ELECTRONIC INDUSTRIES

Subminiature DISCAPS

Premium Quality Capacitors for Today's Design Requirements

RMC Type SM DISCAPS provide small, low cost capacitors with premium quality standards

Modern electronic design provides less and less space for component parts. In equipment where space is at a premium, Type SM DISCAPS can be specified with assurance of the quality and dependability built in all RMC DISCAPS.

These new DISCAPS meet the specifications of EIA-RS-198 for Z5U ceramic capacitors and are available in values of $800, .001, .0015 \mathrm{GMV} ; .005+80 \%$ $-20 \% \pm 20 \% ; .01+80 \%-20 \% \pm 20 \%$ and $.02+80 \%-20 \%$. SM DISCAPS show minimum capacity change between $+10^{\circ} \mathrm{C}$ and $+65^{\circ} \mathrm{C}$.

SPECIFICATIONS

POWER FACTOR: 1.5% Max. @ 1 KC (initial) WORKING VOLTAGE: 500 V.D.C.
TEST VOLTAGE (FLASH): 1000 V.D.C.
LEADS: No. 22 tinned copper (. 026 dia.)
INSULATION: Durez phenolic ($1 / 8^{\prime \prime}$ max. on leads) vacuum waxed
STAMPING: RMC-Capacity-ZZU
INITIAL LEAKAGE RESISTANCE: Guaranteed higher than 7500 megohms
after humidity leakage resistance: Guaranteed higher than 1000 megohms

Circle 1 on Inquiry Card

ㅌLECTRONMC INDUSTRIES

ROBERT E. McKENNA, Publisher • BERNARD F. OSBAHR, Editor

Electronic Growth

 West and EastWELCOME to our seventh consecutive annual WESCON issue. The growth pattern and rise in national stature of the western electronic industries over the past six years has been truly phenomenal. In 1953, for example, there were only 370 exhibit booths at WESCON and the attendance report was 12,679. Last year there were 911 booths with more than 33,000 in attendance. In our first WESCON issue we listed about 290 active electronic manufacturers in the West Coast directory section, and this year we have some 740. Over the past decade there has been about a 5 to 1 growth in WESCON attendance and nearly an 8 to 1 growth in the number of exhibit booths. The convention to be held at the Cow Palace in San Francisco, August 18-21, this year will be no exception. The growth curve is still rising! On pages 78 and 79 we provide full details describing this important annual event.

And speaking of the western growth pattern, there is a paralleling equally interesting Eastern pattern emerging. H. Myrl Stearns, Chairman of the Board of WESCON in his article "Slightly Higher East of the Rockies" (page 76 this issue) points out that climate alone is not the only factor to help spur Western growth. "A built-in major scientific complex afforded by such universities as Stanford, University of California, and California Institute of Technology was a major inducement to individuals. . . ."

Along these lines, Herman Fialkov, President of General Transistor Corp. before the June meeting of the Long Island Electronic Manufacturers Council has suggested a program for the further development of an academically based research center on Long Island. Pointing out that there are well over 3700 electronic engineers in this area, and that it is becoming increasingly difficult for these men to contact the educational institutions in New York City
proper, Mr. Fialkov is urging the local manufacturers to support and help expand the Research Center started at Adelphi College in 1957. Dr. Francis K. Ballaine, Executive Director, outlines ARC as 1. An academic based research center. 2. A graduate science school. 3. A center for scientific meetings, etc. 4. A specialized library. 5. A center for management training programs.

Dr. Ballaine also points out that according to the figures provided him by the Federal Small Business Administration, in Nassau county alone there were 386 small businesses as of November 1, 1954. As of the first quarter of 1956 there were 1155 for a gain of some 300% over a two-year period. The growth trend is still rising.

Long Island manufacturers supporting the program with contributions (ranging from $\$ 500$ each) are offered the following advantages: 1 . The privilege of preconsulting with the faculty and staff of the ARC, free of charge, to explore basic research areas. 2. Priority of access over non-members to the research facilities and consulting services of the Center, including use of the analog computing center. 3. Associates will receive a yearly report on the work of the Center, which will take the form of an all-day workshop meeting. 4. Associates may send representatives free of charge to special workshops, seminars, science lectures and other meetings as may be scheduled. 5. Associates may use their affiliation with the Adelphi Research Center in their promotional material.

We heartily endorse this development for it is truly part of the pattern of today's growing electronic industries. The manufacturer-educational complexes have been highly successful in such areas as Los Angeles, San Francisco, and Route 128 in Boston. Long Island will be no exception!

ROBERT E. McKENNA, Publisher BERNARD F. OSBAHR, Editor

CREIGHTON M. MARCOTT Managing Editor RICHARD G. STRANIX JOHN E. HICKEY Jr Associate Editors CHRISTOPHER CELENT Assistant Editor DR. ALBERT F. MURRAY Contributing Editor ROLAND C. DAVIES Washington News MARIE T. McBRIDE Directory Editor ELMER KETTERER Art Editor CHARLES F. DREYER Cover Designer DOROTHY R. ALLEN Editorial Secretary MAE E. MOYER Reader's Service
EDITORIAL CORRESPONDENTS Washington-1093 National Press Bldg GEORGE BAKER RAY M. STROUPE
NEIL R. REGEIMBAL
BUSINESS DEPARTMENT
ELMER DALTON
Circulation Manage GORDON HERNDON Production Manage ARA H. ELOIAN Production Assistant
REGIONAL SALES MANAGERS
Philadelphia Office-
56th \& Chestnut Sts
SH 8-2000
JOSEPH DRUCKER
New York Office- 100 East 42nd St Phone OXford 7-3400
GERALD B. PELISSIER (Metropolitan N. Y.) MENARD DOSWELL II New England
Chicago Office- 360 N . Michigan Ave RAndolph 6-216 GEORGE H. FELT
Cleveland Office-930 Keith Bldg. SUperior I-2860
SHELBY A. MCMILLION
Los Angeles-198 S. Alvarado 54. DUnkirk 7-4337
B. WESLEY OLSON

San Francisco Office-I355 Market St UNderhill I-9737
Atlanta 3, Ga.- DON MA JAckson 3-6791 JOHN W. SANGSTON
Dallas-Meadows Bldg., Expressway at Milton EMerson 8-475
HAROLD E. MOTT
London, WI-4 Old Burlington St.
D. A. Goodall Ltd A. R. RACE GErard $8517 / 8 / 9$

[^0] authorization.

ELECTRONIC INDUSTRIES

August, 1959

MONTHLY NEWS ROUND-UP

Radarscope: What's Ahead for the Electronic Industries 4
As We Go To Press 7
TOTALS: Late Marketing Statistics. 19
Snapshots . . . of the Electronic Industries 26
Coming Events 12
Electronic Industries' News Briefs 20
International News 24
Electronic Shorts 10
Washington News Letter 202
Next Month in Electronic Industries 75
Editorial: Electronic Growth-West and East! 1
Slightly Higher 'East' of the Rockies 76
Western Electronic Show Opens August 18 78
WESCON Technical Papers Program 80
"Tunnel Diode"—New Electronic Work Horse! 82
Asymptotes Solve Design Problems ...T. R. Nisbet and W. W. Happ 84
Page from an Engineer's Nołebook \#49 89
Improved Silicon Photovoltaic Cells H. Nash \& W. Luf 91
A Novel Method for Frequency Multiplication 96
What's New 99
Horizontal Deflection Switching 102
1959 Directory of Western Electronic Manufacturers 143
Survey of Power Rectifiers 159
Electronic Operations 195
Analyzing Circuits By Superposition J. E. Toffler 196
Professional Opportunities 223
Why Do Companies Merge? P. Slusser 224
NEW PRODUCTS \& TECH DATA
Wescon Product Highlights 114
New Products 12θ
New Tech Data for Engineers 108
New Western Literature 110
DEPARTMENTS

Personals	234	Industry News 236
Tele-Tips	50	News of Reps 232
Books	58	Cues for Broadcasters 198
Letters	68	Systems-Wise 195

BPA ABP

Frequency Multiplication
Co1l namparaturo: $34^{\circ} \mathrm{C}$

Silicon Photovoltaic Cells

Asymptotes \mathcal{G} Transistors!

Transistors in Horizontal Deflection Circuits

page 102
While transistors are generally well suited for providing a linear current sweep for horizontal deflection their frequency response-or the switching speed - with high collector volt-ampere ratings is low. It is possible through analyzing the effects of switching speed on opera-

Why Do Companies Merge?

page 224
Investment banking firms whose business it is to counsel and negotiate mergers have established a few yardsticks to determine whether companies can benefit by merging. The yardsticks differ depending on whether small companies or large companies are involved. But certain significant conditions should exist before mergers should be considered.
 Something different in the way of technical sessions is planned, combining panel discussions and papers for maximum effect.

Asymptotes Solve Transistor Design Problems!

page 84
By first erecting a framework of asymptotes the engineer can construct the conventional transistor design curves with remarkable ease and with an accuracy which is adequate for the great majority of practical applications.

Accuracy of a Constant Voltage Device

page 89
Normally a constant voltage device consists of two elements connected in series. This handy graph makes it possible to get a common characteristic of the device by combining the characteristics of the two elements. The voltages are added at a selected current value.

Silicon Photovoltaic Cells For Space Vehicles
page 91
The requirements for low weight, high conversion efficiency and ability to withstand the environment stresses encountered in space have brought increasing application of silicon photovoltaic cells as power sources in satellites and space vehicles. New manufacturing processes are offering higher conversion efficiency and a cell construction that permits reliable mounting.
tion to arrive at a minimum value of switching speed required.

RADARSCOPE

MEASURING PLASMA TEMPERATURE
Scientist at the Avco Research and Advanced Development Div. in Wilmington uses an ultrasonic pulse system to measure the temperature of the new plasma jet developed by Avco. The quartz probes transmit sound pulses which are converted to temperature readings.
U. S.-EUROPE TV LINK is foreseen within 5 years by relaying the signals via the moon. A spokesman for Britain's Pye Telecommunication Ltd. says the first experiments would transmit live transatlantic TV pictures via 100 ft . metal plastic balloons capable of reflecting the wide band frequency used in present transmissions. He says that narrow band TV transmissions will have to be developed before TV pictures can be relayed via the moon.

NEW COMPUTING TECHNIQUE under development by RCA is said to step up computer speeds 1000 times over present systems. As described by Dr. Jan A. Rajchman of the David Sarnoff Research Center, the method involves a combination of microwave and solid state techniques in a system based on the use of super-high-frequency principles. Such a computing system could handle information in the form of frequency pulses varying from 1 to 10 KMC. The computer signals would be in the form of electrical oscillations at these frequencies. Oscillation in one phase represents the digit " 1 ," while a signal 180° out-of-phase would represent " 0 ."

THE AEROSPACE INDUSTRIES ASSOCIATION predicts a marked increase in the use of inertial guidance and control systems during the next 10 years and a proportionate decrease in non-inertial
systems. They predict that Doppler-inertial and stellar-inertial systems will be in considerable use by 1965 in both second generation missiles and space vehicles. At the same time they predict an increase in the use of infrared guidance systems for manned aircraft during the 1960's but a sharp drop off by 1970.

TWO-COLOR TV SYSTEM may be possible, according to Dr. Edwin Land, President of Polaroid Corp. While he admits that there are many obstacles in the past of this kind of simplified TV color, he feels that it very definitely possible to give the full range of colors in only two basic color sources. Some experimentation has already been done with rudimentary two-color processes. Bell Labs' experience has been that the two-color process turns out good looking pictures some of the time but it is difficult to insure natural color all through the complete sequence.

THE "TUNNEL DIODE" announced last month by RCA is described as "an extremely simple and potentially cheap device that will be capable of operating over a wide range of frequencies in virtually any type of circuit that now employs low power tubes or transistors." The experimental units have been operated at frequencies to 1000 MC and a potential range is seen to beyond $10,000 \mathrm{mc}$. It is described as having characteristics similar to those of the parametric amplifiers, but much simpler circuitry.

SHOOTING STARS

At Sperry's "Ashore Polaris Navigation Center," designed to check out navigation equipment going into the Polaris-launching submarines, two technicians run check on operation of 1 -ton stabilized periscope which will take star fixes while submarine is submerged.

industries that will shape tomorrow's research, manufacturing and operation

JAPANESE TV INDUSTRY is growing phenomenally. The 6 year old medium, which uses American standards of transmission, has mushroomed to more than 2 million sets, 34 stations. Station equipment is predominantly Japanese manufactured.

PAY TELEVISION

PAY TV IS FAR FROM DEAD. International Telemeter Co., Div. of Paramount Pictures, announced last month they were installing closed-circuit cable facilities in a suburb of Toronto, Canada. The first public demonstration is scheduled for the Fall. The wire paid TV system will offer three channels. Telemeter officials explained their decision: (1) cable facilities are already in wide use in more than 500 community antenna systems in the U. S. and about 200 in Canada, serving over half million homes (2) the economics of a wire paid TV system offering 3 channels are much more favorable than a broadcast paid TV system on one channel (3) a wire system permits the continuous rerunning of a program several times in the day or evening to suit the convenience of the customer, where broadcasting over the air on this basis would be prohibitively costly (4) the "break-even" point on a wire system is substantially below that of a broadcast system, though at a certain point of saturation in a large market the economics of a broadcast system can be more favorable. Plans call for at least 5 installations of at least 5000 home units during the Fall and Winter months.

FOREIGN TRADE

JAPANESE ELECTRONIC INDUSTRY is probing cautiously to find the least obtrusive way of invading the U. S. electronic market. The initial ground work has been laid during the past few years through rigid quality control of Japanese exports. The Japanese reputation for shoddy, inferior products has been largely dispelled and in its place there is a very considerable regard for Japanese engineering ability. In fact, in certain phases of electronicsnotably microwave-the Nipponese are already in the front rank of development. Exactly how this can be exploited, however, without arousing the American electronic industry to angry reprisals is a dilemma. For the moment attempts are being made to supply only items for equipment that U. S. manufacturers do not make, but this containment must certainly be short-lived. Japanese manufacturers are even happy to split the profits with American manufacturers by shipping in components for assembly by American firms. But this arrangement, too, must be considered temporary for inevitably some firms will break the ice by shipping in complete pieces of equipment and the flood will certainly follow. This vulnerability of American industry must continue so long as labor costs represent such a large slice of equipment cost.

ENGINEERING EDUCATION

THE UNIVERSITY-AND-INDUSTRY TIEUP that has proved so successful in Boston and San Francisco areas is being studied by a group of electronic manufacturers in Long Island, New York, with the hope that some type of similar arrangement can be established. It is becoming increasingly clear that the intellectual stimulation and research-mindedness that the university atmosphere creates is an absolute necessity for an area planning long term participation in the electronic field. The need basically is for engineers-more specifically for creative engineers -and the most imaginative engineers are found in those areas where ample opportunities are available for post graduate courses and general research study. This has been amply demonstrated in Boston where MIT serves as the intellectual center for the engineering community, and in San Francisco where Stanford Research Institute is serving a similar role. The Long Island engineering community is particularly knowledgeable in production techniques. Most of the larger firms in the area are production-wise companies. But if the area is ever to achieve first rank in the electronic industry, facilities must be made available to stimulate new ideas. The proposal now under consideration would expand the presently existing Adelphi Research Center in Garden City, Long Island. The electronic firms throughout the area are being called on to contribute towards the project in accordance with their ability. Herman Fialkov, President of Transistor Corp. is leading the movement.

FOR AIR DEFENSE

New FPS-7 multi-beam radar system by GE's Heavy Military Electronics detects air targets at greater ranges and higheı altitudes than present radars. It will be used in the SACE system. Antenna screen measures $40 \times 18 \mathrm{ft}$. The assembly weighs more than 7 tons.

D|FILM pieteract gives new BLACK BEAUTY ${ }^{\circ}$ series of small, low-cost capacitors outstanding performance characteristics
 - withstand 105 C operation with no voltage derating - moderate capacitance change with temperature
 - excellent retrace under temperature cycling
 - superior long-term capacitance stability
 - very high insulation resistance

- New DIFILM Black Beauty Capacitors represent a basic advance in paper tubular capacitor design. DIFILM Capacitors combine the proven long life of paper capacitors with the effective moisture protection of plastic capacitors ... by using a dual dielectric of both cellulose and polyester film that's superior to all others for small, yet low cost, capacitors.
- Just check the characteristics listed above. This overall performance is fully protected by HCX^{\oplus}, an
exclusive Sprague hydrocarbon material which impregnates the windings, filling all voids and pinholes before it polymerizes. The result is a solid rock-hard capacitor section, further protected by an outer molding of humidity-resistant phenolic. These capacitors are designed for operating temperatures ranging up to $105^{\circ} \mathrm{C}$ $\left(221^{\circ} \mathrm{F}\right) \ldots$ at high bumidity levels . . . without voltage derating!

For complete specifications on DIFILM Black Beauty Capacitors, urite for Bulletin 2025 to Technical Literature Section, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.

SPRAGUE COMPONENTS:

As We Go To Press

See Computers Using Coded Light Signals

High-speed data-handling systems that "read" print or pictures in the manner of the human eye and process information in the form of coded light signals, may ultimately result from new opticalelectronic techniques.

The new methods, being explored at RCA's David Sarnoff Research Center, Princeton, N. J., and other laboratories, are based upon the use of light-sensitive and lightemitting devices linked in networks to perform the coding, switching and information storage functions basic to electronic computing and data-processing.

Such systems might be constructed with various arrangements of image processing panels comprised of photoconductive units, which permit passage of current when they are exposed to light, and electroluminescent elements, which emit light upon direct application of a current. Both types of units are extremely small and consume little power, permitting the ultimate use of many such elements in compact and economical systems.

The flow of information would be controlled by the direction of light along optically selected directions to influence the photoconductor cells, which would act as "gates" controlling the flow of current to the electroluminescent units. In successive stages, the electroluminescent cells would themselves be the sources of light controlling further photoconductor cells and their associated electroluminescent units, creating a versatile network.

PROJECT MERCURY

Tail sections for the ballistic rocket that will carry man into space are nearing completion at Reynolds Metals, Sheffield, Ala.

Sperry specialists run test navigation problem on their new "Navigation Island"

'Print Reader' Scans 200 Characters/Sec

The U. S. Air Force Air Research and Development Command has developed a new information machine which reads typewritten pages and translates them into electrical signals at the rate of 200 characters/second. The new machine, the first of its kind, was developed by the Intelligent Machines Research Div. of Farrington Mfg. Co., Arlington, Va.

The Print Reader MX-2021 is based in part on the techniques used in Farrington's commercial print reading machines but it is far more advanced than any existing commercial installation in that it reads ordinary typewritten sheets having both upper- and lower-case alphabetical characters; numerals which are self-checking for accuracy; and even reads the punctuation symbols.

As it scans a line at a time, it reads the information one character at a time, and upon identification, using stored electronic logic, it instantaneously converts the information into electrical signals at the rate of 200 characters per second.

The Air Force interest in the Print Reader centers upon a neverending maintenance of millions of pages of information which must be processed before being used. All technical information must be indexed and abstracted so scientists will know the information exists and locate the information when they need it.

"Polaris" Sub Controls Duplicated On Land

An exact replica of a "Polaris" missile launching submarine's navigational control center has been put into operation by Sperry Gyroscope Co. at their Syosset, L. I., plant.

The navigational instruments that will guide all Navy's Polaris submarines are being system-tested in a control center identical to that aboard a submarine. Precise underseas navigation is imperative to assure a successful trajectory of the missile over the eventually planned 1500 -mile range.

Officially called the "Ashore Polaris Navigation Center," it is more commonly referred to as the "Navigation Island."

Among the major instruments and systems to be tested in the Ashore Polaris Navigation Center are: NAVDAC (The Navigation Data Assimilation Center, a master computer), SINS (the Ship's Inertial Navigation System), the Type 11 Stabilized Periscope System (permitting celestial navigation while submerged) and other systems, still highly classified.

The dimensions, shape and cabling of the sub's navigation control center have been reproduced exactly in the ashore test facility. The simulated hull section is a duplicate of the sub's navigation center.

Although much of this equipment has been used on other ships (i.e.: inertial navigators and NAVDAC aboard Navy's test ships OBSERVATION ISLAND and COMPASS ISLAND) this will be the first time that all of the instruments will be working in concert as a complete system in the confined area available on a submarine.

Sperry expects to uncover a wealth of information on the very intricate installation and operation of the maze of wiring and cabling needed for submarine navigational equipment.

In addition, Sperry will develop casualty control procedures for emergency operation in the event of an injury to personnel or damage to equipment.

MORE NEWS
ON PAGE 10

(0)THE HUGHES 21" TONOTRON ${ }^{(1)}$ tube offers you greater viewing area for your radar readout applications. This new $21^{\prime \prime}$ tube is especially suited to jet-age air traffic control. Its giant display area enables air controllers to locate and track high-speed aircraft with an accuracy never before attained.

This new tonotron tube provides high light output, integration abilities, full gray scale, controllable persistence, and a very large display area-all in one envelope!

Other applications for this advanced $21^{\prime \prime}$ storage tube include: combat situation plotting, radars, large-scale read-out, medical diagnosis, industrial television and slow-scan displays.

Available also from Hughes is a $21^{\prime \prime}$ charac-ter-writing TYPOTRON ${ }^{\text {¹ }}$ storage tube, which gives you the added capability of high-speed character and spot writing displays in addition to the full gray scale. The Hughes $21^{\prime \prime}$ typotron tube is ideally suited for any of your complex digital read-out requirements.

Both the $21^{\prime \prime}$ Tonotron tube and the $21^{\prime \prime}$ TYPOTRON tube are now available for delivery. For additional information regarding these tubes please write: Hughes Products, Electron Tubes, International Airport Station, Los Angeles 45, California.

For Export information write: Hughes International, Culver City, California.

the big picture for radar displays

See the new Hughes $21^{\prime \prime}$ TONOTRON tube in action at WESCON (Booths 3012-3018)

HUGHES PRODUCTS

(C) 1959. HUGHES AIRCRAFT COMPANY

If you're looking for a high-performance crystal filter

At your service is a group of highly talented Hughes Crystal Filter engineers who specialize in solving difficult network problems. These men can design and produce a crystal filter to meet your most exacting requirements! In addition, Hughes offers you tremendous production capacity-over 10,000 filters per month of a single type. With Hughes Crystal Filters you get:
Precise Selectivity-Eliminates cross talk between channels, makes new systems possible.
Small Size - Reduces overall equipment size, makes filter more reliable by eliminating air space, results in higher stress factor.
High Frequency-Saves circuit costs, eliminates the need for double conversion. Center frequencies 30 kc to 40 mc .

Low Passband Ripple-Eliminates errors in information, enables end equipment to be more precise.
Wide Temperature Stability-Provides flexibility of use, contributes to high reliability.
Low Insertion Loss-Enables system to operate on low signal level - thereby combating noise and cutting circuit costs.

To avail yourself of the Hughes applications engineering service, or for additional information concerning performance levels please write: HUGHES Products, Industrial Systems Division, Marketing Dept., International Airport Station, Los Angeles 45, California. For Export, write: Hughes International, Culter City, California.

See Crystal Filters and other Hughes Products at WESCON: Booths 3012-18.

Creating a new world with ELECTRONICS
HUGHES PRODUCTS

ELECTRONIC SHORTS

- An advanced radar mapping system is being seriously considered by the U. S. Army. Development on the project is under way at Goodyear Aircraft Corp., Arizona Div. The project involves a study of the application of airborne radar sensing and applicable data reduction procedures to establish design parameters and military characteristics for a complete, integrated topographic mapping radar system.
- Other aerial projects by the Army include a reconnaissance system capable of taking, processing, and transmitting aerial photographs from an airborne vehicle to a ground station for immediate viewing. Fairchild Camera and Instrument Co. is doing the development. This first fully automatic system will produce a photographic reproduction on the ground within two minutes after an aerial photograph is taken from an airborne vehicle. It is being designed for use in either manned or unmanned vehicles by all the services.
- The FAA has formed a new group to probe airborne anti-collision systems and to contribute research on the problems of collision prevention. Members of the Collision Prevention Advisory Group have been chosen from six major fields representing civil and military aviation and will work with the FAA's Bureau of Research and Development. Objective of the group is to assist in the development of suitable airborne collision prevention devices in a minimum amount of time through the most efficient use of available funds, personnel and facilities.
- The Navy has awarded a contract for more than $\$ 11$-million to the Military Div. of Remington Rand Univac for fabrication and production of advanced shipboard computing systems. The transistorized computer has been designed to meet rigid military requirements even under extreme environmental conditions. The basic computer is contained in a single cabinet about the size of a businesman's desk. Total power consumption is no greater than that of a common household iron.
- Two appointments in the Willow Run Laboratories of The University of Michigan have been approved. Wray Smith, an administrative associate in the laboratories, is now assistant director. Dr. Louis J. Cutrona, professor of electrical engineering, becomes a research engineer, and will serve as head of the Willow Run Radar Laboratory.
- The House Committee on Science and Astronautics is making a study of the contracts and contracting procedures of the National Aeronautics and Space Administration and the other government agencies over which the Committee has jurisdiction. The Committee is interested in determining the actions being taken by the NASA, and the National Science Foundation in their research and development programs with regard to contracts, with special emphasis on the contracting procedures being employed by the agencies.
- A profitable $2200-\mathrm{mph}$ transport can be built and certificated as early as 1965, according to Lockheed Aircraft Corp. Design studies and testing indicate solution of all major technical problems which previously blocked development of a Mach. 3.0-to-3.5 airliner.
- The NATO partners-Belgium, France, the Federal Republic of Germany, Italy and The Netherlands-expect to procure more than $\$ 400$,000,000 worth of HAWKs from their own production. A European prime contractor, the Societe Europeene de Teleguidage, has been set up in Paris by the major electronics industries of the five countries concerned. The Societe, in turn will sub-contract to other firms in the five-nation group.
- Allan F. Donovan, vice president and director of Advanced Systems Planning at Space Technology Laboratories, Inc., has been named a delegate to a panel of technical experts which will advise the U. S. Committee on Nuclear Testing. One of the nation's top figures in the space technology field, Donovan will advise the Committee on the possibilities of using space vehicles to carry out undetected nuclear tests in outer space.

Order off-the-shelf quantities of HIGH VOLTAGE HUGHES RECTIFIERS at factory low prices from the following exclusive distributors:

Akron Electronic Supply

107 South Arlington; Akron 6, Ohio
Allied Radio Corporation
100 North Western Avenue; Chicago 80, Illinois
Arrow Electronics, Inc.
525 Jericho Turnpike; Mineola, Long Island, N.Y.
East Coast Radio and TV Co.
1900 North West Miami Court; Miami 36, Florida
Elmar Electronics, Inc.
140 Eleventh Street; Oakland 7, California
Radio Shack Corporation
167 Washington Street; Boston 8, Massachusetts
Radio Specialties and Appliance Corporation 917 North Seventh Street; Phoenix, Arizona
Radio Specialties Co.
456 Charlotte Avenue; Detroit 1 , Michigan
Radio Specialties Co., Inc.
209 Pennsylvania Ave.; Alamogordo, New Mexico Terminal Radio Corporation
85 Cortlandt Street; New York 7, New York Western Radio and Television Supply Company 1410 India Street; San Diego, California
Federated Purchaser, Inc.
11275 West Olympic Bivd.; Los Angeles 64, Calif.
Federated Purchaser, Inc.
1021 U.S. Route 22; Mountainside, New Jersey
Gifford Brown, Inc.
618 First Street, N.W.; Cedar Rapids, Iowa
Graybar Electric Company, Inc.
1107 Foch Street; Fort Worth, Texas
Graybar Electric Company, Inc.
717 Latimer Street; Dallas, Texas
Hudson Radio and TV Corp.
48 West 48th Street; New York 19, New York
Kann-Ellert Electronics, Inc.
9 South Howard Street; Baltimore, Maryland
Kann-Ellert Electronics, Inc.
2414 Reedie Drive; Silver Spring, Maryland Kierulff Electronics, Inc.
820 West Olympic Blvd.; Los Angeles 15, Calif. Morris Distributing Co., Inc.
195 Water Street; Binghamton, New York
Morris Distributing Co., Inc.
1153 West Fayette Street; Syracuse, New York
Newark Electric Company
223 West Madison Street; Chicago 6, IIJinois
Newark Electric Company
4747 West Century Blvany
4747 West Century Blvd.; Inglewood, California Radio Electric Service Co. of Pennsylvania, Inc. 7 th and Arch Streets; Philadelphia 6, Pa. Mytronic Company
2145 Florence Avenue; Cincinnati 6, Ohio
IIT
SEMICONDUCTOR DIVISION SALES OFFICES:
BOSTON, 4 Federal Street
Woburn, Mass.; WOburn 2-4824
MINNEAPOLIS, 6121 Excelsior;
Minneapolis 16 , Minn.; WEst 9-0461
NEWARK, 80 Mulberry Street;
Newark 2, N.J.; MArket 3-3520
SAN FRANCISCO, 535 Middlefield Road; Palo Alto, Calif.; DA 6-7780
SYRACUSE, 224 Harrison Street;
Syracuse 2, N.Y.; GRanite 1-0163
Chicago, 1515 N. Harlem Avenue;
Oak Park, Illinois; National 2-0283
CINCINNATI, 816 Swifton Center;
Cincinnati, Ohio; ELmhurst 1.5665
PHILADELPHIA, 1 Bala Avenue,
Bala-Cynwyd, Penn.; MOhawk 4-8365
LOS ANGELES, 690 N. Sepulveda;
El Segundo, Calif.; OR 8-6125

in reliable, subminiaturized packages

You'll find Hughes silicon rectifiers ideally suited to design problems which combine high voltage with small size. In fact, Hughes rectifiers can handle more voltage than any rectifiers of comparable size.

You also get high reliability. Packaged in the Hughes glass envelope - proven dependable throughout many years of test ing and use-this rectifier will stand up
under highly adverse operating conditions. Hughes silicon rectifiers are also packaged in modules in various configurations, such as: ring modulators, matched pairs and quads, etc.

The complete line of Hughes rectifiers ... with 50 to 1000 volt ratings at 50 to 200 mA ... is available for immediate deliveryand in large volume quantities. For addi-
tional information, you are invited to write or phone the Hughes Semiconductor sales office or distributor nearest you. Or write: Hughes Products, Marketing Department, SEMICONDUCTOR DIVISION, NEWPORT BEACH, CALIFORNIA.

For export write: Hughes International, Culver City, California.

RATINGS AND SPECIFICATIONS: Absolute Maximum Ratings at $25^{\circ} \mathrm{C}$.									
JEDEC No.	PIV	RMS Volts	Max. Average Rectified Current mA	Max. Surge Current One Cycle (amp)	JEDEC No.	PIV	RMS Volts	Max. Average Rectified Current mA	nonx. Surge Current One Cycle (amp)
1 N846	50	35	200	2 A	1 N868	50	35	100	1.0
1 N847	100	70	200	2A	1 N869	100	70	100	1.0
1N848	200	140	200	2A	1 N870	200	140	100	1.0
1 N849	300	210	200	2 A	1 N871	300	210	100	1.0
1N850	400	280	200	2 A	1 N872	400	280	100	1.0
1N851	500	350	200	2 A	1 N873	500	350	100	1.0
1 N852	600	420	200	2 A	1 N874	600	420	100	1.0
1 N853	700	490	200	2 A	1 N875	700	490	100	1.0
1 N854	800	560	200	2 A	1 1N876	800	630	100	1.0
1 N855	900 1000	630 700	200	$2 A$ $2 A$	$1 N 877$ $1 N 878$	900 1000	700	100	1.0
1N856	1000	700	20						
1N857	50	35	150	1.5	1 N879	50	35	50	. 5
1N858	100	70	150	1.5	1 N880	100	70	50	. 5
1 N859	200	140	150	1.5	1 N881	200	140	50	. 5
1 N860	300	210	150	1.5	1 N882	300	210	50	. 5
1 N861	400	280	150	1.5	1 N883	400	280	50	. 5
1 N862	500	350	150	1.5	1 N884	500	350	50	5
1 N863	600	420	150	1.5	1 N885	600	420	50	5
1N864	700	490	150	1.5	1 N886	700	490	50	5
1N865	800	560	150	1.5	1 N887	800	560	50	5
1 N866	900	630	150	1.5	1 N888	900	630	50	. 5
1 N867	1000	700	150	1.5	1 N889	1000	700	50	,
Storage temp. -65° to $+200^{\circ} \mathrm{C}$. Typical Full Load Forward Voltage Drop Max. Leakage current full cycle average $20_{\mu} \mathrm{A}$. Cycle . 6 Volts.									

Coming Events

A listing of meetings, conferences, shows, etc., occurring during the period August-October that are of special interest to electronic engineers

Aug. 3-6: 25th Annual Convention, Associated Police Communications Officers, Inc., Shirley Savoy Hotel, Denver, Colo.
Aug. 4-5: Annual Western National Meeting, American Astronautical Society; Los Angeles, Calif.
Aug. 9-12: Heat Transfer Conference, ASME; University of Connecticut, Storrs, Conn.
Aug. 10-17: Meeting International Assoc. of Electrical Leagues; El Cortez Hotel, San Diego, Calif.
Aug. 17: 1st National Ultrasonics Symposium, IRE (PGUE); Stanford University, Stanford, Calif.
Aug. 18-21: WESCON, West Coast Electronic Manufacturers Assoc., 7th Region IRE; Cow Palace, San Francisco, Calif.
Aug. 20-24: Annual Convention, Nat'l Alliance of TV \& Electronic Service Assoc.; Congress Hotel, Chicago, III.

Aug. 24-26: Meeting, American Rocket Society; Evanston, Ill.
Aug. 27-29: Meeting, American Physical Society, AIP; Hawaii.
Aug. 31-Sept. 2: Army-Navy Instrumentation Program, Symposium and Industry Briefing, Statler Hilton Hotel, Dallas, Tex.
Aug. 31-Sept. 2: Conference on Semiconductors, Metallurgical Society of AIME, Statler Hotel, Boston, Mass.
Sept. 1: 6th International Meeting, Institute of Management Sciences; Paris, France.
Sept. 5-6: New England Division Convention, American Radio Relay League; Hartford, Conn. (Tent.)
Sept. 10-11: Midwest Sections Conf., SPI; Sheraton Hotel, French Lick, Ind.
Sept. 10-21: Radio, TV, and Records Exhibition, Federation Nationale Des Industries Electroniques; Exhibition Park, Porte de Versailles, Paris, France.
Sept. 12-21: 6th European Machine Tool Exhibition, Rond-Point de la Defense, Puteaux (Seine), Paris, France.
Sept. 13-16: 11th Electronic Industry Conf., Electronic Representatives Assoc.; Excelsior Springs, Missouri.
Sept. 15: Conf. on Photosensitive Materials and Silk Screen Processes, Western Assoc. of Circuit Manufacturers; Rodger Young Aud., Los Angeles, Calif.
Sept. 16-18: Engineering Management Conference, ASME; Statler Hilton Hotel, Los Angeles, Calif.
Sept. 17-18: Engineering Writing \& Speech Symposium, IRE (PEGWS); Boston \& Los Angeles.
Sept. 17-18: 2nd Conf. on Nuclear Radiation Effects on Semiconductor

Devices, Materials, and Circuits, ODR, Advisory Group on Electron Tubes; Western Union Auditorium, New York City.
Sept. 18: Dinner Meeting, Association of Electronic Parts \& Equipment Manufacturers, Chicago, Ill.
Sept. 20-23: Petroleum Mech. Engrg. Conf., ASME; Rice, Houston, Tex.
Sept. 21-22: 8th Annual Meeting, Investment in Survival, Standards Engineering Society; Somerset Hotel, Boston, Mass.
Sept. 21-23: 8th Annual Meeting, Standards Engineers Society; Somerset Hotel, Boston, Mass.
Sept. 21-25: 14th Annual InstrumentAutomation Conf. \& Exhibition, ISA; International Amphitheater, Chicago, Ill.
Sept. 22-24: Quarterly Conf., Electronic Industries Assoc., Plaza Hotel, New York City
Sept. 22-24: 3rd Industrial Nuclear Technology Conf. ARF, AEC; Morrison Hotel, Chicago, Ill.
Sept. 23-25: 4th Annual Special Technical Conf. on Non-linear Magnetics \& Magnetic Amplifiers, AIEE, IRE; Shoreham Hotel, Washington, D. C.
Sept. 28-30: National Symposium on Telemetering, IRE (PGTRC); Civic Auditorium and Whitcomb Hotel, San Francisco, Calif.
Sept. 28-Oct. 1: National Fall Meeting, American Welding Society; Sheraton-Cadillac Hotel, Detroit, Mich.
Sept. 30-Oct. 1: Industrial Electronics Symposium, IRE, AIEE; Mellon Institute, Pittsburgh, Pa.
Oct. 1-2: 15th New England Section Conf., SPI; Wentworth-by-the-Sea, Portsmouth, N. H.
Oct. 5-7: 5th National Communications Symposium, IRE; Hotel Utica, Utica, N. Y.
Oct. 5-9: 11th Annual Convention, Audio Engineering Society; Hotel New Yorker, New York, N. Y.
Oct. 5-9: 86th Semiannual Convention, including Equipment Exhibit, Society of Motion Picture \& TV Engineers; Statler Hotel, New York, N . Y.
Oct. 5-16: 7th Anglo-American Conference, IAS, Royal Aeronautical Society, Canadian Aeronautical Institute, Institute of the Aeronautical Sciences; Hotel Astor, New York, N. Y.
Oct. 6-7: Value Engineering Symposium, EIA; University of Pennsylvania, Phila., Pa.
Oct. 6-8: 5th Conf. on Radio-Interference Reduction, Armour Research Foundation, IRE, U. S. Army Signal Research and Development Labs; Chicago, Ill.

Oct. 6-9: 2nd International Symposium on High Temperature Technology, Stanford Research Institute; Asilomar Conference Grounds, Cal.
Oct. 7-9: National Symposium on Vac. Tech., American Vacuum Society; Hotel Sheraton, Phila., Pa.
Oct. 7-9: Canadian Convention, IRE; Toronto, Canada.
Oct. 8-10: Meeting, Optical Society of America; Chateau Laurier, Ottawa, Canada.
Oct. 11-15: 3rd Pacific Area National Meeting, ASTM; Sheraton-Palace Hotel, San Francisco, Calif.
Oct. 11-16: Fall General Meeting, AIEE; Morrison Hotel, Chicago, III.
Oct. 12-14: Annual Conference, National Electronics Conference, IRE, AIEE, EIA, SMPTE; Hotel Sherman, Chicago, Ill.
Oct. 13.14: Technical Conference, Society of Plastics Engineers, Southern Calif. section; Ambassador Hotel, Los Angeles, Calif.
Oct. 13-16: Midyear Meeting of Lab Apparatus \& Optical Sections; Scientific Apparatus Makers Assoc.; The Cavalier, Virginia Beach, Va.
Oct. 15-17: Fall Meeting, National Society of Professional Engineers, Olympic Hotel, Seattle, Wash.
Oct. 17-25: International Fair of Plastics Ind., Dusseldorf, Germany.
Oct. 18-22: Meeting, The Electrochemical Society, Inc., Deshler-Hilton Hotel, Columbus, Ohio.
Oct. 19-21: Fall Meeting, URSI, IRE; Balboa Park, San Diego, Calif.
Oct. 19-22: 6th Annual Conf. Int'l Municipal Signal Assoc.; Stardust Hotel, Las Vegas, Nev.
Oct. 20: Plating Techniques as Applied to Printed Circuitry, Western Assoc. of Circuit Manufacturers; Rodger Young Aud., Los Angeles, Calif.

Abbreviations

AIEE: American Institute of Electrical Engineers
AIME: American Institute of Mining \& Metallurgical Engineers AIP: American Institute of Physics ARF: Armour Research Foundation AEC: Atomic Energy Commission ASME: American Society for Mechanical Engineers
ASTM: American Society for Testing Materials
EIA: Electronic Industries Association
IRE: Institute of Radio Engineers
ODR: Office of Director of Defense Research
SMPTE: Society of Motion Picture \& TV Engineers

RELIABILITY IN THE PALM OF YOUR HAND...

EFCO NTSemies

Tramsistorized

Dradembes

for extremely reliable pulse-counting and frequency-division applications in the frequency range of 0 to 250,000 pulses per second.

FEATURES

The new EECO N-Series miniaturized and transistorized plug-in decimal counters feature simple power-supply requirements, low power consumption, small size, and extreme reliability. Saturation techniques, along with consistent derating of component tolerances result in a group of Transistorized Decades that will work dependably from $0-250 \mathrm{kcs}$ even under adverse conditions of environment and power supply variations. All units are completely compatible with EECO T-Series Germanium plug-in circuits. In addition, an auxiliary 9 -step staircase output is available. Most units are designed to plug into a special 13-pin miniature tube socket; other units plug into a standard 29-pin socket (Continental No. MM-29-22S). Mating socket is furnished with each decade.

WIDE SELECTION
EECO N-Series plug-in Transistorized Decades are available in a wide range of models. The counting circuitry is standardized for the various models. Provisions for visual readout and/or preset controls are as follows:

MODEL DESCRIPTION

$\mathrm{N}-101$ No readout.
N -102 Incandescent readout.
N-104 Incandescent readout (remote). Typically a projection readout module.
$\mathrm{N}-105$ Nixie readout, (Can be cabled to remote Nixie.)
N -106 Nixie readout with preset control switch, (Can be cabled to remote Nixie.)
$\mathrm{N}-107$ Incandescent readout with inputs for external preset control.
N-108 Incandescent readout (remote) with inputs for external preset control.
$\mathrm{N}-111$ No readout, but with 1-2-4-2 code.

TYPICAL SPECIFICATIONS

The N-102 Transistorized Decade (with internal incandescent readout) employs four binary stages operating in a 1-2-4-2 code, vistal readout consists of the numerals 0 through 9 displayed vertically and illuminated by incandescent lamps. Total power consumption is approximately one watt. Outputs include ($\mathrm{N} / 10$), ($\mathrm{N} / 10$)', and a 9 -step staircase, which may be adapted for a visual display by means of an emitter follower and $D C$ voltmeter.

ELECTRICAL SPECIFICATIONS

 inputMinimum Trigger input: ($0-100 \mathrm{kcs}$): 7 volts positive pulse or step at $0.5 \mu \mathrm{sec}$. rise time; $(100 \mathrm{kcs}$ to 250 kcs): 7 volts positive pulse or step at $0.2 \mu \mathrm{sec}$. rise time.
Maximum Operating Frequency: 250 kcs .
Input Impedance: $470 \mu \mu \mathrm{fd}$. capacitance, max.
DC Reset Input is provided (normally supplied by T-129 DC Reset Generator).
OUTPUT (No Load)
Amplitude: 8 volts, peak to peak.
Output Levels: ($\mathrm{N} / 10$) and ($\mathrm{N} / 10)^{\prime}:-11$ volts DC and -3 volts DC, nom. Staircase: -11 volts $D C$ to -3 volts $D C$ in 9 steps.
Rise Time: $(\mathbb{N} / 10): 0.5 \mu \mathrm{sec}$; $(\mathrm{N} / 10)^{\prime}: 0.5 \mu \mathrm{sec}$.
Type: ($\mathrm{N} / 10$), $(\mathbb{N} / 10)^{\prime}$, and 9 -step staircase.
Type: (N/10), (N/two N-Series decades or two
Load: Typical, two N-Series decades or two able on request.)

PHYSICAL SPECIFICATIONS
Dimensions: $1-5 / 16^{\prime \prime}$ wide $\times 3^{\prime \prime}$ deep $\times 3-7 / 8^{\prime \prime}$ seated height (including handie), Dimensions seated exclusive of external addenda found in external preset and Nixie models.
Mounting: Plugs into standard 9-pin miniature Mounting: Plugs into standard 9-pin miniature socket. (Some other models require a specia with each such unit)
Pin Connections: Arran
Pin Connections: Arranged for in-line wiring of power and grounds.
Operating Temperature Range: $-54^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$.

NOTE: 0 to 5 megacycle models available soon.

NIKE HERCULES

With deadly accuracy the U.S. Arny'₹ new Nike Hercules ground-to-air guided missile streaks out to meti ar approaching enemy air force. Its nuclear warhead can wipe out an ertire formation.

Western Electric selected Teflon* insulated wire for use in building the alert guidance and control systems of this faster, higher climbing Nike. As leading specialists in high temperature insulated wires and cables, the men and women at Hitemp are proud of this choice, and the role Teflon wiring plays in giving America a strong new perimeter of defense.

HITEMP WIRES, INC.

As We Go To Press . . . (Continued)

Field Defense System For Missile Batteries

First production units of a new, advanced field air defense system designed to pinpoint data on the approach of enemy planes for Army missile batteries are now being delivered to the Army.

Designated the AN/MSQ-18 by the Army Signal Corps, the truckmounted units were delivered to Fort Bliss, Tex., by the Ground Systems Group, Hughes Aircraft Co.

The system is housed in five $21 / 2$ ton Army trucks, an Operations Central truck and four Coder-Decoder group trucks. The Central may be manned by a single operator. Through him the commander may assign specific airborne targets to various missile batteries.

The commander is able to make a rapid evaluation of the overall tactical situation on the basis of information furnished by radars currently used in the missile battalions. This permits autonomous use of the central. When the AN/MSQ-18 is employed as part of "Missile Monitor," information is provided by the new three-dimensional radar, Frescanar, which simultaneously computes range, azimuth and altitude, and from other sources.

Dial Phone System Links RCA Plants

A telephone network tying 12,000 telephones in four widely separated Radio Corporation of America plants into one common dialing system has been turned over for RCA's use by the Long Lines Department of the American Telephone and Telegraph Company.

It is the first dialing tie-line network of its type set up to service one company. It permits RCA operators in one city to dial RCA employes in other cities and also to dial outside-the-plant numbers in those cities.

Operators in four RCA installations in New York City, Camden, N. J., Harrison, N. J., and Lancaster, Penna., can dial any telephone in any of those plants and also can dial local telephones, outside the plants, by dialing through the switchboard in the distant city.

New Multi-Beam Radar For Air Defense Cmd.

The first in a series of new high power, multi-beam radar systems, the AN/FPS-7, has been delivered to the Air Defense Command by General Electric's Heavy Military Electronics Dept.

The FPS-7 provides much faster target data on approaching aircraft than is possible with the conventional system. This data is relayed to the computers at the same time, eliminating the present interdependency of one radar on another and speeding up the calculation of intercept data.

The FPS-7 features a unique "varifocal" antenna design. It operates on a multi-beam princi-

GE technicians install multi-million watt klystron in the FPS-7 super power radar
ple whereby several narrow beams are fed to the antenna, as compared with the standard single broad beam method.
Power for the FPS-7 system is generated by a new 5 -ft. high klystron tube developed jointly by the Rome ADC and GE. Its frequency limits can be held much closer than the frequency limits of

RCA's electronic music synthesizer has been installed at Columbia Univ. for research in electronic music by Columbia and Princeton under a grant from Rockefeller Fndn.

'Polarization Switch" Boosts Radar Range

A "polarization switch" that filters out radar images of storms and heavy clouds and permits allweather jet interceptor pilots to see their targets more clearly has been developed by Westinghouse.
The development will increase radar range between five and ten times the present maximum in storms because it eliminates much of the "clutter" on the radar scope reflected from storms and clouds. Thus, the radar signal bouncing back from the target aircraft shows up proportionately better.
The pilot will be able to flip a switch that will change the type of signal his radar will transmit. One type of signal will be good for clear weather and give maximum range. The other, just developed into practical use, will greatly increase range in "soupy" weather because reflection characteristics from this type of transmission tend to show only the target plane and not the great masses of rain clouds.

The new device is shaped like a roadside directional arrow and can be mounted inside the radar antenna in the nose of all-weather interceptors. It will add almost no weight or size to the electronic system.

E. E. Starting Salaries Up 6\% Over Last Year

Starting salaries for last month's electrical engineering graduates at Lehigh University are up 6% over 1958.

Electrical engineers will receive an average starting salary of $\$ 515$ a month, or $\$ 30$ more than the 1958 graduates received. The $\$ 515$ figure trails only the $\$ 525$ average of the engineering physicists.

The average starting salary for the 1959 Lehigh seniors is $\$ 474$, as compared to $\$ 455$ a year ago. This represents a 4% increase.

The number of interviews conducted for electrical engineers was nearly double over last year. This year the 40 electrical engineers received 618 interviews with recruiters from 137 companies as compared to the 317 interviews by 120 companies for the 44 graduates in 1958.

CHECK YOUR PULSE, SIR?

"SCOTCH" BRAND High Resolution Tapes
deliver a sharper pulse-with fewer dropouts!

In instrumentation, as in life, it's often the pulsecount that counts. So what if your recording impulses are as square as a bar-graph? If your tape only records camel-backed humps, where are you? Probably about due for a change-to "Sсотсн" brand High Resolution Tapes.

Your equipment is somewhat like the proverbial sweater - no matter how advanced, you can only get out of it what you put in. And that calls for "Scotch" brand High Resolution Tapes-made to deliver improved resolution as pulse density climbs and effective frequencies soar upward to stratospheric heights.

Like so many other advances in tape technology, this superior resolution is a product of 3 M research. For one thing, "SCOTCH" brand high potency oxides give coatings a higher magnetic retentivity -about a third more than standard. And since the shorter wave lengths of high frequencies are recorded by the surface of the coating, a coating of these potent oxides can be thinner and yet provide equal flux line strength. Results? A flexible tape for intimate tape-to-head contact, a cleaner, sharper recorded pulse.
"Scotch" brand High Resolution Tapes offer these potent coatings on your choice of two tough polyester backings-158 for standard play, 159 for extra-play. And both are designed to line up your square-waves as densely as a close-order drill, so sharp and clean you'll never miss a bit.

In taping high frequencies, the tested uniformity and dropout-free performance of "SCOTCH" bRAND Magnetic Tapes give the added bonus of reliability. The greater the density of information, the more critical the need for defect-free tapes, and here's where experienced "SCOTCH" brand Tape technology really tells.

Whatever your application-data acquisition, reduction or control programming - "Scotch" brand Instrumentation Tapes supply the reliability you need today and continue to anticipate tomorrow's needs with newer, more sensitive tapes.

In addition to "Scotch" brand High Resolution Tapes 158 and 159, check the others for your application. "Scotch" brand High Output Tape 128 offers top output in low frequencies, even in ambient temperature extremes. "Scotch" brand Sandwich Tapes 188 and 189 end rub-off, build-up, reduce head wear to an absolute minimum, show little wear after 50,000 passes. "Scotch" brand Instrumentation Tapes 108 and 109 remain the leaders for top performance at low cost.

Where there's no margin for error, there's no tape like "Scotch" brand Magnetic Tape for instrumentation. For details, write Magnetic Products Div., Dept. MBR-89, 3M Company, St. Paul 6 , Minn. or mail the inquiry card.

Electronic Wire for Every Application

Service Rated—Quality Controlled

 Every Electronic Wire you need in easy-to-use packages.Aircraft and Auto Radio Wire
Antenna Rotor Cables
Broadcast Audio Cables
Bus Bar Wire
Community TV Cables
Cords
Hi-Fi and Phono Cables
Hook-Up Wires
Intercom Cables

Magnet Wire
Microphone Cables
Mil-Spec Hook-Up Wires
RG/U Cables
Shielded Power Cables
Shielding
Sound and PA Cables
Strain Gauge Cables
Transmission Line Cables
Cables

Ask Your Belden Jobber

One Wire Source for Everything Electrical and Electronic

NEW FROM PHILCO

2N1199
This high speed switch has exceptionally low saturation voltage (typically 0.125 V), permitting practical design of 5 mc pulse circuits, using conventional saturated switching configurations. 30 mc pulse rates are obtainable in practical circuits using non-saturating techniques.

2N1267-68-69

The high gain characteristics of these units make possible the design of high efficiency IF amplifier circuits for communications equipment. These devices have unusually low collector capacitance . . . typically $1.5 \mu \mu \mathrm{f}$. . . and are available with restricted beta ranges to simplify design problems

2N1270-71-72

The excellent high frequency response of these transistors makes practical the design of high performance communications systems at frequencies up to 60 mc . They have the same low collector capacitance and are available with restricted beta ranges.

Immediately available for prototype design from your Philco Industrial Semiconductor Distributor,

Write Dept. EI-859, Lansdale Tube Company, Division of Philco Corporation, Lansdale, Pa.
*SADT . . Tradenark Pbilco Corp. for Surface Alloy Diffused-base Transistor.

ELECTRONIC industries

ELECTRONIC INDUSTRY IN THE 11 WESTERN STATES

Metropolitan Areas	Number Electronic Firms	Square Feet Plant Facilities	Employment	Sales (000) Omitted	Payroll (000) Omitted	Technical Employment
San Diego..........	28	300,000	3,500	45,000	16,500	n.a.
Phoenix-Tucson	15	245,000	4,000	52,000	22,500	n.a.
Portland-Seattle	30	298,000	4,500 82,000	50,000 $1,125,000$	457,000	n.a.
Los Angeles-Orange	450	14,550,000	82,000	-380,000	145,000	8,600
San Francisco-Peninsula	129	$6,356,000$ 165,000	27,100	27,000	9,450	n.a.
Denver and other areas Colorado.	14	165,000 500,000	11,000	110,000	53,000	n.a.
Balance 11 Western States	69 735	22,414,000	134,100	1,789,0001	725,450	n.a.
Total 11 Western States.	735 4100	22,414,000 n.a.	700,000	7,800,000 ${ }^{1}$	n.a.	127,000

II Western States as percentage U.S. Electronics Industry: 17.8% of electronic firms; 19% of employment: 23% of sales.
(I) Does not include broodcast and service revenue.
-Western Electronic Manufacturers Association

Capsule summaries of important happenings in affairs of equipment and component manufacturers

EAST

SPERRY GYROSCOPE CO., Great Neck N. Y., has received contracts totaling $\$ 47$ million for development and production of high-powered air search radar systems. Contract was awarded by the U. S. Air Force.

GENERAL PRECISION LABORATORY INC., Pleasantville, N. Y., has just won a $\$ 1,844,000$ Air Force contract award. The new contract covers additional procurement of components for the AN/APN-81 Doppler Navigation System.

NOTHELFER WINDING LABORATORIES, manufacturers of customs transformers, have moved their plant and offices to Ewingville Rd., Trenton, N. J.

FILTORS, INC., Port Washington, N. Y., has completed their new production reliability center for their line of relays. The new test center is adjacent to their main building.

ACF INDUSTRIES, INC., Avion Div., Paramus, N. J., has just received a U. S., Army contract of $\$ 600,000$ to produce radar beacons for the SD-1 surveillance drone.

WESTINGHOUSE ELECTRIC CORP. has announced the development of an airborne device, called a polarization switch that will filter out radar images of storms and heavy clouds. This will permit allweather jet interceptor pilots to see their targets more clearly under poor conditions.

RAYTHEON CO. has announced completion of plans to construct a transistor plant which will eventually employ more than 2000 persons in Lewiston, Maine. The new plant will contain 140,000 square feet of production space. Construction will start early this fall and will be completed by mid-1960.

PHILCO CORP. has broken ground for its new multi-million dollar Transac computer center which will be located near Willow Grove, Pa. The new plant will contain over 200,000 square feet of floor space.

ALLEN B. DU MONT LABORATORIES, INC., has received a contract from the U. S. Air Force for the manufacture of 3200 radar indicator cathode-ray tubes.

INTERNATIONAL TELEPHONE \& TELEGRAPH CORP. has been awarded a $\$ 2.3 \mathrm{mil}-$ lion contract to supply integrated power systems for the Air Force's B-58. The contract was awarded by Convair, a division of General Dynamics, manufacturer of the deltawinged Hustler.

THE INDIANA STEEL PRODUCTS CO. and GENERAL CERAMICS CORP. have announced an agreement on basic terms for a merger. A special meeting of the stockholders will be held in late August for a vote on the merger.

ACOUSTICA ASSOCIATES, INC., has opened a new plant in Plainview, L. I. The modern new building contains 50,000 square feet of floor space and was specially designed for them.

HAVEG INDUSTRIES is consolidating all of its wire and cable facilities in their wholly owned subsidiary, American Super-Temperature Wires, Inc. This includes all of Haveg's ture Wires, Inc. This includes all of Haveg's
Wilmington, Delaware, wire and cable manufacturing, development and production facilities.

MID-WEST

ROHN MFG. CO., Peoria, Ill., recently acquired additional manufacturing facilities of approximately 20,000 square feet. This additional space is in a building next to the main plant at Bellevue near Peoria.

CHICAGO TELEPHONE SUPPLY CORP., Elkhart, Ind., has announced the formation of a new subsidiary, CTS, Inc., and also the opening of a new 10,000 square feet plant in Berne, Ind. This is CTS' 5th plant, bringing their total plant area to $436,000 \mathrm{sq}$. ft .

POTTER \& BRUMFIELD, INC., presently a subsidiary of American Machine \& Foundry Co., has become an AMF division. The company's name will be changed to Potter \& Brumfield Div. of AMF Co.

VICTOREEN INSTRUMENT CO., now has a new atomic radiation monitoring and alarm system for U. S. Navy submarines under test on a nuclear submarine prototype reactor. It is designed to monitor general gamma ray radiation levels in and around the reactor engine.
P. R. MALLORY \& CO., INC., has formed a new division, Mallory Electronics Div., to develop manufacture and sell electronic assemblies for military, missile, industrial and commercial applications.

DOW CORNING CORP. has announced a new price reduction for Silastic (B) LS- 53 , the fuel and solvent resistant silicone rubber. The new price will be $\$ 16.00$ per lb.

COLLINS RADIO CO. has received a new contract for approximately $\$ 5$ million. The contract calls for an extension of the Strategic Air Command's global communications network.

MOTOROLA INC. has opened a new 78,000 square feet Administration Office and Engineering Laboratory at their Military Electronics Center, 1450 N. Cicero Ave.

WEST

TEXAS INSTRUMENTS INCORPORATED has set up an Avionics Flight Test Center in newly-acquired facilities at Addison Airport in extreme North Dallas.

BJ ELECTRONICS, BORG-WARNER CORP. has received a substantial supplemental contract to the initial $\$ 500,000$ contract for GMD-1 transportable ground tracking and data-recording equipment. The additional contract was issued by the U. S. Army Signal Corps.
MAGNETIC AMPLIFIERS, INC., has obtained larger quarters for its West Coast Div. The new plant contains 12,000 sq. ft . as compared with their former $5,000 \mathrm{ft}$. Plant is located in El Segundo, Calif.

SLIP RING CO. OF AMERICA has recently acquired a $\$ 180,000,61 / 2$ acre industrial site at 13000 So. Avalon Blvd., Los Angeles. They will soon start construction on a 100,000 sq. ft . manufacturing plant at this site.

MAGNETIC RESEARCH CORP., Hawthorne, Calif., has received a contract from Bendix Products Div., Mishawaka, Ind., for the production of 28 v .60 cps ground power supplies for use on the Navy's operational surface-to-air Talos Missile.

HERMETIC-PACIFIC CORP., Rosemead, Calif., has just completed expansion of their plant facilities. They are subsidiaries of Hermetic Seal Corp. of Newark, N. J.

ENGINEERED ELECTRONICS CO. are starting construction of 23,000 square feet production plant in Santa Ans, Calif.

LOCKHEED AIRCRAFT CORP. has announced selection of a site adjoining the city of Newport Beach, Calif. to build administrative and scientific headquarters for the recently established Lockheed Electronics and Avionics Div. (LEAD). An agreement to purchase the 200 -acre tract is subject to approval of satisfactory zoning and other conditions.

SYLVANIA ELECTRIC PRODUCTS, INC. has announced plans for a 40,000 square feet Special Tube Operations laboratory in Mountain View, Calif.

COMPUTER EQUIPMENT CORP., Los Angeles, Calif., has announced the receipt of a contract for the development of an advanced space/time velocity data recording system. The prime contract was issued by the Air Research \& Development Command of the U. S. Air Force.

CAL-TRONICS CORP., has received a $\$ 500$,000 contract from Hughes Aircraft Company's Semiconductor Div. to produce a group of Automatic Production Diode Testers.

AEROJET-GENERAL CORP. has been named a member of an 8-company team, led by Airborne Instruments Lab. to design and develop advanced airborne electronic equipment. AIL recently received a $\$ 38.9$ million contract from the Air Force.

CONVAIR, Div. of General Dynamics Corp., has received a $\$ 2$ million contract for design and manufacture of a radar for a navigationbombing system from Autonetics, a Div. of North American Aviation, Inc. The equipment will be used in the Navy's A3J carrier-based attack bomber.

HALLAMORE ELECTRONICS CORP., a div. of the Siegler Corp., has been awarded a half million dollar contract for airborne computers and associated test equipment for the Vega outer space rocket. Contract was awarded by the Jet Propulsion Laboratory of the California Institute of Technology.

ROBERTSHAW-FULTON CONTROLS CO. has been awarded follow-on contracts totaling $\$ 963,338$ for stability augmentation amplifiers and spares by Convair Div. of General Dynamics Corp.

THE DEUTSCH CO. will open their new air-conditioned electrical connector plant in Banning, Calif. on September 4th. The 35,000 square feet plant will be used for completely integrated production and engineering facility of their electrical connectors.

THOMPSON RAMO WOOLDRIDGE INC. has announced a $\$ 2$ million expansion of its Tapco Group West Coast operation. The aircraft and missile components plant will be located in Orange County, Calif.

RAYTHEON CO. has announced plans to establish a wholly-integrated electronic warfare center in Santa Barbara, Calif., to be known as the Santa Barbara Subdivision, the center will tie together in a single geographic location-engineering, production and marketing of the division's widespread interests in the countermeasures, counter-countermeasures and infrared fields now at various places.

... unsurpassed for hermetic and other rigorous applications

Developed originally for hermetic applications and accepted for such use because of its excellent resistance to Freon refrigerants, LectALite magnet wire is proving to be of great interest in other electrical products. As LectALite is 20° to $25^{\circ} \mathrm{C}$ higher in heat-aging characteristics than Formvar and has excellent resistance to cut-through under heat, it offers superior performance in many other types of windings.
LectALite magnet wire is insulated with a smooth, uniform film of Lecton, an aqueous dispersion of an acrylic polymer. Applied by a dip and bake process, Lecton enamel gives a uniform rich mahogany color to the finished wire.
Outstanding properties of LectALite are: exceptional resistance to Freon 12 and Freon 22, dielectric strength, film adherence, thermoplastic flow, high temperature rating, heat shock, heat aging, and moisture resistance. LectALite's physical, electrical, and chemical properties equal or exceed those of Formvar.

LectALite is a member of the full Auto-Lite line of outstanding magnet wire-BondALite • DacALite • IsALite • LectALite • NyALite • SodALite

ANY WIRE PROBLEMS? Write, stating your wire problems, or mail coupon for the complete magnet wire catalog.

AUTO-LITE

GENERAL PRODUCTS GROUP

 WIRE AND CABLE DIVISION • TOLEDO 1, OHIOPlants at Port Huron, Michigan, and Hazleton, Pennsylvania

Silver, in many forms and alloys, is a necessity in the electronics and electrical industries. To meet this need on a high quality level, Handy \& Harman manufactures powder, flake, paint, paste, sheet, strip, wire, etc., for printed circuits, wiring, resistors, condensers, thermistors, contacts, printed terminal strips on glass, ceramics, plastic laminates, etc.
Another "At Your Service" Division of the Handy \& Harman Silver Supermarket is our Research and Engineering Department. Always ready to help you with any problem or project you may have involving silver for any application.

VISIT OUR BOOK DEPARTMENT

We have five Technical Bulletins giving engineering data on the properties and forms of Handy \& Harman Silver Alloys. We would like you to have any or all of those that
particularly interest you. Your request, by number, will receive prompt attention.

[^1]
DELCO RADIO

NEW POWER TRANSISTORS

MILITARY-COMMERCIAL

		2N1168	2N392	2N1011	2N1159	2N1160
$V_{\text {cb }}$ max.		50	60	80	80	${ }_{\text {colts }}^{80}$
Ic max.		5	5	5	5	7 amp.
$I_{\text {co }}$ ($\mathbf{V}_{\text {ec }} 2$ volts) Typical $25^{\circ} \mathrm{C}$.	\%	65	65	65	65	65 $\mu \mathrm{a}$.
HFE (3 amp.)		-	60-150	30-75	30-75	-
HFE (5 amp.)		-	-	-	-	20-50
AC Power Gain ($I_{c}=0.6 \mathrm{amp}$.)		37 DB	-	-	-	-
$\mathrm{V}_{\text {ceo }}\left(\mathrm{I}_{\mathrm{c}}=1 \mathrm{lmp}.\right)$	\%	$\underset{\text { typical }}{40}$	50	60 min	60 min.	$\begin{gathered} 60 \\ \text { volts min. } \end{gathered}$
Thermal Gradient max.		1.5	1.5	1.2	1.2	$\begin{aligned} & 1.2^{\circ} \\ & c / w \end{aligned}$

Delco Radio rounds out its power transistor line with this new 5ampere germanium PNP series. Types 2N1168 and 2N392 are specially designed for low-distortion linear applications, while 2 N 1159 and 2 N1160 are outstanding in reliable switching mode operations.

Type 2N1011 is designed to meet MIL-T-19500/67 (Sig. C). It joins 2N665, MIL-T-19500/68 (Sig. C); 2N297A, MIL-T-19500/36 (Sig. C) and JAN2N174, MIL-T-19500/13A to provide a selection for military uses.

Write today for engineering data on Delco Radio's line of High Power Transistors.

See you at the WESCON Show, Booth No. 114

DIVISION OF GENERAL MOTORS
KOKOMO, INDIANA
BRANCH OFFICES
Newark, New Jersey
1180 Raymond Boulevard
Tel: Mitchell 2-6165
Santa Monica, California
726 Santa Monica Boulevard
Tel: Exbrook 3-1465

ITALY

New U. S.—Italian Firm

Northrop Corp. and Societa Edison of Milan, an Italian electric power company, have formed a new Italian communications engineering company to be known as Edison-Page S.p.A. Northrop, through its wholly-owned subsidiary, Page Communications Engineers, Inc., has acquired 49% of the stock of the new company. Societa Edison owns 51%. The new firm will begin operations immediately on the engineering and development of Page communications networks and related electronic activities for Europe and Africa.

DENMARK

Danes Buy 10 MEV

Accelerator from U.S.

High Voltage Engineering Corp., Burlington, Mass., has sold a 10 -million-electron-volt, tandem Van de Graaf accelerator to the Universitet Institut for Teoretisk Fysik, Copenhagen, Denmark.

The institute is directed by Prof. Niels Bohr, internationally famed nuclear physicist. Support for research equipment was received by the university from foundations in Denmark and the U. S. The equipment will be used for fundamental investigation of atomic nuclei under the direction of Dr. T. Huus. A specific study will be the nuclear energy levels in heavier nuclei.

This is the third accelerator of this design to be ordered from High Voltage Engineering by European research centers. They have been ordered by Physikalisches Institut der Eidgenossischen Technischen Hochschule, Zurich, and another European university.

INDIA

Radio Officials Study

U. S. Operations

Four key officials of the All India Radio system are now in the U. S. for four months of observation of the American telecommunications industry. They are here under the International Educational Exchange Program of the U. S. Dept of State.
The visitors are: Mr. Dinesh Chandra Bhattacharji, Director, Engineering Staff Training School; Mr. Dinkar Vishwanath Phatak, Deputy Planning Officer, Planning and Development Unit; Mr. Umesh Chandra Sinha, Assistant Engineer; and Mr. Ananthakrishna Venkateswaran, Deputy Planning Officer, planning and Development Unit.

The group will observe training methods for U. S. radio and TV personel, the latest trends and techniques, the installation of equipment, the manufacture and use of sound recording devices, and the design practices used in studios and auditoriums.

MIDDLE EAST

Communications Link for U. A. R.

A tropospheric scatter link is to be established between the Egyptian and Syrian regions of the United Arab Republic, reports the Bureau of Foreign Commerce, U. S. Dept. of Commerce. Probable sites will be at Sa roukhia in Syria, and Port Said in Egypt. The sites are about 280 miles apart.

Additional VHF links of about 19 miles between Saroukhia and Damascus in Syria, and 31 miles between Port Said and a site in Egypt are being considered.

Tandem Van de Graaff particle accelerator, a 10 -mil-lion-electron volt research tool built by High Voltage Engineering Corp., Mass., will be used in basic nuclear research by the Danes.

PUERTO RICO
 Electronic Plants Listed

The 70 U. S. branch plants manufacturing electronic-electrical products in Puerto Rico are listed in a new directory of nearly 600 factories issued by the Office of Puerto Rico's Economic Development Administration, Dept. PR, 666 Fifth Ave., New York.

The plants, which ship $\$ 400$ million worth of production annually to the Continental U. S., are listed by name and address, product made, the date of start of operations, and the name of the executive in charge.

NATO Communications

Headquarters Land Forces Southeastern Europe is linked to NATO's Southern Europe hdqts and to SHAPE in Paris with this transmitterreceiver station near Izmir, Turkey.

WESTERN EUROPE

NATO Nations to Make Hawk

Five Western European alliesFrance, Italy, Germany, Belgium, and Holland-have signed an agreement with the U. S. to mass-produce within their own countries the Army-Raytheon Hawk missile, a key defensive armament soon to become operational with American troops.

The NATO nations will use their own monies, manpower, and other production facilities. They expect to produce more than $\$ 400$ million of Hawks. The five will pool their funds to finance the program and have formed a managing company, the Societe Europeane de Teleguidage. The U. S. will furnish some parts and technical assistance to help the program get underway.

Tracerlab Studies European Instrumentation Market

S. S. Auchincloss, President of Tracerlab Keleket, a U. S. nucleonic instrumentation firm, Waltham, Mass., says that the company's engineers have been investigating the capabilities and facilities of various European manufacturers, and that final arrange(Continued on page 30)

Now you can specify these popular submins for extra-

severe duty - in new Raytheon Reliability-Plus types

Only Raytheon produces these improved-reliability button base subminiature tubes - electrically identical to and directly interchangeable with prototypes, and controlled throughout production to meet the following tests above and beyond military specifications:

[^2]MAXIMUM RATING LIFE CONTROLLED WARM-UP TIME REDUCED HEATER-CATHODE LEAKAGE AT HIGH HEATER VOLTAGES (CK6021WA, CK6111WA, CK6112WA)

EACH TUBE MUST MEET RIGID

 QUALITY' CONTROL STANDARDS- 0.4% AQL for major characteristics compared with prototypes' 0.65%.
- High sensitivity thyratron short test.
- X-ray inspection - an original Raytheon safeguard.

MOLECULAR ELECTRONIICS"
Minute slice of silicon shown, used as a light sensing device for telemetry, duplicates all the functions of a miniaturized, transistorized oscillator comprised of parts shown in foreground.

PROJECT MERCURY TEST

Arthur A. Collins, pres. of Collins Radio, and other Collins officials examine a full scale antenna test mockup of a Project Mercury capusle being used to check out the communications system which Collins is supplying for the "man-in-space" attempt. Design work has been completed, the antennas are now being tested.

Snapshots... of the Electronic Industries

RADAR JAMMING

Realistic simulation of radar jamming signals was demonstrated on Sylvania's AntiCountermeasures Trainer (ACTER) at PGMIL show in Wash., D. C.

IR DETECTOR
At the recent PGMIL show Avion Div. of ACF Industries exhibited this CODES (ConIImutating Detection System) infra-red receiver designed for detecting space satellites.

SPACE BOUND

Space pilot readies himself for a 19-G ride on the test tower at U. S. Naval Material Center, Phila. Test ride will check the new Mark IV "space swit" developed for the Navy by B. F. Goodrich.

INTERROGATION
Russian-speaking Americans, to serve as guides at U.S. exhibit in Moscow, meet which will answer questions-in Russian -about America.

RADIO PATH TESTING

On the Greenland ice cap portable aluminum towers, with parabolic discs, check out proposed new communications system. Up-right Scaffolds made the towers.

SAFETY VAN

At Patrick AFB, Cape Canaveral this TV van developed by Hallamore Electronics flashes a picture of missile launching to the Range Safety Officer to check missile's attitude.

LONG RANGER
C. W. Curtis of Hughes Aircraft demonstrates new "parametric amplifier" that doubles the effective range of air traffic radars.

Now 4 CHR High Temperature TEFLON Tapes

Pressure-Sensitive TEFLON Tapes

easy to apply in both electrical and mechanical applications

The electrical uses of Temp-R-Tape include slot lining, interlayer and interphase insulation, harness bundling, wrapping for microwave components, transformer coils, capacitors and high voltage cables, etc.
As a low friction, non-stick facing, Temp-R-Tape applications range from facings for film guides in sensitive electronic instruments to the facing for heat sealing bars, forming dies, chutes, guide rails, etc.
Chemical resistant facing applications include masking tape in high temperature dipping operations.
All four of these pressure-sensitive Teflon tapes are available from stock in rolls and in sheet form. In addition to Teflon tapes, CHR also makes a fiberglass tape with thermal curing, pressure-sensitive silicone adhesive (Temp-RTape GV) and silicone rubber coated fiberglass tape with thermal curing, pressure-sensitive silicone adhesive (Temp-R-Tape SGV).
FREE SAMPLES and folder - write, phone or use inquiry service.

$--100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$ applications
- Class H and Class C insulation
- Non-stick and low friction facing
- Chemical resistant facing

TEMP-R-TAPE T is a .006" pressure-sensitive Teflon tape with $-100^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}\left(-70^{\circ} \mathrm{C}\right.$ to $200^{\circ} \mathrm{C}$) temperature range. It has high dielectric strength, low power factor, negligible moisture absorption, high elongation, is non-corrosive and non-contaminating. Meets Class H Temperature requirements.

TEMP-R-TAPE TH is a $.013^{\prime \prime}$ pressure-sensitive Teflon tape with $-100^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$ temperature range. It is similar to Temp-R-Tape T except that it is made of $.010^{\prime \prime}$ Teflon film to which $.003^{\prime \prime}$ silicone polymer adhesive has been added. Often used where a single, thicker dielectric barrier is desired or where a more rigid, abrasion resistant wrap is required.

TEMP-R-TAPE C is a $.002^{\prime \prime}$ pressure-sensitive, thermal curing Teflon tape with $-100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$ temperature range. It is made with a cast Teflon film which provides dielectric strength ($2750 \mathrm{v} / \mathrm{m}$) higher than any other type of Teflon film. When cured in place, it will operate at temperatures up to $500^{\circ} \mathrm{F}$ and will withstand much higher temperatures for short periods. Meets Class H and Class C temperature requirements.

TEMP-R-TAPE TGV is a thermal curing, pressuresensitive Teflon impregnated fiberglass tape with $-100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$ temperature range. Although it is used extensively for mechanical and electrical applications, its dielectric strength is lower than other Temp-R-Tapes.

CHR products include:

COHRIastic Aircraft Products - Airframe and engine seals, firewall seals, coated fabrics and ducts
COHRIastic Silicone Rubber Products Silicone rubber moldings and extrusions, silicone rubber sheets, silicone sponge rubber
Temp-R-Tapes - Pressure sensitive, thermal curing Teflon and silicone tapes
Allied Products - COHRlastic silicone cements and conductive gasketing

Leader In Fabrication of Sillcone Rubber

Printed Circuits:

for the newest techniques... and basic methods, too...

STABILENE® Film by K\&E gives accurate dependable results

However you make your masters, you can expect better, more uniform results if you start with Stabilene Films. These strong, clear, completely stable films are available in a complete range of surfaces, for traditional preparation methods or the most advanced technique now used.
The Scribing Method-newest and most accurate - is fast and simple, too. The circuit is penciled on the Stabilene surface, then scribed in outline with double lines. Pads are scribed in, and the master copy is ready for transfer to a sensitizel Peel-Coat Stabilene, where the lines and pads are simply stripped out.
The scribing method - an exclusive $K \& E$ development - is 2 to 3 times faster than taping. All but the most complicated circuits can be prepared one-to-one - eliminating reductions. Scribe points retain
proper sizes, produce accurate lines of constant thickness.
Cut ' N ' Strip is another time-saving new $\mathrm{K} \& \mathrm{E}$ technique. If you work one-to-one, it's just one step from master to board there's no intermediate photography. A rough pencil layout is made on the back of Stabilene Film, using an accurate grid underlay. Then, the sheet is turned faceup, pads are laid out with a modified K \& E Drop Bow Compass with blade, and circuit lines are cut with a circuit-path cutting tool. The surface can now be easily peeled off with a knife or tweezers.
One big advantage of Cut 'N' Strip: you can make a positive or a negative from the same basic drawing, depending on which surface you strip off. Corrections are easily made, using K\&E opaquing fluid. With it, you can touch up or replace lines, then re-
cut and re-peel. Stablene Film is actinically opaque, cuts clean, yields sharp, accurate lines.

Stabilene Films For Taping or Inking Methods provide accurate, permanent dimensions. All have outstandingsize-holding stability, plus the exclusive K\&E "Engineered Surface," which accepts drawn lines clearly and uniformly-without feathering or blurring. Stabilene makes accurate taping easier, too-it lays down absolutely flat.

Only K\&E offers a complete range of films for printed circuit preparation . . . plus a full line of scribers and special Cut ' N ' Strip tools. All the basic techniques are described in detail in a new K\&E brochure "Preparing Printed Circuits on Stabilene Film", For your copy, simply clip the coupon below and mail it today.

- DC to $6 \mathrm{Mc},-3 \mathrm{db}$.
- Low Drift Amplifiers
- Built In Time \& Voltage Calibrators
- Automatic Sync
- Trigger Level Control
- Built in TV Sync Separators
- 18 Sweep Speeds, to 0.1 $\mu \mathrm{sec} / \mathrm{cm}$
- Rise Time $.06 \mu \mathrm{sec}$
- Sensitivity $100 \mathrm{mV} / \mathrm{cm}$
- Weight 16 lbs .

PRICE $\$ 345$

The Telequipment S31 is a portable scope with laboratory performance. Calibration is unaffected by line voltage variations $90.130 \mathrm{~V}, 60$. 1000 cps , and the built-in calibrators give continued assurance of accuracy. It has been supplied to Bendix, GE, IBM, RCA, Westinghouse and hundreds of other companies. Its rock-rigid sync, bandwidth and ease of operation will give it a place in YOUR lab-'the Scope most likely to be grabbed".
Service \& Parts? On both East \& West Coasts. 1 year guarantee.

NEW companion models of S31:

S31R-rack-mounted, same specifications, Panel height $51 / 4^{\prime \prime}$
D31-double-beam, dual gun CRT, twin amplifiers. Weight 22 lbs . D31R-rack mounted, same specifications, Panel height $73 / 4^{\prime \prime}$

See them at WESCON, BOOTHS 2003-4 or call us for address of your local Scopes Representative

ELEGTRONG
inousiniles

International

(Continued from page 24)
ments with several of them are now being formulated.
"A large share of future power requirements will be filled by nuclear power as Europe seeks to obtain price stability and security not currently offered by coal and Mid-East oil," says Mr. Auchincloss, "and the large increase in power reactors will cause a corresponding increased demand for nucleonic instrumentation."

Test Equipment for France

George Mettler (center), president of MB Electronics, Inc., checks vibration test equipment ordered by Sud Aviation Societe Na tionale de Constructions Aeronautiques Group Technique de Cannes on the French Riviera. M. Agliany (left), engineer Sud Aviation, and J. Cartier of MB's EuropeanTechnical Service Office in Paris look on.

NATO Early Warning Radar

Marconi's Wireless Telegraph Co., Eng., and Compagnie Generale de Telegraphie Sans Fil, France, have a $\$ 20,000,000$ contract to provide and install equipment in the NATO early warning chain. The contract also calls for training national personnel and assistance in technical maintenance after handover of the stations in working order.

The two companies are planning to award substantial sub-contracts to Italian industry.

UNITED KINGDOM

U. S.-U. K. Joint Atomic Venture

An agreement has been signed between North American Aviation, Inc., through its Atomics International Div., Canoga Park, Calif., and the English Electric Co., Ltd., London, England, providing for collaboration between the two companies in the field of organic liquid cooled reactor systems.

Atomics International have done extensive research and development for some years on this reactor, which shows promise as a potential low-cost system for smaller nuclear power stations and for nuclear marine propulsion.

MAIN PLANT - ELKHART, INDIANA - Manufacturers of variable resistors, prozision wire fixed resistors, tube savers switches and other $\leqslant p \in c i a l$ comzonents for radit. television commercial and military electrcnic equipment.

E 2π

SOUT HEASTERN SUBSIDIARY - CTS Asheville, Ince, Mill Gap Road, Skyland, Norit. Carolina - Manufacturers of variable resistors and associated switches

WEST COAST SUESIDIARY = Chicago Tele= phone of California, Inc., 105 Pasadena Avenue, South Pasadena, California - Manufacturers of variable resistors and associated switches, custom moldings, transformers foot switches, ignition coils and solenoid coils

CANADIAN SUSS DíaRY - C.C. Meredith \& Company, Ltd., Streetsviffe, Dinario, Canada - Manufacturers of variable resistors end associated switches, industrial redtiflere (selenium, silicon, fube, regulated-mechanical and statíecon*
 diesel driven generators 400 cycle motor generators, cantro
panels, switchbcatis, an tohoto-electric street lighting controls

MIDWEST SUBSIDIARY - CTS, Inc., Berne,
MIDWEST SUBSIDIARY - CTS, Inc., Berne,
Indiana - Manufacturers of wirewound variable resistors, buzz and balance rheostats and special electronic components

\qquad

015

TODAY

Now... in 5 plants... with over 1600 highly skilled technical personnel ... in 436,000 sq. ft. plant area... CTS expands and diversifies . . . adding many other products . . . manufactured to these same high rellability standards.

YESTERDAY

Since 1896, CTS has had a reputation for product excellence . . . becoming the world's largest variable resistor manufacturer. Most radio \& TV sets throughout the world have dependable CTS controls.

NEW NATION-WIDE SALES ORGANIZATION

It's easy to get the CTS product you desire. There's a CTS plant, office or representative near you.
PACIFIC AREA LOS ANGELES BRANCH OFFICE
Chicago Telephone of California, Inc. 105 Pasadena Avenue So. Pasadena, California
LOS ANGELES OFFICE
International Resistance Co. 1136 N. La Brea Blvd. Hollywood, California SAN FRANCISCO, Logan \& Stone Company 1485 Bayshore Boulevard PORTLAND 9, OREGON Richard Legg Company 1633 N.W. 21 ist Ayenue

NEW JERSEY BRANCH OFFICE Chicago Telephone Supply Corp. 5 Haddon Ayenue Haddonfield, New Jersey

NORTH CAROLINA BRANCH

OFFICE

CTS of Asheville, inc.
Mills Gap Road
Skyland, No. Carolina
NEW YORK CITY CFFICE
International Resistance Co 165 Broadway-Room 2024
New York City 6, New York

ELKHART * INDIANA

EASTERN AREA

PHILADELPHIA OFFICE

International Resistance Co 401 North Broad Street Philadelphia 8, Pennsyivania

SYRACUSE OFFICE

International Resistance Co 112 Montgomery Street Syracuse, New York
LEXINGTON 73, MASSACHUSETTS Trichard Purinton, Inc. 11 Muzzey Street

PITTSBURGH 34
PENNSYLVANIA
Tanner \& Covert
300 Mt. Lebanon Blvd.
CLEVELAND 7, OHIO
Baehr, Greenleaf \& Assoc. 14700 Detroit Avenue

NORTH MIAMI BEACH 62, FLORIDA
Benz Sales Company
P.O. Box 178

MOUNTAIN AREA DENVER 9, COLORADO
Electronic Components Sales, Ine. 645 So. Broadway

SCOTTSDALE, NIIZONA
Carl Hower 369 N Craftsman's Court

MIDWESTERN AREA

CHICAGO OFFICE
International Resistance Co.
5243 W. Diversey Avenue
Chicago 39, Illinois
MINNEAPOLIS 16,
MINNESOTA
Robert W. Marshall
6106 Excelsior Boulevard
INDIANAPOLIS 20" INDIANA
Macnabb, Schroeder \& Loomis 820 East 64th Street, P.O. Box 5971

KANSAS CITY, MISSOURI
E. B. Schwerin

4210 Main Street
DALLAS 35, TEXAS
John A. Green Company 7118 Envoy Court

TOPLIEVELTALK relayed on teleprinted tape

At U.S. Army field communications centers, Kleinschmidt torn tape relay units send, receive, retransmit messages to widely-dispersed commands
"Getting the word" from top command to outlying units in the field can create a communications traffic jam. This compact relay unit solves the problem. It quickly, accurately, automatically numbers and prints each message as it simultaneously relays another message to one or 100 receivers in the communications network! Developed
in cooperation with the U. S. Army Signal Corps, the unit's applications include telemetering, integrated data processing, torn tape communication. In recognition of Kleinschmidt's high standards of performance, equipment produced for the U. S. Army is manufactured under the Reduced Inspection Quality Assurance Plan.

KIEINSCHMOT©

DIVISION OF SMITH-CORONA MARCHANT INC., DEERFIELD, ILLINOIS Pioneer in teleprinted communications systems and equipment since 1911

Silicon Very High Voltage

Cartridge Rectifiers
$1 / 4$ ACTUAL SIZE

$\underset{\text { Type }}{\text { EIAA }}$	Langth Inches	Absolute Max. Riges H/W Res. Load at $75^{\circ} \mathrm{C}$ Ambent		Electrical Characteristics at $25^{\circ} \mathrm{C}$ Ambient	
		Peak Inverse Voltage Volt 8 Volts		\qquad	Reverse DC Currentat Rated PIV MA
1N1139	4/4	3600	65	27.0	. 025
IN1140	21/2	3600	65	18.0	. 025
IN1141	4\%/4	4800	60	36.0	. 025
1N1142	21/2	4800	50	24.0	. 025
IN1143	45/4	6000	50	45.0	. 025
INI143A	45/4	6000	65	30.0	. 025
1N1144	61/6	7200	50	54.0	. 025
1 101145	4/4/4	1200	60	36.0	. 025
IN1146	61/4	8000	45	60.0	. 025
1N1147	61/6	12000	45	60.0	. 025
1N1148	61/4	14000	50	52.0	. 025
1N1149	61/4	16000	45	60.0	. 025

CATHODE \pm

Physical Characteristics
HERMETICALLY SEALED-Glass-to-metal fused and metal-to metal welded seals.
TERMINALS-Tinned copper leads .020 inches diameter. Lead length $11 / 4$ inch minimum.
MARKING-Wide color band indicates cathode end. (Wide band indicates positive bias on Varicaps.) Type number designated by color bands reading from cathode.
ALL DIMENSIONS SHOWN IN INCHES-Patented under one or
 more 2827403 . Other patents pending.

Unusual Opportunities in Semiconductor Electronics ... in the New PSI Facility

With the opening of the first unit of the newest and most modern semiconductor manufacturing facility in the world, Pacific Semiconductors, Inc., announces exceptional technical staff opportunities in expanding programs for advanced semiconductor devices.
electrical engineers ... APPLICATION engineers ... diode, rectifter, transistor and test equipment development.
PHYSICISTS . . . product research and development.
PHYSICAL SCIENTISTS . . . research programs in crystal growth and perfection studies... solid state diffusion techniques... the study of surface phenomena.

SALES ENGINEERS . . . attractive openings East and west Coast and Mid-Continent areas.

PSI now occupies the first unit of its new facility near los Angeles International Airport.

All of these positions offer opportunity for growth and individual recognition in a dynamic, rapidly expanding company. For specific information in your particular field, write to Technical Staff Placement, Pacific Semiconductors, Inc., 10451 West Jefferson Blvd., Culver City, Calif.

* A. \mathbf{E}
 1N645 • 1N646 • 1N647 • 1N648 • 1N649

ALL TYPES AVAILABLE

Pacific Semiconductors, Inc.

10451 West Jefferson Boulevard, Culver City, California ORegon 8-9013, OSborne 9-4561 • TWX: HAWTHORNE CAL 7414

EXPORT—Pacific Semiconductors, Inc., 431 Fifth Ave., New York 16, N.Y., U.S.A. CABLE: TELTECHNAL, NY

SALES OFFICES

NEW YORK - 2079 Wantagh Ave., Wantagh, L.I., N.Y. - SUnset 1-7470 • TWX: WANTAGH NY 2320

Boston-471 Washington St., Wellesley 81 - CEdar 5-0171
Philadelphic - 320 Huntingdon Pike, Rockledge - PIlgrim 2-8089 Madeira Beach, Fla. -P.O. Box 8215 - Phone 7-6126
Othawa-227 Laurier Ave. West - CE 2-8504
distributors: baltimore - Wholesale Radio Parts Company - BOSTON-Cramer Electronics, Inc. - BUFFALO-Genesee Radio \& Parts Co. - melbourne and St. PETERSBURG Electronic Supply - NEW YORK - Peerless Radio Distributors and Terminal Radio Corporation - PHILADELPHIA - AImo Radio Company - ROCHESTER-Rochester Radio Supply Company - SYRACUSE - Syracuse Radio Supply Company - TORONTO - Electro Sonic Supply Company, Ltd. - WASHINGTON, D.C.Electronic Industrial Sales.

ILLINOIS - 6957 W. North Avenue, Oak Park, Illinois • VIIlage 8-9750 - TWX: OKP 1547
Dallas-954 Magelian Circle - RIverside 7-1258 distributors: chicago - Allied radio Pioneer Electronic Suply Co. DALIAS Wh CLEVELANDWholesale Electronic Supply - DAYTON - Srepco, Inc. - DETROIT-Ferguson Electronic Supply Co. HOUSTON - Sterling Radio Products, Inc. - MINNEAPOLIS - Lew Bonn Co.
CALIFORNIA - 8271 Melrose Ave., Los Angeles 46, Calif. - OLive 3-7850

Palo Alto-701 Welch Road, Suite 305 - DAvenport 1-2240 DISTRIBUTORS: ALAMOGORDO-Radio Specialties Company DENVER - Denver Electronic Supply Co. LOS ANGELES Electronic Supply Corporation and Kierulff Electronics, Inc. " OAKLAND-EImar Electronic Supply, Inc. PHOENIX-Radia Specialties Corporation - SALT LAKE CITY-Standard Supply Company - SEATTLE-C \& H Supply Company.

Standard Encapsulations

A variety of assemblies can be furnished for matched pairs and quads, ring modulators, full wave and bridge rectifiers and many other applications.
Numerous lead arrangements are possible in these three basic configurations. Up to four diodes or rectifiers can be encapsulated in the " S " or " T " packages. Up to 12 units can be contained in the " R " package. The number of units contained determines its maximum length. Leads . $020^{\prime \prime}$ diameter,
$1^{\prime \prime}$ minimum length.

Silicon

High Conductance Diodes

$\begin{gathered} \text { PSI or } \\ \text { EYPE } \\ \text { TUMBER } \end{gathered}$	Minimum Saturation Voltage (a) 100 少 (volts)	$\begin{gathered} \text { Maximum Forward } \\ \text { Voltage } \\ \text { DC } \begin{array}{c} \text { (2. } 25^{\circ} \mathrm{C} \\ \text { (volts) } \end{array} \\ \hline \end{gathered}$		Maximum Inverse Current at Maximum DC Operating Voltage ($\mu \mathrm{a}$ @ volts)		Maximum Average Rectifiod Current (mA)	
		$100 \mathrm{~mA}$	$200 \mathrm{~mA}$	$225^{6 i c} \mathrm{C}$	$\begin{array}{r} 160^{\circ} \mathrm{C} \\ \hline \end{array}$	$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
1N482	40	1.1		. 250 ¢ - 30v	30	125	50
1 14882 A	40	1.0		. 025 (${ }^{\text {a }}$ - 30v	15	200	70
1N4828	40	1.0		. 025 (a-30v	5	200	70
PS603	40		1.0	. 250 @-30v	30	200	100
PS604	40		1.0	. 025 (u, - 30v	15	200	100
PS605	40		1.0	. 025 @ - 30v	5	200	100
IN483	80	1.1		250 @ - 60v	30	125	50
1 N483A	80	1.0		. 025 (a-60v	15	200	70
1N4838	80	1.0		. 025 (ab - 60 v	5	200	70
PS609	80		1.0	250@-60v	30	200	100
PS610	80		1.0	. 025 (a) - 60 v	15	200	100
PS611	80		1.0	. 025 @ - 60v	5	200	100
1N484	150	1.1		250 (i) $-125 v$	30	125	50
IN484A	150	1.0		. 025 @ -125v	15	200	70
1N484B	150	1.0		025 (a)-125v	5	200	70
PS615	150		1.0	250 @ - 125%	30	200	100
PS616	150		1.0	. 025 @ ${ }_{\text {a }}$ - 125 v	15	200	100
PS617	150		1.0	. 025 (6. $-125 v$	5	200	100
1 N485	200	1.1		250@-175v	30	125	50
IN485A	200	1.0		. 025 @ - $175 v$	15	200	70
1N485B	200	1.0		. 025 (a-175v	5	200	70
PS621	200		1.0	250@ - 175v	30	200	100
PS622	200		1.0	. 025 (a)-175v	15	200	100
PS623	200		1.0	. 025 @-175v	5	200	100
1N486	250	1.1		250@-225v	50	125	50
1N486A	250	1.0		. 050 (ii) -225 v	25	200	70
1 14868	250	1.0		. 050 (eis)-225v	10	200	70
PS627	250		1.0	. 250 (3 , -225 v	50	200	100
PS628	250		1.0	. 050 (4. -225 v	25	200	100
PS629	250		1.0	. 050 (14-225v	10	200	100
1 1487	330	1.1		. 250 @ -300 v	50	125	50
IN487A	330	1.0		. 100 @ - 300v	25	200	70
PS632	330		1.0	. 250 (a) -300 v	50	200	100
PS633	330		1.0	. 100 (a) -300 v	25	200	100
11488	420	1.1		250 @ - 380v	50	125	50
1N488A	420	1.0		. 100 @ ${ }^{\text {a }}$-380v	25	200	70
PS636	420		1.0	.250@ 380 v	50	200	100
PS637	420		1.0	.100@-380v	25	200	100
otmer absolute maximum ratings: Maximum Power Dissipation 0.5 Watts @ $25^{\circ} \mathrm{C}$. Maximum Power Dissipation 0.25 Watts (c) $150^{\circ} \mathrm{C}$. Maximum 1 Second Surge Current 1.5 Amperes (a) $25^{\circ} \mathrm{C}$. Storage and Operating Temperature Range -80° to $200^{\circ} \mathrm{C}$.							

Silicon

General Purpose-Diodes

Pacific Semiconductors, Inc.

A SUESIDIARY OF THOMPSON RAMO WOOLDRIDGE INC.

Varicap.

Voltage-Variable Capacitor
ACTUAL SIZE

$\begin{aligned} & \text { Varicap } \\ & \text { Type } \end{aligned}$	Capacitance		Quality Factor (Q) @ 50 mc .			Maximum Working Voltage (MWV) Volts D.C.			
	$\text { (a. } \text { avD }_{\mu \mu \mathrm{f}}$	Approx. Range $\mu \mu{ }^{\prime \prime}$	Minimum	Typical					
			(a 4VDC	(14) 4VDC	(MWV				
modulation, afc and other applications									
v. 7	7	3.0-18	13	18	43	25			
V-10	10	4.3-26	13	18	43	25			
V-12	12	5.2.31	13	18	43	25			
V-15	15	6.5-39	13	18	43	25			
v-20	20	10.50	7.0	18.7	40.2	20			
V. 27	27	14.70	7.0	15.7	33.8	20			
V.33	33	17.85	7.0	14.6	31.4	20			
V-39	35	20.100	7.0	15.1	32.4	20			
V. 47	47	24-120	70	15.4	32.4	20			
V-56	56	32.145	7.0	13.5	24.8	15			
V-68	68	39.175	9.0	14.0	25.8	15			
V.82	82	47-210	9.0	13.0	23.9	15			
V. 100	100	57-260	8.0	11.0	20.2	15			
high voltage types tuning and other applications									
V.7E	7	1.5-18.0	3.0	4.5	22.5	100			
V. 10 E	10	22.260	3.5	55	27.5	100			
V.12E	12	2.7-31.0	4.0	6.5	32.5	100			
V-15E	15	3.3-39.0	4.5	7.5	37.5	100			
V-20E	20	5.0.50.0	70	18.7	78.5	70			
V-27E	27	7.0.70.0	7.0	157	63.5	65			
V-33E	33	90.85 .0	7.0	14.6	56.5	60			
V-39E	39	11.0-100.0	7.0	15.1	55.8	55			
V-47E	47	14.0-120.0	70	15.4	53.8	50			
V-56E	56	200-145.0	7.0	13.5	41.8	40			
* C range specified from 0.1 volts to maximum working voltage. "VARICAP" is the registered trade-mark of siticori voltage-variable capacitors manufactured by Pacific Semiconductors, Inc.									

Silicon

Subminiature Rectifiers

ACTUAL SIZE

MEDIUM POWER TYPES

$\begin{gathered} \text { EIA } \\ \text { NUMPE } \\ \text { NURER } \\ \notin \end{gathered}$	maximum ratings			ELECTRICAL CHARACTERISTh			
	$\begin{gathered} \text { Peak } \\ \text { Inv. } \\ \text { voltage } \end{gathered}$	Ma Avg. Curre	ectified (mA)	Minimum Saturation Voitago (a) $100^{\circ} \mathrm{C}$	(1) Maxi		
		(a) $25^{\circ} \mathrm{C}$	((1) $150^{\circ} \mathrm{C}$				
1 N645	225	400	150	275	02	15	
1 N646	300	400	150	360	0.2	15	1.
1 N647	400	400	150	480	0.2	20	1.
1 N648	500	400	150	600	0.2	20	1.0
1 N 649	600	400	150	720	0.2	25	1.0

400 MILLIAMPERE PSI TYPES

$\begin{gathered} \text { PSI } \\ \text { TYPE } \\ \text { NUMBER } \end{gathered}$	400 mA (ac) $25^{\circ} \mathrm{C}-150 \mathrm{~mA}$ ($\alpha, 150^{\circ} \mathrm{C}$				
	maximum ratings (3) $100^{\circ} \mathrm{C}$			ELECTRICAL	
	Peak Recurt Voltape (volts)		Maximum Average Rectified Curren	DC Forward Voltage (a) Spacified Current (a) $25^{\circ} \mathrm{C}$ (volta (a, mA	Maximum Averago Inverse, (a. $190^{\circ} \mathrm{C}$ ((1)
TYPE		(1) 150 ${ }^{\circ} \mathrm{C}$		(a.) $25^{\circ} \mathrm{C}$	(4.3 $150^{\circ} \mathrm{C}$
PS 405	50	35	150	1.5 (a) 500	500
PS 410	100	70	150	1.5 (6) 500	50,
PS 415	150	105	150	1.5 (a. 500	50 C
PS 420	200	140	150	1.5 (a) 500	500
PS 425	250	175	150	1.5 (3, 500	500
PS 430	300	210	150	1.5 (3. 500	500
PS 435	350	245	150	1.5 (a, 500	580
PS 460	400	280	150	1.5 (a. 500	500
PS 450	500	350	125	1.5 (a. 500	500
PS 460	600	420	125	1.5 (13) 500	500

250 MILLIAMPERE PSI TYPES

			250 mA @ $25^{\circ} \mathrm{C}-140 \mathrm{~mA}$ @ $100^{\circ} \mathrm{C}$		
PS 005	50	35	140	1(a) 100	100
PS 010	100	70	140	1 (c) 100	100
PS 015	150	105	140	1 (3100	100
PS 020	200	140	140	1 (4.) 100	100
PS 025	250	175	140	1 (6. 100	100
PS 030	300	210	140	1 (a) 100	100
PS 035	350	245	140	1 (a) 100	100
PS 040	400	280	140	1 100	100
PS 050	500	350	140	1 (a) 100	100
PS 060	600	420	140	1 (a) 100	100

1. Resistive or inductive load.
2. Averaged over one cycle for hatf wave resistive or choke input circuit with rect fier operating
at fult rated current and maximum RMS input. Storage and Operating Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$

500 MA TYPES IN MINIATURE PACKAGE ALSO AVAILABLE.

New Types! Silicon

HighVoltage Rectifiers

3/3 ACTUAL SIZE

$\begin{gathered} \text { ELA } \\ \text { TUPE } \\ \text { NUBER } \end{gathered}$	Peak Voltage (volls)			MAX RMMSInpu:VVitays(volts)	MAX DC Fwd Voltage Drod (3) 100 mADC $25^{\circ} \mathrm{C}$	$\begin{gathered} \text { Dimensiont } \\ \text { (inches) } \end{gathered}$		
				L.		Dis.		
1N1730	1000	200	100		700	5	. 5	. 375
1N1731	1500	200	100	1050	5	. 5	. 375	
101732	2000	200	100	1400	9	1.0	. 375	
1 14733	3000	150	75	2100	12	1.0	. 375	
1 1173	5000	100	50	3500	18	1.0	5	
1 N2382	4000	150	75	2800	18	1.0	5	
102383	6000	100	50	4200	27	1.5	5	
1N2384	8000	70	35	5600	27	1.5	5	
102385	10000	70	35	7000	39	20	. 5	

Maximum DC Reverse Current @ Rated PIV $10 \mu \mathrm{~A}$ @ $25^{\circ} \mathrm{C}, 100 \mu \mathrm{~A}$ @ $100^{\circ} \mathrm{C}$
Maximym Surge Current (8 msec .): 2.5 Amps.
Continuous DC Voitage same as PIV
Operating temperature range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Very High Frequency

Silicon Power Transistors

$N-P-N$ Triple-diffused silicon mesa

VHF POWER AMPLIFIER TYPES

PT-518 TYPICAL 70 MC POWER GAIN 10 db WITH 75 mw POWER OUTPUT ; 4 db WITH 250 mw POWER OUTPUT. $V_{C B}=75 \mathrm{~V}, \mathbf{l} \mathbf{C}=30 \mathrm{~mA}$

PT-519 TYPICAL 70 MC POWER GAIN 10 db WITH 250 mw POWER OUTPUT; 4 db WITH 500 mw POWER OUTPUT $V_{C B}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$
PT-520 TYPICAL 70 MC POWER GAIN 10 db WITH 500 mw POWER OUTPUT; 4 db WITH 750 mw POWER OUTPUT $\mathrm{V}_{C B}=75 \mathrm{~V}, \mathrm{IC}=30 \mathrm{~mA}$.

See Footnotes 1 and 2.
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \pm 3^{\circ} \mathrm{C}\right.$ except as noted)

Collector-Base Voltage
Collector Current Emitter-Base Voltage Junction Temperature Collector Dissipation
$V_{c b}$
$V_{C B}$
Ic
$V_{E B}$

PC
120 Vdc
75 mAdc
4 Vdc
,
2.8 W @ $25^{\circ} \mathrm{C}$ case temp. 2.25 W © $50^{\circ} \mathrm{C}$ case temp 1.1 W @ $100^{\circ} \mathrm{C}$ case temp

Symbol	Characteristics	Test Conditions	Min.	Typical	Max.	Unit
$\begin{aligned} & \text { IEBO } \\ & \text { ICBO } \\ & \text { ICBO } \end{aligned}$	Emitter Cutoff Current Collector Cutoff Current Colfector Cutoff Current	$\begin{aligned} & V_{E B}=2 V, 1 C=0 \\ & V_{C B}=10 V, 1_{E}=0 \\ & V_{C B}=100 V, 1_{E}=0 \end{aligned}$			$\begin{array}{\|r\|} \hline 100 \\ 1.5 \\ 1.0 \end{array}$	$\begin{aligned} & \mu A \\ & \mu A \\ & m A \end{aligned}$
h^{\prime} e	HF Current Gain	$\begin{aligned} & V_{C B}=50 \mathrm{~V} \cdot 1 \mathrm{C}= \\ & 30 \mathrm{~mA}, \mathrm{f}=70 \mathrm{mc} . \end{aligned}$	1.0	1.5		
hre	LF Current Gain	$\begin{aligned} & v_{C B}=50 \mathrm{v}, \mathrm{IC}= \\ & 30 \mathrm{~mA}, \mathrm{t}=1 \mathrm{kC} \end{aligned}$		13		
r^{\prime}	HF Base Resistance	$\begin{aligned} & \mathrm{V}_{C B}=12 \mathrm{~V}, \mathrm{I}_{E}= \\ & -10 \mathrm{~mA}, \mathrm{f}=150 \mathrm{mc} . \end{aligned}$			100	ohm
$\mathrm{C}_{\text {ob }}$	Output Capacitance ${ }^{3}$	$\begin{aligned} & V_{C B}=50 \mathrm{~V}, \mathrm{I}_{E}=0 \\ & \mathrm{f}=140 \mathrm{kc} . \end{aligned}$			7.5	$\mu \mu f$
$\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{e}}{ }^{\prime}$	Emitter Resistance	$\begin{aligned} & I_{E}=-10 \mathrm{~mA}, I_{C}=0 \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$		7		ohm
$\mathrm{r}_{6}{ }^{\prime}$	Collector Series Resistance	$\begin{aligned} & 1 E=-20 \mathrm{~mA}_{1}{ }_{1} \mathrm{C}= \\ & 10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kc} \end{aligned}$		15		ohm
Footnotes 1. Case temperature $50^{\circ} \mathrm{C}$ maximum. 2. Neutralized common emitter power gain with input and output conjugate matching. 3. Includes approximately $1.5 \mu \mu f$ header capacitance.						

VHF POWER OSCILLATOR TYPES

PTT-515 OSCILLATOR POWER OUTPUT 250 mw MIN.@ 70 mc $V_{C B}=80 \mathrm{~V}, \mathrm{I}_{C}=30 \mathrm{~mA}$
P.T-516 OSCILLATOR POWER OUTPUT 500 mw MIN.@ 70 mc $V_{C B}=90 \mathrm{~V}, \mathrm{l}_{C}=30 \mathrm{~mA}$.

PT-517 OSCILLATOR POWER OUTPUT 750 mw MIN.@ 70 mc $V_{C B}=100 \mathrm{~V}, 1 c=30 \mathrm{~mA}$.

See Footnotes 1 and 2.
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \pm 3^{\circ} \mathrm{C}\right.$ except as noted)

Collector-Base Voltage	$V_{c b}$	160 Vac Peak
	$V_{C B}$	120 Vdc
Collector Current	I_{C}	75 mAdc
Emitter-Base Voltage	$V_{E B}$	3 Vdc
Junction Temperature	TJ	$150^{\circ} \mathrm{C}$
Collector Dissipation	PC_{C}	$2.8 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ case temp.
		$2.25 \mathrm{~W} @ 50^{\circ} \mathrm{C}$ case temp
		$1.1 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ case temp

Symbol	Characteristics	Test Conditions	Typical	Max.	Unit
$\begin{aligned} & 1 E B O \\ & 1 / C B O \\ & l_{C B O} \end{aligned}$	Emitter Cutoff Current Collector Cutoff Current Collector Cutoff Current	$\begin{aligned} & V_{E B}=1 V, 1 C=0 \\ & V_{C A}=10 V_{1} \mid E=0 \\ & V_{C B}=100 V, I_{E}=0 \end{aligned}$		$\begin{array}{r} 100 \\ 1.5 \\ 1.0 \end{array}$	$\begin{aligned} & M A \\ & M A \end{aligned}$ mA
he.	LF Current Gain	$\begin{aligned} & V_{C B}=50 \mathrm{~V}, \mathrm{tc}=30 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	6		
rb^{\prime}	HF Base Resistance	$\begin{aligned} & V_{C B}=12 \mathrm{~V}, I_{E}=-10 \mathrm{~mA} \\ & I=150 \mathrm{mc} . \end{aligned}$	60		ohm
$\mathrm{C}_{\text {ob }}$	Output Capacitance ${ }^{\text {s }}$	$\begin{aligned} & V_{C B}=50 \mathrm{~V}, 1_{E}=0 \\ & \mathrm{i}=140 \mathrm{kc} . \end{aligned}$	4.0		$\mu \mu \mathrm{f}$
$r_{8}+r_{e}$	Emitter Resistance	$\begin{aligned} & 1 E=-10 \mathrm{~mA}, \mid C=0 \\ & \mathbf{f}=1 \mathrm{kc} \end{aligned}$	7		ohm
$\mathrm{ra}_{6}{ }^{\prime}$	Collector Series Resistance	$\begin{aligned} & I_{E}=-20 \mathrm{~mA}, I_{C}=10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	15		ohm

Footnotes

. Case temperature $50^{\circ} \mathrm{C}$ maximum
ne oscillator
3. Includes approximately $1.5 \mu \mu$ i header capacitance.

Note: The above transistors will soon be designated by ElA Type num bers. Watch for announcement

Latest product
advances in
Micro-Miniaturization...
immediately available
from PSI

PSI microdiodé

TYPE Ne.	Min. Sat. Voltage © $100 \mu \mathrm{a}$ (v)	Min. Fwd. Current $+1.0 \mathrm{~V}$ (ma)	Maximum Reverse Current ($\mu \mathrm{A}$)		Reverse Recovery Characteristics	
			$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	Reverse Res ((Ahms)	$\begin{aligned} & \text { Max. Recey } \\ & \text { Tine (us) } \end{aligned}$
PD-1	50	5	1(10v)	25(10v)	100K	1.0
PD 021	50	20	5(10v)	25(10v)	100K	0.3
P0.031	100	5	.5(10v)	25(10v)	100K	0.3
PD-034	100	20	.5(10v)	25(10v)	100K	0.3
P0.041	200	10	$\begin{gathered} .025(10 \mathrm{v}) \\ 1(10 \mathrm{v}) \end{gathered}$	5 (10v)	200K	0.3
PD 042	200	10	$\begin{aligned} & .5(10 \mathrm{v}) \\ & 5(10 \mathrm{v}) \end{aligned}$	25(10.	200K	0.3

DIMENSIONAL SPECLICAIIONS

A major advance in micro-miniaturization featuring high standards of reliability. Volume and weight of these new PSI types are approximately $1 / 20$ of present subminiature diodes.

These six types of silicon diffusion computer Microdiodes, except for power ratings, are the electrical equivalent of PSI subminiature computer diodes.

All types immediately available.

PSI micromodule

ACTUAL SIZE

The new PSI Micromodule is available now, in all of the above Microdiode types. Phone, wire, or
 write your nearest PSI Sales Office for detailed specifications, curves, reliability data, prices and delivery schedules.

PSI Hi-Q Varicap
(0) ACTUAL SIZE

$\underset{\substack{\text { VARICAP } \\ \text { IVPE }}}{ }$	Capacitance (a) 4VDC 50 MC (μ, μ_{i})	Quality Factor Min. (a) 50 MC	$\begin{gathered} \text { Max } \\ \text { Working } \\ \text { Voltage } \\ \text { (Vace } \end{gathered}$		$\begin{gathered} \text { Maximum } \\ \text { Inverse } \\ \text { Current } \\ \text { EOVCC } \\ \text { (HADC } \end{gathered}$
PC - 112-10	10	50	80	90	1.0
PC. 113.22	22	50	80	90	10
PC-114.47	47	50	80	90	1.0
Capacitance change: from zvoc to 80voc, 4.0 to 1 Min.					
$\begin{aligned} & \text { VARICAP } \\ & \text { TYPE } \end{aligned}$	Capacitance* © 4VDC 50MC $(\mu \mu)$	Quality Factor Min. (0) 5DMC	$\begin{gathered} \text { Max. } \\ \text { Woking } \\ \text { Worktage } \\ \text { (VOC) } \end{gathered}$	$\begin{gathered} \text { Minimum } \\ \text { Saturation } \\ \text { voltage } \\ \text { eol } 100 \mathrm{ADCO} \\ (\mathrm{VOC}) \end{gathered}$	Maximum Inverse Current Corry $(\mu 50 . C)$ $(\mu \mathrm{ADC})$
PC -115-10	10	100	100	110	1.0
PC-116.22	22	100	100	110	1.0
PC - 117-47	47	100	100	110	1.0
CAPACITANCE CHANGE: From 2VDC to LOOVDC, 5.2 to 1 Min *All capacitance values are $\pm 20 \%$ All values at $25^{\circ} \mathrm{C}$					
"VARICAP" is the registered trade-mark of silicon voltage-variable capacitors manufactured by Pacific Semiconductors, Inc.					

An entirely new approach to the design of electronic tuning, automatic frequency control, harmonic generation and numerous other circuits is made possible by the introduction of these new silicon voltage-variable capacitors. The Q specifications of 50 and 100 at 4 VDC at 50 mc . for the first time combine wide tuning range and high \mathbf{Q}.

All High Q Varicap types are available on good delivery schedules.

Fast Recovery Silicon

Diffusion Computer Diodes
(T) ACTUAL SIZE

$\begin{aligned} & \text { Type } \\ & \text { Number } \end{aligned}$	Minimum Saturation Vottage *(a) $100 \mu \mathrm{n}$ (volts)	$\begin{aligned} & \text { Minimum } \\ & \text { Forward } \\ & \text { Current } \\ & \text { @ }+1.0 \text { volt } \\ & (\mathrm{mA}) \end{aligned}$	Maximum Reverse Curr ent ($\mu \mathrm{Q}$)		Reverse Recovery Characteristics	
			$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	Reverts Resistance (ohms)	Maximum Recovery Time (μ_{4})

MILITARX TYPES

${ }^{1 \times 643 t}$	200	10	$.025(100)$ $1(1000)$	$5(100)$ 15 150000	200 K	0.3
1NE624	100	10	$\begin{array}{r} 1(10 \mathrm{v}) \\ 20(50 \mathrm{v}) \end{array}$	$\begin{array}{r} 20(10 \mathrm{~V}) \\ 100(50 \mathrm{v}) \\ \hline \end{array}$	100K	0.5
12863**	100	100	5 (75v)	50 (73v)	200 K	0.5

11789	30	10	1(200)	30 (200)	200 K	0.5
1N790	30	10	5 (20v)	30 (200)	200 K	0.25
1 1791	30	50	5 (20v)	30 (20v)	200 K	0.5
14792	30	100	5 (20v)	30 (20v)	100 K	0.5
14793	60	10	1 (50V)	30 (50v)	200 K	0.5
${ }^{1 \times 179}$	60	10	5 (500)	30 (500)	200 K	0.25
1 1799	60	50	5 (50V)	30 (500)	200 K	0.5
14796	60	100	5 (50\%)	$30(50 \mathrm{v})$	100 K	0.5
14797	120	10	1 (100v)	30 (100v)	200 K	0.5
14798	120	10	$5(100 \mathrm{w})$	30 (1000)	200 K	0.25
1N799	120	50	5 (100w)	30 (1006)	200 K	0.5
IN800	120	100	5 (1006)	30 (100v)	100k	0.5
1 18801	150	10	1 (125v)	30 (125v)	200 K	0.5
1 1802	150	50	5 (125v)	50 (125v)	200x	0.5
1 18803	200	10	5 (175v)	50 (175v)	200 K	0.5
1 14804	200	50	10 (175v)	50 (175v)	200 K	0.5

IN659	60	6	$5(50 \mathrm{v}$	$25(50 \mathrm{v})$	400 K	0.3
IN660	120	6	$5(100 \mathrm{v})$	$50(100 \mathrm{v})$	400 K	0.3
IN661	240	6	$10(200 \mathrm{v})$	$100(200 \mathrm{v})$	400 K	0.3

1N625	30	4 (1).5v	1 (20v)	30 (200)	400 K	$1 \mu \mathrm{sec}$
${ }^{1 \times 26}$	50	$4 @ 1.5 v$	1(35v)	${ }^{30}(356)$	400 K	1/4sec
1 18627	100	4(2)1.5v	1 (75v)	30 (75v)	400 K	1 H5ec
1 M628	150	4 461.5v	! (125v)	30 (125v)	400 K	1 1 sec
1N629	200	4 ¢1.5v	1 (175v)	30 (175v)	400 K	14.58 c

*Maximum OC working inverse voltage is 85% of minimum saturation voltage. OTHER SPECIFICATIONS:

Please Note: All specifications and

 information contained herein are current as of: power equipment are proving themselves in use every day.

THE LATEST IN STATIC POWER DESIGN

We have a complete line of fully qualified static power equipment, from 20 to 200 amps , in silicon or selenium. No moving parts. Long life - models up to 10,000 hours.

Let us know your requirements ... write, wire, or phone.

ITT provides power source for Convair's B-58 Hustler - a completely integrated electrical power system.

Industrial Products Division international telephone \& telegraph corforation 15191 Bledsoe St. - San Fernando, Calif.

REGIONAL OFFICES: NEW YORK (Lodi, N.J.), PRescott 3-1550; DALLAS, FLeetwoad $1-4468$ CHICAGO, LOng Beach 1-3936; LOS ANGELES (San Fernando), EMpire 7-6161

5191 Bledsoe St. - San Fernando, Calif.

FOR

SPECLAL SHIPMENTS
Fragile cargoes like this radar component require special care and attention. And United Van Lines' Agents throughout the world are ready and wellqualified to provide it. They are highly skilled and experienced in handling even the most delicate items.
As specialists in moving fine furnishings, Unitea Master Movers bring the same gentle care . . . the same sure protection to shipments of electronic and other high-value equipment.
Next time, consult your friendly United Van Lines' Agent for help and advice in arranging your moves. He provides dependable world-wide moving service in exclusive Sanitized vans. You'll find him listed under "MOVERS" in the Yellow Pages.

Hughes Builds Maser Clock for Satellite

The National Aeronautics and Space Administration has awarded a $\$ 200,000$ contract to Hughes Aircraft Company to build an atomic clock with an accuracy of about one second in a thousand years. The clock, said to be the most accurate instrument in the history of man, will be designed around an ammonia maser.
The clock will be placed in an orbiting satellite to check the Einsteinian theory that time is influenced by both gravity and motion. Dr. Harold Lyons, inventor of the first atomic clock, heads the project.
The maser clock uses the vibrations of ammonia molecules vibrating at about 24 billion times a second to drive a frequency divider which synchronizes a low frequency clock, in this case a quartz crystal. The ammonia molecules are formed into a jet which travels down an evacuated tube, and enters a metal

Dr. Harold Lyons, Hughes scientist, examines tubular heart of "ammonia maser" clock. Clock will measure the geometric shape of the earth.
cavity where they emit the radio waves. Hughes is using a chemical method of maintaining the vacuum in the tube instead of the usual mechanical and oil diffusion pumps.
Other features of the Hughes design are a frequency divider and servo circuit of the phase-locked type, a highly stable, double-resonant cavity, temperature stabilization, a precision cavity tuning method, a unique source for generating the ammonia beam and a parametric diode frequency multiplying circuit. The phase-locked servo can only be used with a maser and is the most accurate type of divider known. The double cavity system reduces reaction of the maser output system on the molecules and eases the temperature control problem, while the cavity tuning method likewise provides a reduction of possible interactions.

Raytheon Distributors offer you broadest line of Submins

Whatever your requirements - Raytheon offers 22 types of subminiature transistors for use in computers, general purpose audio, IF and $R F$ for radio receivers and general purpose RF circuits. This broad Raytheon line now lets you select subminiature transistors to meet your exact requirements.
top PERFORMANCE AND RELIABILITYEvery Raytheon transistor features rigid processing control that insures reliability and stability of electrical characteristics. This rigid control lets you select any of these types with complete confidence in their performance.
fast, efficient service - Raytheon Industrial Electronic Distributors offer these transistors and products to fill all your electronic needs from complete local stocks. You get faster, more efficient service and at no penalty in price.

SINGLE SOURCE, ONE STOP BUYING Whatever your electronic needs, your local Raytheon Industrial Products Distributor offers you a complete line of industrial tubes including a new line of industrial control tubes, electronic hardware and now the broadest line of subminiature transistors available.

Baltimore, Md.
Wholesale Radio Parts Company
Birmingham, Ala.
Forbes Distributing Company
Boston, Mass.
DeMambro Radio Supply Company
Burbank, Cal.
Valley Electronic Supply Company
Chicago, III.
Newark Electric Company
Cleveland, Ohio
Main Line Cleveland, Inc.
Pioneer Electronic Supply Corporation
Dayton, Ohio
Srepco, Inc.
Denver, Colo.
Ward Terry \& Company
Detroit, Mich. Ferguson Electronic Supply Company
Inglewood, Cal.
Newark Electric Company
Kansas City, Mo. Burstein-Applebee Company
Knoxville, Tenn. Bondurant Bros. Company
Los Angeles, Cal.
Kierulff Electronics Corporation
Milwaukee, Wis.
Electronic Expeditors, Inc.
Mobile, Ala.
Forbes Electronic Distributors, Inc.
New York City
Arrow Electronics, Inc.
H. L. Dalis, Inc.

Milo Electronics Corporation
Oakland, Cal.
Elmar Electronics
Philadelphia, Pa.
Almo Radio Company
Phoenix, Ariz.
Radio Specialties \& Appliance Corporation
Portland, Ore.
Lou Johnson Company
Tampa, Fla.
Thurow Distributors
Tulsa, 0kla.
S \& S Radio Supply
Washington, D. C.
Electronic Wholesalers, Inc.
This is a partial listing only. Names of other Raytheon Industrial Distributors on request from John Hickey, Raytheon Distributor Products Division, 55 Chapel St., Newton 58, Mass.

For high-reliabilify switching

APPLICATION NOTES

VOLTAGE SWITCHING CIRCUIT

t_{d}	t_{r}	t_{s}	t_{f}	$\mathrm{V}_{\text {BE }(0)}$	$\mathrm{V}_{\mathrm{BE}(1)}$	$\mathrm{V}_{\text {BE }(2)}$
$5 \mathrm{~m} \mu \mathrm{sec}$	$7 \mathrm{~m} \mu \mathrm{sec}$	$7 \mathrm{~m} \mu \mathrm{sec}$	$7.5 \mathrm{~m} \mu \mathrm{sec}$	1.5 v	-0.6 v	1.5 v

NON-SATURATING CURRENT MODE SWITCH

$\mathrm{t}_{\mathrm{d} \mathrm{t}}$	t_{r}	$\mathrm{t}_{\mathrm{d} 2}$	t_{f}
$4 \mathrm{~m} \mu \mathrm{sec}$	$3.6 \mathrm{~m} \mu \mathrm{sec}$	$5.5 \mathrm{~m} \mu \mathrm{sec}$	10.4 m sec

MONOSTABLE MULTIVIBRATOR

t_{r}	t_{f}	Pulse length (depends on C_{k})
$20 \mathrm{~m} \mu \mathrm{sec}$	$40 \mathrm{~m} \mu \mathrm{sec}$	$120 \mathrm{~m} \mu \mathrm{sec}$

Exact product uniformity and reproducibility is another benefit to you from Tl's diffusedbase production process. Maximum mechanical strength and high heat transfer characteristics are a direct result of mounting the wafer directly to the header.

Highest inherent reliability provided by diffused-base 'mesa' process

Higher reliability because of lower operating junction temperature from the industry's highest dissipation germanium ultra-high speed switcher.

Increased protection against surge voltages provided by diffused junction (rugged emitterbase junction) permits greater design freedom.

Maximum resistance to shock and vibration is designed into all TI diffused-base products by fusing the semiconductor wafer directly to the header.

Now utilize the combination of maximum reliability and ultra-high speed switching furnished by TI 2N705's. Reliability is Actual Size determined largely by device operating junction temperature. 2N705 300-mw dissipation at $25^{\circ} \mathrm{C}$ case temperature and operation to $100^{\circ} \mathrm{C}$ junction temperature gives you three times greater power handling capacity plus typical total switching times of $25 \mathrm{~m} \mu \mathrm{sec}$!

TRUE SWITCHING SPEED

A transistor's true switching speed in any circuit is dependent on the amount of over-drive designed in the circuit: Overdrive $=I_{\text {b }} h_{\text {FE }}$
Below is the speed-up of 2 N 705 's as a function of overdrive characteristics.

..II 'messa' transistors!

RELIABILITY INSURED BY RUGGED DESIGN, TEST

5000 -hours life test data! Check the curves on the right for yourself and see how TI's 2N705 h_{FE} and $I_{\text {cbo }}$ proved-performance characteristics apply to your high speed switching requirements. Also, for absolute assurance of conformance to specifications, all units are stabilized at $100^{\circ} \mathrm{C}$ for 100 hours and then 100% production tested!

Rugged Emitter-Base Junction

For an added design safety factor, consider the voltage surge tests shown above from which the graphic data on this page was obtained. In a circuit utilizing 2N705's a voltage pulse was applied to the emitter base diode in sufficient magnitude that it resulted in breakdown of the emitter base diode, causing flow of a 1,5 and 10 ma current in each of three separated device groups. This test was continued for 1000 hours and all test data indicated that device characteristics $\mathrm{I}_{\mathrm{Cb}}, \mathrm{h}_{\mathrm{FE}}, \mathrm{V}_{\mathrm{EB}}$, and V_{Cb} were unaffected by this 1000 hour pulse test.
Like all other TI semiconductors, the new 2N705 series is guaranteed for one full year.
absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature

(unless otherwise specified)			2 N 705	2 N 710	
Collector-Base Voltage	.	.	\cdot	-	-15 v

* Derate at $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. This is equivalent to a maximum power rating of 300 mw at a case temperature of $25^{\circ} \mathrm{C}$. The power rating in free air at $25^{\circ} \mathrm{C}$ is 150 mw .
$100^{\circ} \mathrm{C}$ SHELF LIFE

$100^{\circ} \mathrm{C}$ SHELF LIFE
$\mathrm{I}_{\text {сво }}$ @ $\mathrm{V}_{\text {св }}=\mathbf{- 4 . 5} \mathrm{v}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Evaluate the data on these pages for your requirements and call your nearby TI sales office for complete price and delivery information... or contact your authorized TI distributor for off-theshelf overnight delivery!

HIGH VOLTAGE OLLINSULATED TRASSFORMERS

From electrical power to electronic power is quite a switch! Fact is that a high KVA electronic transformer needs to be a bit more sophisticated than a comparable distribution transformer. The electronic unit usually needs to be more compact ...to weigh less...to perform reliably in specific environments ... in short, to be designed for a specific electronic application. It takes experience to meet these needs. Not many companies have it. Electro does. We specialize in electronic transformers

from microwatt
to megawatt... including the big
ones for ground radar, scatter communications, missile ground support, research and industrial applications. Custom
engineered to meet
your requirements.

120 KV 2 A DC power supply installed at Eitel-McCullough, Inc. for klystron testing

THE BIG ONES

SEE WESCON BOOTH 2514
Opportunities for Experienced Transformer Engineers. Write to Personnel Manager

Heat From Components Fires Vacuum Tubes

By confining the heat generated by electronic components and using it to operate vacuum tubes General Electric engineers have come up with a new miniatured construction that can reduce circuits to pencil eraser size.

The miniature circuits are called TIMMs, short for "thermionic integrated micro-modules."

Enginering samples will be developed in a relatively short time and production in quantity may be possible after another year, depending on the requirements of particular applications which could take advantage of the unique capabilities of these new electronic building blocks.

TIMMs differ chiefly from other micro-modular concepts in that (1) tiny heaterless electron tubes are used instead of transistors, and (2) auxiliary cooling is reduced or eliminated and the heat losses generated within the equipment serve a useful purpose of increasing the over-all efficiency of operation and contribute to the extended life and reliability of the equipment.

Resistors built into the ceramic modules consist of a resistive film on the inside of evacuated and sealed ceramic insulators. The laboratory report indicates resistances of 5,000 ohms per square are possible, and resistors made in this fashon of from one to $500,000 \mathrm{ohms}$ have operated stably at $700^{\circ} \mathrm{C}$. The preliminary data presented showed changes of less than 3 per cent in resistance in an operating temperature of 550 degrees centigrade, and similar stability in operation within a nuclear pile.

Built-in micro-miniature capacitors, with synthetic mica as the dielectric, have in operation shown a change of less than 5% over a temperature variation ranging from zero to $700^{\circ} \mathrm{C}$.

The heaterless electron tubes built into the stacks have a selfbiasing characteristic - no grid current flows until the grid is at least two volts positive with repect to the cathode - thus éliminating the necessity for an external bias battery or a cathode bias resistor and capacitor.

A typical circuit module onethird inch in diameter and 2.6 inches in length-no bigger than a stubby pencil-can contain 10 diodes, 14 triodes, 14 resistors and 6 capacitors. This represents a circuit density of 250,000 components per $\mathrm{ft} .{ }^{3}$

10 me COUNTER does everything without plug-ins

Add this heterodyne unit (Model 7570 Series) to measure frequencies up to 1000 Mc .

Complete specifications on Models 7370,7570 and 7580 will be sent on request.

Experience-the added alloy in A-L Electrical Steels

Greater permeability for

 Allegheny Ludlum's AL-4750...and it's guaranteed
promises more consistency, higher predictability for magnetic cores

AL-4750 nickel-iron strip now has higher guaranteed permeability values than ever before. For example, at 40 induction gausses AL- 4750 now has 57% higher permeability than in the past, using the standard flux density test.

This greater permeability means better consistency and predictability for magnetic core users . . . and allows careful, high performance design.

This improvement in AL-4750 is the result of Allegheny Ludlum's continuing research on electrical alloys and
nickel-bearing steels. Moly Permalloy has been similarly improved in permeability. A-L constantly researches silicon steels, including A-L's well-known grain-oriented silicon, Silectron, and other magnetic alloys.

Complete facilities for the fabrication and heat treatment of laminations are available at Allegheny Ludlum. And A-L's technical know-how guarantees you close gage tolerance, uniformity of gage throughout the coil and minimum spread of gage across the coil-width.

If you have a problem on electrical steels, laminations or magnetic material, call A-L for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa. Address Dept. EI-20.

Export distribution, Electrical Materials: AIRCO INTERNATIONALINC., NYC 17

Export distribution, Laminations: AD. AURIEMA, NYC 4

WHAT YOU SHOULD KNOW ABOUT ULTRASONIC EQUIPMENT

The "miracle" of ultrasonic energy is based on definite scientific and engineering principles that govern its application to your needs. The efficiency of your ultrasonic equipment depends on its Quality. Whether you use ultrasonic equipment for more thorough cleaning of electronic components and intricate instruments - or whether you control the level of fuel by the highly accurate ultrasonic method-the vital factor is Quality. The result you get from the equipment you use is no better than its Quality.

Acoustica is the world's foremost producer of quality ultrasonic equipment. Acoustica research and

Acoustica facilities are unequalled. Make the most of the great advantages that the ultrasonic method offers by always specifying Acoustica! Write for information concerning your ultrasonic needs in cleaners and liquid level switches. Acoustica Associates, Inc., Fairchild Court, Plainview, N. Y. - 10402 Aviation Blvd., Los Angeles, Calif.
See us at our Wescon booth

THE GREATEST NAME IN ULTRASONICS

BALLANTINE VOLTMETER
 Model 300-D
 Price: \$235.

SPECIFICATIONS

VOLTAGE RANGE: 1 millivolt to 1000 volts rms. in 6 decade ranges (.01, 1, 1, 10 , 100 and 1000 valts full scale).
FREQUENCY RANGE: 10 to $250,000 \mathrm{cps}$.
ACCURACY: 2% throughout voltage and frequency ranges and at all paints on the meter scale.
INPUT IMPEDANCE: 2 megohms shunfed by $15 \mu \mu \mathrm{f}$ except $25 \mu \mu \mathrm{f}$ on lowest range. DECIBEL RANGE: -60 to +60 decibels referred to 1 volt.
STABILITY: Less than $1 / 2 \%$ change with power supply voltage variation from 105 to 125 volts.
SCALES: Logarithmic voltoge scale reading from 1 to 10 with 10% overlap of both ends; auxiliory lineor scale in decibels from 0 to 20.
AMPLIFIER CHARACTERISTICS: Maximum voltage gain of 60. DB; maximum output 10 volts; output impedance is 300 ohms. Frequency response flat within 1 DB from 10 to 250,000 cps.
POWER SUPPLY: $115 / 230$ volts, $50-420 \mathrm{cps}, 35$ watts approx.

Visit Booth \#207 at Wescon Show

Tele-Tips

THE "RAD" is being recommended as the national standard unit for reporting radiation dose. The rad represents 100 ergs of energy absorbed per gram of material. Unlike most other units of measurement -the roengen, for example-the rad measurement is independent of the kind of ionizing radiation, as well as of the type of material being irradiated.

TAPE CLUB organized in Dallas already has over 4,000 members in 60 countries. They correspond via tape recordings.
"ENGINEERS MAKE IT WORK" is the theme of a new series of ads by Engineers Joint Council appearing in "Editor \& Publisher." The ads are designed to create desirable understanding of engineers and engineering by printed media, radio and TV, public officials, organizations and advertising agencies. The ads are carrying titles such as: "Let's Get Clear On What Engineers Do"; "Just Who's Firing Those Missiles" and "Say Engineer When You Mean Engineer!"

SALES ENGINEERS trying to defend their "swindle sheets" have new ammunition. It's now a matter of record-the cost of the average personal sales call is up more than 59% over the past ten years. In 1948 it was $\$ 14.02$; by 1958 the cost had jumped to $\$ 22.33$.

NEW WEATHER INFORMATION distribution system, based on the old "telephone party line" idea would be 20 times better than the existing weather services. As described to the recent meeting of the AIEE, the system would transmit data at rates of 1,000 wpm, with 1,000 stations sending and as many as 5,000 stations receiving. There will be no switching points. At the receiving station the end product will be a printed page copy with provision for feeding data directly into weather computing machines without the need for human intervention.
(Continued on page 54)

avoid unnecessary delays gT delivers silicon transistors in 24 TO 48 HOURS!

No need to get hung up with delays or hooked by unkept promises! GENERAL TRANSISTOR delivers sample quantities of GT Silicon Transistors in 24 to 48 hours... production quantities in 2 to 4 weeks!
These are not mere claims, but firm promises on which you can base your design and production schedules.

Quality? Yes - plenty of weight here without waiting. General Transistor is today one of the largest suppliers of highly dependable devices, delivering quality in quantity.
For full information - and fast delivery - call your local General Transistor representative, or contact us directly. Write for Silicon Brochure S-100.

GENERAL TRANSISTOR CORPORATION

91-27 138th Place, Jamaica 35, New York Phone: HIckory 1-1000

A Few of the GT Alloyed Junction Silicon Transistors Now Available

- HIGH SPEED SWITCHING
- MEDIUM SPEED SWITCHING
- HIGH VOLtage
- HIGH SPEED LINEAR AMPLIFIER
- MEDIUM SPEED LINEAR AMPLIFIER

2N1219	2N1220	2N1221	2N1222	2M1223
$\mathrm{V}_{\text {cbo }} \quad 30 \mathrm{~V}$	30 v	30 v	30 v	40 V
VCEO 25 V	25 v	25 v	25 v	40 V
$V_{\text {ebo }} 20 \mathrm{~V}$	20 v	10 V	10 v	10 v
I co . 1 ma max.	. 1 ¢a max.	. 1 нa max.	. 1 ma max.	. 1 на max.
$\mathrm{hfe}^{\text {fe }} 18 \mathrm{~min}$.	9 min .	-	-	-
fab (mc) 5 min .	2 min .	5 min .	2 min .	2 typ.
hfe - -	-	18 min.	9 min .	6 min .

OTE DELIVERY FROM SIOCK CONTACT YOUR NEAPEST AUTMORIZEO GENERAL TRANSISTOR DISTRIGUTOR OR GENERAL TRANSISTOR DISTRIBLTIMG CORP, 91.27 T3日THPLACE, JAMAICA 35. NEW YORK FOR EXPORT, GENERAL PRECISION MAGNETIC RECOROING HEADS AVAILABLE FROM GENERAL TRANSISTOR WESTERN CORP., GIIO VENICE BLVO. LOS ANGELES, CALIF

25 AMP 100 VOLT

Motorola 2N1166 and 2N1167 PNP germanium transistors offer • more usable power output than any other transistor - low saturation resistance (0.012 ohms-typical) for lower dissipation - high current gain - welded hermetic seal - excellent Beta linearity.

These new high-power transistors can be used to reduce the size and weight of transmitters without sacrificing power output, to extend the life expectancy of DC-DC converters and for a wide number of other high current switching and audio applications. Both units are available from stock. For engineering quantities contact your authorized Motorola Semiconductor distributor.

MOTOROLA'S COMPLETE RANGE OF INDUSTRIAL POWER TRANSISTORS ANOTHER
MOTOROLA gives you power for every purpose. Three separately designed series, produced under individual specifications, enable you to select devices best suited for your specific application.

POWER TRANSISTOR	Maximum Ratings			Typical Electrical Characteristics	
	Type Number	$B V_{\mathrm{ChO}}$ volts	$\begin{gathered} \mathrm{BV}_{\mathrm{CES}} \\ \text { volts } \end{gathered}$	$\mathrm{h}_{\mathrm{FF}} @ \mathrm{I}_{1} \cdot \mathrm{amps}$	
10.100 V017S	2N1167*	100	75	25	25
	2N1166	100	75	25	25
	2N1165*	80	60	25	25
	2N1164	80	60	25	25
	2N1163*	50	35	25	25
	2N1162	50	35	25	25
	$\mathrm{T}_{\mathrm{j}}=90^{\circ} \mathrm{C}$				

2N630*	100	75	18	10
2N629*	80	60	18	10
2N628*	60	45	18	10
2N627*	40	30	18	10
$T_{1}=90^{\circ} \mathrm{C}$				

4) ${ }^{111} 1$- 1080 VOLT	2N375	80	60	22	3
	2N618	80	60	35	3
	$\mathrm{T}_{1}=95^{\circ} \mathrm{C}$				

FOR COMPLETE TECHNICAL INFORMATION regarding Motorola power transistors contact your nearest Motorola Semiconductor regional office.

[^3].

JENNINGS VACUUM CAPACITORS

Jennings Vacuum Capacitors combine imaginative engineering with the innate advantages of a vacuum dielectric to accomplish circuit designs impossible to obtain with other capacitive devices.
An example of the creative engineering obtainable at Jennings is our type UCSLPS variable vacuum capacitor. This capacitor was designed for use in Remington Rand's new UNIVAC 3200 Series Automatic Antenna Coupler whose superior performance is achieved through advanced circuit design using the highest quality components.

Apparent requirements, in this application, were for two capacitors and a shorting relay to allow switching from a high voltage capacitor to a low voltage capacitor, or switch both capacitors out of the system completely. Space limitations, however, presented an obstacle. The problem was solved by designing one capacitor with two sets of plates of different lengths which by sliding in and out would meet the different voltage and capacitance requirements. It has a test voltage rating of 5 kv at 750 mmfd increasing to 23.5 kv at 40 mmfd and 30 kv at 10 mmfd . A switch is incorporated inside the vacuum to short out the total capacity under very high frequency operation. This also has the added advantage of having a common starting point, or a pre-set point, for the automatic tuning mechanism.
Jennings capacitors are obtainable either fixed or variable and since there is no dielectric to puncture they are self healing after moderate arc-over.

Catalog literature on over 300 types of vacuum capacitors, switches, and relays is available for more detailed information.
radio manufacturing corporation
970 McLAUGHLIN AVE., P. O. BOX 1278, SAN JOSE 8, CALIF.

Tele-Tips

(Continued from page 50)

LOS ANGELES TV station, out to prove that commercials can be fun, begins a weekly half-hour show consisting of nothing but commercials. There is no charge to advertisers whose commercials are used.

TEN YEARS from now one of every five American workers will be employed in offices.

TELEPHONE POLES and overhead wires are on the way out. The phone company now has special wire that can be buried directly in the ground. Developed by engineers of the Rural Electrification Administration the new wire has been installed in a 1,000 mi. stretch. Results have been quite favorable.

RADAR EQUIPMENT was used to make a survey of a $117-\mathrm{mi}$. pipeline route for Pacific Lighting Gas Supply Co., Los Angeles. The job was completed in three days, at a cost saving of about 15% over other methods.

THE METRIC SYSTEM has many supporters in top government posts, and odds are that it is only a matter of time before the U.S. officially switches from the present methods of measurement. One of the chief supporters of the move departed from Washington last month-Secy. of Commerce Lewis Strauss. A look at the various branches of science indicates the pressure being applied. Electrical measurements are already unanimously applying the MKS system, and the pharmaceutical industries made the decision just within the past few years to adopt the metric system. The move has been considered a number of times since the U. S. was established, and each time the problem comes up the switch-over becomes more difficult. The feeling is that either the move must be made very soon or discarded completely. Most of the sentiments are for making the switch now.

Du Mont Ultra-Fast-Sweep Radar Read-Out

Remove the speed limitations of mastetic deflection from radar read-out-extend capabilities through ultra-fast Du Mont electrostatically deflected and focused radar tubes for accurate, complete surveillance of fast-moving orbital, guided or manned objects. These new Du Mont radar tubes offer jump. sweep capabilities in larger screen sizes to meet all modern radar ford requirements, including hiresolution, defection uniformity and reduced deflecton deforersing.
. 4 Investigate Du Mont electrostatic radar tubeswrite for complete technical details...

AVAILABLE IN EVERY NEEDED SIZE

10", 12", 16" (Shown above)
Diameters
Also designed to your physical and electrical requirements.
SEE IT AT WESTONBooths 421 \& 423.
precision electronics is our business
ELECTRONIC TUBES/INDUSTRIAL TV/MILITARY ELECTRONICS/MOBILE COMMUNICATIONS/SCIENTIFIC INSTRUMENTS/AUTOMOTIVE TEST EQUIPMENT

allen b. du mont laboratories, inc., CLIFTON, N. J., U. S. A.

Before a BUSS or FUSETRON fuse ever leaves the plant, it must meet our high quality control standards.

Each fuse is tested in a sensitive electronic device that automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

Thus . . . by specifying BUSS and FUSETRON fuses you have one more way to help safeguard the reputation of your equipment for service and reliability.

Complete Line For All Your Fuse Needs

Single-element fuses for circuits where quick-blowing is needed.
Single-element fuses for normal circuit protection.

Dual-element, slow-blowing fuses for circuits where harmless current surges occur.

Indicating fuses where signals must be given when fuses open.

BUSS fuses range in size from $1 / 500$ amperes up - and there's a companion BUSS line of fuse clips, blocks and holders.

If You Have A Special Protection Problem

The BUSS fuse research laboratory, world's largest, plus experience gained by solving all types of electrical protection problems for over 44 years - is on call to you at all times. BUSS fuse experts will work with your engineers to help you find the best, yet most economical solution.

$$
\begin{aligned}
& \text { For more information, } \\
& \text { write for BUSS bulletin SFB. } \\
& \text { BUSSMANN MFG. DIVISION, } \\
& \text { McGrawedison Co. } \\
& \text { University at Jefferson, St. Louis 7, Mo. }
\end{aligned}
$$

BUSS fuses are made to protect - not to blow, needlessly. BUSS makes a complefe line of fuses for home, farm, commercial, electronic, electrical, automotive and industrial use.

the right capacitor for the application...

your job... and

Centralab's

in a wide range of values, voltage ratings, tolerances and physical sizes
Wherever you need a feed-thru capacitor, you can be sure that centralab can meet your needs. The table below shows the many varieties that make up the most complete line in the industry-and you get the added benefit of CENTRALAB'S unequalled experience in the design and manufacture of ceramic capacitors. Whether it's for high frequency, filtering, bypass, or coupling, you'll find the unit you need in this group.
centralab Engineering Bulletins (FT Group) give you all the details. Write for your copies today.

TYPE	ACTUAL SIZE ILLUSTRATION \dagger	CAP. RANGE mmi	VDCW	VDCT	APPLICATION;
Bushing type DA-717	$G=\text { Summin } D$	10-4000	500	1000	High frequency filtering, bypass, stc. $\pm 5 \%$ tolerance in lower values
Bushing type DA-720	$\square \neg \overbrace{m}^{\text {mimem }} \square \stackrel{\dagger}{\square}$	10-5000	500-1500	1000-3000	
Step type DA-728		10-1500	500	1000	Med. freq. use, bypass, TV tuners, etc. $\pm 10 \%$ tolerance below 200 mmf .
Step type DA-729	C	10-1500	500	1000	
Ring type DA-740*		10-1000	500	900-1300	Symmetrical design. Inserts from either end ... ideal for automatic insertion
Ring type DA-741*		10-1000	500	900-1300	
Eyelet type DA-784	\square	25-1000	500	1000	For high frequer cy filtering and bypass, where size is important
Eyelet type DA-785	$0-7 \square$	25-1000	500	1000	
Eyelet type DA- 787	\square	25-1000	500	1000	
ResistorCapacitor type 732	S]	$\begin{gathered} 470 \text { gmv. } \\ .3 \text { to } 1.0 \text { meg. only } \end{gathered}$	1000	**	Resistor-Capacitor in parallel. ** 1500 VAC tes: when immersed in Sil cone oil cooled with ary ice.

\dagger Units marked \dagger are $1 / 2$ actual size
A Division of Globe-Union Inc.
938H E. KEEFE AVE. - MILWAUKEE 1, WIS. In Canada: 669 Bayview Ave., Toronto 17, Ont.

FOR PRECISION CIRCUIT ANALYSIS

Proved in every type of service, these quality instruments are used by experts for FCC "proof-of-performance" tests and supplied as original equipment with many broadcast station installations.

MODEL 404 linear detector

- RF detection and audio bridging circuits.
- 40 db pad adjusts in 10 db steps.
- 400 kc to 30 mc range with $20-30$ volt RF carrier.
- Flat frequency response from 20 to 50,000 cycles.
- Approx. 1 db insertion loss
- Impedance as bridgin
- transformer approx. 6,000 transformer approx. 6,000
ohms; with single•ended input, approx. $10,000 \mathrm{ohms}$.

MODEL 200 AUDIO OSCILLATOR

- Frequency Range: 30 to 30,000 cycles.
- Frequency Response. Better than $\pm 1 \mathrm{db} .30$ to 15,000 cycles with 500 ohm load
- Stability: Better than 1%.
- Calibration: $\pm 3.0 \%$ of scale reading.
- Voltage Output: 10 volts into 500 ohm load.
- Distortion: Less than . 2% at 5 volts output.

MODEL 300 FREQUENCY METER

- Frequency Range: 0 to 30,000 cycles in 6 ranges.
- Sensitivity: 0.25 volts minimum input.
- Wave Form: Operates on aлу wave form with peak ratios of less than 8 to 1 .
Calibration. When referenced against 60 cycle line frequency, all oins frequencies will fall within 5%.

Beaver Dam Road, Bristol, Penna

Specialists in Designing and building equipment to operating specifications
Bew also design and manufacture filters for: ANTENNAS•RADIO INTERFERENCE•RADIO RANGE* UHF ond VHF as well as many special types designed to performance specifications. Available to commercial or military standards.

Books

Solid State Magnetic and Dielectric Devices

Edited by Howard W. Katz. Published 1959 by John Wiley E Sons, Inc., 440 4th Ave., New York 16. 542 pages. Price $\$ 13.50$.

The ferrite and titanates, the most significant new solid state materials, are currently being exploited for device application. However, since the device is developed from these materials and extends over many isolated fields, it has been difficult to find an inclusive treatment of the theory and application of them. The purpose of this book is to compensate for the absence of information in this area. The authors present a complete account of the solid state devices and components, with the exception of the transistor.

High Altitude and Satellite Rockets, a Symposium

Published 1959 by the Philosophical Library, Inc. 15 E. 40 St., New York 16. 136 pages. Price $\$ 15.00$.

The proceedings of the first symposium on high altitude and satellite rockets to be held in Great Britain. Convened jointly by the Royal Aeronautical Society, the British Interplanatory Society, and the College of Aeronautics before the Russian and American satellites were launched; the symposium was held at Cranfield from the 18th to the 20th of July, 1957 and was attended by some 200 delegates from six countries.
The 12 papers in this proceedings, by British and American authors, are of interest to all those wishing to learn something of the problems of high altitude flight. A view of some of the design problems and propulsion problems of high altitude rockets, recovery after reentry, high temperature materials, instrumentation, telemetry and guidance and some of the human problems of flight beyond the atmospheres; one paper describes the British skylark upper atmosphere sounding rocket and another the American Vanguard satellite launching vehicle.

Analysis of Straight-Line Data

By Forman S. Acton. Published 1953 by John Wiley G Sons, Inc., 440 4th Ave., New York 16. 267 pages. Price $\$ 9.00$.

This book thoroughly covers one important aspect of engineering sta-tistics-the analysis of experimental data that can be described in terms of linear relationship. Emphasis is placed on matching the method of analysis to the type of information to
(Continued on page 62)

switching transistors PROVE MORE RELIABLE

CBS NPN Switching Transistors

Type	Minimum $\mathrm{BV}_{\text {cвo }}$ (Volts)	Dissipation (a) $25^{\circ} \mathrm{C}$ (Milliwatts)	$\underset{h_{F E} @ I_{C}(\mathrm{Ma})}{\text { Minimum }}$			Application
2N306	20	50	16*	1	1	Audio Driver
2N312	15	75	25	10	2	Switching
2N356	20	100	20	100	3	Core Driver
2N357	20	100	20	200	b	Core Driver
2N358	20	100	20	300	9	Core Driver
2N377	25	150	20	200	5	Core Driver
2N385	25	150	20	200	6	Core Driver
2N388	25	150	30	200	3	Core Driver
2N438	30	100	20	50	4	Logic Circuit
2N438A	30	150	20	50	4	Logic Circuit
2N439	30	100	30	50	3	Logic Circuit
2N439A	30	150	30	50	3	Logic Circuit
2N440	30	100	40	50	12	Logic Circuit
2N440A	30	150	40	50	12	Logic Circuit
2N444	15	100	10^{*}	1	1	Switching
2N445	15	100	20^{*}	1	3	Switching
2N446	15	100	30*	1	3	Switching
2N447	15	100	50*	1	13	Switching
2N556	25	100	15	10	1	Core Driver
2N558	15	100	20	10	3	Core Driver
2N634	20	150	15	200	3	Switching
2N635	20	150	25	200	12	Switching
2N636	20	150	35	200	17	Switching
2N1000	40	150	25	100	9	Core Driver
2N1012	40	150	40	100	j	Core Driver
${ }^{*} h_{\text {fe }}$ (a.c.	gain) and storag	e temperature	$T_{j}=$	to +		

Some design engineers specify PNP switching transistors because they consider them inherently more reliable. Actually NPN transistors can give you superior reliability along with their wellknown higher speed. Life tests covering hundreds of thousands of CBS NPN alloy-junction germanium switching transistors proved this during the past year. See graphs comparing these transistors with typical military-approved PNP transistors.

Comparative Life Tests
NPN vs. PNP Switching Transistors.

The superiority of CBS NPN transitors is achieved by special processing: For examole, advanced surface chemistry techniques seal out moisture and contamination. Precise cortrol of alloying produces high back voltages. Trorough bake-oul stabilizes gain. The result is eliable NPN computer-type switching transistors featuring fast switching . . . high voltage . . . lov cutoff current . . . and low saturation resistance . . . in a welded JETEC TO -9 package

A comprehensive line of these reliable CBS NPN high-speed switching transistors is available now in production quantities. Check the table. Order types you need . . or write for Bulletin E-353 giving complete data . . today.

CES ELECTRONICS, Semiconductor Operations A Division of Columbia Broadcasting System, Inc.

More reliable products through Advanced Engineering

MREANDO

MISSILE PROJECTS USE JERROLD 900 A

SWEEP GENERATOR

Helps Martin Orlando develop guidance systems for such missiles as the Army's Lacrosse and the Navy's Bullpup. This one instrument covers all needs from $1 / 2$ MC to 1200 MCS, for IF's, radar, video, telemetering and communications !

Specifications: In two ranges-0.5 MC to 400 MC and 275 MC to 1200 MC -with center at any frequency from 500 KC to 1000 MC and with sweep widths as broad as 400 MC and as narrow as 100 KC . The RF output-is flat within $\pm 0.5 \mathrm{db}$ at full sweep width up to 800 MCS and $\pm 1.5 \mathrm{db}$ from 800 MCS to 1200 MCS . When using sweep widths as narrow as 20 MCS flatness is approximately $\pm 0.15 \mathrm{db}$.
$\$ 1260.00$
Write today for on the spot demonstration of Jerrold 900.A!

Jxllow

ELECTRONICS

 CORPORATIONIndustrial Products Division

[^4]

For complete technical information, contact your Deutsch Representative or write us for Data File A.B.

- quick disconnect
- environmental
- unique ball-lock coupling
- moisture sealed
- vibration dampened
- continuous dielectric separation without voids
- positive lock without safety wiring
- operation to $250^{\circ} \mathrm{F}$.

ERIE Custom-designed Ceramicon Trimmers

You can have all the advantages of Erie Ceramicon Trimmers custom-designed to fit the special requirements of your circuits. Cost is reasonable . . . chassis space conserved . . . assembly operations reduced.

Erie Ceramicon Trimmers are famous for their stability under severest operating conditions. Optically-flat lapped surfaces of base and rotor eliminate temperature-created air-space variations. Capacity change per degree of rotation is practically constant, assuring smoothest adjustment.

For literature, samples, or a sales engineering call at your convenience, contact your local Erie Sales Representative, or write to:

Books

(Continued from page 58)
be extracted and the influence of the assumed statistical model on the success of the analysis. To make the treatment practical, short-cut computational techniques (not usually found in statistical text) are stressed, and non-parametric and low-arithmetic techniques are brought together in a unified exposition.

Theory has been included whenever helpful to encourage analytical thinking, and the philosphy underlying a method also is frequently stressed to prevent the reader from getting lost in mere manipulative detail.

Analysis of Linear Systems

By David K. Cheng. Published 1959 by Addison Wesley Publishing Co., Inc., Reading, Mass. 431 pages. Price $\$ 8.50$.
This book on analysis of linear systems is written at the undergraduategraduate level. It is designed for students of electrical or mechanical engineering, physics, or applied mathematics; the author suggests in the preface how the book may be used in courses for these various groups, The aim of the book is to furnish a thorough exposition of the two essential steps involved in the analysis of a physical system: the setting up of a mathematical equation that describes the system in accordance with physical laws, and the solution of these equations subject to an appropriate initial or boundary conditions. One of the primary purposes of the book is to introduce the Laplace transformed method of solving linear differential and integro-differential equations. In so doing, the author discourages over-reliance on cables of transforms, feeling instead that a few fundamental transform pairs together with some important theorems should be remembered. Furthermore, although the complex Laplace inversion integral is derived from the Fourier integral, the book does not attempt to invaluate the inverse Laplace transformation by contour integration, nor does it include a chapter on the theory of function of a complex variable; the author feels that a superficial knowledge of this theory serves no useful purpose in a book of this kind.

Electronic Circuit Theory, Devices, Models and Circuits

By H. J. Zimmermann and S. J. Mason. Published 1959 by John Wiley \& Sons, Inc., 440 4th Ave. New York 16. 564 poges. Price $\$ 10.75$
This volume deals primarily with
(Continued on page 64)

Engineered by Tinnerman...

SPEED CLIP ${ }^{\circledR}$ lets MUFFIN-FAN ${ }^{\circledR}$ user change direction of airflow quickly... and saves 25% in mounting cost!

Some users set the Muffin-Fan, made by Rotron Manufacturing Company, to blow a cooling north-to-south breeze through their electronic or electrical equipment. Others want a south-to-north breeze. Both are readily pleased . . . the ingenious Tinnerman Speed Clip that holds the fan in its frame permits quick snap-out and snap-in to reverse the direction of airflow.

Rotron is pleased, too . . . the specially-designed Speed Clip assures positive, safe attachment of fan to frame. Eliminates possible housing breakage. Provides a unique sales advantage. And cuts 25% off the cost of the mounting.

This exclusive Speed Clip is one more example of the way Tinnerman Speed Nut Engineering Service takes a customer's idea or problem at the design stage and develops an efficient part to meet the need. And usually with worth-while reductions in parts cost.

You, too, can use this service to gain all sorts of product-design and cost-cutting benefits. Call in your nearby Tinnerman sales representative to discuss Speed Nut Brand Fasteners in your product or idea. He's listed in most "Yellow Pages" directories under "Fasteners." Or write to:
 Dept. 12 . P.O. Box 6688 - Cleveland 1, Ohio

(10) SHIELDED CABLES

designed for

LOW CAPACITY RECORD CHANGER TO AMPLIFIER EXTENSION CABLE

Two Stranded Conductors with clear polyethylene insulation extruded in parallel with a spiral wrapped tinned copper shield and a black extruded plastic jacket. Two styles available, with . $030^{\prime \prime}$ wall insulation, 24 uuf per foot shield to conductor capacity and $.017^{\prime \prime}$ wall insulation, 39 uuf per foot shield to conductor capacity.

LOW CAPACITY HI-FI AMPLIFIER INTERNAL SIGNAL CABLE

Two Solid Conductors in parallel with red and clear polyethylene insulation and spiral wrapped tinned copper shield with black extruded plastic jacket with 24 uuf per foot shield to conductor capacity.

STEREO RECORD CHANGER TO SPEAKER CO-AXIAL SINGLE CONDUCTOR LOW CAPACITY CABLE

Single Stranded Copper Conductors with polyethylene insulation, tinned copper full coverage shield and black or gray plastic insulation. Three styles available with shield to conductor capacities of 28,31 and 33 uuf per foot respectively.

In Business Since 1904

> LENZ ELECTRIC MANUFACTURING CO.
> 1751 No. Western Ave., Chicago 47, III.

Books

(Continued from page 62)
methods of analysis of electronic circuits. The model concept is stressed. Resistive models for electronic devices are synthesized. Special attention is given to piecewise-linear models suitable for large-signal operation. The authors devise models to approximate the characteristics of diodes, triodes, tentodes, transistors, and other controlled valves.

It contains extensive graphical and geometrical interpretations of analysis. The effect of circuit and signal on device operation is shown by means of locus plots. Basic circuit functions are classified as follows: rectification and detection, wave shaping and amplification, and waveform generation.

The Physics of Electricity and Magnetism

By William Taussig Scott. Published 1959 by John Wiley \mathcal{G} Sons, Inc., 440 4th Ave.. New York 16. 635 poges. Price $\$ 8.75$.

This work provides a thorough explanation of the basic theory of electricity and magnetism, treated in a rigorous manner from the viewpoint of a physicist. The author uses a modern atomic approach to describe the phenomena such as metallic conduction and the production of chemical and thermo. The analysis of magnetic fields starts with the Lorentz force law, and Maxwell's equations are introduced as an integral part of the text, with a chapter at the end on their applications. Concepts are presented one at a time, and each is developed with examples before the next is introduced.
The fully descriptive yet mathematical treatment that is provided (using Vector notation and intermediate calculus) serves a smooth transition to more advanced work in physics.

Books Received

General Circuit Theory

By Gordon Newstead. Published 1959 by John 144 pages. Price $\$ 3.00$.

Rapid Radio Repair

By G. Warren Heath. Published 1959 by Gernsback Library Inc., 154 W. 14th St., New York 11 244 pages, paper bound. Price $\$ 2.90$.

The Use of Q Equations to Solve Complex Electrical Networks
By H. T. Fristoe. Published 1959 by Oklahoma State Univ. Stillwater, Ok/a. 81 pages, paper bound. price $\$ 2.00$.

Engineering Societies Directory, 1959
Published 1959 by Engineers Joint Council, 29 West 39th St., New York 18, N. Y. Price \$3.50.

NEW PANEL MOUNT TRIMPOTT

Now, Bourns combines the convenience of a panel mount potentiometer with all the advantages of a rectangular unit-Small Size: requires $1 / 12 \mathrm{sq}$. in. or less of panel area-Setting Stability: self-locking shaft with no cumbersome locknuts-Adjustment Accuracy: multiturn shaft provides up to 9000° rotation.
All of the many Trimpot models are now available with the panel mount feature as a result of a unique design that permits quick attachment of a panel mounting assembly to standard "on-the-shelf' potentiometers. Rugged stainless steel construction assures compliance to Mil-Specs for vibration, shock, salt spray, etc. Screwdriver adjustment is easily made from the front of the panel...recessed head prevents accidental changes of setting...silicon rubber O-ring and Teflon washer provide moisture barrier from outside elements.

Specify the panel mount Trimpot. Get reliability backed by years of engineering, manufacturing and field experience. Write for complete data and list of stocking distributors.

CHASSIS MOUNTING, PRINTED CIRCUIT OR PANEL MOUNTING - whatever your need, Bouns has a mblitary or commercial poteritmmester to mekt youn wad I ! ropurm ments. Chonct at terminal lipues... resistances from 10 ohms to 1 Merg
P.O. Box 2112 K , Riverside, California

Plants: Riverside, California
and Ames, Iowa

WHiY Oster MEANS HIIH ABEURAGY

For Missile Guidance Systems . . . Highly Accurate Precision Motor Tach Generators Utilizing Thermister Networks for Temperature Compensation.

- Calibrated to near 0° phase angles.
- Constant output from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
- Manufactured from alloys with extremely lon temperature coefficients.
- Mass produced under exceptionally rigid quality control.

This Test Stand handles 12 units simultaneously; all terrperature compensated to $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Also tests outpıt voltage, phase shift and linearity. Test Stand has a speed accuracy of $.01 \%$, transformation accuracy of . 001% and כhese shift accuracy of 2 minutes.

For your exacting space age requirements, specify Oster motor tach generators.

New 16-page MOTOR TACH GENミRATOR CATALOG No. 6000 .
Lists 20 basic types for military, scientitic and industrial applications.
Request your free copy today - on company letterhead, please.

OTHIER PRODUGTS INGLUDE:
 Serves
 Synctros
 Reso vers DC Motors
 Computers
 Indicators
 Servo Mechanisms
 Servo Torque Units
 MANUFACTURING OO.
 Your Rotating Equipment Specialist Avionlc Divislon
 Racine, Wisconsin

[^5]Interesting, varied work on designing transistor circuits and servo mechanisms.
Contact Mr. Robert Burns, Personnel Manager, in confidence,

NEW

HIGH-VOLTAGE SILICON MESA TRANSISTORS

FAIRCHILD'S 2N699 OFFERS ANOTHER UNIQUE COMBINATION

120 VOLTS collector to base voltage, permits greater voltage swings in amplifier and oscillator circuits and more protection in inductive switching circuits. Maximum base-emitter turn-on voltage is only 1.3 volts for $I^{\prime}=150 \mathrm{~mA}$ and $I_{B}=15 \mathrm{~mA}$.

120 MEGACYCLES typical gain-bandwidth product means excellent broad-band video performance. In addition the units will provide typically 18 db neutralized gain at 30 mc and 30% efficiency in a 70 mc oscillator circuit.
$300^{\circ} \mathrm{C}$ SURVIVAL has been assured. Every transistor produced at Fairchild has been preaged a minimum of 60 hours at $300^{\circ} \mathrm{C}$ before test. This provides extra reliability at their recommended maximum operating junction temperature of $175^{\circ} \mathrm{C}$.
2 WATTS dissipation at $25^{\circ} \mathrm{C}$-the combination of power with nigh frequency that is available only in double diffused silicon transistors.
In Fairchild's recent succession of new transistor announcements, each has offered some exceptional combination of characteristics previously unattainable. The 2N699 combines high collector voltage rating with high-frequency performance, medium power capabilities and low saturation resistance. Its applications range from low-current high-frequency I-F circuits to high-current, low-frequency relay drivers. Other products nearing production at Fairchild promise even greater advances in the state of the art.

$$
2 \text { N699 - ELECTRICAL CHARACTERISTICS (} 25^{\circ} \mathrm{C} \text {) }
$$

Symbol	Characteristic	Min.	Typ.	Max.	Test Conditions	
${ }^{6} \mathrm{FE}$	D.C. pul	40		120	${ }^{1} \mathrm{C}=150 \mathrm{ma}$	$\mathrm{v}_{\mathrm{C}}=10 \mathrm{v}$
$V_{\text {BE }}$ (sat)	Base saturation		1.0	1.3	${ }^{1} \mathrm{C}=150 \mathrm{ma}$	${ }^{1} \mathrm{~B}=15 \mathrm{ma}$
$V_{\text {ce }}$ (sat)	Collector saturation			5 v	${ }^{1} \mathrm{C}=150 \mathrm{ma}$	${ }^{1} \mathrm{~B}=15 \mathrm{ma}$
${ }^{\text {h fe }}$	Small signal current	2.5	5.0		${ }^{1} \mathrm{C}=50 \mathrm{ma}$	$v_{C}=10 \mathrm{v}$
$\begin{aligned} & c \\ & 1 \\ & 1 \\ & \text { CBO } \end{aligned}$	Collector capacitance Collector cutoff current		$14 \mu \mu \mathrm{f}$	$\left\lvert\, \begin{gathered} 20 \mu \mu f \\ 2 \mu a \\ 200 \mu a \end{gathered}\right.$	$\begin{aligned} & 1 \mathrm{E}=10 \mathrm{ma} \\ & V^{\prime}=60 \mathrm{v} \\ & v_{\mathrm{C}}=60 \mathrm{v} \end{aligned}$	$\begin{aligned} V_{C} & =10 \mathrm{v} \\ T & =25^{\circ} \mathrm{C} \\ \mathrm{~T} & =150^{\circ} \mathrm{C} \end{aligned}$

For full information, write Dept. J-8.

545 WHISMAN ROAD - MOUNTAIN VIEW, CALIF. - YOrkshire 8-8161 Regional sales offices in Los Angeles and Philadelphia

ADVANCE VGS

MINIATURE ROTARY RELAY

-high sensitivity and high contact rating in less than 1 cubic inch space

Abstract

125 milliwatts is all that's needed to operate this relay. Even a single transistor supplies enough power for fast, positive switching of the unit.

5 amps for 100,000 operations is the minimum rating.
You get all this power in a unit measuring only $7 / 8^{\prime \prime}$ square $\times 11 / 8^{\prime \prime}$ high, and weighing only 1.5 ounces.

50 G's shock rating is standard for the Advance VGS. Unit operates under vibration of 15 G's from 55 to 2000 cps ... is fully operational for use in exacting military systems.
$125^{\circ} \mathrm{C}$ high-temperature operation... down to $-65^{\circ} \mathrm{C}$.
Hermetically sealed and Radiflo tested to meet MIL-R-5757C test specifications. Available with two-pole, double-throw contact combination, and in many resistances and mounting arrangements.

A PRODUCT OF EIECTRONICS dIVISION ELGIN NATIONAL WATCH COMPANY 2435 N. NAOMI ST., BURBANK, CAIIFORNIA

Letters

to the Editor

"How to Specify Filters"

Editor, Electronic Industries:
As secretary of the Electronic Industries Association Committce on Electric Wave Filters, SJ-19, I have been directed by the members of the committee to submit the consensus of our criticism of an article entitled "How to Specify Filters," by Mr. Stanley Boyle, which appeared in your September 1958 issue.

This committee consists of representatives from the manufacturers of filters who supply the major portion of LC filters produced in the United States. The representatives themselves are the men who design these filters and, therefore, are in a unique position for properly advising users on how to specify filters.

A general fault of the article seems to be that the author tries to carry over a purely academic approach to the study of filters to industrial usage. An example of this is his statement that the pass band is determined by the 3 db points. Obviously, in any specific application the pass band is determined by the individual requirements of the equipment. Experience shows that this requirement varies over a wide range, above and below 3 db .
In the case of the band reject filter we are in complete disagreement. The pass band in this case occurs at those frequencies at which the attenuation is a minimum. Thus, there are two pass bands, one above the reject band and one below the reject band.
The part of the article relating to attenuation and insertion loss measurements received considerable adverse criticism. The definition of insertion loss as given by Shea in his "Transmission Networks and Wave Filters" on page 49 is "The insertion loss of a network in a circuit is the number of decibels by which the current on the load side of the network has been changed by its insertion."

As a general practice the insertion loss of any type filter is measured at a reference frequency within the flat portion of the response curve, the exact frequency depending upon the individual application. It is certainly arbitrary to select $\mathrm{F}_{\mathrm{C}} / 2$ and $2 \mathrm{~F}_{\mathrm{o}}$ as the points for measuring insertion loss of low pass and high pass filters respectively, and the center frequency for bandpass and band reject filters.

The correct circuit for measuring insertion loss is that shown in Fig. 2, not that of Fig. 1, and the correct
(Continued on page 70)

FOR A TIGHT FIT IN A TIGHT SPOT...

If miniaturization has put your circuits in a tight spot, you can build reliability right into them with the AMP Taper Technique . . . formed taper pins or new solid, pre-insulated taper pins . . . two-piece or molded one-piece stackable blocks . . . plus a wide assortment of taper receptacles.
The AMP Taper Technique offers the most complete line of taper products available plus many extra features. A three-and-a-half degree taper assures the firmest fit of pin in block. A-MP Pull-Test Insertion Tools assure the proper seating of pins. Hand and Automachine crimping tools assure uniformity of pin attachment to your circuit leads.
And-with the addition to the AMP Taper Technique of the new Solid Pre-Insulated Diamond Grip Taper Pin and the new one-piece warp-free block, you can have the greatest flexibility of product choice for your circuit design and manufacturing operations.
You can concentrate more circuits in a smaller space—and be sure of reliability when you use the AMP Taper Technique. Send for our new catalog today.

You are cordially invited to visit us at The WESCON Show in San Francisco, August 18-21, 1959, Booths 2501, $2502,2604$.

AMP Incorporated

Letters

to the Editor

(Continued from page 68)
expression for insertion loss is:
$I L=20 \log _{10} \frac{E_{\text {out }}}{E_{\text {SG }}}-20 \log _{10} \frac{R_{\text {out }}+R_{\text {in }}}{R_{\text {in }}}$
The attenuation reference level is usually taken at the same frequency at which the insertion loss is measured. The circuit for measuring attenuation is identical to that for measuring insertion loss, but the expression of attenuation is:

$$
\text { attenuation }=20 \log _{10} \frac{E_{2}}{E_{2}^{\prime}}
$$

where $\mathrm{E}_{2}=$ voltage across the load at reference frequency.
$\mathrm{E}_{2}{ }^{\prime}=$ voltage across the load at frequency of measurement.

With respect to phase shift in a filter the author again is in error. The correct statement is that the phase shift in a filter approaches $\pm \mathrm{n} \pi$ radians, or $\pm \mathrm{n} 180^{\circ}$ outside the pass band, where n equals the number of sections in the filter. The author would have us believe that all filters have a 180° phase shift, approximately.

With respect to the measurement of output impedance figure 4 b would be correct only when the output impedance is purely resistive.

The statements relating to the size of a filter are deceptive. The size depends not only upon the frequency but also on the sharpness of the response required, the impedance, voltage level and other special requirements of the equipment manufacturer.

The statement limiting voltage levels to 1 volt maximum is misleading and erroneous. This may be true in special applications, but is definitely not true, generally.

I hope this letter will help to clarify some points that may have been confusing to some of your readers.

Howard A. Gross, Secretary, SQ-19

Ed.: Mr. Boyle's article, "How To Specify Filters," generated a great deal of interest throughout the industry. and brought a number of letters from our readers. These have
been answered by Mr . Boyle on a personal been answered by Mr. Boyle on a personal because it reflects the thinking of an Electronic Industries Assoc. (EIA) group-the Committee on Electrical Wave Filters-SQ-19.

IBM Gives Computer Kit

A laboratory instrument used in the design of basic circuits for a large IBM computer has been presented to Electronics Institute, 2457 Woodward St., Detroit, by the International Business Machine Corp. The experimental kit will be used in training students in computer knowledge.

QUALITY MATERIALS • PRODUCTION INTEGRITY • "BUILT-IN" RELIABILITY A FACT! UNSURPASSED PERFORMANCE PROVED IN EXHAUSTIVE LIFE TESTS!

> El Menco's advanced engineering vision.... its rigid adherence to use of the finest grade materials.... its complete and exhaustive "Debugging" Tests.... make El Menco Dur Micas the unchallenged leaders in capacitor reliability.

Only the highest-quality materials, only the finest India Ruby Mica films, pretested to have the highest insulation resistance, greatest dielectric strength, lowest dissipation factor, are used.
El Menco's dominance in reliability has been proved beyond a doubt through "OPERATION DEBUGGING" - the removal of early failures by subjecting mica capacitors to a short life test at elevated voltage and temperature . . DM30, 10,000 MMF "Debugged" El Menco Dur-Mica Capacitors, subjected to 257,000 hours of life at $85^{\circ} \mathrm{C}$ with 100% of the rated DC voltage applied turned in a computed record reliabillity performance of APPROX. 0.6% CUMULATIVE FAILURES OR ONLY I FAILURE PER 43 MILLION UNIT-HOURS!
El Menco Dur-Mica Capacitors have proved their powerful performance under accelerated conditions of $11 / 2$ times rated voltage at ambient temperatures of $125^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ - proving longest life, greatest stability, finest performance.

DM15, DM16, DM19, DM20, DM30, DM40, DM42, DM43 - perfect for extreme miniaturization; ideal for new miniatured designs and printed wiring circuits. New-"hairpin" parallel leads insure easy applications. El Menco Dur-Micas meet and exceed all humidity, temperature and life requirements, including military specs.

Engineered to solve a problem radar antenna buffers

TO PREVENT DAMAGE caused by over-travel, Houdaille has engineered a new Radar Antenna Buffer. Installed at the limits of antenna travel, the Houdaille Buffer utilizes hydraulic damping to dissipate the energy of extreme shock loads.

TYPIGAL MOUDAILLE BUFFER

- Ram a Housing a Cylinder a Reservoir 5 \& 6 Closure flanges $>$ Bearings o Seals e Fluid-level indicator and filler opening to Orifices 11 Return Fort 12 Return Spring 13 Check Valve 14 Tapped Holes

A load appiled to the ram head causes the ram to move forward, thus developing hydraulic pressure within the cylindrical working chamber. The fluid displaced by the ram movement is forced through orifices (10) into the reservoir. Port (11) allows the fluid to return to the evacuated space on the other side of the pisten. The energy originally applied to the ram is dissipated by the high-pressure fluid being forced through the orifices. At the completion of the stroke, the ram is rapidly repositioned by a return spring (12). Fluid returns to the working chamber through check valve (13). Reservoir (4) is designed to provide adequate space for thermal expansion. A variety of mounting arrangements, such as tapped holes (14) can be provided to meet any requirement.
houdaille buffers currently in production include:

- Resisting force from 100 lbs . to $125,000 \mathrm{lbs}$. - Strokes from 1 inch to 9 inches.
- Fireproof and other types of hydraulic fluids, to meet any thermal or logistic requirement.
- Pressurized reservoirs, when required.
- High working-pressure units, when needed for maximum compactness.
Houdaille Buffers can also be engineered to cushion the impact of air-dropped portable equipment, and for missile handling equipment.

HOUDAILLE'S EXPERIENGE and know-how could be working for you! Damping devices can be designed for any application-to meet any specifications or envelope requirements. Send details of your problem to

(Houdaille Industries, Inc. BUFFALO HYDRAULICS DIVISION

539 East Delavan Avenue Buffalo 11, New York Specialists in hydraulic damping and vibration control

	750	1000
- Rated at:	$\mathbf{1 0}$ watts*	2.5 watts*
- Resistance range:	10 ohms -30 K ohms	10 ohms -50 K ohms
- Standard tolerance:	$\pm 5 \%$	$\pm 5 \%$
- Size:	$.180 \times .300 \times 1.000^{\prime \prime}$	$.180 \times .300 \times 1.25{ }^{\prime \prime}$
- Screw adjustment:	17 ± 2 revolutions	25 ± 2 revolutions
- Weight:	2 grams	2.5 grams
- Volume:	.054 cubic inch	.068 cubic inch

COMPLETELY SEALED

END RESISTANCE: 3\% maximum on all values
NOMINAL RESOLUTION: 0.1% to 1.3%
LINEARITY: Below $\pm 3 \%$ on all values
NOISE DURING ADJUSTMENT: Per NAS-710 (100 ohins maximum equivalent noise resistance)
TEMPERATURE COEFFICIENT OF TRIMMER: $50 \mathrm{PPM} /{ }^{\circ}$ C. maximum

WELDED CONSTRUCTION THROUGHOUT: Assures maximum reliability and precision
VIBRATION: Per MIL-STD-202A, Method 204, Condition B, 15 g . to 2000 cps .
LOAD LIFE: Per MIL-R-19A
SHOCK: Per MIL-STD-202A, Method 202A, 100 g.
ACCELERATION: Per MIL-E-5272A, Procedure II, 100 g .
HUMIDITY: Per MIL-STD-202A, Method 106A
Write for Bulletins R-41 and R-44

Edward F. Aymond Company Dallos 19, Texas	Kaelber and Mock Manhassot, L. I., New Yo
Leroy W. Beier Company Chicogo 35, Hlinois	Rudy Mueller Denver, Colorado
William V. Brainard Company Polo Alto, Cotitionnio	William J. Reasor 4 Assoc. Athanta, Georgio
Burcaw-Cowan Detroit 19, Michigon	Tampo, Florida Jake Rudisill Associates
Ray Deane Kansas City, Missouri	Charlatte 3. North Corolino Scott \& Steffen, Inc.
Maury Farber Assosiates Buffolo 2, New York Manlius, New York	Cleveland 15, Ohic Dayton 2, Ohio Pitsturgh 22, Po. Indianapolis, ind.
Merrill Franklin Campany Minneapolis, Minnesola	Thomas L. Stevens Company
International Stondard Electric Corp.	
Expart Daparment New York 7, New York	Robent L. Wilkinson, Inc.
J. K. DOOLEY Co. Seottie, Washington	Glenside, Penn sylvanio

DISTRIBUTORS

ARIZONA

Radio Spec. \& Appliance Phomixa, Arizona Standard Radio Ports, Inc.

CALIFORNIA

Kierulf Electric
Zack Radio Supply Company San Froncisco, Califomic
Connex Corp.
Ookkond 14, Colifomic
Manley Electronic Supply
Lancaster, Coliformia
Wholerale Electronic Supply Vontura, Coliformio
Shelley Radio Company
Los Angeles, Califomio
Shonks \& Wright
San Diego, Calitomio
COLORADO
Denver Electronic Supply
Denver 4, Colorado
DIST. OF COLUMBIA
Electronic Wholesaler
Washington, D. C

FLORIDA

Goddord Distributors West Polm Beach, Fiorido Tampa, Fiorrida Hammond Electronics, Inc. Orlondo, Florido Thurow Distributors Tompo, Fioritho
Orlondo Florido
Orbondo, Florido
Pensocolo, Florido
HAWAII
Precision Radio
Honolulu 14, Howaii
ILLINOIS
Nework Electric Company
Chicogo, Illinois
INDIANA
Brown Electronics, Inc.
Graham Electronic Supply
Indianapolis, Indiano
Radio Distributing Company
South Bend, Indiona

KANSAS

Interstate Electronic Supply
MARYLA

MARYLAND

Kann-Ellert
Bolfimore 3, Maryiand
D \& H Distributing Co
Boltimore 30, Marylond
MASSACHUSETTS
A. W. Mayer Company

MICHIGAN

Radio Tube Merchandising
Flint 3. Michlgon
Electronic Supply Carp.
Electronic Supply Corp
Kolomaroo, Mishigon
Radio Electronic Supply Detroit, Michigan

MINNESOTA

Electronic Center, Inc Rodio Electronic Supply Co Rodio Electronic Supply C Gopher Electronics St. Poul, Minnesato

MISSOURI

Electronic Components for Industry Co. 5t. Lovis 17, Missouri Jones Electranic Sales Konsas Ciry 1, Missouri

NEW JERSEY
General Radio Supply

Federated Purchaser Mountainside, New Jersey

NEW YORK

Federal Electranics Binghamton, New York Radio Equipment Corporation Slectronic Center, in Electronic Center, Ins. New York 11, New Yo Harrison Rodio Stack Electronics, Inc Stack Electronics. Inc Torminal Radio Now York 7, New York Higgins $\& 5$ heer Moughkeophe, Now York Rochester Radio Supply Rochester, New York Morris Distributing Company Syracuse, Now York Arrow Electronics Vallay Electronics Labs Ulico, Now York
Milo Electronics
New York T, N.Y E. E. Taylor

NEW MEXICO

Rodio Specialties, Inc.
NORTH CAROLINA
Oolton-Hege Radio Supply Winston-Solem, North Corolino

OHIO

Mytronic Company
Cincimnati, Ohio
Pioneer Electronic Supply
Cleveiond, Ohio
Srepco, Inc.
Dayton, Ohio
Hughes-Petors, Inc
OKLAHOMA
Radio Supply Company Oklahamo City, Oklahome
Oil Capitol Elactronics
Tulsa 1, Oklahomo
OREGON
Eoft Electric Co.
Portlond, Oregon
PENNSYLVANIA
Federated Purchaser
Allentown, Pennsylvonio
Albert Steinberg
Philadelphio, Pennsylvonio
Camerodio
Piltsburgh, Pennsylvanio
Lectronic Distributors

RHODE ISLAND
William Dandreata \& Co.
Providence, Rhode Isiand

TEXAS

Adak Electric Co.
Grand Prairie, Texas
Lenert Company
Houston 1, Texas
Midlond Sperialties Co.
El Paso, Texos

UTAH

Standard Supply Company
Salt Lake Ciry, Utah

WASHINGTON

Pacific Eloctronic Sales Sroatte 1, Washington
Seottle Radio Supply
Soatte 1, Woshington
WEST VIRGINIA
Chemsity Electronics Dist. Beckley, West Virgini
WISCONSIN
Taylor Electric Company Milwaukee 13, Wisconsin

DALE PRODUCTS, INC.

ANALYZING DYNAMIC CHARACTERISTICS OF RELAYS

First of a three part series. The dynamic characteristics of an electromagnetic relay have received very little study. These characteristics, however, can be used to determine where and how a specific relay should be applied. During transient time the armature moves and the contacts are opened or closed. The relay's dynamic characteristics occur during this period.

ELECTRONIC HARDWARE II

Part I of this engineering reference series was published in the 1959 June Directory and All-Reference issue. This section dealt with rivets, eyelets, fasteners, quick operating release pins, straight pins, taper pins and roll pin. In Part II locknuts, specialty nuts, anchor nuts, clinch nuts, inserts, push nuts, and self threading nuts are treated.

FLIP-FLOP CIRCUIT USING SATURATED TRANSISTORS

Several methods have been used to design bistable flip-flop circuits using transistors as saturated switches. The method presented here separates the design into a steady state solution and a transient solation. The steady state solution is subdivided into the ON state and the OFF state for each transistor.

Plus all our other regular departments

Our regular editorial departments are designed to provide readers with an up-to-the-minute summary of world wide important electronic events. Don't miss Radarscope, As We Go To Press, Elec-
tronic Shorts, Coming Events, El Totals, Snapshots of the Electronic Industries, El International, News Briefs, Tele-Tips, Books, Rep News, International Electronic Sources, Personals, Industry News ${ }^{\text {| }}$ etc.

COMING SOON:

SEMICONDUCTOR SYMBOLS

An illustrative presentation of graphical and letter symbols that will be extremely valuable to engineers when they are writing or talking on a higher or theoretical level.

1959-60 SURVEY OF MICROWAVE POWER GENERATORS

Up-to-the-minute technical specifications for microwave vacuum-tube detectors, oscillators, amplifiers, traveling wave tubes, backward wave tubes, klystrons, and magnetrons. Also included will be semiconductor detectors, mixers, amplifiers, masers, parametric amplifiers and tunnel diodes.

SLIGHTLY HIGHER "EAST" OF THE ROCKIES!

By H. MYRL STEARNS
Chairman of the Board, WESCON

ANEW virility is apparent in the electronics industry in the west-a resurgence that in the past five years has tagged electronics as the west's "fastest growing industry" and swept it into second place in dollar sales, exceeded only by agriculture.

The reasons for re-development of the electronics industry in the west where it had its beginning half a century ago are logical. Climatic conditions are the strong allure. The rich intellectual and sociological climates combine with ideal weather and favorable industrial conditions to form a nearly perfect package.

Since the electronics industry does not have to be located near sources of raw material, it enjoys a unique freedom of location-choice. The climate IS good out west and living conditions ARE pleasant. but these are only contributing attractions propelling the westward surge.
At the end of the war the state of the art had advanced so that electronics was a bright green pasture attracting small new companies and expansion of established large companies. By this time too, there was a large enough group of technical talent established in the west to attract others of like caliber. The built-in major scientific complex afforded by such universities as Stanford, University of California and California Institute of Technology, was a major inducement to individuals, groups of individuals and expanding eastern firms who joined the westward migration. Plus factors also included favorable industrial conditions such as low unit shipping costs for most electronic products and availability of a high quality labor supply. The sum of the total was a reiteration of "Go West Young Man" and in consequence the 1950 decade has been characterized by a steady westward shift of the center of gravity of the industry.

Throughout the 11 western states the "WELCOME" mat is out to attract the electronics industry which brings dollars to the communities in which it settles, raises standards of living, ups educational levels, and in whose research laboratories the Day after Tomorrow is taking shape.

The daring search for new boundaries to cross which always has typified the West is as true today as it was 100 years ago. The difference is the degree of sophistication. Throughout the electronics industry in the west, management is characterized by fron-

tier, take-a-chance thinking supported by strong men in research, development and manufacturing. Willingness to take the calculated risk, to support pure research, is all part of the long range planning recognized by top management as essential to survival.

Responsibilities of management in any locale of course exceed the fundamentals of long range planning and attracting and holding top idea men. A balanced management team must be skilled and experienced in all phases of business organization as well; production, sales, research, finance, personnel. And to be balanced it cannot be dominated by people with strictly technical backgrounds as more than a few aspiring electronics companies have learned.

Challenges are the leavening agent in any business, the zest to the game. Electronics, of course, has its own special challenges. Obsolescence is the number one hazard, following on the heels of the necessity for rapid technological advancement. Companies whose management have vision and courage to underwrite a large enough research stake, both on a short and a long term basis, are striking "paydirt" in the laboratories.

It is basic to the electronics industry to realize that unless you are in the consumer production area the emphasis must be on rapid technological advancement. Out-ahead technology generated by military requirements cannot be ignored and companies who have the biggest impact in the industry are the ones who initiate projects which they in turn sell to the military.

In such a fast moving industry, the engineering
department must be carefully integrated with development and production. Actually, it is impossible to have a production run on anything and one of the biggest mistakes an electronics company can make is after spending a great deal of money developing something to insist on exploiting it in an attempt to make it pay.

The average life of a microwave tube, for example, formerly was about five years but this period is shortening before our eyes. A typical example is the klystron tube developed for railroad radar used for distributing railway cars in marshalling yards. On the market only two years, this tube now is obsoleted by our own newly developed tube. Tnis type of operation does and should happen frequently.

The unprecedented western growth of the electronics industry is sharply pointed up by a breakdown of statistics. The total industry has emerged from 49th place in 1939 to become the nation's fifth ranking manufacturing group in 1959, exceeded only by automotive, steel, aircraft and chemicals. In the west, electronics is second only to agriculture. The industry curve, climbing sharply from $\$ 500$ million at factory level in 1947 to $\$ 8.0$ billion in 1958 (including research and development contracts) is expected to pass the $\$ 14.0$ billion mark by 1965. Based
on past performance, the West will share significantly in this astronomical total. Total sales for the 11 western states reached in $1958 \$ 1,789,000,000$ or 23% of the total. Experts predict a 14% per year growth for the next few years. Leaders, however, should do twice that much or they are dead and it takes three years for them to find this out.

A look down the runway shows many sectors on the threshold of dynamic growth and ideas germinating in the labs today which may revolutionize entire concepts tomorrow. Just emerging is the scarcely explored field of integrated molecular circuity with its staggering implications. Continuing to grow are areas of military and industrial equipment, transmitting and special purpose tubes, semiconductors and specialized components for missiles and other advanced weapon systems, data processing equipment, air navigations and communications. There is no time scale on the field of communications which actually has just been touched. To come, is TV around the world, individual communications systems for the military, strides in airlines communications systems, unmanned aircraft . . . the list is long, yet really just begun.

Opportunities for pioneering and discovery were never greater than today. Electronics is the gold strike of the 1950 's-today's Eureka in the West.

WESCON ATTENDANCE

Interest in WESCON has climbed steadily. The staggered curve results from the every-other-year scheduling of the show and convention. Peak attendance is attained when Los Angeles is the site, because of the greater number of engineers in that area. This year with the show moving to San Francisco attendance is expected to be slightly lower than last year when the event took place in Los Angeles.

WESCON EXHIBIT BOOTHS

In this, the tenth year of WESCON the number of exhibit booths will be just under 1,000. Only a handful of manufacturers-120-were on hand for the first WESCON show 10 years ago. This remarkable growth reflects the increasing role that WESCON and the western states are playing in the electronic industry.

O. H. Brown Show Director

A. J. Morris Conv. Director

B. M. Oliver, Chrmn. Exec. Committee

D. Larson Business Mgr.

J. J. Howard

Rec. Secretary

B. S. Angwin, Mbr.

Dr. H. F. York, Spkr. Industry Luncheon

D. C. Duncan, Mbr. Directors

MORE than 30,000 engineers and executives are expected to turn out for the four-day Western Electronic Show and Convention which opens at San Francisco's Cow Palace on August 18.

A record number of electronic manufacturers - close to 1,000 will feature product exhibits. The 42 technical sessions will include the presentations of 120 technical papers.

Outstanding examples of electronic industrial design will be honored for the first time in the inauguration of an annual Industrial Design Competition.

Featured speaker at the AllIndustry Luncheon on August 21 will be Dr. Herbert F. York, director of defense research and engineering and one of the top policymakers in the U. S. Dept. of Defense.

A special evening session on August 19 at the Mark Hopkins will
feature Dr. Lloyd V. Berkner, president of Associated Universities, speaking on "The International Geophysical Year In Retrospect."

Technical Sessions

The majority of the 42 technical sessions will be staged in the Cow Palace, in five meeting rooms specially built near main exhibition areas. Average capacity of each room, fully equipped with support-

ing audio visual equipment for presentation of papers, is over 500 persons.

Dr. Karl Spangenberg, who heads the technical program, with a committee of 29 prominent Bay Area engineers, has introduced two diversions from the normal pattern of technical conferences. First, each session is limited to three technical papers. Second, each session will have, in addition to authors of the three selected papers, a panel of recognized authorities on the subject under discussion. The panelists will have opportunity to review the technical papers in advance of the presentations and will be expected to comment from their knowledge and experience, to ask authors for clarification or amplification where necessary and to stimulate questions from the floor.

Future Engineers

As part of the third annual Future Engineers feature of WESCON some 30 examples of outstanding high-school work in electronics and allied sciences will be exhibited.

The youngsters, selected from the nine western states and Hawaii, will be on hand with their school instructors to demonstrate their projects. The youngsters will be competing for $\$ 2,500$ in scholarships.
H. P. Moore, Mbr. W. E. Peterson, Mbr. Board of Directors

B. J. Baker, Chrmn. Public Relations Committee

Showcase of western electronic industry opens at San Francisco's Cow Palace on August 18. The four-day show and convention will feature exhibits by more than 900 manufacturers and a technical program of 120 papers.

Show Committees

Responsibility for the various show functions has been delegated to 15 committees, representing both the technical and business sides of the electronic industry.

Since WESCON is co-sponsored by the Western Electronic Manufacturers Association and the Los Angeles and San Francisco sections representing IRE's Seventh Region, the committees represent virtually every segment of the western industry.

Field Trips

The program of field trips for WESCON visitors is being related directly to the technical program. The various visits to major Bay Area firms and Stanford University are being classified according

to the professional groups of the IRE.

Tours on Wednesday, Aug. 19 will cover Military MicrowaveDalvo Victor Co. (Military Microwave) and the new IB'M computer center at San Jose (Computers).

On Wednesday afternoon a trip is planned to Hewlett-Packard Co., Palo Alto (Electronic Instrument Production Techniques).

Thursday tours include EitelMcCullough (Applications of Ceramics to Vacuum Devices), and Lockheed (Solid State Material Applications).

On Thursday afternoon tours will cover Ampex, Stanford Univ. and Stanford Research Institute.

Field trips on Friday will include Varian Associates and W. W. Hansen Biophysics Lab. at Stanford Univ.

W. Selsted, Chrmn.
R. Craig, V. Chrmn. Arrangements Committee

J. Ingersoll, Chrmn. E. Cameron, V.Chrmn. Cocktail Party Committee

E. H. Ross, Chrmn. E. Feige, V. Chrmn. Distributors-Exhibitors Conf.

J. Froman, Chrmn.
R. J. Reynolds, V.Chr. Field Trip Committee

T. Moreno, Chrmn. G. A. Walters, V.Chr. Future Engineers Show

H. W. Lindsay, Chrmn. C. J. Clement, V.Chr. Industrial Design Exhibit

TECHNICAL PAPERS PROGRAM

SESSION I-ULTRASONICS
Tues., Aug. 18, 10:00 AM to 12:30 PM 'An Ultrasonic Method for the Determination of Stress," R. W. Benson.
'A New Type Directive Sound Source for Long Range Sonar," Donald R. Church.
Nondestructive Measurement of Tensile and Compressive Stresses," Rabah Shahbender.

SESSION 2-RELIABILITY I
RELIABILITY ANALYSIS
Tues., Aug. 18, 10:00 AM to 12:30 PM
Electronic Design: Reliability vs Manufacturing Cost, "' N. L. Kreuder.
The Statistical Dynamics of Preventive Re "placements," D. M. Brender
Some Aspects of Disposal at Failure Maintenance of Military Airborne Electronic Equipment." Robert O. Stone.

SESSION 3-SPACE ANTENNA PROBLEMS
Tues., Aug. 18, 10:00 $A M$ to 12:30 PM
'Electromagnetic Effects. Associated with Hy personic Re-entry Vehicles," R. F. Whitmer. "Estimating Voltage Breakdown Performance of High-Altitude Antennas," W. J. Linder and H. L. Steele.
'Interferometer Phosing Problems at Microwave Frequencies," G. Swarup and K. S. Yang.

SESSION 4-COMPUTERS I
Tues., Aug. 18, 10:00 AM to 12:30 PM
"Transistor Circuit Techniques for a Core Memory with 500 Millimicrosecond Cycle Time," V. J. Sferrino.
"A Versatile Character Generator with Digital Input," Earle D. Jones.
"An Error Correcting Encoder and Decoder for Phone Line Data," K. E. Perry.

SESSION 5-SEMICONDUCTOR DEVICES I
Tues., Aug. 18, 10:00 AM to 12:30 PM
"Tunnel Diodes for Low Noise Amplification," K. K. N. Chang, H. Nelson, R. Steinhoff, P. Schnitzler, and H. S. Sommers, Jr.

Germanium and Silicon Tunnel Diodes-Design, Operation and Application," M. W. Aarons, N. Holanyak, Jr., V. S. Davidsohn, and I. A. Lesk.
Variable Capacitor with Large Capacity Change," J. L. Moll.

SESSION 6-AUDIO

Tues., Aug. 18, 2:00 PM to 4:30 PM
'A New Stereophonic Projection Console," Ben iamin B. Bauer and George W. Sioles. Novel Compression-Expansion Method for Audio and Video Use," W. Ross Aiken and Charles - Susskind.

A Resonance-Vocoder and Base-Band Comple ment: A Hybrid System for Speech Transmis sion,'" J. L. Flanagan.

SESSION 7-ENGINEERING MANAGEMENT
Tues., Aug. 18, 2:00 PM to 4:30 PM
'An Industrial Dynamic Management Approach to Research and Development," Abraham Katz.
"Leadership: Man and Function," Alex Bavelas. "Getting Started in the Electronics Business," J. V. N. Granger.

SESSION 8-MICROWAVE ANTENNAS
Tues., Aug. 18, 2:00 PM to 4:30 PM
Electronically Scanned Microwave Arrays Employing synchronous Ferrite Phase Shifters, A. Clavin, L. A. Kurtz, and S. A. Rosen.
'Logical Pattern Synthesis," A. Ksienski, G. G. Comisar, and O. R. Price.
"The Effects of Wide-Band Signals on Radar Antenna Design." Lt. L. R. Dausin, Lt. K. E. Niebuhr, and Lt. N. J. Nilsson, Rome Air Development Center.

SESSION I8-RELIABILITY 2 RELIABILITY ENGINEERING
Wed., Aug. 19, 2:00 PM to 4:30 PM
"Electronic Circuit Tolerances," K. S. Packard. "Meeting AGREE Reliability," Requirements for Airborne Tacan Equipment," Harry C. Romig and A. L. Floyd.
De-Rating: Its Meaning and Limitations," J. R. Isken.

SESSION 19-VACUUM TUBES 2

Wed., Aug. 19, 2:00 PM to 4:30 PM
"Design Theory and Characteristics of the Helitron, A New Microwave Oscillator," George Wada and Richard Pantell.
"Broadband High-Power Klystrons," W. L. Beaver, G. Caryotakis, A. Straparans and R. S. Symons.
'Studies on the Magnetron Type Hollow Beam Electron Gun," G. R. Brewer and E. G. Todd.

SESSION 20-PROF. GP. ON MILITARY ELECTRONICS I

Wed., Aug. 19, 2:00 PM to 4:30 PM
'A Two-Way Air-Ground Digital Data Link for Use with Meteor Burst Propagation," Arthur C. Lytle, Jr
"An Ápplication of Digital Computation to a Problem of Army Tactics," Julius $H_{\text {. Brick. }}$ "An Optimum Maintenance Procedure for Airborne Electronic Equipment," Mai. Donald F. Mileson, USMC.

SESSION 2I-SPECIAL EVENING SESSION
Chairman: Lloyd V. Berkner, President of the Associated Universities, Inc.
''The International Geophysical Year in Retrospect.'"

SESSION 22-SELF ADAPTIVE SYSTEMS

Thurs., Aug. 20, 10:00 AM to 12:30 PM
"Plastic Neurons as Memory Elements," D. G. Willis.
'A Class of Machines Which Determines the Statistical Structure of a Sequence of Inputs," J. D. Foulkes.
"Adaptive Sampled-Data Systems-A Statistical Theory of Adaptation," B. Widrow.

SESSION 23-STEREOPHONIC BROADCASTING
Thurs., Aug. 20, 10:00 AM to 12:30 PM
'An Optimized Compatible AM Stereo Broadcast System," Daril T. Webb and H. B. Collins. "A Stereophonic System for AM Stations," Leonard R. Kahn.
'FM Multiplex Stereo Receiver," Harold Parker
SESSION 24-CIRCUIT THEORY 3
PARAMETRIC AMPLIFIER CIRCUIT THEORY
Thurs., Aug. 20, 10:00 AM to 12:30 PM
Circuit Considerations in Traveling-Wave Parametric Amplifiers," C. V. Bell and G. Wade. - Circuit Aspects, of Parametric Amplifiers," G. R. Hermann and H. Seidal.
-Four-Terminal Equivalent Circuits of Parametric Diodes," C. S. Kim.

SESSION 25-SPACE ELECTRONICS AND TELEMETRY

Thurs., Aug. 20, 10:00 AM to 12:30 PM
'Delta Modulation for Cheap and Simple Telemetering," F. K. Bowers.
Interplanetary Telemetry," G. E. Mueller.
'The Tracking of Pioneer IV; the Elements of Deep Space Tracking System,' Henry L. R. Richter, Jr., and Robertson Stevens.
SESSION 26-MILITARY ELECTRONIC II
DATA PROCESSING FOR MILITARY USES
Thurs., Aug. 20, 10:00 AM to 12:30 PM
"Automatic Data Transmission to Multiple Re"Aupers within the Missile Monitor System," ceivers Kurkion
"A. H. Kurkiian. Nata Recorder," Paul N. A. Veenhuyzen.
-Some New Techniques in Airborne Dafa Acquisition" E. P. Brandeis and M. E. Harrison.

SESSION 27-INFORMATION THEORY

Thurs., Aug. 20, 2:00 PM to 4:30 PM
"Linear Estimation of Deterministic Signals,"
Samuel Zahl.
'Some New Results for the prediction Aditive Sta-
tives of Polynomial Kignal

- A Non-Parametric Technique for the Detection A Non-Parametric Siechnique Additive Gaussian Noise," J. Capon.

V. Zachariah, Chrmn.

B. Melchior, V. Chrmn.

Visitor's Service Committee

Mrs. P. M. Cook, Mrs. R. Krause, Chrmn. V. Chrmm. Woman's Activity Committee

SESSION 28-HUMAN FACTORS

Thurs., Aug. 20, 2:00 PM to 4:30 PM
PANEL DISCUSSION: "The Role of Human Factors in Electronics.
MODERATOR: O. B. MOAN.
Stanley N. Roscoe, Hughes Aircraft Company, Culver City, Calif.
Lawrence J. Fogel. Convair, San Diego, Calif.
George Long, Boeing Aircraft Company, Seattle, Wash.

SESSION 29-CIRCUIT THEORY 4
TRANSISTOR ANALYSIS AND APPLICATIONS
Thurs., Aug. 20, 2:00 PM to 4:30 PM
'Semiconductor Comparator Circuits," E. L.
Hoehn, Jr. Evaluation of Transistor Low Pass Broadbanding Techniques," D. O. Pederson and R.S. Pepper.
'Stored Charge Analysis of Transistors," J. M. Early.

SESSION 30-AUTOMATIC CONTROL
Thurs., Aug. 20, 2:00 PM to 4:30 PM
"A Parameter Tracking Servo for Adaptive Control Systems," Maier Margolis and C. T. Leondes.
"Maximum Effert Control for an Oscillatory Element," Harold K. Knudsen.
"Identification and Command Problems in Adaptive Systems," E. Mishkin and R. A. Haddad. SESSION 3I-MICROWAVE THEORY AND TECHNIQUES I
microwave variable reactance AMPLIFIERS
Thurs., Aug. 20, 2:00 PM to 4:30 PM
''Low-Noise Microwave Reactance Amplifiers with Large Gain-Bandwidth
Lombardo and E. W. Sard
A Low Noise Up-Converter Parametric Amplifier," E. M. T. Jones and J. S. Honda.
Parametric Amplifiers and Superregene ative Detectors ", J. J. Younger, A. G. Litlle. H. Heffiner and \dot{G}. Wade.

SESSION 32-MEDICAL ELECTRONICS
Thurs., Aug. 20, 8:00 PM to 9:30 PM
"New Techniques in Physiological Reco-ding Under Dynamic Conditions " Harve M. Hanish. Under Dynalis Artificial Larynx," Harold L. Barney. L. Barney.
tion for EEG Tinent tion for EEG Time Series and a Species Partronic Analyzer $\begin{aligned} & \text { ameters," Bernard Saltzberg and Neil R. Burch. }\end{aligned}$

SESSION 33-COMPONENT PARTS

Fri., Aug. 21, 10:00 AM to 12:30 PM
'New Ceramoplastic Insulating Material for
(Continued on page 188)

Functions of all these components can be handled by "tunnel diocie"

This new device, little over a year old, is now both better understoad and closer to commercial application as a result of intensive researth.

THE tunnel diode, first reported in 1958 by Japanese scientist Leo Esaki, is first cousin to a transistor, but operates on a different principle and offers advantages that the transistor does not. Before long it should find its way into high-speed computers, television sets, communication equipment, nuclear controls, satellites and space vehicles, according to Dr. Guy Suits, GE Vice President and Director of Research.

As a result of intensive research, improved practical tunnel diodes appear to be on the commercial horizon. To spur progress in circuit design, General Electric's Semiconductor Products Department now plans to offer limited quantities of experimental samples for such use around September or October 1959. Estimated price for such units will be approximately $\$ 75.00$ each. Both germanium and silicon types are to be available.

One of the most significant advances in scientific

Tunnel Diode_ New Electronic Work Horse!

understanding of the device originated with some observations of mysterious "wiggles" in performance curves. These were first noted by Drs. Nick Holonyak, Jr., and Arnold Lesk at GE's Advanced Semiconductor Laboratory, in Syracuse, N. Y. A theory that successfully explained the puzzling effect was subsequently worked out at the General Electric Research Laboratory in Schenectady, N. Y., by Drs. Jerome J. Tiemann, Robert N. Hall, and Henry Ehrenreich.

The tunnel diode takes its name from the physical phenomenon that makes it possible: "quantum-mechanical tunneling." The term is used to describe the manner in which the electrical charges move through the device. Such motion takes place with the speed of light, in contrast to the relatively slow motion of electrical charge carriers in transistors.

The high speeds at which electrical charges travel in

Fig. 1 (far left): Electrons at same level on both sides of junction. No net current.

Fig. 2 (left) Electrons on right side are raised until they are opposite empty states on left. Strong current flows right to left.
the tunnel diode make it possible for the device to operate at extremely high frequencies. Oscillation frequencies higher than 2000 megacycles have already been obtained, matching advanced transistor performance, and frequencies of more than 10,000 megacycles are expected in the near future.

The device's high-speed response also suggests applications in computers. When used as switches, tunnel diodes have functioned in a fraction of a milli-micro-second-from 10 to 100 times as fast as the fastest transistor.

The device also resists the damaging effects of nuclear radiation. Because it is less dependent on the structural perfection of its crystal than is the transistor, it is much less affected by the damage that radiation can do to such crystal structures. In this respect it outranks transistors by more than 1000 to 1 . Semiconductors that have been used by GE scientists for making tunnel diodes include silicon, germanium, gallium arsenide, gallium antimonide and indium antimonide.

The tunnel diode is smaller than a transistor and, because of a simpler structure, ultimately will be a small fraction of its present size. It also is little affected by environmental conditions. Silicon tunnel diodes made by General Electric work at temperatures as high as $650^{\circ} \mathrm{F}$; conventional silicon diodes will not operate above $400^{\circ} \mathrm{F}$. As a matter of fact, the operating temperature range of tunnel diode is greater than that of germanium and silicon transistors combined.

As an electrical circuit element, the tunnel diode exhibits a unique combination of electrical properties including "negative resistance" over part of its operating voltage range. These characteristics allow it to be used in a wide variety of applications, such as an amplifier, a generator of radio-frequency power, and a switching device. The simplicity of this device makes possible the development of "integrated circuits," in which entire circuits for some applications may be formed on a single semiconductor structure. It is superior to vacuum tubes and transistors for applications in low-noise amplifiers and mixers for high frequencies. Many parametric amplifier jobs, for example, could be performed more easily by tunnel diodes.

Operation

Conventional amplifying devices as transistors and vacuum tubes depend on emitting a charge carrier into a region where its motion can be influenced by a

Fig. 6: Various bias conditions of the tunnel diode. The numbered points on the curve correspond to the diagram below.
signal electrode, and on subsequently collecting the charge carrier on an output electrode. The speed of this conventional amplification process is limited by the time it takes a charge carrier, having left the emitter, to traverse the control region, and appear on the collector.

This time is generally quite long compared, for example, to the time it takes for a signal to travel an equivalent length along a copper wire. The reason is that, in the wire, the signal is carried by the electric field of all of the electrons in the wire, rather than by the motion of a particular group of electrons. Each electron in the wire moves only a microscopic distance, and those coming out the other end are not the same ones that went in as signal. The signal in a tunnel diode moves with the same rapidity as does a signal traveling along a copper wire. It is for this reason that the diode has such a short response time.

The difference betweeen the tunnel diode and the copper wire, of course, is that the copper wire cannot amplify. The wire has a positive resistance: that is, an increase in the voltage results in an increase in the current. In the tunnel diode, an increase in the voltage can result in a decrease in the current. That is, it has a negative resistance. The characteristic may per-
(Continued on page 182)

Fig. 3: Electrons on right raised more. Some are opposite "forbidden band gap," some opposite empty states. Current decreases.

Fig. 4: Electrons are all opposite forbidden gap. Very small current is flowing.

Electrons

Empty
 Stotes

Fig. 5: Electrons raised until they spill over the barrier. Current increases.

Fig. 1 (left): Common emitter relationships. The projection ratio, P, is numerically the ratio of the two coordinates.

Fig. 2 (above): Common base and common collector version.

For Transistors . . .

Asymptotes

terms of the general case, the first fully and the others as briefly as their nature will allow.

Input vs. Load Impedance

Validity of Asymptotes
The equation for the input impedance of a transistor circuit is

$$
\begin{equation*}
R_{i}=h_{i}-\frac{h_{T} h_{J} R_{L}}{1+h_{0} R_{L}} \tag{1}
\end{equation*}
$$

as can be seen from the flow-graph or from other methods of analysis. Rearranging terms

$$
\begin{equation*}
R_{i}=\frac{h_{i}-\left(h_{i} h_{0}-h_{T} h_{f}\right) R_{L}}{1+h_{0} R_{L}} \tag{3}
\end{equation*}
$$

Clearly this corresponds to the general case of

$$
\begin{equation*}
Y=\frac{P+q x}{r+s x} \tag{4}
\end{equation*}
$$

Following the pattern established in Appendix A, the asymptotes can be written down directly.

To simplify the algebra, only the ordinates should first be written-when $R_{L}=0, R_{i}=h_{i}$, and when $R_{L}=\infty, R_{i}=z_{i}$. If Jacobians are then used to define h_{i} and z_{i} (using the symbols from Ref. 1), these two

T. R. Nisbet

Dr. W. W. Happ

By THOMAS R. NISBET

Electronic Research Engineer
and DR. WILLIAM W. HAPP
Staff Scientist
Solid State Devices
Lockheed Missile Systems Div.
Palo Alto, California

The Editor

 ELECTRONIC INDUSTRIESChestnut \& 56th Sts., Phila. 39, Pa.

By first erecting a framework of asymptotesthe lines towards which a curve convergesone can construct the conventional transistor design curves with remarkable ease. The accuracy achieved is adequate for the majority of practical applications.

Solve Design Problems

terms are respectively the Jacobians \mathbf{y} / h and g / \mathbf{z}. These Jacobians can now be directly compared with the results of the general case of Eq. 4, which is computed in Appendix A, and illustrated in Fig. 10.

The abscissa of the points of intersecton of the asymptotes therefore become the Jacobians h / z and y / g, which correspond to the values of z_{o} and g_{o} for the load resistance. These results are shown in Fig. 1. The 45° slope occurs only if the same logarithmic scales are used for both ordinates and abscissa.

Cross-Over Point
The cross-over point, where $R_{L}=\sqrt{z_{0} g_{0}}$ and
$R_{i}=\sqrt{h_{i} z_{i}}$ is also the point of inflection of the curve, and it corresponds to the condition for maximum power gain. In the immediate vicinity of the cross-over point, input resistance varies linearly with load resistance.

Error in Terms of Projection
If the inclined asymptote is projected on either the x - or the y -axis and the projection ratio referred to as P, then the error between the curve and the asymptote can be expressed in terms of P. The projection ratio of the graph in Fig. 1 is h_{i} / z_{i}, or g_{o} / z_{o}, and is always greater than 1.

At the mid-point of the inclined asymptote (mea'-

Fig. 4: The asymptotes of the different circuit configurations follow this general pattern when drawn on a common graph.

Fig. 5: A practical case of asymptotes and curves for a transistor.

Asymptotes (Continued)

sured distance), the error is zero, or in the terminology used here, the error ratio is 1 . At either extreme, i.e., at z_{o} or g_{0}, the error ratio is $2 / 1+P^{-1}$. At a distance beyond z_{o} equal to the distance between

$$
\sqrt{z_{o} g_{o}}
$$

and z_{0} in Fig. 3, the error ratio is

$$
\left(1+P^{1 / 2}\right) /\left(1+P^{3 / 2}\right)
$$

The curve is symmetrical about the central cross-over point, and the error is the same at corresponding points on each side, Fig. 3.

For practical purposes, it is usually sufficient to compute the error at one position beyond z_{o} and g_{o} and at z_{o} and g_{o} themselves. With the central point of zero error, this gives five accurate plots, which together with the asymptotes, make the plotting of the curve quite a straightforward operation. Further information on the error is given in the Appendix.

Relation for Three Configurations

For the designer who uses one type of transistor in different applications, a useful graph is that of input resistance vs. load resistance for all three circuit configurations. Here again, it may be mentioned that the use of Jacobians greatly facilitates conversions between the different configurations.

[^6]

Fig. 6 (left): Common emitter curve and asymptotes for output resistance vs. generator resistance.
Fig. 7 (above): Common base or common collector curve and asymptotes for output resistance vs. generator resistance.

The asymptotes for common collector, common base and common emitter follow a regular pattern, Fig. 4. The fact that the curves merge into each other can readily be confirmed from the circuit similarity of common emitter and common collector when $R_{L}=0$, and of common emitter and common base when $R_{L}=\infty$.

Proofs of the asymptotic structure are given in the Appendix, and an example of a practical case is given in Fig. 5. The ratio of the three projections $P_{C}: P_{E}: P_{B}$ is the same as that of $\Delta^{\mathrm{gB}}: 1: J^{\text {he }}$ (see Appendix C).

Output vs. Generator Impedance

What has been done for the curve of R_{i} versus R_{g} in the previous paragraphs can be done very similarly with the curve of R_{o} versus R_{g}. The results are shown in the corresponding diagrams, Figs. 6 to 9.

Current and Voltage Gain

In this section, the design curves for current and voltage gain are dealt with, and the asymptotes and error ratios derived. The current gain is analyzed in detail, and the results given for a similar analysis of voltage gain. Finally, power gain is dealt with, and a practical method is described for rapid calculation of the error ratios. The algebra of the network analysis is condensed as before by the use of fiow-graphs.

Current Gain

For a transistor, described by its h parameters, and an external load R_{L}, the set of equations can be written thus:

Fig. 8: The error ratio at equal plotting points from the center is given in terms of P, for conditions of Figs. $6 \& 7$.

The current gain of the system is

$$
\begin{equation*}
A_{i}=\frac{i_{o}}{i_{i}}=\frac{h_{f}}{1+h_{o} R_{L}} \tag{22}
\end{equation*}
$$

Comparison with the general equation $y=(p+q x) /$ $(r+s x)$ shows a one-to-one correspondence, provided that $q=0$. The general equation is examined in the Appendix, and the asymptotes follow the rules established there for Fig. 10.

Since $q=0$, however, $q / s=0$ and $P / q=\infty$, i.e., the asymptotes consist only of two lines instead of three, and their appearance is as shown in Fig. 12.

At $R_{L}=0$, the current gain is h_{f}, and the point of intersection of the two asymptotes occurs at $x=r / s$ for the general equation, or $R_{L}=1 / h_{o}$ in this particular case.

Current Gain Error Ratios

The error ratio of asymptotic to true value of current gain is the same either side of the point $\mathrm{R}_{\mathrm{L}}=1 / h_{o}$, being $1+1 / R_{L} h_{o}$ and $\left(1+R_{L} h_{o}\right)$ in Regions A and B, respectively. It reaches a maximum value of 6 db at $R_{L}=1 / h_{0}$.

There is, of course, no reason why an error ratio should not be calculated outside of its own region, provided that it is measured from the correct asymptote or its extension. In fact, this technique is used later (Appendix E4), to avoid altogether any reference to the horizontal asymptote for power gain error ratios. The mathematics of the current gain error ratio calculation is given in Appendix D.

Voltage Gain

The voltage gain can be expressed most easily from the g parameters, in the flow-graph

Fig. 9: Configuration of asymptotes for output resistance vs. generafig. 9: Cosistance follows a similar pattern to that shown in Fig. 4.
whence

$$
\begin{equation*}
A_{r}=\frac{e_{0}}{e_{i}}=\frac{g_{\delta}}{1+g_{0}\left(1 / R_{L}\right)}=\frac{g_{\delta} R_{L}}{g_{0}+R_{L}} \tag{24}
\end{equation*}
$$

This follows the general case of $y=(p+q x) /$ ($r+t x$) where $p=0$, and the relationships shown in Fig. 13 can be derived.

Voltage Gain Error Ratios

The error ratio to the left of $R_{L}=g_{o}$ is $\left(1+R_{L}\right) / g_{o}$ and to the right is $\left(1+g_{o}\right) / R_{L}$, reaching a maxium of 6 db at $R_{L}=g_{o}$ (Fig. 13). Again, the error ratio may be measured to the extension of an asymptote, provided the correct formula is used, and again the mathematics of the treatment is given in Appendix D.

Power Gain

Since power gain is the product of voltage gain and current gain, the final manipulation is to add together the y coordinates (on log scales) of voltage gain and current gain.
The mathematical details of the calculations are summarized on the basis of the general form of equation used previously, in Appendix E, and Jacobians are used to translate from the general results to the transistor parameters shown in Fig. 14.

Fig. 10: General case of curve and asymptotes for $\mathbf{y}=(p+q x) /(r+s x)$.

Asymptotes (Continued)

Three asymptotes are used, with 45° slopes if identical \log scales are used for ordinate and abscissa. For constructional purposes, it should be noted that the points of intersection of the asymptotes do not fall at z_{0} and g_{θ} on the load resistance scale.

Power Gain Error Ratios

The "Projection Ratio" is, somewhat illogically, defined as the ratio of g_{o} to z_{0}. This justification for this

Fig. 12 tabove) : Sketches for current gain vs. load resistance.

Fig. 13 (above): Relationship of voltage gain and load resistarce.
Fig. 14 (below): Common emitter relationships. Note that the horizontal asymptote is used only to establish the maximum height of the curve. Error ratios are measured only to the sloping asymptotes.

definition, of course, is that it makes for simpler formulas for the error ratios.

In a treatment similar to that given the impedance curves, "equal plotting points" are established on the abscissa, but the error ratio is in all cases related only to the inclined asymptotes and not to the horizontal asymptote. The error at an abscissa value located at n plotting points from the central ordinate of symmetry,

$$
\sqrt{z_{0} g_{0}}
$$

is

$$
\left(1+P^{-(n+1) / 2}\right)\left(1+P^{-(n-1) / 2}\right)
$$

where $P^{\frac{1}{2} /}$ is the (log scale) ratio of adjacent marking points, as in Fig. 14.

The power gain is at a maximum of

$$
h_{f} \cdot y_{f} /\left[h_{o}^{1 / 2}+y_{0}^{1 / 2}\right.
$$

at a load resistance of

$$
\sqrt{z_{0} g_{0}}
$$

At this value, the error is

$$
\left[1+P^{-1 / 2}\right]\left[1+P^{1 / 2}\right]
$$

where $P=g_{o} / z_{o}$. At the first plotting point either side of the central line of symmetry, the error ratio is

$$
2\left[1+P^{-1}\right],
$$

and at the second plotting point the error ratio is

$$
\left[1+P^{-1 / 2}\right]\left[1+P^{-3 / 2}\right] .
$$

For any given type of transistor, there is a production spread of parameters which itself represents a complex mathematical problem insofar as it relates to the design curves. Variation of the selected value of emitter current will also change the transistor parameters, and the popular design method of including a small unbypassed resistor in the emitter lead of a transistor introduces further changes to the network parameters. A change of ambient temperature will change the parameters, and will probably change the emitter current, too, resulting in further changes.

These and other agencies may be at work separately or simultaneously to cause very considerable fluctuations in the parameters which have been assumed to remain constant. To say that these changes are outside the scope of this article may be true, but not very consoling.

To some extent, the effect of variations in transistor parameters can be limited by the use of negative feedback. Then a new set of parameters can be written for the network, including the negative feedback, and the methods outlined here can be used to provide design curves which will be a little more stable.

In any event, the present methods possess the merit of being easily applied, and taken in conjunction with the method of converting transistor parameters previously described ${ }^{1}$, they provide a useful first approximation in many of the problems associated with transistor circuit design.

Reference

${ }^{1}$ T. R. Nisbet and W. W. Happ, "Jacobians-a New Computational Tool," Electronic Industries, November 1958.

Engineer's Notebook

\#49 Accuracy of a Constant Voltage Device

NORMALLY a constant voltage device consists of two elements connected in series. Element 1 has a characteristic with a sharp knee, whereas element 2 has a straight characteristic and acts as a current limiting device. The voltages across these elements are E_{1} and $E_{2} . E_{t}$ is the stabilized voltage. As shown in the graph, it is possible to get a common characteristic (dotted line) of the device by combining the characteristics 1 and 2 by means of adding up the voltages at a selected current value.

It is recognized easily that characteristic 1 reaches its knee-voltaage at a certain line voltage $E_{L L}$ from where Element 1 takes up its stabilizing function.

This line voltage $E_{L L}$ is often called cut-in voltage.

Let R_{1} denote the resistance of the characteristic 1 (dynamic impedance) above the knee and R_{2} the resistance of characteristic 2. Furthermore:
$F_{L L}=$ Low Line Voltage
$E_{L H}=$ High Line Voltage
$E_{1 L}=$ Voltage across element 1 at low line voltage
$E_{1 I I}=$ Voltage across element 1 at high line voltage
$E_{2 L}=$ Voltage across element 2 at low line voltage
$F_{\gamma_{\boldsymbol{H}}}=$ Voltage across element 2 at high line voltage
$\Delta i=$ Change in current due to line voltage change from $E_{L L}$ to $E_{L H}$ Then the lowest line voltage
$E_{L L}=E_{1 L}+E_{2 L}$
at the highest line voltage
$E_{L H:}=E_{1 L}+\Delta i R_{1}+E_{2 L}+\Delta i R_{2}$
Subtracting (1) from (2) yields

$$
\begin{align*}
& E_{L H}-E_{L L}=\Delta i\left(R_{1}+R_{2}\right) \\
& =\text { total change in line } \\
& \text { voltage }=\Delta E_{L} \tag{3}
\end{align*}
$$

For characteristic 1 alone,

$$
\begin{equation*}
\Delta E_{1}=\Delta i R_{1} \tag{4}
\end{equation*}
$$

By DR. S. LINDENA
Chief Engineer
Magnetic Research Corp.
200 Center St.
El Segundo, Calif.

Dividing (4) by (3)

$$
\begin{equation*}
\frac{\Delta E_{1}}{\Delta E_{L}}=\frac{R_{1}}{R_{1}+R_{2}} \quad \text { absolute ratio } \tag{5}
\end{equation*}
$$

This equation tells us that the change across the stabilizing Element 1 is $\frac{R_{1}}{R_{1}+R_{2}}$ times smaller than the line voltage change. This relation, however, does not give a clear picture as ΔE_{1} itself may be
small, relatively. However, it could be high. Therefore, it is of interest to know what percentage change across the stabilizing element is caused by what percentage change of line voltage. Therefore, ΔE_{1} is put in relation to $E_{1 I_{4}}$ and ΔE_{L} in relation to $E_{L L}$

Equation (5) multiplied by $\frac{E_{L L}}{E_{1 L}}$ yiclds

Element 2

A constant voltage device normally consists of two elements connected as shown.

Element 1 has a characteristic with a sharp knee while element 2 has a straight characteristic and acts as a current limiting device.

$$
\begin{equation*}
\frac{\frac{\Delta E_{1}}{E_{1 L}}}{\frac{\Delta E_{L}}{E_{L L}}}=\frac{R_{1}}{R_{1}+R_{2}}\left(\frac{E_{L L}}{E_{1 L}}\right) \tag{6}
\end{equation*}
$$

Combining equation (6) with equation (1) yields

$$
\frac{\frac{\Delta E_{1}}{E_{1 L}}}{\frac{\Delta E_{L}}{E_{L L}}}=\frac{R_{1}}{R_{1}+R_{2}}\left(1+\frac{E_{2 L}}{E_{1 L}}\right)
$$

As this is a relative relation I want to nominate:

$$
\delta E_{1}=\frac{\Delta E_{1}}{E_{1 L}} \text { and } \delta E_{L}=\frac{\Delta E_{L}}{E_{L L}}
$$

Then we get the relative relation:

$$
\frac{\delta E_{1}}{\delta E_{L}}=\frac{R_{1}}{R_{1}+R_{2}}\left(1+\frac{E_{2 L}}{E_{1 L}}\right)
$$

From this equation it is to be seen that the best stabilizing effect is
given, when R_{1} (dynamic impedance) is as low as possible whereas, R_{2} should be high. On the other hand $E_{8 L}$ the voltage across Element 2 at low line voltage should be low and $E_{1 L}$ the voltage across Element 1 at low line voltage, should be as high as possible.

For ease of evaluation let us put the last equation into the following form :

$$
\delta E_{1}=\frac{R_{1}}{R_{1}+R_{2}}\left(1+\frac{E_{2 L}}{E_{1 L}}\right) \delta E_{L}
$$

Let us consider an example.
Given: The line voltage varies from $E_{L L}$ $=40 \mathrm{vdc}$ to $E_{L H}=50 \mathrm{vdc}$
Hence $\Delta E_{L}=10 \mathrm{vdc}$ and

$$
\delta E_{L}=\frac{\Delta E_{L}}{E_{L L}}=\frac{10}{40}=0.25 \triangleq 25 \%
$$

Chosen:

PERFORATED PAGES!

In respanse to many reader requests the pages in the main editorial section have naw been pertorated. This will enable readers to easily remave material for their reference files. It the copy of Electronic industries you receiva aiready has pages removed that you want, please pages.

Zener Diode MZ 4.7

with $\mathrm{E}_{1 L}=4.7$ volt at 30 ma dc
and $R_{1}=1.25 \Omega$ from data sheet.
From this we get:
$E_{2 L}=E_{L L}-E_{1 L}=40-4.7=35.3$ volt

$$
R_{2}=\frac{E_{2 L}}{I}=\frac{35.3}{30 \times 10^{-3}}=1180 \Omega
$$

and the regulation (voltage change) across the Zener diode

$$
\begin{aligned}
\delta E_{1}= & \frac{1.25}{1.25+1180}\left(1+\frac{35.3}{4.7}\right) \times 25 \% \\
& =0.001055(1+7.53) \times 25 \% \\
& =0.225 \%
\end{aligned}
$$

Rota-Form Coil Winder

Abstracted from a paper by Paul L. Kerley and R. H.
Opperman, Sandia Corp., Sandia Base, Albuquerque, N. M.

AMACHINE which winds layerwound transformer coils on uncut "C" cores, used in saturable reactor applications, has been designed by engineers at Sandia Corp., Sandia Base, Albuquerque, N. M. Coils for this type of core obviously cannot be wound and then placed around a leg of the core. Formerly, they were handwound on the core by means of a shuttle containing the required amount of wire, or wound on a toroidal winding machine by using a window-winding attachment. Neither of these methods is satisfactory.

Hand-winding is tedious, timeconsuming, and subjects the wire to severe handling. For coils of appreciable inductance, it is difficult to hold enough wire in the "shuttle." The toroidal machines do not lend themselves well to the task. Their bobbins hold only a limited amount of wire of a given size. They do not make true layerwindings without objectionable overlapping of turns, and they are very clumsy as regards the placing
of layers of insulation between layers of windings. For example, the core must be removed from the window-winding clamp each time a layer of insulation is inserted.

The Rota-Form Coil Winder, Fig. 1, uses a completely new winding technique in that the coil and the coil form are rotated about one leg of the uncut " C " core. This is accomplished by means of a split bobbin or coil form, Fig. 2, which is placed around a leg of the core
and glued or taped together to form a solid bobbin.

The core is held stationary in a special recessed holder. The bobbin rests on four rubber-faced drive wheels and is held down by a hinged clamp on which two idler wheels are mounted; thus, the form can be rotated about the leg of the stationary core. A standard-sized wire spool will supply enough wire for many coils.

Access is had to two sides of the bobbin while it is in the machine; this permits easy handling of the wire and the layer insulating material.

The bobbin can be made of any machinable material. For high-
(Continued on page 194)

Fig. 1: This winder uses a completely new technique; the coil and coil form are rotated about one leg of the uncut " C " core.

Silicon photovoltaic cells are being used more in satellites and space vehicles as power sources. They are low in weight, have a good conversion efficiency, and can withstand environmental stresses. A new process that makes this possible is described.

For Space Vehicles . . .

Improved Silicon Photovoltaic Cells

By HARRY NASH and WERNER LUFT
International Rectifier Corp. 1521 E. Grand Ave.
El Segundo, Calif.

SILICON photovoltaic cells are finding increasing application in satellites and space vehicles as power sources. The requirements are extreme low weight, high conversion efficiency and ability to withstand the environmental stresses encountered in space.

An improved process for the manufacturing of silicon solar cells has been developed, offering high conversion efficiency and a cell construction that permits reliable mounting. This paper describes the new cell construction and introduces a basic low weight module assembly of these cells designed for space applications. The electrical characteristics of the cells are described and data for solar cell design in space environments and temperature control is presented.

Cell Design
The silicon photovoltaic cell described here is the boron diffused silicon p-n junction device developed by the Bell Laboratory. ${ }^{12}$ This cell is a high efficiency solar energy converter commonly referred to as the Solar Cell. The innovation to the basic silicon solar cell design is in the use of an alloyed contact strip bonded directly to the p layer to form an integral part of the cell. This process was developed by the International Rectifier Corporation for the Signal Corps* to provide silicon solar cells with non-plated contact strips.

The silicon solar cell consists of the n doped silicon
*Contract No. DA-36-039-SC-66469.

Fig. la: Cross section of a solar cell

OUTLINE DIMENSIONS:	$1 \times 2 \mathrm{~cm}$
ACTIVE AREA:	$1.8 \mathrm{~cm}^{2}$
EFFICIENCY OF CONVERSION:	$7 \%, 8 \%, 9 \%, 10 \%$
WEIGHT:	.3 GRAM

Silicon Cells (Continued)

wafer having a boron diffused p layer at the active surface. A cross section of this cell and alloy contact construction is shown in Fig. 1a. The p contact consists of a metal strip bonded to pure aluminum which is alloyed directly into the silicon cell. This aluminum

Fig. 2: E-I characteristics of a $1 \times 2 \mathrm{~cm} \mathrm{10} \mathrm{\%} \mathrm{efficiency} \mathrm{cell}$

Fig. 3: Typical variation of max. power output vs. cell temp.

Fig. 4: Typical variation of short circuit current and open circuit voltage versus the cell temperature.

alloy forms a $p-n$ junction contact with the n doped wafer and a very intimate ohmic contact to the boron p layer. The cell is then tinned at the p contact strip which is the electrical positive terminal. The entire back surface of the cell is plated and tinned to form the electrical negative terminal. This design contributes to very low series resistance in the p contact and n contact, thereby offering improved conversion efficiency. In addition, the p contact strip reinforces the silicon wafer to make the contact area the most rugged part of the entire silicon cell.
The "alloyed contact" silicon cell is presently being produced in the $1 \times 2 \mathrm{~cm}$ configuration that has become standardized for military applications. This cell size is very well adapted to the requirements of high efficiency solar energy conversion. ${ }^{3}$ Larger area cells may be produced, but at a loss in conversion efficiency. Smaller area cells may be made of comparable and even higher efficiencies that the $1 \times 2 \mathrm{~cm}$ size, but area utilization of such cells may be poorer. For space applications these cells can currently be obtained in grades of $8 \%, 9 \%$, and 10% conversion efficiency. Higher efficiency cells have been produced in prototype quantities, but these are not yet offered for space power designs.

Light Weight Module Assembly

The superior ruggedness and contact strength of this new silicon cell construction becomes evident when cells are assembled in series combinations as basic module units. The method for interconnecting silicon cells to obtain the highest efficiency per unit area is the shingling method. In this assembly, the p contact of one cell is in direct contact with the tinned n contact of the adjacent cell in a series connected string. The entire exposed surface of the shingled assembly, with the exception of the collector strip on the end cell, is an active surface. Fig. 1b illustrates a cross section of this five-cell shingled module. Design tests of this module under simple beam loading have shown the maximum shear and bending stresses to be limited by the silicon wafer crystalline structure, rather than the interconnecting joints. This test is performed on all shingled assemblies in production with a 250 gram load applied at the center of the unit, as shown in Fig. 1b.

The shingled module assemblies are extremely light in weight and offer the optimum power-to-weight ratio for space power designs. The total 1.5 gram weight of the module is a composite of the five individual cells, at 0.3 grams per cell, in this assembly. Yet, the module is strong enough to be readily handled for assembly into sub-panels or directly onto a vehicle skin. However, caution must be observed to protect it from bending or localized stresses that can break the cell's crystalline structure.

Power Supply Design

The design of silicon solar cells into power supplies for space vehicles requires an understanding of their behavior under space environmental conditions. Such influences as magnitude and spectral distribution of solar radiation, thermal equilibrium of the solar collector and damaging effects of micro-meteorite ero-

Fig. 5: Typical variation of power, voltage and current at maximum power output versus incident solar radiation
sion must enter into the design. From our present knowledge of the space environment, good approximations may be made on the cell performance under these conditions.

Before analyzing the space environment influence on solar cells, a brief review of the characteristics of the cells at the surface of the earth is presented.

Basic Electrical Characteristics

Fig. 2 illustrates the voltage-current characteristics of a $1 \times 2 \mathrm{~cm} 10 \%$ efficiency cell. The characteristic is shown for standard conditions at which silicon solar cell performance is normally specified. These conditions are:

Incident Radiation Power $=100 \mathrm{mw} / \mathrm{cm}^{2}$ equivalent solar radiation.

Cell Temperature $=30^{\circ} \mathrm{C}$.
The radiant energy source used when determining these characteristics is a tungsten lamp. The light beam passes through a $1^{\prime \prime}$ water filter and is directed on the cell surface. This water filter is used to obtain a spectral distribution of the radiation falling on the cell which approximates the spectral distribution of solar radiation at the earth's surface. The light source is calibrated at $100 \mathrm{mw} / \mathrm{cm}^{2}$ equivalent solar irradiation by comparison with a standard pyrheliometric measurement under direct solar radiation at approximate air mass $=1$, (Fig. 7).

The cell whose characteristics are illustrated in Fig. 2, delivers a maximum power output of 18 milliwatts at $100 \mathrm{mw} / \mathrm{cm}^{2}$ solar radiation, corresponding to a conversion efficiency of 10%. The maximum power output is delivered at 0.4 v at the specified cell temperature of $30^{\circ} \mathrm{C}$.

Temperature Effects
Fig. 3 illustrates the influence of cell temperature on the maximum power output of silicon cells. For

A REPRINT
of this article can be obtained by writing on company letterhead to

The Editor
ELECTRONIC INDUSTRIES
Chestnut \& 56th Sts., Phila. 39, Pa.
temperatures above $30^{\circ} \mathrm{C}$, the maximum power output decreases linearly with increased temperature at a rate of approximately 0.6% per degree C. For temperatures below $30^{\circ} \mathrm{C}$, the maximum output power increases at approximately the same rate down to $-10^{\circ} \mathrm{C}$. Below this temperature, the rate of change in maximum output decreases.

The influence of cell temperature on open circuit voltage and short circuit current is shown in Fig. 4. The open circuit voltage decreases approximately linearly with increasing temperature, whereas the short circuit current is nearly independent of temperature within a wide range.

Effects of Illumination Level and Spectral Distribution

The output characteristics of a solar cell vary with the amount of incident radiant power. For any given spectral distribution of the incident radiation, variation of the short circuit current is linear with radiation. The same holds true for the output current at maximum power transfer, as shown in Fig. 5. The variation in output voltage at maximum power as a function of incident radiation above a certain light level is nearly linear, but small, as seen from the same figure. Below this level, which is $40 \mathrm{mw} / \mathrm{cm}^{2}$ for solar radiation at sea level, the voltage decreases more rapidly with decreased radiation.

The output from a solar cell depends not only on the magnitude of incident radiation received, but also on the spectral distribution of the radiation. The solar cells can convert radiant energy into electrical energy for radiation of wave lengths from approximately 0.4 to 1.1 microns. However, the conversion has the highest efficiency for 0.8 microns wave length. This is seen in Fig. 6, which shows the relative spectral response of the short circuit current for radiation of constant power per unit wave length.

THE SPACE ENVIRONMENT

Spectral Distribution

When the silicon solar cell is elevated to a point just outside the earth's atmosphere it is exposed to a magnitude of solar radiation called the "solar constant." The solar constant is defined as the mean value of solar radiation at normal incidence outside the earth's atmosphere at the mean solar distance. The magnitude of the solar constant has been determined to be approximately $140 \mathrm{mw} / \mathrm{cm}^{2} .^{4}$ Its relative spectral distribution is shown in Fig. 7, at zero air mass ($\mathrm{m}=0$).

Silicon Cells (Continued)

In its passage through the earth's atmosphere, the solar radiation is modified by scattering, absorption, and reflection effects that are spectrally selective. Al-

Fig. 6: Relative spectral response of short circuit 1 for uncoated cells for radiation of constant power per unit wavelength.

Fig. 7: Relative solar spectral radiation for three air masses.

Fig. 8: Relative spectral response of short circuit current for solar radiation (uncoated cell), at three air masses

most all the energy of wave lengths shorter than 0.3 microns is absorbed in the upper atmosphere. Water vapor and atmospheric gases absorb selectively in the visible and near infra-red spectrum. The resulting magnitude and spectral distribution of solar radiation striking the surface of the earth is notably different from that outside the atmosphere. This magnitude is $93 \mathrm{mw} / \mathrm{cm}^{2}$ for air mass $=1$ and $74 \mathrm{mw} /$ cm^{2} for air mass $=2.5$ The relative spectral distribution for $m=1$ and $m=2$ is also shown in Fig. 7.
The efficiency of a silicon solar cell is normally specified at a magnitude of $100 \mathrm{mw} / \mathrm{cm}^{2}$ solar radiation, with approximately spectral distribution $\mathrm{m}=1$. For space applications it is necessary to know the corresponding efficiency, for solar radiation at $\mathrm{m}=0$. This efficiency can be determined from Fig. 8, which gives the relative spectral response of silicon cells for solar radiation and which is obtained by point-bypoint multiplication of the curves in Fig. 6 and Fig. 7.

The ratio of output from a cell at solar radiation $\mathrm{m}=0$ to solar radiation at $\mathrm{m}=1$ is obtained by taking the ratio of the integrals of corresponding curves in Fig. 8. This ratio is 1.25 . Likewise, from Fig. 7, the ratio of the solar radiation for $\mathrm{m}=0$ to $\mathrm{m}=1$ is 140 / $93=1.5$. It is seen that the output from a cell in going from $\mathrm{m}=1$ to $\mathrm{m}=0$ increases less than the increase in solar radiation. The efficiency, at constant cell temperature, for solar radiation of $m=0$ is, consequently, only $1.25 / 1.5=0.83$ of the efficiency for solar radiation at $\mathrm{m}=1$. This assumes that there is a linear relationship between short circuit current and maximum power output.

From the above analysis a factor of $F_{\lambda}=83$, equal to the ratio of cell efficiencies for solar radiation $\mathrm{m}=$ 0 to $\mathrm{m}=1$, is introduced. It is interesting to note that F_{λ} may be greater than unity for a solar energy converter having a broader spectral response than silicon cells.

Surface Temperature of Solar Collectors

The surface temperature of a solar collector of given configuration in space is determined by its spectral emissivity and internal energy generation or absorption. This surface temperature must be known in order to determine the operating efficiency of the collector. The following data describes the surface characteristics of silicon solar cells and indicates their effect on surface temperature. A practical method for temperature control to obtain maximum solar collector output is discussed.

The temperature of a collector can be expressed in terms of its surface characteristics, i.e., the ratio of its average absorptivity for incoming radiation to its average emissivity at equilibrium temperature. The temperature will also depend on the collector's geometrical configuration. In Fig. 9 this relationship is shown for two collector configurations.
Collector A: Flat plate collector oriented normal to the incident radiation. (No temperature drop across collector.)
Collector B: Rotating spherical collector with axis of rotation normal to the incident radiation.
For both collectors the conversion efficiency for incident solar radiation to electric power is assumed

Fig. 9: Surface temperature of solar collectors in space
to be 10% and this power is transmitted away from the collector. It is also assumed that the surface characteristics of the collector not covered by solar cells is identical to the surface characteristics of the solar cells. In addition, the re-radiation to space of the collector is assumed unobstructed and no reflected radiation is received from the earth, moon or other body.

The abscissa of the plot in Fig. 9 represents the surface characteristics of the collector $\left(\bar{\alpha}_{\tau} / \bar{\varepsilon}_{\tau} \lambda\right)$. These surface characteristics for uncoated solar cells have been determined by measurements (Fig. 10). From this data the average absorptivity (α_{τ}) for solar radiation at $m=0$ has been determined to be 0.91 ; this value is assumed to be independent of the cell temperature for the temperature range of interest. From the same data the average emissivity ($\bar{\varepsilon}_{\tau}$) of the solar cells as a function of cell temperature has been calculated and the result is shown in Fig. 11.

PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide missing pages.

The temperature of a solar collector in space can be determined from this data. In Table I, the cell temperature for the two collectors considered is presented.

Temperature Control

It can be seen from Table I that solar collectors A and B operate at a relatively high surface temperature and consequently have a lower efficiency than desirable for space power supplies. The surface temperature of the collectors may be considerably reduced by reducing the $\bar{\alpha}_{\tau} / \bar{\varepsilon}_{\tau}$ ratio of the solar cells.

An increase in average emissivity of the silicon solar cell is obtained by the use of thin coated coverglass applied over each silicon cell. This coverglass is bonded directly to the cell surface to eliminate the "green-house effect." A typical example of the temperature of solar collectors when using coverglass on silicon cells is shown in Table II for the same cases as shown in Table I with non-covered cells. For this design the coverglass has increased the $\bar{\Sigma}_{\tau}$ of the silicon cells from 0.35 to an estimated 0.92 and the $\bar{\alpha}_{\tau}$ from 0.91 to an estimated 0.92 . 'The resulting increase in power output for the Collector A is 16% and for the Collector B is 47%, taking into consideration the transmission loss through the coverglass.

The coverglass is extremely light in weight and may be applied to silicon solar cells in any type of assembly. When applied to the standard module shown in Fig. 1b, the entire assembly weight is 2.5 grams. In addition to its function in temperature control, this coverglass also provides protection to
(Continued on page 106)

Table I

Temperature of Solar Collectors with Non-Covered Silicon Cells

Collector	$\overline{\boldsymbol{\alpha}}_{T}$	$\bar{\epsilon}_{1 T}$	$\overline{\epsilon_{2 T}} *$	$\frac{\bar{\alpha}_{T}}{\left(\bar{\epsilon}_{1}-\bar{\epsilon}_{z}\right)^{T}}$	Collector Surface Temperature	F_{T} Temperature Correction Factor
Flat Plate (A)	0.91	0.35	0.92	0.72	$80^{\circ} \mathrm{C}$	0.70
Rotating Sphere (B)	0.91	0.35	. . .	2.65	$75^{\circ} \mathrm{C}$	072

Table 2
Temperature of Solar Collectors With Coverglass

Collector	$\bar{\alpha}_{T}$	$\bar{\epsilon}_{1 T}$	ϵ_{T}	$\frac{\overline{\boldsymbol{\alpha}}_{\mathrm{T}}}{\left(\overline{\boldsymbol{\epsilon}}_{1}+\overline{\boldsymbol{\epsilon}}_{2} \mathrm{~T}^{\mathrm{T}}\right.}$	Collector Surface Temperature	F_{T} Temperature Correction Factor
Flat Plate (A)	0.92	0.92	0.92	0.5	$52^{\circ} \mathrm{C}$	0.88
Rotating Sphere (B)	0.92	0.92		1.0	$0^{\circ} \mathrm{C}$	1.16

* $\bar{\epsilon}_{\mathbf{2}}$ Average emissivity of rear surface of Collector A at surface temperature T .

TTHE process of frequency multiplication can be separated into two operations-harmonic generation and harmonic selection. The commonly employed Class C frequency multiplier shown in Fig. 1 illustrates this process. ${ }^{1}$ The voltage applied to the grid of the tube is large enough to bias the tube well below cutoff so that the plate current flows in brief pulses. These current pulses flow into an impedance (the plate tank circuit) designed to emphasize the desired harmonic component and attenuate all others.

Using the methods of frequency-domain analysis, the plate current can be approximated by a train of fractional sine-wave, or perhaps cosine squared, pulses. A Fourier series ${ }^{2}$ can be determined for the plate current, and from the impedance of the tank circuit, the various harmonics in the plate voltage can be calculated.

A better physical picture of the circuit performance is obtained from a time-domain description. Using this method, the plate tank circuit is considered to be excited by each pulse of current. In the interval between pulses, the tank circuit "rings" at its own natural frequency. The plate voltage takes the form of an amplitude-modulated wave with an envelope composed of a series of decaying exponential waves. The amount of decay or decrement of the envelope depends on the interval between current pulses and the Q of the tank circuit, or in frequencydomain terms, on the discrimination of the tank circuit to adjacent harmonics.

In the generation of medium (5-10) and high

PERFORATED PAGES!

In response to many reader requests the pages in the main editarial section have naw been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide the missing pages.
(>10) order harmonics with the Class C multiplier, efficiency considerations dictate the use of a brief current pulse. For the usual case, the spectrum of the pulse train has a decreasing envelope in the region of interest. That is, the desired harmonic component of the current is smaller in amplitude than the next lower harmonic and greater in amplitude than the next higher harmonic. This condition makes filtering difficult. In many applications, however, efficiency and power handling capability are of secondary importance, the primary goal being the generation of a harmonic voltage with high spectral purity, i.e., a "clean" voltage with low adjacent harmonic content. In this case the usual method is not always the best.

Advantages of a Rectangular Waveform

A study of the spectra of commonly encountered waveforms ${ }^{2}$ indicates that, for the generation of medium- and high-order harmonics, the rectangular waveform offers many advantages. In the frequency range up to about 1 mc , several methods exist for the generation of essentially rectangular waves. The spectrum of a rectangular wave extends far into the highharmonic region with relatively low roll-off compared to the spectra of other common waveforms. The rectangular wave spectrum also exhibits periodic nulls. These nulls represent a disadvantage if a wide smooth spectrum is desired, but for the generation and selection of a single harmonic, the nulls can often be used to advantage.

As illustrative examples of the use of rectangular waveforms, let us take the cases of frequency multiplication by factors of 5 and 10. For multiplication by a factor of 5 , or indeed by any odd factor, the spectrum of a square wave displays the desirable property of containing only odd harmonics. That is, the

A unique, but relatively simple method of frequency multiplication is described. A multivibrator-type circuit is used to produce a rectangular current pulse. The duty ratio of the pulse is adjusted to maximize the desired harmonic and minimize the adjacent harmonics simultaneously. There are many uses today for frequency multipliers.

Frequency Multiplication

nulls of the spectrum are positioned on the even harmonics. This property simplifies the task of filtering, allowing a relatively clean output. This behavior becomes clearer when the time-domain performance is described. Assume that a square wave of current is passed through the tank circuit of Fig. 1. One transition of the square wave excites the tank circuit which is tuned to the fifth harmonic of the input frequency. The circuit rings for $21 / 2$ cycles. At this point, just as the plate voltage is reversing polarity, the next transition of the square wave occurs, exciting the tank circuit in opposite phase and intensifying the natural amplitude of the plate voltage. In the
steady state the envelope ripple of the plate voltage displays twice the rate and about half the decrement that would occur if the tank circuit were excited only once a cycle of the fundamental frequency, as by a brief pulse.
Use can again be made of the peaks and nulls of the rectangular-wave spectrum for multiplication by a factor of 10 . It can be shown that a rectangular waveform with a duty ratio of 0.45 displays the unique property of maximizing the tenth harmonic and minimizing the ninth and eleventh. By decreasing the pulse duration from 0.5 to 0.45 periods, the spectrum is "stretched" so that a peak occurs close to the tenth harmonic and nulls occur close to the ninth and eleventh harmonics. In the time domain again, this waveform results in two decay regions of the tank voltage, one of 4.5 and one of 5.5 -cycle duration. This results in a smaller decrement than would occur if the tank circuit voltage were allowed to decay for the entire 10 -cycle interval.

A Practical Circuit

A circuit utilizing the above principles is shown in Fig. 2. This circuit is used to multiply input frequencies of either 100 kc or 1 MC to 5 MC . If the input frequency is 100 Kc , it is first multiplied by a factor of 10 to 1 MC using the 0.45 duty-ratio rectangular pulse discussed above and thence to 5 MC using a square wave.

Frequency Multiplier

(Concluded)

Both halves of V1 are connected as a Schmitt trigger circuit ${ }^{3}$ which generates standard trigger pulses independent of the waveform of the 100 KC input voltage. These trigger pulses synchronize the following stage involving V2 and half of V3. The triode half of V2 and the screen grid, control grid, and cathode (a simulated triode) of the pentode half are connected as a cathode-coupled monostable multivibrator ${ }^{4}$ which produces a rectangular pulse of current $4.5 \mu \mathrm{sec}$. in duration when triggered. The circuit is triggered every $10 \mu \mathrm{sec}$. (100 Kc), thereby producing the desired 0.45 duty-ratio pulse. The rectangular current pulse is coupled into the plate circuit of the pentode half of V2 which contains a parallel resonant tank circuit tuned to 1 mc . One-half of V3 is connected as a diode to stabilize the action of V2. The 1 MC signal is further filtered in a second tank circuit which also serves as the input point for an input frequency of 1 MC . The well filtered 1 mC signal is applied through the other half of V3 connected as a cathode follower to V4. V4 is connected as a Schmitt circuit which, when driven by the essentially sinusoidal 1 mC signal, produces square current pulses having, theoretically, only odd harmonic components. These current pulses are coupled to the plate circuit of the pentode half of V4 where the fifth harmonic (5 MC) is accentuated by the tank circuit.

Figure 3 shows several of the waveforms produced by the circuit. Waveform A shows the trigger pulses applied to the input grid of V2. A small pulse can be seen on this voltage which is coupled back from the monostable multivibrator when it resumes its stable state. Waveform B shows the typical multivibrator grid voltage at the grid of the pentode half of V2. When the multivibrator action is initiated by a positive trigger pulse, the grid voltage falls rapidly, cutting off the V2 pentode. The grid voltage then rises toward the $B+$ voltage with a time-constant determined primarily by the coupling capacitor and
A. Trigger pulses at input grid of $\mathrm{V} 2,100 \mathrm{kc}$
B. V2 pentode grid voltage, 100 kc
C. V2 pentode plate voltage, IMc
D. Filtered 1-Mc signal

Fig. 3: Multiplier waveforms for circuit shown in Figure 2
the pentode grid-return resistor. When the pentode grid voltage enters the grid base, the multivibrator switches back to its stable state, returning current to the pentode. Waveform C shows the 1 mC plate voltage of the V2 pentode. Note the 4.5 and 5.5 -cycle portions of the waveform. Waveform D shows the 1 MC signal after the next stage of filtering. The decrement is almost completely absent. Waveform E is an expanded view of this voltage. Waveform F shows the 5 mC output voltage at the plate of the pentode half of V4.

Conclusion

For fundamental frequencies up to about 1 mc , the rectangular wave output of multivibrator-type circuits can often be used to great advantage for frequency multiplication by moderate factors.

References

[^7]
More on Railroad Electronics

ANOTHER form of closed circuit TV, working in conjunction with an electrostatic printer, may be the next tool to speed-up railroad freight service.
By reducing the manual clerical requirements of freight classification, and increasing the time available, cars may be properly dispatched immediately upon arrival in the freight yard.

The results of a feasibility study conducted by the A. B. Dick Co. at the request of the New York Central System indicate that pictures
of a freight train, passing an outlying station at 60 mph , can be made and flashed instantaneously to some central office or freight yard.

If the freight yard has a complete picture of a train several hours before it enters the yards, the car types and numbers could be checked to keep each car heading toward its correct destination. Further, the information could be used to plan the make-up of new trains from arriving cars.
This important railroad activity
is now done primarily by men who walk past the cars in outlying stations and note the numbers and types. The information is then telegraphed or telephoned to the next change point. Conventional closedcircuit television is sometimes used for this purpose, but this involves manual recording of car numbers. Further, usual TV framing rates lend to blurring unless the trains move relatively slowly.

Television Printer

The new system employs a version of the Videograph Electrostatic Printer developed at Stanford Research Institute for the
(Continued on page 138)

The current in L is in such a direction as to discharge the capacitor, and therefore the energy in the capacitor is transferred to the inductor. The current increases to a peak slightly greater than I. Then energy begins to transfer back to the capacitor and the voltage across the capacitor builds up in the reverse direction. These sinusoidal current and voltage oscillations are pictured during the retrace interval in Fig. 1. They would continue unperturbed except that the switch is closed at the instant when the voltage across the capacitor has returned to E At this time the magnitude of the yoke current is again I but in the reverse direction. The linear current sweep commences and the cycle repeats itself.

Mathematically, the current in the yoke before and after switching possesses a continuous logarithmic derivative. This follows since both the current and its first derivative must be continuous due to the presence of the capacitor in parallel with the inductance. The retrace period is therefore somewhat longer than one half the period of oscillation, π (LC) ${ }^{1 / 2}$. If the sweep time is much greater than the retrace time, t_{r}, then the retrace time is very nearly π (LC) ${ }^{3 / 2}$. This is true in television horizontal deflection.

The peak voltage across the switch when it is open during the retrace time is V (Fig. 1). The peak current that the switch must carry is I. From the relations in Fig. 1, i.e.,

$$
\mathrm{V}=\mathrm{I} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}} \text { and } \mathrm{t}_{\mathrm{r}}=\pi(\mathrm{LC})^{3}
$$

the volt-ampere rating of the switch may be expressed as

$$
\mathrm{V} I=\left(\pi / \mathrm{t}_{\mathrm{r}}\right) \mathrm{LI}^{2}
$$

For deflection of a 110° yoke with 15 kv accelerating potential this becomes

$$
\mathrm{VI}=10,700 / \mathrm{t}_{\mathrm{r}}, \quad \mathrm{t}_{\mathrm{r}} \text { in } \mu \mathrm{sec} .
$$

This is a convenient factor for estimating the capability of a given transistor in this application.

Returning to the switching portion of the cycle, consider what happens if the switch is not opened instantaneously. This means that the current does not become zero at once. The current in the switch decays as the voltage across the switch builds up and consequently there is a loss of energy in the switch. Due to this loss, the oscillation of energy between the inductance and capacitance is damped by a non linear resistance. To investigate the nature of this damping, and other effects of real switching as opposed to ideal switching, an assumption is made regarding the nature of the switching.

It is assumed that the current in the switch decays exponentially. Such an assumption is reasonable because of the nature of the diffusion process on which transistor action relies. In terms of the hybrid-pi equivalent circuit for transistors, the exponential waveshape is a consequence of the resistive and capacitive input elements, Fig. 2. This latter argument is admittedly somewhat inapplicable for at least one reason, i.e., the hybrid-pi is a small signal equivalent circuit and we are concerned here with large signal operation.

Fig. 3: Retrace yoke current applied to TV horizontal deflection.

However, experimentally, the current decay may be observed to have an exponential appearance. Therefore, for this reason and since only a first order criterion for switching speed is what is presently desired, the exponential assumption appears useful. The current in the switch, furthermore, is assumed to be independent of the voltage across the switch; a reasonable assumption for the collector circuit of a transistor when the collector is reverse biased.

Analysis

The current in the switch from time $\mathrm{t}=0$, when it is opened will be taken as $i_{\mathrm{sw}}=I \exp (-t / T)$,
where, $\mathrm{I}=$ value of the yoke current (and switch current) at the time of the opening of the switch, $t=0$
$\mathrm{T}=$ time constant of the switch, i.e., the time at. which the switch current has decayed to 36.8% of its initial value.

With reference to Fig 1, the differential equation for the yoke current is obtained:

PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now teen many reader request the pages in the maily remove material have now been perforated. This will enable readers to easily remove rasterial for their reference files. If the copy of Electronic Industries you receive alrady has pages removed phat
glad to provide the missing pages.

$$
\begin{gather*}
\mathrm{i}_{\mathrm{aw}}=\mathrm{i}_{\mathrm{L}}+\mathrm{i}_{\mathrm{C}} \\
\mathrm{c}=\mathrm{C}\left(\mathrm{dv}_{\mathrm{L}} / \mathrm{dt}\right)=\mathrm{LC}\left(\mathrm{~d}^{2} \mathrm{i}_{\mathrm{L}} / \mathrm{dt}^{2}\right) \\
\mathrm{LC}\left(\mathrm{~d}^{2} \mathrm{i}_{\mathrm{L}} / \mathrm{dt}^{2}\right)+\mathrm{i}_{\mathrm{L}}=\mathrm{I} \exp (-\mathrm{t} / \mathrm{T}) \tag{1}
\end{gather*}
$$

A particular solution to this Eq. 1 is,

$$
\frac{I \exp \left(-t_{/} / T\right)}{1+\left(t_{v} / \pi T\right)^{2}}
$$

The complementary solution to Eq. 1 is,

$$
A \sin (\omega t+B)
$$

in which the constants A and B must be evaluated from the initial conditions of the current and its

Fig. 4 (above): The initial portions of the retrace yoke current oscillations as shown in Fig. 3 are repeated here to a larger scale.

Fig. 5 (above): The value of the yoke current at the end of the actual retrace period is plotted as function of switching speed.

Fig. 6 (below): To facilitate calsulating switch dissipation, the difference in squares of initial of final currents are plotted here. Fig. 9: Increase in retrace time due to decrease in switching speed.

TV Switching (Continued)

derivative. The complete solution is the sum of the particular and the complementary solutions. With the constants determined, the exact expression for the yoke current during the retrace time is:
$\frac{i_{L}}{I}=\frac{\exp (-t / T)}{1+\left(t_{r} / \pi T\right)^{2}}$

$\sin \left\{\left(\pi \mathrm{t} / \mathrm{t}_{\mathrm{r}}\right)+\operatorname{rot}^{-1}\left[\left(2 \mathrm{t}_{\mathrm{r}} / \pi \mathrm{t}_{\mathrm{s}}\right)\left[1+\left(\pi \mathrm{T} / \mathrm{t}_{\mathrm{r}}\right)^{2}\right]+\left(\pi \mathrm{T} / \mathrm{t}_{\mathrm{r}}\right)\right]\right.$
In these expressions the quantity
$\mathrm{t}_{\mathrm{r}}=\pi(\mathrm{LC})^{1 / 3}$ is defined as the nominal retrace time. It is very nearly equal to the actual retrace time in practical cases.

Yoke Current During Retrace

To apply this expression to television horizontal deflection let the sweep time, t_{s}, be $53.5 \mu \mathrm{sec}$ and the retrace time, t_{r}, be $10 \mu \mathrm{sec}$. The resultant expression is plotted in Fig. 3 for switching time constants, T , of $1 / 2,1 / 4$ and $1 / 8$ of the nominal retrace time.

The yoke retrace current for the ideal switch (in which $\mathrm{T}=0$) may be found by matching the logarithmic derivatives of the linear current sweep which precedes the retrace and of the sinusoidal oscillation that constitutes the retrace. The result is: $\mathrm{T} / \mathrm{t}_{\mathrm{r}}=0, \mathrm{i}_{\mathrm{L}} / \mathrm{I}=1.008 \sin \left[\left(\mathrm{t} / \mathrm{t}_{\mathrm{r}}\right)+1.45\right]$. This also appears in Fig. 3.

The initial portions of the oscillations are repeated to a larger scale in Fig. 4. This type of damped oscillation differs from that obtained when a constant resistance is used for damping. In the process described here of "exponentially opening" the switch. the damping is time dependent and eventually disappears. This is evident from the expressions for retrace current, since they consist of a decaying exponential added to a sinusoid. After sufficient time the exponential disappears and only the sinusoid remains. The total energy represented by this sinusoid differs from the initial energy in the reactances by an amount of energy which has been lost in the switch.

In a deflection circuit the oscillation will not atta in this steady state unless the switching speed is short in comparison with the nominal retrace time. This is because the retrace period is terminated to start a linear sweep again.

An oscillation damped by a constant resistance, it will be recalled, is a sinusoid with an exponential envelope. The oscillation essentially disappears after a time much greater than the time constant of the exponential.

Referring to Figs. 3 \& 4 several effects are observed as the time constant of the switch increases. With slower switching the current in the yoke reaches higher peak values before it reverses. This is because the switch, in taking a longer time to open, main-

...What's New

Reliable Rugged Recorder

RELLABILITY and ruggedness are two of the fundamental characteristics of the smallest instrumentation recorded developed to date for complete flight data acquisition. Displacing only 1.6 cu . ft ., it nontheless affords its user 7 to 32 recording tracks of data, depending upon the recording technique selected. Secret of the miniaturization, according to Ampex Corporation, developer of the tiny piece of equipment, is the unusual arrangement of electronics, use of an all-transistor, solid-state electronic system in place of vacuum tubes, and the use of lightweight metals in the construction of the chassis.

The sturdy little unit is 57% smaller and 35% lighter than previously existing recorders of the same reliability. Remarkably compact, the system consists of two units: tape transport and the recorder electronics. Designed primarily for airborne data acquisition, it is equally applicable to undersea research, surface vehicle analysis, and many other areas where shock and environmental requirements preclude the use of other recorders.

Improved magnetic heads, a onepiece aluminum chassis, and a rigid cast cover which opens from both sides to allow operation from any position, are just a few of the assets.

Features

The new unit, known within the industry as the Ampex Series AR200 recorder, answers the need for a small, versatile recording unit with no sacrifice of the reliability characteristic of the larger recording systems.

The complete recorder system includes, from left to right, a power converter, electronics box, the remote control unit, the AR-200 tape transport, and a test unit.

Paralleling the size reduction, the AR-200 weighs much less than previous instrumentation recorders with similar capabilities. The complete system with shockmount, reels, and tape weighs only $901 / 2$ pounds.

Extremely rugged and unsusceptible to environmental damage, the entire recorder can withstand shocks up to 15 times the force of gravity. It will operate at altitudes of 100,000 feet, and function in up to 95% humidity. Also, it can be subjected to excessive temperature changes, operating over a range of from $-65^{\circ} \mathrm{F}$ up to $160^{\circ} \mathrm{F}$.

Recording Techniques

Four basic recording modes are available with the system. For highest frequency response (up to 100,000 cycles at 60 ips) there is direct recording. For greatest amplitude accuracy, frequency mod-
ulated carrier recording accurately preserves signal amplitudes over a frequency range of from dc to $10,000 \mathrm{cps}$. For recording the maximum number of data samples, the AR-200 can record digital information at input rates up to 576,000 bits per second. And, as an alternative for high data-sampling rates, pulse-duration modulation (PDM) is particularly useful for tests where large numbers of temperatures, pressures, positions, flow rates, and other quasi-static variables are to be recorded. Wherever the recorder is employed, it offers its user these four recording modes by a simple change of amplifier.

Electronics for direct record, frequency modulation record, pulse duration modulation, digital write, a control track generator, and regulator reference circuit are all part of the circuitry included in the
(Continued on page 220)

Solid - state devices and etched - board circuitry makes the electronic section of the new mobile recorder a compact unit

What's New

Parametric Amplifier Diode

NOISE temperatures as low as 100° above absolute zero operating at room temperature have been obtained by Hughes Aircraft Company in a high gain 3000 mC parametric amplifier using diodes of a newly developed type.

Initial production of several hundred of these diodes per week is in effect and they are immediately available to industry, according to the Hughes Semiconductor Division. The diode is the heart of a parametric amplifier but also has other important microwave applications such as switching and harmonic generation. It is available in two rugged and hermetically-sealed versions-one for the region below 1000 mc and a second for the microwave region. Because of newly developed modular line production techniques, these diodes are available at a price in the same range as good microwave mixer crystals.

The parametic amplifier does not require low temperatures for operation. The parametric amplifier does, however, have two channels of amplification, usually called the

This rice grain size, gold-bonded diode is the key component of a parametric amplifier which may solve many of the jet-age air traffic control problems of the near future.

Laboratory comparator magnifies the inner structure of this gold-bonded diode.

signal and idler channels, which were used simultaneously to obtain the low noise temperatures quoted above. As a further comparison, the best reported low noise microwave tubes have noise temperatures of about $300^{\circ} \mathrm{K}$ at 3000 MC , but have the advantage of single channel amplification and electrical tunability.

With the noise temperature 100° K obtained at room temperature, the 3000 mC amplifier gives 30 db of amplification with 2 MC bandwidth or 10 db of amplification with 25 MC bandwidth. Such amplifiers would, of course, be useful in many applications of microwave and UHF receivers where greater sensitivity or lower receiver noise is required.

The production models of the Hughes diode, designated HPA2800 and HPA-2810 have a nominal cutoff frequency of $70,000 \mathrm{MC}$ at maximum back bias with a nominal zero-bias capacitance of $2.5 \mu \mu \mathrm{f}$, it was disclosed. Its exceptional noise performance is attributed to its low equivalent series resistance at microwave frequencies.

A comparison of the parametric amplifier with conventional microwave receivers reveals a number of distinct advantages for the paramp. By far the most important is
the improvement in noise figure by 3 to 8 db over the best superheterodyne receivers. In radar applications this can increase radar range by 100%.

A second major paramp advantage lies in improved overload characteristics. The paramp will amplify smaller signals than the conventional receiver, and at the same time withstand higher incident power levels without burn out or degradation of performance. This could alleviate in part the duplexing problem which exists in present radar systems.

A similar comparison of the diode amplifier with other paramp types, and with masers, reveals the following reasons for current emphasis being placed in the diode paramp development.

1. No large external auxiliary equipment such as field magnets and focusing coils are required as is the case with ferrite amplifiers, electron beam amplifiers, and masers.
2. Pump power requirements are less than for ferrite amplifiers.
3. Low noise amplification is obtained without need for cooling to liquid helium temperature (This is true of the parametric amplifier in general.) The paramp noise fig-
(Continued on page 136)

Humidity Resistant Potentiometer

Abstracted from a paper Gilbert Bassin, Potentiometer Div., Litton Industries,
215 S. Fulton Ave., Mt. Vernon, N. Y.

T0 meet the demand for a precision potentiometer capable of operation in a humid atmosphere, the MDH20 humidity resistant potentiometer was developed by Hitton Industries, 215 S. Fulton Ave., Mt. Vernon, N.Y.
The unit is basically a high accuracy (as high as 0.01% lin.) tenturn, size 20 , precision potentiometer in a specially developed humidity resistant package.
To exclude moisture from the
internal mechanical and electrical portions of the potentiometer a drawn aluminum case is used and all joints and screw holes are sealed using a rubber potting compound.

Most mechanical methods of hermetically sealing shafts were abondoned because of the resulting increase in torque, prohibitive back lash and mechanical breakdown from rotation.

Instead a protective Teflon shaft

Surface Ignition Analyzer

Knock, pre-ignition, rumble, and thud are ferreted out by this equipment, developed by Du Pont Co. and installed in their Pe troleum Laboratory.

ENGINEERS from Du Pont's Petroleum Laboratory have developed a simple to use instrument for measuring the presence and extent of surface ignition which sometimes produces a rumbling noise and loss of power in modern automobile engines.

The instrument makes possible surface ignition studies on any automobile simply by installing special pressure-sensing spark plugs in the car's engine. Further, it will help provide clues to both better fuels and improved high compression power plants. Instrumentation, formerly available, limited surface ignition studies to laboratory test engines, with which it often was impossible to simulate actual service conditions.

Surface ignition is ignition of the fuel-air mixture by glowing carbonaceous deposits in the engine cylinder. The phenomenon, most pronounced in high compression engines, results in an undesirable build-up of pressure in the cylinder. The result frequently is a loss of power and a rumbling noise caused by abnormal combustion pressures and the accompanying engine vibrations.

Significance of the instrument development is two-fold. First, it enables accurate analysis of the cause and frequency of surface ignition; and, second, it provides data which will be helpful in development of better fuels and more efficient high compression engines.
(Continued on page 212)

All joints and screw holes are sealed with a rubber potting compound on this humidity resistant Potentiometer. Teflon shield creates moisture barrier for shaft.
shield was developed which creates a moisture excluding barrier. Only a slight increase in the running torque of the unit is experienced. This shield is placed in front of the ball bearing and acts as ar effective barrier against salt spray, sand, and dust as well as humidity. Humidity tests conducted after temperature cycling and rotational life tests demonstrate this seal to be effective even after severe changes in temperature and extended use.

Performance

These potentiometers have been subjected to 15 days of humiditytemperature cycling in accordance with the procedure set forth in MIL - E-5272A. Measurements of torque, insulation resistance between terminals and shaft, and total resistance were taken at 24 hour intervals during the test, with units in the humidity test chamber. The torque remained constant during the test.

The insulation resistance rose considerably on all units tested following a 2 hour air drying period and rose above 2,000 megohms after a 24 hour drying period at $40^{\circ} \mathrm{C}$.

At no time during the test did the insulation resistance fall to a point which would have serious effect on the ordinary operation of the unit.

Noise and linearity were checked prior to and immediately following the test and no change was observed.

Electrolysis

MDH 20 units have been sub(Continued on page 222)

TTHE transistor, in some respects, is well suited to providing a linear current sweep for horizontal deflection. Its ability to act as a bilateral switch, i.e., conduct in both directions, and its relatively high efficiency as such, are two advantageous properties.

On the other hand, the product of the maximum collector current and maximum collector voltage ratings of currently available transistors is not quite adequate for horizontal deflection in standard TV receivers. Also, the frequency response or, more appropriately, the switching speed of transistors with high collector volt-ampere ratings is low. This article pertains primarily to the latter problem, slow switching speed. An analysis is made in order to estimate the effects of switching speed on operation. A minimum value of switching speed may be resolved from the results.

Ideal Deflection System

A familiar model of an ideal deflection system is illustrated in Fig. 1. The switch is lossless, i.e., it has zero resistance when closed and infinite resistance when it is open. The switch opens and closes instantaneously at the proper time within the cycle. Operation may be explained briefly with aid of the waveforms pictured in Fig. 1.

During the sweep interval, t_{s}, the battery is connected across the yoke, L. Therefore the yoke voltage, v_{L}, is equal to the battery voltage. Since there is a constant potential, E , across the yoke, the current in the yoke will increase linearly with time as shown in the current waveform in Fig. 1. At the instant the yoke current reaches the value required for full halfangle deflection the switch is opened. The circuit then consists of an inductance in which there is a current, I, and a capacitance across which exists a potential E. Thus there is a small amount of energy in the capacitor and a relatively large amount in the inductance.

Though the pros and cons are treated, this article primarily pertains to the transistor's slow switching speed.
An analysis is made to determine the effect on operation; a minimum of value of switching speed may be resolved from the results.

Transistors in TV . . .

Horizontal

 Deflection Switching

By M. J. HELLSTROM
Supervising Engineer, Radio-TV Div. Westinghouse Electric Corp.
Metuchen, N.J.

Fig. 2: Resistive G capacitive input elements cause exponential wave.

tains the battery voltage, Fig. 1, across the inductance for a longer time. As a result, the current tends to increase at the same rate as before the switch started to open.

Loss of Sweep

In a deflection circuit the retrace oscillation would be terminated when the slope of the yoke current again reaches the value that it had during the linear sweep. In Fig. 8, at the end of the actual retrace time, the magnitude of the current in the yoke is smaller than the initial value. This represents a loss of energy and a loss in peak to peak sweep current. The slower the switch the greater these losses.

In Fig. 5 the value of the yoke current at the end of the actual retrace period is plotted as a function of switching speed. Since for ideal, lossless switching, peak to peak sweep is twice the initial value of the retrace current, a final value of 22.2% for example, means a loss in peak to peak sweep of $1 / 2$ $(100-22.2) \%=38.9 \%$. This happen at $\mathrm{T} / \mathrm{t}_{\mathrm{r}}=1$.

Switch Dissipation

The retrace period begins and ends with the same value of yoke current slope. Therefore the voltage across the capacitance, and hence the energy therein, is the same at the beginning and end of the retrace interval. The net decrease in the yoke current then accounts for the total loss of energy in the L-C circuit during the retrace. That is, $\Delta W=1 / 2 \mathrm{~L}\left(\mathrm{I}^{2}-\mathrm{I}^{\prime 2}\right)$, where ΔW is the energy loss, I^{\prime} is the yoke current at the end of the period and, as before, I is the initial value. Since there are no other dissipative elements in the circuit all of this energy must be lost in the switch. In transistor deflection circuits this dissipation is important due to the limited power ratings of devices presently available.

As a first step to facilitate the calculation of this switch dissipation, the difference in the squares of the initial and final currents has been plotted in Fig. 6. When the switching time constant is $1 / 2 \mathrm{t}_{\mathrm{r}}$, the loss in current squared, or energy, is about 64%. This represents energy dissipated in the switch equal to 64% of $1 / 2 \mathrm{Ll}^{2}$. Note, however, that this does not constitute all of the energy dissipated in the switch. Although we have accounted for the energy lost in reactive circuit during the retrace period, we have not accounted for the power supplied by the battery during this same interval. This energy, which must also be dissipated in the switch, may be easily calculated since the battery current is equal to the switch current. Thus,

$$
\begin{aligned}
\Delta W^{\prime} & =\int_{O}^{t_{r}^{\prime}} \mathrm{EI} \exp (-t / T) d t \\
& =\left(l_{2} L I^{2}\right)\left(4-\frac{T}{t_{*}}\right)\left[1-\exp \left(-t_{r}^{\prime} / T\right)\right]
\end{aligned}
$$

where ΔW^{\prime} is the energy supplied by the battery.
In these expressions $\mathrm{t}^{\prime}{ }_{r}$ is the actual retrace time which is somewhat longer than the nominal retrace time, \mathbf{t}_{r}. This energy, supplied by the battery and dissipated in the switch, has been plotted as a function of switching speed in Fig. 7. The energy is normalized with respect to $1 / 2 \mathrm{LI}^{2}$.

To obtain the total energy dissipated in the switch
during the retrace interval the ordinates of the curves in Figs. 6 and 7 are added together to obtain the curve of Fig. 8. Thus, Fig. 8 displays the normalized total energy dissipated in the switch during the retrace interval as a function of switching speed. From these curves it is evident that there is considerable energy lost in the switch when it does not open quickly.

Retrace Time

As mentioned before, the retrace period ends when the slope of the yoke current returns to its initial value. From Fig. 3, the values of the retrace times may be determined. For perfect switching the actual retrace time, t^{\prime} is about 7.7% longer than the nomi-

Fig. 7 (top) : Energy supplied by battery and dissipated in the switch during retrace is plotted as a function of the switching speed.

Fig. 8 (bottom): Ordinates of Figs. 7 \& 8 are added to obtain the total energy dissipated in the switch during the retrace interval.

TV Switching (Concluded)

nal retrace time. This value, $\mathrm{t}_{\mathrm{r}}=1.077 \mathrm{t}_{\mathrm{r}}$ is taken as the normalization basis in plotting Fig. 9 which shows the increase in retrace time due to a decrease in switching speed.

Use of Curves

In a horizontal deflection system in which $1 / 2 \mathrm{LI}^{2}=$.0017 watt-seconds it is desired to have a retrace time, t_{r}, of 10 usec. The transistor available has a switching speed of $2.5 \mu s e c$. The following observations may be made. Since $T / \mathrm{t}_{r}=1 / 4$ the retrace yoke current waveform is pictured in Fig. 3. From Fig. 5 it is seen that there is a loss in peak to peak sweep of $1 / 2(1-0.87)$ or about 6.5% from the ideal case. Fig. 6 shows that about 24% of 0.0017 or 0.000408 watt-seconds of energy is lost in the switch from the reactive elements.
'The battery, in addition, supplies 13.8% of 0.0017 , or 0.000234 , watt-seconds of energy to the switch, Fig. 7. The total is 0.000642 watt-seconds, Fig. 8. From Fig. 9, the retrace time is about 18.9% longer than for the ideal switch. Since the ideal switch has a retrace time of $1.077 \mathrm{t}_{\mathrm{r}}$ the retrace time for this is (1.077) (1.19) (10) $=12.8 \mu \mathrm{sec}$. A switching speed of $2.5 \mu \mathrm{sec}$ is not too prohibitive therefore. In prac-

Fig. 9: Increase in retrace time due to decrease in switching speed.
tice, speeds better than this have been obtained with high power transistors. The average power dissipated in the switch during the retrace interval is $(0.000642) /(0.0000128)=50$ watts. Averaged over the entire period this represents 10 watts.

Silicon Cells

(Continued from page 95)

Fig. 10: Typical spectral emissitivity of uncoated cells

Fig. 11: Average emissivity of uncoated cells vs. cell temp.

the sensitive cell surface against micro-meteorite erosion in space. The effects of this erosion on cell efficiency may be estimated ${ }^{6}$ and compensated by conservative design.

Conclusion

It has been shown that the power output of a solar collector in space can be predicted from the cell characteristics obtained from tests performed under. laboratory conditions. With this data and information about the collector configuration and orientation with respect to the sun, the temperature of the cells can be determined. This temperature can be controlled within certain limits by various means.

Silicon solar cells have high conversion efficiency and a high power-to-weight ratio.

All these factors are of prime importance when designing a proper power supply unit for space vehicles.

References

1. D. M. Chapin, C. S. Fuller, and G. L. Pearson, Journal of Applied Physics, Vol. 25, p. 676, 1954.
2. D. M. Chapin, C. S. Fuller, and G. L. Pearson, Bell Laboratories Record, Vol. 33, p. 241, 1955.
3. M. B. Prince, "Silicon Solar Energy Converters;" Journat of Applied Physics, Vol. 26, No. 5, May, 1955, pp. 534-540.
4. F. S. Johnson; "The Solar Constant," J. of Meteoroloyy, Vol. II, 1954 , p. 431 .
5. P. Moon, "Proposed Standard Solar Radiation Curves for 5. P. Moon, "Proposed Standard Solar Radiation Curves for
Engineering Use,"J. Franklin Inst, Vol. 230 , Nov., 1940, p. 583. 6. F. L. Whipple, "The Meteorite Risk to Space Vehicles," Vistas in Astronautics, Pergammon Press, p. 15 .

PLUG AND SOCKET BODIES SHOWING CONTACT ARRANGEMENT AND Standard lock when a cap is NOT REQUIRED

INSURE POSITIVE CONTACT
 CINCH HINGE CONNECTORS

50 CONTACT ASSEMBLY WITH CABLE CLAMP SHOWING ALTERNATE LOCK WHICH FITS INTO SLOT IN TOP OF CAP. CANNOT BE ACCIDENTALLY UNLOCKED.

(Left) Lifting up top section releases lock prior to unlocking Pulling out on spring unlocks assembly

MAXIMUM NUMBER OF CONTACTS IN MINIMUM SPACE

Positive wiping contact, clean at all times. By releasing the lock, the units instantly separate by the spring action of the contacts. Units are held together by a simple, yet positive lock. Standard units are supplied with General Purpose insulation and cadmium plated contacts. However for more severe conditions of temperature and humidity glass filled Diallyl-phthalate insulation TType GDI-30 per Mil. M-19833) can be supplied with contacts having gold plate over silver. Contact tails will take either conventional solder wiring or AMP "78" series Taper Tab receptacles. The Cinch " H " series is made in 20 to 100 contacts in multiples of 10 cantacts.

Wrife today
for complefe information

Centrally located plants at Chicago, Illinois; Shelbyville, Indiana; La Puente, California; St. Louis, Missouri

BOOTH NOS. 3310-3312
WESCON SHOW

for Engineers

Data \& Conversion Charts

Conrad, Inc., Conrad Sq., Holland, Mich. offers a series of conversion charts and technical data covering altitude pressure and temperature from -5000 ft . to $1,800,000 \mathrm{ft}$. altitude in accordance with ARDC model atmosphere. Also included is C to F conversion factors from absolute 0 to 1000° and conversion factors for materials, heat, velocity, and vacuum. Two other charts list dry bulb and temp. differential for relative humidity.

Circle 166 on Inquiry Card

Switch Guide

Bound reference catalog, ES-59, 52 -pages, on electrical switches and actuators contains a comprehensive discussion of switch terminology, basic design types, operating methods, and environment application data. This reference volume contains photos, dimension drawings, specifications and modification information. Electrosnap Corp., Switch Div., 4218 W. Lake St., Chicago 24, Ill.

Circle 167 on Inquiry Card

Rectifiers

A 6-page, brochure from North American Electronics, Inc., Lynn, Mass., has information on the company's stud type rectifiers, axial lead type rectifiers, silicon junction rectifiers, high voltage cartridge rectifiers, silicon power regulators, axial lead regulators, and silicon rectifier stacks. Information is presented in tabular form.

Circle 168 on Inquiry Card

Sölvent \& Equipment

An 8-page bulletin from Cobehn, Inc., Caldwell, New Jersey, describes equipment for spray-cleaning instrument bearings, jewel bearings, contact points, and electronic components and assemblies. Included are descriptions of a remote controlled sprayer, automatic cleaning machines, portable cleaners, and a bench unit.

Circle 169 on Inquiry Card

Transistor Tester

Specification for the Model TT-300 transistor testor, manufactured by Avionics Corp. of America, Horsham, Pa . are available from the company. The tester is a sensitive dc β measuring device. It can be used for high accuracy lab. measurements or as a go-no-go inspection or production tester.

Circle 170 on Inquiry Card

Portable Switches

Literature from Joy Mfg. Co., Electrical Products Div., Dept. S-182, 1201 Macklind Ave., St. Louis, Mo. features the pendant push-button station, a weathertight, corrosion-proof design completely insulated and encased in Hycar, an improved synthetic rubber compound, and listed as available in 4 -, 6 -, and 8 -button styles. Also included are illustrated descriptions of the Joy attachable pendant toggle switches, molded-to-cable precision switches, standard push-button switches, side-mounted toggle switches and end-location toggle switches.

Circle 171 on Inquiry Card

Vulcanized Fibre

Six standard grades and 5 special grades of vulcanized fibre are described in a 4-page folder (data Sheet No. 2-0) from Taylor Fibre Co., Norristown, Pa. A large chart lists suggested uses, corresponding NEMA grade, applicable specifications, sheet colors and sizes and engineering data for the 6 standard grades. A fold-in describes the special grades and illustrates various applications for vulcanized fibre. A table lists the weights of $56 \times 90 \mathrm{in}$. sheets in thicknesses from 0.004 to 1 in .

Circle 172 on Inquiry Card

Snap-action Switches

Unimax catalog No. 359, 28-pages, has detailed information on the expanded line of Unimax snap-acting precision switches. A pictorial index shows where to find dimension drawings, descriptions, force and movement spec tables, and electrical ratings for each Unimax switch listed. Data on bases, terminals, circuit arrangements and NEMA standard definitions on sensitive switch terms are also included. Unimax Switch Div., The W. L. Maxson Corp., Ives Road, Wallingford, Conn.

Circle 173° on Inquiry Card

Test Instruments

An 8-page brochure from Technical Information Corp., 41 Union Square, New York 3, N. Y., describes a new concept of industrial procurement designed to save engineering man-hours in tracking down the right instrument, locating qualified manufacturers, and in comparing and evaluating competitive specs and prices. Excerpts illustrate the information obtainable in the TIS Directory on standard electronic test instruments and manufacturers.

Circle 174 on Inquiry Card

Bandpass Filters

An 8-page illustrated 2 -color brochure, describing a line of miniature ceramic i-f bandpass filters is available from Clevite Electronics Components Div., Clevite Corp., 3311 Perkins Ave., Cleveland 14, Ohio. The brochure lists a wide range of bandpass characteristics and includes attenuation curves for narrow and wideband applications in military and commercial equipment. It discusses insertion loss, shape factor and impedance transformation. Typical applications are also included. Characteristics of the piezoelectric material. PZT (lead-zirconate-titanate), are listed. Radial mode of operation which suppresses spurious responses is also illustrated.

Circle 175 on Inquiry Card

Transistor Circuits

"An application note on transistor circuits I," is a set of circuit diagrams. Included are: A transformerless intercom, Class B bias circuit, light flasher, megaphones, photoflash circuits, TV deflection circuits, Hi-fi stereo amplifier, 2 w portable amplifier, modulators, power packs, and other circuits. Bendix Aviation Corp., Red Bank Div., 201 Westwood Ave., Long Branch, N. J.

Circle 176 on Inquiry Card

Recorders

Recorders and Recording Controllers, GEA-6887, 12-pages, describes G. E.'s continuous self-standardizing strip-chart recorders and recording controllers for measurement of electrical and process variables. Included are product photographs, application data, typical control system schematics, specifications, and dimensions. General Electric Co., Schenectady 5, N . Y.

Circle 177 on Inquiry Card

Motor Frame Design

A brochure on their line of basic induction motor frame designs is available from Air-Marine Motors, Inc., 369 Bayview Ave., Amityville, N. Y. In addition to specifying cooled and non-cooled designs, the 4 -page brochure offers scaled drawings and mechanical specs on each design.

Circle 178 on Inquiry Card

Capacitors

A 6-page, 2-color catalog on subminiature electrolytic capacitors from Illinois Condenser Co., 1616 N. Throop St., Chicago 22, Ill., includes pictures, diagrams, technical information shorts, and general information.

Circle 179 on Inquiry Card

New Tech Data

for Engineers

C-R Tube Chart

The physical and electrical characteristics of over 60 single and multi-gun cathode ray tubes for industrial and military applications are given in handy chart form by the Electronic Tube Corp., 1200 E. Mermaid Lane, Philadelphia 18, Pa. ETC tubes listed in the chart range from 2 to 12 in . and include square and rectangular face types for modern oscillography and many special purpose tubes.

Circle 180 on Inquiry Card

Pulse Generator

Bulletin, Form 3022-0, describes the Tullamore Model PRG-256, a 256step precision pulse generator, for calibration of multi-channel pulse height analyzers. Covered are: suggested uses, principle of operation, features of the instrument, and performance data. The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio.

Circle 181 on Inquiry Card

Insulating Oil Tester

The new Model 4505-A Hypot insulating oil tester is described in a bulletin from Associated Research Inc., 3777 W. Belmont Ave., Chicago 18, Ill. Some features of Model 4505-A are: reduced size, to only $81 / 2$ x 16 x 8 in .); test voltage continuously adjustable from 0 to 35 kv ac at a 2 kva rating to meet ASTM and Federal specs. and measurement of test potential directly at the test electrodes for accuracy.

Circle 182 on Inquiry Card

Magnetic Laminations

Precision-made, high permeability, transformer laminations, magnetic head laminations, servo motor rotors and stators and special shape laminations are illustrated and described in a 2-color, 4-page folder, Bulletin TB104, from G-L Electronics, 2921 Admiral Wilson Blvd., Camden 5, N. J. Charts showing characteristics are also included.

Circle 183 on Inquiry Card

Selenium Rectifiers

The 27-page booklet, ECE-402, contains basic information on junction rectifiers, capacitive loading, purposes of capacitance in the load, how to boost the output voltage, and the effect of capacitance on voltage regulation. In addition, other sections in the application notes discuss recommended incoming test specifications for selenium rectifiers, frequency characteristics of the devices, protective finishes, and forced air cooling. General Electric Co., Semiconductor Products Dept., Liverpool, N. Y.

Circle 184 on Inquiry Card

Microwave Ferrites

Bulletin No. 259 from General Ceramics Corp., Keasbey, N. J. is illustrated with graphs showing magnetic and dielectric properties vs. frequency, magnetic induction vs. temperature, and hysteresis loops. Information on typical applications is also provided.

Circle 185 on Inquiry Card

D.C Power Supplies

Information (Publication ref GEA6926) on a new line of tube-type and semiconductor high voltage dc power supplies for electronic applications may be obtained from General Electric's High Voltage Specialty Transformer Section, Holyoke, Mass. Particularly suitable where self-protected, highly-integrated systems are required, the full line of complete power supply packages is designed for such applications as hard tube radar modulators, tube and high frequency structural testing installations, wind tunnel charging supplies, and linear accelerators for atomic research.

$$
\text { Circle } 186 \text { on Inquiry Card }
$$

Metal Film Resistors

New release, Bulletin 155, provides data on company's line of Series 77 Metal Film Precision Resistors. New sizes provide smaller units for miniaturization and larger sizes which expand the resistance range. Included is information on the equivalent styles under MIL-R-10509C and MIL-R19074B. Ohmite Mfg. Co., 3629 Howard St., Skokie, Ill.

Circle 187 on Inquiry Card

Impedance Measurement

Measurement of impedance and its associated parameters in waveguide systems through use of a sliding termination with specific reflection characteristics is discussed in "PRD Reports," Vol. 6, No. 2, entitled "Waveguide Sliding Shorts, Sliding Terminations, and Standard Mismatches." Use of sliding shorts for precision measurement of impedance (scattering matrix), insertion loss, attenuation and propagation constants, dielectric constant, slotted section curves, wavelength, and frequency is discussed. Polytechnic Research \& Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y.

Circle 188 on Inquiry Card

Oscilloscope

Data sheet from The Scopes Company, Inc., 511 Victor St., Saddle Brook, N. J. describes the Model S31 wide band oscilloscope. The two-color data sheet has complete specifications for the unit.

Circle 189 on Inquiry Card

Crucibles

Brochure KTM-9 presents detailed information on crucibles and KU-112 "Hi-Dens" alloy and parts. Crucibles are designed for high temp. research where a high melting point metallic container is required, in high vacuum -inert or reducing atmospheres. A chart of available sizes gives all the necessary dimensions. Typical crucibles are shown. In the KU-112 section, the properties and uses of this high density metal are described. Illustrations of typical parts are shown. Kulite Tungsten Co., 1040 Hoyt Ave., Ridgefield, N. J.

Circle 190 on Inquiry Card

Automation Age

Amusing cartoon booklet illustrates the effect of electronics on life today. Reprinted from leading periodicals, the booklet is entitled, "A Stady of the Unique Influence of Space-Automation Technology on the PresentDay Environment with Special Attention to its Implications for the Behavioral Sciences." Audio Devices, Inc., 444 Madison Ave., Nev York 22, N. Y.

Circle 191 on Inquiry Card

Moon Map

Moon probes, an astronautical reality that is just around the corner, will create an increasing need for familiarity with lunar geography. Printed in large size, a moon map from General Electric Co., Missile and Space Vehicle Dept., Room 4C, 3198 Chestnut St., Philadelphia 4, Pa., makes all charted geography of the visible side of the moon easily identified and located.

Circle 192 on Inquiry Card

Voltage Regulator

Data sheet from Avionics Corp. of America, Horsham, Penna., describes the Model VR-203, voltage regulator. The transistorized regulator will hold the output to any $20-50 \mathrm{v}$ power supply to $\pm 1.0 \%$ regulation for load variations of from 0-2 a and reduce its ripple by a factor of 80 .

Circle 193 on Inquiry Card

R-F Load, Watłmeter

Mobile, RF loads and wattmeters for use with aural or visual transmitters operating on any assigned frequency from 54 to 215 MC , including FM, are described and pictured in a bulletin by the Standard Electronics Div. of Radio Engineering Laboratories, Inc., 29-01 Borden Ave., Long Island City 1, N. Y.

Circle 194 on Inquiry Cerd

for Engineers

Power Inverter

Two-color data sheet gives detailed technical data on the Model 591J transistorized regulated power inverter. Unit is used to drive ac gyros and other ac devices from a battery source. The text describes a circuit in the Model 591J which eliminates the tendency of ac gyro spin motors to hunt when near synchronous speed. Also described is a short circuit and input over-voltage protection feature. Arnold Magnetics Corp., 4613 W. Jefferson Blvd., Los Angeles 16, Calif.

Circle 195 on Inquiry Card

Sonar

A Sonar brochure on current research, development and engineering projccts in the field of underwater acoustics and communications is available from Electronics Div., Stromberg-Carlson, 1400 N. Goodman St., Rochester 3, N. Y. The brochure also describes the company's new test tank, which is 48 ft . in dia., 30 ft. deep, and has a capacity of 400 ,000 gal. Its completely open top permits unrestricted positioning, within the confines of the tank, of transducers and targets up to $5,000 \mathrm{lbs}$. in weight.

Circle 196 on Inquiry Card

FCC Rules

An interpretation of the FCC rules and regulations affecting mobile communications effective September 11, 1958 is available from Kaar Engineering Corp., 2995 Middlefield Rd., Palo Alto, Calif. All Frequencies available in business radio, manufacturer's radio, telephone maintenance radio, public safety radio, and citizens radio, are listed with the respective conditions and provisions for their use in tabulated form.

Circle 197 on Inquiry Card

Transformers

Data sheets describing 3 new power transformers for use with silicon rectifiers are available from Triad Transformer Corp.., 4055 Redwood Ave., Venice, Calif. All units provide output voltages of $40 \mathrm{CT} / 20 \mathrm{CT} / 10$, with current ratings of: 100 ma (F $90 \mathrm{X}), 300 \mathrm{ma}(\mathrm{F}-91 \mathrm{X})$ and 1 amp ($\mathrm{F}-92 \mathrm{~A}$).

Circle 198 on Inquiry Card

Acceleration Testers

A 6-page brochure from The Rucker Co., 4700 San Pablo Ave., Oakland, Calif., describes their Centrifuge Acceleration Test Machines for fast, accurate, G-testing as required by MIL-E-5272A. The brochure describes the company's line of machines, operational performance features and optional accessories. Circle 199 on Inquiry Card

Połentiomełers

New, 100-page, catalog from Spectrol Electronics Corp., 1704 South Del Mar Ave., San Gabriel, Calif., contains complete specification sheets for ordering standard wire wound single and multi-turn precision potentiometers. It also describes Spectrol's facilities and qualifications for designing and producing special tolerance wire wound potentiometers, special non-linear potentiometers, and precision mechanisms. Also included are drawings and specifications.

Circle 200 on Inquiry Card

Diodes

Short Form Catalog from U. S. Semiconductor Products, Inc., 3540 W. Osborn Rd., Phoenix, Ariz., contains basic information on the company's diodes together with 1 N numbers and brief descriptions of the various lines. Included are: temperature compensated voltage regulating diodes, alloyed junction low power zener diodes, diffused junction medium power zener diodes, alloyed junction low power rectifier diodes, diffused junction medium power and commercial rectifier diodes, high voltage rectifiers, double anode diodes, solid tantalum capacitors, and tables of ordering information.

$$
\text { Circle } 201 \text { on Inquiry Card }
$$

Moisture Meter

Bulletin from the Henry Francis Parks Laboratory, P. O. Box 1665, Lake City Station, Seattle, Wash., describes the Model 101 Moisture Gage, a direct-reading, moisture percentage meter for soils and other granular materials. Transistorized, the portable, battery powered meter, features high sensitivity and $\pm 2 \%$ accuracy at $70^{\circ} \mathrm{F}$ ambient for materials with d-c resistance between 0 and 85,000 ohms.

Circle 202 on Inquiry Card

Jet Flight-Path Computer

Bulletin 500 from Colorado Research Corp., Broomfield, Colorado, describes the Model 500 jet aircraft flight computer. The Model 500, an analog computer, is designed to preselect the optimum flight path for a jet aircraft on a domestic, overseas, or charter routes.

Circle 203 on Inquiry Card

Infrared Analyzer

Four-page Bulletin, No. 700, describing the company's Series 700 infrared analyzer, has been revised to reflect improvements made in the instrument. The bulletin describes its operation in detail and gives complete specs. Analytic Systems Co., 980 N . Fair Oaks Ave., Pasadena, Calif.

Circle 204 on Inquiry Card

Switches

Brochure from Thermocal, Inc., 1631 Colorado Ave., Santa Monica, Calif., describes the Thyrastat, a critical temperature sensitive switch, and the Pyristor, a surge current sensitive switch. Included in the brochure is a short description of the company's engineering and production capabilities and its research and development facilities.

Circle 205 on Inquiry Card

Tape Recorder

A 3-color, 12-page brochure on its AR-200 airborne magnetic tape recorder from Ampex Corp., Instrumentation Div., 934 Charter St., Redwood City, Calif., gives information, including specs. on the modular, miniaturized unit designed to fulfill the needs of modern airborne data acquisition.

Circle 206 on Inquiry Card

Transmitting Tubes

The 1959 printing of the Eimac Quick Reference catalog has condensed technical information in thumb-indexed form on the company's commercial line of over a hundred tube types and accessory items, arranged in easy-to-find categories. Eitel-McCullough, Inc., San Carlos, Calif.

Circle 207 on Inquiry Card

Facilities

A 40-page catalog, No. AV-100, describes the facilities and products of the Avionics Div. of Electronic Specialty Co., 5121 San Fernando Rd., Los Angeles 39, Calif. Products covered include static time delays, standard time delays, missile fuzes and programmers, flashers, voltage and frequency sensors, meter relays, power supplies and inverters, automatic check-out equipment and specialty devices. Systems include missdistance indicator, terrain clearance system, zero delay radar augmenter, proximity fuze, command guidance receiver, word warning, coded flasher, autopilot, aircraft electrical supply sensor and controller, and flight control system analyzer.

Circle 208 on Inquiry Card

TV \& Radio Coils

A 44-page general catalog offers detailed specs and pricing info on 1300 standard TV, radio, and transistor coils, plus listing of industrial coils and chokes. The illustrated catalog, No. 60, included a cross-reference of original parts to Miller equivalents, and 117 i-f—r-f schematic diagrams. Listings on color TV items are also included. J. W. Miller Co., 5917 So. Main St., Los Angeles 3, Calif.

Circle 209 on Inquiry Card

Sangamo Type 33M molded mylar* capacitors combine the excellent electrical performance characteristics of mylar* dielectric material with a molded case of high moisture resistant thermosetting plastic.

Temperałure Range: "The Type 33 M is designed to operate over the temperature range of $-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. Satisfactory performance at $125^{\circ} \mathrm{C}$. can be obtained by derating the voltage to 50% of the $85^{\circ} \mathrm{C}$. value."
Dissipation Factor: The dissipation factor of the Type 33M capacitor does not exceed 1% at normal equipment operating temperature over the complete audio frequency range.
Tolerances: Available in capacitance tolerance values of $\pm 5 \%, \pm 10 \%, \pm 20 \%$.

Life Test: These units will withstand a life test of 250 hours at 125% of rated voltage at $85^{\circ} \mathrm{C}$. Life tests at $125^{\circ} \mathrm{C}$. should be made at 125% of the derated voltage.

Dielectric Absorption: Dielectric absorption of Type 33 M capacitors is less than half that of oil impregnated paper capacitors.
Moisture Resistance: Type 33M capacitors will successfully withstand the moisture resistance tests specified in Spec. MIL-C-91A.

Insulation Resistance: The insulation resistance of these capacitors will exceed 5,000 $\mathrm{meg} / \mathrm{mfd}$. over the normal operating temperature range.

- Write for engineering bulletin TSC-206A

Latest Western Literature

Magnetic Recording Heads

Illustrated 4-page brochure plus data sheets give specifications, outline dimensions and general information on magnetic tape and drum heads. Also included are design sheets with spaces for electrical and mechanical parameters to aid in the design of a tape or drum head to customer specifications. General Transistor Western Corp., MagneHead Div., 2660-64 So. La Cienega Blvd., Los Angeles 34, Calif.

Circle 210 on Inquiry Card

Fasteners

Catalog from Western Sky Industries, 21301 Cloud Way, Hayward, Calif., contains information on the company's line of heavy duty StandOff fasteners, light duty Stand-Off fasteners, and Heli-Coil Mid-Grip inserts. The catalog also gives typical equipment installations, vibration test data, drafting templates and other pertinent information.

Circle 211 on Inquiry Card

Engineering Opportunities

A colorful brochure is available from Phileo Corp's Government and Industrial Div., Western Development Laboratories, Palo Alto, Calif. Aimed at attracting engineering talent, the brochure outlines the Company's advanced systems research, systems development engineering, communications engineering, tracking systems, computers, data handling, instrumentation and special projects.

Circle 212 on Inquiry Card

Variable-Speed Drive

Bulletin, No. 195, from Sterling Electric Motors, Inc., 5401 Telegraph Rd., Los Angeles 22, Calif., features: Photographs of the basic types of variable-speed drives with modifications, suggested variable-speed applications, detailed information regarding horsepower, duty, speed variation, mounting styles, enclosures, and electrical characteristics, an accurate cutaway depiction of the Speed-Trol's operating mechanisms, including an illustration of exclusive positive pulleys, and detailed information on remote controls.

Circle 213 on Inquiry Card

Delay Lines

Technical article discusses delay lines, defines parameters, and describes methods of measuring the electrical characteristics of delay lines using both pulse and c. w. techniques. Microsecond Electronics, Inc., $32131 / 2$ E. Washington, Phoenix, Ariz.

Circle 214 on Inquiry Card

Nameplate Designing

A twenty-page booklet from H. G. Dietz Products Co., 12-16 Astoria Boulevard, Long Island City 2, N. Y., is a guide to the engineer designing or specifying nameplates for new products in the development stage. The manual of instructions covers: Lettering, composition, step by step procedure for drawing a rough nameplate layout, useful information, selection of materials, nameplate processes, fastening of nameplates, steps in manufacturing, odd shaped nameplates, and a checkoff list for nameplate buyers.

Circle 215 on Inquiry Card

Gyros

Two new 4-page, 2-color brochures, one on floated free gyros and one on rate gyros, are now available. Ex-ploded-view, airbrush drawings show typical gyro designs. Major design features and application advantages are called out. Complete specs are provided for two series of free gyros, FC35 and FC45, and for one series of rate gyros, R-51. Daystrom Pacific, 9320 Lincoln Blvd., Los Angeles 45, Calif.

Circle 216 on Inquiry Card

Laboratory Chromatograph

Consolidated Electrodynamics Corporation's Type $26-201 \mathrm{~A}$ Laboratory Chromatograph is featured in a new 16-page booklet, Bulletin 1831. The illustrated brochure has sections on the principles of chromatography, applications, natural gasoline analysis, accessories, specifications, and descriptions of the features of the instrument. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif.

Circle 217 on Inquiry Card

Leak Detector

Data sheet from American Electronics, Inc., American Nuclear Div., 9459 W. Jefferson Blvd., Culver City, Calif. describes the advantages and gives information on using Automatic Radiflo leak detection equipment. The unit can check resistors, capacitors, relays, crystals, gyros and other electronic equipment.

Circle 218 on Inquiry Card

Plastics

Data sheets from Illumitronic Engineering, Sunnyvale, California, describes plastics for electronics. Included are: polystyrene, acrylic, phenolic, polyethylene, nylon, tefion, machinable lava, and machinable ceramic sheets and rods. A separate sheet has a table of mechanical and electrical properties of the plastic materials.

Circle 219 on Inquiry Card

Airborne Power Supply

A 4-page, 2-color brochure describes the specifications, operational characteristics, and design features of a new line of airborne strain-gage power supplies. These instruments provide 1 or 3 at 5,10 , or 15 v . output, with 0.1% stability and operation from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Graphs illustrate load regulation, temperature stability, and line regulation. Neff Instrument Corporation, 2211 E. Foothill Blvd., Pasadena, California.

Circle 220 on Inquiry Card

Speed Changers

Bulletin No. 96 describes Series 2 Miniature Adjustable Ratio Speed Changers. Speed ratios are continuously adjustable over a 25.1 range (1:5 up to $5: 1$ down). Units handle torques from 5 to 40 oz -in. depending on the ratio setting; speeds up to $10,000 \mathrm{RPM}$; power to 0.025 HP . Choice of work gear, spur gear, thumb screw, lever or miter gear speed adjustment. Metron Instrument Co., 432 Lincoln St., Denver 3, Colo.

Circle 221 on Inquiry Card

Miniature Relays

Illustrated technical bulletins describe Model BR-7 and Model BR-8 miniature relay series. Both series are available in ac and dc models with various header and mounting styles. The BR-7 standard relay will handle dry circuit contact loads to 10 a . Design permits close pull-in to drop-out ratios as well as operating sensitivities down to 40 mw . at ambient temp. with 10 a load. Babcock Relays, Inc., 1640 Monrovia Ave., Costa Mesa, Calif.

Circle 222 on Inquiry Card

Digital Computer

A 6-page illustrated bulletin describes highlights of the G-15 digital computer with particular emphasis on the magazine-loaded photo tape reader which is offered as standard equipment. Also included are descriptions of POGO and INTERCOM 1000 programming systems; accessory punched card, magnetic tape and paper tape equipment; several special purpose devices and G-15 specifications. Bendix Computer Div., 5630 Arbor Vitae St., Los Angeles 45, Calif.

Circle 223 on Inquiry Card

Semiconductors

The complete line of Sperry Silicon diodes and transistors are described in a 12 -page, 2 -color bulletin. Data include curves on forward and reverse resistance and all pertinent technical characteristics. Sperry Semiconductor Division, Great Neck, N. Y.

Circle 224 on Inquiry Card

WITH THE NEW BRUSH RECORDER MARK II

So can you. The versatile Mark II is an integrated oscillograph package-a readout tool for engineers and technicians everywhere . . in the shop . . . in the lab ... or in the field.
Just plug it in . . . put it to writing . . . anywhere.

PERFORMANCE SPECIFICATIONS

Recordings-Uniform, crisp, easily reproduced. Trouble-free ink writing on precision chart paper.
Channels-Two analog, plus two event markers.
Sensitivity-Maximum of $10 \mathrm{mv} /$ chart line (mm); range, 10 mv to 400 v .

Input-Differential; impedance 5 megs each side to ground.
Frequency Response-D.C. to 100 cps .
Write for free booklet 2521 A for complete specifications. Immediately available from stock. Price $\$ 1350$, f.o.b. Cleveland, Ohio

WESCON Product Highlights

POWER SUPPLY

Model, SR 28-50 has an output capacity of $24-32 \mathrm{v}, 50 \mathrm{a}$. Features are: no magnetic amplifiers; no positive transient response characteristic; 0.1% line regulation for changes from

ELECTRONIC GENERATORS

Models 150 and 250 provide output powers of 160 va and 250 va. They provide a fixed output frequency of $400 \mathrm{CPS} \pm 0.25 \%$ and a variable output frequency with a range of 350-450

$208-230 \mathrm{v}$. at any output voltage from 0 to max.; 1% load regulation from 0 to max. and max. to 0 , recovery time $50 \mu_{\mathrm{sec}}$ with no positive transient; 1% ripple; 60% eff. at max. voltage; 0.1% stability for 24 hrs.; operates indefinitely into a dead short; temp. coefficient $0.05 \% /{ }^{\circ} \mathrm{C}$. Booth 515. Kepco, Inc., 131-38 Sanford A ve., Flushing, N. Y.

Circle 225 on Inquiry Card

TRIMMER POTENTIOMETERS

A selection of 5 terminal configurations for Type 750 and Type 1000 trimmer potentiometers. Both T-Pots meet humidity requirements of MIL-STD-202A, Method 106A or MIL-E-5272A, Procedure I. specs: (higher values for Type 1000, lower for 750) -Rated at $2 \mathrm{w}, 2.5 \mathrm{w}$; resistance range, 10 ohms to 30 K ohms, 10 ohms to 50 K ohms; standard tolerance, $\pm 5 \%, \pm 5 \%$; size, 0.180 X 0.300 X

$1.000,0.180 \mathrm{X} 0.300 \mathrm{X} 1.25$; screw adjustment, 17 ± 2 rev., 25 ± 2 rev.; weight, 2 gr., $2.5 \mathrm{gr} . ;$ volume 0.054 in^{3}., $0.068 \mathrm{in}^{3}$. Booth 2714. Dale Products, Inc., Columbus, Nebraska.

CPS. An input jack is also provided for output frequencies from $50-4000$ opS. Featured are: continuously variable output voltage from $0-120 \mathrm{v}$. less than 1% output distortion, better than 1% regulation from no load to full load. They can be used with loads of any power factor. Booth 3529. The Industrial Test Equipment Co., 55 E. 11th St., New York 3.

Circle 227 on Inquiry Card

A-F VOLTMETER

A-F Voltmeter, Type M-121, measures audio and low r-f signals to an accuracy of $1 / 2$ of 1%. Full-scale ranges are from 1 mv to 100 v . RMS; frequency range: 20 cps to 400 kc . Input impedance is 10 megohms on the 30 - and $100-\mathrm{v}$. ranges, and is not less than 20 megohms on other ranges. Facilities for balanced and unbalanced inputs are provided at 100,000 ohms and 600 ohms impedance. Two pre-

set controls can be adjusted to set up full scale deflection, at a specified frequency, on any given range. Booth 3521. Wayne Kerr Corp., 1633 Race St., Philadelphia, Pa.

Circle 228 on Inquiry Card

MODULATOR

Models $75 \mathrm{M}-1,2,3$, signal-source modulators are designed for combination with a wide variety of magnetrons of different manufacturers to form highpower pulsed signal sources. This

series of modulators is applicable for tube development work or for incoming tube inspection by equipment manufacturers. Combined with traveling. wave tubes, the units become broadband high-power pulsed microwave amplifiers; or, with klystrons, narrowband systems. Booth 305 . Levinthal Electronic Products, Inc., Stanford Industrial Park, Palo Alto, Calif.

Circle 229 on Inquiry Card

KLYSTRON OSCILLATORS

Tube types, TE-53 and TE-78, mechanically tuned reflex Klystron oscillators for operation at 34,000 to 35,600 MC feature ceramic insulators, dielectric tuning, waveguide output, and an improved electron gun design for stable operating frequency, optimum electronic tuning and power output with low resonator voltage, reduced power input and long operating life. They are designed for microwave

systems such as communications, countermeasures, radar, radio astronomy, spectroscopy, and test equipment. Booth 2007. Bendix Aviation Corp., Red Bank Div., Eatontown, N. J.

Circle 230 on Inquiry Card

"THERMALBOND"

EXCLUSIVE TUNG-SOL CONSTRUCTION

MEANS NEW STANDARDS OF TRANSISTOR PERFORMANCE IN COMPUTER APPILIATIONS

From Tung-Sol, originator of the Cold Weld Seal, comes a new design approach to greater mechanical reliability in computer switch transistors.

2N1313 (TS1000) is a PNP germanium alloy junction transistor which is designed for use in high current, high speed switching applications. This new transistor provides an ideal balance of the most wanted characteristics as revealed by survey of computer designers.

(\%)	(1)5)	(8)	(1)3)
$\int_{17}^{2 / 1313}$	$\frac{2 N 131^{3}}{4}$	$2_{1}^{2 N 1313}$	$2 \mathrm{~N}_{1} 31^{3}$
MAXIMUM RATINGS		TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)$	
$\mathrm{BV}_{\text {cbo }}$	-30 V-20 V	$\mathrm{f}_{\boldsymbol{\alpha} \mathrm{b}}$	
		Cob $h_{F E}\left(I_{B}=1 \mathrm{~mA}\right)$	$12 \mu \mu \mathrm{f}$
$B V_{C E X}\left(V_{B E}=0.1 \mathrm{~V}\right)$	-20V		+ 60
BVCEO	$-12 \mathrm{~V}$	$h_{\text {FE }}\left(I_{B}=1 \mathrm{~mA}\right)$ $h_{\text {FE }}(1 C=400 \mathrm{~mA})$	
Ic (continuous)	400 mA	$\left(t_{r}+t_{d}\right)$ (rise	
Ic (peak)	1.0 A	plus delay)	$0.45 \mu \mathrm{sec}$
$\mathrm{Tj}^{\text {l }}$ (peak)	$-65^{\circ} \mathrm{c}$ to	t_{s} (storage)	$0.30 \mu \mathrm{sec}$
	$+85^{\circ} \mathrm{C}$	tf (fall)	$0.20 \mu \mathrm{sec}$
P_{C}	175 mW	Thermal Resistance $\mathrm{I}_{\mathrm{CBO}}$ (a)-12V	$0.350^{\circ} \mathrm{C} / \mathrm{mW}$
		$25^{\circ} \mathrm{C}$	$2.5 \mu \mathrm{~A}$
		$65^{\circ} \mathrm{C}$	$25 \mu \mathrm{~A}$

(5) TUNG-SOL - -mime

WESCON Product Highlights

CERAMIC TO METAL SEALS

Line of over 100 standard sizes of hermetic ceramic-to-metal seals, includes high voltage terminal bushings, feed-throughs, and cable end seals. Made of high-alumina Alite ceramic

to withstand high temps. and rigorous mechanical requirements, the line offers a choice of standard sizes and voltage ratings for critical applications. Seals are vacuum-tight, have excellent di-electric strength and high corrosion resistance. A number of special units and custom designs will be on display. Booth 726. Alite Div., U. S. Stoneware Co., Akron 9, Ohio. Circle 231 on Inquiry Card

TRANSISTOR

The $2 N 706$, fast silicon switching transistor, optimized for saturated logic circuits operating at low current levels, can be operated in a saturated condition with virtually no sacrifice in speed. Typical DCTL propagation delay is $5 \mu \mathrm{sec}$ per inverter. Reduces circuit complexity further increasing system reliability. It can also be used

VARIABLE FREQUENCY MOTOR

A new line of $3 \varnothing$, variable frequency motors for axial fans and centrifugal blowers are available in 320 to 1000 cycles, 200 volts. These $3 \varnothing$, variable frequency motors eliminate the need

for running capacitors. A 4 in . axial fan (a typical unit) delivers 240 CFM at 0 in. S.P., 400 cycles. Ambient temperature range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. These units have a typical application in airborne radar cooling and meet MIL-E-5400 and MIL-E5272A. Booth 607. Air-Marine Motors, Inc., 369 Bayview Ave., Amityville, L. I., N. Y.

Circle 233 on Inquiry Card

SECONDARY PHASE STANDARD

Tenth degree $\left(\pm 0.1^{\circ}\right)$, secondary phase standard, or shifter, Type 714-A, has a single audio frequency (400 CPS standard) to reduce known phase angles at the output terminals; it may be used as either a phase shifter or phase standard, one control -the phase angle selector with choice of $0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}$ and

180° or others on special order. Also featured is phase angle stability over a variety of operating conditions. Booth 3508. Acton Laboratories, Inc., 533 Main St., Acton, Mass.

Circle 234 on Inquiry Card

OSCILLOSCOPE

Type 321 transistorized, battery-operated portable oscilloscope operates 3 hrs. on 10 (Size D) flashlight cells, to 6 hr . on rechargeable cells. It also operates on 11 to 35 vdc , and 110 to

125 v or 220 to $250 \mathrm{v}, 50$ to 800 CPS . Vertical passband is de to 5 me, risetime is $0.07 \mu \mathrm{sec}$, deflection factor is $10 \mathrm{mv} /$ div. Sweep range is $0.5 \mu \mathrm{sec} /-$ div to $0.5 \mathrm{sec} / \mathrm{div}$ in 19 calibrated steps. Accelerating potential is 4 kv on a $3 \mathrm{in} . \mathrm{C}-\mathrm{R}$ tube. Amplitude calibrator is a 500 mv peak-to-peak 2 KC sq. wave. Booth 1801. Tektronix, Inc., P. O. Box 831, Portland 7, Ore.

Circle 235 on Inquiry Card

in non-saturating circuits or as a linear amplifier. Typical maximum frequency of oscillation is 400 mc . Fairchild Semiconductor Corp., 545 Whisman Rd., Mountain View, Calif. Circle 232 on Inquiry Card

MAGNETIC SHIELD

Netic Co-Netic magnetic shield reduces the effects of high " g " stresses on electron beam structures and retains shielding properties. Shields never require periodic annealing so the potting technique is possible. The tube is located within the shield using a resilient casting compound. If maximum isolation is required, the outer

shield structure may be used as a base for attaching a simple shock mounting arrangement. Booth 2214. Magnetic Shield Div., Perfection Mica Co., 1322 N. Elston Ave., Chicago, Ill.

Circle 236 on Inquiry Card

We'll be seeing you At WESCON '59 Booth 2302

Robert E. McKenna
Publisher

Bernie Osbahr
 Editor

Elmer Dalton
Circulation Manager

Joe Drucker
Regional Manager

Gerry Pelissier

Regional Manager

George Felt

Regional Manager

Gus Doswell

Regional Manager

Shelby McMillion

Regional Manager

Wes Olson
Regional Manager

Don May
Regional Manager

Jack Kofron
Director of Research
Chilton Co.

ELECTRONIC
INDUSTRIES

WESCON Product Highlights

CONNECTOR LINE

A new line of AMP in-cert rack and panel connectors, in 50 and 100 position units for general use as well as critical circuit requirements in difficult environments. The shells are

polarized for positive correct mating under all conditions and the solderless contacts are protected against damage by extended alignment skirts on the shells and by bushings which line up the receptacle and plug before the contacts join together in racks and panels. Units tested under vibration, temp. \& humidity. Booth 2501. AMP Incorporated, Harrisburg, Pa.

Circle 237 on Inquiry Card

CABLE ASSEMBLIES

High temperature cable and cable assemblies may have over a hundred and fifty different Teflon insulated conductors. Bondable irradiated Teflon insulated wire, permits easier, more permanent potting. The irradiation treatment allows better potting and more satisfactory printing on the in-

sulation without effecting the ability of the wire to meet MIL-W-16878C. Booth 1412. Tensolite Insulated Wire Company, Incorporated, West Main Street, Tarrytown, New York.

Circle 238 on Inquiry Card

CIRCUIT BREAKER

Airpax Series 500, miniature circuit breaker, resists shocks of 100 g . Elec-tro-magnetic, inverse time delay breaker features an ultimate trip level of 125% of rated current independent

of ambient or operating temp. Units available for interrupting 50 dc volts at currents from 0.05 to 10 amperes and for interrupting 120 RMS volts, 60 to 400 cPS at currents from 1.0 to 10 amperes. The toggle handle of the breaker is similar to conventional onoff switches. Booth 521, Airpax Electronics Inc., Cambridge Division, Cambridge, Maryland.

Circle 239 on Inquiry Card

COIL WINDING MACHINE

Model U-14 Toroyd, toroidal coil winding machine for heavy wire winding, was designed specifically for the winding of heavy wire, over a range of \#7 to \#20 AWG. The machine is also capable of winding a coil up to 14 inches outside diameter and 6 inches high. The positive drive fea-

ture of the machine allows a tight and precise winding in the heavy wire range. Booth 1121. Universal Manufacturing Co., Incorporated, 1168 Groove Street, Irvington, New Jersey.

Circle 240 on Inquiry Card

TRIMMERS

The Max-C, variable trimmer series has a wide range of capacity per unit. The electrode band, metallized silver, is laminated to a thin, high dielectric constant, precision-bore glass cylinder.

A thicker outer concentric glass cylinder strengthens the assembly. Featured are: Special protective alloy undercoating; improved backlash design; no capacitance reversal while tuning; accurate alignment; Iow temp. coefficient of capacitance; and low inductance and low loss for high frequency use. Booth 202, JFD Electronics Corp., 1462-62nd St., Bklyn 4. Circle 241 on Inquiry Card

NOISE SOURCE

The Therma-Node, a commercial noise generator based on measurement of the noise temp of a heated resistive element covers the frequency range 0.5 to 1000 Mc , fixed or tuned. Accuracy is $\pm 0.1 \mathrm{db}$. Available noise temp ranges from 2000 to $2400^{\circ} \mathrm{K}$, readable to $\pm 2 \%$. Some specs are:

Fixed tuning range: $0.5-500 \mathrm{mc}$; variable: $0.5-1000 \mathrm{mc}$. Min bandwidth for max VSWR of $1.4=200 \mathrm{Mc}$ from 500 to 1000 Mc . From 200 to 500 mc bandwidth increases. Below 200 mC the unit is broadband down to 0.5 mc . Booth 3114. Kay Electric Co., Maple Ave., Pine Brook, N. J.

Circle 242 on Inquiry Card

Q:
 What is a Kodak Ektron Detector?

A: It is a semi-conductive resistor. The photosensitive area can be laid down in any pattern. Response extends to 3.5 microns in the infrared. Unaffected by vibration; high signal-to-noise ratio.

Q: what can it be used for?
A: For such applications as an infrared sensor in weapons systems, and in instrumentation for process control, analysis, and safety.

Q: How can I get the facts about spectral response, types, availabilities, and the like?

A: By writing for a new brochure called "Kodak Ektron Detectors."

Write to:
Apparatus and Optical Division
EASTMAN KODAK COMPANY, Rochester 4, N. Y.
Circle 60 on Inquiry Card

Why it pays you to specify

Bendix QWL Electrical Connectors for use with Multi-conductor Cable

For use with multi-conductor cable on missile launching, ground radar, and other equipment, the Bendix* QWL Electrical Connector meets the highest standards of design and performance.

A heavy-duty waterproof power and control connector, the QWL Series provides outstanding features: - The strength of machined bar stock aluminum with shock resistance and pressurization of resilient inserts. - The fast mating and disconnecting of a modified double stub thread. - The resistance to loosening under vibration provided by special tapered cross-section thread design. (Easily hand cleaned when contaminated with mud or sand.) - The outstanding resistance to corrosion and abrasion of an aluminum surface with the case hardening effect of Alumilite 225 anodic finish. - The firm anchoring of cable and effective waterproofing provided by the cable-compressing gland used within the cable accessory. - The watertight connector assembly assured by neoprene sealing gaskets. - The addi-
tional cable locking produced by a cable accessory designed to accommodate a Kellems stainless steel wire strain relief grip. - Prevention of inadvertent loosening insured by a left-hand accessory thread. - The high current capacity and low voltage drop of high-grade copper alloy contacts. Contact sizes 16 and 12 are closed entry design.

These are a few of the reasons it will pay you to specify the Bendix QWL electrical connector for the job that requires exceptional performance over long periods of time. *trademark Export Soles ond Service: Bendix International Division, 205 E. 42 nd St., New York 17, N. Y. Canadian Affiliate: Aviation Electric Ltd., 200 Laurentien Blvd., Montreal 9, Quebec. Factory Branch Offices: Burbank, Calif.; Orlando, Florida; Chicago, III.; Teaneck, New Jersey; Dallas, Texas; Seattle, Washington; Washington, D. C.

oo you neeo Automation FOR FINISHING WIRE LEADS WITH TERMINALS ATTACHED?

SOME EXAMPLES OF TERMINALS ATTACHED BY ARTOS MACHINE
new ARTOS TA-20-S Performs 4 Operations Automatically!

1. Measures and cuts solid or stranded wire $\mathbf{9}^{\prime \prime}$ to $250^{\prime \prime}$ in length.
2. Strips one or both ends of wire from $1 / 8^{\prime \prime}$ to $1^{\prime \prime}$.
3. Attaches any prefabricated terminal in strip form to one end of wire. (Artos Model CS-AT attaches terminals to BOTH ENDS OF WIRE simultaneously.)
4. Marks finished wire leads with code numbers and letters. (Available as optional attachment.)

PRODUCTION SPEEDS up to 3,000 finished pieces per hour. Can be operated by unskilled labor. Easily set up and adjusted to different lengths of wire and stripping-die units for different types of terminals simply and quickly changed.
ENGINEERING CONSULTATION... recommendations without obligation. Special adaptations made to fit requirements of your product. Machines for all types of wire lead finishing.

VISIT US AT
BOOTH 1101-
WESCON SHOW
WRITE for FREE Bulletin No. 655 on Artos TA-20-S
World Leaders in
Automatic Machines for Finishing Wire Leads
RTOSTENGINEERING CO.
2753 South 28th Street
Milwaukee 46, Wisconsin

New Western Products

CERAMIC TW TUBES

The X686, traveling wave tube is especially designed for severe-environment airborne applications. This aircooled tube covers the frequency range of 4 to 7 KMC . with an output power

of one watt and a gain of 50 db . The liquid-cooled X 620 is rated at 100 watts minimum CW output power in the 4 to 7 kmc . range. It has a saturation gain of 30 db with less than 3 db variation in gain over the entire frequency range. The X 620 is designed to be operated at a nominal collector depression of 45%. Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, Calif.

Circle 243 on Inquiry Card

MAGNETIC TAPE RECORDER

Analog magnetic tape recorder, the FR-600 features wide-band techniques for both FM and direct recording. Its head design and advanced electronics permit direct recording of frequencies to 250 KC and FM response from dc to 20 Kc within $1 / 2 \mathrm{db}$. FM, pulse-duration modulation, direct, or digital recording modes available; $1 / 2$ and 1 in . tape are interchangeable. Both $10 \frac{1 / 2}{2}$

and 14 in. reels can be used. Other features include adjustable end-oftape sensing and positioning of all controls. Booth 3531-Ampex Corp., 934 Charter St., Redwood City, Calif. Circle 244 on Inquiry Card

Narda SonBlasters offer the most complete line of lowest-cost mass-produced ultrasonic cleaners!

Narda's mass-production techniques assure you the most complete line of ultrasonic cleaners at the lowest prices in the industry! From the smallest 35 -watt to the amazing 2500 -watt unit with a tank capacity of 75 gallons, Narda's SonBlasters are available now - off-the-shelf-for immediate delivery. And with a full 2-year warranty besides!

What do you want to clean? Transistors, semi-conductors, other electronic, automotive, missile and avionic components, instruments, timing mechanisms - Narda's SonBlasters clean
most any mechanical, electrical or horological part or assembly you can think of - and clean faster, better and cheaper.

No matter what you need in ultrasonic cleaning equipment, you'll find Narda's complete line of production-size units have the quality, power, performance, capacity and appearance of cleaners selling up to three times their price! Write for more details now and we'll include a free questionnaire to help determine the precise model you need. Address: Dept. El-19.

Generator G-202 Transducerized Tank NT-202 35 watts Capacity: $3 / 9$ gallon An amazingly efficient, yet inexpensive, ultrasonic cleaner. Duty cycle timer permits operator to turn the unit on, set it, and leave; the Sonblaster will turn off automatically at the end of the cycle. Four choices of timers-from 0.15 min . to $0-120 \mathrm{~min}$. Also available without time
(G-201).

Generator G-601 Transducerized Tank NT-602 60 watts

Capacity: 1 gallon

A more powerful production-type unit, with a special circuit and selector switch permitting operator to alternate beine two tanks, when items solutions or a two-step process.

Transducerized Tank NT-1505 Generator G-1501 Capacity: 5 gallons

200 watts
The lowest price in the industry for a tank of this capacity and activity. Generator also will operate 2, 3 or 4 submersible transducers at one time, with just a turn of the load selector switch on the front panel.

Transducerized Tank NT-5001
Generator G-5001 Capacity: 10 gallons
Generator features standby switch for longer life and load selector switch on the front panel to operate up to 8 submers- 1 I 1
 special order.

Submersible Transducer NT-605
Heli arc welded stainless case, hermetically sealed for safe, leak-proof immersion. Radiating face: 27 sq. in. Effective plane of radiation: $40-50 \mathrm{sq}$. in. (approximately 10 k $\times 5^{\prime \prime}$. Effective cavitation of volumes up to 1200 cu . in. at 24 in. tank height (5 gal .) and 2400 cu . in, at 48 in . tank height (10 gal .). Bulkhead electrical fitting on back allows all wiring connections to be made on outside of tank. For use in any arrangement or location in any shape tank you desire to use. Also availablemodel NT-604, identical with NT-605, except for pipe thread instead of bulkhead fitting, permitting electrical connections inside of tank.
$\$ 130$

Consult with Narda for all your ultrasonic requirements. The SonBlaster catalog line of ultrasonic cleaning equipment ranges from 35 watts to 2.5 KW , and includes transducerized tanks as well as immersible transducers which can be adapted to any size or shape tank you may now be using. If ultrasonics can be applied to help improve your process, Narda will recommend the finest, most dependable equipment available - and at the lowest price in the industry!

Transducerized Tank NT-25001
Capacity: 75 gallons
Powerful unit drives the largest mass-produced industrial-size transducerized ultrasonic cleaning tank made! Also energizes up to 40 Narda 60 -watt submersible transducers (NT-604 or -605). Capable of energizing tanks measuring up to 150 square feet of area by 2^{\prime} or 3^{\prime} high.

$\$ 4360$

Generator G-25001 2500 watts

For custom-designed installation and unique electro-acoustic applications, including cleaning, soldering, welding, drilling and non-destructive testing, consult our subsidiary, Alcar Instruments Inc., at the address below.
ultrasonics corporation

THE GARLOCK PACKING COMPANY, Palmyra, N.Y. For Prompt Service, contact one of our 26 sales offices and warehouses throughout the U.S. and Canada.

New Western Products

GEARMOTOR

Double shaft gearmotor, Model $35 Y H 29 R P 100$, is driven by a 200 vac, 400 cPs, 3 phase motor. Typical of the speeds and torques which can be made available for custom require-

ments by various different types of gear sets are: 1700 RPM at 96 oz . in. of torque on one shaft, and 4700 RPM at 650 oz . in. torque on the opposite shaft. Electro Products Div., Western Gear Corp., 132 W. Colorado Blvd., Pasadena, Calif.

Circle 245 on Inquiry Card

FUNCTION GENERATOR

Digital/Analog Function Table, DAFT provides accurate, repeatable arbitrary function generation for analog computers. The arbitrary function is stored in a plug board as 20 sec. differences. Multiverter converts the independent variable input voltage incrementally. Increments are used to perform a 2 nd order interpolation using 3 points, and the resultthe dependent variable-is corverted

to a voltage to be used in the analog computer. 100,000 increments of the function can be generated with max. delay of $50 \mu \mathrm{sec}$. Packard Bell Com. puter Corp., 1905 S. Armacost Ave., Los Angeles 25, Calif.

Circle 246 on Inquiry Card

In high voltage transformers,

 other heavy duty electrical and electronic equipment...

THE TREND IS TO GASEOUS INSULATION WITH B\&A SULFUR HEXAFLUORIDE

The trend in requirements for high voltage equipment is toward higher operating voltages, units of minimum size and weight, greater safety and lower maintenance costs. For these reasons, sulfur hexafluoride is being used to insulate a wide variety of electrical and electronic equipment.

Sulfur hexafluoride is not only the preferred gaseous dielectric-it has also proved superior to liquid insulation in many applications. For example, the use of SF_{6} instead of oil to insulate high voltage transformers has the following advantages:

High Dielectric Strength

At atmospheric pressure, SF_{6} has a dielectric strength 2 to 3 times that of air, nitrogen or carbon dioxide. This favorable ratio increases with pressure so that in the range of 2 to 3 atmospheres SF_{6} has a dielectric value roughly equivalent to transformer oil.

Efficient Over Wide
 Temperature Range*

SF_{6} is stable in the presence of most materials of construction up to temperatures of about $150^{\circ} \mathrm{C}$; remains a gas down to $-63.8^{\circ} \mathrm{C}$.
*Where extreme inertness to other materials is required or when service conditions involve temperatures in the range of $150^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ (or higher!), Baker \& Adamson's Perfluoropropane $\left(\mathrm{C}_{3} \mathrm{~F}_{8}\right)$ is recommended.

Reduces Noise Level and Weight of Equipment Both the noise level and weight of transformers can be reduced substantially by insulating with SF_{6} rather than with a liquid. The low noise feature is particularly important where residences are nearby. Weight savings pay off for portable equipment and reduce installation costs for stationary equipment.

Safe to Use

SF_{6} is non-toxic, chemically and physiologically inert, fire-proof and ex-plosion-proof.
Installation Savings
Installation in fire-proof vaults is eliminated and bus runs can be shortened drastically due to closer proximity of transformer to generator.

Many of these advantages are also applicable to other commercial uses of sulfur hexafluoride, such as in:

Interrupter Switches

Radio and Microwave Frequency
Power Transmission

X-Ray Equipment

Audio Equipment
Cathode Ray Accelerators
Van de Graaff Machines
Television Filterplexers
Radar Duplexers
Gap Tubes
Switch Gear
Wave Guides
Airborne Electronics

Silicon Rectifiers

Investigate all the advantages of $B \& A$ Sulfur Hexafluoride gaseous insulation now. Write for technical literature.

BAKER \& ADAMSON ${ }^{\circledR}$ Electronic Chemicals

GENERAL CHEMICAL DIVISION
40 Rector Street, New York 6, N. Y.

When Top Quality Capacitors Are Required Specify Pyramid Mylar' or Tantalum

Miniaturized to provide maximum space economy.
New Pyramid Tantalum slug capacitors have cylindrical cases and contain a non-corrosive electrolyte. Due to the special construction of materials used in the manufacture of Pyramid Tantalum slug capacitors, these units are both seep and vibration proof. In addition, this type of capacitor assures long service life and corrosion resistance-made to meet MIL-C-3965 Specifications.

Commercially available immediately, these new Pyramid Tantalum capacitor units have an operating range between $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for most units without any de-rating at the higher temperature.

Pyramid new Mylar capacitors have extremely high insulation resistance, high dielectric strength and resistance to moisture penetration.

Commercially available immediately, Pyramid Mylar capacitors have an operating range between $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with voltage de-ratings above $+85^{\circ} \mathrm{C}$. Pyramid wrapped Mylar capacitors-Series Nos.: 101, 103, 106 and 107 have the following characteristics:
Construction Styles:

Basic No.	Type Winding	Shape	WESCON
101		Inserted Tabs	Flat
103		Extended Foil	Flat
106	Inserted Tabs	Round	BOOTH
107		Extended Foil	Round

Tolerance: The standard capacitance tolerance is $\pm 20 \%$. Closer tolerances can be specified.
Electrical Characteristics: Operating range for Mylar capacitors-from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and to $+125^{\circ} \mathrm{C}$ with voltage de-rating.
Dissipation Factor: The dissipation factor is less than 1% when measured at $25^{\circ} \mathrm{C}$ and 1000 CPS or referred to 1000 CPS.
Insulation Resistance:

Temperature		$1 R \times m f d$
	$25^{\circ} \mathrm{C}$	
$85^{\circ} \mathrm{C}$		1,000
$125^{\circ} \mathrm{C}$		50

Maximum IR Requirements
15,000 megohms
6,000 "
$300 \quad$ ،

Pyramid Mylar capacitors are subject to the following tests:
Test Voltage-Mylar capacitors shall withstand 200% of rated D.C. voltage for 1 minute at $25^{\circ} \mathrm{C}$.
Life Test-Mylar capacitors shall withstand an accelerated life test of 250 hours with 140% of the voltage rating for the test temperature. 1 failure out of 12 is permitted.
Humidity Test-Mylar capacitors shall meet the humidity requirements of MIL-C-91A specifications.
Complete engineering data and prices for Pyramid Mylar and Tantalum Capacitors may be obtained from Pyramid Research and Development Department.
© DU PONT REGISTERED TRADEMARK

PRECISION POTENTIOMETER

A subminiature single-turn potentiometer, Model 304, offers linearity to 0.3% and a 500,000 -cycle life in a package $1 / 2 \mathrm{in}$. in dia. and $3 / 8 \mathrm{in}$. in case length. Environmental charac-

teristies: 2.0 watts at $50^{\circ} \mathrm{C}$, operates to $125^{\circ} \mathrm{C}$, withstands 20 g vibration and 30 g shock. Machined aluminum cases are used on all models. Stops and locating pins are available as standard optional features. Daystrom Pacific, 9320 Lincoln Blvd., Los Angeles 45, Calif.

Circle 247 on Inquiry Card

STRAIN MULTIPLIER

The Type LTD-105, strain multiplier, îs a metal bar, machined to concentrate total applied strains in a relatively short section. Minute strains can be measured with conventional strain gage read-out equipment. One standard model provides a multiplication factor of 16-an applied strain of $10 \mu \mathrm{in} / \mathrm{in}$. is read out as 160 min. Other models provide a range of multiplication factors from 4 to 20. Mounting hole center dis-

tances range from 3 to 8 in. All standard models contain 4,120 ohm strain gages connected in a full bridge configuration. Waldale Research Co., Inc., 362 W. Colorado Blvd., Pasadena, Calif.

Circle 248 on Inquiry Card

GROW WITH AIRESEARCH IN ELECTRONICS

AHiResearch expansion in electronics and elec－ tromechanical activity is creating outstanding positions at all levels for qualified engineers．

DATA SYSTEMS RESEARCH

Experience with physical measuring devices using electromagnetic，atomic，thermionic and mechanical approaches．

Openings also exist in the following areas： Flight Systems Research．．．Controls Analysis ．．Flight Data Components．．．Electromagnetic Development．．．Instrument Design．．．Airborne Instrumentation Analysis and Design．

Send resume to：Mr．G．D．Bradley

AiResearch Manufacturing Division

9851 So．Sepulveda Blvd．，Los Angeles 45，Calif．
Circle 506 on＂Opportunities＂Inquiry Card

There is a difference in．．．
ALDEN＂STAK－IN＂

Fast，low cost machine
．．．it＇s the exclusive Molded－In Eyelet
 bly of two or more parts． washers and sleeves－cuts production costs to one fast low cost eyeletting operation－ reliable 360° beryllium copper contact．
If you＇re a high volume user of test jacks，it will pay you to inves－ tigate the cost saving advantages of Alden，Stak－in Test Jacks．For limited quantity applications，use Alden Mini－Test Jacks below ．．．

ALDEN PRODUCTS CO． 8123 N．Main St．Brockton，Mass． Circle 69 on Inquiry Card

A VITAL 100 MINUTES！

Firing Sequencer with 762 CLARE RELAYS

Automatic control of the countdown at the Air Force＇s Cape Canaveral Missile Test Center－from X minus 90 minutes to 10 minutes after a missile is fired is in the hands of a Milgo Model III Sequencer．

The Sequencer，built by Milgo Electronic Corporation，Miami，Fla．， automatically controls the myriad operations which must be performed before any missile can be launched．It is preprogrammed to recognize the precise condition that must exist during each of the operations it controls． When any other condition is detected， it will automatically hold fire until the condition is corrected．In a recent instance，it saved a Titan prototype which developed a malfunction after firing but before actual takeoff．

Another of these sequencers is being built by Milgo for installation at the Pacific Missile Range，Vandenberg Air Force Base，Calif．

Milgo engineers selected 762 Clare Type J and Type HG Relays for this supremely important device，and not one has ever malfunctioned．Here is convincing proof that，where the safety of personnel and of valuable equipment is at stake and the utmost accuracy is demanded，a designer who rides with Clare relays can rest assured that he has chosen wisely and well．

CLAR區 凅匢UTS

C．P．Clare \＆Co．， 3101 Pratt Blvd．，Chicago 45，Illinais．
In Canada：C．P．Clare Canada Ltd́，P．O．Box 134，Downsview，Ontario． Cable Address：CLARELAY

Circle 68 on Inquiry Card

The new electronic speed control circuit-an exclusive feature on Rucker Series I Centrifuges, provides:
' DIGITAL CONTROL SETTING: Only one setting required to reach any desired speed.
\checkmark PROGRAMMED SEQUENCE OR REMOTE OPERATION
\checkmark G RATING REPEATABILITY
\checkmark DEPENDABLE, QUIET OPERATION
I FAST TEST CYCLE
\checkmark AUTOMATIC OR PROGRAMMED DYNAMIC BRAKING

OTHER RUCKER FEATURES:

1 EASIEST ACCESS TO SPECIMEN AND INSTRUMENTATION
\checkmark MINIMUM WOW AND DRIFT THROUGH HIGH INERTIA DESIGN
\checkmark HEAVY STEEL CONSTRUCTION THROUGHOUT FOR MAXIMUM SAFETY
\checkmark ELECTRICAL SLIP RINGS
\checkmark CAPACITIES TO 15,000 G POUNDS, 92 INCH DIAMETER
$\checkmark 90^{\circ}$ SPECIMEN ROTATION DURING OPERATION
(Procedure I under MIL-E-5272 A)-(Optional)
\checkmark WAVE GUIDES FOR ALL APPLICATIONS (Optional)
\checkmark CLOSED CIRCUIT TV (Optional)
\checkmark HYDRAULIC-PNEUMATIC ROTARY JOINTS (Optional)
Rucker Series 10 and 20 Centrifuges also available with capacities in excess of $450,000 \mathrm{G}$ pounds and diameters to 70 feet.

Company
4700 SAN PABLO AVENUE - OAKLAND 8, CALIFORNIA ATtention: Openings now for Qualified Engineers for Design and Sales

Circle 70 on Inquiry Card

Printed Circuits

take a beating!

But Cambron ${ }^{\circledR}$ Printed Circuit Components are built to withstand the constant shock and vibration so common in today's electronic equipments. From printed circuit connectors to shielded coil forms, they're made from finest quality materials . . . processed and tested under thorough quality control methods . . . unconditionally quality guaranteed.

Available in a wide range of coil forms (shielded, ceramic, phenolic), solder and insulated terminals, plugs and jacks, diode clips, and other components. Use them to build stamina into your product. Cambion Tools speed assembly and mounting. For details, write Cambridge Thermionic Corporation, 504 Concord Avenue, Cambridge 38, Massachusetts.

Circle 71 on Inquiry Card
WHOLESALE CATALOG for resale dealers

Graingeris Electric SUPPLY SERVIGE

Over 4000 Items Stocked

PROMPT DELIVERY. Warehouses and sales offices in 63 principal cities, coast-tocoast. All fully stocked for pick-ups or 24 hour shipping service.

SALESMEN at each sales office available for help and guidance.

164 PAGE CATALOG and buying guide. Includes detailed descriptions on over 4000 items. Lots of technical and application data.

WHOLESALE ONLY. Free net price catalog sent only when requested on letterhead. No consumer requests honored. O.E.M. prices available for quantity buyers.

WHOLESALE CATALOG

 Write for Summer EditionDept. 41, 118 S. Oakley Blvd., Chicago 12 Circle 72 on Inquiry Card

New Western Products

MULTI-TURN POTENTIOMETERS

Line of 3 and 10 turn precision wire-wound potentiometers consists of 8 new models, four 10 -turn and four 3 -turn. The line features anodized aluminum cases with a $3 / 16 \mathrm{in}$.

wall thickness for dimensional stability. Units will operate from -55° to $150^{\circ} \mathrm{C}$ in a relative humidity of 95%. Resistance ranges are to 400 ,000 ohms, $\pm 3 \%$. Linearity (standard) is 0.25% with special linearities of 0.020%. Up to 111 terminals can be added in the 10 -turn series. Units function to 20 g vibration from 55 to 2000 CPS, withstand a 30 g shock and meet all specs to $30,000 \mathrm{ft}$. Spectrol Electronics Corp., 1704 S. Del Mar Ave., San Gabriel, Calif.

Circle 249 on Inquiry Card

FILAMENT SUPPLY

Model 227 is a 28 vde filament supply. Specifications include output, 28 vdc at 1.2 amps max.; ripple voltage, 2% at max. output. Proportionately less at lower output currents; input, 117 vac 60 cPs . The transformer has

5 input taps to adjust to line and load conditions; physical, $31 / 2 \times 33 / 4 \times$ $41 / 2$ in. overall seated. Metal case with octal plug base; weight, $21 / 2 \mathrm{lbs}$. C. J. Applegate \& Co., 1840 24th St., Boulder, Colo.

Circle 250 on Inquiry Card

BORG MOTORS... FOR RELIABLE INSTRUMENT POWER

Borg Motors provide reliable power sources for precision instrument equipment. Permanently sealed bearings and high-quality gearing assure minimum noise and continued high-level performance. Long known as efficient power sources for recorders and timing devices, Borg Motors are reliably serving many manufacturers of medical equipment, industrial television and many other instrument lines. Available from $1 / 2000$ to $1 / 750$ horsepower . . . 2 and 4 pole . . synchronous and induction . . . with and without gear trains. Gear-train motors have stainless steel output shafts. Write for complete data.

Ask for Catalog BED-A90

BORG EQUIPMENT DIVISION
AMPHENOL-BORG ELECTRONICS CORPORATION JANESVILLE, WISCONSIN

MICROPOTS • MICRODIALS • INSTRUMENT MOTORS • FREQUENCY STANDARDS

REGULARLY REVIEWED

AUSTRALIA

AWA Tech. Rey. AWA Technical Reriew Proc. AIRE. Proceedings of the Institution of
Radio Engineers

CANADA

Can. Elec. Eng. Canadian Electronics EngiEI. \& Comm. Electronics and Communications

Up-to-the-minute abstracts of articles appearing in

the leading foreign electronic engineering journals

ENGLAND

ATE J. ATE Journal
BBC Mono. BBC Engineering Monographs Brit. C. \&E. British Communications \& Electronics
E. \& R. Eng. Electronic \& Radio Engineer El. Energy. Electrical Energy
GEC J. General Electrie Co. Joumal
J. BIRE. Journal of the British Institution of Radio Engineers
Proc. BIEE. Proceedings of Institution of Electrical Engineers
Tech. Comm. Technical Commmications

FRANCE

Ann. de Radio. Annales de Radioelectricite Bull. Fr. El. Bulletin de la Societe FranCab. Caise des Electriciens
Com \& Trans. Cables \& Trunsmission Comp. Rend. Comptes Rendus Hebdomadaires des Seances
Onde. L'Onde Electrique
Rev. Tech. Revue Technique
Telonde. Telonde
Toute R. Toute la Radio
Vide. Le Vide

GERMANY

AEG Prog. AEG Progless
Arc. El Uber. Archiv der Elektrischen Liber-
EI Rund. Electronische Rundschau
Freq. Frequenz
Hochfreq. Hochfrequenz-technik und Electroakustik
NTF. Nachriehtentechnische Fachherichte Nach. Z. Nachrichtentechnische Zeitschrift Rundfunk. Rundfunktechnische Ditteilungen Vak. Tech. Vakuım-Technik

POLAND

Arch. Auto. i Tel. Archiwum Automatyki i Telemechaniki
Prace ITR. Prace Instytutu Tele-1 Radjotechnicznego
Roz. Elek. Rozprawy Electrotechniczne

USSR

Avto. i Tel Avtomatika i Telemakhaniks Radio. Radio
Radiotek. Radiotekhnika
Rad. i Elek. Radiotekhnika i Elektronika 2. Acad. Bulletin of Academy of Sciences USSR.

- Photocopies of all foreign articles are available at 75 cents per page, remitted with order. Unless otherwise indicated, articles appear in language native to country of origin.
- A reprint of this section, "International Electronic Sources" is avail. able without charge.

Requests for the above should be sent, on company letterhead, to:

Electronic Sources Editor
ELECTRONIC INDUSTRIES
Chestnut \& 56th Sts.
Philadelphia 39, Pa.

A Two-Stage Amplifier with a Controlled Amplitude Response, G. B. Bogatov. "Radiotek" \#4. 1959. 6 pp. The paper describes the circuit and the principle of operation of a two-stage amplifier whose amplitude response can be controlled over wide limits. The amplifier is designed for use as a contrast corrector in television systems. It can also be used for other purposes. Expressions are derived for the transfer coefficient of the amplifier. Experimental results are cited. (U.S.S.R.)

A Thyratron Modulator for Self-Excited Oscillator, G. P. Grudinskaia, B. T. Zarubin, B. I. Poliakov. "Radiotek" \#4. 1959. 2 pp . The paper describes a thyratron modulator which is used in the grid circuit of an oscillator. The design formulas and parameters for the circuit are given. (U.S.S.R.)

On Typicalizing Pulse Circuits, E. N. Baskakov. "Radiotek" \#4. 1959. 2 pp. Comment on a letter to the Editor by A. A. Kharkevich. (U.S.S.R.)

Rectifying Bridges with Magnetically Connected Loads at the Output, O. G. Malkina. "Avto i Tel." May 1959. 9 pp. It is shown that rectifying bridges with inductive negatively connected windings at the output and considerable active circuit resistance can be used for measuring the values R and X of the complex resistance Z. As an example there is analyzed current change in identical circuits and in circuits with a.c. diagonal resistances differing from one another. (U.S.S.R.)

On Control Characteristic of Three-Phase Magnetic-Amplifiers, A. L. Pisarev. "Avto i Tel." May 1959. 15 pp. Two magnetic amplifiers with three-phase load are considered. Static work of the amplifiers mentioned is analyzed. Analytical expressions for control characteristics of the amplifiers are obtained. The analysis proves inexpedience of using amplifiers with sequential connection of phase control windings. (U.S.S.R.)

Calculation of A-C Magnetic Reactor Amplifiers with Internal Feedback, N. A. Kaluzhníkov. "Avto i Tel." May 1959. 16 pp. Most characteristic circuits of magnetic reactor amplifiers with internal feedback are considered. Circuits are analyzed in two instances which are extreme from the viewpoint of nonsinusoidal distortions. Possible calculation errors are estimated. Analysis results are given by calculation plots. (U.S.S.R.)

Response of Cascaded Double-Tuned Circuits, Yona Peless. "E. \& R. Eng." April 1959. 7 pps . The transient and steady-state responses of cascaded identical double-tuned circuits are developed in terms of the locations of the poles of the transfer function. Results are obtained for two arbitrarily placed complex conjugate pole pair so that
the work applies to networks with an amplitude response which is not necessarily symmetrical about the band centre; however, the narrow-band restriction is imposed. (England.)

A New Type of Ring Counter, P. J. Westoby. "El. Eng." May 1959. 4 pps. There are many occasions where a multi-stage ring counter is called for and the number of stages in the more usual schemes has been limited to 12 , or so, for reasons mentioned. The article describes a system whereby any number of stages may be employed without the disadvantages met in the previous schemes. (England.)

Cold-Cathode Voltage-Transfer Circuit, J. H. Beesley. "J. BIRE." March 1959. 15 pps. The paper describes a new method of operation of cold-cathode triode switching tubes, which has some distinct advantages compared with the standard "pulse + bias" technique. (England.)

Group Delay and Group Velocity, Concept in Terms of the Transfer Function of a Network, W. Proctor Wilson. "E. \& R Eng." April 1959. 2 pp. (England.)

Ladder and Transformer Filters, Design Procedures and Characteristics, L. Kitajewski. "E. \& R. Eng." May 1959. 5 pps. (England.)

Printed Circuits: New Methods for Making Master Drawings and Component Layouts, D. H. Sladek. "Brit. C. \& E." April 1959. 3 pps. (England.)

COMMUNICATIONS

Evaluating the Average Rate of Telegraphy for Interrupted Radio-Communication Using Frequency Shift, V. S. Mel'nikov. "Radiotek" \#4. 1959. 9 pp. Using the general theory of potential (ideal) noise immunity developed by V. A. Kotel'nikov, an estimate is made of the average rate of telegraphy for interrupted frequency-shift radio-communication. The advantages of interrupted radio-communication vantages of interrupted
are weighed. (U.S.S.R.)

An Electronic Speech Sampler for Studying the Effect of Sample Duration on Articulation. Richard Fatehchand \& Rais Ahmed. "J. ITE." March 1959. 3 pp. (India, in English.)
A Miniaturized Radio Telephone Terminal Equipment, E. J. Allen. "El. Eng." May 1959. 3 pps. A radio telephone terminal equipment is described which although only a fraction of the size of conventional equipment provides a comparable performance and provides for the simultaneous operation of up to four commercial grade speech channels. (England.)

Electronics and Communications in Brazil, José I. Caicoya. "Brit. C. \& E." May 1959. 7 pps . This article gives an impression of the present position of communications and

Put PERMANENT MAGNET SPECIALISTS on your development team

Application of permanent magnets in microwave devices has resulted in vastly improved performance, lower costs and greater stability. Since the early days of micro-wave research, The Indiana Steel Products Company magnet design engineers have worked closely with leading manufacturers, providing expert help in developing special-purpose permanent magnet assemblies for such applications as radar magnetrons, backward wave oscillators, pm-focus traveling wave tubes and load isolators.

A discussion with permanent magnet specialists at The Indiana Steel Products Company may be just the stimulus your new design efforts need - or perhaps you'll find a way to improve your present products. In any case, you can be sure of this nobody knows permanent magnets like Indiana. And, because Indiana produces all permanent magnet materials, Indiana design engineers are well qualified to recommend the one best material for your design. Why not call in an Indiana man today?

THE INDIANA STEEL PRODUCTS COMPANY
valparaiso, indiana
WORLD'S LARGEST MANUFACTURER of PERMANENT MAGNETS

INDIANA PERMANENT MAGNETS

fREE DESIGN MANUAL

Write TODAY for important free, new catalog for micro-wave design engineers - "Alnico Load Isolator Magnets," which describes shapes and sizes, magnetic properties and performance characteristics of this complete line of Indiana permanent magnets. Ask for Catalog No. 20 N-8.

International ELECTRONIC SOURCES

electronic techniques in Brazil together with some details of the manufacturing organizations in that country. The facts and figures will be of particular interest to British companies who are seeking markets in South America. (England.)

Simple Multiplex Vocoder, A. R. Billins. "E. \& R. Eng." May 1959. 5 pps. A simple time-division multiplex vocoder is described which economizes in circuit components by using a common rectifier for all channels. This vocoder appears to contravene Shannon's sampling law, but it is shown that sampling ambiguities do not produce any marked change in character or intelligibility of the synthesized speech. (England.)

COMPONENTS

Determination of Main Parameters of Electromagnetic Relays, M. I. Vitenberg. "Avto i Tel." May 1959. 11 pp. Most important relations of conditional work, required power, overheat temperature and electromagnetic relay weight are considered. Experimental characteristics are presented. Formulae are deduced to determine relay conditional work as dependent on core section, required power, overheat temperature and relay weight (U.S.S.R.)

COMPUTERS

On Coding Long Segments of Binary Symbols, V. A. Garmash. "Radiotek" \#4. 1959. 3 pp The paper analyzes a statistical method for coding messages using a uniform binary code (U.S.S.R.)

Application of Square Integral Estimate for Finding Optimum Parameters of Pilot with Rate Feedback, V. D. Matytsin and V. A. Ryapolov. "Avto i Tel." April 1959. 7 pps. Stabilization of a pilot with a feedback is treated. Formulae are deduced to determine pilot optimum parameters as dependent on aerodynamic characteristics of a controlled object and on flight conditions. (U. S. S. R.)

New Method of Building a Stability Plane in the Space of Admissible Parameters Values of Control Systems. V. I. Zubov. "Avto i Tel." March 1959. 4 pps. New method of building stability planes in the space of admissible parameters values is described. The suggested way of building stability planes does not require plotting a characteristic polynomial. (U. S. S. R.)

Choice of Non-Linear Speed Feedback Characteristics of a Position Servosystems, B. N Naumov, "Avto i Tel." March 1959. 11 fos. The paper deals with choice of a nonlinear speed feedback characteristic when position servosystem structure is certain. The nonlinear speed feedback characteristic selected as it is suggested in the paper provides almost desirable transient process. (U. S. S. R.)

Analysis of Stability of Distributed Parameters Automatic Control Systems with Loss, Ya B. Kadymov. "Avto i Tel." April 1959. 3 pps. Stability criterion for distributed parameters controls systems is applied to control systems with loss. (U. S. S. R.)

Extremum Controller with Extremum Tracing, N. V. Grishko. "Avto i Tel." April
1959. 4 pps. Extremum controller with extremum tracing is described. The controller consists of two main parts: unbalance meter and tracing pulse system. (U. S. S. R.)

The Condition for the Maximum Accuracy of Ferroresonant Voltage Stabilizers, by B. Z. Zilberman. "Radiotek" \#4. 1959. 2 pp. The paper studies the relationship between stabilization accuracy, and the efficiency and ratings of the device. (U.S.S.R.)

Stabilizing Current L-C Devices, B. E. Kubyshin and A. N. Mikjakh. "Avto i Tel." May 1959. 6 pp. There are described L-C resonant circuit devices which can stabilize alternating or rectified load current with required accuracy when the load resistance range is widely changed. The introduction of inductive connection among the reactor windings and proper choice of coils results in getting a low stabilized current dependence on frequency variation. Stabilizing current L-C devices may actually be designed for any power limit. (U.S.S.R.)

Electric Drive with Powder Clutch and its Application in Automatic Control Systems, G. F. Konovalov. "Avto i Tel." May 1959. 6 pp. Results of solid filling powder clutches analysis are presented. Formulae for static characteristics and transfer functions of the clutch as well as of the clutch unit are declutch as well as of the clutch unit are deteristics of the servosystem with a powder clutch electric drive are given. (U.S.S.R.)

On Invariance Principle in Automatic Control Combined Systems, V. I. Dunaev. "Avto i Tel." May 1959. 4 pp . The paper deals with further development of invariance principle in automatic control combined systems with two motors under the same load. (U.S.S.R.)

Calculation of Static Characteristics of Reactor Control Systems, D. A. Alenchikov. "Avto i Tel." May 1959. 11 pp. Graphical solution of nonlinear problems of designing complicated reactor control systems is expounded. Path of operational point of a saturable reactor is plotted with taking into account losses in the saturable reactor. The way of plotting output load characteristics is described. Determination of initial data is proposed to choice or to design controller when the rule of mutual variations of the saturable reactor output load values is known U.S.S.R.)

On a Stability Criterion for Nonlinear Control Systems, Chang Szu-Ying. "Avto i Tel." May 1959. 4 pp. (U.S.S.R.)

Analysis of Periodic Motions in Electrical Servomechanism Vibration-Loop with Constant Disturbance, I. N. Krutova. "Avto i Tel." May 1959. 12 pp . Vibration loop with two parallel control channels is considered. Loop motion is described by three first-order equations. Dynamics of the loop is analyzed by means of phase plane and point transformation method. As a result of the analysis stability and singularity of self-oscillations are determined. Parameters of self-oscillations and loop static characteristics are found. (U.S.S.R.)

GENERAL

The Correlation Function for a Random Time Series of Rectangular Pulses, I. N. Amiantov V. I. Tikhonov. "Radiotek" \#4. 1959. 11 pp

Random pulse trains are classified (trains with and without storage, with and without overlap). A general formula is derived for the correlation function. The application of the formula is illustrated using examples. (U.S.S.R.)

A Mercury Thermoregulator with a Reduced Inertia, F. I. Kozhin. "Radiotek" \#4. 1959. S pp. The paper describes a method for reducing the inertia of a mercury thermoregulator on the basis of using high-frequency heating and air cooling. An experimental test of the device was successful. (U.S.S.R.)

Determination of Transfer Function Coefficients of Linear System with Help of Experimental Frequency Response When $W \rightarrow O_{s}$, E. E. Dudnikov. "Avto i Tel" May 1959. 7 pp, The paper deals with determination of approximate transfer function coefficients of a linear system with the help of an experimental frequency response. To determine coefficients, initial part of the frequency response is used (when $w \rightarrow 0$). The method described is applicable to linear systems with retardation too. Numerical determination of coefficients is given. (U.S.S.R.)

The Effect of Noise on an AGC System, V. V. Shirokov, V. G. Repin. "Radiotek" \#4. 1959. 8 pp. The paper studies the effect of a stationary random process, with and without a regular signal, on an AGC system. The statistical characteristics are derived for the random process at the output of the AGC amplifier. The solution is obtained by the method of successive approximation. Recommendations are made concerning the selection of the AGC parameters. (U.S.S.R.)

Temperature Effects on the Impedance of the Standard $2.6 / 9.5 \mathrm{~mm}$ Coaxial Pair, M. C. Fouilleul. "Cab. \& Trans." April 1959. 5 pps. A brief account of the experimental work done at the laboratories of Lignes Telegraphiques et Telephoniques on manufacturing lengths of standard $2.6 / 9.5 \mathrm{~mm}$ coaxial pairs. From those experiments, effected by means of an echometer, a variation law for the apparent impedance of the pair has been derived in terms of temperature. (France.)

Continuing Standardization Linked with Electronics Progress, Vincent de P. Goubeau. "El. Comm." April 1959. 3 pps. Every company needs at least one "standardization oriented" individual to dig, question, analyze, reveal, and act upon opportunities. His salary can be your best investment. (Canada.)

An Electrophysiological Amplifier for Students" Use, P. E. K. Donaldson. "El. Eng." May 1959. 2 pps. A compact, signal-sided amplifier is described for action-potential recording from excised nerve or muscle. The apparatus is entirely mains-driven, and it is felt that in this respect, and in view of its implicity, it may be of interest to other biological laboratories. (England.)

A Rapid Response Recording Cardiotachometer, A. W. Melville and J. B. Cornwall. "El. Eng." May 1959. 4 pps. The instrument described has been designed for use under theatre conditions. It incorporates excellent discrimination against interference, an effective pulse amplitude control circuit and a rate recorder with alternative time-constants, one of which provides a rapid response suitable for the evaluation of fast acting stimuli. (England.)

Electronic Techniques in Gearbox Manufacture and Testing, R. K. Nott. "Brit. C. \& E." May 1959. 4 pps. (England.)

Future Trends in World-Wide Telecommunications, R. J. Hitchcock. "Brit. C. \& E." May 1959. 2 pps. (England.)

boost reliability... lower noise... with the

Get the extraordinary low noise, stability and reliability of the Series 53-don't settle for the ordinary. The exclusive Clarostat one-piece carbon contact design completely eliminates the inherent shortcomings of metal-to-metal moving contacts, resulting in lower noise, greater stability and longer life.

If your design deserves the best, specify Clarostat Series 53 molded carbon potentiometers. Write for complete technical details . . .

- Low noise, greater stability, longer life.
- Full 2 -watt rating at $70^{\circ} \mathrm{C}$.
- Gold-plated terminals molded in place.
- Grease seal around shaft.

Zero backlash.

- Available in completely encapsuated units for maximum environmental protection.

SPECIFICATIONS

- POWER RATING: 2 -watts at $70^{\circ} \mathrm{C}$
- RESISTANCE RANGE: Linear-50 to 10 meg. Tapered-250 to 5 meg . (Right or left-hand)
- INSULATION BREAKDOWN: Between terminals and ground for 1 minute, 1000 v.d.c.
- SWITCHES: SPST, SPDT, DPST
- TORQUE: 1 to 6 oz . in. Up to 20 oz. in, with jam nut bushing.
- EFFECTIVE ROTATION: $312^{\circ} \pm 3^{\circ}$
- CONSTRUCTION: Meeting requirements of MIL-R-94 where applicable.

$\therefore \quad$ direct

IMMEDIATE:

 DELIVERY!:Phone your local Clarostat Industrial
stributor for papular, standard Series 33 . or military style RV-4 units... for
fast delivery from local stock.

International ELECTRONIC SOURCES

MEASURE \& TESTING

Induction Tachometer as Angular-Acceleration Pick-Up, S. T. Kazarjan, "Avto i Tel." May 1969. 6 pp. D-c induction tachometer is con. sidered when it is used as angular-acceleration pick-up. (U.S.S.R.)

A New High Resolution Interferometer for Solar Studies, M. R. Kundu. "J, ITE." March 1959. 9 pp. (India, in English.)

Multichannel Recorder for High- and LowFrequency Electrical Functions, G. Roder. "El. Rund." April 1959. 3 pp . This novel registration method enables an immediately visible and evaluable monochrome registration of all time functions on any exchangeable registration scale. (Germany.)

Definition and Measurement of Bandwidth in Radio, U. Schrock. "Nach. Z." March 1959. 8 pp. Various possibilities for the definition of bandwidth are compared with one another. It is shown that the time-frequency-spectrum is a better basis for the definition of bandwidth than the spectrum function. (Germany.)

Phase-Angle Measurement, Null Method Using Heptode Mirer, P. Kundu. "E. \& R. Eng." April 1959. Б pp. This article describes a "product" method of measuring the phase angle between two pre-adjusted out-of-phase sinusoidal voltages. The signals are applied to a heptode mixer whose differential anode current with respect to the reference value for quadrature inputs is a measure of the angle. quadrature
(England.)

The Measurement of Random Noise in the Presence of a Television Signal. "B B C Mono." 24 March 1959. 10 pp. It is becoming increasingly important for authorities concerned with the generation, distribution, and radiation of television signals to have available an accurate method of measuring random noise in the presence of a signal. This monograph describes two realizations of a simple method which is based upon sampling the random noise in the known minimum-energy regions of the video spectrum. (England.)

The Design of Broadband Circular Wavemeters. P. Andrews. "Brit. C. \& E." May 1959. 4 pp. The design of cavity resonators in general is discussed. The TE mode in a right cylinder is then treated and the design parameters are explained. Two examples, the J-band wavemeter XT350 and the K-band wavemeter XT389, are used to illustrate the article which treats the subject from a practical point of view. (England.)

Digital Voltmeter, H. Sutcliffe. "E. \& R. Eng." May 1959. 7 pp. A description is given of a digital decade voltmeter in which Dekatron selector tubes are used to control the switching of precise values of current to a chain of precision resistors. (England.)

RADAR, NAVIGATION

Certain Special Features of Visual Indicators for Radar Signals, M. M. Gerdov. "Radiotek" \#4. 1959. 5 pp . The paper studies the special \#4. 1959. 5 pp. The paper studies the special
features of recording radar signals in the sysfeatures of recording radar signals in the sys-
tem: panoramic radar receiver-operator. It is tem: panoramic radar receiver-operator. It is
shown that the "average pulse duty ratio" for the noise is less than unity and that the com
putation of the probability of detecting the useful signal in the noise should be performed according to the formula for joint events. When the size of the image is greater than "critical," the operator perceives the noise "critical," the operator perceives the noise peaks as discrete pips, and the main part in
the signal detection is played by the signal energy which accumulates during the sampling time rather than by the signal power. (U.S.S.R.)

On the Theory of a Radio Range Finder with Frequency Modulation, B. V. Malanov. "Radiotek" \#4. 1959. 11 pp. A detailed analysis is made of the output from the detector of an FM radio range finder. It is shown that the readings of a unit using an output device consisting of a pulse counter-limiter arrangement are practically independent of the type of frequency modulation. A detailed study is made of the widely used simplified analysis, and the limits of applicability for the method are determined. (U.S.S.R.)

The Influence of Certain Typical Nonlinearities on Autopilot Adjustment, M. E. Salukvadze. "Avto i Tel." May 1959. 11 pp. The power balance method is used to analyze the influence of control element nonlinearity on autopilot adjustment; the nonlinearity is due to restriction of the aileron angle when investigating the stability of the list. There is also analyzed the influence of the drive essential nonlinearity and quasi-nonlinearity of the utopilot mixer relay when investigating the airplane longitudinal stability. (U.S.S.R.)

Analysis of Linear Pulse Systems Using Simufation, G. P. Tartakovsky. "Avto i Tel." May 1959. 8 pp . Simulation of variable linear pulse systems is considered to get applicable pulse response. It is shown that pulse response may be obtained in the form of function of pulses application moments by simulation of pulse system adjoint as to the initial system. The way of forming structural diagrams of adjoint pulse systems models is described for two ways of simulating initial systems. (U.S.S.R.)

Radar Data Transmission, T. E. Schilizzi. "AWA Tech." \#4, 1958. 32 pp . Information generated by a radar station is often required to be used at a distance. A.R.A.A.F. specification has led to a joint engineering developmental project with industry on this problem. This paper presents an estimate of the theoretical information required to be transmitted in a typical case. Practical methods of achieving a remote display over wide and narrow-bandwidth circuits are reviewed. (Australia.)

A Low-Drain Distress Beacon for a Crash Position Indicator, D. M. Makow, et al. "J. BIRE," March 1959. 13 pp. A new, light, simple and inexpensive radio distress beacon has been developed to survive airplane crashes. A special long-life pulsed transmitter with trickle-charged batteries and an internal capacitor antenna is potted in shock-absorbing foam which is transparent to radio waves and formed to a high-lift wing section. (England.)

The Place of V. H. F. Direction Finders in Air Traffic Control, S. A. W. Jolliffe. "Brit. C. \& E." April 1959. 6 pp . Collaboration on a broad front between the Government Research Establishments and Industry has resulted in direction finders of steadily improved accuracy and flexibility. (England.)

The Place of V.H.F. Direction Finders in Air Traffic Control, Part 2, Applications, S. A. W. Jolliffe. "Brit. C. \& E." May 1959. 6 pp. The practical application of the modern direction finder to the problems of air navigation are considered in this article and where possible systems are compared in terms of technical performance and capital and operating cost-factors in which the user is vitally interested. (England.)

SEMICONDUCTORS

Computing the Frequency Response of a Transistorized Amplifier, L. P. Kozintsova. "Radiotek" \#4. 1959. 6 pp . Based on an analysis of the equivalent output circuit for a transistor, formulas are derived for computing the frequency and phase responses for a RC-coupled transistor amplifier with a common-base circuit. (U.S.S.R.)

Transistor Comparison Devices, V. M. Poljakov. "Avto i Tel." May 1959. 3 pp. Transistor comparison devices of null-element type are considered. The comparison devices in question are of high reliability, small sizes and of low required supply power. (U.S.S.R.)

Analysis of a Direct Coupled Astable Transistor Multivibrator, T. S. K. V. Iyer. "J. ITE." March 1959. 5 pp . Tw也 grounded-emitter transistor amplifiers coupled capacitatively to each other work as an astable multivibrator which is similar to the free running plate coupled vacuum tube multivibrator. If one of the couplings is direct, under certain conditions, the system works as an astable multivibrator. (India, in English.)

Avalanche Transistors an Appraisal of Their Properties and Uses, R. C. V. Macario. "El. Eng." May 1959. 6 pp. The results from an investigation of the properties of some experimental alloyed junction avalanche transistors enables a review of their characteristics to be made. iEngland.)

The Charge Storage in a Junction Transistor During Turn-Off in the Active Region, R. S. C. Cobbold. "El. Eng." May 1959. 3 pp. Through the solution of the one dimensional diffusion equation for a junction transistor, equations are derived for the emitter and collector currents that exist under conditions of minimum turn-off time. (England.)

TELEVISION

Television Coverage in the Service Area of the Ochsenkopf Transmitting Station, Erhard Graff. "Rundfunk." February 1959. 3 pp. After giving a brief historical survey of the possibilities of television ceverage in northeast Bavaria, such as have existed in that area since the start of television, the author describes the efforts made to obtain a channel for the Ochsenkopf transmitting station. (Germany.)

High-Power Television Transmitting Station for Bands IV/V, A. Kolarz and A. Schweisthal. "Rundfunk." February 1959. 11 pp. At present two different methods are used for the amplification of the outputs of UHF television transmitters of 10 KW or more operating in bands IV and V. With frequencies of 400 Mc / s, in addition to amplifiers with gridmodulated valves, amplifiers with velocitymodulated valves (klystrons) are of interest. (Germany.)

The Technical Equipment of the Television Tower on the Ochsenkopf, Ernst Angermuller. "Rundfunk." February 1959. 10 pp. An introduction gives a summary of the layout of the technical equipment within the tower building. This is followed by a description of the

$350^{\circ} \mathrm{C}$. ST resistors Highest wattage to volume ratio in metallic oxide field. $21 / 2,5$, and 10 W at $25^{\circ} \mathrm{C}$., derating to $350^{\circ} \mathrm{C}$. Achieves its specs through new resistance film and insulation coating developed at Corning. 2% and 5% tolerances.

Epoxy coated resistors Exceptional moisture resistance. 1.5% max. resistance change after military moisture tests. Beats demands of MIL-R10509 C , Char. B. Tin oxide film fused to glass. $1 / 8,1 / 4,1 / 2 \mathrm{~W} .10$ ohms to 1 megohm at $70^{\circ} \mathrm{C}$., derating to $150^{\circ} \mathrm{C}$.

High temperature capacitor New high temperature dielectric. Up to 10,000 uuf, DCWV of 300 V at $300^{\circ} \mathrm{C}$. Q better than 500 at $300^{\circ} \mathrm{C}$. Especially suitable for missiles and aircraft. Highly resistant to nuclear radiation.

Micro miniature capacitors 1 to 10,000 uuf. DC working voltage is 300 V over -55 to $+125^{\circ} \mathrm{C}$. range. Suitable for micro miniature work, lumped constant delay lines, missiles, nuclear equipment, and similar high reliability systems.

Fusion-sealed resistors For wltra specs. Glass-enclosed, tin oxide resistance element. Impervious to moisture because of fusion seal. 10 ohms to 360 K at $70^{\circ} \mathrm{C}$., derating to $160^{\circ} \mathrm{C}$. Well in excess of MIL-R-10509C, Char. B.

Write for data sheets for complete specs on these components. Address: Corning Glass Works, 546 High Street, Bradford, Pa. Or sales offices in New York, Chicago, Los Angeles.

See them at WESCON Show All items on display along with data at Booths 506-508, August 18-21.

International ELECTRONIC SOURCES

design of the television transmitter, the control desk and the television transmitting aerial. (Germany.)

The State of Development and Possible Fields of Application of the Ampex System of Recording Television Signals on Magnetic Tape, Hans Joachim v. Braunmuhl. "Rundfunk." April 1959. 5 pp . The paper discusses in quantitative terms the performance of the Ampex system, after modification for the European 625 line standards, and compares them as far as possible with the corresponding figures for 16 mm -film. (Germany.)

The Deduction of Data for a Television Noise Evaluation Filter, J. Miller and E. Demus. "Nach. Z." April 1959. 6 pp. A visual acuity curve for the 625 -line TV system has been derived from detailed human measurements. The result is compared with results obtained from other sources. Furthermore, it has been possible to give data for a practical noise evaluation filter which has the advantage of great simplicity and the attenuation response of which remains within $\pm \mathrm{db}$ of the measured visual acuity curve. (Germany.)

The Re-Equipment of the Austrian Television Studios, Franz Brunner. "Rundfunk." April 1959. 10 pp . The operational accommodation of the Austrian television service was obtained by rebuilding and extending existing sections of buildings, and a description is given of the new construction and equipment. Three studios and their control rooms are equipped for producing live programmes, and there are also an announcer's studio and a control position for a transit programme. (Germany.)

Television Distributor, G. Dureau. "Cab. \& Trans." April 1959. 6 pp. This paper relates to a distribution system for television signals installed at the long-distance line main station at MEUDON, which provides interconnec tion between Paris and various provincial centres according to television program require ments. (France.)

Subjective Impairment of Television Pictures, Effect of Signal-to-Random Noise Ration, L. E. Weaver. "E. \& R. Eng." May 1959. 10 pp. The paper describes a series of tests which were undertaken by the B.B.C. in order to determine the statistical spread of opinion among viewers on the degree of impairment introduced into a television picture by known levels of wideband random fluctuation noise. (England.)

A Vidicon Camera for Industrial Colour Television, L. J. P. James. "J. BIRE." March vision, L. J. P. James. "J. BIRE." March
1959.18 pp . The choice of systems, i. e. fieldsequential or simultaneous, is discussed, and the conclusion is reached that it would be expedient to exploit the simultaneous colour camera using three vidicons. The main features of the camera and its associated control equipment are described. (England.)

TRANSMISSION

A Rectangular Waveguide with Longitudinal Irises, E. G. Solovei. "Radiotek" \#4. 1959. 6 pp . The waves propagated in a rectangular waveguide with longitudinal irises of finite thickness can be separated structurally in the waveguide cross-section into symmetrical and anti-symmetrical waves. In turn, the symmetrical and anti-symmetrical waves can be metrical and anti-symmetrical waves can be
separated into "fast" waves and "surface separated into "fast" waves and "surface infinite set of "surface waves," a portion has
normal dispersion and a portion has anomalous dispersion. Any space harmonic can be taken as the "zero" space harmonic in the conditional sense. Increasing the thickness of the irises leads to an increase in the lag of the waves with normal dispersion, and to a decrease in the lag of the waves with anomalous dispersion. Increasing the thickness of the irises leads to a displacement of the pass bands toward longer wavelengths. (U.S.S.R.)

Od
 TUBES

A Proposed Ferrite-Tuned Magnetron, Amarjit Singh. "J. ITE." March 1959. 5 pp. General considerations are given for tuning a magnetron by suitably placing a ferrite material in the resonator and varying its effective permeability by means of a biasing magnetic field. It is shown that an inverted interdigital magnetron with a coaxial line coupled to the region enclosed by the fingers is well suited for this purpose. The ferrite can be placed near the shorted end of the line and can be biased by a radial field. The ferrite material thus located can be kept out of the main magnetic field of the magnetron; so that the interference of one with the other is avoided. (India, in English.)

Stass Electrolysis in Electronic Tubes, Fritz Engel. "Vak. Tech." March 1959. 4 pp. If stray electrons reach the glass envelope of an electronic high vacuum tube, secondary emission can take place, producing a positive electric charge on the inner wall of the envelope. The resulting electric field between the positive charged wall and the negative leads through the base of the valve, causes electrolytic effects in the glass. (Germany.)

Design and Performance of Backward Wave Oscillators, G. Bolz. "Nach. Z." March 1959. 8 pp. The paper includes a report of experiences made during the manufacture of backward wave oscillators with inter-digital lines. After a short summary of the operation of these tubes, the design date for a $4-8 \mathrm{~cm}$ tube, ohtained from calculations and test results, are given. (Germany.)

The Reason for Differences Between the Theoretical and Practical Values of the Shot Noise in High Gain VHF Triodes, R. Thielert. "Nach. Z." April 1959. 4 pp. Modern VHF triodes occasionally exhibit considerable deviations of the space-charge reduced shot noise from the theoretical value. The reasons for these deviations are investigated by means of experiments. The measurements have revealed, that the noise in valves exhibiting such deviations is composed of a portion without frequency sensitivity and one portion with a frequency characteristic. (Germany.)

Remarks Relating to the Theory of Backward Wave Tubes, K. H. Locherer. "Nach. Z." April 1959. 6 pp . The slow-wave structure tube theory given by Gundlach is applied to a mismatched backward wave tube with an inter-digital line (O-type carcinotron). The conclusions of this theory in the case of effects from reflections on the frequency characteristic and in the case of transient state currents are discussed. The results are in reasonable agreement with the experiment. (Germany.)

Measurement of a New Valve for Picture Pre sentation, W. Dillenburger. "El. Rund." April 1959. 4 pp . The depth of modulation of a new picture valve of 28 kV anode voltage was
measured in the horizontal direction. At 5 mc / s it decreases to about 64% of that mea sured at $1 \mathrm{mc} / \mathrm{s}$. Contrast and halo have al most no influence on the measured value. (Germany.)

On the Reduction of the Reolution of ImageOrthicons by Crosstalk of the Scanning Fields into the Picture Conversion Section, H. Fix and W. Habermann. "Rundfunk." April 1959 5 pp. Several improvements in the picture quality of image-orthicons have become known in the past few years. Nevertheless, the resolution of this camera tube is still inferior for the 3 inch-type, than, for example, that of the super-iconoscope. (Germany.)

Cathode Compensation, Use with Pentode Video Stage, H. D. Kitchin. "E \& R Eng." April 1959. 7 pp. (England.)

The Principles and Applications of Storage Tubes, E. B. Callick and J. C. Firmin. "Brit C. \& E." May 1959. 5 pp. Many of the problems of data recording, conversion and trans mission can today be solved by means of storage tubes. This article surveys developments in these tubes and describes the principles of operation and applications of the various types. (England.)

Reprints

A limited supply of the complete
 International

Electronic Sources

section
for the year 1958
is available.
Copies may be purchased
for $\$ 1.00$ a set.

Send requests to

Electronic Sources Editor
Electronic Industries
Chestnut \& 56th Sts.
Philadelphia 39, Pa.

it's

 forthe

BIRDS

The new Burnell \& Co. MT 34 and MT 35 microminiature Kernel toroidal inductors are made to order for the engineer who isn't content with outer husk solutions but gets right to the core of second generation missile communication problems.
MT 34 microminiature Kernels can be supplied with inductances up to 500 mhys and the Kernel MT 35 is available in inductances up to 200 mhys. MT $3 t$ Kernels are recommended for frequencies to 30 kcs and the MT 35 is applicable to freguencies up to 200 kcs depending on inductance values. Q for the MT 34 is greater than 55 at 25 kc and for the MT 35 more than 60 at 100 kes .
Size of the MT 34 and MT 35 is $.417^{\prime \prime}$ OD x $.215^{\prime \prime}$, spacing between leads $.3^{\prime \prime} \times l^{\prime \prime} \mathrm{L}$ with a weight of .06 ounces.

The new microminiature Burnell MT 34 and MT 35 Kernels provide maximum reliability as well as considerable economy in printed circuit use. Conpletely encapsulated, the Kernels will withstand unusually high acceleration, shock and vibration environments.
Write for special filter bulletin MTF to help solve your circuit problems.
*missiles

AIR-MARINE INVERTED TYPE BLOWERS DELIVER HIGH VOLUME AGAINST HIGH BACK PRESSURE

The AIR•MARINE inverted type centrifugal blower is especially designed for those applications where space is at a premium. By locating the motor inside the squirrel cage, space is saved and the motor is constantly cooled. Compliance with applicable MIL specifications make this blower ideally suited for critical applications.
Characteristics-115 or 208v
$-50 / 60 \sim-1$ or $3 \phi-158$ CFM at $0^{\prime \prime} \mathrm{SP}$ at 3200 RPM

air.marine moforsfinc.

369 Bayview Avenue
Amityville, L. I., N. Y.

See us at the Wescon Show Booth 607 \& 609

Parametric

 Amplifier
Diode

(Continued from page 100)
ure is about as low as can be effectively utilized with associated microwave equipment.

Many configurations exist for the diode amplifier, some of which appear more promising than others. To date none of these have met all requirements for an optimum device and much in the way of theoretical analysis and development remains to be accomplished.

Also under investigation are pump sources for the diode par-

This family of parametric amplifiers includes the tiny units which can double the range of ground and aircraft radar.
amp, with development of a compact, lightweight all solid state pump as the ultimate objective.

Examples of diode paramps which have been developed or are presently in the development stage include the following:

1. Signal Frequency; 1 кмс.

Pump; 10 mw at 2.6 kmc .
Gain; 20 db .
Bandwidth; 1 Mc.
Noise Figures; 2.5-3.5 db.
2. Signal Frequency; 2.6 кмс.

Pump; 20 mw at 6.2 KmC .
Gain; 17 db .
Bandwidth; 3 mc.
Noise Figures; 3.5 db .
3. Signal Frequency; X-Band.

Pump; $50-100 \mathrm{~m} \mathrm{\omega}$ atK μ band. Gain; $17-20 \mathrm{db}$.
Bandwidth; As yet unknown.
Noise Figure; 9 to 15 db .

For HIGHESt \& MECHANICAL Ebficience! Neans JONES $\mathrm{S}_{\text {sRinis }}^{2020}$ PLUGS \& SOCKETS

ELECTRICAL | improved Socket Contacts. Four in-

dividual flexing surfaces. Positive
tact over practically their entire
length.
P-2406-CCT Plug-with Cable clamp in top
Socket with shallow
bracket for flush mounting.

What do you need in Battery, Power?

ZINC-CARBON? . MERCURY? NICKEL-CADMIUM? WATER-ACTIVATED?

MORE THAN 5,000 BURGESS BATTERY TYPES
each with the highest measure of uni-
form dependability! This is why 2 of 3 electronic engineers specify
BURGESS BATTERIES

BURGESS

IS THE MOST COMPLETE ONE-SOURCE line of Partable Pawer!

EXCLUSIVE WAFER
CELL CONSTRUCTION
offers compactness, long shelf life, exceptional service life. A 30% increase in battery life at no increase in size.

TRANSISTOR ACTIVATORS
Burgess Activator Batteries for transistor circuits are smaller and mare compact in size! Yet
they deliver 30% more they deliver 30% more power because of the
patented 'Wafer-Cell" construction! Burgess construction Burgess
Activators give you compast power, uni. form performance, longer shelf life. all combined with mod ern packaging

RESERVE BATTERIES High energy output in a compact power source. Can be stored dry for years! Activated only when immersed in water. No handling of dangerous electrolyte, no spilling or leaking
Wide range of efficient aperating temperatures. Designed for ycur spe. cific applications.

SEALED NICKEL-CADMIUM BATTERIES
BATTERIES
A secandory rechargeable battery
system which delivers high energy
output from a small package! Her-
metically secled - in- seel
cells eliminate amnoying
bungess maintenance and addition
of liquids. Con be re-
sharged many times, by
trickle ar quick
charge, for long
lasting economi-
cal power!

Check with your Burgess Distributor for complete local stocks of frest BURGESS BATTERIES! Or your distributor can order from Burgess the special battery needed for your specific application!

FREE DESIGN SERVICE

For special applications, skilled Burgess Engineers offer you a FREE battery design service. Burgess will monufacture the exact battery to fit your needs, regardless of quantity required.

NEW ENGINEERING MANUAL
New 100-page dry battery handbook now available! Engineers engaged in the design of battery-powered equipment are invited to write to Burgess Battery Company, Dept. El, Freeport, III. to
may buy the manual for $\$ 1.00$.

BURGESS BATTERY COMPANY

FREEPORT,

ILLINOIS

Circle 81 on Inquiry Card

SERVOSCOPE ${ }^{\circledR}$
plays a role from concept to tracking
SERVOSCOPE servo system analyzers are playing a part today in every phase of the missile industry, from testing the blue-sky dream to tracking the blue-sky path. For example, SERVOSCOPE is being used for:

- Complete analyses of any missile control system in minutes, whether it be electro-hydraulic, electromechanical, or electro-pneumatic! - GO, NO-GO production testing or detailed debugging of missile control systems and components. - Ready analyses of radar and other tracking servo systems...in the field as easily as in the breadboard stage.
Only the highly flexible SERVOSCOPE can play so many roles in the missile field. Why? Because of its wide-range coverage, providing precise and rapid results; its fast direct-setting and read-out; its high-accuracy measuring of phase, transient response, and gain; and swift plotting of Nyquist, Bode, or Nichols diagrams.
A full line of five models provides a full range of essential features.
- Covers the frequency range from . 001 to 100 cps . Evaluates AC carrier and DC servo systems. - Generates sine waves, modulated carrier wave, and squarewave phaseable signals with respect to either electronic linear sweep or sinusoidally modulated reference signal.
- Frequency calibration accuracy of $\pm 2 \%$, phase measurement accuracy of $\pm 1 \%$. . Accepts any carrier frequency from 50 to $5,000 \mathrm{cps}$. - Indicates by means of SERVOSCOPE indicator or oscillograph recording.
These same features lead to all-stage use of SERVOSCOPE in Aviation, in Instrumentation, Communication, Navigation, Electronic and Electrical Engineering, Education, Computers, and in many other areas.
Acquaint us with your servo analysis problems. Specification and application data is available. Request TDS $1110-\mathrm{J}$.

SERVO CORPORATION OF AMERICA
$20-20$ Jericho Turnpike - New Hyde Park, L. I., New York

Railroad Electronics

(Continued from page 98)
A. B. Dick Co. The Videograph is a high-speed duplicator which uses television methods.

A camera, specially designed to transmit a sharp, clear signal, looks at the material to be reproduced. It then sends its signal by coaxial cable or microwave to the printing equipment. Here the signal deposits electrical charges on a continuous paper tape, and these charges correspond to the dark areas of the image.

The tape is dusted with black powder, which clings to the charged portions of the surface, and the powder is heated and pressed into the paper to make a permanent record. The entire system is extremely high-speed-for example, it can duplicate and print out 17,000 characters of elite type-writer-sized type per second.

Basically, the Videograph system works for the railroads this way: An unattended television camera is set up beside the railroad tracks at the outlying station. When a train passes, floodlights are automatically turned on, and the camera begins recording the cars' image as they pass by. The picture is flashed by coaxial cable or microwave relays to the desired point. There, the Videograph printout immediately turns out a clear, printed picture of the train on a running two-inch paper tape. From study of the permanent picture, the yardmaster knows both the car numbers and their sequence in the incoming train and can plan accordingly.

Other Applications

Because of the Videograph's flexibilities, the same equipment could be used for communication between the various elements of a large railroad system. And communication represents an extremely vital activity to running a railroad.

Moreover, another study-which was done for the A. B. Dick Company at the request of the Denver \& Rio Grande Western Railroadshows that the high-speed Videograph system can be used to transmit printed material, such as waybills, much more quickly and efficiently.

Fecknon fube Nerns -from SYLVANIA

Designing for extra reliability—everywhere in Electronics

TELEVISION...

Abstract

New bonded-shield picture tube squares away the TV screen, increases viewing area, reduces reflection, improves light output and picture clarity

TV design engineers can now take advantage of one of the first major improvements in television faceplate design since the rectangular screen . . . the Sylvania bonded-shield picture tube. It incorporates a built-on panel of safety glass that makes the traditional separate safety glass unnecessary and opens the way to exciting new possibilities in TV cabinet design. It allows substantial reductions in both cabinet dimensions and cost. And because it reduces reflection, in-
creased light output and clearer TV pictures result.
The squared away corners of the new bonded-shield picture tubes add approximately 20 square inches to the viewing area of a 21 -inch screen. The 23 -inch tube presents more of the picture as the camera sees it. The new bonded-shield picture tubes are available in $18^{\prime \prime}$ and $23^{\prime \prime}$ sizes (diagonal measurement) with conventional or Sylvania tripotential focus electron guns.

New Sylvania bonded-shield picture tube shows more picture than the conventional $21^{\prime \prime}$ tube

INDUSTRIAL \& MILITARY CATHODE-RAY TUBES...

New Sylvania high resolution CRT, type SC2782

Sylvania develops ultrahigh definition CRT for photo video recording in aerial reconnaissance and other applications where high resolution is necessary

All of the precision qualities of specialized fine spot CRT's are now available to design engineers in a new 5 -inch CRT with a definition range of 3,000 lines. Through rigid selection techniques, greater accuracy controls, new fine grain phosphors and optical quality faceplate, Sylvania CRT engineers have been able to achieve this extremely fine definition using standard CRT auxiliary components and design. The new tube has an operating voltage of 20 to 25 KV . It incorporates an anode lead that is potted on the side of the tube to prevent corona and permit high-altitude applications.

The tube has standard basing and a 6.3 V standard heater. It is available now for sampling through your Sylvania equipment representative or government office.
Sylvania is actively engineering CRT's with even greater resolutions -up to 6,000 lines-to meet the ever increasing needs of the armed forces and industry. We will welcome the opportunity to discuss your specific applications problems with you and to explore custom design possibilities to meet your needs. Contact your Sylvania representative or the factory directly today.

Oscilloscope designers can obtain all the advantages of present 3 -inch oscilloscope CRT's plus these added features with the new 3ASP1:

- Improved faceplafe-

Flat pressed type gives greater clarity -less distortion.

- Better Insulation -

Anode connection located on side to prevent possible arcing

- Conventional basing-

Standard CRT stem and base is used.

Sylvania sets a new

Abstract

New variables inspection procedure gives a quantitative picture of the reliability of each important characteristic in Gold Brand Tubes

Picture of Reliability-Actual graph of mixed variable-attribute inspection shows how individual tube lots meet a particular specification

A new measure of reliability is being extended to Sylvania Gold Brand Tubes. Developed by the Sylvania quality control department, it provides the design engineer with a true, measurable profile of the operating dependability of individual tube lots.

The new testing procedure-known as Mixed Variables-Attributes Inspection involves the recording of each characteristic reading, as opposed to ordinary go no-go testing by attributes. If the readings fall within the closely established acceptance limits, the tube passes the new
testing procedure, otherwise it is rejected.
The new procedure not only provides Sylvania tube-design engineers with invaluable data for product improvement but allows Sylvania to provide the design engineer with tubes that more exactly fit his application needs.

> Sylvania develops new specifications for Gold Brand Industrial and Commercial Types to meet the specialized needs of jet airliners, commercial prop-driven aircraft, executive aircraft, mobile radio, marine radio and industrial control equipment

Now designers of electronic equipment for commercial and industrial applications can specify tubes that are tailored to meet their specific requirements. Sylvania has developed a line of 47 com mercial industrial Gold Brand types, that are identified with a GB prefix.This is the mark of a Gold Brand tube specifically designed to meet commercial and industrial application requirements. Specialized specifications are already written for more than half of the GB line and eventually all 47 will be covered. These new GB specifications tailor military standards to the individualized requirements of commercial and industrial equipment. In many cases, the GB specifications exceed previously known requirements.

In every case, specification of Gold Brand Types provides the very highest degree of reliability and performance.

For example, type GB5751, a high mu double triode (9 pin miniature) meets a tougher AC Gain Test than the comparable military type. While the military type is tested to a 100 V supply, the supply for GB5751 is only 65 V . This provides extra assurance that the tube will operate effectively with a low voltage supply such as is used in fuel gauge circuits-the GB5751 also meets life test conditions that are more severe than the military.

Another example of a Gold Brand Industrial and Commercial type with specifications that exceed comparable military requirements is type GB5749. This semi-remote cutoff pentode (7 -pin miniature) can withstand a $165^{\circ} \mathrm{C}$ maximum bulb temperature and is tested to lower grid emission minimums. This again is extra assurance the tube will perform reliably under high temperature conditions that may exist in today's high speed industrial and commercial electronic equipment.

Sylvania Gold Brand Industrial and Commercial tubes have become one of the fastest growing tube lines in the electronics industry. Today every major airline uses Sylvania Gold Brand tubes. And in the new jet airliners, where the demand for top performance and reliability is more than ever a critical necessity, Sylvania Gold Brand types are becoming the leading choice. On Pan American`s Boeing Jet 707 Airliners over 27 Sylvania types are in daily use.

Here are some of the tests that every Gold Brand tube must pass: Multiple Life Tests ranging from 500 to 1000 hours, Impact Shock Tests of up to 500 G , Fatigue Tests of 96 hours at 2.5 G , Vibration Tests, Glass Strain Tests, Variable Control Tests and Special Interface Control Tests are underway. And Gold Brand tubes must meet stringent electrical test requirements. Shorts and continuity are controlled to a $0.4 \% \mathrm{AQL}$ and major electrical characteristics are controlled to a $0.65 \% \mathrm{AQL}$.

GOLD BRAND Guided Missile TypesReliability in the Atomic Age

The electronic equipment in today's missiles, drones and aircraft must have the capability to withstand some degree of nuclear radiation if it is to meet realistic military operational requirements. Preliminary tests have already indicated Sylvania Gold Brand Guided Missile tubes have an immunity to radiation that solidstate devices tested do not exhibit.

The reliability of Sylvania's Gold Brand Guided Missile Line is outstanding because of the way it is manufactured and tested. The entire line undergoes Sylvania's exclusive White Noise Test which subjects each type to a vibrational spectrum covering the frequency band of 100 to $5,000 \mathrm{cps}$. The rms G-level is $2-3 \mathrm{G}$'s per octave with peak G-level of 15 G 's. The tubes are also tested for rms and peak vibrational output and limits are established on each.

SYLVANIA GOLD BRAND Reliable Commercial and Industrial Types

Type	Description	Use
gb-oam Wa	Cold cathode diode	Voltage regulator
GB-OB2WA	Cold cathade diode	Voltage regulator
GB-5Y3WGTA	Double diade	Rectifier
GB-6AU6WB	Sharp cutoff pentode	Amplifier
GB-6J4WA	Hi mu triode	Grounded grid amplifier
GB-6SJ7WGT	Sharp cutoff pentode	Amplifer
GB-6SL7 WGT	Hi mu double triode	Amplifier
GB-6SNT WGT	Medium mu double triode	Amplifer
GB-6X4WA	Double diode	Rectifier
GB-6X5WGT	Double diode	Rectifier
GB-7AK7	Dual control pentode	Computer
GB-7F8W	High mu double triode	Amplifier
GB-2BD7W	Double beam pentode	Power amplifier
GB-407A	Medium mu double triode	Amplifier
GB-408A	Sharp cutoff pentode	Amplifier
GB. 1216	Medium mu double triode	Computer
GB-1217	Dual control pentode	Computer
GB-5654	Sharp cutoff pentode	Amplifier
GB-5670	Medium mu double triode	Amplifer
GB-5725	Dual control pentode	Gated amplifier, converter
GB-5726	Double diode	Detector
GB-5727	Tetrode thyratron	Relay, grid controlled rectifier
GB-5749	Semi-remote cutoff pentode	Amplifier
GB-5750	Dual control heptode	Gated amplifier converter
GB-5751	High mu double triode	Amplifer
GB-5814A	Medium mu double triode	Amplifier
GB-5930	Low mu triode	Power amplifier
GB-5931	Double diode	Rectifier
G8-5932	Beam pentode	Power amplifier
GE-5933	Beam pentode	Power amplifier
GE-5963	Medium mu double triode	Computer
GB-5964	Medium mu double triode	Computer
GB-5965	Medium mu double triode	Computer
GB-6005	Beam Pentode	Power omplifier
GB-6101	Medium mu double triode	Oscillator-omplifier
GB-6135	Medium mu triode	Oscillator-omplifier
GB-6145	Dual control pentode	Computer
GB-6186	Sharp cutoff pentode	Amplifier
GE-6189	Medium mu double triode	Oscillator-amplifier
GB-6201	High mu double triode	Amplifier
GB-6211	Medium mu double triode	Computer
GB-6350	Medium mu double triode	Computer
GB.6814	Triode	Computer
GB-6888 (Mil)	Duol control pentode	Computer
GE-7044	Medium mu double triode	Computer Grounded grid omplifier
$\begin{aligned} & \text { GB-7137 } \\ & \text { GB-73227 } \end{aligned}$	Medium mu triode Medium mu double triode	Grounded grid omplifier Pulse Applitotions

Hours of Life
New test results show the outstanding capability of premium Gold Brand subminiature tubes
SYLVANIA TYPE Ólll
Observed Survival Curve For Inoperatives Thru 15,000 Hours Median For Transconductance Thru 15,000 Hours

GOLD BRAND Subminiatures-Reliability Plus

Life tests on Gold Brand premium subminiature tubes set new records of reliability

Unprecedented testimonial to the reliability of Sylvania Gold Brand Subminiatures is indicated by the results of new life tests on the tubes. They exhibit a mean time between inoperative failure of 133,000 hours. Life tests conducted for 15,000 hours on twenty lots of tubes show an average decline in Gm of only 2.4% per 1,000 hours. Inoperatives in these life tests exhibited a failure rate of 0.66% per 1,000 hours during the first 3,000 hours of operation and 0.75% per 1,000 hours during the following 12,000 hours.

This directory is on alphabetical listing of Western electronic monufocturers and their princlpal products. Address, person to contact and telephone number are included to speed contocts. Triangle signifies WESCON exhibitors: on asterisk signifies Eastern and Midwestern firms with Western monufocturing lacillios.

DIRECTORV

of western electronic

manufacturers

A

ACDC Electronics Inc 2979 N Ontario St Burbank Calif-R Hyder-App 125 Employees-VI 9-2414-Trans$\triangle A C$ Electronics Inc 11725 Mississippi Ave Los Angeles 25 Calif-Edwin L Almo
\triangle Acoustica Associates Inc 10400 Avia. tion Blvd Los Anpeles 45 CalifD S MacGregor- 180 EmployeesSystems, Liquid Level Gauging Switches \& Continuous Liquid Level Sensing Gauges
\triangle Advanced Electronics Mfo Corp 2116 S Sepulveda Bivd Los Angeles 25 Salif GB F Ambrosio- 30 EmployeesComputers, Data Display Devices
Advanced Instrument Corp 1740 University Are Berkeley 3 Calif-R E
Krueger-8 Employees_TH $5-4409$ Krueper-8 Employees-TH 5-4409 Digital Memory Systems

- Advanted Relays/Electronics Div Elgin Nat'l Watch Co 2435 N Naomi St Burbank Calif - Eric Firth - 500 Employees-VI 9.1446-Relays
*Acme Electric Corp 12822 Yukon Ave Hawthorne Calif - Jack Hall - 35 Employees - OR 8-1238 - Trans. rormer Winding Bobbins, Chokes, Power Supplies
Aero Electronics Corp 1745 W 134th St Gardena Calif-Steve Taylor-25 Employees-FA 1-2196-Trimming Potentiometers (High Reliability)
*Aeronautical \& Instrument Div Robert shaw-Fulton Controls Co Santa Ana Freeway at Euclid Ave Anaheim Calif-Fred H Weisel- 488 Em-ployees-KE 5-8151-Crystal Ovens, Computers, Data Transmission Systems
\triangle Aeronutronic Systems Inc 1234 Air Way Glendale Calif Richard P Lytle
\triangle Aerovox Cor: 1100 Chestnut St Bur bank Calif-James Fouch-Ampllfiers, Capacitors, Filters
AiResearch Mfg Co of Arizona 402 S 36th St Phoenix Ariz- 3400 Em-ployees-Gas Turbine Engines, Constant Speed Drives, Pneumatic Controls
\triangle Air-Marine Motors Inc 2221 Barry Ave Los Angeles 64 Calif-D H Thomas_40 Employees-GR 9-8818 -Motors, Blowers, Fans
Δ Airtron Inc Div Litton Industries 336 N Foothill Rd Beverly Hills CalifM Richard Williams
Alac Ine 365 W Arden St Glendale Calif CI Milton Terkla-85 EmployeesCI 4-7261 - Electronic Hardware (Standard \& Custom)
\triangle Aladdin Electronics Div Aladdin Ind nc 380 Green St Pasadena 1 Calif -Chas 1 Freel
\triangle Alfred Electronics 897 Commercial Palo Alto Calif-Paul N Fultan-47 Employees-DA 6-6496 Traveling Wave Tube Amplitiers, Electronically Swept Microwave Oscillators, Microwave Power Supplies
Allen Mfo Co 927 Industrial Ave Palo Alto Calif-Steve Allen-5 Employees - DA 1-4050 - Amplifiers, Chokes, Delay Lines
*Allied Control Co Inc/Pacific Coast Div 1326 Flower St Glendale 1 Calif-Bachorik- 100 Employees-CI 4.
\triangle Allison Laboratories Inc 14185 Skyline Dr La Puente Calif-D E O'Donnell -6 Employees-0X 4.4056-Fil. ters, Noise Generators
Alpar Mig Co 220 Demeter St Palo Alto Calif-R V Laustrup-9 Employees -DA 6.8105-Towers, Parobolic Refectors, Passive Reflectors
\triangle Altex Lansing Corp 1515 S Manchester Ave Anaheim Calif-E F GrigsbyFidelity \& Stereorhonic Home Sound Systems, Public Address Systems, Microphone \& Telephone Products
Alto Fonic Corp 981 Commercial St Paio Alto Calif-E W Shafer-19 Em. ployees-DA 6.5280-Magnetic Tape Reproducers
Alto Instrument Corp 1357 E 14th St 10 Employese 6 Calif-Remy $\frac{1}{2}$ Hudsonfiers, Assemblies, Power Supplies
Alto Scientific Co Ine 855 Commercial St Palo Alto Calif-David D Cherry 45 Employees - DA 1.3434Switches, Power Supplies \& Switches, Time Delay Relays
AMECO-Div of Antennavision 2949 W Osborn Rd Phoenix Ariz-Malcolm Ed wards-40 Employees-AL 4-5511 -Distribution System Equipment, Community \& Closed-Circuit Television
Amelco Inc 2040 Colorado Ave Santa Monica Calif-Remy L Hudson-EX 3-7281-Amplifiers, Cable Assemblies, Printed Circuits
American Avionics Ine 11513 W Washington Blvd Los Angeles 66 Calif Harold Mass- 30 Employees-EX 15749_Test Equipment, Power Sup plies, Cables
American Concertone 9449 W Jefferson Blyd Culver City Calif-Howard P Ladd-150 Employees-TE 0.7245 -Mannetic Tape Recorders, Recording Heads, Audio Amplifiers
\triangle American Electrical Heater Co 20181/ S Beverly Glen Blvd Los Angeles 25
Calif-0 Fred Nats
\triangle American Electronics Inc 9503 W Jefrerson Blyd Culver City Calif-Al. bert Izuel-300 Emplayees-UP 0 . 5581-Servo Motors, Synchros, Resolvers
\triangle American Electronics Inc/Electric Machinery \& Equipment Div 2112 N Chico Ave El Monte Calif-W W Neubauer- 375 Employees-CU 3 . 7151-High Frequency Rotary * Static Power Supplies, Electrical Preumatic Ground Support Equipment, Magnetic Amplifier Type Voltage Regulators
\triangle American Electronics Inc 1025 W 7th St Los Angeles 17 Calif-William Moffett Jr- 1450 Employees-MA 4.9241-Accelerometers, Amplifiers, Converters
American MARC Inc 1601 W Florence Ave Inglewood Calif-Frank \mathbf{S} Hill -258 Employees - OR 7.7149Diesel Engines, Generators, Generator Sets
\triangle American Super Temperature Wires Inc 3440 Overland Ave Los Angeles 34 Calif-John M Cooner
American Thermo-Electric Co 1023 N fuller Ave Los Angeles 46 CalifA Levy-12 Employees-H0 4-1632 -Vacuum Thermocouples
Ampex Audio Inc 1020 Kifer Rd Sunny vale Calif-C A Foy-325 Employees -RE 6-2110-Tape Recorders Home Music Consoles
\triangle AMPEX Corp/Instrumentation Div 93 Charter St Redwood City CalifRobinette E McCabe- 3250 Em ployees - EM 9.1481 - Mobile Laboratory Magnetic Tape Recorders for Instrumentation Applications
Anadex Instruments Inc 14734 Armint St (PO Box 4720) Van Nuys Calif -R M Flygare-ST 0.7911-Automatic Data Handling Equipment, Strain Gage Bridge Balance Units a Power Supplies. Transistorized Power Toodes \& Static Relays
\triangle Anchor Plating \& Tinning Co Inc 9536 Rush St El Monte Calif-J Cratior Richter
\triangle Andrew Calif Corp 941 E Marylind Ave Claremont Calif-J D Montpomery Jr-35 Employees-NA 6 Transmission Lines, Wavenuides \& Tramsonsents Lines, Waveuuides a
\triangle Appleton Co Inte Harry 136 San FerJohn B Miller-40 Employees-CA John B Antermas Materials (Met al), Wire \& Cable
\triangle Applied Electronics Co Inc 213 E Grand Ave S Sarr framisco Calif BL
PL
$6.4100-$ Marine Electronic

Equipment, Radio Telephones, Depth Sounders \& Direction Finders
Applied Mapnetics Corp Santa Barbara A/P Bldg 304 Sanla Barbara Cali -H R Frank-11 Employees-W0 7-2016-Mapnetic Recording Heads for Instrumentation Use, Special Mannetic Recording Devices
Applied Physits Corp 2724 S Peck Rd Monrovia Calif-R W Moulton-200 Employees-HI 6-7181-Vibrating Reed Electrometers, Ionization Chambers, Recording Scectrophotom eters
Applied Radiation Corp 2404 N Main St Walnut Creek Calif-A $\$$ Klein- 93 Employees - YE 5-2250 - Electron Linear \& Positive Ion Accelerators High Voltage de Power Supplies Custom Precision Electromagnet Sys tems
-Applied Research Labs Inc P 0 Box 1710 Glendale Calif-Wm E Davis - 150 Employees - CH $\mathbf{5 - 5 5 2 4}$ Spectrochemical Analyzers, Denistom eters, Power Source Units
Applied Technology Inc 930 Industrial Ave Palo Alto Calif-V Barker-6 Employees-OA L-5130 Fahrication A R F Products a custom Fabrication A R F Products Ine Gardener Rd Raten H M-Dave Joseph- 100 Employeas Pemote Controls, Printed Circuits Remote Controls, Printe 2929 E Arizona Telemetering Corp 2923 E Mc Dowell Rd phoenix Ariz-F Lewill Sub-Contract Assembly
\triangle Armour Electronies Div Cardinal in mour Electronics Div Cardinal In Ave Los Angeles 66 Calif-derry $\$$ Frank
Arnoux Corp 11924 W Washington Blyd Los Angeles 66 Calif-Lester Cole - 75 Employees-TE 0.5371-Tele metering Decommutation Systems Power Supplies, Temperature-Mea surement Equipment
\triangle Ash I Wood Co P O Box 1158 Arcadia Calif-Ash Wood
Asquith Co S A 427 W Chevy Chase Dr Glendale 4 Calif-James V Keith25 Employees -CI 3.2878 - AC celerometers, Metal Bonding, Multi tulrn Counting Dials
\triangle Astra Téchnical Instrument Corp 1132 Mission St South Pasadena Calif-W Mac Pherson
Atkinson Laboratory Inc 7070 Santa Monica Blyd Hollywood 38 CalifR W Reed- 10 Employees- HO 8374-Photographic Chemicals
\triangle Atlas E-E Corp 577 S Fairfax Ave Los Angeles Calif-Clyde B Rush \triangle Atobm Efectronics 7648 San Fernande Rd Sun Valley Calif-G H Elliot

Atomic Research Laboratory 10717 Venice Blvd Los Angeles 34 Calif-R D
Finkle - TE 0.1161 - Radioactive Finkle - TE 0-1161 - Radioactive *Audio Devices Inc/Rectifier Div 620 E Dyer Rd Santa Ana Calif-A J Romano - 114 Employees - K1 5 -8241-Silicon Rectifiers
Automation Service Co 2123 Outpost Dr Hollywood 28 Calif-A E KippsHO 7-3844-Electronic Analog Computers, Function Generators, Oscilloscopes
\triangle Autonetics/Div North American Aviation Inc 9150 E Imperial Hwy Downey Calif-C R Raftery- 7000 Employees - SP 3-2233-Inertial Navigation Systems, Flight \& Armament Control Systems
Aviation Developments Inc 210 S Victory
 Santacroce-100 Employees-VI 9-4631-Specialty Fasteners
$\triangle *$ Avnet Corp 5877 Rodeo Rd Los An${ }_{100} 16$ Calif-M G Newberger${ }_{n}^{100}$ Employes-UP 0 O-6141-Connectors, Fasteners

Babcock Radio Eng'g Inc 1640 Monrovia Ave Costa Mesa Calif-Norman E
Cime_400 Employees-LI $8-7705$ Cime- -400 Employees-LI 8-7705
-Remote Control Transmitters, Remote Control Receivers, Test Equipment
Barry Controls Inc/Western Div 2821 N $\begin{array}{lll}\text { Naomi } & \text { St Burbank Calif-A } & \mathrm{S} \\ \text { Chivers_- } 25 & \text { Employees_-VI } 9-2256\end{array}$ Chivers-25 Employees-VI $9-2256$ - Shock \& Vibration Isolators, Shock \& Vibration Mounting Bases
Barwood Electronics Inc 921 E Broadway Glendale Calif-John Mutschler-10
Employees-CH 5-4063-Transform-Employees-CH 5-4063-Transform
Bauer Electronic Mos, Power Supplies Ave San Mateo Calif-Fritz Bauer -4 Employees-FI 5-0897-Transmitters
Baughman Co E J 1914 N Cogswell Rd El Monte Calif-E J Baughman-A
Employees-GI 4-7586-Remote Pan \& Tilts, Explosion Proof Pall \& Tilts, Mike Booms
\triangle Bearing Inspection Inc 3311 E Gage Ave Huntington Park Calif-Charles McKnight
Beattie-Colman Inc 1000 N Olive St Anaheim Calif-T B Olsson-90 Employees - PR 4.4503-0scilloscope Recording Cameras "Oscillotron" Type Programers, Electrically Operated Pulse Cameras
\triangle Becker Co Herb 1140 Crenshaw Blvd Los Angeles 19 Calif-Herb Becker Ave Richmend Div 2200 Wright Ave Richmond Calif-John Scheck Digital Frequency Meters. Time InDigital Frequency Meters. Time In terval Meters, Preset Counter-con
Beckinan \& Whitley Inc 993 E San Carlos Ave San Carlos Calif-Myron B $7824-$ High 108 Employees - LY ${ }^{3-}$ erological Instruments, Missile Prod-
ucts ucts
enlman
\triangle Behlman Eng'g Co 2911 Winona Ave Burbank Calif-J M Schroeder-
100 Employees-VI
9-5733-Elec100 Employees-V1 9-5733-Elec-
tronic ac Power Supply
Belleville-Hexem Corp 638 Ave Los Gatos Calif_Logan University Ave Los Gatos Calif-Logan M Belle-
vilie-6 Employees-EL $\quad 4.1379$. $\begin{array}{cc}\text { vilie-6 Employees-EL } & \text { 4-1379. } \\ \text { D-C Amplifiers, Electric } & \text { Measuring }\end{array}$ Instruments, Kilovoltmeters
Benchmaster Mfg Co 1835 W Rosecrans Ave Gardena Calif-Arch C Shafer Milling Employees - FA 1-0411Milling Machines, Punch Press, \triangle *Bendix Computer Div Bendix Aviation Corp 5630 Arbor Vitae st Los SP 62220 EmployeesComputers 6-2220-General Purpose Digital Computers, Data Processing Systems Bendix. Pacific Control Systems Simulators
\triangle Bendix-Pacific Div Bendix Aviation Corp 11600 Sherman Way N Holly. 3500 Employees-ST 7-2881-Telemetering, Radar, Missile Guidance, Sonar \& Underwater Ordnance
Benson-Lehner Corp 11930 W Olympic Blvd Los Angeles 64 Calif-Don Film \& Oscillogram Record ReadFilm \& Oscillogram Record Read-
ers, Automatic Plotting Machines, ers, Automatic
Photo Instrument
Bently Scientific Co 2811 7th St Berkeley 10 Calif-D E Bently-5 Em.
tector, Energizer, Angular AcH
-H Electronics 2022 S Sepulveda Los Angeles Calif-Dudley Cassard-2 Employees - BR 2-3757 - Trimmer Potentiometers
Bigos Co Inc Carl H 1547 14th St Santa Monica Calif-D B Lott-_ll
Employees - TE 0.4910 - Bonding Agents, Potting Compounds, Circuit Board Coatings
\triangle Birtcher Corp 4371 Valley Blyd Los Angeles 32 Calif-Charles F Booher
-75 Employees-CA 2-9101—Tube \& Component Retaining \& Cooling Devices, Transistor Retaining \& Cooling Devices, Medical Electronic Instruments
BJ Electronics Borg-Warner Corp 3300 Newport Blyd Santa Ana CalifHerbert G Ayers-363 Employees-
KI 5-5581-Vibrotron Transducer, Miniature Tape Recorders, Nuclear Instrumentation
Blaine Electronetics Inc 14757 Keswick St Van Nuys Calif-Rohert F Blaine tenna Pattern Laboratory Equipment, Scale Models for Antenna Study, Scale Models for Technical Sales Purposes
Bodde Screen \& Projector Co 11541 Bradley Ave (P 0 Box 711) Pacoima -EM 5-2551-Translucent \& Front Projection Screens, Slide Projectors Booth Co Arthur E 265 So Alexandria Ave Los Angeles 4 Calif-Arthur F Booth- 7 Employees-DU 1-2161Power Supplies for Calibrating Electricai "wstruments, Relay Test Sets for Tesinin, Calibrating Power System Network Protective Relays
\triangle Borden Chemical Co 436 E Gutierrez St Santa Barbara Calif_Allen W Schmidt-75 Employees-W0 3134 -Specification Grade \& Commercial Grade Vinyl Insulation Sleeving, ing \& Cable Fillers
\triangle Bourns Inc $P 0$ Box 2112 Riverside $\begin{array}{lcccc}\text { Calif-D } \\ \text { ployers - } & \mathrm{V} & \text { Vaughan- } 530 \mathrm{Em} \text { - }\end{array}$ Actuated Potentiometers, Transdu. cers-Pressure. Position, Accelerometers
\triangle Brand \& Co Inc William 3030 Nebraska St Santa Monica CalifBarney Sutton
\triangle *Branson Ultrasonic Corp 12438 Ventura Blvd Studio City Calif-Kenneth P Hayes
Braun-Knecht-Heimann Co Glass Eng'o Dept 601 0'Neil Ave Belmont Calif -Hugh Hutchings-20 Employeestus, Flat Glass Fabrication
Brubaker Electronics Inc 3642 Eastham Drive Culver City Calif-E Fred-ericks-220 Employees-TE 0-6441 - Radar Test Equipment, IFF Equipment, Air Traffic Control Equipment
*Brush Instrument/Div Clevite Corp 1960 So La Cienega Blvd Los Angeles 34
Calif-Cole D Bacon-18 Employees -TE 0-7517-0scillographs, Amplifiers, Operations Monitors
\triangle Burnell \& Co Inc 720 Mission St S Pasadena Calif-Frank Edmonds-2
Employees - RY 1-2841_Delay Employees - RY 1-2841 - Delay Lines, Filters, Toroidal Coils
Burnett Radio Laboratory William W L 4814 Idaho St San Diego 16 Calif -Wm W L Burnett-AT 2-2740-Piezo-electric Products, Temperature Controlled Overss Crystal Holders, Calibration \& Consulting Service
Burr-Brown Research Corp $\underset{\sim}{0}$ Box $\begin{array}{cc}\triangle \text { Burr-Brown Research Corp } P \quad 0 & \text { Box } \\ 6444 & \text { Tucson Ariz-Thomas } \\ \mathbf{R}\end{array}$ $\begin{array}{llr}6444 & \text { Tucson } & \text { Ariz-Thomas } \\ \text { Brown } & \mathrm{Jr}-7 & \mathrm{Employe} \text { - } \\ \text { EmX } & 8-\end{array}$ 0772-0perational Amplifiers, AC Decade Amplifier, Millivoltmeters
\triangle *Burroughs Corp/Electro Data Div 460 Sierra Madre Villa Pasadena Calif1200 Employees - RY 1-0471Electronic Data Processing System, High-Speed Printer System
Burton Mfg Co 2520 Colorado Ave Santa Monica Calif-100 Employees-EX 3-0255-Aircraft Ilistruments, Non Support Test Equipment, Medical
Dental Dental Lamps
\triangle Burton Silverplating Co 8640 Alden Dr By-Buk Angeles 48 Calif-Jerry Burton -Buk Co 4314 W Pico Blvd Los Angeles 19 Calif-Don L Lenzi-App 25 Employees-WE 6-6151-Printed Circuit Drafting Aids (Pressure Sensitive), Component Leads Bending Tool (Hand Operated), Product
Finishing Masking Aids

Cadre C
Cadre Industries Corp 565 University Ave Los Gatos Calif-Fred J DuBois - 82 Employees-EL 4.8600-Cables, Panels
Calbest Electronics Co 4801 Exposition Blyd Los Angeles Calif-Charles B Epstein-95 Employees-RE 1-7291 -Amplifiers, Audio Equipment, Baffles
Calidy
\triangle Calidyne Co 9937 W Jefferson Blvd Culver City Calif-Ralph B Austrain alifone Corp 1041 N Sycamore Ave Los Angeles Calif-Robert J Margolis-65 Employees - HO 2-2353 - P Phonoraphs, Audio Recorders. Sound Systems Training Equipment
California Chassis Co 5445 E Century $\begin{array}{cccc}\text { Blvd Lynwood Calif- } \mathrm{H} & \text { P Balder- } \\ \text { son- } 50 \text { Employees-NE } & 6-7777-\end{array}$ son- 50 Employees- N Boxes, Cabinets, Chassis
California Computer, Products Inc 8714 Cleta St Downey Calif-L L Kil-patrick-10 Employees-WA 3-1913 -Incremental X-Y Plotters, Digital Systems, Multiplexers \& Converting Equipment
\triangle California Magnetic Control Corp 11922 Valerio St N Hollywood Calif-M Leskin- 100 Employees-ST 7-1104 -Amplifiers, Telemeteing Systems, Transformers
\triangle *California Technical Industries Div Textron Inc 1421 old County Rd Belmont Calif - Carl Trost - 160 Employees-LY 3-8466-Automatic Test Equipment, Microwave Instruments, Flight Simulation Equipment $\Delta^{* C a m l o c}$ Fastener Corp 5410 Wilshire Blyd Los Angeles 36 Calif-James G Enolish
\triangle *Cannon Electric Co 3208 Humboldt St Los Angeles 31 Calif_Don A Drake $\xrightarrow[\text { Multi-contact }]{2900}$ Employes-CA $\begin{gathered}\text { 5-1251- } \\ \text { Connectors, }\end{gathered}$ Multi-contact Electrical Connectors, Guided Missile Plug/Harness Systems, Subminiature Teflon Terminals oga Diy Underwood Corp 15330
Oxnard St Van Nuys Calif-R A $\begin{array}{lll}\text { Oxnard } & \text { St Van Nuys Calif } & \text { R A } \\ \text { Potter-200 } & \text { Employees-DT } & 6-9010\end{array}$ -Radar Systems, Microwave Telemetry Systems, Antennas
Carad Corp 2850 Bay Rd Redwood City Calif-George E Glathar- 35 Em-ployees-EM 8-2969.-High Voltage Pulse \& Miniature Pulse Trans-
formers, Modulators, Band Pass \& formers, Modulator
Low Pass Filters
Cardinal Instrumentation Corp 4201 Redwood Ave Los Angeles 66 CalifJerry S Frank-52 Employees-TE 0-6731 - Transducers, Power Supplies, Voltage Regulators
\triangle Carstedt Sales Corp 2501 E 68 St Long Beach 5 Calif-M C Erwin-
75 Employees-ME $0-5821$-Cores
\triangle Cascade Research 5245 San Fernando Rd Los Angeles 39 Calif-Harry 0'Donoghue- 90 Employees-CH
8625 -Antennas, Microwave Equip, 8625-Ante
Caswell Electronics Corp 414 Queens Lane San Jose 12 Calif-Dwight A Cas-well-11 Employees-CY 7-9333Microwave Transmission Line Components, Ferrite Microwave Com BS Electronics 2120 Subassemblies
\triangle CBS Electronics 2120 S Garfield Los Angeles 22 Calif-W S AndersonRA 3-9081
*Central Scientific Co of Calif 6446 Telegraph Rd Los Angeles Calif-Gordon Baker-App 25 Employees-RA 36141 -Scientific Instruments \& Ap paratus for Lab
tion \& Researcl
*Central Scientific Ca of Calif 1040 Mar tin Ave Santa Clara Calif-V F Duensing-App 25 Employees-C 8-1600-Scientific
Apparatus for Labs of Induments, EduApparatus for Labs
cation \& Research
Celco-Constantine Engr Labs 9593 9th St Cucamonga Calif-Stephen Stephano Magnetic Amplifiers, Bobbins 2688*Century Lighting Inc 1840 Berkeley St Santa Monica Calif-Louis Erhardt -35 Employees-TE 0-6961-Elec tronic Dimming Control Systems Theatrical Lighting Equipment, Architectural Lighting Fixtures
*C G Electronics Corp 15000 E Central $\begin{array}{ll}\text { Albuquerque } & \mathrm{N} \\ \text { Employees-AL } & \mathrm{M}-\mathrm{H} \\ \text { 6-9858 Poulsen-93 }\end{array}$ Employees-AL 6-9858-Antennas,
Converters, Resonant Reed Relays Converters, Resonant Reed Relays
Chadwick-Helmuth Co 472 E Duarte Rd ployees EL 84567 Cox-Strobosco $\begin{array}{ll}\text { ployees - EL } \\ \text { Synchronizer, } & \text { Stroboscopic Light, }\end{array}$ Synchronizer, Stroboscopic Light,
Electronic Multiplier

Chemalloy Electronics Corp Giliespie Airport Santee Calif-Samuel Freedman -9 Employees-HI 4.7661-Calorimeters (RF Microwave), Loads (RF Water), Solder (Fluxless Aluminum)
Chicago Telephone of Calf Inc 105 Pasadena Ave So Pasadena Calif-R A tackhouse- 120 Employees-CL 57186 -Variable Resistors, Coils \& Transformers, Custom Compression Molded Products
\triangle Christie Electric Corp 3410 W 67th St Los Angeles 43 Calif e E Hughes25 Employees-PL 3-2607-Automatically Regulated D-C Power Supplies, Manually Controlled D-C Chargers
\triangle Cinch Mfg Co La Puente Calif-C W Nelson
\triangle Cinema Eng'g Div Aerovox Corp 1100 Chestnut St Burbank Calif-G M mith-180 Employees-VI Resistors, Instrument Switches, Audio Attenuators
\triangle Clare \& Co C P 6047 Hollywood Bivd Los Angeles 57 Calif \rightarrow R Stone lark Electronic Labs 36 14 Employees-FA 8-2210-Transducers, Solid State Relays, Pressure Resistors
Clary Corp 408 Junipero St San Gabriel Calif-Wiliam Beall- 800 Employees -CU 3.2724 - Scanning Printer, Fors

Clear Beam Sales Corp 21341 Roscoe Blvd Canoga Park Calif-Bob Raynor-87 Employees-DI $\mathbf{~ M ~ A n t e n n a s , ~ M a s t s ~ \& ~}$ Antennas,
Telescoping
Coast Coil Co 5333 W Washington Blyd Los Angeles
Adams- 240
Employees-WE -Toroidal Windings
Coen Controls Co 40 Boardman PI San Francisco 3 Calif-D H Hudson5 Employees-Combustion Controls, Components \& Systems
\triangle Coleman Eng'g Co 3500 Torrance Blvd Torrance Calif-T N Tracy
Collins Electronic Sales Inc 535 Middlefield Rd
Collins J
Collins Radio Co/Western Div 2700 W Olive Ave Burbank Calif-A A Collins -700 Employees- TH 5-1751Servo Amclitiers, Radar Antennas, Special Antennas
\triangle Colorado Research Corp Broomfield Colo HA 9.3501 Miller- 56 Emplog Computers, Digital TV Systems, High Precision Shaft Angle Encoding Systems
\triangle *Computer Control Co Inc 2251 Barry Ave Los Angeles 64 Calif-R
Chamorro- 65 Employees_GR 8-0481 —Control \& Computing Systems, Digital Memory Units
Computer Eng'g Assoc Inc 350 N Halstead St Pasadena Calif-Marilyn B. Hol-tom-38 Employees-EL 5-7121Direct Analog Computers, Amplifiers, Power Supplies
Computer Measurements Co 12970 Bradley Ave Slymar Calif-_J K Ronden Electronic Counters \& Timers, Digital Printers \& Readout Equipment
\triangle Computer Measurements Corp 5528 Vineland Ave N Hollywood Calif-
Roger K Stewart—ST 7-0401-Computers, Controls, Control Equipment
Com-Tronics Inc 3409 Venice Blvd Los Angeles 19 Calif-J B McKinleyApp 25 Employees-RE $\begin{gathered}\text { 4-6338- }\end{gathered}$ Lumped Constant)
\triangle Condon Co Earl S 3450 Wilshire Blvd Los Angeles 5 Calif-Roger K Stewart
Connector Corp of America 12959 Sherman Way N Hollywood Calif-Ralph R

Instruments, Analytical \& Control Instruments, High Vacuum Equipment Consolidated Systems Corp 1500 S Shamrock Ave Monrovia Calif-Frank Chase P420 Employees-EL 9.8211-Data Processing Equipment, Systems EndiContinental Device Corp 12911 Cerise Hawthorne Calif-Duncan Loop- 150 Employees-0R 8-4894-High Volt. ade Diodes, Veltage Regulators
Convair (Pomona) Convair Div General Dynamics Corp 1675 W 5th St P 0
Box 1011 Pomona Calif-C F Horne Box 1011 Pomona Calif-C F Horne Guided Missiles, Electronic Components
nents
Convair namics Corp 5001 Div General DyP 0 Box 1128 -San Diego Villa Rd \rightarrow B Dempsey-BR 7.8900 -Missiles, Missile Guidance Systems \& siles,
Controls
Convair San Div General Dynamics Corp Box 1950 Pacific Hwy San Diego 12 Calif-JV Naish-24,000 Employees - CY 6.6611-Design, Development \& Production of Aircraft, Guided Cook Missiles

Batteries 3850 Olive St Denver 7 FL 5.3531 Winder- 83 EmployeesSilver Zinc Batteries \& Secondary \& Manually Activated) (Automatically
Cook Co Frank R 3850 Oliv
Co Frank R 3850 Olive St Denver 7
Colo-W Burch Winder-s 80 Colo-W Burch Winder-FL 80 Em-ployees-FL 5.3531-Guided Missile Electrical Power, Self Activating \&
Manually Activated Silver-Zinc Batteries
Cook Research Labs P 0 Box 696 Menio Park Calif-L H Cook- 25 Employees Donents for Aircraft M Metal Components for Aircr
Electronic Industry
\triangle Coors Porcelain Co 600 9th St Golden Colo-L Coulson Hageman-CR 9. 2536 -Connectors \& Terminals, Insulation Materials \& Compounds
Insulators \triangle Cornell Deep

Industries Corp $612-620$ Div Lanes Ave Santa Monica Calif-Perry Smith
\triangle *Cornell-Dubilier Electric Corp/West Coast Djv 4144 Glencoe Ave Venice Coast Div 4144 Glencoe Ave Venice
Calif-Wm H Coleman-TE 0.6681 Capacitors, Converters, Delay Lines \triangle Costello \& Co 2740 S La Cienego Blvd Los Angeles 34 Calif-Joseph D
Costello Crown Eng'g
buquerque \mathbf{N} Mex-J W N E Al. buquerque N Mex-J W Hurlbut-
50 Employes-DI Analyzer (Cable Checker). Frequency Analyzer (Cable Checker), Frequency
Selective Voltmeter, Contract Mfg $\& ~$ Selective Voltmeter,
Eng'g Development
\triangle Cubic Corp 5575 Kearny Villa Rd San Diego 11 Calif-W J Thompson300 Employees-BR 7-6780—Missile Equipment, Digital Voltmeter \& Auto. Equipment, Diaital
matic Test System
*Curtiss-Wrioht Corp Electronics Div IMI Branch 4401 Lunada Ave S E P 0 Box 8324 Albuquerque N M-Victor V Myers-24 Employees-AM 8.8791 $\overrightarrow{\text { Circuitry, Transistor }}$ Solias \& Switching Circuitry, Transistor Test Instruments \& Systems, Instrumentation Systems \& End Instruments
C-W Mfg Co Box 2065 EI Monte CalifQuartz Crystals for Frequensy Con
trol of Communications Equipment

D

\triangle *Dape Television Div Thompson RamoWooldridge Inc P 0 Box 90215 Los Angeles 45 Calif—David Traitel
Dale Electronic Corp 2530 N Ontario St P 0 Box 747 Burbank Calif-Don Watters-86 Employees-VI $9-3313$
Trimmer Potentiometers Trimmer Potentiometers
Dallons Labs Inc 5066 Santa Monica Blyd Los Angeles 29 Calif-Oscar Dallans - 70 Employees-NO 4-1951-Crys tals, Delay Lines, Medical Equipment \triangle Dalmotor Div Yuba Consolidated Inc 1375 Clay St Santa Clara CalifC B 0'Neal- 125 Employees-CH 39414 -Motors \& Generators, Con verters, Airborne Instrumentation
Lalmotron Co 534 Laurel St P 0 Box 741 San Carlos Calif-Paul L BealeDalmotron \& Talkmaster Intercommunication Equipment

- Dalmo Victor Co 1515 Industrial Way Belmont Calif-George C Stewart875 Employes_LY 1.1414 _Air borne Radar Antenna, MAD Equip.

Darco Industries Inc 2151 E Rosecrans Ave El Sequndo Calif-J C Chapin156 Employess-OR 8-2251-GyroElectronic Assemblies
Data Instruments 12838 Saticoy St N Hollywood Calif-R E Poole-250 Employees-ST 7-8181-Film \& Oscillogram Reading Systems, ElectroContral Devices
*Data Systems Dept Norden Div/United Aircraft Corp 13210 Crenshaw Blvd Gardena Calif-W H Saylor- 120 Employees-FA 1-1775 - Automatic Data Handling Systems, Machine \triangle Datex Corp 1307 Sys
rovia Corp 1307 S Myrtle Ave Monrovia Calif-John L Kent-llo EmEncoders, Auxiliary Equipment, DigEncoders, Auxiliary Equipme
ital Data Processing System
\triangle *Daystrom Pacific/Div Daystrom Inc 9320 Lincoln Blvd Los Angeles 45 Calif-Alan G Richards-App 500 Employees-0R 4-7100-Potentiometers, Gyroscopes, Airborne InstruDaystram

Miramar Rd La Div Daystrom Inc Miramar Rd La Jolla Calif-John A Pigital Computers for Control Data Reduction Sy for Control Digital \& Magnetic Equipment
\triangle *Decker Corp 3522 Geary Blvd San Francisco Calif-Bert Schwatzchild
\triangle DeMornay-Bonardi 780 S Arroyo Pkwy Pasadena Calif-L Della Penna-App 100 Employees-SY 2-4142-Microwave Laboratory Test Equip Com ponents
\triangle Dempa Shinbun Inc 1680 North Vine St Los Angeles Calif-George H Nakak
\triangle Detroit Controls Research Dept 1650 Broadway Redwood City Calif-Les Broadwa
Elmore
\triangle Deutsch Co Electronic Components Div 7000 Avalon Blyd Los Angeles 3 Calif-H E Schwank- 650 Employees Transformers, 4.7751 Delay Lines, Pulse Transformers, Chokes
Developmental Electronics Corp 4213 S Broadway Los Angeles 38 Calif-A S
Jimenez-25 Employees-AD 4.7751 -Delay Lines, Pulse Transformers Chokes
\triangle^{*} Diehl Mfo Co 1129 S Fairoaks Ave Pasadena Calif-B K Brackman
Digitran Co/Div Endevco Corp 45 W Union Pasadena Calif—J M Reitzell - 120 Employees-RY 1-5231-Dig-

Dikewood Corp 4805 Menaul Blvd NE Albuquerque N Mex-AM 8-2487Operations Research. Systems Analysis Dollar Co Robert 50 Drum St San Francisco 11 Calif-R W Bunce-EX 2 . Pocket Receivers, Base Station Equip ment for Civil Defense Purposes
\triangle Donner Scientific $C_{0} 888$ Galindo St Concord Calif-MU 2-6161-Accel. erometers, Analog Computers, Elec
tronic Test Equipment
\triangle Dressen-Barnes Corp 250 N Vinedo Ave Pasadena Calif-P K Bennett-97 Employees-SY 5.7731 - Regulated \& Unregulated DC Power Supplies
\triangle Driver Co Wilbur B 2378 Westwood Blvd Los Angeles 64 Calif-Roper A
Featherston-5 Employees_GR 8 . Featherston-5 Employees-GR 8 . 0359-Special Resistance Alloys, Mechanical Alloys, Special Vacuum Melted Alloys
Dudek \& Co R C 407 N Maple Dr Beverly Hills Calif-R Richard C Dudek - 3 Employees-BR 2.8097-Self-Self-Locking Fasteners, Template Drill Bushings
*DuMont Labs Inc Allen B 11800 Olympic Blvd Los Angeles Calif-R F -Amplifiers, Analyzers, Calibrators
\triangle Duvall Electronics Inc 1222 W Washington Blyd Los Angeles 7 CallfC Merle Brooks
\triangle Dymec Inc 395 Page Mill Rd Palo Alto Calif-Thomas J Smith- 205 Employees-DA 6.1755-Counters, Measurement Equip, Microwave Equip
Dynamics Instrumentation Co/Div Alberhill Corp 1118 Mission St S Pasadena Calif-Nathan Brownstone- 20 Em tion Amplifiers, D C Microvoltmeters, Electronic Filters

E

Eberline Instrument Corp 805 Early St Santa $\mathrm{Fe} N \mathrm{M}$-Francis S Smith Jr Portable Survey Monitoring 2-1881ments, Fixed Area Monitoring In struments, Radiation Detection-measuring Devices
ECM Corp 8160 Orion Ave Van Nuys Calif —Richard G Andrew- 6 Employees Terminal Boards - Etched Circuits, \triangle Edeliff Instruments 1711 S Mountain Ave Monrowia Calif-J R Thompson celerometers (AC \& DC), Pressure Transducers (AC \& DC), Linear Mo. tion Potentiometers
$\triangle E-H$ Research Labs 1922 Park Blvd Oakland Calif-John C Hubbs
\triangle Eitel-McCullough Inc 301 Industrial Way San Carlos Calif-Berkley J Baker-2000 Employees-LY 1-1451 Accessories \triangle Electrical Specialty Co 158 11th St *Electro-Ceramics Inc 2645 S 2nd W Salt Lake City Utah-R D Hess- 60 Em-ployens-HU 5-8081-Piezole Ceramics \& Crystals, Transducer As Ceramics \& Crystals Semblies
Electro Cord
\triangle Electro Cords Co 4020 Avalon Blvd Los Angeles Calif-Robert A Clifford
Electro Development Co 14701 Keswick St Van Nuys Calif-Ray Vaccarello-55 Employees-ST 6.3660-Slipring \&
Brushotder Assemblies, Commutators, High Speed \& Manual Operated High Speed \& Manual
Miniature Rotary Switches
\triangle Electro Engineering Works 401 Preda St San Lenadro Calif-Rex E Brooks - 148 Employees - L0 9-3326Transformers, Reactors, High Voltage Power Supplies
\triangle Electro Instruments Inc 3540 Aero Court San Diego 11 Calif-R T ApAmplitiers, Calibrators. Circuits
\triangle Electro-Measurements. Inc., 7524 S W Macadam Portland 19 Ore-Douglas C Strain-80 Employees-CH 6-3331 -Bridges \& Accessories, $\begin{gathered}\text { Decade } \\ \text { Voltage Dividers, Decade }\end{gathered}$ Voltage Divider
and Capacitors
\triangle Electro-Mechanical Specialties Co Inc 743 W 39 St Banning Calif-James Geodman- 50 Employees-VI 9-4795 -Relays Rotary Solenoids \& Stepping Switches, Time Delay Relays \&
Stepping Motors
*Electronic Control Systems 2231 S Bar rington Ave Los Angeles 64 CalifJames Vrungos-50 Employees-BR 2-7711-Numerical Controls for Ma-
chine Tools, Automatic Gaging \& Inchine Tools, Achion Machines
\triangle Electronic Enclosures Inc 3629 Holdrege Los Angeles 16 Calif-Michae! Los An
Jacobs
\triangle Electronic Eng'g Co of Calif 1601 E Chestnut St Santa Ana Calif-R F Lander- 225 Emplifiers, Power Supplies, Tele. -Amplifiers, Pow
\triangle Electronic $\begin{gathered}\text { meterind } \\ \text { Systems } \\ \text { Plating } \\ \text { Service } \\ \mathbf{8 7 2 3}\end{gathered}$ Melrose Ave West Hollywood 46 melrose Ave
Calif-Lee Davis
Electronic Processes Corp of Calif 436 Bryant St San Francisco 7 Calif3881 -Temperature Controls (Ele 3881-Temperature Controls (Elec tional), Resistance Bulb Sensing Ele. ments
Electronic Production \& Development Inc
138 Nevada St E1 Segundo Calif138 Nevada St El Segundo CalifM J Haddad- 10 Employees-EA 2 1515-Epoxy Resin, Electro
sembly, Encapsulation Cups
\triangle *Electronic Research Associates Inc 1760 Stanford St Santa Monica Calif -Bob Bowditch
Electronics Components, Inc 12838 Saticoy St N Hollywood Calif-Roland King -52 Employees-ST 7-8181-ReElectronic Seals Co Inc 7327 Varna Ave N Hellywood Calif-Wendell Ave Mattsen- 8 Employees-ST 7.7415 -Glass-to-Metal Hermetically Sealed Connectors, Headers \& Feed-thru Terminals
Electronic Systems Development Corp 1484 E Main St Ventura Calif-Charles Antoniak- 50 Employees-MI 8-1827 strumentation \& Ground Checkout, Solid State Devices
*Electronics Div/Elgin National Watch Co 2435 N Naomi St Burbank Calif
-Gene Straube-250 EmployeesVI 9-1446-Electro-Mechanical Relays (0pened \& Sealed)
Electronics Development Co Inc 3743 Cahuenga Blvd N Hollywood CalifJoseph H Leaming-20 Employees-
ST 7.3223 -Microwave Sound Sub carrier Systems Widebnd SubTransmission Systems Data Broadcast Television Transmitters
Electronics Int'I Co 145 W Mapnolia Blvd Burbank Calif-J E Markley Jr-15 Employees - VI 9.2481 - Precision Power
\triangle Electronic Sources Div Calif Industrial Purchasing Guide 2225 Southwest Dr Los Angeles 43 Calif-B G Meierstein
\triangle Electron Products Co/Div Preco Inc 430 N Halstead Ave Richard F Hastings- 90 Employees-
RY 1.0666 - Capacitors, Rerference \& Noise Filters
Electron Tube Div Hughes Products Int'l A/P Sta Los Angeles 45 Calif-Roy C Martens- 811 -Direct - Display Cathode - Ray $1811-D i r e c t ~-~ D i s p l a y ~ C a t h o d e ~-~ R a y ~$ Storage Tubes, Mirrowave Tubes
\triangle Electro-Pulse Inc
11861 Teale St Culver City Calif-J E Niebuhr
Electrosonic Mfg Co 1719 Harmit Way San Jose 25 Calif-F A Butterworth cial ${ }^{3}$ Employees-A $\begin{gathered}\text { Rect } \\ \text { Rlayers, } \quad \text { Twin Jacks. }\end{gathered}$ Speaker Extension Cords
Electrosolids Corp 13745 Saticoy St Panorama City Calif-Gerald J 1410-Power Supplies for Missiles ${ }_{\&}^{1410 \text { Aircraft, Power Interphone Amplifiers, }}$ Headset Adapters
Electro-Switch \& Controls Inc 5755 Camille Ave Culver City Calif-J K Brose-40 Employees-TE 04643Relays
\triangle Eloin National Watch Co/Electronics Div Advance Relays 2435 Naomi St 2.8191-Relays, Solenoids
\triangle Emmet Co Frank A 2837 W Pico Blvd Los Angeles 6 Calif-Frank A Emmet
Endeco Eno'g Development Co of Los Angeles 11148-50 Wilmington Blvd
Wilmington Calif-Carl W Witt- 9 Wilminoton Calif-Carl-Marine Ra-Employees-TE
diotelephones, Antennas \& Recivers \triangle Endevco Corp 161 E California Blvd Pasadena Calif-Warren D Hancock Piezoelectric Accelerometers (Sub. miniature), Pressure \& Force Pickups, Subminiature Amplifiers-Airborne \triangle Eng'g Electronics Co 506 E First St Santa Ana Calif-Arthur \quad Employes - KI Vacuum Tube \& Transistorized PlugVacuum Tube in Circuits, Transistorized Indicators. Transistorized \& Vacuum Tube Decade Counters
Engimeered Instruments Inc 22815 Sutro St Hayward Calif-George C Lydik-sen-55 Employees - JE
Amplifiers, Boxes, Cabinets Amplifiers, Boxes, Cabinets
*Eng'g Magnetics Div Gulton Industries Inc 13041 Cerise Ave Hawthorne Calif-James Alexakis - $12 \mathrm{~F}_{\mathrm{F}}$ Em. ployees $-0 R 8.7608-S t a t i c$
verters for Missile Applications, \quad DC verters for Missile Applications,
to DC Converters, AC to DC Power Supplies
\triangle Epsco-West Div/Ecsco Inc 125 E Orangethorpe Anaheim Calif-Thomas Gaul
Era Engiueering, Inc 1009 Montana Ave Santa Monica Calif-Harold D Hutchinson-5 Employees-EX 5-9995-Acceleration Switch, Material Erosion Rate Instrument, Tramsor
Shock Recorder
*Era Pacific, Inc 1760 Stanford St Santa Monica Calif-R S Bowditch-22 Employester X Sized Devices. Hioh \& Low Voltage Supplies, High Cur$\stackrel{\&}{\text { rent }}$ Supplies
Eric Envineering Co 1823 Colorado Ave Santa Monica Calif-Bob Mueller25 Employees-EX 3.9610-Amplifiers, P A Systems, Tuners
\triangle Erie Pacific Div Erie Resistor Corp $12932 \underset{\text { Calif-Ross }}{ }$ E Hupp-42 Employernes Calif—Ross E Hupp-42 Employees Timers \& Counters \& Specialized Sys Timers \& Courrs
Erikson Specialized Tool Co P 0 Box 424 Pico Calif-Jerry R Erikson- 10 Em. ployees - OX 9.3719-Electronic

SEE YOUR B－L－H SALES－ENGINEERING REPRESENTATIVE

Your single source for．．．

－Over 250 different bonded wire and etched foil SR－4 ${ }^{\circledR}$ Strain Gages
－Full line of indicating，recording and supplementary instruments

Why risk unreliable data by using almost the right strain gage．Select the one exactly suited to your appli－ strain gage．Select the one exactly suited to your appi－
cation from the more than 250 different bonded wire and etched foil SR－4 ${ }^{\circledR}$ Strain Gages listed in the current B－L－H catalog．High temperature，temperature－compen－ sated，rosette and many other types are stocked by your B－L－H Sales－Engineering Representative for immediate delivery．

A full line of strain instruments－for static and dynamic strain measurements－is available through your B－L－H Sales－Engineering Representative．Instruments B－L－H Sales－Engineering Representative．Instruments
include（left）the B－L－H Type N Strain Indicator，cali－ brated to read directly in microinches per inch；（right）
B－L－H switching and balancing unit，designed to facili－ brated to read directly in microinches per inch；（right）
B－L－H switching and balancing unit，designed to facili－ tate bridge balancing and gage readout on multiple gage installations．
 instalions．
－Application supplies－cements，sol－ vents and waterproofing materials
－Competent guidance in the selection and use of strain gaging equipment

The proper application of a strain gage to a surface is fundamental in obtaining accurate strain data．B－L－H cements，solvents，waterproofing and lead materials and accessory equipment help you do the job right．Con－ venient strain gage application kits contain everything you need，including detailed instructions．Kit materials can also be supplied in bulk form in large or small quan－ tities to suit your needs．

Write for these useful publications．Bulletin 4310 covers specifications and prices for over 250 wire and foil SR－4® Strain Gages，kits and accessory equipment． Bulletin 4320 treats of SR－4 Etched Foil Gages．For copies，write B－L－H，Dept．24－H．For guidance in selecting，applying and instrumenting SR－4® Strain Gages，contact your nearest B－L－H Sales－Engineering Representative．

1 Ore-LLaurence A Morin- 80 Em ployes - CH 6.3331 - Null Amplifiers, Attenuators, Bridges
Ets-Hokin \& Galvan/Electronic Installation Div 2295 E Belt St San Diego Calif-B Gopgle- 500 EmployesElectronic Systems, Consoles, Panels
Exact Eng'o \& Mfo Inc 2375 Canyon Dr Oceanside Calif-George A Brusch38 Employees - SA 2-2144-Com-
E. Z Way Templates P 0 Box 535 Reseda Calif-Warren Juran-Drafting Aids for the Electronic Industry
\triangle Fairchild Controls Corp 6111 E Wash ington Blvd Los Angeles 22 CalifD C Manning-170 Employes-RA
3.5191 - Precision Potentiometers, 3.5191 - Precision Potentiometers, Accelerometers, Pressure Transducers \triangle *Fairchild Semiconductor Corp 844 Charleston Rd Palo Alto Calif-David A Beadling- 320 Employees-DA 6. 6695-Diffused Silicon Mesa Transistors
\triangle Featherstone \& Salisbury inc 1355 Mar ket St \#431 San Francisco 22 Calif $-C$ M Salishury
Feay Co Neal 133 La Patera Ave Goleta Calif-Neal F Rasmussen- 24 Em -ployees-W0 7.4521-Hardware Components for Electronics
Federal Equipment Co 38 Brady St San Francisco 3 Calif-R W Randolphapprox 25-UN 3.3607-Photoefec. tric Traffic Counting Equipment, Printing Counter Recorder Units
Federated Metals Div/American Smelting \& Refining Co 4010 E 26th St Los Angeles 23 Calif-L A Blum-150 Emplayees-AN 8-4291-Tin-Lead, Acid Core \& Rosin Core Solders
\triangle Ferro-Magnetics Co 989 Commercial S Palo Alto Calif-S J Henke-11
Employes-DA $1-5141$ Chokes, De. Employees-DA 1 lay Lines, Filters
\triangle Filtron Ca Inc 10023 W Jefferson Blvd Culver City Calif-Wm M Lana- 75 Employees-VE 9.2206 -Capacitors, Chokes, Filter
Emer Berkeley Corp 4224 Halden St Emerilla 8 Calif-R \mathbf{S} Fisher-20 Employees - OL 5-9696 - Wired \& Wireless Loudspeaking Intercom Sys-
tems, Market Hospital \& Industrial tems, Market
Sound Systems
Fisher Research Lab Inc 1975 University Ave Palo Alto Calif-E A Feicht-meir-48 Employees-DA $2-4646-2$
AC Cable Finders, Leak Detectors
\triangle Fluke Mfg Co son St Seattle 99 Wash-R E Flor-ence-92 Employees-AT 2-5700Voltmeters. Power
\triangle Franklin Electronics Inc/Communitations \& Control Div Van Nuys Calif Systems, Language Translators, Data Systems, Language Translators, Data Friden Inc 2350

Leandro Calif-George Beeken-3000 Leandro Calif-George Beeken-3000 Adding Machines, Data Processing Equipment
\triangle Furane Plastics Inc 4516 Brazil St Los Angeles 39 Calif- 80 EmployeesPlastic Resins, Adhesives, Coatings

G

\triangle Garrett Corp/Airesearch Mfg Div 9851 Sepulveda Blvd Los Angeles 45 Calif -Charles Hansen-8700 Employees tems, Electronic Contral Air Data Systems, Electronic Cooling Equipment, Garrett Corp/Airesearch Mintrols
36th St Phoenix Ariz Mg Div 402 S 36th St Phoenix Ariz-Charles Han$\begin{array}{ll}\text { sen-BR } & \text { 5-6311-Central Air Data } \\ \text { Systems, } & \text { Efectronc Coolino }\end{array}$ Systems, Electronic Cooling Equip.
ment, Aircraft Temperature Gavitt Wire \& Cable Co 455 Controls St P 0 Box 336 Escondido CalifSt P B Box 336 Escondido Calif-
John T Hall-40 Employess-SH 5 -3181-Insulated Electronic Hook-up GB Components Inc 14621 Arminta $\Delta G B$ Components Inc 14621 Arm
General-American Valve Co 413 Poinsettia St P 0 Box 444 Corona del Mar $\begin{array}{lll}\text { Calif-Eugene C Greenwood-4 } \\ \text { ployees-OR } & \text { Em- } \\ \text { 3-2326-Precision } & \text { Me- }\end{array}$ ployees-OR
tering V alves
\triangle Geist Co W K 3177 Giendale Blyd Los Angeles 39 Calif-W K Geist Glendale 1 Califo 801 Allen Ave $\begin{array}{ll}\text { Glendale } \\ -1800 & \text { Employees - VI } \\ \text { Emickinger }\end{array}$

Potentiometers, Electronic Systems, Hiog Valves for Missile, Aircraft \& Radar Application
General Electric Microwave Lab 601 Cali fornia Ave Palo Alto Calif-Alden fornia Ave Palo Alto Calif-Alden Ryan-425 Employees-DA 4-166 Tubes
\triangle *General Electric Co Computer Dep 13430 N Black Canyon Hwy P 0 Drawer 270 Phoenix Ariz-G A Drawer 270
Hagerty_- 1000 Empenix Ariz-GIoyees-WI
3 2351-Electronic Computers
$\triangle *$ General Precision Laboratory Inc 180 N Vinedo Ave Pasadena Calif-T C Le Vay-20 Employees-MU 1.5669 -Military \& Commercial Aircraft Navigation Equipment, Closed Circui Television Equipment, Special Tes Equipment Equioment \triangle *General
\triangle General Transistor Western Corp Magne. Head Div 6110 W Venice Blyd 50 Employees_WE \mathbf{L} - $\mathbf{3}$. 5867 Braude Head, (Magnetic Computer \& Audio) Head, Heagn
Drum Heads
Δ Genisco Inc 2233 Federal Ave Los Andeles 64 Calif-W R Esser-197 Em-ployees-GR 9-4331-Test Equipment, Instruments, Electric Motors \& DC Motors
\triangle Gertsch Products Inc 3211 So La Cienega Bivd Los Angeles 16 CalifEdward W Watts-140 EmployeesVE 9-2201-Electronic Test Equip Instrument Transformers
\triangle Giannini Controls Corp 918 E Green St Pasadena 1 Calif-R L LawrenceInstruments, Inertial Instruments, Avionic Subsystems
Giannini Controls Corp Systems Div 1902 W Chestnut St Santa Ana Calif-C R Hodges- 65 Employees-KI 7-5485 part Test Equipment, Instrumentation
\triangle Girard-Hopkins 1000 40th Ave Oakland I Calif-A R Stack-25 Emtors, Resistors
\triangle Globe Electrical Mfg Co 1729.45 134th St Gardena Calif_Joe A Gamarhe140 Employees-FA 1-3311-Relays, Potentiometers, Printed Circuits
\triangle Goe Engineering Co 219 S Mednik Los Angeles 22 Calif-Jack Goerg- 8 Employees-AN 1-2183-Terminals, Standoffs. Handles \& Ferrules
*Gonset Div/Young Spring \& Wire Corp 801 S Main St Burbank Calif-W E Hunter- 255 Employees-VI 9-2222 Granger Asso 966 Cotrons Equipment Alto Calif 966 Commercial St Palo ployees-DA 1-4175-Amplifiers, Antennas, Power Supplies
Graphik-Circuits/Div of Cinch Mfg Co 200 $\begin{array}{ll}\text { Industry Calif-S } L & \text { Rd—City of } \\ \text { Glaspell-123 }\end{array}$ Employees-ED 3-1201-Printed Circuit \& Terminal Boards, Flexible Printed Cables
Gudeman Co 2669 S Myrtle Ave Monrovia Calif-K R Clark- 60 Employeesers
Gudeman Co of Calif 190 Commercial st Sunnyvale Calif - Mary Gudeman200 Employees-RE 6-5471-Capacitors, Condensers
G W Associates P 0 Box 363 El Segundo Calif - 10 Employees - Calorimetric Wattmeter, Power Supplies

H

Hadley Co Int Robert M 750 W 5lst St Los Angeles 37 Calif-Arthur H Had-ley-90 Employees-AD 4-9091Transformers
\triangle Hallamore Electronics Co 714 N Brook$\begin{array}{lll}\text { hurst } & \text { St Anaheim Calif_John } & R \\ \text { Frost- } 700 & \text { Employees-PR } & 4-1010\end{array}$ -Ground Support Systems \& Equipment, Space Communication Systems \& Equipment, Instrumentation Systems
Hailett Mfg Co 5910 Bowcroft St Los Andeles 16 Calif-Stanley E Estes- 50 Employees-TE 0-7094-Radio Interference Shielding, Flexible Conduit Assemblies, Coaxial Connectors \triangle Halliburton Inc Mfg Div 4724 S Boyle Ave Los Angeles 58 Calif-J W Mur phy
Hamilton Watcli Co/Hathaway Instrument Div 5800 E Jewell Av Denver 22 Colo-R A Miller-500 Employees -SK 6-8301-Airborne Recorder Automatic Oscillographs, Tuning Fork Frequency Standards

Handley Inc 14758 Keswick St Van Nuys Calif-James Hudson-20 Employees -ST 2-5840-Precision Potentiom. eters, Trimmer Pots (Custom
cial), Temperature Indicator
\triangle Handy \& Harman 330 N Gibson Rd EI Monte Calif-Philip G Deuchler- 50 Employees - CU $3.8181-$ Alloys Silver Brazing)
Harder Co Donald C 3710 Midway Dr San Diego 10 Calif-Donald C Harder-20 Employees-AC 2.5240 - Linear \& Non-Linear, Magneti Harworth Min Co 409 EI Camino Menlo Park Calif Keith Camino Real Menlo Park Calif-Keith Harworth-
2 Employees-DA
3-9965-Detec. 2 Employees-
\triangle Hayden Div General Time Corp 1213 N Highland Ave Los Angeles 38 Calif N Highland Ave Los A
-Carl W Cummings
Heiland Div/Minneapols-Honeywell 5200 E Evans Ave Denver 22 Colo-Lloyd J Mayer-App 3681-Direct-Recording Oscillographs.
Carrier \& Linear/Integrate Amplifiers. Carier \& Linear/Inted
Bridge Balance Units
\triangle Helipot Div/Beckman Instruments Inc 2500 Fullerton Rd Fullerton CalifMichael York- 700 Employees-TR 1.4848 - Precision Potentiometers Monitoring \& Control Components
Rotating Components Rotating Components
\triangle *Hermetic Pacific Corp 4232 Temple City Blyd Rasemead Calif-Donald
 Terminals
\triangle Herrmann Associates Carl P 0 Box 1179 Palo Alto Calif-Carl W Herr\triangle Hetherin
\triangle Hetherington Inc 139 Illinois St El Segundo Calif
\triangle Hewlett-Packard Co 275 Page Mill Rd 1800 Employees Peter N SherrillOscilloscopes, Digital Voltmeters. Frequency Counters \& Recorders
\triangle Hickok Electrical Inst Co 2585 Shat tuck Ave Berkeley 4 Calif-G Ksander
\triangle Hill Co J T 420 S Pine St San Gabriel Calif-John T Hill
Hi-Shear Rivet Tool Co 2600 W 247th St Torrance Calif-Guy Nach-DA 6Torque Bolts \& Tools, Hi-Lok Fasteners \& Tools
\triangle * Hoffman Laboratories Div/Hoffman Electronics Corp 3740 S Grand Ave Los Angeles 7 Calif-R A Maher-
2000 Employees-RI 7-4488-Navigation Equipment \& Communications Equipment, Countermeasures Systems
Holex Inc 2751 San Juan Rd Hollister Calif-J W Jones-18 EmployeesME 7-5306-Explosive Cartridge. Electric Initiated Explosive Valves. Switches. Thrusters \& Ignition
Hoover Electric Co 2100 S Stoner Ave Los Angeles 25 Calif-H W Shaf-fer-300 Employees-BR 2-3125DC Motors, Rotary Actuators, AC \& trol Components
\triangle Hopkins Eng'g Co 12900 Foothill Blvd San Fernando Calif—John Schlenker Fixed Capacitors, Condensers, Filters
Horkey-Moore Assoc 24660 S Crenshaw Blyd Torrance Calif-E J HorkevDA 6-0733-Force Ejection Devices Grcund Support Equipment, Heat Exchangers
Houston Fearless Corp 11801 W Olympic Blvd Los Angeles 64 Calif-A J 4331-Motion Picture Film Proc43sing Equipment, TV \& Motion Picture Studio Equipment-Astrodomes
Hufco Industries 2815 W Olive Ave Bur bank Calif-0 F Huffman-26 Em ployees-VI 9-2118-Relays
\triangle Huggins Laboratories Inc 999 E Arques Ave Sunnyvale Calif-V D VarenAve Sunnyvale Calif-V D Varen-
horst-210 Employees-RE $6-9330$ -Traveling Wave Tube Amplifiers, Backward Wave Oscillators
\triangle Hughes Aircraft Co/Airborne Systems Div Florence \& Teale Sts Culver City Calif- 32,168 Employees-RE
9330-Diodes, Radar Systems, Semiconductors
Hughes Aircraft Co Ground Systems Group 1901 Malvern P 0 Box 2097 Filler ton Calif-R M Sweeney-TR 1-3232 Display \& Computer Systems
Display \& Computer Systems
Hroducts/Industrial Systems Div

Imperial Hwy Los Angeles 45 CalifC C Roberts- 165 Employees-OR 0.1515 - Crystal Filters, Memo-
Scope (Storage Oscilloscopes) Scope (Storage Oscilloscopes)
Hughes Aircraft Co/Hughes
\triangle Hughes Aircraft Co/Hughes Products Div International Airport Sta P 0 Box 90427 Los Angeles Calif-OR $8-0361$ - Airborne Flight,
Systems \& Digital Computers
Hughey \& Phillips 3200 N San Fernando Bhey Blyd Burbank Callf-J Fer-
n Ganzenhuber-16 Employees-VI 9 . 1104-Obstruction Lighting Equipment, Obstruction Lighting Control \& Lamp Failure Alarm Units, Towe
Humphrey Castings Inc 3944 Riley St San Diego 10 Calif-George P Wil. Son-35 Employees-CY 6-6173-In-son-35 Employees-CY 6-6173 -In-
vestment Castings (Ferrous \& Nonvestment
Ferrous)
Humphrey Inc 2805 Canan St San Diego Calif-J H Bender-AC 3.1654-Ac. Guidance Systems \& Controls
Hunter Tools 9851 Alburtis Ave Sante Fe Springs Calif-R N Hunter Jr50 Employees-0X 2-7231-Folding Hex Wrench Sets, Screwholding Screwdrivers, Color Coded Nut Drivers \triangle Hysol of Calif Div Houghton Labs Inc -Lloyd A Dixon -Lloyd A Dixon

I

Ideal-Aerosmith Inc 3913 Evans Ave Cheyenne Wyo-Ronald G Popelka-59 Employees-7.7715-Manometers Needle Valves (sensitive)
Illumitronic Eng Co 680 E Taylor Ave Sunnyvale Calif-Joe D Givlie-20 Employees-RE 9-2395-Airdux Air Spiral Wrap
\triangle *Induction Motors of Calif/Div of IMC Magnetics Corp N Y 6058 Walker 149 Employees-LU 3-4785-Sole noids, Synchro Components, Step Servo Motors
Industrial Electronic Engineers Inc 3973 Lankershim Blvd N Hallywood CalifJohn J Bylo-20 Employees-ST 7 \triangle *Instron En's Corp 1271 S Bayle Av Los Angeles 23 Calif-A E Cozens 'I Business Machines Corp Monterey \& Cottle Rds San Jose 14 CalifProcessing Equipment
\triangle Int'I Electronics Research Corp 145 W Majnolia Blvd Burbank Calif-John E Markley Jr-100 Employees-VI Shields for Subminiature Miniature Octal \& Power Electron Tubes
\triangle Int'I Rectifier Corp 233 Kansas St E Segundo Calif - Gar Goodson - 670
Employees-0R 8.6281-Silicon \& Selenium manium Rectifiers
*Int'l Tel \& Tel Labs/Div Int'l Tel \& Te 937 Commercial St Palo Alto CalifH Busignies-41 Employees-DA $1-$
0211 -Amplitiers, Chokes, Communica tion Systems
\triangle Interstate Electronics Corp 707 E Ver mont Ave Anaheim Calit-Charles T Cosser-407 Employees-PR 2-2222 CMissile Range Instrumentation. Cable
\triangle Iron Fireman Mig Co Electronics Div 2838 S E 9th Ave Portland 2 OreHenry DesGeorges-425 EmployeesBE 4-6551-Miniature \& Microminia ture Hermetically Sealed Relays, Ver tical \& Free Gyroscores, Slipring \& Brash Assemblies
ITT Components Div 815 San Antonio Rd Palo Alto Calif-Robert Olander- 50 Employees-DA 6-9900-Capacitors. Seals, Plug
ITT Industrial Products Div ITT Cor 15191 Bledsoe St San Fernando Cali -EM 7-6161-Power Supplies

J

Jack Scientific Instrument Co Bill 143 S Cedros St Solana Beach Calif-Riohard T Johnson-150 Employees-SK 5-155l-Servo Amplifier
blies, Control Equipment

NOW!

Use your electronic counter as an accurate digital voltmeter and integrator

Dymec Voltage-to-Frequency Converter

Here is a compact new instrument which embodies a truly unique approach to the analog-to-digital conversion problem. You can now make accurate, dependable voltage measurements with your standard electronic counter, viewing results in direct, digital form on the counter. The instrument and its associated counter also serve as an electronic integrator permitting direct measurement of the time integral of dc voltages and other variables without time-consuming manual data reduction and analysis. These characteristics make the DY-2210 an ideal basic component for data handling systems.
The new DY- 2210 converter generates output pulses at a rate proportional to the de signal voltage. This renders the instrument virtually insensitive to noise, and makes possible average measurements of pulsating voltages and currents. The voltage measuring interval is determined by the associated counter. Either positive or negative voltages can be measured without reversing leads or switching. Immediate shipment from stock. For complete details or demonstration see your Dymec representative or write direct for information.

Multiple input ranges, either polarity Inherent noise-averaging characteristics Output frequency 0 cps to 10 KC
1 megohm input impedance
0.1% accuracy
Easily used in remote and automatic programming applications

Input Voltage Ranges: 0 to 1, 10, 100 and $1,000 \mathrm{v} \mathrm{dc}$; manual selection. Input Impedance: 1 megohm, $200 \mu \mu \mathrm{f}$ shunt, all ranges.
Input Polarity: Positive or negative. Polarity automatically sensed.
Oufput Frequency: Zero to $10,000 \mathrm{cps}$.
Accuracy: Within 0.1% full scale.
Calibration: Against internal mercury cell or external voltage standard.
Power: $115 \mathrm{v} \pm 10 \%, 60 \mathrm{cps}, 35$ watts.
Dimensions: Cabinet model; $71 / 4^{\prime \prime}$ wide, $111 / 4^{\prime \prime}$ high, $101 / 4^{\prime \prime}$ deep. Rack mount model, $19^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $103 / 4$ " deep.
Price: $\$ 650.00$ (Rack) $\$ 660.00$ (Cabinet).
Data subject to change without notice. Prices f.o.b. factory.
(formerly Dynac, Inc.)
5168 E Page Mill Road • Palo Alto, Calif., U.S.A.
DAvenport 6-1755

Calif-J T Peterson Jr-65 Employees TH 8-5792-Rotary Switches, Ammeter Shunts, Bonding Jumpers
\triangle Japan Electric Industry 1680 N Vine St Los Angeles Calif-Geore H Nahaki Javex Electronics P 0 Box 646 Redlands Calif-C J Reimuller-46 Employees PY 3-5752-TV HiFi \& Audio Accesssories, Electrical Products
Jefferson Electronic Products Corp 322 State St Santa Barbara Calif-Donald F Barr- 190 Employees-WO 5.8505 - Multi-Conductor Neoprene Jacketed Cable, Harness Assemblies, Molded Cable Configurations
\triangle Jennings Radio Mfg Corp 970 McLaughlin Ave San Jose 8 Calif-Robert F Johnston- 325 Employees - Capacitors, Switches (Power), Transfer
Relays (All Vacuum) Relays (All Vacuum)
\triangle Jewett Co Samuel 013537 Addison St Sherman Oaks Calif-D J Wells
Jobbins Electronics 771 Hamilton Ave Menlo Park Calif-Charles W Jobbins - 30 Employees - DA $6.7110-$ Traveling Wave Tube Focus Solenoids Current Regulated Power Supplies, RF \& IF Coils \& Chokes
\triangle Jonathan Mfg Co Inc 720 E Walnut Ave Fullerton Calif-M Fritz Hagen Jones \& Wettlaufer Engr Corp 11780 W Pico Blvd W Los Angeles 64 Calif$\begin{array}{ll}\text { Max } & \text { Everson Jones-12 Employees- } \\ \text { GR } 7.3247 \text { - Phototron (Various }\end{array}$ Models), Analog-to-Digital Convert ers, Shaft Position Encoders
*Jordan Electronics/Div The Victoreen In. strument $C_{0} 3025 \mathrm{~W}$ Mission Rd Alhambra Calif-George W Egan100 Employees-CU 3-6425-Nuclear Radiation Monitoring Equipment, Transistorized Aircraft \& Missile Power Supplies, Timing \& Sensing Devices

K

Kaar Engineering Corp 2995 Middlefield Rd Palo Alto Calif-Harry Copelan - 101 Employees-DA $6-5050-\mathrm{Ma}$ rine Radiotelephones, Industrial Radiotelephones, Custom Transmitters Kaiser Aircraft \& Electronics/Div Kaiser
Industries Corp P 0 Box 1828 Oak Industries Corp P O Box 1828 Oak land 4 Calif-R M Watt Jr-750 Employees-LA 6-4688-Missile Pre flight Testers, Contact Analom Display
Kalbfell Electronix 3434 Midway D_{r} Diego 10 Calif-D C Kalbfell—5 Employees CaC 3-7156 Kalbfell— 5 Amplifiers
Kartron P O Box 4727882 Kartron S Huntington Beach Calif-Tom B Electronic Instruments
Kauke \& Co Inc 1632 Euclid St Santa Employees-EX 5.5246 Kauke-16 Employees-EX 5-5246-Transistor Signal Conditioners, Sub-Carrier Oscillators
Kavamil Co Inc/Spacetronics Div 1501 W El Segundo Blvd Conirton Calif9600 -Amplifiers, Assemblies, Bridges \triangle *Kearfott Co Inc Microwave Div 14844 0xnard St Van Nuys Calif-Walter K Dau Jr-250 Employees-ST 61760 -Microwave Test Equipment Engineering Development, Ferrite Devices
Kelvin Electric Co 5907 Noble Ave Van Nuys Calif-Boyd Barton- 128 Em-ployees-ST 3-2666-Precision Wire dal Coils, Uncased, Plastic Encap sulated Hermetic Sealed Magnetic Amplifiers
\triangle Key Resistor Corp 321 W Redondo Beach Blvd Gardena Calif-W Peddie - 45 Employees-DA 3-5000-Precision Film \& Precision Wire Wound Resistors, Encapsulated Power Supplies \& Special Circuits
K-F Development Co 2606 Spring St Redwood City Calif-Paul Keeler-8 Employees-EM 8-5670-Precision Wire-wound Resistors, Potentiameters, Black Boxes, Components, etc
KFR Corp 6006 W Washington Bivd Culver City Calif-Thurman D Brooms-13 Employees-VE 8-3763-Cathode Ray Tubes \& Special Purpose Tubes
Kinetics Corp 410 S Cedros Solana Beach Calif-F E Matthews-90 Employees -SK 5-1181—Power Changeover verters, Voltage Testers
\triangle King Eng'g Co $5321 / 2$ Hollywood Bivd Los Angeles 27 Calif—Robert E King Jr
\triangle Kingsley Machine Co Electronic Div 850

Cahuenga Blyd Hollywood 38 Calif-

 in Tel Div Cohu Electronics Inc 5725 Kearny Villa Rd San Diego 11 Calif E C Titcomb-400 Employees-BR 7-6700-Digital Voltmeters, Singleended \& Differential DC Amplifiers, Closed Circuit Industrial Television EquipmentKnapic Electro-Physics Inc 936-38 Industrial Ave Palo Alto Calif-George M MacLeod-65 Employees-DA 1-5544-Silicon Single Crystal Material, Silicon Infrared Large Diameter Material for Optical Purposes
Knopp Inc 1307 66th St Oakland 8 Calif-Henry Muller-App 25 Em-ployees-OL 3-1661-Test Equipment, Indicators, Rectifiers
Koch \& Sons H Highway 101 Corte Madera Calif-H B Sheffield- 200 Employees - OL 3-1661 - Fiberglas Reinforced Plastic Instrument, FRP Radomes, Specialized Hardware

Lake Mfg Co 2323 Chestnut St Oakland 7 Calif-W E Howe-26 EmployeesEquipment, Communications Systife \& *Lambda-Pacific Engr Inc 14725 Armita St Van Nuys Calif-L \mathbf{L} W Mallach52 Employees-ST 2.1980-Micro wave Relay Systems, Microwave Test
Equirment, UHF Translators Laminair Inc 18530 So Broadway Calif-I W Love—app 20 Gardena Calif-I W Love-app 20 Employees Structure, Structural Airborne Components of Fiberglas Reinforced Clastic 31 Calif 2433 Birkdale Los Angeles 31 Calif-Ben Ley-I2 Employees-
CA $5-5666$-Dielectrics, Engraving, Insulating Compounds
Lance Antenna Mfg Co 1730-1802 1st St 35 Fernando Calif-Milton MannAntennas, FM Antennas, Frind Autdoo Antennas
Land-Air Inc/Instrument \& Electronics Div 2133 Adams Ave San Leandro -L0 $\quad 9.5841$ Mare-Mub-Miniature Re ceivers, Radioactive Gas Monitors, Alpha Particle Converters
*Land-Air Inc P 0 Box 2327 Airport Sta Cheyenne Wyo-J T Shelton- 232 Employees-2-6481-Missile Ground Supcort Equipment, Engineering \& Fabrication of Aircraft Retrofit Kits for modification of aircraft
Lan Electronics Mfg Corp 7254 Atoll Ave N Hollywood Calif-_John T Chase-
22 Employees-P0 5-2413-Engineering \& Production Prototypes of Elec tronic Units, Custom Radio Control Panels, Modification \& Overhaul of Airborne Electronic Equipment
Lansing Sound Inc James B 3249 Casitas Ave Los Angeles 39 Calif- 200 Em(Higll Fidelity), Loudspeaker Systems \& Enclosures
Larson Electronic Glass P Box 371 2426 El Camina Real Redwood City Calif-J Palmer Larson-4 Employees -EM 8-7228-Metal to Glass Seals. Electronic Components, Sealing
L \& B Welding Equipment Inc 2424 6th St Berkeley 10 Calif-C F Leadertrols. Testing \& Welding Equipment
\triangle Leach Corp Leach Relay Div 5915 Avalon Blvd Los Angeles 3 Calif--AD 2-8221——Rp 484 Employees and Under-Voltage Relays and Contactors)
Lear Inc/LearCal Div 3171 S Bundy Dr Santa Menica Calif - Paul 0 Mo-menteller-587 Employees-EX 86211 - Accelerom
Lee Electric \& Mfg Co 2806 Clearwater St Los Angeles 39 Calif-Louis P Tuttle-NO 3-1295-Magnetic Amplifiers, Cable Assemblies, Magnetic Equipment
\triangle Lenkurt Electric Co Inc 1105 County Road San Carlos Calif-W C Fisher-
1359 Employees-LY 1-8461-Moile Telephone \& Microwave Radio Systems
\triangle Lerco Electronics Inc 501 S Varney St Burbank Calif-Hugh P Moore-70 insulated Terminals. Instrument Contral Knobs
\triangle *Levinthal Electronic Products Inc 3180 Hanover St Stanford Industrial Park
Palo Alto Calif-Alhert J Morris- 80

Employees-DA 6-1640-Transmitters, Modulators, Power Supplies
Lewis \& Kaufman Ltd P 0 Box 337 Los Gatos Calif Alfred Thompson-60 Employees-EL 4-3540-Transmitting Electron Tubes
*Librascope Inc Commercial Div 100 E Tujunga Ave Burbank Calif-A L Munzig Jr-250 Employees-VI-6061 -Shaft-Position to Digital Encoders, X-Y Plotters LGP-30 General Purpose Digital Computer
\triangle *Librascope Inc 808 Western Ave Glendale 8 Calif-Kenneth J Slee- 2250 Employees - CI 4-6541 - Abaloo Digital Encoders, X Y Plotter, Minimal Airborne Computers
Librascope Inc/Precision Technology Dept 66 S "P" St Livermore CalifKenneth A Johnson-90 EmployeesHI 7-3343—Exploding
Ordnance \quad Components,
Proximity Scoring Devices, Imaye Converter Cameras
\triangle Ling Electronics 1515 S Manchester Ave Anaheim Calif-W S Northridge300 Employees-TE 0.7711-Vibration Test Systems. High Fidelity \& High Intensity Sound Systems, High Power
Tubes
Ling Systems Inc 11949 Vose St Hollyweod Calif-R H Goodwin160 Employees-P0 5-9041-Srecia Antennas, Cable Assemblies, Cables
Litton Eng'g Labs P 0 Box 949 Gras Valley Calif-F L Towne- 70 Em . ployees - GR 1730 - Glassworking Lathes \& Accessories, Vacuum Pumps, Hydrogen Furnaces
\triangle Litton Industries Inc 336 N Foothill Rd Beverly Hills Calif-Crosby M Kelly-1100 Employees-CR 4-7411 - Electronic Components, Equipment \& Systems
\triangle Litton Industries/Components Div Rodeo Rd Culver City Calif-Richard Williamson-12000 Employees-CR 4-7411-Printed Circuits, Computers, Radar Systems
Litton Industries 147666 St Emeryville Calif-Robert H Dolbear- 30 Em-ployees-0L 8-3831-High Definition \& Special Cathode Ray Tubes, Computer \& Image Storage Tyfe Cathode Ray Tubes. Color Tubes
Litton Industries/Electron Tube Div 960 Ind"strial Rd San Carlos CalifNorman H Maore- 1350 Employees LY 1-8411-Carcinatrons, Filters.
Tubes Litton Ind
Litton Industries U S Eng'g Co Div 13536 Saticoy St Van Nuys CalifPaul J Robichaud-app 100 Employees - TR 3-3520-Elertronic Hardware, Printed Circuits, Termi nals \& Terminal Boards
Lockheed Electronics \& Avionics Div Lockheed Aircraft Corp 6201 E Randolph St Los Angeles 22 CalifS J Jatras-495 Employees-RA 3 Tare Recorders (Airborne), Magnetic Tare Recorders (Airborn
turized Television System
\triangle Lockheed Missile \& Space Div 1122 Jagels Rd Sunnyvale Calif-L E Root Electronic Equipment Components \& Systems
Loge J M 2171 W Washington Bivd Los Andeles 18 Calif-J M Loge-29 Enrployees-RE 4-9178 Inter-office Communication Systems, Audio Amplifiers, Portable Public Address Sys-
tems tems
\triangle Luscombe Eng'g Co 1129 S Fair Oaks Ave Pasadella Calif-B K Brackman ynch Carrier Systems Inc 695 Bryant St San Francisco 7 Calif-E B Stone-
200 Emrloyees-EX 7-1471_Carrier Telephone \& Telegrarh Equip Carrier Telephone \& Telegraph Equip, Com-
ponents. Remote Control \& Teleponents. Remote
metering Systems
Lyn-Tron Inc 5350 Riverton Ave N Hollywood Calif-Jark R Sinyder- 8
Employers-ST $7-9023$ _Printed cuit Hardware Molded Products Con nectors

M

\triangle McCarthy Asosc 1055 E Walnut St Pasadenta Calif-Edwa d R McCarthy Calif-A G McKenna-10 Employees —EX 9-8846-Ultrasonic Equipment \triangle MacDonald \& Co 1324 Etherl St Glendale 7 Calif—D G MacDonald 4 ter, Jiffy Connector \& Plug Holder. Circuit Board Holders Plug Holders, ackay Research Hoiders

ployees-Lead Sulphide Tubes, Magnetrons, Miscellaneous Type Photoconductive Tubes
MacKenzie Electronics Inc 145 W Hazel St Inglewood 3 Calif-Louis G Mac.
Kenzie-15 Employees-0R 8-9335 -Audio Equipment, P. A. Systems, Audio Recorders
Magnasync Mfg Co Ltd 5546 Satsuma Ave N Hollywood Calif-Howard V Auch-stetter-45 Employees-ST 7-5493Amplifiers, Consoles, Control Equip. ment
*Maqnavox Research Labs 2255 Carmelina Ave Los Angeles 64 Calif-J J Slat-
tery- 220 Employes $-G R \quad 9-7796-$ Digital Data Processers, Telemetry Commutators \& Switches, Digital Communication Equipment
\triangle^{*} Magnecraft Electric Co 1157 N Western Ave Los Angeles 27 Calif-Richard A Strassner
*MagneTec Corp 7232 Eton St Canoga Park Calif-Vern Johnson-15 Employees - DI 7-4642 - Magnetic Brakes, Controls, Magnetic Clutches Magnetic Amplifiers Inc 136 Washington St El Segundo Calif-Morris Beard-
OR 8 -2665-Mannetic Anıplifiers, OR 8-2665-Magnetic Anmplifiers,
Variable Speed Drives, Motor GeneraVariable Speed Drives, Motor Generator Controls \& Systems
Magnetic Circuit Elements Inc 3722 Park PI Mentrose Calif-John S Conklin15 Einployees -
netic Amplifier,
Cransformers.
In
In strument Sensors
Magnetic Research Carp 3160 W El Se gundo Blivd Hawthorne Calif-John L Boethling- 157 Employees-0S 5-1171-Magnetic Components \& Subassemblies, Signal Conditioning Sys-
tem, Universal Temperature Measur. tem, Universal Temperature Measur.
ing Systems
Mandrel Industries Inc Burbank Div 2950 N Ontaria St Burbank Calif-Edward
J Stephens-280 Employees-VI 9 J Stephens- 280 Employees-VI 9 2341 -Custom Cable, Sheet Metal
Fabrication \& Electronic Assemblies Fabrication \& Electronic Assemblies Arel Industries Inc 800 WeIch Rd Palo
Alto Calif-W E Wilson-DA $1-2366$ Alto Calif-W E Wilson-DA 1-2366
-Seismic Exploration Equipment, $\overrightarrow{\text { Photoelectric }}$ Exploration Equipment, Photoelectric Sorting Machines, In tegrating Gyroscopes
Manufacturing Associates 1416 Westwood Blvd Los Angeles 24 Calif-Lloyd F Washburn

* Marman Div Aeroquip Corp 11214 Erpo sition Blyd Los Angeles 64 CalifMyra Sparkman-GR 3-0932-Pneumatic \& Hydraulic Systems
Marquardt Aircraft Co Pomona Div 2709 N Garey Ave Pomona Calif-U W Richardson- 368 Employees-LY $3-$
1311-Trainers \& Simulators, 1311-Trainers \& Simulators. Ground Support Equipment, Data Processing
\& Display Equipment
\triangle Marsh Co J W 4216 W Jeftersen Blvd Los Angeles 16 Calif-Earl M Rush Mason Electric Corp 3839 Verdugo Rd Los Angeles 65 Calif-L H Littlefield50 Employees-CL 5-1431—Switches, Relays \& Contactors
Master Mobile Mounts Inc 1306 Bond St Los Angeles 15 Calif-Walter Watt tennas, Radio-Tel Equipment
\triangle Master Specialties Co 956 E 108th S Los Angeles 59 Calif-Art Graver
\triangle Mento Park Eng'g 711 Hamilton Ave Menlo Park Calif-Harold W Harri-son-35 Employees-DA 6-9080tronically Swept Oscillators, Microwave Test Consoles
\triangle Meridan Metalcraft Inc 8739 S Miller-

(4) $405 A R$ DC DIGITAL VOLTMETER is a completely new instrument providing, literally, "touch-and-read" voltage measurements between 1 and 1,000 volts. Range, even polarity, are automatically selected. Readout is in-line, in bright, steady numerals. New, novel circuitry provides a stability of readings virtually eliminating jitter in the last digit. This reduces operator fatigue and avoids uncertainty.
Special features include a floating input, electronic analog-todigital conversion, digital recorder output and front-panel "hold" control permitting manual positioning of decimal. Voltage sampling rate is variable from 1 reading every 5 seconds to 5 per second; or can be controlled externally by a 20 v positive pulse.

BRIEF SPECIFICATIONS

Range: 0.001 to $999 \mathrm{v} \mathrm{dc} ; 4$ ranges.
Presentation: 3 significant figures, polarity indicator
Accuracy: $\pm 0.2 \%$ full scale ± 1 count
Ranging time: $1 / 5 \mathrm{sec}$ to 2 sec
Input impedance: 11 megohms to dc, all ranges
Response time: Less than 1 sec
AC rejection: 3 db at 0.7 cps ; min. 50 db at 60 cps
Price: $\$ 825.00$
Data subject to change without notice. Price f.o.b. factory.

HEWLETT-PACKARD COMPANY

5100 H PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.

axial Cables \& Connectors, Assemblies \& Harnesses
Micro Gee Products Inc 6319 W Slauson Ave P O Box 1005-B W Mc$\xrightarrow{\text { Fadden- }}$ - 20 Employes-EX Simulation Tables, 1 En--Fight Simulation Tables, Enveration Amplifiers
er
Microwave Electronits Corp 4061 Transport St Palo Alto Calif-Stanley F Ampl-20 Employees-DA 1-1770Amplifiers, Oscillators, Tubes
Microwave Eng'g Labs Inc 943 Industrial Ave Palo Alto Calif-James K Palmer - quency Meters, Microwave Receivers \& Components, Signal Generators Components, Signal Generators
Mid-Continent Mfo Inc/Datran Electronies Div 3613 Aviation Blvd Manhattan Beach Calif-Corwin D Denney-75 Employees - OS 5-7131-Pressure Transducers, Resistance Bridge IndiCators, Servo Converters
\triangle Miller Co Gerald $B \quad 1550 \mathrm{~N}$ Highland Ave Hollywood 28 Calif-G B Miller $\begin{array}{cccc}\text { Angeles } 3 & \text { Calif_J } & \text { R Main St Los }\end{array}$ Angeles 3 Calif_J R Hummes- 65
Employees-AD $3-4294$ Chmes Employees-AD 3-4294-Chokes, De-
Miller Dial \& Nameplate
pie City Blveplate Co 4400 N Temple City Blvd EI Monte Calif-Tom Moule-163 Employees-CU 3.5111 Miller-Robinson Co 7007 Avalon lier-Robinson Cos $\begin{aligned} & 7007 \text { Avalon Blvd } \\ & \text { Los Angeles } 3 \\ & \text { Son- } 60\end{aligned}$ Calif-James Robin-Son- 60 Employess-PL 2-6141Pressure Switches, Pneumatic \& Hy .
draulic draulic
\triangle-Minnesota Mining \& Mfg $\mathrm{C}_{0} 11701$ Mississippi Ave Los Angeles 25 Calif Mitchell Co G Brown
\triangle Mitchell Co G H 9015 Wilshire Bivd Beverly Hills Calif-C H Mitchell St San Jose Catif-Arnold worn Sund St San Jose Catif_Arnold W TisAudio Amplifiers, Assemblies, Audio Audio Amp
Equipment
Modern Industries Inc 5755 Camille 20 Employens City Calif-J K Brose20 Employees - UP 0-2020 - Transistorized Power Supplies
monadnock Mills Sub United Carr Fastner 1977 lst Ave San Leandro CalifGL A Gianandres-175 EmpleyeesHardware, Wire Harnesses, Electronic Monitor Products Co 815
S Pasadena Calif Co 815 Fremont Ave S Pasadena Calif_John W Blasier65 Employees-RY 1-1174-Quartz Frequency Control Crystals, Crystal
Ovens, Packaged Oscill
Monogram Precision Industries
cade Research Div 5245 San Fernando Rd W Los Angeles 39 CalifCH 5-8625-Microwave Employees\& Antenna Systems, Microwave Ferrite Modulator \& Load Isolators, Microwave Circulators \& Duplexors
Moore Associates Inc 2600 Spring St Redwood City Calif-James B Bullock mote Control, Telemetering \& Alarm mote Control, Telemetering \& Alarm
Systems, PDM Multiplexing Systems
Morrow Radio Mfo Ca 2794 Marking Sy Salem Ore-Fred Hart- 30 Employees - EM 3-6952-Communica-
\triangle Moseley Co F L 409 N Fair Oaks Ave Pasadena Calif-Myron Hunt
\triangle Motorola Inc Military Electronics Div E McLellan Mcll Rd Phoenix Ariz-E \triangle Motorola Inc

Div 5005 E Semiconductor Products Ariz-Charles McDowell Rd Phoenix $\begin{array}{ll}\text { Ariz-Charles } & \text { S Granieri-7 } 760 \text { Em- } \\ \text { ployees - BR } & 5-4411 \text { - Transistors, }\end{array}$ ployees - BR 5-4411 - Transistors,
Rectifiers, Diodes
*Motorola Inc 8330 In
Calif-E 8330 Indiana Ave Riverside Calif-E D Jernigan-260 Employees Ceivers 9-3141—Radar Systems, Re-
\triangle Moxon Sales G E 489 S Robertson Blyd Beverly Hills Calif-G E Moxon

N

Nacimo Products 1090 Morena Blyd San Diego 10 Calif-William R Fosterometer, AC-DC Converter, Temperature Transducers
NARMCO Resins \& Coatings Co 600 Victoria St Costa Mesa Calif-W D Rainey-App 180 Employees-LI 8 1144 -Structural Adhesive, Structural Laminating Materials, Epoxies, Resins \& Putties
\triangle National Cash Register Co/Electronics Div 1401 E El Segundo Blvd Haw.
ployees - PL 7-1811 - Computers Data Processing Systems, High Speed Printers
Neff Instrument Corp 2211 E Foothill Blvd Pasadena Calif-D B Schneider - 20 Employees-Airborne \& Ground DC, AC Amplitiers \& Power Supplies \triangle Networks Electronic Corp 14806 Oxnard St Van Nuys Calif-Richard Dusley -123 Employees - St 3-2191Amplifiers, Coils, Relays
Nevada Air Products Co P 0 Box 1090 Reno Nev-J W Baldecchi- 230 Em -ployees-FA 2-9421—Antenna Tuning Units, UHF Transmitter, Blower Units \& Electromagnetic Speed Changers
Newcomb Audio Products Co 6824 Lexington Ave Hollywood 38 CalifRobert Newcomb- 85 Employees-HO 9.5381 - Sound Equipment, Photographs \& Radios, Tape Recorders
New Hermes Engraving Machine Corp 1346 N Highland Ave Los Angeles 36 Calif -K J Flamm-5 Employees-H0 5 . 5414-Engraving Machines \& Accessories
Non-Linea
\triangle Non-Linear Systems Ine Del Mar Airport Del Mar Calif-Peter J Van Benschoten-135 Employees-SK 5-1134-Indicators, Electronit Measuring Instruments, Measurement Equip-
Norgren-Stemac 5400 S Delaware Littleton Colo-Charles C Haney-App 100 Employees-PY 4-4271-Nameplates. Zinc Die Casting, Injection Molded Plastics
\triangle Nortronics/Div Northrop Corp 222 N Prairie Ave Hawthorne Calif-R E Ringle-5108 Employees-OR 8-9111 -Navigation \& Guidance Equipment, Automatic Electronic Checkout Equipment, Mechanical Ground Support Equipment
Nucleonit Products Co Inc 1601 Grande Vista Ave Los Angeles 23 Calif_A J Jolles- 50 Employees-AN 2-1187Germanium Diodes, Photo Diodes Thermistors
*Nutt-Shel Co 2701 S Harbor Blyd Santa Ana Calif-R C Poucher-150 Emt ployees-KI 5-9311-Aircraft SelfLocking Nuts
NYT Electronics Inc 2979 N Ontario s Burbank Calif-R L Hyder-app 125 Employees-VI 9.5094-Transformers, Power Supplies, Delay Lines
\triangle Nylok Corp 133 Pen St EI Segundo Calif-B B Steele
$\triangle 0^{\prime}$ Halloran \& Assot John Francis 11636 Ventura Blyd N Hollywood CalifJohin Francis 0 'Halioran
Olympit Instruments Iac Vashon WashCarly A Crecelius-4 Employees-
HO 3-5641-Wire Length Meters, R 0
Reels
Olympic Plastics Co Inc 3471 S La Cienega Blyd Los Angeles 16 CalifH M Rame- 240 Employees-TE 0 Fiberglass Electrical Terminal Strips Fiberglass Molded Parts, Plastic Optical Coat
\triangle Optical Coating Lab Inc 977 Sebastopol Rd Santa Rosa Calif-L Vance Fisher Efficiency Employees-LI 5-6440-High Eilters, Specialized Oirtical Thin Films
$\triangle 0$ ptron Corp 335 S Salinas St Santa Orbitran Co Inc 11487 Wood Lakeside Inc 11487 Woodside Ave Lakeside Calif-R J Price- 10 Eniployees - HI 3-6832- Pulse Delay Generators, Delay
Weighing Systems
\triangle Oregon Electronic Mfg Co 2105 S E 6th Ave Portland 14 Ore-H K LawsonAve Portland 14 Ore-H K Lawson-
40 Employees-BE $6-9292$-Power Supplies
\triangle Osborne Electronic Sales Corp 712 S E Hawthorne Blvd Portland 14 Ore-
T E Murphy-BE 2-0161-TransT E Murphy_BE $2-01$
formers, Potentiometers
Owen Labs Inc 55 Beacon PI Pasadena Calif-R P Owen-24 EmfloyeesGage Bridge Bawer Supplies, Strain Gape Bridge Balance \& Control Units,
Transistor Test Set

P

Pace Eng'g Co 13035 Saticoy St N Hollywood Calif-Bernaid Helfand40 Employees-P0 5-0453-Thermacouple Reference Junctions, Pressure Transducers
\triangle Pacific Automation Products Inc 1000 Air Way Glendale 1 Calif-E Regan

- cial Cables \& Cable Assemblies
acific Electricord Co 3217 Exposition Los Angeles 18 Calif-Kurt Michae -AX 3-7025-Cable Assemblies, Cables. Connectors
Pacific Mercury Electronics 8345 Hayvenhurst Ave Sepulveda Calif-Joel H Axe-1382 Employees-EC 2-3131Television Receivers, Electronic Oroans, Cable Assemblies
\triangle Pacific Missile Range Pont Mugu Calif -CDR-R A Barracks
Pacific Relays Inc 13915 Saticoy St Van Nuys Calif-N F Leo-32 Employees —ST 2-2360-Relays
\triangle Patific Scientific Co 6280 Chalet Dr Los Angeles 22 Calif—Andre Reichol Tension Employees-SP 3-2020 Cable ments, Furnaces for Electronics Inments,
dustry
\triangle Pacific Semiconductors Inc 10451 W Jefferson Blud Culver City Califprank E O Brien-TE 0-4881-Capacitors, Rectifiers, Semiconductors Pacific Technical Co 2047 Sawtelle Blvd Los Angeles 25 Calif-Louis G
Fields-50 Employees-GR 7-0455 Fields-50 Employees-GR 7-0455
-Two Phase Power Supply, DeltaWyo Phase Power Supply, Delta-
Wye Isolation Box, Instrumentation \triangle Packard Bell Computer Corp 1905 Armacost Ave Los Angeles 25 CalifMax Palevsky-90 Employees-GR 8 -4247-Computers \& Components, Converters, Digital Modules
\triangle Packard Bell Electronics/Technical Products Div 12333 W Olympic Blyd Los Angeles 64 Calif-Hugh Vick1100 Employees-Digital Computers, Missile Checkout \& Launch Equipment, Airborne, Aircraft \& Missile Electronic Equipment
Palmer Inc M V 4108 N W Fruit Valley Rd Vancouver Wash-Martin Palmer -0X $3-0590$ - Telephone Switch boards, Radio Link Equipment, In-fra-Red Communication Links
\triangle Palo Alto Eng'g Co 620 Page Mill Rd $\begin{array}{lll}\text { Palo Alto Calif-E } & \text { H Krueger- } \\ 115 & \text { Employes-DA } \\ 6.5360-M a g\end{array}$ netic Amplifiers. Chokes, Converters
Palomar Equipment Co 4254 Niagara Ave San Diege 7 Calif-Frank P DanePropagation Transmitters \& Receiver
Palomar Research RT 1 Box 660 Escondid Calif-W F Collison-SH 5-1806Digital Computers, Absolute Velocity \& Altitude Systems, Non-Inertial Electronic 'Space-Gyro"
* Parker Seal Co 10567 Jefferson Blyd Culver City Calif-W P Lester- 250 Employees-_UP 0.6821 -Wave Guide
Flange Seals, Flange Seals, Fastener Flange
Seals
Parks Lab Henry Francis 7544 23rd Ave N E Seattle 15 Wash-Henry F Parks-9 Employees-LA 3.4832 sistorized Power, Regulated, TranElectrodes Professional Electronic Electrodes
Projects
PAR Products Corp 602 Colorado Ave Santa Monica Calif-C R Hallowell -7 Employees-EX 4.4219-Optical Read Heats for Electronic Punched Paper Tape Rnadies. Vector Cardio-
graph Recording Camra. Head Mount graph Recording Camra,
Visual Recording Camera
Parsons Co Ralph M/Electronics Div 151 S De Lacey Ave Pasadena CalifEdson C Lee-161 Employees-RY 1-0461-Ground \& Airborne Telemetry Equipments, Electronic MissDistance Indicator Systems, Ground
Support Equipments Support Equipments
\triangle PCA Electronics Inc 16799 Schoenborn St Sepulveda Calif-Paul Kliebert$\begin{array}{ll}\text { App } \\ \text { Pulse } & 125 \text { Employees-- EM } \\ \text { Transformers. } & \text { Delay }-0761 \rightarrow \\ \text { Lines, }\end{array}$ Pulse Tra
Generators
Pearson Electronics Inc 707 Urban Lane Palo Alto Calif-Dr Paul A Pearson Voltage, High Power Pulse Transformer, Pulse Current Transformers, Voltage Dividers
Pee Cee Tape \& Label Co 521 W La Brea Ave Los Angeles 36 Calif - Paula - Pressure Employees-WE 8-2134 Die Cut Masks, Pressure Sensitive Labels \& Tapes
Pedersen Electronics Corp 3667A Mt Diabla Blvd Lafayette Calif-William T Wilkinson-40 Employees-AT 33434 -Amplifiers, Analyzers, Elec. tronic Counters
eerless Electrical Products 6920 McKinley Are Los Angeles Calif-Ercell B Harrison-124 Employees-
PL $8.4175-$ Power, Input \& Output PL 8-4175-Power, Input \& Output
Peerless Electronics Inc $5338^{\text {A }}$ Alhambra Ave Los Angeles 32 Calif-Rohert Ave Los Angeles 32 Calif-Robert -Clamps (Tube, Capacitor, Relays, etc)
Pendar Inc 14744 Arminta St Van Nuys Calif-R C Carter-65 EmplayeesAssemblies, Electronic Assemblies, Power Resistors
Penta Labs Int 312 N Nopal St Santa Barbara Calif-R L Norton-104 Employees - W0 5-4581 - Electron Tubes
\triangle Penwarden Co J G 7311 Van Nuys Blvd Van Nuys Calif-J "Pat" Houck
\triangle Perkin Eng'o Corp 345 Kansas St El 170 Employees-George W Mousel170 Employees-OR 8-7215-Static age Regulators, Inverters-Converters age Re
(Static)
\triangle Perlmuth Electronic Associates 5057 W Washington Blvd Los Angeles 16 Calif-J J Perlmuth- 32 Employees —WE 1.1041-Electronit Components \& Instruments, Instrumentation
Frames
Permoflux Products Co 4101 San Fernando Rd Glendale 4 Calif—L M Heineman- 150 Employees-CH 5 5135 - Headsets, Speakers, Transformers
\triangle Phaostron Instrument \& Electronic Co 151 Pasadena Ave S Pasadena Calif -H Veitch-380 Employees-CL 5-1471-Measurement Meters, Re hoto Chemical
St Santa Monica Calif 1715 Berkeley Renaud- 175 Employees-EX 5.0919 -Electronic Chemicals, Dials En graving
\triangle Photocon Research Products 421 N Altadena Dr Pasadena Calif-(Mrs) P C Ganzes, Indicators
Plotographic Analysis Int 13273 Ventura Blyd N Hollywood Calif-T C RobinElectro Employees-ST 3-3580Recording Camera Contour Mapor
Pick Labs Sanborn Rd Saratoga CalifVernon J Pick-6 Employees-UN 7. 3481-Data Display Systems, Contral \& Computing Systems
Pioneer Electronics Corp 2235 S Carmelina Ave Los Angeles 64 CalifZarmond Goodman-75 Employees-
BR -8053 -Relays, Switches, Tubes Plastic Factors Inc 926 Broadway Redwood City Calif-Norman F Frost9 Employees - EM 9-1764 - Wav Guide Flanges, Protective Covers, InPlant Panel Protective Covers
Pomona Electronics Co Inc 1126 W Fifth Ave Pomona Calif-Carl Wm Nusarra Cords, Socket Savers, Surface Mounted Cords, Socket Savers, Surface Mounted Breadboard Sockets
\triangle Precision Instrument Co 1011 Commercial St San Carlos Calif
Precision Teehnolay Dept/Librascope Inc 66 S P St Livermore Calif-L W Imm-74 Employees-HI 7-3343Efectronic Cameras. Converters, Electronic Measuring Instruments
Prescott Television Co 7706 Melrose Ave Los Angeles 46 Calif- M Prescott12 Employees-WE 3.7193-Video Recording Equipment. Custom Home Television Receivers
\triangle Presin Co 2014 Broadway Santa Monica Calif-M D Teichner
Printed Electronic Research Int 4212-4 16 Lankershim Blyd N Hollywood Calif-Jay H Praer-6 EmrloyeesST 7-3063-Power Amplikers, Ster
Printronics Corp 3127 El Camino Rea Palo Alto Calif-J Coffroll-60 Em

HERE'S WHY CALCULATING ENGINEERS USE KIN TEL DIGITAL VOLTMETERS

 These let you measure AC, increase sensitivity, measure ratios,

AC CONVERTER

Price: $\$ 850$
The Model 452 AC converter can be added to the basic 501 DC digital voltmeter to permit 4 -digit measure ment of 0.001 to 999.9 volts AC, RMS, 30 to 10,000 cps. Accuracy is 0.2% of full scale and ranging is manual (auto-ranging models are available).
 The Model 459 differential DC preamplifier has a gain of - 100 which extends the DC sensitivity of KIN TEL digital voltmeters to 1 microvolt. Overall system accu. racy when the 459 is used with a digital voltmeter is $0.15 \%+5$ microvolts. Input resistance is greater than 5 megohms, and input and output circuits are completely floating and isolated from each other and chassis ground. Common mode rejection is 180 db for DC and 130 db for 60 cps with up to 1000 ohms input unbalance. Input can be floated up to ± 250 volts.

AC-DC PREAMPLIFIER
Price: $\$ 1225$
The Model 458 is a single-ended preamplifier with a gain of -100 which extends the sensitivity of KIN TEL digital voltmeters to 1 microvolt DC, and 10 microvolts $A C$ from 30 to 2000 cps. Overall system accuracy when the 458 is used with a digital voltmeter is 0.1% ± 2 microvolts for DC, and 0.25% of full scale for $A C$.

DVM \& RATIOMETER
Price: $\$ 3835$
The Model 507A measures both DC voltages from +0.0001 to ± 1000.0 volts and $D C / D C$ ratios from $.0001: 1$ to $999.9: 1$. Ranging is automatic and accuracy is $0.01 \% \pm 1$ digit both for ratios and voltage. Any external reference between 1 and 100 volts may be used for ratio measurements.

INPUT SCANNER
The Model 453M master scanner automatically or manually scans up to 400 1-wire, 2002 -wire, or 100 4 -wire inputs. Addition of a slave scanner (453S) permits scanning up to 1000 data points.

5725 Kearny Villa Road,
San Diego 11, Calif.
Phone: BRowning 7-6700
Representatives in all major cities

KIN
a DIVISION OF
(0) $)^{1}$ In

ELECTRONICS INE.

Radar Relay Inc 2322 Michigan Ave Santa Monica Calif-W C Arrasmith- 25 Employees-EX 4-2230-Word Warning Systems, Electrital Relays, Mercury Pushbutton Switches
Radiatronics Inc 5956 Kester Ave Van Nuys Calif-George Hewitt-36 Em-ployees-ST 2.1461—Missile, Aircraft \& Communications Antennas, Antenna Components
\triangle *Radie Corp of America West Coast Mis sile \& Surface Radar Dept 11819 W Olympic Bivd Los Angeles 64 CalifM E Collins- 1000 Employees-GR 8-0251-Adapters, Amplifiers, Radar Antennas
Radiophone Co Inc 600 E Evergreen Ave Monrovia Calif-Frank E HamiltonApp 200 Employees-EL 8-2585Telemetering Systems, Telemetering Components, Ground Support Equipment
Radioplane/Div Northrop Corp 8000 Wood Jey Ave Van Nuys Calif-W D Mc-Bride-ST 6-7020-Target \& Surveillance Drone Systems
\triangle Ramo-Wooldridge/Thompson Ramo Wooldridge Inc 5500 W EI Segundo Blvd P 0 Box 90215 A/P Sta Los An-
geles Calif-David T Traitel-Digigeles Calif-David T
tal Control Computers
Ransom Research 323 W 7th St P 0 Box 269 San Pedro Calif-David H Ransome Jr-12 Employees-TE 2-6848 -Computer Elements, Data Processing Systems, Analog to Digital or Digital to Analog Converters
\triangle Rantec Corp 23999 Ventura Blvd Calabasas Calif-Jack Wills- 85 Em-ployees-DI 7-5446-Antennas, Multiplexers, Microwave Ferrite Devices
El Camino Ratel Goleta Calif -G E Archenbronn- 100 Emplayees -W0 7-1214-Transformers, TV \& Radio. Torroidal Transistor Coils \& Transformers
*Raytheon Co Research \& Development Lab P 0 Box 636 Santa Barbara Dloyees - W0 F Adams- 300 Employees - W0 7-2381 - Magnetic Amplifiers \& Servomechanisms, Portable Transceivers, Telerhone Power supplies
\triangle Raytherm Corp-Rayclad Tubes Inc Oakside at Northside Redwood City Calif—Robert M Halperin-App 75 Employees - EM 9-3376- Hoak-up Cable, Thermofit Miniature Coaxial Paint Corp 1907 Tubing
Red Paint Corp 1907 Riverside Dr Glendale 1 Calif-Ralch P Craig-12 Employees-TH 2.4895 - Pracessing Machinery, Automatic Encapsulating Machines, Dual \& Single Impregnators Los Angeles 36 Calif-Bruce MacPherson
Reiter Co F 3340 Bonnie Hill Dr Hallywood 28 Calif-F Reiter-3 EmSplicer eimanco I
Calif-R W Ryall- 35 Eanta Monica EX 3.7184 - Ryall- 35 Emplayeesparator Charts \& Accessories, Comlimators
Remler Co 2101 Bryant St San Francisco 10 Calif-Andrew B Hart-App 100 Employees-VA 4-3435-App 100 munication Equipment Marine $4-3435$ - Intercom Microphones, Speakers \& Amplifiers
\triangle Resin Farmulators Inc 8956 Nati Blyd Los Angeles 34 Calif-P A Van Amburgh
Repath Parific Div/Arnold Eng'g Co 641 E 6lst St Los Angeles 1 Calif-P R Repath- 75 Employees-AD 3-7262 Bell
Resdel Eng'g Corp 330 S Fair Oaks Ave Pasadena Calif-A J Siegmeth-80 Pasadena Calif-A
Employees-SY 5 -5197-Ground Support Equipment, Wideband Amplifiers, Receiver Multicouplers
Research Specialties Co 200 S Garrard Blvd Richmond Calif-James M Felts -60 Employees-BE 5-9110-Chromatodraphy \& Electrophoresis Systems, Zone Melting Apparatus, Tem. perature Controlled Water Bath
Rheem Mfg Tube Heaters
Products Mfg Co Defense \& Technical Products Div 1711 Woadruff Ave Employ Calif-John H Titley-2500 eters, Amplifiers, Communication Syseters,
tems
\triangle Rheem Semiconductor Carp 327 Moffet Blyd Mauntain View Calif-J D
Hurley-App 102 Emfloyees-Y0 8.

8391 - Silicon Transistors, Fast Switching \& High Current Silicon
Diodes, High Voltage Subminiature Diodes, High Voltage Subminiature RHO Eng'u Rectifiers
RHO Eng'u Co 2242 Sepulveda Blvd Los Angeles 64 Calif-Muriel E Gorden Amplifiers, Plug-in Circuits, EncapsuAmplifiers, Plug-in Circuits, Encapsu-
lation Service \triangle Riedel \& Co
\triangle Riedel \& Co M W 316 E Valley Blvd Alhambra Calif-M W Riedel
Riggs Nucleonics Corp 717 N Victory Blvd Burbank Calif-John E Markley $\begin{array}{cc}\text { Jr-1 } \\ \text { Nuclear } & \text { Employees-VI } \\ \text { Radiation Area } & \text { 9-2481- } \\ \text { Monitoring }\end{array}$ Nuclear Radiation Area Monitorin
Detector, Single \& Multi-Channel \triangle Rimak Inc 10929 Vanowen St N Holly ployees - TR 7.5526 - Electronic ployees - TR
\triangle Rinco Inc 7962 S E Powell Portland 6 Ore-F M Brown-24 EmployeesPR 4-3259 - Impedance Bridges, Decade Precision Potentiometers, Robbins Aviation Inc 2350 E 38 th St Los Angeles 58 Calif-H N N Mabery - 20 Employees-LU 9-5221—Meterin Valves, Dehydration \triangle Roberts \& Assoc E V 5068 W Wash inton Blvd Los Aneles 16 CalifErnest V Robert
\triangle Robertshaw-Fulton Controls Co/Aeronautical \& Instrument Div Santa Ana Freeway at Euclid Ave Anaheim KE 5-8151-Transistor Amplifiers, Cable Assemblies
\triangle Rosan Inc 2901 W Coast Hwy Newport Beach Calif-James D Magner
Rototest Labs Inc 2803 Los Flores Blvd Lynwood Calif-J R Duncan-60 Em-ployees-NE 6-9238-Environmental tronic, Electro-Mechanical Assemblies \& Sub-Assemblies
Royce Instruments Inc 847 Fabian Way Palo Alto Calif-Henry Fondiller5 Employees-DA 5-2277-Surface \triangle RS Electronics Corp 435 Portage Ave Palo Alto Calif-Albert B Worch36 Employees-DA 1-1130-Ampli. fiers, Converters. Filters
Rucker Co 4700 San Pablo Ave Oakland 8 Calif-Centrifuges
Rue Products 1628 Venice Blyd Venice Calif-Herman D Rue- 20 Emplayees capsulated Components, Automotive capsulated Componen
Electrical Accessories
\triangle Rush \& Assaciates C B 3757 Wilshire Blvd Los Angeles 5 Calif-Clyde B
\triangle Rutherfor

Rutherford Electronics Co 8944 Lind| blade St Culver City Calif—N T N |
| :--- |
| Holzer- 50 Employes-TE |
| -7393 | Pulse Generators \& Systems, Time Delay Generators

Ryan Aeronautical Co/Ryan Electronics Div 5650 Kearny Mesa Rd San Diego 12 Calif-T Claude Ryan- 1300 Empayce Systems \& Controls Missile Guid Equipment, Radar Systems

S

Saine Equipment Lab Harry T Rt 2 Box 407 E Main Ave Morgan Hill CalifHarry T Saine-2 Employees-M0
$9-0066$ - Oscillotron, Oscilloclast, Depolatherm Oscillotron, Oscilloclast,
\triangle San Fernando Electric Mfg Co 1509 First St San Fernando Calif-Lyle R Smith-175 Employees-EM 1-8681
*Santa Barbara Div/Curtiss-Wright Corp P 0 Box 689 Santa Barbara CalifW0 7.3411 - Automatic Checkout Equipment, Missiles \& Radomes
Sargent-Rayment Co 4926 E 12th St Oak land 1 Calif-Will Rayment- 35 Em-ployees-KE 6.5277-Tuners, Pre Amp Amplifiers, Amplifiers
*Satellite-Kennety Inc of California P 0 Box 1711 (Rancho Laguna Seca) Monterey Calif-Dr J T de Betten Rourt-8 Employees-FR 3-2461Antenna Systems
Scala Radio Co 2814
cisco 10 Calif-Bruno St San Francisco 10 Calif-Bruno Zucioni-VA
6-2898-Antennas (UHF \& VHF) Scantlin Electronics Inc 2215 Colby Ave Los Angeles 64 Calif-Edmund J Canning- Employees-GR 8-825 -Digital Computers (Special Purpose)
\triangle Schmit Eng'g Co 862 Fabian Way Palo Alto Calif-Robert D Rhodes
\triangle Scientific End'g Labs 1510 6th St Berkeley 10 Calif-George C Mc Farland-24 Employees-LA 6-2772 -Vimulators \& Controlled Atmes Altitude Simulators \& Controlled Atmosphere Chambers, Vacuum Furnaces
$*$ Sealectro Corp 1557 N Western Ave
Los Angeles 27 Calif-Richard Strassner Anges 27 Calif-Richard A
Secode Corp 555 Minnesota St San Francisco 7 Calif-Robert Blodget-100 Employeess-MA 1-2643-Signaling \& Remate Control Equipment
Seeley Electronics 1060 S La Brea Ay Los Angeles 19 Calif-Warren M Seeley-2 Employees-WE 3-1183 M Fixed Frequency Mobile Receivers *Sequoia Wire \& Cable Co 2201 Bay Rd Redwood City Calif-Jordan E Beyer

- 177 Employees-EM 9.0331 -Wire - 177 Employees-EM 9.0331-Wire \& Cable, Communication Cables
Servomechanisms Inc 12500 Aviation Blvo Hawthorne Calif-R J Gray- 750 Employees-0R 8-7841-Central Air Data \& True Airspeed Computers
Missile Fuel Management Systems
Schrader Co F W 11623 S Broadway Angeles 61 Calif-Virgle Hernbloom -12 Employees-PL 6-9166-Magnets Electro \& Permanent, Laboratory Magnets, Rectifiers
Shamban \& Co W S 11617 W Jefferson Blvd Culver City Calif-Matt Ken-nedy-App 150 Employees-TE 0-6877-Fabricating of Insulators, Copper Laminates, Spaghetti \& Sleeving
Sheltered Workshops Inc 2521 5th St Santa Monica Calif - Joseph E
Anthony- 37 Employees-EX 9-7741 Anthony- 37 Employ
\triangle Shinkyo Trading Co 1680 N Vine St Los Angeles 17 Calif-George H Nakaki
\triangle Shockley Transistor Corp 1117 California Ave Palo Alto Calif-Frank Newman-75 Emplovees-DA 6-1907 Shoemaker \& Associates H M 1127 $\begin{array}{lllll}\text { oemaker } & \text { \& Associates } & \text { H } & \text { M } & 1127 \\ \text { Wilshire } & \text { Blvd Los Angeles } & 17 & \text { Calif }\end{array}$ Wilshire Blyd Los
-H M Shoemaker
Sidco Inc/Sid Ungar Co Inc 1729 W Washington Blvd Box 312 Venice Calif-EX 9-0228-Soldering Irons *Sierra Electronic Corp 3885 Bohannon Dr Menlo Park Calif-C M Volkland Analyzers, RF Test Equipment, OscilAnalyzers
loscopes
Slideways Mfg Co 8075 Woodley Ave Van Nuys Calif-William H Johnsan- 35 Rmployees-ST 2-3393-Chassis
Slip Ring Co of America 5456 W Washington Blvd Los Angeles 16, Calif-Gehrke-125 Employees-WE 1 -8156-Slip Ring \& Brush Assemblies,
Commutators, Rotary Switches, PreciCommutators, Rotary Switches, Preci-
sion Molded Plastic Parts \& Terminal sion Mo
Boards
\triangle Snitzer Co T Louis 5354 W Pico Blvd Los Angeles 19 Calif-Christorher D Sloan
oderberg Mfg Co Inc 628 S Palm Ave Alhambra Calif-H M Gibbons- 50 Employees-CU 3-3382-Aircraft \& Marine Lights, Landing Gear Contral Solar Mfo

Mar Mifg Corp 4553 Seville Ave Los 500 Employees-LU A Swansontors, Condensers, Crystals
Soltronics Inc 14712 Raymer St Van Nuys Calif-Hugh Mitchell-5 Emplayees Calif-Hugh Mitchell-5 Employees
-ST $6.4528-U I t r a s o n i c ~ B o n d ~ I n-~$ spection Systems, Ultrasonic Flaw Recorders
\triangle Southern Electronics Corp 150 W Cypress Ave Burbank Calif-Geo E
Gansell-65 -Capacitors, Film
Spaulding Fibre Co Inc 1325 San Julian St Los Angeles 15 Calif-E S Rine-hart-26 Employees-RI 8-7341Hard Vulcanized Fibre \& Fishpaper, Transformer Boards
\triangle Specific Plating Co Inc 3002 Downey Rd Los Angeles 23 Calif-D Golbert ctralab Instruments 608 Fig Ave Mon23 Employees-RY R GoodmanPower Amplifiers, Oscillators, Fre quency Multipliers
Spectra-Strip Wire \& Cable Corp 1005 Larson Ave P 0 Bax 415 Garden Grove Calif-Donald D Lang-20 Employees - JE $7-4530$ - Wire \& Cable Assemblies. Vinyl Adhesives Cables
$\triangle *$ Spectral Electronics Corp 1704 S De Mar Ave San Gabriel Calif-Robert K Burther-350 Emplayees-AT 7.

9761-Precision Potentiometers, Pre cision Mechanisms, Transistorized Power Supplies
Sprague Electric Co 12870 Panama St Los Angeles 66 Calif- 40 Employees -TE 0-7531-Capacitors, Magnetic Components, High Speed Switching Transistors
\triangle Standard Wire \& Cable Co 3440 Over land Ave Los Angeles 34 Calif-I I 4647-App 40 Employees-TE 0
Stanford Research Institute Dir Menlo Park Calif-E Finley Carter-425 Employees-DA 6-6200 Electronic Research \& Development Mechanics
Stanley Aviation Corp 2501 Dallas S Denver 8 Colo-R H Frost-425 Breadboard, 6.3581 - Electronic gency Escape Devices
\triangle Staham Development Corp 1845 Pontius Ave Los Angeles 25 Calif-C L Vaugha
Statham Instruments Inc 12401 W Olympic Blvd Los Apreles 64 Calif-2-0371-Pressure Transducers, Accel erometers, Strain Gage Signal Amplifiers
Stephens Trusonic Inc 8538 Warner D Culver City Calif-E J Petre--75 Employees-TE 0-6671 - HiFidelity Speakers \& Enclosures, Condensor
\triangle Stepper Motors Co 1732 W Slauson Ave Los Angeles 47 Calif-Clarence Adams
Sterling Electric Motors 5401 Telegraph Rd Los Angeles Calif-Peter G Arno-ick-300 Employees-RA 3-6211Variable Speed Drives, Slo-Speed Gearmotors, AC Squirrel Cage Motors
Stewart Eng'g Co P O Box 727 Soquel Calif-Ken Baker-GR 5-4790Backward Wave Oscillators, Controlled
Atmosphere Furnaces, Precision Soot Atmosphere Furnaces, Precision Spot Welders
\triangle Stoddart Aircraft Radio Co Inc 6644 Santa Monica Blvd Hollywood 38 Calif-J H Hanrahan- 135 Em-ployees-HO 4-9292_Radio Interfer-ence-Field Intensity Meters, Attenuators, Current Probes
\triangle Strassner Ellard E 1865 N Western Ave Los Angeles 27 Calif
Romberg-Carlsan Co/Div General Dynam-
ics Corn 1895 Hancol ics Corp 1895 Hancock St P 0 Box 2449 San Diego Calif-H M Taylor-
500 Employees-CY 8-8331-Analog 500 Employees-CY 8-8331-Analog
Computers, Digital Computers, Cathode Computers,
Ray Tubes
Sunnyvale Development Center of Sperry Gyroscope Co 294 Commercial St Sunnyvale Calif-E
200 Employees-RE
Hammond-2344-Accel200 Employees-RE $9-2344$-Accel-
erometers, Analog Computers, Gyroeromet
scopes
Superscape Inc 8520 Tujunga Ave Sun Valley Calif-Fred C. Luchinsky- 35 Emplayees-TR 7-1313-Sterecorder, Candenser \& Wireless Micraphanes
\triangle Sylvania Electric Products Inc 6505 E Gayhart Los Angeles 54 Calif-Don Ray \& Receiving Tubes, Microwave Ray \& Receiving Tubes, Micro
Tubes, Semi-Conductor Products
$\triangle *$ Sylvania Electric Products Inc/Special Tube 0perations 500 Evelyn Ave Siman-742 Employees-Y0 8-6211 -Microwave Tubes \& Components, Counter \& Trigger Tubes
*Systems Development Corp 2428 Colo rado Ave Santa Monica Calif-David Green-Electronic Systems
\triangle Systron Carp 950 Galindo St Concord Calif-Ralph L Manildi-70 Employees - MU 2-3650-Electronic Counters-Timers-Converters, Custom Instrumentation, Data Processing \&
Checkout Systems Checkout Systems

T

Talkmaster Inc 534 Laurel St San Car los Caljf-E D Melligan Jr-2 Em

RELIABLE

MINIMUM PANEL SPACE, SIMPLER PREAMPS - E or

OSCILLOGRAPHIC RECORDING INSTRUMENTATION FROM

VERSATILE,
ECONOMICAL- 1 to 8 channels DC to 100 cps - " 150 " Series

Over-all linearity better than 1%; basic sensitivity from 10 uv/div. to 0.1 volt/div., depending on preamplifier. Current feedback driver amplifier and regulated power supply for each channel; amplifiers, recorder available in individual portable cases. Front ends include AC.DC, Carrier, Servo Monitor (demodulator), DC Coupling, Log.Audio, Low Level Stabilized DC, AC Wattmeter, RMS Volt/Ammeter, 400 Cycle Frequency Deviation, Frequency Meter, and Triplexer 3-channe! electronic switch.

BASIC " 350 "/" 850 " 6 - and 8-CHANMEL RECORDER-AMPLIFIER UNIT
Integral recorder package has transistorized, current feedback Power Amplifiers and voltage regulated power supply; nine electrically controlled pushbutton chart speeds, with provision for remote control; automatic over.all and individual stylus heat control; time-code marker; low impedance, low voltage galvanometers with enclosed construction; true velocity feedback damping at all times, limiting ahead of output circuit; inkless, rectangular coordinate recording on Permapaper charts, easily loaded from the front.

MAXIMUM PERFORMANCE VERSATILITY - 6 or 8 channels, DC to 150 cps - " 350 " Series

Linearity 0.5%; improved current feedback power amplifiers, negligible drift; total panel space only $38 \frac{1 / 2 "}{}{ }^{\prime \prime}$; interchargeable plug in preamulifier types include Carrier, DC Coupling, Phase Seisitive Demodulator. True Differential Wide Band DC, Basic Chopper, with more to follow.

SIMPLIFIED 6-or 8-CHANNEL SYSTEM - 5 volts full-scale

Model 358.5480 system for computer readout, telemetry recording, DC voltage monitoring and similar applications requiring no preamplification. Uses 350 system recorder providing moder ate sensitivity, good linearity and gain stability.

HIGH SPEED OPTICAL X-Y RECORDER - flat response to 100 cps , writing speeds to $2500^{\prime \prime} / \mathrm{sec}$.

Can record such rapidly changing variables as acceleration and vibration of mechanical elements, transistor characteristics, etc. Miror galvanometers and a light beam produce record ing traces on ultraviolet-sensitive $8^{\prime \prime} \times 8^{\prime \prime}$ direct-print paper that develops immediately by exposure to normal room light. Interchangeable " 850 " syspem preamplifiers are used for each axis; new preamps and time base generator now in development allow a side variety of applications.

SELF-CONTAINED " 450 " UNIT AMPLIFIERS
Versatile " 350 " Series preamplifiers with individual power supplies in portable cases for driving 'scopes, optical oscillograptis tape recorders, etc. Available in " 450 " cases or four-unit modules in $19^{\prime \prime}$ frame for rack mounting. One " 450 " case and power supply can serve any " 350 " preamp.

For complete descriptive information on these and other Sanborn precison instruments, write to the Industrial Division in Waltham or contact your local Sanborn Sales Engineering representative.

[^8]to measure displacement
'PROBE' STYLE - complete, for 150, 350 or 850 Series Carrier Amplifiers; linearity 0.5%; stroke range $\pm 0.050^{\prime \prime}$; sensitivity 50 chart div deflection $/ 0.001^{\prime \prime}$ displacement.

LINEARSYN - differential transformer; strokes from $\pm 0.005^{\prime \prime}$ to $\pm 10,000^{\prime \prime}$; high sensitivities. Six standard series, five models in each series.

Clamps, Instrument Cases, Line Sup ports or Fairleads
Tape-Athon 523 Hindry Ave Inglewood Calif-George M Anthony- 13 Em. ployees-0R 8.5359—Tape
\triangle *Tapco Group of Thompson Ramo Wool dridge Inc P O Box 902155500 W El Segundo Blva Los Angeles 45 Calif-David Traite
Taylor Fibre Co 1400 Palomares Ave Laverne Calif-Milton F Chanel 85 Employees-LY 3-1341-Lami nated Plastics, Vulcanized Fibre. Copper Clad Laminates for Printed Circuits
\triangle TDK Electronics Co Ltd 606 South Hill St Los Angeles 14 Calif-K Suzuki chnibilt Corp 905 Air Way Glendale 1 Calif-Ray Cairnes
\triangle Technical Devices Co 2340 Centinela Ave Los Angeles Calif-Melvin K
Technical Oil Tool Corp 1057 N LaBrea Ave Los Angeles 38 Calif-John $P 1$
Davis- 100 Employes-O Davi-100 Employees-OL 4-1763tors
\triangle Technical Products Instrument Div 6670 Lexington Ave Las Angeles 38 Calif $\xrightarrow{\sim} \mathrm{H}$ Krebs
\triangle Technology Instrument Corp of Calif 7229 Atoll Ave N Hollywood CalifJM Looney Jr-85 Employees-PO 5-8620-Accelerometers. Potentiometers. Transducers
\triangle Tektronix Inc 9450 S W Barnes Rd Portland Ore-Howard Vollum- 2400 Employees-CY 2-2611-D-C Amplifiers, Differential Amplifiers, Genera-
tors
\triangle Telecomputing Corp 915 N Citrus Ave Los Angeles Calif-Peter L BealerH0 4-3171-Amplifiers, Aviation Auxiliary Electronic Equipment, Batteries, Charges \& Accessories
\triangle Telemeter Magnetics Inc 2245 Pontius Ave Los Angeles 64 Calif-Erwin Tomash-BR 2-0991-Ceramics, Digital Computers, Cores
Telemetering Corp of America 8345 Hayvenhurst Ave Sepulveda Calif-Joel H Axe- 14 Employees-Telemetry Systems (FM/FM \& PCM) Miniaturized Voltage Controlled oscillators
Telepix Corp \& Film Recorders 1515 N Western Ave Hollywood 27 CalifRobert P Newman-14 Employees-
H0 4-7391-Industrial Motion PirH0 4-7391-Industrial Motion Pictures, Slide Films, Sound Recording Services
Tevco Insulated Wire 108 E Prospect Ave Burbank Calif-Peter S Wald-40
Employees-VI 9.5574 Employess - VI 9-5574-Insulated Wire, Special Cables, TV Parts \& Accessories
\triangle Thermador Electrical Mfo Co 715 S Raymond Ave Alhambra Calif-M B Sawyer $\begin{aligned} & \text { Jr- } 60 \text { Employeses-CU } \\ & 8831 \text { - Precision } \\ & \text { Magnetic }\end{aligned}$ Compo8831 - Precision Magnetic Components, Power Supplies, Special Trans-
formers formers
\triangle Thermocal Inc 1631 Colorado Ave Santa Monica Calif-N J Kennedy-30 Employees - EX 3-9841 - Current Sensitive $\begin{gathered}\text { Switch, Heat } \\ \text { Switch, } \\ \text { Sressure }\end{gathered}$ Switive Switch, Pressure Switches
Thomas \& Betts Co Inc 645 Philips St
San San Francisco 24 Calif-Donald Frear
\triangle Thompson Ramo Wooldridge Inc $\mathbf{P} 0$ Box 90215 Airport Sta Los Angeles
45
Calif-
E 45 Calif-D E Wooldridge-OS 5 . Power Systems, Ground Support \& Fuel Systems., Pumps
\triangle Thorson Co 7361 Melrose Ave Los Angeles 46 Calif-T Macklin
Tipco Mfg Co 14734 Calvert Van Nuys Calif-JW Gage- -5 Employees-ST 6-7881 - Self Adjusting Wrench, Safety Wire Tools
\triangle Topatron Inc 942 E ojai Ave Ojai Calif-Lee Appleman- 20 Employees choic Microwave Test Chambers \& Electronic Test Consoles
Touch-Plate Mfg Corp 16530 Garfield Ave Paramount 1 Calif-K P Cronk- 30 Employees-ME 3-0207-Low Voltage Switch Systems, Relays, Momentary Contact Switches
Trans Electronics Inc 7349 Canoga Ave Canoga Park Calif-William J Miller Supplies, Transistor \& Diode Testers Transformer Engineers 285 N Halstead Ave Pasadena Calif-J M Gallagher Transformers, Employes - RY 1-6906-
Trans-Tel Corp 910 N Orenu Dr
geles 38 Calif-Ben Williams- 23

Employees - H0 2-7304 - Audio \& Transistor Amplif
\triangle Triad Transformer Corp 4055 Redwood Ave Venice Calif-L W Howard-475 Employees-TE 0.5381 - Electronic Transformers, Filters \& Toroidal Coils, Reactors
Tri-Dex Co P 0 Box 1207 Lindsay Calif - K B Howard- 3 Employees-LI 2-4051-Terminal Boards, Turret Lug blies (All Contract Mfo)
Tri-Ex Tower Corp 127 E Inyo St Tulare Calif-Louis V Tistao- 18 Employees -MU 6-3411-Microwave \& Communications \& Accessories, Telescosing Crank Up Towers
Via Del Via Del Monte Oceanside Calif-V A Neeper-40 Employees-SA 2-9779 -Electrical Indicating Meters
\triangle Tri-State Supply Corp 554 Bryant St meyer
Trutone Electronics Inc 6912 Santa Monica Blvd Los Angeles 38 CalifP H Tartak- 22 Employees-H0 4 8118 -AM FM \& FM Tuners, PreAmplitiers, Amplifiers \& Monaur
T T Electronics Inc P 0 Box 180 Cul ver City Calif-JF Sodaro- 10 Em-ployees-TE $0.3213-\mathrm{Twin-T}$ Rejection \& Highpass, Lowpass \& Bandtion \& Higs Filters. Active Bandrass Filters \triangle Tung-Sol Electric Inc 8575 Washington Blvd Culver City Calif-Charles Silver
\triangle Tur-Bo Jet Products Co Inc 424 S San Gabriel Calif-Charles A Sprowl-85 Employers - CU 3-5191 - Coils for Twin Lack Solenoids \& Chokes
\triangle Twin Lack Inc 1024 W Hillerest Blvd Onglewood Calif-C Parke Masterson Adapters, Assemblies, Circuit Breakers

U

Ultradyne Inc 2624 San Mateo N E P O Box 3308 Albuquerque N M-Edward L Amonette- 50 Employess-AM 8 24 Voltage Systems, Pressure to Fre quency Systems
Ultra-Fidelity Labs Inc 643 W 17th S Costa Mesa Calif-A Badmaieff-16 Employees-LI 8-1381-Amplifiers. Audio Equipment, Complete Sound Systems
Uitra-Violet Products Inc 5114 Walnut Grove Ave San Gabriet Calif-Thomas S. Warren-- 32 Employees-CU 3 Light Lamps \triangle Ultronix Inc 111 E 20 Ave San Mateo Calif-David Persen-100 Employees -FI 5-7921-Wire Wound Resistors, Networks, Trimming Potentiometers
\triangle Ungar Electric Tools Inc 4101 Redwood Ave Los Angeles 66 Calif-William L Nehrenz-100 Employees-EX 8 5718 -Electrical Soldering Tools
United Electrodynamics Inc 200 Allendal Rd Pasadena Calif-Frank A Fleck300 Employees-MU 2-1134-Tele metering Systems \& Components, Stepping Switches
\triangle *United Electronics Inc 9937 Jefferson Blvd Culver City Calif—Ralph B Austrian
United States Chemical Milling Corp 1700 Rosecrans Ave Manhattan Beach Cali -R S Stevens- 500 Employees- OR 8-4041 - Printed Circuit, Cables, Connectors
United Transformer Corp 4008 W Jefferson Blvd Los Angeles 16 Calif-John Borg-125 Employees-RE 1-6313Transformers, Reactors, Filters
\triangle Universal Electronics Co 1720 22nd St Universal Match Corp Armament Div 6850 Van Nuys Blvd Van Nuys Calif -I A Waterstreet Jr
$\triangle U$ S Dept of Commerce Electronics Div 555 Battery St San Francisco 11 Calif-Merrill F Woodruff
$\triangle U \quad S$ Department of Commerce Nat'l Bureau of Standards Boulder Labs Boulder Colo-Charles L Bragaw
U S Dept of Commerce Technical Services 555 Battery St San Fr
11 Calif-Merrill F Wondruff
U S Electrical Motors Inc 200 E Slauson Ave Los Angeles 54 Calif-R E Goodman-A D 3.3131-Electric Motors, Power Transmissions, Fractional
HP Aircraft Motors HP Aircraft Motors

U S Naval Ordnance Test Station China Lake Calif-Ray A Sinnott
\triangle U S Naval Ordnance Lab Corona Calif -A W Card
$\triangle U$ S Navy Electronics Lab San Diego 52 Calif-Charles M Hatcher
U S Relay Co The Electronics Div A S R Products Corp 717 N Coney Ave Azusa Calif-Lyle D Bunce-197 Employees - ED 4-8206-R R
Solenoids \& Packaged Controls
\triangle U S Semiconductor Products Inc 3540 W Osborn Rd Phoenix Ariz-J C -Voltage Regulating Diodes Medium \& Hinh Power Zener Diodes \& Rectifiers, Dry Solid Tantalytic Capacitors
U S Semiconductor Products Inc 3536 W Oshorn Rd Phoenix Ariz \quad C 5591-Silicon Voltape Repulator 8 5091-Silicon Voltage Regulator Di-
odes, Silicon Rectifiers, Silicon Zener odes, S
Diodes
\triangle *Utica Drop Forge \& Tool Div Kelsey. Hayes Co 1348 Venice Blvd Los An geles 6 Calif-John Arnett

V

\triangle Vacuum Tube Products/Div Hughes Air craft Co 2020 Short St Oceansid Calif-J J Sutherland- 80 Employees Tubes, 2.7648-Special Cathode Ray Tubes, High Vacuum Rectifiers \& Xenon Thyratrons, Spot \& Seam Welders
\triangle Van Groos Co 21051 Costanso St Wood land Hilis Calif-J C Van Groos Vanguard Electronics Co 3384 Motor An Los Angeles 34 Calif-Simon A Gol-bert-20 Employees-TE O-7344Vails, Chokes, Variabie Inductors Alto Asociates Gl Hansen Way Palo Alto Calif-W M Silhavy- 2400 Em-
ployees - DA
$6.4000-$ Microwave ployees - DA 6-4000-Mitrowave Tubes, High Vacuum Equipment, RF Spectrometers
\triangle Vaughn Co G H 2366 E Foothill Blyd Pasadena Calif-George Vaughn
\triangle Vector Electronic Co 1100 Flower St Glendale 1 Calif-R R Scoville-CH 5-1076-Chassis, Accessories, Fuses, Shielding
\triangle Vicon Corp Div Insul-8-Corp 1369 Industrial Rd San Carlos Calif-H Johnston
Video Instruments Co Inc 3002 Pennsyl vania Ave Santa Monica Calif-Peter Poh-app 30 Employees-EX 3-1244-Solid State DC Amplifiers \& Power Supplies, Strain Gage Control Units (Transistorized)
\triangle Viking Industries Inc 21343 Roscoe Blvd Canoga Park Calif-F V Cris-well-125 Employes s-DI 7.8500Miniature Circular Connectors, Printed Circuit Connectors, Compression \& Transfer Molded Plastics
Vinson Co E R 1401 Middle Harbor Rd Oakland Calif-William Fleming- 8 Automation Equipment, Photoelectric Control Devices, Short Run Electronic Assemblies
Voltron Products 1010 Mission St S Pasadena Calif-Arnold Raines- 30 Em ployees - RY 1-3377 - Expanded Wattmeters
Vought Co P O Box 1350 Beverly Hills Calif-A D Fraser-25 Employees Photog 6-1131-Electrically Operated Viewers \& Printers. Test Panels for Photopraphic Data Recording Equipment

W

\triangle Walkirt Co 141 Hazel St Inglewood Calif-Wes L Kirchoff- 25 Employees Calif-Wes
-0R $8-4814-P l u g-i n ~ \& ~ M o d u l a r ~$ Circuits ${ }^{8}$
\triangle Walseo Electronics Mfg Co 3225 Exposition PI Los Angeles 18 Califposition Pl Lo
Arnold Kloman
Walton Tool \& Die Co Inc 2707 Empire Ave Burbank Calif-Walton Emmick -35 Employees-TH 6-5252-Sheet Metal Fabrication \& Machining of Component Parts for Ra
tronics \& Guided Missiles
Warren Wire Co 1601 Chestnut Alhambra Calif-R A Rahe
Watkins-Johnson Co 3333 Hillview Ave Palo Alto Calif-H Richard Johnson - 38 Employees - DA 6-8830-Traveling-Wave Tubes, Backward-
Wave Oscillators, Helitrons Wave Oscillators, Helitrons
Vaugh Eng'g Co 7842 Burnet Ave Van
Nuys Calif—Reuel H Smitter_90

Employees - ST 3-1055 - Turbine Type Flowmeters, Frequency Converters, Delay Relay Timers
Waveguide Inc 1769 Placentia Costa Mesa Calif-John J Bodley-20 Employees Wavequide Assemblies ass Antennas, Waveguide Assemblies \& Components Weightman \& Associates 4029 Burbank Blyd Burbank Calif-H G Weightman
\triangle Weldmatic Dir/Unitek Corp 380 N Hal. stead Ave Pasadena Calif-Gerald E
Woods-100 Employets-SY 5-5995 -Precision Stored Enerdy Welders
\triangle Wesrep Corp 2022 S Sepulveda Blvd Los Angeles 25 Calif-Dudley V Cassard
\triangle Western Control Equipment Co 14615 Ventura Blyd Sherman Oaks CalifHoward L Miller
\triangle Western Devices Inc 600 W Florence Ave Inglewood Calif-W C Strumpell
Western Electronic Co 717 Dexter Ave Seattle 9 Wash-H Tory- 22 Em ployess - AT 4-0200-Electronic Analog Computer
\triangle Western Fishing Line Co 4680 San Fernando Rd Glendale 4 Calif-John Howard
\triangle Western Gear Corp/Electro Products Dir 132 W Colorado St Pasadena Salit-R B Abott-140 EmployeesSY 6-4395-AC and DC Fractional HP Motors, Mil Spet Fans \& Blow ers, Aircraft Heaters
\triangle Western Gold \& Platinum Co 525 Harbor Blyd Belmont Calif-Walter Hack--85 Employees-LY 3-3121-Hi-Temperature, Hi-Purity Alumina Ceramics, Low Vapor Pressure Braz ing Alloys, Molybdenum Ribbon
Western Radiation Lab-1107 W 24th St 4 Employees - RI 7.8355 Locherisotope Sources \& Nucleonic Instru ments, Light Receivers, Medical GM Counter Tubes
\triangle Westline Products Div/Western Litho Co 600 E 2nd St Los Angeles 54 Calif-Ben Birken-app 400 Em Tubing \& Sleeving, Special Labels \& Markers
\triangle Westron Sales \& Eng'g 7407 Melrose Ave Los Angeles 46 Calif-Charles R Fetty
\triangle White Dental Mfg Co S S 1839 W Pico Blyd Los Angeles 6 Calif-Paul $\$$ Rohrig
Whittaker Gyro 16217 Lindbergh St Van Nuys Calif-D Rammage- 480 Em ployees - ST 3-1950-Electrically Operated Gyros
\triangle Wiancko Eng'g Co 255 N Halstead Ave Pasadena Calif-R Major- 280 EmAloyees \& EM Systems, 5186 - Transducers Am \& FM Systems, Commutators
Wiggins Oil Tool Co E B 3224
Δ Wiggins Oil Tool Co $\underset{\text { Olympic }}{ }$ E Blvd Los Angeles $\quad 3224$ Calif Olympic Blvd Los
-Robert A Wolfe
Wirco Electronics Inc 11680 McBean Drive EI Monte Calif-Vincent Wirth -11 Employees-GI 3-1433-Elec tronic Windings
\triangle Wright Eng'g Co 180 E California St Pasadena Calif—Jack Mott
Wyco Metal Products 6918 Beck Ave N Hollywood Calif—Forrest N Weiss-
50 Employes_TR 7.5579 _Relay Racks, Chassis, Cases
Wyle Laboratories 128 Maryland St E Segundo Calif-EImer R Easton- 300 Emplayees - OR 8-4251- Environ mental, Functional \& Combined Test ind of Missile \&
nents \& Systems
Wyle Mfg Corp 133 Center St EI Segundo Calif-J A Sneller-35 EmployeesEA 2-0659-Environmental Test

BACKWARD WAVE OSCILLATORS

Features:

- SMALL SIZE
- LOW VOLTAGE
- LONG LIFE
- RUGGED CONSTRUCTION

Varian X-band BWO's are now the standard of the industry for systems requiring long life, low voltage operation, and small size. Characteristic of Varian BWO's is a uniform power output and helix voltage relationship with frequency. The metal and ceramic construction offers the most reliable tube at the lowest cost and assures dependability in severe environments.

Varian makes a wide variety of Klystrons and Wave Tubes for use in Radar, Communications, Test and Instrumentation, and for Severe Environmental Service Applications. Over 100 are described and pictured in our new catalog. Write for your copy - address Tube Division.

NOTALEMON N THE BUNOH!

Here's a combination that pays off every time! Six of the country's foremost electronic manufacturers - and Neely Enterprises-form an unbeatable team. What's your game...tracking subs in the Pacific or fission-testing in the great western desert? It doesn't matter... if it's going to require electronic instrumentation, a Neely Field Engineer can help you. Pull the crank and set the wheels in motion. No matter where you are in California, Arizona, Nevada or New Mexico, Neely is only a short phone call away. Ring us...it's no gamble at all!

NEELY

ELECTRONIC MANUFACTURERS' REPRESENTATIVES
ONE OF NEELYS EIEHT ORFICES IS LOCATEO CONVENIENTLY NEAB YOU.

SAN DIEGO
OFFIGE 7 Fifteenth St. 1055 Shafter St Phone: GI 2-8901 Phone: AC 3-8106 TWX: SC 124 TWX: SD 6355

Whosington St., S. E. 126 S. Water St. Phone: AL 5-5586 TWX: AQ 172

PHOENIX OFFICE

OFFICE 641 E, Missouri Ave. 232 S. Tucson Blvd Phone: CR 4-5431 Phone: MA 3-2564 TWX: PX $483 \quad$ TWX: TS 5981

The following survey of power rectifiers covers devices rated at I a. and over. It completes the data in "'1959 Semiconductor Diode Specifications" which a.ppeared in El's June 1959 All-Reference Issue

			REVERSE				MaxImum ratings				
DIODE TYPE NO.	$\begin{aligned} & \text { CASE } \\ & \& \\ & \text { MAT } \end{aligned}$	WORKING YOLTAGE (max.) $E_{\text {cont }}$.	$\begin{gathered} E_{\text {PEAK }} \\ v \end{gathered}$	$I_{\text {max }}$ (ma)	V	${ }^{\circ} \mathrm{C}$	I Surge (amps)	OC OUT PUT CURRENT (amps)	FUL LOAD Vat. DROP	ois. (M)	${ }^{\top}{ }^{\circ} \mathrm{C}$

$\begin{gathered} O 100 E \\ \text { TYPE } \\ \text { NO. } \end{gathered}$	$\begin{gathered} \text { CASE } \\ \& \\ \text { MAT } \end{gathered}$	WORKING VOLTAGE (MAX.) $E_{\text {cont. }}$		REVERSE			Maximum				
			$E_{\text {peak }}$	$I_{\text {max }}$ (ma)	V	${ }^{\circ} \mathrm{C}$	I surge (amps)	$\left\lvert\, \begin{gathered} \text { DC OUT PUT } \\ \text { CURRENT } \\ (\text { amps }) \end{gathered}\right.$	FUL 1040 vat. prop	$\left\lvert\, \begin{aligned} & D \mathbb{S} . \\ & (N) \end{aligned}\right.$	${ }^{\top}$

1N1450	D Si	100	5	100	5
2N1451	D Si	200	5	200	5
1N1452	D Si	300	5	300	5
1N1453	D Si	400	5	400	5
1N1454	E Si	100	25	100	25
1N1455	E Si	200	25	200	25
1N1456	E Si	300	25	300	25
2N1457	E Si	400	25	400	25
1N1458	E Si	100	25	100	35
1N1459	E Si	200	25	200	35
1N1460	E Si	300	25	300	35
[N1461	E Si	400	25	400	35
'1N1462	F Si	100	50	100	50
1N1463	F Si	200	50	200	50
1N1464	F Si	300	50	300	50
1N1465	F Si	400	50	400	50
2N1466	F Si	100	50	100	75
1 N1467	F Si	200	50	200	75
1N1468	F Si	300	50	300	75
1N1469	Fsi	400	50	400	75
1N1470	G Si	100	100	100	100
1N1471	G Si	200	100	200	100
1N1472	G Si	300	100	300	100
1N1473	G Si	400	100	400	100
1N1474	G Si	100	100	100	150
1N1475	G Si	200	100	200	150
1N1476	G S1	300	100	300	150
1N1477	GSi	400	100	400	150
1N1478	G Si	100	100	100	200
1N1479	G Si	200	100	200	200
1N1480	G Si	300	100	300	200
1N1481	G Si	400	100	400	200

eradley semiconductor Corp., 275 Welton St., New Hoven II, Conn.

$1: 1$ -2183 Dey7Rec	ZENER LOW VOLTAGE DIODES - 200mW - Zener Voltage Range: $2.0 \mathrm{~V}-8.0 \mathrm{~V}$	ZENER MICRO. MINIATURE GLASS LOW VOLTAGE DIODES - 250 mw - Zener Voltage Range: $2.0 \mathrm{~V}-8.0 \mathrm{~V}$	ZENER "DOUBLE ANODE" LOW VOLTAGE DIODES - 200 mW Zener Voltage Range: $3.0 \mathrm{~V}-8.0 \mathrm{~V}$	ZENER ' 'SINGLE ANODE" MEDIUM VOLTAGE -150mW Lener Voltage Range: $7.5 \mathrm{~V}-145 \mathrm{~V}$	ZENER "DOUBLE ANODE" MEDIUM VOLTAGE DIODES - 150 mW - Zener Voltage Range: $7.5 \mathrm{~V}-45 \mathrm{~V}$	ZENER REFERENCE DIODES \& ELEMENTS - Operating Zener Voltage: IN429:6.2V $\pm 5 \%$ IN430, IN430A IN430B, IN1530, 1N1530A: $8.4 V \pm 5 \%$ Dyn. Imp.: 1N429:20 ohms Others: 15 ohms	ZENER REFERENCE MICROMINIATURE DIODES - Operating Zener Voltage: 5.9 V to 6.5 V - Dyn. Imp.: 15 ohms	$\begin{aligned} & 15 \\ & \text { ZENER } \\ & \text { REFERENCE } \\ & \text { STRINGS } \\ & \text { - Operating } \\ & \text { Zener Voltage: } \\ & 6.2 \mathrm{~V} \text { thrs } \\ & \text { 49.6V } \pm 5 \% \\ & \text { Dyn. Imp.: } \\ & \text { 20 ohms to } \\ & \text { 180 ohms } \\ & \text { (over the } \\ & \text { entire line) } \end{aligned}$	38 ZENER VOLTAGE REGULATORS 10 WATI - Zener Voltage Range: 5.6 V to $200 \mathrm{~V} \pm 10 \%$ - Dyn. Imp.: $10 h m$ to 140 ohms (over the entire line)		ZENER VOLTAGE REGURATORS 1/4 WATT - Zener Voltage Range : 5.6 V to $200 \mathrm{~V} \pm 10 \%$ - Dyn Imp.: 3.5 ohms to 1400 ahms
Cose Type	M1	C1	MI	MI	MI	M1, M3, P1	C1	E1A, E2A, E3A, E4A	SIE	MIA	G1
$\begin{aligned} & =440 \\ & >10 \cdot 6=0 \end{aligned}$		RAL PURPOS CON DIODES - 150 mW PIV Range: V thru 470 V			ERAL PURPO DIODES 150 mW IV Range: thru 270 V		GLASS PURPOS - 20 - PIV 25 V	GENERAL E DIODES mw Range: 175 V		LASS FAST REC SILICON DIOD - 200 mW - PIV Range 25 V to 175 V	COVERY DES
Case Type		M1			M1			1		G1	
Recthiers	SILICON MEDIU	DIFFUSED J M POWER RE - PIV Range: 50 V to 1000 V	UNCTION CTIFIERS		SILIC MED	DIFFUSED UM POWER - PIV Range: 50 V to 500	UNCTION CTIFIERS		SILICON DI MEDIUM P	FFUSED JUNC OWER RECTIF PIV Range: 5 V to 570 V	TION IERS
Cose Type		MIA				M2				SIE	
SBl: $2-1 / 6$	SILICO - Typical .072 mW ft. \mathbf{C} Spect 4000 Peak	SOLAR CE Power Output to 34.0 mW (at 1 candles-sunligh ral Response: Ra o 11,500 angstro k: 8500 angstrom	LLS Range: 0,000 t) ange: ms; s					TO-VOLTAIC DOUT CELLS readout positions om 4 to 10 Response: Range: 11,500 angstroms; 8500 angstroms			

IF YOU NEED A JOB IN ELECTRONICS DONE QUICKER AND BETTER, CONTACT

Western Regional Office
426 West College St., Los Angeles 12, Calif.
MAdison 6-8063, TWX: IA 188
Middle West Reg'l. \& Export Office
930 Pitner Avenue, Evanston, Illinois
UNiversity $9-9850$, TWX: Evanston, III. 398
Eastern Regional Office
710 Mattison Avenue, Asbury Park, N. J.
PRospect 4-7877, TWX: APK 634

POWER RECTIFIERS

			REVERSE				maximum ratimgs				
TYPE No.	case \% WT	$\begin{aligned} & \text { YOLTAGE } \\ & \text { (MAX.) } \\ & E_{\text {cont }} . \end{aligned}$	$E_{p \in A K}$	$I_{\text {max }}$ (ma)	\checkmark		ISURGE (amps)	$\left\lvert\, \begin{array}{c\|} \hline \text { OC OUTPUT } \\ \text { CURRENT } \\ \text { (a mps) } \end{array}\right.$	$\begin{aligned} & \text { FUL } \\ & \text { LOAD } \\ & \text { VRIT. } \\ & \text { OROP } \end{aligned}$	Dis.	${ }^{\text {a }}$ -

COLUMBUS ELECTRONICS CORP., 1010 Saw Mill River Rd., Yonkers, N. Y. (continued)

IN2364	A Si	1500	1	25	1.0	2.0
IN2364A	A Si	1500	1	25	5.0	2.0
IN2364B	A Si	1500	1	25	10	2.0
IN2366	A Si	1600	1	25	1.0	2.0
IN2366A	A Si	1600	1	25	5.0	2.0
IN2366B	A Si	1600	1	25	10	2.0
IN2368	A Si	1800	1	25	1.0	2.0
IN2368A	A Si	1800	1	25	5.0	2.0
IN2368B	A Si	1800	1	25	10	2.0
IN2370	A Si	2000	1	25	1.0	2.0
IN2370A	A Si	2000	1	25	5.0	2.0
IN2370B	A Si	2000	1	25	10	2.0
CEC310	B Si	300	5	150	10	1.2
CECA10	B Si	400	5	150	10	1.2
CEC510	B Si	500	5	150	10	1.2
CEC610	B Si	600	5	150	10	1.2
CEC810	B Si	800	5	150	10	1.2
CECLO10	B Si	1000	5	150	10	1.2
CEC1210	B Si	1200	5	150	10	1.2

			REVERSE.				MAXIMUM RATIMGS				
DIODE TYPE NO.	$\begin{gathered} \text { CASE } \\ \& \\ \text { MAT } \end{gathered}$	VOLTAGE (MAX.) Econt.	$E_{\text {PEAK }}$	$\begin{aligned} & I_{\text {max }} \\ & (\text { ma }) \end{aligned}$	V	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { I SURGE }^{\text {(amps }} \end{aligned}$	$\begin{aligned} & \text { OC OUTPUT } \\ & \text { CURRENT } \\ & \text { (asps) } \end{aligned}$	FUL LOAD YaT. OROP	DIS. (w)	${ }^{\circ} \mathrm{C}$

general electric co., Semiconductor Dept.. Syracuse N. Y. (continued)

$\begin{aligned} & \text { AJA3511 } \\ & \text { AH1AD3 } \end{aligned}$	L Si	70	100	27	175
4 JA 3511				10	175
BHIADI	L Si	140	200		
BHIAD2	L Si	140	200	18	175
$\begin{aligned} & \text { 4JA3511 } \\ & \text { BHIAD } \end{aligned}$	1 Si	140	200	27	175
CHA3511	151	210	300	10	175
${ }^{\text {CHA3 }}$ CHD ${ }^{\text {a }}$	L Si	210	300	18	175
CJA3511	1 Si	210	300	27	175
$\begin{aligned} & \text { 4JA3511 } \\ & \text { BH2AD1 } \end{aligned}$	L Si	280	200	10	175
4JA3511 ${ }^{\text {BH2AD2 }}$	1 Si	280	200	18	175
$\begin{aligned} & \text { 4JA3511 } \\ & \text { BH } 2 A D 2 \end{aligned}$	1 Si	280	200	27	175
$\begin{aligned} & \text { AJA.3511 } \\ & \text { C-H2AD1 } \end{aligned}$	1 Si	420	300	10	175
$\begin{aligned} & \text { AJA } 3511 \\ & \text { CH2AD2 } \end{aligned}$	1 Si	420	300	18	175
$\begin{aligned} & \text { 4JA3511 } \\ & \text { CH2AD3 } \end{aligned}$	1 Si	420	300	27	175
$4 J A 3511$ $C H 3 A D 2$	1.51	630	300	10	175
CJIA3511	L Si	630	300	18	175
4 JA3511 CH3ADI	1 Si	630	300	27	175
4 JA6011 FHIAAI	M Si	35	50	53	100
AJA6011	M Si	70	100	53	100
4 JA6011 BHIAAL 4 JA6011	M Si	140	200	53	100
CHIAAI	M Si	210	300	53	100
	M Si	280	400	53	100
	M Si	35	50	41	100
4 JA6211 AHIAA1	M Si	70	100	41	100
4 JA6211 BH1AAI	M Si	140	200	41	100
$\triangle \mathrm{JAG211}$	M Si	210	300	41	100
4 JA6211 DHIAAI	M Si	280	400	41	100

Current Ratings for Resistive or Inductive Loads.

$\begin{aligned} & \text { 1N151 } \\ & \text { AHIACl } \end{aligned}$		G	70	100				1.2	
${ }_{\text {BHILACl }}$		G	140	200				1.0	
1N153									
CHIACl		G	210	300				. 75	
$\begin{aligned} & \text { NH158 } \\ & \text { BH2AC1 } \end{aligned}$		G	280	200				1.0	
1N1301		Si	50	50	15	150	300	17.5	0.63
1N1302		Si	100	100	5	150	300	17.5	0.63
1N1304		Si	200	200	5	150	300	17.5	0.63
1N1306		Si	300	300	5	150	300	17.5	0.63
$\begin{aligned} & 4 \mathrm{JA} 211 \\ & \mathrm{FH} 1 \mathrm{ACl} \end{aligned}$	1	G	35	50				1.3	
$\begin{aligned} & \text { 4JA211 } \\ & \text { DH1AC1 } \end{aligned}$	I	6	280	400				-4	
$\begin{aligned} & \text { 4JA211 } \\ & \text { CH2AC1 } \end{aligned}$	J	G	420	300				. 75	
$\begin{aligned} & \text { 4JA211 } \\ & \text { DH2ACl } \end{aligned}$		G	565	400				. 4	
4 JA211 CH3ACl		G	635	300				. 75	
$\begin{aligned} & \triangle J A A 11 \\ & F H 1 A D 1 \end{aligned}$		$5 i$	35	50				1.9	
4 JA411 AHIADI		Si	70	100				1.5	
AJAA11 BHIAD		Si	140	200				1.5	
$\begin{aligned} & \triangle \mathrm{JAC} \angle 11 \\ & \mathrm{CH1ADI} \end{aligned}$		Si	210	300				1.5	
AJA411 DHIADI		Si	280	400				1.5	
AJAA 11 EHIADI		Si	350	500				1.5	
$\begin{aligned} & \text { AJAA11 } \\ & \text { MHIADI } \end{aligned}$		Si		600				1.5	
$\begin{aligned} & \text { AJA3011 } \\ & \text { AH1ACL } \end{aligned}$		G	70	100				5	
$4 \mathrm{JA3O11}$ BHIACl		G	140	200				5	
4 JA3011 CHilaCl		G	210	300				2.25	
4JA3511 FHIADI		Li	35	50				10	
4JA3511 FHIAD2 4343511		1 Si	35	50				18	
FHiAd3		Si	35	50				27	
${ }^{4}$ AA3511		Si	70	100				10	
$\begin{aligned} & \text { 4JA3511 } \\ & \text { AlilaD2 } \end{aligned}$		Si	70	100				18	

international rectifier Corp., 152l East Grand Ave Ei Segundo. Calif

DIODE TYPE NO．	$\begin{gathered} \text { CASE } \\ \& \\ \text { MAT } \end{gathered}$	WORKING VOLTAGE （max．） $E_{\text {cont．}}$	REVERSE				MAXIMUM RATINGS				
			$\left[\begin{array}{c} E_{\text {PEAK }} \\ V \end{array}\right.$	$I_{\text {max }}$ （ma）	V.	${ }^{\circ} \mathrm{C}$	$\left\lvert\, \begin{aligned} & i_{\text {SURGE }} \\ & (\text { amps }) \end{aligned}\right.$	DC OTPPT CURRENT （amps）	FULL LaND vat． DROP	DIS．	${ }^{\circ} \mathrm{C}$

INTERNATIONAL RECTIFIER CORP．． 1N2131
1N2132
1N2133
1N2134
1N2135
2N2136
2N2137
1N238
1N2139

4515	Q Si	50
45 L 10	Q Si	100
45L15	Q Si	150
45120	Q Si	200
45125	Q Si	250
45130	Q Si	300
45135	Q 51	350
45L40	Q S1	400
45L45	Q S1	450
45 L 50	Q Si	500
45 L 60	Q Si	600
45 L 70	Q Si	700
45L80	Q Si	800
45M5	Q Si	50
45 M 10	Q Si	100
45 M 15	Q Si	150
45M20	Q Si	200
45M25	Q Si	250
45 m 30	Q Si	300
45M35	Q Si	350
45 M 40	Q Si	400
45M45	Q Si	450
45， 450	Q Si	500
45M60	Q Si	600
45， 470	Q Si	700
45 M 80	Q Si	800
45P5	R Si	50
45 P 10	R Si	100
45P15	R Si	150
45P20	R Si	200
45P25	R Si	250
45，30	R S1	300
45F35	R Si	350
45 P 40	R Si	400
45P45	R Si	450
45P50	R Si	500
45P60	R Si	600
45P70	R Si	700
45P80	R Si	800
7045	S Si	50
70010	S Si	100
$70 \cup 15$	S Si	150
70 U 20	S Si	200
$70 \cup 25$	S Si	250
$70 \cup 30$	S Si	300
$70 \cup 35$	S Si	350
70440	S Si	400
70445	S Si	450
70450	S Si	500
SD94A	Si	400
1N1095	G Si	500
1N1096	G Si	600

MOTOROLA，INC．，Semiconductor Products Div．， 5005 E．McDowell Rd．．．Phoenix，Ariz．

IN1563A	B Si	100	100	150	100	70	1.5	
IN1564A	B Si	200	200	150	200	70	1.5	
IN1565A	S Si	300	300	150	500	70	1.5	
IN1566A	B Si	400	400	150	400	70	1.5	
IN1115	D Si	100	100	300	100	30	1.5	0.65
IN1116	D Si	200	200	300	200	30	1.5	0.65
IN1117	D Si	300	300	300	200	30	1.5	0.65
1M1118	D Si	400	400	300	400	30	175	
1N1119	D Si	500	500	300	500	30	175	
IN1120	D Si	600	600	300	600	30	1.5	0.65
175								

NORTH AMERICAN ELECTRONICS，INC．， 212 Broad Street，Lymn，Moss．

ロロロロロロ	
\％	
creseruerar	
	NNO「\％\％\％
OnN5un	

$\begin{gathered} \text { DIODE } \\ \text { TYPE } \\ \text { NO. } \end{gathered}$	$\begin{gathered} \text { CASE } \\ t \\ \text { MAT } \end{gathered}$	WORKING VOLTAGE （MAX．） $E_{\text {cont }}$ ．	REVERSE				MAXImum ratings				
			$E_{\text {PEAK }}$	$I_{\text {max }}$	－	－		DC OUTPUT	FUL		
								CURRENT	LOAD	（W）	${ }^{\circ}$
			V	（ma）	\checkmark	${ }^{\circ} \mathrm{C}$	（amps）	（a mps）	vat．	（V）	${ }^{\circ} \mathrm{C}$

NORTH AMERICAN ELECTRONICS，INC．． 212 Broad Street．Lynn．Mass（contiriued）

SARKES TARZIAN，INC．，Rectifier Div．، 415 No．College Ave．Bloomington，Ind．．

1N1052	D Si	35	50	30	1.5
1N1053	D Si	70	100	30	1.5
1N1054	D Si	105	150	30	1.5
1N1055	D Si	140	200	30	1.5
1N1056	D Si	210	300	30	1.5
1N1057	D Si	280	400	30	1.5
1N1058	E Si	35	50	40	5
1N1059	ESi	70	100	40	5
1N1060	E Si	105	150	40	5
1N1061	E Si	140	200	40	5
1N1062	E Si	210	300	40	5
1N1063	E Si	280	400	40	5
2N1064	Y Si	35	50	40	5
1N1065	Y Si	70	100	40	5
1N1066	Y Si	105	150	40	5
1N1067	Y Si	140	200	40	5
1N1068	Y Si	210	300	40	5
1N1069	Y Si	280	400	40	5
1N1070	Z Si	35	50	40	5
1N1071	2 Si	70	100	40	5
1N1072	2 Si	105	150	40	5
1N1073	2 Si	140	200	40	5
1N1074	Z Si	210	300	40	5
1N1075	2 Si	280	400	40	5
1N1076	F Si	35	50	50	150
1N1077	F Si	70	100	50	150
1N1078	F Si	105	150	50	150
1N1079	FSi	140	200	50	150
1N1080	F Si	210	300	50	150
1N1085	YY Si	70	100	100	1.5
1N1086	YY Si	140	200	100	1.5
1 N 1087	YY Si	210	300	100	1.5
1N1088	YY Si	280	400	100	1.5
1N1089	H Si	70	100	60	5
1N1090	H Si	140	200	60	5
1N1091	H Si	210	300	60	5
2N1092	H Si	280	400	60	5
1N1157	S Si	35	50	200	20
1N1158	5 Si	70	100	200	20
1N1159	S Si	140	200	200	20
1N1160	S Si	210	300	200	20
1N1161	T Si	35	50	350	35
1N1162	T Si	70	100	350	35
1N1163	T Si	140	200	350	35
1N1164	T Si	210	300	350	35
1N1165	U Si	35	50	1000	100

[^9]

TECHNICAL DATA:			
$\begin{aligned} & \text { Diode } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Maximum DC } \\ & \text { Inverse Operating } \\ & \text { Voltage } \\ & \text { (volts) } \end{aligned}$	Maximum Average Forward Curren (ma)	Maximum Forward Voltage Drop $@ 25^{\circ} \mathrm{C}$ (volts @ ma)
1N645	225	400	1.0 @ 400
1N647	400	400	1.0 @ 400
1N649	600	400	1.0 @ 400
1N677	100	400	1.0 @ 400
1N681	300	200	1.0 @ 200
1N683	400	200	1.0 @ 200
1N685	500	200	1.0 @ 200
1N687	600	200	1.0 @ 200

Clevite offers silicon rectifiers designed for maximum reliability in the severest military and commercial applications.

Check these features:

- HIGH DISSIPATION - 600 mw
- SUBMINIATURE GLASS PACKAGE
- HIGH VOLTAGE - up to 600 volts
- hermetically SEALED
- HIGH TEMPERATURE OPERATION -
up to 150 ma at $150^{\circ} \mathrm{C}$
For details, write for Bulletin B217A-3

OTHER CLEVITE DIVISIONS:
Cleveland Graphite Bronze - Brush Instruments

- Clevite Electronic Components - Clevite Harris Products
- Clevite Lid. - Clevite Ordnance - Clevite Research Center
- Texas Division • Intermetall G.m.b.H.

CHPVITR

POWER RECTIFIERS

DIODE TYPE no.	$\begin{gathered} \text { CASE } \\ \& \\ \text { MI } \end{gathered}$	WORKING voliage (MUX.) Econt.	REVERSE				MAXIMUM RATINGS				
			$\mathrm{E}_{\text {peak }}$	$I_{\text {max }}$	-	-	$I_{\text {surge }}$	DC CUTPUT CURPENT	FOL	DIS.	T
			V	(ma)	V	${ }^{\circ} \mathrm{C}$	(amps)	((amps)	Vat.	(v)	${ }^{\circ} \mathrm{C}$

Voltage and Current Ratings are for Single Phase-full Wave-Center Tap Connection,
TEXAS INSTRUMENTS, INCORPORATED, Semiconductor Components Div.e P. O. Box 312, Dallas, Texa 1N1124 R Si iN1125 R Si iN1125 R R 1N1127. R Si NN1128 R R 1 N1130 P Si $\begin{array}{ll}\text { 1NI131 } & \text { P Si } \\ \text { 1N1124R } & \text { R Si }\end{array}$ $\begin{array}{ll}\text { 1N1124R } & \text { R Si } \\ \text { 1N1125R } & \text { R Si }\end{array}$ $\begin{array}{ll}\text { IN1125R } & \text { R Si } \\ \text { iN126R } & \text { R Si }\end{array}$
1N1127R R Si

thermosen, inc., 375 Foirfield Ave.. Stamford. Conn.

P1005	A Si	50	<5	50
P1010	A Si	100	<5	100
P1015	A Si	150	<5	150
P1020	A Si	200	<5	200
P1030	A Si	300	<5	300
P1040	A Si	400	<5	400
P1505	A Si	50	<5	50
P1510	A S1	100	<5	100
P1515	A Si	150	<5	150
P1520	A Si	200	<5	200
P1530	A Si	300	<5	300
P1540	A Si	400	<5	400
P2005	A Si	50	<5	50
P2010	A SI	100	<5	100
P2015	A Si	150	<5	150
P2020	A Si	200	<5	200
P2000	A Si	300	<5	300
P2040	A Si	400	<5	400
P2505	A Si	50	<5	50
P2510	A Si	100	<5	100
P2515	A Si	150	<5	150
P2520	A Si	200	<5	200
P2530	A SI	300	<5	300
P2540	A Si	400	<5	400
P3005	A Si	50	<5	50
P3010	A Si	100	<5	100
P3015	A Si	150	<5	150
P3020	A Si	200	<5	200
P3030	A Si	300	<5	300
P3040	A Si	400	<5	400

ELECTRONIC INDUSTRIES * August 1959

YOUR WESCON DIRECTORY

A PARTIAL LISTING OF INTERNATIONAL \ldots...THE MOST EXTENSIVE ELECTRONIC TYPES forindustrial and military applications
SILICON
AND
SELENIUM
LOW
CURRENT
TYPES

TO 1 AMP.

- special

milltary
TYPES
Special config
urations and high reliability rectifiers for military applica
tions may be obtained under our "Prescribed Rellabillty"' Program. Address Your inquiry to: ucts Dept.
SILICON
AND
SELENIUM
HIGH
VOLTAGE
TYPES

SILICON SELENIUM

HIGH VOLTAGE TYPES

Ratings: 100 to $\mathbf{6 0 0} \mathrm{PIV}$, Up to $\mathbf{5 0 0} \mathbf{~ m a}$. Specifically designed for missile and airborne and reliabilaty acations where miniaturization cally sealed, all.welded, pime factors. Hermeti tion. Manufactured to meet the most rigid mil. itary requirements. Request Bullotln $\$ \mathrm{R}-203$

Ratings: From 100 ma . to 50 Amps. Low forvard voltaze drop and low leakage variety of power applications. For details request Bulletin C $\mathbf{C} 349$, (26 volt cells); Bulletin
$\$ R .160$, (45 to 52 volts per cell) and Bulletin
SR.152, on high current density cells.

Rating: $\mathbf{6 0 0}$ to $\mathbf{2 4 0 0}$ volts PIV $\cdot 100$ to 125 ma Three types available. Hermetically seale pigtail construction. Style J rated at 600 to 1000 volts PIV at 125 ma . Bulletin SR-138E Styles K and L with PIV ratings from 600 to described in technical detail-Butlotin $\$ \mathrm{R}-157$.

Ratings: $\mathbf{5 0}$ to $\mathbf{6 0 0}$ volts PIV - $\mathbf{2 5 0}$ to 750 ma . An extensive line of silicon power diodes for military and industrial applications featuring all-welded, hermetically sealed construction. All designed and manufactured to meet the most rigid military requirements. For complete tech-

Ratings: 25 to 156 volts $A C, 50$ to $1,200 \mathrm{ma}$. DC The widest range in the industry! Designed for Radio, Television, TV booster, UHF converter from 25 to 156 volts AC and up. DC output current 50 to 1,200 MA. Write for application information.

Bulfotin ER-178-A

Ratings: 1000 to $\mathbf{2 0 , 0 0 0}$ volts PIV @ 45 to 440 mt . Especially suited for miniaturized military factor where optimum reliability is a prime cooling and his types for, normal convection or oil cooling. Hermetically sealed forced air ceramic housing. Request Bulletin $5 R-225$.

Ratings: 50 to $\mathbf{6 0 0}$ volts PIV $\mathbf{4 0 0} \mathrm{ma}$. to 1 amp . Industrial and military types including the N253, 1 N254 and 1 N255. Stud mounted, her ting ty sealed, all-welded construction. Ope Designed and manufactured to meet mos rigid military specifications. Bullefin SR-135

Ratings: 400 PIV, up 10750 ma .
SD-500. A hermetically sealed, all-welded silicon junction rectifier offering maximum relia*
bility in the high temperatures encountered in TV applications. Pigtail leads eliminate the
need for hrackets, blocks, etc., simplify instal need for brackets, blocks, etc., simplify ins
lation. For complete data: Bulletin SR. 201

Ratines: 20 to 20,000 volts - 0.2 to 195 ma . Designed for long life and reliability in hat wave, voltage doubler, bridge, center tap cir cuits, and 3.phase circuit types. Phenolic cartridges and hermetically sealed types avail able. Operating temperature range: $-65^{\circ} \mathrm{C}$ to
$+100^{\circ} \mathrm{C}$. For details specify Bulletin $\mathbf{H - 2 .}$

Ratings: $\mathbf{2 0}$ to 160 volts $\cdot 100_{\mu}$ a to 11 ma . Ideal components for bias supplies, sensitive reohms and higher at - 10 volts). Excellent linear orward characteristics. Extremely small, low in mental exapsulated to resist adverse environ.

Ratings: Q of 1000,200 PIY DC Semicap's small size, light weight, high reliability and low power requirements make it quency modulation oscillators control, frequency modulation oscillators ind filter shock-proof housing. Request Bullotin SR-205.

Ratings: 85 to 600 ma - 1500 to 6000 PIV. Highly reliable series of tube replacement rectifiers rated from 15100 to 6100 PIV: 85 to 600 ma (including rior characterement for the 866 Tube) offer the supevoltage applications.

Intermational

EXECUTIVE OFFICES: EL SEGUNDO, CALIF.

RECTIFIER CORPORATION PRODUCTS

LINE OF QUALITY RECTIFIERS ON EARTH!
All designed and manufactured to meet the most rigid military requirements!

POWER TYPES fOR industrial and military applications

SILICON
AND
SELENIUM
MEDIUM
CURRENT
TYPES

TO 150 AMPS.

SILICON, SELENIUM AND GERMANIUM HIGH CURRENT TYPES
TO 670 AMPS. PER JUNCTION

Ratings: 6 and 12 Amps - 50 to 500 PIV. Precision-controlled diflusion process insures optimum operathon and high uniformity of characteristics over
the entire operating teriperature range. Full 6 or 12 ampere output current over a PIV range from 50 to 500 volts. Rugged, all-welded construction. Bulletin XSR-308. Ratings: 50 to 500 volts PIV - 15 to 250 Amps . Standard and reverse polarity types offered in a series of machine thread and pipe thread mounting styles. Complete assemblies in all circuit configurations also available. Rugged construction and hermetic sealing assure long
life and reliability. Ask for Eulletin SR-305

Complete series of AC and DC types. Designed to eliminate arcing and erosion across the contacts of relays, switches, etc. types: diode type, cartridge type and her meticaliy seated types for industrial appli.

Ratines; 25 to 35 Amps - 50 to 500 PIV. 50 to 500 PIV Raled "Quad-Sealed" power eliocles are wikle range of commercial applications. 4-layer "QuadSeal" process as sures high resistanee to humidity.
shock, vibration and temperature extremes. shock, wibration and temperature extremes.
Eulletin SR.310.

Ratings: 6 to $\mathbf{3 0 , 0 0 0}$ volts - 50 to $2,300 \mathrm{Amps}$ Specifically designed for industrial DC powe needs. Patented construction features assure ong life. Descriptive bulletins available are: $(45$ to 52 volts (26) vall cels), Bulletin SR-160, SIICOW vot dace necutaton zenen piodss

Ratings: From 600 milliwatts to 10 watts A complete series in 6 types. Miniature single junction types, multiple junction types and double anode units. 750 milliwats and 1 watt Bullefin $5 R-252$, Multiple junction 5 watt types: SR-253, Double anode types: SR-254

Rating: 50 to 500 volts PIV - 25 to 45 Amps. Advanced ceramic techniques assuring excel. ent thermal characteristics and mechanical tability are used in the production of these highly reliable, hermetically sealed rectifiers or military or industrial applications. For com

Rating s: $\mathbf{5 0 0}$ amperes - $\mathbf{2 6}$ to $\mathbf{6 6}$ volts rms High capacity junctions especially designed for high-current, low-voltage electrochemical installations. Air cooled, these hermetically
sealed junctions provide efficiency to 98.5%. sealed junctions provide emciency to ${ }^{\text {Cast }}$ aluminum airfoil housing effects maximum heat transfer, Request sullatin GPR-2SA.
mum heat transfer, Request sullatin GPR-2sA

Voltage Regulation: $\pm \mathbf{0 . 0 1 \%}$
Buils to withstand environmental extremes, and operable up to $125^{\circ} \mathrm{C}$, these miniature, highly stable reference packs provide output voltages of either 8.4 or operation from varied power sources.

Ratings: 50 to 800 volts ply - 45 to 150 Amps. An extensive series of standard and reverse polarity sypes. Optional mounting bases in cluding machine thread and pipe thread types Pipe thread base types: Bulletin se-300, Complete stack assembilies: Bullarin SR-302

Ratings: 10 Amps - 20 to 200 PIV.
complety new miniature control device capable of replacing the thyratron and similar units that proport ionately control power toa load from an ac source 10 amps PIV ratiny for with cutput currents up to

(wide range of silicon and selenium types.) Self-generating cells available in standard and custom sizes, mounted or unmounted. For eques on wirle selection of selenium types, efficiencies as $\mathrm{PC}-649 \mathrm{~A}$. Silicon solar cellis with efficiencies as high as 10 . Designed to n
military specifications Bulletin $\$ \mathrm{~m}-275 \mathrm{~A}$.

Rectifier Corp.

- OREGON 8-6281 - CABLE ADDRESS: RECTUSA

NEW YORK CITY AREA OFFICE: 132 E. 70th St., TRafalgar 9-3330
NEW YORK STATE AREA OFFICE: 2366 James St., Syracuse, N.Y., HOward 3-1441 CHICAGO AREA OFFICE: 205 W . Wacker Dr., FRanklin 2-3888

BUYERS GUIDE FOR ITT PRODUCTS

 diffused junction silicon devices

 diffused junction silicon devices standard JEDEC packages
 Dual positive hermetic sealing -- maximunn heat
 ITT miniature tantalum capacitors fill the ever
 hi-denisity selenium rectifiers

transfer - withstand high current surges - de signed for highest electrical efficiency, and maximum operating reliability to meet military specifications.

LOW POWER TYPES

"TOP-HAT" (SERIES R) ANO "DERBY" (SERIES C) configurations
Up to 1.5 amps for printed circuit or wire-in applications with voltage ratings up to 800 volts PIV

MEOIUM POWER TYPES

SERIES " D ", "K" ANO "U"
Rated up to 30 amps at 150° C. case temperature Voltage ratings up to 800 volts PIV

HIGH POWER TYPES SERIES "F"

Ratings up to 70 amperes at $150^{\circ} \mathrm{C}$. case temperature.
Voltage ratings up to 600 volts PIV

ZENER VOLTAGE REGULATOR DIODES

3.9 to 100 volts $\pm 5 \%$ and $\pm 10 \%$ tolerances 750 milliwatt -1 watt 3.5 watt and 10 watt ratings Axial lead or stud mountings

high Current SILICON-RECTIFIERS

Silicon rectifier assemblies to provide desired current and yoltage output. Both single and three phase assemblies are available.

tantalum capacitors

tantalum capacitors

 growing need for lightweight, miniaturized high reliability components to meel military specifications. These capacitors offer greater electrical stability with rugged construction and larger capacity per unit volume.ITT Hi-Density Selenium Rectifiers utilize maximum cell area, providing high ulectrical cutput in relation to weight, good votage reguation within rated capacity - superior quality and performance characteristics fo: industrial and military applications.

NEW! 45 WRET

industrial rectifier
Srailer, lighter, more efficient sefenium rectifiers can be designed with ITT's new - 45 volt cells. Other teatures include: smatler mounting dimension, long life, low temperature rise, conservative ratings and reliability at higher temperatures - plus cost reductions.

NIW! DOU3LE DENSITY

industrial rectifiea
Carefully controlled evaporation techniques: permit ITT: Hi-Density setenium rectifier cells to carry double the current of conventional cells 180 milliamperes per square inci. This process fe.tures rectifiers of small size, nigh operating eificiency at a lower cost.

CONTACT FROTECTORS

Suppresses voltage surges in mductive circuits. Extends contasi life by reduciag erosion due to sparking and preventing component faiure. Reduces electrical roise. Availatie for DC or AC applications.
New! Use them to protect transistors against over voltage.

power tubes

ITT power triodes and rectirier tubes for communications, dielectric amo induction heating, random noise generators and puise operation applications are outstanding. An exceptionally wide range of tubes are available in air cooled, water cooled and vapor cooied types.

POWER TRIONES

ITT Pewer Triodes, for CW and pulse operation are used as modulators, amplifiers and oscillators in communications and indusfrial service. Water cooled and air cooled types.

evaporative cooled POWER TRIODES

Evaparative Cooled Power Triades feature high anode dissipâtion, high loadirg capacity and exceptional overload. capability.

SUPER-POWEPED TRIODES

Super-powered Triodes, developed by ITT Components Division for use as modulators, amplifiers and oscillators in communication and industrial services.

CERAMIC POWER TRIODES
Ceranic Power Triodes with rugged, coaxial design for modern requirements in high temperature, high frequency, high power applications.

FOR ELECTRONICS

ITT Components Division, a unit of the world-wide International Telephone and Telegraph Corporation, offers high reliability electronic components tor industrial and military applications.

OF ITT COMPONENTS DIVISION

special purpose tubes

Special Purpose Tubes made by IIT are available in many standard types and sizes, and custom designed types are also made for specific applications.

traveling wave tubes

A rugged line of traveling wave tubes with metal envelopes and ceramic seals. They are of the helix type, self-aligning in the external solenoid, and are provided with either coaxial or waveguide filtings.

IATRON** TJBES

latron storage fubes are used in radar and electronic display systems. They feature extreme brightness for day light viewing and controlled storage time. Information can be written, stered and erased with ease. Direct view and projection sypes.

HYDRDGEN THYRATRONS

ITT - Kuthe hydrgen thyratrons, made by Kuthe Laboratories, Inc.*, the world's largest manufacturer of gas-filled thyratrons and diodes, feature an extensive line of glass or ceramic types.

A unit of IIT Components Division.

CERAMC HYOROGEN THYRATRONS

Ceramic hydrogen thyratrons feature peak performance with size reduced by one-third over equivalent glass types. They can withstand greater shock and vibration and high ambien: temperatures up to $125^{\circ} \mathrm{C}$

research and development types

In addition to the standard products of the ITT Components Division, the ITT Laboratories are making a variety of other types, in limited quantities, for development purposes.
These inciude:

- Image Converter Tubes - Barrier Grid Storage Tubes - Permanent Nagnet Type TWT
- Multiplier Photo Tubes
- Electro Static Focusing TWT - Super Powered Pulse Triades
- Lead Telluride Infrared Detectors
**A trademark of Internatlonal Telephone and Telegraph Corporation
SEE US

WESCON BOOTHS
2510.2512

Components Division
INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION
P.O. BOX 412. CLIFTON. N. J.

POWER RECTIFIERS

$\begin{gathered} \text { DIODE } \\ \text { TYPE } \\ \text { MO. } \end{gathered}$	$\begin{gathered} \text { CASE } \\ \& \\ \text { MAT } \end{gathered}$	WORKIMG VOLTAGE （MAX．） $\mathrm{E}_{\text {cont．}}$	REVERSE				MaxImum ratines				
			$E_{\text {peak }}$	$\mathrm{I}_{\text {max }}$	－	－	Isur	DC OUT PUT CURREMT	FUL1	DIS．	
			V	（ma）	\checkmark	${ }^{\circ} \mathrm{C}$	（amps）	（amps）	$\begin{aligned} & \text { Var. } \\ & \text { DROP } \end{aligned}$	W）	${ }^{\circ}$

U．S．SEMICONDUCTOR PRODUCTS，INC．． 3536 West Osborn Rosd．Phoenix，Ariz（cortinued

$\begin{array}{r} \text { 1N1911 } \\ 1921 \end{array}$	${ }_{\mathrm{E}}^{\mathrm{E}} \mathrm{Si}$	280		$10{ }^{\text {a }}$	400	
1N1912	1	350				
1922	E Si			$10{ }^{10}$	500	
1N1913	D	435			600	
1923	ESi			10，${ }^{\text {a }}$		
1N1914	D	500			700	
1924	E Si			$10 \mu \mathrm{~A}$		
1 N 1915	1	570			800	
1925	E Si			10，${ }^{\sim}$		
1N1916	D	630			900	
1926	E S1			1048		
HPR50	$5 i$	35	50	1.0	50	25
HPR100	Si	70	100	1.0	100	25
HPR200	S1	140	200	1.0	200	25
HPR300	Si	210	300	1.0	300	25
HPR400	51	280	400	1.0	400	25
HPR500	S1	350	500	1.0	500	25

1.5
$30 \quad 1.5$
30
30
5
in is

：ロッ：5：
：ロッ：5：
$2 \quad 250$

 o

lN1271
iN1272
iN1273

271	Si
272	Si
273	Si

	$\begin{gathered} \text { CASE : } \\ \& \\ \text { MAT } \end{gathered}$	working VOLTAGE （MAX．） $E_{\text {cont．}}$	REVERSE				MAXIMUM FATIMGS				
			$\begin{gathered} E_{\text {PEAK }} \\ v \end{gathered}$	$I_{\max }$ （ma）	v	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { ' Surge } \\ & \text { (amps) } \end{aligned}$	DC OUTPUT CURRENT （amps）	FULI LOMD var． DROP	01s．	${ }^{\circ} \mathrm{C}$

Westinghouse electric corp．，Semiconductor Div．，Youngrood．Po．（continuad）

 \square 00
000
：

ITT COMPONENTS DIVISION，P．O．BOX 412, CLIFTON，N．J．
REvERSE
MAXIMUM RATINGS

Diode Type No．	$\begin{gathered} \text { Case } \\ \boldsymbol{\&} \\ \text { Mat } \end{gathered}$	Working Voltage Eont．	$\begin{gathered} \mathbf{E}_{\text {poaik }} \\ \mathbf{V} \end{gathered}$	$\begin{aligned} & \mathbf{I}_{\mathrm{max}} \\ & (\mathbf{m a}) \end{aligned}$	$\stackrel{@}{\mathbf{V}}$	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{I}_{\text {surge }} \\ & (\mathbf{a m p s}) \end{aligned}$	$\begin{gathered} \text { DC Output } \\ \text { C(amps) } \\ \text { (ament } \end{gathered}$	Full Load Volt Drop
Series C Series R	Si	－	800	0.3 ma	－	150°	－	1.5	1.1 v
Series K Series R	Si		800	2 ma.	－	150°	－	12 a ．	1.1 v ．
Series D	Si	－	800	5 ma ．	－	150°	450	30 a ．	1.1 v ．
Series F	Si	－	600	10 ma ．	－	150°	1200	70 a ．	1.1 v ．

POWER RECTIFIERS

OUTLINE DRAWING
SILICON RECTIFIER STACK - SINGLE FIN

(0) (0)

HOFFMAN SEMICONDUCTOR DIV.
(C) m 2 case

POWER RECTIFIERS

MIN:

NORTH AMERICAN ELECTRONICS INC.

(2)

RAYTHEON COMPANY

POWER RECTIFIERS

TEXAS INSTRUMENTS INCORPORATED
U. S. DYNAMICS CORP.

THERMOSEN INC.

U. S. SEMICONDUCTOR PRODUCTS

WESTINGHOUSE ELECTRIC CORP.

(ㄴ)

LOWER COST MAGNETIC SHIELDING

Co-Netic \& Netic Foils Permit Max. Miniaturization, Improved Performance ... Extremely VersatileReadily Cut to Any Shape, Wrap Like Tape

How Co-Netic \& Netic foils lower your magnetic shielding costs: 1) You use less shielding material because (a) foils are only $.004^{\prime \prime}$ thick and (b) foils cut easily to exact shape required, minimizing waste. 2) Permit simple shielding of odd shapes and hard-to-get-at components, saving valuable time and eliminating tooling costs and inflexibility of rigid metals. These advantages make possible much smaller and less costly systems, as components may be positioned in close proximity without interference from damaging magnetic fields.

These foils are non-shock sensitive, non-retentive, require no periodic annealing. They effectively shield electrostatic and magnetic fields over a wide range of intensities. Both foils available from stock in any desired length in various widths.

Co-Netic \& Netic foils are successfully solving many types of magnetic shielding problems in numerous critical satellite, missile, magnetic tape and other military, airborne, electronic and laboratory applications. These foils can help you solve your magnetic shielding problems.

MAGIETIC SHIELD DIVISTON PERFECTION MICA CO.

1322 No. Elston Avenue • Chicago 22, Illinois
Originators of Permanently Effective Netic Co-Netic Magnetic Shielding
Circle 96 on Inquiry Card

for ferrites
This handy card gives you details on composition, particle shape and chemical analyses of Mapico's wide range of pure synthetic iron oxides. Unequalled for uniformity ... Mapico oxides are available in three different particle shapes, each with several ranges of particle size. . . provide controlled electronic characteristics and shrinkage. Ask for this free chart.

$$
\text { Mapico }{ }^{(1)} \text { Iron Oxides Unit }
$$

Columbian Carbon Company

380 Madison Avenue, New York 17, N. Y. Circle 97 on Inquiry Card

DIALCO Pilot Lights

with Built-in Resistor $\substack{\text { anamo } \\ \text { dimin }}$
(a patented DIALCo feature)
and the NEW High Brightness Neon Glow Lamp NE-51H

A New Advance in Pilot Light Design by DIALCO:

Three basic advantages are incorporated in this series of dialco assemblies: (1) Built-in resistor for direct use on 125 to 250 volt circuits . . (2) New plastic lens designed to give attractive "halo" effect... (3) New High Brightness Neon Glow Lamp $N E-51 H$. This lamp may be operated at about 3

NE.51H times the level of current that may be applied to the standard lamp, and it will produce 8 times as much light-with long life! Very low power is required, less than 1 watt on 250 volt circuit Recommended for AC service only.
In the dialco assembly, the built-in current limiting (ballast) resistor ($18,000 \mathrm{ohms}$) is completely insulated in moulded bakelite and sealed in metal (U. S. Patent No. $2,421,321$)...Small space required-units are available for mounting in $9 / 16^{\prime \prime}$ or $11 / 16^{\prime \prime}$ clearance holes .. A wide choice of optional features includes lens styles, shapes, and colors; terminal types; metal finishes, etc. . . . Meet applicable MIL Spec and $U L$ and CSA requirements.
All Assemblies Are Available Complete with Lamp
SAMPLES ON REQUEST-AT ONCE-NO CHARGE

```
DIALIGHT CORP., }50\mathrm{ Stewart Ave., Brooklyn 37, N. Y. 
Send brochures on Pilo+ Lights:
        \square
Name
    \square\mp@code{NE............................}
```

\qquad
\qquad
\qquad

CORPORATION
50 STEWART AVE., BROOKLYN 37, N. Y. - HYacinth 7-7600
Circle 98 on Inquiry Card

HOW BENDIX SPARK GAPS CAN PROTECT YOUR RADAR EQUIPMENT

Bendix Red Bank "Spark Gap" Tubes are specially designed to do two big jobs in electronic circuits.

First, to act as a "triggering" switch as on jet ignition systems. Here, Bendix* Spark Gaps pass high currents with relatively low voltage drop and have the advantage of being able to handle high voltages in small space. Further, these tubes can be made insensitive to ambient temperature variations and are not normally affected by pressure, altitude, or humidity changes.

The second function of Bendix Spark Gaps is as a protective element-guarding radar equipment against voltage overload, to name one example. Here, Bendix Spark Gaps keep high voltage surges from getting through to damage circuit components.

Our design and manufacturing experience with spark gap tubes is extremely broad. If our extensive line of these tubes . . . ranging from 750 V to 50 KV in DC breakdown voltages . . . does not already contain a type to fit your needs, we are in a position to design one to handle the job with the exact degree of efficiency that you require.
To find out more about what we can do to help you with your spark gap problems, get in touch with red bank division, bendix aviation corporation, eatontown, new jersey.

* trademark

West Coast Sales and Service: 117 E. Providencia Ave., Burbank, Calif.
Canadian Affliate: Computing Devices of Canada, Ltd., P. O. Box 508, Ottawa 4, Ont. Export Sales \& Service: Bendix International, 205 E. 42nd St., New York 17, N. Y.

zied Edonk Division

New Products

MERCURY VAPOR FLOODLIGHT

Type MVE-20 1000 w mercury vapor floodlight has a 20 in . dia. reflector and lens. Floodlight is dust-tight and weatherproof. Housing is cast aluminum, of copper free alloy. With

adjustable stops it can be turned around or tipped over for relamping an cleaning, and returned to its exact original setting. Horizontal and vertical degree scales are provided for aiming at pre-determined angles at the time of installation. This virtually eliminates need for night-time adjustments. Crouse-Hinds Co., Syracuse $1, \mathrm{~N}$. Y.

Circle 251 on Inquiry Card

COAX CABLE ADAPTERS

Kit of adapters between coaxial cable connectors is packaged in a transparent plastic box. Assortment included eleven adapters covering most connectors in common use: UG 349 A/U; UG 201 A/U; UG 636

A/U; UG 273 A/U; UG 255 A/U; UG $83 / \mathrm{U}$; UG $146 / \mathrm{U}$; UG $564 / \mathrm{U}$; Dage 100-381-1; G $924 / \mathrm{U}$ and Dage 2038-1. Dage Electric Co., Inc., 67 North Second Street, Beech Grove, Ind.

Circle 252 on Inquiry Card

Skills

 $\frac{+ \text { Experience }}{\text { top Quality }}$
Benefit from the experience gained in building

 21,000,000 picture tubes...

FIELD OFFICES

EAST: 744 Broad Street, Newark 2, N. J. HUmboldt 5.3900 MIDWEST: Suite 1154 Merchandise Mart Plaza, Chicago 54, III. WHitehall 4.2900

specify $R C A!$

In over a decade of experience, RCA has produced more than $21,000,000$ picture tubes. What does this experience promise you?

First, it promises quality...high standards for checking every tube component, every production step. It promises improvements... the constant research that has given you the latest developments in picture-tube design. Every improvement in technique, every new design is thoroughly proved-out before release. Further, this "know-how" promises the dependability and availability you need to meet tight production schedules. Why settle for less?

RCA offers you every active picture-tube type for black-and-white television...types with either low or high grid-No. 2 voltage, either short or long neck, either 90° or 110° deflection, as well as the very latest in color picture tubes. For details, get in touch with the RCA Field Representative at our office nearest you.

miniature

 THANSISTOH TRANSFORMERS
Stocked for immediate delivery from your electronic parts distributor

Encapsulated - designed and built in accordance with MIL-T-27A

Here are 27 hermetically sealed units designed especially for use in transistor circuits. Remarkably efficient for their size, these transformers have excellent frequency response with low harmonic distortion.

Leads are embedded in plastic to withstand a 12 pound pull and are individually spaced for printed circuit board insertion. The Chicago UME Series transformers measure $.312^{\prime \prime} \times .400^{\prime \prime}$ $\mathrm{x} .420^{\prime \prime}$ and weigh approximately $1 / 10$ ounce. Detailed specifications and performance curves are given in Chicago Bulletin CT-46. Write for your free copy.

CHICAGO Part No.	Application	Pri. Impedance In Ohms	Sec. Impedance in Ohms
UME-12	output	500/600	50/60
UME-13	output	$1000 / 1200$	50/60
UME-14	output	600	3.2
UME-15	output	1200	3.2
UME-16	output	10,000	3.2
UME-18	choke	3 hy @ 2 Madc	-
UME-19	output or driver	10,000 CT / $12,500 \mathrm{CT}$	$500 \mathrm{CT} / 600 \mathrm{CT}$
UME-20	driver	10,000/12,500	$1200 \mathrm{CT} / 1500 \mathrm{CT}$
UME-21	driver	10,000/12,500	2000 CT/2500 CT
UME-22	single or PP output	$150 \mathrm{CT} / 200 \mathrm{CT}$	12/16
UME-23	single or PP output	$300 \mathrm{CT} / 400 \mathrm{CT}$	12/16
UME-24	single or PP output	$600 \mathrm{CT} / 800 \mathrm{CT}$	12/16
UME-25	single or PP output	$800 \mathrm{CT} / 1070$ CT	12/16
UME-26	single or PP output	1000 CT/1330 CT	12/16
UME-27	single or PP output	1500 CT /2000 CT	12/16
UME-28	single or PP output	$7500 \mathrm{CT} / 10,000 \mathrm{CT}$	12/16
UME-29	output	300 CT	600
UME-30	output	500 CT	600
UME-31	output	900 CT	600
UME-32	output	1500 CT	600
UME-33	interstage	20,000 CT /30,000 CT	800 CT /1200 CT
UME-34	input	200,000 CT	1000 CT
UME-35	interstage	10,000 CT/12,000 CT	1500 CT /1800 CT
UME-36	choke	6 hy @ 2 Madc	-
UME-37	choke	1 hy @ 2 Madc	-
UME-38	choke	12 hy @ 0 dc	-
UME-39	choke	20 hy @ 0 dc	-

New

Products

RANGING SYSTEM

Airborne Ranging Systems are designed for airborne use and used to check and calibrate airborne and ground DME equipment. As the aircraft flies a prescribed course, two

Model 1021-1 time interval meters take simultaneous measurements of elapsed time between the emitted signal and the return signal from two different ground stations. A Systron Model 1401-1 digital recorder provides a permanent printed record of both times and identifying code. Features include Nixie in-line readout, direct readout in nautical miles, and automatic subtraction of fixed delays. Systron Corp., 950 Galindo St., Concord, Calif.

$$
\text { Circle } 253 \text { on Inquiry Card }
$$

TRANSISTOR RADIATOR

Series of radiators for cooling transistors, the $3 \mathrm{AL}-680$ series, are similar to the 3AL-675 series, transistor radiators, but mount directly on the chassis or printed circuit board, thus serving as retainers. Mounting is by a tapped hole in the mounting base of the radiator. Tests show that the increased radiating surface provides significant heat reduction in transistors. Sizes and modifi-

cations are available to cover the range of TO-6, TO-7 and TO-9 packages. Material is aluminum with anodized finish. Industrial Div., The Birtcher Corp., 4371 Valley Blvd., Los Angeles 32, Calif.

Circle 254 on Inquiry Card

Now! get complete data on

MINIATURE AGASTAT ${ }^{\circledR}$

time / delay / relays

This free folder contains complete specs on 24 models of the miniature AGASTAT Time Delay Relay for missile, aircraft, computer, electronic and industrial applications. They're small as $1-13 / 16^{\prime \prime} \times 4-7 / 16^{\prime \prime} \times 11 / 2^{\prime \prime}$, with adjustable timing ranges starting at .030 and as high as 120 seconds.
The folder gives operating and environmental specs, coil data, contact capacities, dimensions, diagrams of contact and wiring arrangements. Write: Dept. A.33-832.

ACA
 ELASTIC STOP NUT CORPORATION OF AMERICA
 Elizabeth, New Jersey
 Circle 101 on Inquiry Card

/ PRECISION J PRICE J PERFORMANCE

HM MOTORS DELIVER EVERY TIME!

Heinz Mueller makes motors for lvundreds of applications -and they all bear the unmistakable mark of Heinz Mueller's excellent quality control. From original design through the last phase of production, Heinz Mueller engineering skill
and experience are devoted to supplying you with dependability you can count on.

Write for detailed information on standard specifications or let us tachle your particular enginecring requirements.

with BUD Trans-aire BLOWER

Operates better, occupies less space and is the lowest priced unit of equal capacity and performance.

Ideal to dissipate excessive heat generated in housings by electronic equipment.
May be used as an exhaust or intake depending upon mounting position. Operates on 110 V . 60 cycle current. Delivers either 550 or 250 cfm . air displacement at 0° static pressure. Oilite bearings: oil impregnated, fiber glass disposable fiter. Thermal overload protection to prevent over heating. Automatic re-set. Quiet operation. Minimum vibration. Size is $51 / 4^{\prime \prime} \times 17^{\prime \prime} \times 141 / 2$.' Fits in standard $19^{\prime \prime}$ wide housings.

DELUXE CABINET RACKS

Now
complete with
front panel
at
no extra
charge

A popular housing for electrical and electronic control or testing equipment. Attractively finished with red lined, chrome strips on top and bottom of front. Will accommodate standard 19" panels. Top door with flush handle catch permits easy servicing or inspection. Ten sizes available in choice of three finishes. Larger sizes have hinged rear door.

See these and the other fine Bud Products at your nearest authorized Bud Distributor or write us for complete details.

SEE US AT THE WESCON SHOW

BUD RADIO CORP.

2118 East 55th Street, Cleveland 3, Ohis Dept. T

At No Increase In Price!

Now, with more rugged construption and Especially designed ano al se phat whe rapste the Capacitor is espe ianl anpale or ciditry where exceptional resistance to

The Fanste $\mid \Gamma, 0$ " retarn ahts high performance fea-tures-outstanding frequency stability, neglibiberical leak-
 re arily an /P ict blity ocd picmmmum space, and yet provicres extremely high capacity ratings for its size.

Get complete information today. Write for Bulletin 6.100
VISIT US AT
BOOTH 222 WESCON SHOW
FANTTEEL

New
 Products

MAGNETIC DRUM HEADS

The Model MDHM-35-328 miniature drum head is designed for installation where many tracks are required or where a large number of recirculating registers are necessary. The heads

can be mounted so that the gaps of two adjacent heads are only 0.150 apart circumferentially, making the head ideal for close recirculating registers. The heads are low inductance for efficient transistor driving. Mechanically the diameter of the head is only 0.216 with an overall length of 1.062. The head is available with shielded and jacketed cable. MagneHead Div., General Transistor Western Corp., 2660-64 So. La Cienega Blyd., Los Angeles 34, Calif.

Circle 255 on Inquiry Card

DELAY NETWORK

Analog computer delay network's characteristics are: delay time (overall), 700μ sec. $\pm 7 \mu$ sec., tapped at 70 μ sec. intervals $\pm 1 \%$; characteristic impedance, 3,000 ohms $\pm \% 5$; delay linearity, $\pm 1.0 \%, 300 \mathrm{CPS}$ to 25 kc ;

ripple, $\pm 1.0 \%$; Insertion loss, 1.0 db maximum; frequency response, ± 1.0 $\mathrm{db}, 300 \mathrm{CPS}$ to 10 Kc ; dimensions, $9 \times 53 / 8 \times 47 / 8$ in. ESC Corp., 534 Bergen Blvd., Palisades Park, N. J. Circle 256 on Inquiry Card

New
 Products

CONTROL SHAFT COUPLER

Multiple-functioning Speed Clip, for TV receivers is used as a coupler joining a long, flat steel control knob shaft to the splined shaft of a potentiometer. The control shaft is

snapped into the U -shaped end of the speed clip where it is locked in position by a spring tab. The splined potentiometer shaft can then be inserted by pressing it between the semi-tubular spring legs, or by sliding it into the open end. Once the potentiometer has reached its turning limits, further turning of the knob results only in slippage of the clip. Tinnerman Products, Inc., Cleveland, Ohio.

Circle 257 on Inquiry Card

SILICON RECTIFIERS

silicon ac to dc power rectifiers weigh $1 / 2 \mathrm{oz}$. Complete diode has an 11/16 in. hex stud base, and max. ht. is $17 / 16 \mathrm{in}$. They are rated at 10 a

av. at $150^{\circ} \mathrm{C} \mathrm{amb}$. peak inverse voltages range from 50 to 400 v . in 50 v . steps. Their outer case is nickel plated. Syntron Company, 263 Lexington Avenue, Homer City, Pa.

Circle 258 on Inquiry Card
 MES

Fansteel

 (Type 6A) 1N Series

silicon Power Rectiffer

Fagsteel 6A Silicon Rectifiers undergo the most complete and rigid resting ever devised to prove reliability . . . to assure performance that matches or exceeds expected service. Painstaking thoroughness, and care . . 100% testing . . . and exacting production metheds in contamination-free surroundings assure unquestionable reliability in every Fansteel 6A Rectifier.
The highly stable 6A carries a full 22 amp. load in half-wave circuits; up to 66 amps in bridges. It has peak reverse voltages from 50 to 400 v . in 50 -volt. multiples. It operates at ambients up to $165^{\circ} \mathrm{C}$. -unaffected by storage temperatures from -65 to $+200^{\circ} \mathrm{C}$.
Rugged, compact, hermetically-sealed construction . . . exceptional shock and vibration resistance. The 6A can be mounted in any position.

Ask for Bulletin 6.304.
Visit us al Booth 222
FANTTEEL WESCON SHOW

RELIABJLITY

FANSTEEL METALLURGICAL CORPORATION North Chicago, il., Ls.a.

Tunnel Diode

(Continued from page 83)
haps be more easily visualized as the "load line" superimposed on a set of triode Ep-Ip static characteristic curves. It is for this reason that the tunnel diode can act as an amplifier and perform its may other functions. Instead of absorbing the signal as a resistor does, it increases it.

Tunnel Diode Junction
A semiconductor has a forbidden region where there are no states available for its electrons. This region is called the band gap. The states below this gap (which comprise the valence band) are almost all filled. The states above it (the conduction band) are almost all empty. The number of empty states in the valence band, or electrons in the conduction band, can be controlled by adding either acceptor impurities or donor impurities to the semiconductor crystal. Each acceptor impurity takes one electron out of the valence band, and each donor gives one electron to the conduction band. In this way p-type (empty states in valence band) and n-type (electrons in conduction band) regions can be built into a crystal. The surface where two of these regions touch each other is called a p-n junction.

Figs. 1 and 2 represent the conduction and valence bands in the vicinity of a junction at different values of applied bias. One can see that as the bias is in-

Tunnel diode nestles inside paper clip
creased the bands which overlap each other at zero bias become uncrossed. Since tunneling is represented by a horizontal transition on this picture, the current decreases as the bands become uncrossed.

When a larger forward voltage is applied, the diode goes out of the reverse breakdown condition, and the current falls to a small level. The reverse breakdown current that flows with a forward applied bias is the Esaki current.

G.. E.'s Research Contributions

Through studies of tunnel diodes made from many different materials in many different ways, General Electric scientists gained new knowledge of the operation of the device. This additional insight led to the
(Continued on page 184)

Acme Flectric CONSTANT VOLTAGE STABILIZERS

Provide $\pm 1 \%$ Regulation, Overload Protection

This new series of Acme Electric constant voltage stabilizers include all the features engineers requested in custom made units. Designed to stabilize a voltage which may vary over a range as much as 30%. Stabilization response is practically instantaneous; inductive surges or other causes of fluctuation are corrected within $1 / 30$ of a second. Under overload or short circuit condition, output voltage automatically drops to zero thus limiting the current and providing full protection.

Feeds, stakes and fuses Eyelets in PAINTED CIRCUIT Boards

in every environmental test!
EDWARD SEGAL MODEL NR-ESSM automatic eyelet attaching machine

This revolutionary machine, supplied as a complete installation, is obsoleting manual eyelet attaching and soldering. Leading manufacturers, in many cases using batteries of them, find Segal's new Model NR-ESSM is a completely dependable automatic method of making continuous electrical circuits of the printed elements on opposite sides of a board - or a single side if desired. Stakes and fuses 30 eyelets or more a minute, top and bottom, with never a reject.
There are other models for cold staking flat and funnel type eyelets, and for feeding and staking tube pins and turret terminals with equal reliability. All are highly economical. Segal can improve your eyelet attaching production. Write section EI-8.

IN ELECTRONICS

AAiResearch expansion in electronics and electromechanical activity is creating outstanding positions at all levels for qualified engineers.

FLIGHT SYSTEMS RESEARCH

General problems in motivation and navigation in air and space; required background in astronomy, physics, engineering.

Openings also exist in the following areas: Data Systems Research... Controls Analysis... Flight Data Components... Electromagnetic Development...Instrument Design...Airborne Instrumentation Analysis and Design.

Send resume to: Mr. G. D. Bradley

AiResearch Manufacturing Division

 9851 So. Sepulveda Blvd., Los Angeles 45, Calif.
35,000 SMASHING, BATTERING IMPACTS-

and still working perfectly!

CUSIVE"ARMO-DUR" HO
LIGHT-WEGGT CORROSION-PROOF

NEW

shura "TEN-FOUR"

COMMUNICATIONS MICROPHONE

proves its incredible durability in this gruelling destruction test!

New SHURE "TEN-FOUR" MICROPHONE, with exclusive Armo-Dur housing, and another microphone with standard die-cast metal housing were dragged for miles on a test drive over all kinds of pavements at speeds to 30 mph . In a matter of minutes, it was subjected to greater punishment than a lifetime of severest mishandling and here's the result:

Ten-Four with Armo-Dur Housing virtually unmarked-still performed perfectly

Standard microphone with die-cast metal housing - cracked, broken, abraded-microphone inoperable.

For the microphone that stands up under severe operating conditions with no loss of high speech intelligibility, be sure to specify the Shure "Ten-Four" when you order your new communications equipment or replacements.
Available only to Manufacturers of Communications Equipment. (Can be furnished with "Controlled Magnetic" or carbon cartridge.)

SHURE BROTHERS, INCORPORATED
222 Hartrey Avenue, Evanston, Illinois, Dept. 33-H
HIGHEST QUALITY MICROPHONES-FIXED-STATION AND MOBILE Circle 110 on Inquiry Card

IT GLOWS when the FUSE BLOWS!

NEW INDICATING BAG FUSE POSTS

EXAMINE THESE fEATURES

SIzE
(1) New patented knob design to assure high degree of illumination for instant blown fuse indication.
(2) Pasitive finger grip for knob extraction.
(3) Quick service bayonet lock.
4. Constant tension beryllium copper coil $\&$ leaf spring for positive contact \& fower millivalt drop.
(5) Optional-at extra costneoprene "O" ring to assure 3plash-proof feature.
(6) Now high degree vacuum neon lamp for greoter brilliance \& visibility.
7 Impact block phenolic moterial in accordance with MIL-M-14E iype CFC.
(8) Ono piece brass hot tin dipped non-furning bottom terminal.
(9) Double flats on body to permit mounting versatility.

SPECIFICATIONS:

PART \#		
344006		-
344012		
344024		
344125		
344250		

voltage range

$21 / 2$. 7 volts
7 - 16 volts
16-32 volts
$90 \quad-125$ volts
$200-250$ volts
Maximum current rating 20 amps .
PHYSICAL CHARACTERISTICS-Overall length $23 / 8^{\prime \prime}$ with fuse inserted • Front of panel length $13 / 16^{\prime \prime}$ • Back of panel length $19 / 6^{\prime \prime}$ - Panel area front ${ }^{15} / 6_{6}$ " dia. •Panel area back ${ }^{15 / 66^{\prime \prime}}$ dia. • Mounting hole size (D hole) $5 / 8^{\prime \prime}$ dia. flat at one side.
terminal-Side-one piece, .025 brass-electro-tin plated - Bot-tom-one piece, lead free brass, hot tin dipped.
KNOB-High temperature styrene (amber with incandescent bulbs $-21 / 2$ thru 32 volts-and clear with high degree vacuum neon bults-90 thru 250 volts) - Extractor Method-Bayonet, spring grip in cap.
HARDWARE-Hexagon nut-steel, zinc cronak or zinc iridite finish - Interlock lock washer-steel, cadmium plated - Oil resistant rubber washer.
military specifications-MIL-M-14E type CFG. Fungus treatment available upon request per Jan-T-152 \& Jan-C-173.
torque-Unit will withstand 15 inch lbs. mounting torque.

DES PLAINES, ILLINOIS

GE's Dr. Guy Suits, director of research and Dr. Jerome J. Tiemann demonstrate vest-pocket transmitter using tunnel diode

Tunnel Diode

(Continued from page 182)

solution of most of the problems associated with the tunnel diode. As a result, it was possible to develop an improved tunnel diode which, because of its vastly superior electrical characteristics, is a versatile and useful new component. The availability of these improved experimental tunnel diodes, in turn, made further research possible, and it was the research on these improved diodes that led to a major scientific discovery, which has explained the most puzzling aspect of the tumneling process.

One of the unanswered questions regarding the operation of the tunnel diode was that the tunneling process seemed to occur equally well in materials with indirect band gaps and in materials with direct band gaps. An indirect band gap is one where the minimum energy state in the conduction band occurs at a different value of momentum from that of the maximum energy state in the valence band. In other words, an electron would have different momentum after tunneling than it had before tunneling. This would seem to violate the classical laws on the conservation of momentum. It would appear, therefore, that the tunneling process was in some way more complicated than the simple concept formerly held.

Additional evidence that the tunneling process was

"Wiggles" in performance curve of tunnel diodes prove that ultrasonic vibrations of the crystal are involved in tunneling process
more complicated was uncovered. This evidence involved the appearance of some mysterious "wiggles" in the current-voltage characteristics which were measured on tunnel diodes made from silicon cooled to very low temperatures. Acting on the hunch that these "wiggles" were related in some way to the conservation of momentum problem, further experiments were performed and the hunch was proven correct.

The Tunnel Effect

The tunnel diode takes its name from the tunnel effect-a process wherein a particle (obeying the law of the quantum theory) can disappear from one side of a potential barrier and appear instantaneously on the other side, even though it does not have enough energy to surmount the barrier. It is as though the particle can "tunnel" underneath the barrier.

In the case of the tunnel diode, the barrier is the space charge depletion region of a p-n junction.

Complete transmitter using tunnel diode
This is the same barrier which prevents the current from flowing in the reverse direction in the case of the ordinary rectifier diode. In the tunnel diode, this barrier is made extremely thin (less than a millionth of an inch)-so thin, in fact, that penetration by means of the tunnel effect becomes possible. This gives rise to an additional current in the diode at very small forward bias which disappears when the bias is increased. It is this additional current, called the Esaki current in honor of the scientist who first observed it, that produces the negative resistance in a tunnel diode.

The origin of the Esaki current can be qualitatively understood by considering the changes in the characteristics of a conventional p-n junction diode as one goes (Continued on page 186)

Microwave Component News from SYLVANIA

V/IETK/ Sylvania Micro-Min Diodes

Sylvania opens the way to advanced miniaturization concepts in microwave and radar design with new smaller Silicon Microwave Diodes

Major step in the trend to ever smaller radar and microwave equipment to meet today's military and commercial demands is represented by Sylvania's new line of subminiature Micro-Min diodes. The new diodes meet the electrical performance of their larger counterparts and are equivalent in ruggedness and reliability. They combine in one unit Sylvania's unmatched experience in diode packaging and proven technical excellence in microwave diode design.

The subminiature metal-to-glass package opens the way to new possibilities in strip-line and slab-line transmission designs. Included among the new types are Detector Diodes ranging in frequencies from 100 mc to $9,000 \mathrm{mc}$ and Mixer Diodes in frequencies from $3,000 \mathrm{mc}$ to $9,000 \mathrm{mc}$. Contact your Sylvania representative for full information on the new subminiature microwave diodes-or write Sylvania directly.

NEW SYLVANIA MICRO-MIN DIODES

[^10]
- SYLVANIA
 Subsidiary of

GENERAL TELEPHONE \& ELECTRONICS

Sylvania Electric Products Inc.
Semiconductor Division
100 Sylvan Road, Woburn, Mass.

General Transistor Western Corporation
6110 Venice Boulevard, Los Angeles, California • WEbster 3-5867

(Continued from page 185)

to higher and higher concentrations of free carriers in the semiconductor crystal. As one increases the density of the charge carriers, the reverse breakdown voltage decreases. One might think that there would be a limiting case when the reverse breakdown voltage was reduced to zero. This is not correct, however, the limit is determined by the solubility of the impurities which determine the carrier concentrations. Experiments have shown that one can dope many semiconductor materials more heavily than is needed to reduce the breakdown voltage to zero. If one does dope more heavily, the diode can still be in reverse breakdown condition at a slight forward bias.

The "wiggles" correspond to tunneling processes which are assisted by an ultrasonic vibration of the crystal. These vibrations of the crystal, called phonons, turned out to have exactly the right frequency for momentum conservation.

From the point of view of basic science this work is also extremely important. The ultrasonic vibrations are about 100 times higher in frequency than any coherent vibrations produced heretofore. This is, therefore, an important new tool for investigating the vibrational properties of solids. Measuring the size of the "wiggles" yields information concerning the strengths of the electron-phonon interactions of the crystal. The spacing of the "wiggles" yields information regarding the frequencies of the phonons, and the breadth of the "wiggles" discloses some of the effects of impurities of the spectrum of the phonons.

Comparison with Other

Electronic Devices
In the field of communication, tunnel diodes compete with transistors, parametric amplifiers, vacuum triodes, magnetrons, klystrons, traveling wave tubes, and masers. The pertinent characteristics for comparison in this field are maximum oscillation frequency, minimum power requirements, and low noise amplification.

For Computer Applications
For computer applications the diode is at least 100 times faster than today's transistors, and can be
made to use only about $1 / 100$ as much power. Moreover, the tunnel diode is insensitive to temperature changes, in contrast to the transistor. The improved stability of the tunnel diode may make it possible to take short cuts in circuitry without sacrificing reliability.

MAXIMUM OSCILLATION FREQUENCY

(In Kilomegacycles)
Tunnel Diode
($10+$ Kmc in a few years;
$100+$ Kmc is conceivable)
Transistor
Parametric Amplifier
Vacuum Triode
Maser
Close Space Triode
Traveling Wave Tube
Klystron
Magnetron
2 Kmc

2 Kmc
6 Kmc
10 Kmc
10 Kmc
10 Kmc
60 Kmc
75 Kmc 100 Kmc

MINIMUM POWER REQUIREMENTS

Tunnel Diode
Transistor
Vacuum Triode
Klystron
Traveling Wave Tube
Parametric Amplifier
Magnetron
Maser
one-millionth of a watt one-thousandth of a watt one-tenth of a watt 10 watts 10 watts
10 watts
20 watts
400 watts

LOW NOISE AMPLIFICATION

Noise Temperatures
(at a frequency of 1000 megacycles) Noise Temperature

	(proportional to noise level)
Maser*	$20^{\circ} \mathrm{K}$
Parametric Amplifier*	$35^{\circ} \mathrm{K}$

Parametric Amplifier*
(room temperature; $20^{\circ} \mathrm{K}$ when cooled with liquid nitrogen)
Tunnel Diode* $100^{\circ} \mathrm{K}$ to $300^{\circ} \mathrm{K}$
Traveling Wave Tube
Klystron
$300^{\circ} \mathrm{K}$
$300^{\circ} \mathrm{K}$
Vacuum Triode $900^{\circ} \mathrm{K}$ Transistor $3000^{\circ} \mathrm{K}$

* Note: In the area of low noise amplification, only parametric amplifiers and masers compete closely with tunnel diodes. The tunnel diode is the only one of these three devices capable of operating directly from a battery. The parametric amplifier and the maser require an additional source of radio frequency power, and the maser requires an additional cryostat for cooling, and a magnet for bias.

"1959 Transisfor Specifications"

The above chart in the June 1959 All-Reference Directory used abbreviations to denote the types of construction. The definitions are as follows:

$$
\begin{array}{lc}
\text { A-Alloy } & \text { m-Mesa } \\
\text { D—Diffused } & \text { MA-Micro Alloy } \\
\text { d--Drift } & \text { MAD-Micro Alloy } \\
& \text { Diffused } \\
\text { F—Fused } & \text { NP-Unijunction } \\
\text { G—Grown } & \text { SB—Surface Barrier }
\end{array}
$$

KLEIN PLIERS make wiring faster

There's a lot to like in Klein Pliers. There is a size and style for every job, even the toughest wiring assembly. All are made of finest alloy
steel, individually tempered and tested. They are backed by the Klein name, serving industry for more than 100 years.

Yours for the askingfree copy of the new Klein Pocket Tool Guide.

ASK YOUR SUPPLIER

Foreign Distributor: International Standard Electric Corp., New York

This package can end your worries about silicon processing . . .

Inside this box you'll find doped silicon single crystal slices from Allegheny.
Who needs them? You do...
If you wish to increase production without tying up capital in facilities for slicing, lapping, etching and such.
If you'd like to avoid being dependent on just one source of supply.
You solve either (or both) of these problems with Allegheny's new service because you get single crystal slices that are ready for use.
These slices from vertically pulled or float zoned crystals are doped to range with 99.999% group III and/or V elements. Standard thicknesses from $.005^{\prime \prime}$ to $.020^{\prime \prime}$ and diameters from $1 / 4$ to $11 / 2$ inches.

As for lapping, this we do to your specification. If you wish, we prepare one or both sides for diffusion. Otherwise slices are etched, cleaned and dried before being delivered to you.

Details? We'll provide answers to your questions, promptly.

NOTE: You'll find that Allegheny devotes its efforts exclusively to producing ultra-pure silicon in every form. You might also be interested in more facts about bulk, billets, rods, doping alloys, seeds or special forms.
If so, write, wire or phone:
Allegheny Electronic Chemicals Co. 207 Hooker-Fulton Bldg., Bradford, Pa. 252 North Lemon St., Anaheim, Calif.

ALLEGHENY

ELECTRONIC CHEMICALS CO.
Producers of semiconducting materials for the electronics industry.

Circle 117 on Inquiry Card

Technical Papers Program

$500^{\circ} \mathrm{C}$ Component Applications ${ }^{\text {(Cont }}$)
and P. S. Hessinger Applications, "A. S. Backus An Ulitra Stabsinger.
An Ultra Stable Diffused Subminiature Voltage Microlamp,"' Donald J. Belknap.

SESSION 34-AERONAUTICAL ANO NAVIGATIONAL ELECTRONICS
Fri., Aug. 21. 10:00 AM to 12:30 PM
'Landing Aids for Aircraft"" James Holahan. 'Analysis of a New Glide-Slope System for Landing Fixed-Wing Aircraft." A. Tatz and F. H. Battle. A Frequency Domain Approach to Sub-Clutter Visibility Limitations Due to Statistic and NonStatistic Phenomena as Encountered in Coherent M.T.I. Operation, " Frank S. Rees and George F. Thomas.

SESSION 35-INSTRUMENTATION

Fri., Aug. 21, 10:00 AM to 12:30 PM
'Sampling Oscillography, R. Carison and associates
Roint Signal Limitations of Radiometers,"
Roger S. Colvin.
Spectrum Analysis with Delay Line Filters,"
Henry J. Bickel.

SESSION 36-AUTOMATIC CONTROL 2
Fri., Aug. 21, 10:00 AM to 12:30 PM
"Evaluating Residues and Coefficients of High Improved Optical Anolog Computer " E. N Leith, L. J. Cutrona and L. J. Parceilo. E. Pole Delermination with Complex Zero Inputs. John A. Brussolo.

SESSION 37-MICROWAVE THEORY AND TECHNIQUES 2
MICROWAVE COMPONENTS AND SYSTEMS
Fri., Aug. 21, 10:00 AM to 12:30 PM
Harmonic Suppression by Leaky Wall Wave guide Filters," Vernon C. Price and Richard H. Stone.

Application of a Solid-State Ruby Maser to an X-Band Radar System,"' R. L. Forward, F. E. Goodwin and J. E. Kiefer. L. Forward, "An Automatic RF Matching Device," R. G Martin, L. Young, D. S. Friedman and G. Runke.

SESSION 38-NUCLEAR SCIENCE

Fri.. Aug. 21, 2:00 PM to 4:30 PM
An Electronic Positional Assist for Film Readers," Robert N. Lewis.
Radiation Effects on Electron Tube Materials," Everett R. Johnson.
Oscillascopes and Detectors Used for Measure ment of Nuclear Detonations," Richard C Epps.

SESSION 39-COMMUNICATION SYSTEMS

Fri., Aug. 21, 2:00 PM to 4:30 PM

"The Design of Wideband Scatter Links," M. O Felix.
Evaluating Total Noise in a Multi-Trunk Com municotions System," ${ }^{\text {N }}$. W. Feldman.
A Miniature Underwater Cable System," B. G
King, L. R. Wrathall, L, O. Schott and Gordon
Raisbeck.

SESSION 40-INDUSTRIAL ELECTRONICS
Fri., Aug. 21, 2:00 PM to 4:30 PM
Silicon Controlled Rectifier - Triggering and
Turn-off Circuitry for Inverter Applications, Dwight V, Jones.
'An Intermittent-Action Camera with Absolute Time Calibration," Robert H. Doherty, G Hefley and E. L. Berger.
Thermoelectric Spot Cooling Applications,' Robert S. Lackey.

SESSION 4I-AUTOMATIC CONTROL 3
Fri., Aug. 21, 2:00 PM to 4:30 PM
'Random Noise with Bios Signals in Nonlinear Devices," George S. Axelby.
'Nongyroscopic Inertial Reference.". J. J. Klein. Sampled-Data Design by Log Gain Diagrams," Marvin P. Pastel and G. V. Thaler.

SESSION 42-MICROWAVE THEORY AND TECHNIQUES 3
MICROWAVE MAGNETIC-RESONANCE APPLICATIONS
Fri., Aug. 21, 2:00 PM to 4:30 PM
"Microwave Applications of Thin Films," P. E. Tannenwald
Cavity and Traveling-Wave Masers Using Ruby at S-Band," W. S. C. Chang, J. Cromack and A. E. Siegman.

An S-Band Traveling Wave Maser," H. Tenney and P. Vartanian.

Electronic Printing

Printing 5000 lines per minute, this system, for pre-printed forms was developed by the San Diego facility of Stromberg-Carlson. No high speed mechanical parts are used. Characters formed on the tube face are projected to sensitized surface of revolving selenium-coated xerographic drum of the printer. Thermoplastic powder adheres to light exposed drum area. Developed image is electrostatically transferred to paper and thermally fused. Printed paper is cut to desired size.

The Carie /hat poticues duality

 in THERMISTORS
NEw!

DC to DC and DC to AC solid-state power converters voltage regulated, frequency controlled, for missiles, telemetering, gyros, servos

Interelectronics Interverter solid-state thyra-tron-like elements and magnetic components convert DC to any number of voltage regulated or controlled frequency AC or filtered DC outputs from 1 to 1800 watts. light weight, compact, 90\% or better conversion - fficiency.

Ulira-reliable in operation, no moving parts, unharmed by shorting oulput or reversing input polarity. Complies with MIL specs for shock, acceleration, vibration, temperature, RF noise.
Now in use in major missiles, powering telemetering transmitters, radar beacons, electronic equipment. Single and polyphase AC output units now power airborne and marine missile gyros, synchros, servos, mag. netic amplifiers.
Interelectronics - first and most experienced in the DC input solid-state power supply field, produces its own solid-state gating elements, all magnetic components, has the most complete facilities and know-how-has designed and delivered more working KVA than any other firm!
For complete engineering data write Interelectronics today, or call LUdlow 4-6200 in N. Y.

INTERELECTRONICS CORPORATION

[^11]
New
 Products

POWER SUPPLIES

Two series (Z \& W) rack mounted laboratory power supplies operate with ac inputs from 105 to 125 v., 60 to 400 cPS . Outputs are continuously variable from 0 to 32 vdc. The out-
puts can be used as either positive or negative supply. Provision is made for remote sensing so that supply values can be determined at the load. Input is a standard 2 -conductor receptacle. Output is through jacks (front panel) or terminals (rear of the chassis). Ripple in the " Z " series is under 1 mv ; the " W " version is below 5 mv . Both tpes available in 2, 5, 10 and 15 max. output. Consolidated Diesel Electric Corp., 880 Canal St., Stamford, Conn.

Circle 274 on Inquiry Card

MICROWAVE ABSORBER

Microwave absorber product, Eccosorb CV, is guaranteed at a -40 db reflectivity level for the appropriate frequency band. Available in 6 in . and 9 in. thicknesses. Specs are: Eccosorb CV -6, Freq. range, 5.5 kmc

through 50 kmc , Reflectivity, 40 db down; Eccorsorb CV -9, Freq. range, 2.5 kme through 50 kmc , reflectivity, 40 db down. Emerson \& Cuming, Inc., Canton, Mass.

Circle 275 on Inquiry Card

No solvent acidity

... with new Freon* solvents

"Freon" solvents are high-purity chemicals remain noncorrosive through repeated degreasing cycles in cleaning sensitive mechanical and electrical assemblies. Without inhibitors new "Freon" solvents demonstrate remarkable stability in the presence of water, oils or metals. They are ideal for cleaning where even minute corrosion could damage delicate parts.
Here are four more ways in which new "Freon" solvents are extraordinarily safe for cleaning.

- Low toxicity-"Freon" solvents are odorless. and much less toxic than ordinary solvents. Vapors won't cause nausea or headaches.
- Won't burn or explode - Underwriters' Laboratories report "Freon" solvents nonexplosive, noncombustible and nonflammable.
- Leave no residue - No residue is left on parts as they dry because no inhibitors are needed to keep "Freon" solvents neutral.
- Negligible effects on plastics, elastomers, insulation and color coding - "Freon" solvents remove oil and grease with minimum swelling of plastics or rubber and without crazing or softening paint, wire coatings or insulation.

Write for free solvents booklet. E. I. du Pont de Nemours \& Co. (Inc.), "Freon" Products Division 558, Wilmington 98, Delaware.
*Freon is Du Pont's registered trademark for its. fluorinated hydrocarbon solvents.

FREE BOOKLET !
No obligation - write
for booklet which tells how new "Freon" solvents by Du Pont minimize cleaning hazards.

Better Things for Befter Living
. . . Phrough Chemistry

New

Products

AC NULL DETECTOR

Model 51-A, ac null detector, is a sensitive tuned detector covering the frequency range of 20 CPS to 200 KC . Input impedance is 1 megohm shunted by 100 uuf. A $10 \mu \mathrm{~V}$ input

produces a $1 / 4 \mathrm{in}$. deflection on the 2 in. cathode ray indicator and/or a 0.1 ma deflection on an external meter. Discrimination against the 2nd harmonic of the tuned frequency is 40 db over most of the frequency range. May be calibrated for use as a tuned peak-to-peak voltmeter or as a wave analyzer. Boonton Electronics Corp., 738 Speedwell Ave., Morris Plains, N. J.

Circle 276 on Inquiry Card

tV Lead.in CABLE

Permohm, a 300 -ohm TV lead-in cable provides constant impedance regardless of adverse atmospheric conditions such as salt spray, smog, fumes, rain, and ice, offers lower losses and better reception of VHF, UHF, and color signals in all areas. It also improves signal reception in fringe areas where long leads are used. Constructed of copperweld con-

ductors and virgin polyethylene primary insulation encapsulated in cellular polyethylene. Available in 50^{\prime}, 75^{\prime}, and 100^{\prime} lengths. Belden Mfg. Co., Chicago, Ill.

Circle 277 on Inquiry Card

SPECIAL EESLER MAKES THE LARGEST ASSORTMENT OF SPECIAL,
WELDING TIPS, HOLDERS
and
WELDING JIGS

MADE TO YOUR SPECIFICATIONS

EIILER VERTICAL SPOT WELDER
made in sizes 1/2-1-2-3-5 Kva

EISLER ENGINEERNG CO., INC.
770 So. 13th St.
NEWARK 3, N. J.

Circle 119 on Inquiry Card

TENSOLITE CABLE RIDES THE X-15

It's no small honor to be picked to ride the X-15 - America's first space-craft. All components were carefully selected, then checked and re-checked for top performance and reliability. Tensolite is honored to have its multi-conductor cable included in this tremendous program.

Producing inherently reliable 250 deg. C. cable and cable assemblies is Tensolite's specialty. Cables utilizing the maximum number of conductors in a minimum of area - saving weight and space - are available as ribbon cable or standard round configurations.
"You write the specs - Tensolite does the rest." Or let our experienced cable design engineers assist you. Many leading aircraft and electronic manufacturers are taking advantage of Tensolite's new, expanded design and production facilities in the cable field. We'd like to work with you on your cabling problems. Contact your local Tensolite representative, or write to;

INSULATED WIRE CO., INC.

West Main Str
Pacific Division: 1516 N. Gardner \$t, LOS Angeles, Californla
HOOK-UP WIRE - AIRFRAME WIRE • COAXIAL CABLE • MULTI-CONDUCTOR CABLE • MAGNET WIRE
See Us At Booth 1412 At The Wescon Show
Circle 121 on Inquiry Card

New
 Products

FLexible Cable

Flexible r-f coaxial cable operates continuously at $1000^{\circ} \mathrm{F}$ and at higher temp. for short time excursions. It is resistant to nuclear radiation, to shock and to vibration, and is alti-

tude insensitive and moisture resistant. The cable core is modified semi-solid silica; inner and outer conductors are coated oxygen-free high conductivity copper wire. Nominal impedance is 50 ohms. Velocity of propagation is 69.0%. Maximum operating voltage is 1000 vrms. Amphenol Cable \& Wire Div., AmphenolBorg Electronics Corp., S. Harlem Ave. at 63rd St., Chicago 38, Ill.

Circle 278 on Inquiry Card

RELAYS

B-145 series of relays provide time delay overload protection and also signals motors contactor at first sign of trouble. Inverse time delay allows for starting inrush and transients, but quickly senses locked rotor, overloads, winding to winding, or turn to turn faults. Time delay can be designed for fixed or integrated period in this group of motor protector re-

lays. B-145 series specs are: current, 5 a up, 115 to 140 v., 60 to 400 CPS. Hartman Electrical Manufacturing Co., 175 N. Diamond St., Mansfield, Ohio.

Circle 279 on Inquiry Card
\qquad

Hi-Q Inductors . . . FROM STO
As largest producers in this field for over two decades, UTC inductors cover virtually every need for both fixed and variable units of exceptional stability. Hermetic units have been proved to MIL-T-27A, eliminating costs and delays of initial MIL-T-27A testing.

For complete listing of our 700 stock items (300 hermetic) write for catalog.

HVC Hermetic

Variable inductors

A step forward from our long established VIC series. Hermetically sealed to MIL-T-27A... extremely compact... wider inductance range... higher Q... lower and higher frequencies... superior voltage and temperature stability. Case $25 / 32 \times 11 / 8 \times 17 / 32,202$.

MQ drawn case structure Length Width Height 02. $\begin{array}{lllll}\text { MQE } & 1 / 2 & 1.1 / 16 & 1.7 / 32 & 1.5\end{array}$ $\begin{array}{lllll}\text { MQA, MQD } & 11 / 16 & 1-9 / 32 & 1.23 / 32 & 4\end{array}$ $\begin{array}{lllll}\text { MQB } & 1.5 / 16 & 2.9 / 16 & 2.13 / 16 & 14\end{array}$

maE 15 stock values from 7 Mhy. to 2.8 Hy .

DI Inductance Decades

These decades set new standards of Q , stability, frequency range and convenience. Inductance values laboratory adjusted to better than 1%. Units housed in a compact die cast case with sloping panel ideal for laboratory use $.41 / 2 \times 43 / 8 \times 23 / 8$ high.

DI. 1 Ten 10 Mhy. steps. DI-2 Ten 100 Mhy. steps. Dl. 3 Teर́ 1 Hy . steps.

DI-4 Ten 10 Hy . steps.

VIC case structure

Length	Width	Height	02.
$1.1 / 4$	$1-11 / 32$	$1.7 / 16$	$5 \cdot 1 / 2$

MQD

New extreme stability inductors for 12 KC to 130 KC range. Typical \mathbf{Q} is 170 @ 50 KC . 6 stock values from 2 mhy. to 20 mhy.

MQ Series

Compact Hermetic Toroid Inductors
The MO permalloy dust toroids combine the higtest Q in their class with minimum size. Stability is excellent under varying voltage, temperature, frequency and vibration conditions. High permeability case plus uniform winding affords shielding of approximately 80 db .

From the AMCI Catalogue

AUTOMATIC IMPEDANGE PLOTTERE

- Confinuous impedance display with frequency
- Available in portable and rack-mounted units

Type	Frequency Range (mc)	Line Size
12.	$2.5-250$	Type N
$11 . \mathrm{Q}$	30.400	Type N
$11-\mathrm{PS}$	180.1100	Type N

SLOTTED LINES

- Residual swr under 1.010
- Rafed error in detected signal under 1.005
- Available with a wide variety of tapered reducers

Type	Frequency Range (mc)	Impedance (ohms)
$1026-13$	$50-3000$	50 or 75
$1026-8$	75.3000	50 or 75
$1026-6$	$100-3000$	50 or 75
1026.4	150.3000	50 or 75
$1026-2$	$300-3000$	50 or 75

Coil Winder

(Continued from page 90)
voltage coils used in alternating current applications, the material will be an insulator. The bobbin used in the original application were made of nylon. All bobbins necessarily become an integral part of the coil and, therefore, can be impregnated as a complete unit in any one of the many accepted methods.

A Dayton Electric 1M-954 ACDC motor provides power to the drive wheels through " O " rings, which are used as belts in $1 / 8$-inch pulleys, in a $4: 1$ step-down ratio to the main pulley shaft. All other ratios to the drive shafts are 1:1. All drive shafts are mounted with nylon bushings. The idler wheel shaft is mounted on ball bearings. Either nylon bushings or ball bearings may be used throughout, although the nylon bushing is undoubtedly conducive to quieter operation.

Fig. 2: Split bobbin fitted on the core.
Maximum bobbin speed is approximately 1000 rpm since there is a $2: 1$ step-down ratio in the drive-wheel-to-bobbin relationship. A Singer Sewing Machine motor controller (part number 194828) is used to control the winding speed. A Veeder Root counter with key reset is provided to count the winding turns; it is also belt-driven. The drive ratio of the counter is 1:1 with the bobbin.

Insulation is inserted after each layer of winding. Tape is not usually required to hold the insulation in place. This is accomplished by the downward pressure of the wire, which is under a slight tension, and by the guiding action provided by the ends of the bobbin. The start and finish, however, should be taped down. Any conventional termination is suitable for the finish of the winding itself.

SYSTEMS—WISE . . .

- Automation of TV stations has proceeded very slowly. Less than 25 stations have seen fit to "automate," i.e., cue switching and timing by pre-set electro-mechanical means. Equipment manufacturers expect this number to double by the end of the year, however. Gradual changeover to automatic switching by all large and mediumsized outlets is virtually inevitable, according to both manufacturers and operators of "automated" stations.

More support for the revision of Section 315, Federal Communications Act has been received. This time the help comes from the Freedom of Information Committee of the NAB. This group has urged prompt passage of legislation removing news operations from the equal time provision.

LONG-LIFE POWER TUBES

Power tubes in driver and r-f power amplifier stages of RCA transmitter at Radio Free Europe's station near Lisbon, Portugal, are examined by RCA technical personnel. Tubes shown have an ayerage of 31,000 hours of program service logged to date.

- META, Metropolitan Educational Television Association, has set as its goal the acquisition of a VHF channel for full-time educational broadcasting in the New York area -as soon as possible. This is the only way in which the $41 / 2$ million homes- 17 million viewers-in that area will be able to enjoy the cultural advantages now available to 41 other metropolitan areas- $\mathbf{6 0}$ million viewers.
- Videotape recorders will be installed in the top 100 TV markets in the United States before the end of the year, according to Tom Davis, Marketing Manager of that Ampex division. Tape coverage of these markets opens the door for national advertisers to set in motion their extensive plans for taped "spots." Tape floodgates will unfold concurrently with the Christmas selling season.
- F. C. Sowell, VP and General Manager of WLAC, Nashville, has been elected to the Chairmanship of the Radio Board of the NAB. Vice Chairman of the group is Thomas C. Bostic, VP and General Manager of the Cascade Broadcasting Co.-and Mayor of Yakima, Wash.
- Senator Frank E. Moss (D-Utah), appearing before a Senate subcommittee, said that enactment of his new "TV booster" bill is needed if smaller communities are to be protected in their right to establish free television services. His bill would place community antenna television under FCC regulation and give the Commission authority to license new as well as existing vhf "booster" stations.
- FCC commissioners may continue in office, after the termination of their membership, if a bill (S.1965) presently before the Senate is passed into law. The bill is designed to amend the Federal Power Act and the Communications Act of 1934 to make uniform the termination of membership on these commissions with membership on the FTC, ICC, and CAB. Under existing law, members of these three groups continue in office until their successors have been appointed and have qualified.
- Nine grants totaling more than $\$ 35,000$ have been awarded in the third year of the continuing joint educational radio programming project of the National Educational Television and Radio Center (NETRC) and the National Association of Educational Broadcasters (NAEB). Eight institutions received awards this year for the project theme, "The American in the Twentieth Century."
- Frank Morris, veteran writer-producer and continuity director, is now West Coast representative for the Television Code Affairs Department of the National Association of Broadcasters.
- The FCC has extended its deadline on type-approved TV monitors, frequency and modulation, until June 1, 1960. Action was taken in view of the continued development of more stable frequency control circuits in AM, FM, and TV transmitters.

FILE.COMPUTER

 FOR FIRST ARMYSpecialist prepares a program for the Univac File-Computer recently installed at the Adjutant General Automatic Data Processing Center, First U. S. Army, Governor's Island, N. Y. First system of its kind at a field Army level, it introduces a new concept in efficient, error-free control of data on active and reserve personnel, their units and equipment.

This article is academic. It reviews those fundamentals which are often omitted in courses in network analysis, Laplace transforms, or servomechanisms. The methods-convolution, superposition integrals, impulse and step functions-furnish a more general understanding of the theory.

Analyzing Systems by

T1HE convolution integral provides a direct method of determining the response of a linear system to an arbitrary input in the time domain. The word "system" is used here in a broad sense and could be a servomechanism, an electrical or a mechanical network, a filter, etc.

Convolution

Although the problem is usually simplified by Laplace transform techniques, convolution provides a graphical method of solution in cases where, for various reasons, an analytical solution is not possible. It is also of theoretical importance in furnishing an insight into system behavior which is different from that obtained in the complex frequency domain.

Stated mathematically, the convolution of two functions $\mathrm{f}(t)$ and $\mathbf{g}(t)$ is as follows:

By JEROME E. TOFFLER
Member of Technical Staff Hughes Aircraft Co. Florence \& Teale Sts. Culver City, California

$$
\begin{align*}
\mathrm{h}(t) & =\int_{0}^{t} \mathrm{f}(t-x) \mathrm{g}(x) d x \tag{1}\\
& =\int_{0}^{t} \mathrm{f}(x) \mathrm{g}(t-x) d x \tag{2}\\
& =\mathrm{f}(t)^{*} \mathrm{~g}(t) \tag{3}
\end{align*}
$$

The integrals are functions only of the limit t and not the variable of integration x. The asterisk in Eq. 3 is a symbolic notation for convolution.

From the system viewpoint, $\mathrm{f}(t)$ represents a driving or excitation function, and $\mathrm{g}(t)$ represents the response of a linear system at time t after it has been excited by a unit

impulse occurring at $t=0$. A unit impulse, also called a delta function, may be considered physically as a pulse of high amplitude, very narrow width compared to the system time-constants, and an ampli-tude-time integral equal to unity. Mathematically, a unit impulse occurring at $t=a$, is defined as follows:

$$
\begin{array}{cc}
\delta(t-a)=0 & \text { if } t \neq a \\
\delta(t-a)=\infty & \text { if } t=a \\
\int+\infty \\
+\infty & \delta(t-a)=1
\end{array}
$$

The normal response, $\mathrm{g}(\mathrm{t})$, to a unit impulse is sometimes called the "weighting function" for a reason to be explained later. It is closely related to the "Green's function" method of solving differential equations.

A linear system is completely defined by its weighting function because the output for any arbitrary input can be computed using Eq. 1 or 2 . Because of the symmetrical form of these equations, it is seen that the driving function of the weighting function play similar roles in determining the response.

The convolution integral can be formulated by resolving any arbitrary input into a series of narrow rectangular pulses each with an are of magnitude $\mathrm{f}\left(t_{n}\right) \perp t_{n}$, Fig. 1.

Fig. 2: Reflection and shifting of a function.

Superposition

The response is represented as the sum of the responses to each pulse. The narrow pulses represent the magnitudes of impulse functions, and the weighting function $\mathrm{g}(t-a)$ is, by definition, the response to a unit impulse at time $t=a$. Therefore the response is approximated as follows:

$$
\begin{aligned}
\mathrm{h}(t) \approx & {[\mathrm{f}} \\
& \left.\left(t_{o}\right) \Delta t_{o}\right] \mathrm{g}\left(t-t_{o}\right) \\
& \quad+\left[\mathrm{f}\left(t_{1}\right) \Delta t_{1}\right] \mathrm{g}\left(t-t_{1}\right) \cdots \\
& \quad+\left[\mathrm{f}\left(t_{n}\right) \Delta t_{n}\right] \mathrm{g}\left(t-t_{n}\right) \quad(4) \\
\approx & \left.{ }_{0}^{n} \Sigma \mathrm{f}\left(t_{n}\right) \Delta t_{n}\right] \mathrm{g}\left(t-t_{n}\right)
\end{aligned}
$$

In the limit as Δt_{n} approaches zero, this summation becomes the convolution integral:

$$
\begin{equation*}
\mathrm{h}(t)=\int_{o}^{t} \mathrm{f}(x) \mathbf{g}(t-x) d x \tag{5}
\end{equation*}
$$

The reason for using the name "weighting function" can be seen from Eq. 4, where each impulse is "weighted" in contributing to the total response. It is evident that the response at any instant may be influenced not only by the driving function $\mathrm{f}(t)$ at that instant but also by all previous values of $f(t)$. In this sense, the system may be said to "remember" former inputs.

From Eq. 4, it is apparent that convolution is based on the principle of Superposition; that is, the total response is a summation of the responses due to each portion of the input. The theory, therefore,
applies only to linear systems because only in these systems is superposition valid.

Graphical Interpretation

Convolution has an important graphical interpretation which can be obtained directly from the defining integral in Eq. 1, provided the significance of each term is clearly understood. In particular, if the weighting function $\mathrm{g}(x)$ is given, the function $\mathrm{g}(t-x)$ represents a shift of t units to the right and a reflection about the vertical line $x=t$, Fig. 2.

Corresponding ordinates of $\mathrm{f}(x)$ and $\mathrm{g}(t-x)$ are multiplied to form the product function $\mathrm{f}(x) \times \mathrm{g}(t-x)$. The area enclosed by the product curve represents the value of the integral. The process is tedious when performed manually because the multiplying of ordinates and evaluation of area must be repeated for each value of time t. However, the two functions involved can be empirical and need not be expressed analytically. Further details of graphical convolution can be found in Reference 1.

Another important type of excitation is the step function. The step function of amplitude K, occurring at $t=a$, is defined as follows:

$$
\begin{aligned}
K[\mathbf{u}(t-a)] & =K \text { if } t \geq a \\
& =0 \text { if } t<a
\end{aligned}
$$

This function is illustrated in Fig. 3; it is seen to be analogous to closing a switch.

The characteristic response to a unit step is called the indicial admittance, $\mathrm{c}(t)$, which completely defines a linear system just as well as the weighting function, $g(t)$. In fact, these two functions are related as follows:

$$
c(t)=\int_{0}^{t} \mathbf{g}(x) d x
$$

Representation of an arbitrary input, $\mathrm{f}(t)$, as the sum of a series of positive and negative step functions is illustrated in Fig. 4.

The normal response to any input, in terms of indicial admittance, is the following:

$$
\begin{align*}
\mathrm{h}(t) & =\mathrm{f}(o) \mathrm{e}(t) \\
& +\int_{o}^{t} \mathrm{f}^{\prime}(x) \mathrm{e}(t-x) \mathrm{d} x \tag{6}
\end{align*}
$$

The proof will not be given here. It is similar to the proof of Eq. 4. It consists of summing the responses to each step and allowing the steps to increase in number idefinitely. The limit of the infinite

Fig. 3: Step function of amplitıde K.
summation is the integral of Eq. 6. This integral contains the derivative of the driving function rather than the driving function itself. However, it is a useful form, since in many cases step-function response is easier to determine than impulse response.

Response Representation

Eqs. 5 and 6 are equivalent and exact representations of the response, although their derivations involved approximations. Both Eq. 5 and Eq. 6 are based on the principle of Superposition. In Eq. 5, the output is a summation of responses to impulses, while in Eq. 6 the output is a summation of (Continued on page 200)

for Broadcasters

Audio Switching

W. D. HAY \& C. S. MORRIS

WUSC, Columbia, S. C.
As our operation matured, the need for selecting among several program sources to feed the transmitter line became apparent. We wanted a means that was simple, foolproof, rapid, and versatile. The end product of this situation is a relay switcher which selects one of four audio circuits, while cancelling any one previously connected. Push-buttons activate the switcher. Only two sets of buttons are used, but others may be added since all sets are identical and in parallel.

We used Mossman illuminated push-buttons. However, any sort of S.P.S.T., non-locking, normally open butten with associated tally lights would do just as well. There is a fail-safe feature in the event of difficulty. Each program relay, when off, feeds its audio to a terminated patch. This affords man-
ual switching with patch cords in emergency conditions and also keeps the trunks correctly loaded at all times.
Four hours of our broadcast day are pre-taped for unattended programming and we use one position to start a tape transport as well as to switch its audio. The number of circuits may be extended indefinitely by continuing the circuit with additional button and relay combinations in its present form. Diodes across each coil prevent switching transients.

Since we use two separate control rooms, being able to transfer the program source without having to trot from one place to another has made control work much smoother. This feature is especially appreciated when only one person is on duty. The unit has given six months of continuous trouble-free service and seems to be the solution to our switching problems.

Fail-safe is provided for this switching system by feeding the audio from each program relay, when off, to a terminated patch. Manual switching is then available and the trunks are kept correctly loaded.

A Useful Tool-The Awl
 NORMAN F. ROUND, Ch. Engr. WCCM, Lawrence, Mass.

A small awl with wooden handle and a point of 3 to 4 inches is a very useful tool to have around the shop-not a carpenter shop either! The following reasons should justify it:
(1) When taking voltage or ohm readings on wires that come out of transformers, etc., and terminate on the other side of the chassis or in hard to reach places, just prick the wire with the awl and place the probe on the awl and you have your reading without hunting for the wire termination. (Be careful not to press too hard when taking voltage readings or something else may need replacement.)
(2) Most noisy or intermittent tube sockets can be repaired by squeezing together the small tube prong holders with the point of the awl so that they'll fit more tightly on the prong of the tube. Especially useful for tube checkers.
(3) It can be used to enlarge the tiny hole in tube caps to facilitate soldering the cap back on and to enlarge small holes in the chassis to allow using larger screws, etc. The awl will work fine on practically any thickness of chassis material.
(4) It permits easy unwinding of the outer braid on shielded cable without doing damage to the tiny wires.

Other uses can be found for this simple but effective tool. The point will stay sharp for a long time without resharpening.

\$\$ for Your Ideas

Readers are invited to contribute their own suggestions which should be short and include photographs or rough sketches. Typewritten, double-spaced text is requested. Our usual rate will be paid for material used.

Special-design tower supporting Air Force antennas for test purposes.

Horn-type receiving antenna and support towers for signal amplification.

Towers supporting large curtain type antenna for scatter communication.

STAINLESS TOWER DESIGNS OFFER UNUSUAL VERSATILITY FOR SPECIAL APPLICATIONS

"Custom" design utilizing Stainless stock tower sections is the answer to many special tower requirements. Standard stock tower sections may be modified and adapted to special specifications at minimum cost.

A wide variety of self-supporting or guyed structures are available to support all types of top or antenna loads and withstand all types of wind, ice and rigidity conditions.

Let Stainless' Design Staff advise and assist you with your structural problems.

Special design self-supporting test structure having very rigid deflection and ice load specification.

Superposition

(Continued)

Fig. 4: Arbitrary function $f(t)$ approximated as a sum of step functions. The decreasing portion is obtained by using negative steps.
responses to step functions. Since an arbitrary input can be considered to consist of either impulses or step functions, Eqs. 5 or 6 must yield the same result. In using these equations, it is assumed that the system is initially at rest before application of the excitation function at time $t=0$.

To this point, all calculations have been performed in the real time domain without use of transforms. However, there is an important relationship between the convolution integral and Laplace transform techniques, as shown below.
Taking the Laplace transform of each side of Eq. 4 yields
$H(p) \approx\left[f\left(t_{0}\right) \Delta t_{0}\right] G(p) \exp \left(-p t_{o}\right)$ $+\left[\mathrm{f}\left(t_{1}\right) \Delta t_{1}\right] \mathrm{G}(p) \exp \left(-p t_{1}\right)$ $+\left[f\left(t_{n}\right) \Delta t_{n}\right]$ $\mathrm{G}(p) \exp \left(-p t_{n}\right)$
$\approx G(p) \sum_{0}^{n} \mathrm{f}\left(t_{n}\right) \Delta t_{n} \exp \left(-p t_{n}\right)$

where,
II $(p)=$ transform of $\mathrm{h}(t)$
$\mathrm{G}(p) \exp \left(-p t_{n}\right)=$ transform of $\mathrm{g}\left(t-t_{n}\right)$

In the limit, as Δt_{n} approaches zero, this becomes

$$
\begin{aligned}
& \mathrm{H}(p)=\mathrm{G}(p) \int_{0}^{\infty} \mathrm{f}(t) \mathrm{e}^{-p t} d t \\
& \text { or } \\
& \mathrm{H}(p)=\mathrm{G}(p) \mathrm{F}(p)
\end{aligned}
$$

Eq. 9 follows directly from Eq. 8 because the integral in Eq. 8 is
the definition of $F(p)$, the Laplace transform of $f(t)$.

It is apparent from the above derivation that convolution in the time domain corresponds to multiplication in the complex frequency domain. Conversely, it can be proven that multiplication in the time domain corresponds to convolution in the complex frequency domain.

The function $\mathrm{G}(p)$ is called the system function or transfer function. It is the ratio of the response

Circle 125 on Inquiry Card

Circle 126 on Inquiry Card

ASPHALT BASE COMPOUNDS

for coil impregnation, potting, cable conduit sealing, drum and barrel liners, etc.

- Bituminous materials modified with waxes, resins, and polymers.
- Variable thermal conductivity.
- Softening points from $150^{\circ} \mathrm{F}$ to $295^{\circ} \mathrm{F}$.
- Low viscosity-high cold flow systems.

Send for GENERAL SPECIFICATIONS CHART on INSULATING and SEALING COMPOUNDS 3440 HOWARD STREET - SKOKIE, ILINOIS Telephones: ORchard 3-1050 - AMbassador 2-3339
transform to the excitation transform:

$$
\mathrm{G}(p)=\frac{\mathrm{H}(p)}{\mathrm{F}(p)}
$$

$\mathrm{G}(p)$ is also the transform of the weighting function $\mathbf{g}(t)$, as was shown above. The same result can be obtained by letting the excitation $\mathrm{f}(t)$ be an impulse function. Since the transform $\mathrm{F}(p)$ of a unit impulse is unity, Eq. 9 becomes:

$$
\begin{gather*}
\mathrm{H}(p)=\mathrm{G}(p) \cdot \mathrm{l} \tag{10}\\
\text { or } \\
\mathrm{h}(t)=\mathrm{g}(t) \tag{11}
\end{gather*}
$$

Eq. 11 shows that the response $g(t)$ to a unit impulse is the inverse transform of the system function $G(p)$.

It must be remembered that Eq. 9 , although it is algebraic, represents the solution of a differential equation. Thus, if

$$
\mathrm{G}(p)=\sqrt{a p^{2}+b p+c}
$$

then Eq. 9 becomes

$$
\begin{align*}
& \mathrm{H}(p)=\mathrm{G}(p) \mathrm{F}(p) \\
&=\frac{\mathrm{F}(p)}{a p^{2}+b p+c} \tag{12}
\end{align*}
$$

This algebraic expression is equivalent to the differential equation
$a \frac{d^{2} \mathrm{~h}(t)}{d t^{2}}+b \frac{d \mathrm{~h}(t)}{d t}+c \mathrm{~h}(t)=\mathfrak{f}(t)$
The inverse transform of $\mathrm{H}(p)$ in Eq. 12 is $\mathrm{h}(t)$, the solution of the differential equation.

References:

(1) Transients in Linear Systems, by M. F. Gardner and J. L. Barnes: John 231-235, and 262-263.
(2) Theory of Servomechanisms, by James, Nichols and Phillips; McGraw Hill, New York, 1947 ; Pages 30-38.
(3) Transformation Calculus and Electrical Transients, by Stanford Goldman: Prentice-Hall, New York, 1949: Pages 112-124.

Peltier Thermostating

On page 79 of the July, 1959, issue of Electronic Industries, there appears the "What's New . . ." item titled "Peltier Thermostating." Credit for this material should have been given to E. L. Armi, Chief Research Staff, and C. G. Kirkpatrick, Senior Research Engineer, Advanced Engineering Dept., Autonetics, a Division of North American Aviation, Inc., Downey, Calif. The item was abstracted from their paper, "Peltier Thermostating for Increased Reliability."

PHIL A. MENT- along with many engineers in the electronic industries is moving. If you are, and-like them-want ELECTRONIC INDUSTRIES to follow, please do this: (1) Send us a wrapper imprint of old address; if not available, write down completely your former location. (2) Tell us your new company, its address, specific nature of business and your title. Missing any of these components will delay and cause you to miss issues. So please remember-complete old address and new will speed-up delivery of your ELECTRONIC INDUSTRIES.

IMMEDIATE DELIVERY OF ALL TYPES

Solid Block $17 T B 10$

Gen-Pro military terminal boards are manufactured and inspected in accordance with latest revision of MIL-T-16784, BuShips Dwg. 9000-56505-B-73214 and BuOrd Dwg. 564101. Molding compound, per MIL-M-14E assures low dielectric loss, high insulation resistance, high impact strength.

NEW MINIATURE TYPES NOW AVAILABLE
Gen-Pro miniature type military terminal boards conform with Bureau of Ships Drawing RE10-D-764, as referenced in MIL Standard \#242.

WRITE today for new catalog with illustrations \& specifications

Miniature
26 TB10

WASHINGTON

News Letter

MICROWAVE ACTION POSSIBILITY - In their final meetings before the August vacation recess, the FCC had under concentrated consideration its determinations about the microwave radio services above 890 MC , based on its lengthy hearings of two years ago. The Commission, in its meetings during the latter part of July, closely studied the formulation of its policies as to the operation of common carrier and private microwave services, the eligibility of the different categories of microwave user organizations and technical standards for the service in the form of proposed rules. Because of the many difficult problems and conflicting positions of microwave services, the FCC could well defer issuance of its proposed rules until September.

CONGRESSIONAL SCRUTINY - The scarcity of frequencies for the expanding mobile and industrial radio services, as well as the continuing quest of television interests for more channels, has created a substantial interest on the part of the Senate and House Interstate \& Foreign Commerce Committees which handle legislative policy for the FCC and the communications-broadcasting fields. Even though handling a myriad of subjects involving many fields of commerce, the Congressional committees have become well aware of the tightness of the spectrum for civilian use and are aiming the study of this situation toward an improved method of determining the frequency space requirements for the armed services and other governmental agencies. A comprehensive panel discussion of the latter problem was conducted by the House Committee.

TV HOLD THE LINE - The conclusion of the lengthy hearings on frequency allocations between 25 and 890 mC resulted in the opinion of expert observers, interrogated by ELECTRONIC INDUSTRIES' Washington news bureau, that the FCC will be able to do little, if anything, with the multitude of issues presented by the non-broadcast radio services until some decisions are made on the pending TV allocations problems. In fact, it is apparent that the FCC will adopt a "hold the line" approach on television spectrum assignments so that there will be no disruption of existing TV allocations. Similarly, due to strong pleas about increased interest of listeners, an expansion of UHF television space is planned.

FM and UHF television broadcasting allocations will not be disturbed until the Commission has given that broadcast service a thorough reappraisal. UHF television space, even with the significant testimony by non-broadcast radio services that it was not being effectively used, likewise appears to be safe from allocation to other services for the time being. However, proponents for the common carrier broadband mobile radiotelephone system made a strong presentation about such a program's value in the public interest. Therefore, UHF television bands could well be taken away from that service and the spectrum space made available to mobile, industrial and similar non-broadcast radio users.

National Press Building ROLAND C. DAVIES Washington 4

DEPARTMENT OF SCIENCE AND TECHNOLOGY

-Bills have been introduced to Congress, H. R. 7954 and S. 1851, for the establishment of a commission to study the desirability and function of a Department of Science and Technology. The Engineers Joint Council has announced that they would like it called the Department of Science and Engineering.

FOREIGN INVESTMENT-Roy C. Ingersoll, Chairman of the Board of Borg-Warner Corporation, told the Ways and Means Committee of the House of Representatives that American business needed passage of H. R. 5, the Boggs Bill. He told them that passage of the bill would provide the necessary incentives for firms to expand their foreign activities.

He pointed out that American industry has pressing capitol requirements to satisfy domestic needs and limited funds left for foreign market. The Boggs Bill would make it possible for profits generated abroad to be utilized for further investments abroad
without their being severly reduced by the present 52% U. S. corporate tax.

ADVANCED RESEARCH PROJECTS - The Advanced Research Projects Agency has authorized the Army Missile Command to conduct space-supporting research projects in 16 selected items. Some of these items are advanced space propulsion, materials, and guidance and control. AOMC has been allocated $\$ 1.25$ million for these projects. They will do some of the work themselves at Huntsville, Ala., and let contracts for the balance.
EXPORT DOCUMENTS - Applications to export civil aircraft and related parts and electronic equipment filed now must be accompanied by appropriate documentation according to the Bureau of Foreign Commerce, U. S. Department of Commerce.

Exporters should consult the Bureau's export regulations to determine the type of documentation required in submitting their applications.

RECORDING FILTER

Model S-305, variable band pass filter is for use in disc, tape and motion picture sound recording applications and for industrial uses requiring the reduction of audio bandwidth to pre-

determined limits. Two key switches are provided permitting insertion of the low frequency and/or high frequency filter sections independently, at the time and cut-off frequency desired. Normalled input and output jacks provided. Selector switches permit choice of 15 low frequency cut-off points, from 30 to 200 cycles, and 15 high frequency points from 2 to 15 kc. Studio Electronics Corp., 711 S. Victory Blvd., Burbank, Calif.

Circle 259 on Inquiry Card

OSCILLATOR

A 2-tube, plug-in oscillator, Model LF-3, can operate over a broad range of crystal frequencies. It can be used with crystals having a natural frequency as low as 5 Kc and as high as 500 kc without requiring any tuning adjustment or circuit change. Output frequency may be changed by plugging in crystals or using a switch to choose the desired crystal. A noncritical value of resistance is generally connected from crystal to ground to compensate for the widely varying

serial resistance of crystals in this low-frequency range. Long-Term stability of the output is better than $\pm 2 \%$, with an output voltage of over 1.5 v . RMS into 50 K ohms. Telonic Industries, Inc., Beech Grove, Ind.

Circle 260 on Inquiry Card

New SHIFT REGISTERS by General Electric

 CUSTOM DESIGNED from 0 to $700 \mathrm{kc} / \mathrm{s}$Catalog components or devices oftentimes do not truly fit design needs. General Flectric, working directly from your specifications, custom designs the new Voltage Controlled Shift Register for any frequency between 70 and 700 kc . Within a matter of days, first prototypes will be shipped. VCSR's deliver far higher shift rates than core-diode registers, with considerably less power dissipation. For shift speeds below $100 \mathrm{kc} / \mathrm{s}$, custom designed corediode registers are also a part of this General Electric service.

> G-E Shift Registers can be designed within these parameters:
> Shift Pulse Power:. as low as .001 watts per ke Shift Pulse Voltage: $\begin{aligned} & \text { Signal Voltage: } \\ & \text { Signal-to-Noise Ratio: }\end{aligned}$ $\begin{aligned} & \text { Signal-to-Nois } \\ & \text { Temperature: }\end{aligned}$
> 3 to 25
> $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

For complete information write to Defense Industries Sales, Section 227-20B

GENERAL (76) ELECTRIC

DEFENSE ELECTRONICS DIVISION HEAVY MILITARY ELECTRONICS DEPARTMENT, SYRACUSE, N. Y. Circle 133 on Inquiry Card

 with
 SCHUYLERNIT
 Standard Shielding Strips

End RFI Shielding problems with SCHUYLERNIT
Standard RFI Shielding Strips and gaskets.
These strips are available in continuous lengths and meet the exact requirements of most RFI gasketing problems. SCHUYLERNIT Shielding Strips come in Monel, Aluminum, and Silver-plated Brass.

Ask our technical department for engineering assistance on other than Standard Shielding Strips.

RFI Shielding Strips are made of a resilient
metallic structure with maximum conductivity for continuous contact between uneven mating surfaces. Write today for SCHUYLERNIT complete illustrated RFI Shielding Manual.

${ }^{\text {* Radio Frequency Interference }}$

specialists in RFI* shielding
FOR QUICK REFERENCE:
see page 471
EEM CAT. (1959)

SCHUYLER MANUFACTURING CORP. 86 Porete Ave., No. Arlington, New Jersey

Specialists in ultrasonic energy
CORPORAT/ON
51 TERMINAL AVENUE, CLARK, NEW JERSEY
Circle 135 on Inquiry Card

How To Get Things Done Better And Faster

BOARDMASTER VISUAL CONTROL
$\hat{\sim}$ Gives Craphic Picture - Saves Time, Saver Money, Prevents Errors
A Simple to operate - Type or Write as Cards, Snap in Grooves
\& Ideal for Production, Traffic, Inventory Scheduling, Sales, Etc.
A Made of Metal, Compact and Attractive Over 350,000 in Use

Full orle 54950 with cards

FREE

24-PAGE BOOKLET NO. Z-50 Without Obligation

Wrlte for Your Copy Today GRAPHIC SYSTEMS
55 West 42nd Street • New York 36, N.Y
Circle 137 on Inquiry Card

ANTENNA ANALYZER

Model B-3-58, for matching of antennas and feeder lines can be used to maintain max. operating range in mobile radio networks. It instantly points to any mismatch be-

14新妾

tween transmitter and feeder line or between feeder line and antenna. The check takes less than 10 min . The analyzer operates from 3 to 260 MC with powers up to 1 KW . It consists of 2 units-a directional coupler and a double de amplifier containing meters that display incident and reflected power directly. The antenna analyzer does not alter the characteristic impedance of the line and does not cause major insertion losses. Haydu Industries, Inc., 1426 W. Front St., Plainfield, N. J.

Circle 261 on Inquiry Card

MICROPHONE

Model 644, sound spot directional microphone, uses a combination cardioid and distributed front opening, enabling it to maintain proper response far away from the sound source. Its front effectiveness acceptance angle is 45° on each side of

center. Random noise cancellation from the rear and sides exceeds 20 db. E-V rates the 644 sound spot's frequency response smooth from 40 to 12,000 cPs. Weight 2 lb .9 oz . Electro-Voice, Inc., Buchanan, Mich. Circle 262 on Inquiry Card

As Comprehensive A Review of

as Security Restrictions Will Allow!

The turning point in the practical application of infrared to military problems was during World War II when the Allies discovered the German Army was using infrared for secret signaling between infantry troops, for the surveillance of Russian tanks supposedly secure in the darkness, and for the detection of Allied night bombers which confused radars by the use of chaff. The turning point for the commercial application of infrared came about the same time when the American synthetic rubber program required rapid analysis of the C_{4} fraction in butadiene production. Since this could best be achieved through infrared spectroscopy, commercial infrared spectrophotometers for chemical analysis began to appear in 1943.
Today, despite great advancements in the application of infrared to military and commercial uses, it appears to be only on the threshold of its full realization. That's what makes infrared such an exciting and chaflenging topic to investigate.

SEPTEMBER PROCEEDINGS OF THE IRE EXPLORES ENTIRE INFRARED FIELD

This special INFRARED ISSUE of the Proceedings of the IRE is the first unclassified American publication to bring together in one place the bulk of the basic information on infrared physics and technology. The material is current, authentic, and much of it recently declassified. It was prepared under the auspices of the Infrared Information Symposia (IRIS), an organization sponsored by the office
of Naval Research and under joint-service direction.
This comprehensive review of a rapidly growing science-infrared-is only one of the many services offered members of the IRE. Non-members of the Institute of Radio Engineers, however, are invited to reserve a copy of this vital issue by returning the coupon below, today.

PARTIAL CONTENTS OF THIS INFRARED ISSUE:

Preface, by Dr. Arthur R. Laufer.
Infrared, a New Frontier of Physics and Technology, by Dr. Stanley S. Ballard.
A History of Infrared, by Dr. Warren N. Arnquist and Dr. E. Scott Barr.

The Physics of Infrared, by
Dr. Lewis E. Larmore.
The Infrared System, by Dr. Sidney Passman.
Applications, by Dr. Paul J. Ovrebo and Dr. R. Bowling Barnes.
General Bibliography, by Mr. William Wolfe.

PROCEEDINGS OF THE IRE

1 East 79th Street, New York 21, New York Enclosed is company purchase crder for the September, 1959, issue on INFRARED.

Name
Company

Address

City \& State
All IRE members will receive this September issue as usual. Extra copies to members, $\$ 1.25$ each (only one to a member).
THE INSTITUTE OF RADIO ENGINEERS
1 East 79th Street • New York 21, New York

WHY USE TWO?

WHEN ONE J!LC TUNER WILL DO!

The versatile new JFD LC Tuner combines the characteristics of a precision variable capacitor and a metallized inductor. Its unique miniaturized construction helps effect compact electronic packaging to meet space challenging demands . . . affords higher reliability, faster assembly, and greater economy in prototype design or production.

A wide selection of 12 LC Tuners (in panel and printed circuit mounting types), each offering a large range of resonating frequencies, meet most circuitry requirements. If our standard line does not meet your needs, our engineering staff will be glad to design LC Tuners that suit your individual circuit specifications.

Typical LC Tuners Now Available

| Model | Self Resonating
 Frequency Range | Longth
 Above Panel | Diameter |
| :--- | :---: | :---: | :---: | :---: |
| LC303 | $450-700 \mathrm{MC}$ | .635 | $5 / 16^{\prime \prime}$ |
| LC304 | $300-500 \mathrm{MC}$ | .845 | $5 / 16^{\prime \prime}$ |
| LC306 | $200-450 \mathrm{MC}$ | 1.104 | $5 / 16^{\prime \prime}$ |
| LC309 | $125-200 \mathrm{MC}$ | 1.691 | $5 / 16^{\prime \prime}$ |

Write for Bulletin 216 for further facts. Include your current design or performance problems for specific recommendations.

Pioneers in electronics since 1929
PHONE DEWEY 1-1000
ELECTRONICS CORPORATION
1462 62nd Street, Brooklyn, New York

JFD Canada Ltd. 51 McCormack St.
Toronto, Onfario, Canada

GET THE

USE THIS FREE READER SERVICE CARD

Keep up to date-get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be glad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.
Mail Card Below Today For Quick Information On New Products Described in This issue. No Postage Needed.

Circle the item number, fillin your name, title, company; detach and mail.

ALPHABETICAL LISTING OF

A

 taper pinsArtos Engineering Company - Produce tion machines
Augat Brothera, Incorporated-Mounting brackets

B

Baldwin-Lima-Hamilton-Strain instraments, strain gages
Ballantine Laboratories, Incorporated Voltmeter
Barker \& Williamson, Incorporated-Instruments
Beckman/Berkeley, A. Div, of Beckman Insts., Inc. 10 Mc counter

10 Belden Manufacturing Company - Electronic wire
150 Birtcher Corporation, The-Diode radiator:
127 Biwai Corporation-Asphalt base compounds
2 Bomac Laboratorien, Incorporated-Mt crowave tubes and components
Borg Equip. Div. Amphenol-Borg Cor-poration-Instrument motors
44 Boarns, Incorporated - Potentiometer
56 Brash Instruments Division of Clevite Corp.-Recorder
103 Bud Radio Corporation, IncorporatedCabinet racks and blowers
Burgess Battery Company-Batteries
Burnell \& Company, Incorporated luroidal inductor
35 Bussmann Manufacturing Dív. McGraw-Edison-Fuses

c

71 Cambridre Thermionic Corporation Printed circuit components
38 CBS Electronice Div. of CBS Incorpo-rated-Switching transistors
36 Centralab, Div. of Globe-Union, Incor-porated-Feed-thru capacitors
162 Chamber of Commerce, Hollywood, Flor-ida-Plant location
100 Chicago Standard Transformer Corpora-tion-Transistor transformers
18 Chicago Telephone Supply CorporationPotentiometers

AUG. 1959
Postcard valid 8 weeks only. After that use own letterhead describing item wanted.
Please send me further information on the items I have circled below. 1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| ---: |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
| 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
| 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
| 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |
| 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 |
| 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |

YOUR NA:ME
.title.
FIRM
FIRM ADDRESS
CITY OR TOWN
ZONE
STATE.

FIRST CLASS
PERMIT NO. 36
PHILA., PA.

BUSINESS REPLY CARD no postage stamp necessary if mahled in united states

POSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES
c/o University of Pennsylvania
The Computer Center
P. O. Box 8221

Philadelphic 4, Pennsylvania

53 Cinch Manufacturing Company-Connectors
135 Circo Ultrasonic Corporation - Ultrasonic cleaners

ADVERTISERS IN THIS ISSUE

ADVERTISERS FROM WHOM YOU DESIRE FURTHER INFORMATION

6 Hughes Products, Hughes Aircraft Com-pany-Rectifiers
4 Hughes Products, Hughes Aircraft Com-pany-Storage tubes

65 Kughey \& Phillips, Incorporated-Light-

 ing equipment
PROFESSIONAL ENGINEERING OPPORTUNITIES

11 Repablic Aviation
512 Sylvania Electric Products, Inc., WalSylvania Electri

tham Division

Syntem Development Corporation
University of California Radiation Laboratory
Weatinghouse Electric Corporation

I

 porated-Digital displayInstitute of Radio Engineers, TheProceedings special issue-infrared
115 Interelectronics Corporation-Power converters
International Rectifier Corporation Silicon \& selenium rectifiers
ITT Componenta Division-Silicon rectiflers, capacitors, tubes
ITT Indurtrial Products Diviaion-Power equipment

J

Jeming Radio Manufacturing Corpora-tion-Vacuum capacitore
Jerrold Electronics Corporation-Sweep generator
JFD Electronle Corporation-LC tuner Johnon Company, E. F.-Nylon connec tor:
Jonea Diviaion H. Be, Cinch Manufacturing Company-Plugs, Eockets
J-V-M Microwave Company-Triode cenities

K

16 Keaffel Esser Company-Printed circuits
11 Keyaton Carbon Company-Thermistors
88 Kintel, A Diviaion of Cohn Electronica, Inc.-Digital voltmeters, DC peramplifier

114 Klein \& Sons, Mathiag-Pliern

15 Kleinschmidt Div. of Smith-Corona Marchant, Inc.-Teleprinted communies-

Employment-Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 223 of this issue.

Postcard valid 8 weeks only. After that use own letterhead describing item wanted.
AUG. 1959
PROFESSIONAL ENGINEERING OPPORTUNITIES
Please send me further information on the engineering position I have circled below.

501	506	511	516	521
502	507	512	517	522
503	508	513	518	523
504	509	514	519	524
505	510	515	520	525

YOUR NAME
.TITLE
HOME ADDRESS
CITY or TOWN
ZONE
STATE

AUG. 1959

NBWSubscription Order

Please enter a new complimentary subscription to ELECTRONIC INDUSTRIES

Company Name:

Name:
Position
Company Address:
City: .. Zone State
Specific Products Manufactured

Advertisers—August, '59 (Continued)

N

(8) Narda Ultramolic Corporation, ThoUltrasonic cleaners

84 Neely Enterpries-Electronlc manufa tarers repreentativen
ω
Neme-Clarke Cempany-Receivers

0
45 Oster Manafacturing Company, JohnMotor tach cenerators

P
20 Paelfie Semiconductort, Ineorporated Sillicon diodes, variable capacitance

BUSINESS REPLY CARD
 no postage stamp necessary if mailed in united states

POSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES
e/o University of Pennsylvania
The Computer Center
P. O. Box 8221

Philadelphia 4, Pennsylvania

PERMIT NO. 36
PHILA., PA.

BUSINESS REPLY CARD
 no postage stamp hecessary if mailed in united states

POSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES

CHESTNUT \& 56th STS., PHILADELPHIA 39, PA.

Chilton Company

United Transformer Corperation-Eif-q inductors
nited Van Lines, Incorporated-Electronic freight shipping

Pennwood Numechrom Compamy Elapsed time digital calculator
Perfection Mc: Company - Magnetic shielding
Philco Corporation, Lansdale Tabe DivPhico Corporation, Lansdale Tabe Div-
sion-Silicon diffused-base transistors
Pioneer Central Division, Bendix Avis. tion Corp.-Sonic energy cleaning nytem
Polytechnic Research : Development Co., Inc.-Microwave test equipment
Pyramid Electric Company-Tantalum eapacitors

R

Redio Material Company-Dine eapacitor
Reytheon Company, Distribetor Prodacts Division-Subminiature transiotorie
Raytheon Company, Industrial Tube Diviaion-Submini ture tube
Red Bank Division Bendix Aviation Cer-poration-Spark gaps
Reeves Soundcraft Corperation - Magnetic tape checker
Rohn Manafacturins Comapany - Communication tower
Recker Company. The-Small centrifuges

5

Ganborn Company - Oseillographie re cording instrumentation
Sangamo Electric Company-Molded mylar capacitor
Sarkes Tardan, Incorporated - Sillcon rectiflers
Schayler Manufacturing Cerporstion Shieldins stripe
Scientific-Atlenta, Incorporated - Antenna pattera dipplay
Scientific Encincoring Laboratorios High vacuum apparatua
Scintilla Divition, Bendix Aviatien Cer-poration-Electrical connector
Scopes Company, Incorporated, The-Wide-band scopes
Segal, Edward-Automatic erelet attaching machine
Senaitiv Research Inntrument Corpera tion-Calibration standarda
Servo Corporation of Amerien-Serwo "ystem malyzers
Shoe Form Company, IncorporatedPlastic boxes
Shure Brothers, Incorporatel - Miero phone
Sprague Electrie Company-Capacitor
Stainleas, Incorporated-Tower
Stanpat Company - Duplicating equipment
Statham Instroments, Incorporated-Accelerometer
Sylvania Electric Products, Inc. Eiectron Tabe Div.-Tube
Sylvanis Electrle Prodocts, Ine., Semiconductor Div.-Micro-miniature diodes
Syntronic Instruments, IncorporatedDeflection yoke

T

Tamar Electronles, Incorporated Adapter, connector
Technical Appliance Cerporation (TACO)-Telemetering antenna sis

Tensolite Insplated Wire Company, In-corporated-Cable
Texas Instruments, Incorporated-Mess transistor
Tinnerman Products, Incorporated Speed clip
Tung-Sol Electric Incorporated-Tran-
Eistor sistor

U

HOW TO MEASURE

 and match the transmission line for a minimum VSWR indicated on the PRD 277-A Standing Wave Amplifier. Then record the reading of the PRD 650-B Self-Balancing Bridge (directly in milliwatts) and you're ready for your next microwave measurement.

Easy, isn't it? Even more important it's accurate. The PRD 650-B Bridge has guaranteed accuracy of $\pm 5 \%$ full scale. The use of the PRD 303-A Slide Screw Tuner eliminates the slightest mismatch of the 643 Thermistor Mount. The importance of fine matching can best be shown by example: a mismatch VSWR of only 1.2 would result in a power error of 1%.

The precision and ease of operation of all the products shown in this example are typical of each of over 300 microwave test instruments currently produced by PRD, the company that's FIRST IN MICROWAVES... our cable address is MICROWAVE, New York, U.S.A.

For technical details and specifications covering products shown write:

TEST INSTRUMENTS USED
IN THIS X-BAND POWER BENCH
I-703 Shielded Tube Mount, catalog page F-8 2-809 Kiystron Power Supply, catalog page F-10 3-303.A Slide Screw Tuner, catalog page B-14 4-1203 Isolator, catalog page A-21
5-159-A Level Set Attenuator, catalog page A-17
6-535 Frequency Meter, catalog page D-12 7-203-0 Slotted Section, catalog page B-11 8-250-A Broadband Probe, catalog page B-12 9-277-A Standing Wave Amplifier, catalog page E.7 10-303-A Slide Screw Tuner, catalog page B-14 11-643 Broadband Thermistor Mount, catalog page E-9 12-650-B Universal Power Bridge, catalog page E-13

MICROWAVE ENGINEERS.SCIENTISTS

Positions offering stimulating challenges with unlimited potential are now open at PRD. Please address all inquiries to Mr. A. E. Spruck, PRD, 202 Tillary Street, Brooklyn 1, New York.

Polytechnic Research and Development Co., Inc.
202 Tillary Street, Brooklyn 1, New York. Telephone: ULster 2-6800
West Coast Office: 2639 So. La Cienega Blvd., Los Angeles 34, California. Telephone: TExas 0-1940
Special problems in attentation and other related measurements? Contact our Applications Engineering Department.

Deflection
 Surface Ignition Analyzer

Stock Type Y25 illustrated

OTHER ROTATING TYPES available with fixed off-centering or rotating off-centering. Many mechanical and electrical variations.
FIXED TYPES with push-pull windings. Low current coils for slower sweep speeds. Low impedance coils for transistor drives.
Neck diameter, core material, configuration, deflection angle and electrical design to your precise spec. For engineering help.contact Dr. Henry Marcy today.

(Continued from page 101)

High compression ratios are a significant key to economy. They have an important effect on the efficiency of gasoline engines and the power delivered from each gallon of fuel. Compression ratios in U. S. cars have moved steadily upward from an average of about $7: 1$ in 1952 models to as high as 10.5:1.0 this year. Further important improvements may be limited by the surface ignition problem.

The instrument senses and plots, on a double-tracked recording tape, the pressures developed in the combustion chambers of the automobile cylinders and the exact time at which each pressure reaches a peak. Thousands of these pressure peaks occur in the engine within a few seconds. In fact so much data are recorded in a 15 -second acceleration test that it would require about eight hours of a statistician's time to translate the data into charts and graphs.

Heart of the equipment is a special normal-size spark plug, equipped with a built-in miniature piezoelectric pressure transducer. This senses minute changes in pressures generated within the cylinder and translates them into electrical impulses which can be recorded graphically on tape. The special plugs can be substituted easily and quickly for the standard plugs in any automobile.

Formerly such detailed investigations were difficult, if not impossible, because of the problems associated with installing pres-

A New Concept of Time ©

Elapsed Time Digital Calculator

Automatic elapsed time calculator registers , ellapsed time each second, minute, 10 min-
ute and hour. Range 0.00 to 11.59 and 00.00 to 23.59 . Seconds wheel calibrated in seconds, can be reset to zero starting time at will with start and stop switch. Walnut or ebony plastic case. $73^{3 / 4} \times 4 \times 4^{\prime \prime}$. Large easy-to-read numerals. Self-starting electric 110 V 60 cy. AC. UL approved motor and cord. Guaranteed for 3 years. Wt. 3 lbs. Model TC.
PENNWOOD NUMECHRON CO.

Surface ignition detection instrumentation, including peak pressure pulse generator and data read-out rack, two channel magnetic tape recorder, and calibrating oscilloscope.
sure-sensing devices in automotive engines. As a result, studies were usually limited to specially equipped laboratory engines.

Although not developed specifically for such purposes, the equipment also is a very sensitive misfire detector, since misfire cycles will show up with peak pressure pulses at top-dead-center in the compression cycle and these can be counted separately. Variability of the Du Pont-developed instrument, apart from any engine variabilities, is less than plus or minus one-tenth of a crank-angle degree, or about five millionths of a second at 3200 engine revolutions per minute.

Results of surface ignition tests in 97 privately owned 1957 and 1958 model cars showed more than half of the cars had an instrumentally detectable amount of surface ignition, while more than 10% of the late model cars gave audible evidence of the phenomenon.
s25

Now you can stop worrying about meter weight and size limitations in missiles, aircraft, computers, communication and other electronic equipment. DeJUR precision panel instruments give you big-meter sensitivity and accuracy in rugged, sealed units in extremely small sizes. For example, check these features on the new Series SC-030-accuracy: $\pm 5 \%$ of full scale. RANGES: 100-800 UA, DC; 1-800 MA, DC; 1-800 $\mathrm{V}, \mathrm{DC} ; 50 \mathrm{MV}$ basic movements for DC Ammeters with external multipliers. Calibration: Magnetic or
non-magnetic. Internal Zero Adjuster. (Note: This meter is available with optional face plate and hex nut for front mounting... see illustrations.)

And like all DeJUR panel instruments, the microminiature series uses gasket sealed scale window and terminals, miniaturized external pivot D'Arsonval movement and high flux density Alnico magnet. Look into DeJUR's meter line today by writing for complete specs on standard and special units for commercial and military applications.

Manufacturers of precision electrical indicating instruments for over 20 years.

MODEL 100. 1" round Meets MIL-M-3823 watertight specs Mil-M-3823 watertight specs
External pipot, D'Arsonval External pivot, D'Arsonval
movement. Wide range of re. sistances and scales available.

MODEL 131. 1 1/2" rugged ized. Vithstands shock, sibra. tion and temperature extremes. Square case.

ELECTRONIC COMPONENTS

ELECTRONIC SALES DIVISION

 DEJUR-AMSCO CORPORATION 45-01 NORTHERN BLVD CONG ISLAND CITY I, N. Y

ELAPSED TIME INDICA. TORS. $11 / 2^{\prime \prime}, 21 / 2^{\prime \prime}$, $31 / 2^{\prime \prime}$. Registers $1 / 10$ minute or $1 / 10$ hour increments to 9999.9. Hour steps to 99999 Self -

MULTIMETER. $\quad 31 / 2 " \mathrm{AN}$ type for date $31 n k$ or analog application. Hermetically sealed and gas filled. Four simulteno. ous realouts.

1616 N. Throop Street - Chicaga 22, Illinois - Phone EVerglade 4-1300 • TWX: CG 3149 Export Department, 15 Moore Street, New York City, New York. Cable, Minthorne, New York Circle 144 on Inquiry Card

Gertsch CRT-3 Subminiature Coaxial RatioTran

—ONLY $21 / 2 "$ IN DIAMETER
 —ACCURATE TO 0.001\% -QUALIFIED TO MIL SPECS

EXCELLENT PERFORMANCE. This Gertsch AC voltage divider, has inherent characteristics of high input impedance, low effective output impedance, and very low phase shift. Input voltage: 0.35 f (f in cps) or $140 \cdot$ volt max at 400 cps . Frequency range: 50 to $10,000 \mathrm{cps}$. Unit is ageless, requiring no calibration tests. Performance approaches that of the ideal divider.

MANY TYPES. Subminiature RatioTrans are available with 4 -place, 5 -, and 6-place resolution, and in a wide variety of decade arrangements. Available either servo mount or flange mount. Complete data sent on request. Bulletin CRT-3. Or contact your Gertsch representative.

Sноск	50G's - 7 ms
vibration	
OPERATING:	MIL-StD-167, Type I
NON-OPERATING:	MIL-E-4970, Proc. III
SALT SPRAY:	MIL-E-5272A
DRIP PROOF:	MIL-STD-108
fungus:	MIL-E. 5272
humidity:	MIL-STD-202A
high temp.	
OPERATING:	$+52^{\circ} \mathrm{C}$
NON-OPERATING:	$-71^{\circ} \mathrm{C}$
LOW TEMP.	
OPERATING:	$-18^{\circ} \mathrm{C}$
non-operating:	$-54^{\circ} \mathrm{C}$
dielectric	
STRENGTH:	$900 \vee \mathrm{RMS}$, 60 cps

New.
Products

AMPLIFIERLESS RESOLVER

Size 11, amplifierless resolvers, incorporate an integral transformer which simulates a resolver function at max. coupling. They are used in a typical chain application for angular data transmission. A quick disconnect allows ease in harnessing. Accuracy: $\pm 5 \mathrm{ft}$. of are or less; winding perp. $\pm 5 \mathrm{ft}$. Electrical characteristics: Input to either rotor or stator. Input voltage 115 v .1600 CPS ; output voltage 110 v . both stator and rotor as primary; phase shift (stator

primary) 1.1°; phase shift (rotor primary) 1.9° : $Z_{s 0}$ (nom.) 990$+j 13500 ; Z_{\text {ri, }}$ (nom.) $1150+\mathrm{j} 13500$. Clifton Precision Products Co., Inc., 9014 W. Chester Pike, Upper Darby, Pa .

Circle 263 on Inquiry Card

GEAR DIFFERENTIALS

Line of miniature hollow shaft and face gear differentials are available as Class I or II in stainless steel. Three models offer variations in shaft size $-1 / 16$ and $1 / 8$ in.; clearance

diameters -0.580 and 0.790 in.; number of precision ball bearings used -4 to 8 , and displacement arcs of 15,6 and 12 ft . Dynamic Gear Co., Inc., 20 Merrick Road, Amityville, L. I., New York.

Circle 264 on Inquiry Card

the Collohite

Industrial Airbrasive Unit

Not that we advise doing this to your fine crystal glassware, but it seemed to us a dramatic way to show you the versatility and the cool, shockless cutting and frosting action of our Industrial Airbrasive Unit.

Cuts as fine as $.008^{\prime \prime}$ or large frosted areas are equally easy to make with this amazing industrial tool. A gas-propelled stream of particles quickly slices or abrades, as needed, almost any hard, brittle material, such as fragile crystals, glass, oxides, metal, minerals, ceramics.

Applications range from printed circuits, wire-stripping potentiometer coils, and cleaning off oxides...to shaping or drilling germanium. Every day new uses for the Airbrasive Unit are being discovered.

Send us your most difficult samples and we will test them for you. For further informa-
 tion write for bulletin 5705A.

WRITE or CALL collect

S. S. White Industrial Division

Dept. 19A, 10 East 40th Street - New York 16, N. Y. West. Off.: 1839 West Pico Blvd., Los Angeles 6, Calif. Circle 146 on Inquiry Card

New

	Products

SERVO INDICATOR RECORDER

Model 243 Digital Servo Indicator features a 3 in. synchronized chart drive and simultaneously provides a permanent recording of transducer output and a high accuracy, digital

readout. It indicates and records forces, fluid flow, weights, or rpm's which can be converted into ac or dc mv. and eliminates errors due to parallax and interpolation of readings. It has a permanent recording chart. Dimensions: $6 \times 111 / 8 \times 12 \mathrm{in}$. Digital readout accuracy: $1 / 10$ of 1%; chart aceuracy is $\pm 1 \%$. Gilmore Industries, Inc., 13015 W oodland Ave., Cleveland 20, Ohio.

Circle 265 on Inquiry Card

RELAY SOCKET ASSEMBLY

Micro-miniature relay socket assembly is designed for use with mi-cro-miniature relays conforming to MIL-R-5757. Features unit packaging of socket and holding clip. Holding clip is available with either Beryllium copper alloy 25 (per QQ-

C-533) or annealed carbon steel SAE 1065 per MIL-S-17919 (Navy) No. 4. Both clips are cadmium plated per QQ-P-416A, Class 2, Type II, golden iridite. Augat Bros., Inc., 33 Perry Ave., Attleboro, Mass.

Circle 266 on Inquiry Card

Circle 147 on Inquiry Card

ROHN
SELF SUPPORTING COMMUNICATION TOWER

(This radar weather tower of KSTP.TV, Minneapolis, uses the 3 lower sections of the ROHN "Self-Supporting" tower. Note construction, design and size.)
here are the highlights of the rohn " SS " TOWER:

* 130 ft . in height, fully self-supporting!
* Rated a true HEAVY-DUTY steel tower, suitable for communication purposes, such as radio, telephone, broadcasting, etc.
- Complete hot-dipped galvanizing after fabrication.
* Low in cost - does your job with BIG savings-yel has excellent construction and unexcelled design! Easily shipped and quickly installed.

FREE details gladly sent on request. Representatives coasi-to-coast.
ROHN Manufacturing Co. 116 Limestone, Bellevve, Peoria, Illinois
"Pioneer Manufacturers of Towers of All Kinds" Circle 148 on Inquiry Card

New

Products

ULTRASONIC WELDER

An instrument-type ultrasonic welder, SONOWELD Model W-100-TSL-58-6, is designed to make welds in small parts and delicate assemblies. Power capacity is 100 w . Ultrasonic welding is accomplished

without melting or fusion and since no electrical current passes through the parts being joined, contamination of surrounding areas by sputter, arcing or spatter is eliminated. Superior ohmic contacts can be made between such semi-conductors as silicon or germanium and aluminum or gold wire. Electric match and other fine bridge wire assemblies using high resistance wire in the thickness range of 0.003 to less than 0.001 in . are welded by SONOWELD with a high degree of reproducibility. Aeroprojects Inc., West Chester, Pa.

Circle 267 on Inquiry Card

DOUBLE BEAM SCOPE

A double beam oscilloscope in rackmounting form, Model D31R, includes a dual-gun CRT and has individual brightness controls and twin amplifiers de to $6 \mathrm{MC},-3 \mathrm{db}$. Panel height

is $73 / 4 \mathrm{in}$. Model D31R also has automatic sync, trigger level control and built-in time and voltage calibrators. Booth 2033. The Scopes Company, Inc., P. O. Box 56, Monsey, N. Y.

Circle 268 on Inquiry Card

Tiny, shock-proof nylon connectors voltage breakiowns up to 12,500 volts DC!

Complete Line of NyIon Jacks, Binding Posts and Solderless Plugs. Metal-Clad Tip Jacks to MIL Specs!

This rugged group of connectors will meet severe mechanical, electrical, temperature, and humidity requircments. Tough, lowloss nylon won't chip or crack even when subjected to extreme temperature changes or abnormal mechanical stress. Connectors are designed for fast, easy mounting -available in 13 bright colors for coded applications.
MILITARY-Tip Jack complies with MS-16108 of M1L-STD-242A. Heavy nickel-plated brass jacket meets federal specification QQ-N-290. High insulation resistance of nylon body complies with MIL-P-17091. (Full specifications available on request.)
OTHER CONNECTORS-Johnson also manufactures a complete line of standard connectors in addition to the nylon line described above. For complete information, write for newest components cata\log described below.

Write today for our newest com ponents catalog, listing complete specifications and prices!

- Capacitars - Knobs and Dials - Sockets - Inductors - Pilot Lights - Connectors - Insulators
E.F. JOHNSON CO.
y 024 Second Ave., S.W. - Waseca, Minn.
Circle 149 on Inquiry Card

New
 Products

reLAY

The HG 4DM relay is a doubleended, 4 pole, double throw relay approximately $5 / 8 \mathrm{in}$. dia. May be used as an in-cable assembly, with the coil leads being connected both ends in-

ternally. It uses 2 parallel, magnetically isolated structures and 1 common coil. The 2 armatures are of the balanced rotary type, making the relay suitable for use under vibration of 20 g to 2000 cPs. Contacts are rated at 2 a resistive at 28 vdc or 115 vac for a life of 100,000 cycles. Relay dia. is $5 / 8 \mathrm{in}$. Case length is approximately $1 \frac{1}{2} \mathrm{in}$. Hi G , Inc., Bradley Field, Winsor Locks, Conn. Circle 269 on Inquiry Card

TRIODE CAVITY

Complete, standardized line of triode cavity components, Mercury ' 10 ' series are engineered for restricted 10% tuning range. For a variety of tube-types, the series is designed for max. power and/or voltage ratings of tubes. Cavity designs are available from 255 mC up to high frequency limits of existing planar triodes. 720

different cavities are available in the line. Cavities meet environmental requirements of MIL-E-5272 and military construction requirements of MIL-E-5400. J-V-M Microwave Co., 9300 W. 47 th St., Brookfield, Ill.

Circle 270 on Inquiry Card

for maximum reliability
 PREVENT THERMAL RUNAWAY

Prevent excessive heat from causing "thermal runaway" in power diodes by maintaining collector junction temperatures at, or below, levels recommended by manufacturers, through the use of new Birtcher Diode Radiators. Cooling by conduction, convection and radiation, Birtcher Diode Radiators are inexpensive and easy to install in new or existing equipment. To fit all popularly used power diodes.

FOR CATALOG

 and test data write: sold through distributors. They are available only from the Birtcher Corporation and their Sales Representatives.THE BIRTCHER CORPORATION industrial division
4371 Valley Blvd. Los Angeles 32, California
Sales engineering representatives in principal cit,ies. Circle 150 on Inquiry Card

STATHAM A63 Triaxial Accelerometer

This single package
incorporates measurement of linear acceleration along three accurately pre-aligned, mutually perpendicular axes.
Reads constant as well as varying acceleration. Meets exacting airborne specifications.
Exhibits the long service life, infinite resolution and electrical calibration features of Statham unbonded strain gage transducers. For further information write for
Data File E I-755-1.
STATHAM INSTRUMENTS, INC. 12401 West Olympic Boulevard Los Angeles 64, California

Circle 153 on Inquiry Card

New

Products

FEED-THROUGH TERMINALS

Pushlock terminals have a selflocking nylon body for one-step insertion. Molded flutes project radially from the nylon body. When the terminal is pressed into a mounting

hole, the flutes deflect and their tendency to return to normal position creates positive, uniform holding power around the inside circumference. They will exert this pressure under temps from -65° to $+300^{\circ}$ and with exposure to oils, greases and common solvents. Whitso, Inc., Dept. ES-2, 9330 Byron St., Schiller Park, Ill.

Circle 271 on Inquiry Card

Neem! rear-Proiection-Type IN-LINT DIGITAL DISPLAY

Series 80,000
FEATURES ONE-PLANE PRESENTATION

Shown With Series
10,000 For Comparison in Size
Easily viewed from over 100 feet away when a single digit or letter is used its full size of 3 $3 / 4$ " high!

DESIGNED FOR FAST
EASY READING OF

- Process, production, and supervisory control panels
Display Loards
- Other types of visual readouts On Request

Write Today for Complete Specifications
Representatives in Principal Cities

Industrial Electronic Encineers, inc.
3973 Lankershim Boulevard
North Hollywood, California
Circle 129 on Inquiry Card

NEW! the mercury " 10 " series TRIODE CAVITIES

Call or write for engineering drawings and specifications.
J-V-M MICROWAVE CO.
9301 W. 47th Street Brookfield, Illinois HUnter 5-2000
TWX Brookfield, III. 2796
See-J-V-M Triode Cavities at Wescon Booth 3714
Circle 152 on Inquiry Card

New

Products

RATE GYROS

Miniature fluid-filled rate gyros are for use in missile and aircraft designs. Fluid filling provides greater immunity to shock and vibration effects and helps to reduce bearing friction in ac tpes and potentiometer

wiper friction in de types. Warm-up time is 30 sec . Designed for operation within a temp. range of -65° to $-185^{\circ} \mathrm{F}$, they are single-degrees-of-freedom, viscous damped, spring restrained (torsion bar) tpyes whose gimbals are supported by precision bearings. Compensatory damping mechanisms obviate the need for accessory heaters. Ninety per cent of the parts are interchangeable. Unit rates range from $45^{\circ} / \mathrm{sec}$. to $1000^{\circ} /$ sec. Kearfott Co., Inc., 1500 Main Ave., Clifton, N. J.

Circle 272 on Inquiry Card

INFRARED SOURCE

Model RS-8B infrared radiation reference source emits black body radiation over the temp. range $200^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. It can be used as a standard against which other infrared sources and measuring instruments can be checked and calibrated. The temp. of the black body radiation source is selected by a control dial precisely calibrated in ${ }^{\circ} \mathrm{C}$. The area of the black

body exit aperture is adjustable by selector disk containing 7 precision apertures. The radiation source temp. is maintained within $\pm 0.5 \%$. Barnes Engineering Co., 30 Commerce Rd., Stamford, Conn.

Circle 273 on Inquiry Card

New Augat Panel Mounting Brackets
 offer unique extruded-thread feature

Newest addition to the Augat line, these panel mounting brackets provide rigid support for verticallymounted component boards under shock and vibration. The special feature of this bracket is five extruded holes to provide four full threads, meeting military specs.

Brackets mount either single or double boards and are available in different heights to mount various size panels. Fabricated from cold rolled steel, cadmium plated.

Write today for additional information and samples.

UGAT BROS. ınc.

31 PERRY avenue - attleboro, mass.
See us at Booth \#219 at the WESCON Show
Circle 154 on Inquiry Card

SONIC ENERGY CLEANING SYSTEM

If you've heard people say that the results of Sonic Energy Cleaning can be spectacular, here's an example of what they mean:
A nationally known aircraft parts manufacturer had to remove dirt, grease, sludge, metal chips and abrasives from assembly components of a 4-stage aircraft compressor. Optimum cleanliness was vital. Previous methods were costly and unreliable.
Using the Bendix Sonic Energy Cleaning System with an inexpensive, nonflammable, nontoxic detergent solution, in a one-minute cleaning cycle-all traces of contamination-including both soluble and insoluble soils-were removed, even from blind holes, interstices, crevices, screw-threads, porous surfaces.

And the best part-direct labor costs were reduced 50%; expensive solvents were eliminated; rejects due to contamination were eliminated; and the complete Bendix Sonic Energy Cleaning System was fully amortized in six months.

To help you determine if results like these are possible in your cleaning operation (and sometimes they're not), Bendix ${ }^{(8)}$ maintains a complete Applications Laboratory to go with the industry's most complete line of Sonic Energy Cleaning equipment.

FREE! GET YOUR COPY OF THIS TIMELY, AUTHORITATIVE REPORT ON SONIC ENERGY CLEANING

All the facts at your fingertips. Processes detailed . . . test results analyzed . . . and a Five-step Plan to help you determine if Sonic Energy Cleaning will be economically advantageous for you. Send for your free copy today. PIONEER-CENTRAL DIVISION, BENDIX AVIATION CORPORATION, 273 I HICKORY GROVE ROAD, DAVENPORT, IOWA.

SONIC ENERGY CLEANING
Circle 156 on Inquiry Card

Recorder

(Continued from page 99)
sturdy electronics package which measures only 14 in . x $75 / 8 \mathrm{in}$. x $35 / 8$ in. The small modular structure includes a protective, removable casing which allows its user immediate access to the subassemblies.
To accommodate requests from instrumentation users, durable Bendix Pygmy connectors are used throughout the system for reliability and ruggedness.

Controls

Both local and remote controls are provided for recording, with switches controlling all modes of operation. Indicator lights show whether the power is on and whether recording is in process. A meter shows the quantity of tape remaining on the supply reel at all times. Also, the system is designed to indicate, with a blinking lamp, whether the tape is moving past the magnetic heads at the proper speed.
(Continued on opposite page)

new Soundcraft MAGNA.SEE Kit makes magnetic tracks visible!

Checks for: - Track placement

- Head alignment • Pulse definition (size and width)
- Drop-out areas and other trouble-spots

Magna-See Kit contains: $1 / 2$ pint Magna-See Solution Plastic bath - Eye-piece magnifier - Pressure sensitive tape - 5 glass slides for permanent copies of tracks, and complete instructions.
For free MAGNA-SEE

brochure, write

renssOUNDCRAF I curr.

great pasture road, danbury, connecticut
West Coast: 342 N. La Brea., Los Angeles 36, Calif. Canada: 700 Weston Road, Toronto 9, Ont. Canada Circle 131 on Inquiry Card

one

word more about the Amperex 6CAT/EL34
oUTPUT
PENTODE

NOW ITS

 RATED POWER OUTPUT ISWe are pleased to announce that as a result of the further exploration of the 6CA7's capabilities ...its power output rating has been raised to 60 watts in a distributed load circuit. This was achieved by increasing the screen grid voltage to 500 V . The screen voltage rating now equals the plate voltage rating, thus greatly simplifying the design of power supplies.

Class AB_{1} Audio Amplifier Distributed Load Connection Typical Operation
(Fixed Bias-Two Tubes Push Pull) Plate Supply Voltage. 500 V Grid No. 2

Supply Voltage (See Note) 500 V Grid No. 1 Bias. (approx.) -44.5 V Plate to Plate Load Resistance. . . 7000Ω Plate and Grid No. 2 Current (Zero Signal)
$.2 \times 57 \mathrm{~mA}$
Plate and Grid No. 2 Current
(Max. Signal) $2 \times 112 \mathrm{~mA}$ Input Signal Voltage (rms)........... 32 V Power Output 60 W Harmonic Distortion 2.5% NOTE: Screen voltage is obtained from taps located at 43% of the plate winding turns. An unbypassed resistor of $1 \mathrm{~K} \Omega$ in series with each screen grid is necessary to prevent screen overload.

ask Amperex
about detalled data and applicaflons engineering assistance on hi-fl tubes for hi-fl circults.
AMPEREX ELECTRONIC CORP. 230 Duffy Avenue, Hicksville, L. 1., N. Y. Circle 157 on Inquiry Card

The remote control unit is designed to mount in a standard $31 / 8$ inch aircraft instrument panel "knock-out" hole.

The AR-200 is a record only machine, but because of its wide range of tape speeds, tapes recorded on the AR-200 can be readily reproduced on most standard reproduction units.

Designers of the AR-200 have used every precaution known in the magnetic recording art to assure reliability. Flutter, the elusive imp of the recording industry which describes speed errors above 10 cycles per second, is almost nonexistent.

Power

Another outstanding feature of the device is the low power input required to operate it. Operation of the entire system is accomplished with only 150 watts. Since the power required to operate a dataacquisition system drains from the aircraft's power, it is a case of every reduction counting.

This view of the regulator reference board, part of the electronic unit, shows method of mounting some of the components.

Although the unit is designed to operate directly from a 28 -volt DC source, which is available in most aircraft, a choice of three power converters can be used when the power is not 28 -volt DC. One sin-gle-phase converter will provide 28 volts DC from a 115 -volt, 400-cycle AC source. Another three-phase converter will provide 28 -volts DC from a 208 -volts, 400 -cycle AC source. If commercial power is the source, a single-phase converter is available for providing 28 -volts DC from 117-volts, 48 to 63 cycles, AC source.

ANOTHER FIRST
 A.C. TIMING MOTOR

Thinner... Quieter...
More Reliable . . . More Versatile

FINGER-THIN

Only 9/16 Inches Short . . . Only 13/4 Inches in Diameter . . . very compact . . . reduces the size of your equipment.
WHISPER-QUIET . .
Strictly an electrical motor . . . practically noiseless. . . no rattling of gears or ratchets.
HIGH TORQUE
...
$1 / 4 \mathrm{oz}$. inch at the rotor with an instantaneous start and stop . . . requires only $21 / 2$ watts ... can replace larger motors in recorders, controls and telemetering equipment.
HIGHEST RELIABILITY...
Longer life . . no one-way gears or ratchets to fail . . . provides millions of operations without any trouble.

SPECIFICATIONS

Standard Voltage Ratings: 6, 12, 24, 115, 230 Volts Frequency:

60 CPS Standard
25, 50 CPS Available Power Input: 2.5 Watts Maximum (60 CPS)

BASIC MOTOR

Weight: 4 ounces Speed: 300 RPM
Torque: $1 / 4$ oz-in. Torque: $1 / 4$ oz-in.
Length: $9 / 16$ inch WITH INTEGRAL GEAR TRAIN Weight: 5 ounces Speed: 300 RPM to $1 / 6$ RPH Length: $7 / 8$ inch

NEW "STANDARD" with SPECIAL CAPABILITIES

- Rugged Anodized Aluminum Housing
- Operation Up to $150^{\circ} \mathrm{C}$
- 5.5 watts @ $85^{\circ} \mathrm{C}$ (derated to 0 @ $150^{\circ} \mathrm{C}$)
- Resistance Range from 250 ohms to 300 K ohms

Those are just a few of the important performance features you get with the new Gamewell RVG-14-MT10 multi-turn potentiometer. It fully meets applicable sections of MIL-E-5272A and NAS-710 - and much more. It gives you extras that often save you the cost of a"special."

Available in 10,5 , or 3 turns, with tap locations limited only by physical spacing. Write for detailed specifications and catalog of other stand-
ard Gamewell potentiometers. Special pots supplied whenever necessary. Bring all your pot problems to The Gamewell Company, Dept. 15C, Newton Upper Falls 64, Mass.

 PRECISION POTENTIOMETERS

"Integrals of High Performance"

TERMNAL BLOCKS

 that CUT wiring costs

This popular " 600 " series is typical of Kulka's wide choice of terminal blocks. Note three popular terminal styles. Up to 26 terminals, maximum, in the " 600 " series. Choice of molded materials. And there are many other Kulka types to choose from.

CATALOG...

Write for the big Kulka Terminal Blocks catalog containing the outstanding selection of types, sizes, terminals, materials.

Circle 151 on Inquiry Card
\qquad

Potentiometer

(Continued from page 101)
jected to electrolysis, 120 vdc being applied between the resistance element and the potentiometer shaft while the unit was exposed to 15 days of humidity-temperature cycling per MIL-E-5272A. No breakdown of insulation resistance occurred during the exposure period. Noise and linearity were checked prior to and immediately following the test and no change was observed.

MDH 20 units have also been subjected to Moisture Resistance tests per Method 106 MIL-STD-202 (including polarization and vibration). Measurements of total resistance and insulation resistance were taken periodically in the chamber with a relative humidity of from $90-95 \%$ as required by the spec. The total resistance of the specimens remained constant within $\pm 0.1 \%$ and the insulation resistance measured between terminals and shaft remained above 90 megohms for all specimens.

 $$
1
$$

Telemetering antenna systems available for all bands-215-265, $940-980 \mathrm{mc}$. Gain up to 26 db . Either wide or narrow beam. Single or tri-helical models, and single helical feeds utilizing parabolic reflectors of 6,8 , or 10 -foot diameters.

Wrife for complete technical data...

TECHNICAL APPLIANCE CORPORATION SHERBURNE, NEW YORK
Circle 130 on Inquiry Card
are you spending $\$ 1200$
for a one cent job?

If you're duplicating drawing details, you're squandering precious hours of costly drafting time. STANPAT, the unique tri-acetate that is pre-printed with your standard and repetitive blueprint items, cuts time involved from 3 hours to 15 seconds! Figured at current pay rates, this means a $\$ 12$ job at less than one cent . . . the STANPAT way. Easily transferred to your tracings by on adhesive back or front, STANPAT relieves your engineer of fime-consuming and tedious details, freeing him to concentrate on more creative work.
here's how simple the STANPAT method is!

PRESS

into position... will not wrinkle or come off.

STANPAT is available in two types of adhesive backs:

- Rubber base for standard drafting and tracing papers
- Resin base to prevent leaching for papers that contain oils
But whatever the application may be, there's a STANPAT product for your specific needs. STANPAT has a guaranteed shelf life of one year from date appearing on tab end. For further information and technical assistance, complete the coupon below and mail.

STANPAT CO , Wh hiestone 57, N. Y., U. 3.A. Photie Flushing 4 1692.1611

PROFESSIONAL OPPORTUNITIES

Reporing late devalopments afieaing the employment pioture th the Eleatronic Industries

Design Engineers • Development Engineers • Administrative Engineers
Physicists - Mathematicians - Electronic Instructors - Field Engineers
Engineering Writers
- Production Engineers

New Firm To Exploit Unused Patents, Ideas

Hundreds of valuable patents, processes and ideas that have been gathering dust in the files of U. S. corporations may now become available for useful and profitable development through the work of a new company, the National Patent Development Corp.

Jess Larson, former Federal Works Administrator and Chief of the War Assets Administration, is Chairman of the Board of Directors of the new firm which will have offices in Washington, D. C., and New York City.

National Patent Development Corporation is unique in its purpose and function. It will represent the companies owning patents and processes in finding other concerns that are ready to develop and manufacture them for the benefit of the public, the defense program, the government and other potential users. Corporate clients will be aided in the selling or licensing of patents and ideas which have been developed by their research programs, and which do not have a natural outlet within their own operations.

A survey by Mr. Larson and his associates indicated that patents available for such belated exploitation represent several hundred million dollars in research and development.

Engineering Degrees Up

The Engineering Manpower Commission of Engineers Joint Council, 29 W. 39th St., N. Y,. reports a 13.1% increase in bachelor of engineering degrees in 1958 , and a 9.5% increase in bachelor of science degrees. Masters in science degrees increased by 322, but there was no significant increase in the number of doctorates. The actual figures: for engineering degrees, 35,332 ; for science degrees; 14,352.
\$10.000 FOR SIGHT

Jos. Sprung, pres. of the Radio \& TV Square Club, presents check for $\$ 10,000$ to Mildred Weisenfeld, founder of the "Fight For Sight" in the offices of New York Mayor Robt. Wagner

Engineers 5 to 1 Against Collective Bargaining

A study by Prof. John W. Riegel, director of the Univ. of Mich. Bureau of Industrial Relations, reveals that four out of five scientists and engineers now oppose collective bargaining for themselves. The study was based on interviews with 277, non-supervisory, professional employees in 10 large firms. Fields covered included: mechanical, electrical, chemical, civil, electronic, and automotive engineering.

There was some sentiment for collective bargaining which increased when the terms and conditions of the members' employment takes a turn for the worse from their point of view or when a new standard, such as a higher wage scale in another company, becomes known.

The study, "Collective Bargaining as Viewed by Unorganized Engineers and Scientists" (105 pages, $\$ 4.00$) is available from Publications Distribution Service, University of Michigan, Ann Arbor, Mich.

> FOR MORE INFORMATION . . on positions deseribed in this section fill out the convenient inquiry card, page 209.

Employment Jumped 50\% In Florida Electronics

The Florida Development Commission reports that employment in electronics plants is up 50% over last year and that sales figures are steadily climbing.

A new Commission survey shows that Martin-Orlando, manufacturing five major U. S. missile-electronics systems, has become the largest single electronics employer in the state in a little over a year after starting operations.

President E. S. Johnsor of the Association of Florida Electronic Industry told the Commission, "The future of the electronic field in Florida is tremendous and I would say that in five years it could triple or more."

Backing up this optimism, the survey showed, as it did a year ago, that industry growth was not confined to one section of the state. Expansions of plants were reported in the last year in Fort Walton Beach, Gainesville, St. Petersburg, Orlando, Melbourne, Fort Lauderdale and Miami.
New plants opened in Sarasota, Fort Myers, Tampa, Sanford., West Palm Beach, Winter Park and Miami.
One executive, Robert G. Kramer, said, "The whole electronics industry is expanding and nowhere faster than in Florida." Kramer's Airtronics International, a communications and aviation electronics firm at Fort Lauderdale, recently launched a multi-milliondollar expansion program.

In the Florida survey, ten new electronics plants and ten major expansions were listed. Employment has increased from 10,000 a year ago to more than 15,000 .

Factory sales of communications equipment, electronic components, automatic controls, and similar devices are now estimated at from $\$ 180,000,000$ to $\$ 200,000,000$. Total payrolls approximate $\$ 60,000,000$ a year.

Companies are merging at a rapid rate to gain capital, know-how, strong markefing organizations, prestige, or for investment purposes along with many other motivations listed below. The article also explains why the acquired company's organization should be kept intact.

Why Do Companies Merge?

During the past five years there has been a boom in corporate acquisitions in the electronics industry. Such young giants as Litton Industries and Siegler Corp. have grown primarily via the acquisition route. In our opinion, this trend will continue and undoubtedly will be augmented by acquisitions of electronics concerns by companies in other fields.

Not all acquisition programs have succeeded. The defense stretchouts and business recession of 1957-58 brought out many of the defects in these programs. It became obvious

Dean Witter \& Co. are investment bankers with offices also located in-
San Francisco Los Angeles
Seattle
Portland Beverly Hills
Oakland
Sacramento
Honolulu
Philadelphia
San Marino
San Diego
Fresno
Chicago

They are also members of the New York, Pacific Coast and other leading Stock Exchanges.
in some cases that management was spread too thin, products were not what they should be, and consolidated income statements could no longer hide red ink in a losing acquisition. To be candid, even in the best of mergers, there is no telling when the worms may begin to come out of the woodwork.

The electronics industry lends itself, possibly more than any other, to growth by acquisition. An engineer gets a good idea, creates a product or acquires an R \& D contract, and he is in business; provided that he has the necessary courage. If he is lucky enough to click, and his company grows, suddenly his working capital problems begin to expand by something resembling a geometric progressionnot to mention the problems involving administration, production, sales, etc.

Working Capital Needed

Frequently the entrepreneur finds that he has a $\$ 500,000$ order with a $\$ 5,000$ net worth; or much worse, a few months later he may be handling $\$ 1,000,000$ in volume with a negative working capital position. This is usually the time when he be-

By PETER SLUSSER

Associate,
Dean Witter \& Co.
14 Wall St.
New York 5, N. Y.
gins to look to the financial communities of South Spring, Montgomery or Wall Street for assistance, or will begin casting about for tempting merger offers. This process is happening every day in the electronics industry, and there are even those rugged individuals who are now on their second cycle of founding, building up, and selling companies.

Obviously not all electronic acquisition candidates are young, bootstrap operations. Some are well known, time honored names such as Monroe and Altec, or even Sylvania. The doors of merger in this fast stepping industry are closed to none. Some Wall Street cynics even believe that everything in the electronics industry is for sale-at a price.

At best, it is difficult to tell when a corporation, large or small, is exactly ripe for merger. Several leading investment banking firms, in fact, have specialists who do nothing but counsel and negotiate these mergers. However, we have found that there are a few general guide posts that can be followed in the industry as indicative of a company being more, rather than less
ready to be acquired. Since the factors influencing a large organization usually vary from those of a smaller concern, we will treat each separately with the knowledge that considerable overlapping exists. Some of these factors are listed below.

Large Organizations

- Older management wishing to retire, or a management that is no longer sufficiently effective.
- An existing or potential estate problem on the part of the owners. - One product dependence, or potential technological obsolescence of existing products.
- Need for an expanded marketing organization, or an opportunity to enter new markets where the company does not have access.
- Too much idle cash in the treasury.
- Lack of sufficient research and development talent.
- Large tax loss carry forward.
- Financial crisis or difficulties.

Small Organizations

- Usually the overall need for the capabilities and capacities of a much larger organization.
- The belief by management and/ or owners that they can expedite their corporate growth by joining forces with a larger organization.
- A tight financial condition, or the pressing need for more money than the company is capable of raising without giving up an arm and a leg.
- A need for a stronger marketing organization, particularly for commercial products, or in some cases plain old "high level" pull for large military or industrial jobs.
- A desire on the part of a large customer to purchase his source of supply.
- An urge by the owners to "cash in" or become more liquid by upgrading their equity into that of a more seasoned, traded and perhaps even dividend paying security.
- An excess of research and development talent without sufficient manufacturing and marketing facilities.

Clearly, some if not several of these conditions exist in every organization to varying degrees. In our experience there are two factors which almost always must be
right if a merger is to jell, and these are people and timing.

If the chemistry of the people does not work, the odds are against there being a merger. If events are not really pressing and there is a lack of urgency attached to negotiations then again the odds are against having a deal. Our experience in the electronics industry indicates that the people must have a real desire to complete the merger, and there must be some compelling reason with a time limit attached to make them act.

Ways to Merge

The formal procedures for merging companies are subject to the laws of the state wherein the companies are incorporated and to pertinent federal statutes. In general there are three major ways to accomplish a merger :
Statutory merger or consolidation. In this case, the stockholders of both companies must vote and approve the merger-usually a twothirds majority of both groups of stockholders, with dissenting stockholders frequently entitled to appraisal rights. In general, a statutory merger is a tax free exchange.

The recent merger of Sylvania Electric into General Telephone is an example of this type of merger. In the case of each company, the affirmative vote of two-thirds of each class of voting stock was required to approve the merger. Usually this type takes a considerable period of time in view of the necessity of preparing proxy soliciting material, holding a stockholders' meeting, etc.
Acquisition by one corporation of the stock of another. Here the acquiring corporation must gain control of at least 80% of the total voting power of all classes of stock of the corporation to be acquired in order for the acquisition to be tax free. Such an exchange usually does not require the approval of stockholders except that in case of a company listed on the New York Stock Exchange, if more than 20% of the stock is involved, stockholders' approval is required. This method is frequently employed by a larger concern acquiring the ownership of a smaller and often privately held company. It may take at least three formsstock for stock, or cash for stock,
(Continued on page 228)

Graph shows the number of mergers that have taken place in the last few years

Checking Einstein with

Purity Plus - Hughes Products Division engineer checks semiconductor materials to insure purity.

Exit cones capable of withstanding temperatures of $6000^{\circ} \mathrm{F}$. represent one example of advanced engineering being performed by the Hughes Plastics Laboratory.

an atomic clock in orbit

To test Einstein's general theory of relativity, scientists at the Hughes research laboratories are developing a thirty pound atomic maser clock (see photo at left) under contract to the National Aeronautics and Space Administration. Orbiting in a satellite, a maser clock would be compared with another on the ground to check Einstein's proposition that time flows faster as gravitational pull decreases.

Working from the new research center in Malibu, California, Hughes engineers will develop a MASER (Microwave Amplification through Stimulated Emission of Radiation) clock so accurate that it will neither gain nor lose a single second in 1000 years. This clock, one of three types contracted for by NASA, will measure time directly from the vibrations of the atoms in ammonia molecules.

Before launching, an atomic clock will be synchronized with another on the ground. Each clock would generate a highly stable current with a frequency of billions of cycles per second. Electronic circuitry would reduce the rapid oscillations to a slower rate in order to make precise laboratory measurements. The time "ticks" from the orbiting clock would then be transmitted by radio to compare with the time of the clock on earth. By measuring the difference, scientists will be able to check Einstein's theories.

In other engineering activities at Hughes, research and development work is being performed on such
projects as advanced airborne systems, advanced data handling and display systems, global and spatial communications systems, nuclear electronics, advanced radar systems, infrared devices, ballistic missile systems...just to name a few.

The variety and advanced nature of the projects at Hughes provides an ideal environment for the engineer or scientist who wishes to increase his professional stature.

$$
\begin{array}{ll}
\text { Newly instituted programs at Hughes have created immedi- } \\
\text { ate openings for engineers experienced in the following areas: } \\
\text { Communications } & \text { Environmental Engineering } \\
\text { Thin Films } & \text { Logical Design } \\
\text { Electron Tubes } & \text { Radar Circuit Design } \\
\text { Field Engineering } & \text { Material \& Component Eng. } \\
\text { Semiconductors } & \text { Systems Analysis } \\
\text { Test Equipment Eng. } & \text { Nuclear Electronics }
\end{array}
$$

Write in confidence to Mr. Don Eikner, Hughes General Offices, Bldg. 6-C8, Culver City, Calif.
(C) 1959. H.A.C.

The West's leader in advanced ELECTRONICS

Why Do Companies Merge?

(Continued from page 225)
or a combination of stock, cash and other securities for stock. The offer of stock for stock seems to have been the most commonly used in the electronics industry. Litton Industries, for example, has traded its shares for those of other companies on various occasions, and the recent merger of Bomac into Varian was a merger of this design. Such an exchange of stock is tax free if the acquirer obtains 80%. Where cash or securities other than voting stock are offered the transaction may be taxable, or taxable in part. This kind of combination requires a prospectus under the 1933 Securities Act, unless the sellers are very limited in number and agree that they will hold any securities they get for investment and will not distribute them.
Purchase of Assets. In this situation, the assets or properties of one company are purchased by another for stock, cash, or notes, or any combination thereof. In many
states a favorable vote by a majority of the holders of the selling corporation's voting stock is required, and in some states dissenters have appraisal rights. If substantially all of the assets of a company are acquired exclusively for the voting stock of another corporation, then the exchange is tax free. However, if notes, cash, or non-voting stock are used, the transaction is taxable. This type of transaction is used frequently in the acquisition of smaller privately held companies where the owners wish to realize some cash gain immediately.

In any case we would urge the prospective seller to see his lawyer.

Each of these general procedures have advantages and disadvantages to both parties. In addition, there are serious tax implications in each, and more than likely have a large bearing on the final figure placed on the value of the company to be acquired. We have found that in many cases the
amount paid for an acquisition can vary substantially depending upon how the purchase is made. Obviously there are people who think that cold hard cash has a greater value than unregistered stock selling at forty times earnings, or again what financial cynics call "Chinese money."

Steps to Merging

The usual steps in a merger begin in a somewhat similar fashion to marriage. There is the courtship when everyone seems to be wearing a salesman's hat. Then the proposal - where the serious negotiations usually begin. We have found that it is frequently desirable first to arrive at a sound businessman's agreement as to the values or range of values to be exchanged. This can be done by using both quantitative and qualitative measurements. Frequently, investment bankers are called in as financial consultants to evaluate the company to be acquired, both companies or the nature and composition of the transaction. Sometimes the courts will call upon an investment banker as an expert witness

RESEARCH ENGINEERS

Abstract

- Basic and applied nuclear research work at the Berkeley and Livermore laboratories requires engineers to design, install, and operate a variety of electronic equipment and instrumentation systems. The work is associated with programs involving nuclear propulsion, nuclear research machines, controlled thermonuclear energy and nuclear explosive testing. Current projects require engineers with experience in circuit design, fast pulse circuitry, digital computers, and data reduction.

Engineers interested in research and development are invited to write the Personnel Department at the below address for further information.

LAWRENCE RADIATION LABORATORY

UNIVERSITY OF CALIFORNIA
P. O. Box 808 - Livermore, California

"SYSTEM DEVELOPMENT CORPORATION

is currently seeking scientists and engineers in various skill areas. As part of this effort, I have been given the opportunity to tell you something about our organization
"Let me begin by giving you some general facts about the Corporation SDC is a non-profit organization chartered to work in fields pertaining to public welfare, the advancement of science, and national defense. The Corporation's name implies its function - the development of systems. Specifically, we are concerned with large, complex information processing systems with a high degree of automation. Development of these systems is accomplished through the application of knowledge in the areas of applied mathematics, engineering, and psychology, to problems of over-all system design, data processing techniques and optimum man-machine relationships
"Our work is system-oriented, rather than concerned with the design or manufacture of hardware components. As a result of this type of specialization, we have assumed major responsibilities in the development of systems such as the SAGE (Semi-Automatic Ground Environment) Air Defense System and the world-wide Strategic Air Command Control System, and in the integration of the functional responsibilities of these systems with other military electronic support systems.
"Because the scope of our activities is rapidly increasing, we are expanding our staff. In this message I am specifically addressing young engineers with advanced training and proved analytical ability in the areas of weapons system analysis, noise and information theory, ECM, electromagnetic intelligence and allied fields. If you are qualified, and our corporate activities sound interesting to you, we would like to hear from you. Address inquiries regarding our Santa Monica, California facility to Mr. R. W. Frost, 2428 Colorado Avenue, Santa Monica, California. Inquiries regarding our Lodi, New Jersey facility should be addressed to Mr. R. L. Obrey, Box 2651, Grand Central Station, New York 17, N.Y. These gentlemen will see that your letter receives prompt attention and confidential treatment."

David Green. Assistant Director for Plans, Operations and Management Research Directorate

Some of Man's Greatest Creative Work is in this Building

National Gallery of Art, Washington, D.C.
... originals by Rembrandt van Ryn, Velasquez, Gauguin, Cezanne, Manet-and many others. Another kind of creativity exists a few miles away at Melpar. Here engineers and scientists create, design and produce sophisticated electronic equipment for worldwide and space application.

The Melpar design for working, which involves the finest facilities, colleagues and incentives-paves the way for engineers and scientists to achieve genuine stature in their fields. Systems planning and development project group members participate in challenging problems from idea conception through to completion of prototype. Those on staff assignments work along provocative, deep-probing lines of inquiry in specific electronic areas, as well as serving as advisors to project groups.

Another point of no little interest-living conditions in the area surrounding our modern laboratories in Northern Virginia (ten miles from Washington, D.C.) and suburban Boston, are superb with truly impressive cultural and educational facilities.

Melpar is active in virtually all phases of electronic creation, design, and production.

> Opportunities are now available at Melpar in the following areas:

Reconnaissance Systems Airborne Equipment Ground Data Handling Equipment Ground Support Equipment
Simulation \& Training Systems
Communication \& Navigation Systems

Detection \& Identification Systems Antenna \& Radiation Systems Chemistry Laboratory Applied Physics Laboratory
Production Engineering
Quality Control

Melpar has had a remarkable growth pattern since its inception, creating significant opportunities for the uncommon engineer and scientist.

Your own intellectual dimensions govern remuneration and assignments.
interviews arranged in your locale

| For Details |
| ---: | ---: | ---: |
| Wire Collect or Write to: |
| Professional | Employment Supervisor \mid A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY

3303 Arlington Boulevard, Falls Church, Virginia
10 miles from Washington, D.C.

Continued from page 228)

in such a transaction. The chief benefit is a third party's objective point of view. This system of employing financial consultants is frequently the fairest to both parties and can help to keep horse trading and haggling to a minimum.
Once the values have been agreed upon, then both parties should call upon the most talented corporation lawyers, tax lawyers, and accountants to work out the details. This period of processing can take from one week to over three months depending upon the complexity of the transaction and also whether stockholders' approval is required.

Wherever possible we have found it of primary importance to keep the management of the corporation which is acquired. The nature of the electronics industry makes this factor even more important since in most acquisitions, particularly of smaller companies, the key men's brains and know-how are the "go-no-go" factors in the success of the operation. If after the merger, one or two top flight individuals become dissatisfied and leave, the acquiring corporation - no matter how well organized-is usually in for some trouble with its new acquisition.

Mergers can be very healthy things, can offer enormous marketing advantages and manufacturing efficiencies, and can expedite corporate growth by providing adequate financial backing as well as other benefits. Great companies such as RCA, General Motors and General Dynamics have been built on these principles, and smaller companies such as Varian, Ling and Aeronca are making progress by this means. We think that the pattern of consolidation will continue in the electronics industry as it grows. However, we urge caution in corporate merger-size for size alone is not enough. Two plus two must equal more than four, or as the chemists say there must be a synergistic action. Above all, the people coming together are the most important factor, and for a valuable and successful corporate consolidation, the two groups of individuals must have a high degree of willingness to work together towards common goals.

NEW PROGRAM

Please forward
resume to:

Mr. W. F. O'Melia
Employment Manager
Raytheon Company
Bedford, Mass.
or call collect:
Crestview 4-7100
Extension 473

Raytheon enters new weapons systems program and offers advancement opportunities for both Junior and Senior electronics engineers with experience in the following fields:

- Microwave engineers-component and antenna design
- Communications systems
- Guidance systems
- Computer systems
- Radar systems
- Inertial reference systems
- Feed-back control
- Auto-pilot
- Ground support
- Electronic packaging engineers
- Radar systems engineers (project management)
- Electromechanical engineer for missile control and auto-pilot design (project management)
- Mechanical engineer experienced in ground handling of large missile systems (project management)

You and your family will enjoy the many advantages of living in the metropolitan Boston area. Relocation assistance and modern benefits.

> Immediate Staff Build-Up on New, Integrated COMMERCIAL \& MILITARY

PRODUCT DESIGN PROGRAMS

at General Electric's
Communication Products Dept. in Lynchburg, Virginia

Serving both industrial and military customers, the Communication Products Department offers engineers a unique type of professional stimulation-through participation in integrated design and production programs in advanced communication systems.

Industrial products of Microwave Radio Relay, Mobile and Powerline Carrier Current communication systems comprise the major portion of Department sales. These are often related to other projects for the Department of Defense, such as our contract for design and manufacture of a 24 channel tropospheric scatter system.

Engineers here frequently have the opportunity to contribute to both types of programs.

Immediate openings for men with Project Engineering or Group Leading experience in these areas:
parametric devices - tunnel effect devices - microminiaturization MICROWAVE CIRCUITRY AND PLUMBING - transistor circuits - piezoelectric and electromechanical filters DATA TRANSMISSION SYSTEMS - MULTI. plex systems - tropospheric and METEORIC SCATTER - PRINTED CIRCUITS

Write for data sheets on the Department and literature describing the attractive residential city of Lynchburg. Address Mr. Arthur Guy, Section 24-MH.

COMMUNICATION PRODUCTS DEPT.

GENERAL SLECTRIC

Mountain View Road Lynchburg, Virginia

Mid-Eastern Electronics, Inc., has appointed the Telesco International Corp., New York, N. Y. sales rep for all countries except the U. S. and Italy.

Telerad Mfg. Corp., New York, has appointed 3 new reps. They are: G. B. Ellis Sales Co., Palo Alto, Calif., for Northern California and Northern Nevada areas; Wallace \& Wallace, Los Angeles, for the Southern California area; and Premmeo of Arizona, Scottsdale, Arizona, for Arizona, New Mexico and Utah areas.

A new electronics manufacturers rep organization has been formed by David Muir to operate under his name, with headquarters at 612 E. Colman St., Altadena, Calif. Principle activities will be directed to electronic components and equipment, sold through distributors in Southern California and Arizona.

The following reps have been appointed by Vis-U-All Products Co., Grand Rapids, Mich: Northwestern Sales Co., Seattle, Washington, for Oregon, Northern Idaho, Northern Montana, Alaska \& British Columbia; and Dresser E-E Ltd., Montreal, for Canada.

NO. 100

Norman Neely (left), President of Neely Enterprises, and Robert L. Boniface (right), VP and Gen. Mgr., greet Ceorge Combs, the 100th employee of the Western Rep firm. Main offices are in Hollywood, Calif.

Ben Friedman, formerly Sales Manager of Mitronics Inc., 1290 Central Ave., Hillside, N. J., has formed a new type of rep organization for the New York, New Jersey and Connecticut area specializing in sub-component lines for the electronic industry. Mr. Friedman may be contacted at Mitronics, Inc.
A. Friedman \& Assoc., Jamaica, N. Y., has been appointed by Wyco Metal Products, North Hollywood, Calif. to handle the company's line in New York City and Northern New Jersey.

If you are experienced in airborne electronic systems and enjoy seeing your ideas turn into products, you will qualify for positions of major responsibility with Litton Industries in the Los Angeles area. You will work with a company that is noted for developing and producing advanced hardware of exceptional quality.
INERTIAL GUIDANCE \& CONTROL: Research, Electromagnetic Devices, Precision Mechanisms, Servo Systems, Electromechanical Design.

COMPUTERS \& CONTROL SYSTEMS: Circuit Design, Theoretical Studies, Logic Design, Reliability, Research.

WESCON • AUGUST 18.21 SAN FRANCISCO

Make your appointment now for an interview with members of our technical staff. Write Mr. Joseph Cryden, or phone him at CRestview 4-7411. During WESCON contact Mr. C. T. Petrie in San Francisco at EXbrook 2-8636.

LITTON INDUSTRIES
Electronic Equipments Division Beverly Hills, California

News of Reps

Paston-Hunter Co., Syracuse, is now rep for the upper New York state area for Triad Transformer Corp., div. of Litton Industries.

Control Electronics Co., Inc., has appointed 4 new reps. They are: The Col-Ins-Co., Orlando, Fla., for Florida, Georgia, Alabama, Mississippi, Tennessee, North and South Carolina; Malcolm Ross \& Co., Los Angeles, for Arizona, Nevada and Southern California; Ernest E. Whittaker, Ottawa, Ontario, for Canada, and Southern Industrial Electronics, Inc., Dallas, for Texas, Oklahoma, Arkansas and Louisiana.
"REP OF THE YEAR"

Ray B. McMartin (left), President of Continental Manufacturing, Inc., Omaha, presents TV set to Dan Rudat of Rudat and Ewing. The Palo Alto rep firm won the Company's "Rep of the Year" title.

Cozzens and Cudahy, Inc., have been appointed reps in Chicago for the Instrument Div., Thomas A. Edison Industries of McGraw-Edison Co.

Balco Research Laboratories, Inc., Newark, N. J., has appointed Electrosources, Inc., Palo Alto, Calif., as rep for the Northern California-Nevada territory.

McCarthy Associates, Pasadena, Calif., have been appointed rep for Daytronic Corp., Dayton, Ohio, and Larson Instrument Co., Tarrytown, N. Y., in California, Arizona and Nevada.

Servonic Instruments, Inc., has appointed George F. Bohman, Orlando, Fla., as sales rep for Florida, Georgia and Alabama.

Burcaw-Cowan \& Co., Detroit, has been appointed rep in Michigan for JB Electronic Transformers, Inc.

David G. De Haas Co., San Diego, Calif., is now sales rep for the Polytechnical Research \& Development Co., Inc., Brooklyn, N. Y.

- AiResearch Central Air Data Computer for North American's A3J, Navy's first weapon system, provides information dealing with bombing, navigation, engine inlet control, rudar, uutomatic fight control and cockpit instrumentation.

Expansion in electronics and electromechanical activity is creating excellent openings at all levels for qualified engineers. Diversified programs include Central Air Data systems on Air Defense Command B-70 and F-108, North American A3J and McDonnell F-4H, as well as other commercial and military aircraft and missile projects.

Openings in the following areas:

- FLIGHT SYStems research ceneral problems in motivation and navigation in air and space; required background in astronomy, physics, engineering.
- data systems research Experience with physical measuring devices using electromagnetic, atomic, thermionic and mechanical approaches.
- CONTROLS ANALYSIS Work in preliminary design stage involves servomechanisms analysis and analog computer techniques.
- FLIGHT DATA COMPONENTS Analysis proposal, design and development work in the following specialties: circuit analysis. servo theory, transducers, transistors, airborne instrument and analog development of high and low temperature problems.
- electromagnetic development Work with magnetic amplifiers requires knowledge of electromagnetic theory, materials and design methods.
- instrument design Electromechanical design of force-balance instruments. pressure measuring devices, precision gear trains and servo-driven positioning devices. Experience in electrical and electromagnetic transducers desirable.
- alrborne instrumentation analysis AND DESIGN Work involves solving problems in accuracy, response and environmental effects.

Send resume to:
Mr. G. D. Bradley

Expanding the Frontiers of Space Technology in
 QUALITY ASSURANCE

- Quality assurance at Lockheed parallels in importance and augments the research and development, projects and manufacturing organizations. Quality assurance engineers establish audit points, determine functional test gear, write procedures and perform related tests.
These activities, supported by laboratories, data analysis, establishment of standards, and issuance of reports, all insure that Lockheed products meet or surpass contractual requirements. Economy and quality are maintained at every stage to produce the best products at the least cost. As systems manager for such major projects as the DISCOVERER Satellite; Navy POLARIS FBM; Army KINGFISHER; and Air Force Q-5 and X-7, quality assurance at Lockheed Missiles and Space Division has an important place in the nation's defense.

ENGINEERS AND SCIENTISTS

If you are experienced in quality assurance, reliability, or related work, you are invited to share in the future of a company that has an outstanding record of achievement and make an important individual contribution to your nation's progress in the race for space. Write: Research and Development Staff, Dept. H-2-48, 962 W. El Camino Real, Sunnyvaie, California. U.S. citizenship required.

Lockheed

MISSILES AND SPACE DIVISION

Systems Manager for the Navy POLARIS FBM; DISCOVERER SATELLITE; Army KINGFISHER; Air Force Q-5 and X-7

SUNNYVALE. PALO alto, VAN NUYS, SANTA CRUZ. SANTA MARIA, CALIFORNIA CAPE CANAVERAL, FLORIDA aLamogordo, new mexico e hawala

Personals

James O. Seamans has been named Sparrow III Program Manager for the Missile Systems Div. of Raytheon Co.

Hi-G, Inc., has announced the appointment of J. A. Garratt as Chief Engineer. He was formerly with Thomas A. Edison Co.

Norman O. Bender, Jr., has been promoted to the newly created position of Operations Manager for Transac computers, Philco Corporation's Government \& Industrial Div., Phila., Pa.

Walter E. Carpenter has been appointed Chief Engineer at the Hudson Lamp Co. He was formerly with the Lamp Div., Westinghouse Electric Corp.

Dr. Samuel B. Batdorf is now Director of Research at Lockheed Electronics and Avionics Div.

S. Batdorf

A. Phillips

Alvin B. Phillips has been appointed Chief Engineer, Mesa transistor product line, at Motorola's Semiconductor Products Div., Phoenix, Ariz.

Dr. David M. Heinz, former Physicist for General Electric Co.'s Instrument Dept. in West Lynn, Mass., has joined Hoffman Electronic Corporation's new Science Center in Santa Barbara, Calif., as Sr. Scientist.

Transval Electronics Corp. has appointed Jack Campbell Director of Government Contracts. He was formerly with Hayes Aircraft, Birmingham, Ala.

Arthur V. Sommer, formerly Division Manager, Chicago Div., American Bosch Arma Corp., is now Chief Engineer, Arma Div.

Lawrence Saper has been appointed Director of Engineering for the Eastern Div. of Acoustica Associates, Inc. He was previously associated with Bogue Electric Mfg. Co.

Thomas A. Combellick is now Chief Engineer at the Military Div., Lenkurt Electric Co.

Charles R. Wilson is now Production Manager for the West Coast Div. of the Military Electronic Operations of Allen B. Du Mont Labs., Inc.

Dr. J. Earl Thomas, Jr., has been appointed to the newly created post of Director of Research \& Engineering for the Semiconductor Div., Sylvania Electric Products Inc.

James M. Dill has been appointed Vice-President and General Manager of Ratigan Electronics, Inc., Glendale, Calif. He was formerly Sr . Research Engineer.

Charles Nater is now Chief Engineer at the Instrument Div., Beckman \& Whitley, Inc., San Carlos, Calif.

Morris Levin has been appointed Manager of the Ground Systems Section at Tele-Dynamics, Inc., Phila., Pa. He was formerly measurements engineer, systems engineer, and Supervisor of the Ground Systems Section's Electrical Design Group.

Nuclear Corp. of America has appointed 3 scientists to the staff of the company's Isotopes Specialties Div. in Burbank, Calif. Alfred J. Moses is Manager of Radioactive Laboratory Operations; John D. Vaden is Health Physics Officer, and Nyle Schafhauser will run Isotopes Specialties' experimental shop.

Harry M. Stephey has been named Manager of Defense Requirements in the Missile and Space Vehicle Dept. of the General Electric Co. He had been Manager of Advanced Sales, Defense Systems Dept.

Charles E. Shinn has been named Director of Research and Development for Royal McBee Corp. He was formerly Engineering Administration Manager in the Royal McBee Research \& Development Div.

Robert E. Wesslund has been appointed Director of Research, New Products Developments at Transistor Electronics Corp. Prior to this appointment he was Project Engineer in charge of Remington Rand Univac's New Computer Development.

Raymond F. Guy, Haworth, N. J., Sr. Staff Engineer, National Broadcasting Co., N. Y., has been made a Fellow of the American Institute of Electrical Engineers. He was cited "for Contributions to the technical development of radio and television network broadcasting."

Ray Destabelle, formerly in charge of transducer design and development for Technology Instrument Corp. of Calif. has been appointed Chief Engineer for the firm.

a fence in the sky

The Westinghouse Air Arm Division has been selected to develop and build a fence in the sky \ldots an electronic defense system to shield the Air Force's 2000 mph B-70 Valkyrie.

This defense system will be a new dimension in electronic counter-measures, employing elec-tro-magnetic and other techniques to delay, confuse and distort enemy intelligence. With its advanced technical developments, this system will greatly increase the manned aircraft's capacity for self defense.

The program, including advanced development and design work, will offer unique career development opportunities for engineers desirous of pioneering in the following fields:

AIRBORNE ELECTRONIC
 COUNTER-MEASURES

$\begin{array}{ll}\text { Systems Engineers } & \text { Digital Computer Design } \\ \text { Broad Band Amplifiers } & \text { Microwave Tube Design }\end{array}$
Broad Band Amplifiers
Signal Analysis Antenna Design
CONTROLS \& DISPLAYS
Circuit Design
Experimental Psychologists
GROUND SUPPORT EQUIPMENT
Automatic Check-out and Fault Isolation
FERRET RECONNAISSANCE ELECTRONICS INSTRUCTORS COMMUNICATIONS CIRCUITRY FIELD ENGINEERING TECHNICAL WRITING ELECTRONIC PACKAGING

FOR DETAILS . . . and a copy of the informative brochure "New Dimensions", send a resume of your education and experience to: Mr. A. M. Johnston, Dept. 942 Westinghouse Electric Corporation, P. O. Box 746, Baltimore 3, Maryland.

Electronics Engineers:

 How To Get Alhead in RadarEngineers working in Radar today are finding it sometimes takes more than an individual's talent and creativity to keep pace with the field.
The element that can make all the difference in a man's professional growth - is his company.
Management at Light Military* is aware of this and recognizes that LMED's long-term growth depends upon setting the proper environment for creativity... providing advanced projects on which to exercise it...encouraging and making room for a man's professional development.
If you join Light Military this month, chances are you'll find opportunities to contribute to such systems as:

An automated AEW and control system which -for the first time-will practically eliminate Man from the control loop.
An advanced airborne Bomb Nav. \& Forward Surveillance radar system which will utilize high resolution techniques and be equipped with frequency diversity capability.
Or a number of classified programs including Missile Guidance, Surveillance and Fire Control Radars with advanced capabilities.

If you'd like to learn more about how your talents can get you ahead in radar faster at LMED, write in confidence to Mr. William Gilmore, Dept. $24-\mathrm{MH}$.

*light military electronics department

FRENCH ROAD, UTICA, NEW YORK

Industry

News

Monroe Seligman, President of Tenney Engineering, Inc., has been elected Director of the Environmental Equipment Institute, an organization of designers and builders of test chambers and other facilities used to simulate extreme altitude, heat, cold and other conditions.

Walter Hasenzahl has been appointed to the new management position of Director of Manufacturing Engineering at the Crosley Div., Avco Corp.

Dr. Herbert F. York, Director of Research and Engineering, Dept. of Defense, has appointed John H. Rubel as Assistant Director, Defense Research and Engineering (strategic weapons). He is on leave of absence from Hughes Aircraft Co., Culver City, Calif., where he has been Director of Airborne Systems Labs.

J. Rubel

C. Danch

Gabriel C. Danch has been named Manager, Washington Office, U. S. Industries, Inc. He was formerly associated with Ryan Aeronautical Co.

Atohm Electronics, Sun Valley, Calif. has appointed R. H. Engstrom to the post of V.P./Sales. He has been associated with atohm in sales management through Engstrom Associates, Inc.

Oliver Berliner has been named a Director of Studio Electronics Corp. He will serve as Sales Manager and Advertising Director of the firm.
A. Richard Robertson has been appointed Director of Sales Promotion and Merchandising by KRON-TV, San Francisco. He was formerly Promotion Director of KTVU, Oakland.

Kenneth R. Eldredge is now Assistant to the President, Arnoux Corp. He had previously been associated with Stanford Research Institute as Assistant Director in Engineering.

Industry News

Harold B. Nicholas has been appointed Sales Manager at the Instrument Div. of Humphrey, Inc., San Diego. He was formerly Chief Design Engineer for Cubic Corp., San Diego.

Monogram Precision Industries, Inc., has named Victor Gehrig and Robert A. Lehman as Sr. Vice Presidents. Gehrig was formerly Vice President-Production. Lehman was General Manager of the Electronics Div. in Los Gatos, Calif.

Franklyn E. Dailey, Jr. has been appointed Manager of Planning for Stromberg-Carlson, San Diego.

Norman L. Lingeman has been appointed President of the recently created Superior Resistor \& Electronics Corp. at Frankfort, Ind. He was formerly with Model Engineering, TruOhm Div. Gilbert E. Stokes is VicePresident. He was formerly in Production and Material Control with P. R. Mallory \& Co., Inc.

James A. Schaefer is now Manager of the Houston, Tex. branch of Central Scientific Co., Chicago. He was formerly Pittsburgh rep for the company.

Howard Hoffman is now Factory Manager for the Commercial Products Div. of Lenkurt Electric Co., San Carlos, Calif.
C. Robert Lane has been promoted to the position of Sales Manager of Andrew Corp., designers and manufacturers of antenna systems.

C. Lane

J. Palmere

James R. Palmere has been appointed Electronic Fabrication Group Sales Manager at Foto-Video Laboratories, Inc. He was formerly purchasing agent.

William J. Gagnon has been appointed Vice President of Bradley Semiconductor Corp. He had been General Sales Manager of the firm.

John Mitchell, Asst. Chief Engineer: Mobile and Portable Communications Products

"Growth: that's why I changed to Motorola"

"Five and one-half years ago I decided to seek a more aggressive organization in order to take full advantage of the outstanding growth opportunities in the electronics field. My move up to Motorola has been extremely rewarding. Within five years I have advanced from Project Engineer to Group Leader, then to Section Manager and now I am Assistant Chief Engineer with opportunity for continued growth.
"'This personal growth typifies Motorola's policy of expanding activities and promoting from within to keep pace with the rapid industry development. It is also very gratifying to be part of an organization that operates in a spirit of friendly teamwork, where even top officers are addressed by their first names; a company that appreciates and encourages ingenuity and capability. Throughout Motorola I have found everyone takes a keen, enthusiastic interest in his work and feels a strong pride in the company's commanding position in the field and in its products.
"Living in the Chicago area is also very enjoyable. I bought a home in a small western suburb only a half hour drive from the plant, yet still well out into the fresh country air. It's only one of dozens of pleasant, well planned communities surrounding the city. Fine schools, shopping and recreation facilities are convenient everywhere.
"Motorola is continually growing, and every day I see this development opening constant advancement opportunities for individuals with talent and willingness. I'm proud to be a part of it."
For engineering openings in Military electronics. Civilian 2-way radioand portablecommunications-WRITE: Mr. L. B. Wrenn,

Engineering Personnel Mgr.
DEPT. C
MOTOROLA INC.
4501 Augusta Blvd., Chicago 51, Ill.
ALSO SPLENDID OPPORTUNITIES IN PHOENIX, ARIZONA - RIVERSIDE, CALIFORNIA

ELECTRONIC

ENGINEERS

If you are seeking work on challenging analysis and development programs with a mature research organization, it will be worthwhile for you to consider the activities of the

ARMOUR RESEARCI FOUNDATION

As a leading independent research organization Armour offers engineers a semi-academic atmosphere in which to work on interesting and diversified projects encompassing all phases of engineering and physics, plus the opportunity for tuition free graduate study. The following are typical of the stimulating programs currently in progress:

Analysis and Measurement of Mutual Radar Interference Study of Satellite Electronic Environments
 Developments of Advanced Measurement Techniques

Positions are available for qualified personnel interested in contributing to these and other similar programs who possess at least a B.S. degree and a minimum of three years of experience in radar system design or development, propagation analysis, electronic interference analysis and prediction, and related areas. Salaries, benefits and opportunities for professional advancement are excellent.

Forward your resume in confidence to:

A. J. Paneral

ARMDUR IRESEARCII FDUNIDATIDN of Illinois Institute of Technology 10 WEST 35th ST. CHICAGO 16, ILL.

Circle 510 on "Opportunities" Inquiry Card

SEEKING A NEW PLANT LOCATION?

LEARN THE INDUSTRIAL ADVANTAGES OF

HOLLYWOOD

FLORIDA

- Ideal living and working conditions
- Abundant, contented, skilled and unskilled labor
- Modern industrial buildings available
- Excellently located industrial sites
- Rail, truck, oir, water transportation
- Convenient to U.S. and Latin American morkets
- Hub of Florida's fastest growing morket
 FIND OUT WHY!

Write for Industrial Brochure Inquiries held in strict confidence INDUSTRIAL DIVISION, DEPT.EI-I CHAMBER OF COMMERCE HOLLYWOOD, FLORIDA
PLLASt - NO job applications. We are swamped with employment inquiries.
Circle 162 on Inquiry Card

FIRE CONTROLRADAR ENGINEERS

The Equipment Systems Staff of Republic Aviation is now engaged in broad research and development in advanced fire controlradar systems. A number of openings now exist for engineers with an EE degree and 5 years' experience in radar and/or fire control.

You will work on beautiful Long Island, less than one hour from New York City.

Send resume in confidence to: Mr. George R. Hickman Engineering Employment Mgr. Dept. 13H

GEAPCEBEME ABNATION FARMINGDALE, LONG ISLAND, N. Y.

Circle 5ll on "Opportunities" Inquiry Card

Industry

News

John J. Rooney, Sub-contract Purchasing Agent at Melpar, Inc., has been elected to the Presidency of the Purchasing Agents Assoc. of Washington, D. C.

The appointment of Dr. John W. McNall as Director of Research at the Westinghouse Lamp Div. has been announced. He was formerly Assistant Director of Research.

Dr. Earl L. Steele has been appointed Assistant Manager of the development laboratory for the Semiconductor Div. of Hughes Aircraft Company's Products Group. Dr. Michael Waldner has joined the Device Research Dept.

Robert B. Buchele has been elected Vice President of Corporate Development and Administration of American Electronics. He was formerly Assistant to the President.

R. Buchele

W. Kennedy

General Controls Co. has appointed William R. Kennedy as Sales Manager of its Hammel-Dahl Div.

George Canova has joined Datex Corp. as Sr. Project Engineer in the Systems Group. He was formerly an Electronic Engineer with Burroughs ElectroData Div.

The election of John D. Weber to Vice President of the Swartwout Co., Cleveland, Ohio, and Manager of the AutroniC Control Div., has been announced. He was formerly Manager of Marketing and Manufacturing.

Walter A. Clements has been appointed to the position of Vice President in Charge of Distributor Sales and Advertising, at Littlefuse, Inc.

William J. Werheim has joined International Resistance Co. as Sales Manager for precision resistor products. Before joining IRC, he was Eastern District Representative of Guardian Electric Mfg. Co.

Industry News

Dr. A. W. Wortham, Manager of the Quality Assurance Dept. of the Semiconductor - Components Div., Texas Instruments Incorporated, has been elected as an Executive Director of the American Society for Quality Control.
H. W. Shepard has been appointed to the newly-created position of Administrator of Color TV Market Development at RCA Victor Home Instruments. He was formerly General Manager of WAMP and WFMP, Pittsburgh radio stations.

H. Shepard

W. Sargent

The appointment of Walter E. Sargent as Supervisor of Production Engineering at Stromberg-Carlson, San Diego, has been announced. He was recently Assistant Chief Production Engineer for Zenith Radio Corp.

International Electronic Research Corp., Burbank, Calif. has recently added 2 men to its management staff. Edgar 0. Mattsson joins the Company as controller, and Orren M. Turner as Assistant to the President.

Richard W. Griffiths has been appointed General Sales Manager for the Semiconductor Div., Hoffman Electronics Corp. He succeeds Henry F. Schoemehl, who has been promoted to the new position of Director of Product Marketing.

George S. Hanson is now Director of Sales and Contracts for the Computer Div. of Control Data Corp. He was formerly Chief Engineer for Military Systems for Remington Rand Univac Div.

Concurrent with the formation of a new Advanced Systems Engineering Operation in the General Electric Company's Missile and Space Vehicle Dept. was the announcement of the appointment of 6 Sub-operations Managers. The Managers are: Robert L. Francisco, C. Frank Hix, Jr., Richard A. Passman, Robert R. Reid, Stanley C. Tracz, and L. W. Warzecha.

©.oellectromics

is junst as lbroadl
 as youni imnagiimation ${ }^{9}$

-Don G. Mitchell / Sylvania Board Chairman

This philosophy has long been basic to the success of Sylvania's Waltham Laboratories. The professional staffs of these modern laboratories are working on advanced electronic systems projects where major breakthroughs are being realized. Because the requirements of these projects frequently lie beyond the perimeters of today's knowledge, full imagination is needed in the conception stage and in every evolving. step that leads to program completion.

There's a place for your imagination at Sylvania

When you join Sylvania's Waltham Laboratories you can employ your full technological imagination to the sweeping scope of projects now under way and to the conceptual realization of those that lie in the future. There are immediate staff openings for engineers with previous experience in:
Advanced systems analysis
ECMs \& ground support equipment
Radar systems design \& analysis
RF circuit design \& development
Real-time data processing
Systems guidance \& simulation
studies
Plasma physics
Transistorized pulse \& digital
circuit design
Micro-electronics

Electromagnetic propagation Electronic systems techniques Operations research \& mathematical analysis
Microwave \& antenna advanced development
Electronic \& electromechanical packaging
Product engineering Reliability engineering Quality control

Send your resume in strict confidence to: Mr. Brooks Fenno, Dept. 14-H
Waltham Laboratories / SYLVANIA ELECTRONIC SYSTEMS A Division of

100 First Avenue - Waltham 54, Mass.

Give your products MORE RELIABILITY and BETTER PERFORMANCE with

MAGNETIC AMPLIFIERS

- Hermetically Sealed To MIL Specifications
- No Tubes
- Direct Operation from Line Voltage
- Fast Response
- Long Life Trouble Free Operation
- Phase Reversible Oupput

\downarrow Power Gain $2 \times 10^{8} \ldots$

Transistor
Mag. Amp
Preamp. MAF. 5
MAT-1
WI. 18 oz
W. 10 oz .

Send for NEW TRANSFORMER AND instrument catalogs
FREED TRANSFORMER CO., INC.

[^12] Circle 163 on Inquiry Card

Industry
 News

Three major new assignments for key executives of Delco-Remy Div have been announced. Named to a newly created post as Divisional Director of Product Reliability is J. H. Bolles, formerly the Division's Director of Sales and Engineering. Succeeding Mr. Bolles as Director of Sales and Engineering will be H. G. Riggs formerly Divisional Works Manager. Robert L. Kessler, former manufacturing Manager for starting, lighting and ignition equipment, will move into the Works Manager assignment.

Anthony C. Cuomo has been promoted to Assistant Manager of the Missile Support Laboratory of Allen B. DuMont Labs., Inc.
C. Robert Shaeffer has been elected to the position of Secretary-Treasurer of American Electronics Labs., Inc.

Frederick J. Lautenschlaeger is now Plant Manager at Harrison and William B. Brown is Plant Manager at Woodbridge, N. J. for Receiving Tube Operations, RCA Electron Tube Div.

Motorola's fast growing, fast moving Semiconductor Products Division has immediate openings for both junior and senior personnel.

> ELECTRONIC ENGINEERS mECHANICAL ENGINEERS PHYSICISTS • CHEMISTS
> QUALITY CONTROL ENGINEERS
> PROCESS ENGINEERS
> project engineers
> reLlability engineers
> APPLICATIONS ENGINEERS

SALES PERSONNEL - sales engineers and market research analysts with minimum of BS EE.
ideal living climate - Live in the famed "Valley of The Sun" resort area. Warm, dry and sunny the year 'round. Wide variety of recreational activities available.

IDEAL WORKING CLIMATE - Salaries are commensurate with your abilities and experience. Ample opportunity for advancement.

WESCON INTERYIEWS

August 17-18-19.20 SAN FRANCISCO
Phone EX 2.7755
for appointment
ask for Bob MacDonald
or Send confidential resume to Mr. Vernon Sorenson
MOTOROLA, INC.
Semiconductor Products Division 5005B East McDowell Phoenix, Arizona

MESA TRANSISTORS SWITCHING TRANSISTORS POWER TRANSISTORS SILICON RECTIFIERS audio transistors silicon zener diodes Circle 513 on "Opportunities" Card

ELECTRONIC INDUSTRIES Advertisers - August 1959

ACME ELECTRIC CORPORATION
COUSTICA
Freedman \& Ross, Incorporated ed DIV
ADVANCE RELAYS, ELECTRONICS DIV
ELGIN NAT'L WATCH
Balsam Advertising, Incorporated
AIR-MARINE MOTORS, INCORPORATED
McClelland Advertising, Incorporated
ALDEN PRODUCTS COMPANY.
136

Rabotham \& Sheeran Incorporated
ALFORD MANUFACTURING COMPANY
Engineered Advertising CHEMICALS
COMPANY
The Rumrill Company, Incorporated
ALLEGHENY LUDLUM STEEL CORPORA.
TION
Erwin Wasey Ruthrauff \& Ryan incorparated
ALLIED CHEMICAL CORP., GENERAL
CHEMICAL DIV.
Kastor Hilton Chesley Clifford \& Atherton
AMPEREX ELECTRONIC CORPORATION.... 220
Sam Groden, Incorporated
AMP INCORPORATED
M. Russell Berger, incorporat

ARMOUR RESEARCH FOUNDATION OF
ILLINOIS INSTITUTE OF TECHNOLOGY
ARTOS ENGINEERING COMPANY
The Cramer-Krasselt Company
KUGAT BROTHERS, INCORPORATED
Knight and Gilbert, Incorporated

BALLANTINE LABORATORIES, INCOR-
PORATED
$\ldots . ~$

Frederick Smith Advertising Agency
BARKER \& WILLIAMSON INCORPORATED Babcock, Romer, Carberry \& Murray,

BECKMAN/BERKEL
CECKAN/BERKELEY, A DIV. OF
BECKMAN INSTS., INC....................................
ELDEN MANUFACTURING BOWes Advertising Incorporated The Fensholt Advertising Agency,
Incorporated
GREHER CORPORATION ${ }_{1}$ THE............... 217
BIWAX CORPORATIÓN 200
Doug Rader \& Associates
BOMAC LABORATORIES, INCORPORATED
Inside Back Cover
Larcom Randall Advertising, incorpo
BORG EQUIP. DIV. AMPHENOL-BORG
CORPORATION
E. R. Hollingsworth \& Associates

BOURNS, INCORPORATED
Allen, Dorsey \& Hatfield, Incorporated
BRUSH INSTRUMENTS DIVISION OF
CLEVITE CORP.
Duffy, MCClure \& Wilder, IncorDora.
BUD RADIO CORPORATION, INCOR-
PORATED
Allied Advertising Agency incor........................... 179
BURGESS BATTERY COMPANY....................
Kane Advertising
URNELL \& COMPANY, INCORPORATED... 135
BUSSMANN MANUFACTURING DIV
McGRAW-EDISON
CAMBRIDGE TERMIONIC CORPORATION.. I26
CBS ELECTRONICS DIV. OF CBS iNCORPORATED
Bennett \& Northrop, Incorporated
CENTRALAB, DIV. OF GLOBE-UNION, INCORPORATED

$$
\begin{aligned}
& \text { YCORPORATED } \\
& \text { Stral Advertising Company }
\end{aligned}
$$

CHAMBER OF COMMERCE, HOLLYWOOD. FLORIDA
GRIDA ….......................................
CHICAGO STANDARD TRANSFORMER CORPORATION
Stral Advertising Company
CHICAGO TELEPHONE SUPPLY CORPORA-
TION .. 3
Burton Browne Advertising
CINCH MANUFACTURING COMPANY..... 107 Campbell \& Associates
CIRCO ULTRASONIC CORPORATION....... 204
Ray Ellis Advertising, Incorporated
ARE \& COMPANY, C. P..................
Reincke, Meyer \& Finn, Incorporated
CLAROSTAT MANUFACTURING COMPANY,
NCORPORATED
Lescarboura Advertising, Incorporated
Chambers Wiswell Shattuck Clifford ${ }^{\text {\& }}$ Chambers Wis
COLUMBIAN CARBON COMPANY.......... 175
CONDahue \& Coe, incorporated
CONNECHCUM
CORNING GLASS WORKS
The Rumrill Company, Incorporated
DALE PRODUCTS, INCORPORATED
Ayers, Swanson and Associates, Incorporated

DEJUR-AMSCO CORPORATION
Friend-Reiss Advertising, Incorporated
ELCO RADIO DIV GENERAL MOTORS CORPORATION

23
Campbell-Ewald Campany
Charles Bowes Advertising, incorporated
DIALIGHT CORPORATION
H.J. Gold Compony

DU MONT LABORATORIES, INC.,
ALLEN 8 .
55
Du Pescarboura Advertising, Incorparated Batten Barton Durstine \& Osbarn
DYMEC, INC.
EASTMAN KODAK COMPANY
.... 119
EISLER ENGINEERING COMPANY,
NCORPORATED
191
Walter J. Zimmerman
ELASTIC STOP NUT CORP. AGASTAT DIV.. 179
G. M. Basford Company
ELECTRIC AUTO-LITE COMPANY

ELECTRIC AUTO-LIE ADE Advertising Incorporated
ELECTRO ENGINEERING WORKS............. 46
Bill West Advertising
ELECTRO MOTIVE MANUFACTURING CO..
INC. THE
ELECTRONIC INDUSTRIES
117, 201
ELECTRONIC INSTRUMENTS COMPANY
240
(EICO) Zam \& Kirshner Incorporated
Zam \&
ENGINEERED ELECTRONICS COMPANY....
ERIE RESISTOR CORPORATION
Meldrum \& Fewsmith, Incorporated
FAIRCHILD SEMICONDUCTOR CORPORA
TION Boland Associates
FANSTEEL METALLURGICAL CORPORA
TION180, 181 Symonds, MacKenzie \& Company
Incorporated
NCORPORATED

NCORPORATED $\ldots \ldots .$.
Franklin Advertising Service, Incorporated
GAMEWELL COMPANY, THE. .
221
James Thomas Chirurg Company
GARRETI CORPORATION, THE...125, 183, 233
J. Walter Thompson Campany
GENERAL ELECTRIC COMPANY.........232, 236

Deutsch \& Shea, Incorporated
203
GENERAL ELECTRIC COMPANY
GENERAL INSTRUMENT CORPORATION
SEMICONDUCTOR DIV
Asso................ 17
Walter J. Zimmerman Associates
GENERAL PRODUCTS CORPORATION...... 20
Spitz Advertising Agency
GENERAL TRANSISTOR CORPORATION....
Smith, Winters Mabuchi, Incorporated
GENERAL TRANSISTOR WESTERN
ORPORATION
GERTSCH PRODUCTS, INCORPORATED..... 214
Balsam Advertising, Incorporated
GRAINGER INCORPORATED W W 126
Merrill, McEnroe \& Associates, Incorporated
GRAPHIC' SYSTEMS 204
Diener \& Dorskind, Incorporated
HANDY \& HARMAN.
22
Hazard Advertising Company, Incorporated
HAYDON COMPANY, THE A. W............. 221
Cory Snow Incorporated
HITEMP WIRES, INCORPORATED
Duncan. Brooks InCORPORATED........... 14
HOFFMAN ELECTRONICS CORPORATION.. 160
Sander Rodkin Advertising Agency, Ltd.
HOUDAILLE INDUSTRIES, INCORPORATED
CAILLE INDUSTRIES, INCORPORATED - 72
Comstock \& Company
Foote AIRCRAFT …
.226, 227
HUGHES PRODUCTS
$4,5,10,11$
Foote, Cone \& Belding
HUGHEY \& PHILLIPS, INCORPORATED.... 242
Jack Packard Advertising
ILLINOIS CONDENSER COMPANY......... 214 Sander Rodkin Advertising Agency Ltd
NDIANA STEEL PRODUCTS COMPANY,
Bert S. Gittins Advertising, Incorporated 129 INDUSTRIAL ELECTRONICS ENGINEERS,
\qquad NCORPORATED
Robert L. Eastman Advertising
NSTITUTE OF RADIO ENGINEERS, THE ... 205
Ray Schoonover Advertising
NTERELECTRONICS CORPORATION 190
Corbin Advertising Agency
INTERNATIONAL RECTIFIER CORPORATION 167

ITT COMPONENTS DIVISION.
168, 169
ITT Conti Advertising Agency, incorporated
Darwin H. Clark Company
JENNINGS RADIO MANUFACTURING
CORPORATION
JERROID Waldron Advertising Agenzy
RROLD ELECTRONICS CORPORATION.... 60
Lovenson Bureau of Advertising, Incorporated
ED ELECTRONICS CORPORATION........ 206
Delphi Advertising, Incorporated
OHNSON COMPANY, E, F................... 216
Firestone-Goodman Advertising Agency, inc
JONES DIVISION, H. B., CINCH MANU-
FACTURING CO. :................................. 13
Symonds, MacKenzie \& Company,
V-M MICROWAVE COMPANY.
J. D. Culea Advertising

KEUFFEL $\&$ ESSER COMPANY............... 2
O. S. Tyson and Company Incoroorated

Downing Industrial Advertising, Incorporated
KINTEL, A DIVISION OF COHU ELEC-
TRONICS, INC. 15
KLEIN \& SONS, MATHIAS 187
KLEINSCHMIDT DIV. OF SMITH-CORONA
MARCHANT, INC.
KULKA ELECTRIC CORPORATION........... . 222
Lesbarboura Advertising, Incorporated
LENZ ELECTRIC MANUFACTURING COM-
PANY ... 64
Merchandising Advertisers, Incorporated
LERCO ELECTRONICS, INCORPORATED... 215 Bill West Advertising
FSCHULTZ FAST. FREIGHT
Fredric R R Kleiman
TTELFUSE,
incorporated
184
Burton Browne Advertising
ELECTFON
LITON INDUSTRIES, INC., ELECTFON
TUBE DIV.
Fletcher Richards, Calkins \& Holden
Incorporated
LOCKHEED MISSILES AND SPACE
Hal Stebbins, Incorporated
MARCONI INSTRUMENTS \qquad
Williams Advertising Service Carporation
MELPAR, INCORPORATED 230
Larrabee Associates Advertising
MINNESOTA MINING \& MFG. CO.
Magnetic Products Div.
MacMan Products Div. 16
MOTOROLA, INCORPORATED
Incormorated Kolb \& Abraham, Incorporated
MOTOROLA, INC.: SEMICONDUCTOR
PRODUCTS DIVISION
MUELLER ENGINEERING COMPANY, INC
HEINZ .. 179
Mandabach and Simms, Incorporated
NARDA ULTRASONICS CORPORATION,
THE .. 121
John Mather Lupton Company, lucorporated
NEELY ENTERPRISES 145
The Ralph Yambert Organization
NEMS-CLARKE COMPANY 70 John E. Waterfield

OSTER MANUFACTURING COMPANY. Burton Browne Advertising

PACIFIC SEMICONDUCTORS, INCOR-
PORATED............... insert following page 32
PENNWOOD NUMECHRON COMPANY.... 212
Israel Steinberg
PERFECTION MICA COMPANY
Burton Browne Advertising
PHILCO CORPORATION, LANSDALE TUBE DIVISION
PIONEER CENTRALes, ivision
AVIATION CORP. 220
MacManus, John \& Adams, Incorporate
POLYTECHNIC RESEARCH \& DEVELOP-
MENT CO., INC............................
Smith, Winter Mabuchi, Incorporated
PYRAMID ELECTRIC COMPANY.... 124 Burton Browne Advertising

RADIO CORPORATION OF AMERICA
Al Paul Lefton Company 177, Back Cover
AI Paul Lefton Company
RADIO MATERIALS COMPANY Inside Front Cover Turner Advertising Agency
(Continued on Page 242)

Expanding the Frontiers of Space Technology in

RADAR and

DATA LINK

Lockheed's work in the fields of radar and data link is concerned with research, design and development of systems and equipnent for missile tracking, command guidance, detection and relay of information. Noise nodulation techniques are under study as part of statistical communication theory and implementation of automatic space communication systems. A series of digital. command-control data link systenis, utilizing solid state devices, have been developed, as have a number of radar beacon systems for missile tracking. Of significance, is the development of a radar firing error indicator that measures the intercept trajectory between target and attacking missile.

ENGINEERS AND SCIENTISTS

Lockheed Missiles and Space Division programs reach far into the future and deal with unknown and challenging environments. If you are experienced in work relating to the above areas, you are invited to share in the future of a company with an outstanding record of achievement that spans nearly half a century, and make an important individual contribution of your own to your nation's progress in the race for space. Write: Rescarch and Development Staff, Dept. H-1-48, 962 W. El Camino Real, Sunnyvale. California. U,S. citizenship required.

Lockheed

MISSILES AND SPACE DIVISION

Systems Manager for the Navy POLARIS FBM; DISCOVERER SATELLITE; Army KINGFISHER; Air Force Q-5 and X-7
sunnyvale, palo alto, van nurs, santa cruz, santa maria, california
cape canaveral, florioa alamogordo, new mexico - hawall

Advertiser's Index

(Continued from Page 241)
RAYTHEON COMPANY
Donahue \& Coe, Incorporated 43
RAYTHEON COMPANY
Fuller \& Smith \& Ross, Incorporated Fuller \& Smith \& ROS ,
Walter B. Snow \& Staff incorporated RED BANK DIVISION BENDIX AVIATION CORPORATION
MacManus, John \& Adams, Incorporated
REEVES SOUNDCRAFT CORPORATION REEVES SOUNDCRAFT CORPORATION The Wexton Company, Incorporated REPUBLIC AVIATION CORPORATION
Deutsch \& Shea
ROHN MANUFACTURING COMPANY Jackson, Haerr. Peterson \& Hall.
RUCKER COMPANY THE
The McCarty Company
SANBORN COMPANY
SANGAMO ELECTRIC COMPANY
Arthur R. Mogge, Incorporated
SARKES TARZIAN INCORPORATED Argyle Wampler Advertising
CHUYLER MANUFACTURING
CHUYLER MANUFACTURING
CORPORATION
203
SCIENTIFIC-ATLANTA INCORPORATED ... 217
McRae \& Bealer, ncorporated
CIENTIFIC ENGINEERING LABORATORIES 242 Technical Advertising Service
SCINTILLA DIVISION BENDIX
CINTILLA DIVISION, BENDIX AVIATION
CORPORATION
MacManus, John \& Adams Incorporated 119 SCOPES COMPANY INCORPORATED, THE 30 Willams Advertising Service Corporation
AL, EDWARD

Walter J. Zimmerman Associates
SENSITIVE RESEARCH INSTRUMENT
CORPORATION
183

53
SERVO CORPORATION OF AMERICA 138
Smith Winters Mabuchi Incorporated SHOE FORM COMPANY, INCORPORATED 200
Spitz Advertising Agency
SHURE BROTHERS, INCORPORATED 183
William Hart Adler, Incorporated
SPRAGUE ELECTRIC COMPANY
The Harry P. Bridge Company
STAINLESS, INCORPORATED
STANPAT COMPANY
RIchard \& Gunther' ncorporated
STATHAM INSTRUMENTS, INCORPORATED 218 Getz and Sandborg. Incorporated
SYLVANIA ELECTRIC PRODUCTS, INCOR-
PORATED …...Insert following page 138, 185 J. Walter Thompson Company
SYLVANIA ELECTRIC PRODUCTS,

SYVANIA ELECTRIC PRODUCTS,
INCORPORATED
NCORPORATED
239
Oeutsch \& Shea Incordorated
YNTR ONIC INSTRUMENTS, INCORPORATED

212
Burton Browne Advertisina
SYSTEM DEVELOPMENT CORPORATION Stromberger, LoVene, McKenzie

229

TAMAR ELECTRONICS, INCORPORATED ... I 37 The Art Studio
TECHNICAL APPLIANCE CORPORATION (TACO)
Lescarboura Advertising, Incorporated
ENSOLITE INSULATED WIRE COMPANY, INCORPORATED
TEXAS INSTRUMENTS, INCORPORATED. 44, 45 Don L. Baxter Incorporated
INNERMAN PRODUCTS INCORPORATED
INNERMAN PRODUCTS, INCORPORATED UUNG-SOL ELECTRIC INCORPORATED
E. M. Freystadt Associates, Incorporated

UNITED STATES GASKET COMPANY
Hutchins Advertising Company
UNITED TRANSFORMER CORPDRATION
NITED TRANSFORMER CORPORATION Shappe-Wilkes, Incorporated
UNITED VAN LINES, INCORPORATED Kelly, Zahrnd \& Kelly, Incarparafed
UNIVERSITY OF CALIFORNIA RADIATION LABORATORY
J. Walter Thompson Company

VARIAN ASSOCIATES
VECTOR ELECTRONIC COMPANY
157
VECTOR ELECTRONIC COMPAN
M. Dorsey and Associates
219

WALSCO ELECTRONICS MANUFACTURNG COMPANY

204 Paul Steffen
WESTINGHOUSE ELECTRIC CORPORATION 235 H. W. Buddemeier Company, Inc.

WHITE DENTAL MANUFACTURING
COMPANY, S. S
W. L. Towne Company, Inc.

X-ACTO, INCORPORATED
Bass and Cambany IncorDorated

Advanced High Vacuum Aids Important Programs

- Deposition Systems
- Altitude Systems
- Vacuum furnaces

And other applications requiring the ultimate in high vacuum apparatus

SEL 410
Vacuum Deposifion System

INSTALL MODERN DESIGN
by HUGHEY \& PHILLIPS, Inc.
your most dependable source of Obstruclion Lighting Equipment
the widest selection of Control and Alarm Apparatus in the Industry.

three sizes
.750, 1750, 3500 WATTS Essential wherever 60 cycle power must be transferred efficiently across two points with
very low capacitance or at very high voltages.

REQUEST DESCRIPTIVE BULLETIN HPS-152

HUGHEY \& PHILLIPS, INC.

MANUFACTURERS OF
300MM Beacons, Obstruction Lights, PhotoElectric Controls, Beacon Flashers, Special Junction Boxes, Microwave Tower Light Control and Alarm Systems, Tower Isolation Transformers, and Complete Kits for: Tower Lighting, Sleetmetter Power and Control.
3200 N. San Ferrando Blvd. Burbank, Calif.
Circle 165 on Inquiry Card

TR, ATR, PRE-TR TUBES
SHUTTERS
REFERENCE CAVITIES
SILIGON DIODES
MAGNETRONS
KLYSTRONS
DUPLEXERS
PRESSURIZING WINDOWS
SURGE PROTECTORS
SPARK GAP TUBES

THEMOST COMPLETE LIME OF MICROWAVE TUBESAND COMPONENTS

lomac olfers vou the widest choice of performance-proven microwave lubes and components from which to choose

And when it comes to adaprations, or totally new designs, there's no substitute for Bomac's 12 years' experience in thris specialized, complex, fast-changing tield.

Whatever your problem in microwave, check Pomac first.

LABORATORIES, INC. Salem Road, Beverly, Masscchusetts a subsidiary of VARIAN ASSDCIATES

LOW-COST $=\rightarrow A$

COMPUTER TRANSISTORS

Now in quantity production ... and available!

RCA-2N1300 and 2N1301 Germanium P-N-P Mesa Transistors offer these 10 major benefits to designers of switching circuits. And they're ready for you now!

- rugged Mesa structure-permits extremely small base width to insure top performance at high frequencies
- fast switching times with low values of base input current-made possible by high frequency response and low total stored charge
- high current gain-permits high fan-out ratios (number of paralleled similar circuits per driver-stage output)
- high breakdown voltage and punch-through voltage ratings-the result of the diffusion process
- high power dissipation -150 milliwatts at $25^{\circ} \mathrm{C}$-aids in the design of reliable circuits
- high current ratings-improve overall system speed
- rugged overall design-units have unusual capabilities to withstand severe drop tests and electrical overloads
- electrical uniformity-a result of the diffused-junction process used by RCA in the manufacture of Mesa Transistors
- especially well suited for use at pulse repetition rates up to 20 Mc
- exceptionally well suited to applications in saturation-type switching circuits.
Information on RCA-2N1300 and 2N1301 Low-Cost Mesa Transistors is available from your RCA Field Representative. For technical data, write RCA Commercial Engineering, Section H-50-NN, Somerville, N. J.

$\begin{aligned} & \text { RCA } \\ & \text { TYPE } \end{aligned}$	Maximum Ratings * Absolute-Maximum Values						Characteristics: Common-Emitler Circuit, Base Inpul Ambient Temperature of 25° [
	Collector to-Base Yolts	Emitter- to-Base Volts	Collecter Millsamperes	Iransistor Dissipation - mw			Minimum DC Current Gain		bain Bandwidth Product* Mc
				at $25^{\circ} \mathrm{C}$	at $55^{\circ} \mathrm{C}$	at 710 c	al collector $\mathrm{ma}=-10$	at colliector $\mathrm{ma}=-40$	
2N1300	-13	-1	-100	150	75	35	30	-	40
2N1301	-13	-4	-100	150	75	35	30	40	60

- Maximum collector-to-emitter voltage rating $=-12$ volts

Oscilloscope wave farm showstypicaldelay, rise. storage, and fall times acheved with 10-ma inverter circuit utidizing the RCA-2Ni301 MESA TRANSISTOR.

[^0]: G. C. BUZBY, President

 Vice Presidents: P. M. Fahrendorf Leonard V. Rowlands, George T. Hook, Robert E. McKenna; Treasurer William H. Vallar; Directors: Maurice E. Cox, Frank P. Tighe, Everit B. Ter hune, Jr. Russell W. Case, Jr. John C. Hildreth, Jr., Charles A. S Heinle, John H. Kofron. Washington Member of the Editorial Board, Pau Wooton.
 Comptroller, Stanley Appleby.

[^1]: Fine Silver Bulletin A-1
 Silver-Copper Alloys \qquad Bulletin A-2
 Silver-Magnesium-NickellBulletin A-3
 Silver Conductive Coatings Bulletim A-4
 Silver Powder and Flake Bulletin A-5

 Your No. 1 Source of Supply and Authority on Precious Metal Alloys

 General Offices: 82 Fulton St., New York 38, N. Y.

[^2]: IMPROVED MECHANICAL STABILITY
 15G sweep frequency vibration test to 2000 c.p.s. 10 G sweep frequency fatigue test to 2000 c.p.s. $75 \mathrm{G}, 10$ millisecond shock test - in addition to usual 1 millisecond test.

 IMPROVED PULSE OPERATION Triode-connected pulse life test (CK6021WA, CK6111WA)
 IMPROVED ELECTRICAL STABILITY
 2 hour and 20 hour life tests to guarantee stability of characteristics.

 ## IMPROVED HIGH TEMPERATURE

 LIFELife-test end points now 1000 hours instead of 500 hours.

[^3]: Offices:

[^4]: Dept. TED 45, The Jerrold Building, Philadelphia 32, Pa.
 Jerrold Electronics (Canada) Limited - Export Representative: Rocke International, New York 16, N.Y.
 Visit Jerrold Booths \# 3831-3833

[^5]: EASTEBN 310 Northern Blvd. - Great Neck, Long Island, New York Wastarn 5333 South Sepulveda Blvd. Culver City, Calliorala OFFICE. Phone: HUnter $7-9030$ - TWX Great Neck N. Y. 2980 OFFICE Phone: EXmont 1-5742 - TExas 0-1194 - TWX S. Mon. 7ant

[^6]: Because of space limitations, detailed analyses and calculations have been placed in an Appendix. A copy of this appendix may be obtained by writing on company letterhead to

 ## The Editor

 Electronic Industries
 Chestnut \& 56th Sts., Phila. 39, Pa.

[^7]: 1. F' E. Terman, "Radio Engineering," McGraw-Hill Book Company, New York, New York, pp, 394-397, 1947.
 2. International Telephone and Telegraph Corporation, "Reference Data for Radio Engineers," Stafford Press, Inc., New York, New York, pp. 1002-1024, 1956.
 3. J. Millman and H. Taul, "Pulse and Digital Circuits," McGraw-Hill Book Company, New York, New York, p. 164, MeGr
 4.
 5. Jbid, p. 187.
[^8]: to measure velocity
 LVsyn - strokes to $9^{\prime \prime}$; output sensitivities from 35 to $650 \mathrm{mv} /$ inch $/ \mathrm{sec}$. Twelve standard Models, with regular or unbreakable cores.

[^9]: ＊ITT Components Div．information was received ofter press time．It appears on page 170.

[^10]: IN830 (D 4050) -UHF Detector ${ }^{\text {IN }}$ IN32 (D 4065) -X Band Mixer
 IN831 (D 4064) -S Band Mixer
 IN833 (D 4063) - X Band Video Detector

[^11]: 2432 GR. CONCOURSE, N. Y. 58, N. Y. Circle 115 on Inquiry Card

[^12]: 1726 Weirneid Street, Brookiyn (Ridgewood) 27 N. Y

