derating (to +100 C with 15% derating), these capacitors provide equipment designers with long operating life, long shelf life,


Complete data on Types 131D and 132D Capacitors is given in Engineering Bulletin 3710A. Write Technical Literature Section, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts. outstanding capacitance stability, and very low leakage currents.

Sprague "cup" capacitors are available in two series: Type 131D for industrial, communication, and general military equipment; Type 132D for the severe vibration requirements and close performance parameters of military aircraft and missiles. Type 131 D, moderately priced and furnished in the comparatively wide capacitance tolerance of -15, +75%, is especially suited for filter, coupling, and bypass applications where this wide tolerance is permissible. Type 132D is furnished as standard in the closer capacitance tolerances of -15, +20% and -15, +50%.



#### SPRAGUE COMPONENTS:

CAPACITORS • RESISTORS • MAGNETIC COMPONENTS • TRANSISTORS • INTERFERENCE FILTERS • PULSE NETWORKS HIGH TEMPERATURE MAGNET WIRE • CERAMIC-BASE PRINTED NETWORKS • PACKAGED COMPONENT ASSEMBLIES



### A real heel might test a Fusite Terminal like this ...but he won't make it leak!

The adherence between glass and metal in a Fusite Hermetic Terminal is an easily demonstrated fact. There are several theories as to *why* our exclusive V-24M glass actually chemically bonds to the metal components. Cobalt and certain other metallic oxides in the glass oxidize the iron in the metal which is taken into solution. It is believed that through the solution of iron, a gradual decrease of the difference of thermal expansion between the glass and metal takes place at the glass-metal



between the glass and metal takes place at the glass-metal interface. This inter-fusion of the two dissimilar materials gives Fusite Terminals their ability to withstand great mechanical and thermal shock and still pass Statiflux tests for glass cracks, hydrostatic pressure tests and helium mass spectrometer leak detection.

> This fusion is reinforced by a strong compression of the metal ring around the glass made possible by a favorable thermal expansion balance of the glass, pins and housing.

> The combination of fusion and compression provides a terminal so rugged that leaker rejection rate of components into which our terminal is fabricated is practically nil, even when roughly handled and subjected to extreme temperature changes.

> Samples for your own testing are yours for the asking.

Write Dept. G-1.





### NOW PRICED WITH PRECISION WIRE-WOUNDS!



At last you can get quality metal film resistors, with all their advantages, at prices competitive with precision wire-wound units. In fact, some values are actually priced lower.

EXCEEDS MILITARY SPECIFICATIONS \_\_ Ohmite metal film precision resistors exhibit great stability under load at ambient temperatures of 150°C and higher, as well as in high humidity. Stability in storage is also excellent. A shelf-life test (covering a period of 41/2 years) of 93 units in the 60 to 300 K-ohms range showed less than 0.05% maximum change in resistance. This stability together with low temperature co-efficient, low noise level, and unexcelled high frequency characteristics, are the reasons why Series 77 metal film resistors are demanded for both military and industrial applications.

Write for Bulletin 155



| Ohmite<br>Basic MIL |                | Dimensions (Inches) |          | Full Wattage<br>Rating at |               | Min Max     | Max<br>Rated |
|---------------------|----------------|---------------------|----------|---------------------------|---------------|-------------|--------------|
| Style               | Sizes          | Length              | Diameter | 125°C<br>Amb.             | 150°C<br>Amb. | Ohms        | Volts        |
| 771-1               | _              | 11/16               | .400     | 1/2                       | 1/4           | 25-250K     | 350          |
| 771-2               | -              | 1/8                 | .600     | 1/2                       | 1/4           | 251K-400K   | 350          |
| 772-3C              | RN65*<br>R192† | 5/8                 | 15/64    | 1/4                       | 1/8           | 50-125K     | 300          |
| 772-3CJ             | R192†          | 5/8                 | 15/64    | 1/2                       | 1/4           | 50-85K      | 300          |
| 772-1               | -              | 5/8                 | 21/64    | 1/2                       | 1/4           | 25-250K     | 350          |
| 772-1C              |                | 5/8                 | 21/64    | 1/2                       | 1/4           | 25-250K     | 350          |
| 772-2               | RN72*<br>R194† | 13/16               | 21/64    | 1/2                       | 1⁄4           | 25-400K     | 350          |
| 772-2C              | R194†          | 13/16               | 21/64    | 1/2                       | 1/4           | 25-400K     | 350          |
| 772-2CS             | RN70*<br>RI94† | 13/16               | 19/64    | 1/2                       | 1/4           | 25-350K     | 350          |
| 772-2J              | R194†          | 13/16               | 21/64    | 1                         | -             | 25-400K     | 350          |
| 112-25              | R1941          | 13/16               | 21/64    |                           | 1/2           | 25-150K     | 350          |
| 772-2CJ             | R194†          | 13/16               | 21/64    | 1                         | -             | 25-400K     | 350          |
| 112-205             | R1941          | 13/16               | 21/64    | -                         | 1/2           | 25-150K     | 350          |
| 772-8               | R196†          | 13/32               | 13/32    | 1                         | 1/2           | 100-1 meg   | 500          |
| 772-8C              | RN75*<br>R196† | 13/32               | 13/32    | 1                         | 1/2           | 100-1 meg   | 500          |
| 772-10              | -              | 27/32               | 27/64    | 2                         | -             | 200-2.5 meg | 750          |
| 772-10C             | RN80*          | 27/32               | 27/64    | 2                         |               | 200-2.5 meg | 750          |
| *MIL-R-1            | 0509C          | †MIL-R              | -19074B  |                           |               |             |              |

RHEOSTATS RESISTORS RELAYS TANTALUM CAPACITORS TAP SWITCHES VARIABLE TRANSFORMERS R. F. CHOKES GERMANIUM DIODES

ELECTRONIC INDUSTRIES · February 1960

Circle 38 on Inquiry Card

### Thinking of SMALL **RELAYS**?

# ADVANCE

builds 'em for heavy loads and long service!

### **Cramped quarters**

don't cramp the style of ADVANCE midgets and miniatures. You can use them on loads from 1 to 10 amperes continuously ... and at three times their rating intermittentlywith complete safety. They'll resist shock and vibration ... stand up under temperature extremes. You'll find them readily adaptable to any mounting need...any type of duty. Some examples:









**GH SERIES** Engineered for high efficiency in thousands of applications. The small size of these midgets allows installation where space is a problem. Available in open types, 5- and 10-amp. ratings...in dustite plastic enclo-sures, 5 amps., and 5-amp. plate circuit types.

**General Purpose Midget** 

**Miniature DC Type** 

Extreme light weight and small size

-requires only .5 cu. in. mounting

space. Switching is above ground,

insulation material is silicone glass.

Beryllium copper armature hinges

provide stability under shock and

Only .94 cu. inches in size, yet this

Miniature Telephone Type

**MK SERIES** 

vibration.

**TO SERIES** 

### **AVAILABLE OFF THE SHELF** from your local Elgin-Advance Distributor ELGIN-ADVANCE RELAYS

A PRODUCT OF ELECTRONICS DIVISION ELGIN NATIONAL WATCH COMPANY 2435 NO. NAOMI ST., BURBANK, CALIF.

### **Tele-Tips**

**ELECTRONIC SUCCESS** stories are getting out of hand. Even people within the industry are being deluded by visions of astronomical profits. Datex Corp. of Monrovia, Calif., asked their employees to estimate the percentage profit of the company. Of those who would venture a guess. 5 estimated the profit at between 21% and 30%; 13 said between 11% and 20%; 12 said 6% to 10%. Only 6% guessed that the company made 5% or less. Actually, the net profit of Datex was about 4½%.

CLOSED CIRCUIT TV is in use by 133 educational systems including schools, hospitals, etc. Closed circuit and on-the-air instruction now reaches between 8.000 and 10,000 schools, and an estimated 10 million students. The figures are from the Joint Council on Education TV.

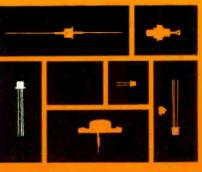
THE ELECTRONIC FARM predicted for the future will have Farmer Brown directing his work by a 2-way personal radio from the comfort of his home. He will grade his fruits and vegetables automatically and use long range weather forecasting from a satellite in his crop planning. His farm machinery will run on solar and atomic energy.

WHICH SPEAKER are the bass frequencies coming from? Theorists claim that the low frequency sounds lack direction, so that the sound of a bass fiddle would seem to be coming from somewhere in between the two speakers. But two GE engineers reported at the recent AES meeting that it is true-frequencies below 100 cycles/sec. do have direction. As test subjects, the engineers used 29 GE Radio Receiver Dept. employees, including secretaries, engineers, experts and non-experts. When a sound of a musical instrument containing a certain frequency tone was heard through the stereo system, those participating in the test were asked which speaker the sound was coming from. The response curve that was plotted proved that low frequencies do have "direction."

(Continued on page 44)



### MOTOROLA announces a NEW QUALITY ASSURANCE PROGRAM "MEG-A-LIFE" offering ADVANCE CERTIFICATION of COMPONENT RELIABILITY


I his new Motorola "Meg-A-Life" quality-assurance program provides users of semiconductor devices with:

- 1. Written certification of reliability with orders of 100 units or more.
- 2. Established specifications as severe as those required for military units.
- 3. Close quality control tolerances, with minimum and maximum parameters, AQL and inspection levels completely specified.

Under this new Motorola program, each production lot of a "Meg-A-Life" branded device is subjected to complete electrical, mechanical, environmental and life tests identical to those required for Military approved units. The purchaser receives written certification that units passed the specified tests and a copy of the actual test results is made available.

All tests and sampling are made in accordance with military specifications ... representing the most adverse conditions under which the devices would be used. The Motorola "Meg-A-Life" certificate provides the industrial user with an assurance of reliability never before possible and makes possible the elimination of duplicate testing.

The first available Motorola "Meg-A-Life" devices are the 2N650A, 2N651A and 2N652A Industrial Alloy Transistors. Other Motorola semiconductors will be announced under the "Meg-A-Life" brand.



NEW MOTOROLA "**MEG-A-LIFE**" INDUSTRIAL ALLOY TRANSISTORS

Motorola types 2N650A, 2N651A and 2N652A are the first to be offered under the Motorola "Meg-A-Life"brand.Units are designed to provide extremely reliable amplifier and switching service in the audio frequency range.



- Meet or exceed mechanical and environmental require-
- ments of MIL-S-19500  $\cdot$  PC = 200 mw
- Operating and storage temperature: to  $100\,^{\circ}\text{C}$
- BVCBO = 45 volts BVCER (R = 10K) = 30 volts

| Type           | $h_{fe}$ (VCE = 6V, IE = 1 ma) |      |  |  |  |
|----------------|--------------------------------|------|--|--|--|
| Type<br>Number | MIN.                           | MAX. |  |  |  |
| 2N652A         | 100                            | 225  |  |  |  |
| 2N651A         | 50                             | 120  |  |  |  |
| 2N650A         | 30                             | 70   |  |  |  |

FOR COMPLETE INFORMATION and specifications on "Meg-A-Life" Industrial Alloy Transistors, contact your Motorola Semiconductor District Office:

RIDCEFIELD, NEW JERSEY \$40 Bergen Boulevard WHitney 5-7500 from New York WI 7-2980 DEFROIT 27, MICHIGAN 13131 Lyndon Avenue BRoadway 3-7171 CHICAGO 39, ILLINOIS 5234 West Diversey Avenue Avenue 3-434 West Diversey Avenue HOLLYWOOD 28. CALIFORNIA 1741 Ivar Avenue HOllywood 2-0821

IN CANADA WRITE: MDTOROLA, Inc. Semiconductor Products Division 4545 West Augusta Boulevard Chicago 51, Illinols

MINNEAPOLIS 27, MINNESOTA 7731 6th Avenue Liberty 5-2198 DUTSIDE USA & CANADA WRITE: MOTOROLA INTERNATIONAL, S. A. 4545 West Augusta Boulevard Chicago 51, Illinois





### VOLTAGE REGULATOR TUBES

| Type                                 | Base         | D.C.<br>Operating<br>Voltage | Current Range | Regulatio |
|--------------------------------------|--------------|------------------------------|---------------|-----------|
| 0A2WA<br>CK6626/0A2WA<br>CK6073, 0A2 | Miniature    | 150 v.                       | 5 — 30 ma.    | 2 v.      |
| 0B2WA<br>CK6627/0B2WA<br>CK6074, 0B2 | Miniature    | 108 v.                       | 5 — 30 ma.    | 1 v.      |
| 0C2                                  | Miniature    | 75 v.                        | 5 — 30 ma.    | 3 v.      |
| CK5787                               | Subminiature | 98 v.                        | 5 — 25 ma.    | 3 v.      |
| CK5787WA                             | Subminiature | 98 v.                        | 5 — 25 ma.    | 1.5 v.    |
| CK6542                               | Subminiature | 148 v.                       | 5 — 25 ma.    | 2 v.      |
| Cord                                 | ona Voltag   | je Regu                      | lators        |           |
| CK1038                               | Subminiature | 885 — 915 v                  | . 5 — 55 μa.  | 15 v. max |
| CK5962                               | Miniature    | 700 v.                       | 2 — 55 µa.    | 15 v. ma) |
| CK6437                               | Subminiature | 700 v.                       | 5 — 125 μa.   | 15 v. max |
| CK6438                               | Subminiature | 1200 v.                      | 5 — 125 µa.   | 20 v. max |
|                                      |              |                              |               |           |

### VOLTAGE REFERENCE TUBES

| Туре     | Base         | D.C.<br>Operating<br>Voltage | Current<br>Range | Regulation | Voltage<br>Jump<br>Max. |
|----------|--------------|------------------------------|------------------|------------|-------------------------|
| CK5651   | Miniature    | 85 v.                        | 1.5 — 3.5 ma.    | 1.5 v.     | 0.1 v.                  |
| CK5651WA | Miniature    | 85 v.                        | 1.5 — 3.5 ma.    | 1.5 v.     | 0.005 v.                |
| CK5783   | Subminiature | 85 v.                        | 1.5 — 3.5 ma.    | 3.0 v.     | 0.1 v.                  |
| CK5783WA | Subminiature | 85 v.                        | 1.5 — 3.5 ma.    | 2.4 v.     | 0.005 v.                |
| CK6213   | Subminiature | 130 v.                       | 1.0 — 2.5 ma.    | 1.0 v.     | _                       |

| COLD CATHODE RECTIFIER TUBES |              |              |                                    |                          |                                   |  |
|------------------------------|--------------|--------------|------------------------------------|--------------------------|-----------------------------------|--|
| Туре                         | Construction | Base         | Max.<br>Peak<br>Inverse<br>Voltage | Peak<br>Plate<br>Current | Max.<br>D.C.<br>Output<br>Current |  |
| 0Z4A/1003                    | Double Diode | Octal        | 880 v.                             | 330 ma.                  | 110 ma.                           |  |
| CK1005                       | Double Diode | Octal        | 450 v.                             | 210 ma.                  | 70 ma.                            |  |
| CK1006                       | Double Diode | 4-Pin.       | 1600 v.                            | 600 ma.                  | 200 ma.                           |  |
| CK1007                       | Double Diode | Octal        | 1200 v.                            | 510 ma.                  | 85 ma.                            |  |
| CK5517                       | Diode        | Miniature    | 2800 v.                            | 100 ma.                  | 12 ma.                            |  |
| CK6174                       | Diode        | Miniature    | 2800 v.                            | 30 ma.                   | 3 ma.                             |  |
| CK6659                       | Diode        | Subminiature | 2800 v.                            | 40 ma.                   | 8 ma.                             |  |
| CK6763                       | Diode        | Miniature    | 2800 v.                            | 100 ma.                  | 12 ma.                            |  |



### Industrial Tube Subdivision

### INDUSTRIAL COMPONENTS DIVISION

57 Chapel Street, Newton 58, Massachusetts

RELIABLE MINIATURE AND SUBMINIATURE TUBES • HARD-GLASS POWER TUBES • GAS TUBES • CATHODE RAY TUBES • STORAGE TUBES LOS ANGELES, NOrmandy 5-4221 • SAN FRANCISCO, Fireside 1-7711 • CHICAGO, NAtional 5-4000 • KANSAS CITY, Plaza 3-5330

CLEVELAND, Winton 1-7716 • BALTIMORE, SOuthfield 1-1237 • ORLANDO, FLA., GArden 3-1553 • NEW YORK, Plaza 3-3900 • BOSTON, Bigelow 4-7500 GOVERNMENT SALES: BOSTON, Bigelow 4-7500 • WASHINGTON, D. C., MEtropolitan 8-5205 • DAYTON, BAldwin 3-8128



Detailed technical data bulletins on any of these types are yours for the asking. Better yet, ask to have a Raytheon sales engineer drop in for a firsthand appraisal of your application and prototype needs — no obligation, of course. Write directly to Dept. 2528.


Small order and prototype quantities available directly from your local Raytheon electronics parts distributors.

Want to Receive Our Technical Data Regularly? We'll be happy to keep you informed of latest technical developments, new products, design tips, etc. An application for addition to our new Technical Information Mailing List is yours for the asking. Write on your company letterhead directly to: W. J. Davis, Dept. 2528, at division address listed.

### Exclusively from Polarad...

# CALIBRATED MICROWAVE FIELD INTENSITY RECEIVER SYSTEM

1000 to 10,000 mc



A monitoring unit. Meter indicates average, peak or quasi-peak value of r-f signals. Outputs for video, audio and recorder.

**R-F Plug In Tuning Units.** Four units cover the frequency range 1000 to 10,000 mc. UNI-DIAL tuning control tunes both the receiver and internal signal calibrator.

Calibrated Antenna System complete with tripod and a calibrated omni-directional Broadband antenna or a separate directional antenna to match each R-F tuning unit.

Use this precision instrument for antenna pattern and shielding analysis, r-f power and voltage measurements, determination of field intensity, signal propagation patterns and other microwave parameters.

FREE LIFETIME SERVICE ON ALL POLARAD INSTRUMENTS

POLARAD

ELECTRONICS Corporation

MAIL THIS CARD for specifications. Ask your nearest Polarad representative (in the Yellow Pages) for a copy of "Notes on Microwave Measurements." -

Ĵ

1

· · · · · · · · · · · ·

5

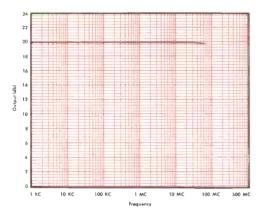
Model FIM being used to check radiated interference against MIL-I-26600

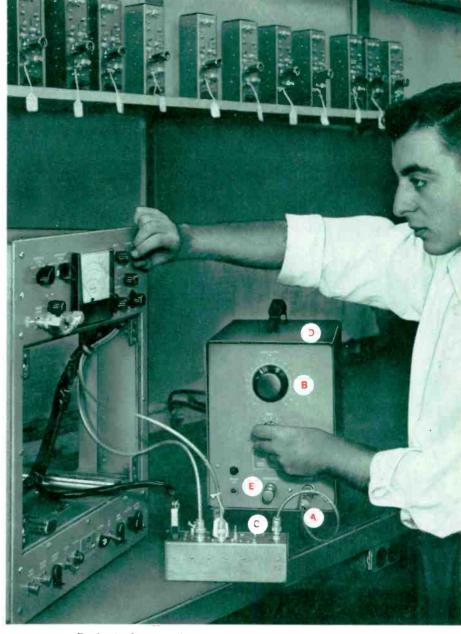
Determines absolute level of radiation, leakage and interference by comparison with an internally generated CW signal. Also measures signal susceptibility

|      | MEPDI                                                                                                                                                |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| PC   | OLARAD ELECTRONICS CORPORATION:                                                                                                                      |
| Ple  | ease send me information and specifications on:                                                                                                      |
|      | Model FIM Calibrated Microwave<br>Field Intensity Receiver<br>Model N-1 Precision Noise Generator<br>(see reverse side of page)<br>My application is |
| Nat  | me                                                                                                                                                   |
| Titl | leDept                                                                                                                                               |
| Cor  | mpany                                                                                                                                                |
| Add  | dress                                                                                                                                                |
| Cit  | zyZoneState                                                                                                                                          |

**43-20 34th Street, Long Island City 1, N. Y.** © P.E.C. Representatives in principal cities.

### New from Polarad...


also in pa


# PRECISION NOISE Generator

- A 1 kc to 500 mc
- B 1 to 20 db, adjustable
- C 0.25 db output accuracy
- D Long-life, low-maintenance noise tubes

### E) Stable output

Noise output constant over entire frequency range. Maintains set level into any terminating impedance, 50 to 10,000 ohms.





Production line noise figure measurements, made rapidly and accurately with Polarad Model N-1.

MAIL THIS CARD

for specifications.

Ask your nearest

Polarad represen-

Yellow Pages) for a copy of "Notes on Microwave Measurements."

POLARAD

**ELECTRONICS** CORPORATION

Representatives in principal cities.

43-20 34th Street, Long Island City 1, N. Y.

tative (in the

The Polarad Model N-1 is a small, compact, portable noise generator with easy-to-operate controls. The Model N-1 (Digitized variable output level controls – 0 to 20 db. Calibrated 1 db steps – fine vernier between each step.) is entirely self-contained, including power supplies. Use it for direct noise figure measurements of vacuum tube or transistor amplifiers, receivers and oscillators.

170000 and 170000

FREE LIFETIME SERVICE

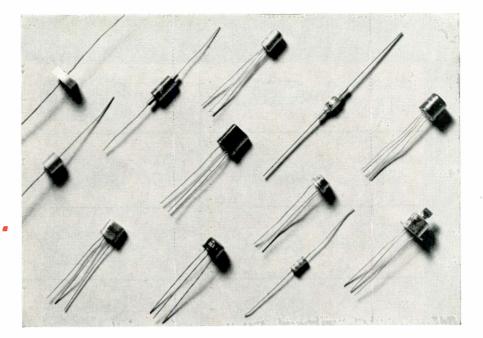
ON ALL POLARAD

INSTRUMENTS

© P.E.C

Postoge Will be Paid by Addressee

OLARAF


No Postage Stamp Necessary If Mailed in the United States.

### BUSINESS REPLY CARD First Class Permit Na. 18, Long Island City 1, N.Y.

POLARAD ELECTRONICS CORP

43-20 34th St., Long Island City 1, N. Y.

For etching and washing semiconductors...



## B&A<sup>®</sup> "ELECTRONIC-GRADE" HYDROGEN PEROXIDE IS THE PUREST AVAILABLE!

Special, new B&A "Electronic-Grade"  $H_2O_2$ , 30% and 30% "stabilized"—with its stringent pH specifications—reduces variations in rate of etch . . . cuts down rejects and improves quality control in the production of semiconductors.

To eliminate another variable in the use of hydrogen peroxide for semiconductor production, Baker & Adamson<sup>®</sup> has now added label specifications for the pH of "Electronic-Grade"  $H_2O_2$ , 30% and 30% "stabilized" (see box). The pH for hydrogen peroxide, 30%, is 2.5-3.5... for 30% "stabilized," 3.0-3.5.

These tight specifications provide still better control

and uniformity of peroxide than in the past and eliminate variations from lot to lot. This is still another example of B&A's continuing leadership in supplying production chemicals of the highest purity and quality for the electronic industry. B&A "Electronic-Grade" Hydrogen Peroxide, 30%, is readily available in 1 lb. plastic bottles and 30-gallon polyethylene-lined drums. "Electronic-Grade" Hydrogen Peroxide, 30% "stabilized," comes in 1 lb. or 5 lb. glass bottles and in the 30-gallon drums.

Remember... for the purest hydrogen peroxide available ... as well as for the highest quality in other electronic chemicals... specify B&A!

#### Check these stringent specifications

| HYDROGEN PEROXIDE, 30%                               |
|------------------------------------------------------|
| MEETS A. C. S. SPECIFICATIONS                        |
| Assay (H <sub>2</sub> O <sub>2</sub> )               |
| MAXIMUM LIMITS OF IMPURITIES                         |
| Residue after Evaporation0.002%                      |
| Free Acid (As H <sub>2</sub> SO <sub>4</sub> )0.003% |
| Chioride (Ci)                                        |
| Nitrate (NO <sub>3</sub> )0.0005%                    |
| Phosphate (PO <sub>4</sub> )0.00025%                 |
| Sulfate (SO <sub>4</sub> )0.0005%                    |
| Ammonium (NH <sub>4</sub> )0.0005%                   |
| Heavy Metals (as Pb)                                 |

| Iron (Fe)                                                       | 0.00005%              |
|-----------------------------------------------------------------|-----------------------|
| HYDROGEN PEROXIDE, 30%                                          | CODE 2775             |
| H202                                                            | M.W. 34.02            |
| Aŝsay (H <sub>2</sub> O <sub>2</sub> )                          | 29.0-32.0%<br>3.0-3.5 |
| MAXIMUM LIMITS OF IM<br>Residue after Evaporation               |                       |
| Free Acid (as H <sub>2</sub> SO <sub>4</sub> )<br>Chloride (Cl) |                       |
| Phosphate (PO <sub>4</sub> )<br>Sulfate (SO <sub>4</sub> )      | 0.020%                |
| Heavy Metals (as Pb)                                            | <b>0.0</b> 001%       |
| Iron (Fe)                                                       |                       |

#### MAXIMUM LIMITS OF IMPURITIES

| Residue after Evaporation0.020%                      |
|------------------------------------------------------|
| Free Acid (as H <sub>2</sub> SO <sub>4</sub> )0.010% |
| Chloride (Cl)                                        |
| Nitrogen Compounds (as N)0.005%                      |
| Phosphate (PO <sub>4</sub> )0.003%                   |
| Sulfate (SO <sub>4</sub> )0.005%                     |
| Arsenic (As)0.00001%                                 |
| Heavy Metals (as Pb)0.0001%                          |
| Iron (Fe)0.00005%                                    |
| Preservative                                         |
|                                                      |

BAKER & ADAMSON® "Electronic Grade" Chemicals



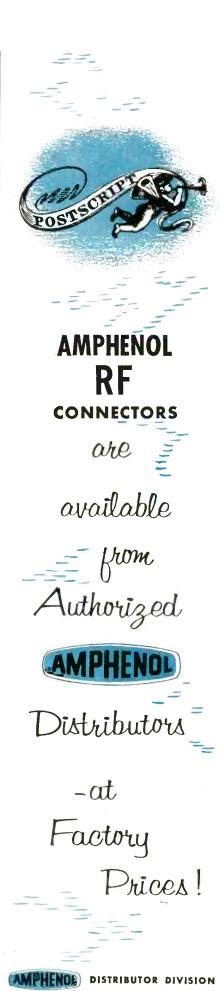


| AMPHENOL RF         | CONNECTORS    |
|---------------------|---------------|
| Quick-Crimp*        | SERIES<br>C   |
| Quick-Crimp*<br>BNC | SERIES<br>BNC |
| SUB <i>Minax</i> •  | SERIES<br>N   |
| series<br>LT/LC     | SERIES<br>H N |
|                     |               |
|                     |               |

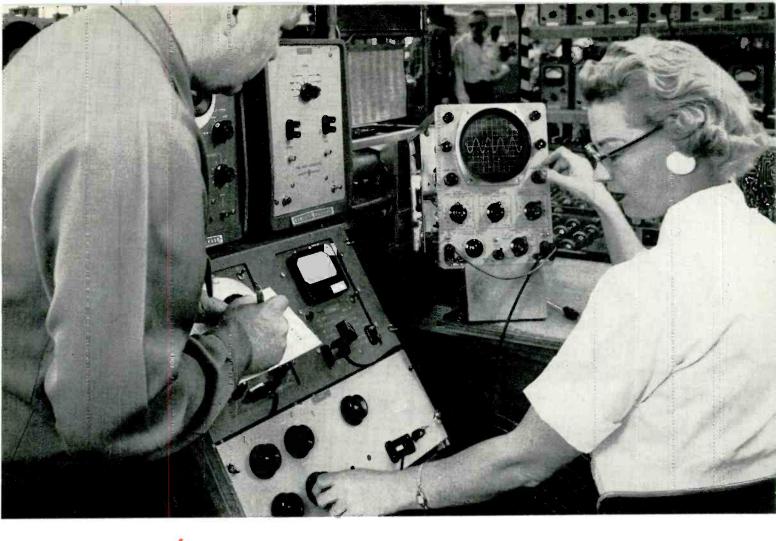
## AMPHENOL LEADS IN RF COMPONENTS

 BROAD AVAILABILITY from a single source. All popular RF Series. In addition to those illustrated above, series UHF, BN, Adapters and Specials are also manufactured by AMPHENOL.

Home en t une en


- 2 SERVICE & ASSISTANCE based on the experience of over twenty years of designing and manufacturing RF connectors.
- 3 ENGINEERING facilities are the finest of any components manufacturer. AMPHENOL has the know-how and the equipment to assist you in "problem areas" and in special designs.

#### AMPHENDL CONNECTOR DIVISION


PATENT PENDING

1830 S. 54TH AVENUE, CHICAGO 50, ILLINOIS Amphenol-Borg Electronics Corporation

Circle 21 on Inquiry Card



Amphenol-Borg Electronics Corporation BROADVIEW, ILLINOIS Circle 22 on Inquiry Card



# HEWLETT PACKARD specifies Tung-Sol tubes for high stability calibration generator

The Hewlett-Packard Voltmeter Calibration Generator calibrates high impedance voltmeters and oscilloscopes with extreme accuracy. An exceptionally stable source for a wide range of precision voltages, the premium instrument speeds up production and maintenance testing.

To assure high stability and low distortion performance, which are listed among the unit's principal advantages Hewlett-Packard selected Tung-Sol 6550's for the 400 cycle power amplifier. As Hewlett-Packard reports: "Tung-Sol's 6550 shows unusual insensitivity to load changes."

What this means, of course, is that under varying loads the 6550 drive, with its tight characteristics, holds to a minimum any change in the unit's already minimal distortion (less than 0.2%). In addition the 6550 helps to provide long-term stability.

Like all Tung-Sol components, the 6550's optimum performance and dependability stems from Tung-Sol's deep-rooted component know-how. Every step in the manufacturing process is carefully disciplined. Stringent quality control guarantees uniformly high performance in any one lot or from lot to lot. And exhaustive life tests under severe overload assures adequate safety margins.

Maybe you're up against some exacting component requirements. If so, you'll be steering a wise course by getting in touch with Tung-Sol applications engineers. They're component experts who will gladly study your design and recommend the units that will do the job . . . precisely. Tung-Sol Electric Inc., Newark 4, New Jersey. TWX:NK193.

For prompt and competent technical consultation on Tung-Sol components call the Tung-Sol Commercial Engineering office near you. SALES OFFICES: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Melrose Park, Ill.; Newark, N. J.: Philadelphia, Pa.; Seattle, Wash. Canada: Montreal, P. Q.





Circle 23 on Inquiry Card









org Micropot Trimmers are miniaturized lead-screw actuated potentiometers that match, balance and adjust circuit variables in all sorts of electronic equipment, both commercial and military. Available with either deposited carbon film or wire-wound resistance elements, Borg Trimming Micropots are applicable anywhere accuracy, small size and rugged construction are prime considerations. Can be mounted singly or stacked one upon the other. Terminal types include wire leads, solder and printed circuit terminals. Get complete data today.

WRITE FOR DATA SHEETS BED-133 AND BED-A134



Micropot Potentiometers

Turns-Counting Microdials

Sub-Fractional Horsepower Motors

Frequency and Time Standards

Circle 24 on Inquiry Card

38

ELECTRONIC INDUSTRIES · February 1960



## TOP TEAM IN WAVE TUBES

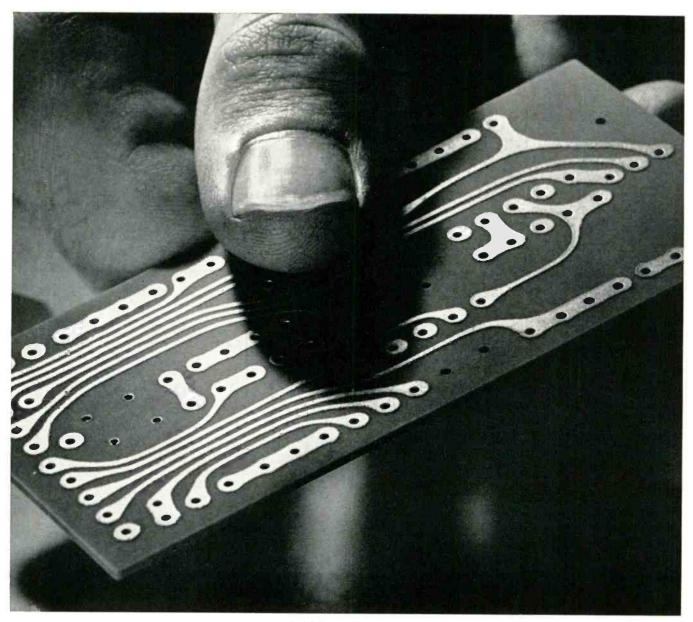
Varian has become the world's leader in the development and production of microwave tubes. With a greatly expanded wave tube team and larger manufacturing facilities, new tubes for advanced applications are being offered at an accelerated pace. From the small X-Band BWO's to the megawatt TWT, there is a Varian wave tube to meet your requirements.

Over 100 Varian Klystrons and Wave Tutes are pictured and described in our new catalog. Write for copy-address Tube Division.

| VA-125A, B TWT | 2.65 to 3.25 kMc<br>2 megawatts peak output |
|----------------|---------------------------------------------|
| VA-161 BWO     | 8.2 to 12.4 kMc                             |
| VA-162 BWO     | €2.4 to 18.0 kMc                            |
| VA-128 TWT     | 2.6 to 3.4 kMc<br>12 kw peak output         |








VA-125A, B TAT

VA-151

BWO's

KLYSTRONS, WAVE TUMES, GAS SWITCHING TUBES, MAGNETRONS, HIGH VACUUM EQUIPMENT, LINEAR ACCELERATORS, M CROWAVE SYSTEM COMPONENTS, NMR & EPR SPECTROMETERS, MAGNETS, MAGNETOMETERS, STALOS, POWER AMPLIFIERS, GRAPHIC RECORDERS, RESEARCH AND DEVELOPMENT SERVICES



FOTOCERAM circuit baard blanks are made using the micra-accuracy af photography. All holes and shapes are produced by simple expasure to light, heat, and an etching operation.

# No bending, bowing or delaminating with a FOTOCERAM printed circuit board

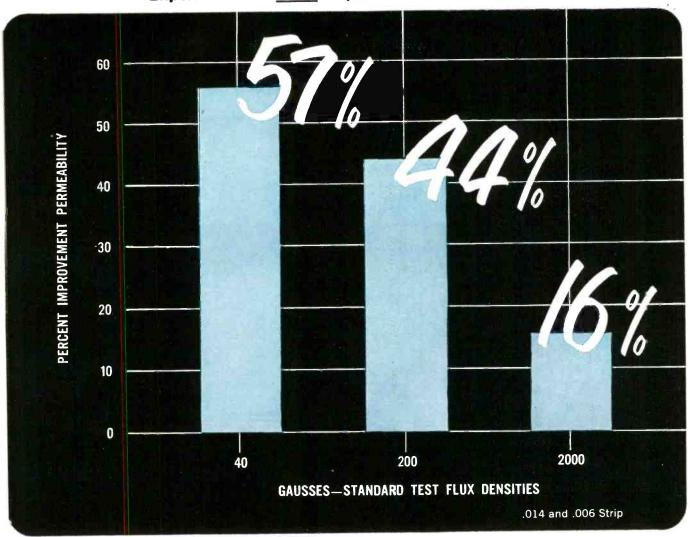
Made of one solid piece of Fotoceram material, these printed circuit boards can't delaminate, because there are no laminations—the problem of bending, twisting and warping are eliminated, even under high ambient temperatures.

Dimensional stability is so great you'll want to use them for environmental stress tests.

Through-hole plating presents no problems, either. We plate through the hole uniformly with the same conductor material. Thermal conductivity, as well as electrical conductivity, is exceptionally good. You can even make a solder bridge over a hole with no gap and without a wire.

Resolderability is excellent-we've removed and resol-

dered components over fifty times on a Fotoceram board without damage to runs or holes.


In addition, Fotoceram boards provide good adhesion, exceptional pull strength, zero water absorption. They are non-flammable, never blister.

We are now equipped to produce Fotoceram printed circuit boards in quantity on a mass production basis and at a practical cost.

For more information, write for our data sheet to **Corning Glass Works**, 546 High Street, Bradford, Pa. Or contact our sales offices in New York, Chicago or Los Angeles.



Experience—the added alloy in A-L Electrical Steels



# Greater permeability for Allegheny Ludlum's AL-4750...and it's *guaranteed*

#### promises more consistency, higher predictability for magnetic cores

AL-4750 nickel-iron strip now has higher guaranteed permeability values than ever before. For example, at 40 induction gausses AL-4750 now has 57% higher permeability than in the past, using the standard flux density test.

This greater permeability means better consistency and predictability for magnetic core users . . . and allows careful, high performance design.

This improvement in AL-4750 is the result of Allegheny Ludlum's continuing research on electrical alloys and

7491

nickel-bearing steels. Moly Permalloy has been similarly improved in permeability. A-L constantly researches silicon steels, including A-L's well-known grain-oriented silicon, Silectron, and other magnetic alloys.

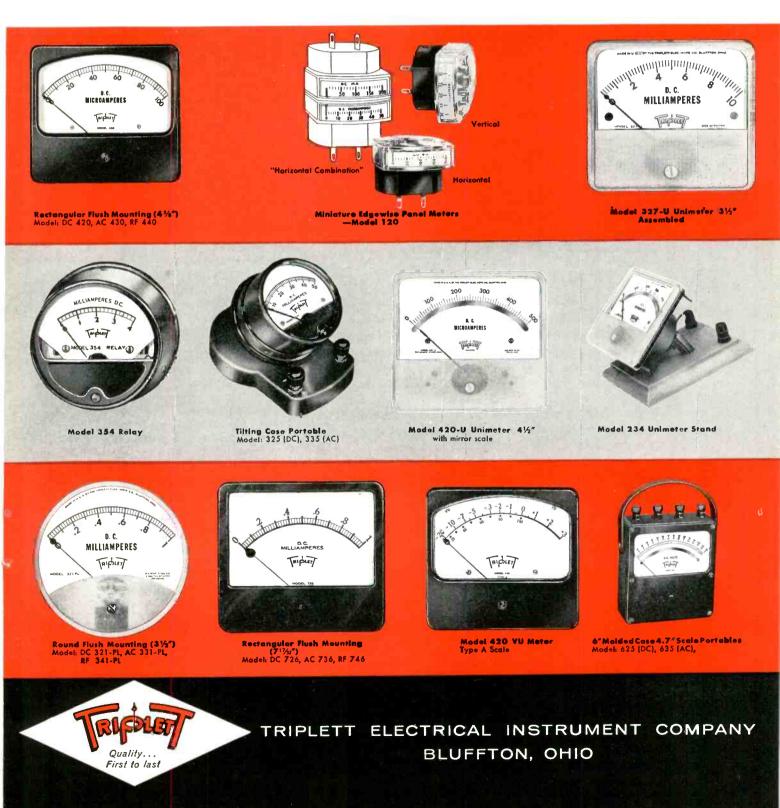
Complete facilities for the fabrication and heat treatment of laminations are available at Allegheny Ludlum. And A-L's technical know-how guarantees you close gage tolerance, uniformity of gage throughout the coil and minimum spread of gage across the coil-width.

If you have a problem on electrical steels, laminations or magnetic material, call A-L for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa. Address Dept. EI-26.

| ALLEGHENY               | LUDLUM          |
|-------------------------|-----------------|
| STEELMAKERS TO THE ELEC | TRICAL INDUSTRY |

Export distribution, Electrical Materials: AIRCO INTERNATIONAL INC., NYC 17 Export distribution, Laminations: AD. AURIEMA, NYC 4




ELECTRONIC INDUSTRIES · February 1960 Circle 27 on Inquiry Card

Circle 28 on Inquiry Card ----



# LINE FULLY MEETS YOUR NEEDS

The name TRIPLETT has been on instruments of our manufacture for more than 55 years, and is regarded as a symbol of customer satisfaction to industrials and distributors in all parts of the world. Our instruments can be built to customer specifications or provided from our large stocks of standard ranges in hundreds of sizes and types. We also carry in stock many semi-finished movements which can be converted readily to special customer needs.





## ENGINEERING service when you need it!

AMPHENOL Cable & Wire Division makes over 140 RG-/U coaxial cables, but even this large selection cannot meet all the needs of the electronics industry. Here are recent examples of AMPHENOL engineering Cable-*bility*, cables designed and produced to special customer needs:

- 1. Low Capacitance, low loss cable using Polyfoam<sup>®</sup> dielectric to maintain excellent electrical properties under adverse mechanical conditions.
- 2. Low Loss, high power, flexible Teflon-tape cables for electronic counter-measures equipment.
- 3. Semi-solid Teflon version of RG-63/U for use in a production ICBM.
- 4. Pressurized cable with flexible metal-hose jackets.
- 5. Ultra-high Temperature cables, including one design that operates at 1000°F continuously.

Assistance in design problem areas is another way in which AMPHENOL Cable & Wire Cable-bility can help you!



**CABLE & WIRE DIVISION** S. HARLEM AVE. at 63rd ST., CHICAGO 38 AMPHENOL-BORG ELECTRONICS CORPORATION

## **Tele-Tips**

(Continued from Page 30)

**ELECTRONIC THERMOMETER** takes the measurement of the temperature of the human body within a second or so of its application to the skin surface. It was developed by Wayne Kerr Laboratories of England. Device uses a temperature sensitive metallic oxide lead which is connected to the sensitive direct d-cb and ridge measuring circuit.

**SPACE EXPRESS** that would shuttle men and material between earth and orbiting space stations has been designed by Lockheed and Hughes Aircraft. The vehicles will carry up to four astronauts. They combine the features of the space ship, ballistic missile and conventional airplane.

"MICROWAVE MEGAPHONE" being developed by Sperry Rand will allow masters of ships on a collision course to quickly exchange information on intended maneuvers. The microwave voice communication is tied to a radarscope display. The scope indications will positively identify the target that it is in communication with by means of a narrow beam microwave length.

NEW MARKETING CONCEPTS are needed, says Westinghouse's James H. Jewell. "We must learn to think in terms of 'systems' instead of 'pieces.' The responsibility for designing the system, from end to end, will become the responsibility of the electronic component manufacturers. Computer techniques will be the tool that will enable manufacturers to do this quickly and economically.

POTENTIAL HAZARDS in manufacturing plants, machines or equipment which might crush, cut, electrocute, should be painted a vivid orange, say factory designers. They would paint each item a separate color, to indicate its function. A vivid yellow would indicate tripping or moving equipment. All fire protection and fire fighting equipment would be painted red; electrical controls, elevators, operating levers a precaution blue. RustOleum Corp. is one of the paint companies that has worked with the American Standards Assoc. on the problem.

# dial any output from O-1000V within 1%



# KEITHLEY Model 240 High-voltage Supply combines convenience, accuracy, wide range

This convenient supply brings new speed, ease and accuracy to laboratory tests. Typical applications include calibration of meters and dc amplifiers, supplying potentials for photomultiplier tubes and ionization chambers. Other uses include furnishing potentials for high resistance measurements, and for diode and capacitor leakage resistance tests.

The Model 240 output delivers 0 to 1000 volts at up to 10 milliamperes. Three calibrated dials on the front panel select the desired output voltage in one volt steps, with accuracy of 1% or 100 millivolts. Greater accuracy may be obtained with a potentiometer provided for setting the output with an accurate voltmeter.

Polarity is selectable. The switch includes an "OFF" position, facilitating timed measurements. An overload relay cuts off the output at 12 milliamperes within 50 milliseconds. Connectors are provided on front and rear panels.

#### SPECIFICATIONS

**DC OUTPUT VOLTAGE:** Positive or negative, 0 to 1000 volts, in one volt steps.

**OUTPUT CURRENT:** 0 to 10 milliamperes.

ACCURACY: Within 1% above 10 volts, within 100 millivolts below 10 volts.

LOAD REGULATION: 0.02% for 0 to 10 ma.

**RIPPLE:** Less than 3 my RMS above 5 cps.

**OUTPUT IMPEDANCE:** 0.15 ohms at 10 volts, rising linearly to 15 ohms at 1000 volts.

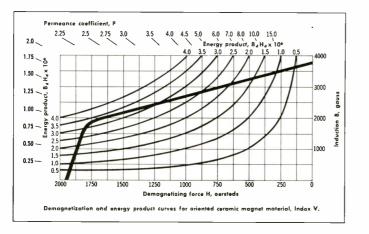
**STABILITY:** Within 0.02 volts  $\pm$  0.02% the first hour, or in subsequent 24-hour periods.

**LINE REGULATION:** Output change, less than 0.02 volts for a line change of 105 to 125 V.

**RACK** mounting, shown above with accessory end frames, bench mounting.

PRICE . . . . . . . . . . . . \$325.00

#### SEND TODAY FOR COMPLETE DETAILS




**KEITHLEY INSTRUMENTS, INC.** 12415 EUGLID AVENUE • CLEVELAND 6, OHIO

## INDOX V opens NEW design avenues in permanent magnet applications

Use of Indiana Steel's INDOX V by design engineers continues to grow by leaps and bounds. So much so that the company has just completed a new plant solely for the production of this remarkable ceramic magnet material. Designers find it the answer where other materials didn't measure up. Today it's in big volume demand by major users of permanent magnets.

Here's a summary of basic data on INDOX V. Investigate this material. It has helped others outstrip competition—both in product design and cost reduction. It could do the same for you. Whatever you're working on, keep this information close at hand — or write for the complete story on INDOX V, and ask about design help on any project that involves permanent magnets.



#### What Is Indox V?

INDOX V is a highly oriented barium ferrite permanent magnet material—the first to be produced in this country on a commercial scale. Like other ceramics, it is a non-conductor, hard, brittle and lightweight—much lighter than metallic alloy magnets. It has an energy product  $3\frac{1}{2}$  times that of non-oriented ceramic magnets.

#### Typical Characteristics of Indox V

| Coercive Force (H <sub>c</sub> ), oersteds           | 2,000                               |
|------------------------------------------------------|-------------------------------------|
| Residual Induction (Br), gauss                       | 3,840                               |
| Peak Energy Product (B <sub>d</sub> H <sub>d</sub> ) | 3.5×10 <sub>6</sub>                 |
| <b>Reversible Permeability</b>                       | 1.05                                |
| Temperature Coefficient<br>of Reversible Flux Change | -0.19%/°C                           |
| Magnetization Field for                              |                                     |
| Saturation, oersteds                                 | 10,000                              |
| Chemical Composition                                 | Ba Fe <sub>12</sub> O <sub>19</sub> |
| Specific Gravity                                     | 5.0 or<br>.181 lb/cu in             |

INDOX V is made of readily available, non-critical materials — an important design consideration for long-range production plans. In the precisely controlled manufacturing process, magnet shapes are dieformed from powdered material under high pressure, then sintered in a special high-temperature furnace. Standard shapes of INDOX V magnets available from stock include wafers, rings and cylinders in most practical sizes. Special shapes and sizes can be produced for unusual applications.

#### **Special Properties**

The unique characteristics of INDOX V often have indicated its use in areas of design where the application of permanent magnets formerly was considered impossible.

#### High resistance to demagnetization. The high coercive force of INDOX V permits much shorter magnet lengths than is possible with other materials, but larger magnet area is necessary because of lower flux density.

**High resistivity.** As a non-conductor, INDOX V can be used where other materials would create unwanted current paths. In the presence of high-frequency alternating fields,



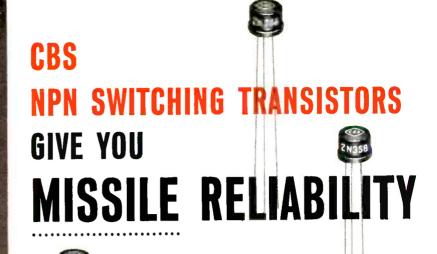
eddy current losses and associated heating effects are extremely low.

Low incremental permeability. The change in flux that results from a change in demagnetizing influence is lower in INDOX V than in any other magnetic material. Thus, INDOX V maintains a more constant field in the presence of external fields because variations in its flux are small.

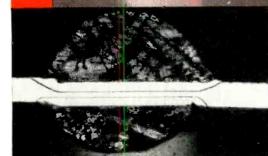
High energy per unit volume. On an equivalent weight basis, the energy product of INDOX V is comparable to that of Alnico V — the strongest permanent magnet material available — and  $3\frac{1}{2}$  times that of nonoriented ceramic magnets. Optimum area is  $5\frac{1}{3}$  times the area of an equal Alnico V magnet, about half the area of a non-oriented ceramic. Optimum length is 28 percent that of Alnico V. Since INDOX V requires less magnetic material and less space, the cost per unit of usable energy is extremely low.

**Resistance to radiation environments.** Recent comprehensive studies of the effects of nuclear radiation on permanent magnet materials indicate that INDOX V meets or exceeds environmental requirements for equipment likely to be used in nuclear-powered aircraft and ballistic missiles.

#### **APPLICATIONS**


|                        | Loudspeakers                                                                                          |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| Electronic             | lon pumps                                                                                             |  |  |  |
| Holding                | Door closers:<br>refrigerators<br>Conveyors and<br>automation<br>Magnetic switches<br>Magnetic chucks |  |  |  |
| Electro-<br>Mechanical | Synchronous drives:<br>Motors<br>DC fields<br>AC rotors<br>Generators                                 |  |  |  |
| Miscellaneous          | Temperature<br>control<br>Magnetic<br>separation                                                      |  |  |  |

INDOX V has proved successful on the above applications. If you want to know more about this outstanding material in relation to your product write. Dept. N2.




IN CANADA: The Indiana Steel Products Company of Canada Limited, Kitchener, Ontario

ELECTRONIC INDUSTRIES · February 1960







Flat, even junctions avoid "hotspots." Precise control of time and temperature ( $\pm 0.03\%$ ) of alloying process eliminates localized heating, gives long reliable life. Characteristics are more uniform.

**Ruggedness exceeds MIL specification.** Severe requirements for shock (1000 g, 1 ms), vibration (10 g, 100-3000 cps) and acceleration (20,000 g) are met by:: electronic welding of formed lead wires, horizontal base tab, and welded JEDEC TO-9 case.

More reliable products through Advanced Engineering



CBS NPN switching transistors have proved themselves in flight in many of our important "birds." They have been found to have the advantages of fast switching, high voltage, low cutoff current, and low saturation resistance. All 28 of these CBS transistors exceed the MIL-T-19500A

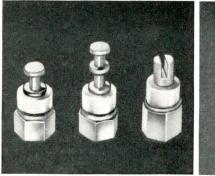
Contamination is eliminated. Baking, surface treatment, electrical testing and package welding are all conducted in dry-boxes at a

specification. This same proven reliability under the most adverse environmental conditions is yours for military or industrial core drivers, logic circuits or general switching functions. Write for complete data sheet E-353. Order from your local Manufacturers Warehousing Distributor.

| Choose | Choose From |        |        |       |       |        |  |  |
|--------|-------------|--------|--------|-------|-------|--------|--|--|
| 2N306  | 2N357.      | 2N388  | 2N439A | 2N445 | 2N558 | 2N1000 |  |  |
| 2N312  | 2N358       | 2N438  | 2N440  | 2N446 | 2N634 | 2N1012 |  |  |
| 2N356  | 2N377       | 2N438A | 2N440A | 2N447 | 2N635 | 2N1090 |  |  |
| 2N356A | 2N385       | 2N439  | 2N444  | 2N556 | 2N636 | 2N1091 |  |  |

**CBS ELECTRONICS,** Semiconductor Operations • A Division of Columbia Broadcasting System, Inc.

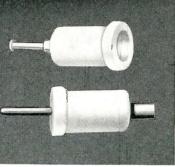
Sales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 4-0446 • Newark, N. J., 231 Johnson Ave., TAlbert 4-2450 • Melrose Park, Ill., 1990 N. Mannheim Rd., EStebrook 9-2100 • Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 • Atlanta, Ga., Cary Chapman & Co., 672 Whitehall St., JAckson 4-7388 Minneapolis, Minn., The Heimann Co., 1711 Hawthorne Ave., FEderal 2-5457 • Toronto, Ont., Canadian General Electric Co., Ltd., LEnnox 4-6311




dewpoint temperature below - 90°F.



#### ENGINEERED COMPONENTS for the Electronics


for the Electronic Industry



Chemelec Insulators



Chemelec Sockets



**Chemelec Connectors** 



**Plastic Shapes and Parts** 

#### **RELIABILITY AT ITS ULTIMATE**

Garlock electronic components are your assurance of reliable performance in missile guidance, fire control, radar, television . . . electronic systems that operate *only* as well as the smallest component within them. Garlock offers one of the most complete lines of engineered electronic components and materials available from a single source:

Chemelec\* Standoff & Feed-Thru Insulators are made of Teflon† because of its exceptional dielectric properties, chemical inertness, resistance to extreme temperatures  $(-110^{\circ}F$  to  $+500^{\circ}F)$ . The insulators resist severe shock and are designed for quick and easy installation. They are available in all sizes, designs and colors.

**Chemelec Connectors** are Teflon-insulated for outstanding high frequency service with plug-in crystal diodes, plug-in coils and forms, test probes. Once installed, they require no further adjustment or hardware. Male and female in .040, .050, .064 pin size, female also in .080 size.

**Chemelec Miniature Tube Sockets** are specifically designed for use where high or low ambient temperatures or frequency stability are problems. Body insulating material of Teflon and Kel-F\*\*; all metal parts are precision made and plated to JAN specifications. Available in all sizes, types.

Plastic Stock Shapes and Intricate Parts, inserts, thin sections, threaded parts and precision tolerances are available. Excellent facilities and experience in compression and injection molding, extruding, machining of Nylon, Teflon, Delrin<sup>†</sup>, Kel-F.

Garlock facilities and personnel are also at your disposal for design and development of new electronic products.



A complete engineering staff keeps abreast of new developments in electronics, reviewing latest techniques and materials thoroughly before introducing them into component products. Find out more about what Garlock offers. Contact the Garlock Electronic Products representative near you. Call him, or write for Catalog AD-169, Garlock Electronic Products, The Garlock Packing Company, Camden 1, New Jersey.

\*Registered Trademark \*\*Trademark, Minnesota Mining & Manufacturing †DuPont Trademark

# See Gertsch for any problem in precision AC or DC Voltage dividers

complete Gertsch line includes over 500 models featuring:

- up to 0.0001% accuracy and linearity
- high input impedance
- Iow effective series impedance
- very low phase shift

for bridging, isolation, and calibration

applications. Many models are available,

varying in turns ratio, input impedance,

and other specifications.



ST-100 SPECIAL-PURPOSE

TRANSFORMERS



#### SHAFT-DRIVEN RATIOTRANS

-precision shaft-angle to AC voltage ratio transducers, with the ratio reading visible through a window in the case. Units are driven by 1/4" shafts, and supplied in either 100-turn or 1000-turn models.

RRT-1

You can set the ratios on these RatioTrans® by almost any method, from simple, manual in-line decade, to coaxial rotary set, proportional shaft position, or remote binary selection. MIL Spec. types available.



3211 S. La Cienega Blvd., Los Angeles 16, Calif. • UPton 0-2761 • VErmont 9-2201



RT-10R

#### STANDARD RATIO TRANSFORMERS

Sixteen models of these variable, tapped auto-transformers are stocked, differing in mechanical construction, type of switching, number of decades, degree of resolution, max. input voltage, etc. Models available, either case-or rack-mounted.



#### RATIO STANDARDS

Combining precision RatioTrans with precise resistive dividers, these units offer the ultimate in accuracy (up to .0001%), for calibration and instrument standard labs. Available in 6 combinations of AC & DC sections.



#### PROGRAMMABLE RATIOTRANS

for automatic checkout equipment and other programmed devices. Gertsch units accept decimal, binary-coded decimal, or straight binary data arriving from punched tape or card readers. Units can be designed to customers applications.



#### COAKIAL SWITCH RATIOTRANS

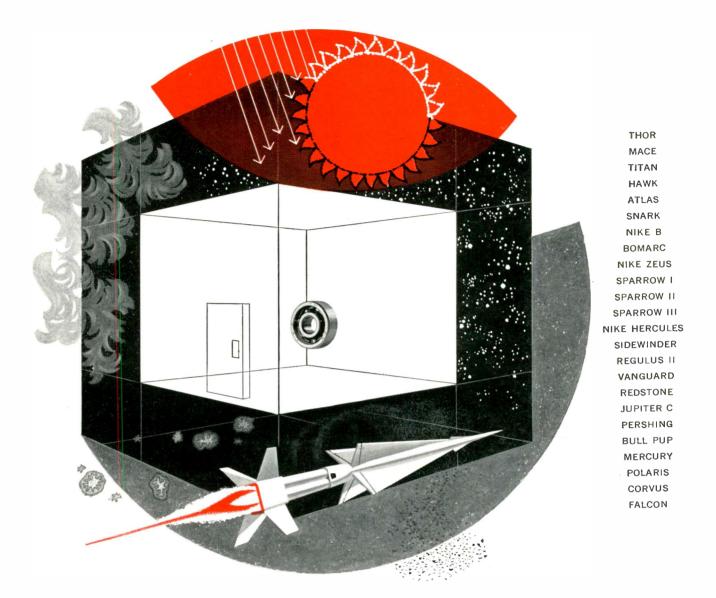
These small, lightweight instruments, accurate to 0.001%, are available in 2 typesone a 21/2-diameter unit qualified to MIL Specs... the other a 31/2"- diameter unit, economically priced.

CRT models are available with up to 6-place resolution, and in a variety of decade ar-rangements. Gertsch also manufactures a complete line of coaxial-switched resistive dividers.

All types are built to typical Gertsch quality standards ... many units available from stock. Requests for specials will be given prompt attention. For complete data, request Cat. #6.

# **NOW!** FOR 50-60 c/s WORKING **MURHEAD** SERVOMOTORS AND MOTOR TACHOMETERS

and


In the standard frame sizes adopted by Bu. Ord. and R.A.E. for 400 c/s types, a range of 60 c/s servomotors and motor tachometers, suitable for 50 c/s operation also, is now in production. These efficient, high torque inertia ratio motors are useful wherever a mains supply is available.

Size 18, 15 and 11 two phase motors are being produced similar to the Mark 8 Mod. 1, Mark 7 Mod. 1, and Mark 14 Mod. 2 400 c/s counterparts and motor tachometers similar to the Mark 16 Mod. 0 and Mark 12 Mod. 0. A 60 c/s size 11 motor tachometer, without a Bu. Ord. parallel, is also available.

These motors may be operated from a two phase supply or single phase supply split with a capacitor. Windings to suit customers' voltage requirements can be supplied.

| 60 c/s Information                                                            |        |            |          |       |                 |                   |                    |                                |  |
|-------------------------------------------------------------------------------|--------|------------|----------|-------|-----------------|-------------------|--------------------|--------------------------------|--|
|                                                                               |        | Type       |          |       | Stalle<br>Torqu |                   | $No\ load$ $Speed$ | Output Voltage per 1000 r.p.m. |  |
| Motor                                                                         |        |            |          |       | ŕ               |                   | 1                  | per recerption                 |  |
| Size 18                                                                       |        | 18M10B4    |          | 3.5   | oz.             | in                | 3300               |                                |  |
| Size 15                                                                       | • •    | 15M10A4    | • •      | 1.45  | ,,              | 1.4               | 3300               |                                |  |
| Size 11                                                                       | 14.    | 11M10A10   | • •      | 0.63  | ,,              | 24.4              | 3300               |                                |  |
| Motor<br>Tachome                                                              | ter    |            |          |       |                 |                   |                    |                                |  |
| Size 18                                                                       |        | 18M10D6    |          | 3.5   | oz.             | in                | 3000               | 1.25                           |  |
| Size 15                                                                       |        | 15M10B8    |          | 1.45  | ,,              |                   | 3000               | 1.25                           |  |
| Size 11                                                                       | 11     | 11M10E1    |          | 0.6   | ,,              |                   | 3200               | 0.2                            |  |
|                                                                               |        | MUIRH      | EA]      | D IN  | STI             | RUME              | INTS INC           |                                |  |
| 4                                                                             | 141 L  | exington A | Ave      | nue,  | Nev             | v Yorl            | k 17, N.Y          | ., U.S.A.                      |  |
|                                                                               |        |            |          |       |                 | Hill 2-           |                    | ,<br>,                         |  |
| MUIR                                                                          | HEA    | D INSTR    | UM       | IEN   | гs т            | IMIT              | ED. Strat          | tford Ontario                  |  |
| MUIRHEAD INSTRUMENTS LIMITED, Stratford, Ontario,<br>Canada. Tel: 3717 & 3718 |        |            |          |       |                 |                   |                    |                                |  |
| MUIRHEAD & CO. LIMITED, Beckenham, Kent, England.                             |        |            |          |       |                 |                   |                    |                                |  |
| Tel. Beckenham 4888                                                           |        |            |          |       |                 |                   |                    |                                |  |
|                                                                               | la l   | 416/3      |          |       |                 |                   |                    | and the second                 |  |
| 220                                                                           | HE THE |            |          |       |                 |                   |                    |                                |  |
|                                                                               |        |            | Contra P | e ton | 1000            | No. of Lot of Lot |                    |                                |  |





# Improve Miniature Ball Bearing Reliability!

In these rooms the most infinitesimal air-borne contaminants are scientifically whisked from the air . . . away from superprecision miniature ball bearing parts.

New Departure introduced the White Room nearly twenty years ago. And today, New Departure's concept is a pace-setting standard in miniaturization industries. At N/D, miniature ball bearings are completely assembled in properly humidified, temperature controlled atmospheres that approach fantastic levels of cleanliness. The most advanced air filter systems available are employed. In addition, pressurized access air locks and individual counter-top pressurized chambers are used by N/D's skilled technicians during

final assembly and statistical inspections. Air-borne particles rarely ever touch bearing surfaces.

All N/D White Room equipment is of the most recent development and design—incorporating the highest order of today's technological know-how and reliability methods. These are just a few reasons why more and more major missile contractors rely on New Departure Miniature and Instrument ball bearings. If you are working on a new miniature ball bearings application where reliability is critical, include an N/D Sales Engineer in your design discussions. Call or write Department L.S., New Departure Division, General Motors Corporation, Bristol, Connecticut.




# Another BABCOCK FIRST! New BR-1SZ 5 MW MINIATURE RELAY

Only 5 mw of power is required to operate the new Babcock BR-1SZ miniature 1¼ oz. relay. This extremely versatile, hermetically sealed relay is ideal for airborne and ground applications where requirements include very critical pull-in to drop-out ratios, long life and temperature ranges from -65°C to +125°C. Relatively inexpensive compared to other sensitive relays, the BR1-SZ and BR2-SZ Relays operate within the same performance parameters as standard versions of the BR-1S and BR-2S. AN/USD-1 surveillance drones, RP-77 target drones, and thousands of telephone carrier systems today utilize BR-1 and BR-2 type relays, indicating accuracy and reliability of the highest order. The new BR-1S series meets MIL R 5757C, 6106C and 25018, and is available in a variety of mounting and header configurations. Bulletin BR-593 available upon request.



BABCOCK BR-1SZ APPROX. ACTUAL SIZE



#### **Books**

#### Encyclopedia on Cathode-Ray Oscilloscope and Their Uses, 2nd Ed.

By John F. Rider and Seymour D. Uslan. Published 1959 by John F. Rider, Publisher, Inc., 116 W. 14th St., New York 11. More than 1350 pages. Price \$21.95.

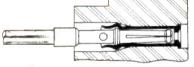
This new edition presents worldwide known art on the application of this extremely valuable device in all areas of research.

The 2nd edition is a greatly expanded version of the extremely popular 1st edition. No known area of application of the cathode-ray oscilloscope is left uncovered. The authors have succeeded in serving the beginner as well as the experienced engineer. Both the elementary and advanced concepts of the tube are treated.

The explanations of the electrical organization of the device are very detailed, but not any less detailed are the many chapters devoted to uses. Such information was gathered from research organizations of all kinds, thus making the contents truly encyclopedic.

Certain chapters contain information not to be found anywhere else. For instance, one chapter deals with square waveform testing of amplifiers. The response curves are described which will produce indicated changes in the shape of the output signal. The amplifier response curve responsible for the change in waveform as well as the resultant waveform is illustrated.

#### Nature and Properties of Engineering Materials


By Zbigniew D. Jastrzebski. Published 1959 by John Wiley & Sons, Inc., 440 Fourth Ave., New York 16. 571 pages.

This book approaches the fundamental nature of materials from an engineering viewpoint. It provides the reader with a basic knowledge necessary for intelligent selection and use of materials for specific engineering applications and prepares him to solve materials problems of the future. Furthermore, this approach offers a close link between the basic sciences of chemistry, physics, and engineering practice.

The book begins with a consideration of the basic concepts of interatomic and intermolecular forces and their relationship to the structural characteristics of both crystalline and amorphous materials. This is followed by the discussion of such phenomena as diffusion, crystallization, phase transformation, and phase equilibria. These principles are further developed in the subsequent chapters which consider more specifically the characteristic properties and uses of a wide variety of engineering materials.

# SNAP-IN .... SNAP-OUT CONTACTS NO TOOLS REQUIRED R $\mathbf{E} \in \mathbf{N}$ **RE-ENTRANCY MINIATURE** REMI means the best in ... REmovability, REliability, REentrancy SLEEVE Quick.. **REMI-BSL** Individual contacts can be removed or replaced readily without tools $\bigcirc$ Simple REMI-BMSL Individual contacts are wire-

crimped away from connector, facilitating operation.



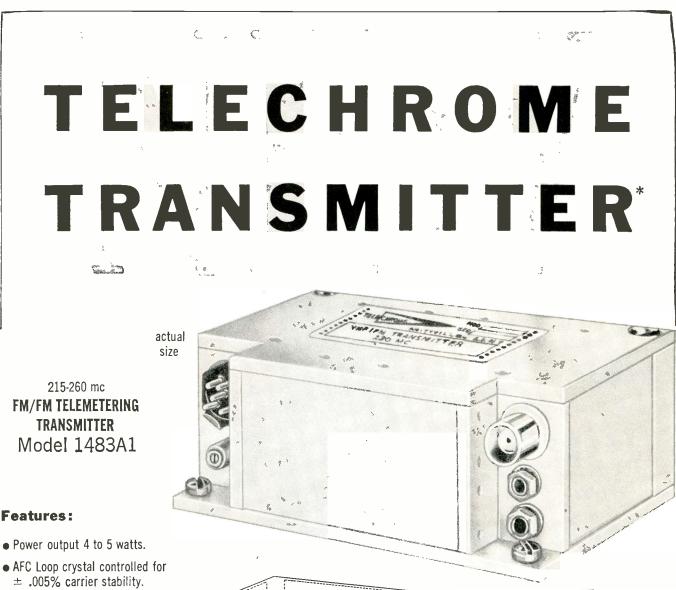
#### Sure...

Light hand pressure seats female or male contact firmly in sleeve. Sleeve acts as guide for mating male contact, assuring ease of connector mating and operational stability.

FEMALE CONTACT

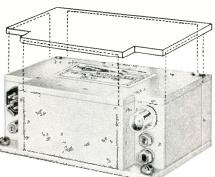
- Mechanical stresses are confined between metallic elements rather than between metal and plastic insulation
- Insulation
  Sleeve, which is part of connector block, allows for interchangeability of male and female contacts on the same connector, at will.
  Additional polarization and keying can be accom-plished with ease by use of dummy pins.
  Conforms to Mil Spec MIL-C-25955.

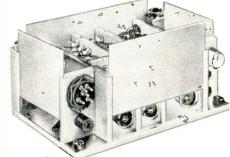
- Contacts are removed from mating or terminal side of connector at your discretion without tools.


REMI

- Terminals are designed to meet all types of crimp-on requirements. Terminals can be provided with solder cup, turret, eyelet design.
- All REMI design features combine to offer the ultimate in reliability under extreme environmental conditions.

# U.S. COMPONENTS, INC. Associated with U.S. Tool & Mfg. Co., Inc. 454 East 148th St., New York 55, N.Y. CYpress 2-6525


**U. S. and Foreign Patents applied for** 


USO



- Modular construction.
- Silicon Transistors for Low Noise and High Efficiency.
- Modulation Distortion Less than 1%.
- Very low spurious emission
- Plug-in tubes
- -40°C to +100°C
- Size 15/8" x 23/4" x 4".

Write for Data Sheets

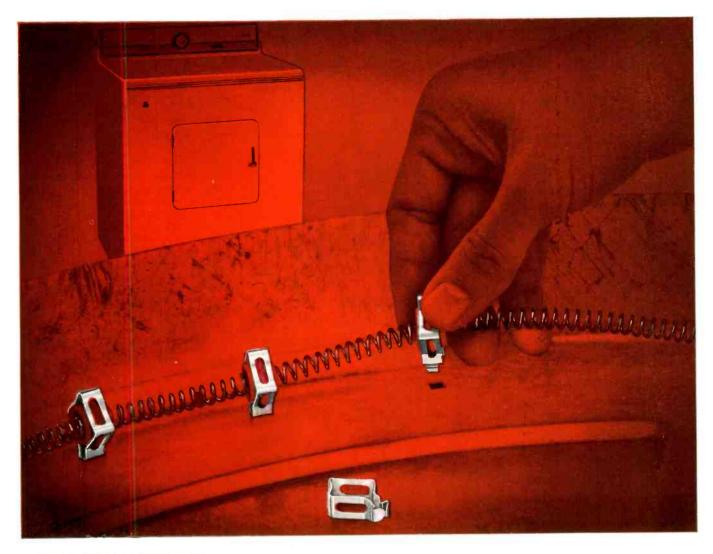




Modular construction

All circuitry mounted on rugged bulkheads. Each may be removed individually for servicing or replacement. Spare modules available. Top of case and side panels removable separately for easy access to all parts.






\*Even transmits in Russian.

**TELECHROME MANUFACTURING CORP.** 28 RANICK DRIVE AMITYVILLE, N.Y. Lincoln 1-3600

Cable Address: COLORIV TWX: AMITYVILLE NY2314

WESTERN ENGINEERING DIVISION • 13635 Victory Blvd., Van Nuys, Calif., STate 2-7479 MIDWESTERN ENGINEERING DIVISION • 106 W. St. Charles Rd., Lombard, III., MAyfair 7-6026 SOUTHWESTERN ENGINEERING DIVISION • 4207 Gaston Ave., Dallas, Tex., TAylor 3-3291



Engineered by Tinnerman ...

## **SPEED CLIPS**<sup>®</sup> reduce costs, simplify assembly and servicing on Maytag "Halo of Heat" Dryer

Clothes are dried efficiently in the famous Maytag "Halo of Heat" automatic dryer. And now the quality of the "Halo of Heat" dryer is even better than ever because its unique circular heating element is fastened quickly, securely by 22 special Tinnerman SPEED CLIPS developed by joint efforts of Tinnerman and Maytag designers.

Each one-piece SPEED CLIP eliminates a separate welding operation on the "Halo of Heat" assembly. Various screw-driving operations formerly required on Maytag's assembly line to capture the ceramic insulator and secure the mounting clamp were also eliminated, with equally interesting reductions in cost. Now, the stainless steel, vibration-proof fastener is snapped in place with simple "buttonhook" action. No special skills or equipment are required. Assembly and parts costs have been reduced...substantially! Serviceability in the field has been improved. A free Tinnerman Fastening Analysis of your own product can show you where similar assembly and cost-saving advantages are possible. Call your Tinnerman representative—he's listed in the Yellow Pages under "Fasteners". Or write to:

TINNERMAN PRODUCTS, INC. Dept. 12 • P.O. Box 6688 • Cleveland 1, Ohio



CANAOA: Domininn Fasteners Ltd., Hamilton, Ontario, GREAT BRITAIN: Simmonds Aerocessories Ltd., Treforest, Wales, FRANCE: Simmonds S. A., 3 rue Salomon de Rothschild, Suresnes (Seine). GERMANY: Mecano-Bundy GmbH, Heidelberg.

G

Not a worry || in the world...

# THIS IS ONE CRIMP THAT NEVER FAILS!

This Deutsch-designed crimp, used for Deutsch DS miniature snap-in connectors, consists of two series of four indents. It assures a crimp that is stronger than AN #18 wire itself. Special Deutsch crimping tools (manual or automatic) make the crimping simple, swift and sure.

**WHAT'S MORE**...Deutsch-designed tools solve the problems of inserting and removing contacts, quickly and easily.

#### And . . . just glance at these Deutsch DS connector specs :

- 7 shell sizes, with alternate clocking and insert arrangements
- exclusive Deutsch ball-lock coupling
- superior interfacial seal
- silicone inserts; no shrinkage, bonding or reversion
- temperature range -67° to in excess of 300° F
- seal before electrical contact
- interchangeable with existing Deutsch DM (MS) miniatures and hermetics
- meet all applicable requirements of MIL-C-26482

So why worry? For details on completely reliable snap-in type connectors, contact your local Deutsch representative or write for data file A-2.



#### The Deutsch Company

ELECTRONIC COMPONENTS DIVISION Municipal Airport • Banning, California

## Books

#### The Theory of Optimum Noise Immunity

By V. A. Kotel'nikov. Translated from the Russian by R. A. Silverman, Published 1959 by McGraw-Hill Book Co., Inc., 330 W. 42nd St., New York 36. 140 pages, Price \$7.50,

In 1947 the author, a communications engineer already well-known for his work on sampling theorems for band-limited functions, published doctoral dissertation that has а proved to be one of the most important Soviet contributions to the statistical communications art. Because this work was virtually unknown outside the U.S.S.R. until quite recently, few Western scientists were aware that Dr. Kotel'nikov had developed a statistical analysis of communication problems (using what we now call decision theory techniques), which anticipated by several years much of the work by Western communication experts.

The author's approach is always that of a practical engineer. He invokes only the most elementary notions of probability theory; the steps in his analysis are easy to follow; and his primary intention is to establish the behavior of communications systems at a level that is of practical use to the engineer. The development is also notable for its lack of dependence on advanced mathematics. The reader who is passingly familiar with Fourier series, discrete and continuous probabilities and probability densities (simple, joint, and conditional), and the notion of statistical independence will have no trouble with the material.

The author made extensive use of geometric models of the signalling and detection process as operations on vectors in multi-dimensional space, an artifice that Shannon introduced later. The reader will find these geometric interpretations very helpful. The subject matter of almost every chapter is reviewed in terms of the geometric model at the end of the chapter.

#### Economic Control of Interconnected Systems

This book has as its primary thesis the treatment of mathematical methods, computers, and controllers to obtain the optimum economic operation of interconnected electric utilities systems. The theories and application featured represent pioneering applications of optimalizing computer control in continuous process industry.

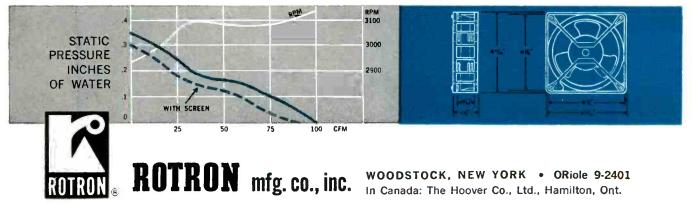
THE DEUTSCH COMPAN

By Leon K. Kirchmayer. Published 1959 by John Wiley & Sons, Inc., 440 Fourth Ave., New York 16. 207 pages.

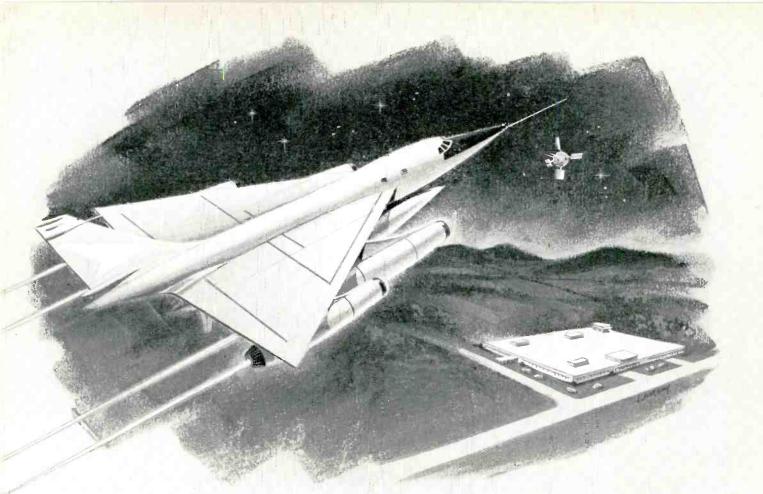


*most economical, most compact, most efficient cooling fan of its size!* 

# ROTRON MUFFIN. FAN


Unlike conventional or phonograph motor assemblies, the MUFFIN FAN boasts a high air performance of 100 CFM free delivery from a basic package only 4-11/16'' square and  $1\frac{1}{2}''$  deep and weighing just 1.2 pounds.

Power requirement is 105 to 120 VAC, 60 cycles, single phase. Electrical connections made to convenient terminal lugs accepting standard 18 gauge lamp cord. Completely original aero-dynamic design permits operation through a dust filter and tightly packed electronic equipment. Airflow instantly reversible by turning fan end-for-end.


The MUFFIN FAN is a completely integrated cooling unit

consisting of propellor, stator assembly and venturi block. It is also available in combination with a grille assembly and all-purpose mounting clips to form a **complete** package. Unbelievably thin, the MUFFIN FAN can be installed in seconds in cabinet cutout, imposing practically no space requirement within the enclosure.

Cool economically...the MUFFIN FAN can be supplied at a price less than \$8.00 per unit in quantity. The low cost, high performance, compact size and maintenance-free design provide efficient air cooling previously unobtainable. Write for complete details...



ELECTRONIC INDUSTRIES · February 1960



# Expanding a capability.

Raytheon's Airborne Electronic Subdivision this month occupies a new multi-million dollar research and development laboratory.

Creative effort within this new facility will be directed at featherweight transistorized Doppler radars; altimetry and terrain clearance techniques; satellite weather radar studies; airborne early warning radars; missile boost, flight and terminal guidance problems; radiometry; and other areas.

Like the B-58's sophisticated search and Doppler radars, the systems, subsystems or equipments developed will find application in manned aircraft, missiles, drones, and a variety of space carriers.

To engineers and scientists with particular interest in this work, the new laboratory offers complete professional satisfaction in an academic environment. For immediate information on select staff appointments, write Mr. Donald H. Sweet, Engineering & Executive Placement. Raytheon, 624 T Worcester Road, Framingham, Mass. (suburban Boston).

#### AIRBORNE ELECTRONIC GOVERNMENT EQUIPMENT DIVISION





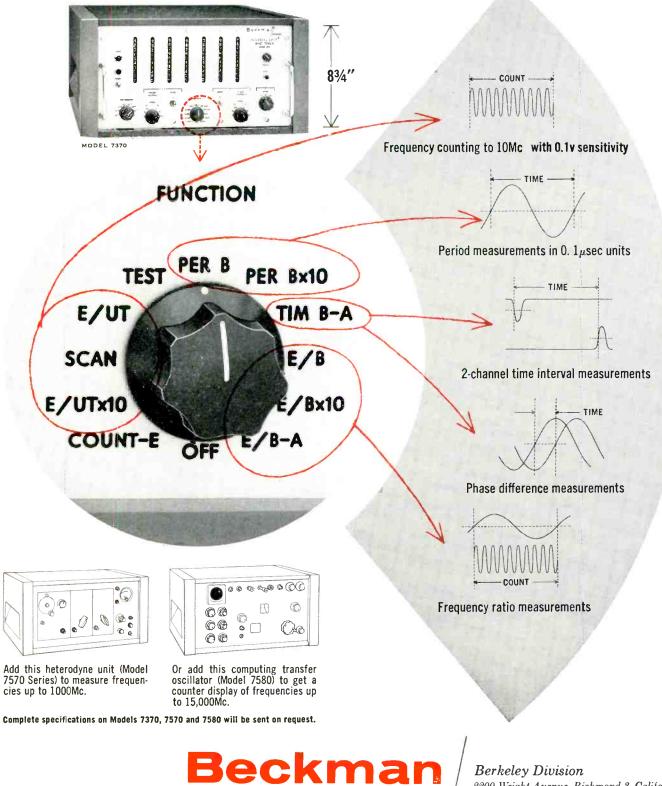






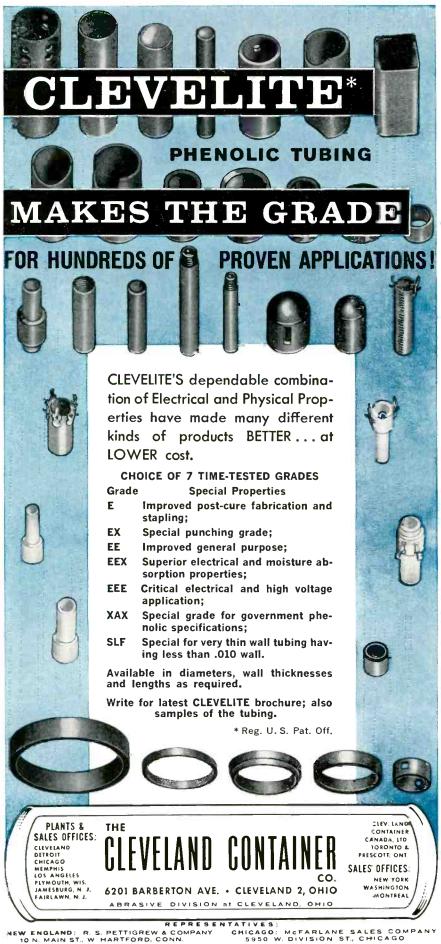
EXCELLENCE IN ELECTRONICS

AIRBORNE ELECTRONIC


SIGNAL

SYSTEMS MANAGEMENT ELECTRONIC

SANTA


BARBARA

# **10 Mc COUNTER** does everything without plug-ins



2200 Wright Avenue, Richmond 3, California a division of Beckman Instruments, Inc.

T21



REPRESE NEW ENGLAND: R. S. PETTIGREW & COMPANY 10 N. MAIN ST., W HARTFORD, CONN. NEW YORK: THE MURRAY COMPANY, 604 CENTRAL AVE., E. ORANGE, N. J. PHILADELPHIA: MIDLANTIC SALES COMPANY 9 E. ATHENS AVE., AROMORE, PA.

S. MARIPOSA AVE., LOS ANGELES CANADA - PAISLEY PRODUCTS OF CANAL LTD., BOX 159 - STATION "H", TORONTO

Books

#### Electron Physics

By O. Klemperer, Ph.D. Published 1959 by Academic Press Inc., Publishers, 111 Fifth Ave., New York 3. 248 pages. Price \$7.00.

This work is basically an extension of the lecture courses which Dr. Klemperer has delivered for many years to Honours students at Imperial College, University of London. As such it is a text for undergraduate students, though, to make it as comprehensive as possible, some sections have been included which would suit a graduate course. In Part I, the author has added material, carefully selected from his experience in industrial research, which provides the fundamental equipment required in electronic engineering and serves the needs of other disciplines which have a practical bias.

This volume is the physics of the free electron. It includes primarily the subjects of electron dynamics and electron optics and deals with the interaction of free electrons with electromagnetic fields and with matter, including problems of electron emission and of electron collisions with atoms. In a wider sense, electron physics is also concerned with "quasi-free" electrons, such as conduction electron in metals and in semiconductors, which in many respects can be treated like free electrons.

#### **Books Received**

#### Annual Proceedings, JTAC

Published jointly by the Institute of Radio En-gineers, 1 E. 79th St., New York and Electronic Industries Assoc. Price \$5.00. This is volume XVI. It covers official correspon-dence between the FCC and the JTAC and ap-proved minutes with a period July 1, 1958 to June 30, 1959.

#### Effects of Nuclear Radiation on Men and Materials

By T. C. Helvey. Published 1959 by John F. Rider Publisher Inc., 116 W. 14th St., New York 11. 64 pages, paper bound. Price \$1.80.

#### Low Frequency Amplifier Systems

Edited by Dr. A. Schure. Published 1959 by John F. Rider, Publisher Inc., 116 W. 14th St., New York 11. 80 pages, paper bound. Price \$1.80.

#### R-L-C Components Handbook

By David Mark. Published 1959 by John F. Rider Publisher Inc., 116 W. 14th St., New York 11. 104 pages, paper back. Price \$3.50.

#### 1959 Registry of Common Carrier and Miscellaneous Radio Systems

Published 1959 by Communication Engineering Book Co., Monterey, Mass. 58 pages, paper bound. Price \$3,00.

#### Transistor Manual, 4th Edition

Published 1959 by General Electric Co., Semicon-ductor Products Dept., Charles Bldg., Liverpool, N. Y. 227 pages, paper back, spiral bound. Price \$1.00.

ELECTRONIC INDUSTRIES · February 1960

# Here's how to pick the best DIODES for your money

Price is no clue when diodes sell for about the same, and just **looking** at them tells nothing. But if you ask the right questions about the three key factors in the production of **quality** germanium gold bonded diodes, you have your clues to more long-term reliability for your money. Here they are:

#### BAKING TIME AND TEMPERATURE

bear a direct relationship to long-term stability. You get a measure of the quality of diodes by asking: "How long do you bake, and at what temperature?" (All GT diodes are baked at 140°C for at least 96 hours—the highest and longest in the industry!)

#### STRICT, STATISTICAL, HISTORY LOGGING

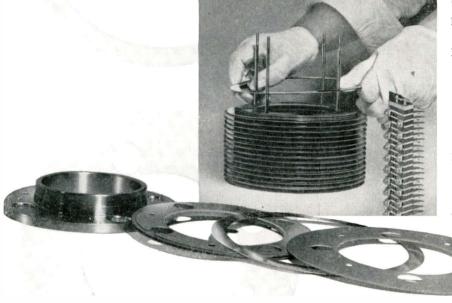
traces the progress of every single wafer made from each ingot of germanium. At GT, if a few wafers fail to pass the stringent GT quality tests along the way, then all from the ingot are suspect and can be identified and pulled out. There are no "stowaways" in a shipment of GT quality diodes.

#### LEVEL OF TESTING STANDARDS

reveals the level of quality. Ask about "everyday" test standards. (In the GT Seal Test, diodes are submerged in a penetrant-dye solution for 24 hours under 75 psi. This test is so sensitive that it will reveal a leak so small it would take over 300 years for 1 cc of gas to diffuse through the case.) All GT quality tests – 100% electrical, 100% shock and vibration, and 100% temperature cycling – are at the highest industry level... and as a final mark of quality, the color bands on GT Germanium Gold Bonded Diodes are baked on to stay.

> GT is equipped to supply diodes tested to individual customer requirements, such as JAN Qualification Inspection Tests and many others. To get the full measure of quality in Germanium Gold Bonded Diodes, see your GT representative; or write directly to the company with know-how NOW.




FOR IMMEDIATE DELIVERY FROM STOCK. CONTACT YOUR NEAREST AUTHORIZED GENERAL TRANSISTOR DISTRIBUTOR OR GENERAL TRANSISTOR DISTRIBUTING CORP., 91-27 138TH PLACE, JAMAICA 35, NEW YORK. FOR EXPORT. GENERAL TRANSISTOR INTERNATIONAL CORP., 91-27 138TH PLACE, JAMAICA 35, NEW YORK. PRECISION MAGNETIC RECORDING HEADS AVAILABLE FROM GENERAL TRANSISTOR WESTERN CORP., 0110 VENICE BLVD., LOS ANGELES, CALIF.

GEŃ

AN ANALYSIS covering over four thousand custom slip ring assemblies designed and produced by Breeze Corporation during the past seventeen years has shown that a substantial number of these requirements have been for assemblies having similar size and operating characteristics.

Now . . . to meet these repetitive requirements more rapidly and at reduced costs, Breeze offers seven standard size slip rings with ring envelope diameters from 1" through  $10\frac{1}{2}$ ".

# SLIP RING SIZES NOW in stock!



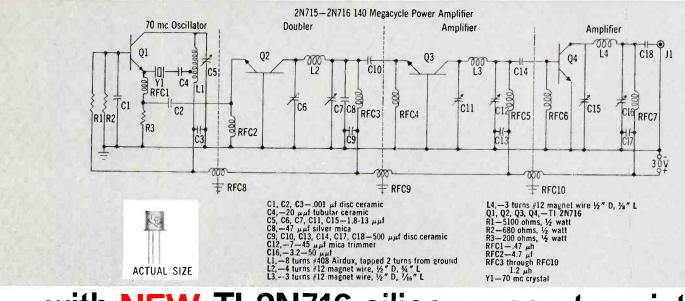
#### FEATURES

- Ring Envelope Diameters: 1", 1<sup>3</sup>/<sub>4</sub>", 2<sup>5</sup>/<sub>8</sub>", 4<sup>7</sup>/<sub>8</sub>", 9<sup>9</sup>/<sub>6</sub>", 10<sup>1</sup>/<sub>2</sub>".
- Hard coin silver rings and silver graphite brushes for excellent electrical properties and long life.
- Fabricated construction (1) Provides superior resistance to shock, vibration, environmental conditions.

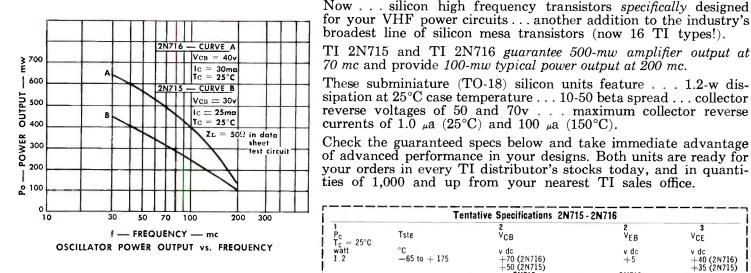
(2) Permits addition of rings when required.

- Flat stacked assembly with rings mounted above and below each barrier provides maximum number of rings in shortest axial length for rated capacities.
- Assemblies can be stacked on a common shaft to produce a multiple unit.

You'll want a copy of the new Breeze catalog 66 SR which contains complete details on these standard units. Catalog 66 SR also describes a wide range of custom units and incorporates a design guide section. Write for your copy today.


#### BREEZE M A R K

#### BREEZE CORPORATIONS, INC.


700 Liberty Avenue, Union, New Jersey • Telephone: MUrdock 6-4000

Manufacturers of electrical, electro-mechanical and hydro-mechanical components and systems and fabricated metal products.

# How to design 250 mw at 140 mc transistorized power amplifiers



# ...with NEW TI 2N716 silicon mesa transistors



- This power rating for 1000 hours expected life at a case temperature of 25°C derated linearly to +175° case temperature at the rate of .125°C per mw.
   Maximum voltage ratings at an ambient temperature of +25°C.
   BV<sub>CED</sub>: This is the voltage at which h<sub>FB</sub> approaches one when the emitter-base diode is open circuited. This value may be exceeded in applications where the dc circuit resistance (R<sub>BE</sub>) between base and emitter is a finite value. applications where the occurrencessance (NBE) services due to emitter is a finite value. When the emitter-base diode has a reverse voltage applied, peak collector to emitter voltage equal to BV<sub>CBO</sub> minus V<sub>EB</sub> may be allowed. Such conditions may be encountered in class B or C amplifiers and oscillators.

\*Pulse Measurement \*\*Specify IEBO on commercial data sheet

\*\*\*Specify ICBO on commercial data sheet

 $\frac{(V_{CB} = 30 \text{ v dc})}{(I_C = 25 \text{ ma dc})} (I_C = 25 \text{ ma dc}) (P (AC) = 300) (F = 70 \text{ mc})$ gain (AC) = 300 mw =70 mc Texas

 $\dot{P}_{c}$ T<sub>c</sub> = watt 1.2

 $= 25^{\circ}C$ 

Parameter

\*\*BVEBO

\*\*\*BVCB0

\*VCE(sat)

Amplifier

Transducer

Power Output and

\*hFE

Cob

Tste

°C —65 to + 175

**Test Condition** 

 $EB0 = 100 \ \mu a$ 

 $I_{\text{E}}^{\text{CBO}} = 10 \ \mu \text{ a dc}$ 

 $V_{CE} = 10 v dc$  $I_C = 15ma dc$ 

 $I_C = 15ma$  $I_B = 3ma$ 

 $V_{CB} = 5 v dc$  $I_{E} = 0$ F = 1 mc

 $(V_{CB} = 40 \text{ v dc})$  $(I_C = 30 \text{ ma dc})$  $(P \quad (AC) = 500 \text{ mw})$ (F = 70 mc)



Tentative Specifications 2N715 - 2N716

Max

50

6

2 V<sub>C</sub>B

Min

50

10

300

4

1.2

v dc +70 (2N716) +50 (2N715) 2N715

Тур

3

400

8

INSTRUMENTS NCORPORATED SEMICONDUCTOR-COMPONENTS DIVISION 3500 N. CENTRAL EXPRESSWAY POST OFFICE BOX 312 . DALLAS, TEXAS

ν<sub>EB</sub>

v dc +5

2N716

Тур

3

600 7.5

Min

70

10

500

1.2

VCE

Max

50

6

v dc +40 (2N716) +35 (2N715)

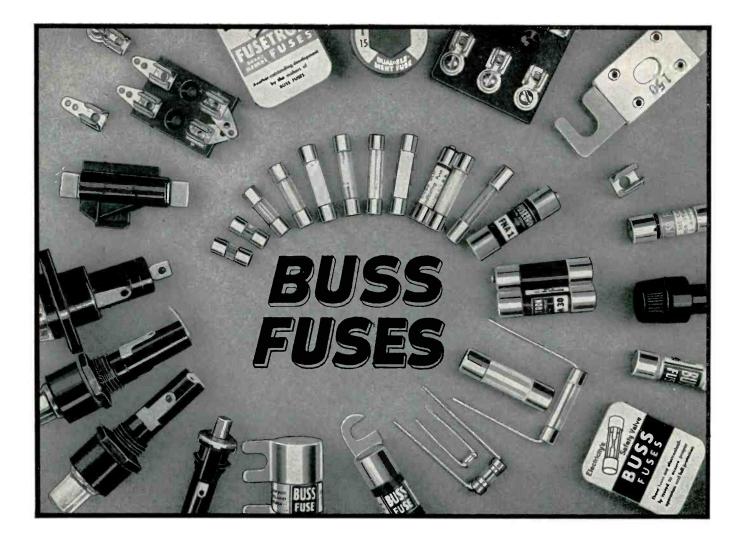
Units

v do

v dc

v dc

μµf


mw db

лw

db

the first silicon transistor manufacturer

Circle 47 on Inquiry Card



# TWO-WAY PROTECTION

When you specify BUSS or FUSE-TRON fuses for the products you manufacture, you not only provide the finest electrical protection possible but you also help protect your company's reputation for quality products.

**Remember:** No matter how good your product is, a poor quality fuse that opens needlessly deprives a customer of the use of your device, — or a fuse that does not protect may permit costly damage to occur. In either case you may lose a customer's goodwill and future business. Why take the risk when you know you can depend on BUSS and FUSE-TRON fuses?

Every fuse is tested in a sensitive electronic device that automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

#### BUSS — the one source for all your fuse needs . . .

To meet all your fuse needs, the BUSS line is most complete, — including a companion group of fuse clips, blocks and holders.

Dependable BUSS Fuses safeguard both your product... and helps enhance its reputation for quality

> To help you on special problems in electrical protection . . . BUSS places at your service the facilities of the world's largest fuse research laboratory and its engineering staff. If possible, our engineers will help you select a fuse readily available in local wholesalers' stocks so that your products can be easily serviced.

> For more information on BUSS and FUSETRON Small Dimension fuses and fuseholders, write for bulletin SFB.

BUSSMANN MFG. DIVISION, McGraw-Edison Co. University at Jefferson, St. Louis 7, Mo.

BUSS fuses are made to protect - not to blow, needlessly. BUSS makes a complete line of fuses for home, farm, commercial, electronic, electrical, automotive and industrial use.



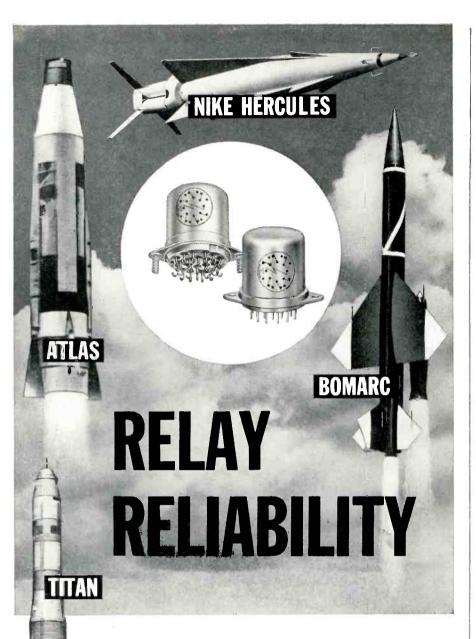
Circle 49 on Inquiry Card-



Subminiature ... Proven Reliability

# TRIMPOT® MODEL 220

As many as 17 of these compact units can be mounted in a space of just one cubic inch. Designed for printed circuits and modular assemblies, Trimpot Model 220 measures less than 3/16" x 5/16" x 1". Power rating is 1 watt and maximum operating temperature is 175°C. This Potentiometer meets or exceeds Mil-Specs for humidity, salt spray, fungus, sand and dust, as well as acceleration, vibration and shock. Self-locking 15-turn shaft insures sharp, stable settings...exclusive Silverweld® fused-bond termination and ceramic mandrel provide extreme temperature stability. The Model 220 is available in a wide variety of resistance ranges and a choice of two terminal types—gold-plated Copperweld wire or insulated stranded leads.


Stocked by leading electronic distributors across the nation, these units are ready for immediate delivery. Write for complete technical data and list of stocking distributors. AVAILABLE AS PANEL MOUNT UNIT (illustrated at right) with same specifications.





Bourns, Inc., Trimpot Division 6135 Magnolia Ave., Riverside, Calif. Plants: Riverside, California and Ames, Iowa

Exclusive manufacturers of Trimpot®, Trimit®. Pioneers in potentiometer transducers for position, pressure and acceleration.



# ..where it counts!

Best proof of Dunco Type FC-6 reliability is the fact that these sturdy little relays are specially designed to play important parts in all of the missile programs illustrated above and several more besides.

Type FC-6 Relays are spotlessly clean. They have a new and outstandingly dependable contact material, and include unique design features that provide positive protection against extreme vibration and shock.

Dunco Bulletin FC gladly sent on request Member, National Assn. of Relay Manufacturers STRUTHERS-DUNN

#### STRUTHERS-DUNN, Inc., Pitman, N. J.

Sales Engineering Offices in: Atlanta + Boston + Buffalo + Chicago + Cincinnati + Cleveland + Dallas + Dayton + Detroit + Kansas City + Los Angeles + Montreal + New Orleans + New York + Pittsburgh + St. Louis + San Francisco + Seattle + Toronto

## Letters

#### to the Editor

#### "Strain Calibrator"

Editor, ELECTRONIC INDUSTRIES:

We are interested in the excellent article, "A Dynamic Strain Calibrator," by Morris Halio which appeared in the December issue. Mr. Halio and your readers may be interested to know that the "new" foil strain gages which he describes have been manufactured and marketed for several years by the Electronics and Instrumentation Division of Baldwin-Lima-Hamilton as a part of their standard strain gage line. They were, as he states, developed in England, and are produced by B-L-H under an exclusive licensing agreement with the British patent holder, Technograph Instruments Company.

Brooks R. Major

Product Supervisor SR-4® Strain Gage Equipment

Baldwin-Lima-Hamilton Corporation

Electronics and Instrumentation Division

Waltham 54, Mass.

#### "Coming Events Calendar"

Editor, ELECTRONIC INDUSTRIES:

"Please accept our thanks for the very fine job Electronic Industries did on the '1960 Coming Events Calendar.' I am certain that many in our industry are planning, as we are, to file the article as a handy reference for coming events in 1960. . . ."

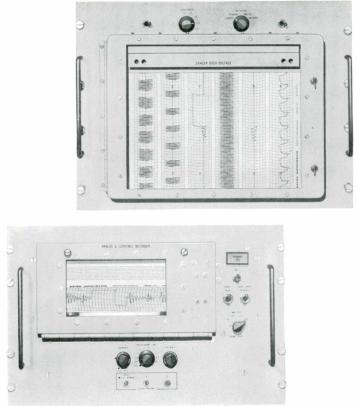
> V. V. Marchi Applications Engineer

#### "June Directory"

Editor, ELECTRONIC INDUSTRIES:

"... Thank you for an everimproving magazine. Your June Directory has been a very useful desk-side encyclopedic source of most difficult to assemble 'elsewhere' type of information. The Military agency section could be possibly expanded next year to include the names and code addresses of top level technical personnel as well as procurement personnel."

> Adolph Warsher, P. E. Consulting Engineer Reliability Control Engineering


Ed: Thanks for this plug and suggestion. We will consider the possibility of including top technical personnel in our June All-Reference issue.

Don't Miss—

"Computing Systems In Process Control"

beginning on page 70

Circle 51 on Inquiry Card-----





## in direct writing recording systems

# only Brushdesignsspecifically for mil specs

From every nut and bolt to the shipping crate, fully militarized Brush Direct Writing Recording Systems are *originally* built to meet military specifications.

That's why they are performing every imaginable task of data acquisition and recording at U. S. and NATO installations throughout the world. These electric writing systems have proved their unexcelled reliability... from the Operations Monitor that will record 120 separate operations at the instant they occur... to the Analog and Sequence Recorder that simultaneously records both analog data and sequential events. And, they are built for maximum performance in the hands of non-technical personnel.

Brush equipment is already at work putting evaluation data in writing for a whole new generation of weapons. When the weapons become operational, Brush MIL Recorders are a vital part of the system. This experience is unique in the industry. *Before* prototype design becomes a problem—call, write or wire Brush for complete details.



# in chart paper

2

# there is a difference

**brush** instruments 37TH AND PERKINS CLEVELAND 14, OHIO

SUHB

Only Brush Chart Paper is designed as an integral component of precisely engineered Brush Direct Writing Recording Systems. The full potential of these systems cannot be realized unless *all* of the original components are utilized. They're engineered as a *total* entity. Imitation papers cannot match the precision ruling, dimensional stability and super-smoothness of Brush Chart Paper. Take no chances—specify *Brush* and you can rely on your records being accurate, permanent, easily read and easily reproduced. Stocks available from strategically located branches and sales representatives throughout the United States and Canada.



Write for samples of actual tracings on Brush Chart Paper. Ask for "Check the Record".

Next month

#### SPECIAL PURPOSE CATHODE RAY TUBES

Another in El's series of Special Staff Reports. The cathode ray tube has found scores of applications beyond those most commonly thought of ... oscilloscopes and picture tubes. Here's the story on many new applications and a thorough treatment of the engineering of tubes to meet new technical specifications from the glass and phosphor to the electron gun.

#### TRANSISTOR INTERCHANGEABILITY CHART—II

A repeat of the very successful chart published last year which went completely out-of-print within sixty days after publication. Updated, this chart uses EIA type numbers as a base, and tells which type numbers are electrically interchangeable and who manufactures them.

#### TUNNEL DIODE AMPLIFIERS

What are the general considerations that are involved in designing tunnel diode amplifiers? A great deal of new equipment now on the drawing boards will be using these devices. This article discusses circuit characteristics of GE's ZJ-56, developmental tunnel diode.

## REVIEW OF THE 1960 ANNUAL RADIO ENGINEERING (IRE) SHOW AND CONVENTION

Summarizing the principal show events, listings of technical papers to be presented, and a review of description of new electronic products being introduced for the first time this year. With so many interesting and important events occuring simultaneously, readers will find this feature a handy reference guide for planning their convention activities.

#### Plus all our other regular departments

Our regular editorial departments are designed to provide readers with an up-to-the-minute summary of world wide important electronic events. Don't miss Radarscope, As We Go To Press, Electronic Shorts, Coming Events, El Totals, Snapshots of the Electronic Industries, El International, News Briefs, Tele-Tips, Books, Rep News, International Electronic Sources, Personals, Industry News, etc.

#### **COMING SOON:**

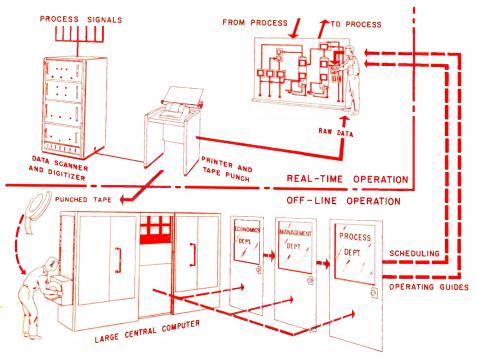
#### RADIO FREQUENCY INTERFERENCE STUDIES

A new series of articles discussing extremely important areas of this most timely subject. Our editors have arranged with more than ten of the most prominent engineers and scientists for this exclusive series. Study areas in this series include: Transmitters, Antennas, Transmission Lines, Receivers, Propagation, Instrumentation, Man Made RFI, Satellite Interference, The Role of Management, etc. This series running in Electronic Industries throughout 1960 will provide valuable and important reference data. Watch for these articles!



Nine general-purpose digital computing systems are commercially available for the control of continuous and batch type industrial processes. For quick reference, these computers are compared in a single table. A general discussion of general-purpose digital computers and the characteristics of the nine control computer systems are included.

#### For Process Control ...

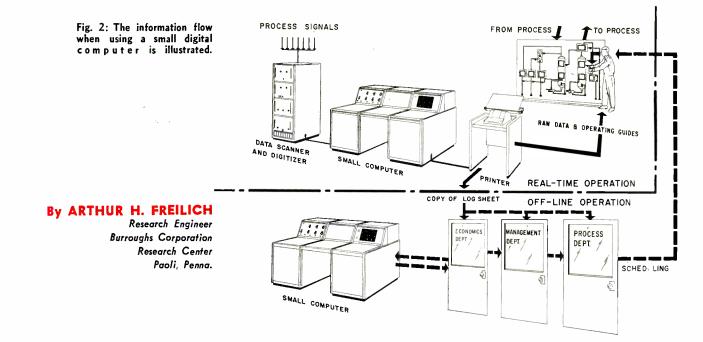

# **General Purpose**

**C**OMPUTERS are being put to work every day in new fields. One of the latest is the application of computers to the control of batch and continuous processes in the petroleum, chemical and power industries. The digital computer shows great promise in this area. A general discussion of digital computers follows, along with a

comparison chart of nine commercially available process control computers.

Through common usage, the term "general purpose" or G.P. digital computer has become the generic name for a class of computers which operates on the principle of integral transfer; that is, digital data is processed through

Fig. 1: The flow of information around a process unit with a data logger in the control room is shown for a continuous industrial process. A large central computer is used.




the computer based upon the entire numerical value of the quantity. This distinguishes the general purpose computer from the incremental transfer computer (the digital differential analyzer or DDA is an example of an incremental machine). The general purpose computer is therefore defined in terms of its internal logic rather than its general applicability. Its logic permits it to perform all arithmetic functions such as addition, subtraction, multiplication, and division as well as non-arithmetic functions such as shifting numbers, etc. It can compare quantities, make logical decisions based on results of comparisons, vary its sequence of operation as a result of its own decisions, and detect its own failures plus those of other components in a system.

#### Process Control Computer Applications

In process control applications, the computer must be linked to the process variables such as temperatures, pressures, flows, tank levels, fluid compositions, etc. The process measuring elements or transducers are predominantly analog devices.

This article is based on an article by the author which appeared in the July 1959 issue of the ISA Journal (Instrument Society of America).



## **Digital Computing Systems**

To connect the digital computer to the transducers, it is necessary to provide an input switching system which will select the input to be read into the computer. It is also necessary to provide an analog-todigital conversion system to convert the selected analog transducer signal into a digital value which can be entered into the computer. Therefore, a process control computer system requires input switching and A/D conversion units as well as the computer itself. Similarly, if the output of the computer is to be used to change the settings of the analog controllers which are responsible for holding a single variable, such as a temperature, at a constant value, it is necessary to provide a digital-to-analog converter and an output switching system at the computer output. With such an input and output system, the computer can then measure process conditions and change control setpoints. These setpoint changes would cause the process to operate in a more optimum manner. The particular optimum may vary from process to process or from day to day; it will always, however, involve not only process conditions but the all-important economic criteria of cost, demand, etc.

It is in the area of more optimum (hence more profitable) operation that computer control holds promise. Present analog controllers can maintain stable process operation today. But such operation may not be the most profitable. Seeking-out and maintaining the optimum process operating points is the job of the control computer.

Since the process is essentially an analog system, why use a digital computer at all? Certainly, linking an analog computer to the analog process is far simpler. The answer to this question lies in the scope of the problem to be solved by the computer.

In small processes or small control systems, the analog computer is the better answer. But where the control system requires logical decisions, data reduction, complex calculations and modifications of the computations dependent upon process conditions, then the logical ability of the digital computer becomes important.

A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila. 39, Pa. The general purpose digital computer is more accurate and more flexible than analog computers but requires a larger outlay of initial capital. Therefore, the analog computer holds an advantage in the smaller installation; the generalpurpose digital machine is more powerful and more economical in larger systems.

In terms of control speed, most serial general-purpose digital computers are relatively slow, with a frequency response of less than 5 to 10 cycles per second. However, since it operates on the entire numerical value and can have a completely different program for different inputs, the general-purpose digital computer is well-suited to multiplexed systems in process control where the computer is timeshared among many inputs. Present investigations into sophisticated routines for control may increase the frequency response of G.P. digital computers by a considerable factor.

Table I is a comparison of nine digital computers for on-line computing and process control applications. All these computers are of the general purpose digital type with the exception of the Genesys machine which is a hybrid computer (G.P. logic and incremental

### Digital Computers (Continued)

logic combined). All of the machines are of the internally stored program type except the Ferranti ARGUS computer. It uses pegboards for the storage of program steps and constants. (Only limited data are available at present on the Ferranti ARGUS.)

In addition to the nine computers in Table 1, there are several other general purpose digital computers being developed for process control:

A. A computing system is being developed jointly by Leeds & Northrup Co. and Philco Corporation, called the LN-3000.

B. Minneapolis - Honeywell, through the Industrial Products Group and the Datamatic Div., is developing the D-290 Computer for process control. The first unit is scheduled for installation at Philadelphia Electric Co. in 1960.

C. RCA and Foxboro are jointly furnishing computer control systems.

### About Table 1 . . .

The following discussion clarifies the points of comparison in Table I:

1. Internal Number Base — All the computers listed use the binary system as their internal number system.

2. Operating Mode — A serial computer operates on each digit of a number in sequence, processing the digits in time sequence through the same hardware components. A parallel computer operates on all digits in parallel at the same time, through parallel channels of hardware. A serial computer is slower than the equivalent parallel unit, but is generally smaller and less expensive.

3. Bulk Memory Type — Three types of bulk memory (drum memories, disc memories and core storage) are used for storage of instructions and data in the machines listed. A drum memory consists of a rotating drum with magnetic

tracks upon which the data are recorded by means of reading and writing heads. In one drum revolution, all data pass beneath both a read and write head and can be either read or recorded. However, it is necessary to wait until the exact data desired is under the proper head. Up to one complete drum revolution may be required before the desired data can be obtained. The average waiting time, known as average access time, generally runs about 7 milliseconds on the listed computers, assuming one-half drum revolution as average. Access time can represent an appreciable amount of computing time. The computer program should be written to minimize access time as much as possible. Circulating registers can be provided in drum memories for faster access to limited amounts of data which are transferred from main storage to the fast access circulating registers. Drum memories are relatively inexpensive storage media at the present time, compared to core memories. Disc memories are similar to drums but use a flat mag-

|                                                                                                                                                       | Thompson-Ramo-                                                                                                 |                                                                                                                                           |                                                                                                                                                         | TABL                                                                                                                                                                                                                                                | E 1                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Manufacturer                                                                                                                                          | Wooldridge Prod.,<br>Inc.<br>Los Angeles, Calif.                                                               | General Elec. Co.<br>Phoenix, Arizona                                                                                                     | G.P.E. Controls<br>Chicago, Illinois                                                                                                                    | Daystrom Systems<br>La Jolla, Calif.                                                                                                                                                                                                                | Panellit, Inc.<br>Skokie, Illinois                                                               | Genesys Corp.<br>Los Angeles, Calif.<br>(11) | Autonetics<br>Downey, Calif.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bendix Corp.<br>Los Angeles, Calif.                                                                                                                                              | Ferranti Electric,<br>Inc.<br>Hempstead, N. Y.               |
| Computer                                                                                                                                              | RW-300                                                                                                         | GE-312                                                                                                                                    | Libratrol—500                                                                                                                                           | Complete Daystrom<br>Computer System                                                                                                                                                                                                                | Panellit 609                                                                                     | Unit Memory<br>Processor                     | RECOMP II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G-15                                                                                                                                                                             | ARGUS                                                        |
| Internal Number Base                                                                                                                                  | Binary                                                                                                         | Binary                                                                                                                                    | Binary                                                                                                                                                  | Binary                                                                                                                                                                                                                                              | Binary                                                                                           | Binary                                       | Binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Binary                                                                                                                                                                           | Binary                                                       |
| Operating Mode                                                                                                                                        | Serial .                                                                                                       | Serial                                                                                                                                    | Seriat                                                                                                                                                  | Serial                                                                                                                                                                                                                                              | Serial                                                                                           | Serial in G.P. mode<br>Parallel in incre-    | e Serial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Serial                                                                                                                                                                           | -                                                            |
| Bulk Memory Type<br>Bulk Memory Capacity                                                                                                              | Drum                                                                                                           | Drum                                                                                                                                      | Drum                                                                                                                                                    | Magnetic Core                                                                                                                                                                                                                                       | Magnetic Core                                                                                    | mental<br>Magnetic Disc                      | Magnetic Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drum                                                                                                                                                                             | Cores (15)                                                   |
| Minimum                                                                                                                                               | 7,936                                                                                                          | 2,048                                                                                                                                     | 4,096                                                                                                                                                   | 1,024                                                                                                                                                                                                                                               | 4,096 (7)                                                                                        | 10,000                                       | 4,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,176                                                                                                                                                                            | 256 (15)                                                     |
| Maximum                                                                                                                                               | 7,936                                                                                                          | 16,384                                                                                                                                    | 4,096                                                                                                                                                   | 16,384                                                                                                                                                                                                                                              | 4,096 (71                                                                                        | 30,000                                       | 4,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,176                                                                                                                                                                            | 256 (15)                                                     |
| Word Length                                                                                                                                           | 17 bits + sign                                                                                                 | 20 bits + sign                                                                                                                            | 30 bits + sign                                                                                                                                          | 20 bits + sign                                                                                                                                                                                                                                      | 38 bits + sign                                                                                   | 19 bits + sign                               | 39 bits + sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 bits + sign                                                                                                                                                                   | 9 bits + sign                                                |
| Logic<br>Active Components                                                                                                                            | Diode                                                                                                          | Transistor                                                                                                                                | Diode                                                                                                                                                   | Diode-Transistor                                                                                                                                                                                                                                    | Core-Transistor                                                                                  | Hybrid logic                                 | Diode gating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diode                                                                                                                                                                            |                                                              |
| Cores (in logic)                                                                                                                                      | None                                                                                                           | None                                                                                                                                      | None                                                                                                                                                    | None                                                                                                                                                                                                                                                | 800                                                                                              | 157 to 350                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                                                                                                                                                             | _                                                            |
| vacuum tubes                                                                                                                                          | 13                                                                                                             | None                                                                                                                                      | 171                                                                                                                                                     | None                                                                                                                                                                                                                                                | None                                                                                             | None                                         | None-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 450                                                                                                                                                                              | _                                                            |
| transistors                                                                                                                                           | approx. 580                                                                                                    | approx. 1,600                                                                                                                             | approx. 250 (4)                                                                                                                                         | approx. 1,800                                                                                                                                                                                                                                       | 2,400                                                                                            | 212 to 280                                   | 1,137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                             | l _                                                          |
| diodes                                                                                                                                                | approx. 4,000                                                                                                  | approx. 2,000                                                                                                                             | 1,850                                                                                                                                                   | approx. 5,000                                                                                                                                                                                                                                       | 1,000                                                                                            | 85 to 125                                    | 10,628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.000                                                                                                                                                                            | _                                                            |
| Instruction Type                                                                                                                                      | Double address                                                                                                 | Single or double<br>address () + 1)                                                                                                       | Single address                                                                                                                                          | Single address                                                                                                                                                                                                                                      | Single address                                                                                   | Single address (12)                          | Single address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Modified (1+1)<br>(12)                                                                                                                                                           | Single address                                               |
| Words/Instruction                                                                                                                                     | Two                                                                                                            | -                                                                                                                                         | One                                                                                                                                                     | One                                                                                                                                                                                                                                                 | One                                                                                              | One                                          | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | One                                                                                                                                                                              | One                                                          |
| No. of Different Inst.<br>Normal                                                                                                                      | 20                                                                                                             | >60                                                                                                                                       | 16                                                                                                                                                      | 46                                                                                                                                                                                                                                                  | _                                                                                                | 20                                           | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                               | _                                                            |
| Maximum                                                                                                                                               | >34                                                                                                            | very high                                                                                                                                 | _                                                                                                                                                       | 85                                                                                                                                                                                                                                                  | 64                                                                                               | Up <sup>-</sup> to 500                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1300 W/micro-<br>coding                                                                                                                                                          |                                                              |
| Clock Frequency                                                                                                                                       | 153.6 Kc.                                                                                                      | 250 Kc.                                                                                                                                   | 136 Kc.                                                                                                                                                 | 50 Kc.                                                                                                                                                                                                                                              | 167 Kc.                                                                                          | 50 to 500 Kc.                                | 151 Kc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 Kc.                                                                                                                                                                          |                                                              |
| Add Time w/o access                                                                                                                                   | 0.78 ms.                                                                                                       | 0.096 ms.                                                                                                                                 | 0.25 ms.                                                                                                                                                | 0.44 ms.                                                                                                                                                                                                                                            | 0.720 ms. (8)                                                                                    | _                                            | 0.54 ms,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 27 ms.                                                                                                                                                                         |                                                              |
| Mult. Time w/o access                                                                                                                                 | 2.99 ms.                                                                                                       | 0.29 to 2.02 ms.                                                                                                                          | 15.0 ms.                                                                                                                                                | 9.24 ms.                                                                                                                                                                                                                                            | 2.80 ms. (8)                                                                                     | _                                            | 10.8 ms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.12 ms.                                                                                                                                                                        | _                                                            |
| Time to Perform<br>Calc. in Fig. 3                                                                                                                    | 42 ms. (1)                                                                                                     | 30 ms (1) (17)                                                                                                                            | 900, ms. (5)                                                                                                                                            | 75 ms.                                                                                                                                                                                                                                              | 31.7 ms.                                                                                         | 50 ms. (13)                                  | 98 ms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 216 ms.                                                                                                                                                                          |                                                              |
| Max. Input Switching<br>Speed                                                                                                                         | 3,840 pts./sec.<br>(1,000 pts./sec.<br>typical)                                                                | 300 pts./sec.                                                                                                                             | 200 pts./sec.                                                                                                                                           | 284 pts./sec.                                                                                                                                                                                                                                       | 350 pts./sec. (9)<br>5-10 pts./sec. (10)                                                         | 300 pts./sec.                                | available A/D av |                                                                                                                                                                                  | A/D input and<br>D/A output                                  |
| A/D Conversion<br>Input Range<br>D/A Conversion                                                                                                       | 0-10.23 V. (2)<br>0-15 V. or                                                                                   | 0-10 mv.                                                                                                                                  | 0-10V. std.                                                                                                                                             | 0-50 mv.                                                                                                                                                                                                                                            | 0-60 mv.                                                                                         | 0-8V.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | conversion<br>equipment are<br>included in system.           |
| Output Range                                                                                                                                          | 0-5 ma.                                                                                                        | 0-20 V.                                                                                                                                   | as required                                                                                                                                             | as required                                                                                                                                                                                                                                         | as required                                                                                      | as required                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                              |
| Time to Perform<br>Calc. in Fig. 3a                                                                                                                   | 42 ms, (16)                                                                                                    | 63 ms. (3)                                                                                                                                | 915 ms. (5)                                                                                                                                             | 79.2 ms. (6)                                                                                                                                                                                                                                        | 39.7 ms. (19)                                                                                    | 100 ms.                                      | 105 ms. (typical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Varies for application,                                                                                                                                                          | _                                                            |
| Weight                                                                                                                                                | 600 lbs.                                                                                                       | 3,000 lbs.                                                                                                                                | 1,000 lbs.                                                                                                                                              | 2,000 lbs.                                                                                                                                                                                                                                          | 2 cabinets                                                                                       | 200 lbs.                                     | 197 lbs. (computer<br>only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800 lbs.                                                                                                                                                                         | _                                                            |
| Şize                                                                                                                                                  | 36" × 56" × 29"                                                                                                | 76" x 108" x 24"                                                                                                                          | 30" × 42" × 60"                                                                                                                                         | 4 std. racks                                                                                                                                                                                                                                        | 66" x 56" x 16"                                                                                  | desk size                                    | 23" x 21" x 16.5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60" × 27" × 32"                                                                                                                                                                  | 48" × 48" × 24"                                              |
| Power Requirement                                                                                                                                     | 500W, 120V, 60 cy.                                                                                             | 4KW, 120V, 60 cy.                                                                                                                         | 1500W, 117V,<br>60 cy.                                                                                                                                  | less than 2KW,                                                                                                                                                                                                                                      | I KVA.                                                                                           | 350 watts                                    | 500W, 115V,<br>60 cy. (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.5 KW, 110V,<br>60 cy.                                                                                                                                                          | _                                                            |
| Price                                                                                                                                                 | \$98,000 with basic input-output.                                                                              | Varies depending<br>on application.                                                                                                       | \$85,000 with A/D<br>input & output<br>logic.                                                                                                           | \$135,000 and up<br>for complete sys.                                                                                                                                                                                                               | \$125,000 for com-<br>plete control sys.                                                         | Varies depending<br>on application,          | \$86,000 for<br>computer only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$49,500 for (18)<br>computer only.                                                                                                                                              | _                                                            |
| are available to<br>(2) Complete input s<br>es, etc. can han<br>for thermocouple<br>(3) Assumes settling<br>and a 5 mS. sett<br>(4) This floure inclu | time of 20 ms. for low<br>ling time for the scanner.<br>ides transistorized A/D a<br>cy of nine decimal digits | grams for minimum acc.<br>s, filters, electronic swit<br>as 0-10 mv., floating in<br>elevel differential ampli<br>nd D/A conversion units | nes<br>ess. (6) Assumes<br>ch. (7) Magnetic<br>put (8) Includes<br>(9) Clean, hi<br>fier (10) Process s<br>(11) The Gene<br>the G. P.<br>(12) Misroprod | NOTE<br>20 ms. stabilization time,<br>film back-up storage avai<br>random access time.<br>gh-level signals.<br>ignals, low-level with nois<br>sys machine is a hybrid<br>computer and the increm<br>graming available.<br>mode. Calculation time is | concurrent with computa<br>lable as required.<br>e.<br>computer, combining th<br>ental computer. | (15)<br>(16)<br>ne logic of (17)<br>(18)     | Includes power for paper<br>and console.<br>Core storage is for data<br>stored on pegboards (128<br>Input switching and conv<br>metic computer which ha<br>Based on square root cal<br>square rooting accuracy, ti<br>\$1,485 per month lease in<br>Does not include settling t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | constants and up to 4,09<br>constants and up to 4,09<br>rrsion system is independ<br>i immediate access to m<br>culation accuracy of 10<br>me is 34 ms.<br>culation anintenance. | ind constants are<br>6 program Steps.)<br>lent of the arith- |

-Reprinted from July 1959 ISA Journal

netic disc as the storage medium.

Core memories consist of a matrix of magnetic cores, wired so that each core can be driven to one of two states of magnetism. One core is used to store each binary bit. Reading and writing with cores are accomplished by various schemes which, for reading, sense the state of the magnetism of the core and for writing, drive the core to the desired state of magnetism. Cores are addressed by energizing wires representing the X, Y and Z coordinates of the core in the matrix. Thus, data can be read out of any core, regardless of location, in the same period of time. The access cycle time (write, read, write) is negligible compared to a drum, being only a few microseconds. This speed of access represents a tremendous saving in computer calculating time. However, core memories are expensive and require fairly large amounts of peripheral read-write equipment.

4. Word Length-The size of the word (one unit of stored digital data) in the computer and memory is not too critical in process control applications since all machines provide between 9 and 39 binary bits. This is equivalent to a precision of 1 part in 500 to approximately 1 part in 10<sup>11</sup>. Most of the machines can operate with either single or double precision arithmetic, so that even greater accuracy is available.

5. Instruction Type - A digital computer performs its computations in accordance with its program. The program is a series of instructions which tell the computer what it is to do.

For the instruction ADD, for example, it is necessary to tell the computer what numbers to add and what to do with the results. Some of the required logic is built into the computer and some is dependent on the program. In a typical computer, the ADD instruction may sequence the computer through the following sub-steps: (1) obtain one number from a location in memory specified in the instruction. (2) add this number to the number already in the accumulator (The accumulator is a register in the arithmetic section of the computer). (3) put the result of the addition in the accumulator. The programmer must insure that one of the two numbers to be added is already in the accumulator prior to this instruction. He then specifies the memory location for the second number. The result of the addition is in the accumulator at the end of this program step and the programmer must then take

### SAMPLE CALCULATION (1)

- (1) READ IN NEW INPUT X (exclusive of input switching time or A/D conversion)
- (2) CALCULATE AX + B = Y
- (3) COMPARE Y TO C TO IN-SURE THAT Y < C
- (4) COMPARE Y TO D TO IN-SURE THAT Y > D
- (5) CALCULATE  $Z = \sqrt{EY}$
- (6) CALCULATE J =  $\frac{[ZF G] K}{H + L}$
- (7) STORE J IN BULK MEM-ORY (use average access time)
- (8) STORE Z IN BULK MEM-ORY (use average access time)

### SAMPLE CALCULATION (2)

Same as above except:

(1) Assume input X must be by computer, selected switched into A/D converter and read into computer from converter.

Fig. 3 (top) 3a: Calculations supplied to manufacturers to determine computer speeds.

this into account in writing the next step of the program.

Various types of instructions are used. The simplest type is the single address instruction where the programmer specifies the function to be performed and a single memory address. Each function (add, divide, shift left, compare, etc.) is assigned a numerical designation which the control section of the computer interprets prior to sequencing the computer through the required steps. A counter in the control unit keeps track of the instructions and supplies the computer with the address of the next instruction. The instructions are

normally taken in numerical sequence, based on the memory address in which the instruction is stored.

In a double address machine, the instruction generally specifies the operation, the location in memory of the data to be operated upon and the location of the next instruction. This particular double address instruction format is known as (1+1) and permits locating the next instruction on a drum or disc memory so that access or waiting time between instructions is reduced to a minimum (optimum coding or minimum access program).

6. Number of Different Instructions-The normal number of instructions shown is the number which is available as standard in the machine. The maximum number represents the largest number of instructions which the logic of the machine can handle in terms of available digits in the instruction code, etc. In some machines, computer operations on a level of detail lower than a normal instruction are available to the programmer to permit so-called micro-programming or micro-coding in which the programmer constructs his own instructions from detailed steps.

7. Clock Frequency, Add Time, Multiply Time - These classifications are all related to the arithmetic speed of the computer, as is the memory access time. However, no one of these factors is a suitable index for determining machine speed. The structure and flexibility of the instruction code, the memory access time, the arithmetic speed, and the input-output capabilities all play a part in determining the speed of a computer in a given problem.

8. Time to Perform Calculation in Fig. 3-The calculation shown in Fig. 3 was programmed by the manufacturers of eight of the computers in the table. The results are listed to indicate relative computational speeds of the machines. Note that no input switching, analog-todigital conversion or readout times are included in this calculation. The sample problem involves memory access, add times, multiply times, etc. It represents typical calculations encountered in scaling a process input, comparing it to

### Digital Computers (Continued)

high and low limits for determining abnormal conditions, calculating a flow from a differential pressure reading and calculating a process control guide involving several variables.

Where fast access memories such as circulating registers are available in a drum or disc computer, the calculation time is based on use of the fast access memory. Drum computers which permit optimum coding list the calculation time with an optimum coded program.

9. Input Switching Speed and A/D Conversion Ranges-The maximum input switching speeds shown in Table I are not necessarily attainable with typical low level process inputs. An individual amplifier on each low level input (or an amplifier shared among a few inputs) would be required along with a filter for each input. in order to attain the switching speeds shown as maximum. In most process applications at present, such switching speeds are not required and slower speeds result in less costly input systems. In all cases, amplifiers can be used on low level inputs to make them compatible with A/D converter input ranges.

In the case of the RECOMP-II and G-15, these computers are not normally furnished with integral A/D and D/A input-output converters but are generally tied to commercially available A/D and D/A systems.

10. Time to Perform Calculation in Fig. 3A—The calculation previously shown in Fig. 3 is used, with the added requirement that the computer select an input, convert it from analog form to digital form and read it into the computer prior to computation.

Because of variations in the methods of handling input signals, the calculation times for Fig. 3A should be used only as a general guide. Exact input speeds will generally depend on the type of input signal, the input equipment used in the particular installation and the requirements of the application.

11. Price - Since all computer control systems are tailored to the application, the prices shown are only general figures. In some cases, prices are for basic systems, with a minimum of input-output equipment. In other cases, typical complete process control computer systems are included in the price. In the case of the RECOMP-II and the G-15, the prices shown cover only the computer. In considering pricing for a computer control system, one should also bear in mind the cost of transducers, measuring devices and control elements which might not otherwise be required in the installation. Such additional costs, plus engineering and systems analysis costs, can easily equal the cost of the computer system itself.

### General Computer Descriptions

Autonetics RECOMP-II—This is a general purpose digital computer, all transistorized, single address, disc memory machine. It has floating point arithmetic and automatic decimal conversion. It is utilized ordinarily for engineering and scientific calculations. However, with appropriate inputoutput units, it can be used for process control installations. It has 4,080 word storage capacity, each word containing 39 bits plus sign.

Bendix G-15—A general purpose digital computer with drum memory, modified double address for optimum coding and micro-coding which permits programmer to construct his own commands. A 16word fast access memory is provided on the drum. The G-15 is a commercial computer, widely used for engineering, business, and scientific data processing. It has also been used in a variety of on-line applications including wind tunnels, navigation, tracking, and processing plants. This computer does not include A/D and D/Ainput-output units, but most such commercial units may be used under control of the computer for complete on-line computing systems. Beckman Systems is now using a G-15 with their equipment for a computer control package.

Daystrom Computer-This computer is the heart of the Daystrom Operational Information System. It is a solid state digital system using magnetic core memory with single address instructions. Although a relatively slow clock speed (50 kc) is used, the random access core memory permits relatively fast computation speeds without need for optimum programming. The Daystrom A/D input system normally integrates each sampled input for 100 ms. to obtain a high noise rejection rate without use of filters. Where it is practical to filter each input or where no noise is present, input sampling can be performed at 284 points per second. It was specifically designed for process monitoring and control.

Ferranti Argus — The Ferranti Argus is a transistorized process control computer manufactured in England and marketed in the U.S. by Ferranti Electric in Hempstead, N. Y. It is unique among the available computers because it does not have an internal stored program. At 256 word core memory is provided for storage, but program steps and constants are manually stored in pegboards, contained in trays in the computer. In this manner, 512 program steps and 128 constants can be stored in the computer. A unit is available for expansion to 4096 steps. Input A/D and output D/A conversion equipment is an integral part of the Argus system. The computer is designed for closed-loop control.

General Electric GE-312—It is an all solid-state digital computer, using magnetic drum storage for both data and program, specifically designed for process monitoring and control. Computer is available in an upright air conditioned cabinet and uses removable printed circuit cards. Instructions can be either single address or double address (1 + 1) for optimum coding. Computer itself can be used to code program for minimum access. In addition, routines are available for simulating the 312 on an IBM 704 to assist in programming. An optional feature is circulating registers on the drum to provide 4 to 16 words of fast access memory. Includes A/D and D/A conversion units and input-output switching. The application determines scanning and input-output requirements.

GPE Controls Libratral - 500-Manufactured by Librascope and marketed by GPE Controls (both subsidiaries of GPE). This computer is an adaptation of LGP-30, a commercial digital computer widely used for many engineering, scientific, business, and accounting applications. Over 250 LPG-30 computers are now in use. Libratral-500 uses drum memory with 3 single-word fast access circulating registers for instructions. Specifically designed for process monitoring and control. Basic unit includes scanner, voltage-to-digital converter, and output logic. Computer operation is serial, fixed binary point, with internally stored program using single address instructions. A transistorized model will be released shortly.

**Genesys Unit Memory Processor** -This is a hybrid unit, combining both general purpose digital and incremental logic. It operates as either or both. It is housed in a desk type enclosure. All functions of the computer are achieved with a magnetic disc memory (10,000 to 30,000 words capacity) and a small magnetic core-transistor sequential network. The general purpose logic is used for decision making, arithmetic, etc. and the incremental logic for integration, etc. This combination uses a minimum of active components, relying heavily on the reliable passive storage elements of the magnetic disc memory. A/D conversion is by an all-electronic feedback encoder. The system is built according to individual applications. Process operation is optimized through adaptive control methods.

Panellit 609-This all purpose digital computer uses magnetic cores for both storage and logical operations in the computer. Transistor drivers operate the core logic circuits. It is housed in two upright cabinets. The core memory permits random access to any memory location with relatively high computing speed, and without need for optimum programming. The input-output system contains buffering and fast arithmetic units to permit processing inputs and outputs with a minimum of interference with main computer arithmetic units. The 609 uses one channel for computation and a second channel for on-line data logging. Attachments include a magnetic film memory for 250,000 words on a single reel. A/D and D/A conversion are available as required as a part of the system.

Thompson-Ramo-Wooldridge RW-300-A digital computer using diodes and transistors for logic and magnetic drum storage for both data and program. Available in desk size or upright model. It was specifically designed for on-line process control. Removable printed circuit cards used for internal circuitry and component mounting. Double address instructions (1+1) are used for optimum coding. Computer itself can be used to automatically code program for minimum access. A 16-word circulating register on the drum provides fast access during computation. The A/D conversion and input system operates independently of the arithmetic computer, so that inputs are sampled and converted to digital form and entered directly into the memory without interfering with computation. Thus, most recent input data is used in computation without waiting for selection of an input and receiving of data.

Westinghouse OPCON.—A fully transistorized logic control unit designed to automatically experiment with a process and optimize performance. It contains no numerical computation ability, depending on a small analog computer to calculate optimizing equations. Process equations are not necessary since the control unit uses the process itself as a model. Analog-to-digital conversion range is  $\pm 0.5$  volts. Digitalto-analog conversion range is 0-5 ma. into 2000 ohm resistance (max.). Weight is 500 lbs.; size,  $60 \times 22 \times 30$  in.; power requirements are 260 w, 120 v, 60 cycles. Since OPCON is not a G. P. digital computer, but a special purpose logic device, it is not included in Fig. 3 comparison.

### Installations

In the area of computer control of industrial processes such as found in the power, petroleum and chemical industries, there are quite a few general purpose digital computers either presently installed or on order. Among the present installations are those at:

- 1. Electricite de France, Chinon, France (T-R-W, RW-300).
- 2. Louisiana Power & Light Co., Sterlington, La. (Daystrom Computer).
- 3. Standard Oil (N. J.), Baton Rouge, La. (Librascope LGP-30 with Leeds & Northrup input system).
- 4. Texas Co., Port Arthur, Tex. (T-R-W, RW-300).

5. Universal Products Co., Des Plaines, Ill. (Daystrom Computer).

6. Dow Chemical Co., Midland, Mich. (Westinghouse OPCON Optimizing Logic System).

General-purpose digital computers are on order by the following companies for process control applications:

1. B. F. Goodrich Chemical Co., Calvert City, Md. (T-R-W, RW-300).

2. Carolina Power & Light Co., Darlington Station, (Daystrom Computer).

3. Gulf States Utilities, Louisiana (two units; one Panellit 609, one Daystrom Computer).

- 4. DuPont Co. (several Panellit 609 Computers).
- 5. Kansas Gas & Electric Co. (Daystrom Computer).
- 6. Louisiana Power & Light Co., Little Gypsy Station (Daystrom Computer).

7. Monsanto Chemical Co., St. Louis, Mo. (T-R-W, RW-300).

- 8. Philadelphia Electric Co., Phila., Pa. (Honeywell D-290).
- 9. Public Service Co. of Colorado (Libratrol 500).
- 10. Riverside Cement Co., Oro Grande, Calif. (T-R-W, RW-300).

11. Sun Oil Co., Marcus Hook, Pa. (Westinghouse OPCON Optimizing Logic System; also a Litton Model 80 Digital Differential Analyzer and a Genesys Machine).

12. Jones & Laughlin (G. E. 312).

- 13. Southern Calif. Edison (G.E. 312, two units).
- 14. Public Service of New Jersey (L N 3000, Philco-L & N).
- 15. Phillips Chemical Co. (Recomp II).
- 16. Standard Oil of Calif. (Recomp II).

A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila. 39, Pa.

# "TPR" Recording

New method for recording electrical signals on a thermoplastic film employs electron gun recorder. System has response capabilities to 50MC. Many new military and industrial recording applications envisioned.

FROM GE's Research Laboratory in Schenectady, N. Y. comes word of a new recording system called thermoplastic recording or "TPR." This new system, still in developmental stages, combines the processing speed and much of the versatility of magnetic recording with the storage capacity of photography and offers some advantages over both. According to Dr. Guy Suits, Vice President and Director of Research, "Thermoplastic recording can already concentrate 100 times as much information in a given space as can magnetic recording, and it has the

potential for still greater concentration. As an illustration of its extreme storage capacity and speed, TPR could in principle record all 24 volumes of the Encyclopedia Britannica on a reel the size of a spool of thread, taking only a minute to record each volume."

Like photography, TPR possesses the advantage of almost instantaneous recording, and will produce pictures either in color or blackand-white, but it does not require the chemical processing needed by photographic film, and can be erased and reused as desired. Thermoplastic recording was invented by Dr. William E. Glenn, physicist, of the General Electric Research Laboratory.

In describing the operation of a TPR system, Dr. Glenn disclosed that the recording is made in the form of small ripples on the surface of a plastic film. The ripples are formed by means of an electron beam, which scans the surface of the film. The recorder has an electrical input similar to a magnetic

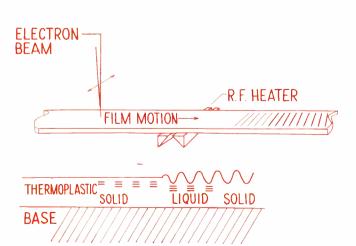
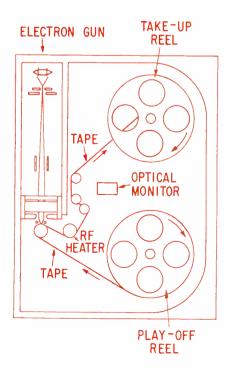




Fig. 1 (left): The melted thermoplastic coating is deformed by the charges. The ripples are then frozen in place.

Fig. 2 (right): The film in this TPR machine is handled in a vacuum. Vacuum is obtained in about one minute.



ELECTRONIC INDUSTRIES · February 1960

tape recorder, and an image output that is similar to photographic film. The latter can be changed to an electrical output signal by standard techniques.

Fig. 1 shows the recording process and one type of thermoplastic film. The film has a base that is similar to the standard moving picture film base. On top of this is a transparent conducting coating, and on top of the transparent coating there is a thin coating of thermoplastic material. This material will melt if it is raised to a fairly high temperature.

The surface of the thermoplastic is charged with an electron beam in a pattern that corresponds to the pattern of ripples that is to form the image. As the film moves on, a 'current is induced in the transparent conducting coating, which heats the film so that the thermoplastic coating melts. The charges are attracted to the transparent conducting coating and depress the surface of the thermoplastic. After the surface has been deformed by the charges, the film is then allowed to cool; this freezes the ripple pattern in place.

To erase the information, you simply heat the thermoplastic again to a higher temperature, so that the charges leak away and surface tension smooths the surface back out to its original state. The film is then reusable.

Fig. 2 is a diagram of a recording machine that records on thermoplastic film in this way. The film, of course, must be handled in a vacuum, since the electron gun has to work in a vacuum. This is not nearly as much of a problem these days as one might think. It only takes about one minute to pump the machine down from atmospheric pressure to a vacuum low enough for effective operation.

The signal input, in this particular recorder, is simply the intermediate-frequency signal out of a black-and-white TV set, at about a one-volt level. If the images are to be recorded in color, another signal has to be added to another electrode, also at about a one-volt level.

At first thought, it might seem difficult to use ripples on the surface of the film in order to produce an image. There is, however, a spe-



TPR recorder is demonstrated by inventor Dr. W. E. Glenn of the GE Research Lab.

cial optical system that can be user to do this. In projecting black and white, this is simply a modification of a Schlierien optical system; in color, it is necessary to use a special optical system.

Fig. 3 shows how a standard projector works. It has a plane light source, a condensing lens, and a projection lens. The light source is imaged on the projection lens by means of a condensing lens, and the projection lens images the slide to be projected on the screen.

If we now modify this (Fig. 4) so that instead of using a plane light source we use line light sources, and image these on a set of bars in front of the projection lens, no light will get through to the screen. If, however, we have ripples on the surface of the film at any particular point, these will scatter light through the bar system. Thus, the bar system acts somewhat like a shutter that allows light to pass wherever there is a ripple on the film. Whenever light passes through the projection lens, it images the ripple on the screen as a white spot. You can, for example, take a clear slide that simply has ripples on the surface, put it in the projector, and have it appear as a black-and-white picture on the screen.

This system can be modified so that it can be used to produce color pictures. Fig. 5 shows how. Each

picture element has in it a set of ripples that form a little diffraction grating. The light that is diffracted by this grating forms a spectrum on each side of the central beam. The slots are made small enough so that only one color from the spectrum gets through to the projection lens. Since the projection lens can receive only one color of the spectrum, the spot that appears on the screen will appear in a single color. If you would like the spot to appear in another color, you change the spacing of the grating so that a different part of the spectrum gets through the slot. In order to produce a color that is formed by a superposition of two or more colors, you superimpose the gratings in this spot and you get the superposition of the colors.

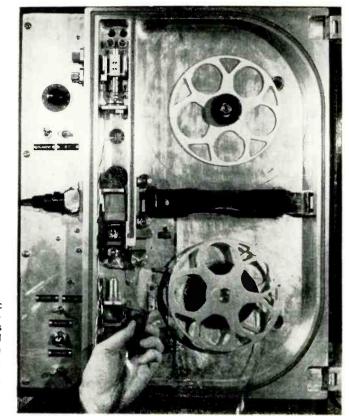
The film we use at our present stage of development is the size of standard 16 mm film. Our largersize recordings use half the width of the film—the images are actu-

### Tape playback of TV picture being taken above.



### "TPR" Recording (Continued)

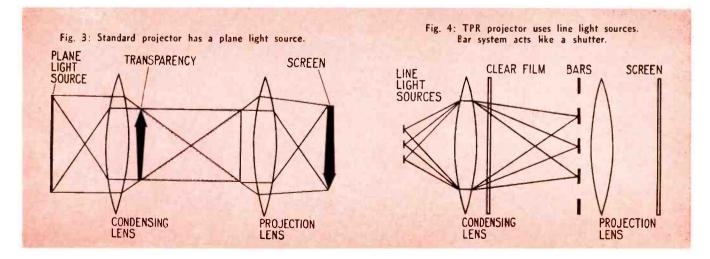
ally 5 mm wide—and the film runs at 10 in./sec. We are also recording with full resolution at half this picture size, so that the width of the track on the film is 0.1 in. wide, with the film running 5 in./ sec. In the latter case, this is the width of a half-track of standard audio magnetic tape.


As noted, however, we run at only 5 in./sec. rather than at the 7.5 in./sec used in audio recording tape. This is true, despite the fact that video recording requires approximately 100 to 150 times the density of information that is ordinarily required by audio. We are thus doing more than 100 times the work that an audio tape recorder does.

### Defense Application

Dr. G. L. Haller, Vice President and General Manager of GE's Defense Electronics Division, in speaking of the defense applications of TPR pointed out that there is a whole gamut of possibilities to be explored. As specific examples he cited:

1. Radar Applications. Thermoplastic recording promises to extend greatly the range and reliability of present and future radar sets. It will greatly enhance the possibility of devising a positive and instantaneous method of identifying radar targets. This technique is called "optical correlation."


A radar set transmits a signal that is subsequently reflected by a target and received back at the radar set. The radar observer must Thermoplastic recorder: The thermoplastic tape moves from the play-off reel (bottom), past an electron gun, a heating unit, and an optical monitor to the take-up reel (top).



then correctly identify the received signal even though it is now surrounded by random signals commonly called "noise." Optical correlation functions to separate the real signal from the noise background so that the observer can make a positive identification.

A replica of the transmitted radio wave is recorded on thermoplastic. When a reflected radio wave is received by the radar set, it also is recorded on thermoplastic. The two recordings are then optically compared with one another to determine whether or not the received radio wave is the same as the transmitted radio wave. Identification is positive regardless of how weak the received signal is, since the optical comparison is made on the basis of signal character rather than strength. False signals are automatically rejected and the observer views only real objects on his indicator.

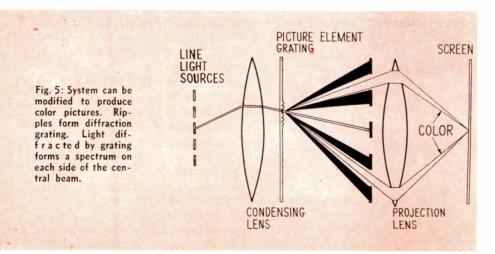
2. Radar-Jamming or Countermeasures Applications. It has been impossible to record intercepted radar signals on a continuous basis because of the narrow bandwidth limitations of present recording equipment. TPR will overcome this problem. Use in Ferret-type reconnaissance missions is one obvious application. Ferrett reconnaissance



is a concept of recording and storing all electromagnetic radiation from the area under surveillance.

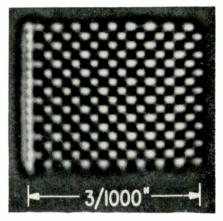
3. Radar, Sonar, and Infrared Displays. TPR opens up new possibilities in the large-screen display of radar and sonar images. This type of display is used in radar control centers where large numbers of people must simultaneously view radar information as it is received. In the past, the data has been plotted by hand on large display boards, or photographically copied from the radar screen and presented in the form of a motion picture some time later. Both methods inherently involve delays. With thermoplastic recording, the radar signal is written on tape, developed, and projected on a large screen without a significant loss of quality or detail within a fraction of a second.

TPR will also permit a new technique, similar to that used in timelapse photography, to extend the range of radar and help distinguish "targets" from random signals that appear as "noise" on the radar screen. This principle, called "time compression," involves speeding up the action on a radar screen by storing the images for a period of time, then playing them back in rapid sequence. The same procedure in time-lapse photography has produced motion pictures of flowers bursting into bloom.


By speeding up the sequence of events taking place, slowly moving and therefore almost indistinct targets would begin to move very rapidly. This rapid and purposeful motion would be enough to enable the observer to make positive identification. Experiments have shown that objects apparently hidden from view can be identified by observing some orderly motion.

In the development of an integrated display, TPR offers a means of correlating information from a variety of sensing devices, reading it out on a single display screen. This would allow the operator to compare radar, radio, infrared, and optical data simultaneously, or to select whichever gives best results at any given moment. An integrated display would be especially useful in airborne anti-submarine warfare, for example, by allowing the operator to view radar, sonar, infrared, and other submarine detecting and tracking inputs simultaneously on one screen.

4. Missile Guidance. One specific application is that of long-range missile guidance, using map-matching techniques. That is, TPR tape with a pre-programmed mapped path to be used in the missile to correlate its flight path with the programmed path, right up the target area itself.


5. Satellites and Space Vehicles. The usefulness of a satellite is proportional to the amount of information it can gather and transmit to the earth. At present, satellites can be assigned only simple tasks, but with TPR they may be assigned such complex duties as reporting the world's weather or global surveillance to monitor and analyze unfriendly electro-magnetic emissions.

Line-of-sight limitations hamper world-wide communications. Since TPR can be reused many times, it seems feasible to use this technique for recording terrain and other strategic data in any area of the



earth, to relay the data to ground sites as the satellite passes overhead, and to re-record new data on the same tape on the next orbit. Here again, the space and weight savings possible with TPR are critical to small space vehicles.

6. Aerial Reconnaissance. TPR is a "natural" for military aerial reconnaissance and recording cameras. The instantaneous monitoring or read-out that TPR can provide is an obvious advantage. It provides on-the-spot evaluation of



Checkerboard pattern is approx. 3/1000 in. in length and width. Forty million "bits" of information per sq. in. may be recorded.

results so that retakes can be made if necessary. Information so obtained can also be disseminated without processing delays.

Lloyd C. Herriott of the General Engineering Laboratory reported, "The demonstrations in our laboratories of data storage at a density of 40 million bits per square inch makes it realistic to think of storing entire libraries of business reports, drawings or engineering data in equipment the size of an office desk."

H. A. Strickland Jr., Vice President and General Manager of the Industrial Electronics Division, said, ". . . It should be emphasized that thermoplastic recording will greatly expand the total market for recording devices of all kinds. We believe this its bandwidth (50 megacycles), density, and other capabilities enable us to achieve results not possible with present recording media. To the extent that it might compete with established media such as photographic film and magnetic tape, we would expect both economic and performance considerations to determine its degree of acceptance."

When re-designing a tube for changed electrical characteristics it is usually necessary to modify the internal tube dimensions. These three monographs make it possible to quickly determine the physical characteristics of the new tube from specs of a tube of the same general class.

# Nomographs Simplify Electron Tube Design

By ROBERT D. REICHERT

Engineering Leader Entertainment Receiving Tube Design Electron Tube Division Radio Corp. of America Harrison, New Jersey

Part Two of Two Parts

In the use of the nomographs, straight lines are drawn intersecting three axes at a time. The axes marked "bend" indicate turning points. In the case of diode problems, it is only necessary to use axes V through XI of nomograph No. 2 (Figs. 2, 3, and 5). It is not always possible to work across from left to right. For some problems, the user has to start at both ends independently; however, a continuous line bent at the "bend" axes should be the final result.

The basic steps in the use of the nomographs are as follows:

- 1. Enter into the nomographs the known characteristics and dimensions of a tube which is in the same general class as the desired tube.
- 2. Keeping F and K constant, i.e., passing through the same intersection points on the F and K axes, enter the desired electrical characteristics of the new tube.

#### Table 1

| Mechanical                                                                       |                                           |
|----------------------------------------------------------------------------------|-------------------------------------------|
| cathode coated outer diameter<br>grid minor outside diameter                     | : 0.077 in.                               |
| grid lateral-wire diameter<br>grid turns per inch (TPI)<br>plate inside diameter | : 0.0033 in.<br>: 67<br>: 0.121–0.124 in. |

Electrical

 $\begin{array}{l} {g_m} = 2600 \ \mu \text{mhos} \\ {i_b} = 9 \ \text{ma.} \\ {\mu} = 20 \\ {E_b} = 250 \ \text{v.} \\ {E_{cl}} = -8 \ \text{v.} \end{array}$ 

3. Read the dimensions of the new tube being careful to obtain practical solutions when more than one solution is possible.

### Sample Diode Problem

It is desired to calculate the dimensions of a damper diode which has a plate current of 400 ma. at a plate voltage of 18 v. The 6W4-GT, which has a plate current of 250 ma. at a plate voltage of 21 v., is chosen as the original tube. The pertinent data on the 6W4-GT is as follows:

$$I_{b} = 250$$
 ma. @  $E_{b} = 21$  v.

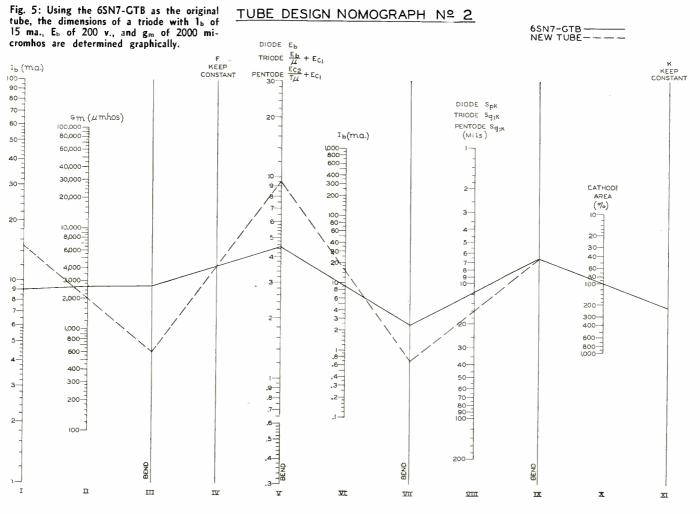
Coated cathode outer diameter = 0.103 in. Plate inner diameter = 0.146 in.

Therefore, the plate-cathode spacing is 0.0215 inch. The first step is the notation of the data of this original tube on the appropriate nomograph. Nomograph 2, shown in Fig. 2 (nomographs 1 and 3 are not used for diode problems) is used, and 21 v. is entered on axis V. From this point, a line is drawn through the 250-ma. point of axis VI to axis VII. From the point thus determined on axis VII, a line is drawn through the 21.5-mil point (0.0215 inch) on axis VIII to axis IX. From the point thus determined on axis IX, a line is drawn through the 100 per cent cathodearea point on axis X to axis XI which determines K for the 6W4-GT. The cathode area of the original tube is always normalized to 100% to eliminate the necessity of calculating the effective area in square units.

The second half of the problem concerns the desired tube. The desired characteristics, 18 v. and 400 ma.,

are entered on axis V and VI, and a line is drawn through these two points to axis VII. From this point, a glance ahead indicates that various solutions are possible. The designer may decide to leave the plate-cathode spacing at 0.0215 inch as it was on the 6W4-GT. In that case, he proceeds from the point just established on axis VII through the 21.5-mil point on axis VIII with a straight line to axis IX. From this point, a line is drawn to the point on axis XI which was established when the 6W4-GT data was entered, i.e., K is kept constant. This line will pass through axis X at a point which will be the required cathode area of the desired tube in terms of percentage of the cathode area of the 6W4-GT. The intersection point on axis X is 200%, which means that the desired tube has to have an effective cathode area twice as large as the 6W4-GT if no changes are made in the plate-cathode spacing.

On the other hand, the designer could choose to leave the cathode area unchanged and modify the cathode-plate spacing, as shown in Fig. 3. As before, 18 v. and 400 ma. are entered on axis V and VI and a straight line is drawn to axis VII. It is now necessary to work back from the right-hand side of the nomograph. The cathode area and K are kept constant, and a line is drawn from axis XI through axis X to axis IX, as shown in Fig. 3. This line retraces our original 6W4-GT line. The point thus established on axis IX then is joined to the point previously established (for the new tube) on axis VII. This line A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES, Chestnut & 56th Sts., Phila. 39, Pa.


will intersect axis VIII at a point which represents the required plate-cathode spacing of the new tube. The value is 0.015 inch. It is possible, therefore, to make the desired tube by using the 6W4-GT cathode with a plate which has an inside diameter of 0.133 inch—coated-cathode outer dimension plus 2 x 0.015.

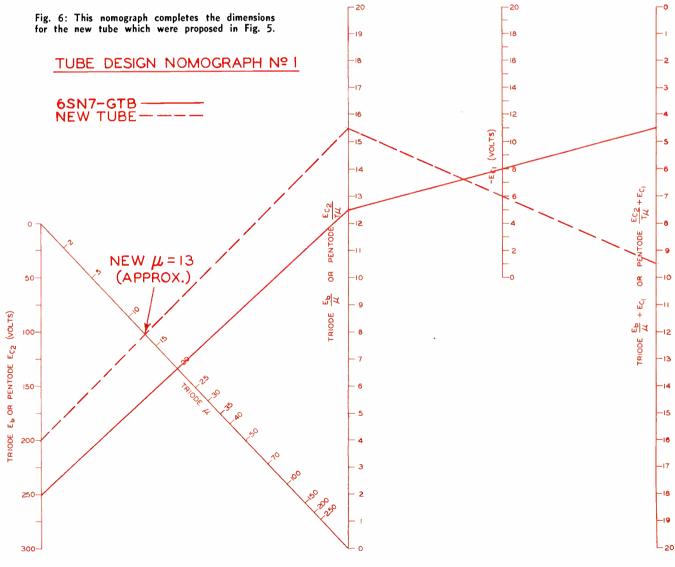
Finally, it is possible to use any practical combination of cathode area and plate-cathode spacing provided K is kept constant and the straight lines between the combinations of three axes meet one another properly. Any solution to the above problem which incorporates a change in cathode area naturally requires a corresponding change in heater input power.

### Sample Triode Problem

A new twin triode having the following characteristics is required.

 $g_m = 2000 \ \mu \text{mhos}$   $I_b = 15 \ \text{ma}$   $E_b = 200 \ \text{v}.$   $E_c = -6 \ \text{v}.$  $P_b = 4 \ \text{w./plate}$ 




ELECTRONIC INDUSTRIES · February 1960

### Tube Nomographs (Continued)

Although the  $g_m$  requirement is fairly low, the plate-current and plate-dissipation requirements suggest a tube of about the same physical size as the 6SN7-GTB. It is decided to use the 6SN7-GTB as the original tube. The pertinent data of the 6SN7-GTB, summarized in Table 1, is illustrated in Fig. 4.

First, the 6SN7-GTB data is entered on nomograph No. 2, as shown in Fig. 5. The plate current of 9 ma. is marked on axis I, and a line is drawn through 2600  $\mu$ mhos on axis II to axis III. The line for axis III, IV and V cannot be drawn yet because axis IV is blank and the value to be entered into axis V is not known. This value  $(E_b/\mu) + E_c$  can be determined rapidly from nomograph No. 1 which is shown in Fig. C. First,  $E_b = 250$  volts and triode  $\mu = 20$  are entered on nomograph 1 and a line is drawn to the center axis. From this point, a line is drawn through  $-E_{cI} = 8$  v. and the value of  $(E_b/\mu) + E_c = 4.5$  is read on the righthand axis. This value (4.5) is then inserted into axis V of nomograph No. 2, as shown in Fig. 5. A line is then drawn from the point previously established on axis III through axis IV to the 4.5 point on axis V. From the 4.5 point on axis V, a line is drawn through the 9-ma. point of axis VI (a re-entry of the information on axis I) to axis VII. Next, from the point just established on axis VII, a line is drawn through the 11.5-mil point, 0.0115 in. being the nominal spacing between the cathode and the center of the grid-No. 1 lateral wire, on axis VIII to axis IX. From this point on axis IX, a straight line is drawn through the 100% cathode-area point on axis X to axis XI, thereby establishing K.

The designer then enters the desired characteristics of the new tube. From the 15-ma. point on axis I, a line is drawn through the 2000  $\mu$ mho point on axis II to axis III. From this point on axis III, a line is drawn through the previous intersection on axis IV, which was determined when the 6SN7-GTB data was entered, to axis V, and the value of  $(E_b/\mu) + E_c = 9.5$ for the new tube is established. It should be emphasized that F is kept constant, i.e., the point established for the 6SN7-GTB is also used for the new tube. From the 9.5 point on axis V a line is drawn through the  $I_b = 15$  ma. point on axis VI to axis VII.



ELECTRONIC INDUSTRIES · February 1960

### TUBE DESIGN NOMOGRAPH Nº 3

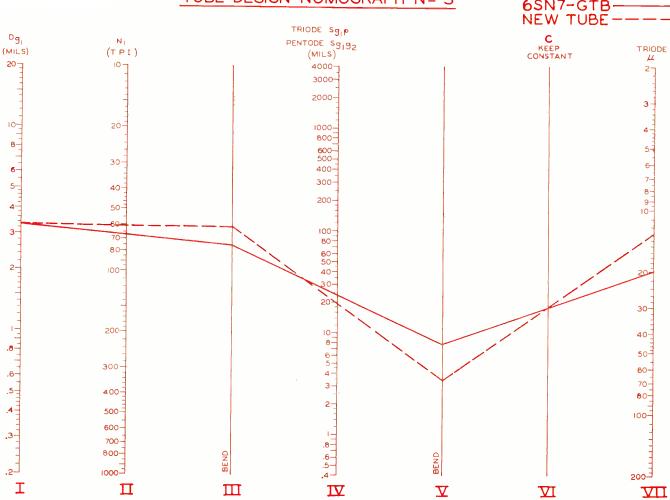



Fig. 7: The parameters of the new tube, which used the 6SN7-GTB as an original, can be determined by working back on this nomograph.

At this point, a look ahead shows the possibility of multiple solutions. If the designer chooses to keep the cathode area constant, a line is drawn from the point on axis XI that was established when the 6SN7-GTB data were entered (K is kept constant) through the 100% cathode area point on axis X to axis IX (a retrace of the line already existing in Fig. 5). The point previously established on axis VII for the new tube is connected with the point established on axis IX, and the intercept point on axis VIII is found to be 16 mils, which means that the grid-cathode spacing of the new tube is 0.016 inch.

The remaining dimensions of the new tube can be calculated by taking the value of  $(E_b/\mu) + E_c = 9.5$  for the new tube (axis V of nomograph No. 2 in Fig. 5) and entering this value on the right-hand axis of nomograph No. 1, as shown in Fig. 6. Then a line is drawn from the 9.5 point through  $-E_{cI} = 6$  v. to the center axis. From this point a line is drawn to the  $E_b = 200$  v. point on the left-hand axis. As shown in Fig. 6, the new triode  $\mu$  is approximately 13.

Once the  $\mu$  of the new triode is known, the grid parameters may be calculated from nomograph No. 3, shown in Fig. 7. First, however, the known data of the 6SN7-GTB must be entered on nomograph No. 3. A line is drawn from the 3.3-mil (0.0033 inch) lateralwire diameter point on axis I through the 67 TPI point on axis II to axis III. From the point thus established on axis III, a straight line is drawn through the 24-mil (0.024 inch) grid-plate spacing point on axis IV to axis V. From this point on axis V, a line is drawn to the triode  $\mu = 20$  point on axis VII intersecting axis VI. The entry of 6SN7-GTB data is completed and the constant *C* on axis VI is established.

The parameters of the new tube now can be determined by working back on nomograph No. 3. The triode  $\mu = 13$ , which was previously determined from nomograph No. 1 in Fig. 6, is entered on axis VII in Fig. 7, and a line is drawn through the intersection previously established on axis VI (to keep C constant) to axis V. Before the solution can be continued, the grid-plate spacing of the new tube must be determined. It was determined previously that the grid-cathode spacing of the new tube is 0.016 inch (from axis VIII of nomograph No. 2 in Fig. 5). The grid-cathode spacing for the 6SN7-GTB was 0.0115 inch. If the plate in the new tube is to be the same as that used in the 6SN7-GTB, and the grid of the new tube is 0.0045 inch further away from the cathode than the grid in the 6SN7-GTB, the gridplate spacing of the new tube will be 0.0045 inch less than the grid-plate spacing of the 6SN7-GTB. Thus, the grid-plate spacing of the new tube will be 0.0195 inch. From the point previously established for the new tube on axis V of nomograph No. 3 in Fig. 7, a



line is drawn through the 19.5 mil (0.0195 inch) point on axis IV to axis III.

Once again, multiple solutions are possible. The new tube may vary TPI,  $D_g$ , or both. If the designer decides to keep the grid lateral wire constant at 0.0033 inch he can draw a line from the point just established on axis III through axis II to the 3.3 mil (0.0033 inch) point on axis I. The resultant intersection on axis II determines the TPI of the new tube. The value is 61. In a similar manner, the designer could have chosen to vary the lateral wire diameter, within limitations, and determine the corresponding TPI.

Thus, all of the critical dimensions of the new tube have been determined. While the explanation of the procedure is lengthy, the actual operations can be performed on the nomographs within a few minutes.

### Pentode Problems

Pentode problems are performed in a manner similar to triode problems and, accordingly, a detailed sample problem will not be worked out. The notable differences between the solution of a pentode and a triode problem are as follows: Nomograph No. 1.

(a)  $E_{ca}$  is substituted for  $E_b$ 

(b) Triode  $\mu$  is substituted for  $\mu$ 

(c)  $E_{c2}/\mu_T$  is substituted for  $E_b/\mu$ 

Nomograph No. 2

(a)  $E_{c2}/\mu_T + E_{c1}$  is substituted for  $E_b/\mu + E_c$ 

Nomograph No. 3

(a)  $S_{g1g2}$  is substituted for  $S_{g1p}$ 

(b) Triode  $\mu$  is substituted for  $\mu$ 

### Multiplying Factors

I

Any of the scales on nomographs No. 2 and No. 3 may be multiplied by any factor provided the same factor is used throughout the entire problem. Thus, axis I of nomograph No. 2 which cycles through 1-10-100 ma. may be modified to cycle through 10-100-1000 ma., 0.1-1-10 ma., 3-30-300 ma., and so on. The multiplication of any axis, or combinations of axes, by any factors does not require the correction of other axis.

In the case of nomograph No. 1, however, it is not possible to apply multiplying factors to the various scales. If a particular problem involves values which are beyond the scales of nomograph No. 1, the value of  $(E_b/\mu) + E_c$  for triodes or  $(E_{c2}/\mu_T) + E_{c1}$  for pentodes can be calculated arithmetically and inserted into nomograph No. 2.

### Problem Clinic

### -To Measure Semiconductor Wafers

A large Eastern manufacturer is looking for an electronic thickness measuring and indicating device to measure semiconductor wafers.

Following are specifications:

1. Contacting or non-contacting.

2. The area of measurement is a point contact on a wafer about .125 in. square.

3. The points of measurements are on the opposing flat side of wafer and/or at the bottom of .010 in. diameter pits on opposing sides of wafer.

4. Since there are pits on both sider of wafer, two opposing probes are needed.

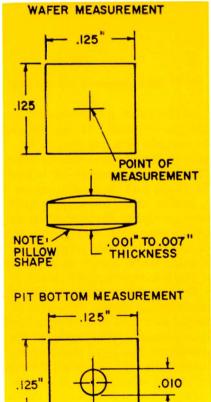
5. The range of thickness for wafer measurement is from .001 in. to .007 in.

For pit measurement .0001 in. to .002 in. with range switching if necessary.

6. The measurements can be either comparative or absolute.

7. The accuracy of measurement should be  $\pm$  .000005 in.

8. If a contacting device is used, the contact pressure on either side of wafer should be less than 6 grams.


Need includes—gage head, transducer, detector, indicator, and a well filtered DC output voltage which is proportional to thickness (2V/mil).

The wafer handling and jigging devices and gage head mounts will be the manufacturer's own.

\* \* \*

#### REFERENCE PAGES

The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders. Firms or individuals offering a solution to this problem please contact Editor, Electronic Industries. Correspondence will be forwarded to the Mfr.



POINT OF

MEASUREMENT

0001" TO 002"

# ELECTRONIC INDUSTRIES A CHILTON PUBLICATION

SPECIAL EDITORIAL STAFF REPORT

## "HUMAN FACTORS"-Newest Engineering Discipline



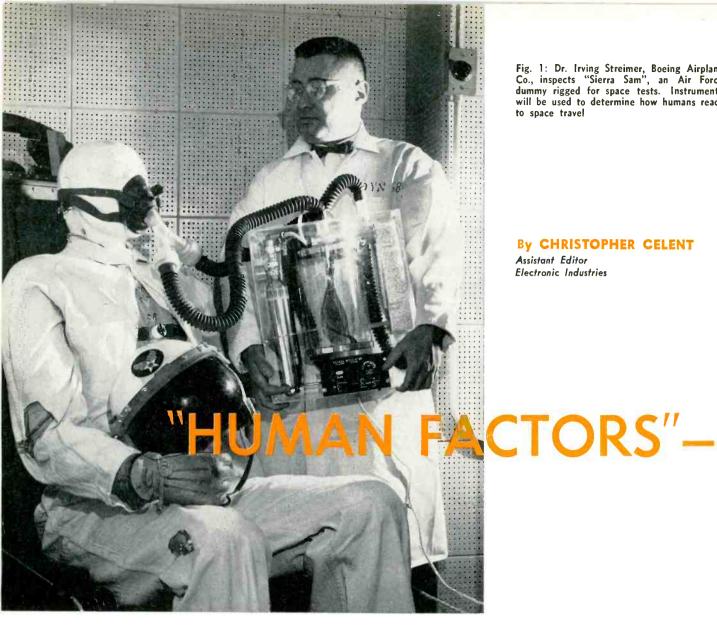



Fig. 1: Dr. Irving Streimer, Boeing Airplane Co., inspects "Sierra Sam", an Air Force dummy rigged for space tests. Instruments will be used to determine how humans react to space travel

By CHRISTOPHER CELENT

Assistant Editor Electronic Industries

OMEWHERE in the design of every piece of elec- $\mathcal O$  tronic equipment, whether it is a relatively simple component or a huge complex, the human factor must be considered.

In the past, the problem of whether the equipment was designed to "fit" the man was either ignored or solved on a common sense basis. Since most people, including design engineers, really know very little about human behavior, the so-called common sense approach often led to costly errors. Until recently, the data available on human behavior was extremely limited, and when extrapolated proved highly inaccurate. As the complexity and sensitivity of equipment has increased, it has become imperative that the old intuitive design criteria be replaced by data on human behavior obtained under scientifically controlled conditions.

The volume of data on human behavior being made available today is tremendous—so tremendous that human engineering has become a "team effort" involving specialists in the behavioral sciences as well as in engineering.

### Who Are the Human Engineers?

The men supplying this data and applying it to practical engineering problems are known variously as human engineers, human factors specialists, human factors engineers, and engineering psychologists. In England the term "ergonomics" is used.

They are developing entirely new methods for solving the human factors problems being encountered as man demands more precise control over his environment.

The "team effort" mentioned is well-illustrated by looking at "typical" human engineering staffs. Represented on such staffs are anthropologists, sociologists, physiologists, psychologists (all kinds) mathematicians, electrical engineers, aeronautical engineers, mechanical engineers, computer engineers, systems engineers, and many others.

Much of the experimental data obtained to date has been drawn from research performed by psychologists, physiologists, and anthropologists, but no single discipline has a monopoly on knowledge of human behavior. Any discipline that deals with the questions of why and how a man functions can make important contributions to the human factors field. Human factors work involves a continuous complementary exchange of information between engineers and these other disciplines.

The term "human engineering" is perhaps not wellchosen. What is meant is engineering for human use



Christopher Celent

Fig. 2: Concave globe-type map and viewing room, developed by human factors scientists at Battelle Memorial Institute to expedite group discussion of military problems, is an example of how science can be applied to the solution of human factor problems.

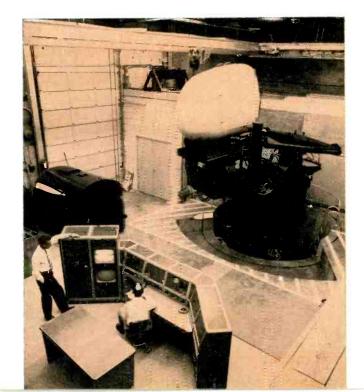


## **Newest Engineering Discipline**

The rapid technological advances of the last twenty years have generated problems concerning man-machine compatibility that call for an exhaustive knowledge of human behavior. Human engineering, representing a cross-fertilization between life sciences and engineering, tries to analyze the human as a component in a complex system. The effort ranges from "knob and dial" work to developing complex mathematical models of human behavior.

-not engineering the human. The aim is to make the best use of the abilities that today's human being has—not the creation of superior type individuals.

The term "human engineer" has received widespread acceptance; however, Dr. Launor F. Carter, General Manager, Systems Training, Systems Development Corp. (a large employer of human factor people) makes the following differentiation between human factors and human engineering:


"The human factors area usually includes the specifications of personnel and job assignments, the development of individual and system training, the manmachine aspects of system design, and a narrower field of human engineering which deals with design characteristics of individual components of equipment to assure their compatibility with the human operator. The term human engineering is sometimes used to encompass all of the above."

### Why Human Engineering?

There are many examples of the need for human engineering. Many appliances in the home are technically far beyond the comprehension of the "average" housewife. But they are made simple enough that she can be taught to use them. Automobiles for years were plagued with accident producing blind spots.

ELECTRONIC INDUSTRIES · February 1960

Fig. 3: Helicopter Flight Simulator Dynamic Platform, developed by Franklin Institute for research under the ANIP. Capable of six degrees of motion, it can give a "pilot" a realistic "feel" of flight. Bell Helicopter Corp. psychologists are using this research tool to study the effect of motion and vibration on the ability of a pilot to control his craft. It is electronically controlled.

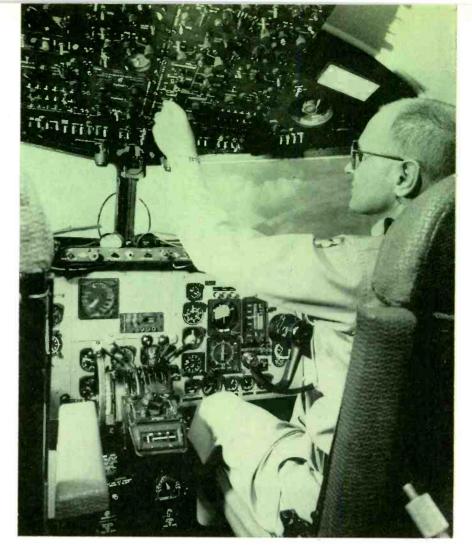


## Human Factors (Continued)

Fig. 4: Some of the original work in human engineering aimed at reducing the complexity and the number of tasks the pilot had to perform. This R4D aircraft has a navigation computer which, after takeoff, will automatically direct him to his destination. System includes special cockpit instruments which enable the pilot to fly a pre-set flightpath without resorting to outside navigational aids. System is being developed by Sperry Gyroscope Co. for the Army.

Now this is being corrected through the use of human engineering data. General Motors Corp., for example, uses analog computers which stimulate road conditions to gain more information on driver limitations and capabilities and so reduce the possibilities of accidents. Many automatic machines used in industry are now doing only a small part of the job they could do. They could be much improved if the human operator were considered.

How do we define "good" human engineering? In its simplest form, we can say that equipment is well designed from a human engineering standpoint when it makes the optimum use of both man and machine capabilities. (The optimum can change with time and circumstance. The Kamikaze bombs of the Japanese, for example, might be considered an optimum use of man, but only if the consideration of survival is minimized. At another time in history, the spearpoint was also considered to be well engineered from a human viewpoint.)


So human engineering is concerned with assigning to each—the man and the machine—the function each performs best, always keeping in mind that the manmachine must be considered an integrated unit.

### Human Engineering and Space Travel

A well-developed science of human engineering is an absolute "must" for manned space travel. Man's unique ability to observe, draw logical conclusions, and make decisions, makes manned space flight highly desirable, if not absolutely necessary.

NASA has already announced several long-range plans for putting man into space. These range from putting one man into space for one day (project Mercury) to the establishment of a permanently manned space station (project Nova).

With man in space we want to make the best use of his abilities. Not only must he be equipped with human engineered equipment that will enable him to function to the limit of his abilities in collecting



scientific information, but he must also be provided with an environment which will enable him to survive.

The problems and advantages of manned space flight are detailed in, "A Positive Approach to Man's Role in Space," by D. T. McRuer, AFIAS, I. L. Ashkenas, AFIAS, and Ezra S. Krendel, the Franklin Institute. This paper points out that putting a human operator in the space vehicle greatly reduces the reliability requirements of operational and navigational equipment. Also discussed are uses for the power output of man in such things as direct manual control on the orientation of reaction jets, the braking or acceleration of inertia wheels, and the generation of electrical power.

Man-in-space must be protected against high or complex acceleration forces, and the effects of extremes of pressure, temperature, humidity, radiation, noise, and vibration. How "weightlessness" and loss of orientation will affect him must be known. He must be kept physically strong, mentally sound, and emotionally stable. The solutions to these problems are properly within the framework of the human engineering effort.

#### The Human as a Component

Human engineers see man as a component of a total system, one that should "pay its way" like other components in the system.

He can be a simple amplifier, an integrator, or a differentiator. The complexity of the function assigned to him has been the basis for some disagreement among human engineers. Some feel that man's actual control assignment should be as simple as possible to reduce the possibility of error and to free him for decision-making functions. Others say that the adaptive abilities of man should be used to the fullest extent.

Man can modify his characteristics to match many control situations. This makes him attractive as a control system component. This quality of adaptation makes it extremely difficult to describe the operator, and one of the aims of human engineering is to set up reasonably simple behavioral models which can fit general situations.

Man, in many ways, is similar to a machine. He receives inputs via sound, sight, touch, smell, taste, and the proprioceptive senses and in turn operates on the inputs with a complex of mechanical, chemical and electrical systems, and delivers a workable output in terms of force or displacement to the system. He is often compared to a servo system. He receives an input signal, feeds back an output signal, and compares the results with the input.

The human engineer wants to know which functions are best assigned to the man, and which to the machine. He wants to know how well a man can do the job assigned to him and what factors influence his performance. He wants to know how many in a given population can do specific tasks and how to discover them. He knows that the reliability of a system is no better than that of the weakest link and his job is to make sure that the weakest link in a man-machine system is not the man.

The human engineer knows that machines are best at making rapid responses and computations, handling simultaneously many complex operations, applying force smoothly and precisely, and performing repetitive tasks reliably. Man excels where inductive reasoning, judgment, imagination, and broad memory are required.

The human engineer faces three important problems in furthering his profession. The first is industry acceptance; the second concerns when the advice of the human engineer is called for, and a third is acceptance by his brother engineers as a useful contributing member of the professional engineering team.

### Industry Acceptance

Industry acceptance has been difficult to obtain because the results of the human engineering effort are not easily measured. Quite often the human engineer must spend a good deal of his time convincing management of the need for and value of his services. The results of inadequate human engineering are much more obvious. But this problem is diminishing, largely through the insistence of the Military that human engineering be included in their contract work. Also, a growing number of industrial concerns are adding human engineering people to their engineering organizations, and consulting firms specializing in this type of work are multiplying.

### The Aircraft Industry Leads

The leader in human factors work is the aircraft

industry, a not too surprising fact since the original work in this field was aimed at improving pilot performance. Engineering psychologists we have talked to estimate that over 75% of applied human engineering work is being done by the aircraft and supporting industries.

A good measure of the importance of human engineering in the aircraft industry can be found in two surveys by J. A. Kraft, Manager, Human Factors Research Dept., Military Operations Research Engineering, Lockheed Aircraft Corporation.<sup>2, 3</sup>

Mr. Kraft outlines the programs, organizational status of human engineers, the size and professional make-up of human factors research groups, and project activities of 32 companies in the airframe and supporting industries. The survey shows that the size of the human engineering groups ranges from 1 to 32 people. They are heavily weighted with engineers and psychologists (57, and 61, out of a total of 166). The engineers on the teams are primarily electrical/electronic, aeronautical, and mechanical.

The activities of these human factors specialists include: audible information display, environmental studies, human factors in maintenance, space flight, remote handling procedures, aural radar, human factors design handbook development, and many others.

Says Mr. Kraft, "Major activities of human factors teams can be categorized principally as consulting, equipment and system design, and applied experimentation with somewhat limited basic experimentation taking place. It is noted, however, that plans for more basic research are being made, and most of the groups have definite plans for expansion of personnel allotments and a greater variety of activities."<sup>2</sup>

Fig. 5: Human Factors engineer Francis J. Conley holds miniaturized transmitter developed by Martin Co.'s Baltimore Div. Continued development could make the transmitter, shown mounted on a pilot's helmet for experimental purposes, suitable for a lunar suit communications system.



A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila. 39, Pa.

## Human Factors

(Continued)

A "typical" human engineering team draws from a variety of professional skills. Illustrated at right are the technical specialties and academic degree level of human engineers in 32 aircraft companies.

The companies place human engineering services at a level sufficiently high to be effective and, in many instances, provide straight line reporting to the Chief Engineer or a high level engineering executive. Human engineers are found in Advanced or Preliminary Design, on Electronics and Control Staffs, in Operations Research, in Staff or Systems Engineering, in Professional Services Groups, in Design Safety, on Technical Specialties Staffs, in Servo-Electron-

ics, in Applied Research, on Reliability Staffs, in Equipment Design, and in Advanced or Long-range Planning.<sup>2</sup>

Table 1, from Mr. Kraft's report, shows the composition of these human engineering groups. (Note that the PhD is rather common among the psychologists; it does not seem to be as necessary in the engineering group.)

### Timeliness

The special talents of human engineering should be called for early in the design, development process. If, as does often happen, they are called upon after trouble develops or equipment found faulty, correction can be extremely costly.

The problem of timeliness is also diminishing. In the missile industry, for example, human factors engineers work closely with design engineers in all phases of the operation. Lawrence Pitman, Raytheon Corp., says, regarding the Hawk missile program, that man-machine compatibility was checked at three stages of the missile's development: first in the blueprint stage, second with the first "breadboard" model, and finally with the full-scale engineering models of the missile.

It is significant that at each stage, human engineering dictated modification in design. These changes were relatively easy to make at the time but they would have been costly and time-consuming later in development.

Generally speaking, the human engineer's work begins with a study of system requirements and pos-

## Table 1The Make-up of Human Engineering Teams

|                            | Number of Degrees Within Specialty |             |         |         |             |  |  |
|----------------------------|------------------------------------|-------------|---------|---------|-------------|--|--|
| SPECIALTY                  | No Degree                          | Bachelors   | Masters | Doctors | TOTAL       |  |  |
| Experimental Psychologist  | 2                                  | 14          | 31      | 52      | 99          |  |  |
| Industrial Psychologist    | ō                                  | Ó           | 8       | 10      | 18          |  |  |
| Social Psychologist        | Ō                                  | ň           | ň       | ž       | ž           |  |  |
| Physiological Psychologist | Ō                                  | ň           | ĭ       | ō       | ī           |  |  |
| Other Psychologist         | Õ                                  | 5           | 5       | 3<br>3  | 13          |  |  |
| Mechanical Engineer        | 6                                  | 36          | 6       | 1       | 49          |  |  |
| Electrical Engineer        | 5                                  | 20          | 10      | i       | 36          |  |  |
| Aeronautical Engineer      | ž                                  | 5           | Ö       | 'n      | 7           |  |  |
| Industrial Engineer        | ō                                  | ĭ           | ŏ       | ň       | i           |  |  |
| Other Engineer             | 3                                  | 4           | 1       | Ŏ       | 8           |  |  |
| Physician                  | 0                                  | 0           | 0       | 9       | 9           |  |  |
| Physicist                  | 0                                  | 8           | 6       | 0       | 14          |  |  |
| Physiologist               | ŏ                                  | ž           |         | 7       | 12          |  |  |
| Mathematician              | ŏ                                  |             | 3<br>2  | i       |             |  |  |
| Statistician               | ŏ                                  | 5<br>3<br>3 | 1       | Ō       | 4           |  |  |
| Anthropologist             | ŏ                                  | 3           | 3       | ŏ       |             |  |  |
| Biophysicist               | Õ                                  | ŏ           | 3<br>2  | ň       | 6<br>2<br>6 |  |  |
| Industrial Designer        | ŏ                                  | 5           | ī       | ň       | ā           |  |  |
| Other Profession           | ŏ                                  | ĭ           | ż       | ľ       | 4           |  |  |
| Pilot*                     | 1                                  | 6           | 2       | 1       | 10          |  |  |
| Engineering Technician*    | 24                                 | ĭ           | ō       | ò       | 25          |  |  |
| Administrative*            | 13                                 | 4           | ŏ       | ĭ       | 18          |  |  |
| TOTAL                      | 56                                 | 123         | 84      | 89      | 352         |  |  |

\* No academic specialty given.

From "Human Factors Research in the Aircraft Industry" (See Ref. 2).

sible system alternates. He studies the man-machine linkages, and the assignments of functions. With the establishment of human functions he studies the input (visual, auditory, etc.) and the output desired from the human. He studies the integration of machine and human components and analyzes experimental missions ranging from the most routine to the most difficult. He establishes hook-ups between major parts and constructs mock-ups to study the system. Finally he studies the finished product in use for the possibility of improving subsequent models or the advisability of complete redesign.

### Early Work in Human Engineering

In the mid-20's only a handful of psychologists were interested in equipments and the emphasis was on placement of controls, dials, error reduction, and color coding for single equipments. In the 30's, concern was still with single equipments, particularly aircraft components. Emphasis was on psychomotor skills and sensory capacities as they affected human capabilities and limitations.

The second World War represented a transition period in engineering psychology and a beginning of engineering psychology as it appears today. The mid-40's brought forth a substantial interest by psychologists and engineers in man as a link in equipment systems. There was a growing awareness of the need to examine entire systems, not just components or subsystems.

The original stimulus came from such problems as the development of complicated manual control devices for fire control, improving the lay-out and instrumentation of airplane cockpits, air-traffic control, etc. It was found that in many instances equipment design was running ahead of human capabilities. These control systems, which sometimes underloaded the human operator as well as overloaded him, required a more detailed knowledge of human performance than had hitherto existed.

As early as 1942 the Franklin Institute in Philadelphia conducted a human operator study and coordinated a program of engineering research into the operation of lead computing sights used in flexible aerial gunnery. A theory was developed, and the production prototype of a stable man-machine system was designed. Simulation studies showed that the Institute's sight and gun system in the hands of untrained secretaries was more accurate than was the previous system when operated by trained Air Force personnel.

Recognition that improving the operator's functioning was an important research area came first in Great Britain and then in the United States. Research teams, at first consisting mainly of psychologists, were organized. In time the aid of other disciplines was enlisted. Two approaches to the problems stand out.

Industrial psychologists analyzed job requirements and concentrated on the selection and training of people who could best be expected to perform the tasks well. Experimental psychologists studied the complimentary possibilities of training and equipment redesign. The equipment redesign efforts were separated into static, kinetic, and dynamic studies.

### **Equipment Studies**

Kinetic studies deal largely with control-display relationships. Static studies deal with such matters as anthropometry and the placement of controls, knob and handwheel design, reticle design, etc. Several excellent handbooks emphasizing this aspect are available. Included in most handbooks are sections devoted to visual indicators, aural equipments, controls, console design, panel layout, workspace design, illumination, environmental factors like temperature, humidity, body measurements, etc.



Fig. 6: The welldressed space pilot will wear many of the se medical instruments (designed by Gulton Industries, Inc.). The y will measure heart reactions, breathing, temperature, and resistance to shock and stimuli. The breathing rate apparatus, can even tell if he is alive or unconscious.

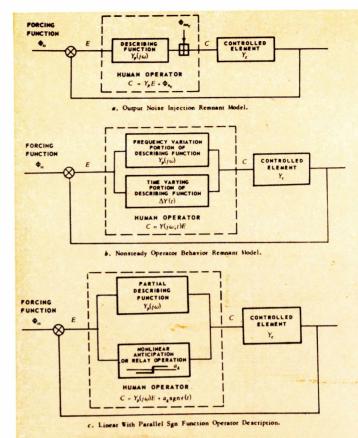



Fig. 7: Human Engineers see man as a "component" in a control system. The non-linear portion of the human's output is as important as the describing function in describing human behavior. From "A Review and Summary of Tracking Research Applied to the Description of Human Dynamic Response." See bibliography.

### Dynamic Studies

In many control systems, the human acts as an error detector. Dynamic studies are characterized by analytical descriptions of the processes by which the human operator exerts control in closed loop tasks. These dynamic studies have led to the application of the well-developed theory of linear servomechanisms to manual control systems in much the same manner as they are applied to automatic processes. The human is represented as a block in the system with inputs, outputs and feed back loops in much the same manner as the mechanical and electrical components of the system.

The mathematical expression of man's transfer function is difficult for several reasons. First, man's response is inherently intermittent and involves a time delay in responding to stimuli. Second, he appears to have many transfer functions, and by learning can modify his transfer function to optimize his performance.

Non-linear analysis techniques could be used to describe these functions, but since the results apply only to specific situations, the human engineer would need a huge dictionary of input-response pairs to properly describe the human function. A technique described by Dr. Ezra Krendel of the Franklin Institute Laboratories for Research and Development allows the use of linear differential equations and describes the human component in terms of a weighting function or its transform.<sup>4</sup> An additional quantity called a "remnant" describes that portion of the human

### Human Factors (Continued)



### Human Engineers Called in Early

Human engineers at Burroughs Corp., Paoli, Pa. are consulted early in the design-development process. Wooden mock-ups of the system are built with both engineering specifications and human dimensions carefully considered.



behavior not ascribable to this linear operation on the input. See Fig. 7.

This "remnant" may be accounted for in many ways. For instance, a random "noise" may be superimposed on the operator's output; the human operator may behave in a non-steady manner by exhibiting a time variation of his open loop describing function during the course of a run; and there may be a nonlinear anticipation, or relay operation, in parallel with the operator.

Drs. H. P. Birmingham and F. V. Taylor of the Naval Research Laboratory say that, "speaking mathematically, man is best when doing least." They make the fundamental assumption that "the more complex the human task, the less precise and the more variable becomes the man. . . .Human control behavior reaches the optimum when the man becomes the analogue of a simple amplifier."<sup>5</sup>

It should be noted that below some optimum number of events-per-unit-time man's performance may degrade with passage of time. It may be necessary to provide additional motivation to decrease this effect, commonly called the "vigilance" effect. For instance, a loud sound may be used whenever a particular response is not made to an infrequently-occurring signal.

### Quickening and Unburdening

Drs. Taylor and Birmingham describe two aids to achieving this optimum in control devices in a report, "A Human Engineering Approach to the Design of Man-Operated Continuous Control Systems." The two principles are "Quickening" and "Unburdening."<sup>5, 6</sup> From these stages (above and below) is developed an actual artist's concept of the finished product and finally the final machine shown left. This is Burrough's B251 Visible Record Computer, a solid-state electronic data processing system.



Quickening provides the operator with immediate knowledge of the effects of his own responses. Although it modifies what is displayed to the man, it does not change directly what he is called upon to do with the control. It has the effect of simplifying the mental processes involved in the tasks.

"Unburdening" uses mechanical, electrical, or other systems to relieve the operator of the necessity of performing complex integration or differentiation. This method tries to limit man's function as nearly as possible to that of a simple amplifier according to the principles mentioned above.

#### The Future

Jack W. Dunlap, of Dunlap and Associates, Inc., predicts that in the next ten years human engineering basic research techniques will remain unchanged, but research tools (electronic, mechanical, and mathematical) employed by human engineers will make substantial advances; a formal program of engineering, physiological and anthropological courses leading to advanced degrees in human engineering will be offered ---probably in engineering schools; out of the present committees and organizations for study of human factors will come a single, strong interdisciplinary society (see Table 2); men formally trained in human engineering will be in strong demand; the emphasis in equipment systems will be placed on man as a sensing, monitoring device; and problems of environmental stress induced by ultrasonic speeds, space travel, isolation of individuals, and automation will receive the major attention of human engineers.<sup>7</sup>

We have already mentioned several examples from the wide-range of problems and projects of the human engineers. In the past few years so many human engineering teams have been organized that it would be difficult to list separately the work being done by each. It would be equally difficult to select any single group as "representative" of the many facets of human engineering. We have selected, however, several programs from industry, government, non-profit organizations, and private consulting firms to give a general illustration of the work being done in this field.

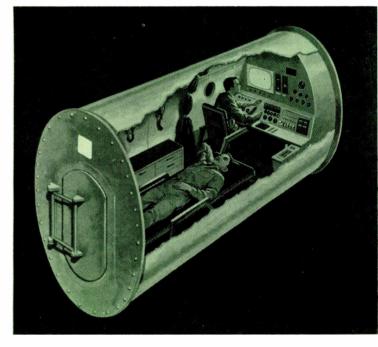
### Battelle Memorial Institute

Battelle Memorial Institute, Columbus, Ohio, is a not-for-profit organization doing research in most scientific and engineering fields. The organization conducts research for both industry and government.

The human engineering program at Battelle is just over three years old. The human factors group, under Systems Engineering, is organized into three parallel groups: Engineering Psychology, Personnel Psychology, and Sensory Psychology.

The sensory psychologists study the human senses (vision, auditory, taste, smell, motor skills, etc.). The personnel psychologists study such subjects as selection, training, safety, motivation, etc. The engineering psychologists concentrate on man-machine relationships. Nine industrial, experimental, and physiological psychologists staff the department and can draw from the entire technical and professional staff of the Institute for human factors work. Head of the human factors group is Dr. William Hitt.

Typical Battelle human engineering studies include: investigating the effects of degrees of automation on man-machine system performance; development of a system simulator for studying Air Force problems; formulation of a program for research on human problem solving; a study of the effects of electronic countermeasures on defense systems; the development and evaluation of a reading instrument for the blind; and the design and layout of an operator's console for a large radio telescope.


The Aural Reading Device for the Blind (see Fig. 9) is a direct-translating, non-integrating machine sponsored by the Veteran's Administration, Prosthetic & Sensory Aids Service. The device, still in the experimental stage, is moved over a printed page by the blind person. The printed characters trigger photoelectric cells and sounds are emitted which describe the characters. With training, the blind person can interpret the sound and so read the printed material somewhat like reading Morse code. The device uses 11 separate sound channels with frequencies from 400 to 4000 CPS.

Battelle, in cooperation with the Ohio State School for the Blind, has a training program, including group and individual methods, for evaluating the device. Although there is, of course, some variation in ability among the trainees, a reading speed of 10 words per min. has been attained. Compared to the Braille System (approx. 37 wpm) this may not appear particularly startling. However, it must be remembered that these machines are designed to supplement present methods. When fully developed, they will give blind people access to newstand material, daily papers, technical journal articles, personnel correspondence, and other printed media not now available in Braille. Then, too, the 10 wpm is not a machine limited speed. It could be increased depending on the person using it and the degree of his experience.

Battelle's human factors group is doing the design and layout of an operator's console for one of the world's largest radio telescopes. The human factors group is working with a team of electrical and mechanical engineers on this console, the nerve center of the system.

Typical problems relate to the duties to be assigned

Fig. 8: Artist's conception of a satellite simulator designed by Minneapolis-Honeywell for the Air Force School of Aviation Medicine. Information obtained from research with this capsule will pave the way for design of living and working accommodations in future extended-trip space vehicles.



to the operating personnel; the types, shapes, sizes, and colors of the controls to be used; the layout of indicators and controls on the console according to function, importance, frequency of use, and sequence of use; the organization of sub-systems on the console; and the types of malfunction and acknowledge malfunction cues to be used. Also part of the group's responsibility are designing for reduced maintenance and increasing reliability by increasing operator efficiency.

To test the results of their study, the human factors group will build a full-scale mock-up of the system.

A third project is a simulation study to evaluate the effects of electronic countermeasures (ECM). In this

### Human Factors (Continued)

study, a combined analog-digital simulation of an air battle between an attacking bomber and a groundcontrolled interceptor including the intermediate human radar operator was devised. The measure of effectiveness of ECM was considered to be the probability of survival of the bomber.

The experiment involved 500 trials and consisted of 50 different ECM displays presented to 10 different subjects (operators). The experiment enabled analysis of the functional relationships between performance measures and the errors in the system. These included measures of effectiveness related directly to the performance of the human operator, and the effectiveness of measures derived from the operator's performance after the observed data have been operated on by a complex transformation.

### Armour Research Foundation

The human factors section at ARF is under the jurisdiction of the Mechanical Engineering Dept. The

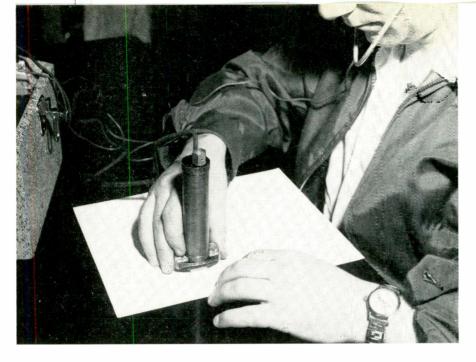
| TABI                                                                                                                                                                                                                                                                                                                                     | LE 2                                                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Professional Society Information<br>The professional societies listed below have as their aim the advancement<br>of human factor knowledge and application in systems, equipment, pro-<br>cedures and processes; or have groups or committees specifically concerned<br>with human factor applications to their major areas of interest. |                                                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |  |  |  |
| Division 21, Society of Engineering<br>Psychologists<br>American Psychological Association<br>1333 Sixteenth Street, N. W.<br>Washington 6, D. C.                                                                                                                                                                                        | Dr. Frank V. Taylor, President<br>Naval Research Laboratory<br>Washington 25, D. C.                                      |  |  |  |
| Ergonomics Research Society<br>Journal: ERGONOMICS                                                                                                                                                                                                                                                                                       | Dr. K. F. H. Murrell, Secretary<br>Department of Psychology<br>22 Berkeley Square<br>Bristol 8, England                  |  |  |  |
| Professional Group on Human<br>Factors in Electronics<br>Institute of Radio Engineers, Inc.<br>One East 79th Street<br>New York, New York                                                                                                                                                                                                | Mr. H. P. Birmingham, Chairman<br>Naval Research Laboratory<br>Washington 25, D. C.                                      |  |  |  |
| Human Factors Group<br>American Society of Mechanical<br>Englineers<br>29 West 39th Street<br>New York 18, New York                                                                                                                                                                                                                      | Mr. Arthur H. Schroeder, Chairman<br>International Business Machines<br>Corporation<br>Box 390<br>Poughkeepsie, New York |  |  |  |
| Man-Machine Integration Sub-<br>Committee<br>Technical Operations Department<br>American Institute of Electrical<br>Engineers<br>33 West 39th Street<br>New York 18, New York                                                                                                                                                            | Mr. W. H. MacWilliams, Jr.<br>Bell Laboratories<br>Whippany, New Jersey                                                  |  |  |  |
| Seventh Technical (Human Factors)<br>Division<br>American Rocket Society<br>20th and Northampton Streets<br>Easton, Pennsylvania                                                                                                                                                                                                         | Major Stanley White, Chairman<br>NASA, Langley Research Center<br>Langley Field, Virginia                                |  |  |  |
| Psychological and Sociological<br>Factors Committee<br>American Institute of Industrial<br>Engineers<br>145 North High Street<br>Columbus 15, Ohio                                                                                                                                                                                       |                                                                                                                          |  |  |  |

area of responsibility includes kinematics and kinetics of body joints and limbs, analysis of protheses and man-machine and man-vehicle coordination studies. Projects usually involve an interdisciplinary approach. The instrumentation section of the Electrical Engineering Dept. has done extensive work in the field of electro-medical research including the development of special recording equipment. The Foundation also provides a testing service for new design electromedical equipment for the American Medical Association.

Other programs at ARF in which human factors play a significant part include: a program to simulate "g" effects in aircraft flight simulators, which may involve the design of an engineering model to produce the desired effects; and a program to design and develop an integrated system for monitoring the physiological response of experimental subjects undergoing severe whole body vibration.

### Applied Psychology Corporation

Applied Psychology Corp., Arlington, Va. is making a study of "Design Standards for Man-machine Tasks in Signal Corps Systems." They are aiming to reduce the number of kinds of tasks an operator will have to perform in future systems. The overall purpose of the study is to provide a method by which the engineer can determine the functions of the human in the early design stages of systems or equipment development.


To do this, they are developing criteria by which functions can be analyzed, identifying human functions in present developmental systems, and developing an analysis procedure. A survey will be made to classify functions presently found. A catalog of tasks and equipments indicating the processes performed in each case will be made. A design engineer could turn to the catalog of tasks, locate the task in which he is interested and notice both the human processes involved and the equipment components used in previous systems.

APS feels that the human processes associated with each separate piece of equipment will not be the same even though the task being performed is the same. Having information on the most efficient processes, the engineer will be able to select more intelligently the component design which optimizes human efficiency.

Initial work has been done on developing a methodology for analyzing these human processes. A preliminary list of human functions in Signal Corps systems has been developed. Certain functions are indicated as "basic" in the sense that it seems possible to define all complex human activities with relatively few terms. The first stage in an attempt to discover these basic terms has been carried out. Further work on delimiting and defining the basic process or function is planned.

### Systems Development Corporation

Systems Development Corp., a non-profit organization which was formerly the System Development Div. of Rand Corp., is probably the largest single em-



ployer of human factors personnel in the world. The main emphasis has been on system training. The corporation has developed a system training program for both the manual air defense system and the SAGE air defense system. They are currently doing the human factors work, including system design, for the new SAC control system.

Human factors is one of four major professional specialties of the corporation's technical staff. The others, Data Processing, Engineering, and Management Research are closely connected with human factors work.

The human factors scientists study the human elements of control systems. They study system environment, and develop training programs that help men to perform effectively in these environments. The corporation carries on a long-range research program into all aspects of man-machine relationships. Specialists collect the detailed information required for realistic simulation of a system's actual or potential environment, and design training exercises that will stress critical functions of all or parts of the system. After the training design phase, consultation is provided during the actual operation of a training program. As new training techniques are developed, they are tested in SDC's simulation laboratories or in the field.

The Air Defense Command's System Training Program (STP) began as an experimental study of the human factors affecting the performance of manmachine systems. STP exercises simulate conditions of emergency situations—such as air attack—with which a control system must deal. These exercises are planned, controlled and closely observed. They make possible evaluations of human performance under stress conditions.

STP materials—hundreds of aids such as charts, maps, film, magnetic tape, and scripts—are largely machine-produced by SDC computing equipment. More than a billion calculations are performed annually to maintain a steady output of varied and increasingly complex training exercises. Fig. 9: This Aural Reading Device for the Blind, designed by Battelle's Engineering Psychologists will give blind people access to ordinary printed material. The device has 11 frequency channels and is "read" somewhat like reading code.

### **Defense** Agencies

The defense agencies, besides specifying human factors work in contracts, are doing other work in human engineering. As a matter of fact, almost all military agencies have at least one human factors group. The Aeromedical Laboratory at Wright Field, a pioneering organization in human factors, is one of the largest. The Army at the Aberdeen Proving Grounds has a large human engineering staff about evenly divided between engineers and psychologists, and we

have already mentioned the well known work of Drs. Taylor and Birmingham at the ONR. Many military groups serve as monitors of the human factors work being done by private industry on government contracts.

The Navy has prepared a survey of work in the field of bio-electronics to aid in the use of these techniques in human engineering. This technology permits measurements of electrical changes associated with body functions. The survey, by A. Ford of the Navy Electronics Lab., is preliminary to the NEL's use of bioelectrical techniques in investigating human behavior in job settings. Included are chapters on: "The Viewpoint in Human Engineering," "Amplitude and Frequency of Bioelectric Signals," "Amplifiers and Recorders," "The Human Transmission System," "Applications to Human Engineering" and others.

The School of Aviation Medicine at Randolf Air Force Base has studied the effect on humans of short

Fig. 10: Dr. P. Robert Knaff, Scientist, Human Factors, at General Electric Co.'s Missile & Space Vehicle Dept., Phila., sets up analog computer in the company's Human factors lab. Computer can simulate control situations encountered in manned space vehicle re-entry.



### Human Factors (Continued)

term zero gravity conditions. The Holloman Aero Medical Field Laboratory has investigated the stresses and hazards of upper atmosphere flight and human tolerance to G forces. Operation HIDEOUT, conducted by the Navy, and Operation LONGSHOT, conducted by the Aero Medical Laboratory, Wright Air Development Center, have studied some of the effects produced by long-term confinement and isolation. The American Institute for Research has conducted research on behavior impairment due to stress.<sup>8</sup>

The Flight Control Laboratory and the Aeromedical Laboratory of the Wright Air Development Center have sponsored work directed toward learning more about human transfer functions in tasks most likely to be found in aircraft. Some of the measurements were made at Franklin Institute, some at Princeton, and a great deal of the work was coordinated by personnel of Systems Technology Inc., as well as by project officers at Wright Field.

Some of their findings: The human operator is an adaptive, optimalizing control device, within the limits of the linearized model, although there are many non-linear aspects of human behavior. However, in many tasks of considerable value, the linear model is close enough to the facts to be pertinent.

### Army-Navy Instrumentation Program

Human factors engineering is playing a primary role in the joint Army Navy, BuAir, Long-range instrumentation program (ANIP). A basic objective of ANIP is to provide instrumentation, displays, and controls that make a maximum use of man under all environmental conditions. The long-range program aims to relieve the human pilot of tasks which prevent him from using his full capabilities in carrying out his mission.

Two other programs similar to ANIP are the Submarine Integrated Control Program (SUBIC) and the Surface Integrated Control Program (SURIC). Coordination responsibility of ANIP is with the Electronics Dept. of Bell Helicopter Corp., and Douglas Aircraft Co. Electric Boat Div., General Dynamics Corp., coordinates SUBIC and Sperry Gyroscope Co., Div. of Sperry Rand Corp. the SURIC program.

One human factors study for ANIP will determine how objects sensed by other than visual means can be best encoded and displayed. The study considers the textural elements and edge contours of images essential to their recognition and will permit a quantitative expression of required image properties.

Many advances in techniques, design and theory have been developed as a result of these programs. General Electric Co.'s Light Military Electronic Dept.'s Advanced Electronic Center at Cornell Univ. has developed an instrument which shows the pilot an electronic "picture" of the earth below. The technique, "Contact Analog Display," was developed from specifications advanced by engineering psychologists at GE and Dunlap and Associates (Consultants in Human Factors) for the information a pilot needs



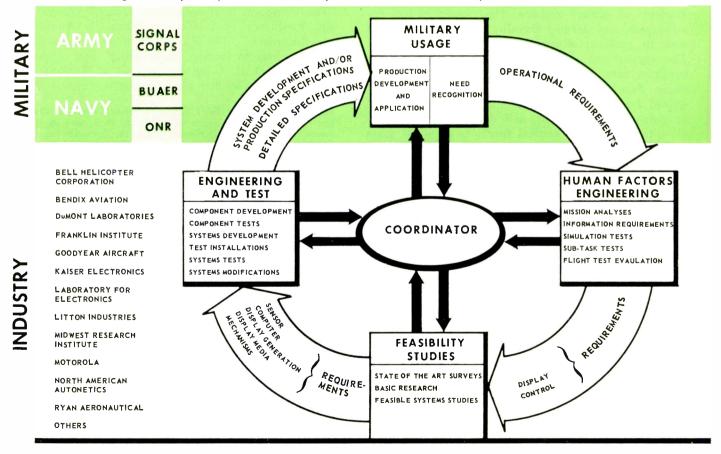
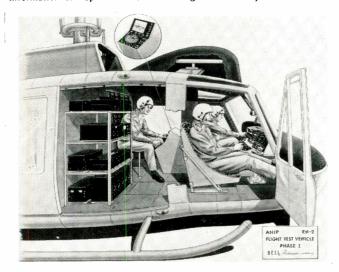






Fig. 12: Research helicopter (above) is a flying laboratory for human engineers and electronic engineers in ANIP program. (Below) Radar mapping information is on bottom half and forward looking obstacle information on top half of console. (Right) Pilot-subject sits at left.





for safe instrument flying. Fig. 13 shows what the pilot would see on the windshield of his plane when using the instrument.

John Senders, research scientist at Minneapolis-Honeywell Corp., says that both men and aircraft have been simulated on digital and analog computers by Minneapolis-Honeywell in studies for ANIP to determine human ability to control everything from a single pushbotton to a complete space ship. The effect of variation in both human and machine parameters was measured.

Avion Div., ACF Industries, Inc., has devoloped a "Horizontal Navigation Situation Display" which correlates information fed into it by computers and instruments and presents a TV picture in the form of a map of the terrain below the plane. A plane image, corresponding to its actual position, is projected on the display.

Bell, and Franklin Institute have built a helicopter flight simulator which will be used primarily for human factors studies under ANIP. The simulator can reproduce the motion, sound, vibration, and general cockpit arrangement of most existing helicopters. See Fig. 3.

The pilot flies the machine as though he were actually flying the real helicopter under blind flight conditions. A computer accepts the control movements from the pilot and then calculates the response of the helicopter. The machine can simulate pitch, roll, yaw, rise 8 feet, and move sideways, fore, and aft. A display generator is driven by the computed responses and presents visual information about attitude, velocity and altitude to the pilot.

Two groups of Bell engineers establish the criteria for these R & D programs. They are the electronics engineers, directed by Owen Q. Niehaus, who develop the equipment, and the human factors coordinators, headed by Dr. W. G. Mathery, who establish the criteria for the need of the equipment and the design of such displays and controls as will be used by the human operator. RH-2, Fig. 12 is a helicopter used only for research purposes of the ANIP program. Its equipment includes: a side-arm cyclic control, an electronic control system with various modes of stabilization; an airborne radar (built by Bendix) which will present radar mapping information, and foreward looking obstacle information which will be displayed through a scan converter (built by Du-Mont). Additional equipment to be installed includes: an airborne central control computer (by Litton Industries) to provide information to various display components within the cockpit, primarily to the navigation display.

Human engineers working at the Goodyear Aircraft Corp. are studying data from which may be designed and built visual electronic displays for the ANIP program. The program is outlined in two steps; the development of mathematical transfer functions for human perception under certain conditions of action, and reduction to a minimum the amount of information required by a human to identify a given object as being that object in reality. A theoretical-experimental model of the electronic

### Human Factors (Continued)

display mechanism is being formulated which will provide a two-dimensional image. In addition, symbols are being established which would convey to the pilot obstacle information picked up by sensors. All this is being tied in with the determination of a human's ability to perceive and react to such a system of object recognition.

Documentation Incorporated, 2521 Connecticut Ave. N.W., Washington, D.C., is operating a man-machine information center which collects and disseminates the tremendous amount of human engineering data used in these programs. The aim is to provide a high level of information capability for scientists and engineers working in the ANIP, SUBIC, and SURIC programs.

### Avco Crosley

Human factors engineering at Avco Crosley Corp., headed by Dr. Vladimir Sklodowski, has both long and short-range goals. The short-term objectives serve to apply existent knowledge to the design of present systems. The long-range goals are those of research. Human factors engineering is channelized into three activities: the improvement, or prediction of improvement, in the design of non-specific systems; developmental human engineering applied to the design and construction of specialized display and control equipment; and improvement, or prediction of improvement, in the design of specific systems.

The section had responsibility for locating controls, prescribing panel layouts, specifying cabinet dimensions, and making recommendations for various defense projects like: Radar System AN/MPS-16, Receiver-transmitter, AN/VRC-12, and Polaris Adaption Kit Test Equipment. The group contributed to the study and development of the re-entry vehicle and the group support equipment for the TITAN ICBM, operational and habitability evaluation of DEW line installations, and many other projects in cooperation with the Air Force Ballistic Missile Division.

Fig. 13: This is what the pilot sees on the contact analog display when his plane is banked right. The information is much the same as he would get when looking through the windshield on a clear day. A more advanced version will also show man-made obstacles.

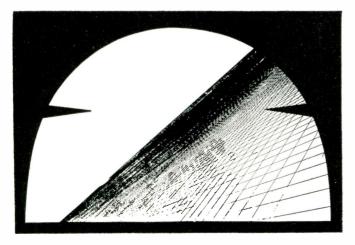





Fig. 14: Battelle Memorial Institute built this booth for conducting experiments to determine the relation between physical characteristics of odorants and their subjective odor properties. They are studying this and others as possible alternate inputs to the man-machine system.

### Dunlap and Associates

i

Į

The emphasis being placed on human engineering is marked by the many consulting firms specializing in this and closely related fields. Typical of these firms is Dunlap and Associates, Stamford, Conn. The company's work has already been mentioned in connection with the "Contact Analog Display" for ANIP.

The major efforts of the firm are indentified with human engineering, Operations Research, Personnel Research, and Motivation Research. The professional training of the staff falls into two broad categories: the physical sciences (engineering, chemistry, physics, mathematics, etc.) and the behavioral sciences (psychology, economics, sociology, etc.).

Three types of studies typify the company's work in human engineering: the "Human Engineer This Entire Product For Me" study where the company performs the entire human engineering work on a product; the "Solve This Problem For Me" study where the company's human engineering specialists are called on to work out a specific problem; and the "Teach Us How" study; where Dunlap & Associates train a company's staff in human engineering techniques and practices.

The company has done human engineering work for the Armed Forces in developing a human engineering guide for equipment designers; establishing requirements in design and layout of operations centers in connection with the defense of the North American Continent; for the Air Force, developing system requirements and design specs for checkout and control consoles in major missile systems; and for private and military groups in preparation and orientation of advanced seminars in human engineering, operations research, and training and development for management and technical staff personnel.

#### Minneapolis-Honeywell Corp.

The human engineering program at M-H was organized in 1954. The first project was an analysis of cockpit instruments in terms of navigational inertial information, attitude, and range. Much work has also been done on altitude indicators and LABS indicators, and experimental work has been done on simulator and production instruments.

H-H has developed several procedures for human factors analyses. One technique is the Second-by-Second Operational Analysis. Essentially this procedure is a series of time-sequenced statements of the particular events within a given mission or operation. These events are sensory inputs to, and motor outputs from the human operator. After considering these events in terms of information theory, they can be quanticized in terms of the specific requirements of the desired goal, or mission objective. The resultant data provide a quantitative statement of the workload on the human operator expressed as a



Fig. 15: George H. Balding, Kaiser Aircraft & Electronics, operates the company's Contact Analog Display System. The system will show the pilot at a glance the basic information needed for flight control.

percentage of his total capability for information processing. Then, re-examination of the earlier steps in this sequence of analyses permits an appropriate adjustment of the allocation of functions to the man. In this manner, a quantitative appraisal of the manmachine relationship can be achieved.

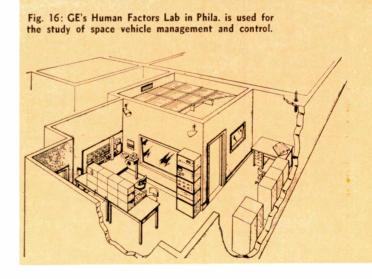
M-H initiated a basic research procedure in 1959 aimed at refining these analytic methods, the major problem being to keep pace with the ever increasing demands of manned aircraft and space vehicles. For example, a study was done at M-H to evaluate empirically the present state-of-the-art in human tranfer function data.

M-H has developed simulation methods for studying the reactions of the human operator and providing controls that optimize overall system efficiency. The space cabin simulator, Fig. 8 is a device of this sort used to provide a highly controlled environment and to display certain flight conditions, via instruments, to the pilot and from this to determine the optimum control-display relationships for given vehicle dynamics.

Another method used by M-H is the Workload Analysis Technique. This can be used to determine the exact time duration of one specific problem solution in terms of information processing. This is a technique for determining the information processing rate of the pilot in order to predict mission success probability. Among the work done by M-H which involved human factors analyses is work on Project Mercury and Dynasoar, Human Engineering Man-Machine Study of Weapons Systems, work on eliminating parallax on flight director needles, curve fitting analyses applied to a learning experiment, work on electrol minescesne, analyses of the human operator as a servo mechanism, and proposals for a human engineering handbook.

### General Electric Company

The human factors group at GE's Missile and Space Vehicle Dept. in Phila., under the direction of Dr. P. Robert Knaff, is doing a manned re-entry study for the Air Force. The study involves determining the ability of humans to affect re-entry, a study of aerodynamic control systems, how pilot control can affect the problems of overheating, too many g's, stresses on the craft, etc.


The engineering psychology lab (see fig. 16) is designed for flexibility so that a wide range of human factors problems can be studied. The lab includes a large simulator area and a large observation-computerprogrammer area. The simulator room provides sound attenuation of at least 30 db at 125 cycles for the acoustical isolation of subjects.

The observation-computer-programmer area has its own analog computer facility (a 30-amplifier analog computer) and is directly connected to the company's main analog computer facility. It is also equipped with function generators, function multipliers, etc. and a special low-drift oscilloscope modified to operate either as a four-independent beam oscilloscope or as a two-beam x-y oscilloscope.

### Lockheed Aircraft Corp.

The Lockheed Human Factors Research Laboratory in Marietta, Georgia under the direction of Dr. J. A. Kraft has a mock-up simulating a space restricted flight station. In this experimental environment, determination will be made of the performance capabilities and psycho-physiological characteristics of operators performing tasks representative of future flight situations. Project leader is Dr. Oscar Adams.

Performance tasks measured are representative of



### Human Factors (Concluded)

basic flight skills. They include: compensatory tracking, arithmetic computation, pattern discrimination, scale position monitoring, probability monitoring, warning light monitoring, auditory vigilance etc.

A key part of the laboratory facility is the automatic instrumentation for the programing, recording, and scoring of the measures, and which permits instantaneous viewing of some of the autonomic responses on an oscilloscope. The entire mock-up interior can be viewed through a closed circuit TV system.8

### TABLE 3

### Military Specifications Dealing with Human Factors

- A. Military Specifications
  - Control Configuration and Markings (For Plastic Lighting Plates, Control Panels, and Platards). MIL-C-18012A (ASG).
     Colors, Aeronautical Lights and Lighting Equipment, General Requirements for. 29 October 1954, MIL-C-25050 (ASG).
- B. Military Specifications: Air Force
  - Data for Guided Missile Weapon Systems. 20 November 1957, MIL-D-9310A (USAF).
     Data for Fixed Wing Aircraft Weapon Systems. MIL-D-25876.
     Data, Personnel Information for Weapon Systems. 19 November 1957, MIL-D-26239 (USAF).

  - 1957, MIL-D-26239 (USAF).
     Ground Support Equipment for Weapon Systems, Support Systems, Sub-systems, and Equipment; Engineering and Procurement Data for. MIL-G-9412.
     Handbooks: Organizational (Flight Line); Maintenance Instructions (Aircraft). 7 March 1955, MIL-H-25098 (USAF).
     Human Factors Data for Guided Missile Weapon Systems. MIL-H-26207.
     Human Factors Data for Manual Aircraft With the South Science Statement Statement Science Data for Manual Aircraft Science Science Science Science Data for Manual Aircraft Science Science

  - Human Factors Data for Guided Missile Weapon Systems. MIL-H-26207.
     Human Factors Data for Manned Aircraft Weapon Systems. 26 November 1957, MIL-H-25946 (USAF).
     Specifications: Air Weapon Systems, Requirements for Prepara-tion of. MIL-S-8048.
     Specifications: Detail, Guided Missile, Requirements for Prepara-tion of. MIL-S-8169.
     Training Equipment, Weapon Systems, Specifications and Engi-neering Test Outlines, Instructions and Requirements for Prepara-tion of. MIL-T-4857.
     Trainers, Operational Procedure, General Requirements for. 1 October 1958, MIL-T-4860C (USAF).
     Weapon Systems; Air, General Specifications for. MIL-W-9411.
     Handbook of Instructions for Aircraft Designers. Volume I, HIAD ARDC Manual 80-1.
     Handbook of Instructions for Aircraft Designers. (Guided Mis-siles). Volume II, HIAD ARDC Manual 80-1.
     Handbook of Instructions for Aircraft Designers. 1 May 1957, HIGED ARDC Manual 80-5.
     Handbook of Instructions for Aircraft Ground Support Equip-ment Designers. HIAGSED ARDC Manual 80-6.
     Human Engineering Design Standards for Missile System Equip-ment. (and supplements) 1 November 1958, Air Force Ballistic Misile Division Exhibit 57-8A.
- C. Military Specifications: Navy
- Control Configuration and Markings; (For Plastic Lighting Plates, Control Panels and Placards). MIL-C-18012 (AER).
   Electronic Equipment, Naval Ship and Shore: General Specifica-tion. 15 March 1955, MIL-E-16400A (SHIPS).
   Interior Communication Equipment; Basic Design Requirements for. MIL-1-983A (SHIPS).
   Illumination of Consoles and Instruments; Basic Design Require-ments for. MIL-1-19823 (SHIPS).
   Plate, Plastic, Cockpit and Interior Controls Lighting. MIL-P-7788A.
- D. Signal Corps Technical Requirement
  - Human Factors Engineering for Signal Corps Systems and Equip-ment. 3 April 1958, SCL-1787.

Courtesy of Dunlap & Associates, Stamford, Conn.

#### REFERENCE PAGES

The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED

An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders.

#### References

References1. Kraft, J. S., "Research in Design and Layout of System<br/>Components," Southeastern Psychological Assoc. Meeting, St.<br/>Augustine, Fla., April 23, 1959.2. Kraft, J. A., Vanderplas, J. M., "Human Factors Research<br/>in the Aircraft Industry," The American Psychologist, pp. 577-<br/>79; Sept. 1957.3. Kraft, J. A., "A Follow-Up Survey of Human Factors Research<br/>in Aircraft, Missiles, and Supporting Industries," Human<br/>Factors, pp. 23-25; Sept. 1958.4. Krendel, E. S., McRuer, D. T., "Human Dynamics and Sys-<br/>tem Syntheses." Proceedings of National Symposium on Human<br/>Factors in Systems Engineering, HFSA, IRE, Philadelphia, Pa.;<br/>Dec. 3, 1957.5. Birmingham, H. P., Taylor, F. V., "A Human Engineering<br/>Approach to the Design of Man-Operated Continuous Control<br/>Systems," NRL Report 4333, Naval Research Laboratory; April<br/>7, 1954.6. Birmingham, H. P., Kahn, A., Taylor, F. V., "A Demon-<br/>stration of the Effects of Quickening in Multiple-Coordinate<br/>Control Tasks," NRL Report 4380, Naval Research Laboratory;<br/>June 23, 1954.7. Dunlap, J. W., "Needs and Developments in Equipment<br/>and Technology, Symposium: Blueprinting the Next Ten Years<br/>in Industrial Psychology," American Psychological Assoc.; Sept.<br/>4, 1957.8. Kraft, J. A., "Approaches to the Measure of Flight Crew

in Industrial Psychology, American Measure of Flight Crew 4, 1957. 8. Kraft, J. A., "Approaches to the Measure of Flight Crew Confinement Stress and Fatigue," Annual Meeting of the Aero Medical Assoc.: March 24, 1958. 9. Pollack, L., Knaff, P. R., "Maintenance of Alertness by Allowed Auditory Signal," Journal of Acoustical Society, 1958, Vol. 30, pp. 1013-1016.

#### Bibliography

<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

#### Human Engineering Bibliographies

Human Engineering Bibliographies
Allen, P. S. and Saul, E. V. An annotated bibliography of bibliographies pertinent to the design and use of machines by human operators. Human Factors, 1958, 1, 26-44. (Purchase from: Pergamon Press, 122 East 55th Street, New York, New York, \$4.00 per copy.)
McCollom, I. N. and Chapanis, A. A Human Engineering Bibliography. San Diego, California: San Diego State College Foundation, 1956. (\$4.00)
McCormick, E. J. Human Engineering. New York: McGraw-Hill Book Company, Inc., 1957. (\$8.00)
Tufts University Institute for Applied Experimental Psychol-ogy. Human Engineering Bibliography, 1955-1956. Office of Naval Research, Washington, D. C., 0NR Report ACR-24, Octo-ber 1957. (Purchase from: Office of Technical Services, Depart-ment of Commerce, Washington, Z., 0., \$4.75.)
Tufts University Institute for Applied Experimental Psychol-ogy. Human Engineering Bibliography, 1956-1957. Office of Naval Research, Washington, D. C., 0NR Report ACR-24, Octo-ber 1957. (Purchase from: Office of Technical Services, Depart-ment of Commerce, Washington, D. C., 0NR Report ACR-23, Octo-ber 1958. (Purchase from: Office of Technical Services, Depart-ment of Commerce, Washington, D. C., NR Report ACR-32, Octo-ber 1958. (Purchase from: Office of Technical Services, Depart-ment of Commerce, Washington 25, D. C., \$5.00.)

For a wide variety of jobs, the trigger circuit described offers correct, reliable output information at low cost. It is virtually independent of input rise time, can handle large variations in input amplitude and dc level, and rejects noise.

# **Designing Input Trigger Circuits**

#### **By RICHARD KIMES**

Senior Staff Eng. Beckman/Berkeley Div. 2200 Wright Ave. Richmond 3, Calif.

AN essential part of any electronic device for counting or timing events is an input circuit which will create sharp pulses at the precise time the events occur. Such a circuit presents appreciable design problems. The electrical signal it receives may have any of widely varying characteristics; whereas the pulses it generates should be uniform and precisely timed. The electrical signal itself may be the event of interest or, being the output of a transducer, it may simply correspond to some other physical event. We will first point out salient characteristics of possible input signals and second consider the design of a vacuum tube circuit which will accommodate such signals satisfactorily.

We will consider a voltage sensitive device only, because vacuum tube circuits are most naturally and economically operated in this way. For the same reason, we will treat the input signal as a varying electrical potential. A part of this signal, a voltage excursion, will be taken to represent the event of interest, and the precise time of the event will be defined as the moment the excursion reaches a certain instantaneous potential.

### Characteristics of Input Signals

The wider the range of input signals the circuit will accommodate, the better. Fortunately, some types of signal are far more common than others; therefore, balancing expense against versatility, we have aimed for a comparatively simple device which will meet nearly all needs. The vast majority of signals will fall within the following limits:

1. The voltage excursion representing the event of

interest will range in amplitude from  $\frac{1}{2}$  v. to 100 v. In some cases the  $\frac{1}{2}$  v. change must be sufficient to trigger a pulse; in other cases it may be necessary to ignore variations as great as 10 or 20 volts and to generate a pulse only when a more massive change occurs. We will use the term "noise" to designate all excursions which should be ignored, and "signal" to designate excursions which should generate pulses.

2. The rate at which a voltage excursion approaches the critical value will range from 1 v/sec to 100 v/microsec (a 1 x  $10^8$  to one ratio). Varying rates must not appreciably affect the time at which a pulse is generated nor the shape of the pulse.

Fig. 1: Input pulse-forming circuitry used in electronic counters. Potentiometer adjusts dc level. Switch is for input attenuation.



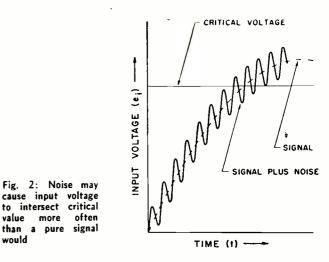
### Trigger Circuits (Continued)

3. The instantenous voltage marking the time of the event may lie anywhere between -100v and 100v.

4. The source impedance of the input signal may be very high.

### A Circuit for Essential Requirements

High noise levels and extreme variations in rate of change present the most difficult design problems. These features tend to dictate the basic type of pulseforming circuit chosen; the other input characteristics can be accommodated by conventional techniques of amplification and attenuation.


One circuit that possesses the necessary properties is a voltage discriminator known as a Schmitt trigger circuit. Such a circuit assumes one of two stable states depending upon whether its input potential is above or below a critical voltage level. An input excursion through the critical level will cause it to switch states rapidly, generating a sharp pulse. Later on we will show how the timing and shape of the output pulse can be made virtually independent of the slope of the input excursion; but first, let us see how such a circuit can discriminate against noise.

#### Noise Rejection

If we examine an input signal closely, we may find it contains high frequency noise superimposed upon the slower voltage excursion which represents the event of interest. Notice in Fig. 2 that such noise may cause several intersections with the critical value. To prevent several pulses from being generated, we must suppress or ignore the additional intersections. One method is to use a trigger circuit which responds so slowly that it will not react to fast noise. This is not a satisfactory solution. Slowing the trigger action sufficiently to time slow waveforms will result in a large time error or complete failure to trigger on fast input signals.

Another possible solution, filtering frequency components higher than those present in the signal excursion, is not practicable because the filtered frequency must be adjustable for each input frequency. The best solution is to utilize the natural hysteresis of the trigger circuit to discriminate against noise below a certain peak-to-peak amplitude. This means that there will be two critical voltages instead of one. The circuit action might be diagramed as in Fig. 3. While the input is above the "on" trigger level the circuit will assume the "on" stable state; below the "off" level the circuit will be in the "off" state. In the region in between the "on" and "off" levels, the state of the circuit depends solely on its past history. It will be in whatever state it was in before the input entered the indeterminate region. Under these conditions noise with peak-to-peak amplitude less than the difference between the trigger levels cannot cause a complete trigger cycle.

As diagramed, the circuit is initially in the "off" state. The first time the input voltage crosses the "on" trigger level, it switches to the "on" state. Now, the several intersections with the "on" trigger voltage occurring immediately after entering the "on" region



are ineffective. The circuit cannot switch to the "off" state until the input voltage falls to the "off" level. The "on" and "off" levels should, therefore, be separated by more than the peak-to-peak noise but less than the peak-to-peak signal. For this reason the hysteresis should be adjustable to accommodate various signal and noise amplitudes. We will find that the best way to modify the effective hysteresis is by amplifying or attenuating the input signal.

Fig. 2: Noise

to intersect

value more

would

than a pure

#### Timing Error

ſ

1

;

t

Referring again to Fig. 3 notice that, although noise variations do not cause the circuit to trigger more often than it should, the noise still causes the circuit to trigger a little earlier or later than the pure signal would. This produces an irremediable timing error which should be considered in determining how fast the trigger should act. There will be another time error because the circuit will never trigger instantaneously and will trigger slightly later on a slowly rising waveform than on a sharp pulse. However, it would be futile to design a trigger circuit whose switching error was appreciably less than the error due to inescapable noise.

Noise can be analyzed as a peak-to-peak voltage variation  $(e_n)$  superimposed on an ideal input signal. Its source may be the input transducer, the trigger circuit or an amplifier preceding the trigger circuit. The maximum possible time error may be calculated from the formula.

$$= e_n / R \tag{1}$$

where  $t_{z}$  = maximum possible error in seconds R = slope of ideal signal at the trigger level in volts/sec  $e_n = \text{peak-to-peak noise in volts}$ 

 $t_x$ 

In the case of a sine wave triggering at its zero cross-over value,

 $R = \frac{1}{2} \omega E_{pp}$ 

where  $\omega$  is the signal frequency in radians/sec and  $E_{pp}$  is the peak-to-peak value of the signal in volts, and

$$t_x = e_n / \frac{1}{2} \omega E_{pp} \tag{2}$$

From this formula we learn that a 1CPS signal with a signal-to-noise ratio of 100,000 to 1 would produce a possible noise error of 3.3 µsec. Since it is virtually

impossible to obtain a signal with a lower noise content than this (noise 100 db down) a trigger circuit with a maximum switching time error of one  $\mu$ sec. is guite adequate.

### The Switching Action

The trigger circuit may be considered as a dc coupled amplifier with positive feedback and a single time constant as shown in Fig. 4. In Fig. 4:

- $e_i = input voltage$
- e. = output voltage with respect to output voltage in the "off" state
- $e_{\bullet} = e_{\bullet} + e_{i}$
- $\mu$  = open-loop dc gain of amplifier
- $\alpha =$ amplifier time constant

$$(\alpha = 1/RC)$$

The transfer characteristic of the amplifier is a non-linear function. (Fig. 5.) In the "off" state  $e_o$ is zero, so  $e_s = e_i$ . When  $e_i$  rises until  $e_s$  reaches point A, feedback forces  $e_s$  to increase until the operating point is at B. In this state,  $e_s = e_m + e_i$ , and  $e_i$  must decrease far enough to force  $e_s$  to point C, where reverse regenerative action occurs, placing the point of operation at D. The distance from D to A or from B to C is the hysteresis  $(e_h)$ .

As an input excursion intersects a trigger level, the output voltage changes state in two phases. At first it rises (or falls) exponentially at a rate determined by the slope of the input excursion and the gain of the circuit. This phase is the switching time. When the output reaches a certain value, the input signal loses all effect and the output rises (or falls) quickly but at a decreasing rate. This phase is the output rise time.

The two phases emerge clearly when we consider what happens when the input voltage is raised to a point minutely above the trigger level and held constant. At first the response is governed by the transfer function

$$e_o = e_i \ \mu \ \alpha \ / \ s - \alpha \ (\mu - 1) \tag{3}$$

So that in relation to time

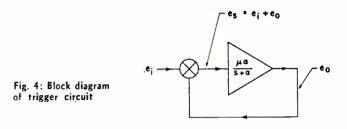
$$e_{\sigma} = e_{i} \frac{\mu}{\mu-1} e^{\alpha(\mu-1)i_{1}}$$
(4)

Where  $\gamma =$  time elapsed since  $e_i$  was applied.

Plotting this relationship creates the first part of the curve shown in Fig. 6. When the output reaches  $e_m/\mu$  the feedback voltage alone is sufficient to satu-

rate the amplifier. At this point the transfer function, now independent of the input, becomes

$$e_o = e_m \alpha / s + \alpha \tag{5}$$


or, in relation to time

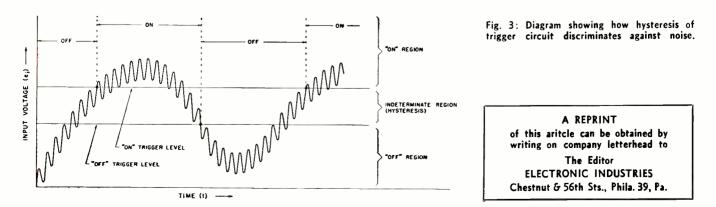
$$e_o = e_m (1 - \epsilon^{-\alpha t_2}). \tag{6}$$

This relationship is illustrated by the last part of the curve in Fig. 6.

Since the response after the output reaches  $e_m/\mu$ is fast and independent of input rise time this point may be defined as the time of triggering. The time elapsed from the moment the input crosses the trigger level until the output reaches  $e_m/\mu$  will be the switching time error. We can see that for input voltages barely above the trigger level, an appreciable switching time error will occur.

A similar time error will occur if the input is a slowly rising excursion with slope R. The time equation then becomes




$$e_{o} = \frac{R}{\alpha \ (\mu-1)} \left[ \frac{\mu}{\mu-1} \ \epsilon^{\alpha(\mu-1) t} - \alpha \ (\mu-1) \ t-1 \right]$$
(7)

or since the last two terms are insignificant within the range of values which concern us, simply

$$e_o = \frac{R}{\alpha \ (\mu-1)} \cdot \frac{\mu}{\mu-1} e^{\alpha (\mu-1) t_1}$$
(8)

Where  $t_1 =$  time elapsed since  $e_i$  crossed the trigger level.

In the desired circuit  $e_o$  should reach  $e_m/\mu$  within one  $\mu$ sec, even though the input rises at a rate (R)as slow as one volt/sec. This means that  $\alpha$  and  $\mu$ should be as large as possible, whereas  $e_m/\mu$  should be small. Factors  $\alpha$  and  $\mu$  are interdependent, because for any given tube the gain-bandwidth product  $(\alpha\mu)$  is fixed. To maximize these factors, we will need a tube with a high gain band-width product. If the tube is to be driven from cut-off to saturation and the output is to be the total voltage swing thus developed across a purely resistive plate load, the term  $e_m/\mu$  will be nearly equal to the grid base of



ELECTRONIC INDUSTRIES · February 1960

### Trigger Circuits (Concluded)

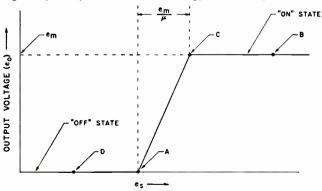
the tube. For this reason, the tube should also have small grid base.

### Using a Pentode

A tube meeting these requirements well is the pentode part of a type 6U8. Operated in the region with which we are concerned, a 6U8 pentode has an  $\alpha\mu$  of about 10<sup>8</sup>. Unfortunately, the entire gain cannot be realized. In order to procure a low impedance feedback signal, a cathode follower stage must be inserted in the feedback path. The voltage-dividing action of direct-coupling and the loss in driving a low-impedance load reduces the over-all gain to about one-half the pentode gain; thus yielding an  $\alpha\mu$  of about  $5 \times 10^7$  which can be fully utilized.

Using a 6U8 pentode, a circuit can be built with the following characteristics:

$$\alpha = \frac{1}{10^{-7} \text{ secs}} = 10^7$$
$$\mu = 4$$
$$e_e = e_m/\mu = 2 \text{ volts}$$

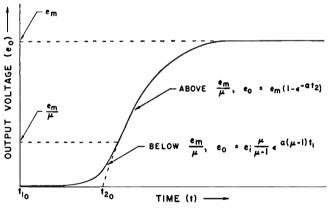

Inserting these values in equation (8), we find that with R = 1 v/sec,  $t_i$  becomes approximately 0.6 µsec. This means that the switching time error will be less than 1 µsec. This is the least time error that can be procured with the selected tube. Increasing  $\mu$  will produce a compensating decrease in  $\alpha$ , leaving  $t_i$ substantially the same. Moreover,  $\alpha$  should be large in comparison with  $\mu$  so that the output rise time, as defined by Eq. 6, will be short.

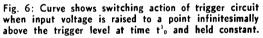
Let us see how the selected gain affects the hysteresis. The hysteresis  $(e_{\hbar})$  is governed by the following formula:

$$e_h = \frac{e_m}{\mu} \ (\mu-1) \tag{9}$$

It can be seen that with a  $\mu$  of 4,  $e_h$  is substantially the same as the output voltage swing  $e_m$ . Since  $e_m/\mu$  is a constant approximately equal to the grid base of the tube, the only way to narrow the hysteresis is to reduce  $\mu$ . This is undesirable for two reasons. One is that the switching speed falls, considerably if  $\mu$ -1 in Eq. 8 becomes appreciably less than  $\mu$ . Another reason is that  $e_m/\mu$  becomes a large fraction of the total output swing. This means that a large part of the output rise would occur during







the first phase  $(e_o = 0$  to  $e_o = e_m/\mu)$  when the output is dependent on the input voltage and, consequently, that output pulses would not be the same shape for all input waveforms. For these reasons the hysteresis (which is equivalent to the peak-to-peak sensitivity of the trigger circuit) must be 6v or more.

### Factors Not Accounted For

The circuit we have analyzed is an idealization which differs from the actual circuit used in Beckman/ Berkeley equipment in several important respects. First, constant gain from cut-off to saturation cannot be found in a real circuit. Rather, as the circuit switches, there is a gradual increase in gain from less than one to a maximum, then a gradual decrease to less than one again. This means that the trigger points are less sharply defined and that slowly rising excursions may take longer to saturate the amplifier than we calculated. Nevertheless, if the value of  $\mu$  is understood to be an average during the switching time, the calculated response is not appreciably different from the actual.

Second, the idealization falls short of reality by assuming only one time constant. In the actual cir-





cuit diagramed in Fig. 7, there are two stages; hence, two time constants. However, because one time constant is usually many times larger than the other, the equations still hold.

Third, we failed to include the effect of mixing the input and feedback signals in our analysis. In the actual circuit the input is applied to the grid and the feedback signal to the cathode of the same pentode. In switching the cathode changes potential rapidly and this transient is coupled to the grid through the grid-to-cathode capacitance. Unfortunately, the signal which reaches the grid has a polarity which opposes the input voltage excursion and, therefore, tends to inhibit the triggering action. In fact, if the time constant of the amplifier is large enough to cause a sufficient time gap between input and feedback signals, this transient may actually switch the circuit back from the state to which the input excursion has flipped it. Under these conditions, the second switching action will produce another feedback transient which triggers the circuit

ELECTRONIC INDUSTRIES · February 1960

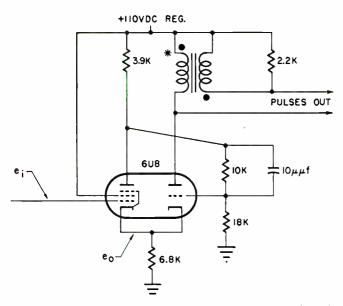



Fig. 7: Actual Schmitt Trigger circuit used in "7000 Series". Amplification occurs in the pentode circuit. The second stage (triode) operates as a cathode follower to provide a low-impedance feedback signal which is direct-coupled to cathode of the pentode. A pulse transformer in the plate circuit of the triode differentiates plate current changes to create output pulses.

once again, and in this way sustained oscillations may ensue.

To forestall these effects we must do three things: one, keep the hysteresis large so that the amplitude of the feedback transient will be insufficient to retrigger the circuit; two, drive the input from a low impedance source in order to reduce the effect of the capacitively-coupled signal; and three, minimize capacitive coupling by careful lay-out and by using a low-capacity tube.

### The Input Amplifier

The trigger circuit we have described requires an input amplifier in order to accommodate the wide variety of likely input signals. The amplifier adds many desirable features:

1. It extends the input sensitivity from 6v peak-topeak to 0.3v peak-to-peak.

2. Combined with an input attenuator, it makes it possible to expand or contract the input signal so that peak-to-peak noise will be less than the hysteresis of the trigger circuit at the same time that the signal excursion exceeds the hysteresis. The attenuator provides, in effect, a method of adjusting the hysteresis. So equipped, the circuit can accommodate signal-to-noise ratios as extreme as 2 to 1.

3. The amplifier can present a high impedance to the input signal, while it generates a suitable low impedance signal for the trigger circuit.

4. By using a differential amplifier, we can add or subtract a dc voltage from the input signal. This enables us to shift the instantaneous voltage at which the input signal will trigger a pulse.

### **Output Circuitry**

The output of the trigger circuit must be differentiated to produce sharp pulses. When the trigger circuit switches, the plate current of the cathode follower changes rapidly from cut-off to saturation or vice versa. Differentiated, this rapid current change

produces a sharp voltage pulse at the time of triggering. In the Beckman/Berkeley circuit, differentiation is accomplished by the primary winding of a pulse transformer. This makes it possible to obtain pulses of either desired polarity; one polarity at the primary winding; the opposite polarity at the secondary winding.

The input circuit described will produce an output pulse closely synchronized with an input voltage excursion. Over a wide range it is virtually independent of input rise time, can accommodate considerable variation in amplitude and dc level, and can reject noise. For a wide variety of jobs, this circuit offers correct, reliable output information at minimum cost.

### PERFORMANCE OF IMCS INPUT TRIGGER CIRCUIT

Input Frequency Range DC Coupling: dc to 1.1Mcs. AC Coupling: 5 cps to 1.1Mcs.

### Input Impedance

10 megohms in parallel with 40  $\mu\mu f$ .

### Input Coupling

AC or DC.

### Input Attenuation

Input voltage may be attenuated by a factor of 10 or 100.

### Input Sensitivity (Effective Hysteresis)

Without attenuation: 0.3v peak-to-peak. Attenuated by factor of 10: 3v peak-to-peak. Attenuated by factor of 100: 30v peak-to-peak. (Noise below input sensitivity will not trigger a pulse.)

### Trigger Voltage Level

Instantaneous voltage which input signal must reach to trigger a pulse may be varied continuously between the limits noted below: Without attenuation: 1v to +1v. Attenuated by factor of 10: -10v to +10v.

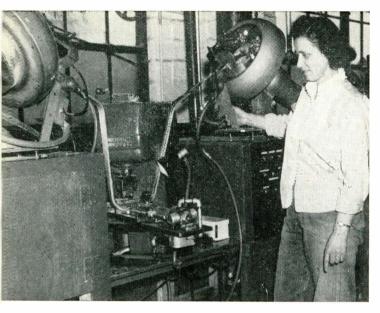
Attenuated by factor of 100: -100v to +100v.

### **Trigger Slope**

Output pulse of desired polarity can be triggered by either positive-going or negative-going input voltage excursions.

### Switching Time Error

Less than one microsecond.


### Internal Noise

Less than 300 microvolts referred to input signal after attenuation.

Input trigger circuits accommodating frequencies up to 2 and 10Mcs are also used in 7000 Series equipment.

### PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide the missing pages.



A PRODUCTION combination of standard component feeding devices and hydraulic operated presses can often solve difficult assembly problems encountered in electronic part manufacture. Radio Condenser, Co., Watseka, Ill., in their assembly of miniature components, has employed this production combination.

To meet the problem of uniform, economical production, a completely automatic operation has been developed for an unusually low tooling cost by use of a hydraulic press built by the Denison Engineering Div., American Brake Shoe Co., Columbus, Ohio. With a Model "A" 1-ton capacity hydraulic press as prime method for staking, auxiliary feeding devices built by Detroit Screwdriver Co. were integrated to handle and place component parts into position for assembly by pressing.

posts.

The terminal post is one type of assembly produced with the Multipress method. The basic bakelite component is fed from the hopper shown at the extreme left of the production photo. Prestamped metal lugs are similarly fed from hoppers at the rear and at the right.

A sliding fixture on the press platen receives the three parts in proper position and slides the positioned components beneath the

## What's New . . .

## Automation Improves Components

Multipress method using hopper feeds to handle and position component parts for assembly of terminal

The basic functions of the hopper feeds, slide fixture and hydraulic ram stroke are, of course, integrated into a preset time cycle. Consequently, the operator has only to supervise the functioning of the production cycle and load additional component parts into the hoppers as the production cycle demands.

ram of the hydraulic press. The

Assembled component parts are ejected from the fixture by a jet air stream after assembly.

With hydraulic operation, scrap is virtually eliminated. This is a result of the pressure reversal principle on which the hydraulic press ram operates. In other words, the ram will not reverse or back away from the work until a pressure preset on the ram has been reached.

## Books via Teletype



 $T_{ly\ tools\ of\ business\ offices,} newspapers, wire\ services,\ brokerage\ firms,\ and\ the\ military.\ Now,\ they\ contribute\ to\ culture\ and\ learning.}$ 

In Philadelphia's beautiful, fully stocked Free Library, Kleinschmidt teletypewriters help speed the flow of books from the stacks to the reading public and back again. They are used with belt conveyors, book lifts, and electrical signalling devices.

All large libraries want to reduce the time readers must wait for books which are stored in the stacks. In Philadelphia, the problem was especially acute. Contributing factors were the size of the building (60,000 sq. ft.), the distances between the 2nd floor read-

Librarian in reading room, upstairs, orders books from stacks, in basement, by teletype.

ing rooms and the underground stacks, and the fact that the library is so well patronized. About 20% of the population of Philadelphia are registered borrowers.

Here is how the system works. When a reader presents his order, the librarian types it out on the teletypewriter. This reproduces it as page copy both on the second floor sending unit and in the nerve center of the basement stack area. The order is acknowledged. The page then gets the books off the stacks, places them on a conveyor belt or book lift and signals the librarian. A page on the second floor picks up the order and delivers it to the reader. Normal elapsed time: 8 to 12 minutes.

Library officials point to the speed, clarity, and accuracy. The order is transmitted and received simultaneously in original typed



# **Traveling Exhibit**

 $\mathbf{A}^{\mathrm{N}}$  innovation in exhibits—a traveling instrument displaydemonstration vehicle-is now operated by the General Radio Co., West Concord, Mass.

Developed to bring a full complement of the latest developments in electronic measuring equipment directly to local government agencies, laboratories, industry and educational institutions, the cara modified station wagon-carries over 600 pounds of instruments mounted on six collapsible tables. The display can be set up in an hour by a three-man team of engineers.

The wide assortment of test apparatus-six operational displays-is packed into the car by collapsing the tables onto three moving dollies, and fitting bundles

form, with no possibility of being misunderstood.

There are other advantages. If the stock room pages are all busy getting books off the shelves, the orders are there waiting for them when they return to the nerve center of the storage area. Instead of jangling, unanswered telephones, there is a continuous flow of typed orders coming in over the teletypewriters.

Altogether, 150 to 175 orders are processed on a normal weekday via the teletypewriter network. On Saturdays the average is higherfrom 200 to 225. The busiest time, however, is during the Sunday library hours of 2 to 6 P.M. During this 4-hour stretch the teletypewriters-and the pages in the storage area-are really kept "hopping" with an average of 175 orders.

the equipment ΔII and literature, plus the six tables on which they are displayed (left), can be packed on three dollies and in two boxes. These five pieces are then transported in the station wagon (right).



of literature, signs and miscellaneous accessories into a two-decker rolling box.

Based on an idea conceived by George G. Ross, manager of G-R's New York office, and W. R. Thur-

Coating

**Machines** 

NEW machine accurately coats

A coaxial lead components at a

rate of 4000 per hour. Conform-

ing Matrix Corp., 474 Factories

Bldg., Toledo 2, Ohio, is the manu-

pletely form a light-tight seal for

selenium diodes. Other coaxial lead

components can similarly be pro-

vided a baked heat and abrasion-

accurately spaced traveling strips,

while racks, loaded with diodes,

move continuously through the

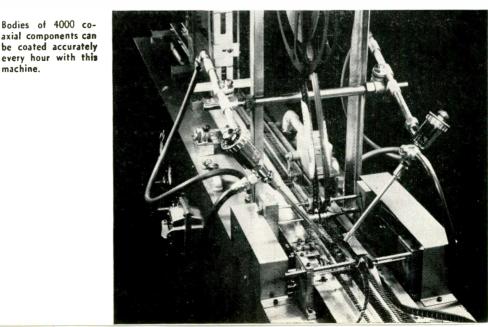
The coating is confined by two

resistant clear coating.

A resinous composition can com-

facturer.

machine.


ston at the plant, the show serves not only as an exhibit of equipment, but as a technical-information center on measurement problems

spray station. The diodes are spun to assure application of an even coating. The lead wires are not This prevents coating sprayed. cracks if the wires are bent for printed circuit insertion. There is no excess coating. The units remain in the racks for both spraying and baking.

The spray coating is completely automatic. Racks carrying the diodes move through the machine and emerge evenly coated without the need for a handling operator.

Automation is possible, inasmuch as the coating material is confined by remote masking and not mechanical means. Spray masks, registering devices, and mask cleaning operations are eliminated.

The machine may be adjusted to accommodate coaxial lead components of varying lengths.



WASHINGTON

### **News Letter**

QUARTER CENTURY MARK—The FCC recently submitted its Silver Anniversary report to Congress, a Report on its quarter century of existence. It serves to reemphasize the U. S. world leadership in radio and telecommunication. Radio authorizations have practically multiplied by that number of years —from slightly more than 100,000 at the close of the Commission's first year to nearly 2.5 million today. Radio stations of all kinds have increased from 51,000 to more than 507,000, currently representing the use of about 1.8 million transmitters. Almost two-thirds of the world's total of broadcast and TV receivers are in the United States, with more than 200 million in this country.

SAFETY AND SPECIAL—There are more than 40 categories of safety and special radio services, the FCC reported. Most of them did not exist 25 years ago, nor were they even in the experimental stage. Over half a million licensees now operate more than 1.7 million fixed, mobile and portable transmitters. And no leveling in the demand for these facilities is foreseen for many years to come. The FCC is seeking more effective ways of utilizing the spectrum space available for these services as well as handling the increasing volume of applications.

**USEFUL RADIO SPACE TRIPLED** — The useful radio spectrum space covered by international agreement has been increased three times over its present amount in recognition of most recent developments in radio usage. This was determined by the International Radio Administrative Conference at Geneva, Switzerland. The allocations were extended to 40,000 MC. as contrasted with the previous international radio conference's limit of 10,500 MC. A report of the conference's accomplishments was presented to the State Department in Washington by FCC Commissioner T. A. M. Craven. He was chairman of the United States delegation at the Geneva deliberations which began August 17 and lasted until the end of December.

AMERICAN HEADS ITU—Gerald C. Gross, former FCC assistant chief engineer and a World War II Naval Reserve captain, has become the Secretary General of the International Telecommunications Union—the first American to hold that post. He is an outstanding authority on frequency allocations and radio operations. He has been Assistant Secretary General since 1946 and has participated in about 30 international radio and telecommunications conferences and consultative committee sessions. ASTRONOMY AND EARTH SPACE — The ITU radio conference allocations delineated ample protection from interference by other radio services for radio astronomy. The six bands assigned to that service are protected with standard frequency guard bands. Space and earth-space radio services received the international allocations at the Geneva conference which was sought by the U. S. delegation.

SPECIAL SPACE PARLEY — The International Telecommunications Union has planned a special world radio conference in 1963. They will cover the problems of space communications with a goal towards peaceful use of outer space. This was a highlight of the final decisions of the recent International Radio Conference. FCC Commissioner T. A. M. Craven, chairman of the U. S. delegation at the conference, said the committee is to continue its research into space and earth-space radio communications.

National Press Building ROLAND C. DAVIES Washington 4

**STOP BICKERING**—Chairman Overton Brooks (D., La.) of the House Committee on Science and Astronautics urged the Administration to eliminate interservice bickering over the development of missiles and space systems. Brooks declared that if this is not done, there is danger that "we will find our defenses cut to an irreparable factor which will set the United States in a position for attack from any strong aggressor nation."

**PROJECT ICEF**—Scientists from 14 nations are expected to participate in the high energy cosmic ray investigations of Marcel Schein of the University of Chicago. Project ICEF (International Cooperative Emulsion Flights), will send up giant stacks of photographic emulsion sheets in high altitude Navy balloons to record primary cosmic ray particles. The balloons will be launched from the USS Valley Forge.

**MUST HAVE RADAR** — The Federal Aviation Agency ruled that most of the nation's airliners must be equipped with airborne weather radar. The new Special Civil Air Regulation provides a timetable which required all pure jet and turbo-prop airplanes used in passenger service to be equipped with the radar by July 1, 1960. The Douglas DC-6 and DC-7 series and the Lockheed Constellation 1049 and 1649 series must be equipped by January 1, 1961. All other affected transport category airplanes must be equipped by January 1, 1962.

# "STANDARD"

In the more than a quarter of a century of experience in the manufacture of electronic components, CINCH parts by specification and application have earned recognition as "Standard in the Industry."

# D SUB-MINIATURE

D Sub-Miniature plugs and sockets with printed circuit pin and socket inserts are also available for immediate delivery.

Send for illustrated catalog No. 100-Cinch Connectors, D Sub-Miniature, DPX and DPA Types.



### **CINCH MANUFACTURING COMPANY**

1026 South Homan Ave., Chicago 24, Illinois Division of United-Carr Fastener Corporation, Boston, Mass.



Centrally located plants at Chicago, Illinois; Shelbyville, Indiana; La Puente, California; St. Louis, Missouri.

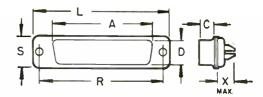
> Manufactured by agreement with Cannon Electric Company.

### PHYSICAL SPECIFICATIONS

- SHELL MATERIAL INCLUDING FLANGE—D- steel or brass, finish, cadmium plate & irridite. DH- steel, finish, electro-tin over cadmium.
- CONTACT MATERIAL-D- copper base alloy gold plate finish, DH- steel, electro-tin over cadmium finish.
- INSERT ARRANGEMENTS-5 (plus coaxials)

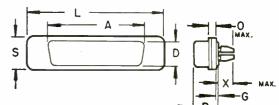
NUMBER OF CONTACTS-9, 15, 25, 37, 50

INSULATION MATERIAL—D- Zytel 101, DH- Glass, C7- Diall (Type MDG Mil. M-14), C13- Melamine (Type MME Mil. M-14), C26- Glass Diall (Type GDI-30 Mil. M-19833), F114- Diall solder pot side, Nylon pin engaging side.


POLARIZATION----keystone cornered shell

COUPLING MEANS-friction-locking accessory

WIRE ACCOMMODATION ---- #20 AWG, B&S stranded


- OPERATING TEMPERATURE—D + 310°F, —67°F, DH + 350°F max. —67°F, varies with finish: TIN PLATE — 350° max. CAD. PLATE — 500°F max., TIN over CAD. — 350°F max. GOLD PLATE — 600°F max.
  - Circle 54 on Inquiry Card

D SUB-MINIATURES: STANDARD PIN AND SOCKET INSERTS.



| size          | A      | C     | D     | ι.     | R     | S     | X     | weight |
|---------------|--------|-------|-------|--------|-------|-------|-------|--------|
| DA-15P        | 11/64  | 15/64 | 23/64 | 117/2  | 1.312 | 31/64 | \$/16 | .013   |
| <b>DA-155</b> | 31/32  | 15/64 | 3/16  | 117/2  | 1.312 | 31/64 | 5/16  | .014   |
| D8-25P        | 1%     | 15/64 | 23/64 | 25/64  | 1.852 | 31/64 | 5/16  | .023   |
| DB-255        | 133/64 | 15/64 | 5/16  | 25/64  | 1.852 | 31/64 | 5/16  | .031   |
| DC-37P        | 213/64 | 15/64 | 23/64 | 223/32 | 2.500 | 31/64 | \$/16 | .035   |
| DC-375        | 211/64 | 15/64 | 5/16  | 223/32 | 2.500 | 31/64 | 5/16  | .035   |
| DD-50P        | 2 764  | 15/64 | 15/32 | 2 %    | 2.406 | 3%.4  | \$/16 | .035   |
| DD-505        | 25/64  | 15/64 | 27/64 | 2 5/8  | 2.406 | 39/64 | 5/16  | .040   |
| DE-9P         | 45/64  | 15/64 | 23/64 | 113/64 | .984  | 31/64 | \$/16 | .011   |
| DE-9S         | 41/64  | 15/64 | \$/16 | 113/64 | .984  | 31/64 | 5/16  | .012   |

### FRACTIONS ±1/4 Tolerance DECIMALS ±0.005 Tolerance



### HERMETIC SEAL PIN INSERTS

|             |        |       |      |       |      |        |       | <u> </u> |        |
|-------------|--------|-------|------|-------|------|--------|-------|----------|--------|
| size        | A      | B     | 0    | D     | G    | L      | S     | mex.     | weight |
| DAH-15P-001 | 11/64  | 23/64 | 3/22 | 23/64 | 1/20 | 135/64 | 1/2   | \$/20    | 0.021  |
| DAH-15P-002 | 11/64  | 23/64 | 3/32 | 23/64 | 1/32 | 135/64 | 1/2   | 15/64    | 0.021  |
| DBH-25P-001 | 1%16   | 23/64 | 3/32 | 23/64 | 1/20 | 23/22  | 1/2   | 5/20     | 0.027  |
| DBH-25P-002 | 1%6    | 23/64 | 3/20 | 23/64 | 1/22 | 23/22  | 1/2   | 15/64    | 0.027  |
| DCH-37P-001 | 213/64 | 23/64 | 3/22 | 23/64 | 1/20 | 247/64 | 1/2   | 5/20     | 0.037  |
| DCH-37P-002 | 213/64 | 23/64 | 3/20 | 23/64 | 1/20 | 24764  | 1/2   | 15/64    | 0.037  |
| DDH-50P-001 | 2 7/4  | 23/64 | 3/22 | 15/20 | 1/20 | 241/64 | 3%4   | \$/20    | 0.041  |
| DDH-50P-002 | 2 %4   | 23/64 | 3/20 | 15/20 | 1/22 | 24164  | 39/64 | 15/4     | 0.041  |

FRACTIONS ±1/4 Tolerance

DECIMALS ±0.005 Tolerance

# **New Tech Data**

### **Space Calendar**

"Space calendar," lists all U. S. and foreign space shots and supplies a log for similar activities in 1960. The inside front cover of the booklet lists all space shots since the first Sputnik, October 4, 1957. The inside back cover is a launch log for shots during Space Year IV (1960). A page is devoted to each month and is marked off with memo space provided for each day. Avion Div., ACF Industries, Inc., 11 Park Place, Paramus, N. J.

Circle 167 on Inquiry Card

### **Control Devices**

General Purpose Control Catalog, GEC-1260D, 72-page publication contains information on the complete line of control devices manufactured by the General Electric Company's General Purpose Control Dept., Schenectady 5, N. Y. Horsepower selection charts are listed for motors from onefourth through 200 hp. It includes product description of motor starters (manual and magnetic) contactors, relays, solenoids, limit switches, push buttons, static control and pilot devices. Wiring diagrams, dimensions and application information for each device are included.

Circle 168 on Inquiry Card

### **Tellurium Copper**

Tech data sheet from Bridgeport Brass Co., Bridgeport 2, Conn., discusses physical, mechanical and fabrication properties of tellurium copper. Tellurium copper's primary use is in rod form for screw machine work where high heat and electrical conductivity are required. Other uses are connector parts in electrical switches, transformers, wire connectors, circuit breakers, and simple screws and rivets carrying electric current.

Circle 169 on Inquiry Card

### **Printed Circuits**

Technical Bulletin P-5a "Miniaturized Printed Circuits," is available from Photocircuits Corp., Dept. P-1539, 31 Sea Cliff Ave., Glen Cove, N. Y. It contains information on how the elimination of lands or pads around plated-thru holes permits substantial size reduction of printed circuit boards and greater component densities. It describes how the barrels of the holes are used for solder joints without sacrifice of reliability, repairability, pull strength or insulation resistance.

Circle 170 on Inquiry Card

### ! MORE !

The literature mentioned here has been selected for contribution to or advancement of the electronic industries. These items are combed from several hundred bulletins, catalogs, and data sheet announcements received during the past month by ELEC-TRONIC INDUSTRIES. To keep interested readers informed of all new developments, a summary record is kept of ALL new products and tech data announcements received. For a copy of this month's list, please send your request on company letterhead to Readers' Service Dept., Electronic In-dustries, 56th & Chestnut Sts., Phila., Penna. or Circle No. 161 on Inquiry Card.

### **Resins, Bonding Agents**

Bulletin 121 contains Selector Charts for potting compounds, coatings, foams and bonding agents. Definitions are provided for such terms as casting, encapsulation impregnation, and coating. The charts offer hard, semi-rigid and flexible formulations for each of these processing applications. A similar breakdown is given for foams. Plastic Associates, 185 Mountain Rd., Laguna Beach, Calif.

Circle 171 on Inquiry Card

### **Fixed Resistors**

Bulletin 5000E, 8-pages, provides power nomographs for predicting the long-term performance of A-B composition fixed resistors. The nomographs are arranged so that resistor performance can be predicted over periods from 100 hrs. to 100 years under various operating conditions. A table gives the relation between the resistor temp. rise and the heat sink temp. under 50% and under 100% rated load for atmospheric pressures of 760 mm H<sub>g</sub> and 0.2 mm H<sub>g</sub>. Four typical examples are included. Allen-Bradley Co., 136 W. Greenfield Ave., Milwaukee 4, Wis.

Circle 172 on Inquiry Card

### Insulation

"When You Need a Material With Extra Advantages," a folder from Rogers Corp., Rogers, Conn., summarizes design and application data on the company's materials for high temp., electrical and electronic insulation, and gasketing and sealing requirements.

Circle 173 on Inquiry Card

### for Engineers

### Laminated Plastics

Basic application information and engineering data on laminated plastics and vulcanized fibre is given in a condensed catalog from Taylor Fibre Co., Norristown, Pa. Data is provided to aid engineers in selecting and applying these basic materials for electrical, electronic, and mechanical components. A two-page spread lists general data and engineering data for 21 of the most common grades of Taylor Fibre's laminated plastics including NEMA grades, mil specs., color, sizes, and forms.

Circle 174 on Inquiry Card

### Instruments

1960 Catalog describes and illustrates instruments for electronic, biological and chemical measurement and control. Specs and performance data, schematic diagrams and application circuits, as well as basic information on electrometers and micromicroammeters are included. Keithley Instruments, Inc., 12415 Euclid Ave., Cleveland 6, Ohio.

Circle 175 on Inquiry Card

### **Electric Plants**

A 12-page "Electric Plant Folder E-344," illustrates a line of standard electric plants. Sizes range from 500 w to 100,000 w. Kohler Co., Kohler, Wis.

Circle 176 on Inquiry Card

### Video Tape

Proper handling and storage of video tape are discussed in "Video Talk" Bulletin No. 1, from Minnesota Mining and Mfg. Co. (3M), Magnetic Products Advertising, 900 Bush Ave., St. Paul 6, Minn. The bulletin, first of a monthly series, is accompanied by a folder for permanent file purposes.

Circle 177 on Inquiry Card

### **Pulse Transformers**

Description of Miniature Pulse Transformers for blocking oscillator pulse coupling, inverting and impedance matching is outlined in Bulletin PT 160. The pulse width, rise time, pulse inductance, dc resistance, impedance ratio and 4 types of packaging (molded, tubular, plug-in and chassis mounting) are explained. Valor Instruments Inc., 13214 Crenshaw Blvd., Gardena, Calif.

Circle 178 on Inquiry Card

# OUTSTANDING IN PERFORMANCE

# type D

# RESIN-COATED SILVERED MICA CAPACITORS

Sangamo Type D mica capacitors combine the excellent electrical performance characteristics of silvered mica with a multi-layer, protective case of high moisture-resistant thermo-setting resins.

range of -55°C to +125°C at rated working voltage without

The Type D is designed to operate over the temperature

tempe<mark>rature range</mark>

tolerances

insulation resistance

moistu<mark>re resistance</mark>

thermal and immersion cycling derating. Available in capacitance tolerance values of  $\pm 20\%$ ,  $\pm 10\%$ ,  $\pm 5\%$ ,  $\pm 2\%$ ,  $\pm 1\%$  (or  $\pm 1$  mmfd, whichever is greater).

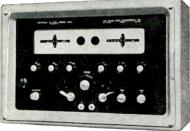
The insulation resistance of these capacitors will exceed 3,000 megohms at 125°C.

Insulation resistance shall be greater than 1000 megohms as measured in accordance with paragraph 2.6.2 of EIA specification RS-186-A, Method 2. Paragraphs 2.4 and 2.6.1 do not apply. The test shall continue for 10 cycles, as described in paragraph 2.5.

Insulation resistance shall be greater than 3000 megohms after being subjected to temperature cycling between  $-55^{\circ}$ C and  $+125^{\circ}$ C, as outlined in Method 102-A, Test Condition D, and followed by Method 104-A, Test Condition A, of MIL-STD 202A.

Write for Bulletin TSC-118C

SANGAMO ELECTRIC COMPANY


| T'Y PE | DC WORKING<br>VOLTAGE -<br>VOLTS. | CAPACITANCE<br>RANGE -<br>MMř. |
|--------|-----------------------------------|--------------------------------|
| D-15   | 500                               | 5-400                          |
| D-15   | 300                               | 5-800                          |
| 5 20   | 500                               | 100-2000                       |
| D-20   | <b>30</b> 0                       | 100-4000                       |
|        | 500                               | 1000-10000                     |
| D-30   | 300                               | 1000-20000                     |
|        |                                   |                                |

SC-59-10

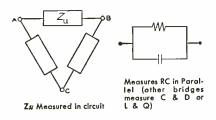
SPRINGFIELD, ILLINOIS

1000 57

# WIDEST



RANGE


### Why other bridges can't match the accuracy, range or versatility of the

### Wayne Kerr Universal Bridge, Type B-221

- Measures Capacitance to 0.1%—.0002µµf—11µf
- Measures Conductance to 0.1%—10<sup>-1</sup>—10<sup>-8</sup>mhos {10Ω—100MΩ}
- Measures Inductonce to 0.1%—1mH—infinity
   Frequency Range—50—20,000 cps (internal oscillator and detector for operation at 1000 cps)

Extended range using Low Impedance Adaptor: 1  $\mu f$  to 250,000  $\mu f{=}50 \mu\,\Omega$  to 100  $\Omega{=}5$  m $\mu H$  to 10 mH

Price-\$880 F.O.B. Philadelphia



Wayne Kerr Universal Bridge, Type B-221 is a highly accurate transformer ratio arm bridge providing 2, 3 or 4-terminal measurement of impedance or transfer admittance over an extremely wide range. An impedance between any two terminals may be easily measured regardless of other impedances from either or both terminals and a third point. Measurement is unaffected by impedance of test leads.

OTHER INSTRUMENTS: Audio to VHF Bridges; Oscillators; Attenuators; Microwave Equipment; Vibration and Distance Meters; Waveform Analyzer.

Send for complete W-K-02 catalog showing other instruments.



Representatives in major U.S. cities and Canada Circle 56 on Inquiry Card

# **New Tech Data**

### for Engineers

### Servo Design

"The Second Order Linear Servo," Giannini Technical Notes, from Giannini Controls Corp., 918 E. Green St., Pasadena, Calif., presents a history of servo terminology and how it developed; offers practical working formulae and values not commonly found in formal servo texts; and includes vellum chart sheets of factors conveniently used for servo design which may be removed from the pamphlet for ozalid reproduction.

Circle 179 on Inquiry Card

### Switches

Hamlin, Inc., Lake & Grove Sts., Lake Mills, Wis. has a new 1960 catalog on their line of switches, relays and gravity sensing potentiometers. Applications and diagrams are included.

Circle 180 on Inquiry Card

### **Telemetry Components**

Tele-Dynamics Inc., 5000 Parkside Ave., Phila. 31, Pa., has released a 24-page, 2-color brochure, No. 936, which describes a line of airborne FM/FM telemetry components. Transistorized voltage-controlled subcarrier oscillators for conventional signal voltage ranges, fractional volt ranges and millivolt ranges are completely described. It includes electrical, environmental, and physical characteristics plus outline drawings.

Circle 181 on Inquiry Card

### **Atomic Instruments**

Atomic Catalog A-4 is a compilation of current technical data and specs on a line of laboratory, analytical scintillation and special medical systems and other instruments such as scalers, analyzers, detectors, rate and survey meters, timers, amplifiers and power supplies. It includes cable and compatibility charts, optimum counts charts and listings of radioisotopes for medical therapy, clinical and therapeutic use. Baird-Atomic, Inc., 33 University Rd., Cambridge 38, Mass.

Circle 182 on Inquiry Card

### **BW Oscillators**

"PRD Reports," Vol. 6, No. 4, is entitled "Power Supply Requirements of BWO Tubes" and discusses the voltage and modulation requirements needed to power backward wave oscillators. It describes the theory and operation of both M and O type tubes. The relationship between power output, frequency shift, and delay line current stability is graphically presented as a function of various electrode voltages. Polytechnic Research & Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y.

Circle 183 on Inquiry Card

### Zener Diodes

Eight-page q u a r t e r l y, Rectifier News, RN-1159, published by International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif., contains articles on referencing and instrumentation with zener diodes, and output regulation utilizing the switching action of zener diodes. Included are detailed circuits and performance curves covering the specific components used.

Circle 184 on Inquiry Card

### **V-Band Components**

A line of millimeter-wave components and antennas is illustrated in catalog No. 160A from T. R. G., Inc., Microwave Component and Antenna Dept., 9 Union Sq., Somerville 43, Mass. Specs included on ferrite components such as isolators, attenuators, circulators, and switches, as well as Hybrid ring mixers and millimeterwave antennas. Additional millimeter-wave components listed allow for complete systems design in the 60-75 KMC V-Band.

Circle 185 on Inquiry Card

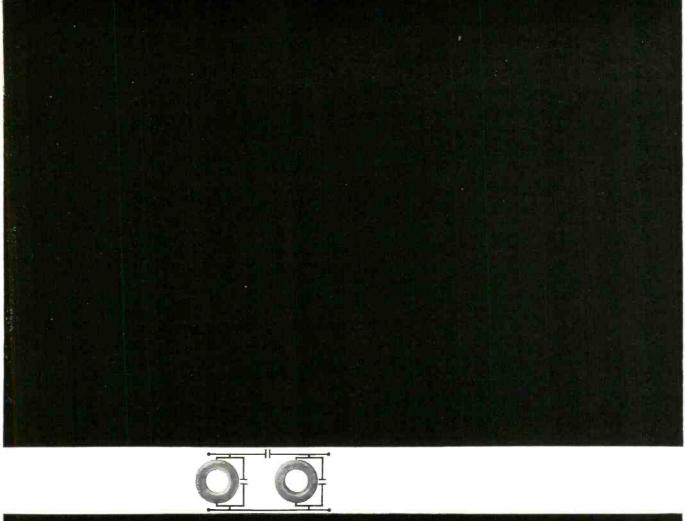
### **Pulse Transformers**

A 24-page catalogue, "Pulse Transformers" contains tables, charts, and schematics, and a brief history of lowlevel pulse transformers, their measurements, specifications, applications, interchangeability, dielectric ratings, manufacturing, and other data. Also included is information on some of PCA's 2,000 standard design transformers, case types and specifications data. PCA Electronics, Inc., 16799 Schoenborn St., Sepulveda, Calif.

Circle 186 on Inquiry Card

### **Gears-Reducers**

PIC Design Corp., 477 Atlantic Ave., E. Rockaway, L. I., N. Y., is offering their new 416-page 1960 Master Catalog #21 on precision instrument components. The pocket-size catalog contains technical details, MIL specs and complete drawings of over 12,000 stock items, such as: precision gears, shafts, speed reducers, magnetic clutches, differentials, and other associated components.


Circle 187 on Inquiry Card

### **Transistors**

Data sheets on improved 2N1031, A, B, C, and 2N1032, A, B, C, power transistors, a series of eight 25 a peak current transistors capable of switching up to 1000 w. are available from Bendix Aviation Corp., Red Bank Div., 201 Westwood Ave., Long Branch, New Jersey.

Circle 188 on Inquiry Card

**FUTTING MAGNETICS TO WORK** 



# Smaller filters ease the squeeze!

Filter designers! First 160-mu moly-permalloy powder cores pack high performance into smaller space

Filter and inductor designers specify our 160-mu molypermalloy powder cores for low frequency applications. Where space is precious, such as in carrier equipment and telemetering filters, the high permeability of these 160-mu cores eases the squeeze.

In many cases, 160-mu cores offer designers the choice of a smaller core. In others, because inductance is 28 percent higher than that of 125-mu cores, at least 10 percent fewer turns are needed to yield a given inductance.

If Q is the major factor, 160-mu cores permit the use of heavier wire with a resultant decrease in d-c resistance.

Like all of our moly-permalloy powder cores, the 160's come with a guaranteed inductance. We can ship eight sizes from stock, with a choice of three finishes—standard enamel, guaranteed 1,000-volt breakdown finish, or high temperature finish. Further information awaits your inquiry. Magnetics Inc., Dept. EI-78, Butler, Pa



Powered by the tremendous thrust of a rocket engine produced by the Reaction Motors Division of Thiokol Chemical Corporation, the North American X-15 -the first manned space vehicle-will exceed speeds of 3600 mph and will penetrate more than 100 miles into space. Revere Molded Harnesses, developed in conjunction with Reaction Motors' engineers, will supply the vital electrical interconnections for this mighty powerplant.

The completely sealed and protected harnesses exceed rigid specifications and provide:

- 1. Continuous operation from -70°F to +275°F
- **2.** Ten minute operation at  $+500^{\circ}$ F without damage
- 3. Protection against the occurrence of corona; operation at 100,000 feet without corona
- 4. Environmental protection against H<sub>2</sub>O<sub>2</sub>, anhydrous ammonia, liquid oxygen and 100% humidity

Harnesses for the X-15 engine are another example of the many types of specially designed Revere harnesses. Electrical interconnections for airborne and ground applications, thermocouple harnesses for heat measurement, molded harnesses for complete environmental protection-all are custom engineered to meet specific requirements.



### WHEN YOUR PROJECT RATES THE BEST RATHER THAN "OFF-THE-SHELF" TREATMENT

when you want engineering abilities and specialized facilities in the fields of:

Liquid Level Indication and Control Flow Indication and Control Flow Measurement

High Temperature Wire and Cable Thermocouple Wire and Cable

Thermocouples, Harnesses and Leads **E**lectrical and Molded Harnesses

Weight, Force and Thrust Measurement Determination of Center of Gravity Strain Gage Load Cells

52



### **Tech Data**

for Engineers

### **Silicon Diodes**

Semiconductor applications report, "Applying Thermal Characteristics of Silicon Diodes," is available from the Semiconductor Div., Hoffman Elec-tronics Corp., 1001 Arden Drive, El Monte, Calif. The 4-page brochure discurrent the depage brochure of discusses thermal characteristics of forward biased diodes as low voltage reference devices, temp. compensated (voltage reference) diodes, and thermal resistance and thermal time constants in forward and Zener diodes.

Circle 189 on Inquiry Card

### **Frequency Meters**

Bulletin 32-85 from the James G. Biddle Co., 1316 Arch St., Phila., Pa., describes the Frahm "Precision" Frequency Meters, with accuracies of  $\pm 0.1\%$  of calibrated frequency. The meters in miniature, switchboard, and portable types are available in various ranges between 10 and 1700 CPS and signal voltages from mv upwards.

Circle 190 on Inquiry Card

### Transmitter Adapter

illustrated brochure Four-page rour-page illustrated brochure from Kahn Research Laboratories, Inc., 81 South Bergen Place, Freeport, N. Y., describes production model SSB-58-1A Adapter systems—a tech-nique to convert existing AM com-munications transmitters to SSB op-eration without opcimeering modified eration without engineering modifica-tions. It is based on a completely different sideband generation and amplification concept.

Circle 191 on Inquiry Card

### **Tape Recorder**

Details of Type 5-702 airborne and Details of Type 5-702 airborne and mobile magnetic tape recorder are presented in an illustrated bulletin offered by the DataTape Div., Con-solidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif. In 7- or 14-track models, it is for high-altitude operation and a temp. range from -54 to +71°C. Specs and operating description included.

Circle 192 on Inquiry Card

### **Games for Computers**

"Games for Electronic Computers" describes 12 games for matching the machine against the human operator. Adaptation of these games to various computers including the company's SEXIAC Electronic Digital Computer Kit is also explained. 12 pages. Willis G. McCormick Co., 15733 Septo St., Sepulveda, Calif.

Circle 193 on Inquiry Card

REVERE CORPORATION **OF AMERICA** 

Molded

Harnesses

for

**Missiles** 

Wallingford, Connecticut

A SUBSIDIARY OF NEPTUNE METER COMPANY

Circle 58 on Inquiry Card



### UTC NEW DO-TAND DI-TSERIES EXPANDED **Revolutionary transistor transformers** hermetically sealed to MIL-T-27A Specifications.

UTC DO-T and DI-T transistor transformers provide unprecedented power handling capacity and reliability coupled with extremely small size. Comparative performance with other available products of similar size are shown in the curves (based on setting output power at 1 KC, then maintaining same input level over frequency range). The new expanded series of units cover virtually every transistor application

SOURCE - 201 544



MIL Type

Application

DO-T No.

DO-T

High Power Rating . . . up to 100 times greater Excellent Response . . . twice as good at low end

Low Distortion . . . reduced 80% High Efficiency . . . up to 30% better. Moisture Proof .... hermetically sealed to MIL-T-27A.

Rugged . . . completely cased

Anchored Leads .... withstand 10 pound pull test

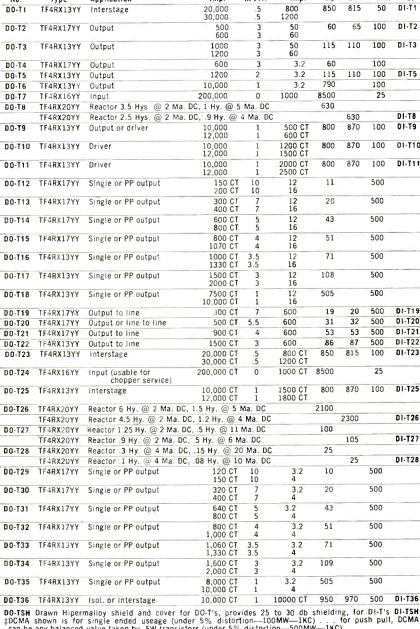
Pri. Imp

D.C. Ma.‡ in Pri.

Printed Circuit Use...plastic insulated leads.



Pri. Res. DI-T Pri.


Res. DO-T

Sec. Imp.

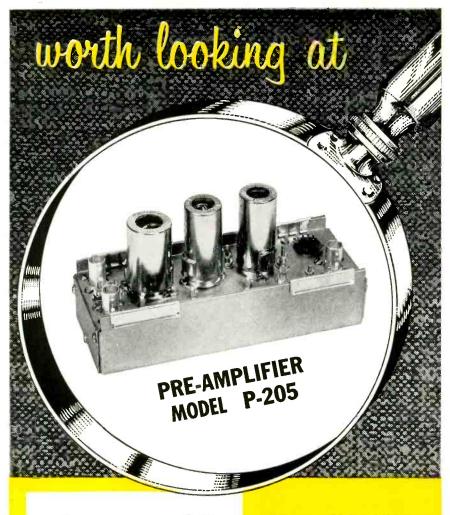
Level DI-T

Mw. No

OTHER . MIR AT IN 00-T2 00-13 DÓ-T3 SHO SOO IN 0#-T22 20 DO-T 21 DO-T 22 NI 24 34 DETI DET23 -T 23 D1-T2 SOURCE 5000 3mm



**D0-TSH** Drawn Hipermalloy shield and cover for D0-T's, provides 25 to 30 db shielding, for D1-T's D1-TSH 2DCMA shown is for single ended useage (under 5% distortion—100MW—1KC)... for push pull, DCMA can be any balanced value taken by .5W transistors (under 5% distortion—500MW—1KC) "D0-T units have been designed for transistor application only... not for vacuum tube service. Pats. Pend.


And Special Units to Your Specifications

NOO SOO IN

T20 DI-T21 5588 9002 + 84 500 8 500 8 500 8 500 8 500 8 500 8 500 8

UNITED TRANSFORMER CORPORATION 150 Varick Street, New York 13, N.Y.

PACIFIC MFG. DIVISION: 4008 W. JEFFERSON BLVD., LOS ANGELES 16, CALIF. EXPORT DIVISION: 13 EAST 40th STREET, NEW YORK 16, N. Y. CABLES: "ARLAB"



### S P E C I F I C A T I O N S P-205, P-205A

| Band Center      | 30 mcs                        |
|------------------|-------------------------------|
| Band Width       | 10 mcs (1 db point)           |
| Gain             | 20 db minimum                 |
| Noise Figure     | 2 db                          |
| Input Impedance  | P-205<br>200-300 ohm balanced |
|                  | P-205A<br>200 ohm unbalanced  |
| Output impedance | 50 ohms                       |
| 1                | Prices:                       |
| 205              | \$150                         |

205A \$150

PRE-AMPLIFIER MODEL P-205

The IFI P-205 Series Pre-Amplifier is designed to be fed from a crystal mixer with a 200 to 300 ohm balanced output. The P-205A is designed to be used with 200 ohm unbalanced mixers, Either the P-205 or the P-205A will provide a gain of 20 db in a bandwidth of 10 mcs. Both these units are designed to operate with either the Model 235 (10 mcs IF strip), or the Model 230 (2 mcs IF strip). It is also possible to use these units with other standard 50 ohm input IF amplifiers.

INSTRUMENTS FOR INDUSTRY, Inc. 101 New South Road, Hicksville, L. I., N.Y.



Graduate englocers with two or more years of circuit application in the Aelds of electronics or physics are invited to meet with Mr. John Hicks in an informal interview or send complete resume to: Dir. Personnel, 171, 101 New South Road, Hicksville, New York

SEE US AT THE I.R.E. SHOW-BOOTH 1424 Circle 60 on Inquiry Card

### Tech Data for Engineers

### **Electrical Insulation**

A 4-page bulletin, No. 33 from Inmanco Div., Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago 6, Ill. covers precision-slit electrical insulation. Tables list 10 popular slit plastic films, papers, and combinations as well as thicknesses, widths, tolerances, and coil and core sizes in which each is supplied. Conversion tables are included for translating area to lineal ft. per lb.

Circle 194 on Inquiry Card

### Stable Platform

A 4-page illustrated data sheet provides specs for a 4-gimbal inertial platform. It uses 3-floated integrating gyroscopes and 3 linear force balance accelerometers. Specs include erection cycle, attitude, input data, output data, and environment. Inertial Guidance Dept., Sperry Gyroscope Co., Great Neck, N. Y.

Circle 195 on Inquiry Card

### Diodes

New 10-page brochure GD-40 describes the company's line of germanium gold bonded diodes. It describes the mechanical, electrical, and hermetic seal tests and includes complete specs. Characteristics forward and reverse cirves are included. General Transistor Corp., 91-27 138th Place, Jamaica 35, N. Y.

Circle 196 on Inquiry Card

### **PC** Resin Fluxes

Bulletin from London Chemical Co., Inc., Dept. ES-2, 1535 N. 31st Ave., Melrose Park, Ill., describes and illustrates results of a U. S. Signal Corps Mirror Test for corrosiveness of printed circuit resin fluxes. The test was run in accordance with MIL-F-14256 by the Inland Testing Div. of Cook Research, Morton Grove, Ill.

Circle 197 on Inquiry Card

### **BW Oscillators**

Carcinotron catalog has been published by Litton Industries Electron Tube Div., 960 Industrial Rd., San Carlos, Calif., for its two full-spectrum series of these M-type backward-wave oscillators. The 6-page catalog, No. T891, contains full specs on one of the tubes. The two carcinotron series are characterized by interchangeability, small size, and light weight.

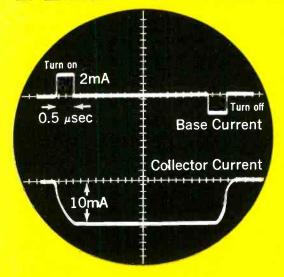
Circle 198 on Inquiry Card

### ABSOLUTE MAXIMUM RATINGS AT 25°C

| Forward Current           | Ìf  | 50 mA                        |
|---------------------------|-----|------------------------------|
| Minimum Breakover Voltage | Vbo | { TSW-30 30V<br>{ TSW-60 60V |
| Reverse Breakdows Voltage | Vr  | { TSW-30 30V<br>{ TSW-60 60V |
| Storage Temperature       |     | -65°C to 150°C               |
| Ambient Temperature Range |     | -55°C to +125°C              |

### SPECIFICATIONS AND TYPICAL CHARACTERISTICS (At 25°C Unless Otherwise Stated)

|                              |                    | Typical    | Max. | Tes   | t Conditions            |  |
|------------------------------|--------------------|------------|------|-------|-------------------------|--|
| Saturation Voltage           | V5                 | 1.0        | 1.5  | Volts | $1_{c} = 50 \text{ mA}$ |  |
| Forward Leakage Current      |                    | 0.1        | 10   | μA    | $V_c = 30V$             |  |
| Reverse Leakage Curren       | lp.                | D.1        | 10   | μA    | $V_c = -30V$            |  |
| Forward Leakage Currert      | 1.                 | 20.        | 50.  | μA    | at 125°C                |  |
| Reverse Leakage Curren:      | IE -               | 20.        | 50.  | μA    | at 125°C                |  |
| Gate Voltage to Switch "ON"  | Vg On              | <b>0.7</b> | 1.0  | Volts | $R_L = 1K$              |  |
| Gate Current to Switch "ON"  | lg_On              | 0.1        | 1.0  | mA    | $R_L = 1K$              |  |
| Gate Voltage to Switch "CFF" | Vg Off             | 2          | 4.0  | Volts | $l_c = 50 \text{ mA}$   |  |
| Gate Current to Switch "OFF" | I <sub>€</sub> Off |            | 10.  | mA    | $l_c = 50 \text{ mA}$   |  |
| Holding Current              | IE .               | 2.0        | 5.0  | mA    | $R_L = 1K$              |  |


### SPECIALLY DESIGNED FOR:

Miniaturized Memory Circuits

- Ring Counters
- Shift Registers
- Controlled Restifier Driver
   Flip-Flop Equivalent
- Simplified Information Storage
- 0.3 m second Switching

# Transitron

announces a NEW computer element for: Greater Reliability. Circuit Simplicity



The TRANSWITCH is a new bistable silicon device that can be TURNED OFF with gate current.

This PNPN latching device "remembers" its last gate signal. High current gain, both turn-on and turn-off, leads to greater circuit simplicity and inherent reliability. Excellent linearity of electrical parameters over a wide current range fulfills both low logic level and medium power needs.

Here is a unique device that replaces TWO transistors plus resistors in most bistable circuits and permits increased component density.

Furthermore, the transwitch is FAST ... requiring only 0.3 microseconds to turn ON or OFF!

The TRANSWITCH is now available from TRANSITRON in the popular JEDEC TO-5 package, ready to solve your switch-on-switch-off requirements.

For further information, write for Bulletin TE-1357A

"Leadership in Semiconductors" SEE YOUR LOCAL AUTHORIZED TRANSITRON DISTRIBUTOR FOR QUANTITIES FROM 1-999.



# for Engineers

### ! MORE !

The literature mentioned here has been selected for contribution to or advancement of the electronic industries. These items are combed from several hundred bulletins, catalogs, and data sheet announcements received during the past month by ELEC-TRONIC INDUSTRIES. To keep interested readers informed of all new developments, a summary record is kept of ALL new products and tech data announcements received. For a copy of this month's list, please send your request on company letterhead to Readers' Service Dept., Electronic Industries, 56th & Chestnut Sts., Phila., Penna. or Circle No. 161 on Inquiry Card.

### **Multiplex System**

Bulletin 3-543 from the Raytheon Co., Equipment & Systems Div., Waltham 54, Mass., describes the B-640A, a 48-channel frequency-division multiplex system providing moderate-cost channelizing of microwave r-f carrier in a fully integrated communications package.

Circle 199 on Inquiry Card

### Switches-Relays

Switches and relays available from Acro Div., Robertshaw-Fulton Controls Co., P.O. Box 449, Columbus 16, Ohio, are described in an illustrated 4-page brochure. Included are miniature, sub-miniature, appliance, open blade, general purpose, metal clad. machine tool, and Acro-Lite switches. Several types of relays also are described.

Circle 200 on Inquiry Card

### **Vibration Meter**

SIE Model T-1A Vibration Meter, designed for accurate measurement of the velocity, displacement amplitude and acceleration of vibration, is described and illustrated in a bulletin from Southwestern Industrial Electronics Co., a Div. of Dresser Industries, Inc., 10201 Westheimer, P.O. Box 22187, Houston 27, Tex.

Circle 201 on Inquiry Card

### **Directional Couplers**

Six-page tech. brochure describes Microwave Directional Coupler design and operation. From Waveline, Inc., Caldwell, N. J., it features 30 types of couplers and their design and electrical performance data.

Circle 202 on Inquiry Card

ELECTRONIC INDUSTRIES · February 1960

# **PRECISION** PARTS COSTS AS MUCH AS

Deep drawn ball bearing race cuts costs 75% and eliminates screw machine operation. Concentricity held within extremely close tolerance even after heat treating.



Transistor dome has .018 weld flange made from .013 stock, without showing any indentation on reverse side.



Full stock thickness at top of draw on .018 brass case improved watch quality and saved assembly time.



Spring for razor blade dispenser feeds automatically in high-speed assembly machine. Spring steel properties are held during heat treating. Parts are produced free of burrs, without finishing.

### Improve quality at lower cost

### Increase production and speed assembly

### Eliminate screw machine costs

Now a ball bearing race is being made for a textile machine by deep drawing 1050CR steel to .843 within tolerances previously believed impossible. Savings of 75% are reported and the 25% reject rate experienced when this part was made on screw machines was eliminated.

This is only one of a host of examples where United's specialized skill in metal forming provides production economies on made-to-order eyelet-like and other metal specialties for many industries. Special conveyor-type austempering furnaces are used when required to produce uniform toughness, with specified hardness. Parts are clean, free of quench cracks, and have minimum distortion. Call or write today for analysis and quotation on your most challenging problem.



Atlanta, Ga. • Chicago, III. • Cincinnati, Cleveland, Columbus, Ohio • Dallas, Texas • Harrisburg, Pa. Johnson City, N. Y. • Los Angeles, Calif. • Lynchburg, Va. Milwaukee, Wiss • Nashville, Tenn. • New York, N. Y. Philadelphia, Pa. • Rochester, N. Y. • St. Louis, Mo.

### How a 150 watt triode 25 years ago led to super power klystrons today

In 1934, two radio amateurs, unhappy with existing final amplifier tubes, formed a company to make their own. Their first tube, the Eimac 150T, established a new standard of electron tube performance and reliability.

Other important Eimac tube developments were:

**1507**—The first Eimac tube in 1934, was designed primarily for the amateur and established Eimac tube characteristics for the future — clean, hard vacuums, simplified design, lower driving power, high mutual conductance and superior overload capability.

**450T**—Only two years later practically every major airline was using Eimac tubes. The 450T fulfilled the critical needs of aviation and was first choice in ground-to-air communications.

**3X2500A3**—By the time Major Armstrong had won his battle for FM, Eimac internal anode triodes were in nearly every experimental FM broadcast station. In 1945 the external anode triode 3X2500A3 was introduced and used in the world's most powerful FM transmitter.

**304T**—In 1940 Eimac introduced multi-unit triodes — which operate efficiently up to 200mc, and as high as 10 times rated voltage. The 304T, four triodes in one, is still acclaimed as a top linear amplifier tube.

**VT 127**—In 1939, Eimac 100T triodes powered the first Navy radar, prototype of the first radar to see action in the Pacific. Eimac's 15E met the higher frequency operation needs of airborne radar and made possible 26,000 Navy radar sets. Many of the renowned VT series tubes were other Eimac contributions.

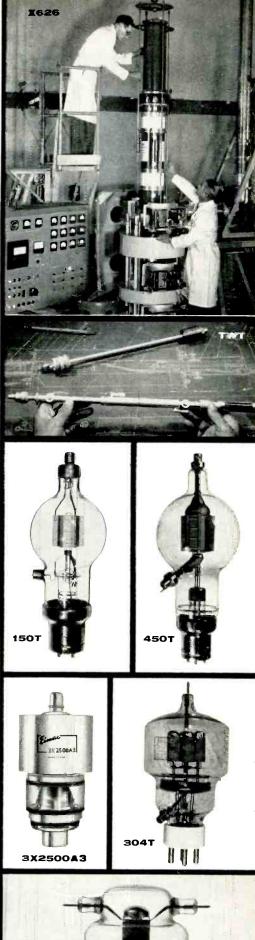
4-125A Family (5 tubes) – In 1945 Eimac introduced the 4-125A, first radial-beam tetrode. Today, Eimac's five internal anode tetrodes are famous for low driving power requirements, low grid emission, low gridplate capacitances, minimized neutralization requirements and dependable VHF performance.

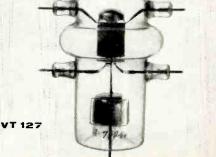
**4X150A** — Compact, rugged external anode radial-beam tetrodes were introduced by Eimac in 1946. The 4X500A and 4X150A led to smaller, high power, high frequency equipment and coaxial cable circuits.

Amplifier Klystron-Eimac saw the shortcomings of grid tubes for UHF in 1948, started developing amplifier klystrons. Today Eimac klystrons are the most widely used tubes in tropospheric communications.

**4CX300A**, **4CX250B**, **4CX1000A**, **4CX5000A** — Today, over 40 Eimac tubes feature ceramic envelopes. More compact than glass, these advanced tubes can withstand thermal and physical shock never before possible.

**x626**—Super power, 1.25 megawatts of longpulse power, at UHF is now available with the Eimac X626. This tube powered the record 56,000,000 mile radar contact with Venus.


**TWT**—Now, microwave in the form of ceramic traveling wave tubes and reflex klystrons. Eimac is engaged in the development and manufacture of new electron devices to propagate the uncrowded spectrum at Super High Frequencies and above.




The dependable tubes of yesteryear have not been forgotten. They are constantly improved. Most of the oldtimers on review here are still available and many are replacements for originals that have finally given in after years and years of service.



EITEL-MCCULLOUGH, INC., San Carlos, California Circle 64 on Inquiry Card





International

# **Electronic Sources**

Up-to-the-minute abstracts of articles appearing in the leading foreign electronic engineering journals

# TIT

### ANTENNAS, PROPAGATION

The Reflected Ray on Radio Links over Sea or over Smooth Plane Earth, V. Montevecchi. "Alta Freq." Aug. 1959. 15 pps. On the basis of continuous propagation recordings carried out on the radio link consulting in the T I M O out on the radio link operating in the T.I.M.O. zone and subsequent analysis, a study has been made to evaluate the influence of a rebeen made to evaluate the influence of a re-flected ray on the receiver field strength, on all the paths either over sea or over smooth plane earth which are most affected by its presence. A procedure is developed, to be fol-lowed both in the design stage of new radio links and when verifying the propagation condition of existing installations, which takes into account a reflected ray as determining factor for the continuity of operation around the "optimum" condition. (Italy.)

Propagation in the Frequency Ranges of 460-470, 585-685, 6660-6700 MHz, in the Gulf of Naples, A. Bruno. "Alta Freq." Aug. 1959. 16 pps. From original records made during some years and from the statistic data worked out from them on the propagation between Naples-Sorrento, Naples-Capri, Capri-Ischia, results in agreement with those already known have been obtained. Propagation proceeding shows well determined characteristics with limited fluctuations in winter months and more frequent ones in summer time. Records on the same frequency but on different heights on the same frequency but on different heights have been collected on Naples-Capri hop, and interesting comparative elements derived which appear to justify the anomalous propagation in the Gulf already mentioned by other experts. (Italy.)

Multiple Paths in Radio Links with Passive Repeaters, F. Fabbri. "Alta Freq." Aug. 1959. Repeaters, F. Fabbri. "Alta Freq." Aug. 1959. 16 pps. Distortion through multiple paths and fadings are the most limitative factors in radio links with a large number of channels. Echos in practice can be divided in two types: 1—with intensity comparable to the main ray but with a short delay, due to dedoubling in the atmosphere: 2—with weak intensity, but long delay; these, besides the reasons already known, such as mismatching in the feeders, reflection from nearby buildings. etc., can be reflection from nearby buildings, etc., can be due, in links with passive relays, to rays which, in spite of the obstacles interposed bewhich, in spite of the obstacles interposed be-tween the two terminals, reach the receiver through diffraction along the shortest path. Careful study will avoid such interferences, while the first ones may be reduced with the use of very directive antennas. (Italy.)

Radio Link Using Tropospheric Diffraction, A. Favilli. "Alta Freq." Aug. 1959. 14 pps. In the latest years a growing interest has In the latest years a growing interest has been devoted to a new type of electromagnetic propagation, which differs from the classical systems used in the past in the radio com-munication field and which is based on a difference phenomenon. This diffraction phenomenon. This system, which after long research work has found only reafter long research work has found only re-cently practical application, is known as "scatter propagation." Of the two types of "scatter" normally used (ionospheric and tropospheric scatter) the latter is examined, after pointing out briefly the characteristics of the former. (Italy.)

Statistical Analysis of Fading on Short-Wave Transmissions, K. K. Aggarwal. "J. ITE." Transmissions, K. K. Aggarwal. "J. ITE." September 1959. 8 pps. In the present in-vestigation on fading of radio signals in tropi-cal countries, a statistical analysis is pre-sented of the fading records taken on oblique incidence continuous wave modulated transmissions as well as on pulsed transmissions at vertical incidence. The amplitude distributions of some of the random fading curves have been worked out and are shown in this paper. It is observed that the probability distributions of the amplitude in such fading curves are the conventional Rayleigh, Gaussian and log normal type. (India, in English.)

Development of Highly Directive Aerials in Radio Astronomy, W. N. Christiansen. "Proc. AIRE." Sept. 1959. 10 pps. Structural con-siderations indicate that the design of highly directive aerials should change with size. For diameters up to a few hundred feet, steerable paraboloids have many advantages, but for larger sizes, fixed structure which can be supported from the earth at many points are necessary. For extremely large aerials the new types developed by radio astromoners new types adveloped by ratio astronomers provide high directivity in a very economical way. The feature of these new aerials is that they are "skeleton" aerials, since they provide a directivity which corresponds to a much greater surface area than they possess. (Australia.)

An Improved Missile Aerial Stabilization Sys-tem, D. Peat. "Brit. C.&E." December 1959. 2 pps. A single large gyroscope is often used as the stabilizing element to maintain a dias the stabilizing element to maintain a di-rectional aerial pointing at a target, irrespec-tive of the movement of the vehicle carrying the aerial. A smaller two-gyroscope system is described which would overcome most of the disadvantages of the single gyroscope system. (England.)



### CIRCUITS

Compensation Instrument to Transform Power to Direct Current, M. Duma, M. Syrbu. "Avto. i Tel." Nov. 1959. 5 pps. There is described a compensation instrument developed in Research Institute of Electrical Engineering of the Ministry of Heavy Industry of RPR to transform power to direct current. The instru-ment is based on the standard 3-stage meter circuit. (U.S.S.R.)

Narrow Band Amplification with Transistors, H. Beneking. "Nach. Z." November 1959. A difference should be made between resistive matching and reactive matching in the tuned circuit coupling between amplifier stages having finite complex impedances which depend on the operating point. Resistive matching results in an optimum power transfer to a given bandwidth. Reactive matching gives an optimum power transfer for a predetermined maximum detuning. The relevant formulae

### **REGULARLY REVIEWED**

### AUSTRALIA

AWA Tech. Rev. AWA Technical Review Proc. AIRE. Proceedings of the Institute of Radio Engineers

### CANADA

Can. Elec. Eng. Canadian Electronics Engineering El. & Comm. Electronics and Communications

### ENGLAND

ATE J. ATE Journal BBC Mono. BBC Engineering Monographs Brit. C&E. British Communications & Electronics

tronics E. & R. Eng. Electronic & Radio Engineer El. Energy. Electrical Energy GEC J. General Electrical Co. Journal J. BIRE. Journal of the British Institution of Radio Engineers Proc. BIEE. Proceedings of Institute of Electrical Engineers Tech. Comm. Technical Communications

### FRANCE

Ann. de Radio. Annales de Radioelectricite Bull. Fr. El. Bulletin de la Societe Fran-caise des Electriciens Cab. & Trans. Cables & Transmission Comp. Rend. Comptes Rendus Hebdomadalres des Seances Onde. L'Onde Electrique Rev. Tech. Revue Technique Telonde. Telonde Toute R. Toute la Radio Vide. Le Vide

### GERMANY

AEG Prog. AEG Progress Arc. El Uber. Archiv der Elektrischen Ubertragung El Rund. Electronische Rundschau

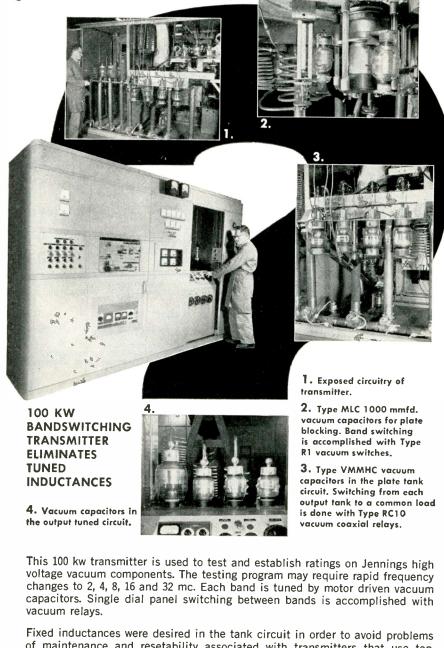
El Rund. Electronische Runuschau Freq. Frequenz Hochfreq. Hochfrequenz-technik und Electro-akustik NTF. Nachrichtentechnische Fachberichte Nach. Z. Nachrichtentechnische Zeitschrift Rundfunk. Rundfunktechnische Mittellungen Vak. Tech. Vakuum-Technik

### POLAND

Arch. Auto. i Tel. Archiwum Automatyki i Telemechaniki Prace ITR. Prace Instytutu Tele-I Radiotech-

nicznego Roz. Elek. Rozprawy Electrotechniczne

### USSR


Avto. i Tel. Avtomatika i Telemakhanika Radio. Radio Radiotek. Radiotekhnika Rad. i Elek. Radiotekhnika i Elektronika Iz. Acad. Bulletin of Academy of Sciences, Iz. ALA. USSR

- Photocopies of all foreign articles are available at 75 cents per page, remitted with order. Unless other-wise indicated, articles appear in language native to country of origin.
- A reprint of this section, "Interna-tional Electronic Sources" is available without charge.

Requests for the above should be sent. on company letterhead, to:

> Electronic Sources Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts. Philadelphia 39, Pa.

# What makes this transmitter possible? <u>Sources</u>



of maintenance and resetability associated with transmitters that use tap switches and sliding contacts. This was made possible by taking advantage of the low minimum capacitances, small size, and low inductance of vacuum variable capacitors. This circuitry would be particularly useful in any rf transmitter design demanding daily repetitive frequency changes.

Space reduction and efficiency were further improved by using Jennings vacuum relays with their high voltage and current carrying capabilities. The sealed contacts are clean and remain clean because they are free of all oxides and contaminants. In addition vacuum relays never need maintenance.

Write for our new vacuum component catalog summary, it may suggest the answer to some of your present high voltage problems



are discussed and are graphically shown in a normalized form in order to facilitate the design of an optimum circuit for each case. (Germany.)

The Effective Accessibility of Output Groups Following Intermediate Line Circuits, N. Bi-ninda & A. Wendt. "Nach. Z." November 1959. 7 pps. For link arrangements with internal congestion, an effective accessibility is defined for repeated-attempt systems which corresponds to the accessibility of single-stage switching arrangements equivalent from the point of view of traffic theory. (Germany.)

Transistor D.C. Converters for Fluorescent-Lamp Power Supplies, T. Hehenkamp and J. J. Wilting. "Phil. Tech." Nov. 12, 1959. 5 pps. Description of experimental transistor con-verters which convert de into ac with output powers up to about 20 w. The particular application concerned here is to furnish an ac supply for fluorescent lamps in circumstances where efficient lighting is desired but where the only source of electricity available is a low-voltage accumulator of limited capacity. (Netherlands, in English.)

Modulators and Demodulators for High Capac-ity Radio Links, E. Dalla Volta. "Alta Freq." Aug. 1959. 12 pps. Among the various units composing a radio link terminal, the one which mostly affects its quality is the modulator-demodulator assembly. The author ex-amines the influence of this assembly on the overall performance of the radio link, concerning mainly distortion, cross modulation, etc. The modulation problem is investigated in its development, a comparison being made between direct modulation at S.H.F. and modulation at frequencies lower than the output frequency. (Italy.)

Design and Realization of Microwave Filters, I. Caroli and U. Cucina. "Alta Freq." Aug. 1959. 22 pps. The authors briefly review the fundamental works published on microwave band-pass and band-stop filters and recall de-sign formulas for filters in the cases of max-imally flat amplitude response (Butterworth approximation), constant amplitude ripple over the pass-band (Cebiceff approximation) and tuned circuits all identical among themselves. From the above mentioned formulas, graphs have been drawn of easy application for dihave been drawn of easy application for di-mensioning two-, three- and four-resonator filters, and rules are given for the choice of the response curve most suited to meet different requirements. (Italy.)

The Realization of Switches for both Current Directions with Junction Transistors, W. Hil-berg. "El. Rund." Dec. 1959. 3 pps. A family of transistor circuits is considered by which current is awitched in both directions. Startcurrent is switched in both directions. Starting from the switching properties of the single transistor it is shown that one has to use circuits of diodes and transistors to achieve bet-ter results concerning velocity, power control, and switching conditions. (Germany.)

Analysis of Active Networks by Admittance Analysis of Active Networks by Admittance Matrices, M. N. Srikantaswamy & K. K. Nair. "J. ITE." Sept. 1959. 8 pps. In this paper a new method of analyzing active networks by means of admittance matrices is presented. The admittance matrices of vacuum tubes and transistors are derived and examples of the application are given. The concept of the in-definite admittance matrix as defined by Sheled definite admittance matrix as defined by Shekel is introduced. The indefinite admittance mat-rices are then derived for the vacuum tubes and transistors and it is shown how one can derive the admittance matrices of the various tube and transistor configurations from their respective indefinite admittance matrices. (India, in English.)

Design of Transistor I-F Amplifier Detector Stages with Stabilized Band-Pass Character-istics, M. V. Josh. "J. ITE." September 1959. 7 pps. An earlier paper discussed the design of an I<sub>e</sub>-controlled i-f amplifier stage employ-ing partial neutralization. The inherent variation in the band-pass characteristics of such a transistor amplifier stage was demonstrated. In this paper, data are presented regarding a transistor i-f amplifier stage employing partial



If miniaturization has put your circuits in a tight spot, you can build reliability right into them with the AMP Taper Technique . . . formed taper pins or new solid, pre-insulated taper pins . . . two-piece or molded one-piece stackable blocks . . . plus a wide assortment of taper receptacles.

The AMP Taper Technique offers the most complete line of taper products available plus many extra features. A three-and-a-half degree taper assures the firmest fit of pin in block. A-MP Pull-Test Insertion Tools assure the proper seating of pins. Hand and Automachine crimping tools assure uniformity of pin attachment to your circuit leads.

And—with the addition to the AMP Taper Technique of the new Solid Pre-Insulated Diamond Grip Taper Pin and the new one-piece warp-free block, you can have the greatest flexibility of product choice for your circuit design and manufacturing operations.

You can concentrate more circuits in a smaller space—and be sure of reliability when you use the AMP Taper Technique. Send for our new catalog today.





JAN Type **1N538** 

JAN

Type

1N540

JAN Type 1N54 all the

available



Maximum Values for AUTOMATIC Military Type Silicon Rectifiers

| Type<br>No. | Peak<br>Reverse<br>Voltage<br>(VDC) | DC Outpu<br>Av. @ 135° C.<br>Case Temp. | at Current<br>@ 25° C.<br>Amblent | (MA)<br>@ 150° C.<br>Ambient | Maximum<br>Reverse<br>Current<br>(MA) | Mounting   | MIL-E-1<br>Technical<br>Spec.<br>Sheet No. |
|-------------|-------------------------------------|-----------------------------------------|-----------------------------------|------------------------------|---------------------------------------|------------|--------------------------------------------|
| IN253       | 100                                 | 1000                                    | -                                 | _                            | 0.1*                                  | Stud       | 1024A                                      |
| 1N254       | 200                                 | 400                                     | _                                 | -                            | 0.1*                                  | Stud       | 989B                                       |
| 1N255       | 400                                 | 400                                     | -                                 |                              | 0.15*                                 | Stud       | 990B                                       |
| 1N256       | 600                                 | 200                                     |                                   |                              | 0.25*                                 | Stud       | 991B                                       |
| 1N538       | 200                                 | _                                       | 750                               | 250                          | 0.350†                                | Axial Lead | 1084A                                      |
| 1N540       | 400                                 | _                                       | 750                               | 250                          | 0.350†                                | Axial Lead | 1085A                                      |
| 1N547       | 600                                 |                                         | 750                               | 250                          | 0.350†                                | Axial Lead | 1083A                                      |
|             |                                     | and the second second second            | 1 A A A                           |                              |                                       |            |                                            |

\*Averaged over 1 cycle for inductive or resistive load with rectifier operating at full rated current; case temperature 135° C. fAveraged over 1 cycle for inductive or resistive load with rectifier operating at full rated current at 150° C. ambients.

Without qualification, these rectifiers are the finest available today, designed and manufactured to meet stringent government requirements and General Instrument's exceedingly high quality control standards.

General Instrument also makes a complete line of JAN type subminiature glass encapsulated germanium and silicon diodes ... and all are offered in volume quantities for *on time delivery* at prices that reflect our years of production experience. Data sheets on any of these diodes or rectifiers are available upon request.



# Semiconductor Division GENERAL INSTRUMENT CORPORATION

65 Gouverneur Street, Newark 4, N. J. Midwest office: 5249 West Diversey Ave., Chicago 39 Western office: 11982 Wilshire Blvd., Los Angeles 25

GENERAL INSTRUMENT CORPORATION INCLUDES F. W. SICKLES DIVISION, AUTOMATIC MANUFACTURING DIVISION, SEMI-CONDUCTOR DIVISION, RADIO RECEPTOR COMPANY, INC., THE HARRIS TRANSDUCER CORPORATION, MICAMOLD ELEC-TRONICS MANUFACTURING CORPORATION AND GENERAL INSTRUMENT — F. W. SICKLES OF CANADA LTD. (SUBSIDIARIES)

### for immediate delivery of GENERAL INSTRUMENT Semiconductors

at factory prices

call your authorized stocking distributor

### CALIFORNIA

Electronic Supply Corp. Pasadena Newark Electric Company Inglewood Pacific Wholesale Co. San Francisco Shanks & Wright, Inc. San Diego Valley Electronic Supply Co. Burbank

### CONNECTICUT

Sun Radio & Electronics Co., Inc. Stamford The Bond Radio Supply, Inc. Waterbury

### FLORDIA

Electronic Supply Melbourne; branches in Miami, Orlando, St. Petersburg

ILLINOIS Merquip Company Chicago Newark Electric Co. Chicago

INDIANA Brown Electronics, Inc. Fort Wayne Graham Electronics Supply, Inc. Indianapolis

MARYLAND Radio Electric Service Co. Baltimore

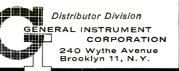
MASSACHUSETTS The Greene-Shaw Co., Inc. Newton

NEW YORK Delburn Electronics, Inc. New York City Hudson Radio & Television Corp. New York City Sun Radio & Electronics Co., Inc. New York City

New York City OHIO Buckeye Electronics Distributors Columbus The Mytronic Co. Cincinnati

Pioneer Electronic Supply Co. Cleveland OKLAHOMA

Oil Capitol Electronics Tutsa


### PENNSYLVANIA

D & H Distributing Co. Harrisburg Herbach & Rademan, Inc. Philadelphia

TEXAS Scooter's Radio & Supply Co. Fort Worth

WASHINGTON Seattle Radio Supply Co. Seattle

### WISCONSIN Radio Parts Co., Inc. Milwaukee



### -----International ELECTRONIC SOURCES

neutralization and operating at low collector voltages. The gain of such a stage can be controlled by varying the collector voltages. A transistor collector detector stage can also provide, besides the demodulated audio frequency signal, the control voltage necessary to secure A.G.C. for the preceding high-frequency stages. (India, in English.)

Parallel-Connected Magnetic Amplifier, K. J. Srivastava. "J. ITE." September 1959. 7 pps. A mathematical analysis of parallel-connected magnetic amplifiers with an inductive and capacitive load is presented. The analysis is based on the representation of the normal magnetization curve of the core material by polynomials of third and fifth degree respectively. (India, in English.)

An Adjustable Impedance Circuit, C. T. Murray. "Proc. AIRE." Aug. 1959. 2 pps. In some applications circuit performance may be greatly improved by the use of an impedance having an infinite or negative value. Particular examples are high accuracy cathode followers using a negative cathode resistor and difference amplifiers with an infinite or negative common cathode impedance. The circuit described here is one method of obtaining such a controllable impedance. (Australia.)

Cathode-Coupled Push-Pull Output Stage, K. R. Sturley & J. P. Bennett. "E. & R. Eng." November 1959. 6 pps. A theoretical investigation of the linear operation of the cathodecoupled push-pull output stage shows that, as the common cathode resistance Rk is increased, the ratio of the signal currents in each valve approaches unity and the output voltage is almost independent of Rk. (England.)



### COMMUNICATIONS

The PAM Method in Stereophonic Broadcasting, G. Janus. "El. Rund." Dec. 1959. 3 pps. With pulse-amplitude modulation (PAM) both the signals delivered by the stereophonic LF power pack modulate alternatingly the pulses of a scanning generator. An ultra-short wave transmitter is frequency modulated by the resultant signal. In the receiver the signal is divided by electronic switches synchronized by scanning frequency and the two stereophonic signals are fed to both the LF channels. (Germany.)

A New Method for Stereophonic Broadcasting with Frequency Modulated Signals and Amplitude Modulated Subcarrier, F. L. H. M. Stumpers and R. Schutte. "El. Rund." Dec. 1959. 2 pps. The principle of a new method for stereophonic broadcasting with frequency modulated signals and amplitude modulated subcarrier with the following advantages is discussed: 1) small expenditure on the receiving side, 2) low subcarrier frequency and thereby small band width, 3) small additional expenditure on receiver renders possible a second program. Loss in signal/noise ratio with compatible signal is the mentioned disadvantage and the necessity of 55  $\mu$ V/s at the receiver's input to obtain 50 dB stereophonic signal/noise ratio is considered. (Germany.)

The Cross-Talk in Screened Cables for Exchanges, W. Vogl & A. Ziegler. "Nach. Z." Nov. 1959. 5 pps. Cross-talk attenuation values of 17 N are required for the wiring in repeater stations. These high values can be achieved by means of special screen designs. The physical processes of cross-talk in coaxial and balanced line types are mentioned and the effect of single ended and double ended grounding of cable screen is described. (Germany.)

A Bridged T Network in Action, V. A. Krishnaswamy. "J. ITE." Sept. 1959. 4 pps. Frequently, a bridged T network is employed to combine the outputs of the two transmitters and the article explains in simple terms how several functions are carried out by the bridged T arrangement. It is hoped that the article will be of interest to students and professional radiomen alike. (India, in English.)

Panoramic Systems of Measurements on Equipment for Multichannel FM Radio Link, F. Pollastrello. "Alto Freq." Aug. 1959. 12 pps. Factory test methods on receivers, transmitters and modulator-demodulator units for multichannel frequency-modulated radio links are described. Sweep-methods adjustments of i-f and r-f circuits are treated in some details, as well as transmission quality tests, which aim to the observation of thermal noise and cross modulation noise. Factory test results on the Rome-Pescara radio link (operating band 4000 MHz) are briefly recalled. (Italy.)

Test Results of Multichannel Radio Link Equipments, A. Cardarelli. "Alta Freq." Aug. 1959. 17 pps. The main electrical features of radio link equipments are discussed, as actually ascertained in the factory acceptance tests carried out on different lots of equipment designed for medium and high traffic capacity. The main parameters of the equipments are investigated from the point of view of production uniformity and of the correspondence of the results obtainable in current production with those resulting from theoretical computations or measured on laboratory prototypes. (Italy.)

Group-Delay Equalization of the TV Radio Link Milan-Palermo, A. Luna. "Alta Freq." Aug. 1959. 13 pps. After stating the fundamental ideas on which the problem of the group-delay equalization of each relay station of the Milan-Palermo radio link has been based, the design of the equalizing circuit and the method of calculation of its component are given. (Italy.)

Measure of Cross Modulation Noise in FM Radio Links, O. Fabbri. "Alta Freq." Aug. 1959. 15 pps. In accordance with the modern methods of measuring the cross modulation noise in multi-channel radio links, a specialized instrument has been developed which simulates the operating conditions to the effect of the cross modulation and makes it possible to measure the cross modulation in a certain number of preset gates of the modulation band. (Italy.)

Interferences between Radio Links at Frequency Modulation, M. Federici. "Alta Freq." Aug. 1959. Il pps. The author examines theoretically the interference produced on a FM receiver by a modulated or unmodulated carrier frequency of small amplitude and shows that the interference depends only on the relative amplitude of the wanted and unwanted signals and is not reduced by reference to an amplitude modulated receiver. The results of experiments carried out are related. (Italy.)

Choice of the Working Frequency in Radio Links, G. Pivetta. "Alta Freq." Aug. 1959. 13 pps. The various frequency bands devoted to the radio links and the corresponding properties of the propagation are mentioned. The factors affecting the choice of working frequencies are then examined, namely: locations to be linked, band-width required by the desired number of channels, fading probability, local level of parasitics, features of the various equipments, aerial size, interfering signals. (Italy.)

Radio Links Using Traveling Wave Tubes, L. Barbaglio. "Alta Freq." Aug. 1959. 27 pps. The simplifications and improvements obtainable by the use of traveling wave tubes in the radio links technique are considered both from the realization and from the performance points of view. Particular mention is made of the circuitry in relation with traveling wave tubes. The second part of the article contains detailed description of the new Marconi radio link operating at 2000 MHz; block schematics of terminal and relay stations are shown together with pictures. A newer version of this equipment operating at higher frequency is briefly outlined. For the 2000 MHz version mentioned above are described also the auxiliary circuits, and alarm devices best suited to the service. (Italy.)

### International ELECTRONIC SOURCES

Application of Compandor Circuits in Radio Links, P. Chiesa. "Alta Freq." Aug. 1959. 9 pps. A brief review is made of the progress of compandor circuits in radio links, particular attention being paid to their applications in the field of telephony. Their theory is also recalled, pointing out the use of semiconductors as non-linear elements for the realization of variable attenuators. After a critical comparison of the available compandor circuits, the possibilities of applications, especially in the field of communications by radio link systems, are described. (Italy.)

Electronically Stabilized Power Supply of Klystrons for Radio Link Application, M. Saba. "Alta Freq." Aug. 1959. 15 pps. After an introductive remark concerning the factors which might affect the frequency stability of klystron oscillators, a distinction is made between the factors which can be directly controlled (supply voltage) and those the effects of which must or can be neutralized indirectly (temperature, tube aging, etc.). Mention is also made on the opportunity of visualizing the electronic controls within the general theory of negative feed-back amplifiers. (Italy.)

Reference Cavities for Automatic Frequency Control, B. Basini. "Alta Freq." Aug. 1959. 8 pps. A hint is made on the frequency stability requisites normally requested for microwave radio links and a short description is given of the stabilizing systems employing as discriminating element one or more tuned cavities. Then the problems on tuned cavities dimensioning and coupling systems depending on the Q and insertion losses are examined (Italy.)

The South-Lanchashire Radiophone Service, L. T. Arman. "Brit. C.&E." December 1959. 4 pps. The South-Lancashire Radiophone Service is a VHF mobile-radio service providing communications between land mobile stations and the public telephone network. Calls between the mobile service user and both local and distant subscribers on the telephone network are possible, the calls in the latter case being routed via the trunk network. (England.)



### COMPUTERS

Shift Registers with Logic Feedback and Their Application as Computers and Code Devices, A. N. Radchenko, V. I. Phillipov. "Avto. i Tel." Nov. 1959. 8 pp. The article deals with the methods of efficiency of computers and codes based on shift registers. The main property of these devices is that the shift register is fed back by a logical circuit, the action of which is the function of a code in the register. The article describes the methods of designing feedback circuits for counters and codes of any capacity as well as the methods of reading information. (U.S.S.R.)

Punched Card Synthesis of Sequential Switching Systems of Multi-Position Relays, V. I. Shestakov. "Avto. i Tel." Nov. 1959. 11 pp. The paper deals with vector-algebraic synthesis of sequential switching systems of r-position relays by using special punched cards. This method of synthesis is a generalization of punched card synthesis of switching systems of 2-position relays and is available as well both for autonomous and nonautonomous relay systems. (U.S.S.R.)

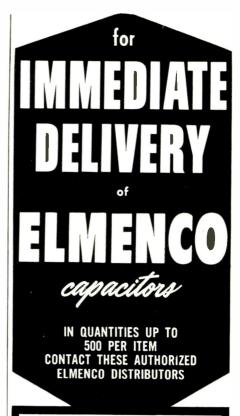
Pneumatic Switching Circuits, T. K. Berends and A. A. Tal. "Avto. i Tel." Nov. 1959, 13 pp. Pneumatic units used in designing pneumatic switching circuits are described. There are shown means of realizing elementary logic functions and one-pulse delay with the pneumatic devices. It is shown also that using means of the pneumatic automation one can design any finite automation. (U.S.S.R.) On the Optimum Design of Magnetic Drum Store, D. Dutta Majumdar. "J. ITE." September 1959. 12 pp. An exhaustive review on the design of magnetic drum store has been made in the light of the investigation carried out by the author on this topic. It is attempted to develop the existing ideas with respect to possibilities and limitations of magnetic drum store and on how far the design can be optimized for different types of computer. A technical discussion on the choice of coating material coating thickness, magnetic head design and areodynamic effects at high speed has been made. A very brief description of a new track switching circuit using a magnetic gating transformer, designed to operate with a high speed serial drum memory, has also been included. (India, in English.)



### CONTROLS

Pontrjagin Maximum Principle in the Theory of Optimum Systems, L. I. Rozonoer. "Avto. i Tel." Nov. 1959. 18 pp. Most important problems of automatic control are expounded which are connected with proofing and using "Pontrjagin maximum principle in the theory of optimum systems. The paper yields some new results. The problem of optimalizing in the case of free right branch of the trajectory is considered in the first part of the paper. In the second part the maximum principle is formulated for the boundary conditions of more general type. In the third part there is ascertained connection of the dynamic programming method with the maximum principle, proposed the way of solving optimalizing problems in discrete linear systems and some ideas are described about using the maximum principle when solving problems of a certain class which are connected with theory of dynamic accuracy of automatic control systems. (U.S.S.R.)

Approximate Determination of Self-Oscillation Parameters in Delayed Feedback Relay Systems, N. A. Korolev. "Avto. i Tel." Nov. 1959. 5 pp. An approximate method for determining self-oscillation parameters of relay systems of a certain class which is based on modification of the harmonic balance method is proposed. (U.S.S.R.)


Digital Servosystem Used to Control Reversible Rolling Mill Screw-Down, V. M. Ozernoy, G. S. Rozenberg. "Avto. i Tel." Nov. 1959. 9 pp. There is described the digital servosystem used to control the screw-down of the hot sheet reversible rolling mill. Circuits of some blocks and formulae for the main logic units are given. (U.S.S.R.)

Static Sequencing and Positional Control Systems, S. A. G. Emms, et al. "GEC J." Vol. 23, No. 6. 4 pp. As automation technique progresses there is an increasing requirement in industry for the storage, selection and implementing of operation programmes, which often include one or more positional sequences. Typical examples are machine punch and press tools, which have to perform a series of punching or bending operations upon each work piece, and reversing rolling mills, which have to effect a number of passes each requiring a re-positioning of rolls and manipulators associated with speed and direction controls of the main and auxiliary drives. (English.)



### GENERAL

Some Technical Applications of Powerful Ultra Sonic, H. J. Gollmick. "El Rund." Dec. 1959. 3 pp. The present article discusses some technical applications of ultra sonic with



The authorized distributors listed below carry a full stock of all Elmenco Capacitors and can give you Immediate Delivery from stock.

ARIZONA: Radio Specialties & Appl. Corp., 917 N. 7th St., Phoenix; Standard Radio Parts Inc., 218 N. First Ave., Tucson.

CALIFORNIA: Brill Electronics, 610 East 10th St., Oakland 6; Electronic Supply Corp., 2085 E. Foothill Blvd., Pasadena; Federated Purchaser Inc., 11275 W. Olympic Blvd., L. A. 64; Hollywood Radio Supply Inc., 5606 Hollywood Blvd, Hollywood 28; Pacific Wholesale Co., 1850 Mission St., San Francisco 3; Peninsula Electronics, 656 South 1st Street, San Jose; Shelley Radio Co. Inc., 2008 Westwood Blvd., L. A. 25; R. V Weatherford Co., 6921 San Fernando Rd., Glendale 1; Zack Electronics, 654 High St., Palo Alto.

COLORADO: Denver Electronics Supply Co., 1254 Arapahoe St., Denver 4.

DISTRICT OF COLUMBIA: Capitol Radio Wholesalers Inc., 2120 14 St., N.W., Wash., D. C.

ILLINOIS: Newark Electric Co., 223 W. Madison St., Chicago 6.

MARYLAND: Kann-Ellert Electronics Inc., Howard & Redwood Sts., Balt. 1.

MASSACHUSETTS: Cramer Electronics Inc., 811 Boylston St., Boston 16; Radio Shack Corp., 730 Commonwealth Ave., Boston 17.

NEW JERSEY: Federated Purchaser Inc., 1021 U. S. Rte. 22, Mountainside; Radio Elec. Service Co., Inc., 513 Cooper St., Camden 2.

NEW MEXICO: Midland Specialty Co., 1712 Lomas Bl. N.E., Albuquerque; Radio Specialties Co., Inc., 209 Penn Ave., Alamagordo.

NEW YDRK: Arrow Electronics Inc., 525 Jericho Turnpike, Mineola, L. I.; Terminal Radio Inc., 85 Cortlandt St., New York 7.

PENNSYLVANIA: Almo Radio Co., 412 N. 6th St., Phila. 23, Phila, Electronics Inc., 1225 Vine St., Phila. 7; Radio Elec. Service Co., Inc., 701 Arch St., Phila. 6

TEXAS: All-State Distributing Co., 2411 Ross Ave., Dallas 1; Busacker Elect. Equip. Co. Inc., 1216 West Clay, Houston 19; Engineering Supply Co., 6000 Denton Drive, Dallas 35; Midland Specialty Co., 500 W. Paisano Drive, El Paso.

WASHINGTON: C & G Radio Supply Co., 2221 Third Ave., Seattle.

126



\*Life tests have proved that El-Menco Mylar-Paper Dipped Capacitors — tested at 100°C with rated voltage applied have yielded a failure rate of only 1 per 716,800 unit-hours for 1 MFD. Since the number of unit-hours of these capacitors is inversely proportional to the capacitance, 0.1 MFD El-Menco Mylar-Paper Dipped Capacitors will yield ONLY 1 FAILURE IN 7,168,000 UNIT-HOURS.

### SUPERIOR FEATURES!

### • Five case sizes in working voltages and ranges:

| 200 WVDC    | .Q18 to .5 MFD   |
|-------------|------------------|
| 400 WVDC    | .0082 to ,33 MFD |
| 600 WVDC    | .0018 19 .25 MFD |
| 1000 WVDC - | .001 to .T MMF   |
| 1600 WVDC   | .001 to .05 MFD  |

SPECIFICATIONS

• TOLERANCES:  $\pm$  10% and  $\pm$  20%. Closer tolerances available on request.

• INSULATION: Durez phenolic resin impregnated.

 LEADS: No. 20 B & S (.032") annealed copperweld crimped leads for printed circuit application.

• DIELECTRIC STRENGTH: 2 or 21/2 times rated voltage, depending upon working voltage.

• INSULATION RESISTANCE AT 25°C: For .05MFD or less, 100,000 megohms minimum. Greater than .05 MFD, 5000 megohm-microfarads.

• INSULATION RESISTANCE AT 100°C: For .05MFD or less, 1400 megohms minimum. Greater than .05MFD, 70 megohm-microfarads.

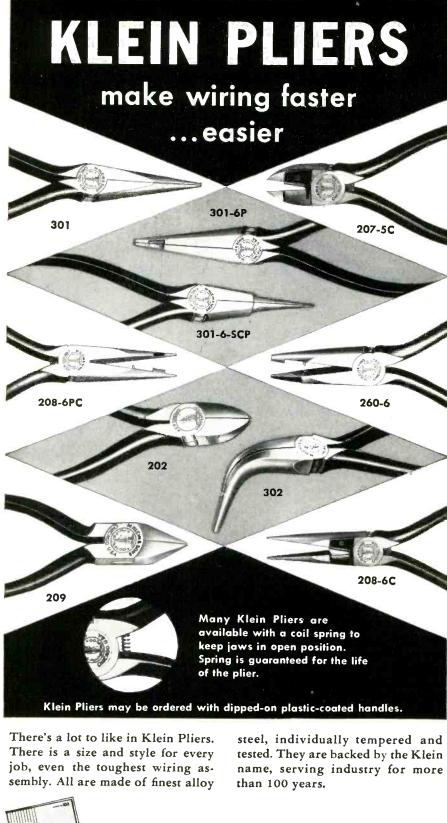
• POWER FACTOR AT 25°C: 1.0% maximum at 1 KC.

Write for Technical Brochure Giving Complete Information on the El-Menco Tubular Dur-Paper Line.

THESE CAPACITORS WILL EXCEED ALL THE ELEC-TRICAL REQUIREMENTS OF E.I.A. SPECIFICATION RS-164 AND MILITARY SPECIFICATIONS #MIL-C-91A AND MIL-C-25A.

FOR FAILURE-PROOF PERFORMANCE ... COUNT ON EL-MENCO MYLAR-PAPER DIPPED CAPACITORS ... FROM MISSILE GUIDANCE SYSTEMS TO DATA PROC-ESSING EQUIPMENTI

\*Registered Trade Mark of DuPont Co.






### THE ELECTRO MOTIVE MFG. CO., INC. WILLIMANTIC CONNECTICUT

Manufacturers of El-Mence Capacitors • molded mica • dipped mica • mica trimmer • dipped paper

tubular paper
 ceramic
 silvered mica films
 ceramic discs
 Arco Electronics, Inc., 64 White St., New York 13, N. Y.
 Exclusive Supplier To Jobbers and Distributors in the U.S. and Canada





### Sources

acoustical overall performances of approximately 50 w and more, but not ultrasonic measuring methods operating with much smaller ultrasonic performances as there are nondestructive testing of materials or thickness measurement by ultra sonic. (Germany.)

The Use of Thermistors in the Ebullioscopic Determination of Molecular Weights, J. G. van Pelt. "Phil. Tech." No. 12, 1959. 5 pp. Brief description of an apparatus for the ebullioscopic determination of nolecular weights, the boiling-point elevation being measured with a thermistor resistance thermometer. (Netherlands, in English.)

Vacuum in the Saclay Proton-Synchrotron, F. Prevot R. Le Quinio. "Vide." No. 82, 1959. 17 pp. The 3 GeV Proton Synchrotron built in Saclay gives an example of the application of vacuum technique to nuclear physics which it has appeared to us interesting to describe here because of its unusual characteristics. (France, in English.)

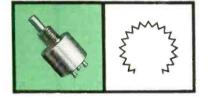
Description of a Gauge for Ultra-High Vacua and Remarks about Ultra-High Vacua Techniques for All-Metal Mountings, Dr. K. G. Muller. "Vide." No. 82, 1959. 10 pp. Almost all the measurements of vacua below  $10^{-7}$ torr are done by means of ionization gauge. In order to avoid the disturbing effect of X-rays it is necessary to use the Bayard and Alpert gauge which is the only one suitable for ultra-high vacua. In the United States such gauges have been already in production for some time, whereas in Europe they are just being introduced. Gauges allowing industrial measurements of pressures below  $10^{-7}$ torr exist also now in Europe: one of them will be described here. (France, in English.)

Discussing Ultrahigh Vacuum, J. Schweitzer. "Vide." No. 82, 1959. 18 pp. The need for large machines capable of running at pressures below  $10^{-8}$  mmHg leads us to consider how complex mechanical units can be produced. A review of limiting factors shows the preponderant influence of surface phenomena. These are examined in the particular case of gas influx and evolution. (France, in English.)

Photon-Spin Pumping, Quantum. "E. & R. Eng." Nov. 1959. 4 pp. The term "optical pumping" simply means raising atoms into an excited state by exposing them to visible or near-visible, radiation. The resonance experiments of R. W. Wood and of Horton and Davies were early examples. And, of course, it happens every time an optical absorption spectrum is produced. But in the present context it means exciting them by this means so that they can emit microwave or radiofrequency radiation. (England.)

Analytical Geometry and Impedance Calculations, Computer. "E. & R. Eng." Nov. 1959. 2 pp. (England.)

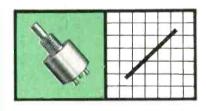
Simulation of Nerve Cells by Electro-Chemical Methods, R. J. Rice. "Brit. C. & E." Dec. 1959. 3 pp. The general requirements for a model neuron for use in simulated nerve nets are stated briefly. The operation and some applications of an electro-chemical model neuron for use in cybernetic and automata models are then described. (England.)



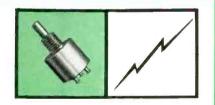

### MATERIALS


Topotactically Crystal-Oriented Ferromagnetics, F. K. Lotgering. "Phil. Tech." No. 12, 1959. 3 pp. The article describes a new method of crystal orientation in ceramic ferromagnetics. The method is based on the phenomenon that in a chemical reaction between solids the crystal orientation of the reaction product is sometimes correlated with that of one of the initial substances. (Netherlands, in English.)

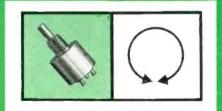
Circle 70 on Inquiry Card


# <section-header><text>

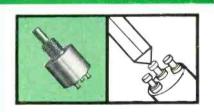



UP TO 50K OHMS Resistance range: 50 onms to 50,000 ohms  $\pm$  5%. 1.5 watts @ 40°C.




COMPLETELY SEALED Meets and exceeds military moisture and humidity requirements.




 $\pm$  2% **INDEPENDENT LINEARITY**  $\pm$  2% deviation for actual angular displacements. Tops for  $\frac{1}{2}$ " diameter potentiometers.



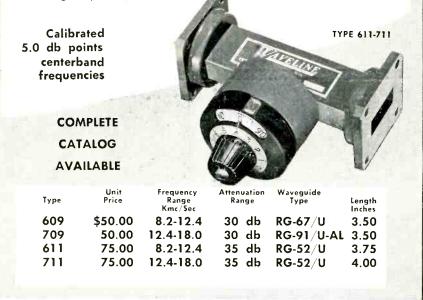
MINIMUM ELECTRICAL LEAKAGE High dielectric materials employed throughout with nickel-silver body.



RESOLUTION .08% resolution permits extreme accuracy in read-out and setting.



MECHANICAL/WELD TERMINATIONS Windings terminated with tapered-pins and electronic weld. Terminals molded in place.






**TYPE 609-709 are NEW** — A small, lightweight, rugged, highly accurate attenuator designed to provide accurate settings under conditions of shock and vibration. The dial can be securely locked. Finish is Iridite. Weight  $3\frac{1}{2}$  ounces.

Excellent shielding properties, low 1.15 maximum VSWR value, 0.3 db. maximum insertion loss and a range of 30 db. combine to provide exceptional electrical operation in a small unit.

**TYPES 611-711** — The attenuation range of these units is 35 db. calibrated at 9.60 and 15.0 Kmc/Sec. Maximum insertion loss is 0.3 db. with VSWRs not exceeding 1.15. Construction is brass, gold plated.



### LEADERS IN ATTENUATION DEVICES



### Sources

|                       | $\square$ |
|-----------------------|-----------|
| 200 - ADD             | <b>A</b>  |
|                       |           |
| AT US DESCRIPTION     |           |
| and the second second |           |

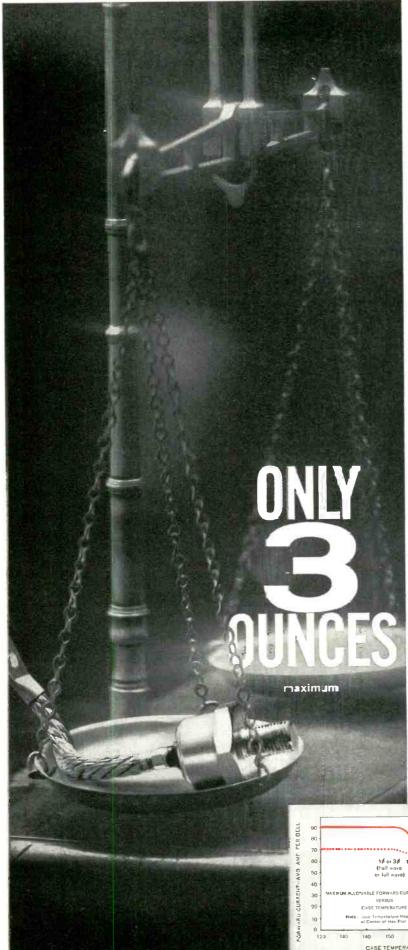
### MEASURE & TESTING

Multichannel Automatic Optimizer to Solve Variational Problems, R. I. Stakhovsky. "Avto. i Tel." Nov. 1959. 13 pp. Block-diagrams and some circuits of separate blocks of a 12channel optimizer of electronic type are described. There are given the results of the test of the optimizer as an automatic approximator of the given time-function. The search method when the system has false extremums of the ridge or saddle type is considered. (U.S.S.R.)

On Symmetric Periodic Motion of Multi-Cascade Relay Systems, I. Neimark, L. P. Shilnkov. "Avto. i Tel." Nov. 1959. 8 pp. The problem of finding and investigating the simplest symmetric motion stability of a multi-cascade relay system is solved. (U.S.S.R.)

On the Need for Revision of Noise Grades for India, B. B. Ghosh & S. N. Mitra. "J. ITE." Sept. 1959. 6 pp. Measurement of atmospheric noise in the frequency range 2.5-9.5 MC/s has been in progress at the Research Dept. of All India Radio, New Delhi, since November 1955. The measured data have been compared with the predicted ones for Delhi from C.C.I.R. Report No. 65. It is observed that the predicted values are invariably low and the difference between the two has, at times, exceeded 40 db. It is concluded that the noise grades predicted in the C.C.I.R. report do not represent condition prevailing in India and there are sufficient justifications to warrant their revision. (India, in English.)

A Survey of Low-Frequency Signal Generators and Oscillators, R. Brown. "Brit. C. & E." Dec. 1959. 6 pp. (England.)


Magnetic Measurements with Bridged-T Network, J. K. Choudhury, et al. "E. & R. Eng." Nov. 1959. 4 pp. The bridged-T network has been hitherto mainly used as a frequencyselective network. Its applications in harmonic analizers, frequency selective amplifiers and as a circuit for use in the measurement of high resistance at radio frequencies are well known. In a recent article the authors have described how the bridged-T network can be very usefully employed for the measurement of magnetic loss and ac permeability under different conditions of excitations in the core. (England.)



### RADAR, NAVIGATION

The Port of Rotterdam Radar System, B. H. G. Prins and J. M. G. Seppen. "Phil. Tech." No. 12, 1959. 5 pp. Shipping on the Nieuwe Waterweg, which connects the Hook of Holland and the port of Rotterdam, is assisted in conditions of bad visibility by a chain of 7 radar stations working on wavelengths in the 3 cm band. Ships proceeding along the Waterweg or inside the harbor area can be supplied with accurate information about their positions in a matter of seconds. (Netherlands, in English.)

Radio Astronomy and the Development of Receivers with Greatly Increased Sensitivity, J. L. Pawsley and F. F. Gardner. "Proc. AIRE." Sept. 1959. 7 pp. The "signals" from the Sun, Milky Way, and other bodies in the heavens which radio astronomers observe are usually exceedingly weak. The current development of radio astronomy has only been possible because means have been found, using tedious averaging procedures, which permit the measurement of "signals" down to 1/1000 of the accompanying "noise." Exciting new inventions, masers and parametric



# New 70 amp high-power silicon rectifier from Westinghouse

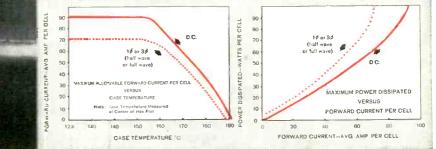
This latest Westinghouse rectifier has been designed specifically for those high-current applications where space and weight are critical. Total weight is only 3 oz., maximum.

### OUTSTANDING FEATURES INCLUDE...

- Low leakage current Small package
- High fault current
- Lightweight
- (just 1" across flats)High current for its size and weight
- Low forward drop

### ELECTRICAL CHARACTERISTICS

Maximum allowable peak inverse voltage: Operating or transient to 50 to 500 volts.


- Maximum allowable dc blocking voltage: 80% of PIV.
- Maximum reverse current: 30 milliamperes peak at rated peak inverse voltage.
- Maximum one cycle half-wave peak rating: 1200 amps.
- Operating temperature: Up to junction temperature of 190° C.
- Cell forward current: See curves.
- Operating frequency: For frequencies beyond 1 kc, refer to Westinghouse.

Thermal drop: Junction to case, 0.4°C/watt.

Inquiries and sample orders are invited. For complete technical data contact your local Westinghouse representative.

# you can be <u>SURE</u>...IF IT'S Westinghouse

Westinghouse Electric Corp., Semiconductor Department, Youngwood, Pa.



# TARZIAN M-500...

a high efficiency silicon rectifier commercially priced



The Sarkes Tarzian M-500 silicon rectifier is rated at 500 milliamperes dc, with a peak inverse voltage rating of 400 volts. This was the first commercially priced silicon rectifier, and more M-500's are now in use than any similarly rated unit.

The Tarzian M-500 is a cartridge type rectifier with end ferrules that snap quickly and easily into standard clips. These silicon rectifiers are made by a special Tarzian process that provides optimum forward to reverse ratios and long, useful life.

For additional information, practical application assistance, and prices on the M-500, write to Section 4393B, Semiconductor Division, Sarkes Tarzian, Inc., Bloomington, Indiana.

### M-500 Characteristics

M 500

| DC amps<br>(100° C) | Peak Inv.<br>Voltage | Tarzian<br>Type | Max, RMS<br>Volts | Max. Recurrent<br>Peak Amperes<br>(100° C) | Max. Surge<br>Amps 4MS | JEDEC<br>No. |
|---------------------|----------------------|-----------------|-------------------|--------------------------------------------|------------------------|--------------|
| 0.5                 | 400                  | M-500           | 280               | 5                                          | 30                     | 1 N 1084     |



# SARKES TARZIAN, INC.

In Canada: 700 Weston Rd., Toronto 9, Ontario Export: Ad Auriema, Inc., New York City

### Sources

amplifiers, now promise a hundred-fold increase in sensitivity applicable equally to scientific and engineering purposes. The physical principles involved are outlined and the prospects for practical realization discussed. (Australia.)

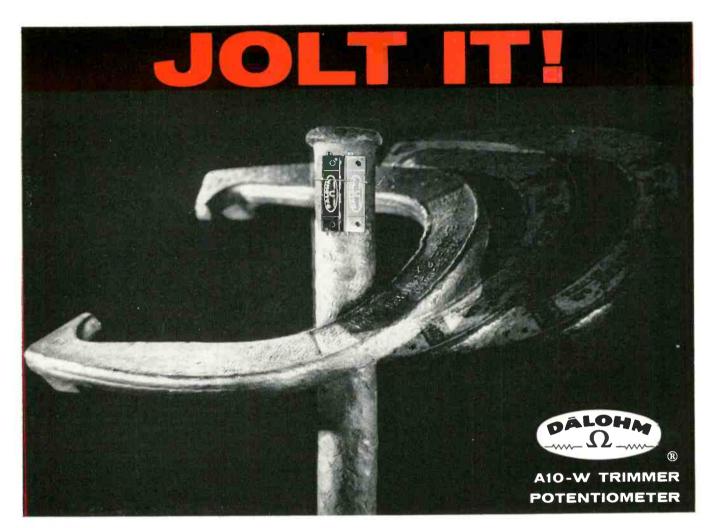


### SEMICONDUCTORS

Application of Transistors in Radio Link Equipments, C. Tamburello. "Alta Freq." Aug. 1959. 29 pp. The rapid progress in the field of the semiconductors has opened wide possibilities of applications of transistors in electronics. At the present stage of the development there are still two main limiting factors to its application: the upper limit of the operating frequency, which in the most recent types attains 100 MHz and the upper limit of the output power, which for the high frequency types is of the order of one miliwatt. (Italy.)



### TELEVISION


Does Dr. Edwin H. Land's Theory of Color Vision Form the Basis for a New Color TV System?, P. Neidhardt. "El. Rund." Dec. 1959. 7 pp. The developmental basis of color television is the additive mixture of three primary impulses, red, green, and blue. Dr. H. Land's invention has made itself known insofar as the wave lengths of the luminosity beams do not play the decisive part for color vision which according to Land derives from the combination of shorter and longer waves noticed simultaneously by the human eye. (Germany.)

Automatic Room Light Matching of Contrast and Brightness in TV Sets, R. Suhrmann. "El. Rund." Dec. 1959. 4 pp. With the aim at simplifying the handling of a TV set for the viewer, various automatic adjustments of TV receivers have been in use for some time. The automatic matching of the contrast and the brightness of the screen with the illumination increase of the surrounding area are important contributions to the realization of this aim. Circuits are described which perform the necessary controls in the desired manner, whereby the contrast is increased proportionally to room light intensity. The brightness increases either proportionally to the room lighting or it is raised only above a certain threshold value. (Germany.)

Planing Principles for TV Networks in the Broadcasting Bands IV/V. "Nach. Z." Nov. 1959. 7 pp. Modern knowledge and recent investigations have resulted in new aspects in planing work for the bands IV/V and these are compared with known principles for the bands I and III. The question of height-gain characteristics, the radiation power required at transmitters and frequency converters as well as the transmitter spacing for the bands IV/V are discussed in details. (Germany.)

N.T.S.C. Colour-Television Signals, Evaluation of Measurements, J. Davidse. "E. & R. Eng." Nov. 1959. 4 pp. (England.)

A Precision Colour Television Signal Source for Research Purposes, J. E. Benson, "Proc. AIRE." Aug. 1959. 15 pp. After an introductory statement on the present status of color television in America and England, some of the problems of producing a precise color television signal for research purposes are discussed in relation to a new color slide scanner and monitor, manufactured by Rank Cintel. This equipment, which is capable of producing color video signals with sufficient precision and stability to serve as a reference



### A DALOHM Trimmer Potentiometer Retains its INHERENT STABILITY

Even the smashing shock of steel on steel has no effect on the inherent stability that is standard in DALOHM trimmer potentiometers.

DALOHM T-Pots not only offer rugged construction to withstand high shock and vibration, but also maintain exceptional stability under load, and operate reliably under extremes of temperature — all in sizes to meet the tightest space requirements.

For all applications that demand trimmer potentiometers that meet or surpass MIL specs, you can depend on DALOHM.

### WIRE WOUND • PRECISION • MINIATURE DALOHM A10-W TRIMMER POTENTIOMETER

A miniature T-Pot that surpasses most military requirements.

- Rated at 1 watt up to 70° C, ambient temperature, derating to 0 at 150° C.
- Resistance range from 10 ohms to 50K ohms
- Standard tolerance ± 5%; closer tolerances available
- Resolution 0.1% to 1%, depending on resistance
- Operating temperature range from  $-55^\circ$  C, to  $150^\circ$  C.
- Insulation resistance: 1000 megohms minimum at 500 VDC at room temperature

- End resistance not greater than 4%
- Temperature coefficient of trimmer unit within 100 PPM
- Miniature size, .220 x .312 x 1.250 inches
- Screw fully adjustable throughout 25 turn range
- Shaft torque 7 inch/ounce maximum
- Safety clutch arrangement on movable wiper contact prevents breakage due to overexcursion
- Self locking adjustment; wiper will not shift under vibration or shock

### SPECIAL PROBLEMS?

You can depend on DALOHM, too, for help in solving any special problem in the realm of development, engineering, design and production. Chances are you can find the answer in our standard line of precision resistors (wire wound, metal film and deposited carbon); trimmer potentiometers; resistor networks; colletfitting knobs; and hysteresis motors. If not, just outline your specific situation.

from **DALOHM** Better things in smaller packages **DALE PRODUCTS, INC.** 1304 28th Ave., Columbus, Nebr.

Write for Bulletin R-32, along with handy cross-reference file card.



to perform well under abuse, and ... to be rechargeable.

After extensive testing, designers chose the Gulton "VO" sealed nickel cadmium button cell battery to do the job.

### How Can You Use These Batteries?

Powering this and other prosthetic devices is only one of many imaginative uses for these rechargeable batteries. Engineers have already designed them into transistorized radios, photo-flash power packs, missiles - wherever small size, strength, light weight, long life, complete reliability, no maintenance and easy recharging arc desired. Like more information? Write us for Bulletin No. VO-103.

| ELECTRICAL ,<br>SPECS. |                                    | V0080<br>80 mah<br>2-10 ma<br>150/Ic hrs.<br>2-5 ma<br>1.4 V<br>1.5 A | V0180<br>180 mah<br>4-18 ma<br>270/3c hrs.<br>2-5 ma<br>1.4 V<br>3 A | V0250<br>250 mah<br>5-25 ma<br>375/Ic hrs.<br>2-5 ma<br>1.4 V<br>5 A | V0500<br>500 mah<br>10-40 ma<br>750/Ic hrs.<br>5-10 ma<br>1.4 V<br>7.5 A |
|------------------------|------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| MECHANICAL<br>SPECS.   | Diameter:<br>Thickness:<br>Weight: | .900<br>.200<br>.25 ounce                                             | .975<br>.270<br>.35 ounce                                            | 1.375<br>.1875<br>.5 ounce                                           | 1.375<br>.3125<br>.75 ounce                                              |



Available from stock- GLENNITE BATTERY DISTRIBUTORS 92-15 172nd Street, Jamaica, New York

Gulton Industries. Inc. Alkaline Battery Division, Metuchen, New Jersey,

### Sources

standard for research and test purposes, described in the concluding section. (Australia.)



TRANSMISSION

Long Distance Transmission in the Frequency Range 40-52 Mc/s by Means of the  $F_2$ -layer, H. Wisbar. "Nach. Z." Nov. 1959. 7 pp. The propagation characteristics reported in the previous year in connection with the radio path USA-Europe has been investigated for path USA-Europe has been investigated for suitability. A radio-weather forecast for a maximum of 5 hrs. is a possibility. The ap-plication of this characteristic also permits the drawing of conclusions with respect to the statistical distribution of field-strength values which can be expected and facilitates the location of exceptional interferences on the transmission path. (Germany.)

Directional Couplers on Coaxial Line, I. Bucci. "Alta Freq." Aug. 1959. 17 pp. After explaining the theories of directional couplers explaining the theories of directional couplers and determining some parameters an elemen-tary theory is given, in a general sense, con-sidering a directional coupler as an octopole coupling two radio frequency lines. It is shown that a certain internal structure of the octopole may give a directive coupling for a certain nature and dimensions of the impedances realizing the octopole: directivity conditions and formulas for the coupling and input impedance are given. Results in ac-cordance with the elementary theory are then found by direct analysis of the coaxial line cordance with the elementary theory are then found by direct analysis of the coaxial line directional coupler. In this particular case some particular considerations are made con-cerning the coupling. From what exposed cerning the coupling. From what exposed above, criteria can be obtained for the design of the coaxial line directional coupler. (Italy.)



TUBES

The Drive Range of Grid Controlled Valves, R. Wolfram. "Nach. Z." Nov. 1959. 6 pp. R. Wolfram. "Nach. Z." Nov. 1959. 6 pp. The ac drive range of triodes and multi-grid valves should not be considered to be equal to the bias voltage difference between the op-erating point and the point where grid cur-rent starts. The complicated relationship between these quantities, which also complicated relationship between these quantities, which also includes the impedances of the layer and intermediate layer on the cathode, can approximately be illustrated in a lucid form. (Germany.)

Pumping of Electron Tubes with the Titanium Pump, H. Huber, et al. "Vide." No. 82, 1959, 12 pp. One year ago, at the International Congress on Vacuum Technology at Namur, three models of a getter-ion pump were prethree models of a getter-ion pump were pre-sented (laboratory models 2006, 2003 and 401), with pumping speeds between 2 and 12 L/s. Their purpose was the maintenance of vacuum in high power microwave tubes. It will be noted that the choice of the pumping speed was directed by the available values of the conductance in these tubes. (France, in English.)

Life of Electronic Tubes and Service Relia-hility, A. Ingignoli, et al. "Alta Freq." Aug. 1959. 16 pp. The life of electronic tubes is characterized by some probabilistic functions, that are the result of experimental determinations and are successively elaborated. It is possible to express these functions by means of mathematical expressions and consequently it is possible to make some type of abridged life tests. At last for a system, in which the electron tubes are being substituted just as they are inefficient it is necessary to estab-lish the modalities and the periodicity of the tests on the tubes. (Italy.)

Now available in commercial quantities!

# Sylvania D-1820 germanium High-Speed Switching Diode

4 museus Guaranteed Maximum Recovery SYLVANIA D-1820-is the forerunner of an outstanding family of diodes, designed, produced and controlled specifically for logic circuitry. The cost of this new SYLVANIA diode is low enough to make it especially attractive for use in quantity-produced electronic computers. SYLVANIA D-1820, and the circuits designed around this diode, feature:

**high-speed operation** — with recommended circuits, all units are guaranteed to provide a maximum recovery time of 4 millimicroseconds. However, recovery times of 2.5 millimicroseconds are typical.

**long-life performance** – proved in 1000-hours operating and 7000-hours storage life tests.

**high reliability** – basic point-contact structure has been field-proved for more than a decade. Withstands environmental conditions of shock and vibration.

**exceptional uniformity** of electrical characteristics—assures complete interchangeability within the type—result of modern automated-production techniques employed in the manufacture of SYLVANIA D-1820.

economy – SYLVANIA pioneered the field of germanium point-contact diode manufacture, has "know-how" of superior-quality, large-quantity economical production. SYLVANIA is able to pass these savings on to you.

**simplicity**—diode-logic circuitry is relatively uncomplicated, requires few components. It reduces computer construction costs. It adds to equipment reliability.

**compactness**—SYLVANIA D-1820 "package" is miniature all-glass.

**availability**—units can be supplied immediately through your local Sylvania Semiconductor Distributor or through your local Sylvania Field Office.

Complete sales information on quantity prices, delivery and sampling for your own evaluation is available from your local Sylvania Semiconductor Distributor or Field Office. For engineering data sheets on the new Sylvania D-1820 High-Speed Switching Diode or on any Sylvania Semiconductor Device, write Sylvania Semiconductor Division, Dept. 19-2, Woburn, Mass.

| ELECTRICAL CHA                                                                                                                 |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Absolute<br>Maximum Ratings*                                                                                                   | Typical<br>Operating Conditions*                          |
| Fwd. Volt         1.3V†           Fwd. Curr.         50 mA           Back Volt         20 V           Pwr. Diss.         80 mW | Fwd. Volt0.9 V<br>Fwd. Curr2.0 μA<br>Rev. Recovery2.5 mμs |

†at 10 mA \*at 20°C.

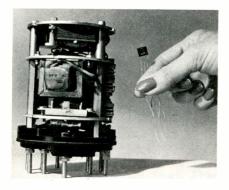
Subsidiary of GENERAL TELEPHONE & ELECTRONICS



# Products ... for the Electronic Industries

### VOLTMETER

DC-AC Differential Voltmeter, Model 803R, is a rack mounting version of the Model 803. It has a standard cell reference and employs the differential measurement principle.

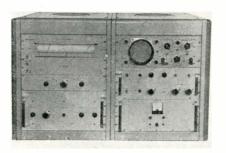



Accuracy specs are 0.05% of any input dc voltage from 0.1 v to 500 v and 0.1% from 0 to 0.1 v. For ac measurements over the 30-5000 CPS range from 0.5 to 500 v, the accuracy is 0.2% of input voltage. Useable on ac to 5 mv. It mounts in any 19 in. standard rack. John Fluke Mfg. Co., Inc., P. O. Box 7161, Seattle 33, Wash.

Circle 162 on Inquiry Card

### TRANSDUCERS

The Hall multiplier, a watt-measuring device, serves as a watt transducer, where it converts ac to dc my signal. Watt transducers supply a signal, proportional to measured watts, for application to a control device, or to a telemetering transmitter. It has a speed of response in  $\mu$ sec. as compared to a time constant of about 1 sec. for a thermal converter. Two




versions have been designed: one produces an unfiltered dc current output in the ma range; the other a filtered dc mv output. Westinghouse Electric Corp., Box 2278, Pittsburgh 30, Pa.

Circle 163 on Inquiry Card

### COMPUTER

Electronic analog computer, Model CF-1, designed to solve Fourier integrals can be used to determine the far fields of aperture antennas from the distribution of the field in the



aperture, the far fields of arrays from the magnitude and phase of the currents in the elements, the frequency spectra of voltage pulses, and other physical problems. Integration can be observed on a dc oscilloscope for interpretation or visual readout. Scientific-Atlanta, Inc., 2162 Piedmont Road, N. E., Atlanta 9, Georgia.

Circle 164 on Inquiry Card

### DIGITAL VOLTMETER

Digital voltmeter with full 4-digit resolution, the V64, is designed for a wide range of dc measuring and with accessories, ac and low-level dc measurements. It features full 4-digit



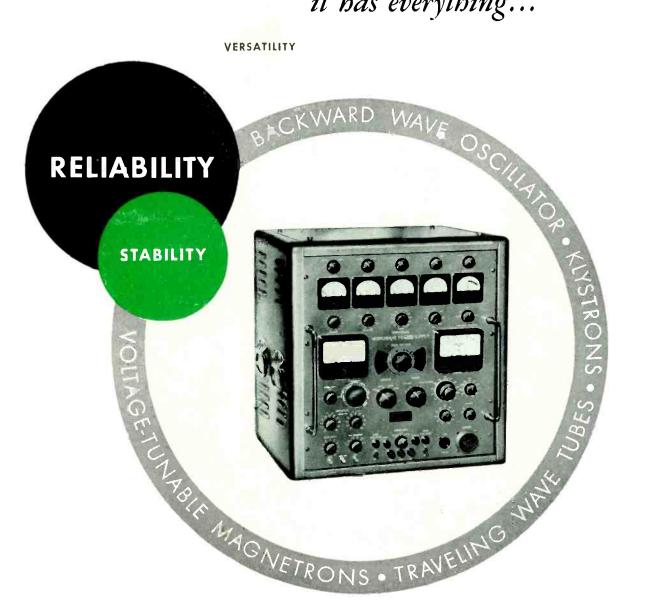
(0.01%) resolution, high input impedance and an average measuring time of 0.75 sec. per reading. It is  $5\frac{1}{4}$  in. high by  $15\frac{1}{4}$  in. deep for mounting in a standard 19-in. rack. Its range without accessories is 500 vdc in steps of ±9.999/99.99/500. Non-Linear Systems, Inc., Del Mar, Calif.

Circle 165 on Inquiry Card

### **RECTIFIER ANALYZER**

Dynamic rectifier test set, Model 138Å, is for incoming inspection, online testing and laboratory use. Forward current and reverse voltage controls are independently adjustable. Forward current range is 0-1 and 0-5 adc average, reverse voltage peak is 0-1000. It measures a forward drop range of 0-1/5 v. and a reverse current range of 0, 0.05, 0.5, 5, 50 ma




average. Specs include: power input, 120 v., 60 CPS, 250 w; size, 21<sup>1</sup>/<sub>4</sub> x 16 x 16 in.; weight, 60 lbs. Wallson Associates, Inc., 912-914 Westfield Ave., Elizabeth, N. J.

Circle 166 on Inquiry Card

### ! MORE !

The New Products mentioned here have been selected for contribution to or advancement of the electronic industries. These items are combed from several hundred new product releases received during the past month by ELECTRÓNIC INDUSTRIES. To keep interested readers informed of all new developments, a summary record is kept of ALL new products received. For a copy of this month's list, please send your request on company letterhead to Readers' Service Dept., Electronic Industries, 56th & Chestnut Sts., Phila., Penna. or Circle No. 161 on Inquiry Card.

it has everything...



### FXR'S Model Z817A, UNIVERSAL MICROWAVE POWER SUPPLY

is a single power source for microwave tubes.

- Six individual floating power supplies can be interconnected in many combinations.
- Regulation is outstanding.
- Ripple is negligible.
- Voltages and frequencies can be preset with extreme accuracy.






Precision Microwave Equipment - High-Power Pulse Modulators + High-Voltage Power Supplies + Electronic Test Equipment







the most significant advancement in the state-of-the-art since DU MONT introduced the first commercial oscilloscope

the new **DUMONT 425** 

Only the very latest concepts known in the art of cathode-ray oscillography have been incorporated in the Du Mont 425 High-Frequency Oscilloscope. This new scope will outperform any commercial oscilloscope in its class-now, yet its entire design concept is based on the future-the 425 will always be a modern scope.

By ease of operation, and elimination of chances of human error in making measurements, the 425 becomes simplified enough for a non-technical person to use. At the same time, with the extreme versatility provided by a series of plug-ins, and replaceable module construction, the 425 will satisfy every laboratory or scientific need within its range.

Such features as: simultaneous use of two plug-ins; digital ReadOut of measurement parameters; jöystick control of traces; a unique, highly-accurate "two-dot" measurement system; replaceable, modular construction; a new "tailored" cathode-ray tube; output facilities to feed information to external recorders or systems—all of these features and more help establish the fact that the 425 will always be the most advanced, versatile oscilloscope commercially available.

Write for technical details

the result of 44,000 engineering hours!

## a DC to 35 mc oscilloscope with digital and printed ReadOutversatility exceeding all other scopes.

Within its range, every job requiring an oscilloscope can be accomplished with the 425. Each electronic circuit and mechanical facet has been designed for versatility—for present and future needs. From production line go-no-go gauging and external statistical recording of production records, to the most complicated laboratory or hospital investigation—the 425 Oscilloscope is the answer—for today and tomorrow.

- Digital ReadOut on two axes
- Simultaneous use of two of a selection of plug-ins
- Electronic switches on X, Y, and Z axes
- Accurately repeatable two-dot measurement system
- No selected tubes
- Joystick control of traces

### SPECIFICATIONS

DUMONT

425

Rise Time—10 millimicroseconds High Resolution Vertical Scan—5 cm Main Time Base— Max Sweep rate—10 millimicrosecond/cm Max Sweep time—1 minute full scan Delaying Sweep— Min delay—0.5 µsec Max delay—10 sec. Digital Readout Repeatability—0.5% Accelerating Voltage—12 KV 24 Calibrated Sweep Speeds Digital Contact Closure Output and 100 mv

Analog ReadOut Output



A selection of plug-in circuits now-new ones coming.



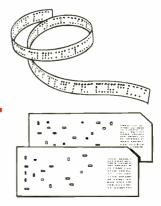
Unique, two-dot system of establishing waveform parameters to be measured – makes possible accurately repeatable readings.



Joystick manipulations of waveforms-establishing freedom for many other physical operations.



Plug-in modular construction – mechanically arranged for easy access or replacement.




Direct, digital ReadOut of measurement parameters – reducing errors due to interpolations.



Entirely new cathode-ray tube--"tailor-made" to the requirements of the 425.

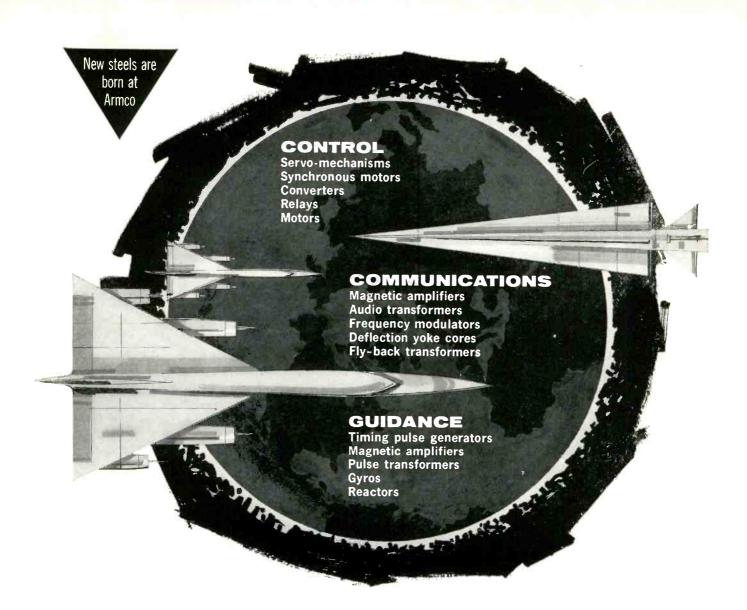
### FOR STATISTICAL RECORDINGS



Output facilities on the 425 establish it as an analog to digital converter, or as a source of parameters for statistical recording of measurements on many types of external recording devices and systems.



WRITE for complete details


precision electronics is our business

ELECTRONIC TUBES/INDUSTRIAL TV/MILITARY ELECTRONICS/MOBILE COMMUNICATIONS/SCIENTIFIC INSTRUMENTS/AUTOMOTIVE TEST EQUIPMENT

Engineers interested in employment opportunities at Du Mont, contact the Industrial Relations Department.



ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J., U. S. A. INTERNATIONAL DIVISION • 515 MADISON AVENUE, NEW YORK 22, N. Y. • CABLES: ALBEEDU, NEW YORK



# HOW TO IMPROVE EFFICIENCY, CUT COST OF AIRBORNE MOTORS, CONVERTERS AND TRANSFORMERS

Armco Thin Electrical Steels and Nickel-Iron Magnetic Alloys provide properties that facilitate design of light-weight, high quality, reliable components for control, communications and guidance units.

Armco Thin Electrical Steels—Three different grades— Armco TRAN COR® T, Oriented T, and Oriented TS in thicknesses from 1 to 7 mils have exceptionally high permeability and low hysteresis loss. Advantageous for 400cycle and higher equipment such as servo-mechanisms, specialty transformers, motors and magnetic amplifiers.

Armco Nickel-Iron Magnetic Alloys—Armco 48 Ni combines very high permeability at low to moderate inductions with extremely low coercive force and hysteresis loss. It is produced in 2 to 14-mil strip specially processed for laminations or wound cores.

Armco 48 ORTHONIK® offers the advantages of a rectangular hysteresis loop combined with very low coercive force. A highly oriented material, produced in thicknesses from  $\frac{1}{4}$  to 6 mils, 48 ORTHONIK has proved highly useful for components of computer and control circuits.

Applications for these special Armco magnetic alloys include magnetic amplifiers, reactors, bi-stable elements, audio and pulse transformers, gyro and synchronous motors and other specialty, high quality devices.

Give the airborne electronic or electrical equipment you make the advantages obtained with Armco's Thin Electrical Steels and Nickel-Iron Magnetic Alloys. Write us for complete information and design data. Armco Steel Corporation, 3379 Curtis Street, Middletown, Ohio.





Armco Division • Sheffield Division • The National Supply Company • Armco Drainage & Metal Products, Inc. • The Armco International Corporation • Union Wire Rope Corporation

# Electron Tube News ....from SYLVANIA

Sylvania introduces new tube outline! 9-T9 straight-sided

straight-sided bantam envelope with 9-pin miniature pin circle Sylvania continues to advance the development of new concepts in electronic tubes. 9-T9 is another example! The new "outline" lifts restrictions imposed upon engineers who design equipment to be produced by printed circuit techniques. Now it becomes possible to employ tube assemblies capable of high plate dissipation in

printed circuit boards. This can be done with conventional 9-pin sockets widely used in printed circuits. The 9-T9 concept of tube design offers unusual promises of compactness.

**9-T9** increases volumetric efficiency of the chassis by eliminating the relatively large octal base of the T9 outline.

**9-T9** enables the use of large tube-assemblies in those stages where higher power-dissipation capabilities of the tube are a design necessity to include reliability.

**9-T9** maintains compactness of the equipment formerly afforded by tubes fitted with  $T6-\frac{1}{2}$  header.

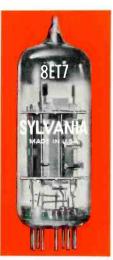
# NEW SYLVANIA TUBE-TYPES IN 9-T9 DESIGNS!

**6EW7**...double-triode...triode #1 will be intended for service as a vertical deflection oscillator, triode #2 as a vertical deflection amplifier in TV receivers. Note especially the high plate-power dissipation capabilities of triode #2 in this new tube-type as compared to a conventional 9-pin miniature tube. 10EW7 ... identical to 6EW7 in electrical characteristics except for heater power requirements.

New 9-T9 SYLVANIA designs include a beampower pentode with approximately 5-watts power output in audio amplifier service; a medium-mu triode, beam-power pentode for audio amplifier service in low-cost equipment where power outputs of 1 to 2 watts are required; a medium-mu triode, high perveance beam-power pentode for vertical deflection circuits in TV equipment.

# NEW SYLVANIA TUBES FOR LOW-COST STEREOPHONIC AMPLIFIERS

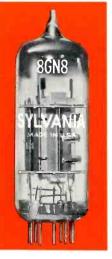
18HB8 and 35HB8 ... 9-pin miniatures feature high-mu triode and power-pentode in one envelope! /


Looking for sales-building record players you can quantity-produce and market? Here are 2 new tube-types that will help you design stereophonic and monophonic amplifiers small enough in cost to reach the "popular" market, with enough power output to please the music fan with a "tight" budget. The triode section of these new tubes has a mu of 100. That makes it excellent as a voltage amplifier for the types of pickups usually used in low-cost phonographs. In typical operation as a class-A audio amplifier, the pentode section with only 115-volts on the plate can deliver up to 1-watt power output, adequate for a small-speaker system. SYLVANIA 18HB8 and 35HB8 are identical in their electrical characteristics except for heater power requirements: 18-Volts at 300-Ma, and 35-Volts at 150-Ma, respectively.

ISHB8

Stereophonic Amplifier Uses Only 2 Tubes. Provides Up to 1-Watt Power Output Per Channel With Only .1-Volt Input. Uses 2 SYLVANIA 18HB8 or 35HB8 Tubes.

2


# NEW SYLVANIA TUBES ANNOUNCED FOR IMPROVED TV-RECEIVER DESIGNS



**8ET7**... this 9-pin miniature features duodiodes for discriminator or video-detector service and a *pentode section* for video-output service.



6GN8 . . . a 9-pin miniature with a triode section for general-purpose use as a voltage amplifier or for service as a sync-separator. and a pentode section for videooutput service. The *pentode* section is equipped with a cathode especially designed to provide "cool" operation with resultant extended life and reliability.



8GN8...9-pin miniature with electrical characteristics identical to SYLVANIA 6GN8 except for heater power requirements.

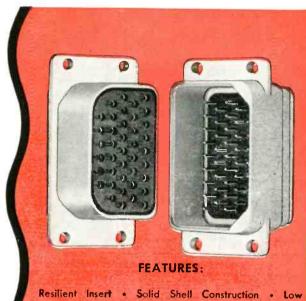
For further information, contact the Sylvania Field Office nearest you. Sylvania Electronic Tubes, a division of Sylvania Electric Products Inc., 1740 Broadway, New York 19, New York.



Subsidiary of GENERAL TELEPHONE & ELECTRONICS

# BENDIX SR RACK AND PANEL CONNECTOR

### with outstanding resistance to vibration


The Bendix type SR rack and panel electrical connector provides exceptional resistance to vibration. The low engagement force gives it a decided advantage over existing connectors of this type.

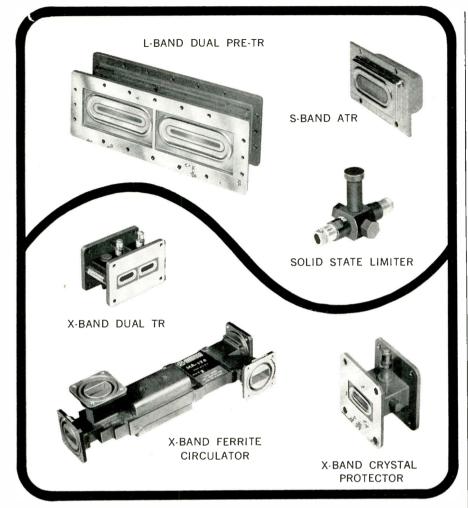
Adding to the efficiency of this rack and panel connector is the performance-proven Bendix "clip-type" closed entry socket. Insert patterns are available to mate with existing equipment in the field.

Available in general duty, pressurized or potted types, each with temperature range of  $-67^{\circ}$ F to  $+257^{\circ}$ F.

Here, indeed, is another outstanding Bendix product that should be your first choice in rack and panel connectors.

SCINTILLA DIVISION




Engagement Forces • Closed Entry Sockets • Positive Contact Alignment Contacts—heavily gold plated Cadmium Plate—clear irridite finish • Easily Pressurized to latest MIL Specifications,



Export Sales and Service: Bendix International Div., 205 E. 42nd St., New York 17, N. Y. Canadian Affiliates: Aviation Electric Ltd., 200 Laurentien Blvd., Montreat 9, Quebec. Factory Branch Offices: Burbank, Calif.; Orlando, Florida; Chicago, Illinois; Teaneck, New Jersey; Dallas, Texas; Seat:le, Washington; Washington, D. C. Circle 83 on Inquiry Card

# **MICRO MANIPULATORS**

Brinkmann features the most complete line of Micro Manipulators for scientific and industrial operations. Available with stereoscopic and compound microscopes at magnifications from 10 to 1000 x. Can be used singly or paired. Many accessory items such as automatic pipette pullers, micro injection devices, pipette holders and microvises are available. For complete details write Department M.



# Unique Duplexer Competence

Optimum radar performance depends upon selection of the best possible duplexer consistent with your specific requirements.

This is not easy. There are many possible combinations of duplexer devices, each with its own advantages and limitations. Also, components come in a variety of types and packages, each with different inherent characteristics:

#### FOR SWITCHING

- PRE-TR
- DUAL PRE-TR
- 4-PORT CIRCULATOR
- BALANCED ATR s
- TEE CIRCULATOR

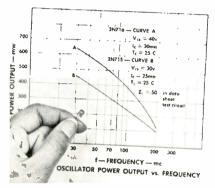
#### FOR CRYSTAL PROTECTION

- TR CRYSTAL PROTECTOR
- SEMICONDUCTOR LIMITER

#### FOR SWITCHING & PROTECTION

• DUAL TR

Microwave Associates can help you select the correct duplexer for your system with no second-guessing. Their long term research and development programs on gas tubes, ferrites, semiconductors, solid-state devices, and duplexer assemblies means excellence in duplexer capabilities. Production facilities are geared to rapidly translate new advances into field availability.

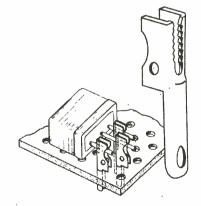

No other manufacturer offers you such comprehensive consultation on duplexer problems without obligation. If you are designing, building, or modifying a system we will be glad to work with you. Write or call:



# New Products

#### MESA TRANSISTORS

Two new silicon mesa transistors feature high power with high frequency. The 2N715 and 2N716 have a min. power output of 50 mw at 70 MC. They will deliver approx. 50 mw at 200 MC. Both are packaged in the subminiature JEDEC-outline TO-18 case. Guaranteed beta spread is 10 to 50 and collector reverse voltage is 50 and 70 v. Collector reverse




current at 25°C is 0.5  $\mu$ a max. and 50  $\mu$ a max. at 150°C. Temperature limits are at -65°C and 175°C. Texas Instruments Incorporated, P.O. Box 312, Dallas, Tex.

Circle 203 on Inquiry Card

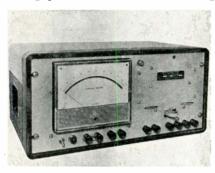
#### TERMINAL

Small push-in terminal, T28, for 1/16 in. round holes has serrations in the main slot which grip small component leads. Ideal for experimental breadboarding, it is also suited for printed circuits. It holds firmly when pushed in by hand and need not be



staked. Six leads may be connected in the 3 possible directions. It is built of heat treated beryllium copper with a fused tin finish. Vector Electronic Co., 1100 Flower St., Glendale, Calif.

Circle 204 on Inquiry Card

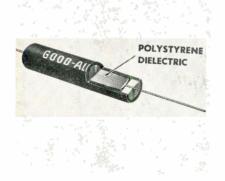

Circle 85 on Inquiry Card

ELECTRONIC INDUSTRIES · February 1960



#### WATTMETER

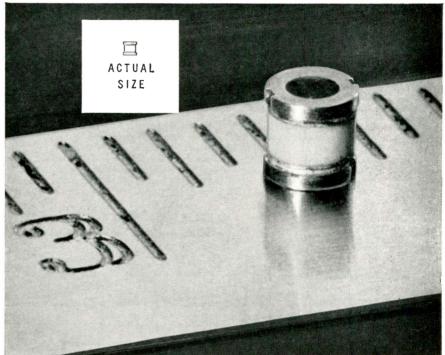
Wattmeter, Model 1483, for accurate measurements and resolution to 0.01% of rated input. Output is low impedance dc. True temp. comp nsation is effected by making the air gap increase with increasing




temp. to compensate for decreased current in the moving coil. Coils can be overloaded 400% without degrading accuracy due to heating effects. Ranges are 250/500/1000 w. Input (current) is 5 a nor. and 10 a max.; (potential) 50/100/200 v. nor. and  $75/150/300\,$  v. max., and outputs of 1 ma in a max. output burden of 5000 ohms (5 v). Frequencies are 40 to 1000 CPS. Daystrom-Weston Sales Div., Daystrom, Inc., 614 Frelinghuysen Ave., Newark 12, N. J.

Circle 205 on Inquiry Card

#### CAPACITORS


Type 820-UB polystyrene dielectric, capacitors have low capacitance change with temp. - with a T. C. of less than 125 ppm per °C. The case is a specially cured phenolic molding with endfill of moisture tight epoxy compound. Capacitors are for use in



computer and timing circuits, electronic organs, and precision test equipment. Available from 0.001 to 0.68 mfds. and in 100, 200, 400 and 600 v. Good-All Electric Mfg. Co., Ogallala, Nebraska.

Circle 206 on Inquiry Card

# NEW SILICON "PILL" VARACTOR



# **GREATLY REDUCES THE PACKAGE** AS A FACTOR IN CIRCUIT DESIGN

specifically developed for:

• amplifiers at the higher microwave frequencies (1000 mc and above)

- travelling wave parametric amplifiers
- microwave computers as sub-harmonic generators
- amplifiers in which stray susceptance effects must be minimized
  - applications of varactors to stripline circuits
    - modulators for frequency synthesis

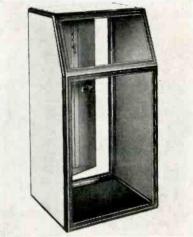
| Experimental<br>quantities | TYPE<br>NUMBER | *CAPACITANCE<br>Tolerance (Zero Bias) | TYPICAL Q<br>AT -6 VOLTS |  |  |
|----------------------------|----------------|---------------------------------------|--------------------------|--|--|
| are available              | MA-4255X       | 0.1-1.4 μμf                           | 60-80                    |  |  |
| with these<br>nominal      | MA-4256X       | 1.2-2.5 μμf                           | 50                       |  |  |
| specifications             | MA-4257X       | 2.5-4.0 μμf                           | 30                       |  |  |

\*Package shunt capacitance ~ 0.2  $\mu\mu$ f. Series lead inductance <10.9 henries.





ELECTRONIC INDUSTRIES · February 1960

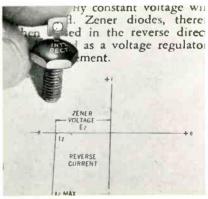



Circle 88 on Inquiry Card

New Products

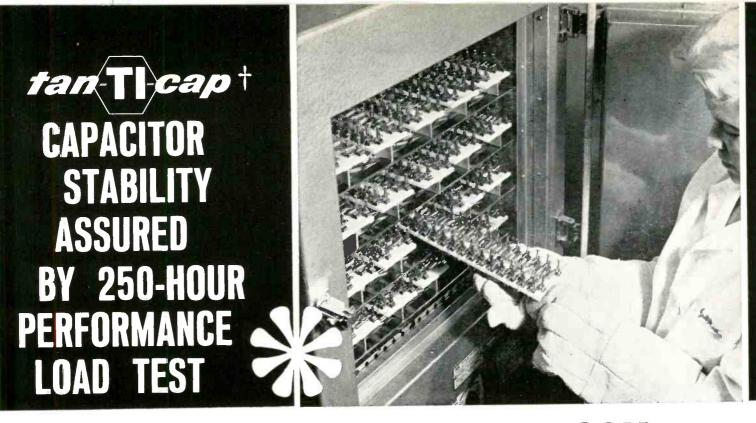
#### CONSOLE

Inclined Panel Console's structural members are aluminum extrusions, joints are ball cornered aluminum castings while sides, top and bottom are 1/8 in. aluminum alloy. Inclined




panel is set at  $22\frac{1}{2}^{\circ}$  angle for comfortable viewing. Top, front and panel are drilled and tapped to accept standard rack panels. Reinforced rear door will support heavy components. It is available in 4 sizes. Bud Radio, Inc., 2118 East 55th Street, Cleveland 3,

Circle 207 on Inquiry Card


#### ZENER DIODES

10-w rated "Tri-Sealed" silicon zener diodes feature a three-layer seal providing high resistance to temperature extremes, humidity and shock, while assuring low diode cost. Designed for commercial equipment applications, these diodes demonstrate low zener impedance values and sharp



zener "knees." All series are available in standard RETMA 10% voltage steps from 5.6 to 27 volts. International Rectifier Corp., 1521 E. Grand Avenue, El Segundo, Calif. Circle 208 on Inquiry Card

146



# ... expanded TI line of type SCM solid tantalum capacitors meets MIL specs



Another assurance to you of Texas Instruments capacitor reliability — 250-hour performance load test on a sample basis of *all* lots of the Type SCM series.

Your margin of design safety is greater with tan-TI-cap capacitors. Type SCM capacitors are 100% tested for capacity, dc leakage and dissipation factor, and are aged under load at elevated tempera-

ture. SCM units in all 203 standard ratings (6-35 volts, 1-330  $\mu$ fd.) meet and exceed the electrical and mechanical requirements of MIL-C-55057 (Sig. C) and/or MIL-C-21720A (NAVY) specifications for solid tantalum capacitors.

Contact your nearest authorized TI distributor or TI sales office today for your immediate and future delivery requirements.

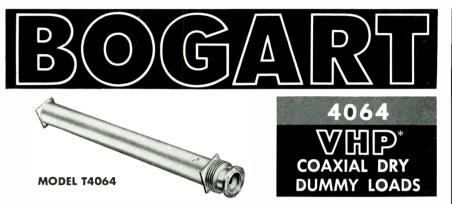
† trademark of Texas Instruments Incorporated

| 10+ 250.0                     | 205)<br>201)                     | 168                              |                                  |                      | T                        | i.                               | T                                | T                        |                                  |                                  |                          |
|-------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------|--------------------------|----------------------------------|----------------------------------|--------------------------|----------------------------------|----------------------------------|--------------------------|
| 9<br>0 020 -01<br>Iderable Li | 005)                             | (Max E C I                       | A                                | 125                  | -ii<br>                  |                                  | h KEL-F                          | ve                       |                                  | th Mylar<br>ting sleev           | re**                     |
| case<br>size                  | D<br>+0.010<br>-0.005            | L<br>± 0.031                     | *A<br>±0.031                     | wire<br>size<br>AWG  | avg.<br>wt.<br>gms.      | D<br>+0.020<br>-0.010            | L<br>±0.062                      | avg.<br>wt.<br>gms.      | D<br>±0.010                      | L<br>± 0.031                     | avg<br>wt.<br>gms        |
| F<br>B<br>G<br>H              | 0.125<br>0.175<br>0.279<br>0.341 | 0.250<br>0.438<br>0.650<br>0.750 | 0.482<br>0.688<br>0.888<br>0.988 | 24<br>24<br>22<br>22 | 0.4<br>1.1<br>2.7<br>3.3 | 0.162<br>0.210<br>0.315<br>0.377 | 0.337<br>0.525<br>0.735<br>0.835 | 0.5<br>1.3<br>3.1<br>3.9 | 0.135<br>0.185<br>0.289<br>0.351 | 0.322<br>0.510<br>0.722<br>0.822 | 0.4<br>1.2<br>2.8<br>3.4 |

 Dimension "A" determined by suspending a one-pound weight from one lead and rotating the case from the vertical position to the horizontal position, and then repeating the procedure for the other lead.
 Meets all requirements of MIL-C-55057 and MIL-C-21720A, including dimensions.



Write to your nearest TI sales office on your company letterhead for Bulletin DL-C 1173 which gives detailed specifications on the complete SCM series.



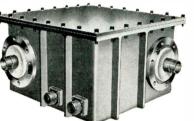

Circle 89 on Inquiry Card

INSTRUMENTS INCORPORATED SEMICONDUCTOR-COMPONENTS DIVISION 13500 N. CENTRAL EXPRESSWAY POST OFFICE BOX 312 DALLAS. TEXAS

All lots of Type SCM ran Treep capacitors are tested for performance stability at rated temperature and voltage prior to release for ship-

ment. Performed on a lot-sample basis, the test is run for 250 hours or until performance stability is established by successive time interval measurements of the principal parameters of each test capacitor.

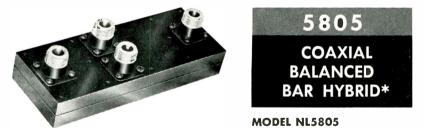



The Bogart Model 4064 Series of VHP Coaxial Dry Dummy Loads has been developed by the Bogart Engineering Group to meet the present day high power requirements of industry and the Armed Forces for long range radar systems.

Designed to operate with the highest power systems, these dummy loads are lightweight, compact, resistant to moisture absorption and intended to last at least the life of the equipment with which they will be used.

The 4064 series, as currently being adopted by Armed Forces agencies, are provided with coaxial output flanges, standard to the industry. However, non-standard flanges, or adapters, are available for special applications and auxiliary cooling fins may be furnished as required. High temperature, pressure sealing "O" Rings are available as accessory equipment. All units are finished in a high temperature, black enamel.

**SPECIAL APPLICATIONS** of Bogart VHP Coaxial Dummy Loads can be designed to meet your specific requirements. Our applications engineers will be pleased to discuss your particular problems with you.


FOR WAVEGUIDE DUMMY LOAD requirements, refer to Bogart series 4063, 4065, 4068, 4069 and 4073. \*PATENT PENDING





The Bogart Model T4441 Coaxial Switch resulted from a program to develop an extremely small and compact, yet reliable device for aircraft applications. Many coaxial switches currently in use incorporate metallic "fingers" or sliding shorts to achieve the switching action. The continual maintenance that was required by the Armed Forces led to a request for a coaxial switch that would be novel in operation; avoiding the time honored use of sliding metallic "fingers." This has been achieved in the Bogart T4441.

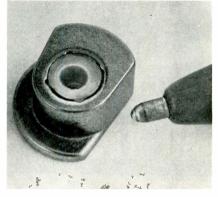
A unique arrangement of non-contacting vanes eliminates the wear and contact problems inherent in most coaxial switches, yet maintains an excellent electrical characteristic. An unusually high degree of isolation for a non-contacting type switch is offered.



The growth of the guided missiles field has provoked increased engineering activity directed towards the miniaturization of microwave components. Special techniques and materials have been developed to conform with severe space limitations and extreme temperatures. The Bogart series of bar hybrids has found wide use in military and commercial applications as **balanced mixers** (coaxial crystal mounts are available as accessory equipment), power splitters, phase comparators, variable power dividers, fixed and variable attennators, phase shifters for monopulse work, duplexers to permit design of complete coaxial R-F heads composed entirely of hybrids, and beacon switching devices.

A brochure entitled "Applications Employing Coaxial Bar Hybrids", in which the Bogart hybrids are presently used to perform the previously described functions, is available upon request. Special applications of Bogart Bar Hybrids can be designed to meet your specific requirements. For characteristics of coaxial crystal mounts, refer to Bogart Series 1032.

\*PATENT PENDING




BOGART MANUFACTURING CORP. serving the electronics industry since 1942 315 Seigel Street Brooklyn 6, New York

New Products

#### SELF-ALIGNING CLAMPS

Self-aligning stainless steel clamp, Synclamps, permit secure fastening of components with base flanges or grooves. Available in 8 different sizes with the same O.D. of 0.390 max. For hard-to-reach places, they are self-



aligning, self-locking and withstand extreme environmental conditions. Self-alignment is quickly and easily accomplished because of a nylon insert. When the screw is tightened, the nylon insert is stripped which allows the clamp to self-align perfectly. The more the screw is turned the tighter the clamp seats. Timber-Top, Inc., 36 Brooklyn Ave., Freeport 8, L. I., N. Y.

Circle 209 on Inquiry Card

#### SILICON RECTIFIERS

20-35 Amp, 60-600 P.I.V. silicon rectifiers exhibit stable characteristics at high temp. Units contain solders which have a melting point in excess of 600°C. The 11/16 in. stud construction houses a pure silver, heavy spring lead anode assuring ruggedness and high resistance to shock and vibration. Electrical specifications show that these units have less



than 5 ma reverse current and the max. forward drop voltage at a test temp. of  $25^{\circ}$ C at 20 adc is 0.65 v. Dallons Semiconductors Div., Dallons Laboratories, Inc., 5066 Santa Monica Blvd., Los Angeles 29, Calif.

Circle 210 on Inquiry Card

ELECTRONIC INDUSTRIES · February 1960

# TATIC INVERTERS



30 & 50MA Precision Frequency



80VA Wide Range Stabilization

250 & 500vA Le Short Circuit Protected



750 & 1KVA Je Phase Locked Circuitry



Temperature, Reverse Voltage Protected



Engineering conferences at your or our facilities. Write-call-or wire (TWX 2931)

MAGNETIC AMPLIFIERS, INC.

632 TINTON AVENUE NEW YORK 55, N.Y. CYPRESS 2-6610

136-140 KANSAS STREET EL SEGUNDO, CALIFORNIA **CREGON 8-2665** 

STANDARD LINE ... DC-AC INVERTERS 28 VDC input -55°C to + '71°C MILspecs OUTPUT SPECIAL FEATURES

load.

load.

ciency.

400 cps ± .01 tc ± .05%

400 cp∈ ±1%

400 cps ± 1% LC. osc. tune

ing fork

400 cps ± 2% ± 1%

400 cps ± .002 %

400 cps ± .01 %

115 VAC

acjustable ± 10%

115 VAC

115 VAC ± 5%

115 VAC ± 2%

208/115V or 115/65.5

valts Adj. ± 5%

26 VAC

Adj. ± 5%

DESIGN NOTE: any of the special features described may be combined in a

missile system

for every

1300VA Exotic Solid to Liquid Cooling (Reversible)

Precision frequency, excellent waveform, voltage regulated,  $\pm 1\,\%$  for line,  $\pm 2\,\%$ 

Wide range stabilization, input 18-30 VDC, Voltage regulated  $\pm$   $1\frac{1}{2}$  % no load to full

Magnetic Amplifier voltage regulated. Rap-id on off switching no transients high effi-

Regulates to  $\pm$  2% with simultaneous variation of zero to full load, and line 25 volts to 29 volts.

Extreme frequency accuracy. Phase lock circu try. Magnetic voltage regulator.

Short circuit protected, reverse voltage pro-tecticn, high-temp., + 100°C. Voltage reg-ulated.

PC-WER

30 JA 1ø 50 VA 1ø

80 JA 1ø

100 VA 1ø 250 VA 1ø

250 VA 30

750 JA 30

60 WA 30

single unit to meet your special requirements.

MODEL

S S-40311 series S S-40511 series

S S-408042 series

315-410042 series 315-425041 series

SI3-3-425042 series SI3-3-450022 series

SIS-3-47512 series

SIS-3-40613 series



Engineering "know how" and manufacturing facilities are available at Acme Electric to produce prototypes or production runs of transformers that must function with operating temperatures up to 350°C.



Weight: 4¼ lbs. VA: 705 165°C rise, 125°C ambient

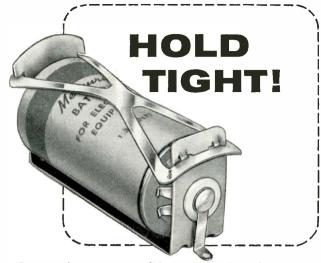
12 KV test @ 30,000 feet

T-34671

T-36127 Weight: 14 ounces. VA: 47.8 50°C rise, 125°C ambient 12 KV test @ 30,000 feet



T-34894 Weight: 260 grams VA: 26.4 30°C rise, 125°C ambient 6.2 KV test @ 30,000 feet


T-36196 Weight: 235 grams. VA: 32 31°C rise, 125°C ambient 5.2 KV test @ 30,000 feet



West Coast Plant: 12822 YUKON AVE., HAWTHORNE, CALIF. PO 3254



Circle 92 on Inquiry Card



Even under severe conditions of shock and vibration, CAMBION® Vibration-Proof Battery Holders hold tight. Unique "locking strap" keeps "D" size mercury battery securely in place. Suitable for use in all types of circuits, the holders are available in two models. No. 2570 is insulated at one end only. No. 2870 is insulated at both ends to permit "floating" of the voltage supply, and is ideal for transistorized circuits and other low-voltage applications. Both holders are designed so that leads can be easily brought up to terminals even though unit is flush-mounted. Write Cambridge Thermionic Corporation, 504 Concord Avenue, Cambridge 38, Mass., for full details on these and other products in the wide line of

٨ 0 The guaranteed electronic components

Circle 93 on Inquiry Card



Vector Patch-Boards provide simple, economical units for multiple-connection, single conductor patching. Useful for low cost computers, test boards and a multitude of connecting applications. Receptacles are 0.265" on centers and take .087-.091 diameter plugs. Patch cords also available. Standard boards available or readily made to size required. Write for information:

VECTOR ELECTRONIC COMPANY 1100 FLOWER STREET . GLENDALE 1, CALIFORNIA **CHAPMAN 5-1076** Circle 94 on Inquiry Card ELECTRONIC INDUSTRIES · February 1960

150

#### RELIABLE SILICON TRANSISTOR SWITCHING NON-SATURATED SWITCH WITH LONG-STORAGE-TIME TRANSISTOR 1+13 D1 D3 $D_4$ ww (+ Dr D1, D2 and D3 are fast recovery diodes D4 is a Zener diode CED BY 4 SATURATED SWITCH WITH 2N1252 TRANSISTOR $+V_{cc}=12V$ ≤20Ω +12V-1 usec +2∨ 2000 . 12V w 2KΩ ≶ -V<sub>bb</sub>=10V Collector current: 0.5 ampere Typical switching time: $t_d=20m\mu s.$ , $t_r=60m\mu s.$ , $t_s=30m\mu s.$ , $t_f=40m\mu s.$

**HOW?** – By using Fairchild's 2N1252 or 2N1253 **lowstorage** silicon mesa transistors. The guaranteed low storage characteristic permits a simple saturating circuit to achieve switching speeds that previously required complex non-saturating circuits.


**WHY?** – Improved reliability and reduced cost – one semiconductor instead of five and fewer soldered connections. Power dissipation is only 1/3rd to 1/5th as great, making possible much higher component densities in packaging. Cost and reliability are improved all the way from development through volume production.

**WHERE?** – Switching circuits in general. The 2N1252 and 2N1253 are ideally suited to high-speed high-current switching applications such as magnetic-core drivers, drum and tape write drivers, high-current pulse generators and clock amplifiers. In addition, the transistors are applicable to medium-speed saturated logic circuits.

| Characteristic                                          | Rating                                                                                                                                                                                                                      | Min                                                                                                                                                                                                                                 | Тур                                                                                                                                                                                                                                                                      | Max                                                    | Test Co                                                | nditions                                               |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| D.C. pulse current<br>gain 2N1252<br>2N1253             |                                                                                                                                                                                                                             | 15<br>30                                                                                                                                                                                                                            | 35<br>45                                                                                                                                                                                                                                                                 | 45<br>90                                               | I <sub>C</sub> =150mA                                  | V <sub>C</sub> =10                                     |
| Total dissipation at 25°C<br>case temperature           | 2 watts                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |                                                        |                                                        |                                                        |
| Base saturation voltage                                 |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | 0.9V                                                                                                                                                                                                                                                                     | 1.3V                                                   | I <sub>C</sub> =150mA                                  | J <sub>B</sub> =15                                     |
| Collector saturation voltage                            |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | 0.67                                                                                                                                                                                                                                                                     | 1.5V                                                   | 1 <sub>C</sub> =150mA                                  |                                                        |
| Small signal current gain<br>at f=20mc 2N1252<br>2N1253 |                                                                                                                                                                                                                             | 2<br>2.5                                                                                                                                                                                                                            | 4<br>5.5                                                                                                                                                                                                                                                                 |                                                        | I <sub>C</sub> =50mA                                   | V <sub>C</sub> =10                                     |
| Collector cutoff current                                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | 0.1μA<br>100μA                                                                                                                                                                                                                                                           | 10μΑ<br>600μΑ                                          | V <sub>C</sub> =20V<br>V <sub>C</sub> =20V             | T=25<br>T=15                                           |
| Turn off time                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | 75mµs                                                                                                                                                                                                                                                                    | 150m µs                                                | I <sub>C</sub> =150mA                                  | I <sub>B1</sub> =15                                    |
|                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |                                                        | leo=5mA                                                | $R_1 = 40$                                             |
|                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |                                                        | Pulse width=                                           | -                                                      |
|                                                         | gain 2N1252<br>2N1253<br>Total dissipation at 25°C<br>case temperature<br>Base saturation voltage<br>Collector saturation<br>voltage<br>Small signal current gain<br>at f=20mc 2N1252<br>2N1253<br>Collector cutoff current | gain 2N1252<br>2N1253<br>Total dissipation at 25°C 2 watts<br>case temperature<br>Base saturation voltage<br>Collector saturation<br>voltage<br>Small signal current gain<br>at f=20mc 2N1252<br>2N1253<br>Collector cutoff current | gain2N1252<br>2N125315<br>30Total dissipation at 25°C2 watts<br>case temperatureBase saturation voltage<br>Collector saturation<br>voltage2<br>Small signal current gain<br>at f=20mc<br>2N1252Small signal current gain<br>at f=20mc2<br>2N1253Collector cutoff current | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

545 WHISMAN ROAD • MOUNTAIN VIEW, CALIFORNIA • YORKSHIRE 8-8161 • TWX: MOUNTAIN VIEW CAL 122 New York Area: Ploneer 1-4770 • Syracuse: GRanite 2-3391 • Philadelphia Area: Turner 6-6623 Washington D.C.: NAtional 8-7770 • Chicago: BRowning 9-5680 • Los Angeles: OLeander 5-6058

10



#### FEATURES

- Rated residual SWR under 1.010; rated error in detected signal under 1.005.
- Several models covering various bands from 50 to 4000 mc.
- Engraved scales and verniers permit one to read the probe position to 0.01 centimeters.
- Optional accessory: a rack and pinion carriage drive than can be engaged or disengaged at will.
- Precision tapered reducers are available for use in making accurate measurements in a wide range of rigid and flexible coaxial transmission lines

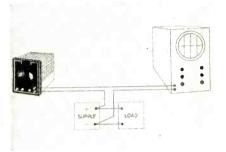
Write for complete information on AMCI Slotted Lines.





AGENTS

MARLANE DEVELOPMENT CO., INC. PIDDINGTON & ASSOCIATES LTD. 153 East 26th Street New York 10 N.Y.


2742 Second Street 3219 East Foothill Blvd. Cuyahoga Falls, Ohio

OHIO METACHEMICAL, INC. D & S AVIATION CO., LTD. 671 Laurentides Blvd. Pont Viou, Montreol, Quebec



#### OSCILLOSCOPE ACCESSORY

For coupling to an oscilloscope, this instrument, Scope-O-Trol, has an input of 115 v., 60 CPS, with an output of 0-300 vdc. It was developed to observe the regulation, ripple, transient response, and other character-



istics of dc power supplies by removing the dc component and utilizing the scope to its max. capabilities. Voltage adjustment is in 75 v. steps for coarse adjustment, with fine adjustment potentiometer 0.25 v./degree; ripple is less than 1 mv RMS. The unit has current limiting and short circuit protection. Acme Electric Corp., Cuba, N. Y.

Circle 213 on Inquiry Card

#### PRESSURE TRANSDUCER

Model 304 Gage Pressure Transducer is an integrated pressure instrument incorporating a bourdon tube as the pressure sensing element. Gage pressures are converted into an electrical output through a pivot linkage system, moving the wiper contact linearly across a precision wire - wound potentiometer. Unit operates with a high level ac or dc signal. Specs are: range, 0-100 to



0-5000 psig; resistances, 1K to 10K ohms; resolution, 0.3 to 0.5%; linearity,  $\pm$  1.0%; hysteresis, as low as  $0.5\%\,;$  power rating, 1.2 w at  $50\,^{\circ}\mathrm{C}\,;$ weight, approx. 2.2 oz. Bourns, Inc., 6135 Magnolia Ave., Riverside, Calif. Circle 214 on Inquiry Card

Pasadena, California

# LITTLE INSTRUMENTS BY DeJUR PERFORM BIG PRECISION FUNCTIONS

# Potentiometers

Small but Accurate unique design and production techniques assure exceptional functional accuracy.



SERIES C-050

1/2". Sealed, sub-miniature type with onepiece metal case and bearing. Completely enclosed. Solid terminals, integrally cored with molded covers. Rotation: 320° electrical, 325° mechanical, 360° continuous.



#### **SERIES C-078**

 $7\%^{\circ}$ . Weight only  $1/_{2}$ ounce. Independent linearity:  $\pm 1\%$  of total resistance is standard. Linear or non-linear windings on flat card. Fully enclosed. Tolerance:  $\pm 5\%$  standard,  $\pm 1\%$  on order.



**SERIES C-178** 

1%". Sine-cosine units with peak-to-peak accuracies to 0.25%. Independent brush contacts on common shaft, 90° apart. Ganged types available. Also 2" and 3" diameters.

## Panei Instruments

Ruggedized . . . round or square — miniature high precision units meet reduced size and weight requirements of aircraft and electronic applications



**SERIES 100** 

1". Accuracy +3% at full scale. Non-magnetic calibration. Scale length, 0.738". Background markings black or white, lance pointer, sealed solder lug terminals, aluminum housing, Watertight to meet MIL-M-3823 specs.



#### SERIES SC-031

1/2". Rugged, microminiature sealed unit. Includes external pivot D'Arsonval movement and high flux density Alnico magnel. Optional mounting, face plate and hex nut.



### SERIES 131

11/2". Ruggedized to withstand shock, vibration or thermal extremes. Meets MIL-M-10304 specs. Positive watertight seal of meter and terminal studs.

Write for detailed literature on complete lines.

#### Manufacturers of Precision Electronic Components for Over 35 Years

ELECTRONICS DIVISION, DEJUR-AMSCO CORPORATION, 45-01 NORTHER'N BOULEVARD, LONG ISLAND CITY, N. Y.

**ELECTRONIC COMPONENTS** 



# INSTANTANEOUS RESET... VOLTAGE-TEMPERATURE COMPENSATED



Designed with an instantaneous reset feature, these relays provide the same time delay for a series of cycles when temperature and voltage vary.

They are pre-set from 3 to 180 seconds, are chatter-free and will withstand severe shock and vibration. Because of this unique combination of features, these relays are now being used in such new circuit applications as:

Sequential timing for missiles • Automatic reset on digital readout equipment • Oscillator stabilization • Overload protection • Computer sequencing



#### "DM" SERIES STEPPING MOTORS

Curtiss-Wright Stepping Motors convert digital pulses into mechanical work or motion. Units are bi-directional with high starting torque.

Write for complete Components Catalog 260 to help you select Curtiss-Wright electronic components for use where dependability is of prime importance.

COMPONENTS DEPARTMENT · ELECTRONICS DIVISION



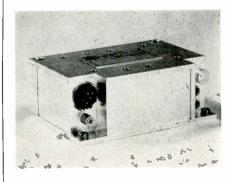
CORPORATION . EAST PATERSON, N. J.

TIME DELAY RELAYS • DELAY LINES • ROTARY SOLENOIDS • DIGITAL MOTORS • TIMING DEVICES • DUAL RELAYS • SOLID STATE COMPONENTS



#### **ULTRASONIC CLEANER**

Ultrasonic cleaner, Model 140, is for use where average ultrasonic energy is required. Featured is a 7-gal. heavy gauge, polished, stainless steel tank  $14\frac{3}{4} \times 11\frac{3}{4} \times 10$  in. 27.5% of the bottom is covered with




crystals. Actual radiating surface is 48 sq. in. Designed for continuous operation, it delivers an average power output of 250 w and produces peaks of 1000 w. Features include 1-tube oscillator, front panel switching, forced air cooling and 3-wire ground protection. National Ultrasonic Corp., 111 Montgomery Ave., Irvington, N. J.

Circle 215 on Inquiry Card

#### TRANSMITTER

Model 1483-Al true FM Telemetering Transmitter is a completely modularized missile transmitter. All circuits are mounted on individual bulkheads which may be separately removed and replaced from spare parts. Output is 2 to 6 w at 215 to 260 MC. It measures  $1.64 \times 2.75 \times 4$ in. and features AFC loop crystal control for  $\pm 0.005\%$  carrier stability, and silicon transistors for low noise



and high efficiency. It will withstand extreme environmental missile conditions including vibration and heat beyond 100°C. Telechrome Mfg. Corp., 28 Ranick Drive, Amityville, L. I., N. Y.

Circle 216 on Inquiry Card

# **Developing capacitors for unusual situations** your job...and Centralab's



### for difficult applications

Ceramic capacitors have almost unlimited capabilities ... but utilizing their full potential demands expert knowledge not bound to conventional approaches. Creative engineering, involving new concepts and new techniques, can broaden your design horizons.

CERAMIC

CAPACITORS

That kind of creative engineering is a CENTRALAB specialty. As specialists in ceramic capacitors, CENTRALAB engineers have developed units to

meet an enormous variety of difficult size and rating requirements beyond the scope of oil, mica or vacuum capacitors. The unusual designs illustrated here are typical of CENTRALAB'S answers to the problems no-one else could solve. A representative group of additional specialized units are described in Bulletin #42-719. Request your free copy of this bulletin today; it will stimulate your thinking towards making full use of the design potential of ceramic capacitors.



### Variable Capacitors Variable Capacitors 600VDCW, capacity ranges to 250 mmf. Compact con-struction, <sup>13</sup>/<sub>16</sub>" wide, 1<sup>5</sup>/<sub>16</sub>" long, <sup>11</sup>/<sub>16</sub>" deep overall. Temperature compensat-ing units NPO, N650 are standard. Other tempera-ture obstactoristics avail ture characteristics available on special order.

#### Precision Temperature Compensating Capacitors

Capacitors Hermetically sealed, T.C. ± 10 PPM, capacity toler-ance ± 1%. Outer shell grounded. Available in 50-3500 mmf range in NPO. Other T.C. ratings pro-portional portional.

#### **High Voltage Capacitor** 12KVDCW, 2000 mmf; 30 amps at 30 mc. Unit is 6" long, 2" O.D. Extremely flexible design-can be made to a wide range of dimensions and ratings. Units that operate at 125°C. without derating can be designed.

#### **DC Blocking**

Capacitor 10KVDCW,1700 mmf±10%; 12 amps at 4 mc, 80 amps at 30 mc. Measures only 4" high and 4" O.D. at base. Ideal for restricted space, high reliability applica-tions. Can be used in par-allel to handle large loads.

#### Ultra-Miniature

Capacitor 3VDCW, .01 mmf G.M.V. Capacity change +10° to +85°C.; 25% maximum. Approximately ¼" diameter. For transistor, coupling, by-pass, cathode and other low voltage, high capacity applications.

ELECTRONICS DIVISION OF GLOBE-UNION INC. 938B E. KEEFE AVE. . MILWAUKEE 1, WIS. In Canada: 669 Bayview Ave., Toronto 17, Ont.



D-5947

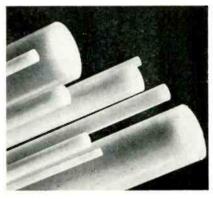


Circle 102 on Inquiry Card

| New |          |
|-----|----------|
|     | Products |

#### POWER SUPPLY

Voltage regulated power supply, Spec 7197. Input is 15 vac  $\pm 10\%$ , 60 CPS  $\pm 1$  CPS, 1  $\emptyset$ ; output adjustable from 2.5 to 13.0 vdc; load current is 0 to 10 a, continuous duty. Dynamic regulation: with  $\pm 90\%$  load change




and a step function of  $\pm 5\%$  line change; slow regulation: no load to full load and a  $\pm 10\%$  line change; total regulation: slow, dynamic and ripple will not exceed  $\pm 1\%$ ; ripple voltage: will not exceed 10 mv max. Power supply is short circuit protected and will meet electrical specs to 35°C. Dc output voltage floating from chassis, with external voltage sensing available. The Daven Co., Livingston, N. J.

Circle 217 on Inquiry Card

#### THERMOPLASTIC

Delrin acetal resin, a new thermoplastic material developed by du Pont is available in extruded rods up to 3 in. in dia. The new material has outstanding tensile strength, rigidity, fatigue life and resistance to creep and solvents at both room and elevated temperatures. These properties are combined with excellent dimensional stability, and good electrical and frictional properties. The rods



have a hard glossy surface with a very low coefficient of friction. The rods have a hard glossy surface with a very low coefficient of friction. The Garlock Packing Co., 441 Main Street, Palmyra, New York.

Circle 218 on Inquiry Card



# High Quality High Performance Extreme Reliability

From the leading manufacturer of power transistors, new Silicon Power Rectifiers to meet your most exacting requirements. Even under conditions of extreme temperatures, humidity and mechanical shock, these diffused junction rectifiers <u>continue to function at maximum capacity</u>! Thoroughly dependable, completely reliable—new Delco Rectifiers are an important addition to Delco Radio's high quality semiconductor line.

#### **Conservatively rated at 40 and 22 amperes** for continuous duty up to case temperatures of 150°C.

|          | TYPE                                                                                 | AVG. DC<br>Current                            | PIV                                                        | NORMAL<br>Max. Temp.                                                 | MAX.<br>Forward Drop                                                                                                                                            | MAX.<br>REVERSE CURRENT                                                                          |
|----------|--------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 140 DIA. | 1N1191A<br>1N1192A<br>1N1193A<br>1N1194A<br>1N1183A<br>1N1184A<br>1N1185A<br>1N1186A | 22A<br>22A<br>22A<br>22A<br>40A<br>40A<br>40A | 50V<br>100V<br>150V<br>200V<br>50V<br>100V<br>150V<br>200V | 150°C<br>150°C<br>150°C<br>150°C<br>150°C<br>150°C<br>150°C<br>150°C | 1.2V at 60 amps.<br>1.2V at 60 amps.<br>1.2V at 60 amps.<br>1.2V at 60 amps.<br>1.2V at 60 amps.<br>1.1V at 100 amps.<br>1.1V at 100 amps.<br>1.1V at 100 amps. | 5.0 MA<br>5.0 MA<br>5.0 MA<br>5.0 MA<br>5.0 MA<br>5.0 MA<br>5.0 MA<br>5.0 MA<br>5.0 MA<br>5.0 MA |

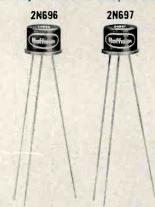
For full information and applications assistance, contact your Delco Radio representative.

Newark, New Jersey 1180 Raymond Boulevard Tel: Mitchell 2-6165 Chicago, Illinois 5750 West 51st Street Tel: Portsmouth 7-3500

Santa Monica, California 726 Santa Monica Boulevard Tel: Exbrook 3-1465



Division of General Motors · Kokomo, Indiana


#### WHAT IS THE RECORD BEHIND HOFFMAN TRANSISTORS?

1 MORE EXPERIENCE IN SILICON TECHNOLOGY.

For seven years – practically the full span of semiconductor history – Hoffman Semiconductor Division has worked exclusively with silicon devices. Company achievements include the world's first commercial silicon diodes, zener diodes and solar cells. Hoffman makes the most extensive line of silicon devices in the industry.

#### 2 MORE EXPERIENCE IN DIF-FUSED-JUNCTION DEVICES.

The diffused-junction concept, one of the most important in transistor technology, was adapted by Hoffman as early as 1955. To date, the com-



For further information and complete technical specifications, contact the factory or your area Hoffman sales engineer. pany has produced over five million diffused-junction devices-more than any other company in the electronics industry.

### 3 IN NEW CONCEPT IN QUALITY CONTROL.

Hoffman has developed a completely new quality assurance and quality control concept which will enable the company to ship devices that meet the most stringent military and commercial requirements. 4 
RELIABILITY BACKED BY NUM-BERS.

Hoffman has made and shipped more than ten million silicon semiconductor devices.

5 A FACILITY DESIGNED ESPE-CIALLY FOR TRANSISTORS. Hoffman's new 109,000-square-foot facility was designed especially for the development, production and testing of transistors. It houses extremely advanced equipment, much of it Hoffman-developed.



# Hoffman / ELECTRONICS

Semiconductor Division 1001 Arden Drive, El Monte, California

Plants: El Monte, California and Evanston, Illinois Circle 104 on Inquiry Card Collector is in electrical contact with case.

Base width is reduced to only one micron by precisely controlled lapping and diffusion techniques to boost frequency handling capability. Silicon slices for these transistors are polished under optical control with an accuracy of  $4 \times 10^{-6}$  inch.

Gold wire bonds to emitter and base are fabricated to withstand 20,000G acceleration. Because parts are so small (wires are only 1/10 the diameter of a human hair), bonding is done under a high-power microscope. Registration of emitter within U-shaped base makas optimum use of emitter area, results in high efficiency. This configuration is made possible by the precision of the Hoffman photographic registration technique.

### NOW...HOFFMAN RELIABILITY IN TRANSISTORS ANNOUNCING THE HOFFMAN 2N696 AND 2N697 NPN DIFFUSED-JUNCTION DRIFT-FIELD SILICON MESA TRANSISTORS WITH THREE TIMES THE HIGH-FREQUENCY POWER GAIN OF SIMILAR DEVICES

By increasing the usefulness of the emitter area, Hoffman enginears have boosted the minimum high-frequency gain at large currents to 6 at 20 mc ( $l_{c}$  = 50ma,  $V_{c}$  = 10V)-more than three times the industry standard. Hoffman's unique baseemitter configuration, coupled with a photographic 'abrication technique that offers control accuracy of the order of light wavelengths, has also lifted current and frequency characteristics well above industry specifications. Reasonable current gains at 40mc have beer measured. Since the photo process is far more controllable than mechanical fabrication, these transistors have exceptionally uniform characteristics. Stability, too, is outstanding, because Mcffman pre-ages every transistor at 300°C and seals it hermetically in an inert-gas atmosphere. A wide range of useful current gain and operating 'requencies' makes these units ideal for computer, radar and many other applications. You can count on them in your most important circuits Reliability is built into every unit.

| 1.19                                                                                                                                              | ABSOLUTE MAXIMUM RA                                                                                                     | TINGS    | (25°C)                     |                                                                                                       |                         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| V <sub>ceo</sub> Collector-to-pase voltage, 60V<br>Total dissipation at case temperature 25° C 2W<br>Storage temperature range —65° C to + 175° C |                                                                                                                         |          |                            |                                                                                                       |                         |  |  |  |  |  |  |
| -                                                                                                                                                 | ELECTRICAL CHARACTER                                                                                                    | STICS    | (25°C)                     |                                                                                                       |                         |  |  |  |  |  |  |
| SYMBOL                                                                                                                                            | CHARACTERISTIC                                                                                                          | MIN.     | MAX.                       | TEST CON                                                                                              |                         |  |  |  |  |  |  |
| h <sub>fe</sub>                                                                                                                                   | D. 3. pulse current gain (2N696)<br>(2N697)                                                                             | 20<br>40 | 60<br>8120                 | 1, == 150ma<br>1, == 150ma                                                                            | V <sub>c</sub> == 10V   |  |  |  |  |  |  |
| V <sub>BE</sub> (sat)<br>V <sub>CE</sub> (sat)<br>h <sub>re</sub>                                                                                 | Base saturation voltage<br>Collector saturation voltage<br>Small signal current gain at f 20mc<br>Collector capacitance | 6        | 1.3V<br>1.5V<br>9<br>35muf | l <sub>c</sub> == 150ma<br>l <sub>c</sub> == 150ma<br>l <sub>c</sub> == 50ma<br>l <sub>c</sub> == 0ma |                         |  |  |  |  |  |  |
| С <sub>ов</sub><br>І <sub>сво</sub>                                                                                                               | Collector cutoff current                                                                                                |          | 1.0ua<br>100ua             |                                                                                                       | T == 25°C<br>T == 150°C |  |  |  |  |  |  |

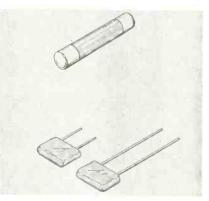
Physical dimensions in accordance with JEDEC 30 (TO-5). Manufactured to meet MIL-S-135008 requirements.



New Products

#### AUDIO TUBE

The 7581, a 30-w beam-power pentode for high quality audio power output-but with low-loss mica-filled base provides good r-f performance. Interchangeable with 5881, 6L6, and KT-66, the type 7581 features: A




rounded-top envelope for "rattle control" which reduces microphonic action under vibration. Zero-bias characteristics: plate, 70 v.; screen, 300 v.; control grid voltage, zero; plate current, 210 ma.; and screen, 25 ma. Max. ratings: 500 v plate, 450 v screen, 30 w plate dissipation, and 5 w screen dissipation. General Electric Co., Receiving Tube Dept., Owensboro, Ky.

Circle 219 on Inquiry Card

#### CURRENT LIMITER

Solid state current limiter for use in all types of electronic circuits, especially where the ultimate in protection is required. The current limiter is a 1-shot device which will fire in less than 1 msec. at 316% rated value or 1/10 sec. at 150%



rated value. It is available in ratings from 1/32 a to 5 a in 2 configurations: Model 100, 1/4 x 1 in. to fit a standard fuse holder; Model 200, 1/4 x  $\frac{1}{8}$  x 1/16 in.—pigtail type for printed circuits. Microletron, Inc., P.O. Box 24174, Los Angeles 24, Calif. Circle 220 on Inquiry Card



Heinz Mueller makes motors for hundreds of applications and they all bear the unmistakable mark of Heinz Mueller's excellent quality control. From original design through the last phase of production, Heinz Mueller engineering skill

and experience are devoted to supplying you with dependability you can count

on. Write for detailed information on standard specifications or let us tackle your particular engineering reanirements.



DC Motors Cool running quiet operating motors in especially compact designs where space requirements are rigid Capacitor Type Motors For 24 to 220 Volts Can be supplied with terminal studs or leads, as specified Ball bearing or sleeve bearing, commercial or military ap-





**DC Dynamotor** Especially designed for high altitude aircraft operation where service is critical.

plications.

HEINZ

AC/DC Series Motors Especially low-priced power units for ap-pliances, office machines, etc Has wide range of practical applications

Engineering

Co., Inc.



get complete data on



MUELLER

Circle 107 on Inquiry Card

4727 W. Iowa Street, Chicago 51, Ill.

## MINIATURE AGASTAT® time / delay / relays

This free folder contains complete specs on 24 models of the miniature AGASTAT Time Delay Relay for missile, aircraft, computer, electronic and industrial applications. They're small as 1-13/16" x 4-7/16" x 11/2", with adjustable timing ranges starting at .030 and as high as 120 seconds.

The folder gives operating and environmental specs, coil data, contact capacities, dimensions, diagrams of contact and wiring arrangements. Write: Dept. A-33-232.

#### ELASTIC STOP NUT CORPORATION OF AMERICA

Elizabeth, New Jersey Circle 108 on Inquiry Card

NO No 135-408H-33 132-408H-99 BRIGHTER C 11111



#### with Built-in Resistor (a patented DIALCO feature)

for the Neon Glow Lamp NE-51H (High Brightness)

RUGGED: The NE-51H Neon Glow Lamp is made to resist vibration and is proof against sudden failure. It may be operated at about 3 times the level of current applied to the standard neon lamp, and it will produce 8 times as much light -- with long life! Requires low powerless than 1 watt on 250 V circuit. Recommended for AC service (may be used on DC circuits above 160 V).

BUILT-IN current-limiting resistor (U.S. Patent No. 2,421,321): For use on 105-125 volt and 210-250 volt circuits. In DIALCO Pilot Lights, the built-in resistor is completely insulated in moulded phenolic and sealed in metal.

COMPACT: Units are available for mounting in 9/16" and 11/16" clearance holes...in a wide choice of lens styles and colors, terminal types, metal finishes, etc. Meet applicable MIL Spec and UL and CSA requirements.

Every assembly is available complete with lamp.

#### SAMPLES ON REQUEST --- AT ONCE --- NO CHARGE Ask for Bulletin No. 100 and Catalogue L-161B.



HYacinth 7-7600 50 STEWART AVE., BROOKLYN 37, N. Y. Circle 116 on Inquiry Card

ELECTRONIC INDUSTRIES · February 1960



# What do **YOU** know about the *VICTOREEN* **COROTRON\*?**

A BOARD



Only the name—Corotron—is new. Victoreen has been the leading manufacturer of Corona Type Voltage Regulator Tubes for over 9 years. During that period reliability-conscious electronic designers have successfully applied them to high-voltage circuits for voltage regulation. Chances are there's a type to solve your voltage regulation problem, too. Contact our Applications Engineering Department for full details.

A-369A

\*Victoreen's name for Corona Type Voltage Regulator Tubes



5806 Hough Avenue • Cleveland 3, Ohio Export Department, 240 West 17th St., New York 17, N.Y.

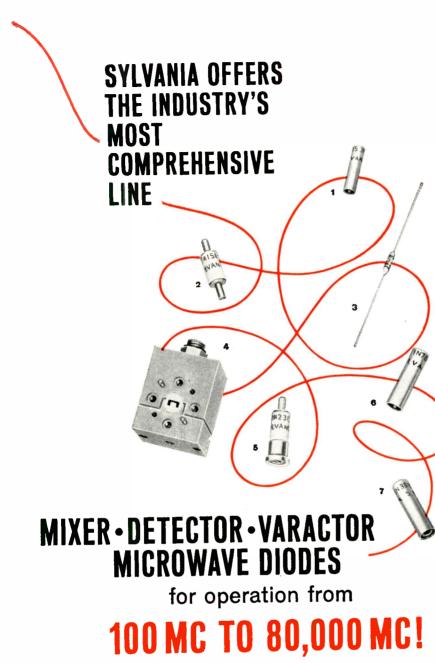
#### **INFRARED DETECTOR**

The QK748, a sensitive p-type gold doped germanium infrared detector. Characteristics include: Operating Temp., liquid nitrogen (78°K); spectral sensitivity range, the detector proper is sensitive from about 2-9



microns; detector area,  $3.5 \times 3.5 \text{ mm.}$ ; impedance, 50,000 ohms to 1 megohm; acceptance angle, approx. 100°; response, measured with a blackbody at 500°K at 800 CPS and referred to 1 cycle bandwidth. NEP =  $7 \times 10^{-10}$ to  $7 \times 10^{-11}$  w; D\* =  $5 \times 10^8$  to  $5 \times$  $10^9$  cm/w; time constant, less than 1 microsecond. Applications Engineering Dept., Raytheon Co., Waltham, Mass.

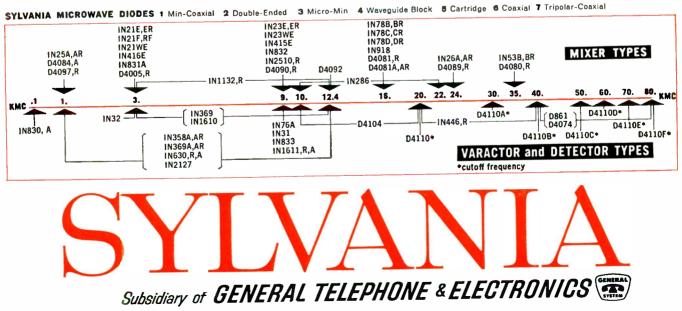
Circle 221 on Inquiry Cord


#### TAPE DEGAUSSER

Bulk tape demagnetizer, Model HD-11, reduces residual sound level of typical fresh virgin unrecorded tape by 3 to 15 db, dependent on previous exposure to stray magnetic fields in transit. It provides a 75 db min. erasure of saturated magnetic tape. Spindle mounting of reel permits

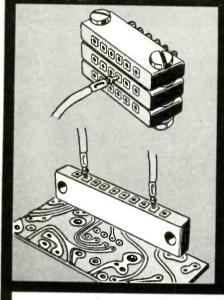


rapid, thorough coverage without missed spots. May be used with reels from 5 through 10½ in. dia. Adapter hub for NARTB wheels available. Microtran Co., Inc., 145 E. Mineola Ave., Valley Stream, N. Y.


Circle 222 on Inquiry Card



SYLVANIA MICROWAVE DIODES utilize the point-contact structure in those units specifically for MIXER and DETECTOR service, and the MESA structure in the VARACTOR types. Advanced processes and techniques developed by SYLVANIA assure MICRO-WAVE DIODES capable of withstanding the most severe environmental conditions of shock, vibration, and temperature. Extraordinary quality-controls assure low-noise figures, high sensitivity and high Q in units where those characteristics are essential to equipment design.


If you are designing radar, countermeasure, missile control, TV or telephone relay, test or special-purpose equipment operating at microwave frequencies, send now for your copy of "SYLVANIA MICROWAVE CHARACTERISTICS AND REPLACEMENT GUIDE." This valuable new booklet contains data for more than 125 Sylvania Microwave Diodes, the most comprehensive line in the industry. You are certain to find here the right unit for your design. Write to Sylvania Semiconductor Division, Dept. 19-2, Woburn, Mass.

For sales information on any Sylvania Semiconductor Device, contact your local Sylvania Field Office or your local Sylvania Semiconductor Distributor.





Circle 112 on Inquiry Card



That's the purpose of Kulka Type 399 Miniature Taper-Pin Terminal Blocks. On one side, taper-pin receptacles accept AMP Type 53, Burndy or other equivalents for solderless wiring. On the other side, counter-bored brass terminal studs accept wire up to No. 20 AWG. Or the same studs can be slipped through printed wiring board holes for dip-soldering on reverse side.

These blocks mount upright on printed-wiring board, or flat on any surface. Also, they can be multiplestacked and held by screws slipped through metal-eyeletted end holes. Truly miniature – 6-terminal block

Truly miniature – 6-terminal block measures  $1^{-1}3_{2}^{**}$  long; 10-terminal,  $2^{1}3_{2}^{**}$  long,  $4^{**}$  thick,  $3^{1}e^{**}$  high, LITERATURE... Ask for catalog sheet

LITERATURE ... Ask for catalog sheet with complete details. Also Kulka general catalog listing the outstanding selection of terminal blocks.

KULKA

for maximum reliability

KULKA ELECTRIC CORP.

633-643 So. Fulton Avenue

Mount Vernon, N.Y.

### PREVENT THERMAL RUNAWAY

Prevent excessive heat from causing "thermal runaway" in power diodes by maintaining collector junction temperatures at, or below, levels recommended by manufacturers, through the use of new Birtcher Diode Radiators. Cooling by conduction, convection and radiation, Birtcher Diode Radiators are inexpensive and easy to install in new or existing equipment. To fit all popularly used power diodes.



FOR CATALOG

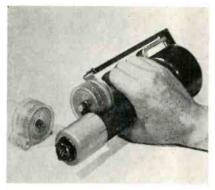
test data write:

Birtcher cooling and retention devices are not sold through distributors. They are available only from the Birtcher Corporation and their Sales Representatives.

industrial division 4371 Valley Blvd. Los Angeles 32, California Sales engineering representatives in principal cities.

with NEW

BIRTCHER

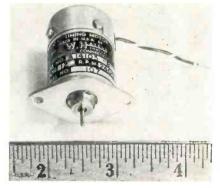

DIODE

RADIATORS



#### CRIMPING TOOL

High speed, pneumatic crimping tool for hand or bench operation provides a crimp with strength exceeding that of the wire (sizes AN #18 or smaller). Tool handles both pins and sockets in the Deutsch DC series




miniatures. Contacts are in disposable plastic cartridges. Crimping action is that of the Deutsch manual crimping tool, providing 2 series of 4 indents. Locking action is built in. In case of air failure or intermittent pressure, the tool will jam. The Deutsch Co., Electronic Components Div., Municipal Airport, Banning, Calif.

Circle 223 on Inquiry Card

#### DC MOTORS

Line of sub-miniature, reversible dc motors (series 14100) may also be used as low voltage generators. Speed tolerance of  $\pm 10\%$  can be maintained at rated voltage. Standard units available for voltages from 4.5 v to 30 vdc, and special windings can be supplied. Furnished with an integral, hardened stainless steel pinion (10 tooth, 96 D. P.) or with a  $\frac{1}{6}$  in. dia. output shaft. Life expectancy is 1000 hrs. min. (continuous or inter-



mittent), from  $-54^{\circ}$ C to  $+85^{\circ}$ C. Rotor inertia is 5 gm-cm<sup>2</sup>; dielectric strength is 500 vRMs at 60 CPs for 1 min. The A. W. Haydon Co., 232 N. Elm St., Waterbury, Conn.

Circle 224 on Inquiry Card



This revolutionary machine, supplied as a complete installation, is obsoleting manual eyelet attaching and soldering. Leading manufacturers, in many cases using batteries of them, find Segal's new Model NR-ESSM is a completely dependable automatic method of making continuous electrical circuits of the printed elements on opposite sides of a board - or a single side if desired. Stakes and fuses 30 eyelets or more a minute, top and bottom, with never a reject.

There are other models for cold staking flat and funnel type eyelets, and for feeding and staking tube pins and turret terminals with equal reliability. All are highly economical. Segal can improve your eyelet attaching production. Write section EI-2,

ward | Manufacturers of eyeleting machinery, special hoppers and feeding devices 132 LAFAYETTE STREET, NEW YORK 13, N.Y.

Circle 115 on Inquiry Card ELECTRONIC INDUSTRIES • February 1960

### PROJECT 70,000,000

Independent tests<sup>\*</sup> prove there are no copies ''just as good'' as CLARE Type J RELAYS

| CLARE RELAYS           | 70,000,000 Operations<br>No Contact Failures | # ****<br>*<br>* | . ( |
|------------------------|----------------------------------------------|------------------|-----|
| BRAND X1<br>(8 Form C) | 60,000,000 Operations<br>11 Contact Failures |                  |     |
| BRAND X2               | 40,000,000 Operations<br>12 Contact Failures |                  |     |
| BRAND X3<br>(8 Form C) | 30,000,000 Operations<br>8 Contact Failures  |                  |     |
| BRAND X4<br>(8 Form C) | 20,000,000 Operations<br>12 Contact Failures |                  |     |
| BRAND X5<br>(6 Form C) | 15,000,000 Operations<br>7 Contact Failures  |                  |     |
| BRAND X6<br>(6 Form C) | 10,000,000 Operations<br>11 Contact Failures |                  |     |
| BRAND X7               | 5,000,000 Operations<br>18 Contact Failures  |                  |     |

\*Failure of 10% of the total contacts involved eliminated any group from the test. Additional data available on request.

CLARE Type Relays, with their small size, twin contact design and superior performance, have long been first choice for applications where component failure is intolerable. Demand for these relays has resulted in many imitations represented to be "just as good."

Above are the results on an exhaustive test by an independent laboratory of CLARE Type J Relays and copies made by other well-known manufacturers. Tests of CLARE relays were discontinued at 70,000,000 cycles... with no contact failures. All other relay groups showed failure of 10% of contacts before end of 60,000,000 cycles (see graph). Some had 22% failure under 5,000,000 cycles.

Let us tell you more about this important test. Address: C. P. Clare & Co., 3101 Pratt Blvd., Chicago 45, Illinois; In Canada: C. P. Clare Canada Limited, P.O. Box 134, Downsview, Ontario. Cable Address: CLARELAY.



Circle 109 on Inquiry Card

LOW-LOSS KEL-F SOCKETS ... for high-power transmitting tubes!







Designed for use with high-power transmitting tubes, these sockets are molded of low dielectric, loss-factor Kel-F plastic. Sockets are available in several designs—with or without screen grid by-pass capacitors. Control grid contact "guide" is machined for greater alignment accuracy—all contacts are low-resistance, silver-plated beryllium copper. Tube pin contacts are heat treated to provide positive contact pressure as well as extended life—annealed soldering tabs may be easily bent or formed. High quality, heat resistant, steatite chimney also available to direct air flow through tube cooling fins.

For details and complete specifications write for free catalog listed below:



<sup>9</sup> 2043 Second Ave. S.W. • Waseca, Minn. Circle 117 on Inquiry Card



#### SIGNAL AMPLIFIER

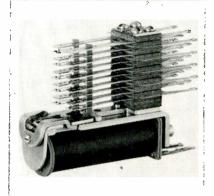
Model 1201 Amplifier incorporates an adjustable network to adapt it to a range of sensor voltages and impedances. For all sensors, the output of the amplifier is 0-5.0 vdc. Powered from 28 vdc  $\pm 5\%$ , characteristics



are: amplifier output impedance, 1000 ohms (max.); amplifier output signal, 0-5.0 v.; amplifier output linearity,  $\pm 1\%$  of full scale ( $\pm 50$  mv); amplifier zero shift,  $\pm 1\%$  of full scale ( $\pm 50$  mv); amplifier frequency response, approx. 2 CPS; excitation voltage, 28 vdc  $\pm 5\%$ ; amplifier input impedance, 100 ohms per 1 mv input signal. Lumen, Inc., Moen Ave., P.O. Box 905, Joliet, Ill.

Circle 225 on Inquiry Card

#### **P C CONNECTORS**


Miniature printed circuit connectors for printed tape cable or printed circuit board applications, the 600-4PCSC-13 for the 13-contact unit and 600-7-1 for the 18-contact unit, have current ratings of 3 a. Molding in glass reinforced Diallyl Phthalate per MIL-M-19833, Type GDI-30. Contact material is spring temper phospher bronze, gold plate over silver plate.



Series 600-4PCSC-13 accepts 1/32 in. board or cable and Series 600-7-1 3/64 in. board or cable. Electronics Div., DeJur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y.

Circle 226 on Inquiry Card

# "Telephone Quality" Stromberg-Carlson **RELAYS**



#### ...to meet your electromechanical switching needs

These are the very same twincontact relays proven outstandingly successful through many years of precise, exacting operation in the telephone industry.

The following regular types are representative of our complete line:

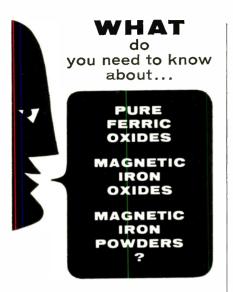
**Type A:** a general-purpose relay with up to 20 Form "A" spring combinations.

**Type B:** a gang-type relay with up to 60 Form "A" spring combinations.

**Type BB:** accommodates up to 100 Form "A" spring combinations.

**Type C:** two relays on the same frame. A must where space is at a premium.

**Type E:** same characteristics as the Type A, plus universal mounting arrangement. Interchangeable with many other makes.


Types A, B and E are available in high-voltage models (insulation withstands 1500 volts A.C.) for test equipment and other high-voltage applications.

Details and specifications are in our complete relay catalog, available on request. Write to Telecommunication Industrial Sales.

STROMBERG-CARLSON

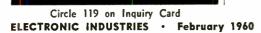
126 Carlson Road • Rochester 3, N. Y.

Circle 118 on Inquiry Card ELECTRONIC INDUSTRIES · February 1960



Since final quality of your production of ferrites, electronic cores, and magnetic recording media depends on proper use of 3 specialized groups of magnetic materials...you'll find it mighty helpful to have all the latest, authoritative technical data describing the physical and chemical characteristics of each. This information is available to you just for the asking. Meanwhile, here are highlights of each product group.

**PURE FERRIC OXIDES**—For the production of ferrite bodies, we manufacture a complete range of high purity ferric oxide powders. These are available in both the spheroidal and acicular shapes, with average particle diameters from 0.2 to 0.8 microns. Impurities such as soluble salts, silica, alumina and calcium are at a minimum.


**MAGNETIC IRON OXIDES**—For magnetic recording—audio, video, instrumentation etc.—we produce a group of special magnetic oxides with a range of controlled magnetic properties. Both the black ferroso-ferric and brown gamma ferric oxides are available.

**MAGNETIC IRON POWDERS**—For the fabrication of magnetic cores in high-frequency, tele-communication, and other magnetic applications, we make a series of high purity iron powders.

If you have problems involving any of these materials, please let us go to work for you. We maintain fully equipped laboratories for the development of new and better inorganic materials. Write ... stating your problem ... to C. K. Williams & Co., Dept. 30, 640 N. 13th St., Easton, Penna.



C. K. WILLIAMS & CO. EAST ST. LOUIS, ILL. • EASTON, PA. EMERYVILLE, CAL.





#### LIFE TESTER

Individual components or circuits connected to the Model 8515 Insulation Life Tester are automatically tested in sequence, at the pre-set potential. A dc test potential may be set for any value to 20 kv with the



Model 8514 HYPOT<sup>R</sup> high voltage test set used with the tester. The rate of rise for this test potential and the length of time it is applied to each unit (up to 15 min.) is adjustable. All units, when not under test, are short circuited. Leakage current metering circuits have ranges of 0-10/25/100/250 ma. Automatic reject controls are adjustable from a min. of 0.5  $\mu$ a to a max. of 250 ma. Associated Research, Inc., 3777 W. Belmont Ave., Chicago 18, Ill.

Circle 227 on Inquiry Card

#### MICROWAVE MIXER DIODE

L-band silicon microwave diode is designed for microwave mixer applications in the UHF range to 1500 MC. Designated the D-4097, it is a point contact type. It exhibits a maximum conversion loss of 5.5 db with a maximum output noise ratio as low as 1.5 times. This is the equivalent of a 2



db improvement in noise figure for a receiver whose i-f amplifier noise figure would be 1.5 db, or a 13% increase in range. Sylvania Electric Products, Inc., 730 Third Ave., New York 17, N. Y.

Circle 228 on Inquiry Card

# assistant ENGINEER available

His name is STANPAT, and though he is not human he can swallow up your tedious re-drawing ond re-lettering of stondard and repetitive blueprint items for 24 hours a day if need be-without tiring, STANPAT is the remarkable tri-acetate sheet that is pre-printed with your specification and revision boxes, standard symbols, sub-ossemblies, components and cross-sections . with adhesive front or back, waiting to be pressed into position in 15 seconds! Reproductions are unusually crisp and clear, guaranteed not to wrinkle, dry out or come off. STANPAT saves hundreds of hours in drafting time and money, allowing the engineer more time for creative work.

Aiready employed in numerous firms, STANPAT can go to work for you, tool Send us your drawing details now for quotation and free sample, no obligation.





This is a new series of Tube Cap Connectors using special silicone components for high reliability applications. They provide the highest degree of resistance to temperature extremes and are virtually unaffected by ozone and corona. The excellent dielectric characteristics make them ideal for high voltage. Skirts and sealed-in leads guard against flashover at high altitudes. Additional features include anti-corona cup and long-life spring contacts.

Clip this out - keep handy for part numbers and specs on connectors below for either 1/4" or  $\frac{3}{8}$ " top caps. Prefix 90 for  $\frac{1}{4}$ "; 91 for  $\frac{3}{8}$ ". Lead wire 18" long from center of cap or length to your specs.



. 15

ODSC.

#90 or 91SCCSL beryllium copper contact, cadmium plated nests in anti-corona cup. Silicone rubber insulation throughout.

#90 or 91SCCRSL bervllum cop-# 90 or 91SCCRSL beryllium cop-per contact, cadmuum plated nests in anti-corena cup. Silicone rub-ber insulation throughout Takes up to one watt resistor — specify value and tolerance.



#90 or 91SCCDSL hervilium conper contact, cadmium plated nests in anti-corona cup. Skirt clings to tube — guards against flash-over Silicone rubber insulation through-



#90 or 91SCCDRSL beryllium copper contact, cadmium plated en-closed in anti-corona cup. Skirt clings to tube — helps suppress corona—guards against arc-over. Takes up to one watt resistor Specify value and tolerance.



#90 or 91CCSTLRL beryllium copper contact, cadmium plated nests in anti-corona Cup. Glass-filled silicone in-Cup. Glass-filled silicone in-sulation on cap; silicone rub-ber on lead. Long skirt for arc-over. Takes up to 2 watt resistor. Specify value and

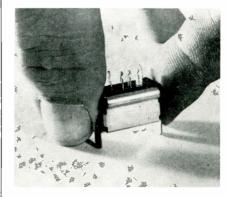
Besides new silicone types — Alden provides a complete series of connectors for 1/4", 3/4" and 3/4" cap in your choice of phenolic, mica, polyethylene, nylon and Kel-F. Complete hi-voltage cable assembles are available using Alden hi-voltage disconnects and tube cap connectors.

TELL US ABOUT YOUR CONNECTING PROBLEM. FOR PROMPT RECOMMENDATIONS --- WRITE OR PHONE JACK POLLARD NOW.

ALDEN PRODUCTS CO. 2123 North Main Street, Brockton 64, Mass. Circle 121 on Inquiry Card

#### TANTALUM CAPACITOR

Style "SUB," Series TS, wet electrolytic, tantalum slug capacitors, feature a straight cylindrical form. Range is 1.75 to 30  $\mu$ f and up to 125 working volts. Operating temp. is -55°C to +85°C. Tantalum slug




capacitors provide low leakage current, low power factor (or equivalent series resistance) and good temp. coefficient characteristics. They can be supplied in close tolerances. Their stability in performance or in storage is unexcelled and they are designed to withstand extraordinary conditions of high frequency vibration, shock and acceleration. Ohmite Mfg. Co., 3667 W. Howard St., Skokie, Ill.

Circle 211 on Inquiry Card

#### SELENIUM RECTIFIER

Miniature selenium rectifier bridge assembly, designed to operate directly off line voltage, and rated 155 VRMS max. at 90 ma dc, combines 4 selenium elements in 13/16 x 7/8 x 15/32 in. A twist-on locating or mounting lug makes for solid and simple mounting. The tiny rectifier "flat" uses selenium cells which have no artificial barrier layer, eliminating aging and



high voltage drop. It is for use in test equipment, electronic instruments, radio, phonograph and hi-fi sets, etc. Radio Receptor Co., Inc., Selenium Div., 240 Wythe Ave., Brooklyn, N. Y.

Circle 212 on Inquiry Card

# extreme sensitivity 10 mc to 44,000 mc





| MORE USEABLE<br>BAND   | SENSITIVITY<br>RF SENSITIVITY* |
|------------------------|--------------------------------|
| 10 - 420 MC            | 95 to105 dbm                   |
| 350 — 1000 MC          | —90 to —100 dbm                |
| 910 — 2200 MC          | —90 to —100 dbm                |
| 1980 — 4500 MC         | —80 to — 95 dbm                |
| 4.5 — 10.88 KMC        | <u>—</u> 80 to — 95 dbm        |
| 10.88 — 18.0 KMC       | —70 to — 90 dbm                |
| 18.0 — 26.4 KMC        | —60 to — 85 dbm                |
| 26.4 — 44.0 KMC        | —55 to — 85 dbm                |
| * measured when signal | and noise equal 2X             |

26.4 — 44.0 KMC
\* measured when signal and noise equal 2X noise.
Using one tuning head which contains one triode and two Klystron oscillators, Model SPA.4 offers more exclusive advantages for applications demanding extreme sensitivity, stability, versatility, calibrated amplitude scales — 40 db log, 20 db linear, 10 db power.
• Three precisely calibrated amplitude scales — 40 db log, 20 db linear, 10 db power.
• Two independent frequency dispersion ranges — continuously adjustable—0-70 mc and 0-5 mc. Negligible internal frequency modulation permits narrow band analysis of FM problems.
• Variable I.F. bandwidth from I kc to 80 kc.
• Push-button frequency selector.
• Synchroscope output with 40 db gain.
• Accurate measurement of small frequency differences. A self-contained marker oscillator, provides accurate differential marker pips as close as 10 kc.
• Iremendous flexibility and many unique advances of Panoramic's compact SPA.4 make it unsurpassed for visually analyzing FM. AM and pulsed signal systems; instabilities of oscillators; noise spectra; detection of parasitics; studies of harmonic outputs; radar systems and other signal sources.
• Write, wire or phone today for detailed SPA.4 bulletin.



540 So. Fulton Ave., Mount Vernon, N. Y. OWens 9-4600 Cables: Panoramic, Mt. Vernon, N. Y. State

Circle 122 on Inquiry Card ELECTRONIC INDUSTRIES · February 1960

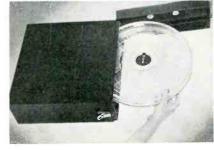


BRUND-NEW YORK INDUSTRIES CORP. Designers & manufacturers of electronic equipment 460 west 34th street • New York J, N. Y.



#### TWO-WAY RADIO

Light weight, portable 2-way FM radio receiver is for use by contractors, field engineers, survey crews, forestry men, and others with need for instant 2-way communication while on foot. It weighs 8 lbs. and is




less than 12 in. in length. It includes a handset, FM receiver, 1 or 2 channel FM transmitter, demountable whip antenna, battery pack, and carrying strap. Available with loudspeaker and palm microphone and for use on the 25-54 MC frequencies or 144-174 MC band. Power output in excess of 1 w on lower frequencies. Allen B. Du Mont Laboratories, Inc., Clifton, N. J.

Circle 229 on Inquiry Card

#### TAPE SHIELDS

Line of Netic Co-Netic magnetically shielded containers for recording tapes supplied in square or round plastic reel cases. Tapes are protected against erasure or distortion caused by extraneous magnetic fields. Containers available in single or multiple



reel capacities. Alloys are non-shock sensitive, non-retentive and do not require periodic annealing to maintain shielding effectiveness. Magnetic Shield Div., Perfection Mica Co., 1322 N. Elston Ave., Chicago 22, Ill.

Circle 230 on Inquiry Card

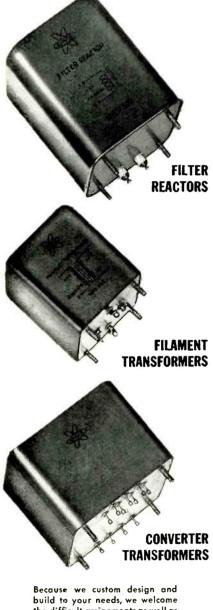
# PRESSURE TRANSDUCERS



Model 143

#### MISSILE, AIRCRAFT AND INDUSTRIAL APPLICATIONS

• Guaranteed noise free signal under high vibration • Long Life • Infinite Resolution • Available as a standard in allpressure ranges




Circle 124 on Inquiry Card

### UPGRADE YOUR EQUIPMENT with



LAMINATED TRANSFORMERS and REACTORS





Circle 125 on Inquiry Card



New Products

#### MODULATION MONITOR

Broadcast Modulation Monitor, Model 5693, will read true values of + and - peaks regardless of the presence of carrier shift. It will give correct peak indications on single program pulses as short as approxi-




mately 50 msec and will measure the true peak amplitude of program or tone regardless of the wave forms. It can be located at the transmitter and operated by remote control, with compensating adjustments in the monitor for imperfect telephone lines. Gates Radio Co., Quincy, Ill.

Circle 231 on Inquiry Card

#### TEST SET

Test set, Model TMS-0100, checks characteristics of transmission lines and other voice-band equipment. It uses swept-band techniques to reduce time needed to check-out a transmission network. A swept-frequency generator provides a sinusoidal wave of adjustable constant amplitude at all frequencies in the voice-band, a measuring system to compare network input and output regardless of



the absolute power level, and a cathode ray tube to display in visual form, the information necessary to evaluate network characteristics. Hallamore Electronics Co., 714 N. Brookhurst Ave., Anaheim, Calif.

Circle 232 on Inquiry Card



Circle 126 on Inquiry Card ELECTRONIC INDUSTRIES • February 1960





MAX. CURRENT

OUTPUT

7.5 MA

7.5 MA

1.75 MA

1.75 MA

1.75 MA

New



Circle 129 on Inquiry Card

#### Bridge-to-Bridge **Radio for Tankers**

A ship-to-ship radiotelephone was tested successfully aboard the newest and largest tanker based in the Port of Philadelphia.

The new equipment, installed on Sun Oil Company's 50,000-ton supertanker S. S. Pennsylvania Sun. permits continuous, instantaneous communication between the bridges of ships. This will help to eliminate collisions between ships.

The telephone system, which has an effective range of 10 miles, is said to be the first single-channel bridge-to-bridge telephone system installed on any ship. The company is installing 18 such units on its fleet of ocean-going tankers.

#### Data Printer Uses Low Power Input

A miniature data printer, smaller than a pack of cigarettes and weighing only a few ounces, has been developed by New York University's research division. The new unit can replace one of the bulkiest components of data systems, the electric typewriter.

Printing is accomplished by energizing elements of an array of stainless steel printing segments. The steel electroplates onto sensitized paper. As many as 20 digits can be printed simultaneously. The printer uses little power and can record directly from the outputs of most electronic devices, thus eliminating the usual isolation and driver stages.

#### FAA Says Decca Mark X Has Limited Value

The Federal Aviation Agency, in a report, "Helicopter Operations Program, Phase 1," scheduled for publication in the near future, lists some major shortcomings of the British Decca Mark X navigational equipment.

The FAA evaluated the system to check its suitability as an international system of navigation.

The International Civil Aviation Organization (ICAO) last February adopted the U. S.'s VOR-D-MET as the international standard over the protest of the British.

FAA found that on 61% of the test routes flown the pilots reported

failure of the Decca equipment to provide the necessary navigation intelligence to use the system continuously as a primary IFR navigational aid.

NEW FACILITY



This "White Room" lab is part of the new West Coast headquarters of Miniature Precision Bearings, Inc. It is located at 8621 Bellanca Ave., Los Angeles, Calif. Engineer Robert Pierson is lubricating a miniature precision bearing.



#### Freon-14 Used in Satellite Jets

DuPont's "Freon-14" (tetrafluoromethane), originally developed as a refrigerant, is being used in guidance systems on the Discoverer satellite. Freon-14 boils at --198°F. In the guidance system, it spurts out of reaction jet nozzles to provide thrust for regulating attitude.

The entire pneumatic attitude control system weighs about 70 pounds, including torque motors, thrust nozzles, pressure regulator, propellent lines, manifolds, and metal "bottle" containing the supply of nitrogen and Freon.

#### Data Processor Speeds Spares

The new IBM 705 III electronic data processing system being used by the U. S. Army Transportation Material Command in St. Louis, Mo., communicates via wire and radio circuits with military installations all over the U. S. and on four other continents.

The computer reduces time from requisition to delivery from fifteen

days to seventy-two hours. Brig. Gen. William B. Bunker, Commanding General, says, "The ability to handle orders faster,



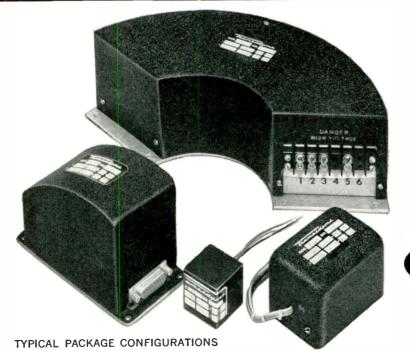
Lt. Col. W. R. Elliott and Brig. Gen. W. B. Bunker inspect console of TMC's new data processing system.

work with smaller inventories, and reduce losses due to obsolescence is expected to save at least \$6,-000,000 annually for the next three years."

All the information on 300,000 separate items in TMC's inventory is contained in 45 reels of magnetic tape. The computer processes about 10,000 transactions each 24 hours.

#### Magnet for Microwave Research Has 3 Poles

Magnets with three poles are almost as scarce as men on the moon. But not quite. The University of Michigan has one, believed to be unique.


One of a pair of new magnets on the campus being used for research for the armed services, it's designed for basic research on how magnetism affects magnetic materials which in turn affect microwaves.

The research is part of a project undertaken by Assoc. Prof. Dale M. Grimes (Ph.D.), of the Electrical Engineering Dept., under the direction of the U-M Research Institute (UMRI).

The three-pole magnet is being applied particularly to lining up crystals of magnetic materials used as microwave circuit elements. (These are ceramic materials like those used in telephone equipment, and in radio and television sets.)

The three-pole magnet is about the size of a ten-pound wheel of cheese, about a  $1\frac{1}{2}$  ft. in diameter.





what is Transidyne®?

Transidyne units are solid state devices which convert ac or dc input voltages to ac and/or dc outputs of different voltage levels or frequencies. Typically, a dc input voltage can be converted to ac sine wave output voltage having a frequency of 2,000 cps.

Small and lightweight, Transidyne equipment completely replaces motorgenerator and vibrator type devices... having greater efficiency. They are used in all types of military and commercial electronic and electrical devices requiring rugged, reliable power supplies.

Let us quote on your special power source requirements. Call your nearest Spectrol representative, or write us direct. Please address Dept. 32.

PECTROI

ELECTRONICS CORPORATION 1704 South del mar avenue San Gabriel, California

# NOW YOU CAN SPECIFY SPERRY FOR 2N327A 2N328A 2N329A 2N329A

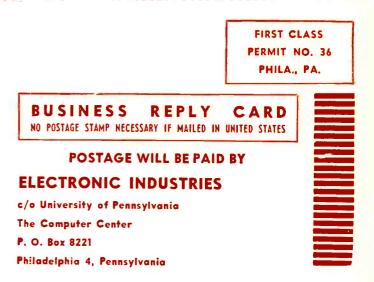
## SILICON PNP TRANSISTORS IN PRODUCTION QUANTITIES

Newly-added to the world's widest line of generalpurpose PNP silicon transistors, these popular types are available immediately for <u>your</u> audio, switching and control applications.

More than an additional production source for these devices, you will find Sperry Semiconductor to be the source, with new standards of quality and reliability.

Like all other Sperry transistors, these units feature new low levels of  $I_{CO}$  and are baked at 200°C for 200 hours for utmost stability. For immediate delivery on the 2N327A series, contact the nearest Sperry sales office as listed below.

And don't forget these other recently-announced types for which you can now SPECIFY SPERRY:


| 2N1034 | 2N1219 |
|--------|--------|
| 2N1035 | 2N1220 |
| 2N1036 | 2N1221 |
| 2N1037 | 2N1222 |
| 2N1275 | 2N1223 |

SPERRY SEMICONDUCTOR DIVISION, SPERRY RAND CORPORATION. SOUTH NORWALK, CONNECTICUT Call or write: Sperry Semiconductor, Wilson Avenue, SOUTH NORWALK, Conn., VOlunteer 6-1641; in NEW YORK PLaza 2-0885; 3555 W. Peterson Ave., CHICAGO 45, III., KEystone 9-1776; 2200 East Imperial Highway, EL SEGUNDO, Calif., OREgon 8-6226,



# **USE THIS FREE READER SERVICE CARD**

Keep up to date—get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be glad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.



|      |     | send |           |      |           |           |           |           |           |           |           |     |     |           |           | cled      |           | 8. 1 <sup>.</sup><br>low. |     |
|------|-----|------|-----------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|-----|-----------|-----------|-----------|-----------|---------------------------|-----|
| 1    | 2   | 3    | 4         | 5    | 6         | 7         | 8         | 9         | 10        | 11        | 12        | 13  | 14  | 15        | 16        | 17        | 18        | 19                        | 20  |
| 21   | 22  | 23   | 24        | 25   | 26        | 27        | 28        | 29        | 30        | 31        | 32        | 33  | 34  | 35        | 36        | 37        | 38        | 39                        | 40  |
| 41   | 42  | 43   | 44        | 45   | 46        | 47        | 48        | 49        | 50        | 51        | 52        | 53  | 54  | 55        | 56        | 57        | 58        | 59                        | 60  |
| 61   | 62  | 63   | 64        | 65   | 66        | 67        | 68        | 69        | 70        | 71        | 72        | 73  | 74  | 75        | 76        | 77        | 78        | 79                        | 80  |
| 81   | 82  | 83   | 84        | 85   | 86        | 87        | 88        | 89        | 90        | 91        | 92        | 93  | 94  | 95        | 96        | 97        | 98        | 99                        | 100 |
| 10 I | 102 | 103  | 104       | 105  | 106       | 107       | 108       | 109       | 110       | 111       | 112       |     | 114 | 115       | 116       | 117       | 118       | 119                       | 120 |
| 121  | 122 | 123  | 124       | 125  | 126       | 127       | 128       | 129       | 130       | 131       | 132       | 133 | 134 | 135       | 136       | 137       | 138       | 139                       | 140 |
| 141  | 142 | 143  | 144       | 145  | 146       | 147       | 148       | 149       | 150       | 151       |           |     | 154 | 155       | 156       | 157       | 158       | 159                       | 160 |
| 161  | 162 | 163  | 164       | 165  | 166       | 167       | 168       |           |           |           | 172       |     | 174 | 175       | 176       | 177       | 178       | 179                       | 180 |
| 181  | 182 | 183  | 184       | 185  |           | 187       | 188       |           |           |           | 192       |     |     | 195       | 196       | 197       | 198       | 199                       | 200 |
| 201  |     |      | 204       |      | 206       |           |           |           |           |           | 212       |     |     | 215       |           | 217       | 218       | 219                       | 220 |
| 221  |     |      |           |      |           |           |           |           |           |           |           |     |     |           |           | 237       |           | 239                       | 240 |
| 241  |     | 243  | 244       |      | 246       |           |           |           |           |           |           |     |     |           | 256       | 257       |           | 259                       |     |
| 261  |     | 263  |           |      |           |           |           |           |           |           |           |     |     |           | 276       | 277       |           | 279                       | 280 |
| 281  |     |      |           |      |           |           |           |           |           |           |           |     |     |           |           | 297       |           |                           |     |
| 301  |     |      |           |      |           |           |           |           |           |           |           |     |     |           |           | 317       |           |                           |     |
| 321  | 322 | 323  | 324       | 325  | 326       | 327       | 328       | 329       | 330       | 331       | 332       | 333 | 334 | 335       | 336       | 337       | 338       | 339                       | 340 |
|      |     |      |           |      |           |           |           |           |           |           |           |     |     |           |           |           |           |                           |     |
|      |     |      |           |      |           |           |           |           |           |           |           |     |     |           |           |           |           |                           |     |
| FIRM | ADD | RESS | • • • • • | •••• | • • • • • | • • • • • | • • • • • | • • • • • | • • • • • | • • • • • | • • • • • |     |     | • • • • • | • • • • • | • • • • • | • • • • • |                           |     |
| TT   | OP  | TOWN | J         |      |           |           |           |           |           |           | TONE      |     |     |           | CT A      | TC        |           |                           |     |

Mail Card Below Today For Quick Information On New Products Described in This Issue. No Postage Needed.

Circle the item number, fill in your name, title, company; detach and mail.

# ALPHABETICAL LISTI

100

54

#### CIRCLE THE NUMBERS OPPOSITE THE NAMES OF THE

#### ٨

- 02 Acme Electric Corporation - Trans-
- formers Alden Products Co.—Insulated tube cap 121
- connectors Hord Manufacturing Company 30 Alford
- Alford Manufacturing Company Slotted lines Allegheny Ludlum Steel Corporation— Nickel-iron strip, electrical steels Allen-Bradley Co.—Ceramic disc capaci-27
- 12 20
- tors Allied Chemical Corp., General Chemical Div. "Electronic-grade" hydrogen peroxide
- Radio Corp.-1960 Electronic Allied 87 66
- 29
- 21
- 22
- 68
- Allied Radio Corp.-1960 Electronic catalog AMP Incorporated-Taper pins and terminal blocks Amphenol-Borg Electronics Corp., Cable & Wire Div.-Cables of all types Amphenol-Borg Electronics Corp., Con-nector Div.-RF connectors Amphenol-Borg Electronics Corp., Dis-tributor Div.-RF connectors Arco Electronics-ELMENCO capacitors for distribution Armco Steel Corporation-Thin elec-trical steels, Nickel-Iron magnetic al-loys 80 lovs

#### R

- 37 43
- 140
- Babcock Relays, Inc.--Miniature relay Beckman/Berkeley Division, Beckman Instruments, Inc.--Counter Bendix Aviation Corporation, Red Bank Division-Power transistors

- Birtcher Corporation, The-Diode radia-113
- 137
- 90
- 152
- 24
- 49 16
- Bilicy Electric Company Oscillator, crystal and ovens Bogart Manufacturing Corp.—Coaxial dry dummy loads, switch, and bal-anced bar hybrid Bomac Laboratories, Inc. Microwave tubes and components Borg Equipment Div., Amphenol-Borg Electronics Corp.—Miniature trimmer potentiometers Bourns, Inc., Trimpot Divlsion—Minia-ture trimmer potentiometer Breeze Corporations, Inc.—Siip rings Brinkmann Instruments, Inc.—Manipu-lators for scientific and industrial op-erations
- 123
- erations Bruno-New York Industries Corp.— "Pig-tailoring" machine Brush Instruments Division of Clevite Corp.—Direct writing recording sys-51
- 52
- tems Brush Instruments Division of Clevite Corp.—Chart paper Burnell & Co., Inc.—Bandpass filters Bussmann Mfg. Division, McGraw-Edi-son Co.—Fuses and fuseholders 7 48

#### C

- mbridge Thermionic Corporation Vibration-proof battery holders annon Electric Company—Terminals Cambridge
- Cannon
- Opera-

\_\_\_\_\_

- Centralab Electronics Division of Globe-Union, Inc.-Ceramic canacitors Centralab Electronics Division of Globe-Union, Inc.—Ceramic capacitors Cinch Manufacturing Company — Sub-miniature connectors Cincinnati Sub-Zero Products—Sub-zero environmental chambers Clare & Co., C. P.—Relays, relay test Clarostat Mfg. Co., Inc.—Miniature pre-cision potentiometers Cleveland Container Co., The—Phenolic tubing
- 143
- 109 71
- 44
- Cleveland Container Co., The—Phenolic tubing Clevite Transistor A Division of Clevite Corporation—Switching transistor with space-saving mounting Columbian Carbon Company, Mapico Iron Oxides Unit—Iron oxides for ferrites 132
- 150
- Communication Accessories Co.-Delay 139 lines
- 125
- 26
- lines Communication Accessories Co.—Trans-formers and reactors Corning Glass Works—Ceramic printed circuit board Curtiss Wright Corporation, Electronics Division—Time delay relay 99

#### D

- 75 98
- Dale Products, Inc.—Miniature trimmer potentiometer DeJur-Amsco Corporation, Electronics Division—Potentiometers and panel instruments Delco Radio Division of General Motors
- 103 Transistors
- 41
- --Transistors Deutsch Company, The-Snap-in type connectors Dialight Corporation-Neon pilot-lights with built-in resistor DuMont Laboratories, Inc., Allen B.---High-frequency oscilloscope 116 79

#### E

- 105
- 64 148
- 108
- Eisler Engineering Co., Inc.--Welders and welding accessories
  Eitel-McCullough, Inc.--Power klystrons
  Electronic Tube Co., Inc., EICO--Elec-tronics catalog
  Elastic Stop Nut Corporation of Amer-ica, AGA Division--Miniature time delay relays
  Electro Motive Mfg. Co., Inc., The--MYLAR-paper dipped capacitors
  Elgin-Advance Relays, Elgin National Watch Company---Miniature relays
  Engineered Electronics Company--Bread-board kit and plastic circuit cards 69
- 16
- 6

#### F

- Fairchild Semiconductor Corporation-95
- Silicon mess transistors Film Capacitors, Inc.—Power supplies Freed Transformer Co., Inc.—Toroidal inductors 128 1**46**
- Fusite Corporation, The-Glass-to-metal seels 15
- FXR, Inc.-Microwave power supply 78

#### G

138

- Gamewell Company, The-Precision ro-
- 38
- 8
- 67
- 144
- 45 84
- Gamewell Company, The—Precision ro-tary switch Garlock Electronic Products, The Gar-lock Packing Company Engineered electronic components General Electric Co., Receiving Tube De-partment Subminiature tubes with heat-resistant glass General Instrument Corporation, Semi-conductor Division—Silicon rectifiers General Instrument Corporation—Aircraft type terminal boards General Transistor Corporation—Diodes Gertsch Products, Inc.—AC or DC volt-age dividers Graphie Systems—Visual control board Gulton Industries, Inc. Sealed nickel cadmium button cell battery 147

#### н

- Hi-Q Division, Aerovox Corporation-Rolled ceramic capacitors Hoffman Electronics Corporation, Semi-conductor Division-Silicon mesa tran-Б
- 104 sistors
- Hoffman & Co., Inc., H. L.-Multiplier phototubes 129

| 10 | Cannon Electric Company-Ter    |
|----|--------------------------------|
|    | with self-fastening insulator  |
| 32 | CBS Electronics, Semiconductor |
|    | tions-NPN switching transistor |
|    |                                |

93

|      |      |      |      |      |       |       |      |     |       |      |      |           |           | want<br>IAVE |       | cled |      | B. 1<br>Iow. |      |
|------|------|------|------|------|-------|-------|------|-----|-------|------|------|-----------|-----------|--------------|-------|------|------|--------------|------|
| 3.1  | 2    | 3    | 4    | 5    | 6     | 7     | 8    | 9   | 10    | 11   | 12   | 13        | 14        | 15           | 16    | 17   | 18   | 19           | 20   |
| 21   | 22   | 23   | 24   | 25   | 26    | 27    | 28   | 29  | 30    | 31   | 32   | 33        | 34        | 35           | 36    | 37   | 38   | 39           | 40   |
| 41   | 42   | 43   | - 44 | 45   | 46    | 47    | 48   | 49  | 50    | 51   | 52   | 53        | 54        | 55           | 56    | 57   | 58   | 59           | 60   |
| 61   | 62   | 63   | 64   | 65   | 66    | 67    | 68   | 69  | 70    | 71   | 72   | 73        | 74        | 75           | 76    | 77   | 78   | 79           | 80   |
| 81   | 82   | 83   | 84   | 85   | 86    | 87    | 88   | 89  | 90    | 91   | 92   | 93        | 94        | 95           | 96    | 97   | 98   | 99           | 100  |
| 101  | 102  | 103  | 104  | 105  | 106   | 107   | 108  | 109 | 110   | 111  | 112  | 113       | 114       | 115          | 116   | 117  | 118  | 119          | 120  |
| 121  | 122  | 123  | 124  | 125  | 126   | 127   | 128  | 129 | 130   | 131  | 132  | 133       | 134       | 135          | 136   | 137  | 138  | 139          | 140  |
| 141  | 142  | 143  | 144  | 145  | 146   | 147   | 148  | 149 | 150   | 151  | 152  | 153       | 154       | 155          | 156   | 157  | 158  | 159          | 160  |
| 161  | 162  | 163  | 164  | 165  | 166   | 167   | 168  | 169 | 170   | 171  | 172  | 173       | 174       | 175          | 176   | 177  | 178  | 179          | 180  |
| 181  | 182  | 183  | 184  | 185  | 186   | 187   | 188  | 189 | 190   | 191  | 192  | 193       | 194       | 195          | 196   | 197  | 198  | 199          | 200  |
| 201  | 202  | 203  | 204  | 205  | 206   | 207   | 208  | 209 | 210   | 211  | 212  | 213       | 214       | 215          | 216   | 217  | 218  | 219          | 220  |
| 221  | 222  | 223  | 224  | 225  | 226   | 227   | 228  | 229 | 230   | 231  | 232  | 233       | 234       | 235          | 236   | 237  | 238  | 239          | 240  |
| 241  | 242  | 243  | 244  | 245  | 246   | 247   | 248  | 249 | 250   | 251  | 252  | 253       | 254       | 255          | 256   | 257  | 258  | 259          | 260  |
| 261  | 262  | 263  | 264  | 265  | 266   | 267   | 268  | 269 | 270   | 271  | 272  | 273       | 274       | 275          | 276   | 277  | 278  | 279          | 280  |
| 281  | 282  | 283  | 284  | 285  | 286   | 287   | 288  | 289 | 290   | 291  | 292  | 293       | 294       | 295          | 296   | 297  | 298  | 299          | 300  |
| 301  |      |      |      |      |       |       |      |     |       |      |      |           |           |              |       | 317  |      |              |      |
|      |      |      |      |      |       |       |      |     |       |      |      |           |           |              |       | 337  |      |              |      |
| YOU  | R NA | ME . |      | •••• | ••••  |       |      |     |       | •••• |      |           | • • • • • | т            | ITLE. |      |      |              |      |
| FIRM | •••• |      |      |      |       |       |      |     |       |      |      |           |           |              |       |      |      |              |      |
| FIRM | ADD  | RESS |      |      |       |       |      |     |       |      |      |           |           |              |       |      |      |              |      |
| CITY | OR   | тож  | N    | •••• | ••••• | ••••• | •••• |     | ••••• |      | ZONE | • • • • • | •••••     | ••••         | . STA | TE   | •••• | ••••         | •••• |



BUSINESS REPLY CARD NO POSTAGE STAMP NECESSARY IF MAILED IN UNITED STATES

#### POSTAGE WILL BE PAID BY

#### **ELECTRONIC INDUSTRIES**

c/o University of Pennsylvania

The Computer Center

P. O. Box 8221

Philadelphia 4, Pennsylvania

#### ISERS IN THIS ISSUE =

.....

#### ADVERTISERS FROM WHOM YOU DESIRE FURTHER INFORMATION

- Hughes Aircraft Company, Semiconduc-3 tor Division-Silicon diodes
- Hughes Aircraft Company, Vacuum Tube Products Div .-- Flat face storage tubes

#### I.

Employment—Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 193 of this issue.

FEB. 1960 Postcard valid 8 weeks only. After that use own letterhead describing item wanted.

#### PROFESSIONAL ENGINEERING OPPORTUNITIES

Please send me further information on the engineering position I have circled below.

| 501 | 506 | 511 | 516        | 521 |
|-----|-----|-----|------------|-----|
| 502 | 507 | 512 | 517        | 522 |
| 503 | 508 | 513 | 518        | 523 |
| 504 | 509 | 514 | 519        | 524 |
| 505 | 510 | 515 | <b>520</b> | 525 |

YOUR NAME

| HOME ADDRESS | <br>••••• |
|--------------|-----------|
|              |           |
|              |           |

ZONE....STATE.... CITY or TOWN

- Ideal Precision Meter Co., Inc.-Panel 149 meters Illinois Condenser Company-Miniature 101
- electrolytic capacitors Illumitronic Engineering Plastic rod, 126
- tubing and sheet Industrial Test Equipment Co. AC 102
- electronic generator Institute of Radio Engineers 1960 Radio Engineering Show & IRE Na-11
- tional Convention Instruments for Industry, Inc. - Pre-60 amplifier

#### J

- Jennings Radio Manu'acturing Corpora-tion Vacuum components catalog 65 summary
- Johnson Co., E. F .--- Plastic sockets 117 Jones Division, Howard B., Cinch Man-ufacturing Company-Plugs and sock-142 ets

#### PROFESSIONAL ENGINEERING **OPPORTUNITIES**

- Bendix Aviation Corporation, Kansas 510
- City Division 511
- Garrett Corporation, The Garrett Corporation, The 509
- General Electric, Communication Prod-508
- ucts Dept. General Electric, Light Military Elec-504
- tronics Dept. General Electric, Missile & Space Ve-502 hicle Dept.
- 505 Melpar, Inc.
- 506 Motorola. Inc.
- Magnavox Co., Government & Industrial 507 Div.
- National Cash Register Company, The 503 501
- Raytheon Company, Government Equip-ment Div. Remington Rand Univac Division of Sperry Rand Corporation 512

#### ĸ

- Keithley Instruments, Inc .--- High voltage 80 Keinley Instruments, Inc.---Nigh Voltage supply Klein & Sons, Mathias--Pliers Knapic Electro-Physics, Inc.--Silicon for infrared domes and lenses Kulka Electric Corp.--Miniature taper-pin terminal blocks 70
- 18
- 112

#### L

Lifschultz Fast Freight-Coast to coast 145 freight forwarding

#### М

- Magnetic Amplifiers, Inc. Static in-91
- verters 57 Magnetics, Inc .-- Powder cores

## FEB. 1960 Subscription Order

| 1        | Please enter a new complimentary subscription to ELECTRONIC INDUSTRIES |                                       |
|----------|------------------------------------------------------------------------|---------------------------------------|
|          | Company Name:                                                          |                                       |
| e 1<br>1 | Name:                                                                  | · · · · · · · · · · · · · · · · · · · |
|          | Company Address:                                                       | · · · · · · · · · · · · · · · · · · · |
|          | City:                                                                  |                                       |
|          | Specific Products Manufactured                                         | · · · · · · · · · · · · · · · · · · · |

#### Advertisers, February, '60-(Continued)

- Panoramic Radio Products, Inc .- Spec-122 trum analyzer
- Philco Corporation, Lansdale Divisionq Ultra high-speed switching transistor Polarad Electronics Corporation—Cali-18
- brated Microwave field intensity receiver system

Polarad Electronics Corporation-Preci-10 sion noise generator



- Radio Materials Corporation-Subminia-1 ture disc capacitors
- Rahm Instruments Pressure trans-124 ducers
- Raytheon Company, Industrial Compo-53 nents Division-Gas diode tubes
- Revere Corporation of America-Molded 58 harnesses





- Rohn Manufacturing Co., Inc.-Commu-341 nications towers
- Rotron Mfg. Co., Inc.-Integrated cool-42 ing fan

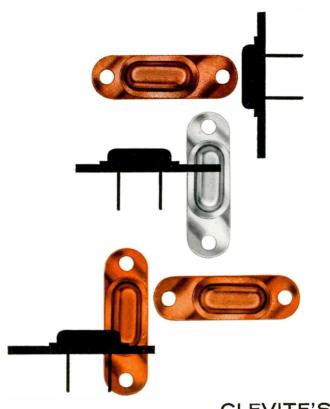
#### S

- Sangamo Electric Company Silvered 55
- mica capacitors Sarkes Tarzian Inc., Semiconductor Di-vision—Silicon rectifier 74
- Scintilla Division, Bendix Aviation Cor-83 poration-Connectors
- Segal, Edward—Eyelet machine Shure Brothers, Incorporated—Communi-115
- 133 cations microphone Sifco Metachemical, Inc.-Selective plat-97
  - ing for printed circuits Spectrol Electronics Corporation—Tran-
- 130 sistorized power converters and inverters
- perry Semiconductor Division, Sperry Rand Corporation—Silicon PNP tran-Sperry Semiconductor Division, 131 sistors
- Sprague Electric Company—Resistors Sprague Electric Company—Tantalex ca-9 14
- pacitors
- 62 Stackpole Carbon Co .- Switches
- Stanpat Co .- Adhesive backed drafting 120 aid Stromberg Carlson Division of General 118
- Dynamics-Twin-contact relays 50
- 111
- Dynamics-Twin-contact relays Struthers-Dunn, Inc.--Relays Sylvania Subsidiary of General Tele-phone & Electronics--Mixer, detector, waractor Microwave diodes Sylvania Subsidiary of General Tele-phone & Electronics Germanium switching diode Sylvania Subsidiary of General Tele-phone & Electronics-Electron Tubes Subunio Subsidiary of General Tele-77
- 81
- 82 Sylvania Subsidiary of General Tele-phone & Electronics-Tubes for Stere-ophonic amplifiers, TV receivers

#### T

- Telechrome Manufacturing Corp .-- FM/ FM telemetering transmitter Texas Instruments Incorporated—Solid
- 89 tantalum capacitors
- 47 Texas Instruments Incorporated-Silicon mesa transistors
- Tinnerman Products, Inc. Stainless steel vibration proof fasteners Transitron Electronic Corporation—Sili-40
- 61 con switching device
- Triplett Electrical Instrument Company 28 Panel meters
- 28 Tung-Sol Electric, Inc.-Tubes

#### U


- 136 Ultrasonic Industries, Inc.-Ultrasonic cleaner
- United Shoe Machinery Corporation-63 Metal forming and engineering service
- 59 United Transformer Corporation-Transistor transformers
- U. S. Components, Inc.-Solderless con-17 nectors

#### V

- Varflex Sales, Co., Inc .- Silicone tubing 88 and sleeving
  - Varian Associates, Tube Division-Mi-
- cromave tubes ector Electronic Company Patch-94 Vector boards
- 110 Victoreen-Corona type voltage regulator tubes

39

25



# CLEVITE'S NEW

TRANSISTOR



| $\frac{1}{2}$ actual s                 |             |             |             |             |             |             |             |             |
|----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| •••••••••••••••••••••••••••••••••••••• |             |             |             |             | TYPES       |             |             |             |
| TEST                                   | CTP<br>1728 | CTP<br>1735 | CTP<br>1729 | CTP<br>1730 | CTP<br>1731 | CTP<br>1736 | CTP<br>1737 | CTP<br>1733 |
| Min BVcbo @ 2 ma (volts)               | 40          | 60          | 80          | 100         | 40          | 60          | 80          | 100         |
| Min BVceo @ 500 ma (volts)             | 25          | 40          | 55          | 65          | 25          | 40          | 55          | 65          |
| Min BVces @ 300 ma (volts)             | 35          | 50          | 65          | 75          | 35          | 50          | 65          | 75          |
| Max Icbo @ 90°C @ Max Vcb (ma)         | 10          | 10          | 10          | 10          | 10          | 10          | 10          | 10          |
| Max Icbo @ 2 V (µa)                    | 50          | 50          | 50          | 50          | 50          | 50          | 50          | 50          |
| D. C. Current Gain @ 0.5A              | 30-75       | 30-75       | 30-75       | 30-75       | 60-150      | 60-150      | 60-150      | 60-150      |
| Max Veb @ 3.0 A (volts)                | 1.5         | 1.5         | 1.5         | 1.5         | 1.5         | 1.5         | 1.5         | 1.5         |
| Max Vce (sat) @ 3.0A, 300 ma (volts)   | 1.0         | 1.0         | 1.0         | 1.0         | 0.8         | 0.8         | 0.8         | 0.8         |
| Min fae @ 3.0 A (kc)                   | 20          | 20          | 20          | 20          | 15          | 15          | 15          | 15          |
| Max Thermal Resistance (°c/w)          | 2.5         | 2.5         | 2.5         | 2.5         | 2.5         | 2.5         | 2.5         | 2.5         |

Compared with present power transistors of similar ratings, the new Clevite Spacesaver gives you important new advantages. Better Switching — Its low base resistance gives lower input impedance for the same power gain and lower saturation resistance, resulting in lower "switched on" voltage drop. Its lower cut off current means better temperature stability in direct coupled circuits (such as regulated power supplies) and a higher "switched off" impedance.

**Better** Amplifying — Improved frequency response leads to higher audio fidelity, faster switching and improved performance in regulated power supply applications.

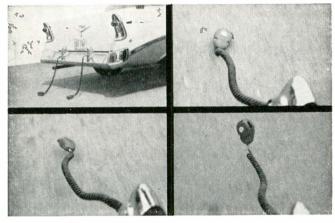
Better Mounting — The Spacesaver's simple rectangular configuration and low silhouette make it adaptable to a wide variety of mounting requirements where space is at a premium. In aircraft and missile applications, its low mass (half present type) improves shock and vibration resistance of lightweight assemblies.



Phone for data and prices.

CLEVITE TRANSISTOR

254 Crescent Street Waltham 54, Mass. Tel: TWinbrook 4-9330 -


# 35,000 SMASHING, BATTERING IMPACTS-

and still working perfectly !





proves its incredible durability in this gruelling destruction test!



New SHURE "TEN-FOUR" MICROPHONE, with exclusive Armo-Dur housing, and another microphone with standard die-cast metal housing were dragged for miles on a test drive over all kinds of pavements at speeds to 30 mph. In a matter of minutes, it was subjected to greater punishment than a lifetime of severest mishandling and here's the result:





Ten-Four with Armo-Dur Housing virtually unmarked—still performed perfectly!

Standard microphone with die-cast metal housing – cracked, broken, abraded–microphone inoperable. For the microphone that stands up under severe operating conditions with no loss of high speech intelligibility, be sure to specify the Shure "Ten-Four" when you order your new communications equipment or replacements.

Available only to Manufacturers of Communications Equipment. (Can be furnished with "Controlled Magnetic" or carbon cartridge.)

SHURE BROTHERS, INCORPORATED 222 Hartrey Avenue, Evanston, Illinois, Dept. 33-B HIGHEST QUALITY MICROPHONES-FIXED-STATION AND MOBILE Circle 133 on Inquiry Card



Splash proof — oil and dust tight • Zinc coated to resist corrosion • Baked-on, white enamel interior • Grey zinc chromate exterior • Flanged box opening for extra strength • Made from bonderized sheet • Continuous welded seam • Continuous hinge • Panel mounted on studs for maximum open panel area.

Write Dept. 70 for catalog and price list showing complete line of McKinstry Electrical Boxes, Panel Boards, Wireways and Fittings.

# McKinstry Metal Works, Inc. 285 McKinstry Avenue CHICOPEE, MASSACHUSETTS

Circle 134 on Inquiry Card

# GROW WITH AIRESEARCH IN ELECTRONICS

**A**iResearch expansion in electronics and electromechanical activity is creating outstanding positions at all levels for qualified engineers.

# FLIGHT SYSTEMS RESEARCH

General problems in motivation and navigation in air and space; required background in astronomy, physics, engineering.

Openings also exist in the following areas: Data Systems Research...Controls Analysis... Flight Data Components...Electromagnetic Development...Instrument Design...Airborne Instrumentation Analysis and Design.

Send resume to: Mr. R. H. Horst



AiResearch Manufacturing Division

9851 So. Sepulveda Blvd., Los Angeles 45, Calif.

Circle 511 on "Opportunities" Inquiry Card ELECTRONIC INDUSTRIES • February 1960

180



# My name is Paul M. Platzman,

I pioneered the ultrasonic industry. Two well known ultrasonic companies were founded by me. Now, I have created a new organization, Ultrasonic Industries, Inc., based on a revolutionary approach to mass producing and selling ultrasonic equipment. No middleman's profit in this factory - direct-to-you deal.

Tremendous savings are passed on to you the customer bringing formerly high-priced ultrasonic cleaners within the range of everybody's budget. My products stand out because of their distinctive appearance, unbelievably low money-back-guaranteed prices-free five year service contract, and consistent trouble free performance under the most gruelling conditions. This is possible because my DiSONtegrator generators and transducers incorporate the latest advances in ultrasonic technology.



# ULTRASONIC CLEANER

# The lowest priced ultrasonic cleaner ever sold! Buy ONE or 100 and Save!

The DISONtegrator System Forty ULTRASONIC CLEANER is attractively styled, ruggedly-built, and work-tested to give a lifetime of trouble-free service.

#### The **DiSON**tegrator Features:

Simplified one knob control for easy operation. High Frequency sound waves disintegrate harmful soils and contaminants in seconds, Saves time and labor, boosts production rate, improves product. You can replace hazardous chemicals with safe solvents and even water.

### The DiSONtegrator works FAST

In SECONDS you can disintegrate soils on: radioactive lab apparatus; glassware; medical instruments; test tubes, syringes, hypodermic needles; dental instruments, drills, burrs, false teeth, bridges; fossils and fossil foraminifera; electronic components, semi-conductors, crystals, switches, precision potentiometers; optical parts, lenses, plastic contact lenses, eyeglasses; timing mechanisms; small gear trains; miniature printed circuit boards; and hundreds of other items.

### In seconds you can remove:

rust, oxides, shop dirt, dust, lint, preservatives, finger prints, machining chips, extrusion lubricants, paraffin, wax, paint, varnish, lacquer, plastic residue, resists, silicones, greases, cooked food residue, blood, plaster of paris, lapping compounds, carbon, radioactive particles, polishing compounds, shale, diatomite, volcanic tuffs, clay and sand, graphite, starches, cutting oils, heat treat scale, color stains. foundry sand, abrasives, quenching oil, salts, pitch, asphalt, tar, inks, adhesives, jewelers rouge, tripoli, resin flux, acid flux, many others.

### The DiSONtegrator is VERSATILE

In addition to super speed, surgical precision cleaning it can be used to: brighten, quench, degrease, impregnate, decontaminate, pickle, etch, dip coat, emulsify, degas liquids, anodize, dye, mix, accelerate reactions.

Ultrasonic cleaners are widely used in production lines, maintenance departments and laboratories. You In production lines, maintenance departments and laboratories. You should have at least one DiSONtegrator if your field is Electronic, Optical, Glass, Clinical, Biological, Textile, Oil, Food, Paper, Dental, Plastic, Drug, Rubber, Wood, Chemical, Isotope, Geological, Agronomical, Metallurgical, Anthropological, Paleontological, Petrochemical, Ceramics, Dairy, Brewery, Beverage, Confectionery, Laboratories, Photographic, Paint, Bottling, Cosmetic, Pharmaceutical, Metal Working, Metal Finishing, Die-Casting, Foundry, Plating, Metal Treating, Automotive, Aircraft, Horological, Jewelry, Medical, Marine, Mining, Utilities, Power Plants Instrumentation Plants, Instrumentation.



## ultrasonic industries 141 ALBERTSON AVENUE · ALBERTSON, L. I., N.Y. Ploneer 1-4333





Including tank, con-necting cable and instruction manual (export model: 220V - 50 cycles \$7.50

#### **I** INTRODUCTORY OFFER

Money Refunded (less shipping charges) if not completely satisfied.

# 

# ANNUMBER OF STREET **Gutartainter** The DisOhterrator you have just received has passed existing the second the second be in perfect condition. Perperty handled this equipment will exceed your expecta-tions equipment will exceed your expecta-tions for the second second the second the second the second second the second the second the second second second second the second the second Guarantee Continuini



We will pay all shipping charges to any point within the continental limits of the United States (not including Alaska and Hawaii), if you enclose check with order.

# **UNPRECEDENTED FREE 5 YEAR SERVICE CONTRACT**

The DiSONtegrator - System Forty is available from stock for immediate delivery in unlimited quantities.

### SPECIFICATIONS

GENERATOR INPUT: 117 V, 60 cycle—GENERATOR OUTPUT: 40 W, 90 KC DIMENSIONS: GENERATOR: 10" L x 7" W x 53/4" H Tank (overall): 6/4" L x 7" W x 61/2" H Tank (inside): 51/4" L x 53/4" W x 4" D Tank (capacity): 0,5 gal.

FOR THE FIRST TIME — you have a choice of 6 beautiful decorator colors to harmonize with your office or laboratory decor: lvory, Wheat yellow, Turquoise, Desert sand, Pale green and Soft gray. Please specify color when ordering.

#### ORDER NOW

TO: Ultrasonic Industries, Inc., Dept. 1-EI-2 141 Albertson Avenue, Albertson, L. I., N. Y.


Gentlemen: Please ship ... \_ DiSONtegrator® System Forty Unit (s) @ \$99.95 ea.: 🛄 [vory □ Wheat yellow □ Turquoise 🗆 Desert sand 🗆 Pale green □ Soft gray

to:

I understand that my money will be refunded if not completely satisfied after 5 day trial.

□ check enclosed (freight prepaid) □ C.O.D.
□ bill me (rated firms only) □ Please put us on your mailing list





Gamewell SG-270 Precision Rotary Switch.

A precious metal ring is the heart of a Gamewell Style SG-270 Precision Rotary Switch.

This perfect circle of metal may be cut into as many angular segments or positions as desired . . . providing the precise basis for a highly versatile switching component . . . can be assembled with potentiometer sections if desired.

Custom designed, the SG-270 switch is ideal for circuit sampling, sequencing, programming, digital generators, etc. Connections to the segments are made through terminals adjacent to the segments on the periphery of the housing. Precious metal rings and brushes provide smooth, trouble-free action with either Make Before Break (MBB) or Break Before Make (BBM) contacts. Multiple gangs can be assembled to provide multi-pole switches. Cased in special plastic, the SG-270 switch is inherently fungus resistant ... stable at high temperatures ... sizes  $\frac{5}{8}'' - 1\frac{1}{4}'' - 1\frac{5}{8}'' - 2'' - 3'' - 5''$  diameter in various

mounting styles. It can be used with confidence over a wide range of environmental requirements. Write, stating requirements, to THE GAMEWELL COMPANY, 1413 Chestnut Street, Newton Upper Falls 64, Massachusetts.



Circle 138 on Inquiry Card

# ELECTRONIC INDUSTRIES · February 1960

of Engineering.

Resistors

Semiconductor devices ..... Simulators, antenna position ....

Switchboard equipment .....

Switches

Switches, pressure .....

Switches, rotary .....

Tape, magnetic .....

Tape, simulator

Transformers .....

Transistors

Transponders .....

Tuning units

**Group Formed** 

pany.

**Advanced Research** 

 Teletypewriters
 906,047

 Test sets, radio
 163,357

 Test equipment
 1,521,648

Douglas Aircraft Co. has estab-

lished a new advanced research organization in Santa Monica, Calif. The staff will be composed of top-

flight specialists to be drawn both

from within and outside the com-

be under the overall direction of

A. E. Raymond, Sr. Vice President

The newly centralized group will

36.662 40,870

40,921 31,792

200,415

190,676

56.818

80,350

38.799

194,304

68.926

25.463

44.265



# to the UNUSUAL

# DELAY LINES

In the C-A-C line of quality toroidal components, the design and manufacture of delay lines has become a growing series of custom projects.

From simple types used in communication systems to complexities such as this design for use in sonar gear, C.A.C.'s design engineering in lumped constant delay lines plays a big part in developing the component to meet your tightest requirements.

Technical data sheets are available.



COMMUNICATION ACCESSORIES CO. Lee's Summit, Missouri • Phone Kansas City, Broadway 1-1700

A Subsidiary of Collins Radio Company

C135







Now in production by Bendix\* are eight 25-ampere peak current power transistors capable of switching up to 1000 watts—and you can get immediate delivery on all eight types.

NOW!

Bendix

**25-AMP** 

**POWER TRANSISTOR** 

**SERIES** 

Newly improved in design, the transistors have a higher gain and flatter beta curve. The series is categorized in gain and voltage breakdown to provide optimum matching and to eliminate burn-out.

| Current Gain       | Maximum Voltage Rating |         |         |         |
|--------------------|------------------------|---------|---------|---------|
|                    | 50 Vcb                 | 60 Vcb  | 90 Vcb  | 100 Vcb |
| hFE at Ic = 10 Adc | 30 Vce                 | 40 Vce  | 70 Vce  | 80 Vce  |
| 20-60              | 2N1031                 | 2N1031A | 2N1031B | 2N1031C |
| 50-100             | 2N1032                 | 2N1032A | 2N1032B | 2N1032C |

Ask for complete details on this newly improved Bendix transistor series . . . and on the entire Bendix line of power transistors and power rectifiers. Write SEMICONDUCTOR PROD-UCTS, BENDIX AVIATION CORPORATION, LONG BRANCH, NEW JERSEY, or the nearest sales office.

West Coast Sales Office: 117 E. Providencia Avenue, Burbank, California Midwest Sales Office: 2N565 York Road, Elmhurst, Illinois New England Sales Office: 4 Lloyd Road, Tewksbury, Massachusetts Export Soles Office: Bendix International Divisian, 205 E. 42nd Street, New York 17, New York Canadian Affiliate: Computing Devices of Canada, Ltd., P. O. Box 508, Ottawa 4, Ontario, Canada

SEMICONDUCTOR PRODUCTS















 $\gamma^{\pm} = \gamma^{\pm} - \gamma^{\pm}$ 

# Tele-Tech's ELECTRONIC OPERATIONS

The Systems Engineering Section of ELECTRONIC INDUSTRIES

FEBRUARY 1960

# SYSTEMS—WISE ....

▶ Packard Bell Computer Corp. has a contract for an analog-to-digital conversion system to be used in the automatic air traffic control system under development for the Federal Aeronautics Administration. The first system will be installed at Atlantic City, N. J., airport for use as an aid in air traffic control in the New York area and as a training set-up for installation at other airports.

▶ Patent-searching using electronic computer techniques is being tested at the U. S. Patent Office. Officials say it may accomplish in about half-an-hour a job that formerly took a skilled researcher up to a full day. A Bendix G-15 digital computer is being used to search for patent information by a serial scanning technique. Over 1,000 patents are being issued each week.

▶ A complete radioactivity detection and control system will be designed and built for the AEC's nuclear power plant near Hallam, Neb., by Victoreen Instrument Co. under contract to Atomics International, div. of North American Aviation, Inc. Instruments will measure radiation levels of vapor vents, gasses before being released to the stack, and also check the gasses before they leave the stack.

#### 3-AXIS TELEMETRY ANTENNA

World's largest 3-axis antenna, built by Philco Western Development Labs, Palo Alto, Calif., will be used to receive telemetered information and data from satellites. It is 80 ft. high, weighs over 130 tons, and has a 60 ft. dia. reflector weighing 15 tons.



Arkansas is installing a modern communications system to help the state's forestry Commission in fire-fighting operations. Seventy-nine radio base stations will be located in various parts of the state, many of them in fire spotting towers. Each station will be able to talk directly with a central control location in Little Rock. General Electric Co.'s Communication Products Dept., Lynchburg, Va., is supplying the equipment.

## NEW TELEX Service

Tosh Nakahiro, staff engineer, communications systems, Cannon Electric Co., and Ralph D. Saylor, Pacific Div. General Mgr., Western Union Telegraph Co., at ceremonies inaugurating two-way direct Telex service in Los Angeles, Calif.



▶ The Navy's first fully transistorized shipboard firecontrol system will be installed aboard the USS George Washington, the Polaris-carrying nuclear powered submarine. The system has more than 15,000 transistors. It also has 1054 digital boards, 18,000 diodes, 40,000 circuits, and 70,000 terminations. It will continuously provide information to the missile guidance system under all sea conditions.

▶ The Goodyear Aircraft Corp.'s new blimp, the ZPG-3W, built for the Navy and designed strictly for air borne early warning missions, has one of the largest complexes of modern radar and electronic equipment to be operational in a single aircraft. The blimps are 400-ft, 1.5 million cubic ft non-rigid airships scheduled by the Navy for AEW patrol as part of the North American Defense Command. Two have been delivered and two are being built.

▶ The General Electric Company's Heavy Military Electronics Dept., in Syracuse has a \$3,600,000 contract to develop a lightweight air search radar for the U. S. Navy. The air search radar, the AN/SPS-45, is being designed for installation aboard ships of the destroyer class.

▶ RCA Communications, Inc., has asked the FCC for permission to supplement its global radio communications network with transatlantic coaxial cable channels. RCA would operate the western end of the cables and British, French, and German Post Office agencies the other ends.

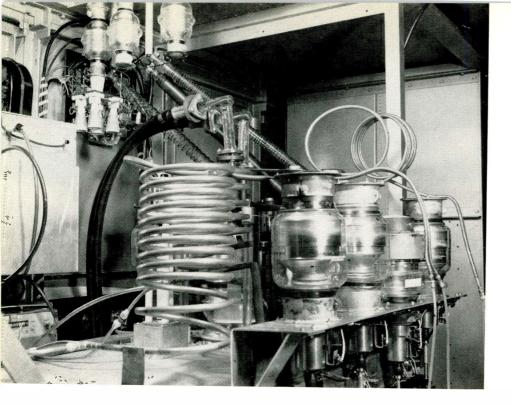


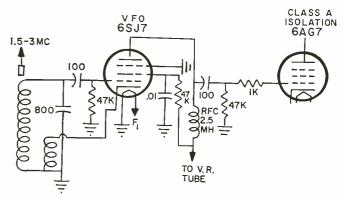

Fig. 1: Final amplifier plate circuits and r-f chokes utilizing motor operated vacuum variable capacitors are shown.

By JO EMMETT JENNINGS President Jennings Radio Mfg. Corp. P. O. Box 1278 970 McLaughlin Ave. San Jose 8, Calit.

THE trend in transmitter design has been to employ a combination of inductance and capacitance change to produce the desired frequency. When decreasing inductance it was necessary to physically remove the coil and replace it with one having less inductance, or to short-out the unused portion. The slider system has a high degree of flexibility but there are the disadvantages of physical size as well as contact erosion due to prolonged operation on one frequency. Mechanical linkages or servo operation only ease the physical labor. They have not removed the problems of frequency shift in the transmitter. With the application of vacuum capacitors in tank circuits, wide minimum to maximum capacity shifts are practical, thereby reducing one of the problems in frequency shifting.

The R-F Testing Lab at Jennings Radio Mfg. Corp. is continuously testing vacuum capacitors and vacuum switches to produce realistic data by operating a group of each type of capacitors and switches. Beginning in the 2 to 3 MC range, and going up to 20 or 30 MC., measurements of voltage, current, frequency, and temperature are made. Repetitive testing calls for readjustment in frequency as well as the output circuits for each test. A program of this nature requires almost as much time for set-up as is for testing. Recogniz-

# **100 KW Transmitter**


ing the mounting labor costs, it was decided to embark on a program of frequency changing from a new concept.

At the outset of this program it was deemed advisable to produce experimental models in the 1 to  $2\frac{1}{2}$ kw range. True, the  $2\frac{1}{2}$  kw amplifier presented no voltage or current problem, yet there were certain design factors which must be ideal to insure stable operation. A tuned tank circuit for each band was the first step in producing a multi-band amplifier.

To assure success of the new system, several different models were fabricated and put into operation to begin the evaluation process of components, efficiency and adaptability. It was determined early, and verified continuously, that vacuum capacitors and vacuum switches were important in the design of an efficient band switching amplifier.

A prime consideration in setting up an amplifier from 2 to 30 MC. was the h-f resonance in unused tank circuits. The effect of the contact capacity, resistance and inductance in the group of switches, plus the problem of distributing the r-f energy from the particular tank circuit to a load were examined. All of these factors caused us to evaluate single pole vs. multiple pole vacuum switches for long life and stable operation. Needless to say, various models went through an evaluation program and have finally been crystallized in the

Fig. 2: A stable VFO was chosen instead of a crystal control oscillator because of the need for many different operating frequencies.

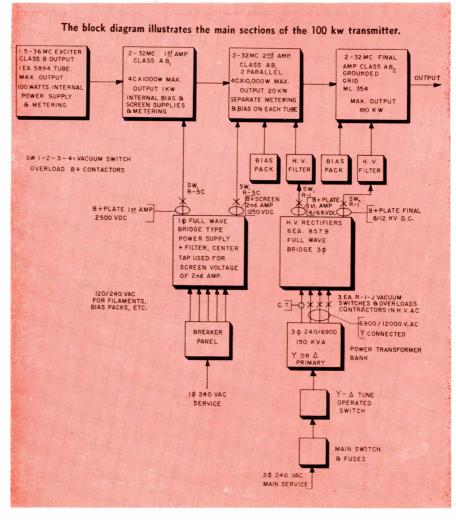


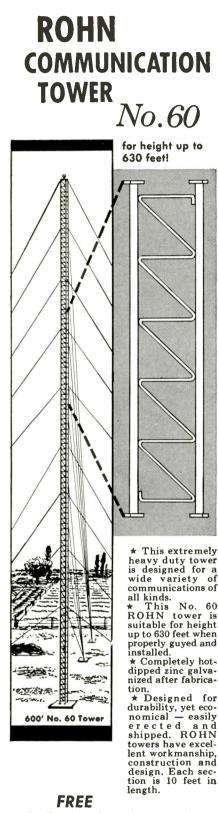


J. E. JENNINGS

A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila. 39, Pa

The new design ideas used in this h-f wide-range transmitter are unique. They can be incorporated in other transmitter designs. Accurate, stable switching is obtained by using vacuum relays and vacuum capacitors in the tank circuits. Over a wide frequency range, r-f chokes can be a problem. A fresh approach to this problem is clearly described.

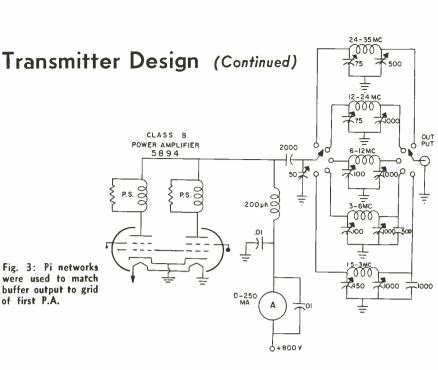

# Has New Design Ideas


transmitter to be described. The model is now in daily use.

The first and most important part of any transmitter is the signal generator. We chose a stable oscillator (Fig. 2) in preference to a crystal frequency generator since frequency changes in our particular operation were necessary. From the signal generator the harmonic frequencies are produced by a series of frequency doublers, the output of which is switched into tuned input circuits to the first buffer stage, which is followed by the 5-band, 1 kw amplifier operated in Class AB.

### First Power Amplifier.

As can be seen in (Fig. 3), pi net circuits were employed to match the plate impedance of the buffer to the grid impedance of the first power amplifier. We used a Model RB3 dpdt vacuum switch for each tank circuit (Fig. 4), the solenoids of which are energized from the master band switch. All of the solenoid relays are operated at 24 vdc. to eliminate hum, shock, and simplify wiring. The input of the first power amplifier incorporates a circuit with tetrode power tubes. By resistive loading the in-






Details and complete engineering specifications gladly sent on request. Also ROHN representatives are coast-to-coast to assist you,

Write-Phone-Wire Today!

ROHN Manufacturing Co. 116 Limestone, Bellevue, Peoria, Illinois Phone 7-8416 "Pioneer Manufacturers of Towers of All Kinds" Circle 141 on Inquiry Card



put circuit and dissipating a given amount of energy, we simultaneously reflect a low impedance at the grid itself. This assures stable operation and reduces the tendency towards non-linearity should we use this for AM or SSB linear amplifier service.

The output of the 1 kw amplifier tube is fed into a group of dpdt vacuum switches. One section switches the plate from the tube to the tank circuit. The other section switches the output from the tank circuit to the next power amplifier grid. When not in operation all tank circuits are grounded as well as isolated from the operating circuit. The low contact resistance and low inductance of a vacuum switch, combined with its small space requirements, make it ideal for this application. As can be seen in (Fig. 4), a pi net output is not employed since conductive coupling gives very good results. A pi net could have been used, but this circuit was found to perform satisfactorily without the additional components.

Resistance stabilization of the grid proved highly desirable for the 4CX10,000W tubes as no neutralization was necessary. When operating the second P.A., much thought was given to r-f potentials and the type of switches capable of handling the tank current as well as r-f voltage. Successful operation was attained with an R5C spst vacuum switch actuated by its accompanying insulated solenoid. Provision for metering the screen current of each tube, plus a vacuum circuit breaker gave ample protection for the screens. Normally a failure of plate potential without interrupting the screen potential would damage the tube, so the application of this miniature vacuum overload in the screen circuit was a necessary protection.

A fresh approach to r-f chokes can be seen in the plate of the 20 kw P. A. (Fig. 5). A group of r-f chokes are connected in series for each tube, accompanied by vacuum switches which short-out unused portions. The reason for this is quite obvious since a 30 MC r-f choke is completely inadequate on 2 MC, and a 2 MC r-f choke operating on 30 MC results in internal resonances. By shorting out portions of the choke as the frequency increased, undesirable resois nances are eliminated in a very simple manner. The output from the second amplifier, as switched by the series of R5C vacuum relays is used to excite a Machlett 354 power amplifier.

The 100 kw final stage operates in a conventional grounded grid configuration. As to the method of coupling, we were fortunate in having high current, high capacity, low inductance, fixed capacitors to by-pass the grid. For a high frequency operation, low capacity ceramics were mounted radially (Fig. 6) from grid to ground in a configuration resembling the spokes of a wheel. Connected in parallel were four .002  $\mu$ f vacuum capacitors for operation on the lower frequencies. Also two .002  $\mu$ f capacitors of the same type were used to couple the r-f from the coax to the filament of the 354.

Switching final tank circuits with Type R1 vacuum relays proved to be a good choice as the potentials of 10 to 13 kv dc on the plate give parallel r-f potentials on the switches and vacuum capacitors. See Fig. 7.

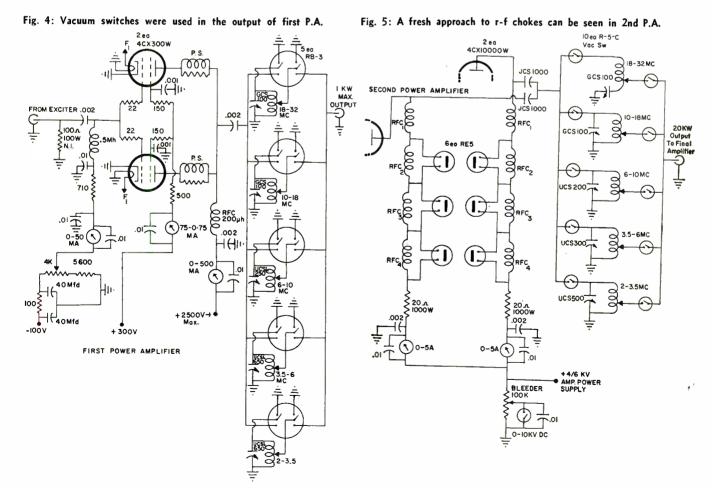
For operation on the lower frequencies the residual capacity of the tube did not present a problem. From 20 to 30 MC the residual capacity presented a "Q" problem. It was solved by using a series resonant circuit. The output load was approximately 50 ohm and conductive coupling was used, although a pi net could have been incorporated in the design. A bank of five RC10's,  $3\frac{1}{8}$  in. coax vacuum switches were used to couple each output circuit to the load termination.

As the schematic shows we have built up a different arrangement of the r-f choke assembly in the final.

Perhaps other systems could have been equally effective, but this method is practically fool-proof. Any radio frequency choke can be selected by the vacuum switch assembly. Proper indexing of these switches is accomplished by the master switch on the control panel. Actually, three solenoid type chokes were connected in series with vacuum switches which could shortout progressively as the frequency is increased. To further protect the final amplifier tube, a vacuum overload has been incorporated to interrupt high voltage fault current in about 10 msec. Since all of the amplifiers are operating in the AB region, excellent harmonic suppression is achieved. An oscilloscope monitors the signals at all times, displaying a sine wave. This is essential for establishing calculated current ratings compared to laboratory results.

Water cooling was necessary in the 20 kw driver tank circuit and the tank coils of the final amplifier. Actually, liquid cooling of the coils is accomplished in a unique fashion. The correct O.D. of straight tubing is selected for the current

| ESTIMA | TED CURI | RENT | FLOW |
|--------|----------|------|------|
| IN SW  | VITCHING | REL. | AYS  |


| IN S                  | WIICHIN     | G KE   | LAYS      |      |
|-----------------------|-------------|--------|-----------|------|
| Band                  |             |        | Am        | ps   |
| No. 1                 | 2 - 3.5     | MC     | $17^{1}$  | 2    |
| No. 2                 | 3.5-6       | MC     | 28        |      |
| No. 3                 | 6 -10       | MC     | 56        |      |
| No. 4                 | 10 -18      | MC     | 93        |      |
| No. 5                 | 18 -32      | MC     | 150       |      |
| Allowa                | ble frequer | ncy sh | ift:      |      |
| Withou                | it retuning | when   | circui    | t is |
| loaded 10             | 0 кс:       |        |           |      |
| $\pm 50$ K            | c unloaded  | :      |           |      |
| Loaded b              | and No. 1   |        | $\pm 100$ | ĸc   |
|                       | No. 2       |        | $\pm 150$ | кс   |
|                       | No. 3       |        | $\pm 200$ | кс   |
|                       | No. 4       |        | $\pm 300$ | кс   |
|                       | No. 5       |        | $\pm 400$ | ĸc   |
| R-F CHOKE ARRANGEMENT |             |        |           |      |
| Band 1                | & 2-2 t     | o 3.5  | MC—       | -1st |
| RFC; 3                | 8.5 to 6 MC |        |           |      |
|                       | -6 to 10    | мс—2   | and RF    | · 25 |

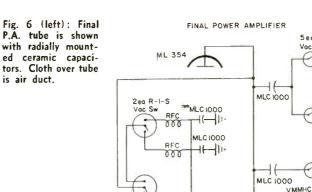
- Band 3-4-6 to 10 MC-2nd RFC; 10 to 18 MC
- Band 5-18 to 32 MC-3rd RFC
- 2 to 6 MC 14 turns per in.—27 in. long.
- 6 to 18 MC 3 turns per in.—27 in. long.
- 18 to 32 MC 1 turn per in.—27 in. long.

 $1\frac{1}{2}$  in. dia. for high frequency.

2 in. dia. for low frequency.

All wound on hard glass tubing.




## ELECTRONIC INDUSTRIES · February 1960

#### 189



# **Transmitter Design**

capability and correct inductance. A smaller diameter length of tubing is slipped inside of the larger copper conductor after which the coil is fabricated into a correct physical dimension. The water then flows through the tube and back through the other in a concentric fashion. Cooling water is supplied to the tank coils at r-f ground potential on the first three low frequency bands. When using series resonance on the two higher frequency bands, r-f isolation is part of the cooling system.



REC

000

200K

0-20KV

\$ T.01

MLC 1000

VMMHC - 4 50

Fig. 7: Final tank circuits are switched into use by vacuum switches. Note r-f choke arrangement. AMF

20л 2000w

MLC 1000

-11-

Normal operating conditions for the final amplifier tube are as follows: plateloading is 1666 ohms with a capacitive reactance. The highest frequency is 175 ohms and the lowest frequency is 300 ohms. This is for 3 kv dc at 8 amps. The loaded "Q" is approximately 5.

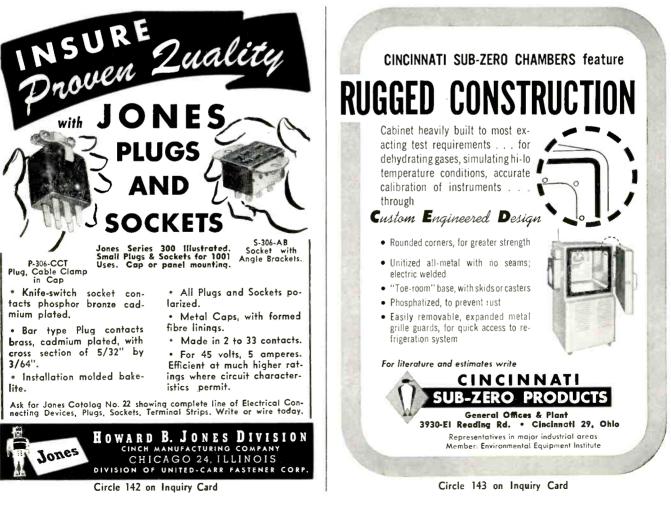
5eg R-I

Vac Relays

18-32 MC

10-18 MC

> 6-10 MC


5 eg RC - 10

Vac Relays

MC OUTPUT I IOO KW

VMMHC-250

VMMHC-250



#### Power Supply

The power supply to accompany the 100 kw transmitter is novel too. Many digressions from the custom construction are incorporated in the new design. A compact walk-in cubicle houses the power supplies and relay assemblies.

All units are adequately protected within themselves and designed for rapid operation and service. First, the power transformers for the high voltage are oil immersed, outdoor type and installed on an outdoor pad. The input is 240 volt 3-phase energized by a 3-wire conventional enclosed, fused, disconnect switch. Incorporated in the primary buss is a 3 pdt manually operated switch to change from Delta to Wye operation. When connected in Wye, operation is for low power or tune-up. The Delta connection is for operating under full power. The secondaries are connected in Wye and are brought into the power cabinet through conduit. Three vacuum circuit breakers are set to trip under overload or fault conditions to protect the electrical system.

As mentioned previously, a vacuum overload is incorporated in the dc 12 kv to interrupt the high voltage for the final amplifier. Another overload is used to interrupt the 6 kv of the 20 kw driver. With these fast operating vacuum dc circuit breakers, it is possible to drop a circuit before any serious difficulty could take place due to fault conditions.

As for the small supplies, they are of a conventional nature and further discussion of their function would be repetitious. Although the partial schematics do not show the complete wiring and monitoring circuits, we have remote reset buttons and indicater lights which show when a circuit is inoperative. This gives greater flexibility and pinpoints for the operator, the defective circuit. This type of power supply design is a radial departure from conventional methods because of the extensive use of vacuum overloads and contactors. Life tests have been conducted to guarantee long life under normal operation or for conditions up to a 500 per cent overload.

Conclusion

Due to the many experimental

models previously designed and built before this final transmitter was started, we were able to produce a design that was generally considered impossible. All of the stages performed as designed without being debugged or converted for stable operation. In the entire transmitter, the only problems experienced were with r-f chokes. It took some time to work out the actual r-f choke values for optimum operation on all frequencies. No parasitics were encountered in

# **Transmitter Design**

any stage and the transmitter has been in operation since the original tune-up. All circuits were carefully checked with a grid dip meter prior to applying power, insuring excellent electrical characteristics. Any tank circuit can be shifted and operation established in case of electrical or mechanical failures.



# General Electric's Missile & Space Vehicle Dept. Building New \$14,000,000 Space Research Center

# 17 miles from Philadelphia, Near Valley Forge Park

Back in 1956 this General Electric organization outgrew its quarters in Schenectady, N. Y. and moved to Philadelphia. Since then its research and development staff has increased 5-fold. A new move is fast becoming imperative and will be met by the \$14,000,000 Space Research Center now under construction on a 132 acres site near Valley Forge Park. This construction will feature unique facilities, to be utilized in a long-term program, to expand the activities in the realm of space research and the development of space vehicles and systems—areas in which MSVD has already contributed so many notable advances:

- $\bullet$  the FIRST re-entry at ICBM range with both heats ink and ablation methods
- the FIRST recovery of payload from space
- the FIRST movies of earth from space
- the FIRST flight demonstration of effective space vehicle stabilization control and navigation (control systems of interplanetary capacity)
- the FIRST measurements in space of earth's magnetic field and infrared radiation
- the FIRST meteorological information from space
- the FIRST organic plastic ablation material for nose cone re-entry protection capable of withstanding temperatures from 5,000 to 13,000°F

Currently a broad diversity of programs are under way at MSVD, offering assignments of exceptional interest to engineers and scientists qualified to work with a researchoriented organization. Your inquiries are invited regarding the following areas: Systems Engineering • Aerodynamics • THERMODYNAMICS • GUIDANCE & CONTROL • INSTRUMENTATION & COMMUNICATION • PLASMA PHYSICS • GAS DYNAMICS • AERO-MEDICAL DESIGN ENGINEERING • ANTENNA & MICROWAVE DESIGN • SPACE MECHANICS • STRUCTURAL DESIGN • ENERGY CONVERSION • HUMAN FACTORS • ADVANCED POWER SYSTEMS • RELIABILITY ENGINEERING • PRODUCIBILITY ENGINEERING • ARMING AND FUZ-ING SYSTEMS • APPLIED MATHEMATICS & COMPUTER PROGRAMMING

Write in confidence to: Mr. Thomas H. Sebring, Div. 24 MB

Missile & Space Vehicle Department



3198 Chestnut St., Philadelphia 4, Pa.

#### DIVERSITY OF ADVANCED PROGRAMS NOW UNDER WAY AT MSVD INCLUDE:

Follow-on contracts for 2nd generation nose cones

NERV (Nuclear Emulsion Recovery Vehicles) for NASA to study the Lower Van Allen radiation belts at altitudes from 200 to 1800 miles

STEER – a communications satellite to provide global military radio communications.

Satellite Aero-Medical Recovery Vehicle (SARV) for Discoverer

Study programs in the area of accessory space power for a variety of missions, including chemical, nuclear and solar energy sources, electrolytic fuel cells and thermoelectric and thermionic converters

Studies for three of the nation's space agencies to develop more accurate "space maps" than have hitherto existed to guide rockets and manned flights to the moon and planets.

A well qualified scientist or engineer is likely to find advanced work going on at MSVD on almost any field of space research of special interest to him.

A campus-like setting is planned for the new Space Research Center which General Electric's Missile and Space Vehicle Department is building close to historic Valley Forge Park. Situated at the junction of the Schuykill Expressway and Pennsylvania Turnpike, the Center will be easily reached by engineers and scientists living in the Philadelphia area and in southern New Jersey.

# PROFESSIONAL OPPORTUNITIES

Reporting late developments affecting the employment picture in the Electronic Industries

Design Engineers • Development Engineers • Administrative Engineers • Engineering Writers Physicists • Mathematicians • Electronic Instructors • Field Engineers • Production Engineers

# "Engineers Need Recognition"—Barthel

"Recognition of the research scientist and engineer as an individual is the first task of management in the effective utilization of its personnel," says Dr. Christopher E. Barthel, Jr., assistant director, Armour Research Foundation.

Barthel, speaking before a panel session at the recent Conference on Efficient Utilization of Engineers and Scientists, pointed out that the necessity of integrating the scientist into a team places a heavy responsibility on management to develop its policies to maintain the dignity and productivity of the individual yet establish objectives, plans, and rules of operation which will stimulate the team effort.

# Test Equipment Market to Rise

Steady growth of between 15 and 20 percent will raise annual volume of the electronic test instrument industry to at least \$350 million in 1960 says Albert F. Craig, president of Technical Information Corp., 41 Union Square, N. Y., N. Y.

Terming his estimates "on the conservative side," he predicted that a fifth of the test instrument industry's growth would be in the area of power supplies, "reflecting the continued growth of transistors." The power supply market, he said, "should increase from \$60 million in 1959 to at least \$70 million in 1960. Two other instrument fields slated for rapid growth were high-speed oscilloscopes and pulse generators.

# **EE Grads Regain Lead**

Electrical Engineering students, who last year were second in demand behind Engineering Physicist graduates, regained their lead this year. Everett A. Teal, Director of OFFER STOCK



Dr. Leslie K. Gulton (left), President of Gulton Industries, Inc., receives check for \$1,110,000 from Herman Kahn of Lehman Brothers following the first public sale of 60,-000 shares of Gulton common stock.

placement, Lehigh University, says that "the demand never has been as heavy for top students in engineering physics, electrical and mechanical engineering, and those interested in R & D."

Starting salary offers are ranging from \$550 to \$600. Last year the range was from \$490 to \$525. Job offers in the non-critical areas carry about the same salary as in 1959. Companies that were below the national average last year have hiked starting salaries to the average starting figure.

# Foreign Students Rank At Top of Their Class

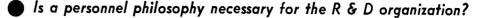
The six top men in the graduating class of the RCA Institutes included two men from Latin America. The other four were from New York City. Included among the graduates were students from Chile, Ecuador, Israel, Iran, Peru, Indonesia, Germany, Italy, The Philippines, The Bahamas, and Jamaica, British West Indies.

FOR MORE INFORMATION . . . on positions described in this section fill out the convenient inquiry card, page 177.

# Success Formula? Be Mildly Frustrated

A study by David Sirota, Univ. of Michigan Research Center, based on questionnaires given to over 2,000 employees of an electronics manufacturing firm, revealed that employees who were moderately frustrated with promotional chances had a better understanding of company attitudes toward job stability, new product development, expansion, and supervisory activities.

Those who were highly frustrated with promotional chances had the least information about the company, while those who were well satisfied had a medium amount.


The study noted that different types of frustration have different effects. If frustration concerns higher wages rather than promotions, for example, it may result in a strike.

# 5,000 Hughes Graduates

The technical training program operated by Hughes Aircraft Company, Culver City, Calif., has now graduated over 5000 men in 240 different courses. Over 2,000 of these were military students. The average length of each course is 13 weeks.

The program is designed to familiarize military personnel, airframe contractor personnel, and Hughes' field service and support engineers with the company's electronic armament control systems and Falcon air-to-air guided missiles used in all-weather interceptor airplanes.

The technical training staff numbers about 160 and includes 67 engineers holding bachelor of science and master's degrees and averaging six years of industrial experience. These men serve as classroom instructors in all phases of electronic systems including: communications, navigation, radar, guided missiles, automatic flight controls, and digital and analog computers.



- How about recruiting?
- Salary administration?
- Educational advancement?
- A noted administrator makes some thought provoking suggestions.

# The R&D Personnel Administrator—

A<sup>T</sup> PRESENT, most R&D organizations have come into being in two ways. They are either a young and fairly recent corporate unit, chartered specifically for conceiving and engineering new products; or, a part of an older, larger corporation seeking to exploit new markets.

Little, if any, tradition, precedent, and practice has been established in the former. The newness of the corporation precludes the years of experience required to build a depth of any administrative force or habit.

In the latter, the scientists, engineers, and administrators have inherited traditions and practices which may have worked very well for production and marketing, but are quite inappropriate for the research and development environment.

If the R&D unit is to survive and flourish, it must address itself to the general scheme of any social and economic unit—namely, the creation and satisfaction of a customer. This customer must consider the idea, product, or service rendered him has a value which he is ready to buy.

To satisfy a customer, the unit should have the means for undertaking and resolving technical problems. While technical brainpower may generate the thought which goes into the product, the administrative brainpower brings into being the facilities, material, money, and people who will give substance to the thought.

#### What's Ahead?

A decade or two from now, the most efficient R&D organizations will probably be as superior in their efforts as the major productive units in industry are today. These organizations will overcome the lack of administrative depth, or the stultifying effects of past production and marketing practices. They will fashion a new philosophy capable of recognizing and reflecting the impact of intellect and thought on the corporate unit and society. These organizations will be creating and satisfying customers at a pace and magnitude not dreamed possible today. And a portion of this philosophy will be engendered by personnel administrators.

By the nature of his work, the Personnel Administrator can key the growth of a philosophy. For he solely concerns himself with people and their industrial and economic environment. He can stimulate the conception and growth of the ideas for a force which can resolve the ever-increasing complex technical and administrative problems of today and the future.

#### For the Future

The philosophy should be built upon the individual and integrity. For in R&D work, though the individual may work as a part of a team, he can contribute in a greater degree to the end-product than in the mass productive and marketing processes. Also, technical problems must be solved honestly. There is no way to contravene physical law. Integrity of purpose and practice should be the byword for the personnel administrator.

Giving substance to a philosophy can be difficult, yet it can yield tremendous returns. For practical applications, four areas lend themselves very well within the personnel framework. They are recruiting, salary administration, personnel studies, and education. Each area though separate, can be integrated around the individual and integrity, and can yield any company

Editor's Note: For further reading on the subject of education for R & D Personnel, see page 256, ELECTRONIC INDUSTRIES, November 1959.



By E. B. GILROY Employee Relations Manager Space Technology Laboratories, Inc. P. O. Box 95001, Los Angeles 45, Calif.

# What's His Role?

more than the time, effort, expense, and staff necessary to accomplish each function.

#### Recruiting

Take recruiting. This area is one of obvious importance, and will continue to be so. How much of the present recruiting work is geared to attract the individual and how honest are the efforts?

A cursory review of such operations indicates that climate, location, salary, and working conditions all have been combined. They show that advantages for one section of the country or company obviously are superior to another. "Engineers Come West" or "Scientists Return East" are slogans for consumption.

Forgotten is the professional work—which may or may not be challenging, worthwhile, or even fairly long-term in nature. Would it not be better to explain the projects, in brief, and provide for expanding this information through correspondence, literature and personal interviews?

### Salary Administration

Then, there's the area of salary administration. How many companies have attempted to measure the productivity of the creative technical mind? Granted, the problem is difficult, but is it not increasingly evident that salary surveys, ranges, reviews and increases are not in themselves providing the hoped for effect of attracting and retaining competent personnel. This suggests the need for studying the problem honestly. Perhaps in company with the Technical Administrator.

One facet of this problem might be to communicate at length the salary program of the company. For, truly, there is no area of greater mystery to the individual scientist and engineer than this one.

I suggest the approach of attempting to direct pay-

roll funds so the greatest contributors receive the greatest return. And further, that deferred or indirect income could well be the vehicle for so doing. Whether this income be in bonus, stock, retirement, insurance, time-off, or company car, it should be considered. I would not suggest neglecting the salary for the individual. Rather, this could be the cake and the other the frosting.

#### Personnel Studies

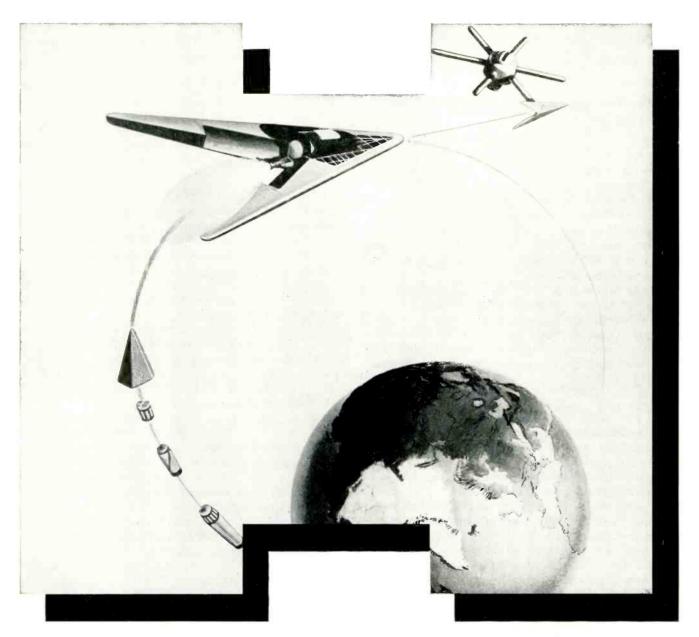
Of course, if one is to approach these problems he should do so on the basis of facts. There should be the means to measure progress of the individual, trends of the group, and economic implications salary-wise, taxwise, and cost-wise for the individual and the company. How many corporate units have attempted to operate from a posture of data wisely chosen, carefully checked, and painstakingly assembled for planning their personnel moves? Whether these moves be for salary increases, promotions, transfers or any other personnel action? The application of data processing is suggested as one approach.

But whether data processing or hand calculating is the method for recording, reporting and analyzing facts and figures, the process should be a continuous one. From these facts can come the glimmers for the ideas which will permit the administrator to plan and execute programs on the basis of evidence rather than hunches.

This type of function, incidentally, lends itself very well to being understood by the engineer and scientist. For he is oriented in this direction. He understands figures, trend-lines, graphs and charts. Data is a good foundation for establishing a common ground between the administrator and the engineer.

#### Education

Finally, there is education, or training if this is preferred. This area can have a tremendous impact for the companies fortunate to be near, or have available, the academic capacity for increased intellectual exercise. The continued exposure of professional scientific and engineering minds to new concepts and theories means continued professional growth. Particularly, if opportunities are present for the application of these new concepts and theories.


There are, of course, many methods for effecting such a program whether it be by importing the teaching talent or by exporting the individual to the school. Indeed, there may be reasons for doing both. But, it should be done on the basis that knowledge and the quest for knowledge is good in itself.

I suspect there is a self-regulating mechanism in the application of a liberal policy to encourage study. There probably are few scientists who would presume on a company's finances by taking wholly inappropriate studies. In fact, perhaps the most directive practice which could be established is one of non-direction, at least from the company's point-of-view.

The writer hopes the ideas presented have provoked some thought concerning the philosophies and programs which might be appropriate for a R&D organization. At least from a personnel orientation. The ideas are offered as "Spring-Boards" to more detailed practices and procedures.

\*

# Earth-to-space ferry

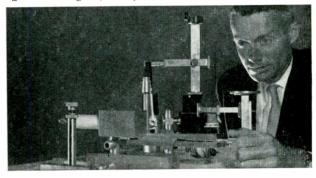


# for Astronauts

**Combining the features of a space ship,** guided missile and a conventional airplane, the new Space Ferry was designed by Hughes-Lockheed Project teams to shuttle men and materials between earth and outer space.

The Space Ferry would carry a pilot and 3 commuters. Payload would be about 14,000 pounds; cargo could vary from flight to flight.

Taking off from earth the Space Ferry would orbit at 300 to 500 miles, rendezvous with other space craft, transfer passengers and cargo, and return to earth... all on a routine schedule.


The Hughes-designed Navigation and Guidance System would utilize an inertial platform and a digital computer. It would automatically control boost to orbit, bringing the Ferry to within 20 to 50 miles of its destination.

The Hughes Attitude and Flight Path Control System would incorporate several novel features: A space attitude and translation control system, based on velocity feedbacks, would give the pilot easy control for

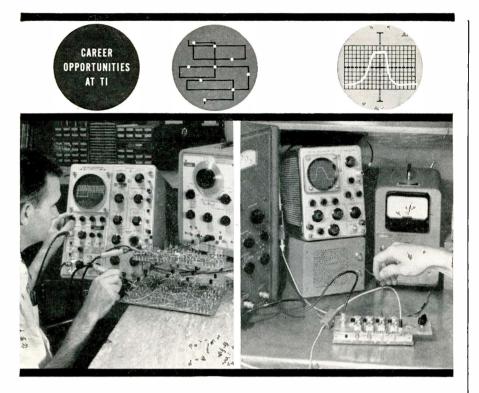


"Vest Pocket Air Defense System"-Hughes mobile digital computer and display unit, linked to a Hughes 3-D scanning radar antenna, assigns enemy targets to missile batteries.

**"Paramp"** (parametric amplifier) developed by Hughes research engineers and scientists, can double effective range of today's radar units.



rendezvous and final soft contact with the platform. For re-entry and flight in atmosphere, the system would use structural temperature as a signal for automatic control during the critical heating phase. The resulting maneuver eliminates the characteristic skipping oscillations of uncontrolled re-entries. Either pitch or bank (or both) maneuvers would be selected with elevons as primary controls.


The new Space Ferry reflects the many stimulating outlets available to Hughes engineers. Other projects include nuclear electronics, spatial communications systems, advanced airborne electronics systems, threedimensional radar systems, new semiconductor materials, electron storage tubes...and many others.

A diversity of advanced projects, a history of continued growth, technically oriented company philosphy - these factors make Hughes the ideal environment for engineers interested in building a rewarding future.

| Electroluminescence             | Equipment Engineering         |
|---------------------------------|-------------------------------|
| Infra-red                       | Microwave & Storage Tube      |
| Plasma Physics                  | <b>Communications Systems</b> |
| Digital Computers               | Micro Electronics             |
| Reliability & Quality Assurance | Engineering Writing           |
| Systems Design & Analysis       | Circuit Design & Evaluation   |
| Write in confidence t           | o Mr. R. A. Martin            |
| Hughes General Offices, Bld     | g. 6-C2, Culver City, Calif.  |



Culver City, El Segundo, Fullerton, Newport Beach, Malibu, Santa Barbara, Oceanside and Los Angeles, California Tucson, Arizona



# **CIRCUIT DEVELOPMENT ENGINEER**

# your future: a challenging opportunity with an industry leader

At Texas Instruments, your future is filled with specific, stimulating growth assignments in evaluating and characterizing transistors and special semiconductor devices. You'll participate in such transistorization projects as:

- AM, FM, and TV receivers
- audio and video, I-f and r-f ampliflers
- hi-fl and electronic organs
- nonlinear and switching circuits
- computer system logic
   servo and power amplifiers

With TI... receive liberal company-paid benefits, including profit sharing (over last several years, an average of more than 12% of base salary)... enjoy premium living in a moderate climate with excellent neighborhoods, schools and shopping facilities... work in a plant selected as one of the 10 outstanding U. S. industrial buildings of 1958.

Interviews will be held in your area soon. If you have an Electrical Engineering degree and/or knowledge of transistor circuitry, please send a resume to:



# Personals

Loren A. Bailey, formerly with the Long Lines Dept. of the American Telephone & Telegraph Co., has joined Page Communications Engineers, Inc., as a Sr. Staff Engineer.

Dr. George Wertwijn, former Division Chief of the Semiconductor Development Group of the Zenith Radio Corp., has been named chief Engineer of U. S. Transistor Corp.

Donald A. Ashford has been appointed Chief Engineer at the Raleigh, N. C., plant of Kellogg Switchboard and Supply Co., Communications Div. of International Telephone and Telegraph Corp.

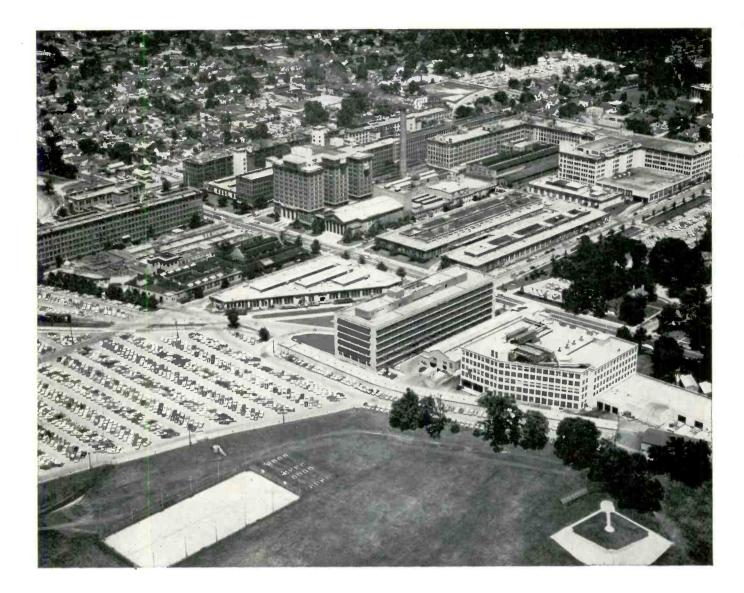
C. P. Clare Transistor Corp., has elected Amos Kaminski, former Chief Research Scientist of General Transistor Corp., as President. The new company is a subsidiary of C. P. Clare & Co.





A. Kaminski

H. F. Schoemehl


Henry F. Schoemehl has been appointed Director of Engineering of Hoffman Electronics Corp.'s semiconductor plant in Evanston, Ill.

Donald C. Beem has been named Sr. Design Engineer in charge of design and development of solid state power supplies of the Special Products Group of Spectrol Electronics Corp.

Dr. Norman A. Baily, has joined Hughes Aircraft Co.'s nuclear electronics laboratory as a Sr. Staff Physicist. He had been Chief Scientist for the dept. of radiation therapy at the Roswell Park Memorial Institute.

Dr. Adolf D. May, Jr., has joined the Technical Staff of Ramo-Wooldridge, div. of Thompson Ramo Wooldridge Inc., as a member of the Intellectronics Labs.

Reuben O. Schlegelmilch has been appointed Technical Director of Westinghouse Electric Corp.'s defense products group. He was formerly Director of Research and Development at the Air Force's Rome Air Development Center.



# **NATIONAL'S CITY WITHIN A CITY...** its community of scientists could include you!

Few organizations offer more challenging opportunities for research and development work than The National Cash Register Company, Dayton, Ohio. Encompassing all sciences, National's Research Division is built on the philosophy that Progress is limited only by man's imagination...that research is the first step in Progress. Why not investigate the possibilities of working in one of these fields:

- ELECTRONICS & DATA PROCESSING
- ELECTRONIC ENGINEERING DEVELOPMENT
- CHEMISTRY
- SOLID STATE PHYSICS

National's Research and Development Center is located at its production and sales headquarters in Dayton, Ohio.

THE NATIONAL CASH REGISTER COMPANY, DAYTON 9, OHIO

ONE OF THE WORLD'S MOST SUCCESSFUL CORPORATIONS

FOR COMPLETE INFORMA-TION, simply send your resume to Mr. T. F. Wade, Technical Placement Section F-10, The National Cash Register Company, Dayton 9, Ohio. All correspondence will be kept strictly confidential.



ELECTRONIC INDUSTRIES · February 1960

Circle 503 on "Opportunities" Inquiry Card

# ELECTRONIC ENGINEERS COUNTERMEASURE - PROOF AIRBORNE COMMUNICATIONS

...one of many exciting programs with long-term importance attracting engineers to General Electric's \*\* Light Military Electronics Department



Light Military engineers are developing an airborne communications system with ability to maintain efficient operation in the face of intense and sustained electromagnetic interference. Embodying in its design a number of new concepts, this low-weight system possesses long-range capability as well as extreme reliability.

### There are Immediate Openings on this Advanced Program

ECM-Proofed Communications afford unusual opportunities for communications systems design engineers to make measurable contributions in the design of the airborne or space terminal. Within this work program there is opportunity to formulate new techniques in RF power generation, modulation and coding, including error correction. Additionally there are challenging openings for engineers with backgrounds in transmitter/receiver design, logic design, RF and digital transistor circuit design, microwave and cavity design.

Other stimulating programs under way at LMED on which a number of professional staff openings are available include Polaris Fire Control and Guidance Computer, ICBM Guidance, Airborne ECM and Airborne Navigation Systems.

Address your inquiry in complete confidence to: Mr. Ron Bach, Dept. 24-MB



**LIGHT MILITARY ELECTRONICS DEPARTMENT** 



FRENCH ROAD, UTICA, NEW YORK

Industry News

Bela J. Losmandy has been named Chief Electronics Engineer of Micro Gee Products, Inc.

Three Hughes Aircraft Co. executives have been appointed to Managerial positions. They are: David A. Hill, Manager of the Semiconductor Div., Hughes Products Group; Lloyd H. Scott, Manager of Santa Barbara Research Center; and L. James Levisee, Director of Materiel, general office.

Daniel D. Kirschner has been appointed to the newly created position of Director of Industrial Relations by FXR, Inc. He was formerly Sales Engineer of Microwave Test Equipment and High-Power Pulse Modulators.

Dr. Maurice Nelles has joined American Electronics, Inc. to fill the newly created post of Vice President, Engineering. He was formerly Vice President, Research and Development and Chairman of the Corporate Product Planning Committee of Crane Co.



M. Nelles

V. Alessi

Vincent Alessi has been appointed General Manager of Dallons Semiconductors, a division of Dallons Laboratories, Inc.

Dr. Charles L. Register, Manager, Great Valley Labs, Burroughs Research Center, has been named Program Manager to head the recently awarded ALRI (Airborne Long Ranger Input) contract to extend the range of the SAGE system.

**Rex Welch** is now Manager of Sales for Electronic Systems Development Corp., a subsidiary of Solar Aircraft Co. He had been Sales Manager for the Industrial Systems Div., Hughes Aircraft.

Adolph Warsher, formerly Manager of Reliability Control Engineering at Bendix Aviation's Eclipse - Pioneer Div. has opened Consulting Engineering offices in Ridgewood, N. J.

Circle 504 on "Opportunities" Inquiry Card

# Industry News

Russell C. Taylor is now President and James F. Clark is Chairman of the Executive Committee of ACF Industries, Inc.

International Telephone and Telegraph Corp. has announced the election of James F. Lillis as Vice President and Comptroller.

Wayne A. Brown has been named Manager of the Pacific Components Div., Hermetic Seal Transformer Co.





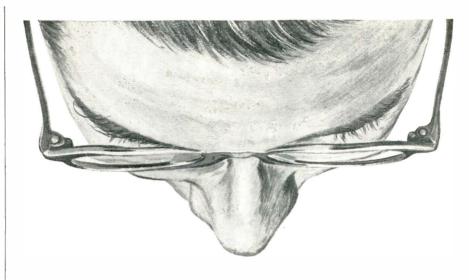
W. Brown

F. Scott

Fred Scott, formerly of Kearfott Mfg. Co., has been appointed to the newly created position of General Plant Manager, Astron Corp.

Raymond G. Johnson has become a Vice President of General Precision Laboratory Inc. He will continue to serve as Controller and Assistant Treasurer.

Walter J. Kruel is Executive Vice President of the Hallamore Electronics Div., The Siegler Corp. He succeeds John J. Burke, who was recently elected a Vice President of The Siegler Corp.


Carl Pilnick has been named Vice President and Director of Research and Development at Consolidated Avionics Corp.

Haskel A. Blair is now President of University Loudspeakers, Inc., a subsidiary of Ling Altec Electronics, Inc.

The election of Charles D. Manhart as Vice President of Daystrom, Inc., has been announced.

Frederick J. Bell is now Vice President—Washington, D. C. Office—for General Telephone & Electronics Corp.

Lt. Gen. C. S. Irvine, (Ret.), former United States Air Force Deputy Chief of Staff for Materiel, will become a Member of the Board of Directors of Houston Fearless Corp. early this year.



# Look beyond the obvious...

... as you consider *your* future in the electronics industry. First, what is the obvious? It's obvious that you're in demand. You don't have to worry about getting your material wants satisfied.

But, when you look beyond the obvious, you realize that you want something more than simple "want satisfaction" out of your career. You want *pride*—pride in the importance of your personal, *individual* contribution.

At Melpar, where we are now working on 120 advanced defense and space exploration projects, we have significant opportunities for the professional engineer or scientist who wants to be proud of his contribution to advancing the state of electronic art.

# Senior-level positions are available in the following areas at this time:

Reconnaissance Systems Airborne Equipment Ground Data Handling Equipment Simulation & Training Systems Communication & Navigation Systems Ground Support Equipment Detection & Identification Systems Antenna & Radiation Systems Physical Sciences Laboratory Production Engineering Quality Control Field Service Engineering

INTERVIEWS ARRANGED IN YOUR LOCALE

For details wire collect or write to: Professional Employment Supervisor



A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY

3321 Arlington Boulevard, Falls Church, Virginia In Historic Fairfax County 10 miles from Washington, D. C.



Motorola engineers are the most stimulated and enthusiastic individuals you'll find anywhere. And, for sound reasons.

First, the work. Electronics-challenging fields that plead for vision, creativeness and imagination.

Secondly, the company, An "engineers' company"-developed by technical minds dedicated to engineering excellence. A rewarding company-quick to recognize and advance skill. A secure, diversified company-not wholly dependent on one single market.

Thirdly, the place, Chicago-exciting and quiet. Cosmopolitan and suburban. Mid-America's nucleus of culture, education and entertainment-where everyone can find the perfect environment.

- Radar transmitters and receivers
- Radar circuit design
- Electronic countermeasure systems
- · Military communications equipment design Pulse circuit design
- 1F strip design
- Device using kylstrom, traveling wave tube and backward wave oscillator
- Display and storage devices
- 2-WAY RADIO COMMUNICATIONS
- VHF & UHF receiver Transmitter design and development
- · Power supply
- Systems engineering
- Antenna design
- Selective signaling

- Transistor applications Crystal engineering
- Sales engineering
- Design of VHF & UHF FM communications in portable or subminiature development
- Microwave field engineers
- Transistor switching circuit design
- Logic circuit design • T.V. circuit design engineering
- · Home radio design
- New product design
- Auto radio design
- Mechanical engineering
- Semi-conductor device development
- · Semi-conductor application work



# Industry lews

Curtis A. Haines has been named Vice President, Facilities and Manufacturing Planning of Sylvania Electronic Systems, div. of Sylvania Electric Products Inc.

Roy H. Isaacs has been named Vice President in Charge of Government Relations for the Bendix Aviation Corp.

International Business Machines Corp. has elected Arthur K. Watson as Corporate Vice President and Group Executive, and a Member of the Board of Directors.

Appointment of Ewen C. Anderson to the newly created position of Executive Vice President, Staff, Radio Corp. of America, has been announced.

Myron G. Domsitz has joined Weinschel Engineering as Executive Vice President. He was previously Vice President, Engineering, of Simmonds Aerocessories.





M. G. Domsitz

R. S. Mandelkorn

Rear Adm. Richard S. Mandelkorn (USN, Ret.), has joined General Instrument Corp. as Executive Vice President of its Harris Transducer Corp. subsidiary. He had been Operations Manager and Director of Planning for Philco Corp.'s Lansdale Tube Div.

James J. Kelly has been appointed Assistant to the Vice President-Manufacturing, Taylor Fibre Co.

Kenneth M. Lord has been appointed Vice President and General Manager of the Electronics Div., Stromberg-Carlson.

William M. Semple, has been named Director of Manufacturing for U.S. Semiconductor Products. He was formerly with Beckman/Helipot Corp., Div. of Beckman Instruments, Inc.

B. I. Belasco is now Manager, Advertising and Sales Promotion, for the Semiconductor Div., Raytheon Co.

Thomas C. Deane has been appointed to the Board of Directors of Packard Bell Electronics Corp.



Sure, we're proud of what they're saying in consumer circles...

# BUT, MR. ENGINEER, DID YOU KNOW...

... that people are talking up Magnavox in the military and industrial fields as well? That we not only make the world's finest stereophonic high fidelity, radio phonographs and television instruments, but do vital work for some of the principal names in government and industry both here and abroad? We are, in fact, currently engaged in advanced electronic activity covering the broad areas of communications, airborne radar, missiles, antisubmarine warfare systems and data processing equipment. And the growing demand for our services in every one of these fields has made it necessary to put in a call for more creative talent. If you're an engineer with a yen for challenge ... if you like to work with interesting, capable people ... and if you very definitely DON'T intend getting lost in the crowd ... look into Magnavox. There's a promising future ahead.

Phone Dick Eary (collect, of course) at Eastbrook 5721 in Fort Wayne or write him today for complete information.

FORT WAYNE, URBANA, ILLINOIS, LOS ANGELES, CALIFORNIA



THE MAGNAVOX CO. • DEPT. 201 • Government and Industrial Division • FORT WAYNE, IND.

A message to Electronic Engineers from R. P. Gifford, Engineering Manager of General Electric's Communication Products Department in Lynchburg, Virginia—

"An electronic design engineer earning \$10,000 should be a decision-maker *beyond* his project's immediate technical problems."

"I believe that any electronic design engineer earning \$10,000 or more welcomes the authority to make a variety of high-level business decisions—in such areas as features versus cost and reliability versus weight—working closely, of course, with his marketing counterparts in Product Planning and also with the Manufacturing Engineers.

"At Communication Products Department we give the experienced engineer the *necessary authority* to do just this. He generally enters the design project early in the development planning phase, so that he can take responsibility for estimating the project expense and schedule—thus contributing to the establishment of bogeys for product cost and delivery.

"Of course our communication systems must do the customer's job, but also they must be *marketable at a profit to the Department;* to make this come true is a vital part of the design engineer's challenge. This means exposure to many management problems and a rare opportunity to grow and move ahead rapidly.

"Our communication products are primarily commercial, including Mobile Radio, Microwave Radio Relay, Terminal Equipment, Telephone Carrier, Multiplex, and Personal Communication Systems. Military contracts also in the house include a 24-channel SSB tropospheric scatter system."

Right now, we have immediate openings for Advance, Development, and Systems Engineers who have significant backgrounds in these areas:

R.F. circuit design Multiplex equipment Microwave systems design Solid state devices Microwave plumbing, antennas Piezoelectric devices Mobile transmitter, receiver design Electronic equipment mechanical design Automatic test equipment D&D Microminiaturization

For prompt consideration, forward your resume in confidence to Mr. W. Kelly, Dept. 24-MB COMMUNICATION PRODUCTS DEPARTMENT



Mountain View Road, Lynchburg, Virginia

# Industry News

William T. Hack has been elected President of Audio Devices Inc., and William C. Speed, former President has been elected Chairman of the Board.

Indiana General Corp. has appointed Frank A. Saikley, Assistant Treasurer and Assistance Secretary and Portus M. Wheeler, Vice President, Sales, for the Indiana Steel Products Div.

Richard A. Campbell has been elected Vice President in Charge of Operations of Pacific Semiconductors, Inc., a subsidiary of Thompson Ramo Wooldridge, Inc.





R. A. Campbell

D. F. Sanders

D. F. Sanders is now President of Lockheed Electronics Co., the new subsidiary of Lockheed Corp. The company will include the Newport Div. (formerly Lockheed Electronics and Avionics Div.) and the Stavid Div. (formerly Stavid Engineering, Inc.).

Jack J. Bromberg has been appointed Program Manager for the Douglas Aircraft Company's Nike Zeus activities.

Edward J. Garrett has been elected Vice President of Loral Electronics Corp. He will continue as General Manager.

Harold T. Summers, is now Manager of Manufacturing for Boonton Radio Corp.

The election of Ross D. Siragusa, Jr., and Harris Hesketh as Vice Presidents of Admiral Corp. has been announced.

Lear, Inc., has elected T. Kenneth Greenlee and William P. Lear, Jr. as Vice Presidents.

The appointment of Edward S. Weyl to the newly created position of Director of Business Planning for International Resistance Co. has been announced.

# News of **Reps**

#### REPS WANTED

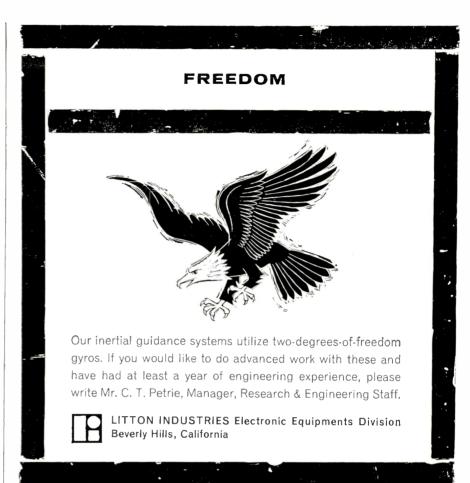
Manufacturer of Magnetic components, including tape wound cores, bobbin cores, and transformer laminations, desires Engineering Reps in the following areas: northern California, Arizona, Colorado, Texas, Ohio, Michigan, Indiana, Missouri, Minnesota, Virginia, Wisconsin, Florida, Alabama, Mississippi, Georgia, North and South Carolina, and Kansas. (Box R2-1, Editor, Electronic Industries.)

Essex Electronics, Div. of Nytronics, Inc., has appointed Engineering Services Co., Kansas City, Missouri, as rep in Nebraska, Kansas, Missouri, Iowa, and southern Illinois.

**New Office** 



Neely Enterprises has opened this new 3,000 sq. ft. office building and expanded service dept. at 6501 Lomas Blvd., N.E., Albuquerque, New Mexico.


The Dan Greene Organization, Inc., Cambridge, Mass., is now sales reps for Howell Instrument Co. in Maine, Massachusetts, Rhode Island, Vermont, New Hampshire, and Connecticut.

Three new members of the Buckeye Chapter of the Electronic Representatives Assoc. are: J. R. Dannemiller, J. R. Dannemiller Associates, Cleveland, Ohio (full membership); Bernard C. Newman of F. A. Daugherty Co., Cleveland, Ohio and Todd Hart of H. H. Seay Co., Columbus, Ohio (associate members).

Alfred Electronics has appointed Rush S. Drake Associates, Seattle, Wash., rep in Oregon, Washington, Idaho, and British Columbia.

Computer - Measurements Co. has appointed two reps in metropolitan New York and the Pacific Northwest. They are: G. Curtis Engel and Associates, Inc., Ridgewood, N. J. and Comptronics, Inc., Seattle, Wash.

Appointment of two manufacturer's reps by Lear, Inc., has been announced. Named were Berndt Associates, Glencoe, Ill., and Electro-Mation Assoc., Warren, Mich.



# GROW WITH AIRESEARCH IN ELECTRONICS

AiResearch expansion in electronics and electromechanical activity is creating outstanding positions at all levels for qualified engineers.

## AIRBORNE INSTRUMENTATION ANALYSIS AND DESIGN

Work involves solving problems in accuracy, response and environmental effects.

Openings also exist in the following areas: Flight Systems Research...Controls Analysis ...Data Systems Research...Electromagnetic Development...Flight Data Components... Instrument Design.

Send resume to: Mr. R. H. Horst

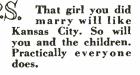


AiResearch Manufacturing Division 9851 So. Sepulveda Blvd., Los Angeles 45, Calif.



# MARRY THE BOSS' **DAUGHTER:**

Don't bother telling us how it happened . . . we almost know. It was Spring-or Fall, no matter-and there you were, alone with That Other Girl. You couldn't have been thinking of your professional future because you'd had to explain to her dad that you didn't drive a locomotive. But she was lovely, desirable and it seemed unthinkable not to share your breakfast Wheaties with her the rest of your days. So, of course, you married her instead of the boss' daughter and your father-in-law turned out to be a grand guy even though he now tells people proudly that you make TV sets or something.


good briends.

come we?

Which pretty much leaves your career up to you, doesn't it?

We have some advice for you; we'll not guarantee that it's impartial, but check it for logic anyway: Look for a leading electronics corporation which is essentially an engineering firm, where not only your immediate supervisors but top management will be engineers. Being engineers, they're more likely to recognize ability and to reward achievement fairly and impartially. It figures, we think, that where there's an atmosphere of mutual confidence, respect and understanding you'll realize your maximum potential at least a little sooner and more surely.

You may be pretty sure that Bendix, Kansas City, meets the specifications outlined above or instead of mentioning them at all we'd probably follow the crowd by speaking only vaguely of "opportunity" and "challenge." You have criteria of your own ... measure Bendix with them and let us help you if we may.



Write Mr. T. H. Tillman, Professional Personnel, Bendix Box 303-OE, Kansas City, Missouri.



KANSAS CITY, MISSOURI

# News of Reps

Acton Labs., Inc., a subsidiary of Technology Instrument Corp., has appointed Lowry Dietrich Co. as rep in Ohio, Kentucky, West Virginia, and Western Pennsylvania.

Ballentine Labs., Inc., has appointed reps in 3 areas. They are: Bayly Engineering, Ltd., Ajax (Toronto), Ont., Canada, rep for Ontario and prov-inces of Eastern Canada; Ohio Instrument Co., Dayton, Ohio, rep for Ohio and Pittsburgh area of Pennsylvania; and Gaine Engineering Co., Detroit, Mich., rep for the Michigan area.

Miratel, Inc., has appointed Ken Wyborny as sales rep for Arkansas, Louisiana, Oklahoma, and Texas, excepting El Paso County.

Thomas S. Moroney is now sales rep for the Cleveland District (Michigan Territory) of the Silicone Products Dept., General Electric Co.

New sales rep appointed by Technology Instrument Corp. are: Kin-rick Co., St. Louis, Mo., for Missouri and Kansas, and Jim Morrow Sales, Highland Park, Mich. for Michigan.

The newly formed rep firm, J. P. Dearie Co., Boonton, N. J., headed by John P. Dearie., has acquired the Industrial Div. of the Art Cerf Co.



J. P. Dearie

H. Brown

The Irv Brown Co., Inc., manufacturers rep, Brooklyn, N. Y., has added Harry Brown to their field sales staff.

Engineering Services Co., St. Louis, Mo., has been named rep for Missouri, Kansas and Nebraska by the DeJur-Amsco Corp. Roy H. Cooley & Assoc., Seattle, Wash., is rep in Washington and Oregon.

Essex Electronics, Div. of Nytronics, Inc., has appointed Malcolm Ross & Co., Los Angeles, Calif., rep in Southern California, Nevada and Arizona. George W. Meeker is rep in Washington and Oregon.

The C. H. Mitchell Co., Electronic rep firm, is now located at 13804 Ventura Blvd., Sherman Oaks, Calif.

Circle 510 on "Opportunities" Inquiry Card

# The New UNIVAC Military Division

# **OFFERS OPPORTUNITIES FOR** QUALITY CONTROL ENGINEERS **PRODUCTION ENGINEERS DEVELOPMENT ENGINEERS**

Significant advances such as ultra-reliable military computers, have firmly established the leadership of Remington Rand Univac in the defense field. The challenges of this leadership offer a unique opportunity to the engineer who seeks to advance his own career, while contributing to the state of the art.

The Remington Rand Univac Military Division provides a creative atmosphere which offers unexcelled facilities for testing and analysis. Our programs open the way to true professional maturity. We provide ample technical assistance and the best available supporting equipment to back the engineer in his creative endeavors. Inquiries are invited about these positions:

### QUALITY CONTROL ENGINEERS

To plan and implement rigid military quality control and reliability requirements for the manufacture of data processing equipment. To develop and apply statistical quality control techniques, initiate and evaluate test and inspection procedures for the manufacturing processes. Science or Engineering degree preferred, with experience on electronic equipment.

### **PRODUCTION ENGINEERS**

To plan automated processes, methods, and tooling for the world's most reliable computers. These openings require the utilization of imagination and creativity on large production programs. Engineering degree preferred, with experience on electronic equipment.

### **DEVELOPMENT ENGINEERS**

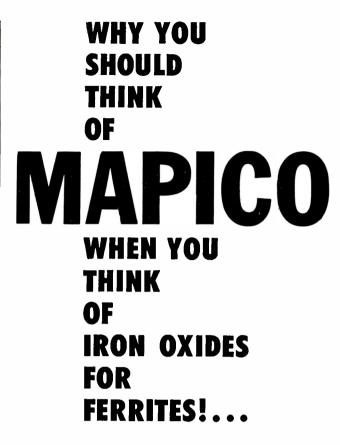
To develop advanced techniques in high speed memory circuits, switching circuits and other data processing requirements. Engineers are also required for communications development, antennae couplers and servo mechanisms. Electrical Engineering degree with development experience required,

### STANDARDS AND SPECIFICATIONS ENGINEERS

To prepare engineering standards and component specifications for electronic equipment. Engineering or Science degree with experience in military specifications for electronic equipment.

Openings are at various levels with excellent starting salaries. For immediate consideration, send inquiries and resume of education and experience to:

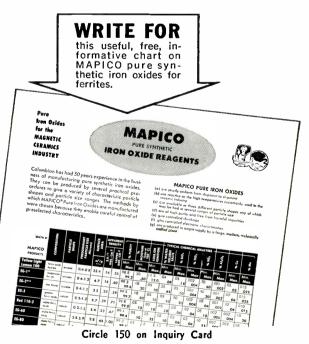



2750 West Seventh Street, St. Paul 16, Minn.

Immediate openings are also available at our central New York location. Address inquiries to:

UNIVAC ®

CARL J. ANDERSON Department E-2, Remington Rand Univac Spruce Street, Illon, New York Circle 512 on "Opportunities" Inquiry Card


ELECTRONIC INDUSTRIES · February 1960



First of all, Mapico provides a wide range of pure synthetic iron oxides ... unmatched for uniformity ... produced through the most precise automatic production controls . . in a plant with tremendous capacity. And Mapico iron oxides are made in three typically different particle shapes, each shape available in many accurately graded particle sizes. The selection of the proper Mapico oxide assists you in controlling electronic characteristics and shrinkage.

# MAPICO IRON OXIDES UNIT

**COLUMBIAN CARBON COMPANY** 380 Madison Ave., New York 17, N.Y.



207



**AVAILABLE FROM STOCK** FOR IMMEDIATE DELIVERY

| TOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIDAL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DUCTORS                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIL Grade 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | — Metal Case                         |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIL Grade 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Molded                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Uncased Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Highest Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| and the second s | Highest self re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sonant freq.                         |
| 1.161.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Low temperate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -astatic construction                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Can be suppli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed with center taps                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Rep -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contract of the second se | A STATE OF                           |
| FREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UENCY RANGE: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OOCP TO ISKC                         |
| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inductance Range                     |
| TI-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 MH to 50 Hy                        |
| TI-12<br>TI-1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 MH to 30Hy                         |
| 11-1A<br>TI-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 MH to 30Hy<br>5MH to 20Hy          |
| TI-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5MH to 5Hy                           |
| TI-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5MH to 2Ky                           |
| TI-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1MH to 2Hy                           |
| FREG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UENCY RANGE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OKC TO SOKC                          |
| TI-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1MH to 500MH                         |
| TI-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1MH to 500MH                         |
| TI-6<br>TI-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1MH to 400MH                         |
| 11-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .100MH to 100MH                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UENCY RANGE: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| TI-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1MH to 100MH                        |
| TI-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1MH to 100MH                        |
| TI-10<br>TI-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1MH to 200MH                         |
| TI-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1MH to 500MH                         |
| TI-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1MH to 10MH                         |
| TI-3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10MH to 100MH                        |
| ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GH FREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIENICY                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DUCTORS                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UENCY RANGE: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| TI-21<br>TI-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 205<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .010MH to .150MH                     |
| TI-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .010MH to .700MH<br>.010MH to .500MH |
| TI-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .050MH to 5MH                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |

Send for NEW TRANSFORMER AND INSTRUMENT CATALOGS



Circle 146 on Inquiry Card

# High Temperature Material Available

Raytheon has announced the development of a process for producing oriented graphite in commercial quantities. Called "Pyrographite," the high-temperature material offers characteristics which promise to solve many space-age problems. Thermal and electrical conductivity material is strongly anisotropic-higher in a plane parallel to the surface than at right angles to it. Other valuable properties are high density and impermeability to gases.

Oriented graphite has been produced in the laboratory for many vears in minute quantities-for example, as a thin coating on a hot filament-and its properties have long been investigated on a theoretical basis.

Pyrographite has the strengthto-weight ratio along the planes higher than series 310 stainless steel at low temperatures. Above 2000°C, where normal graphite has one of the highest strength-toweight ratios known, Pyrographite has a ratio five times as great.



# How To Get Things Done **Better And Faster**



# BOARDMASTER VISUAL CONTROL

- 🕁 Gives Graphic Picture Saves Time, Saves Money, Prevents Errors
- 🛠 Simple to operate Type or Write on Cards, Snap in Grooves ☆ Ideal for Production, Traffic, Inventory,
- Scheduling, Sales, Etc.
- Over 500,000 in Use.



For more information on the entire IDEAL line, write for Catalog No. 32. IDEAL PRECISION METER CO., INC. 214 Franklin Street, Brooklyn 22, N. Y.

Sold to Electronic Parts Distributors exclusively through

WALDOM ELECTRONICS, INC. 4625 West 53rd Street, Chicago 32, Ill.

Circle 149 on Inquiry Card

# **ELECTRONIC INDUSTRIES Advertisers – February 1960**

This index is published as a convenience. No liability is assumed for errors or omissions.

| A                                                                                                                                                                            |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| ACME ELECTRIC CORPORATION<br>ALDEN PRODUCTS CO.<br>ALFORD MANUFACTURING COMPANY<br>ALLEGHENY LUDLUM STEEL CORPORATION<br>ALLEN-BRADLEY CO.<br>ALLIED CHEMICAL CORP., GENERAL | 150<br>168<br>152<br>41<br>25      |
| ALLIED RADIO CORP.<br>AMP INCORPORATED<br>AMPHENOL-BORG ELECTRONICS CORP.<br>AMPHENOL CABLE & WIRE DIVISION<br>AMPHENOL CONNECTOR DIVISION<br>AMPHENOL DISTRIBUTOR DIVISION  | 35<br>146<br>123<br>44<br>36<br>36 |
| ARCO ELECTRONICS, INC.                                                                                                                                                       | 26<br> 40                          |

| BABCOCK RELAYS, INC. 52              |
|--------------------------------------|
| BECKMAN/BERKELEY DIVISION OF         |
|                                      |
| BECKMAN INSTRUMENTS, INC 59          |
| BENDIX AVIATION CORPORATION          |
| KANSAS CITY DIVISION                 |
|                                      |
| BIRICHER CORPORATION THE 124         |
| BLILEY ELECTRIC COMPANY 182          |
|                                      |
| BOUGARI MANUFACIURING CORP. 148      |
| BOMAC LABORATORIES, INC., A SUBSIDI- |
| ARY OF VARIAN ASSOCIATES             |
| Inside Back Cover                    |
| BORG EQUIPMENT DIVISION.             |
|                                      |
| AMPHENOL-BORG ELECTRONICS CORP. 38   |
| BOURNS INC., TRIMPOT DIVISION        |
| BREEZE CORPORATIONS INC. 62          |

| SHEELE OOKIORATIONS INC.              | 67  |
|---------------------------------------|-----|
| BRINKMANN INSTRUMENTS INC.            | 143 |
| BRUNO-NEW YORK INDUSTRIES CORP.       | 140 |
| BRUSH INSTRUMENTS DIVISION OF CLEVITE | 107 |
| CORPORATION Insert following page     | 66  |
| BURNELL & CO., INC.                   | 15  |
| BUSSMANN MEG. DIVISION, MCGRAW-       | 15  |
| EDISON CO                             |     |
| EDISON CO.                            | 64  |

#### С

| CAMBRIDGE THERMIONIC CORPORATION.   | i 50 |
|-------------------------------------|------|
| VANNON ELECTRIC COMPANY             | 21   |
| UBS ELECTRONICS. SEMICONDUCTOR      | 21   |
|                                     | 48   |
| VENTRALAR FLECTRONICS DIVISION OF   |      |
| GLOBE-UNION INC.                    | 155  |
| VINCE MANUALITIKING COMPANY DE      |      |
| VISION OF UNITED-CARR FASTENER COR- |      |
| PORATION                            | 109  |
| SUBSCIENCE SUB-ZERO PRODUCTS        | 190  |
| CLARE & CO., C. P.                  |      |
| CLAROSTAT MEC. CO. INC.             | 165  |
| CLAROSTAT MFG. CO., INC.            | 29   |
| SETERAND CONTAINER CO THE           | 60   |
| SEVILE IRANSISTOR PRODUCTS DIVISION |      |
| OF CLEVILE CORPORATION              | 179  |
| VULUMBIAN CARRON COMPANY MADICO     |      |
| INON OXIDES UNIT                    | 207  |
| COMMUNICATION ACCESSORIES           |      |
| COMPANY                             | 183  |
| COMMING GLASS WORKS                 | 40   |
| CURTISS WRIGHT CORPORATION, COM-    | -10  |
| FUNENIS DEPARTMENT - ELECTRONICE    |      |
| DIVISION                            |      |
|                                     | 154  |

| D                                                                  |   |
|--------------------------------------------------------------------|---|
| DALE PRODUCTS, INC.<br>DeJUR-AMSCO CORPORATION<br>ELECTRONICS DIV. | 1 |

| DELCO RADIO DIVISION OF GENERAL |     |
|---------------------------------|-----|
| DEVISCH COMPANY THE             | 54  |
| DIALIGHT CORPORATION            | 161 |
| DU MONT LABORATORIES, INC.,     |     |
| ALLEN B                         | 139 |

153

#### F

| EISLER ENGINEERING CO., INC.     | 140 |
|----------------------------------|-----|
| EITEL-McCULLOCH, INC.            | 120 |
| ELASTIC STOP NUT CORPORATION OF  | 120 |
| AMERICA AGA DIVISION             | 141 |
| ELECTRO MOTIVE MFG. CO., INC.    | 127 |
| ELECTRONIC INSTRUMENTS CO., INC. | 1   |
| EICO                             | 208 |
| ELGIN-ADVANCE RELAYS ELECTRONICS |     |
| DIV., ELGIN NATIONAL WATCH CO    |     |
| ENGINEERED ELECTRONICS COMPANY   | 13  |

#### F

FAIRCHILD SEMICONDUCTOR CORPORA-TION  

 FILM CAPACITORS INC.
 171

 FREED TRANSFORMER CO., INC.
 208

 FUSITE CORPORATION, THE
 28

 FXR, INC.
 137

#### G

GAMEWELL COMPANY, THE 182 GARLOCK ELECTRONIC PRODUCTS, THE GARLOCK PACKING COMPANY 182 GARRETT CORPORATION, THE 180, 205 GENERAL ELECTRIC COMPANY COMMUNICATION PRODUCTS DEPT. 204 LIGHT MILITARY ELECTRONICS DEPT. 204 MISSILE & SPACE VEHICLE DEPT. 192 RECEIVING TUBE DEPT. 16, 17 GENERAL INSTRUMENT CORPORATION DISTRIBUTOR DUISION

| 25   |
|------|
| 24   |
| 9 I  |
| 61   |
| 19   |
| 28   |
| 34   |
| 2964 |

#### н

VACUUM TUBE PRODUCTS DIVISION ..... 10

1

#### .1

| JENNINGS RADIO MANUFACTURING<br>CORP.                    | 122 |
|----------------------------------------------------------|-----|
| JOHNSON CO., E. F.                                       |     |
| JONES DIVISION, HOWARD B. CINCH<br>MANUFACTURING COMPANY | 190 |

| KEITHLEY INSTRUMENTS, INC.   |  |
|------------------------------|--|
| KLEIN & SONS, MATHIAS        |  |
| KNAPIC ELECTRO-PHYSICS, INC. |  |

# L

#### м

MAGNAYOX CO., GOVERNMENT AND INDUSTRIAL DIV. 203 MAGNETICS, INC. 149 MAGNETICS, INC. 113 MARCONI INSTRUMENTS 160 MCKINSTRY METAL WORKS, INC. 180 MELPAR, INC., A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY. 201 MICROWAVE ASSOCIATES, INC. 144 MOTOROLA, INC. 202 MOTOROLA SEMICONDUCTOR DIV. 31 MUELLER ENGINEERING CO., INC., HEINZ 161 MUIRHEAD & CO. LIMITED 161

#### Ν

NATIONAL CASH REGISTER COMPANY, THE .... 199 THE NEW DEPARTURE DIVISION, GENERAL MOTORS CORP. ..... 51

0 OHMITE MANUFACTURING COMPANY .... 29

Р

PANORAMIC RADIO PRODUCTS, INC. .... 168 PHILCO COMPANY, LANSDALE DIVISION... 18 POLARAD ELECTRONICS CORPORATION Insert following page 32

#### R

RADIO CORPORATION OF AMERICA Back Cover

RADIO MATERIALS CORPORATION

- RADIO MATERIALS CORPORATION Inside front cover

   RAHM INSTRUMENTS DIV. OF AMERICAN MACHINE AND METALS, INC.

   MACHINE AND METALS, INC.

   INDUSTRIAL COMPANY GOVERNMENT EQUIPMENT DIVISION

   SEMINDUSTRIAL COMPONENTS DIVISION

   SPERRY RAND CORPORATION

   SPERRY RAND CORPORATION

   COMPORATION OF AMERICA

   INDUSTRIAL COMPORATION

   SPERRY RAND CORPORATION

   ROHN MANUFACTURING CO.

   18

   ROTRON MFG. CO., INC.

   ROTRON MFG. CO., INC. 57

s

| -                                         |
|-------------------------------------------|
| SANGAMO ELECTRIC COMPANY                  |
| SARKES TARZIAN INC., SEMICONDUCTOR<br>DIV |
| SCINTILLA DIVISION, BENDIX AVIATION       |
| CORP. 143                                 |
| SEGAL, EDWARD 165                         |
| SHURE BROTHERS, INCORPORATED 180          |
| SIFCO METACHEMICAL, INC                   |
| SPECTROL ELECTRONICS CORPORATION          |
| [72, 173                                  |
| SPERRY SEMIONDUCTOR DIVISION.             |
| SPERRY RAND CORPORATION                   |
|                                           |
|                                           |
| STACKPOLE CARBON COMPANY 118              |
| STANPAT CO 167                            |
| STROMBERG CARLSON, A DIVISION OF          |
| GENERAL DYNAMICS                          |
| STRUTHERS-DUNN, INC                       |
| SYLVANIA SUBSIDIARY OF GENERAL TELE-      |
| PHONE & ELECTRONICS, SYLVANIA SEMI-       |
| CONDUCTOR DIV.                            |
| 135, 163, Insert Following p. 141         |
| tes, tes, insert following p. 141         |
|                                           |

## Т

| IELECHROME MANUFACTURING CORP 54<br>IEXAS INSTRUMENTS INCORPORATED<br>SEMICONDUCTOR-COMPONENTS |  |
|------------------------------------------------------------------------------------------------|--|
| DIVISION                                                                                       |  |
| INNERMAN PRODUCTS, INC                                                                         |  |
| RANSITRON ELECTRONICS CORP 117                                                                 |  |
| RIPLETT ELECTRICAL INSTRUMENT COM-                                                             |  |
| PANY                                                                                           |  |
| UNG-SOL ELECTRIC, INC                                                                          |  |
|                                                                                                |  |

### U

U.S. COMPONENTS, INC.

| ARFLEX SALES CO., INC.          |     |
|---------------------------------|-----|
| ARIAN ASSOCIATES, TUBE DIVISION | 39  |
| ECTOR ELECTRONIC COMPANY        | 150 |
| ICTOREEN                        | 162 |

٧

v

| WAVELINE, INC.               | 10 |
|------------------------------|----|
| WAYNE KERR CORPORATION       |    |
| WESTINGHOUSE ELECTRIC CORP., |    |
| SEMICONDUCTOR DEPARTMENT 13  | 1  |
| WILLIAMS & CO., C. K 16      | 7  |
|                              |    |

#### Z

ZIERICK MANUFACTURING CORP ..... 165

# **FOR 17 CONSECUTIVE YEARS ELECTRONIC INDUSTRIES**

has — each June — published a fund of product source and where-to-buy-it information in the Directory Issue.

The 17th edition has outperformed all its predecessors in terms of year-round usefulness.

PLAN NOW TO ADVERTISE IN OUR 18th EDITION—JUNE 1960

> This issue closes May 1, 1960

SEND YOUR SPACE RESERVATION TO

# ELECTRONIC INDUSTRIES

56th & Chestnut, Phila. 39, Penna.

# CUES

# for Broadcasters

## Automatic Two Cycle **Carrier Restorer**

NORMAN BOWMAN, Ch. Eng. KBTM, Jonesboro, Arkansas

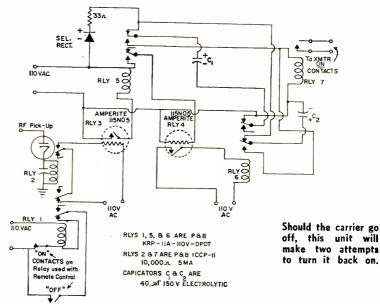
The station here at KBTM operates from remote control. We needed a device which would put the transmitter back on the air when momentary overloads, such as overmodulation, knocked the carrier off.

This unit cuts the "off-air" time to five or ten seconds. It also relieves the strain on engineers.

Here at KBTM a Schaeffer remote control unit is used, but this system will work with any remote.

The operation is as follows: Spare contacts on the transmitteron relay, which is operated by the remote control unit, applies power to relay #1. Relay #1 closes its contacts, turning the transmitter on. The bottom contacts of relay #1 hold this relay on until the normal sign-off. The top contacts make power available to a contact on relay #2. If the carrier goes off, relay #2 will open supplying power to Amperite relay #3. After 5 seconds delay relay #3 will close and actuate relay #5.

Now, while relay #5 was not actuated, capacitor C1 was charging to line voltage through the selenium rectifier. When relay #5 is actuated it places C1 across relay coil #7. C1 discharges through the relay coil, actuating it for a short time. Relay #7 has a set of its contacts in parallel with the These transmitter-on contacts. contacts turn the transmitter back on.


If the transmitter fails to go on, Amperite relay #4 will operate in 5 seconds, actuating relay #6. Relay #6 disconnects C1 from

#### \$\$\$ for Your Ideas Readers are invited to contribute their own suggestions which should be short and include photographs or rough sketches. Typewritten, doublespaced text is requested. Our usual rate will be paid for material used.

relay coil #7 and connects C2 (which is charged) in its place. This capacitor again causes relay #7 to actuate and turn transmitter on.

When the transmitter is back on the air, relay #2 is actuated. This relay then removes power from relay #3, placing system back into a standby status.

Should the transmitter fail to operate after both cycles of this unit, an engineer will have to clear the trouble in the transmitter. Unit will not affect normal operation such as Conelrad tests or regular sign-off.



off, this unit will make two attempts to turn it back on.

# RADAR and BEYOLUTION

One sweltering July afternoon in 1789, a tattered raggedy mob appeared outside the gates of the Bastille, the formidable prison of

Paris, and demanded entrance. "Go away," the guard shouted, "or we'll have to arrest you." "That's exactly the idea!" a voice came back. "We're starving to death. All we want is a little of that moldy bread and canal water you feed your prisoners!"

Word was passed to the prison commandant, one Maurice Antoinette. "If they want their just desserts," he smiled, "let them eat cake!'

It was this remark that sparked the Revolution. The mob grew ugly. "Force the gate!" should a sickle-wielding daughter of France named Brigitte Sourdough. A radar controlled battering ram, appropriated from the local armory, swung into play. In moments, the

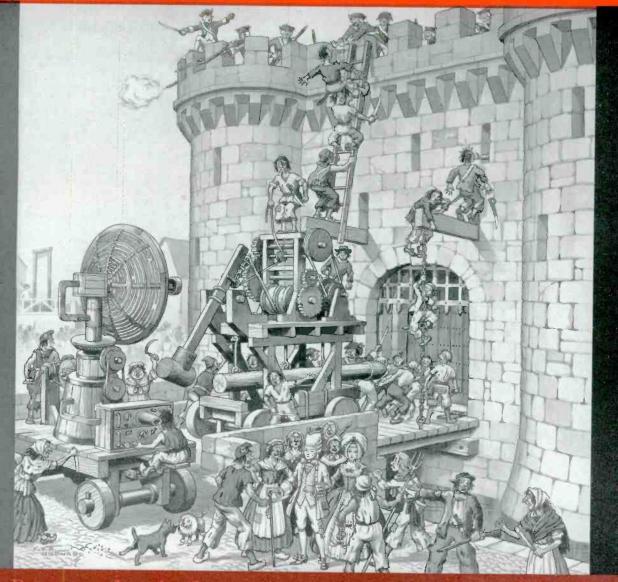
Bastille gate had been hammered into shambles, and the unfortunate Maurice Antoinette was at the mercy of the mob.

"Observe the instrument of your defeat!" sneered Brigitte Sourdough, pointing at the radar. "Pfui," the commandant replied, calm and disdainful. "No

Beaumac (French for Bomac\*) tubes." Brigitte was furious. "The commandant wants 'Beaumac'?

He shall have Beaumac!"

With that, Antoinette was led to a second instrument of the people — a device consisting of a heavy blade, poised between grooved uprights. It had no tubes at all.


"This is your Beaumac?" the commandant asked.

"Oui, monsieur," Brigitte Sourdough leered. "This is Beau Mac - the knife!"

No sooner had Maurice Antoinette heard these words than his icy calm vanished.

Matter of fact, he lost his head completely.

# No. 18 of a series ... BOMAC LOOKS AT RADAR THROUGH THE AGES



# \* since the storming of the Bastille

# BOMAC laboratories, inc.

Leaders in the design, development and manufacture of TR, ATR, Pre-TR tubes; shutters; reference cavities; crystal protectors; silicon diodes; magnetrons; klystrons; duplexers; pressurizing windows; noise source tubes; high frequency triode oscillators; surge protectors. © BOMAC 1959

Offices in major cities—Chicago • Kansas City • Los Angeles • Dallas • Dayton • Washington • Seattle • San Francisco • Canada: R·O·R Associates Limited, 1470 Don Mills Road, Dom Mills, Ontario • Export: Maurice I. Parisier, 741-745 Washington St., N. Y. C. 14, N. Y.

Circle 152 on Inquiry Card

Communications



Instruments



Controls



Radar

5 мс

# RCA's

new family of ten INDUSTRIAL DRIFT FIELI TRANSISTORS

specifically matched to your design requirements... for superior, high frequency performance-up to 50 Mc and above as rf amplifiers ... up to 125 Mc and above as oscillators.

RCA now offers a comprehensive group of industrial drift field transistors specifically designed for industrial and military high-frequency communications, instrumentation, controls, navigation and mobile equipment.

These application-tailored types capable of operating up to 50 Mc and above in rf amplifier service and 125 Mc and above in oscillator service will permit a large safety factor in your equipment designs and assure long-term operating reliability. They feature a maximum junction temperature rating of 100°C; a maximum transistor dissipation rating of 120 Mw in free air at 25°C, and higher ratings with heat sink; and maximum collector-to-base voltage rating of -40v, except for the 2N1226 which has a -60v rating and is intended for those critical military and industrial applications requiring such a high voltage. Millions of RCA drift field transistors now in use are your proof that RCA drift field types are today's number one answer to the designer requiring top performance and reliability at low cost.

Call your RCA Field Representative now and ask him about RCA Industrial Drift Field Transistors with performance specifications tailored to your specific needs. For additional technical data, write RCA Commercial Engineering, Section, B-50-NN, Somerville, N. J.

> Common-Emitter Circuit, Base Input. Ambient Temperature = 25°C

DC Collector-to-Emitter Volts =

DC Emitter Milliamperes = 1.5.

N294. 21384 \_2N1023

-12

RESIS

12.5 мс JUMC JUMC

3900066. 2N1224 2N1225, 2N1226

2N1395. 2N1396. 2N1397

Avionics Missiles

Mohile

Electronics



HIGH FREQUENCY AMPLIFIER PERFORMANCE RCA TYPE NUMBERS hie 20 to 175 (JEDEC TO-44) 2N384 2N274 2N1023 2N1224 h<sub>fe</sub> 20 to 175 (JEDEC TO-33) 2N1225 2N1066 h<sub>fe</sub> 50 to 175 (JEDEC TO-33) 2N1395 2N1397 2N1396 Мах Type Max Type Max. Type Min Min 50 Megacycles (sig. freq.) Min Common Base Circuit 15 21 Power Gain (db) 18 21 24 18 Input Resistance (obms) \_ 25 \_ Output Resistance (ohms) 8.000 5.000 30 Megacycles Common Emitter Circuit Power Gain (db) 20 23 26 16 20 24 Input Resistance (ohms) Output Resistance (ohms) 100 50 \_ \_ 8.000 5 000 12.5 Megacycles Common Emitter Circuit Power Gain (db) Input Resistance (ohms) Output Resistance (ohms) 28 250 16,000 24 32 17 22 150 4,000 \_ \_ 1.5 Megacycles Common Emitter Circuit Power Gain (db) Input Resistance (ohms) 45 1,350 70,000 40 \_ Output Resistance (ohms)

RCA Drift Field Transistors can be supplied to meet MIL-S-19500B specifications

150 \_ SMH 60000 ANCE 1001 \_ 욚 GAI 40000 POWER 27 Ξ 20000 8 50 2N1226—High Voltage Transistor for Video Amplifier and General Instrumentation Service is identical to 2N1224 except maximum collector-to-base and punch-through voltage rating 60v. FREQUENCY-MC Performance Characteristics for Types 2N1023, 2N1066, 2N1397

ANOTHER WAY RCA SERVES YOU THROUGH ELECTRONICS

RADIO CORPORATION OF AMERICA SEMICONDUCTOR AND MATERIALS DIVISION SOMERVILLE, N. J.

East: 744 Broad Street, Newark, New Jersey, HUmboldt 5-3900 🔹 Northeast: 64 "A" Street, Needham Heights 94, Massachusetts, Hillorest 4-7200 🔹 Central: 714 New Center Building, Detroit 2, Michigan, TRinity 5-5600 • Central: Suite 1154, Merchandise Mart Plaza, Chicago, Illinois, WHitehall 4-2900 West: 6355 East Washington Boulevard, Los Angeles, California, RAymond 3-8361 • Southwest: 7905 Empire Freeway, Dallas 7, Texas, FLeetwood 2-8663 Gov't: 224 N. Wilkinson Street, Dayton, Ohio, BAldwin 6-2366; 1625 "K" Street, N.W., Washington, D.C., District 7-1260