Rods Manufacturers Service

夏

PHILCO
Essential Service Data on All Models

\ddagger ing Voltage 120. Readings made direct fromitube sockets on underside of chassis, using test prods, and high resistance D. C. voltmeter for D. C. voltages; A. C. voltmeter for A. C. voltages. Volume control of set at maximum. "4 Volts with Volume Control "eff".

Line Voltage 120. Readings made direct from tube sockets on underside of chassis, using test prods, and high resjstance D. C. voltmeter for D. C. voitages; A. C. voltmeter for A. C. voltages. volume control of set at maximum

$\ddagger+$ Line Voltage 120. Readings made direct from tube sockets on underside of chassis, using test prods, and high resistance D. C. voltmeter for D. C. voltages; A. C. voltmeter for A. C. voltages. Volume contril of set at maximum.

[^0]
Transitone (Auto-Radio) Sets; Short Wave Converter

Model	$\left.\right\|_{\text {Power Input }} ^{\text {(Wats) }}$		Tubes Used	\ddagger Tube Socket Voltagos					
$\begin{gathered} 3 \\ \text { (Trans.) } \end{gathered}$		$\begin{gathered} \text { Tuned } \\ \text { R.F. } \\ 1000-1200 \\ \text { (Adj. } \\ \text { Freq.) } \end{gathered}$	$3-24,2-01 \mathrm{~A}, 2-71 \mathrm{~A}$	*					
4	30	3600	1-27, 1-24, 1-80				Plate		${ }_{\text {cothode }}^{\text {Colts }}$
				Type	Ciruuit				
(Short-wave Converter)				$\begin{aligned} & 27 \\ & \hline 24 \\ & 80 \\ & \hline 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Resp } \\ & \text { Rete } \\ & \text { Rect } \end{aligned}$	$\begin{aligned} & 24 \\ & 54 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 110 \\ & 125 \\ & \hline 170 \end{aligned}$	${ }^{25}$	0
$\begin{gathered} 5 \\ \text { (Trans.) } \end{gathered}$		460	$\begin{gathered} 1-6 \mathrm{~A} 7,1-78,1-75, \\ 1-41,1-84 \end{gathered}$			*			
$\underset{\substack{\text { (Trans.) } \\ 6 \mathrm{~F}}}{\mathbf{6}}$		260	$\begin{aligned} & 3-36,1-85,1-41 \\ & 3-36,1-85,1-41 \\ & 1-84 \end{aligned}$			*			
$\begin{aligned} & 7 \\ & \text { (Trans.) } \\ & \text { 1st type } \\ & \text { 2d type } \end{aligned}$		175	$\begin{aligned} & \begin{array}{l} 3-36,2-38 \\ 3-36,1-38,1-41 \end{array} \end{aligned}$				*		
$\begin{gathered} 8 \\ \text { (Trans.) } \end{gathered}$		175	$3-36,1-38,2-41$			*			
$\underset{\substack{\text { (Trans.) } \\ 9 \mathrm{~F}}}{9}$		260	$\begin{aligned} & 3-36,1-85,1-37, \\ & 1-79 \\ & 3-36,1-85,1-37, \\ & 1-79,1-84 \end{aligned}$			*			
$\underset{\text { (Trans.) }}{10}$		260	$\begin{aligned} & 2-39 / 44,1-6 A 7, \\ & 1-75,1-42,1-84 \end{aligned}$			*			
(Trans.) 1st type 2d type		260	$\begin{gathered} 2-44,1-77,1-75, \\ 1-42,1-84 \end{gathered}$			*			
12 (Trans.) Code 122		175	3-36, 1-38, 1-41			*			
700 (Trans.)		260	$\begin{aligned} & 2-44,1-77,1-75, \\ & 1-42,1-84 \end{aligned}$			*			
800 (Trans.)		260	$\begin{gathered} 2-39 / 44,1-6 \mathrm{~A} 7, \\ 1-75,1-37,1-79, \\ 1-84 \end{gathered}$			*			
802		260	$\begin{aligned} & 2-39 / 44,1-6 \mathrm{~A} 7, \\ & 1-75,1-37,1-79 \\ & 1-84 \end{aligned}$			*			

*Voltages not given for auto radio models due to voltage variations.
\ddagger Line Voltage 120 . Readings made direct from tube sockets on underside of chassis, using test prods, and high resistance D. C. voltmeter for D. C. voltages; A. C. voltmeter for A. C. voltages. Volume control of set at maximum.

WIRING DIAGRAMS
 AND
 PARTS LISTS
 PHILCO
 BALANCED UNIT RADIO RECEIVERS

Models are arranged numerically. The first is Model 3; the last is Model 5II. Models that have similar chasses, as Models 89 and 19, are placed under a single number insofar as sequence is concerned.
Thus arranged are:
 " 23, " " 14 " 91, " " 14 25, " " 43
Model 3

REPLACEMENT PARTS-MODEL 3 TRANSITONE RECEIVERS

	nd 2 Deacription	Part No.
(1)	Resistor. (10,000 ohms-1/2 watt)	4412
(2)	First R. F. Transformer	4401-A
(3)	Tuning Condenser	4372-A
(1)	Resistor (100,000 ohms- 1 watt)	3767
(6)	Condenser (05 mfd)	$3615-\mathrm{N}$
(0)	Condenser (1.0 mfd)	4418
(7)	Condenser (25 mfd)	4487
(8)	Second R. F. Transformer	4401-B
(®)	Condenser (.05 mfd)	3615-N
(10)	Condenser and Resistor (. 05 mid with 250 ohms)	3615-P
(11)	Third R. F. Transformer	4401-B
(12)	Condenser (.05 mfd)	$3615-\mathrm{N}$
(1)	Condenser and Resistor (.05 mfd with 250 ohms)	3615-C
(1)	Resistor (50,000 ohms-1 watt)	4237
(1)	Resistor (25,000 ohms-1 watt)	3656
(1i)	Resistor (4-section)	4407
(13)	Condenser (. 00025 mfd)	3082
(iv)	Fourth R. F. Transformer	3775-B
(19)	Condenser (. 00005 mfd)	3774
(2)	R. F. Choke . .	3256-A
(2)	$\begin{aligned} & \text { Resistor }(1,000,000 \text { ohms- } 1 / 2 \\ & \text { watt) } \end{aligned}$	4409
(2)	Resistor watt) $(250,000$ ohms - $1 / 2$	4410
(3)	$\begin{aligned} & \text { Resistor }(100,000 \text { ohms - } 1 / 2 \\ & \text { watt) } \end{aligned}$	4411
(2)	$\begin{aligned} & \text { Registor } \begin{array}{l} (100,000 \text { ohms }-1 / 2 \\ \text { watt) } \end{array} \end{aligned}$	4411
(3)	Condenser (.00025 mfd) .	3082
(x)	$\begin{aligned} & \text { Resistor }(1,000,000 \text { ohms - } 1 \\ & \text { watt) } \end{aligned}$	4414
(3)	Condenser (000025 mfd)	3082
(2)	$\begin{aligned} & \text { Resistor }(100,000 \text { ohms - } 1 / 2 \\ & \text { watt) } \end{aligned}$	4411
(3)	Condenser (.015 mfd)	3793-D
(3)	Volume Control	4463
(a)	$\begin{aligned} & \text { Resistor }(250,000 \text { ohms - } 1 / 2 \\ & \text { watt) } \end{aligned}$	4410
(6)	Condenser (25 mfd)	4487
(a)	Resistor (2-section)	4408
(a)	Audio Transformer	3241
(3)	Condenser (2.0 mfd)	4418
(*)	Audio Choke.	4485
(3)	Output Condenser (1.0 mfd)	4420
(8)	Output Transformer	2706
(2)	Voice Coil and Cone	$2769-\mathrm{B}$
(1)	Field Coil	2707
(1)	Fuse	4540
(1)	Lock Switch (With Keys)	4462
(a)	Pilot Lamp	4567

Deacription Speaker Plug and Cable	$\text { L-1 } 163-\mathrm{Art} \text { No. }$
Battery Connector Plug	2802
Battery Plug Receptacle	4406
224 Socket .	4416
171-A Socket	4415
201-A Socket	4415
"B" Battery Compartment	4465
Battery Box Lid	4467
Screws (Housing)	W-274-A
Lock Washers	W-291
Knobs	4523
Flexible Condenser Drive Shaft	4505
Dial Insulator for Volume Control	4461
Distributor Resistor	45.46
Spark Plug Resistor	4531
Volume Control Housing	4541
Bezel Plate	4443
Dial	4461
Fuse Holder	4593
Gear Wheel	4385
Set Screws	W-520
Drive Shaft Coupling	4434
Cover Plate (Comp. Cond.)	4427
Cover Plate (Front)	4374
Dial Pinion Shaft	4387
Dial Drive Pinion	4386
Worm	4370
Worm Shaft	4383
Ball (Worm Adj.)	4475
Side Gasket	4472
Bottom Gasket	4473
Side Gasket	4477
Condenser Shaft Gasket	4478
Sub-Base Gasket	4479
Top Gasket	4480
Parting Gasket	4481
Shield Gasket	4483
Cover Gasket	4484
Tube-Side Gasket	4488
Interference Condenser	4522
Nuta (Control Panel)	W-434
Front Cover . .	4470
B Cable	L-1160-A
A Cable	L-1169-A
Battery Box Coupling	4524
Battery Cable and Plug	L-1164-A
Volume Control Cable Housing	g 4541
Rubber Sleeving	4537
Pilot Lamp Assembly	4391 -A
Fibre Wrench	3164

MODEL 4 AND 4 C

REPLACEMENT PARTS

Part No.

MODELS 4 AND 4C
-Includea matched oecillator coil and detector tranaformer.

MODEL 5

MODEL 5 PARTS LIST

No. on Fig. 1 and 2 \quad Description	Part No.
(1)-Antenna Transformer	32-1084
(2)-Tuning Condenser	31-1019
(3)-Condenser (05 mid .)	30-4020
(4)-Filter Condenser ($25 ; .25 ; .5 ; 20 \mathrm{mfd}$.)	30-4017
(3)-Resistor (200 ohms).	7217
(6)-Resistor (1300 ohms)	8267
(7)-Oscillator Coil ...	32-1085
(8)-Condenser (.00025 mfd.)	3082
(9)-Resistor (15,000 ohms).	6208
(10)-Padder	04000-S
(11)-Padder	04000-J
(12)-First I. F. Transformer	32-1086
(11)-Padder	04000-Y
(14)-Condenser (5 mfd .)	30-4018
(16)-Resistor (1,000 ohms)	33-3017
(10)-Resistor (10,000 ohms)	4412
(17)--Padder.	04000-D
(18)-Second I. F. Transformer	32-1087
(19)-Resistor ($1,000,000 \mathrm{ohms}$)	4409
(20)-Padder.	04000-M
(21) - Condenser (.05 mfd)	30-4020
(22)-Condenser (. 00025 mfd .)	3082
(22)-Condenser (.0005 mid.).	3910
(24)-Resistor (100,000 ohms)	6099
(3)-Volume Control and Switch	33-5009
(2)-Resistor (32,000 ohms).	3525
(27)-Resistor (250,000 ohms)	3768
(28)-Resistor (500,000 ohms)	6097
(29)-Resistor (700 ohms).	6443
(30)-Resistor (409 ohms)	33-3016
(31)-Condenser (.006 mfd.)	30-1002
(32)- Output Transformer.	32-7005
(33)-Cone.	36-3027
(34)-Field Coil	9013
(3)-Pilot Lamp.	6608
(3)-Resistor (7 ohms)	7155
(5) -Fuse, 15 A.	7227

MODEL 6

MODEL 6

PARTS LIST

Model 7

Models 8 and 12

Replacement Parts Models 7, 8 and 12

MODEL 9

MODEL 9

PARTS LIST

No. in
No. In
Figs. 2 and 2 Deseription Part Ne.
(4) Speaker Coil and Cone 02823 (4) Speaker Field Pot...... 02795 (46) Tone Control 05366 (9) Resistor (25,000 ohm) . . 4516 CompletespeakerAssembly (Model 6)A-4
 Complete SpeakerAssembly CompleteSpeakerAssembiy Complete SpeakerAssembly (Model 12) $\ldots \ldots \ldots \ldots$ A- 6 Complete SpeakerAssembly (Model B-6)
nterstage Shield 05910 Dynamotor ED 0608 Dynamotor EA (for battery replacements) ... 05388 Receiver Studs 612 Shielded Loom (18"high tension shield)
Shielded Loom (30" high
tension shield) $. L-1386$
Spark Plug Resistor 4531
Distributor Resistor 4546
Screw Type Resistor 4851
Interference Condensers. 4522 Knobs
Speaker Extension
Cables 02984
Dynamotor Fiiter Choke. 6658 Dynamotor Filter Condenser (large unit) ... 05386 Dynamotor Filter Condenser (small unit)... 05724 Dynamotor RF Choke...05723 Battery Cable …....05419-D $18^{\prime \prime}$ Volume Controi Shaft 6351 $18^{\prime \prime}$ Tuning Control Shaft 6352 $32^{\prime \prime}$ Volume Control Shaft 6128 $32^{\prime \prime}$ Tuning Control Shaft 6129 $48^{\prime \prime}$ Volume Control Shaft 6298 $48^{\prime \prime}$ Tuning Control Shaft 6299 $120^{\prime \prime}$ Volume Control Shaft 6355 $120^{\prime \prime}$ Tuning Control Shaft 6356 Philco Oscillator (for adjusting Models $3,6,7,8,9) 095$ Fibre Wrench3164

MODEL 10

MODEL 10 PARTS LIST

	Tuning Cond	
	Ist Padder (in tuning ennd.)	
4	R	1.. $t_{0} \times 6$
(5)	Condenser (.05 muld	30- +1020
	anslorme	
7	Condenser (.05 mid.)	
(8)	2nd Padrer (in tuning comet)	
	3rd Padder (in tubing cond.)	
(10)	Rasistar (50,000 ohm	
11	()scillator Transiorme	32-1222
(12)	Cundenser (00025	[3) $\times 2$
(13)	Padd	040005
(14)	sior (15,000 ohms)	
(15)	Padder (prim. 1 st I F.)	1 +607
16	I. F Transiornur (1:4)	8-5274
17	Resistor (500,000 ohms)	6097
$18)$	Pidutar (secundary 1st I. F.).31-6007	
$18)$	Ciondroner (05 mid)	104020
20)	C'ondenser $(.5$ נ	8
21	Resistor (5)0 olims)	97
22)	0.000 ohi	0097
23	Condenser (.00011 mfd.)	4519
2	Padder (prim. 2nd I. F.)	31-6008
	1. F. Transtormer (2nd)	3x-5275
3	Padder (secondary 2nd I. F.j.3]-6008	
27	Resistor (100.000 ohm	9
(28)	($\mathrm{Comdenser}(.00025 \mathrm{mfl}$)	2
(29)	Condensel (01 mifd)	1
(30)	Vul. Control Assembly	80
(31)	Resistor ($2,000,000$ nhmes)	3:3-1025
(32)	Condenser (.0002\% mid.)	- $2 \times$
3.	Resistor (250.000 ohnis)	:3768
34)	Condenser (006 mfd)	-30-1024
$35)$	Resistar (500.000 ohms)	+10
(36)	Condenser (20 mfd ; 25 mfd)) $30-2127$
(3)	Rusistor (550 uhins)	6977
)	Condenser (.006 mfd.)	(3) 4124
	Out.pul 'Transfurmer	327116
40)	Come and Coil	$36-3020$

(4)	Field Coil Assembly	.36-3124)
(42)	Tone Comirol	. $30-40$ \%
(48)	Pilot Lamp	$660 \times$
(4)	Condenser (.25 mfd)	04360
(45)	Resistor (20,000 ahms)	60.40
(4)	Condenser (.05 mid.)	. 3104030
(4)	Resistor (32,000 ohms)	358
(48)	Condenser (5 mid.)	31)-414x
(49)	IResistor (200 ohnos)	7217
(50)	Rrsistor (100 ohms)	78.3x
(31)	A Choke	.32-7109
(52)	15. Amp. Finse	7227
(53)	Condrnser ($\mathrm{S}_{\text {r mid. }}$)	30-4061
(5)	Vibrator Choke	32-12:35
(56)	Condenser (5.5 mfd)	30-4061
(50)	Vibrator	38-50:36
(57)	Condenser (05 mfd)	$30-4039$
(58)	Remintor (200 ohmas)	7217
(59)	Rewistor (200 ohnus)	7217
(60)	Condenser (.00125 mid.)	3886
(61)	Power Transformer	32-7098
(62)	Condenser (01 mfd)	30-40.51
(63)	Filter Condenser	$30-2015$
(64)	13 Chokes	32-7038
(65)	R. F. Chokes	32-1078
(68)	Resistor (\%x), (K0) ohms)	4237
(67)	Resinter (7 olma)	5110
	Spark Plug Resistors	4.31
	Distributor Resistor	4.546
	Sicew Type Resistur	4801
	Interferuner Combenser	30-4007
	Dial	27-ix)22
	Studs	28-601:36
	Nuts (molinting)	WS5
	Knobs	03.334
	Battery Cable	$3 \times-52 \times 6$
	Antemia Iend	35-5161
	Contral Unit Assumbly	4--60\%
	Acurn Nut	W821
	Key	Crath

MODEL 14

I. F. 175 K . C.
NOTE: Resistance of U-3 speaker field is 1140 ohms

Replacement Parts for Model 14

NOTE 1: In code 122 starting with ran 1 vo., condensers 55 and 57 are replaced by one condenser, part No. $30-2045$, capacity 8 Mfd . and 10 Mfd .
NOTE 2: Starting with run No. 2, condenser 39032 (.01 Mfd.) is superseded by No. 4989AJ (. 09 Mfd.). NOTE 3: Starting with run No. 2, resistor No. 4411 (.1 Meg.) is superseded by part 4517 (.5 Meg.).

$\begin{aligned} & \text { No. } \\ & \text { Fig: } \end{aligned}$	on. Description	Part No.
(1)	Resistor (Brown-Black-Orange)	4412
(2)	R.F. Transformer	32-1069
(3)	Resistor (Red-Black-Green)	5872
(4)	Tuning Condenser Assembly	04790
(5)	Compensating Cond. (R.F.) Part of (4)	
(6)	Condenser	3615-AM
(7)	"On-Off" and Frequency Switch	42-1002
(8)	Condenser (and Resistor)	6287-C
(1)	Pilot Lamp (Philco Scale)	6608
(12)	Detector Transformer	32-1070
(13)	Condenser	3615-AJ
(14)	Resistor (Brown-Black-Red)	5837
(15)	Compensating Cond. (Detector) Part of	
(18)	Tuning Meter	6497
(17)	Pilot Lamp (Tuning Meter)	6608
(18)	Compensating Cond. (1st I.F. Primary)	04000-M
(19)	Oscillator Coil	05985
(20)	Condenser (White and Yellow)	4520
(2)	Resistor (Brown-Black-Orange)	4412
(22)	Comp. Cond. (High Freq.) Part of (4)	
(23)	Compensating Condenser (Low Freq.)	04000-B
(24)	Resistor (Red-Black-Red)	6984
(23)	First I.F. Transformer	04319
(26)	Resistor (Red-Black-Green)	5872
(27)	Condenser	3903-AE
(28)	Comp. Cond. (1st I.F. Secondary)	04030-M
(2)	Filter Condenser Bank	04830
(30)	Comp. Cond. (2d I.F. Primary)	04000-M
(3)	Second I.F. Transformer	04320
(32)	Resistor (White-White-Orange)	4411
(33)	Volume Control.	8054
(3)	Comp. Cond. (2nd I.F. Secondary)	04000-M
(35)	Condenser (Blue and Golden Yellow)	4519
(36)	Condenser (Blue and Golden Yellow)	4519
(3)	Condenser.	3903-P
(38)	Resistor (Brown-Black-Green)	4409
(39)	Resistor (Yellow-White-Yellow)	4517
(10)	Resistor (Red-Green-Orange)	4516
(a)	Resistor (Red-Green-Orange)	4516
(12)	Condenser	3903-P

No. on Figs.	on. Description	Part No.
(4)	Resistor (Brown-Black-Green)	4409
(4)	Tone Control.	06698
(4)	Push-Pull Input Transforme	6064
(6)	B.C. Resistor (Wire Wound)	6702
(16)	B.C. Resist. (Wire Wound) Twin Speaker	6808
(17)	Condenser	7625-
(47)	Resistor (Red-Green-Orange)	4516
(4)	Push-Pull Output Trans. (Sing. Speaker)	2585
	Push-Pull Output Trans. (Twin Speaker)	2565
(4)	Voice Coil and Cone Assembly (K-6 and $\mathrm{K}-12)$	02823
(9) \mathbf{a}	Voice Coil and Cone Assembly (H-7) Twin Speaker Model	02807
(30)	Speaker Field Assembled with Pot (K-6 and K-12)	02803
(50)	Speaker Field Assembled with Pot (H-7) Twin Speaker Model	02803
(5)	Resistor (White-White-Orange)	4411
(51)	Resistor (White-White-Orange)	4411
(3)	Condenser Bank. . . .	06713
(3)	Condenser (Double)	379
(3)	Power Trans. (50-60 cycles) Sing. Spe	6554
	Power Trans. (25-40 cycles) Sing. Speak	6555
	Power Trans. ($50-60$ cycles) Twin Speak'r	6804
	Power Trans. (25-40 cycles) Twin Speak	6805
(55)	Electrolytic Cond. (6 MFD) Sing. Sp'ker	4916
	Electrolytic Cond. (8 MFD) Twin Sp'ker	7464
(56)	Condenser	4989-T
(57)	Electrolytic Cond. (6 MFD) Sing. Sp'ker	4916
	Electrolytic Cond. (8 MFD) Twin Sp ker	7464
(58)	Filter Choke.	4819
	Tube Shields	8005
	Knob (Large)	03063
	Knob (Medium)	03064
	Knob (Small)	03437
	Four Prong Socket	5026
	Five Prong Socket	4956
	Six Prong Socket.	6417
	Dial, Complete	04832
	Bezel	6418

REPLACEMENT PARTS MDDEL 15

Model 16

REPLACEMENT PARTS FOR MODEL 16

MODEL 17

REPLACEMENT PARTS FOR MODEL 17

MODEL 18

 Condenser in Tone Control circuit has but one section (in • later production), -the .05 mfd . on point two. Point one goes directly to (32). NOTE: Values of primary and secondary of (46) Output Transtormer, and value of
primary is 350 ohms; of the secondary, .09 ohm, D. C. resistance of (47) is 1.11 ohm

REPLACEMENT PARTS FOR MODEL 18

No. Fig.	011 Description	Part No.
(1)	Resistor (10,000)	
	(Brown-Black-	
	Orange)	4412
(2)	Wave Band Switch	42-1046
(3)	Antenna Transformer	32-1255
(4)	Resistor (70,000) (Violet-BlackOrange)	5385
(5)	Tuning Condenser Assembly	31-1110
(b)	$\begin{gathered} \text { Condenser (Double) } \\ (.05-.05) \ldots . . \end{gathered}$	$3615-\mathbf{A M}$
(7	Resistor (Flexible Wire-Wound) (200) (Red-Black-Brown)	
(8)	Compensating Condenser (Ant.; H. F.; Part of (B)	
(2)	Condenser (.18)	4989-AC
(10)	Detector Transforme:	32-1256
	Compensating Condenser (Det.; Part of (5)).	
(12)	Condenser (.05)	$3615-\mathrm{A} A$
(13)	Resistor (2.0 meg.) (Red-Black-Green)	5872
(14)	Resistor (50,000) (Green-BrownOrange)	4518
(15)	Compensating Condenser (Osc.; H. F.; Part of (5))	
(18)	Oscillator Transformer	$32-1257$
(17)	Condenser (.002\%)	7006
(18)	Compensating Condenser (Osc.; L. F.)	04000-R
(19)	Condenser (.00011).	4519
(20)	Condenser (Double) (.5-.15)	$6287-M$
(21)	Resistor (20,000)	
	(Red-Black-Orange)	6650
(22)	Resistor (20,000)	
	(Red-Black-Orange)	6650

No. Fig	on Doscription	Part No.
(40)	Filter Condenser (Electrolytic) ($A=$ 1.0 mfd ; $B=1.0$ mid.; $C=2.0 \mathrm{mfd}$.	$30-2029$
(4)	Resistor (50,000) (Green-Brown- Orange).	
(42)	Condenser (.006)	30-4024
(13)	Input Transformer.	32-7114
(44)	```Resistor (10,000) (Brown-Black- Orange).```	3524
(45)	Condenser (.01)	3903-P
(46)	Output Transformer	32-7078
(17)	Voice Coil and Cone Assembly	02625
(48)	Speaker Field Coil and Pot Assembly (H-13)	$36-3104$
(49)	Resistor (Wire- Wound) $(6,500)$	$33-3033$
(50)	Voltage Divider Resistor (Wire-Wound)	$33-3034$
(51)	Filter Choke	32-7115
(52)	Condenser (.25)	6287-N
(5)	Condenser (Electrolytic) (8.0)	6706
(5)	Condenser (Electrolytic) (8.0).	$30-2025$
(55)	Condenser (Electrolytic) (10.0).	$30-2003$
(56)	Power Transformer $(50-60 \sim)$	$32-7111$
(57)	$\begin{gathered} \text { Condenser (Double) } \\ (.015-.015) \ldots . . \end{gathered}$	3793-R
(58)	Tone Control	30-4073
(59)	Condensers (Internal to (58))	
(60)	Condenser (External to (58)	3615-G
(61)	Resistor (32,000) (Orange-Red Orange).	33-1026

No. on

Model 18 - Code 121 onily
Speaker (K-17) Output transformer. . . 32-7078 Speaker (K-17) Foice Coil and Cone Assembly.
$36-3020$
Speaker (K-17)
Speaker Field and
Pot Assembly 36-3104
Speaker Socket Hole
Cover 7084
Speaker Cable. L-1632

NOTE: The following parts are different in Model 18 , Code 123
53 Electrolytic condenser becomes 30-2045.
54 Electrolytic condenser becomes 30-2014.
5 Tuning condenser assembly becomes 31-1117.

REPLACEMENT PARTS FOR MODEL 19-128

No. on Figs 2 and 3 Deecription	Part No.
(1) Resistor ($10,000 \mathrm{ohms}$)	33-1000
(2) Antenna transformer	32-1062
(3) Combined on-off and wave band switch	42-1017
(4) Tuning condenser assembly	31-1103
(5) Compensating condenser (ant.)	Part of (1)
(C) Condenser (11 mfd .)	30-4122
(7) Resistor (wire wound 300 ohms flex.).	33-3010
(8) Detector transformer	32-1063
(9) Compensating condenser (Det.)	Part of (4)
(10) Resistor ($15,000 \mathrm{ohms}$)	6208
(11) Condenser (700 mmf .)	5863
(12) Oscillator transformer	06620
(13) Compensating condenser (lst IF pri.)	04000M
(14) Compensating condenser (osc. LF)	04000S
(16) Compensating condenser (osc. HF).	Part of (4)
(18) lst IF transformer	32-1315
(17) Compensating condenser (1st IF sec.)	04000M
(18) Condenser (. 1 mfd .)	4989AK
(19) Resistor (2.0 meg)	5872
(20) Compensating condenser (2d IF pri.).	04000A
(21) 2d IF transformer	06622
(22) Condenser (110 mmf .)	30-1006
(23) Resistor ($50,000 \mathrm{ohms}$)	4518
(24) Condenser (110 mmf .)	30-1006
(25) Condenser (250 mmi .)	5858
(26) Condenser (. 05 mfd .)	30-4123
(27) Resistor (70,000 ohms)	5385
(28) Resistor ($70,000 \mathrm{ohms}$).	5385
(20) Condenser (elec.-2.0, 8.0, 10.0 mfd .)	30-2062X
(30) Resistor (. 25 meg.)	4410
(3) Condenser (.006-. 015 mfd .)	7625D
(33) Output transformer (H-16)	32-7178
(3) Speaker voice coil and cone (H-16).	02025

Models 19 and 89

Bottom Vlew of Chassis, Showing Parts

Replacement Parts for Models 19 and 89

Part No.		
Resistor (10,000 Ohms) Brown-Black-		
	Orange	4412
(3)	Antenna Transformer	06619
(3)	Tuning Condenser Assembly .	06577
(1)	Compensating Condenser-(R.F. Part of Tuning Condenser Assembly)	
(B)	Condenser and Resistor-(.09. Mfd. and 200 Ω)	4989-W
(6)	Interstage Transformer	06662
(7)	Filter Cond. Bank (. $09-.09-.05-.05-.25$)	06624
(8)	Condenser (Double-. 09 and . 0007 Mfd .)	8174-B
(0)	Compensating Condenser-(R.F. Part of Tuning Condenser Assembly)	
(10)	Resistor (15,000 Ohms) Brown-GreenOrange	6208
(11)	Pilot Lamp	6608
(12)	Dial Scale	7882
(13)	Pilot Lamp-(Shadow Tuning)	6608
(14)	Oscillator Transformer .	06620
(16)	Compensating Condenser - (1st I.F. Primary)	04000-M
(16)	Compensating Condenser -- (Low Frequency	041000-S
(17)	Compensating Condenser-(R.F. Part of Tuning Condenser Assembly)	
(18)	First I.F. Transformer	06621
(19)	Compensating Condenser (lst I.F. Secondary)	04000-M
(20)	Resistor (5,000 Ohms) Green-Black-	3526
(21)	Resistor ($2,000,000$ Ohms) Red-BlackGreen	5872
(22)	Compensating Cond. (2nd I.F. Primary)	04000-A
(3)	Second I.F. Transformer	06822
(24)	Resistor (51,000 Ohms) Green-BrownOrange	6098
(3)	Volume Control and A.C. Switch	8003
(2)	Condenser (Double-.000118.00011 Mfd.)	8035-C
(71)	Condenser (.01 Mfd.)	3903-AB
(28)	Resistor (70,000 Ohms) Violet-BlackOrange	5385

(29)	Resistor (70,000 Ohms) Violet-BlackOrange	5385
(30)	Condenser (.01 Mfd.)	3903-T
(31)	Resistor ($490,000 \mathrm{Ohms}$) Yellow-White -Yellow	4517
(32)	Bezel	8055
(33)	Tone Control	06764
(34)	Output Transformer	2580
(3)	Voice Coil and Cone Assembly	02823
(36)	Speaker Field and Bucking Coil Assembled with Pot (K-7)	02761
(3)	Switch(A.C.)Part of Vol.Control Assembly	
(38)	Power Transformer (50-60 Cycles, 115 Volts)	8046
	Power Transformer (25-40 Cycles-115 Volts)	8047
	Power Transformer (50-60 Cycles-230 Volts)	8048
(8)	Condenser (Double-. 015 and 015 Mfd .).	3793-E
(10)	Shadow Tuning	6497-G
(4)	Resistor (99,000 Ohms) White-WhiteOrange	4411
(12)	Resistor ($1,000,000$ Ohms) Brown-Black Green	4409
(1)	B.C. Resistor (235 Ohms and 32 OhmsWire Wound)	7998
(4)	Electrolytic Condenser-6 Mfd.	8165
(45)	Condenser (. 05 Mfd .)	3615-E
(4)	Electrolytic Condenser-6 Mfd.	8166
(17)	Resistor (51,000 Ohms) Green-BrownOrange	4518
(18)	Resistor (32,000 Ohms) Orange-Red-	
	Orange	3525
	Tube Shield	8005
	Knob (Large)	03063
	Knob (Small)	03064
	Knob Spring	5262
	Grid Clip	4897
	Four Prong Socket	7544
	Five Prong Socket	7546
	Six Prong Socket	7547
	Pilot Lamp Shield	5760

Models 20, 20-A and 21

REPLACEMENT PARTS-MODELS 20,20A and 21

Note:-R. F. Transformers (3), (7) and (10) should not be confused with R. F. Transformers (3), (1), (0) and (13) on Bulletin 28. They are not interchangeable
Model 22L
Radio-Phonograph

(60) Electric pickup
Needie screw..................
Tone Arm complet with pickup
(61) Condenser (. 015 Mfd .)
(61) Condenser (.015 Mfd .)
(62) Resistor (10,000 ohms)
(63) Radio-phono Switch
(64) Motor (115 volts 60 cycles)
T
0
0
0
0
0
0
0
0
0
0
0
0
2
Motor (115 volrs 40 cycles)
Motor (115 volts 25 cycles)

Moror (230 volts 50 cycles)
Motor 230 volts 40 cycles) Motor (230 volts 25 cycles)
(65) Motor Switch
(65) Motor Switch
Switch Knoh
Needle Cup (2 used)
Used Needle cup,
Turntable.
Cord Conne
Cord Connector Plug.
Cord Connector Assembly
Model 23X
Radio-Phonograph

Model 30

REPLACEMENT PARTS LIST

${ }_{\text {Pikse }}^{\text {No. }}$		Part No.
(1)	Resistor (5000)	3526
(2)	Antenum Coil	4182-A
(1)	By-Pass Condenser (05)	3615-E
(1)	Tuning Condenser	4000-G
(5)	Compensating (ondenser	3968-A
(6)	Resistor (70,000)	3542
(7)	Coupling Condenser	3892-A
(8)	Coil-2d R. F.	4182-B
(${ }^{\text {a }}$	By-Pass (.05)	3615-E
(10)	Compensating Condenser	3968-A
(11)	By-Pass Condenser (.05) and Resistor	3615-B
(12)	By-Pass Condenser (.05) and Resistor	3615-C
(13)	Coupling Condenser	3892-A
(11)	Coil-3d R. F.	4182-B
(b)	By-Pass Condenser (.05)	3615-F
(16)	Comprisating Condenser	3968-A
(14)	Coupling Condenser	3892-A
(88)	Coil-4th R F F	4182-B
(19)	Resistor (500,000)	3769
(a)	By-Pass Condenser (.05) and Rnsistor	3615-C
(21)	By-Pass Condenser (.05) and Resist or	$3615-\mathrm{B}$
(2)	By-Pass Condenser (Double .25)	3557
(8)	Filter Choke	3518
(2)	Condenser (.00005)	3774
(23)	Compensating Condenser	3772-A
\%	Presistor (100,000)	3767

$\underset{\text { Fisa. }}{\text { No. }} \mathrm{i}$ and

Nigs. io	and 2 Deacription	Pert No
(2)	Resistor (100,000)	3767
(2)	Resistor (250,000)	3768
(6)	Resistor (500,000)	3769
(3)	By-Pass Condenser (.000250)	3082
(i)	By-Pass Condenser (.000250)	3082
(12)	Resistor (500,000)	3769
(3)	By-Pass Condenser (.01)	3903-F
(a)	Volume Control	4093
(a)	Resistor	3864
(1)	On-Off Switch	4095
(3)	Tone Control	4037-A
(3)	Audio Transformer	3242
(4)	By-Pass Condenser (Single .25)	4264
(6)	Resistor (25,000)	3656
(4)	Speaker Motor	2761
(2)	Cone Assembly	2764-A
	Speaker Cord and Plug	L-1127-A
	Knob (Large)	3580-A
	Knob (Small)	3579-A
	Spring (For 3579 and 3580)	3305
	Knol) (Switch)	4146-A
	Spring (For 4146)	4147
	Tuning Scale	4139
	Grid Clip	4060-A

"A" Battery (2-volt) "Philco Irynamic 92- $\mathbf{R}^{\prime \prime}$
Tube Socket (32 type tube)
3977-C
Tube Socket 3977-A Speaker Socket . 3977-B

		Part No.			Part No .
(1)	Volume Control	5317	(8)	Detector R. F. Choke	03086
(3)	Antenna Coil	03320	(3)	Resistor (240,000 Ohms)	4410
(3)	Resistor (240,000 Ohms)	3768	2	Condenser (.01 mfd .)	3903-.
(1)	By-pass Condenser (. 09 mfd .)	4989-B	(17)	Resistor ($490,000 \mathrm{Ohms}$)	4517
(6)	Tuning Condenser	03076	2	Choke	5314
\bigcirc	Compensating Condenser (part		(2)	Input Transformer.	5315
	of tuning condenser assembly)		앙	Tone Control . .	03140
(7	First Detector Transformer . .	03083	(3)	Output Transformer	2646
(c)	Compensating Condenser (part	03083	9	Voice Coil and Cone	02949
C	of tuning condenser assem-		(3)	Resistor (3000 Ohms)	. 5309
	bly)		(2)	Pilot Lamp	5316
(1)	Oscillator Coil	03321	0	Switch	. 2318
(1.)	Compensating Con-		(3)	Resistor (32,000 Ohins)	3525
(a)	denser, . Aseem-		(12)	Condenser (. 09 mfd .)	4989-F
(11)	Condenser (410 mmf.$)$ bled		a)	Resistor (99,000 Ohmi)	1+11
(12)	Resistor ($51,000 \mathrm{Ohms}$)	4518	(6)	Condenser (2 mfd .)	4.3299
			0	Resistor (5,000 Ohms)	5310
(12)	Compensating Condenser (part of tuning condenser assem-		(4)	Resistor (10,000 Ohms)	+412
	of tuning condenser assembly)			Knob (Large)	03063
(14)	Resistor ($51,000 \mathrm{Ohms}$)	4518		Knob (Small) .	0306 +
		4518		Spring (For Switch Knobs)	4147
(13)	Condenser (110 mmf .)	4519		Spring (For Dial Knobs)	5262
(10)	Compensating Condenser, Assembled	03411		Tute Shield. Grid Clip	03306 4897
(17)	First I. F. Transformer	03009		Grommet (R. F. Transfor	
(1)	Compensating Condenser, Ab-			Shield)	3747
	sembled . . .	03411		Four Prong Socket Assembly	4955
(13)	Condenser (. 09 mfd .)	4989-B		Five Prong Socket Assembly	495 t
(3)	Second I. F. Transformer	03092		Volume Control Insulator	4092
(1)	Compensating Condenser, As-			Volume Control Insulator	428i
	sembled	03411		Dial Assembly Complete	03031
(1)	Condenser (.002 mfd.)	4059		Pilot Bracket Complet	. 23011
S	Condenser (. 002 mid)	4059		light Shield Sereera .	4937

Model 37

Replacement Parts for Model 37

		Part No .
(1)	Resistor (2,900 Ohms)	5309
(2)	Volunie Control	7239
(1)	Antenaa Transformer	05726
(1)	Tuning Condenser Assembly	05740
(3)	Compensating Cond.-AntennaPart of Tuning Cond. Assembly	
(3)	Detector Transformer	05727
(3$)$	Compensating Cond. - Detec-tor-Part of Tuning Cond. Assembly	
(0)	Pilot Light	5316
(0)	Comp. Cond-1st. I.F. Primary	04000-A
(10)	Oscillator Coil	05728
(1)	Resistor (6,000 Ohms)	7352
(12)	Cond. 710 Mmf . White and Yellow	5863
(13)	Filter Cond. Bank (.1, .15, .25, 2-. 5 Mfd.)	03915
(11)	Comp. Cond-High Frequency -Part of Tuning Cond. Assembly	
(11)	Comp. Cond.-Low Frequency	04000-F
(14)	Cond. 710 Mmf . White and Yellow	5863
(17)	Condenser (. 05 Mfd.)	3615-AC
(1)	Resistor (1,000 Uhms)	5837
(19)	First I.F. Transformer	05697
(2)	Comp. Condenser -- Ist. IF Secondary	$04000-\mathrm{A}$

(2)	Second I.F. Transformer	05698
(2)	Comp. Cond. 2nd. I.F. Secondary	04000-A
(3)	Cond. 05 Mrd .	3615 - ${ }^{\text {l }}$
(3)	Resistor (51,000 Ohms)	4518
(3)	Resistor (25,000 Ohms)	4516
(3)	Resistor (99,000 Ohms)	4411
(28)	Condenscr 250 Minf . Yellow	3082
(2)	Resistor (99,000 Ohms)	4411
(0)	Condenser 250 Mmf . Yellow	3082
(B)	Resistor (490,000 Ohms)	4517
(3)	Resistor ($99,000 \mathrm{Ohms}$)	4411
(3)	Condenser (. 01 Mfd .)	3903-X
(3)	Resistor (490,000 Ohms)	4517
(8)	Resistor (1,000 Ohms)	5837
(1)	Input Transformer	7233
(4)	Condenser (2,000 Mmf.)	7296-B
(3)	Ontput Transformer	2646
(3)	Voice Coil and ('one Assembly	02887
(0)	Battery Switch	7283
	Tube Shield	05720
	Knob	03064
	Knob Spring	4147
	Four Prong Socket	5026
	Five Prong Socket	4956
	Six Prong Socket	6417
	Dial Complete	05811
	Bezel	6413

MODELS $38 \& 38 \mathrm{~A}$

REPLACEMENT PARTS FOR MODELS 38 AND 38-A

No.en $\begin{gathered}\text { Nien. } \\ \text { Fencription }\end{gathered}$	$\begin{aligned} & \text { Purt } \\ & \text { No. } \end{aligned}$
(1) Volume Control.	${ }^{33-5017}$
(2) Wave-Band Switch	42-1039
(3) Anteanas Trandormer	32-1208
(4) Tuning Condeneor Amembly	
(6) Candenoer (.00041).	00
(\%) Compensating Candenere (Ant.; L.F.; Polico)	04000-8
(7) Campenming Condenear (Ant \cdot H.F.; Police).	
(8) Compresenting Condaneer (Av ; H.F.; Purt of (1)	
(1) Compenseting Condoneor (Oxc.; H.F.; Purt of (t)	
(10) Compornet ting Condobeor (let. I.F. Primay)	
(11) Cosdenase (0014).	
(11) Resistor (0,000) (Bluw-Bleck-Red)	
(11) Onilletor Tranformer.	32.1200
(11) Compenming Comdeneer (0ue.; L.F.)	
(1) Lut. I.F. Tranotormer	3212
(14) Composesting Candenser (ITC. I.F. Secoosider)	04000-A
(1i) 2nd I.P. Tranaformer.	
(14) Compenseting Condensar (2nd. I.F. Primary)	
(10) Compennting Condenser (2nd. I.F. Scoondry)	04000
(3) Filtue Condener Beak	疗
(17) Remitco (5 meg) (Yallow-Whit-Yellow)	
(32) Coudenere (00025).	
(10) C Condeneer (.00023).	
(5) Henitor (10,000) (Brown-Ble	412

No. Fige (24) C	on ${ }^{\text {a }}$ Deecription	Part No.
	Condensor (.01)	3003-Z
(23)	Reciator (25 meg.) (Red-Yeilow-Yellow).	4110
(3)	Resistor (5 meg.) (Yellow-White-Yellow).	17
(7)	Reaistar (. 1 meg.) (White-Wbite-Orange).	411
(28)	Input Tramiorwer.	7233
(29)	Condenser (.002).	7290-C
(\%)	Output Tranformer.	2565
(1)	Voice Coil and Cone Asoembly (KR-2).	36-3014
(32)	Resistor (5 mmeg) (Yelicw-Whit-Yellow).	4517
(3)	8witch ("On-Or"; Battery)	42-1040
(4)	Piot Lamp (Station Seloctor).	BS
	Resistor (30 ohm) ((Used sorom Type 0 ballast tube filament; Model 38-A, centy)	7185
	Shorting Jumper (Model 38; surom filament terminals; Type 6 tube roeket)	28-8001
	Tube Shield.	28-1107
	Four-prong Tube Socket.	7545
	Five-prong Tube Socket.	7548
	Six-prong Tube Soaket.	7547
	Speaker Socket...	4057
	Battiery Cable Amembly (including multi-plug)	38-5286
	Station Selector Dinl-calo.	27-5019
	Knob (large). .	03083
	Knob (mmall).	03004

Model 41

REPLACEMENT PARTS

(1)	Volume Control	4094
(2)	First R. F. Transformer	3884-A
(3)	Tuning Condenser	4069-E
(1)	Compensating Condenser	3772
(5)	Second R. F. Transformer	3884
(6)	By-Pase Condenser	3584-D
(3)	Resistor	3525
(8)	Compensating Condenser	3772-A
(8)	By-Pass Condenser	35
(10)	Coupling Condenser	389
(11)	Third R. F. Transformer	38
(12)	By-Pass Condenser	3584 -
(13)	Resistor	3525
(1)	Coupling Condenser	389
(13)	Fourth R. F. Transformer	3884-C
(13)	By-Pass Condenser	3584-
(17)	Resistor	3526
(18)	By-Pass Condenser	3584
(15)	Resistor	3656
(a)	Resistor	3767
(21)	By-Pass Condenser	3774
(2)	By-Pass Condenser	3557
(2)	Resistor	3766
(3)	Resistor	3542
(23)	Resistor	3769
(2)	Resistor	3767
(2)	By-Pass Condenser	3897-
(3)	Resistor	3769
(2)	Tone Control	4037-
(10)	Input Transformer	3872
(a)	On-Off Switch	3517
(3)	Filter Condenser Block	4067
(1)	Resistor	4142
(2)	Resistor	3656

(3)	Choke	3422
(36)	Resistor	3526
(3)	Resistor	4057
(*)	Resistor	4058
(*)	Output Transformer	2S48
(10)	Vrice Coil and Cone	2814 -B
(1)	Field Coil	2799
4.	Filot Lamp	3463
	Fesistor Comn Plug	4071
	F'nobs (Large)	3580-A
	Finobs (Small)	3579-A
	J゙nobs (Switch)	3676-A
	Spring (Knob)	3305
	Grid Clip	4060
	Crid Clip Insulator	4061
	Condenser Shield	4065
	Tube Shield	3878-A
	(u ushion (Condenser Brace)	3914
	Rubber Washer (Cond. Brace)	3915
	Rubber Wrsher (Condenser)	3920
	Speaker Plug and Cable	L-1056-A
	Rubber Washer (Furniture)	3558
	Pilot Insulator	4054
	Pilot Guard	4055
	Condenser Brush	3748
	R. F. Transformer Shield	3862
	Bottom Plate	3406
	Compensating Condenser Nut	3151
	Tuning Scale	3794
	Condenser Cable	3484
	Condenser Cable Spring	3012
	Pilot Lamp	3463
	4-hole Tube Socket	3423-A
	5-hole Tube Socket	3442-A

Replacement Parts

Model 43

	Output Transformer	2580
	Voioe Coil and Cone Assombly	02823
	Speaker Field and Bucking Coil Assembled with Pot (K-7)	02761
	Condenser (. 015 mfd . Double)	3793K
	Power Transformer-50-60 Cycles, 115 Volts, Single Spaaker Models	7074
	25-40 Cyeles, 115 Volta, Single Speaker Models	7075
	50-60 Cycles, 230 Volts,	7076
	50-60 Cycles, 115 Volts, Twin Speaker Models	6985
	50-60 Cycles, 230 Voits,	6986
	Electrolytic Condenser (6 mid.) 50-60 Cyeles	4916
	Electrolytic Condenser (8 mid.) 25-40 Cycles	6707
	Resistor ($10,000 \mathrm{ohms}$)	4412
	Condenser (. 05 mfd .)	3615
	Electrolytic Condenser (6 mid.) 50-60 Cyclea	4916
	Electrolytic Condenser (8 mfd .) $25-40 \mathrm{Cycles}$	6706
	Dutput Transformer-Twin Spoaker .	2564
	Voioe Coil and Cone Aseembly	02823
	Voice Coil and Cone Assembly	02823
	Speaker Field and Bucking Coil Assombled with Pot (K-9)	02762
	Speaker Field and Buaking Coil Assombled with Pot (K-10)	02767
	Condansar (.5 mfd)	05150
	Wire Wound Resistor ($5,620 \mathrm{ohms}$) T win Speaker	6451
	Tube Shield	5387
	Knob (Large)	03063
	Knob (Medium)	03064
	Knob (Smal)	03437
	Knob Spring (Large)	5262
	Knob Spring (Small)	
	Grid Clip	
	Four Prong Socket Assembly	5028
	Five Prong Socket Assembly	4958
	Six Prong Socket Assambly	
	Disal Complete	05418
	Fhezal	6828
	Tuning Condenser Drive Cord	04834
	Spring	6508
	Chassis Mounting Screw	W-468
	Mounting Washer	W-315
	Fubber Washer	

FIG. 4-Bottom View of Chasals, Showing Parts, and Pogition of Compensating Condensers Located,- and Reached.from Below Chassis

REPLACEMENT PARTS FOR MODEL 44

No. 0 Flgs.	on Description	Part No.
(46)	Resistor (70,000) (Violet-Black-Orange)	5385
(47)	Condenser (.00025)	5858
(48)	Condenser (.01)	3903-A
(49)	Resistor (5 meg.) (Yellow-W hite-Yellow)	4517
(50)	Resistor (70,000) (Yiolet-Black-Orange)	5385
(51)	Pilot Lamp (Station Selector)	6608
(52)	Resistor (32,000) (Orange-Red-Orange)	3525
	Resistor (32,000) (Orange-Red-Orange).	3525
(3)	Volume Control and "On-Off' Switeh.	33-5025
(55)	Condenser (.01)	3903-J
(6)	Resistor (1.0 meg.) (Brown-Black-(ireen)	4409
(57)	Resistor (1 meg.) (White-White-Orange)	4411
(58)	Voltage Divider Resistor	33-3037
(50)	Condenser (.01) (l'art of (80))	
(60)	Tone Control.	30-4080
(61)	Condenser (.015) (Part of (60)	
(62)	Output Transformer ($\mathrm{H}-14$)	2580
(13)	Yoice Coil and Cone Assembly ($11-14$).	02625
(4)	Speaker Field Coil and Pot Assembly (H-14).	02767
(65)	By-pase Condenser Block (3-section)	30-4087
(6)	Condenser (.05)	3615-H
(67)	Condenser (Electrolytic) (Double) (8.0-8.0)	30-2028
(68)	Condenser (Double) (.015-015)	3793-H
(81)	Condenser (Electrolytic) (6.0)	30-2020
(70)	Filter Choke	5930
(71)	Power Transformer ($50-80$ cycle)	32-7137
	Tube Shield	28-1107
	Four-Prong Tube Socket.	7544
	Six-Prong Tube Socket	7547
	Sever-Prong Tube Socket	27-6005
	Speaker Socket.	4957
	Dial Scale (Station Selector)	27-5028
	Drum Assembly (Tuning Condenser)	31-1055
	Idler Shaft Assembly (Tuning Condenser)	31-1056
	Tuning Shaft Assembly (Tuning Condenser)	31-1057
	Gear (Wave-Band Switeh)	28-7012
	Knob (large)	27-4025
	Knob (medium)	03063
	Knob (8mall).	03064
	Knob Spring.	5262
	Knob Screw (Brass) (becures large knob to shaft)	W-267
	Berel.	27-4039
	Besel Mounting Screw	W-841
	Besel Felt.	6732
	Mounting Bolt (Chassis).	W-567
	Mounting Washer (Chassis) (Rubber)	5189
	Mounting Washer (Chassis) (Steel).	5058
Speaker (K-22) (Baby Grand Only):		
	Output Tranaformer.	2580
	Voice Coil and Cone Assembly.	30-3174
	Sreaker Field Coil and Pot Assembly	02767

Model 46

REPLACEMENT PARTS—MODEL 46

(1)	Volume Control	4141
(2)	First R. F. Transformer	3884-X
(2)	Tuning Condenser	$4200-\mathrm{D}$
(1)	Comepnsating Condenser (Part of Tuning Condenser Assembly)	
(1)	By-Pass Condenser . 05	3615-J
(1)	Resistor 32,000 Ohms	3525
(3)	By-Pass Condenser . 25	4864
(1)	Second R. F. Transformer	3884-Y
(1)	Compensating Condenser (Part of Tuning Condenser Assembly)	
(1)	Resistor 32,000 Ohms	3525
(11)	By-Pass Condenser . 05	3615- M
(3)	Condenser and Resistor 05 and 250 Ohms	3615-K
(1)	Third R. F. Transformer	3884-Y
(13)	Compensating Condenser (Part of Tuning Condenser Assembly)	
(14)	By-Pass Condenser . 05	3615- M
(10)	Resistor 5,000 Ohms	3526
(1i)	Resistor 32,000 Ohms	3525
(10)	By- Prss Condenser (2-section, .25 each)	4864
(17)	By-Puss Condenser . 0005	3910
(2)	Resistor 490,000 Ohms.	3769
(1)	Blocking Condenser . 01	3903-H
(2)	Resistor 490,000 Ohms	3769
(8)	By-Pass Condenser (2-section, .25 each)	4864
(4)	Resistor 99,000 Ohms	3767
(2)	Resistor 240,000 Ohms	3768
(2)	Push-Pull Input Transformer	4862
(a)	Pilot Bulb	3463
(3)	Resistor (3-section)	4858-A
(a)	Resistor 200 Ohms	4859-A
(a)	Resistor 2100 hms	4861
(n)	Push-Pull Output Transformer	2766
(3)	Voice Coil and Cone . .	2769-B

REPLACEMENT PART8 MODEL 47

(1)	Resistor (10,000 ohms)	412
(3)	R. F. Transformer	04339
(3)	Tuning Condenser Assembly	05098
(1)	Compensating Condenser-R. F. -Part of Tuning Condenser Assembly	
©	Condenser (, 05 Mid . Double)	3615-AF
(1)	Resistor ($1,000,000 \mathrm{ohm8}$)	4409
(3)	Condenser (18 Mid. \& 200 ohm resistor)	4989-3
(1)	Condenser (.05 Mfd.)	3615-H
(Condenser (25 Mfd , Double)	05109
(2)	R. F. Choke	03103
(1)	Detector Transformer	05093
(3)	Compensating Condenser-De-tector-Part of Tuning Condenser Assembly	
(3)	Condenser (05 Mfd)	3615-L
3	Resistor (1,000,000 ohms)	4409
(4)	Resistor (8,000 ohms)	5838
35	Compensating Condenser - 1st I. F. Primary	04000-M
(3)	Oscillator Coil	04186
(3)	Compensating Condenser-High Frequency-Part of Tuning Condenser Assembly	
(4)	Compensating Condenser-Low Frequency	04000-F
6	Condenser (410 Mmf .) Yellow and Orange	5120
(1)	Condenser (700 Mmf .) White and Yellow	5863
(3)	Resistor (25,000 ohms)	4516
(3)	First I. F. Transiormer	05094
(1)	Compensating Condenser-1st I. F. secondary	04000-A
6	Resistor ($1,000,000$ ohms)	4409
\%	Resistor (70,000 ohms)	5385
(1)	Compensating Condenser-2nd I. F. Primary	04000-A
8	Second I. F. Transformer	05095
(2)	Compensating Condenser-2nd I. F. Secondary	04000-A
(6)	Condenser (110 Mmf .) Blue and Golden Yellow.	4519
(1)	Resistor (99,000 ohms)	4411
(3)	Condenser (110 Mmf) Blue and Golden Yellow.	4519
\%	Volume Control	6499
\%	Resistor ($1,000,000$ ohms)	4409
0	Condenser (.01 Mid.)	3903-G

Condenser (.01 Mid.)

©	Resistor ($10,000 \cdot \mathrm{hms}$)	4412
(8)	Tone Control	04757
\%	Filter Condenser Bank	05003
(Resistor-Wire wound (70 ohms and 16 ohms)	6716
¢	Pilot Light	6608
(3)	Condenser (.01 Mfd .)	3093-T
*	Resistor (25,000 ohrms)	4516
(1)	Resistor ($1,000,000$)	4409
(4)	Filter Choke (High Resistance)	5314
(c)	Resistor ($5,000 \mathrm{ohms}$)	5310
(4)	Input Transformer	6064
(6)	Condenser (.002 Mfd.) Blue	4059
©	Filter Choke	6712
Q	Output Transformer - Single Speaker (K-13)	2550
(Voice Coil and Cone Areembly	02823
(4)	Speaker Field Asembled with Pot (K-13)	02745
(4)	Condenser (.015 Mfd. Double)	3703-M
(3)	On-off Switch .	6498
(4)	Ballast Lamp No. 4-Single Bpeaker.	6739
(1)	Output Transformer - Twin Speaker (K-14, K-15)	2544
(6)	Voice Coil and Cone Assembly	02823
(1)	Voice Coil and Cone Ambembly	02823
(1)	Speaker Field Aseembled with Pot (K-14)	02745
(e)	Speaker Field Assembled with Pot (K-15)	02744
©	Ballast Lamp No. 5 - Twin Speaker.	6740
	Tube Shield	05058
	Knob (large)	03003
	Knob (medium)	03064
	Knob (small)	03437
	Knob Spring (large)	5262
	Knob Spring (amall)	4147
	Grid Clip	4897
	Four Prong Socket Assembly	5026
	Five Prong Socket Assembly	4950
	Six Prong Socket Assembly	6417
	Dial Complete	04832
	Bezel	6435
	Charais Mounting Serew	W-468
	Mounting Washer	W-315
	Rubber Washer	5189
	Mounting Clamp	6440
	Cone Retaining Ring	2800

Replacement Parts for Model 48

(1)	Condenser (. 01 Mid .)	3903-T
(3)	Volume Control (5,000 Ohms)	5839
(3)	Condenser (. 01 Mfd.)	3903-AK
(1)	Condenser (2 Mfd .)	05518
(3)	Antenna Transformer	05848
(1)	Tuning Condenser Assembly	05885
(7)	Compensating Cond--Antenna-Part of Tuning Condenser Assembly	
(3)	Detector Transformer	05849
(${ }^{\text {a }}$	Resistor ($1,000,000 \mathrm{Ohms}$)	4409
(10)	Condenser (. 05 Mid.$)$	3615-J
(11)	Compensating Cond.-Detector, Part of Tuning Condenser Assembly	
(12)	Comp. Cond. First I.F. Primary	04000-A
(1)	Oscillator Coil	
(14)	Resistor (6,000 Ohms)	
(15)	Condenser (710 Mmf .)	5863
(3)	Condenser (. 05 Mfd .)	3615-AC
)	Compensating Cond-High Frequency -Part of Tuning Condenser Assembly	
(13)	Comp. Condenser Low Frequency	$04000-\mathrm{F}$
(10)	Condenser (710 Mmf .)	5863
(a)	Resistor (1000 Ohms)	5837
(21)	Condenser (05 Mfd and Resistor 250 Ohms)	3615-C
(22)	First I.F. Transformer	04887
(2)	Comp. Cond. First I.F. Secondary	04000 -
(24)	Second I.F'. Transformer	03887
(25)	Resistor (10,000 Ohms)	4237
	Resistor-Wire Wound -(140) Ohms and 30 Ohms)	06200
(27)	Compensating Condenser, Second I.F. Secondary	04000-A
	Filter Condenser Bank (.1, .15, .25, 2-. 5 Mfd.)	05569

(3)	Resistor (51,000 Ohms)	4518
(3)	Condenser (250 Mmf .)	3082
(11)	Resistor ($51,000 \mathrm{Ohms}$)	4518
(12)	Resistor (99,000 Ohms)	4411
(4)	Resistor (99,000 Ohms)	441 r
(4)	Resistor (25,000 Ohms)	3656
(6)	Resistor (32,000 Ohms)	3525
(8)	Pilot Light	6608
(5)	Condenser (250 Mmf .)	3082
(8)	Condenser (. 01 Mfd.)	390
(5)	Resistor (240,000 Ohms)	4410
(6)	Resistor (490,000) Ohms)	4517
(1)	Resistor (99,000 Ohms)	4411
(12)	Condenser (. 01 Mid .)	3903-F
(1)	Condenser .01 Mmff . (assembled with (3))	3903AK
(4)	Condenser (1 Mid.)	05518
(4)	Output Transformer	2660
(4)	Choke	4951
(17)	Voice Coil and Cone Assembly	02861
(4)	Speaker Field Assembly with Pot	02671
(4)	On-Off Switch Assembly with Volume Control	5839
(6)	Condenser ($.015 \mathrm{Mid} . \mathrm{Twin}$)	3793-1
	Tube Shield	03169
	Knob	03064
	Knob Spring	5262
	Grid Clip	4897
	Four Prong Socket	5026
	Five Prong Socket	49.
	Six Prong Socket	6417
	Pilot Light Bracket Complete	05603
	Dial Complete	05811
	Bezel	6413

REPLACEMENT PARTS MODELS 50 AND 50-A

(1)	Volume Control	5232
(2)	First R. F. Transformer	03283
(3)	Gang Condenser	03293
)	Compensating Condenser (Part of Gang Condenser Assembly)	
(6)	Second R. F. Transformer	03284
(6)	Compensating Condenser (Part of Gang Condenser Assembly)	
(3)	Third R. F. Transformer	03284
(8)	Compensating Condenser (Part of Gang Condenser Assembly)	
(1)	Condenser-250 Mmf.	3082
(10)	Condenser-250 Mmf.	3082
(11)	Resistor-10,000 Ohms	4412
(12)	Condenser-- 01 Mfd .	3903
(13)	Resistor--240,000 Ohms	4410
(14)	Resistor-490,000 Ohms	4517
(15)	Bypass Condenser (.15 Mfd., . 25	
	Mfd., 2-. 5 Mfd., . 1 Mfd.) 50-60 cycles	03459
	(.15 Mfd., .25 Mfd., 2-. 5 Mfd.,. 05	
	Mfd.) 25-40 Cycles	03455
(11)	Bypass Condenser-. 01 Mfd .	3903-N
(1i)	Output Transformer	2660
(8)	Voice Coil and Cone Assembly	02970
(1D)	Speaker Field (Assembled with	
	Pot and Frame)	02942
(20)	Resistor- 490,000 Ohms.	4517
(12)	Resistor-160,000 Ohms.	5331
(3)	Resistor- 150 Ohms and Con-denser- .05 Mfd .	3615-X

PHILCO MODELS 51 , 51-A AND 52

REPLACEMENT PARTS MODELS 51,51 A and 52

	i end 2 Deacription	Part No.
(${ }^{\text {c }}$	Field Coil and Pot Assembly	02942
(2)	Resistor (490,600 ohms)	4517
(3)	Resistor (160,000 ohms)	5331
(4)	Resistor (250 ohms and 05 mid.)	3615-C
(2)	Resistor (8,000 ohms)	5838
(4)	Condenser (710 mmi)	5863
(3)	Resistor (51,000 ohms)	5868
(b)	Pilot Light	3463
(e)	Resistor (25,000 ohms)	3656
©	Resistor (32,000 ohms)	3525
(1)	On-off Switch	5382
(c)	Power Transformer, 50-60 cycles	5266
	Power Transformer, 25-40 cycles	5267
	Power Transformer, 50-60 cycles, 230 volts	5268
(4)	Electrolytic Condenser (6 mfd .) $50-60$ cycles	4916
	Electrolytic Condenser (10 mfd .) 25-40 cycles	5142
(4)	Electrolytic Condenser (6 mfd .)	4916
	By-pass Condenser (across power line) .01 mfd . double, Colonial	
	Clock only .	3903-S
	Clock Unit (60 cycles) Model 551	5950
	Clock Glass . Model 55]	5942
	Tube Shield	04011
	Knob (Large)	03064
	Knob (Smali)	03437
	Grid Chip	4897
	Five Prong Socket Assembly	4956
	Four Prong Socket Assembly	5026
	Pilot Light Bracket Complete	03814
	Dial Complete	04031
	Bezel	5879
	Spring (Large)	5262
	Spring (Small)	4147
	Scroll (Model 551)	44613
	Turnings (3 used) Model 551	44607

Model 53

Replacement Parts for Model 53

Replacement Parts for Model
MODEL 57

REPLACEMENT PARTS MODEL 57

Model 58

The following parts used in Model 58 are different, otherwise replacement parts are the same as Model 57.

Item	Part No. (Model 58)
Tuning Condenser	31-1089
Electrolytic filter condenser	30-2013
Wave-band switch	42-1043
Volume Control	33-5057
Dial scale	27-5023
Pilot light shield	29-1126

Also part No. 3569 (1-watt resistor $-490,000$ ohms) used in Model 57 , is replaced by part No. 4517 ($1 / 2$ watt, 490,000 ohms) in Model 58.

MODEL 60

REPLACEMENT PARTS FOR MODEL 60

$\begin{aligned} & \text { No. on } \\ & \text { ilige. } \end{aligned}$	Description	Part No.
(1)	Resistor (10,000) (Brown-Black-Orange)	44
(2)	Wave-Band Switch	42-1001
(3)	Tuning Condenser Assembly	
(1)	Antenna Transformer	32-1047
(5)	Compensating Condenser (Ant.; H. F.; Part of (3)	
(6)	Compensating Condenser (Osc.; H. F.; Par of (3))	
(7)	Condenser (Double) (.05-.05)	61
	Condenser (.18)	498
(0)	Resistor (Flexible Wire-Wound) (200) (Red-Black-Brown)	7217
	Resistor (51,000) (Green-Bmwn-Orange)	18
	Compensating Condenser (Osc.; L. F.; Police Band)	04000-S
(13)	Compensating Condenser (Osc.; L. F.; Broadcast Band)	
	Condenser (.00011)	4519
(1)	Resistor (32,000) (Orange-Red-Orange)	5279
(16)	Oscillator Transformer	32-1048
(10)	First I. F. Transformer	32-1049
(17)	Compensating Cond. (1st I. F. Primary)	04000-M
(18)	Compensating Cond. (1st I. F. Secondary)	04000-A
(19)	Resistor (51,000) (Green-Brown-Orange)	4518
(2)	Filter Condenser Bank	30-4013
(2)	Resistor (2. meg.) (Red-Black-Gr	5872
(2)	Resistor (10,000) (Brown-Black-Orange)	4412
(2)	Pilot Lamp (Station Selector)	6608

No. on
Fios.
Doscription \quad Part No.

Philco Model 65

Replacement Farts for Model 65

Numbre	Antenne Resistor Drachiption	Part No. 3524	(3)	Volume Control	3528
	Antenna Resistor (Antanna Coil)	3506-B	0	Six-Ohm Resistor	3628
(1)- $-\frac{(1)}{(1)}$	R. F. Trandormer (Antonns Coil) Tuning Condenser .	$3480-\mathrm{B}$	(2)	Cathode By-Pass Condenser and Resistance	3292-B
\bigcirc	Fixed Compensator	3617-A	¢	Push-Pull Output Transiormer	2850
$0^{(3)}$	Screen Grid By-Paes Condenser and Resistance	$3292-A$ 3584	(2)	Speaker Coill and Cone	2844-A
(1) - (11)	Plate By-Pass Condenser and Registance	3584-A	(11)	Pilot Lamp	3463
(1) ${ }^{(1)}$	R. F. Transformer	3592-P		Knob (Small)	3579
(1)	Screen Grid By-Paen Condenser	${ }_{3583}$		Knob (Large)	3580
(13)	Detector Cathode By-Pass Condeneer	3525		Knob Spring	3.305
(13)	Detector Cathode Flesistor	3525 3081		Four Hole Socket Assembly	3423-A
(14)	. 001 Detector Plate By-Pase Condenwer	${ }^{3081}$ -		Five Hole Socket Assembly	3442-A
(13)	R. F. Choke	${ }_{3537}$		Speaker Plug Socket Assembly	3464 -
(17)	Push-Pull In put Transformer	3537 3517		Pilot Lamp Socket Assembly	$3556-\mathrm{A}$
989	Set Power Switch	3517		A.C. Attachment Cord and Plug	L-54,3-A
\bigcirc	Power Transformer	3516		Speaker Plug and Cable	L-1056-A
(19)	B Filter Condenser Block	3515		Rubber Washer .	3558
(19)	First Filter Choke	$3{ }^{2} 2$		Rubber Foot (Set)	3184
(3)	Detectar Plate Resistor	3528		Rubber Foot (Speaker)	2967
(29)	Second Filter Choke	3518		Socket Wrench for Speaker Mounting Bolts	3312
(20)	BC Renistor				

REPLACEMENT PARTS-MODELS 70 AND 70-A

	ond 4 Deecription	Part No
(1)	Volume Control	5039
(3)	R. F. Transformer	03082
(1)	Tuning Condenser (50-60 cycles)	03076
	Tuning Condenser ($25-40$ cycles)	03077
(1)	Compensating Condenser Antenna-(Part of Gang Condenser Assembly)	
(1)	Condenser (. 09 mfd . Double)	4989
$\stackrel{\square}{\circ}$	Detector Transformer	03083
(3)	Compensating Condenser Detector- (Part of Gang Condenser Assembly)	
(1)	Oscillator Coil	3084
(1)	Condenser (410 mmf)	5120
(1i)	Compensating Condenser-Low Frequency	04000-F
(1)	Resistor ($51,000 \mathrm{ohms}$)	4518
(13)	Condenser (. 09 mfd . Double)	989-C
(14)	Compensating Condenser-High Frequency - (Part of Gang Condenser Assembly)	
(14)	Resistor ($5,000 \mathrm{ohms}$)	310
(11)	Condenser (110 mmf .)	4519
(13)	Resistor ($13,000 \mathrm{ohms}$)	3766
(11)	Compensating Condenser-1st I. F. Primary	4000
(4)	First I. F. Transformer	03091
(1)	Compensating Condenser-lst I. F. Secondary	04000-H
(2)	Second I. F. Transformer	03092
(2)	Condenser (.05 mfd)	3615-L
(3)	Compensating Condenser-2nd I. F. Secondary	04000-K
(3)	Condenser (5 mfd .)	3583
(2)	Resistor (51,000 ohms)	4518
(3)	Condenser (500 mmf .)	3910
*	Condenser (250 mmf .)	3082
(3)	R. F. Choke	03086
(3)	Condenser (. 09 Combined with 250 ohm Resistor)	4989-E
(3)	Resistor (240,000 ohrns)	4410
(a)	Resistor cycles $(45,000$ ohms) $50-60$	5256
	$\begin{array}{r}\text { Resistor } \\ \text { cycles }\end{array} 99,000$ ohms) $\quad 25-40$	4411

	3 and 4 Deecripeton	Part No.
(a)	Condenser (. 01 mfd)	3903-L
(12)	Resistor (240,000 ohms)	4410
(4)	Condenser (25 mfd .)	4264
(4)	Output Transformer	2673
(5)	Voice Coil and Cone Assembly	02996
(a)	Field Coil (Assembled with Pot)	02966
(i)	B. C. Resistor	03079
(2)	Electrolytic Condenser (6 mfd .) 50-60 cycles	4916
	Electrolytic Condenser (10 mfd .) 25-40 cycles	5142
©	Choke .	4819
(-)	Condenser cycles (. 09 mfd) $50-60$	4989-J
	$\begin{aligned} & \text { Condenser } \\ & \text { cycles } \end{aligned} \quad 18 \text { rpfd.) 25-40 }$	4989-K
(4)	Electrolytic Condenser (6 mfd .) 50-60 cycles	4916
	Electrolytic Condenser (10 mfd) 25-40 cycles	5142
(c)	Pilot Light	3463
(a)	Power cycles $)$$\quad$ Transformer $\quad(50-60$	5117
	Power cycles) Transformer (25-40	5118
	$\begin{aligned} & \text { Power Transformer } \quad \text { (50-60 } \\ & \text { cycles, } 230 \text { volts) } \end{aligned}$	5119
(4)	"On-Off" Switch	4095
(a)	Condenser (015 mfd . Double)	3793-K
	Tube Shield	03987
	Bezel	5312
	Knob (Large)	03064
	Knob (Small)	03437
	Spring (Small)	4147
	Spring (Large)	5262
	Grid Clip	4897
	Five Prong Socket Assembly	4956
	Four Prong Socket Assembly	4955
	Dial Complete	03031

REPEACEMENT PARTS MODELS 70 AND $70-A$

(Above Serial No. B-22,000)

Philico Model 71 Series

(1)	Hesistor (10,000 ohms)	4412	(4)	Speaker Field and Bucking Coil	
(3)	R. F. Transformer	04339		sssembled with pot-(K-7)	
(1)	Tuning Condenser ($50-60$ cycles)	04733		single speaker madels	02761
(1)	Tuning Condenser (25-40 cycles)	04734	©	Output Transformer - Twin	
(Condenser (.05 Mfd. double) .	3615-AF		speaker models	2564
(0)	Condenser (. 09 Mfd . and 200 ohm resistor).	4989-L	$\stackrel{(1)}{(0)}$	Voice Coil and cone assembly. Speaker Field and Bucking Coil	02823
(7)	Condenser (.5 Mfd.)	3583		assembled with pot-(K-10)	
(1)	R. F. Choke	04198		Twin speaker models	02767
(1)	Detector Transformer	04185	©	Voice coil and cone assembly.	02823
(1)	Compensating Condenser-De-tector-Part of tuning condenser assembly		(6)	Speaker field assembled with pot -(K-9) Twin speaker models Resistor (5620 ohms) wire wound	02762
(11)	Pilot Light . . .	6608		-Twin speaker models	6451
(13)	Compensating Condenser - 1st I. F. primary	04000-M		Condenser (. 25 Mfd.) Twin Speaker Models	04997
(13)	Oscillator Cail	04186	(2)	Condenser (.015 Mfd. Double)	3793-H
(14)	Compensating Condenser-High frequency-Part of tuning condenser assembly		(10)	On-of Switch Power Transformer-50-60 cy-cles-single speaker	6498 6454
(1)	Compensating condenser-Low frequency	04000-F		Power Transformer-25-40 cy-cles-single speaker	6455
(13)	Condenser (410 Mmf .) (Yellow and Orange)	5120		Power Transformer-50-60 cy-cles- 230 volts-single spesker	6456
(17)	Resistor ($1,000,000$ ohms) . .	4409		Power Tranaformer-50-60 cy-	
(4)	Resistor ($15,000 \mathrm{ohms}$)	6208		cles-twin speaker . $\dot{0}$.	6457
(13)	Condenser (700 Mmf .) (White and Yellow)	4520		Power Transformer-25-40 cy-cles-twin speaker	6458
(3)	First I.:F. Transformer	04190		Power Transformer-50-60 cy-	
(1)	Filter Condenser Bank (2-.05, .25 Mfd.)	04731	(10)	cles- 230 volts--twin speaker Resistor-wire wound (245 ohm	6459
3	Compensating Condenser - lat I. F. secondary	04000-M	0	and 185 ohms) Electrolytic Condenser (6 Mfd .)	6452
(3)	Resistor ($1,000,000$ ohras)	4409		(50-60 cycles) single speaker	6453
(24)	Resistor (1,000 ohms) .	5837		8 Mfd . Twin speaker . .	6707
(39)	Compensating Condenser-2nd I. F. primary	04000-M	(4)	Resistor (10,000 ohms) Condenser (. 05 Mfd .)	$\begin{aligned} & 4412 \\ & 3615-G \end{aligned}$
(2)	Second I. F. Transformer .	04319	(2)	Electrolytic Condenser (6 Mfd .)	
(7)	Resistor (99,000 ohms)	4411		($50-60$ cycles) single spesker	4916
6	Volume Control	6499		8 Mfd . Twin speaker	6706
\%	Compensating Condenser-2nd I. F. secondary	04000-M	(17)	Resistor (5,000 ohms) Resistor (5,000 ohms)	5310 5310
\bigcirc	Condenser (110 Mmf .) (Blue and		(0)	Resistor (13,000 ohms)	6450
	Golden Yellow) - .	4519		Tube Shield (small)	5387
(a)	Condenser (110 Mmf .) (Blue and			Tube Shield (large)	04735
	Golden Yellow)	4519		Knob (large)	03063
(1)3	Condenser (.01 Mfd.)	3903-J		Knob (medium)	03084
(a)	Resistor (1,000,000 ohms)	4409		Knob (small) .	03437
(2)	Resiator (70,000 ohms)	5385		Knob Spring (large)	5262
(2)	Resistor (25,000 ohms) Single			Knob Spring (small)	4147
	Speaker	4516		Grid Clip	4897
	Resistor (51,000 ohms) Twin			Four Prong Socket Assemhly	5026
	Speaker Models .	4518		Five Prong Socket Assembly	4956
(2)	Condenser (.01 Mfd.)	3903-N		Six Prong Socket Assembly	6417
(2)	Resistor (490,000 ohms)	4517		Dial Complete	03031
(2)	Condenser (. 01 Mfd .)	3903-AA		Bezel Mound Sin	6435
\bigcirc	Tone Control	04757		Chassis Mounting Screw	W-468
0	Output Transformer - single speaker models	2580		Mounting Washer Rubber Washer Mounting Clamp	$W-315$ 5189 6440
(3)	Voice Coil and Cone assembly .	02823		Cone Retaining Ring	2600

Phileo Model 76

Replacement Parts for Model 76

		Part No.			Part No
(1)	Local-Distance Switch	3675	(30)	Resistor.	3767
(2)	Resistor	3777	(21)	Condenser	3897 3769
(3)	Resistor	3526	(2)	Resistor	3769
(4)	1st R. F. Transformer	3884-A	(23)	Push-Pull Input Transformer	3872
(5)	Tuning Condenser.	3376-E	(24)	Push-Pull Output Transformer	2814-B
(6)	Compensating Condenser	3772-A	(25)	Speaker Cone and Voice Coil	2814 -B
(7)	2d R. F. Transformer	3884-B	(28)	Speaker Field Coil	2850
(8)	Condenser	3557	(2)	Resistor	38505 3867
(9)	Condenser .	3892-A	(2)	Resistor	3864
(10)	3d R. F. Transformer	3884-C	(20)	Velume Control	3879
(11)	Condenser	$38892-\mathrm{A}$ $3884-\mathrm{C}$	(31)	B Filter Condenser	3870
113	4th R. F. Transiormer	3884- ${ }^{388}$	(32)	Pilot Lamp .	3463
(13)	Condenser		(33)	Power Transformer	3868
(16)	Resistor	3767 3583	(3)	On-Off Switch.	3517
(16)	Condenser	3583	(3)	B Filter Choke	3422
(17)	Condenser	3758	(3)	Oscillator Kit.	3540
(17)	Resistor	3768 3082		Cabinet Touch-up Kit	3809
(18)	Condenser	3082			

	ciption	Part No.
(1)	Volume Control	40
(2)	First RF Transformer	388
(3)	Tuning Condenser	4000
(4)	First Compensating Condenser	3968-A
(3)	Second RF Transformer.	3884
(0)	Second Compensating Condenser	3772-A
(7)	By-Pass Condenser	3557
(8)	Coupling Condenser	892
(8)	Third RF Transformer	3884-C
(10)	Fourth RF Transformer	3884-C
(11)	By-Pass Condenser	3615
(12)	Resistor	767
(13)	By-Pass Condenser	583
(11)	By-Pass Condenser	3557
(18)	Resistor	768
(16)	By-Pass Condenser	082
(17)	Resistor	3769
(18)	Resistor	3757
(10)	Condenser	3903
(20)	Resistor	376
(11)	Tone Control	4037

No.	Deecription	Part No.
(3)	Input Transformer	3872
(23)	On-Off Switch	4095
(24)	Power Transformer (60 Cycles)	3868
	Power Transformer (25 Cycles)	3869
(22)	Pilot Lamp	3463
(3)	BC Resistor	3864
(27)	Choke	3422
(22)	Filter Condenser (60 Cycles)	3870
	Filter Condenser (25 Cycles)	3871
(2)	C Resistor.	4121
(3)	BC Resistor	3865
(3)	Output Transformer	2848
(32)	Voice Coil and Cone	2794-B
(33)	Field Coil	2850
	Knob (Volume Control)	3579-A
	Knob (Tuning Condenser)	3580-A
	Knob (On-Off Switch)	3676-A
	Dial Indicator	4006
	Scale	4118
	Speaker Plug and Cable (Short)	L-1101-A
	Speaker Plug and Cable (Long)	L-1102-A

REPLACEMENT PARTS MODEL 80

No. on Figs. 2 and 3		Part No.
(1)	Volume Control-Combined with On-Off	
	Switch	7439
(2)	Antenna Transformer	05831
(3)	Tuning Condenser Assembly	05794
(4)	Compensating Condenser - Antenna Part of Tuning Con. Assembly	
(3)	Condenser (710 Mmf .) White and Yellow	4520
(6)	Resistor ($10,000 \mathrm{Ohms}$)	4412
(7)	Compensating Condenser-I.F. Primary	04000-A
(8)	Oscillator Coil . .	05832
(9)	Resistor ($9,000 \mathrm{Ohms}$)	7501
(10)	Condenser (.09 Twin)	4989-B
(11)	Resistor (16,000 Ohms)	7500
(12)	Compensating Condenser - Low Frequency:.	04000-S
(13)	Compensating Condenser - High Frequency - Part of Tuning Con. Assembly	
(14)	I.F. Transformer	05834
(16)	Resistor ($4,000,000$ Ohms) Mounted on I.F. Transformer .	6010
(16)	Condenser (50 Mmf .) White-Mounted on I.F. Transformer	3774
(17)	Compensating Condenser-I.F. Secondary	04000-D
(18)	Compensating Condenser	04000
(19)	Resistor ($1,000,000 \mathrm{Ohms}$)	4409*
(20)	Resistor ($10,000 \mathrm{Ohms}$)	4412
(21)	Condenser ($1,000 \mathrm{Mmf}$) Green and White	5215
(22)	Resistor (240,000 Ohms)	4410
(2)	Pilot Light	6608

No. on

* A number of circuit changes were made on chassis of run No. 5 and above. This run number is rubber stamped in a star on the back of the chassis. Refering to Fige 2 and 3, the condenser (27) connects to the B-end of resistor (8) instead of to ground. The bucking coil - that section of (30) in series with the voice coil - is shorted out. The 10 mfd . dry electrolytic condenser (3) is eliminated, and replaced with a substitute .015 section combined with (32), part 3793R. The . 01 mfd. condenser (38) is eliminated. The positions of (10) (36) and (30) are changed in the chassis from that shown in Fig. 3.

MODEL 81

REPLACOMRET PARTS MODEL 81

$\begin{aligned} & \text { No. ol } \\ & \text { Fige. } \end{aligned}$	an Deacription	No.
(1) V	Volume Control*	33-5002
(3)	Antenna Transformer	32-1030
(3)	Tuning Cond. Assembly	31-1006
(6)	Compensating Condenser (Part of (3))	
(3)	Cond. (Red and Black)	7007
(6	Frequency Switch	42-1000
(7	Cond. (Orange and Yellow)	30-1000
(3)	Compensating Condenser	04000-S
(0	Compensating Condenser	04000-X
(10) P	Resistor (Blue-Black-Red)	7352
(11)	Compensating Condenser (I.F. Primary)	00-A
(11)	Oscillator Coil	32-1031
(13)	Compensating Condenser (Low Frequency)	04000-S
(11) 1	Resistor (White-Black-Red)	7501
(1)	Condenser	4989-B
(3) H	Resistor (Brown-Blue- Orange)	7500
(17)	Compensating Condenser (Part of (3)) .	
(1) I	I.F. Transformer	06100
(13) P	Resistor (Mounted on I.F. Transformer)	6010
(2)	Compensating Condenser (I.F. Secondary)	04000-D
(1)	Compensating Condenser	04000
(3) P	Resistor (Brown-Black- Green)	4409
(2) 1	Resistor (Brown-Black-	
	Orange)	4412
(2)	Condenser (Double)	7762-B
(23)	Resistor (Red-YellowYellow)	4410

No. on
Fles. Dexcription
(20) Resistor (Yellow-WhiteYellow)

Part No.
(28) Condenser $\quad{ }^{7625-B}$
(20) Output Transformer \quad Voice Coil and Cone 2660

Assembly 02861
(11) Speaker Field and Bucking 02667
(32) "Pilot light

6608
6416-W
7421
Cycles
7422
7423 3793-R
7465
7558
(8) $\begin{gathered}\text { Electrolytic Condenser } \\ \text { (4 Mfd.) }\end{gathered} \mathbf{7 4 6 7}$
Bezel
Tube Shield

Knob (Large) \quad| 7177 |
| ---: |
| 03063 |

Knob (Small) 03064
$\begin{array}{ll}\text { Knoh Spring } & 5262 \\ \text { Grid Clip }\end{array}$
Grid Clip
Four Prong Socket Assembly

5026
Six Prong Socket Assembly 6417
Chassis Mounting Screw
Chassis Mounting Washer W-315
Pilot Lamp Shield
5760
MODEL 84

REPLACEMENT PARTS FOR MODEL 84

NOTE: In later production tube shield 36 , No. 8005 is replaced by tube shield No. 28-1820 with lid No. 28-1821.

Replacement Parts for Model 86

Philco Model 87

Replacement Parts for Model 87

	Part Name	Part No.	(4)	Detector Resistor	3542
(1)	Volume Control	3076	(30)	B-C Resistor	3399
(3)	R. F. Transformer (Antenns Tuning)	3075-B	(3)	Push-Pull Output Transformer	2848
	Tuming Condenser (Complete with Drum and Scale)	3001-B	(17)	Speaker Cone and Voice Coil	$2844-\mathrm{A}$ 2850
(4)	Range Control	3133	3	Speaker Field Coil	2850 $2871-\mathrm{A}$
(0) - (10) - (1)	Neutralizing Condenser	3441-A		Speaker Plug	$2871-\mathrm{A}$ 3012
(c) - (1) - (1)	R. F. Transformer	3075-A		Cable Spring	33012
(3) - (17) - 17	By-Pass Condenser (11 mfd with Plate Resistor Winding)	3292-A		Control Knob Tuning Condenser Control)	3301 3300
(1) - (19) - (1)	Compensating Condenser	3435-A		Control Knob (Volume and Range Control)	3484
(3)	Grid Leak	3083		Condenser Drive Cable	3484 3305
(21)	Grid Condenser	3082		Knob Spring	33164
(1)	Audio Transformer	3241		Fibre Adjusting Wrench	3164
(2)	By-Pasa Condenser (. 001 mfd .)	3081		4-Hole Tube Socket	3223-A
(2)	Detector R. F. Choke	3256-A		Pilot Lamp Socket Amembly	3202-A
(3)	Push-Pull Input Transformer	3242		Terminal Panel Assembly	3236-A
(3)	Power Toggle Switch	3501		Speaker Socket	3442-A
(2)	Filament By-Pass Condenser (2 Sections 5 mfd.)	3080		5-Hole Tube Socket . Plus	342-A
(3)	6-Ohm Hum Adjustor	3096		A.C. Attachment Cord and Plus	L-1056-A
(2)	Pilot Lamp. .	3463		Speaker Cable	L-100-A
(2)	Power Transformer	3400		Socket Wrench for Speaker Mounting Boln	3312
(11)	Filter Condeneer Block	3401		Tuning Scale	3540
(1)	Filter Choke Coil (First)	3422		Oscillator Kit .	3027
(1)	Filter Choke Coil (Second)	3472		Wood Switch Plus	30%

Models 90 and 90-A
WITH 2- TYPE 45 TUEES

REPLACEMENT PARTG-MODTLS 90 and 90-A RECETVERS

No. on 1 Denceription		Part N n.
$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \hline(2) \end{aligned}$	Volume Control	5039
	1st R. F. Traneformer	03013
	Gang Condensor- 50 to 60 cycles	03001
	Gang Condenser-25 to 40 cycles	03078
(1)	Compensating Condenser (Part of Tuning Condenser Aseambly)	
(1)	2nd R. F. Trandorryer	03014
	Compensating Condenoor (Part of Tuning Condensor Amembly)	
8	1st Det. Trandormer	08015
	Compensating Condensar (Part of Tuning Condensor Aspambly)	
$\stackrel{\ominus}{(10)}$	Condraser . $09 \mathrm{M} . \mathrm{F}$. (Double)	4099-C
	Condenser . 09 M. F. (Double)	4989-B
(1)	Fixed Condenser. 00011 \} Anvernbled	3772-C
(1)	18t I. F. Transformer	03009
$\begin{aligned} & 10 \\ & \hline 10 \end{aligned}$	Compensating Condenser $\}$ Anembled	03051
	Fixed Condenser M011 Ansembled	03051
	Normal Maximum Switeh	3116
	Condenser (.000035 mf)	4900
	2nd I. F. Traneformer	03143
(1)	Compansating Condenser) Amernbled	03051
	Fized Condenser . 00011 Amrabled	
(1)	Resistor- 50,000 Ohme	4518
	Condenser . 00035	4900
	Remistor-250,000 Ohme	4410
	Resintor- $1,000,000$ Ohma	4409
	Condenser .5 M. F. (Double)	03024
	Tone Control	4037-A
	1et Audio Transformer	4952
	Condensers 2-. 25 M. F. and 1-.5 M.	03029
8	Condenser . 05 M. F.	3815-G
	Output Trantormer: H , (For Imare Cone Amombly)	2848
	K, (For Smali Cone Anmembly)	2766
(1))	Voice Coil Anembly and Cone:	
	H_{1} (Large Cone)	02997
		02996
상	Speaker Field-Arambled with Pot and Frame	
8	Resistor-250,000 Ohme	3768
	Remintor-250,000 Ohma	4410
	Filter Choke	4981
\bigcirc	Condenser 6 M. F. Electrolytic Type (50-60 cyclan)	4916
	Condensar $10 \mathrm{M} . F$. Electrolytic Type (26-40 eyciea)	5142
(3)	Condenser 6 M. F. Flectrolytic Type (25-40) and ($50-60$) cyclea	4916
(2)	B. C. Reistor	4953
	Power Transformer (50 to 60 cyclea)	4938
	Power Traniormer (26 to 40 cycloa)	4939

${ }_{\text {No. }}^{\text {No. }}$	and 4 Deecription	Fart No.
	Condenser $.015 \mathrm{M} . \mathrm{F}$. (Double)	3793-E
	Condeneer 0007 M. F. $\}$ Amembled	03060
	Resistor- 50,000 Ohme	4237
	Oacillator Coil	03016
	On-Ofi 8witch	4095
	Condenser . 001 M . F.	5215
	Resistor-13,000 Ohms	3766
	Condenser . $00011 \mathrm{M} . \mathrm{F}$.	4519
	Compensating Condenser (Part of Tuning Condenser Arembly)	
$\begin{aligned} & \text { (00) } \\ & \text { 霜 } \end{aligned}$	Renimior-5,000 Ohma	3526
	Pilot Bulb	3463
	R. F. Choke	03088
	Line Cord and Plus	L-943
	Tube Shield	03002
	Knob (large) Dial Control	4958-A
	Spring (Dial Knobs)	4147
	Knobs (small) Tone and Volume Control	4950-A
	Knob (switch)	4290-A
	Grid Clip. :	4897
	Speaker Plug and Cablo	L-1124-A
	Grommet for R. F. Trandormer Shield	3747
	Rectifier Tube Socket	5026
	Four Prong Socket Anembly	4986
	Five Prong Socket Amerpbly	4056
	Speaker Socket	4967
	Volume Control limalator	4092
	Volume Control Insulator	4286
	Fahnstock Clip L	L-1128
	Finishing Rosetter	4287
	Speaker Mounting Screws (3 used)	W-493
	Speaiker Mounting Sorewe (1 unod)	W-483
	Dial .	5021
	Mica for Gang Condenear Compensenting Condenser	3473
	Insulating Washer for Compenenting	
	Condenser . ${ }^{\text {a }}$	3500
	Tuning Condenser Mounting Wraber	3914
	Tuning Condenser Mounting Wealer	3915
	Tuning Condenser Mounting Sleove	3016
	Spring for Tuning Condeneer	4255
	Besel	8000
	Complete Pilot Bracket	03081-A
	Dial Disc	4025
	Light Shield Ecreen	4057
	Friction Drive Bracket	4090
	Brase Collar for Friction Drive	4036
	Shaft	4081

Models 90 and 90-A
ABOVE SERIAL NO. 237,001
WITH I- TYPE 47 TUBE

Models 90 and 90-A

ABOVE SERIAL No. 237.001
WITH 1- TYPE 47 TUEE

LEPEACEMENT PARTS—MODEES 90 and 90-A RECEIVERS

MODTEL 90

WITH 2- TYPE 47 TUBES
SERIAL NO. 32.001 TO B35,000 AND ABOVE B53,100

MODEL 90 REPLACEMENT PARTS

	No. on 1 and 2 Deecription	Part No.
(1)	Resistor. (10,000 Ohms)	4412
(3)	Antenna Transformer	04317
(3)	Resistor ($1,000,000$ Ohms)	4109
(4)	Tuning Condenser (50-60 cycles)	04309
	Tuning Condenser (25-40 cycles)	(14310
(1)	Compensating Condenser - Antenna Part of Tuning Condenser Assembly	
(1)	Condenser (. 05 Mfd)	3615-L
(7)	Condenser (. 09 Mid. and 200 Ohm Resistor)	4989-L
(Detector Transformer	04408
(1)	Condenser (. 09 Mfd)	3615-AJ
(10)	Compensating Condenser - Detector Part of Tuning Condenser Assembly	
(11)	Compensating Condenser--Coupling	04000-M
(12)	Oscillator Coil	04409
(13)	Condenser (700 Mmf .)	4520
(14)	Resistor (15,000 Ohms)	8208
(1))	Compensating Condenser - Low Frequency	04000-B
(18)	Condenser (410 Mfd .)	5120
(17)	Compensating Condenser - High Fre-quency-Part of Tuning Condenser Assembly	
(18)	First I.F. Transformer	04319
(19)	Compensating Condenser-First I.F.	04000-M
(20)	Kesistor ($1,000,000$ Ohms)	4409
(2)	Resistor (1,000 Ohms)	4590
(38)	Compensating Condenser-Second I.F. Primary	04000-M
(3)	Condenser (2-.25, 2-.5 Mfd.)	04407
(24)	Second I.F. Transformer	04320
(3)	Resistor (99,000 Ohms)	4411
(3)	Volume Control	6015
(77)	Compenating Condenter (Second I.F. Secondary)	04000-M
(2)	Condenser (110 Mmf)	4519
(*)	Condenser (110 Mmf .)	4519
(2)	Condenser (.01 Mfd.)	3903-.
(11)	Resistor (1,000,000 Ohms)	4517
(3)	Resistor (490,000 Ohms)	4516

[^1]

Philco Medel 95

Replacement Parts for Model 95

Number From
 NunBer Fin Diagran

(1)	Reastor
(1)	Resistor
(1)	1st R. F. Transformer
(0)	Tuning Condenser
(1)	Compensating Condenser
(c)	Condenser
(1)	Resistor
(0)	Condenser
\bigcirc	2d R. F. Transformer
\%	Condenser and Resistor
(6)	Condenser and Resistor
(1)	('ondenser
(6)	3d R. F. Transformer
9	4th R. F. Trankformer
6	Condenser
0	Condenser
(1)	Resistor
0	5th R. F. Transformer
(3)	Condenser
0	Resistor
(1)	Resistor
(2)	Resistor
-	Resistor
-	Condenser
(8)	Resistor
4	Resistor
(1)	Condenser
,	Condenser

Factory
Part No

[^2]

Replacement Parts for Model 96

No.	Deacription	Part No.	No	Deecription	Part No.
(1)	Antenna Resistor	3526	(30)	Volume Control	4093
(3)	First R. F. Transformer	3744-A	(3)	By-Pass Condenser	$3615-\mathrm{D}$
(3)	Tuning Condenser .	4000-D	(3)	Resistor	3768
(6)	Compensating Condenser	3772-A	(33)	Resistor	3542
(3)	By-Pass Condenser .	3615-F		Tone Control	4037-A
(6)	Resistor	3542	(35)	Resistor	3542
(7)	Second R. F. Transformer	3744-B	(36)	Resistor	3766
(8)	By-Pass Condenser and Resistor	3615-C	(37)	Resistor	3656
(9)	By-Pass Condenser and Resistor	3615-B		Input Transformer	3537
(10)	Third R. F. Transformer	3744-C	(30)	On-Off Switch .	4095
(11)	By-Pass Condenser	$3615-\mathrm{E}$		Power Transformer (60 Cycle)	3752
(12)	Fourth R. F. Transformer	3744-C		Power Transformer (25 Cycle)	3753
(12)	By-Pass Condenser	3615-E		C Resistor . . .	3763
(14)	Resistor	3766		Choke	3422
(16)	Fifth R. F. Transformer	3775-B		Filter Condenser (60 Cycle)	3754
(16)	By-Pass Condenser and Resistor	3615-B		Filter Condenser (25 Cycle)	3755
(17)	By-Pass Condenser and Resistor	3615-C	(4)	Resistor.	3764
(18)	Condenser -	3774		B Resistor	3762
(1)	Resistor	3769		Out-Put Transformer	2848
(20)	Resistor	3767		Field Coil.	2850
(21)	Resistor	3767		Voice Coil and Cone	2794-B
(22)	By-Pass Condenser	3583		Pilot Lamp	3463
(2)	Resistor	3767		Condenser (LOC)	3793-B
(2)	Resistor	3768		Knob (Vol, Control)	3579
(2)	Resistor	3769		Knob (Tuning Condenser)	3580
(3)	By-Pass Condenser	3082		Dial Indicator	4006
(3)	By-Pass Condenser	3082		Scale	4118
(23)	Condenser	3793-C		Speaker Plug and Cable (Short)	L-1101-A
(2)	Resistor	3769		Speaker Plug and Cable (Long)	L-1102-A
Note:	The first two Compensating Condensers	are 3772	and	fourth Condensers are 3968-A.	

MODELS 111 AND 111-A

NOTE: The connection shown between Condenser No. (3) and Condenser No. © should also be connected to ground.

REPLACEMENT PARTS

	\% on and Deecription
(1)	Resistor- 10,000 Ohms
	1st R. F. Coil
(3)	Tuning Condenser
4	Compensating Condenser
(b)	2nd R. F. Coil
c	Condenser- 05
7	Compensating Condenser
(Resistor-100, 000 Ohms
-	1st Detector Coil
(16)	Condeaser - .05 and 250
(11)	Condenser - 05 snd 250
(12)	Couphing Condenser
(13)	Compensating Condenser
(11)	Oscillator ('oil . .
(15)	Compensating ('ondenser
(18)	Resistor-50,000 Ohms
17	Coudenser - 25 doubie
(10)	Resistor-13.000 Ohms
(19)	Condenser-00011
(8)	Resistor-1,000 Ohms
(11)	Condenser - . 0 007 7
(2)	Compensating Condenser
3	Condenser- 00011 .
(21)	Compensating ('ondenser
(25)	1st I. 5. Coil
(20)	Compensating Condenser
(iv)	Condenser - $\mathrm{ClO}_{(1)}$
(2)	('ondenser-. 05
(1)	Coudenser- 05 and 250
(3)	Itange Switch
(1)	2nd 1. F. Coil
(12)	Compensating Condenser
(3)	Condenser - . 00011
(3)	Resistor-500,000 Ohms
(3)	Condenser-.00005
*)	Compensating Condenser
(3i)	3rd 1. F. Coil
(8)	Condenser-. 00011
(3)	Resistor $-100,000$ Ohms

MODELS 112 AND 112-A

REPLACEMENT PARTS

	\% on and 4 Deacription
(1)	Resistor-10.000 Ohms
(2)	1st R. F. Coil
(3)	Tuning Condenser
(4)	Compensating Condenser
(3)	2nd R. F. Coil
(0	Condenser- 05
(2)	Compensating Condenser
(8)	Resistor - $100,000 \mathrm{Ohms}$
(6)	18 D Detector Coil
(10)	Condenser-. 05 and 250 Ohms
(ii)	Condenser-. 05 and 250 Ohms
(19)	Coupling Condenser
(13)	Compensating Condenrer
(4)	Oscillator Coll
(13)	Compensating Condenser
(ii)	Resistor- $50,000 \mathrm{Ohms}$
(17)	Condenser - 25 double
(iv)	Resistor-13,000 Ohms
(19)	Condenser - 00011
(2)	Resistor-1.000 Ohms
(11)	Condenser-.0007
(2)	Compensating Condenser
(2)	Condenser - 00011
(2)	Compensating Condenser
(23)	1st 1. F. Coil
(3)	Compensating Condenser
(8)	Condenser-. 0001
(28)	Condenser-. 05
(2)	Condenser- 05 and 250 Ohms
(iv)	Range Switch
(11)	2nd 1. F. Coil
(82)	Compensating Condenser
(1)	Condenser - . 00011
(14)	Resistor-500,000 Ohms
(1)	Condenser - . 00005
(6)	Compensating Condenser
(19)	3rd 1. F. Coil
(3)	Conderser - 0.00011
(1)	Resistor-50,000 Ohms

(\%) Resistor-50,000 Ohms

> Part No.
> 4412
> 3884-J
> $4000-\mathrm{D}$
$3772-\mathrm{A}$
> $3772-A$
$3884-\mathrm{T}$
> $3884-T$
$3615-L$
> 3968 A
> 4411
$3884-V$
> 定
> 号
> KK
> $3968-\mathrm{A}$
$3884-\mathrm{U}$
$3968-\mathrm{A}$
> $3968-A$
4518

> | 4518 |
| :--- |
| 3557 |
| 3766 |

> 3557
3766
4519
> 3760
4519
4590
> 4590
$3772-\mathrm{B}$
> $3772-\mathrm{B}$
4519
> 4519
$3772-\mathrm{C}$
> $4501-13$
> 3772-C
> 4519
> $3615-\mathrm{J}$
$3615-\mathrm{B}$
> $3615-\mathrm{B}$
3116
> 3116
$4501-C$
> $35012-\mathrm{C}$
4519
> 4519
> 4517
4587
> $3772-\mathrm{D}$
$4501-\mathrm{D}$
> $4501-\mathrm{D}$
4519
> $+518$

REPLACEMENT PARTS-MODELS 112,112 -A

(Above Serial No. 174,001)

	3 3 and 4 Deacription	Part No.
(1)	Resistor (10,000 ohms)	4412
(3)	First R. F. Coil	3884-S
(3)	Tuning Condenser	4000-D
(1)	Compensating Condenser	04000-E
B	Second R. F. Coil	3884-T
(c)	By-pass Condenser (05 mfd .)	3615-J
(1)	Compensating Condenser	04000-D
(8)	Resistor ($99,000 \mathrm{ohms}$)	4411
0	By-pass Condenser (05 mfd)	$3615-\mathrm{D}$
(10)	Resistor (99,000 ohms)	4411
(11)	Condenser	3892-A
(12)	First Detector Coil	3884-V
(11)	By-pass Condenser \& Resistor (05 mfd and 250 ohms)	3615-Z
(14)	By-pass Condenser \& Resistor (.05 mfd and 250 ohms)	3415-B
(13)	Compensating Condenser	04000-E
(11)	Compensating Condenser	$04000-\mathrm{J}$
(17)	First I. I. Transformer	03038
(i8)	Compensating Condenser	04000-J
(19)	By-pass (Condcnser (. 05 mfd.)	3615-J
(20)	Range Switch	3116
(21)	By-pass Condenser \& Renistor (. 05 mfd . and 250 ohms)	3615-B
(22)	Second I. F. Transformer	03039
(2)	Compensating Condenser	04000-J
(21)	Fesistor (490,000 ohims)	4517
(3)	By-pass Condenser ($1 / 4 \mathrm{mfd}$)	3657
(23)	Resistor (70,000 ohms)	5385
(7)	Filter Condenser Block ($50-60$ cycles)	03489
	Filter (ondenser Block (25-40 cycles)	03589
(28)	Compensating Condenser	$040 \times 00-\mathrm{L}$
(20)	Third I. F. Transformer	03040
(0)	Condenser (110 mmf .)	4519
(1i)	Resistor (51,000 ohms)	4518
(3)	Resistor (51,000 ohms)	4618
(3)	Kesistor (99,000 ohma)	4411
(4)	By-pass Condenser (5 mfd .) 2 used	3583
(3)	Resistor (99,000 oh/me)	4411
(18)	Condenser (250 mmf .)	3082
(II)	Resistor (25,000 ohms)	3656
(3)	Resistor (99,000 ohms)	3769
(30) I	Resistor (490,000 ohms)	3768
(0)	Condenser (. 015 mid .)	3793-F

	No.on 3 Deacription	Part No.
(1)	Volume Control	4093
(19)	$1 y^{\text {y }}$ pass Condenser (.05 mid)	3815-S
(4)	Resistor ($70,000 \mathrm{ohmg}$)	3542
(4)	Tone Control	03137
(6)	Push-pull Input Transformer	5862
(6)	Resistor (25,000 ohms)	4516
(c)	Resistor (13,000 ohms)	3766
(6)	I'ush-pull Output Transformer	2635
(6)	Voice Cotil and Cone Assembly	02997
(50)	Speaker Field (ussembled with pot and frame)	02892
(3)	Resistor (15,000 ohms)	5718
(3)	Oscillator Coil	3884-U
(3)	('ondenser (700 mmf .)	4520
(3)	Resistor (50,000 ohms)	4518
(s)	Compensating ('ondenser	$01000-\mathrm{F}$
(a)	Compensating Condenser	04000-E
(77)	Resistor (13,000 ohms)	3766
(8)	Resistor (1,000 ohms)	4590
(6)	Condenser (110 mmf)	4519
(0)	By-pass ('ondenser (. 015 mfd double)	3793-E
(11)	On-Off Switch'.	4095
(6)	Power Transformer (115 volts $50-\mathrm{f0}$ (cycles)	5594
	Power Transformer (115 volts $\mathbf{2 5 - 4 0}$ cycles)	5595
	Power Transformer (230 volts $50-60$ eycles)	5596
(3)	Resistor (205 ohms)	03513
(c)	Hum Control Potentiometer	5650
(a)	Electrolytic Condeoser (6 mfd .)	4916
(6)	Filter Choke	5643
(6)	Pilot Light	3463
(6)	Electrolytic Condenser (6 mfd)	4916
66)	Resistor (2 sections 70 ohms each)	3764
	Knob (Large)	03063
	Knob (Small)	$03 \mathrm{Hf4}$
	Knob (Switch)	03437
	Spring (for Switch Knob)	5262
	Spring (for Dial Knob)	4147
	Tube Shield	03518
	Grid Clip	4897
	Four Prong Socket Assembly	5026
	Five Prong Socket Assembly	4956
	Volume C'ontrol Insulator	4286
	Dial Scale	4276
	Bercl	5010
	Pilot Bracket Complete	4027-A

REPLACEMENT PARTS MODEL 470 AND 470 -A

	1 and $2 \quad$ Denctiption	Part No.
(1)	Oscillator Coil*	03734
(2)	By-pass Condenser (05 mfd .)	3615-M
(1)	Gsng Condenser Assembly	03692
(4)	Resistor (13,000 ohms) .	3766
(1)	Compensating Condenser (19 MC End of Top Scale)	04000-E
(${ }^{\text {c }}$	Compensating Condenser (8.5 MC End of Center Scale)	04000-E
(7)	Compensating Condenser (3.6 MC End of Bottom Scale)	04000-E
(1)	Frequency Control Switch	03751
()	Resistor ($240,000 \mathrm{ohms} \mathrm{)}$	3768
(10)	Condenser ($1,250 \mathrm{mmf}$)**	5886
(ii)	Compensating Condenser (8.5 MC End of Top Scale	04000-F
(12)	Condenser (800 mmf .)	5878
(1)	Compensating Condenser (3.6 MC End of Center Scale)	04000-F
(11)	Condenser (250 mmf.)	3082
(14)	Compensating Condenser (1.5 MC End of Bottom Scale)	04000-F
(16)	Detector Transformer*	03734
(17)	Frequency Filter	03662
(4)	Antenns Switch Assembled with (n)	5796
(19)	Resistor (2 megohms) Assembled with (20)	03879
(2)	Condenser (110 mmf .) Assembled with (10)	03879
(3)	Condenser (250 mmf .)	3082
(2)	Resistor (99,000 ohms)	3767
(2)	R. F. Choke . .	03893
(3)	Shielded Cabli.	L-1278
(2)	Resistor (32,000 ohms)	3525
(Reasator (32,000 ohms)	3525
(21)	Electrolytic Condenser (6 mfd .)	4916
3	Pilot Light (8hort Wave Unit)	3463
¢	Resistor (5,000 ohms)	3526
(6)	Plug . ${ }^{\text {. }}$	03913
	($50-60$ cycles)	5906
(a)	Filament Transformer $\left\{\begin{array}{l}(25-40 \text { cycles) } \\ (50-60 \text { cycles },\end{array}\right.$	5923
		5924
(12)	On-off Switch (Aseembled with (19))	5796
(13)	Volume Control	5039
(4)	First R. F. Transformer	03082
(26)	STuning Condenser ($50-60$ cycles)	03076
(4)	Tuning Condenser (25-40 cycles)	03077
(3)	Compensating Condenser - Antenna - Part of Gang Condenser Assembly	
(3)	First Detector Trandformer	03083
(3)	Compensating Condenser - Detector Part of Gang Condenser Aseembly	
(*)	Compensating Condeneer - First I. F. Primary	04000-J
(0)	First I. F. Transformer	03091
(4)	Compensating Condenser - First I. F. Secondary	04000-H
(4)	Second I. F. Transformer	03092
(4)	Compensating Condenser-Second I. F.	04000-K
(4)	Resistor (250 ohms Combined with .09 mfd . Condenser)	4989-E

*Includes matehed oscillator coil and detector tranaformer.
**These parta replaced on later production by 0018 midd condenaer, part 6018

REPLACEMENT PARTS MODEL 490

	No. ond 2 Deecription	Part No.
	Oscillator Coil*	03734
	By-pass Condenser (.05 mfd .)	3615-M
	Gang Condenser Assembly	08692
	Resistor (13,000 ohms)	3786
	Compensating Condenser (19 MC end of Top Scale)	04000-E
(0)	Compenssting Condenser (8.5 MC End of Center scale)	04000-E
(7)(8)(0)(10)(11)	Compensating Condenser (3.6 MC End of Bottom Scale)	04000-E
	Frequency (ontrol Switch	(33751
	Resistor (240,000 ohms)	3708
	Condenser ($1,250 \mathrm{mmf}$) **	5886
	Compensating Condenser (8.5 MC End of Top Scale) ${ }^{\text {a }}$	04000-F
(12)	Condenser (800 mmf)	5878
(14)	Cumpensating Condenser (3.6 MC End of Center scale)	04000-F
	Condenser (250 mmf) . .	3082
(16)	Compensating Condenser (1.5 MC End of Bottom Scate)	04000 ${ }^{\text {F }}$
(10)	Detector Transformer*	03734
(17)	Frequency Filter	03662
(11)	Antenna Switch Assembled with (r)	5798
(10)	Resistor (2 megohms) Assembled with	03879
(2)	Condenser (110 mmf .) Assembled with (1i)	03879
(1)	Condenser (250 mmi .)	3082
(1)	Rasistor (99,000 ohms)	3767
(3)	R. F. Choke .	03893
(21)	Shielded Cable	L-1278
(8)	Resistor (32,000 chrms)	3525
(3)	Resistor (32,000 ohms)	3525
(n)	Electrolytic Condenser (6 mfd.)	4916
(2)	Piot Light (Short Wave Unit)	3463
(2)	Resistor ($5,000 \mathrm{ohms}$)	3526
(8)	Plug .	03913
	($50-00$ cyclee)	5908
(3)	Filament Tranaformer (25-40 cycles) 230	5923
	$\left\{\begin{array}{l} \text { (} 50-60 \text { cycles, } \\ \text { volts) } \end{array}\right.$	
(13)	On-off Switch (Assembled with (10)	5796
(a)	Resistor (10,000 ohms) .	4412
(4)	First IR. F Transformer	03360
(3)	Gang Condenser Asss mbly (50-60 cycles)	03001
	Gang Condenser Assembty ($25-40$ cycles)	03078
(8)	Compensating Condenser-First R. F.Part of Gang Condenser Asombly	
	Second K. F. Tranaformer .	03014
	Compeussting Condenser-Second R.F.Part of Gang Condenser Assembly	
(0)	First Inetector Transformer	03015
(6)	Compensating Condenser-First Detector - Part of Gang Condenser Assembly	
(4)	Compensating Condenser-Firat I. F Primary	04000-J
(4)	Firat l. F. Transformer	03009
(3)	Compensating Condenser-First I. E. Secondary	04000-J
(山)	Compensating Condenser-Second I. F. Primary	04000-L
(45)	Becond I F. Traneformer	03346
(4)	Resistor (51.000 ohms)	4518
(17)	Condenser (110 mmf)	4519
(4)	Ressistor (51 (0)0 ohms)	4518
(19)	Resistor (490,004) ohma)	4517
(3)	Resistor (yu, ©, 0 ohma)	4411
(4)	(${ }^{\text {condenst'r (}}$ (01 mind.)	$3903-\mathrm{R}$
(12)	Condenser (250 mm)	3082
(3)	Volume Control	5366
(4)	By-pres Condenser (3-. 25 mid.)	03325
* Includes matelied omeillatir emil and detertor tranaformer.		

	I anci 2 Deactiption	Part No.
(6)	Resistor (51,000 ohms)	4518
(${ }^{\text {c }}$	Hesistor (70,000 ohms)	5385
(67)	Pitot Light (Broadcast Unit)	3463
(6)	Condenser (.05 mfd)	$3615-W$
(30)	Reaistor ($490,000 \mathrm{ohms}$)	4517
(6)	Oscillator Coil	03016
(1)	Condenser (.09 mfd .)	4989-G
(6)	Compensating Condenser-Low Frequency	04000-B
©	Condenser (700 mmf .)	4520
(4)	Resistor ($51,000 \mathrm{ohms}$)	4518
(a)	Resistor (5,000 ohms)	5310
(\%)	Compensating Condenser - High Fre-quency-Part of Gang Condenser Assembly	
	Condenser (110 mmf .)	4519
	Condenser (.05 mfd .)	$3615-\mathrm{U}$
	Resistor (51,000 ohms)	4237
	By-pass Condenser ($1 ., .25, .1$) 50-60 cycles	03327
	$\begin{aligned} & \text { By-prss Condenser (1., .25, .25) } 25-40 \\ & \text { cycles) } \end{aligned}$	03624
(7)	Resistor (70,000 ohme)	5385
(7)	Condenser (05 mfd)	3615-E
(73)	Resistor (25,000 ohms)	4516
(9)	Voice Coil and Cone Aswembly	02996
(76)	Speaker Field (Assembly with Pot,	02968
(6)	Output Transformer	2673
(7)	Tone Control	03137
(3)	Resistor (240,000 ohms) $50-60$ cycled	4410
	Resistor ($99,000 \mathrm{ohms}$) 25-40 cycle	4411
(69)	Condenser (01 mmid)	$3903-\mathrm{P}$
©	Rexistor (25,000 ohms)	3656
(3)	Resistor ($25,000 \mathrm{ohma}$) $50-60$ cycles	3656
	Resistor (50,000 ohms) 25-40 cyclea	4237
(8)	Condenver (01 mfd .)	3903-M
	Resistor ($240,000 \mathrm{ohms}$)	4410
	Condenser (.015 mid. Double)	$3793-\mathrm{E}$
	On-of Switch	4095
	Power Transformer (50-80 cycles)	5382
	Power Tranaformer ($25-40$ cyclen)	5363
	Power Transformer ($50-60$ cycles, 230 volts	5384
(a)	Electrolytic Condenser (6 mid .) $50-6 \mathrm{C}$ cyclee	4916
	Electrolytic Condenser (10 mfd) 25-40 cycies	5142
(3)	Choke	4819
	By-pass Condenser (. 09 mfd .) $50-60$ cycles	4989-J
	By-pass Condenser (18 mfd .) 25-40 cycles	4989-K
\bigcirc	Electrolytic Condenser (6 mid.) $50-60$ cycles	4916
	Electrolytic Condenser (14 mfd .) $25-40$ cycles	5725
(1)	IS. C. Resiator	03457
(a)	Resistor (240,000 ohms) 50-60 cycles	3768
	Resistor ($490,000 \mathrm{ohms}$) $25-40$ cycles	3769
	Line (ord and Plug	L-943
	Tube Shield (1 arge)	03982
	Tube Shield (27 Type)	5387
	Hezel (Broadcast)	5009
	Bezel (Short Wave)	5176
	Knol (Large)	$\bigcirc 130013$
	Knob (Small)	03004
	Knob (On-Of 9witch-Brosdesst)	034337
	Knol (Control Switch-Short Wiave)	5811
	Spring (For Small Knobe)	4147
	Spring (For Large Knobe)	5262
	Grid Clip	4897
	Five Prong Socket Assembly	4956
	Four Prong Socket Assembly	4955
	Dial Complete (Broadcast)	03031
	Dial Complete (Short Wave)	03890

Replacement Parts for Model 511

Nvamam	Namet or Pame	$\begin{aligned} & \text { Facrony Pant } \\ & \text { Nomerin } \\ & \text { (Order by thi } \\ & \text { Number) } \end{aligned}$
(1)	Volume Control	3076
(3)	R. F. Transformer (Antenns Tuning)	3075-B
(3) - (11) - (10)	R. F. Transformer	3075-A
(1)	Range Control	3133
	Tuning Condenser (complete with drum and shield)	3001-B
(1) - (13) - (14)	Neutralising Condenser	3025-A
(1) - (14) - (10)	Compensating Condenser	3026-B
(7) - (13) - (17)	By-Pass Condenser . 1 mfd . with Plate Resistance Winding	3114-A
(2)	By-Pass Condenser . 001 mfd .	3081
(20)	Filament By-Pass Condenser (2 sections . 5 mfd .)	3080
(2)	Grid Ieak . .	3083
(2)	Grid Condenser	3082
(2) - (2)	A. F. Transformer	3077
3	Phonograph Pick-Up Jack	3087
(8)	Output Filter Choke. .	3078
(2)	Output Filter Condenser . 5 mfd	3079
(3)	Power Switch - Toggle	3117
(3)	Primary Tap Switch	3116
(11)	6-ohm Hum Adjustor	3096
(12)	20-ohm Hum Adjustor	3086
0	Plot Lamp . . .	3106

	Pilot Lamp Socket Assembly	3043-A
	Tube Socket Assembly - 4-hole	3061-A
	Tube Socket Asoembly - 5-hole	3167-A
	Tube Socket Insulator 4-hole-red .	3124
	Tube Socket Insulator 4-hole-brown	3070
	Tube'Socket Insulator 5-hole - brown	3158
(24)	Power Transformer - 50-60 cycle	3073
(2)	Power Transformer - 25 - 40 cycle	3106
(3)	Filter Condenser Block - 50-60 cycle	3108
(3)	Filter Condenser Block - 25-40 cycle	3109
(9)	Filter Choke Coils	2-224
(1i) -6	B-C 5-section Resistor	3088 (A)
(17) -3	B-C 4-Section Resistor	3088 (W)
(17)	B Resistor 70,000 ohms.	2-129
(1)	By-Pass Condenser . 1 mfd	3114
	Terminal Panel Assembly	3084-A.
	Control Knob-Tuning Condenser	3035-A
	Control Knob - Volume and Range Control	3036-A
	A.C. Attachment Cord and Plug	L-943-A
	Wiring Cable	L-946
	Speaker Tone Filter	2946-B
	Fibre Adjusting Wrench	3168

PHILCO CIRCUIT TESTER
 - MODEL 025 •

A.C. VOLTS—D.C. VOLTS—MILLIAMPERES-AMPERES-OHMS-OUTPUT METERCAPACITY METER

The latest a ddition to PHILCO'S line of testing equipment-an accurate, compact tester for all types of radio sets. Affords simple and quick tests by means of resistance, voltage and current methods.

Modern radio test methods require a unit of this kind for speed, simplicity and accuracy. The many different applications of the meter and the convenient rotary control switch make this instrument unusually valuable to the serviceman, both for outside and shop service work.

Serviceman's Net Price
$\$ 36.60$

Philco Mode! 025
5 A. C. Voltage Ranges: $0-10$ volts: 0.30 volts; 0.100 voits: 0.300 volts; 0.1000 volts. 5 D. C. Voluge Ranges: Same as A. C. Ranges isted above. 5 Output above. 3 Millammeser Ranges: 0.1 Mil.; $0-10$ mils. 0.100 mils. Special 10 ampere shunt available for utomobile radio current tests, 3 Ohmmeter Ranges $0.1 \mathrm{t} / 2$ megohms; 0.15000 ohms; 0.150 ohms. Meter adaptable for capacity tests. Rotary. Switch controls al meter ranges and connections. All necessary Leads
Adaptors and Batteries furnished complete.

Philco 024 Signal Generator

[^3]
PHILCO SIGNAL GENERATOR - MODEL 024 •

INTERMEDIATE AND BROADCAST FREQUENCIES

The Model 024 Philco Signal Generator is a complete, self-contained, accurately calibrated instrument, designed to cover all frequencies from 105 K . C. to $2000 \mathrm{~K} . \mathrm{C}$. All necessary batteries and tubes are included within the container. No external connections of any kind required.
Modern Superheterodynes cannot be adjusted properly without a highgrade signal generator, but many servicemen have been unable to pay the high prices previously asked for quality equipment. The PHILCO MODEL 024 now makes it possible for every serviceman to own a high quality Signal Generator at a figure about equivalent to the sum collected on his first six RADIO MANUFACTURERS SERVICE jobs.

MODEL 024 SIGNAL GENERATOR
 Complete with Batteries and Tube

Serviceman's Net Price
$\$ 13.50$

PHILCO ALL-PURPOSE SET TESTER

- MODEL 048 •

PORTABLE! . . . COMPACT! . . . ACCURATE!

CIRCUIT TESTER + SIGNAL GENERATOR

Handles every Service Job and meets all Testing Requirements from the Crystal Set up to the latest Super with duo-diode-triode tubes. Will not become obsolete with future radio developments.

5 A. C. Voltage Ranges
5 D. C. Voltage Ranges
3 D. C. Milliammeter Ranges
3 Ohmmeter Ranges
5 A. C. Output Meter Ranges
Capacity Meter

Complete Tube Test
Variable Frequency I. F. and R. F. Signal Generator from 105 K. C. to 2000 K. C.

All Test Prods, Leads, Batteries, Tube, etc. included-

Serviceman's Net Price Complete
$\$ 48.60$

READ THESE SPECIFICATIONS! Twenty-two meter ranges and signal generator at a price made possible by Philco Iaboratory design and construction. Rugged instrument-easy to read, quick change of scales, no danger of taking false readings. Accurate signal generator, in K. on the inserument panel (no graphs to conswlt). Finest type precision movement meter. All test leads designed to simplify your service job. Real universal clip for con your service job. Real universa, ant screen grid tubes or antenna post, sturdy test prods designed for long service. New exclusive Philco output circuit adapters, will fit 4-, 5., 6., 7 and 8 -prong sockets, connect output ing tubes from chassis. All leads plug into tester panel.

PHILCO UNIVERSAL TEST CABINET
 - MODEL 059 -

SPECIFICATIONS OF MODEL 059
Auditorium speaker capable. handing up to is watts, or the full output from the most powerful modern receivers. Speaker may be opor push.pull output tubes. Field ex. citer, including type 80 tube, buils into the tester. Four dummy fields built in for connecting in place of speaker on set being tested. Output meter on panel can be immediately connected to set by turning switch at the top of the cabinet.
complete facilities for every neces. in the "All-Purpose" tester. which is built into the Universal Test Cabinet.
Dimensions: Height, $273 / 4$ in.; width, 18 in.: depth., 9 in. Weight
(with batteries), 62 ibs.

BUILT-IN POWER SPEAKER WITH EXCITER ELIMINATES BRINGING IN THE CUSTOMER'S SPEAKER ABSOLUTELY UNIVERSAL-TESTS ANY RADIO

Designed especially for members of Radio Manufacturers Service, this De Luxe Complete Testing Cabinet presents an unusually rich appearance, commanding immediate interest and respect by the customer and public. In addition to being in the most convenient and economical form for high-speed testing, its appearance alone will add prestige to your place of business. Precision-built, and housed in an artistic cabinet, it is bound to return ample dividends on your investment.

Everything a Well-Equipped Service Department Needs:

Built-in 15 -watt Speaker, for radio chassis test.
Universal Speaker Plug and Socket, with necessary Cables.
Signal Generator, variable 105 to 2000 K. C.

Visual and Audible Output Indicators.
5 A. C. Voltage Ranges.
5 D. C. Voltage Ranges.

3 D. C. Milliammeter Ranges,
3 Ohmmeter Ranges.
5 A. C. Output Meter Ranges.
Capacity Meter.
Tube Tester.
Necessary Tubes and Batteries included. All Necessary Connecting Leads, Test Prods and Adapters included.

No longer necessary to have many types of extra speakers available to test chassis. The built-in speaker in the Model 059 automatically eliminates this expense and bother. Strictly Universal Speaker Plug and Socket.
Cuts your trouble in half. Now you can remove only the chassis on service calls.
TESTS A. C. SETS, BATTERY SETS, AUTO SETS.
Complete . . . Convenient . . . Attractive . . . Efficient
Serviceman's Net Price Complete
$\$ 90.00$

PHILCO ${ }^{\text {ALLMêAME }}$

THE

AERIAL TO ELIMINATE NOISE on Gle bands :

You've been waiting for it - now it's here! NOTHING LIKE IT
ON THE MARKET!

> Easy to Sell-It's Designed, Built and Advertised by PHILCOI

PHILCO
 Service Bulletin-No. 188

Models 34 and 34A

Philco models 34 and 34 A are superheterodyne "all wave" receivers designed for reception of both broadrast and short wave stations; they operate from batteries as a source of power. Model 34 is intended for use with a 2 -volt storage battery and a dry B-and-C battery unit; model 34 A uses a dry A battery in connection with the dry B-and-() unit.

Model 34 uses seven tubes; model 34A has in addition a ballast tube (type 1-C-1). The chassis of the two sets are identical, but the model 34 when shipped has a jumper wire across the filament contacts of the ballast tube ($1-(-1$), socket. This wire should be left in place as long as the set is operated on the storage battery. In model 34 A the jumper wire is removed and the ballast tuhe ($1-()^{\circ}-1$) must be in place at all times.

Model 34 uses the following lhilco low-current-drain 2 -volt tubes:

Detector Oscillator	106
Intermediate Frequency (2)	34
2nd Detector	30
1st A.F.	32
Driver	30
Output	19
Ballast (34A only)	1-C-1

Model 34 is intended for use with the Philco type $172-\mathrm{K}$ 2-volt storage A battery, model 34A uses Philco type 896 dry A battery. Both sets use the Philco type P968 combination $\mathrm{B} \& \mathrm{C}$ battery unit.

The current drain is: A battery- 750 milliamperes; B battery- 16 to 19 milliamperes. The ballast tube used in the model 34 A keeps the voltage delivered by the dry A battery to the filament at nearly two volts at all times.

The Intermediate Frequency of the set is 460 Kilocycles. The range of receivable frequencies is 520 to $22,000 \mathrm{~K} . \mathrm{C}^{\prime}$.

FIG. 2-Position of Compensating Condensers Reached from Above Chassis

Table 1-Tubè Socket Data*

CIRCUIT	Det.Osc.	$\begin{aligned} & 18 t \\ & 1.5 . \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { Dot. } \end{aligned}$	$A_{1}^{18 t} F \text {. }$	Driver	Output
TYPE TUBES	1 C 6	34	34	30	32	30	18
Filament Volts	1.9	1.9	1.9	1.9	1.8	1.9	1.9
Plate Volts	$\begin{aligned} & \mathrm{P}-135 \\ & \mathrm{C} 2-120 \end{aligned}$	135	135	\ldots	40	135	135
Screen Grid Vuits.	674.2	$671 / 2$	674/2	\cdots	35		

*The above values were obtained from the underside of the chassis, using test prods and leadd, with a high-resistance multi-range D. C. voltmeter. The Philco Model 048 All Purpase Set Tester is hiphly recommended for sll tests of this cyeles. Readings taken with a plug-in adapter will not be satisfactory

FIG. 1-Top View of Chassis

FIG. 3-Tube Socket Layout (View of Underside)

FIG. 4-Schematic Wiring Diagram

PHILCO

FIG. 5-Bottom View of Chassis, Showing Parts, and Position of Compensating Condensers Reached from Below Chassis

MODEL 34 PARTS

(4) Compensating Coudenser (3rd I. F. Sec.) \ldots

No. on Figs.	n Deecription	Part No.
(35) C	Condenser (000011 mfd . twin)	8035-C
(36)	Condenser (.05 mfd)	3815-J
(37) R	Resistor (1,000 ohme-Brown-Black-Red).	5837
(38) K	Resistor (50,000 ohms-Green-Brown-Orange).	4518
(39) K	Resistor (2 meg.-Red-Black-(ireen).	5872
(40) C	Condenser (.01 mfd .).	30-4124
(41) V	Volume Control and On-Off Switch	33-5084
(42) R	Resistor (1.0 meg.-Brown-Black-Gireen).	4409
(43) R	Resietor (330,000 ohno-Orange-()range-「ellow).	4410
(41) K	Resistor (25 meg.-Ked-Yellow-Y'ellow).	6046
(45) P	Resistor (70,000 ohrus-Violet-Black-Urange)	5385
(46) IR	Resistor (5 meg.- Yellow-White-Yellow)	4517
(4) C	Condenser (01 mfd)	30-4124
(48) T	Tone Control.	30-4152
(49) A	Audio (Input) Trausformer.	7233
(50) C	Condenser (. 003 mfd)	7301
(51)	Output Transformer	32-7223
(52) V	Voice Coil d Cone desembly (KR-6)	36-3157
(53) P	Pilot Lamp	5316
(5) C	Condenser (01 mfd)	Part of (46)
	Pilot Lamp Bracket	38-5633
	Battery Cable.	413083
	Tube shield (1)	28-1107
	Tube sinield (2)	8005
	Six Prung sucket	7547
	Four Prong Socket	7544
	Speaker socket	4957
	Knob (Medium)	03063
	Kinob (Small)	03064
	Knob (Larke).	27-4025
	Dial Assembly	31-1162
	Dial Scale.	27-5039
	Idler Shaft Asserubly	31-1056
	Gear (Wave-Band Switch)	28-7012
	Mounting Bolt.	W-567
	Mounting Washer (Rubler)	5189
	Mounting Washer (Steel)	5058

ADJUSTING MODEL 34

The compensating condensers of Model 3 thave been adjusted accurately before shipment. If later adjustment is required, in most cases only the intermediate frequency and low frequency compensating condensers should be done. Extreme care must be given the adjustment of the high frequency circuits, and the adjustment should NOT be undertaken unless the receiver is seriously out of alignment.

DO NOT ATTEMPT TO ADJUST the compensating condensers mounted upon sections numbered 3 and 4 of the Tuning Condcnser Assembly. These have been adjusted, and sealed, at the factory.

Philco Model 04s All-Purpose Set Tester, which incorporates a signal generator covering broadcast and police band frequencies, is recommended for the adjustment of the intermediate frequency and low frequency compensating condensers.

Philco Model 091 crystal-controlled Signal Generator is recommended for the high frequency adjustments. It gives an accurate and constant 3600 kilocycle (3.6 megacycle) signal, the harmonics of which include the necessary high frequencies for adjusting the compensating condenscrs in the high frequency circuits.

1-ADJUSTMENT OF THE INTERMEDIATE FREQUENCY-Remove the grid clip from the type 1C6 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at $460 \mathrm{K.C}$. . (the intermediate frequency of Model 34) and adjust each of the I.F. compensating condensers in turn, to give maximum response in the output of the receiver. The location of the I.F. compensating condensers is shown in Figure 2. Each of these transformers has a dual compensating condenser mounted at its top, and uccessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut.

2-ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 1C6). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (Range 1) and the Station Selector at the low frequency ($520 \mathrm{K.C}$) end. Adjust the Wave Trap (2) condenser to give MINIMUM response to a 460 K . C. signal from the signal generator. The Wave Trap (2) is located at rear and underneath the chassis, and is shown in ligures 2 and 5 . It is reached from the rear of the chassis.
3-ADJUSTMENT OF 'THE DIAL FREQUENCIES -Model 34 has four separate frcquency bands or ranges, each obtained by one of the four positions of the waveband switch. There is a compensating condenser for each
range. which must now be adjusted. In the following procedure, the frequency ranges referred to, and obtained by the different positions of the switch are:

Range 1.	$520 \mathrm{~K} . \mathrm{C} .-1500 \mathrm{K.C}$.
Range 2.	1.5 M.C. -4.0 M.C.
Range 3	4.0 M.C.-11.0 M.C.
Range 4.	11.0 M.C.-23.0 M.C

Connect the output terminals of the Model 091 or equivalent Signal Generator, to the "ANT" and "GND" terminals of the receiver chassis. Connect an output meter to the primary terminals of the Output Transformer of the receiver. Set the Wave-Band switch to Range 4, and the Station Selector at $21.6 \mathrm{M} . \mathrm{C}$. The sixth harmonic of the 3.6 M.C. crvstal in the Model 091 Signal Generator is picked up at this point. Adjust the compensating condenser (15) on Section 1 of Tuning Condenser for maximum response in the output of the receiver.

Turn the Wave-Band Switch to Range 3 , and the Station Selector to 10.8 M.C. Here, the third harmonic of the 3.6 M.C. crystal will be heard. Adjust the compensating condenser (16) on Section 2 of Tuning Condenser for maximum response in the output of the receiver.

Turn the Wave-Band Switch to Range 2, and adjust the Station Selector to 3.6 M.C. The "Antenna" connection between the Signal Generator and the receiver chassis must be removed for this adjustment, otherwise the output of the Signal Generator will be too great. Adjust the compensating condenser (12 give maximum response in the output circuit. This compensating condenser is located underneath the chassis and is not accessible from above. See Figure 5.

This concludes adjustments requiring the Model 091 (or equivalent) high frequency signal generator.

The Model 048 or its equivalent is now used again. Turn the Wave-Band Switch of the set to Range 2 and the Station Selector to 1.5 M.C. Set the Signal Generator at $1500 \mathrm{~K} . \mathrm{C}$. Make sure the" "Antenna" connection between the Signal Cenerator and the Chassis has been restored Adjust compensating condenser (14) located underneath the chassis, (Figure 5). Adjustment is made from the underside of the chassis
'lune the Wave-Band Switch to Range 1 and the Station Selector to 1400 K. (. Set the Sigmal Generator at 1400 K. (\%. Adjust compensating condenser (14), which is located underneath the chassis. (Sce Figure 5). This adjustment is made from the underside of chassis.

Finally, with Wave-Band Switch at Range 1, and Station Selector at 520 K . (${ }^{\text {., set }}$ se Signal Generator at 520 K .C. and adjust eompensating condenser (18) (Figure 5). This compensating condenser is also mounted underneath the chassis, and reached from below.

For proper and accurate adjustment of Model 34, the procedure must be followed exactly in the order given. The adjustment should not be undertaken without proper equipment as mentioned above.

PHILCO RADIO AND TELEVISION CORPORATION

PHILCO Service Bulletin - No. 189

Model 32

Philco Model 32 is a superheterodyne radio receiver designed to operate directly from a 32 volt D. C. (direct current) electric system, such as used on many farms for lighting purposes. In this model the filaments of the tubes (except the rectifier) are connected in series, while the necessary plate and grid voltages are secured from a special vibrator-

Fig. 1-Top View of Model 32
NOTE: In 32 -volt systems where the batteries are old, the voltage is high (40 volts) when generator is running (due to the higher internal resistance of the battertes). In such cases it will help internal resistance of the battertes, if battery charging is done at periods of the day when the radio ts not in use.

and-rectifier unit, contained in a separate metal box mounted on a shelf of the radio cabinet. The rectifier tube is inside the vibrator-andrectifier unit box. It obtains its filament voltage from a secondary winding of the transformer which is also located in the vibrator-andrectifier unit box.
Model 32 uses the following tubes: R. F., type 39-44; DetectorOscillator, type 36; I. F., type 39-44; 2d detector, type 75; Output type 42; Rectifier, type S4.
The frequency range of the model 32 is 520 to 3260 kilocycles. The intermediate frequency (I. F.) is $260 \mathrm{~K} . \mathrm{C}$. The power consumption is 50 watts when the line voltage is 32 , and approximately 70 watts when the line voltage reaches 38 .
With a line voltage of 35 volts to the vibrator and an effective voltage of 28 at primary of power transformer (voltage from white lead to white-black-tracer), the A. C. voltage across secondary should be about 300 volts at 65 milliamperes. Secondary voltage measured from yellow lead to yellow-green-tracer. Voltage across 84 filament approximately 7 volts at .5 amperes. (Filament leads have blue insulation.)
Tube Socket Data Line Voltage 34 Volts

Circuit	RF	Det.Osc.	IF	AF	Out put	Rect.
Type Tube	39-44	36	39-44	75	42	84
Filament Volts	6.8	6.8	6.8	6.8	6.8	6.8
Plate Volts.	205	200	235	155	220	300
Screen Grid Volta (SG to K).	85	83	85		240	
Cathode Volts (K to Gnd).	4	8.5	4	0	0	

The above voltage values were obtained with a high-resistance, multi-range D . C voltmeter. The readings were taken from the underside of the chassis, with test voltseter. The reads. The PHILCO MODFL 048 ALLP P RPOSE SET TESTER is prods and leads. The PHILCO MoDeal instrument for taking these readings, and is highly recommended for this an ideal instrunient for taking these readings, abed, the Station velector was bet at
purpese. When the above values were oltained, the low frequency (550 K . C.) end of the scale; the Volume Control was at maximum

Fig. 2-Terminal Arrangenient of Tube Sockets Viuwed from Under Side of Chassis

Fig. 3 -Rear of Model 32 Chassis, showing location of I.F. Compensating Model 32 Chassis, showing location of I.F
Condensers. I.F. of Model 32 is 260 K . C .

Fig. 4-Top View of Chassis Showing Compensating Condensers Mounted on Tuning Condenser,

ADJUSTMENT OF MODEL 32

COMPENSATING CONDENSERS

These receivers are adjusted accurately before they are shipped from the Factory, If re-adjustment is required, it is usually necessary to realign only the intermediate freguency compensating condensers. Fig. 3 shows the location of these compensating condensers. intermediate frequency is 260 kilocycles.

An sccurately calibrated signal generator is required for these An sccurately cainbrated signal gencrator is required for these
adjustments. The PHILC(MODEL, O24 is a precision signal generator supplying frequencies from 105 kilocycles to 2000 kilocycles and a recormmended for this work.

To adjust the I. F condensers, remove the grid cap clip from the twe 36 tube and connect the shielded antenna lead from the signal generator to the grid cap. Connect the ground lead from signal genertor to ground post of set.

Connect the primary terminals of the output transformer to an output meter. Set the signal genorator frequency switch at $2 \mathrm{Gn} \mathrm{K} . \mathrm{C}$. turn it and the receiver "on" and adjust the attenuator of the signal the fibre ho wrench, adjust each of the 1 . F. condensers in turn so as to obtain maximum reading in the neter

If re-atinstment of the intermediate frequency circuits is not sufficient to restore sensitivity, the high frequency and low frequency compensating condensers are re-aligned as described in the following parauraphs. Figure 4 shows the location of these compensating condensers.

When making these adjustments replace the grid clip on the 36 tube, and connect the antenna and ground leads froms the aignal generator direct to the antema and ground posts of set

The High Frcquency compensating condenser is first adjusted This adjustment is made with the signal menerator set at 1400 kilo cycles. Next the Detector and Antenna Condensers, located on the tuning condenser assenbly, should be adjusted, with the sigas gener ator atill opmrating at lion. It may be necessary to readjust the attenuator on the signal generator for these adjustments

The last adjustment is that of the low freduency (LF) compensating condenser which is accessible from above through the hole in chassis alongside the tuning condenser assembly. This adjustment is made with the signal generator sett to give a $7(N) K$. C. signal.

PHILCO

Page 2

Fig. 5-Wiring Diagram-Model 32

Fig. 6-Bottom Vlew of Chassis

Fig. 7 -Bottom of Vibrator and Rectifier Unit

REPLACEMENT PARTS FOR MODEL 32

	on Fige. ${ }_{\text {and }} 7$ Description	Part No.	$\underset{\text { Price }}{\text { List }}$
(1)	Condenser ($09 \mathrm{mfd}-.09 \mathrm{mfd}$.)	4989-G	\$0.40
(2)	Condenser (.0025 hufd.) (mica)	7006	. 40
(3)	Resistor (10,000 ohma- Brown-Black- Orange)	33-1000	. 25
(4)	Antenna Transformer	32-1062	70
(6)	Tuning Condenser Assembly	31-1059	5.00
(8)	Wave-band \& On-off Switch	42-1017	1.00
(7)	Compensating Condenser (ant.)	Part of (5)	
(8)	Detector Transformer	32-1063	. 50
(9)	Compensating Condenser (det.)	Part of (5)	
(10)	Condenser (05 mfd tubular)	30-4123	. 35
(11)	Oscillator Transformer.	06620	. 90
(12)	Compensating Condenser (osc. H. F.)	Part of (5)	
(13)	Compensating Condenser (1st I. F. pri.)	04000-M	. 20
(14)	Compensating Condenser (ose L. F.).	04000-8	. 35
(15)	Condenser (0007 mfd --mica)	5863	. 35
(16)	Resistor (15,000 ohms) (Brown-Green- Orange)	6208	.2.5
(17)	Resistor (50,000 ohnıs) (Green-Brown- Orange)	4518	. 25
(18)	Resistor (39,000 ohms) (Orange-WhiteOrange)	33-1027	. 25
(18)	First I. F. Transformer	32-1289	. 60
(20)	Compensating Condenser (1st I. F. secondary)	04000-M	20
(21)	Second I. F. Transformer	06622	1.20
(22)	Compensating Condenser (2d I. F. primary)	04000-A	. 15
(23)	Resistor ($50,000 \mathrm{ohms}$) (Green-BrownOrange)	4518	. 25
(24)	Volime Control ($350,060 \mathrm{ohms}$)	33-5065	1.00
(25)	Condenser (09 mfd tubular)	30-4122	. 35
(28)	Resistor (5,000 ohms) (Green-Black-Red)	3526	25
(27)	Resistor (2 mex. Red-Black-Green)	5872	. 25
(28)	Resistor (1 meg. Brown-Black-Green)	4409	25
(29)	Condenser (.00011 mfd.-mica)	30-1006	35
(30)	Condenser (00011 mfd -mica)	30-1006	. 35
(31)	Condenser (.01 mfd tubular)	30-4124	. 25
(32)	Condenser (00025 mfd --mica)	3082	. 35
(33)	Condenser (.01 mfd tubular)	30-4145	. 25
(3)	Resistor (.5 meg.) (Ycllow-White-Yellow)	4517	. 25
(35)	Resistor (70,000 ohms) (Violet-Black-Orange)	5385	. 25

	on Flgs. Description	Part No.	$\begin{aligned} & \text { Liet } \\ & \text { Price } \end{aligned}$
(38)	Resistor ($70,000 \mathrm{ohms}$) (Violet-Black-Orange)	5385	\$0.25
(37)	Condenser (25 mifd. tubular)	30-4134	. 45
(38)	Resistor (25,000 ohms) (Red-Green-Orange).	33-1013	25
(36)	Condenser (09 mfd .) (Bakelite block type).	4989-AL	. 35
(40)	Tone Control.	06784	. 50
(1)	Condensers	Part of (40)	
(12)	Output Transformer (For K-26 spkr.)	32-7042	. 95
(43)	Voice Coil and Cone (For K-26 spkr.)	38-3174	. 40
(4)	Field Coil and Pot Assembly (K-26)	36-3306	2.85
(45)	Resistor (Pilot light) (27 ohme)	33-3132	. 20
(46)	Pilot Lamp	4567	12
(4)	Line Fuses (Located in line plug) (3amp.)	45-2046	ea. 06
(18)	Filter Choke	32-7213	1.60
(40)	Condenser (Electrolytic-8 mid. wet)	30-2026	1.50
(5)	Condenser (Electrolytic - 8 mfd dry)	30-2014	1.70
(3)	Condenser (05 mfd tubular)	30-4020	. 35
(52)	B. C. Resistor (235-32 ohms)	7998	. 20
(3)	Condenser (09 mfd tubular)	30-4122	. 35
(54)	Resistor (25 meg.) (Red-Yellow-Yellow)	4410	25
(56)	Resistor (Flexible - 300 ohms)	33-3010	. 20
(56)	Condenser (09 mfd tubular)	30-4122	35
(37)	Condenser (.09 mfd tubular)	30-4122	. 35
	Speaker Plug Socket	4957	. 10
	Line Plug Assembly with Cord (Less fuses)	L-1738	. 85
VIBRATOR AND RECTIFIER UNIT			
(58)	R. F. Choke (Low voltage)	32-1375	80.40
(66)	R. F. Choke (High voltage)	32-1348	. 30
(80)	R F. Choke (High voltage)	32-1348	30
(11)	Condenser (01 mfd . tubular)	30-4145	25
(62)	Condenser (05 mfd tubular)	30-4020	35
(6)	Power Transiormer	32-7218	4.95
(64)	Condenser (5 mfd - 5 mfd -metal case)	30-4155	85
(6)	Condenser (05 mfd , tubular)	30-4020	35
(6)	Kesistor (30 ohms flexible wire wound)	33-3119	25
(67)	Resistor (30 ohms flexible wire wound)	33-3119	25
(6)	Condenser (.05 mfd tubular)	30-4020	. 35
(69)	Condenser (00041 mfd --mica)	Inside 71	
(70)	Resistor (2,000 ohms).	Inside 71	
(17)	Vibrator Unit.	38-5640	8.00

ELIMINATION OF NOISE INTERFERENCE CAUSED BY THE FARM LIGHTING SYSTEM

Abstract

radio recelver directly from a 32 volt farm lizht bug system is sometiones interfered with by noise's 111 reception, catused by the operation! of the lighting systum's charging equipment. These moises are radiated from the service lines and picked up by the anterna and lead-in. A certamamount directly thry the limes A whirrine or crackling A oise may be caused by sparkiner at the brushes of the generator: and "clickine" by the sparks at the spark plug of the gasoline motor used to drive the generator, and by the operation of the "breaker" in the spark coll primary.

Instatlation of the proper type of antemnt syatem is of considerable moportance ill elmanating thise troublesome bosises. for maximum freedom from nomse the antenna Phould be the sprean aerial sutcua wish arial sulem, when was

 up of noise hy the anterna lead-in.The antiona wire should in all cases be run in a direction from the houme opposite to that of the servies leads from the lightine aystem, as indicated in Fig. 8. Where the Three-Purpose Svatem is used, the instructions furmished with it ahould be viry cardflly followed. Note that this system amploys a special "transmission line" pad-in, at cach end of which a special transformer is mataled. The tranaformers must be mastalide as per instructions. am if this is done the trinsmission dine (lad-in) will be completely noise-proof. All other neerssary parts for the gutcona installation such as ground clamps, lighting arrester, ete are included with the Threr-Purpuge Antennat System

Philco has designed a spreial interference-suppression and filter for 32 volt syatenm which will eliminate most if nost all of the interference meonntered in the majority of installations This unit consiut

of filter chokes and condensers, and is conmected directly in the output lines of the generator as per instructions supplied with this special unit. The unit may be obtained from your Phileo Distributor.

It is qenerally advisable also to connect a l/a mfo. fixed condenser (Philco Fart No. $3(1-4015$) front each set of genorator brushes to the ranne of the generator (bheh thoak be groumder). The method on ocatine hese emodensers is indicatrd Fig. Wheh shons a cut-a a a whirring or crackling caused by the generator brushes.

To reduce the clicking noise caused by the ignition at the spark plug. a suppressor (Phileo Part No. 4.531) should be inserted in series setween the terminal of the plug and the cable leading to it. See Fig. 10.

Fig. 9 - Condensers Attached to Generator for Suppressing Interference

USE PHILCO REPLACEMENT PARTS AND TUBES FOR EVERY MAKE RADIO. GET COMPLETE CATALOG FROM YOUR DISTRIBUTOR.

PHILCO Service Bulletin - No. 191

Model 45

Philco Model 45 is a six tube receiver operating on alternating current and capable of receiving either standard and police broadcasts between 540 and 1720 kilocycles, or short-wave stations between 4.2 and 13 megacycles. The left hand side of the dial is calibrated in kilocycles for standard reception and the right in megacycles for short-wave stations. A two-position switch changes reception from standard to short-waves.

Model 45 uses a type 6-A-7 detector-oscillator, two type 39-44 I. F. Tubes, type 752 detector, type 42 output tube, and type 80 rectifier. The power consumption is 65 watts. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$.

Tube Socket Voltages

circuit	Det. Osc.	$\begin{aligned} & \text { 1st } \\ & \text { if } \end{aligned}$	$\begin{aligned} & 2 d \\ & \text { iF } \end{aligned}$	$\begin{gathered} 2 \mathrm{dt} \\ \text { Det. } \end{gathered}$	Output	Rect.
Type Tube	6A7	39.44	30-44	75	42	80
Filament (F to F)	6.3	6.3	0.3	6.3	6.3	5.0
Plate (P to K)	260	255	255	175	250	335
Screen Grid (SG to K)....	$\begin{aligned} & \text { G1-35 } \\ & \text { G2-135 } \\ & \text { G3\&5-85 } \end{aligned}$	75	75	.	260	\cdots
Cathode (K to F)	4.2	3.8	3.8	0	0	\cdots

The above tests were made with an AC voltmeter for filament voltages and a high resistance $D C$ voltmeter for all others. Dial at 550 KC , volame control at maximum. Test made with test prods applied to socket terminals underneath chassis. Line voltuge 115 .

Fig. 1-Tube Socket Layout (underside)

Power Transformer Voltages

Terminals	Volts	Circuit	Color Leads
$1-2$	120	Primary	White
$3-4$	5.0	Fil. of 80	Blue
$5-7$	680	Plates of 80	Yellow
$8-10$	6.3	Filaments	Black
6		Center of $5-7$	Yellow-Gireen tr
9		Center of $8-10$	Black-Yellow tr.

Fig. 2-Chassis Top Vlow

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in model 45, an accurately calibrated signal generator and a special insulated padding wrench are needed. We suggest the Philco Model 024 Signal Generator or the 048 Tester which includes a similar instrument.

The chassis must be removed from cabinet in order to make all adjustments.

Adjustments are made in the following order-
ADJUSTMENT OF THE INTERMEDIATE FRE-QUENCY-Remove the grid clip from the type 6A7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at $460 \mathrm{~K} . \mathrm{C}$. (the intermediate frequency of Model 45) and with the receiver and signal generator turned on, the wave band switch at left and dial at $600 \mathrm{~K} . \mathrm{C}$., adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located one pair at the top of each of the three I. F. transformer shields. These are the three metal "cans" near the rear of the chassis. Each of the transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the acrew; the Secondary circuit is adjusted by turning the hex-head nut.

ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6A7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (left hand position) and the Station Selector at the low frequency ($540 \mathrm{~K} . \mathrm{C}$.) end. Adjust the Wave Trap condenser to give MINIMUM response to a 460 K .C. signal from the signal generator. The Wave Trap (1) is located at rear and underneath the chassis, and is shown in Figure 4. It is reached from the rear of the chassis, by inserting the fibre wrench thru the hole near right-hand rear corner of chassis.

DETECTOR, AND OSCILLATOR "HIGH" AND "LOW" FREQUENCY ADJUSTMENTS-The "antenna" and "oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.

Set the signal generator at 1500 K.C., tune in this signal on the set and adjust the antenna compensator (7) (nearest tuning control) to give maximum reading in the output meter.

Next adjust the oscillator H. F. condenser (11) (located on the other section of tuning condenser) to maximum reading.
Finally set the signal generator at 600 , tune in this signal and adjust the oscillator "L. F. condenser", located underneath chassis (15) in Fig. 4) to maximum reading. This adjustment is reached thru the hole in top of chassis, between the two electrolytic condensers (left hand end of chassis when facing rear).

PHILCO
 Service Bulletin \sim No. 192

Model 59

Philco Model 59 is a four-tube superheterodyne receiver operating on alternating current, capable of receiving standard broadcasts, and police calls on the first (lowest) police range. The tubes are as follows: Type 77 detector-oscillator, type 77 second detector, type 42 output and type 80 rectifier. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$. The power consumption of model 59 is 52 watts.

*All of the above readings were taken from the underside of the chaskis, using test prods and leads with is suitable A. C. voltmeter for filament voltages and a high resistance multirange D. C. voltmeter for all other readingg. Volume control at maximum and station selector turned to low frequency end. Readings taken with a plug-in adapter will NOT be satisfactory. The Philoo Model 048 All-Purpose Set Teeter is recommended for all tests of Mudel 59.

Flg. 1-Tube Socket Layout (Viewed from Bottom)

Adjusting Compensating Condensers

In Model 59 the I. F. primary and secondary condensers and the "regeneration" compensating condenser are located at the rear of chassis and accessible from the rear; the "ANT" and "OSC H. F." are located on the side of the tuning condenser gang.

Referring to Fig. 3, the I. F. primary and secondary condensers (8) and (15) should be adjusted first. Use an accurate signal generator such as the Philco Model 024. Remove the grid cap clip from the detector-oscillator tube and connect the antenna lead from the signal generator to the cap of this tube. Connect the ground lead from the signal generator to the ground terminal of the set. Connect the primary terminals of the output transformer to an output meter. Set the frequency switch of the signal generator at $460 \mathrm{~K} . \mathrm{C}$. (the I. F. of model 59), and turn the switches of the set and signal generator on. Turn volume control full on. Turn the dial pointer on the set to 600 , and then adjust the I. F. compensating condensers (8) and (15) by means of a fibre wrench so that maximum reading is obtained in the output meter. If the needle goes off scale, adjust the attenuator on the signal generator so that a lower reading is obtained.
Next adjust the ANT. and OSC. H. F. (high frequency) con-
densers (4) and (8) located on the tuning condenser gang. To adjust these condensers it is necessary to remove the chassis from the cabinet, necessitating removing back plate, base screws, knobs and pointers. Replace the grid clip on the 77 tube and connect the antenna and ground leads of the signal generator direct to the antenna and ground terminals of the set. Set the signal generator switch at 1400 , turn the tuning condenser shaft until the rotary plates barely start to mesh with the stationary ones. Tune in the 1400 K . C. signal here and adjust condensers (1) and (9) for maximum output meter reading. When replacing the dial pointer, be sure it is mounted exactly as it was removed.

Finally adjust the regeneration condenser (16). With the set connected to an antenna, turn the station selector to receive a station at about 130 on the dial. With a screw driver turn the small fibre hex-head screw (which operates the regeneration condenser) located at rear of chassis below antenna and ground terminals, clockwise until the set squeals or oscillates. Then turn the hex-screw $1 / 4$ of a turn back until the squealing stops. Tune in other stations on different points on the scale to make sure that the squealing is eliminated. It will be necessary to readjust this condenser if a different type 77 tube is used for second detector.

PHILCO

*Does not show in Fig. 4.

Note A: Condenser (29) not used in production.

PHILCO
 Service Bulletin - No. 193

Model 144

Philco Model 144 is a six-tube superheterodyne receiver operating on alternating current (A. C.) and designed for reception of any frequency from $520 \mathrm{~K} . \mathrm{C}$. to $23,000 \mathrm{~K} . \mathrm{C}$. (23 megacycles). It is equipped with shadow-tuning, four-point tone-control with fixed bass compensation; Model 144 has 5 watts output. The intermediate frequency (I. F.) is 460 K.(. Tubes used are the following Philco high-efficiency types:-

Detector-Oscillator	Type 6A7
1 st I. F.	. Type 78
2nd I. F.	. Type 78
2nd Detector 1st A. F.	. Type 75
Output.	Type 42
Rectifier. .	. Type 80

The power consumption of model 144 is 70 watts.

Tube Socket Voltages-Line Voltage 115

CIRCUIT	Det.Osc.	$\begin{aligned} & 18 t \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	A. F.	Output	Rectifier
TUBE	6 A7	78	78	75	42	80
Filament Volts (F-F)	6.3	6.3	6.3	6.3	6.3	5.0
Plaste Volts (P-K)	250	230	230	185	300	350
Screen Grid Volts (SG-K)...	60	75	75	. .	310	
Cathode Volts (K-Gind)....	1.4	2	2	0	0	
$6 \mathrm{~A} 7-\mathrm{G} 2$ to K .	160	..	.	\ldots	. . .	\cdots
6A7-G1 to K.	20		\cdots	\cdots	- .	\cdots

Above values were obtained by means of an A. C. voltmeter for flament voltages Above values were obtained by means of an A. C. voltmeter for flament voltages
and a high resistance D. C. voltmeter for all others. All values obtained fronn underside of chassis with test prods. Positions of controls were: Volume Controlmaximum; Wave-Band Switch-extreme left (counter-clock wise); Dial at 520 K.C.

Philco Model 048 All-Purpose Tester is recommended for making the above Philco Model 048 All-Purpose Tester is recommended for making the above
teats. Inse the illustration below (Fig. 1) as a guide to determine the points to tut tests. fise the

Fig. 1-Tube Socketa (underside)

Power Transformer Voltages

Terminals	A. C. Volts	Circuit	Color of Leads
$1-2$	120	Primary	White
$3-4$	6.3	Filaments	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	746	Plates of 80	Yellow
5	\ldots	Center tap of $3-4$	Black-Yellow tracer
9	\ldots	Center tap of $8-10$	Yellow-Green tracer

Fig. 3-(Schematic Diagram)

Fig. 4-(Base View)
REPLACEMENT PARTS ~MODEL 144

Nos. Dingra	on ${ }_{\text {am }}$ Description	Part No.	List Price	Nos. Diag	on ${ }_{\text {om }}$ Description	Part No.	List Price
(1)	Wave-Band Switch	42-1045	\$3.60	(46)	Resistcr (4,000 ohms) (Yellow-Black-Red)	7832	80.25
(2) A	Antenas Tranaformer (H. F. Bands)	32-1271	. 70	(47)	Resistor (1 Meg.) (Brown-Black-Green)	4409	. 25
(3)	Tuning Condeneer Assembly	31-1175		(48)	Condenser (.05 Mfd . Bakelite Block)	3615-I	. 35
(4)	Wave Trap	38-5487	55	(49)	Resistor (100,000 ohms) (White-White-Orange)	4411	. 25
(5)	Condenser (.00025 Mica)	3082	. 35	(50)	Resistor BC (263 ohme, 21 ohms, Wire-Wound)	33-3069	. 25
(6)	Compensating Condenser (Ant. H. F.)	Part of (3)	(61)	Resistor ($32,000 \mathrm{chms}$) (Orange-Red-Orange).	3525	. 25
(7)	Compensating Condenser (Ant. Broadcast)	Part of (3)	. \cdot.	(52)	R mistor ($32,000 . \mathrm{ol}$.ms) (Orange-Red-Orange)	3525	. 25
(8)	Antenas Transformer (Broadcast Band)	32-1270	. 55	(53)	Resistor ($70,000 \mathrm{ohms}$) (Violet-Black-Orange)	5385	. 25
(9) P	Reeistor (10,000 ohms) (Brown-Black-Orange)	33-1000	. 25	(54)	Resistor (70,000 ohms) (Violet-Black-Orange)	5385	. 25
(10)	Condenser (.0008 Mfd. Mica)	6021	. 35	(55)	Condenser (25 Mfd .) (Matsl Case)	4264	. 60
(11)	Oscillator Transformer (H. F. Bands)	32-1273	. 35	(58)	Kesistor ($500,000 \mathrm{ohms}$) (Yellow-White-Yellow)	4517	. 25
(12)	Compensating Condenser (Range 2)	04000	. 15	(67)	Condenser (. 01 Mfd . Bakelite Block)	3903AN	. 25
(13)	Compensating Condenser (Osc. Range 4)	Part of (3)		(58)	Condenser (. 00025 Mfd. Mica)	30-1032	. 35
(14)	Compensating Condenser (Osc. Range 3)	Part of (3)		(59)	Condenser (. 006 Mrd . Tubular)	30-4024	40
(15)	Oscillator Transformer (Broadcast)	32-1272	. 70	(6)	Output Transformer.	32-7178	1.60
(16)	Compensating Condenser (Osc. Broadcast)	04000 4	. 15	(61)	Voice Coil \& Cone Assembly	\{(H-16) 02625	5.80
(17) P	Reaistor (25,000 ohms) (Red-Green-Orange)	33-1013	. 25			$\{(\mathrm{K}-23) 36-31$	174.40
(18)	Compensating Condenser (Brasdcast Series).	04000s	. 38	(62)	Field Coil \& Pot Arsembly	FI-16 (36-3218) 3.50	
(19)	Compensating Condenser (Range 2; Series)..	04000R	. 45			K-23 (36-3239) 3.75	
(20)	Condenser (. $0007 \mathrm{Mfd} . \mathrm{Mica}$)	4520	. 35	(6)	Tone Control	30-4168	. 75
(21)	Condenser (. 003 Mfd . Mica)	7301	. 45	(64)	Condensers (Inside 63)	Part of (63)	
(22)	Condenser (. 05 Mfd . Bakelite Block)	3615-L	. 35	(65)	Resistor (1,000 ohms) (Brown-Black-Red)	5837	. 25
(29) H	Resistor ($100,000 \mathrm{ohms}$) (White-White-Orange)	4411	. 25	(68)	Resistor (50,000 ohms) (Green-Brown-Orange)	0098	. 25
(24) H	Resistor (150 ohms Flexible Wire-Wound)	33-3140	. 20	(67)	Condenser-Electrolytic (8-8-10 Mfd.)	30-2073	3.45
(25)	Condenser (05 mfd. tubular) (Used in Code 122 only).	30-4123	. 35	(68)	Power Transformer	32-7234	4.75
(26)	Condenser Block (.25, .25, .25, .05, .05, .05, .05)...	30-4167	1.15	(60)	Condenser (015 Mfd . Twin)	3793-H	. 40
(27)	Compensating Condenser (1st I. F. pri.)	Part of (28)		(70)	Filter Choke	5930	1.75
(28) 1	1st I. F. Transformer	32-1369	1.50	(11)	Condenser (6 Mrd . Electrolytic)	30-2020	1.40
(29)	Compensating Condenser (1st 1. F. Sec.)	Part of (28)		(72)	Resistor (20,000 obms) (Red-Black-Orange)	6649	. 25
(30) 1	Resistor (300 ohms Flexible Wire-Wound)	33-3010	. 20	(73)	Resistor (50,000 ohms) (Green-Brown-Orange)	5868	. 35
(31)	Pilot Lamp	6608	. 11	(74)	Reristor (39.000 ohms) (Orange-White-Orange)	33-1027	. 25
(32)	Compensating Condenser (2d I. F. Pri.)	Part of (3)		(75)	Resistor (10,000 ohms) (Brown-Black-Orange).	33-1000	. 25
(33) 2	2d I. F. Transformer.	32-1306	. 90	(76)	Condenser (.02 Mfd. Tubular)	30-4113	. 30
(34)	Compensating Condenser (2d I. F. Sec)	Part of (33)			A. C. Cord and Plug Assembly	L-943A	. 60
(35)	Resistor (300 ohms Flexible Wire-Wound)	33-3010	. 20		Dial Assembly	31-1206	1.25
(36)	Resistor (2 Megs) (Red-Black-Green)	33-1025	. 26		Dial Scale	27-5044	. 65
(37)	Compensating Condenser (3d I. F. Pri)	Part of (38)			Cluassis Mounting Screw	W-1358. ${ }^{\text {A }}$	2.60 C
(38)	3d 1. F. Transformer.	32-1307	. 80		Chassis Mounting Foot (Rubber)	27-4116	. 05
(30)	Compensating Condenser (3d I. F. Sec.)	Part of (38)			Chassis Mounting Foot (Plate)...	27-7497	.35 C
(40)	Condenser (.0001 M fd. Twin-Bakelite Bloct)	8035-1,	. 25		T'ule Shield.................	28-1107	. 10
(4)	Pilot Lamp for Shadowmeter................	Part of (43)	\ldots		4 Prong Tube Soeket.	7547	. 11.
(42)	Condenser (. 05 Mrd . Bakelite Block)	3615AB	. 35		7 Pronk Tube Socket.	27-6005	.11
(43)	Sliadowmeter......................	6497	2.50		Speaker Socket Knob (Larke)	$\begin{aligned} & 4957 \\ & 27-4051 \end{aligned}$	10 .10
(44)	Volume Control \& On-Off Switeh	33-5008	1.45		Knob (Small).	27-4052	. 10
(45)	Condenser (. 01 Mfd. Bakelite Block)	3903J	. 25		Knob (Station Selector)	27-4127	. 10

Adjusting Compensating Condensers

The compensating condensers of Model 144 have been adjusted accurately before shipment. If later adjustment is required, in most cases only the intermediate frequency and low frequency compensating condensers should be done. Extreme care must be given the adjustment of the high frequency circuits, and the adjustment should NOT be undertaken unless the receiver is seriously out of alignment.

DO NOT ATIEMPT TO ADJUST the compensating condensers mounted upon sections numbered 3 and 4 of the Tuning Condenser Assembly (Fig. 5). These have been adjusted, and sealed, at the factory.

Philco Model 024, an accurately calibrated signal generator covering broadcast and police band frequencies, is recommended for the adjustment of the intermediate frequency and low frequency compensating condensers.

Philco Model 091 crystal-controlled Signal Generator is recommended for the high frequency adjustments. It gives an accurate and constant 3600 kilocycle (3.6 megacycle) signal, the harmonics of which include the necessary high frequencies for adjusting the compensating condensers in the high frequency circuits.

1-ADJUSTMENT OF THE INTERMEDIATE FREQUENCY-Remove the grid clip from the type 6A7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect an output meter to the primary terminals of the output transformer. Set the signal generator at 460 K .C. (the intermediate frequency of Model 144) and adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The location of the I. F. compensating condensers is shown in Figure 5. Each of the I. F. transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut.

2-ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6A7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (extreme left) and the Station Selector at the low frequency (520 K.C.) end. Adjust the Wave Trap (4) condenser to give MINIMUM response to a 460 K.C. signal from the signal generator. The Wave Trap (4) is located at rear and underneath the chassis, and is shown in Figures 4 and 5. It is reached from the rear of the chassis.

3-ADJUSTMENT OF THE DIAL FREQUENCIESModel 144 has four separate frequency bands or ranges, each obtained by one of the four positions of the wave-band switch. There is a compensating condenser for each range, which must now be adjusted. In the following procedure, the frequency ranges referred to, and obtained by the different positions of the switch are:

Range	520 K.C.- 1500 K.C.
Range 2.	1.5 M.C.-4.0 M.C.
Range 3	4.0 M.C. -11.0 M.C.
	11.0 M.C.-23.0 M.C

Connect the output terminals of the Model 091 or equivalent Signal Generator, to the "ANT" and "GND" terminals of the receiver chassis. Connect an output meter to the primary terminals of the Output Transformer of the receiver. Set the

Wave-Band Switch to Range 4, and the Station Selector at 21.6 M.C. The sixth harmonic of the 3.6 M.C. crystal in the Model 091 Signal Generator is picked up at this point. Adjust the compensating condenser (iB) on Section 1 of Tuning Condenser for maximum response in the output of the receiver. Turn the Wave-Band Switch to Range 3, and the Station Selector to 10.8 M.C. Here, the third harmonic of the 3.6 M.C. crystal will be heard. Adjust the compensating condenser (14) on Section 2 of Tuning Condenser for maximum response in the out put of the receiver.

Turn the Wave-Band Switch to Range 2, and adjust the Station Selector to 3.6 M.C. The "Antenna" connection between the Signal Generator and the receiver chassis must be removed for this adjustment, otherwise the output of the Signal Generator will be too great. Adjust the compensating condenser (12) to give maximum respouse in the output meter. This compensating condenser is located underneath the chassis and is not accessible from above. See Figure 4.

This concludes adjustinents requiring the Model 091 (or equivalent) high frequency signal generator.
The Model 024 or its equivalent is now used again. Turn the Wave-Band Switch of the set to Range 2 and the Station Selector to 1.5 M.C. Set the Signal Generator at 1500 K.C. Make sure the "Antenna" connection between the Signal Generator and the Chassis has been restored. Adjust compensating condenser (19) located underneath the chassis, (Figure 4). Adjustment is made from the underside of the chassis.
Turn the Wave-Band Switch to Range 1 and the Station Selector to 1400 K.C. Set the Signal Generator at 1400 K.C. Adjust compensating condenser (16), which is located underneath the chassis. (See Figure 4). This adjustment is made from the underside of the chassis.

Finally, with Wave-Band Switch at Range 1, and Station Selector at 520 K.C., set the Signal Generator at 520 K.C. and adjust compensating condenser (18) (Figure 4). This compensating condenser is also mounted underneath_the chassis, and reached from below.

For proper and accurate adjustment of Model 144, the procedure must be followed exactly in the order given. The adjustment should not be undertaken without proper equipment as mentioned above.

USE PHILCO REPLACEMENT PARTS AND TUBES FOR EVERY MAKE RADIO. GET COMPLETE CATALOG FROM YOUR DISTRIBUTOR

Service Bulletin ~No. 195

Model 29

Philco Model 29 is a superheterodyne receiver operating on alternating current and capable of receiving either standard and police broadcasts between 540 and 1720 kilocycles, orshort-wave stations between 4.2 and 13 megacycles. The left hand side of the dial is calibrated in kilocycles and the right in megacycles. A two-position switch changes reception from standard to short-waves. This model is equipped with shadow tuning, three point tone control with fixed bass compensation, and automatic volume control. The output is 5 watts.

Model 29 uses a type 6-A-7 detector-oscillator, two type 39-44 I. F. tubes, type 75 2d detector, type 42 output tube, and type 80 rectifier. The power consumption is 70 watts. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$.

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in Model 29, an accurately calibrated signal generator and a special insulated padding wrench and screwdriver are needed. We suggest the Philco Model 024 Signal Generator or the 048 Tester which includes a similar instrument. Philco No. 3164 wrench and 27-1159 screwdriver are recommended in addition.

Adjustments are made in the following order:-
ADJUSTMENT OF INTERMEDIATE FREQUENCYRemove the grid clip from the type 6-A-7 tube and connect the "AN'T" output terninal on the signal generator to the grid cap of the tube. "Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at $460 \mathrm{~K} . \mathrm{C}$. (the intermediate frequency of Model 29) turn wave-band switch of receiver to left and dial to 600 K .C. Turn receiver and Signal Generator "ON". Adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located, one pair at the top of each of the three I. F. transformer shields. These are the metal "Cans" near the rear of chassis. Each of these transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compen-

Tube Socket Voltages-(Line Voltage 115)

Function	Det. Osc.	$\begin{aligned} & \text { 1st } \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	2nd Det.	Output	Rectifier
Type	6 67	39/44	39/44	75	42	80
Filament (F to F)	6.3	6.3	6.3	6.3	6.3	5.0
Plate (P to K)	210	200	200	200	300	310
Screen (SG to K)	80	80	80	. \cdot	315	.
Cathode (K to GND).	4.8	4.8	4.8	0	0	. .
6-A-7 Grid Gl to K.	35	- .	\cdots	\cdots	\cdots	\cdots
6.A-7 Grid G2 to K	170	\cdots	\cdots	\cdots	\cdots	\cdots

sators, the Primary circuit is adjusted by turning the screw; the secondary circuit is adjusted by turning the hex-head nut. ADJUSTMENT OF WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6-A-7). Connect the output leads from the Signal Generator directly to the antenns and ground terminals of the receiver. Set the wave-band switch of the receiver to the standard broadcast band (left hand position) and the Station Selector at the low frequency (540 K.C.) end. Adjust the Wave Trap condenser to give MINIMUM response to a 460 K.C. Signal from signal generator. The Wave Trap (1) is located at rear and underneath the chassis, and is shown in Figure 4. It is reached from the rear of the chassis, thru hole at right hand end of set base.
DETECTOR; AND OSCILLATOR - "HIGH" AND "LOW FREQUENCY" ADJUSTMENTS-The "Antenna" and "Oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.
Set the signal generator at 1500 K.C., tune in this signal on the set, and adjust the antenna compensator (7) (nearest tuning control), to give maximum reading in the output meter. Next adjust the oscillator H. F. condenser (11), located on the other section of tuning condenser, to maximum reading. Finally set the signal generator at 600, tune in this signal and edjust the oscillator L. F. condenser, located underneath chassis (15) in Fig. 4) to maximum reading. This adjustment is reached thru the hole in top of chassis, between the two electrolytic condensers (left-hand end of chassis when facing rear).

Power Transformer Voltages

Terminals	A. C. Volts	Circuit	Color of Leads
$1-2$	120	Primary	White
$3-4$	5.0	Fil. of 80	Blue
$5-7$	746	Plates of 80	Yellow
$8-10$	6.3	Filaments	Black
6		Center of $5-7$	Black-Yellow Tracer
9		Center of 8-10	Yellow-Green Tracer

The above tests were made with an A. C. voltmeter for filament voltages and a high-resistance D. C. voltmeter for all others. Dial at $550 \mathrm{~K} . \mathrm{C}$, wave-band switeh to left, volume control at maximum. Tests made with test prods applied to sockets underneath chassis.

PHILCO Service Bulletin $\boldsymbol{\sim}$ No. 197

Model 66

Model 66 is a five-tube superheterodyne radio receiver, capable of receiving either standard broadcasts (and police calls up to $1720 \mathrm{~K} . \mathrm{C}$.), or short-wave stations within a frequency range of 5.5 to 16.0 megacycles. The frequency range on standard broadcast is $540-1720$ kilocycles.

The tubes used are: Type 6A7 detector-oscillator, type 78 intermediate frequency, type 75 2d detector, type 42 output and type 80 rectifier. The intermediate frequency of the Model 66 is 460 K.C. and the power consumption is 60 watts.

Tube Socket Voltages-Line Voltage 115
Power Transformer Data

Tube	6A7	78	75	42	80
Circuit	Det. Osc.	I. F.	2d Det.	Output	Rect.
Filament (F-F) $\ldots \ldots \ldots$	6.3	6.3	6.3	6.3	5.0
Plate (P-K) $\ldots \ldots \ldots \ldots$	260	260	160	250	340
Screen (SG-K) $\ldots \ldots \ldots \ldots$	85	85	\ldots	260	\ldots
Cathode (K-F) $\ldots \ldots \ldots$	2.1	22	0	0	\ldots

Terminals	Volts	Circult	Color of Leads
$1-2$	$105-125$	Primary	White
$3-5$	6.3	Filaments	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	680	Plates of 80	Yellow
4	\ldots	Center Tap of 3-5	Black-Yellow Tracer 9
\ldots	Center Tap of 8-10	Yellow-Green Tracer	

6A7-G1-K: 20; 6A7-G2-K: 130.
The above voltagea were obtained by using a high resiatance multi-range DC voltmeter, and an AC voltmeter for filaments. Tests made with teat prods applied to tute suckets at uaderside of chassis (see Fig. 1). Volume contrul at maximum, dial at low frequency end of acale.

Fig. 1-Tube Sockets (Undersida)

Adjusting Compensating Condensers

The adjustment of the compensating condensers in Model 66 Receiver requires the use of an accurate signal generator such as Philco Model 024, an efficient output meter (Philco Model 012 or Model 025 are recommended), and a suitable fibre hex wrench. Connect the output meter to the plate and cathode prongs of the 42 output tube.

Adjustments are made in the following order:
(1)-I. F. (Intermediate Frequency)-Remove grid clip from cap on 6A7 tube and connect antenna lead from signal generator to cap of tube. Connect ground lead to ground post on set. Turn on set and signal generator; set wave switch of latter to $460 \mathrm{~K} . \mathrm{C}$. (the I. F. of Model 66) and dial of set at 540 , wave band switch to left. Adjust each of the four I. F. compensating condensers (17), (19), (22) and (24) in turn so that maximum reading is obtained in the output meter. If the meter reading goes off scale, adjust the attenuator on the signal generator so as to get a lower reading. These I. F, condensers (visible in Fig. 4) are adjusted by inserting the
hex wrench thru the holes in rear of chassis sub-base (except one to extreme left when facing rear of set). Two of the holes are covered by small metal buttons which can be removed temporarily by hand.
(2) -WAVE TRAP-Replace grid clip on cap of 6A7 tube and connect antenna lead from signal generator to antenna post on set. Set signal generator at 460 K . C. and adjust wave trap (1) so as to get MINIMUM reading in output meter.
(3)-ANT. and OSC. H. F.-These adjustments (7) and (1i1) are located on top of the tuning condenser assembly at right (facing front of set) and adjusted from above. The "ANT" (7) is nearest front of set. Set signal generator at 1700 and dial of set at 1700 and adjust these two condensers to get maximum output meter reading.
(4) - OSC. L. F.-This condenser (13) is located underneath chassis (see Fig. 4) and is reached from underneath. Set dial of set and signal generator switch at 600 , and adjust for maximum reading.

․․․ 운

－

No．Description
Figs．
（45） （16）Condenser（ 05 M Mfd．Tubular）
（47）Resistor（ 37,000 ohms）（Orange－Violet－Orange） （48）Filter Choke．．．．．．．．．．．．．．．．．．．．． Condenser（Electrolyi－ $8-8 \mathrm{Mfd}$ ．）．．．
Condenser（Electrolytic－
Condenser（ 09 Mid ．Bakelite Block） Condenser（．0n Transformer ．．．．．．．．．．．．．．．．．．．．．
 （54）Condenser（ .05 Mid Tubular）
Four Prong Socket.

Replacement Parts for Model 66

等置侖侖
 Compensating Condenser（2d 1．F．Secondary）．
Resistor（ 50.000 obms）（Green－Brown－Orange） ${ }^{26}$ Resistor（ 50.000 obms）（Green－Brown－Orang） （28）Resistor（ 70,000 ohms）（Violet－Black－Orange）． （28）Resistor（ 70 000 ohms）（Violet－Black－Orange）
 （32）Resistor（ $500,000 \mathrm{ohms}$ ）（Yellow－Whit－－Yellow）
（33）Tone Control （33）Condensers in Tone Control （35）Voice Coil \＆Cone Assembly（S 12）．．．． （38）Rexistor（2 Megohmis）（Red－Black－Green）． （40）Contenser（． 01 Mid ）（Bakelite Block） （12）Condenser（． 1 Mfd．）Whate－White－Ctange）．．．． （4）Resistor（ $\mathbf{B} . \mathbf{C}^{\prime} \mathbf{C}$ ．Wire－wound ）（ $22 \sim 5$ ohms）

禺品울

PHILCO Service Bulletin - No. 194

Model 118

Philco Model 118 is an eight tube superheterodyne radio receiver operating on alternating current (A. C.) and designed for reception on either the standard broadcast band (including police bands up to $1720 \mathrm{~K} . \mathrm{C}$.), or a major section of the short wave band. A two-position switch changes reception from broadcast to short-wave. The frequency ranges are 540 to 1720 K . C. and 4.2 to 12 megacycles.

Model 118 is equipped with shadow-tuning, four point tone control with fixed bass compensation, and automatic volume control. The power consumption is 110 watts and the undistorted output of the Super Class "A" Amplifier is 10 watts. The intermediate frequency (I. F.) is 260 K . C.

Model 118 is equipped with the following tubes:

R. F.	Type 78
Detector-Oscillator	Type 6A7
I. F.	. Type 78
2d Det. 1st A. F.	Type 75
Driver.	Type 42
Output tubes (2) (Connected as triodes)	Type 42
Rectifier.	.Type 80

Tube Socket Voltages-Line Voltage 115

Function	R.F.	$\begin{aligned} & \text { Det. } \\ & \text { Osc. } \end{aligned}$	I.F.	A.f.	Driver	Output		Rect.
Type	78	6A7	78	75	42	42	42	80
Filement (F -F) . . .	8.3	8.3	6.3	6.3	6.3	6.3	8.3	5.0
Plate (P-K)	180	180	200	125	195	280	280	315
Screen (SG-K)...	80	176	80	\ldots	195	240	290	\ldots
Cathode (K to F)...	2.5	2.0	3.2	0	0	0	0	\cdots
8A7. G1 to K	26							
6A7. ${ }^{\text {a }}$ to K	150							

Power Transformer Voltages

Terminala	A.c. Volts	Clrcult	Color of Laads
$1-2$	120	Primary	White
$3-5$	6.3	Filsmenta	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	760	Plates of 80	Yellow
4	\cdots	Center Tap of 3-5	Black-Yellow Trscer
9	\cdots	Center Tap of 8-10	Yellow-Green Tracer

The above teata were made with an A. C. voltmeter for filament voltagea and a high resistance D. C. voltmeter for all others. Dial at 550 K . C., wave band switch to left, volume control at maximum. Teeta made with teat prode applied to sockets underneath chassia. Philco Model 048 All-purpose Teater or Model 025 Circuit Teater are recommended for these testa. Use Fig. 1 in making teata given in left hand table abore.

Flg. 1. Tube Sock et Layout

Flg. 2. Top Vlew

Fig. 3. Schematic Diagram

No. onDiagram(1) Wave Trap		Part No. 38-5740	$\begin{array}{r} \text { List! } \\ \text { Price } \\ .45 \end{array}$	No. onDiagram】		Part No. 4518	List Price $\$ 0.25$	
		(45)		Resistor ($50,000 \mathrm{ohms}$) (Green-Brown-Orange)				
(2)	Compensating Condenser (Ant.-H. F.)		04000D	\$0.15	(46)	Condenser (Electrolytic 1, 1, 1, and 2 Mrd.)	30-2078	2.45
(3)	Resister (10,000 ohms) (Brown-Black-Orange)	33-1000	25	(4i)	Resistor (1 Meg) (White-White-Orango)	4411	. 25	
(4)	Antenna Transformer....	32-1378	1.00	(48)	Resistor (5 Mcg .) (Yellow-White-Yellow)	4517	. 25	
(5)	Wave Band Switch	42-1046	. 80	(46)	Condenser (. 015 Mrd . Bakelite Block)	3793 F	. 35	
(8)	Tuning Condenser Aasembly	31-1173	6.25	(50)	Comdenser (.0001 Mfd. Mica)	4519	35	
(7)	Compensating Condenser (Ant-Broadcast)	Part of (B)		(60)	Tone Control	30-4186	. 75	
(8)	Resistor (400 ohres Flexible Wire-Wound)	32-3016	20	(5i)	Condensers (In Tone Control)	P'art of (51)		
(8)	Condenser (.05 Mfid) (Bakelite Block)	3615 BK	. 35	(6.8)	Condenser (.006 Mfd. Tubular)	30-4024	. 40	
(10)	Resistor (0,000 ohms) (Violet-Black-Orance)	5385	25	(54)	Input Trausformer	32-7114	2.00	
(11)	Condenser (05 Mfd .) (Tubular)	30-4020	35	(5)	Resistor (10,000 ohms) (Brown-Black-Orange)	3524	. 25	
(12)	Detector Transformer	32-1379	. 70	(50)	Condenser (. 01 Mfd . Bakelite Block)	3903P	. 25	
(13)	Condenser (.000015 Mfd.) (Mica)	30-1030	. 35	(5i)	Output Transformer	32-7078	1.40	
(14)	Compensating Coulenser (Det.)	J'art of (B)	.	(5)	Voice Coil and Cone Assembly	H-13-02625	80	
(15)	Resistor (2 Meg.) (Red-Black-Greni)	5872	25			K-17-36-3020	. 60	
(18)	Condenser (. 05 Mfd.$)$ (Bakelite Bluek)	3615D	. 35	(59)	Field Coil and Pot Assembly	36-3104	2.70	
(17)	Condenser (.05 Mfd.) (Tubular)	30-4020	. 35	(60)	Resistor (Wire-Wound) (6500 ohnis)	33-3033	. 30	
(18)	Resistor (300 ohme Flexible Wire-Wound)	33-3010	. 20	(64)	Resistor (Wire-Wound) (9.5, 112, 84 ohith)	33-3034	20	
(18)	Conderser (.05 Mfd) (Tubular)	30-4020	. 35	(6.)	Volume Control and On-Off Switch	33-5024	1.45	
(20)	Resistor (50,000 ohms) (Green-Brown-Orange)	4518	. 25	(6)	Condenser (.05 Mfd . Tubular)	$30-4020$. 35	
(21)	Compensating Condenser (Ose. H. F. Butcst.)	Part of (B),		(6)	Resistor (240,000 uhms) (Red-Yellow-Yellow).	4410	. 25	
(22)	Commensating Conkenser (hsc . H. F. Shortwave)	31-6016	. 30	(65)	Resistor (10,000 ohnis) (Brown-Black-Orange)	4412	. 25	
(3)	Oscitlator Transformer	32-1380	. 70	(66)	(ondenser (025 Mrd. Bakelite Block)	7653 D	35	
(24)	Condenser (00008 Mfd . Mica)	5878	. 35	(67)	Ressistor (32,060 ohus) (Orange-Red-Orange)	33-1026	. 35	
(25)	Resistor (20, 000 ohms) (Red-Black-Orange)	6150	25	(c)	Resistor (50,000 ohnis) (Green-Brown-Orauge)	4518	. 25	
(26)	Resistor (20,000 ohms) (Red-Black-Orange)	6650	25	(66)	Condenser (015 Mfd . Twin) (Bakelite Biock)	3793R	. 40	
(27)	Pilot Lamp (Station Selector)	6008	11	(70)	Power Transformer	32.7111	5.75	
(28)	Compensating Condenser (Osc. L. F.)	04000i2	45	(11)	Filter Choke	32-7115	1.80	
(29)	Condenser (. 003 Mfd . Mica)	7301	. 45	(72)	Condenser (.25 Mfd.)	6287-R	. 40	
(30)	Compensating Condenser (1st I. F. Pri.)	Part of (31)		(73)	Contenser (Elec. 8 Mfd .10 Mfd)	30-2045	1.95	
(31)	1st I. F. Transformer.	32-1381	1.50	(74)	Condenser (Elec. 8 Mfd)	$30-2025$	2.60	
(32)	Compersating Condenser (1st I. F. Sec.)	P'art of (31)	...	(75)	Compensating Condenser (2d I. F. Secondary)	Part of (38)		
(33)	Resistor (500 ohms Flexible Wire-Wound)	69.7	20	(76)	Resistor (2900 otrms) (Red-White-Thed)	5309	25	
(34)	Condenser (. 05 Mfd .) (Bakelite Block)	3E15aU	. 35		Chassis Mtg. Serew Chassis Mtg Washer	$\begin{aligned} & \text { W-1345A } \\ & 29-2089 \end{aligned}$	$\begin{array}{r} 2.25 \mathrm{C} \\ .35 \mathrm{C} \end{array}$	
(35)	Shadowmeter	6497	2.50		Chassis Mty. Fort (Rubber)	27-4116	. 05	
(36)	Shadormeter Pilot Lamp	Part of (35)			Chassis Mtk. Foot Plate	27-7497	.35C	
(37)	Compensating Condenser (2d I. F. Pri)	*04000A	. 15		Knob Assembly (Large) Kinob Assembly (Small)	$\begin{aligned} & 27-4051 \\ & 27-405: \end{aligned}$. 10	
(38)	2d I. F. Transformer (Early I'rod. 32-1258)	32-1424			Dial Assembly	31-1205	. 50	
(39)	Condenser (0001 Mrd . Twin) (Bakelite Bluck)	8035-K	. 25		Dial Scale.	27.5046	.35 C .	
(6)	Resistor (.1 Meg.) (White-White-(range)	4411	. 25		4 Tube Shield.	${ }_{7544}^{28-1107}$.10 .10	
(1)	Condenser (. 01 Mfd. Bakelite Block)	39032	. 25		6 I'rong Socket	$\begin{aligned} & 544 \\ & 7547 \end{aligned}$	11	
(42)	Resistor (1 Meg.) (Brown-Black-Green)	4409	. 25		7 Prong Socket.	27-6605	11	
(43)	Resistor (. 5 Meg.) (Yellow-White-Yellow)	4517	. 25		Speaker Socket	4957	. 10	
	Condenser (.09 Mfd. Bakelite Block).	4989D]	. 35		A. C. Cord and Plug	L-943	60	

Adjusting Compensating Condensers

For adjusting compensating or padding condensers in Model 118, an accurately calibrated signal generator covering the broadcast range of frequencies is required and also a crystal controlled signal generator for the high frequency adjustments. For the former we suggest the Philco Model 024 Signal Generator and for the latter the Model 091, Crystal Controlled high frequency signal generator. The actual adjusting calls for a special insulated hex wrench and insulated screwdriver. Philco Part No. 3164 Fibre Wrench and No. 27-1159 Screwdriver are recommended. An output meter is also required, for connection to the receiver.
I. F. ADJUSTMENT-The I. F. (intermediate frequency) of Model 118 is 260 K . C.

Remove the grid clip from the top of the 6A7 tube and connect the shielded antenna lead from the Signal Generator to the cap of this tube. Connect the ground lead of the Signal Generator to the ground post of receiver. Connect the output meter to the primary terminals of the output transformer of receiver. Set the waveband switch at the left position (standard broadcast).

Set the wave switch on the Signal Generator at 260 K . C., and the dial of the receiver at 550. Turn on the set (volume full on), and the Signal Generator. Now adjust the 1st I. F. Primary and Secondary condensers (Nos. (30) and (33) in Fig. 3) and the 2 d I. F. primary and secondary condensers ((8) and (76) to give maximum reading on the output meter. The I. F. primary condenser is adjusted by turning the screw on top of the I. F. transformer and the secondary is adjusted by turning the nut. The I. F. transformers are in the smaller metal "cans". The screw and nut are reached through the hole in top. If the needle on the output meter goes off the scale, turn down the "attenuator" on the Signal Generator until a lower reading is obtained.
Note: In early production the 1 st I. F. compensating condensers only are adjusted as
described above. Part (76) is not used. The 2d I. F. primary (57) is an 04000A condenser reached and adjusted through hole in top of chassis near the 42 driver tube.

WAVE TRAP--Remove antenna lead from grid cap of 6A7 tube and attach it to antenna post on set. Replace cap on 6A7 tube. With Signal Generator still operating at 260 K . C., adjust wave-trap condenser (1 in Figs. 3 \& 4) so as to get MINIMUM reading in output meter. This adjustment is made from underneath the chassis.

ANTENNA, DETECTOR AND OSCILLATOR H. F. (Broadcast)--These condensers Nos. (7), (11), and (3), are located on top of the tuning condenser gang, adjustment made by means of the fibre wrench. Set the signal generator at 1500 K. C., tune in the signal at 1500 on dial and adjust these condensers in the order given, to give maximum output reading. (7) is located on the section nearest the front and (11) on the center section.

OSCILLATOR-LOW FREQUENCY-This is condenser (38) (see Figs. 3 and 4) located underneath chassis and accessible from underneath. Use the fibre wrench. Set signal generator switch at 600 , tune in the signal at 600 on the dial and adjust condenser to maximum.

ANT. AND OSC. H. F.-SHORTWAVEThe crystal controlled signal generator is used for these adjustments. These are condensers (2) (Ant. H. F.) and (22) (Osc. H. F.) located underneath chassis, and adjusted from underneath. The fundamental frequency of the Philco Model 091 crystal controlled signal generator is 3600 K. C. or 3.6 megacycles. The third harmonic of this is 10.8 M . C. Turn the waveband switch of the set to the right and the dial to just below 11 M . C. The 10.8 harmonic should be picked up here and the two condensers should be adjusted to give maximum reading on the output meter, on this signal.

PHILCO RADIO \& TELEVISION CORPORATION

Service Department

PHILCO
 Service Bulletin ~No. 198

Model 18 (Code 124)

Model 18 (code 124) is an eight-tube superheterodyne receiver, for operation on alternating current (A.C.) The range of receivable frequencies is from 530 to 1720 kilocycles which includes standard broadcasts and police stations on the first (lowest) police band. The tubes used are: Type 78 R.F.; type 6A7 detector-oscillator; type 78 I.F.; type 752 d detector, 1st A.F.; type 42 driver; two type 42 output tubes, and type 80 rectifier. The intermediate frequency is 260 kilocycles.

Tube Socket Voltages

Circuit	R. F.	Det. Osc.	I. F.	$\begin{gathered} 1 \mathrm{st} \\ \mathrm{~A} . \mathrm{F} . \end{gathered}$	Driver	$\begin{aligned} & \text { Output } \\ & \text { (Class "A") } \end{aligned}$		Rectifier
Type Tube	78	6 A7	78	75	42	42	42	80
Filament (F-F)	6.3	6.3	6.3	6.3	6.3	6.3	6.3	5.0
Plate ($\mathrm{P}-\mathrm{K}$)	210	210	210	120	205	280	280	350
	80	$\begin{gathered} 35 \\ 130 \end{gathered}$	80		200	300	300	\ldots
Cathode (K-F).	2.8	2.8	5.3	0	0	0	0	

Power Transformer Data

Terminal	A. C. Volts	Circuit	Color
$1-2$	$105-125$	Primary	White
$3-5$	6.3	Filament	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	760	Plates of 80	Yellow
4		Center Tap of 3-5	Black-lellow Tracer
9		Center Tap of 8-10	Yellow-Green Tracer

All the above values were obtained from the underside of the chassis, using test prods and leads with an A. C. voltmeter for filament voltages and a high-resistance multi-range D. C. voltmeter for all other values. The Philco Model 048 All-Purpose Set Tester is highly recommended for this use. Volume control at maximum and station selector at 520 K . C. Readings obtained with a plug-in adaptor will NOT be satisfactory.

Fig. 1-Socket Layout (Underneath)

Fig. 2-Top View of Chassis

Adjusting Compensating Condensers

The adjustment of the compensating or padding condensers in Model 18 (124) requires an accurate signal generator, such as the Philco Model 024, an output meter, and a special insulated hex wrench. The adjustments are made as follows:

1. I. F. (Intermediate Frequency). Remove the grid clip from the cap on the 647 tube and altach the shielded antenna lead from the signal generator to the grid cap of the 6A7. Set the switch of the signal generator at 260 K . C. (the I. F. of Model 18) and the dial of the set at 550 . Turn on the set and signal generator. Adjust each of the three I. F. compensating condensers in turn to give maximum reading in the output meter (connected to primary of output transformer). If the needle on the meter goes off scale, turn down the attenuator adjustment on the signal generator. See Fig. 4 for locations of the I. F. compensating condensers. The first and 2 d I. F.
primary condensers (21) and (22) are accessible through the two holes in the chassis sub-base directly over them. The 1st I. F. secondary (24) is accessible from the rear.
2. ANT. H. F., DET., and OSC. H. F. CONDENSERS (5), (10), and (12).) These are located on top of the tuning condenser assembly and adjusted from above. (5) is mounted on the section nearest front of set. Replace the grid cap clip on the $6 A 7$ and connect the antenna lead of signal generator direct to antenna post of set for these adjustments. Set signal generator at 1500 and dial of set at 1500 .
3. OSC., L. F.-This adjustment (15) is made from rear of chassis (see Fig. 4). Set Signal Generator and dial of set at 600. The tuning condenser assembly should be "rocked" while this adjustment is being made.

훈를
 No. on
Figs. Description $\begin{gathered}\text { Part No. } \\ \text { (52) }\end{gathered}$ $\frac{5}{88}$

[^4]
Model 49

Model 49 is a superheterodyne radio receiver designed for operation on 115 volts direct current (D. C.) only. Model 49 covers two bands of frequencies-from 530 to 1720 KC and from 4.2 to 12.0 megacycles. This gives either standard or short wave reception by turning the wave-band switch on the panel. The intermediate frequency (I. F.) of the set is 260 kilocycles. The power consumption of Model 49 is 50 watts. The receiver uses the following tubes: Type 6A7 detector-oscillator; type 78, R. F.; type 78, I. F.; type 85 2nd detector-1st A. F.; type 7 ódriver; two (2) type 43 output tubes.

Adjusting Compensating Condensers

For adjusting compensating or padding condensers in Model 49, an accurately calibrated signal generator covering the broadcast range of frequencies is required and also a crystal controlled signal generator for the high frequency adjustments. For the former we suggest the Philco Model 024 Signal Generator and for the latter the Model 091, Crystal Controlled high frequency signal generator. The actual adjusting calls for a special insulated hex wrench and insulated screwdriver. Philco Part No. 3164 Fibre Wrench and No. 27-1159 Screwdriver are recommended. An output meter is also required, for connection to the receiver. Figs. 1 and 2 show the locations of the various compensating condensers.
I. F. ADJUSTMENT-The I. F. (intermediate frequency) of Model 49 is 260 K . C.

Remove the grid clip from the top of the 6A7 tube and connect the shielded antenna lead from the Signal Generator to the cap of this tube. Connect the ground lead of the Signal Generator to the ground post of receiver. Connect the output meter adapter leads to the plates of the output tubes (type 43) in the receiver. Set the wave-band switch at the left position (standard broadcast).

Set the wave switch of the Signal Generator at 260 K. C., and the dial of the receiver at 550 . Turn on the set (volume full on), and the Signal Generator. Now adjust the 1st I. F. Primary and Secondary condensers (Nos. (21) and (23) in Fig. 2) and the 2d I. F. primary and secondary condensers (${ }^{66}$ and (28)) to give maximum reading on the output meter. The I. F. primary condenser is adjusted by turning the screw on top of the I. F. transformer and the secondary is adjusted by turning the nut. The I. F. transformers are in the smaller metal "cans". The screw and nut are reached through the hole in top. If the needle on the output meter goes off the scale, turn down the "attenuator" on the Signal Generator until a lower reading is obtained.

NOW REMOVE Antenna lead of signal generator from grid cap of 6A7 tube und reconnect it to antenna post of receiver. Replace cap on $6 A 7$ tube.

ANTENNA, DETECTOR AND OSCILLATOR H. F. (Broadcast)--These condensers Nos. (8), (12), and (14), are

located on top of the tuning condenser gang (See Fig. 2) adjustment made by means of the fibre wrench. Set the signal generator at 1500 K . C., tune in the signal at 1500 on dial and adjust these condensers in the order given, to give maximum output reading. (8) is located on the section nearest the front and (12) on the center section.

OSCILLATOR-LOW FREQUENCY--This is condenser (17) (see Fig. 1) located underneath chassis and accessible from underneath. Use the fibre wrench. Set signal generator switch at 600 , tune in the signal at 600 on the dial and adjust condenser to maximum.

ANT. AND OSC. H. F.-SHORTWAVE-The crystal controlled signal generator is used for these adjustments. These are condensers (4) (Ant.) and (15) (Osc. H. F.) located underneath chassis. (4) is adjusted from underneath, and (15) from above, thru hole in sub-base directly behind tuning condenser assembly. The fundamental frequency of the Phileo Model 091 crystal controlled signal generator is 3600 K. (. or 3.6 megacycles. The third harmonic of this is. 10.8 M. C. Turn the wave-band switch of the set to the right and the dial to just below 11 M . C. The 10.8 harmonic should be picked up here and the two condensers should be adjusted to give maximum reading on the output meter, on this signal.

Tube Socket Voltages-Line Voltage 120 D.C.

TUBE		Filament F to F	$\begin{aligned} & \text { Plate } \\ & \text { P to } \mathrm{K} \end{aligned}$	Screen Grid SG to K	CathodeK to F
Type	Circuit				
78	R. F.	5.3	85	100	30
6.17	Det.-Osc.	5.7	90	$\begin{aligned} & \text { G3\&5-K:65 } \\ & \text { G2 } \\ & \text { G1 } \\ & \text { G: } \end{aligned}$	22
78	I. F.	6.3	90	100	15
85	2d Det.-1st A. F.	6.3	40	...	15
76	Driver	6.3	100		20
$\left.\begin{array}{l} 43 \\ 43 \end{array}\right\}$	Output	2.6 2.6	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$

All readings above made with a high resistance multirange D. C. voltmeter using test prods applied to tube sockets underneath chaseis (See Fig. 1). Volume control at maximum, wave-hand switch at left (standard broadeast) and dial at
$550 \mathrm{K.c}$.
Philco Model 025 Circuit Tester or 048 All-Purpose Tester are highly recomPhilco Model 025 Circuit Tester
mender for making the above tests.

	on $\begin{aligned} & \text { on } \\ & \text { Description }\end{aligned}$
(1)	Resistor (10,000 ohms) (Brown-Blark-Orange)
(2)	Antenna (12. F.) Transformer
(3)	Wave-hand Switch
(4)	Compensating Condenser (Ant. S. W.)
(5)	Tuning Condenser Assembly
(8)	Resistor (70,000 ohms) (Violet-Black-Orange)
(7)	Condenser (05 Mfd . Tubular)
(B)	Compensating Condenser (Ant.)
(2)	Condenser (. 05 Mfd . Tubular)
(10)	Detector Transformer
(11)	Condenser (000015 Mics)
(12)	Compensating Condenser (Det.)
(13)	Resistor (160,000 ohms) (Brown-Blue-Y
(14)	Compensating Condenser (Osc. H. F.)
(15)	Compenssting Condenser (0sc. S. W.)
(16)	Oscillator Transformer
(17)	Compensating Condenser (Osc. L. F.)
(18)	Condeuser (.003 Mfd. Mica)
(19)	Condenser (.0008 Mfd. Mica)
(20)	Resistor (10,000 ohms) (Brown-Black-Orange)
(21)	Compensating Condenser (1st I. F. Primary)
(22)	First I. F. Transformer
(2)	Compensating Condenser (1s: I. F. Secondary)
(21)	Resistor 70,000 ohms (Violet-Black-Orange)
(25)	Condenser (.09 Mfd . Bakelite Block)
(26)	Compensating Condenser (2d I. F. Primary)
(27)	2d I. F゙. Transfurnier
(28)	Compensating Condenser (2d 1. F. Secondary)
(29)	Conderser (00011 Twin Bakelite Block)
(30)	Resistor ($50,000 \mathrm{ohms}$) (Green-Brown-Orange)
(31)	Condenser (.05 Mid . Tubular)
(32)	Resistor (250,000 ohms) (Red-Yellow-Yellow)
(33)	Resistor ($10,000 \mathrm{ohms}$) (Brown-Black-Orange)
(3)	Condenser (. 09 Mfd. Bakelite Block)
(35)	Volume Control and On-Off Switch
(36)	Condenser (. 05 Mfd . Bakelite Block)
(3)	Resistor (t Meg.) (Broun-Black-Green)
(38)	Resistor (.5 Meg.) (Yellow-White-Yellow)
(39)	Condenser (Metal Case Block) (.2-.75-.25-.05-.09)
(40)	Resistor (200 ohms Flexible Wire-Wound)
(11)	Condenser (.09 Mfd. Bakelite Block)
(42)	Shadoumeter
(4)	Condenser (.00011 Mfd. Mica)
(4)	Condenser (05 Mfd . Bakelite Block)
(45)	Rexistor (.1 Meg.) (White-White-Orange)
(48)	Rexistor (.5 Meg.) (Yellow-White- 'ellow)
(47)	Resistor ($25,000 \mathrm{ohms}$) (lied-Green-Orange)
(48)	Resistor (11 Meg) (Yellow-White-Yellow)
(49)	Tone Control.
(50)	Condensers in Tone Control
(31)	Audio Transformer
(62)	Condenser (.006 Mfd. Bakelite Block) .
(30)	Output Transformer...
	Voice Coil and Cone Asscmbly

	Part No.	List Price
	33-1000	80.25
	32-1379	. 70
	42-1046	80
	04000D	. 15
	31-1334	6.85
	33-1115	. 25
	30-4020	. 35
	Part of (5)	
	30-4020	. 35
	32-1427	. 90
	30-1030	. 35
	Part of (5)	
	5331	. 25
	Part of (5)	
	31-6016	. 15
	32.1428	. 70
	04000R	. 45
	30-1028	. 60
	+021	. 35
	4412	. 25
	Part of (22)	
	32-1381	1.50
	Part of (22)	
	33-1115	. 25
	4989 N	. 35
	Part of (20)	
	32-1424	1.60
	l'art of (27)	
	8035 F .	25
	6098	. 25
	30-4020	. 35
	33-1097	. 25
	33-1000	25
	4980-P	. 35
	33-5024	1.45
	3615-H	. 35
	33-1096	. 25
	6097	. 25
	30-4144	1.30
	7217	. 20
	4989P	. 35
	45-2042	2.50
	30-1006	. 35
	3615AX	. 35
	6099	. 25
	6097	. 25
	33-1013	. 25
	6098	. 25
	30-4043	. 75
	Part of 49	
	32-7211	5.75
	7625-E	. 25
	2550	1.75
	02625	. 80
	36-3159	. 50

Nos. on Diagran	on ${ }^{\text {amm }}$ Descriptlon
(55)	Fiell Coil and Pot Assembly
(56)	Resistor (10,000 ohms) (Brown-Black-Orange)
(57)	Resistor (50,000 ohms) (Green-Brown-Orange)
(58)	Filter Choke
(59)	Filter Choke
(60)	B. C. Resistor (Wirewound: 5.1-10.2-27.0-10.8 ohms).
(61)	Pilot Lamp (Dial)
(62)	Pilot Lamp (Shadowmeter)
(88)	Condenser (2.0 Mfd. Metal Case)
(64)	Condenser (1.0 Mfd. Metal Case)
(65)	Condenser (15 Mfd . Twin Bakelite Block)
(68)	Condenser (09 Mfd . Twin Bakelite Block)
(67)	Resistor (2900 ohms) (Red-White-Red)
(88)	Resistor (2 Meg.) (Red-Black-Green)
	Dial Assembly .
	Dial Scale
	Knob (larga)
	Knob (8mall)
	Five P'rong Socket
	Six Prong Socket.
	Seven Prong Socket
	Chassis Mty. screw.
	Chassis Mty. Foot (Rubher)
	Chassis Mig. Foot Plate.
	Chassis Mtt. Washer
	Speaker Rocket.
	Cord \& Plug tsoembly

Part No.	ListPrice
02745	$\$ 4.25$
4412	.25
4518	.25
$32-7213$	1.60
$32-7018$	1.50
$33-3128$.25
4567	.09
Part of	
$30-4140$.80
04357	.75
$6287-\mathrm{T}$.40
4989 AP	.35
5309	.25
$33-1025$.25
$31-1205$.50
$27-5046$.25
$27-4051$.10
$27-4052$.10
7546	.10
7547	.10
$27-6005$.11
$W-1358 \mathrm{~A}$	2.60 C
$27-4116$.05
$27-7497$.35 C
$29-2089$.35 C
4957	
$\mathrm{~L}-943 \mathrm{~A}$.10

 (68) (4) (3) (10) (8) 3) (7) (4) (3)

PHILCO
 Service Bulletin ~ No. 201

Model 200

Philco Model 200 is a superheterodyne radio receiver designed especially to deliver high fidelity reproduction of broadcasts. The audio response of this model extends from 30 to 7500 cycles. This is made possible partly by the design of the R. F. and I. F. circuits, which are so arranged that by means of a set of variable resistances in the I. F. circuits the tuning can either be broadened to take in the high fidelity transmissions which cover more than a single channel, where conditions permit; or sharpened when necessary and when full high fidelity cannot be used to advantage. The design of the audio circuit, speaker and cabinet and the use of a special "Sound-Diffuser" consisting of a scientifically arranged group of sound-radiating vanes, also contribute greatly to the high fidelity result.
The Selectivity-Fidelity Control is the most important adjustment in this receiver. To operate this control properly requires a thorough understanding of its functions and its relationship to the performance of the set. Broad tuning in the R. F. and I. F. circuits is required for the passage of a broadcast signal without any tendency to lose the higher audio frequencies contained in the side bands. This condition is obtained when the selectivity-fidelity control is

.Circuit	R.F.	Det. Osc.	$\begin{aligned} & \text { 1st } \\ & \text { I.F. } \end{aligned}$	$\begin{aligned} & \text { 2d } \\ & \text { I.F. } \end{aligned}$	Shadowmeter Contral	A.F.	Dri-	Output	Rect.
$\begin{array}{\|l\|} \hline \text { Type Tube } \\ \hline \text { Test Points } \end{array}$	78	6 A7	78	78	37	75	42	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	523
F to F....	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	5.0
P to K	225	210	210	220	63	110	225	335	350*
SG to K	80	$\underset{73}{(\mathrm{G} 3 \& 5-\mathrm{K})}$	73	76	.		225	$\begin{aligned} & 335 \\ & 335 \end{aligned}$	
K to Gnd.	3	8	8	4	0	0	0	0 0	\ldots
CG to K	0.2	0	0.2	4	0		0.2	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	
$6 A^{7-G 1}$ to K	22.0								
$6 A^{-}-\mathrm{G}^{2}$ to K	90.0								

turned to the extreme right hand position. In this position, maximum fidelity and minimum selectivity will be obtained. This setting will enable the audio amplifier and speaker to reproduce the widest possible range of audio frequencies, but should only be used when no broadcasting station within the range of the receiver is operating on a channel within ten kilocycles of the station being received. As the control is turned toward the left, the selectivity is gradually increased with an attendant gradual decrease in response to the higher frequencies. With this control in the left hand position, the tuning will be extremely sharp.

Model 200 uses the following tubes: Type 78 R. F., type 6A7 detector-oscillator, two type 78 I. F., type 37 Shadowmeter control tube, type 752 d detector-1st audio, type 42 driver, two type 42 output tubes used as triodes and a type 5 Z 3 rectifier. The intermediate frequency (I. F.) is 175 kilocycles and the power consumption is 130 watts. The Model 200 will receive broadcasts from 540 to 1720 kilocycles, which includes all standard broadcasts and some of the police broadcast frequencies. This model is for use on alternating current (A. C.) only.

	Power Transformer Data		
Terminals	A.c. Volts	Circuit	Color of Leads
$1-2$	120	Primary	White
$3-5$	780	Plates of $5 Z 3$	Yellow
$6-7$	5.0	Filament of 5Z3	Blue
$\mathbf{8 - 1 0}$	6.3	Filarents	Black
4		Center Tap of 3-5	Yellow-Green Tracer
9	\ldots	Center Tap of 8-10	Black-Yellow Tracer

Use Fig. 1 when tecting voltages as per table above
dial at 55 , volume control ar maximum, fidelity control at middle position. $\quad \rightarrow \mathrm{P}$ to ground
Philco Model 025 Circuit Tester is recommended for making these tests.

Fig. 1-Tube Sockets (View ed from Underneath)

Fig. 2. Schematic Wiring Diagram.
NOTE: An 8000 ohm resistor, 33 -3010 (Gray-Black-Red) is added scross the 2000 ohm section of (22)

Adjusting Compensating Condensers in Model 200

The quality performance of this receiver depends to a great extent upon providing a wide channel through the R. F. and I. F. stages to permit the passage of a broadcast signal without cutting of the side bands.
In order to produce this wide tuning band, the set must be carefully and accurately adjusted. These adjustments will be more critical than in the conventional radio, and the procedure will be somewhat more complicated.
In making the adjustments, it is necessary to use an unmodulated signal generator. The PHILCO Model 048 Set Tester or the Model 024 Signal Generator can be readily adapted for this purpose by the installation of a single-pole double-throw switch, and an additional grid leak resistor, as shown in Figure 4. This switch will adapt the signal generator for either a modulated or an unmodulated signal.

Figure 4 Adaptation of Signal Generator Circuit for Use in Making Adjustments on Model 200.

Locations of Adjusting Condensers.

With an unmodulated signal, it is not possible to obtain an indication of output by means of the usual form of output meter. An indirect indication can be obtained, however, through the automatic volume control system by connecting a high resistance voltmeter having a scale reading of 0-5 or $0-10$ volts across the R. F. cathode resistor (3), shown in the wiring diagram Fig. 2. This connection can be made conveniently through the use of leads equipped with test clips. With this arrangement, maximum output at the second detector will be indicated by a minimum reading of the meter, and vice versa. In other words, the action will be just the opposite of an output meter used to measure audio frequency voltage at the power output stage. With no signal applied to the receiver, the bias voltage indicated by the voltmeter, will be approximately 3 volts. This voltage will be reduced by the application of a signal to the R. F. or I. F. input circuits.

> I. F. ADJUSTMENTS

After preparing the unmodulated signal generator and connecting the voltmeter as directed, proceed as follows:

1. Set the receiver tuning dial at its extreme low frequency position. Remove the grid clip from the cap of the 6-A-7 detector oscillator tube, and connect the signal generator antenna lead in its place. Connect the ground lead from the signal generator to the ground terminal of the chassis. Adjust the signal generator frequency to exactly 175 K . C. Turn the fidelity control of the receiver all the way to the left.
2. Adjust the 6 I. F. padding condensers (20), (22), (30), (32), (41) and (38) (see Fig. 5) in the tops of the 3 I. F. cans, for maximum output (minimum meter reading), starting with the compensator or padder at the front of the chassis, and continuing with the adjustments toward the rear of the set. During these adjustments, the output of the signal generator should be regulated to maintain a voltmeter reading of approximately 2 volts.
3. Connect a 250 Mmf . Condenser from the plate of the 2nd I. F. tube to ground. This will increase the voltmeter reading to approximately 2.5 volts.
4. Readjust the 3d I. F. secondary padder (41) for maximum output.
5. Readjust the 3rd I. F. primary padder (38) for maximum output. Do not touch the grid padder (4) again.
6. Turn the fidelity selectivity control all the way to the right.
7. Adjust the 1 st \& 2nd I. F. tertiary padders (23) and (33) for MINIMUM output (maximum voltmeter reading).
8. Leaving the fidelity selectivity control in the right hand position, it will be found, upon varying the frequency of the signal generator, that two definite dips will appear in the voltmeter reading-one at 167 K . C. and another at 182 K . C. These dips in the voltmeter reading indicate peaks in the tuning curve. The amplitude of these peaks should be equal; that is, the same voltmeter reading should be obtained at both 167 K . C. and 182 K . C. Any variations in these two readings can be corrected by a slight readjustment of the 3 rd I. F. primary padder (38). If the peak at 167 K . C. is higher than the one at 182 K . C., the primary padder will have to be turned out. If the reverse is true, the capacity of this padder must be increased. In any case, the voltmeter readings must be made equal by dividing the differences through readjustment.

R. F. ADJUSTMENTS.

The R. F. portion of the receiver is adjusted as follows:
9. Replace the grid clip on the detector-oscillator tube and connect the antenna terminal of the signal generator to the antenna terminal of the chassis. Turn the fidelity selectivity control all the way to the left and set the receiver dial at $1,500 \mathrm{~K}$. C. The same type of output indication is employed as in the I. F. adjustments.
10. Adjust the signal generator for a frequency of $1,500 \mathrm{~K}$. C. Adjust the "oscillator" padding condenser (19) and the "detector" padding condenser (14) for maximum output and in the order mentioned. Regulate the signal generator output control to maintain a voltmeter reading of 2 volts as before.
11. Turn in padder (6) (R. F.) until the voltmeter reads 2.5 volts and then adjust padder (2) (ANT.) for maximum output.
12. Readjust padder (6) for maximum output. Do not touch padder (2) again.
13. Set the receiver dial and the signal generator at $600 \mathrm{~K} . \mathrm{C}$. Adjust the "oscillator low frequency" padder (17) for maximum output. As the R.F. tuning is rather broad, there will be a considerable range on the dial that will give about the same output when the oscillator L. F. padder is adjusted for maximum. The padder must be adjusted at the middle of this range. This point may be determined with accuracy in the following manner: Starting with the usual voltmeter reading of 2 volts, slowly turn the receiver dial toward the low frequency end and, at the same time, readjust the padder (17) for maximum output until a point is reached where the maximum output is indicated by a voltmeter reading of 2.5 volts. Note carefully the exact dial reading at this point. Follow the same procedure while turning the dial in the opposite direction until the output reading decreases to the same value. Set the dial at the exact center of these two points and readjust padder (17) for maximum output.
14. Adjust the 3d I. F. tertiary padder (40) to give minimum width in the sladow tuning meter in the receiver. This padder is reached from rear of chassis.

ADJUSTMENT OF 10 K . C. FILTER
The 10 K . C. filter in the audio circuit will rarely require readjustment. As the proper adjustment of this padder (48) on diagram) requires an accurately calibrated audio oscillator, it should be reset only in the event that it has been tampered with or in cases where it has become necessary to replace one of the elements of this filter. An emergency adjustment of this filter can be made in the following manner:
15. Connect the signal generator to the control grid of the type 6-A-7 tube, leaving the grid clip in place.
16. Disconnect the voltmeter from resistor (7) and connect an output meter to the plates of the power output tubes in the usual way.
17. Set the receiver dial at 550 K . C. At this point, the oscillator in the receiver will be tuned to 725 K . C. The adjustment of the signal generator (switch in unmodulated position) to approximately this same frequency will cause an audible beat note to be heard in the speaker. By means of the signal generator tuning control, reduce the frequency of this beat note until zero beat is reached, at which point the output meter reading will decrease to 0 . Turning the receiver dial in either direction will gradually increase the frequency of the audible note so that at 540 or 560 K . C. a $10,400 \mathrm{~K}$. C. note will be heard. At either of these points, the padder (49) should be adjusted for minimum reading of the output meter.

Service Bulletin - No. 203

Model 28

Philco Model 28 is a six-tube receiver operating on 115 volts, either alternating current (A.C.) or direct current (D.C.). It is capable of receiving either standard and police broadcasts between 540 and 1720 kilocycles, or short-wave stations between 4.2 and 13 megacycles. The left-hand side of the dial is calibrated in kilocycles for standard reception and the right in megacycles for short-wave stations. A two-position switch changes reception from standard to short waves.

Model 28 uses a type 6-A-7 detector-oscillator, two type 39-44 I. F. Tubes, type 75 2d detector, type 43 output tube, and type 25-Z-5 rectifier. The power consumption is 50 watts. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$.

On Line Voltage 120 A.C.

On Line Voltage 1	A.C.	TUBP SOCKET VOLTAGES						On Line Voltage 120 D.C.				
Type Tube	6-A-7	39-44	39-41	75	43	25-Z-5	6-A-7	39-44	39-44	75	43	25-Z-5
Plate (P to K)	100	100	98	45	95	120	95	95	85	40	90	.
Screen Grid (SG to K)	$\begin{aligned} & \mathrm{G} 1=-8 \\ & \mathrm{G} 2=80 \\ & \mathrm{G} 3 \& 5=60 \end{aligned}$	100	100	\cdots	100		$\begin{aligned} & \mathrm{G} 1=-10 \\ & \mathrm{G} 2=80 \\ & \mathrm{G} 3 \& 5=60 \end{aligned}$	95	95	\ldots	95	\cdots

Total Filament Voltage-75
Total Filament Voltage-83
High resistance D.C. voltmeter used lor above tests. Volume control at marimum; dial at 55; wave band switch at left. Refer to Fig. 2 (Socket View).

Philco Model 025 Circuit Tester is recommended lor making the above voltage tests,

Fig. 1 -Top View Showing Location of Compensating Condensers.

Fig. 2-Bottom View of Sockets for Testing Voltages.

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in Model 28, an accurately calibrated signal generator, an output meter, and a special insulated padding wrench and screwdriver are needed. We suggest the Philco Model 024 Signal Gcnerator, which is accurately calibrated and easy to handle. Philco No. 3164 fibre wrench and No. 27-1159 fibre-handled screwdriver are also recommended. For the output meter either Philco Model 025 complete tester or Philco Model 012 shadow output meter is suggested.
The chassis must be removed from cabinet in order to make all adjustments.

Adjustments are made in the following order-
ADJUSTMENT OF THE INTERMEDIATE FRE-QUENCY-Remove the grid clip from the type 6-A-7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter adapter leads to the plate and cathode prongs of the type 43 tube. Set the signal generator at 460 K.C. (the intermediate frequency of Model 28) and with the receiver and signal generator turned on, the wave band switch at left and dial at 600 K.C., adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located one pair at the top of each of the three I. F. transformer shields. These are the three metal "cans" near the rear of the chassis. Each of the transformers has a dual compensating condenser mounted at its top, and accessible through a hole in the top of the coil shield. In the dual compen-
sators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-liead nut.

ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6-A-7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (left-hand position) and the Station Selector at the low irequency (540 K.C.) end. Adjust the Wave Trap condenser to give MINIMUM response to a 460 K.C. signal from the signal generator. The Wave Trap (2) is located at rear and underneath the chassis, and is shown in Figure 1. It is reached from the rear of the chassis by inserting the fibre wrench through the hole near left-hand rear corner of chassis.

ANTENNA AND OSCILLATOR "HIGH" AND "LOW" FREQUENCY ADJUSTMENTS-The "antenna" and "oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.

Set the signal generator at 1500 K.C., tune in this signal on the set and adjust the antenna compensator (8) (nearest tuning control) to give maximum reading in the output meter.

Next adjust the oscillator II. F. condenser (14) (located on the other section of tuning condenser) to maximum reading.

Finally, set the signal generator at 600 , tune in this signal and adjust the "oscillator L. F." condenser, located underncath chassis (18) in Fig. 1) to maximum reading. This adjustment is reached through the hole in top of chassis, between the two electrolytic condensers (left-hand end of chassis when facing rear).

PHILCO
 Service Bulletin - No. 205

Model 16 - Codes 125 and 126

Model 16 (codes 125 and 126) is an eleven tube all-wave superheterodyne receiver covering a continuous frequency range from 550 to 22500 kilocycles. This range is divided into 4 sections or bands any of which may be brought into use by means of a four-position wave-band switch. As each position of the switch is reached the scale on the dial corresponding to that position is illuminated, this being accomplished by the use of four pilot lamps connected to the switch.

Model 16 has automatic volume control, and four point tone control with fixed bass compensation. The bass compensation can be eliminated (when desired on certain types of programs or stations) by means of a toggle switch located on the side of the cabinet.

The intermediate frequency of the Model 16 is 460 kilocycles. The power consumption of the code 125 set is 120 watts; of the code 126 is 130 watts. This set is designed for use on alternating current only, of the voltage and frequency specified on the chassis nameplate. It employs the following tubes:

RF	. Type 78
1st Detector	.Type 77
Oscillator	. Type 76
1st I. F.	.Type 78
2nd I. F.	.Type 78

Power Transformer Data
 Line Voltage 120

Terminals	A.C. Volts	Circuit	Color of Leads
$1-2$	120	Primary	White
$3-5$	${ }^{*} 720$	Plates of Rectifier	Yellow
$6-7$	5.0	Filament of Rectifier	Blue
$8-9$	6.3	Filaments	Black
4	\ldots	Center Tap of 3-5	Yellow-Green Tracer

*780 in code 126

Socket Voltages (Code 125)
Line Voltage 115

$\begin{aligned} & \text { Tube } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & 78 \\ & \text { R.F. } \end{aligned}$	$\begin{gathered} 77 \\ 1 \mathrm{st} \\ \text { Det. } \end{gathered}$	$\begin{aligned} & 76 \\ & \text { Osc. } \end{aligned}$	$\begin{aligned} & 78 \\ & \text { 1st } \\ & \text { i.F. } \end{aligned}$	$\begin{gathered} 78 \\ 2 \mathrm{~d} \\ \text { 2d } \\ \text { I.F. } \end{gathered}$	$\begin{gathered} 37 \\ 2 \mathrm{~d} \\ \text { Det. } \end{gathered}$	$\begin{gathered} 77 \\ 1 \mathrm{st} \\ \text { Aud. } \end{gathered}$	$\begin{gathered} 42 \\ \text { Driver } \end{gathered}$	$\begin{gathered} 42 \\ \text { Out- } \\ \text { put } \end{gathered}$	$\begin{gathered} 80 \\ \text { Rect. } \end{gathered}$
Circuit										
F to F .	6.3	0.3	6.3	6.3	6.3	0.3	6.3	6.3	6.3	5.0
P to K.	175	185	70	180	180	0	60	190	275 ea.	\ldots
SG to K	65	62	.	65	65	\cdots	48	190	275 ea.	
K to Gnd....	2.4	4.8	5.4	2.3	2.5	0	0	0	0	\ldots

Fig. 1-Tube Sockets (Underside of Chassis)

2nd Detector	Type 37
1st A. F.	Type 77
Driver	Type 42 as triode
Output Tubes (2)	Type 42 as triodes
Rectifier (code 125)	Type 80
Rectifier (code 126)	Type 5Z3

PHILCO

Fig. 3-Underside of Chassis, showing Parts
REPLACEMENT PARTS-MODEL 16-CODES 125 AND 126

Adjusting Compensating Condensers

Model 16 (Codes 125, 126, 127)

Adjustment of I. F.

1. Remove the antenna connection from the receiver, disconnect the grid clip from the first detector (type 77 tube), and connect the "ANT" output terminal of the Model 048 or 024 signal generator to the grid cap of this tube; connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver.
2. Connect the 0 to 20 volt range of the output meter in the Model 048 or 025 tester to the plate prongs of the two output tubes or to the two bottom prongs of the speaker plug.
3. Adjust the signal generator to a frequency of $460 \mathrm{~K} . \mathrm{C}$. Place the receiver in operation with the dial turned to the low frequency end of the broadcast band, wave band switch to extreme left, and with the volume control adjusted near its maximum setting. Adjust the signal generator attenuator for approximately half-scale reading of the output meter.
4. Using the Philco fibre adjusting screw driver, part No. 27-7059, adjust the I. F. compensating condensers in the following order to give maximum reading in the output meter: (57), (55), (35), (49), (51), (45), (43). (Fig. 4).

Adjustment of Wave-Trap

1. Connect the signal generator leads to the antenna and ground terminals of the receiver. Replace the grid clip on the first detector grid cap.
2. Set the wave-band switch of the receiver to the extreme left (broadcast position) (Range No. 1, 550-1500 K.C.), and turn the station selector to 550 K.C.
3. With the signal generator in operation at $460 \mathrm{~K} . \mathrm{C}$., adjust the wave-trap (1) condenser until a minimum reading is obtained on the output meter. The Philco fibre wrench, part No. 3164, is used for this adjustment.

Adjustment of High Frequency Padders

1. Leaving the output meter connected to the receiver connect the Philco Model 091 signal generator to the antenna and ground terminals of the chassis and place the signal generator in operation.
2. Turn the wave band switch to Range 4 (extreme right) and adjust the station selector to 18.0 megacycles, at which point the fifth harmonic of the 3600 K .C. signal will be heard. By means of the Philco padder wrench, part No. 3164, adjust the oscillator, R.F. and antenna padders for maximum reading in the output meter and in the order mentioned. These padders
are numbered (29), (17) and (8), respectively in figure No. 4. To make certain that the adjustment has been correctly made check the sixth harmonic at 21.6 M .C. on the dial.
3. Turn the wave-band switch to Range 3 (4.1-10.0 M.C.) and adjust the tuning dial to $7.2 \mathrm{M} . \mathrm{C}$. (the second harmonic of the 3600 K.C. signal). Adjust the oscillator, R.F. and antenna padders (30), (19) and (9), respectively) for maximum output. Check the calibration of the dial at the upper portion of the third band by tuning in the image of the 10.8 M.C. signal at approximately 9.9 on the dial. (If there is an appreciable error in calibration at this point, readjust padder (30) for maximum output. Return the dial to the 7.2 M.C. position, tuning for maximum output. Readjust padders (19) and (9).)
4. Turn the wave-band switch to scale No. 2 (1.5-4.0 M.C.) and tune in the fundamental frequency from the signal generator at 3.6 M.C. Adjust padders (31), (20) and (4) for maximum output.
5. At this point it will again be necessary to make use of the broadcast type signal generator Models 024,048 or equivalent. Connect the output of this signal generator to the antenna and ground terminals of the chassis. Turn the station selector dial to $1.5 \mathrm{M} . \mathrm{C}$. (Range 2) and adjust the signal generator to the same frequency (1500 K.C.). Adjust padder (27) (nut).
6. Turn the wave-band switch to Range No. 1 (broadcast band) and set the dial at 1500 K .C. Adjust the signal generator to this frequency and adjust padders (32), (21) and (5) for maximum output.
7. Tune the receiver and the signal generator to $000 \mathrm{~K} . \mathrm{C}$. and adjust padder (28) (screw) for maximum output.

Fig. 4-Locations of Compensating Condensers

USE PHILCO REPLAGEMENT PARTS AND TUBES FOR EVERY MAKE RADIO. GET COMPLETE GATALOG FROM YOUR DISTRIBUTOR.

SERVICE BULLETIN

No. 236

For Members of RADIO MANUFACTURERS SERVICE A PHILCO SERVICE PLAN

Model 600

Fig. 1. Transformer Terminal Code

Specifications

TYPE CIRCUIT: Superheterodyne with pentode output. POWER SUPPLY: 115 V., 60 cycle A.C.
TUBES USED: 1 type 6.47. Det. Osc., 1 type 77. 2nd Det., 1 type 41. Output. 1 type 80 Rectifier.

FREQUENCY RANGE: 530-1800 K.C.
INTERMEDIATE FREQUENCY: 460 K.C.
CURRENT CONSUMPTION: 45 watts.
SPEAKER: B-6.
POWER OUTPUT: $1 / 2$ watt.

Adjusting Compensating Condensers

Adjustment of compensating condensers in Model 600 requires an accurate signal generator covering I.F., and standard-wave irequencies. The PHILCO Model 088 All-Wave Signal Generator, lhaving a continuous range of from 100 to 20,000 K.C.. is ideal for this purpose.
An output meter is also needed. PHILCO Model 025 Cirenit Tester includes a high grade output meter.
Philco No. 3164 fibre wrench and No. 27-7059 fibre-handled screwdriver complete the equipment needed for making these adjustments. The lucations of the various compensaters are shown in fig. 4. Comect the output meter to the plate and cathode contacts of the type 41 power tube (using the adapters provided with the " 025 ") and set it at the $(0-30$ colt range.

Fig. 3. Hase View

Fig. 2. Tube Sockets as Viewed from Bottom (Measured from Socket Terminal to B-)

INTERMEDIATE FREQUENCY: Connect the 088 signal generator antema lead to the grid of the 6A7 (removing grid clip) and the ground lead to the ground post or some part of the chassis. Adjust sensitivity control (3)3 approximately $11 / 2$ turns from tight (counter clockwise), then set the 088 signal generator at $460 \mathrm{~K} . \mathrm{C}$. and the attenuator for approximately $1 / 4$ scale reading on output meter. Adjust condensers (14) and (212) for maximum reading on output meter. Turn sensitivity control (23) in (clockwise) until a low hiss or click (oscillation) is heard. Then turn it out (counter clockwise) approximately $1 / 4$ turn.

STANDARD and POLICE: Remove the 088 signal generator antema lead from the grid of the 6A7 (replacing grid clip) and comect it to the aerial post on the set. Turn the condenser gang all the way out (minimum capacity) and place a $.006^{\prime \prime}$ (six thousandth inch) gauge between the stator and rotor plates. Turn the condenser gang in until the correct spacing (. $006^{\prime \prime}$) is had between the rotor and stator plates. The pointer on the front of the cabinet should be set at 1800 K.C. to coincide with this condenser gang setting.
With the condenser gang set in this manner, set the 088 signal generator at 1800 K.C. and adjust condensers (3) and (6) for maximum reading on output meter.
Set the condenser gang and 088 signal generator at $600 \mathrm{~K} . \mathrm{C}$. and adjust condenser (117) for maximum output meter reading.
Care should be taken to adjust the 088 signal generator attenuator for approximately $1 / 4$ scale output meter reading for each stage before attempting to adjust compensators.

Fig. 4. Location of Compensators

Replacement Parts for Model 600

Sehematic Number Part and Description	Part No.	Price Lint		ber	a		$\begin{gathered} \text { Part } \\ \text { No. } \end{gathered}$	Price List	Schematic Number	aription	Part No.	Price List
(1) Volume Coutrol.	3,3-51.5?			(com	sater (1.F. Sec.)	(46)			I'ower	Transformer		
(2) Condenser (35 Mm . Mica)	30.1044	\$. 20					Part of (iv)			V.. 50-60 Cycle)	32-7554	
(31) Ant. Transformer .	32-20.36	1.40	(31)	Conule	nser ($50 \mathrm{mmf}$. Nic		30-1029	20	Power	Transtomer		
(4) Tuning Condenser	31.1755	2.75	22	Resist	or (1.5 meg.. $1 / 4$ w		33-515133	20		$4: .25 \mathrm{Cycl}$	32-7553	
(3) Compensater (1)et. 1500 K.C.)	Part of (1)		(3)	Sensit	ivity Control ..		31.6086	45	Tube	Shield Mody..	28-2726	. 10
(${ }^{\text {(}}$ Compensater (Osc, 1500 K.C.)	Part of (3)		(2)	Conde	nser (09 mi.$)$		Part of (1)		Tube	Shield Base	28-2725	. 03
($)^{\text {(}}$) Resistor (200 ohm).	7217	. 21$)$	(23)	Resist	or (10.000 uhim. $1 / 4$	watt)	3,3.31013,3	. 20	Tube	Socket (fiprong)	27.6036	. 11
(8) Condenser (. 05 mf . Twin Bake-			(20)	Resist	or (240.000) ohnm, $1 / 4$	wat)	$3,3-424143$ 39035 S	. 215	Tube	Socket (7-prong)	2-60,37	. 11
lite) (4) Resistor (4900 ohms. wat1)	$361,5 . \mathrm{DG}$ $33-249.34$.40 +20	(20)	Cumble	user (.101 mit. Bakelit	ica)	$3903 . \mathrm{SC}$ 310.1032	25 25	Pube Volum	Socket (4-prong	$27-6044$ $10.648-1$	20C
(40) Condenser (. 09 mi . Twin Bake-			(3)	Resist	or (750.1000 ohmı. $1 / 4$	att)	3.3.4751.33	. 211	Chassis	s Mtg. Sc	W-1587-1	$.20 C$ $.75 C$
Jite)	4989-1)	40	(31)	Resist	or (1.0 meg.. $1 / 4$ mat		3,3-510143	211	Chassis	5 Mtg. Ňil	W. 124 -A	3.5
(ii) Resistor (51.000 ohm. $1 / 4$ watt)	3,3-351143	. 20	(in)	(onde	nser (01 mf) (Tub)	dar)	30-4124	25	Chassis	s Mitg. Washe	W-410.A	.15C
(13) Resistor (25.0000 ohm, $1 / 2$ watt)	3,3-325,34,3	3.20	(92)	()atpu	t Transformer		32-7011	. 95	Chassis	s Mtg. Washe	\V-291-A	.40C
(i) Resistor (25,000 ohm. 1 watt).	33-32544.3	3.20	(3i)	$\backslash \mathrm{Vice}$	(Coil Cone Assy		36.3029	. 60	Bafle	Mig.	27.8232	. 04
(19) Osc. Transformet \ldots.	$32 \cdot 204.3$	1.20	(3i)	Field	Coil Assy.		$36 \cdot 3593$ 30.2149	2.50	Jial		27.5179	20
(1) Condenser (110 minf. Nica)	30.1031	20	(18)	Elec. Kesis	Condenser (4.-8. or (300 ohm)		$\begin{aligned} & 30.2149 \\ & 3.3 .3121 \end{aligned}$	$\begin{array}{r} 1.95 \\ \hline \end{array}$	Knob	(Station Selector)	27-4302	
(tiompensater (Osc. Series) (600 K. C.)	04000 S	.35	(13)	Conid	ser ($(.05 \mathrm{mf}$) $)$		Part of (A)		Knob	(Volume, O_{n}.Off) Shield Issy.	$\begin{aligned} & 27.4273 \\ & 29.3795 \end{aligned}$.10 .40
(1i5) Resistor (25.000 nhm. $1 / 2$ watt)	33.325343	3.20	(19)	Роке	Tramsformer				Botton	1 Shield Ins..	27-8122	05
(16) Compensater (I.F. Pri) (460					V.. 60 (yycle)		32.7552	3.25	Pointer		27.79 .33	01
KC.)	Part of (1)		(41)	Conde	user (015 mf . T'w		$3793-\mathrm{DG}$. 40	Pilot I	Lamp Bracket Assy	38.7581	20
(iiv) I.F. Transtormer	32-2031	1.50	(11)	Pilot	Lamp (6.3 Volt).		34.2064	.09	Coupli	ng (Eor Tuning Kino	28.6426	. 15

prices sẗbject to cilange witholt notice

Fig. 5. Schematic Wiring Diagram

SERVICE BULLETIN
No. 237

For Members of

RADIO MANUFACTURERS SERVICE

Model 602

ANT. TRAN5.
(5) D5C. TRAN5.

Fig. 1. Transformer Terminal Code

Specifications

TYPE CIRCUIT: Superheterodyne with pentode output.
POWER SUPPLY: 115 V., 25 or 60 cycle A. C., D. C.
TUBES USED: 1 type 6A7, Osc. Det. 1 type 78 I.F. Amplifier. 1 type 75 , 2nd Det. 1st audio, 1 type 43 output, 1 type $25 Z 5$, rectifier.

FREQUENCY RANGE: 530-1800 K.C.
INTERMEDIATE FREQUENCY: $460 \mathrm{K.C}$.
CURRENT CONSUMPTION: 55 watts.
SPEAKER: B-4.

POWER OUTPUT: $3 / 4$ watt.

Adjusting Compensating Condensers

Adjustment of compensating condensers in Model 602 requires an accurate sigual generator covering I.F., and standard-wave frequencies. The PHILCO Model 088 All-Wave Signal Generator, haviug a contimuous range of irom 100 to 20,000 K.C., is ideal for this purpose.

An output meter is also needed. PHILCO Model 025 Circuit Tester includes a high grade output meter.
Philco No. 3164 fibre wrench and No. 27-7059 fibre-handled screwdriver complete the effupment needed for making these adjustments. The locations of the various compensating condensers are shown in Fig. 4. Comect the output meter to the plate and cathorde contacts of the type 43 power tube (using the adapters provided with the " 025 ") and set it at the $0-30$ volt range.

Fig. 3. Base View

Fig. 2. Tube Sockets as Viewed from Bottom (Measured from Socket Terminal to B-)

INTERMEDIATE FREQUENCY: Turn the condenser gang all the way in (maximum capacity) and set the volume control of set at maximum (clockwise). Connect the 088 signal generator antenna lead to the grid of the 78 I.F. tube through a .00025 mf . condenser and the ground lead to the ground post of the set. Set the 088 signal generator attenuator for approximately $1 / 4$ scale reading on output meter. Adjust condensers (2a) and (3ay) for maximum output meter reading.
Remove the 088 signal gelerator antenna lead from the grid of the 78 and comect it to the grid of the 6A7, adjust condensers (al) and (23) for maximum output meter reading.

WAVE TRAP: Comect the 088 signal generator antenna lead to the aerial nost of set. Adjust condenser (1)a for minimum output meter reading.
STANDARD and POLICE: Turn the condenser gang all the way out (minimum capacity) and place a $.006^{\prime \prime}$ (six thousandth inch) gauge between the stator and rotor plates. Turn the condenser gang in until the correct spacing (. $006^{\prime \prime}$) is had between the rotur and stator plates. The pointer on the front of the cabinet should be set at $1800 \mathrm{~K} . \mathrm{C}$. to coincide with this condenser gang setting.

With the condenser gang set in this manner, set the 088 signal generator at 1800 K.C. and adjust condensers (t)a and (1)a for maximum output meter reading.
Set the condenser gang and 088 signal generator at 600 K.C. and adjust condenser (8) for maximum output meter rading.
Care should be takell to adjust the 088 signal generator attenuator for approximately $1 / 4$ scale output meter reading for each stage before attempting to adjust compensators.

Fig. 4. Location of Compensators

Replacement Parts for Model 602

Schematic Part and Description	$\begin{gathered} \text { Part } \\ \text { No. } \end{gathered}$	Price List		ber Partand Learription	Part No.	Price List		matir ber	Part and Desrription	$\begin{gathered} \text { Part } \\ \mathbf{N o} . \end{gathered}$	Prire Lint
(1) Wave Trap Coil.	32.2007	\$ 50	(3)	Resistor (300 ohm wirewound)	33-3010	. 20	(3i)	Voice	Coil Cone Assy.	36-3029	60
(1)a Wave Trap Compensator	04000 ()	. 15	(23)	Condenser (.05 mf.)..........	Part of		(3i)	Field	Coil Assy.	36-3040	2.40
(2) Condenser (001 MIf. Tubular).	30-4201	. 20	(26)	Resistor (2.0 meg., $1 / 4$ watt)	33-520143	3.20		Volun	C Control Nlg . Nut	W.684-A	1.25 C
(3) Condenser (15 mmf. Mica)...	30-10.30	. 20	(3)	Compensater (2nd l.f. Pri.)	Part of (29)			B.C.	Resistor Mtg. Screw	IV.650.A	40 C
(4) Ant. Transformer 1800 kC)	32-2003	1.40	(38)	2nd I.F. Transformer.	32-2006	1.50		B.C.	Resistor Mtg. Nut.	W-95-A	. 30 C
(4) Compensater (Osc. 1800 KC .)		1.20	(29)	Compensator (2nd I.F. Sec.)	Part of (28)			Tube	Shield 13ase	28-2725	0.3
(B) Tuning Condense:	31-1794	1.20	(30)	Condenser (. $00011 \mathrm{mf}$. twin)	$8035-\mathrm{ODU}$	U . 25		Tube	Shield Body	28-2726	10
(B) Compensaler (Ant. 1800 KC)	3 179		(3)	Condenser (.00011 mf)	Part of (30)			Chassi	S Mig. Screw	IV-1587-A	.75C
(7) Condenser (35 mmf . Mica)..	30.1044	. 20	(3)	Resistor (51.000 ohin, 1/4 watt)	3,3-351143	3. 20		Chassi	s Mtg. Nut	W. 124 -	.35C
(8) Compensator (Osc. Series)			(3)	Volume Contvol (0.5 meg.)	$33-5145$ $30+145$	1.45 .20		Chassi	is Mtg. Wi	$\begin{aligned} & \text { W.410-i } \\ & \text { W-291. } \end{aligned}$	15 C 40 C
(8) Resistor (4900 ohmi. $1 / 2$ watt)	04000S $33-2493.3$	$3 \begin{aligned} & .35 \\ & .20\end{aligned}$	(34)	Condenser ($01 \mathrm{mf}$. Tulular)	1 art of	. 20		Chassi	er Maftle.	11.291 .1 40.5840	40 C
(10) Condenser (.05 M1f. Bakelite)	$3615 . \mathrm{OSU}$	U . 35	(86)	B. C. Resistor ($133-15 \mathrm{ohm}$)	33.3225	. 5.5		Dial		27.5188	
(ii) Resistor (120.000. $1 / 2$ watt)..	33.412334	+ . 20	(3)	Pilot Limp.	34-2068	. 16		l'ointe		27.8236	
(12) Condenser $(.25-.05-.05-.05-.15-.01 \mathrm{mf})$	30)-410	1.00	(39)	Resistor (15 ohm) Bias Cell	$\begin{aligned} & \text { Mart of } \\ & 41.8009 \end{aligned}$. 20		Shield	Bottom Ass	$29-3605$	02
(12) Elec. Condenser (16.16-10 mf.)	30-2148	3.20	(4i)	Resistor (100 nleg.. $1 / 4$ watt)	33-510144	. 20		Tube	Socket (6 -prong	27.6036	02 11
(11) Filter Choke	32.7544	. 95	(1)	Resistor (70,000 ohm. 1/4 walt)	33-370133	. 20		Tube	Socket (7 -prong)		
(15) Elec. Condenser (16 mf .)	Part of (18)		(12)	Resistor (240.000 ohme, $1 / 4$ watt)	$33 \cdot 42+143$	3.20		Knob	(Volume, On-6)	$27-4273$	10
(16) Resistor (51,000 ohm, $1 / 4$ watt)	33-351143	3.20	(4)	Condenser (.15 mif.)	Part of 193)		Kinob	Stariou Selectar	27-4.7.	10
(ii) Condenser (.05 mf.)	Part of (1)		(4)	Resistor (490.000 ohm, $1 / 4$ watt)	$3.3-4+9143$	3.20			(Station Selector)		
(19) Resistor (15.000 ohm, $1 / 4$ watt)	33-315133	3.20	(43)	Condenser (01 mf .)	Part of (16)			Elec.	Condenser Suppor	6440	.05 .06
(10) Resistor (200 ohm wirewound)	7217	. 20	(41)	Resistor (400 olm wirewound)				Elec.	Condenser Insulato	27.7836 38.7513	.06 .50
(20) Condenser (.03 mf. Bakelite)	8318-OSL	+ . 35		(Flexible)	$33 \cdot 3122$. 25		Pilot	Lanı Bracket Assy	38.7513	. 50
(21) Compensator (1st I.F. Pri.).	l'art of (93)		(4i)	Elec. Condenser (10 mf .)	Part of (13)			Ant.	Coil Mfg. Bracket	28.3546	. 0.3
(22) 1st I.F. Transformer	32.2005	1.50	(49)	Condenser (01 maf. Tubular)	30.4169	. 20		Bias C	Cell Assy..	38.74.36	15
(3) Compensater (1st I.F. Sec.).	Part of (2)	..	(14)	Output Transformer	32.7566			Coupli	ing (For Tuning K	28.6426	. 15

PRICES SUBIECT TO CHANGE WITHOLT NOTICE

Fig. 5. Schematic Wiring Diagram

SERVICE BULLETIN
No. 235

For Members of
RADIO MANUFACTURERS SERVICE
A PHILCO SERVICE PLAN

Model 655

General Specifications

TYPE CIRCUIT: Superheterodyne, with preselector R.F. amplifier, and push-pull triode output (10 watts) : built in connections for Philco All-wave aerial ; aerial selector built into and operated by wave-band switch.

POWER SUPPLY: $115 \mathrm{v} ., 60$ cycle A.C.
TUBES USED: 1 type 78, R.F.: 1 type 6A7. IetectorOscillator; 1 type 78, I.F.: 1 type 75. 2d Detector and 1st A.F.; 1 type 42, Driver; 2 type 42 's. Push-Pull, Output; type 80, Rectifier

WAVE BANDS: Three: (1) Short-wave; (2) Police aircraft and amateur' ; (3) Standard.

COVERAGE OF EACH BAND: Band 1, 5.75-18 M.C. Band 2. 1.75-5.8 M.C.; Band 3. 540-1750 K.C.
TUNING DRIVE: Dual planetary, ball bearing. 80 to 1 ratio for slow-speed turting; glowing arrow wave band indicator.

PROGRAM CONTROL: 4 -position, with bass compensa tion effective in first position (counter-clockwise)
INTERMEDIATE FREQUENCY: $460 \mathrm{k} . \mathrm{C}$.
POWER CONSUMPTION: 100 watts.
SPEAKER: 655 Baby Grand Model-K17; Furniture Model-H13.

Fig. 1. R.F. Transformers

Ist I. F. TRANSFORMER

Fig. 2. I.F. Transformers

Fig. 3. Tubes as Viewed from Bottom
The voltages at the points indicater by the arrows above were obtained with a Philco type 025 Circuit Tester which contains a high resistance (1000 ohms per volt) voltmeter. Volume control at minimum, waveband switch at standard broadcast. K17 speaker.

Fig. 4. Location of Compensating Condensers

Adjusting Compensating Condensers

Adjustment of compensating condensers in Model 655 requires an accurate signal generator covering I.F., standardwave, police and short-wave frequencies. The PHILCO Model 088 All-Wave Signal Generator, having a continuous range of from 100 to $20,000 \mathrm{~K} . \mathrm{C}$., is ideal for this purpose.

An output meter is also needed. PHILCO Model 025 Circuit Tester includes a high grade output meter.
Philco No. 3164 fibre wrench and No. 27-7059 fibre-handied screwdriver complete the equipment needed for making these adjustments. The locations of the various compensating condensers are shown in Fig. 4. Connect the output meter to the plate contacts of the type 42 output tubes (using the adapters provided with the " 025 ") and set it at the $0-30$ volt range.

INTERMEDIATE FREQUENCY: Set the signal generator at $460 \mathrm{~K} . \mathrm{C}$. with attenuator set at minimum, connect a .001 mf . condenser in series with its antenna lead and attach it to the grid cap of the 78 I.F. amplifier tube. Connect ground lead to ground terminal on set. Set the dial at 55 and turn the waveband switch to position 3 (extreme left). Adjust the volume control of set to almost maximum, and the 088 attenuator so that about one-fourth ($1 / 4$) scale reading is had on the output meter. With a fibre screwdriver adjust condensers (39) and (31) (2nd I.F.) for maximum reading on output meter. Turn attenuator of signal generator to minimum and remove its antenna lead from the grid of the 78 I.F. tube: place it on the grid of the 6A7. Adjust 088 attenuator as hefore, then proceed to adjust condensers (23) and (3) (1st I.F.) for maximum output meter reading. Then remove the 088 oscillator lead. Care should be taken to keep the output meter reading during adjustments at about one-fourth scale reading. This should be done by using the 088 attemuator control.

WAVE TRAP: Connect the Signal Generator antenna and ground leads to the antenna and ground posts of the set. With the sigual generator operating at $460 \mathrm{~K} . \mathrm{C}$. and the set controls adjusted as before for I.F. alignment, adjust wave trap (2) until a minimum reading is obtained in the output meter.

SHORT WAVE: In adjusting the short wave or high frequency band, the det. compensator will have a tendency to "pull" or change the frequency of the oscillator. By slunting a padding or variable condenser (about .00025 Mf .) across the oscillator section of the gang (front section) and tuning it so that the second harmonic, instead of the fundamental, beats with the incoming signal, this "pull" can be minimized. The procedure for tuning this band is as follows:

Set the dial of the receiver at 18 megacycles (top scale) and the 088 dial at the same frequency. Turn wave band switch to position 1 (extreme right). Connect the shunt condenser to the oscillator section of the gang and tune it so that the second harmonic of the oscillator beats with the 18 M.C. signal from the 088 . Next tune condensers (${ }^{(6)}$ and (18) (antemna and det.) for maximum reading of the output meter. Discomect shunt condenser and tune condenser (10) (osc.) for correct dial calibration. The set, oscillator frequency, when correctly adjusted. will be higher than that of the incoming signal. In order to check this it should be possible to pick up the 18 M.C. 088 oscillator signal as an image signal by increasing the 088 output and tuning the set to approximately 17.1 M.C.

For the low frequency adjustment of this band. turn the dial to 6.0 M.C., set the signal generator at 6.0 M.C. and adjust condenser (21I) (nut) for maximum output meter reading. Readjust condenser (19) at 18.0 M.C.

POLICE: Turn wave band switch to position 2 (center), set signal generator at 5500 and dial of set at 5.5 . Adjust condensers (18), (5) and (11) (osc., ant., and det.) for maximum output. Turn the set dial to 1.8 and the signal generator to 1800. Adjust condenser (al) (1ut) (osc. series) for maximum output meter reading.

STANDARD WAVE: Turn waveband switch to position 3 (extreme left), set signal generator at 1500 and dial of set at 150 . Now adjust the oscillator, antenna and det. "Standard" condensers. These are (17), (4) and (11) respectively.
Turn the dial to 60 . set signal generator at 600 and adjust condenser (:) (oscillator standard series), (screw) for maximum output meter reading.

Model 655

Fig．6．Base View

	ematic \quad Partand Deocription	Part No．	$\underset{\text { List }}{\text { Pripe }}$
（1）	Wite Rand Switch	＋2－1153	\＄2．1010
（2）	Wave Trap	38－68．50	1.111
（3）	Ant．Transformer	$32 \cdot 1867$	3.00
（4）	Compensater（Standard）（Ant．）		
（5）	Compensater（Police）（Ant．）	31－6058	60
（6）	Compensater（Short Wave）（Ant．）		
（7）	Condenser（ 05 mf．Bakelite）	3615×3	． 35
（8）	Condenser（ 0.5 mf ．Bakelite）	3615－s（if	3.5
（8）	Condenser（ 50 mmf．Mica）	． $10-1029$	20
（10）	Det．Transformer ．	12．1868	3.100
（1i）	Compensater（Stamdard）（leet		
（12）	Compensater（Police）（Det．）	31.6003	50
19	Compensater（Short Wave）（bet．）		
（14）	Resistor（ 51.000 olmm．1／4 watt）	3，3－35114．3	211
（19）	Comlenser（．00025 mf．Mica）	30－10．32	25
（ii）	Osc．Transformer	32－1976	1.75
1i1）	Compensater（Standard）（Osc．）		
11	Compensater（lolice）（ Onc．）	31－60．8	． 60
10）	（ompensater（Short－Walve）（0）sc．）		
（30）	Comuensater（Stu．Series）（Osc．）	31.6027	． 711
（8i）	Condenser（．0025 Mica）．．．	7006	411
（ii）	Compensater（Police Series）（Osc．）	31－6073	． 50
（n）	Compensater（Short－Wave Series）（Osc	Part of（1i）	
（2）	Tuning Condenser	31－1555	4.50
（4）	Compensater（1st L．F．Pri．）	31－6053：	50
（3）	1st I．F．Transforme	． 22 －1917	1.75
（23）	Compensater（ $1 \mathrm{st} \mathrm{I} \mathrm{F}. \mathrm{Sec)}$.	l＇art of（3）	
（3）	Resistor（ 1.0 meg． $1 / 4$ watt $^{\text {a }}$ ）	3．3－51014．4	211
（3）	Resistor（ $51,000 \mathrm{ohm}$. ． $1 / 4$ watt）	33－351143	． 211
（39）	Compensater（2nd I．F．Pri．）	31.6053	． 310
（30）	2nd I．F．Transformer	32－1836	1.60
（31）	Compensater（2md I．F．Sec．）	Part of（99）	
（3）	Condenser（．nol mil mica）	． 30.10 .30	211
（39）	（ommenser（（0）0111 mi．Twin Bakelite）	8035．1）（it	25
（3）	Resistor（ 330.000 ohm，1／4 watt）．．．	3，3－43，313．3	211
（3）	Resistor（99．000 ohn11．1／4 watt）	3，3－39914．3	20
（3）	Condenser（ 00011 mf ） ．	Part of（3）	
（ii）	Condenser（．0．min．Tubular）	30－4020	． 20
（18）	Condenser（ 50 mmf．mica）	30－1029	20
（20）	Resistor（1．0 megohm， $1 / 4$ watt）	3．3－51014．3	211
（4）	Resistor（ 51.000 ohm ， $1 / 4$ watt）	3，3－351143	20
（11）	Condenser（．01 mf．）	Part of（1）	
（12）	Frogram Control	30－4．3785	75
（13）	Volume Control	33－5108	1.4
（4）	Resistor（ 1.0 megohm． $1 / 4$ watt）	3，3．51014．3	20
（5）	Condenser（ $0,3 \mathrm{mf}$ ．Tubular）	30.4025	20
（14）	Condenser（ 25 mf ．Tubular）	30.4134	35
（1）	Resistor（99．000 ohm．1／4 watt）	3．3．39914．3	211
（12）	Resistor（ 160.000 ohm． $3 / 4$ watt）	3．3．416．133	． 20
（a）	Conclenser（ 0.5 mf ．Bakelite）．．	3615.56	． 35
（6）	Resistor（ 70,000 ohm． $1 / 4$ watt）	33－370133	20
（1）	lmunt Transformer ．	．32．7114	3.00
（53）	Output Transformer	＋32．7078	1.25
（31）	Coice Coil \＆Cone Assy．（B．G．K－17）	＊36－3159	80
（3）	Field Coil Assy．（BG．K－17）	$\div 36.3104$	2.70
（3）	Flectrolvtic Comienser（3，0－1．0－2．0 mif．）	．30．2122	1.85
（36）	B．（＇．Resistor（7750 ohm）	33－3211	65
（3）	B．C．Resistor（ $10 \cdot 10 \cdot 10 \mathrm{n} 1.30$ olim）	33－3226	25
（38）	Flectrolytic Condenser（8．0－10．0 mf．）	30.2045	1.811
（94）	Condenser（ 3 mf．Bakelite）	6287．1）ぜ	40
（6）	Electrolytic Condenser（ 8.0 mif ）	30－2025＊	1.35
（91）	Flectrolvtic Condenser（ 10 mf ．）	1）ntiof	
（12）	Filter Choke	32.7115	1．81）

＊Code 122－ 30 －2014

	ber Part and Description	Part No．	$\begin{aligned} & \text { Liat } \\ & \text { Prira } \end{aligned}$
（6）	Power Transformer（ $115 \mathrm{~V} . .60$ cycle）	32.7402	4.50
（6i）	Condenser（．015 Twin Bakelite）．．．．．．	． 3793 － LG^{\dagger}	40
（6）	Phonomotor switch assy．．．	6345	3.15
（164）	Phono－motor（115 V．， 60 cycle）	$35 \cdot 1002$	23.00
6）	Resistor（ 39.000 ohnı， 1 watt）．	3，3－3，3944，	20
）	Electrolytic Condenser（ 1.0 mf ）	Fart of（35）	
）	Resistor（ 15.000 ohm， $1 / 4$ watt）．	33－31513．3	20
）	Flectrolytic Condenser（ 2.0 mmf ）	Part of（35）	
）	Resistor（32．000 olnh， 2 watt）	3，3－3，325．33	30
）	Resistor（ 51.000 ohm， $1 / 2$ watt）	3，3．351．34	． 20
（3）	Shadow Tunitug Meter．．．．．．．．	45.208 .3	2.50
）	I ilot lamp（shadow meter）	． 34.2004	09
）	Condenser（ 05 mf ．Tubular）	30.4020	20
）	Pilot lamp（dial）．．．．	34－2039	． 15
（4）	Phono－radio switch assy	35－3014	1.10
（ia）	（ondenser（ 05 mf ．Tubular）	$30-4030$	？
（40）	（oudenser（． 119 mf ．Bakelite）	4989．SU゙	5
（11）	Resistor（ 5.000 ohmi）	$3.3 .250123$	
（＊）	Resistor（15．000 ohm）	3.3.315133	7.30
（43）	Pickup head	35.2014	7.25 $\times .30$
		$35 \cdot 2010$	2．30
	Fhono－motor（115 V．， 50 cycle）	$35 \cdot 1007$	23.100
	1＇homo－motor（115 V．， 40 cycle）	$35 \cdot 100.3$	35.00
	］＇lionomotor（ $11.5 \mathrm{~V} . \mathrm{V} 2.5 \mathrm{cycle}$ ）	35－1008	35.00
	Ihono－motor（ 230 V＇． 60 cycle）	35－1004	28.50
	1＇hono－motor（230 V．， 50 cycle）	35－1009	
		35.1005	
	I＇home－motor（230 1．． 25 cycle）	． $35 \cdot 1006$	
	1／nm13tucking coil．．．．．．．．．．	．32－1940	1.10
	Radiophono switch plat	28－2350	111
	Switcl Pointer	4277	，
	Neerlle Cup	28－222？	． 115
	Neetle Cup Cover	28－2223	． 115
	Speed Change lever	28.1648	． 25
	Sped Change lever spring．	28－1649	． 115
	Speed Change lever spacer．	28－6103	
	Siced（hange lever washer	5577	230
	Turntable ．－．．．．．．．．．．．．	． 35.3001	9.010
	Metor Boari	25809	3.00
	Motor Board mitg．	$27+199$	1.610
	Hotor Roard mig．	28－2089	． 3110
	Motor Roard mig．Washe	00．404－d	．55C
	Motor Board mig．screw	11．461－11	01
	Motor Board mig．nut	11－1＋9－1	4.5 C
	Motar Commector pux．	4091	． 31
	Shatow Meter light shield	28． 2917	．1）
	Glowing arrow screen	27－5159	111
	（iluwink arrow mask	27.5100	0
	Scale guard	$27.81+11$	． 11
	Screen lracket	29.3001	07
	Mask arm	29．3274	．11）
	Coupling	29－3．339	ns
	I．ink ．．．	29．3，38	． 0,3
	Shadow Screem	27－5120	1．50C
	Speaker Cable	112722	． 31
	Knoh（1＇hono－Ratio）	0.33 .34	10
	Knol）（Tuning）．	$27+206$	12
	Kıoh（Slow Sperd Tuning）	27.4207	10
	Knol，（Volume l＇rogram Control）	27.42018	． 111
	Kıol（W゙arc Bamd）．．．．．．．．．	27.4225	． 111
	Socke（4－prour）．	37.6044	． 111
	Suchet（ 6 －prong）	27.6036	． 11
	Socket（7－prong）	27.6037	． 11
	Siraker Socket	27.6043	08
	Tube Shield Iody	28.2726	10
	Tube Shield Rase	28.2725	． 0.3
	12．F＊Shiedd．	3．8－6921	35
	］．F．Shield．	． 38.6808	25
	Wave Switch Nun	11－684－． 1	1．250
	Power Tratsformer（115 V．． 25 cycle）	32－740．3	9.60
	Power Transformer（230 \．． $50-60$ cycle）	32．7404	$7.5 n$
	Flectrolytic（nodenser clamp．．．．．．．．．．．	6440	05
	Flectrolytic Condenser insulator．	27.7194	．111
	Chassis Mte screw	W． 1496 －${ }^{\text {d }}$	1.60 C
	（＇hassis Mtg．Washer（rubber）	27.4201	$1.40{ }^{\circ}$
	Chassis Mtg．cushion（rubber）	27.4202	． 0.3
	Chassis Mtg．sleeve．	28－3101	． 0.4
	Mask ．．．．．	28－343，3	25
	Mezel	2x－3164	50
	Hezel matg．serew	W． 1494	． 30 C
	Mezel glass ．．．．．	27－811，3	． 07
	Rezel glass gasket．	27.80 .36	． 01
	Dial scale ．．．．	27－5165	． 30
	Huh \＆set screw assy	31.1724	． 15
	Pilot lame bracket assy	318－6789	．n
	B．C．Resistor mig．screw	11.88%	1．0nC
	B．C．Resistor mig．mut．	15－317－1	．406：
	B．C．Resistor spacer．	3791	45 C
	Front Bumper	27－420n	3.75 C
	Dial scale（imerted type cole 12．3）	27．5183	． 30
	Speaker Trans．Termmal cover．．．．	02×24	． 10
	Bottom shicld ．．．．．．．．．．．．．．	38－7189	40
	Speaker mitg．bolt．	29.3128	．91
	Sveaker mig．nut．．－．	11．124－A	．356
	＊Wice coil cone assy．（Furn，H－13） \dagger Hield coil assy．（Funn．If－13）．．．．	02625 02803	1.20 2.70

©（Code 122 L＂se Type＂U＂（ODG，etc．）Prelix Condensets

Model 625

SERVICE BULLETIN
No. 238

For Members of
RADIO MANUFACTURERS SERVICE
A PHILCO SERVICE PLAN

Model 625

Type Circuit: Superheterodyne, with preselector R.F. amplifier, and pentode output (3 watts); built in connections for Philco All-wave aerial; aerial selector built into and operated by wave-band switch.
Power Supply: Alternating Current. Voltage and frequency as specified on chassis nameplate.
Tubes Used: 1 type 78, R.F.; 1 type 6A7, DetectorOscillator; 1 type 78, I.F.; 1 type 75, 2d Detector and 1st A.F.; 1 type 42 Output; 1 type 80 Rectifier.
Wave Bands: Three-(1) standard (with some Police); (2) Police, Aircraft and Amateur; (3) Short-wave.

Coverage of Each Band: Band 1, 540-1720 K.C.; Band 2, 1750 to 5800 K.C. (1.75-5.8 megacycles); Band 3, 5700-18000 K.C. (5.7 to 18.0 megacycles).

Tuning Drive: Two-speed gear drive, ball bearing. 50 to 1 ratio for slow-speed tuning.
Program Control: 3-position, with bass compensation effective in first position.
Intermediate Frequency: 460 K.C.
Power Consumption: 65 watts.
Tube Socket Voltages
Measured to Ground

Tube	78 R.F.	6A7 Det. Osc.	78 I.F.	75 2d Det.	42 Output	
Point P	258	258	258	153	243	
SG	95	95	95	\ldots	258	
K	\ldots	\ldots	2.85	\ldots	\ldots	

Above voltages were obtained by using a PHILCO type 025 Circuit Tester (or 048A All-purpose Tester), using test prods applied to underside of chassis. Volume control at maximum; dial at 55 ; waveband switch counter-clockwise (band 1). Use Fig. 1 for test points. Line voltage 115 volts.

(Fig. 1. Tube Sockets as viewed from bottom.

Power Transformer Data

Term- inals	A.C. Volts	Current	Circuit	Color
$1-2$	120	$\ldots .$.	Primary	White
$3-5$	680	$65 \mathrm{M.A}$	Secondary	Yellow
$6-7$	5.0	2.0 A.	Fil. Rect.	Blue
$8-9$	6.3	2.0 A.	Filaments	Black 4
	\ldots	Center Tap of $3-5$	Yellow, Green Tracer	

Adjusting Compensating Condensers Model 625

Fig. 2. Locations of Compensating Condensers

The adjustment of the compensating condensers in Model 625 requires a signal generator covering the broadcast and police band, and also one capable of producing a signal at certain frequencies in the short wave band. Philco Model 088 All-wave signal generator is ideal for these requirements. Or you can use the Philco Model 024 or 048A instrument for the broadcast frequencies, and the Model 091 crystal controlled short wave signal generator for the "short-wave" frequencies. The location of all compensating condensers is shown in Fig. 2. An output meter is also needed, such as in Philco Model 025.

Adjustment of I. F.

1. Remove the antenna connection from the receiver, disconnect the grid clip from the first detector (type 6A7 tube), and connect the "ANT" output terminal of the broadcast signal generator to the grid cap of this tube; connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver.
2. Connect the 0 to 30 volt range of the output meter in the Philco 048A or 025 unit to the plate and cathode of the output tube or to the two bottom prongs of the speaker plug.
Page 2

Fig. 4. Bottom View of Chassis

Replacement Parts-Model 625

	Description	Part No.	$\begin{gathered} \text { Price } \\ \text { Lint } \end{gathered}$		Description	Part No.	Price Jint
(1)	Waveband Switclı	42-1152	\$1.75	(59)	Condenser (16 Mfd . Elcetrolytic)	30.2118	\$1.65
(2)	Wavetrap	38-6850	1.10	(3)	Resistor (1 Meg.) (Brown, Black, Green)	$33 \cdot 1096$. 20
(3)	Antentáa Transformer	32-1867	3.00	(4)	Resistor (490.000 ohm) (Vellow. White).	6097	20
(4)	Compensater (Snt. S. W .)	Part of (3)		(3)	Resistor (70000 ohms) (Violet, Black. Orange)	$33 \cdot 1115$	20
(5)	Compensater (Ant. Police)	Pait of (3)		(36)	Resistor (99000 ohmis) (White. White, Yellow)	6099	20
(6)	Compensater fAnt. Standard)	1rart of (3)		(5i)	Contlenser ($.09 \mathrm{Mf}$.) (Bakelite)	4989. SG	35
(3)	R. F. Transformer	.32-1868	3.00	(3)	Resistor (490.000 olm) (Yellow, White, Yellow)	6097	20
(8)	Compensater (R.F. Short-Wave)	Part of (3)		(59)	Condenser (0.3 Mid . Bakelite)	8318.5 S	. 35
(iii)	Compensater (R.F. Police) ${ }_{\text {Compensater }}^{\text {(} R . F}$ Standard)	Part of (3)		(aia)	Tone Control \cdots........	304332	. 75
(iii)	Compensater (R.F. Standard) Oscillator Transformer . . .	Part of (3)		(iii)	Condenser in Tone control (.02 M	Part of	
(11)		$32-1869$ $30 \cdot 1052$	2.50 .60	(191)	Condenser ($003 \mathrm{Mfd}$. Tubular) Output Transormer	$\begin{array}{r} 30-4042 \\ 32.7019 \end{array}$	1.25
(1)	Compensater (Osc. Police Series) (Nut)	31-6027	. 70	(iv)	Vore Coil 8 Cone Assembly (S.14 Speaker	36-3157	. 80
(11)	Compensater (Osc. Standard Series) (Screw)	Yart of (19)	,	(6)	Fielll (oil \& Pot Assembly (S-14 Speaker).	36-3495	2.75
(16)	Compensater (Osc, S.W.)	l'att of (ii)		(6)	Resistor (1000 ohmms) (Brown. Black, Red)	3,3-1028	20
(16)	Compensater (Osc. Police)..	leart of (10)		(6)	Condenser (3 Mfd . Bakelite Block)......	6, 287 - DU	. 40
(19)	Compensater (Ose. Standard)	Part of (ii)		(6.)	Condenser (8 Mfd. \& 8 Mfd. Electrolytic)	$30 \cdot 2079$	2.40
(18)	Tuming Condenser Assembly	$31-17+1$		(6)	Condenser (001 Mf) $30 \cdot+310$. 25
(3)	Condenser (.09 Mfd. Twin Bakelite Block)	4989. DC	40	(18)	Condenser (25 Mfd . Tubular)	30.4146	40
(2)	Resistor (1. Meg.) (Red. Black. Green).	33.1096	20	(69)	Condenser (.015 Mfil. Twin Bakelite Block)	3793-DG	.40
(2)	Condenser ($.05 \mathrm{Mfd}$. Tubular)	30-4020	3.5	(1i)	Resistor (BC Wirewound, 22 ohms, 25 ohms,		
(3) ${ }^{(3)}$		$30-4020$ 6098	. 35	(11)	210 olmis) Power Irans	3.3223 $32-7381$.20 4.00
(16)	Condenser (1 Mmf.) Wires Twisted. ...	l'art of (i)	. 20	(1)	Power Iransformer (115 vols 20 Cols 25 Cacles)	$32-7381$ 32.7382	4.00 6.25
(97)	Condenser (00025 Mfd . Mica)	30-1032	. 35		(230 Volts 50 Cycles)	32-7418	
(18)	Condenser (.00015 Mfd. Mica)	30.1033	. 3.5	(19)	Condenser (09 Mid.)................	Part of (9i)	
(29)	Condenser (.00005 Mfd Mica)	30.1029	. 3.5	(3)	Resistor (330,000 ohms) (Orange, Orange, Yel-		
(30)	Resistor (51.000 ohms) (Green, Brown, Orange)	6098	. 20		low)	3.3-1200	. 20
(31)	Compensater (1st 1.F. Primary)......	Part of (2)		(44)	Pilot Latap	$34-2064$. 09
(32)	1st I.F. Transformer	32-2019			Dial Scale	27-5098	. 25
(3)	Compensater (1st I.F. Secondary).......	Part of (2)			Dial Hub and Set Screw	31.1550	. 15
(3)	Resistor (Brown)				Dial Front Spring.	28-2837	. 10
(36)	Compensater (ind	33-3016	. 20		Knol (Station Selector)	27-4206	.12
(3)		32-2020			Knols (Wavehand)	27-4219	.10
(18)	Compensater (00011 Mfd. Mica)	Part of (35)			Knob (Tone, Volume)	27.4208	.10
(ai)		30-1031	. 35		Tube Shield	28.2726	10
(10)	Condense: (.00011 Mfd. (Twin Bakelite)	8035 DGG	25		Talie Shield Base	28.2725	0.3
(1)	Condense: (.00011 Mfd. Mica)	Part of (30)			'Tube Socket (4 Prong)	27-60.34	10
	Resistor (5000 ohms) (Green, Brown. Orange)	6098	. 20		Tube Socket (6) Prong)	27-6036	.11
(17)	Condenser (0) Mfd. Tubular)	30-42.15	. 30		Tulue Socket (7 Prong)	27.6037	. 11
(13)	Condenser (.02 Mfd . Tubular)	30-4215	. 30		Speaker Plag Socket..	27.6033	08
(4)	Volume Control and On-Off Switch	33-510.5	1.45		Chassis Mtg. Screw.	W. 1495	1.50 perC .
(13)	Resistor (25000 olims) (Red, Green. Orange)	3.3-1013	1. 20		Chassis Mty. Washer (Rubler)	27.4198	1.50per 01
(13)	Resistor (1. Meg.) (13rown, Black, Green).	33-1096	20		Electric Cord and I'lug...	1.943.A	. 60
(6)	Condenser (.02 Mfd . 'Tubular)	30-4215	. 30		Bezel	28-2928	. 35
(13)	Resistor (10000 ohms) (Brown, Black, Orange)	33-310334	. 20		Rezel Glass	27.7887	. 60
(4)	Resistor (15000 ohms) (Brown. Green, Orange)	5718	. 35		Glowing Arrow Mask	27.5162	. 20
(19)	Resistor (20000 ohms) (Red. Black. Orange)...	6649	. 20		Glowing Arrow Screen Mask Arm	$\begin{aligned} & 27-5161 \\ & 20-377 \end{aligned}$. 10
(30)	Resistor (99000 ohms) (White, White, Yellow).	6099	. 20		Mask Armi Jink	$29-3274$ 29.3285	. 04
(1)	Condenser (.15 Mfd. Tubular)	30.4191	. 35		Coupling	29.3586	. 10

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

PHILCO

3. Adjust the signal generator to a frequency of 460 K.C. Place the receiver in operation with the dial turned to the low frequency end of the standard broadcast band, wave band switch to extreme left (clockwise), and have the volume control adjusted near its maximum setting. Adjust the signal generator attenuator for approximately half-scale reading of the output meter.
4. The I.F. compensating condensers are located at the tops of the I.F. coil shields. The primary is adjusted by turning the screw in top and the secondary by the nut. Adjust condensers (36) and (8) (2d I.F. primary and secondary) for maximum reading in the output meter, and then condensers (3) and (3) (1st I.F. primary and secondary).

Adjustment of Wave-Trap

1. Connect the signal generator leads to the antenna and ground terminals of the receiver. Replace the grid clip on the 6A7 grid cap.
2. With the wave-band switch of the receiver still in the extreme left (standard band), ($540-1720$ K.C.), turn the station selector to 55 .
3. With the signal generator in operation at 460 K.C., adjust the wave-trap (3) condenser until a MINIMUM reading is obtained on the output meter. The Philco fibre wrench, part No. 3164, is used for this adjustment. The wave-trap compensator is reached from rear of chassis.

Adjustment of High and Low Frequency Compensators

1. With the wave-band switch still at Range No. 1 (broadcast band), set the dial at 1700 K.C. Set the signal generator at this frequency and adjust compensators (17), (B) and (10) for maximuin output. These are the oscillatur, antenna, and R.F. "standard" compensators respectively
2. Tune the receiver and the signal generat or to $600 \mathrm{~K} .($ and adjust compensator (14t (screw) for maximum output This is the oscillator I..F. standard compensator
3. Turn the wave-band switch to the second (middle) position. Set the dial at 3.6 M.C., at which point the fundamental of the 091 signal will be heard. If the Model 088 signal generator is being used, set it at 3.6 M.C. Adjust condensers (16), (5) and (8) in succession. These are the oscillator, antenna and K.F. police band adjustments
4. Turn the tuning dial to 1.8 M.C., and set the signal generator (Model 024 or Model 088) at 1800 K.C. Adjust condenser (B) (Osc. L..F., police) (nut), to maximum signal.
5. 'Iurn the wave-band switch to Band 3 (extreme right) and adjust the station selector to 18.0 megacycles. Set the signal generator at 18 M.C. By means of the Philco wrench, part No. 3164, adjust the oscillator S.W., antenna S.W. and R.F S.W. compensators for maximum reading in the output meter These are numbered (5), (4) and (3) respectively in figure No. 2.

Stop USE THIS BRAND NEW TIME AND TROUBLE SAVER FOR SERVICEMEN

PHILCO Gerial Mast KIT

-

The new Philco Aerial Mast solves another of your biggest problems -a high-grade aerial mast outfit, ready to put together, and adapt. able to any type of roof. Eliminates the trouble of selecting a suitable mast for each job, buying guy wire, fittings, etc., separately, and then spending hours making the installation.
The Philco Mast Kit consists of an 8-foot tubular steel mast in two sections, with a sturdy coupling to connect the sections; a top fitting, 30 feet of stranded guy wire and two porcelain strain insulators. Packed in a strong carton, with full instructions. Three types of mounting for securing hase of mast are available to suit any type of roof: For flat roof, Part No. 28-3759; for peaked roof, Part No. 28-3758; for sloping roof, Part No. 28-3757.

For Members of
RADIO MANUFACTURERS SERVICE
A PHILCO SERVICE PLAN

Model 635

Type Circuit: Superheterodyne, with preselector R.F. amplifier, and pentode output (5 watts); built in connections for Philco All-wave aerial; aerial selector built into and operated by wave-band switch.
Power Supply: Alternating Current. Voltage and frequency as specified on chassis nameplate.
Tubes Used: 1 type 78, R.F.; 1 type 6A7, DetectorOscillator; 1 type 78, I.F.; 1 type 75, 2d Detector and 1st A.F.; 1 type 42 Output; 1 type 80 Rectifier.
Wave Bands: Three-(1) Short Wave (with some Police);
(2) Police, Aircraft and Amateur; (3) Standard.

Coverage of Each Band: Band 1, 540-1720 K.C.; Band 2, 1750 to 5800 K.C. (1.75-5.8 megacycles); Band 3, 5700-18000 K.C. (5.7 to 18.0 megacycles).

Tuning Drive: Two-speed gear drive, ball bearing. 50 to 1 ratio for slow-speed tuning.
Tone Control: 3-position, with bass compensation effective in first position.

Intermediate Frequency: 460 K.C.
Power Consumption: 70 watts.
Tube Socket Voltages Measured to Ground

Tube	78 R.F.	6A7 Det. Osc.	78 I.F.	75 2d Det.	42 Output
Point P	245	245	245	188	298
SG	102	102	102	\ldots	311
K	\ldots	\ldots	2.6	\ldots	\ldots
	$6 A 7: G_{3 \in 6}=175$				

Above voltages were obtained by using a PHILCO type 025 Circuit Tester (or 048A All-purpose Tester), using test prods applied to underside of chassis. Volume control at maximum; dial at 55 ; waveband switch counter-clockwise (band 1). Use Fig. 1 for test points. Line voltage 115 volts.

Fig. 1. Tube Sockets as viewed from bottom

Power Transformer Data

Term- inals	A.C.	Current	Circuit	Color
$1-2$	120	$\ldots .$.	Primary	White
$3-5$	746	$78 \mathrm{M.A}$	Secondary	Yellow
$6-7$	5.0	2.0 A.	Fil. Rect.	Blue
$8-9$	6.3	2.25 A.	Filaments	Black
4	\ldots	$\ldots .$.	Center Tap of $3-5$	Yellow, Green Tracer

Adjusting Compensating Condensers
 Model 635

Fig. 2. Location of Compensating Condensers

The adjustment of the compensating condensers in Model 635 requires a signal generator covering the broadcast and police band, and also one capable of producing a signal at certain frequencies in the short wave band. Philco Model 088 All-wave signal generator is ideal for these requirements. Or you can use the Philco Model 024 or 048A instrument for the broadcast frequencies, and the Model 091 crystal controlled short wave signal generator for the "short wave" frequencies. The location of all compensating condensers is shown in Fig. 2. An output meter is also needed, such as in Philco Model 025

Adjustment of I. F.

1. Remove the antenna connection from the receiver, disconnect the grid clip from the first detector (type 6A7 tube), and connect the "ANT" output terminal of the broadcast signal generator to the grid cap of this tube; connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver.
2. Connect the 0 to 30 volt range of the output meter in the Philco 048A or 025 unit to the plate and cathode of the output tube or to the two bottom prongs of the speaker plug.

Fig．4．Bottom View of Chassis
Replacement Parts－Model 635

	Description	Part No．	Lint Price		Dencription	Part No．	I．iat Price
（1）	Wave Band Switch	＋2－1152	\＄1．75	（38）	Resistor（490，000 olms）（Yellow，White，Yel－		
（2）	Wavetra］，	38.6850	1.10		low）	33－1097	\＄0．20
（3）	Antenna Transformer	32.1867	3.00	（50）	Condenser（ 02 Mfd ．Bakelite）	8318－Sじ \ddagger	$\pm .30$
（1）	Compensater（Ant．S．W．）	Part of（3）		（31）	Resistor（ 70000 ohms ）（Violet，Llack，Orange）．	5385	． 20
（3）	Compensater（Ant．Police）	Part of（3）		（30）	Resistor（99000 ohnis）（White．White．Orange）	6099	20
（6）	Compensater（Ant．Standar	Jart of（3）		（51）	Condenser（ 09 Mif．Pakelite）	$4989.5 \mathrm{C} \ddagger$	35
（	R．F．Transformer	$32 \cdot 1 \times 68$	3.00	（6in）	Tone Control（ 3 position）	30－4332\％	7.5
©	Compensater（R．F．ShorlWave）	Part of（0）		（11）	Condenser in Tone Contro	I＇art of（in）	
（3）	Compensater（ R F．．Police）	Part of（0）		（1）：	（ Oondenser（．003 Mfd．Tobular）	30－4042	25
（1i）	Compensater（R．F．Standard	Part of（3）		（8）	Output Transformer ．．．．	32.7178	1.60
（11）	Oscillator Transformer ．	32－1869	2.50	（6）	Voice Coil \＆Cone Assembly（ $\mathrm{K} \cdot \mathbf{3 2}$ ）	36.3159	． 80
（12）	Condenser（．0047 Mid．Mica）	30－1052	． 60	（4）	Field（oil \＆Pot Assembly（K－32）	36.3498	3.25
（1）		31.6027	． 30	（63）	Cotulenser（ 05 Mid ．Tubular）	30－4020	35
（4）	（ompensater（Osc．L．E．Standard）	Part of ${ }^{\text {P }}$		（0）	Condenser（ 05 Mfil ）．．．．．	Part of（3it）	
＇15）		Part of（i）		69）	Condenser（ $8 \mathrm{Mfal} .8 \mathrm{Mfg.}$.10 Mfil F lectrolytic）	30－2073	2.15
（1）	Compensater（Osc．L＇olice）	lart of（1）		（6）	Pilot Lamp（Shadow Tuning Meter）	Part of（53）	
宔	Compensater（0）sc．Standard）	Part of（11）		（19）	Condenser（ 015 Mfd．Twin Rakelite Block）．．	3793－DG \ddagger	$\pm .40$
（1）	Tuning Condenser Assembly	$31 \cdot 17+1$		（40）	Kesistor（BC Wirewound－22 ohms， 25 ohms．		
＇10）	（ （ondenser（．00025 Mica）．	5858	．25		210 ohms）	33－3222	20
（vi）	Condenser（ 09 Mfd．Twin Bakelite Block）	4989．1）（：\ddagger	40	（3）	Power Transformer（115 Jolts 60 （ycles）	32.7384	5.50
（2）	Resistor（1 Meg．）（Brown．Black，（irecti）．	33－1096	20		（115 Voles 25 （ycles）	．32－7．385	7.75
（23）	Condenser（ .05 Mfd．Tubular）．．．．．．．．．	30－4020	． 35		（2．30 Volts 50 Cycles）	32－7＋20	
（3）${ }^{\text {a }}$	Condenser（．05 Mfd．Tubular）	30.4020	． 35	（3）	Condenser（． 09 Mf．）．．．．．．．．．．．．．．．．．．．．	Part of（19）	
（13）	Resistor（ 50000 ohms）（Green，Brown，Orange）	6098	20	（19）	Resistor（ 330.000 ohms ）（Orange，Orange．Vel－		
（26）	Condenser（ 1 Mmfd．）．．．．．．．．．．．．．．．．．．．．．	Part of ${ }^{\text {d }}$			low）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	33－1200	20
（3i）	Condenser（．00025 Mfd．Mica）	$30 \cdot 1032$	． 35	（3）	Pilot Lamp	34－2039	． 09
（20）	Condenser（ 00015 Mfd ．Mica）	30－103，	35	（3）	Phono Switch Cable Assy	35－3014	1.30
（9）	Condenser（． 00005 Mfd. Mica）	30－1029	35	（66）	Pickup Head Assy．	35－2014	7.25
（30）	Resistor（ 51000 ohms ）（Green，Brown，Orange）	1098	20	（i）	Hum Bucking Coil Assy	32－1940	1.10
（1）	Compensater（1st I．F．Primary）．．．．．．．．．．．．．．	I art of（i）		\％	Resistor（ 51.000 ohms）	6098	． 20
（ $)^{(1)}$	1st I．F．Transformer．	32－1646	2.25	（19）	Resistor（ 20,000 ohims）	33.1178	20
（v）	Compersater（1st I．F．Secondary）	Part of ${ }^{\text {a }}$		（4）	Condenser（ $025 \mathrm{Mf}$. ）．	7653－SL゙ \ddagger	\ddagger ． 35
（14）	Resistor（ 400 ohms Flexible）（Yellow．Black，			（a）	Automatic Ston	6345	3.15
	Brown）．	33－3016	． 20	（24）	Phono．Motor（115 V． 60 Cycle）	35.1112	20.00
（18）	Compensater（ 2 ud 1．1\％．	Fart of（0）			Dial Scale	27.5098	25
（1．）	2nd I．F．Transformer	32.1647	2.25		Dial Hub \＆Set Scre	31－1550	.15
（38）	Compensater（2nd I．F．Sec．）	Part of（97）			Dial Front Spring	28－28．37	． 10
（29）	Condenser（．00011 Mfd．）（Twin Bakeli	－0．35－1）G \ddagger	． 3.5		Knol）（Station Selector	27－4206	.12
（2w）	Condenser（．000）11 Mfa．Mica）．	30.1031	． 35		Knol（Fine Tuning）	27－4207	.10
（4）	Condenser（．00011）．．．．．．．．．．．．．．．．．．．．．．．．	Part of（318）			Knob（Waveland）．	27－4219	10
（11）	Resistor（ 50000 ohms）（Green，Brown．Orange）	6098	． 20		Knob（Volume Control．Tone Control）	27－4208	.10
（9）	Condenser（ 02 Mfal （ Tubular）．．．．．．．．．．．．	30－4215	． 30		Tube Shield ．．．．．．．．．．．．．．．．．．	28.2726	． 10
（4）	Condenser（ .02 Mfd ．Tubular）	30.4215	． 30		Tube Shield Base	28－2725	03
（4）	Volume Control and On－Off Switch	33.5105	1.45		Tule Socket（4－Prong）	27－6034	． 10
（4）	Resistor（20000 ohms）（Ked，Black，Orange）	33.1178	． 20		Tube Socket（ 6 －Prong）	27－6036	.11
（4）	Condenser（ 02 Mfd ．Tubular）．	30.4215	． 30		Tube Socket（ 7 －l＇rong）	27.6037	． 11
（6）	Resistor（10000 ohms）（Brown．Black．Orange）	4412	． 20		Speaker l＇lug Socket．．	27.6033	． 08
（40）	Resistor（16000 ohms）（Brown．Black．Orange）	33.316033	30		Chassis Mig．Screw．．．．．．．．	W－1495 1	1.50 perC．
（4）	Resistor（20000 ohms）（Ked，Black，Orange）	3524	． 20		Chassis Mitg．Washer（Rubber）	27.4198	． 01
（4）	Resistor（20000 ohms）（Red．Black，Orange）	6649	． 20		Electric Cord \＆Plug．．．	1－943－ 1	． 60
（11）	Condenscr（．15 Mfd．Tubular）．．．．．．．．．	30.4191	40		Glowing Arrow Mask	27－5162	． 20
（12）	（ondenser（16 Mfd．Electrolvtic）．．．．．．	30－2118＊	1.65		Glowing Arrow Sereen．	27－5161	． 10
（93）	Resistor（1 Meg．）（Brown．Black，Green） Resistor（1．Meg．）（Brown．Hlack Green）	33.1096 33.1096	20 20		Mask Arm．．．．．．．．．．	$29-3274$	． 03
（3）${ }^{(3)}$	Resistor（1．Meg．）（Brown Hlack．Green） Resistor（99000 ohms）（White，White．Orange）	33.1096 6099	.20 .20		lank ．．．．．	29－3285	． 04
（3）	Shadow Tuning Meter ．．．．．．．．．．．．．．．．．．	45.2083	2.511		Coupling	29－3586	． 10
（36）	Condenser（．05 Mi．Twin Bakelite）	361．5－1）	． 40		Shatow Screen	27－5120	1.50 C
（3）	Resistor（ 4000 ohms）（Yellow，Black，Red）	3，3－10．31	． 20		Inverted Bial Scale	2－5121	．．．．

3. Adjust the signal generator to a frequency of $460 \mathrm{~K} . \mathrm{C}$. Place the receiver in operation with the dial turned to the low frequency end of the standard broadcast band, wave band switch to extreme left (clockwise), and have the volume control adjusted near its maximum setting. Adjust the signal generator attenuator for approximately half-scale reading of the output meter.
4. The I.F. compensating condensers are located at the tops of the I.F. coil shields. The primary is adjusted by turning the screw in top and the secondary by the nut. Adjust condensers (36) and (38) (2d I.F. primary and secondary) for maximum reading in the output meter, and then condensers (3) and (33) (1st I.F. primary and secondary).

Adjustment of Wave-Trap

1. Connect the signal generator leads to the antenna and ground terminals of the receiver. Replace the grid clip on the 6 A7 grid cap.
2. With the wave-band switch of the receiver still in the extreme left (standard band), ($540-1720$ K.C.), turn the station selector to 55.
3. With the signal generator in operation at $460 \mathrm{~K} . \mathrm{C}$. adjust the wave-trap (2) condenser until a MINIMUM reading is obtained on the output meter. The Philco fibre wrench, part No. 3164, is used for this adjustment. The wave-trap compensator is reached from rear of chassis.

Adjustment of High and Low Frequency Compensators

1. With the wave-band switch still at Range No. 3 (broad cast band), set the dial at 1700 K.C. Set the signal generator at this frequency and adjust compensators (17), (8) and (10) for maximum output. These are the oscillator, antenna, and R.F "standard" compensators respectively
2. Tune the receiver and the signal generator to $600 \mathrm{K.C}$ and adjust compensator (11) (screw) for maximum output This is the oscillator L.F. standard compensator
3. Turn the wave-band switch to the second (middle) position. Set the dial at 3.6 M.C. at which point the fundamental of the 091 signal will be heard. If the Model 088 Signal Generator is being used, set it at 3.6 M.C. Adjust condensers (18), (5) and (6) in succession. These are the oscillator, antenna and R.F. police band adjustments.
4. Turn the tuning dial to $1.8 \mathrm{M} . \mathrm{C}$., and set the signal generator (Model 026 or Morlel 088) at 1800 K.C. Adjust condenser (33) (Osc. L.F., police) (nut), to maximum signal.
5. Turn the wave-band switch to Band 1 (extreme right) and adjust the station selector to 18.0 megacycles. Set the signal generator at 18 M.C. By means of the Philco wrench, part No. 3164, adjust the oscillator S.W., antenna S.W. and R.F. S.W. conpensators for maximum reading in the output meter. These are numbered (15), (4) and (8) respectively in figure No. 2.

Use

- Dependability and Long Life

Phileo vibrators, (all of the "full-wave" tyre) are desiknoll in engineers whth mins sears experience in thls tspe of emplpment, and ale suljerted
 lethite standards of bertormance are "stablished und bust be maintalned

- Quief Trouble-free Operation

The most desiralile features in a vilpator are (1) Denendallity: (2) Tong
 Thromghout the full length of their life, these vibrators remeler consistent trouble-free service thid their operation introduces no nolse or disturbance

Recommend Them

You can sell a Phlam vibrator to bour rustomer with the aswlance that It wII ghe lime 100% performance, and that he will thus he a frient come to yom as itre result of bis "worl-tu-mouth" advertising.

- A Vibrator for Every Need

Select the vibrutor you neeal from the severnil types shown brlow. Dimen stons for all are diven. The three phino types are designeal to pluy into standard f-prong sonket. Ans lhileo ruto-radie set and many othe makes can he servicul with these hikh-grate rentasement vibrators
STANDARD
PHILCO
Replacement Unit

This is the stankerd wibrator whis has leeen used in all lhlleos up to and incluting the models sold durInk 393.-. Reugedy constructed. It has proved tis duendabllity ave aref of yurs loth as intia a berlon of years. both as initia and replarement erfulpment. Di mensions, $411 / 16^{\prime \prime} \times 28^{\prime \prime}$ (not In cluding prongs).
PART No, 38-5036-List Price

NEW Compact Type Replacement Unit (All PHILCOS previous to 1936 except 1934 Ford)
This unlt has practically the same electoral characteristies as the stamb ard type (shown at left). However ard type (shown at left). however les dameter is ronsideralily less Whiflo permits it to he used in some tymes and makes of sets where the standita type would he physitally a trithe larke. Dimelisions, $434^{\prime \prime} \times 15 /{ }^{\circ}$ (not lacluding brongs)
PART No. 41-3186-List Price

1936 PHILCOS only B17-818 Models
M18K-819

This is the unit used in the new Phileo auto radios for 1936. Whate Phileo auto radios for 1936. While prectous types-It inalntains the same high statudards of qually and performance. Full-wave. standard fourpiong base. Dimenstons, $3^{7 / \sigma^{\circ}} x$ $115 / 16^{\prime \prime}$ (not including prongs).

PART No. 41-3170-List Price

PHILCO Mayiestic veplacement

Baperlally desisned for replarement use in Majestic auto radios. Noleis fif and 11 h , many of which are stlli in servec. Jesigned and butt by phileo, to the same standards and along the same princtples as the vilbators above. It whl give a new lense of llfe to these ofd Majestic receivers. Watily installet in place of the ordsinal by slmply re-arranging the vibrator leads as shown in the accompanylng cut. Full explanatory instructions sumplied with each uilt. Dimensions, $31 / 2^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$.
Majestic Replacoment Unit No, 38-6057-List Price.

SERVICE BULLETIN
No. 234

For Members of

RADIO MANUFACTURERS SERVICE A PHILCO SERVICE PLAN

Model 645

General Specifications

TYPE CIRCUIT: Superheterodyne, with preselector R.F. amplifier, and push-pull pentode output (7 watts): built in comections for Philco All-wave acrial : actial selector built into and operated by wave-lyand switch.

POWER SUPPLY: $115 \mathrm{v} ., 60$ cycle A.C.
TUBES USED: 1 type 78. R.F. : 1 type 6 d7. Detector()scillator: 1 type 78, 1.F.: 1 type 85, 2d Detector and 1st A.F.: 2 type 42 Pusi-Pull Outpit: 1 type 80 Rectitier

WAVE BANDS: Three: (1) Short-wave: (2) Police, aircrait and amateur: (3) Standard.

COVERAGE OF EACH BAND: Band 1. $5.75-18$ M.C Bancl 2. 1.75-5.8 M.C.: Bancl 3. 541-1750 K.C

TUNING; DRIVE: Dual planetary, hall bearing. 80 to 1 ratio for slow-speed thuing: glowing artow wave hand indicator:
PROGRAM CONTROL: 4 -position, with bass compensation effective in first position (counter-clockivise)

INTERMEDIATE FREQUENCY: (fol $_{\text {K. }}$ C.
POWER CONSUMPTION: 85 watt.
SPEAKER: 645 Bahy Grand Model-K゙31; Furniture Model-H?1.

Fig. 1. N.F. Tranaformer,
TUBE SOCKET VOLTAGES
(Measured from Tube Contact to Gnd.)

Ist I. F. TRANSFORMER

2nd I. F. TRANSFORMER

Fig. 2. I.F. Transformers

Fig. 3. Tubes as Viewed from Bottom
The voltages at the points indicated by the arrows ahove were ohtained with a Philco type 025 Circuit Tester which contains a high resistance (1000 ohms per woln) voltineter. Volume control at minimum, wavehand switch at standard broatcast. K31 speaker.

Fig. 4. Location of Compensating Condensers

Adjusting Compensating Condensers

Acljustment of compensating condensers in Model 645 requires an accurate signal generator covering I.F., standardwave, police and short-wave frecuencies, The PHILCO Model 088 All-Wave Signal Generator, having a continuous range of from 100 to $20,000 \mathrm{~K} . \mathrm{C}$. is icleal for this purpose.

An output meter is also needed. PHILCO Model 025 Circuit Tester inclucles a high grade output meter

Philco No. 3104 fibre wrench and No. 27-7059 fibre-handled screwdriver complete the equipment needed for making these adjustments. The locations of the various compensating condensers are shown in lig. 4. Comnect the output meter to the plate contacts of the type 42 output tubes (using the adapters provided with the " 025°) and set it at the $0-30$ volt range

INTERMEDIATE FREQUENCY: Set the signal generator at 460 K.C. with attenuator set at minimum, connect a .001 mi . condenser in series with its antenna lead and attach it to the grid cap of the 78 I.F. amplifier tube. Connect ground lead to ground terminal on set. Set the dial at 55 and turn the wavehand switch to position 3 (extreme left). Adjust the volume control of set to almost maximum, and the 088 attenuator so that about one-fourth ($1 / 4$) scale reading is had on the output meter. With a fibre screwdriver adjust condensers (3i) and (33) (2nd I.F.) for maximum reading on output meter. Turn attenuator of signal generator to minimum and remove its antema lead from the grid of the $78 \mathrm{I} . \mathrm{F}$. tube: place it on the grid of the 6.47 . Adjust 088 attenuator as before, then proceed to adjust con(lensers (204) and (2x) (lst I.F.) for maximum output meter reading. Then remove the 088 oscillator lead. Care should be taken to keep the output meter reading during adjustments at about one-fourth scale reading. This should be done by using the 088 attentuator control.

WAVE TRAP: Comect the Signal Generator antema and ground leads to the antema and ground posts of the set. With the signal generator operating at 400 K.C. and the set controls adjusted as hefore for I,F. alignment, adjust wave trap (3) until a minimum reading is obtained in the output meter.

SHORT WAVE:. In adjusting the short wave or high frequency band, the det. conpensator will have a tendency to "pull" or change the frequency of the oscillator. By shunting a padding or variable condenser (about .00025 Mi .) across the oscillator section of the gang (front section) and tuming it so that the second harmonic, instead of the fundamental, beats with the incoming signal, this "pull" can be minimized. The procedure for tuming this hand is as follows:

Set the dial of the receiver at 18 megacycles (top scale) and the 088 dial at the sane frequency. Turn wave band switch to position 1 (extreme right). Commect the shant condenser to the oscillator section of the gang and tune it so that the second harmonic of the oscillator leats with the 18 M.C. signal from the 088 . Next tume condensers (3) and (18) (antema and det.) for maximmm reading of the output meter. Discomect shunt condenser and tume condenser (2in) (osc.) for correct dial calibration. The oscillator frequency, when correctly set, will be higher than that of the incoming signal and the image frecuency lower. In order to check this it should be possible to pick up the image at approximately 17.1 M.C. by increasing the input irom the 088 oscillator.

For the low frequency adjustment of this band, turn the dial to 6.0 M.C., set the signal generator at 6.0 M.C. and adjust condenser (22) (nut) for maxinum output meter reading. Readjust condenser (201) at 18.0 M.C.

POLICE: Turn wave band switch to position 2 (center), set signal generator at 5500 and dial of set at 5.5 . Adjust condensers (10.), (4) and (19) (osc., ant., and det.) for maximum output. Turn the set dial to 1.8 and the signal generatur to 1800. Adjust condenser (33) (nut) (osc. series) for maximum output meter reading.

STANDARD WAVE: Turn waveband switch to position 3 (extreme left), set signal generator at 1500 and dial of set at 150. Now adjust the oscillator, antenna and det. "Standard" condensers. These are (18). (3) and (11) respectively. Turn the dial to (0), set sigual generator at 000 and adjust condenser (24) (oscillator standard series), (screw) for maximum output meter reading.

Fig. 6. Base View
Model 645

	matie Part and Desrription	Pari No.	$\underset{\text { Lint }}{\text { Price }}$		Pmatic Partand Description	Part No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
(1)	Wave lland Switch	+2-1153	\$2.00	(1)	Program Control	$30-4406$	\$0.75
(2)	Wase Trap	38.6850	1.10	(i8)	Condenser (. 09 mf . Twin Batelite)	4989-1)	4)
(3)	(\quad munensater (Ant. Standard)			(i4)	B.C. Resistor (136 ohm, 24 ohmi)..	$33-3236$ $33-320+33$	20
(4)	Compensater (Ant. Police) ${ }^{\text {co. }}$	31.605\%	60	(193)	Resistor (20.000 ohm. 1 watt)	$\begin{aligned} & 3,3-320+33 \\ & 33+491+3 \end{aligned}$	20
(3)	(ompensater (Ant, Short-Mabe)			(6)	Resistor (490,000 ohm, $1 / 4$ watt).	$\begin{aligned} & 33-491+3 \\ & 33-5101+3 \end{aligned}$	20
(6)	Ant, Transformer	32.1867	3.00	(17)	Resistor (1.0 meg. ohm, 1/4 watl)	33-5101+3 33.316633	30
(1)	Condenser (09 mf . Bakelite)	4989-8G	$\therefore 3$	(69)	Resistor (16.000 ohm. 3 watt)	3, 3 -316633	. 10
(®)	Pilot L.amp (Dial)	$3+2039$. 15	(10)	Pilot Lamp (Shadow Meter)	34.2064	.09 2.50
(4)	Condenser (0.5 mi , Tuhular)	$30-4020$	$20)$	(1)	Shadow Meter		
(16)	Det. Transformer	32.1868	3.111	(3)	Resistor (15.000 ohm. $1 / 4$ watt)		
(i)				(3)	Electrolytic Condenser (1.0 mit.)	Part ot (31)	
(1)	Compensater (Det. Police)	31.6063	. 50	9)	Resistor (15.000 ohnm, 1/4 wittl)	3,-315133	20
15)	Compensater (Het. Shorr-Wave)			9	Condenser (.09 mit.) . . 2 .		
19		30.1039	20	(6)	Electrolytic Condenser (2.0 thf)	$\begin{aligned} & \text { Part of } \\ & 32-7+62 \end{aligned}$	
13)	(Condeuser (.05 Bakelite)	3615.86	. 3.5	(1i)	Power Transiormer (110 \.a all cycle)	$\begin{aligned} & 32-7+62 \\ & 3793-D G \end{aligned}$	6.00 40
(16)	Resistor (51.000 ohnos, 1/4 watt)	33-35114,3	20	(T)	Condenser (. 015 mf 'Twin Bakelite)	$\begin{aligned} & 379.3-D G \\ & 30-4020 \end{aligned}$	20
(19)	Condenser (00025 mf . Mica)	30-1056	40	(ti)	Condenser (.05 mf. Tubutar) ${ }^{\text {a }}$		9.00
(11)	Compensater (Osc. Standard)				Power Tramstormer (115 V.. 25 cyele)	32-7+07	6.50
(18)	(ompensater (Osc. Police)	31.6058	(10)		Power Transformer (220 \.. $50-60$ cycle	$32-7+64$ $3-604+$	6.50
(20)	Compensater (Osc. Short- Wave)				t-prong Socket	$\begin{aligned} & 27-604+4 \\ & 27.30 \end{aligned}$. 11
(21)	Gsc. Transiormer	32-1976	1.75		6-prong Socket	$\begin{aligned} & 27-6036 \\ & 27-60,37 \end{aligned}$. 11
$)^{(8)}$	Compensinter (Short Wiave Series)	$31-61127$ 7006	$.71)$ 40		${ }_{\text {7 prong Sol }}$ Socket	$\begin{aligned} & 27-0037 \\ & 27-60+3 \end{aligned}$.08
(3i)	Condenser (.0025 mf. Nica)		+ 50			$38-6921$. 35
	(ompensater (lolice Series) Commensater (Standard Series)	13+101	. ${ }^{\text {\% }}$		l.F. Transformer Shield	38-6808	. 25
(3)	Tuning Condernse: Assy.....	. $31-1555$	+. 50		Tulie Shielid Base......	$28-2725$. 11
(2)	Compensater (1st I.1. I'ri)	31-615.3	.510		Tube Shield Rady... ${ }^{\text {Tha }}$	2\%-2917	02
(5)	lst I.F. Transformer.	321917	1.75		Shatow Meter Light Shield...		.12
(8)	Compensiter (1st L.F. Sec.)	Vart of			Electrolytic Condenser Clamp.	27-7194	.1) 1
(3)	Kesistor (1.0 . 11 eg., $1 / 4$ watt)	3,3-51014,	. 20		Electrolytic Condenser Insulator	25-5165	. 30
(10)	Resistor (51.000 ohmm $1 / 4$ watt)	3, $31-3511+3$. 80		Dial Scale	311724	. 15
(3)	(ompensater (2nd l.F. lri.)	$31-605.3$ $32-18.6$	1.60		Screen Bracket.	29-3061	07
(38)	2nd I.F. Transiormer ${ }^{\text {a }}$ (ompensater (2 nd I F . Sec	l'art of (31)	1.60)		Screen Bracket.	27.81+0	01
(34)	(condenser (.00011 mi. Mica)	3010311	. 20		Glowng Arrow Mask	$\begin{aligned} & 27-5160 \\ & 275159 \end{aligned}$. 20
(35)	Condenser (.00011 mf. Twin Bakelite)	$8(1,351) \mathrm{C}$	25		Glowing Arrow screet	29.3274	. 0.3
(3)	Condenser (. 00011 mt)	l'at of (3)			Miask Arnt	29.32748 29.3388	
(39)	Resistor (51.0000 ohm. $1 / 4$ watt)	$\begin{aligned} & 33-3511+3 \\ & 3,+33133 \end{aligned}$	20 .20		('oupling	29-33.39	06
(38)	Resistor ($3,30.000$ ohm. $1 / 4$ watt) Resistor (1.0 Meg.. $1 / 4$ watt).	$\begin{aligned} & 3,3+3,3133 \\ & 3,2101+3 \end{aligned}$. 2011		Couphergase Mig. Foot	29.2959	.n3
(411)	Resistor (1.0 Meg.. $1 / 4$ watt). Resistor (25.000 olmm, $1 / 3$ wat!)	3.3 325243	211		Chassis Mtg. Screw.	11.1496 .1	1.600°
(1i)	Condenser (05 mf . Tubular)	30-4120	211		Chassis Mtg. Washer (Rubber)	$27-4201$	$1 .+0 \mathrm{C}$
(12)	Condenser (015 mf)	lart of (198)			(Chassis Mrg. (ushion (Kubher)	$27+202$ $27+206$	12
(1)	Condenser (.01 mf . Bakelite)	3903-Sl	.25		Knoh (Tunng)	27-4207	. 10
(4)	Volume Control (1.0 Meg. ohm)	3,3-511,3	1.45		Knol (Slow speed tining)	$27-4208$ 27.4	.10
(5)	Condenser (.00011 mi Mica)..	$30 \cdot 10.31$ 30.4020	\cdots		Knol (Volume Tone) Knol (Wave Gand).	$27-4225$. 10
(4)	Condenser (0.5 mf . ${ }^{\text {Coblatar }}$ ($30-4020$	- 20		Knob (Wave Band	28.3164	50
(198)	Condenser (.06 mi. Tubular) Kesistor (32.000 olim, $1 / 2$ wat	$30-4123$ 3.32333	20		Rezel Mounting Screw	W-1494	.30C
(ii)	Resistor (99.000 ohm, $1 / 2$ watt)	3,3-39934.3	. 211		Bezel Crass	27.8113	
(4i)	Resistor (.3 mf . Twin Iakelite)	6287 - ${ }^{\text {D }}$	40		Bezel Glass	27-5120	1.50C
(1)	Flec. Condenser ($1.0 \mathrm{mf.} .1.0 \mathrm{mf.}$,	311.2080	1.85			02722	-. 30
(3)		$32.75 .32$	+25		Bottom Shield	38-7189	40
(3)	Condenser (002 mi . Twin Bakelite)		30		Mattom Smata	28-34,33	. 25
(54)	Condenser (.002 mif.) Outut Transformer	$\begin{aligned} & \text { Part of (3) } \\ & 2585 \end{aligned}$			Pilot Lamp Bracket Ass	38-6789	. 50
(53)	Outmit Transformer Voice Coil Cone Ass:- (B, G. K.31)	2585 36.3159	1.23		Front 8 bumper ${ }^{\text {a }}$.	27-4200	3.75C
(3)	Field Coil Assy. (B. G, K. 31)....	36-3+6.3	3.75		Speake Mtg. Bolt	29-3128 V.12+A	.02
(38)	Electrolytic Condenser (8. mf.)	30-2025	1.35		* Yoice Coil Cone Assv. (Furn H-2i)	02625	1.20
(39)	Electrolytic (ondenser (12 mf.)	30.2117	1.50		\square Field Coil tssy. (Furn. H.21) ...	36-3461	3.75
(ini)	Resistor (25.000 ohmm, $1 / 3$ watt)	3,3-32524.3	. 35		C_{1} Elec. (ondenser ($2.0 \mathrm{mif}$.)	l'art of 30	80
(ii)	Condenser (.05 mit Bakelite)	3615 SG	. 35		F Resistor (32.000 ohm)	$35 \geq 5$	

SERVICE BULLETIN
No. 240

Special Data for Members
RADIO MANUFACTURERS SERVICE
A philco service plan

General Specifications

Type Circuit: Superheterodyne, with push-pull pentodes connected as triodes in output; output 10 watts; built in connections for Philco All-wave aerial; aerial selector built into and operated by wave-band switch.

Power Supply: Alternating Current. Voltage and frequency as specified on chassis nameplate.

Tubes Used: Ten (10) Total: 1 type 78 R.F., 1 type 77 1st detector, 1 type 76 oscillator, 2 type 78 I.F., 1 type 75 2nd detector 1 st audio, 1 type 42 driver, 2 type 42 output, 1 type 80 rectifier.

Wave Bands: Four-(1) Shortwave; (2) Police and amateur; (3) Standard Broadcast; (4) Longwave (weather forecasts).

Frequency Ranges: Band (1)-5.7-18.0 Megacycles; Band (2)-1.75-5.8 Megacycles; Band (3)540 to 1750 K.C.; Band (4)-150-390 K.C.

Program Control: 4 positions: (1) Mellow, (2) Brilliant, (3) Normal, (4) Noise reducing. Last two positions recommended for foreign short wave stations.

Tuning Meter: Shadow type tuning meter, mounted directly above scale.

Waveband Indicator: Glowing arrow on tuning scale shifts to proper scale when waveband switch is turned.

Automatic Volume Control: Fully effective on all stations.
Bass Compensation: Automatic: Effective on first two positions of program control, with volume control turned down.

Tuning Drive: Dual planetary, ball bearing. 80 to 1 ratio for slow-speed tuning, 10 to 1 on main knob.

Intermediate Frequency: 460 K.C.
Power Consumption: 90 watts.
Speaker: Type H-13.

Tube Socket and Power Transformer Voltages Line Voltage 115

Fig. 1. Sockets as Viewed from Bottom

Socket voltages (measured to ground) obtained at points indicated by arrows. Above voltages were obtained by using a PHILCO type 025 Circuit Tester (or 048A All-purpose Tester), using test prods applied to sockets on underside of chassis. Volume control at minimum; dial at 60 ; waveband switch at standard broadcast (2d position from left). H-13 Speaker used.

Adjusting Compensating Condensers

Fig. 2. Location of Compensating Condensers

Adjustment of compensating condensers in Model 605 requires an accurate signal generator covering long-wave, standar. I wave, police, and short-wave frequencies. The PHILCO Model 088 All-Wave Signal Generator, having a continuous range of from 100 to $20,000 \mathrm{~K} . \mathrm{C}$. (all fundamental frequencies) will be ideal for this purpose.

An output meter is also needed. PHILCO Model 025 Circuit Tester includes a high-grade output meter.

Philco No. 3164 fibre wrench and No. 27-7059 fibre handled screwdriver complete the equipment needed for making these adjustments. The locations of the various compensating condensers are shown in Fig. 2. Connect the output meter to the plate contacts of the output tubes (using the adapters provided with the " 025 ") and set it at the $0-30$ volt range.
I.F.-Set the Signal Generator at 460 K.C., and attach its antenna lead to the grid cap of the 77 1st detector tube (having removed the grid clip from the tube). Connect the ground
No. 240
PHILCO

Replacement Parts—Model 665

(1)	Antenna Transformer	750	\$3.25
(2)	Waveband Switch	+2-1120	2.50
(3)	Comdenser (.05 Mfd Tubular	.31.4020	35
(4)	Compensater (Ant, Stamdarid).	I'ariof (1)	
(1)	Compensater (Ant. Longwave)	Part of (1)	
(8)	Compensater (Ant. Police)	Part of (1)	
(3)	Compensater (Ant. Shortwave)	Jart of (1)	
(x)	Kesistor (99,000 ohm) (White. White, Orange)	33-399.343	20
(1)	R. F. Transformer:	32-1751	3.00
(ii)	Compensater (R. 1. Standard)	Part oi (A)	
i1)	(${ }^{(0 m p e n s a t e r ~(~} \mathrm{R}$. F. L.ongwave)	Patt of (17)	
(12)	Compensater (R, F. lolice ${ }^{\text {(}}$.	lart of (m)	
$13)$	(ommensater (R, F Shortwate)		
(14)	Condenser (.00005 Mfil. Mica)	3010299	20
15)	Oscillator Transformer		22.5
1	(onmensater (Standard Series)	Path of 31-6027	. 70
(句)	(ompensater (longwave series)	Part of $31-605+$	45
	(ondenser (.0004 Mfd. Mica)	30-1000	25
(1)	Compensater (Osc. Police Series)	latt of 31-6027	70
14)	Conelenser (. 1 Mfd. Tubular)	10.	25
(2i)	Condenser (0052 Mfd. Mica)	30.1938	5
(11)	Compensater (Osc Shortivave)	Part of 15	
(2)	R. 1. Choke.	$32-1745$. 6.5
(2)	Condenser (.0007 Mfd. Mica)	586.3	25
(4)	Wave Trap	38-6850	1.10
(3)	Condenser (.00011 Mid. Mica)	30) 10.31	1.20
(2)	Condenser (00025 Mfd . Mica)	30-10.32	25
?	Compensater (Osc. Police) \& end	Part of	
	Compensater (Longwave H. F. End)	Fant of $31-6054$	45
	Compensater (Osc. Standald)	Part of 15	
(90)	Kesistor (10000 ohms) (Brown. Black, Orange)	3.3	20
(1)	Condenser (.00025 Mica)	2	25
(3)	Tuning Condenser Assembly	31-1619	5.50
(3)	Condenser ($00011 \mathrm{Mfd}$. Mica)	$30-10.31$. 20
(35)	Resistor (51000 ohms) (Creen, Brown, Orange)	33.351143	20
(36)	Resistor (1000 ohnis) (Brown. Black, Red) . .	3-210343	. 20
	Condenser (00025 Mica)............	30-10.32	25
	Fesistor (8000 ohms) (Gray, Black, Red)	33-280133	20
(4)	Compensater (1st I. F. Primary).....	Part of (1)	
(1)	1st I. F. Transformer		2.00
(1)	Compensater (1 st I. F. Secondary).	Part of (1)	
(13)	Conrlenser (.05 M fd. Bakelite Block)	3615 I)G	. 40
(4)	Conrlenser (05 Mft . Bakelite Block)	3615 SL	. 35
(6)	Shadow Tuning Meter	$45-208.3$	2.50
	Pilot Lamp (Shadow Tuning Meter)	Fatt of ma	2
	Compensater (2nd I. F. Primary)	31.6067	45
(31)	2nd I. F. Transformer	32-1865	1.00
(31)	Compensater (2nd I. $\Gamma_{\text {- }}$ Tertiary)	$0+000 \cdot \mathrm{R}$	45
(95)	Compensater (2nd I. F. Secondary)	Part of (19)	
(6)	Resistor (2500 ohms) (Red. Green. Red)	33.225 .313	20
(9)4	(outenser (05 Mfid. Twin Bakelite Block)		
(5)	Compensater (3rd 1. F. Primary)	Part of 31-6003	. 4.7
Ω	Thind I. F Transformer.	22-1188	65
(5)	Compensater (3rd I I. Seccndary)	Part of $31-6003$	4.5
(6)	Condenser (110 Mmf Mica) .	30-10:1	20
63	Resiator (100n nhins) (Iirown. Black. Red)	3.3.2106,53	211
(39)	Condenser ($0.5 \mathrm{Mff}$. Bakelite)	3615 -S(35
(a)	Resistor (1.0 Meg. 1/4 Watt)	33-5101+3	. 20
(61)	Resistor (33000n ohins) (Orange. Orange. Vellow)	$3.3-3.3134$. 20
(127)	Condenser (.00011 Mfd. Twin Bakelite Rlock).	8035-DG	25
${ }^{(19)}$	Resictor (990n0 nhms) (White. White, Orange)	33-399143	20
	Condenser (05 Mfd . Tulutar).......	$30 \cdot 4020$	211
	Resistor (5000 ohms) (Green. Brown, Orange)	$33 \cdot 3511+3$	20

(64)	Volume Control \& On Off Switelı	3.3.5110
(1at)	Condmaser (01 Mfd. Hakelite Block)	390.3-SU
(in)	Nesistur (9400) ohms) (W゙hite. White. Orange)	3.3-39914.3
(69)	Resistor (70nou ohms) (Violet, Black, Orange)	33-370.3+3
(ii)	Resistor (1 Meg.) (Brown. Black. Green)....	3,3-510143
(31)	Coudenser (25 Mfd . Tubular)	30-4134
(13)	Resistor (160000 ohms) (Brown, Blue, Orange)	$33-416133$
(3)	Condenser (.00011 Mfd. Mica)	30-10.11
(4)	Audio Transformer	32.7057
(3)	Outunt Transformer	32-71178
(3)	Gone \mathbb{A} Vorice (oil Aswembly (H-1.3)	02625
(6)	Fiedal (oil \& l'ot Assembly ($\mathrm{H}-1,3$)	$36.310+$
(9)	Resistor (B . C. Wirewonnd)(10 ohms, 110 (hims. 130 ohms)	33-3226
(1)	Resister (Wirewnmmel. 7550 olmms)	3.3. 3020
(iii)	Tone Control	30.4378
(81)	('ondensers in Tone ("ontrol	Part of (an)
(4i) 4	Resistor (1.0 Meg. $1 / 4$ Watt)	33.510143
(14)	Condenser (Ficetrolytic)($3 \mathrm{Mfd} . .2 \mathrm{Mfd} . .1 \mathrm{Mf}$	30-2122
(8)	Resistor (30000 ohms) (Orange. Black, Orange)	3,3-3,30443
(6)	Resistor (10000 ohms) (Brown. Black, Orange)	33-3104,3,3
(83)	Resistar (13000 ohms)(Brown. Orange. Orange)	3,3-313633
(86)	Condenser (Flectrolytic. \& Mfd., 10 Mfd) . . .	30-2045
(6)	(ondenser (Electrolytic, 8 Mfd.)	30.2025
(4)		$6287.1) U$
(as)	Filter Choke	32-7055
(ia)	Yower Transformer 115 Volts 60 Cycles	. 32.7440
	115 Uolts 25 Cycles.	32-7441
	230 Volts 50 Cycles.	32-7442
(9)	Crntensel (.015 Mfol. Twin Lakelite Block) .	.393-DG
(a2)	Pilot I.amp (Jial)	34-20,19
(4)	Condenser (006 Mfal . Tulular)	30-4024
(19)	Condenser (006 Mfd . Tubular)	30-4024
	Dial Scale	27-5115
	Dial Mask and Huh Assembly	31-1724
	Dial Hub	28.7129
	Dial Spring Clamp	28-2837
	Socket-4.Prong	27-6042
	Socket- . 5 Prong	27-60.35
	Sucket-6-Prong	27-60.16
	Speaker Plug Socket	27-6033
	Knol (Volume. Tone. Waceband)	27-4208
	Knob (Station Selector)	27-4206
	Knol) (Slow Speed)	27-4207
	Tube Shield (4 used)	28.2726
	Tube Shield (2 used)	28.2755
	Tuhe Shield Base.	28.2725
	A. C. Cord \& Plug	1-943A
	Bezel	28-3165
	Bezel Glass	27.8011
	Chassis Mtg. Bolt	W. 1496A
	Chassis Mtg. Wasler (Rubler)	27-4201
	Chassis Mtg. Bumper (Rubber)	27-4200
	Mask	27-51.36
	Scale and Mask Guide	29-3272
	R. F. Shield Assy.	38-6938
	I. F. Shield Assy	38-6872
	Flec. Condenser Clamp	29.2460
	Flec. Condenser Clamp. .	6440
	Elec. Condenser Insulator	27.7194
	Shadow Meter Tight Shield	28.2917
	Wave Switch Coupling	28-7150
	Inverted Dial Scale..	27-5123

Adjusting Compensating Condensers (Continued)

terminal of the Signal Generator to the ground terminal of the set. Turn on the set, turn the waveband switch to standard broadcast (second position from left) and set dial at 60 . Turn condenser (6il) (2nd I.F. tertiary) all the way down before adjusting the other I.F. Compensators. Now with the fibre screwdriver, adjust condensers (57) and (35) (3rd I.F.), (62) and (49) (2nd I.F.), and then (12) and (40) (1st I.F.) until maximum reading is obtained in the output meter. Turn down the "attenuator" on the signal generator if the output meter needle goes off the scale. Now adjust condenser (51) (2nd I.F. tertiary) for maximum reading.

WAVE TRAP-Connect the Signal Generator antenna lead to the grid cap of the 78 R.F. tube. Replace the grid clip on the 77 tube cap. With the signal generator operating at 460 K.C. and the set controls adjusted as for I.F., adjust wavetrap (24) until the minimum reading is obtained in the output meter.

SHORTWAVE-Turn wave band switch to the shortwave position (extreme right). Set signal generator at 18 megacycles and dial of set at 18.0 (top scale). Now adjust the oscillator, Antenna, and R.F. short wave compensators in turn, for maximum reading. These are (21), (13) and (7) respectively.

POLICE AND AMATEUR BAND-Turn the waveband switch to position 3 (from left). Set the dial and signal generator at 4.5 megacycles and adjust condensers (27), (11) and (6) respectively for maximum reading.

Set the signal generator at $1800 \mathrm{~K} . \mathrm{C}$. and turn the dial to 1.8 . Adjust condenser (18) (nut), oscillator police series, to maximum reading.

STANDARD BROADCAST BAND-Turn the waveband switch to position 2 (from left). Set the dial and signal generator at 1500 K.C. and adjust condensers (20), (10) and (4) for maximum reading.

Set the dial and signal generator at 600 K.C. and adjust condenser (16) (screw), broadcast series, for maximum reading.

LONGWAVE BAND-Turn waveband switch to position 1 (left). Set the dial and signal generator at 340 K.C. and adjust condenser (28) (screw) to maximum. Then adjust (11) and (5) for maximum reading. Finally, set the dial and signal generator at 175 K.C. and adjust condenser (17) (nut) for maximum reading. This is the longwave series compensator.

Here is the ideal instrument for thoroughly and efficiently testing any speaker connected to a radio receiver. Having an audio range of from 100 to approximately 8000 cycles, a variable signal from this instrument applied to the speaker subjects it to the most severe and thorough test possible and one that will show up defects or conditions that would go unnoticed under ordinary tests.

The 055 is furnished in kit form ready for assembly. It is complete with sub-base, panel, oscillator trans formers, tubes, condensers, etc. The sub-base is completely drilled and all ready to mount the parts. The panel is finished in black crackle which matches perfectly with the Philco Model 088 Signal Generator case, and the panel and sub-base are of correct size to fit the 088 case. The 088 case may be purchased extra, part number $38-1536$, list price, $\$ 4.00$.

Full instructions for assembly and operation are supplied with the 055 .

LABORATORY-PRECISION BUILT

PHILCO

Model 055

 Vario-Frequency

Save yourself time and insure perfect performance on all sets leaving your shop

Complete REPLACEMENT PARTS CHABT
 for every model

 PIIILCD5,000,000 Philco Radios in use.
High quality of Philco thus a proven fact. DON'T SUBSTITUTE IN YOUR SERVICE WORK!

Use Philco Parts to maintain Philco Quality!

PHILCD RADID \& TELEVISIDN CORPORATION

Model No.	Volume Control	On-off Switch	R. \mathbf{F}. Transformers	I. F. Transformers	Osc. Transformer	Power Trans- former	Input or Audio. Transformer	Filter Choke	Filter Condenser	Electrolytic Condensers	Tone Control	$\left\lvert\, \begin{gathered} \text { B. C. } \\ \text { Resistor } \end{gathered}\right.$	Tuning Condenser	$\begin{gathered} \text { Dial } \\ \text { Assembly } \end{gathered}$	Pilot Lamp	Waveband Switch
$\begin{gathered} 141 \\ \text { (Early) } \end{gathered}$	8054	6498	$\begin{aligned} & 05984 \\ & 05985 \end{aligned}$	$\begin{aligned} & 04319 \\ & 04320 \end{aligned}$	05983	6804	6064	4819	04830	$\begin{aligned} & \text { 4916(1) } \\ & 7464(2) \end{aligned}$	06698	6808	06609	06817	6608	
$\begin{gathered} 14 \\ \text { (With) } \\ \text { Police) } \\ \hline \end{gathered}$	8054	42-1002(3)	$\begin{aligned} & 32-1069 \\ & 32-1070 \end{aligned}$	$\begin{array}{r} 04319 \\ 04320 \end{array}$	05983	6804	6064	4819	30-2007	$\begin{array}{r} 30-2024 \\ 30-2025 \\ \hline \end{array}$	06698	6808	$\begin{aligned} & 31-1015(4) \\ & 31-1048(5) \\ & \hline \end{aligned}$	31-1026	6608	With OnOff Sw .
$\begin{gathered} 14 \\ (\text { Late }) \end{gathered}$	33-5024	*	$\begin{aligned} & 32-1261 \\ & 32-1256 \end{aligned}$	$\begin{aligned} & 32-1263 \\ & 32-1264 \end{aligned}$	32-1262	32-7111	32-7057	32-7115	$\begin{aligned} & 30-2022(6) \\ & 30-2025 \end{aligned}$	30-2003	30-4073	33-3062	$\begin{aligned} & 31-1099(5) \\ & 31-1100(9) \end{aligned}$	$\begin{aligned} & 31-1118(8) \\ & 31-1026(5) \end{aligned}$	6608	42-1035
$\begin{gathered} 15 \\ \text { (Early) } \end{gathered}$	$\begin{aligned} & 7050(10) \\ & 8054(11) \end{aligned}$	6438	$\begin{aligned} & 04981 \\ & 04982 \\ & 05033 \end{aligned}$	$\begin{aligned} & 03038 \\ & 04979 \\ & 03345 \end{aligned}$	04983	6672	5662	3422	03489	$\begin{array}{\|l\|} \hline 6706 \& \\ 30-2025(10) \\ 4916(11) \end{array}$	$\begin{array}{\|l\|} 04787(10) \\ 30-4004(1) \end{array}$	16700	04941	4276(12)	6608 ${ }^{\text {a }}$
15	3054	42-1030	$\begin{aligned} & 32-1143 \\ & 32-1144 \\ & 32-1145 \end{aligned}$	$\begin{aligned} & 03038 \\ & 04979 \\ & 03345 \end{aligned}$	04983	6672	6664	3422	03489	4916	04787	6700	04941	4276(12)	6608	$\ldots . .$.
$\begin{gathered} \hline 16 \\ \text { (Codes } \\ 121-2-3 \text {) } \end{gathered}$	33-5022	*	HF $32-1183$ BC $32-1182$	$\begin{aligned} & 32-1186 \\ & 32-1186 \\ & 32-1188 \end{aligned}$	HF $32-1185$ BC $32-1184$	$\begin{gathered} 32-7058(14) \\ 32-7080(13) \end{gathered}$	32-7057	32-7056	30-4026	$\begin{aligned} & 30-2011(15) \\ & 6706 \& \\ & 7464(5) \end{aligned}$	30-4069(16)	33-3021	31-1106(17)	31-1058(18)	6608	42-1037
$\begin{array}{\|c\|} \hline 16 \\ \text { (Codes } \\ 125-6-7) \\ \hline \end{array}$	33-5022	*	$\begin{array}{\|l\|} 32-1467 \\ 32-1468 \\ \hline \end{array}$	$\begin{aligned} & 32-1188 \\ & 32-1470 \\ & 32-1188 \end{aligned}$	32-1469	$\begin{array}{r} 32-7291(19) \\ 32-7283(20) \\ \hline \end{array}$	32-7057	32-7056	$\begin{aligned} & 30-2045(19) \\ & 30-2046(20) \\ & \hline \end{aligned}$	$\begin{aligned} & 30-2078 \\ & 30-2023(19) \\ & , 30-2011(20) \\ & \hline \end{aligned}$	30-4204	33-3021	31-1350	31-1363	6608	42-1079
17	33-5023	*	$\left\lvert\, \begin{aligned} & 32-1170 \\ & 32-1171 \end{aligned}\right.$	$\left\|\begin{array}{c} 32-1173 \\ 32-1174 \end{array}\right\|$	32-1172	$\begin{array}{r} 32-7058(14) \\ 32-7080(13) \\ \hline \end{array}$	32-7057	32-7056	$\begin{array}{r} 30-2045(19) \\ 30-2046(20) \\ \hline \end{array}$	$\begin{aligned} & 30-2078 \\ & 30-2023(19) \\ & 30-2011(20) \end{aligned}$	30-1070	33-3021	31-1041 (21)	31-1066	16608	42-1035
$\begin{array}{c\|} \hline 18 \\ (\text { Codes } \\ 121-2-3) \end{array}$	33-5024	*	$\begin{array}{r} 32-1255 \\ 32-1256 \\ \hline \end{array}$	$\begin{array}{r} 32-1288 \\ +32-1258 \\ \hline \end{array}$	32-125:	327111	32-7114	32-7115	30-2029	6706(22) $30-2025$ $30-2003(22$	30-4073	33-3033	31-1110(23)	31-1066(32)	6608	42-1046
$\begin{gathered} \hline 18 \\ (124) \\ \hline \end{gathered}$	33-5069	42-1061	$\begin{array}{\|l} 32-1396 \\ 32-1397 \\ \hline \end{array}$	$\begin{aligned} & 32-1288 \\ & 32-1258 \end{aligned}$	32-1398	32-7111	32-7114	32-7115	30-2045	30-2025	30-4073	33-3033	31-1196	31-1207	6608
$\begin{gathered} 19 \\ \text { (Early) } \end{gathered}$	33-5004	6498	$\begin{aligned} & 06619 \\ & 06662 \end{aligned}$	$\begin{aligned} & 06621 \\ & 06622 \end{aligned}$	06620	3046			06624	$\begin{aligned} & 8095 \\ & 3095 \end{aligned}$	30-4003	7998	$\begin{aligned} & 06577(5) \\ & 06702(13) \end{aligned}$	$\begin{aligned} & 06697(5) \\ & 06766(13) \end{aligned}$	6608	-.......
	33-5000	42-1017	$\left\lvert\, \begin{array}{\|c} 32-1062 \\ 32-1063 \end{array}\right.$	$\begin{aligned} & 06621 \\ & 06622 \end{aligned}$	06620	3046			06624	$\begin{aligned} & 30-2020 \\ & 3166(9) \end{aligned}$	30-4003	7993	$\begin{aligned} & 31-1004(9) \\ & 31-1013(24) \\ & 31-1014(59) \end{aligned}$	$\begin{array}{\|l\|} 31-1028(9) \\ 31-1024(24) \\ 31-1025(59) \end{array}$	16608	With OnOff Sw .
$\begin{gathered} 19 \\ \text { (Code 128) } \end{gathered}$	33-5000	42-1017	$\begin{aligned} & 32-1062 \\ & 32-1063 \end{aligned}$	$\begin{aligned} & 32-1315 \\ & 06622 \end{aligned}$	06620	32-7170			30-2062	30-2026	30-4003	33-3069	$\begin{array}{\|l} 31-1103 \\ 31-1104(25) \end{array}$	$\begin{aligned} & 31-1025 \\ & 31-1024(25) \end{aligned}$	6608	With OnOff Sw.
20	4094	6498	$\begin{aligned} & 3884 \mathrm{~N} \\ & \mathbf{3 8 8 4 \mathrm { P }} \\ & \mathbf{3 8 8 4 P} \end{aligned}$			4234	4232	4231	4235			4230	\ddagger	4209B	3463	
21	4094	6498	$\begin{aligned} & 3884 \mathrm{~N} \\ & 3884 \mathrm{P} \\ & 3884 \mathrm{P} \\ & \hline \end{aligned}$			4813	4232	4819		4818		4824	\ddagger	4209B	3463
28	33-5066	*	32-1360	$\left\lvert\, \begin{aligned} & 32-1362 \\ & 32-1363 \\ & 32-1364 \end{aligned}\right.$	32-1361			$\left.\right\|_{32-7018} ^{6658}$	30-2083	30-2083	30-4211	33-3159	31-1366	31-1208	4567	42-1062
29	33-5066	*	32-1360	$\begin{array}{\|l\|} \hline 32-1362 \\ 32-1363 \\ 32-1364 \end{array}$	32-1361	32-7229		32-7018	30-2073	30-2020	30-4178	33-3069	31-1192	31-1208	6608	42-1062
30	4093	6498	4182A 4182 B 4182 B 4182 B				3242	3518			. 04787	3864	4000G	03031	5316
32	33-5063	42-1017	$\begin{array}{\|c\|} 32-1062 \\ 32-1063 \end{array}$	$\begin{aligned} & 32-1289 \\ & 06622 \end{aligned}$	06620	32-7218		32-7213		$\begin{aligned} & 30-2026 \\ & 30-2014 \\ & \hline \end{aligned}$	06764	7998	31-1059	31-1025	4567	With OnOf Sw .
34	33-5064	*	HF $32-1271$ BC $32-1270$	$\begin{aligned} & 32-1341 \\ & 32-1341 \\ & 32-1342 \\ & \hline \end{aligned}$	HF $32-1273$ BC $32-1272$		7233		30-4151		30-4152(26)		31-1153	31-1162	5316	42-1045
35	5317	5318	$\begin{aligned} & 03320 \\ & 03083 \end{aligned}$	$\begin{array}{\|l\|} \hline 03009 \\ 03092 \\ \hline \end{array}$	03321	5315	5314 04757		03076	03031	5316 ${ }^{\text {a }}$
37	7239	7283	$\begin{aligned} & 05726 \\ & 05727 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 05697 \\ 05698 \end{array}$	05728		2233	03915	05740	05811	5316
38	33-5017	42-1040	32-1208	$\begin{array}{\|l\|} \hline 32-1251 \\ 32-1252 \\ \hline \end{array}$	32-1209		. 7233	03915	31-1076	31-1084	5316	42-1039
$\begin{gathered} 3811 \\ (\text { Code } 23) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 23-5087 \\ & \hline \end{aligned}$	42-1040	32-1518	$\begin{array}{\|l\|} 32-1251 \\ 32-1252 \end{array}$	32-1519 2233	03915				31-1401	31-1408	5316	42-1039
40	4056	6498	3884 A 3884B 3884C 3884C				3872	3422	4067 04787	4057	4069E	3794(12)	3463
41842	4094	3517	$\begin{aligned} & 3884 \mathrm{~A} \\ & 3884 \mathrm{~B} \\ & 3884 \mathrm{C} \\ & 3884 \mathrm{C} \end{aligned}$				3872	3422	4067		. 04787	4057	4069E	3794(12)	3463 ${ }^{\text {a }}$

REPLACEMENT PARTS FOR ALL PHILCA AUTO RADIOS
Vibrator Unit (on all models using it): Part No. 38-5036

*Vol. Control Only. Switch is No. 4705.

UEMENT PARTS FOR ALL PHILCD

IN PARENTHESIS FOLIOWING PART NUMBERS REFER TO NOTES AT BOTTOM

Model No.	Volume Control	On-off Switch	R. F. Transformers	I. F. Transformers		Power Trane- former	Input or Audio. Transformer	Filter Choke	Filter Condenser	Electrolytic Condensers	Tone Control	B. C. Resistor	Tuning Condenser	Dial Assembly	Pilot Lamp	
436	6892	*	$\begin{aligned} & 05189 \\ & 0.5624 \end{aligned}$	05185 05185 05185	05184	7074(27)		5930	05239	4916	05174	$\begin{aligned} & 6451(10) \\ & 6452 \end{aligned}$	05154	05418	6608	6895
44	33-5025	*	$\begin{gathered} \text { HF } \\ 32-1270 \\ \text { BC } \\ 32-1271 \end{gathered}$	$\begin{aligned} & 32-1274 \\ & 32-1306 \end{aligned}$	$\begin{array}{\|c} \hline \mathbf{H F} \\ 32-1273 \\ \mathrm{BC} \\ 32-1272 \end{array}$	32-7137		5930	30-2079	30-2020	30-4080	33-3037	31-1106	31-1107	6608	42-1045
45	33-5066	*	32-1360	$\begin{array}{\|l\|} 32-1362 \\ 32-1363 \\ 32-1364 \end{array}$	32-1361	32-7226		32-7018	30-2079	30-2030	30-4178	33-3037	31-1169(60)	31-1208	6608	42-1062
46	4141	6498	$\begin{array}{\|l\|} \hline 3884 X \\ 3884 Y \\ 3884 Y \\ \hline \end{array}$				4862		4860			4858A	\ddagger	4209B	3463
47 6	6499	6498	$\begin{aligned} & 04339(28) \\ & 05093(28) \end{aligned}$	$\begin{aligned} & 05094 \\ & 05095 \end{aligned}$	04186(29).		6064	$\begin{aligned} & 6712 \\ & 5314 \\ & \hline \end{aligned}$	05003		04757	6716	05098(30)	04832(31)	6608	
48	6415	*	05848	$\begin{array}{\|l\|l\|} \hline 04887 \\ \hline 03887 \end{array}$	06665			4819	05569			7852	05885	05811	6608	
49	33-5024	*	$\begin{aligned} & 32-1379 \\ & 32-1427 \end{aligned}$	$\begin{aligned} & 32-1381 \\ & 32-1424 \end{aligned}$	32-1428		32-7211	$\begin{aligned} & 32-7213 \\ & 32-7018 \\ & \hline \end{aligned}$	$\begin{aligned} & 04357 \\ & 30-4140 \end{aligned}$		30-4043	33-3128	31-1334	31-1205	4567	42-1046
50	5232	5382	03283 03284 03284			5266			. 03459	4916			. 03293	03322	3463	
51 \& 52	6415	5382	$\begin{array}{\|l\|} \hline 03880(33) \\ 03881(33) \end{array}$	$\begin{aligned} & 03887 \\ & 03886 \end{aligned}$	03882(34) 5	5266			. 03915	4916			03809 (35)	04031(36)	3463	
53	33-5001	*	32-1000	32-1002	32-1001			32-7001	30-4000	$\begin{aligned} & 30-2000 \\ & 30-2001 \end{aligned}$.31-1000	28-1021(12)		
54	33-5010	*	32-1117	$\begin{array}{\|l\|} \hline 32-1115 \\ 32-1195(37) \end{array}$	32-1118			32-7036	30-4023	$\begin{aligned} & 30-2002 \\ & 30-2001 \end{aligned}$		33-3012	31-1034		4567	42-1027
57	33-5011	*	32-1153	32-1155	32-1168	32-7064(38)			30-2013	30-2013		7465	31-1049			42-1027(39)
58 \|33	33-5057	*	32-1153	32-1155	32-1168	32-7064(38)			.30-2013	30-2013	7465	31-1089	28-5023(12)	6608	3
59 \|	33-5057	*	32-1388	32-1155	32-1389	32-7064(38)			30-2013	30-2013		7465	31-1190	28-5023(12)	6608	42-1043
60	33-5006	*	32-1047	$\begin{array}{r} 32-1049(40) \\ 32-1050(40) \\ \hline \end{array}$	$)^{32-1048}$	8046			.30-4063(41)	7558	30-4008	7998	31-1006	31-1090	6608	2-1
65	3528	6498	$\begin{aligned} & 3506 \mathrm{~B} \\ & 3506 \mathrm{~A} \end{aligned}$. 3516	3537	3422	3515	. $\cdot \cdots \ldots$		3512	3480B	3398(12)	3463	
66	33-5006	*	32-1412	$\begin{aligned} & 32-1414 \\ & 32-1415 \end{aligned}$	32-1413	8046		32-7018	30-2079	30-2021	30-4212	33-3037	31-1231	31-1234	6608	42-1066
70	5039	6498	$\begin{aligned} & 03082 \\ & 03083 \end{aligned}$	$\begin{aligned} & 03091 \\ & 03092 \end{aligned}$	03084	5117		. 4819	04559	4916	04757	5125	03076	03031	3463	
70(AVC)	6015	6498	$\begin{aligned} & 04339 \\ & 04185 \end{aligned}$	04190	04186	5117		4819	04559	4916	03637	6008	04164	03031	3463	
71	6499	6498	$\begin{aligned} & 04339(43) \\ & 04185(43) \end{aligned}$	$\begin{aligned} & 04190 \\ & 04319 \end{aligned}$	04186(44)	6454(45)			05324	$\begin{aligned} & 6453 \\ & 4916 \\ & 6706 \end{aligned}$	04787(42)	$\begin{aligned} & 6451(2) \\ & 6452 \end{aligned}$	04733(46)	04832(47)	6608	
76	3879	6498	$\begin{aligned} & 3884 \mathrm{~A} \\ & 3884 \mathrm{~B} \\ & 3884 \mathrm{C} \\ & 3884 \mathrm{C} \\ & \hline \end{aligned}$			3868	3872	34.22	3870			3865	3376 E	3794(12)	3463	
77	4094	6498	$\begin{aligned} & 3884 \mathrm{~A} \\ & 3884 \mathrm{~B} \\ & 3884 \mathrm{C} \\ & 3884 \mathrm{C} \end{aligned}$			3868	3872	3422	3870		04787	3865	4000B	4118(12)	3463
80	33-5005	*	05831 (48)	06100	05832 (49)	7421	30-2025	7467	...	7465	05794(50)	05828(51)	6608
81	33-5002	* *	32-1030	06100	32-1031	7421		\ldots	30-202.5	7467	7465	31-1017(52))	6608	. \cdot......
84	33-5055	- *	32-1310	32-1313	32-1311	32-7180	\cdots		30-2013	\ldots	7465	31-1122	27-5031(12)	6608
86	3076	3253	$\begin{aligned} & 3075 B \\ & 3075 A \end{aligned}$			3271	3242	3269	3246			3232	3001C \ddagger	3047(12)	6608
87	3076	3253	3075B 3075A			3400	3242	$\begin{aligned} & 3422 \\ & 3472 \\ & \hline \end{aligned}$	3401			3399	3001C ${ }_{+}$	3398 (12)	3463	
$\begin{gathered} 89 \\ (\text { Early }) \end{gathered}$	33-5004	*	$\begin{aligned} & 06619 \\ & 06662 \end{aligned}$	$\begin{aligned} & 06621 \\ & 06622 \\ & \hline \end{aligned}$	06620.	8046			06624	$\begin{array}{\|l} 30-2020 \\ 8166 \\ \hline \end{array}$	06764	7998	06577	06624	6608
89 (With Police)	${ }^{33-5007}$	42-1002	$\begin{array}{\|l\|} \hline 32-1062 \\ 32-1063 \\ \hline \end{array}$	$\begin{aligned} & 06621(55) \\ & 06622 \\ & \hline \end{aligned}$	06620	8046			06624	$\begin{aligned} & 30-2020 \\ & 8166 \\ & \hline \end{aligned}$	06764	7998	31-1059(56)	31-1025	6608	With OnOff Sw.
$\begin{gathered} 90 \\ (2-45 \cdot 5) \end{gathered}$	5039	6498	$\begin{aligned} & 03013 \\ & 03014 \\ & 03015 \\ & \hline \end{aligned}$	$\begin{aligned} & 03009 \\ & 03143 \end{aligned}$	03016	4938	4952	4819		4916	04787	4953	03001	03031	3463	\ldots
$\begin{gathered} 90 \\ (1-47) \end{gathered}$	5724	6498	$\begin{aligned} & 03360 \\ & 03014 \\ & 03015 \end{aligned}$	$\begin{array}{\|l\|} 03009 \\ 03345 \end{array}$	03016	5362		4819	4916	04787	5365	03001	03031	3463
$\frac{(1-3)}{90}\left(2-47^{\prime} 8\right)$	6015	6498	04317 04408	04319 04320	04409	6072	6064	4819	04407	4916	04787	6702	04309	03031	346	\cdots

RADIOS

©F PAGE 4)

Model No.	Volume Control	On-off Switch	R.F. Transformers	I. F. Trans formers	Osc. Transformer	Power Transformer	Input or Audio. Transformer	Filter Choke	Filter Condenser	Electrolytic Condensers	Tone Control	B. C. Resistor	Tuning Condenser	$\begin{gathered} \text { Dial } \\ \text { Assembly } \end{gathered}$	Pilot Lamp	Waveband Switch
$\begin{gathered} 91 \\ \text { (Early) } \\ \hline \end{gathered}$	6499	6498	$\begin{array}{\|l} 04317 \\ 04409 \\ \hline \end{array}$	$\begin{array}{r} 04319 \\ 04320 \\ \hline \end{array}$	04408	$\begin{aligned} & 6554(1) \\ & 6557(2) \end{aligned}$	6064	4819	04830	$2-4916(1)$ $6706 \&$ $30-2025(2)$	04787	$\begin{array}{\|l} \hline 6071(1) \\ 6807(2) \\ \hline \end{array}$	04790(57)	04832(58)	6608	
$\begin{gathered} 91 \\ \text { (Late) } \end{gathered}$	8054	42-1002	$\begin{array}{\|l\|l\|} \hline 32-1069 \\ 32-1070 \end{array}$	$\begin{aligned} & 04319 \\ & 04320 \\ & \hline \end{aligned}$	05985	$\begin{array}{\|l} \hline 6554(1) \\ 6804(2) \\ \hline \end{array}$	6064	4819	04830	$\begin{array}{\|l\|} \hline 2-4916(1) \\ 2-7464(2) \\ \hline \end{array}$	04787(7)	$\begin{aligned} & \hline 6702(1) \\ & 6808(2) \end{aligned}$	31-1011		6608	With On Of Sw .
95	3790	6498	$\begin{array}{\|l\|} \hline 3744 \mathrm{~A} \\ 3744 \mathrm{~B} \\ 3744 \mathrm{C} \\ 3744 \mathrm{C} \\ \hline \end{array}$			3752	3537	3422	3754			3762	3376D	3794(12)	3463	
96	4093	6498	$\begin{aligned} & 3744 \mathrm{~A} \\ & 3744 \mathrm{~B} \\ & 3744 \mathrm{C} \\ & 3744 \mathrm{C} \\ & \mathbf{3 7 7 5 B} \end{aligned}$			3752	3537	3422	3754		04787	3762	4000D \ddagger	4118(12)	3463	\ldots
111	4093	6498	$\begin{aligned} & \hline \mathbf{3 8 8 4 S} \\ & \mathbf{3 8 8 4 T} \\ & \mathbf{3 8 8 4 V} \end{aligned}$	$\begin{aligned} & 03038 \\ & 03039 \\ & 03040 \end{aligned}$	3884U	4446	3537	3422	3754		04787	4532	40000 \ddagger	4276(12)	3463	
$\underset{(2-45 ' s)}{112}$	4093	6498	$\begin{array}{\|l\|} \hline 3884 \mathrm{~S} \\ \mathbf{3 8 8 4 T} \\ \mathbf{3 8 8 4} \mathrm{~V} \end{array}$	$\begin{aligned} & 03038 \\ & 03039 \\ & 03040 \end{aligned}$	3884U	4446	3537	3422	3754		04787	$\begin{array}{\|l} 4532 \\ 3763 \end{array}$	4000D \ddagger	4276(12)	3463	
$\begin{gathered} 112 \\ (2-47 \prime \mathrm{~s}) \end{gathered}$	4093	6498	$\begin{array}{\|l\|} \hline 3884 \mathrm{~S} \\ 3884 \mathrm{~T} \\ \mathbf{3 8 8 4 4} \end{array}$	$\begin{array}{\|l\|} \hline 03038 \\ 03039 \\ 03040 \\ \hline \end{array}$	3884U	5594	5662	5643	03489	4916	04787	3764	4000D \ddagger	4276(12)	3463	
118	33-5024	*	$\begin{array}{\|l\|} 32-1378 \\ 32-1379 \end{array}$	$\begin{array}{\|l\|} \hline 32-1381 \\ 32-1424 \end{array}$	32-1380	32-7111	32-7114	32-7115	30-2078	$\begin{aligned} & 30-2025 \\ & 30-2045 \end{aligned}$	30-4186	33-3034	31-1173	31-1205	6608	42-1046
144	33-5068	*	HF $32-1271$ BC $32-1270$	$\left\lvert\, \begin{gathered} 32-1369 \\ 32-1306 \\ 32-1307 \end{gathered}\right.$	HF $32-1273$ BC $32-1272$	32-7234		32-7018	30-2073	30-2020	30-4168	33-3069	31-1175	31-1206	6608	42-1045
200	33-5071	*	$\begin{array}{\|l\|} \hline 32-1420 \\ 32-1421 \\ 32-1422 \end{array}$	$\begin{aligned} & 32-1403 \\ & 32-1403 \\ & 32-1404 \end{aligned}$	32-1423	32-7258	32-7057	32-7056	30-2046	$\begin{aligned} & 30-2011 \\ & 30-2080 \\ & \hline \end{aligned}$	30-4196	33-3137	31-1217	31-1255	6608	
201	33-5071	*	$\begin{aligned} & 32-1481 \\ & 32-1482 \end{aligned}$	$\begin{array}{\|l\|} \hline 32-1483 \\ 32-1483 \\ 32-1484 \end{array}$	32-1504	32-7258	32-7057	$\begin{array}{\|l\|} 32-7018 \\ 32-7056 \\ \hline \end{array}$	30-2046	$\begin{array}{r} 30-2080 \\ 30-2011 \\ \hline \end{array}$.33-3137	31-1379	31-1205	34-2040	42-1083
470	5039	5796	$\begin{array}{\|l} 03082 \\ 03083 \end{array}$	$\begin{aligned} & 03091 \\ & 03092 \end{aligned}$	03084	5117		4819		4916	04757	5125	03076	$\begin{array}{\|l\|} \hline \mathbf{0 3 0 3 1} \\ \mathbf{0 3 8 9 0} \\ \hline \end{array}$	3463	03751
490	5724	4095	$\begin{aligned} & 03360 \\ & 03014 \\ & 03015 \end{aligned}$	$\begin{aligned} & \mathbf{0 3 0 0 9} \\ & \mathbf{0 3 3 4 5} \end{aligned}$	03016	5362		4819	03327	4916	04787	5365	03001	$\begin{array}{\|l} \mathbf{0 3 0 3 1} \\ \mathbf{0 3 8 9 0} \\ \hline \end{array}$	3463	03751
511	3076	3117	$\begin{aligned} & \hline 3075 B \\ & 3075 \mathrm{~A} \end{aligned}$ 3073		Z-224	Z-406		3088W	3001E \ddagger	3047(12)	6608	\cdots

NTTES

R. F. and I. F. Transformers are listed in the order they appear in circuit diagrams.

\ddagger Not replaceable. Return to Distributor for exchange.

* Combined with Vol. control.
(1) One-speaker sets.
(2) 2-speaker sets.
(3) LZX only; code 222 is 42-1031; code 121 is $42-1019$
(4) Code 222
(5) Code 122
(6) Code 123 uses two 30-2014.
(7) Models with bass comp: 06698
(8) Code 123 (RX).
(9) Code 123
(10) Code 221.
(11) Code 223.
(12) Scale only.

13) Code 121.
(14) Code 122 and 123.
(15) Code 121 (two used).
(16) Run 14 \& 15: 30-4168; run 16 \& after 30-4204.
(17) Code 123: 31-1077.
(18) Code 123: 31-1115.
(19) Code 125
(20) Code 126 \& 7.
(21) Code 123: 31-1078.
(22) After run 6, use one $30-2045$ in place of these two
(23) Code 123: 31-1117
(24) Code 124-5 (LZ\&LZX).
(25) Code 129 (LZ).
(26) Run 3 and after: 30-4168.
(27) Code 221: 6895.
(28) Code 123 or $223: 05988$
\{06146.
(29) Code 123 or 223: 05987.
(30) Code 123 or 223: $06144 . \ddagger$

Code 125: 06123
(31) Code 123 or 223: 05992.
(32) Code 123: 31-1118
(33) Code 123 \& $223: 05726$

05727
(34) Code $123 \& 223: 05728$.
(05829; after
(35) Code 123 \& $223:\{10 / 19 / 32$
106359.
(05811) after
(36) Code 123 \& $223:\{10 / 19 / 32$:
06358.
(37) Before run 4:32-1116.
(38) Before run 4:32-7046.
(39) Run 6 and after: 42-1043.
(40) Run 6 and after: $\{32-1304$.

Before run 3:30-4013.
42) Before run 3:05153
(43) Code 123 or $223:\{05988$.
$\{05989$.
(44) Code 123 or 223: 05987.
(45) Two-speaker sets: 6457.
(46) Code 123 or 223: 05986 Code 125: 06581.
(47) Code 123, 223 \& 125: 05992.
(48) Above run 12: 06888; with dial to 170 : 32-1 125.
(49) Above run 12: 06887 ; with dial to 170 32-1120.
(50) With dial to $170: 31-1031$.
(51) With dial to 170: 31-1032.
(52) Before run 4: 05794.
(53) Before run 4: 05828.
(55) After run 2: 32-1289.
(56) Before run 5: 31-1010.
(57) Code $123 \& 223: 05982$
(58) Code 123 \& 223: 05992.
(59) Code 126
(60) Later Prod: 31-1290.

REPLACEMENT PARTS FOR ALL PHILCA AUTT RADIDS

Model	Fleld Cofl Assem.	Pliot Lamp	Speaker Cone	Tuning Cond.	Filter Cond.	Control Tuning	Shafts Volume	Dial
3	Not Furnished	6608	02996	4372A	4507		4461
5	36-3046	6608	02861	31-1019	30-2008	28-8006	28-8007	27-5006
6	02794	6608	36-3159	04308	04354	6128	6129	8255
7	02794	6608	36-3159	04308	6128	6129	6043
8	02794	6608	36-3159	04308	-	6128	6129	6043
9	02795	6608	36-3159	04308	04959	6128	6129	8255
10	36-3130	6608	36-3159	Dir. Dr. 31-1083 Air. 31-1202	30-2015	$\begin{gathered} 28-8139 \\ \text { (Air Pl. } \\ 28-8206 \text {) } \end{gathered}$	$\begin{gathered} 28-8141 \\ (\text { Air Pl. } \\ 28-8206) \end{gathered}$	$\begin{aligned} & 27-5022 \\ & 42-5173 \end{aligned}$
10-122	36-3130	34-2039	36-3159	31-1202	30-2015	28-8206	28-8206	42-5173
11	36-3046	6608	02861	Dir. Dr. $31-1149$ Air. 31-1199	$30-2072$	$\begin{gathered} 28-8139 \\ \text { (Air Pl. } \\ 28-8206) \end{gathered}$	$\begin{gathered} 28-8141 \\ \text { (Air Pl. } \\ 28-8206 \text {) } \end{gathered}$	$\begin{aligned} & \text { Dir. Dr. } \\ & 27-5038 \\ & \text { Air. } 42-5175 \end{aligned}$
12	02794	6608	36-3159	04308	04959	6128	6129	8255
700	36-3046	$\begin{array}{r} 34-2031 \text { or } \\ \mathbf{3 4 - 2 0 3 9} \\ \hline \end{array}$	36-3157	31-1199	30-2072	28-8206	28-8206	42-5189
800	36-3130	6608	36-3159	Dir. Dr. $31-1083$ Air. 31-1202	30-2015	$\begin{gathered} 28-8139 \\ \text { (Air Pl. } \\ 28-8206 \text {) } \end{gathered}$	$\begin{gathered} 28-8141 \\ \text { (Air Pl. } \\ 28-8206) \\ \hline \end{gathered}$	Dir. Dr. $27-5022$ Air. $42-5173$
800-122	02795	34-2039	36-3159	31-1202	30-2015	28-8206	28-8206	42-5191
P A D	02795	6608	36-3159	04308	06088	28-8100	28-8103	8255
P B D	36-3140	6608	36-3159	04308	04354	28-8100	28-8103	8255
$\mathrm{C}\left\{\begin{array}{l}\text { Nash } \\ \text { Stude }\end{array}\right.$	$\begin{aligned} & 36-3130 \\ & 36-3130 \end{aligned}$	$\begin{aligned} & 6608 \\ & 6608 \end{aligned}$	$\begin{aligned} & 36-3159 \\ & 36-3159 \end{aligned}$	$\begin{aligned} & 31-1083 \\ & 31-1083 \end{aligned}$	$\begin{aligned} & 30-2015 \\ & 30-2015 \end{aligned}$	$\begin{aligned} & 28-8181 \\ & 28-8169 \end{aligned}$	$\begin{aligned} & 28-8182 \\ & 28-8170 \end{aligned}$	$\begin{aligned} & 27-5034 \\ & 27-5027 \end{aligned}$
C-122 Stude.	36-3130	34-2039	36-3159	31-1083	30-2015	28-8169	28-8170	27-5027
D $\left\{\begin{array}{l}\text { Nash } \\ \text { Stude } \\ \text { Chrysler }\end{array}\right.$	$\begin{aligned} & 36-3130 \\ & 36-3130 \\ & 36-3130 \end{aligned}$	6608 6608 6608	$\begin{aligned} & 36-3159 \\ & 36-3159 \\ & 36-3159 \end{aligned}$	$\begin{aligned} & 31-108.3 \\ & 31-1083 \\ & 31-1083 \end{aligned}$	$\begin{array}{r} 30-2015 \\ 30-2015 \\ 30-2015 \end{array}$	$\begin{aligned} & 28-8181 \\ & 28-8169 \\ & 28-8139 \end{aligned}$	$\begin{aligned} & 28-8182 \\ & 28-8170 \\ & 28-8141 \end{aligned}$	$\begin{aligned} & 27-5034 \\ & 27-5027 \\ & 27-5022 \end{aligned}$
D-122 Nash	36-3130	34-2039	36-3159	31-1083	30-2015	28-8181	28-8182	27-5034
\mathbb{E}	36-3130	34-2031	36-3159	31-1126	30-2015	28-8206	28-8206	42-5130
G $\left\{\begin{array}{l}\text { Chyr. } 6 \\ \text { Ply. } \\ \text { Dodge } \\ \text { Chr. Airf. } \\ \text { DeS. Airf. } \\ \text { Hup. }\end{array}\right\}$	$\begin{aligned} & 36-3140 \\ & 36-3140 \\ & 36-3140 \\ & 36-3140 \end{aligned}$	$\begin{aligned} & 34-2031 \text { or } \\ & 34-2039 \\ & 34-2031 \text { or } \\ & 34-2039 \\ & 34-2031 \text { or } \\ & 34-2039 \\ & 34-2031 \text { or } \\ & 34-2039 \end{aligned}$	$\begin{aligned} & 36-3159 \\ & 36-3159 \\ & 36-3159 \\ & 36-3159 \end{aligned}$	$\begin{aligned} & 31-1182 \\ & 31-1182 \\ & 31-1182 \\ & 31-1182 \end{aligned}$	$\begin{aligned} & 30-2030 \\ & 30-2030 \\ & 30-2030 \\ & 30-2030 \end{aligned}$	$\begin{gathered} 28-8188 \\ 28-8218 \\ 28-8201 \\ 28-8226 \end{gathered}$	$\begin{aligned} & 28-8198 \\ & 28-8: 19 \\ & 28-8202 \\ & 28-8227 \end{aligned}$	$\begin{aligned} & 42-5122 \\ & 42-5123 \\ & 42-5122 \\ & 42-5133 \\ & 42-5124 \\ & 42-5208 \end{aligned}$
$\mathbf{G - 1 2 2}\left\{\begin{array}{l}\text { Chr. 6 } \\ \text { Ply. } \\ \text { Dodge } \\ \text { Chr. Airf. } \\ \text { DeS. Airf. } \\ \text { Hup. }\end{array}\right\}$	36-3046 $36-3046$ 36-3046 36-3046	$34-2039$ 34-2039 34-2039 34-2039	$\begin{aligned} & 36-3157 \\ & 36-3157 \\ & 36-3157 \\ & 36-3157 \end{aligned}$	$\begin{aligned} & 31-1214 \\ & 31-1214 \\ & 31-1214 \\ & 31-1214 \end{aligned}$	$\begin{aligned} & 30-2030 \\ & 30-2030 \\ & 30-2030 \\ & 30-2030 \end{aligned}$	$\begin{aligned} & 28-8188 \\ & 28-8218 \\ & 28-8201 \\ & 28-8226 \end{aligned}$	$\begin{aligned} & 28-8198 \\ & 28-8219 \\ & 28-8202 \\ & 28-8227 \end{aligned}$	42-5204 $42-5205$ $42-5204$ $42-5202$ $42-5200$ $42-5208$
\underline{H}	02795	6608	36-3159	31-1202	30-2015	28-8214	28-8214	42-5125
H-122	02795	34-2039	36-3159	31-1202	30-2015	28-8214	28-8214	42-5125
J $\left\{\begin{array}{l}\text { Nash } \\ \text { Stude }\end{array}\right.$	$\begin{aligned} & 36-3046 \\ & 36-3046 \end{aligned}$	$\begin{gathered} 6608 \text { or } \\ 34-2039 \\ 6608 \text { or } \\ 34-2039 \\ \hline \end{gathered}$	$\begin{aligned} & 02861 \\ & 02861 \end{aligned}$	$\begin{aligned} & 31-1149 \\ & 31-1149 \end{aligned}$	$30-2072$ $30-2072$	28-8181	$\begin{aligned} & 28-8182 \\ & 28-8170 \end{aligned}$	$27-5041$ $27-5040$
N (Ford)	36-3046	34-2038	02861	31-1166	30-2030	28-8241	28-8242	42-5166
Q $\left\{\begin{array}{l}\text { Nash } \\ \text { Stude }\end{array}\right.$	$\begin{aligned} & 36-3046 \\ & 36-3046 \end{aligned}$	$\begin{aligned} & 34-2031 \\ & 34-2031 \end{aligned}$	$\begin{aligned} & 36-3157 \\ & 36-3157 \end{aligned}$	$\begin{aligned} & 31-1340 \\ & 31-1340 \end{aligned}$	$\begin{aligned} & 30-2072 \\ & 30-2072 \end{aligned}$	$\begin{aligned} & 28-8181 \\ & 28-8169 \end{aligned}$	$\begin{aligned} & 28-8182 \\ & 28-8170 \end{aligned}$	$\begin{aligned} & 27-5041 \\ & 27-5040 \end{aligned}$
Hup. R (Chrysler 6 $\{$ Dodge (Plymouth	$\begin{aligned} & 36-3046 \\ & 36-3046 \end{aligned}$	$\begin{aligned} & 6608 \text { or } \\ & 34-2039 \\ & 34-2031 \end{aligned}$	$\begin{aligned} & 02861 \\ & 02861 \end{aligned}$	$\begin{aligned} & 31-1164 \\ & 31-1164 \end{aligned}$	$\begin{aligned} & 30-2072 \\ & 30-2072 \end{aligned}$	$\begin{aligned} & 28-8214 \\ & 28-8234 \end{aligned}$	$\begin{aligned} & 28-8214 \\ & 28-8234 \end{aligned}$	$\begin{aligned} & 42-5208 \\ & 42-5176 \end{aligned}$

Special Date for Members of RADIO MANUFACTURERS SERVICE

Model 37-60

General Description

Model 37-60 is a 5 tube superheterodyne receiver for operation on alternating current and has two tuning ranges, covering Standard Broadcast and American short-wave reception up to 7 megacycles. The new Philco High Efficiency self-centering glass tubes are used.

The circuit incorporates the Philco Aerial Tuning Systemcontrolled by the range switch-which provides maximum sensitivity and noise reduction when used with the Philco All Wave Aerial.

The red and black leads of the All Wave Aerial "transmission line" are connected to terminals 1 and 2 respectively, of the terminal panel provided at the rear of the chassis. Connect the jumper of the terminal panel across terminals 3 and 4 .

If a temporary aerial is used, the jumper should be across terminal 2 and 3. The aerial connects to terminal 1 and the ground to terminals 3. A good ground connection is required in all installations.

CONSTRUCTION

The chassis is constructed in three basic assembly units.
The Radio Frequency unit contains a 6A8G tube which functions as a Detector-Oscillator, tuning condenser, antenna and oscillator coils for each tuning range, selector switch-compensating condensers for all coils and other parts necessary for the associated circuits. The unit is separately mounted on rubber grommets, cushioning it from the main chassis.

The Intermediate Frequency unit, mounted on the right-hand side of the chassis (facing the front) consists of the Intermediate

Frequency coils compensating condensers, a 6 K 7 G tube for I. F Amplifier stage, and a 6Q7G tube as the second detectorautomatic volume control and first audio stage.

All voltages supplied to the I. F. and R. F. units are furnished from a terminal strip mounted in this unit.

The Power Pack and audio output circuits, together with the required Voltage dividers and filter condensers are mounted in the power unit. All high Voltage A. C. Wiring is housed in the power transformer assembly which includes the rectifier socket.

Although unit construction has changed the appearance of this model, the service bulletin will be of great assistance in checking through all stages of the receiver. The Wiring Diagram, as usual, is numbered, indicating all important parts. These numbers correspond with the parts layout shown in Fig. 6. In addition, the range switch wafers are shown on the schematic diagram. The contacts on each wafer are lettered and numbered to indicate their connection points in the schematic diagram, which are also lettered and numbered. The physical drawings of each coil used in the receiver are also shown on schematic diagram Fig. 5. The connections of these coils are numbered on the coil itself and on the schematic diagram.

Fig. 1 shows the Voltage measurements taken from the bottom of the socket at each contact. In Fig. 2, the correct position of the dial indicator, for proper adjustment of the compensators is shown. Figs. 3 and 4, are the location of the I. F. and R.F. compensators respectively.

This Receiver is supplied in two models, type B and type F. These instructions, however, are used for both types.

Electrical Specifications

Voltage Rating) 115 Volts. A. C.
Frequency Rating: 50-60 Cycle.
For 25-40 cycle operation use Power Transformer, marked with asterisks in Parts List.
Power Consumption: 60 Watts.
Type and Number of Philco Tubes: 1 type 6A8G First Detector-oscillator; 1 type 6 K 7 G I. F. Amplifier; 1 type 6Q7G

Fig. 1-Socket Voltages
Viewed from Underside of Chassis
Measurements taken with Philco Model 025 Circuit Tester which contains a 1000 ohm per volt voltmeter. Line voltage, 115 - Wave Switch in Broadcast Position. Dial turned to 600 KC .

2nd Detector, A. V. C., and ist Audio; 1 type 6F6G Pentode Output and 1 type 5 Y 4 G , Rectifier.
Speaker: S7.
Type of Circuit: Superheterodyne with Pentode Power Output. Intermediate Frequency: 470 K . C.
Undistorted Power Output: 3 Watts.
Tuning Ranges: Two-(1):530 to 1720 K .C., (2): 2.3 to 7.4 M .C.
POWER TRANSFORMER DATA

Lead No. Shown on Schematic	A. C. Volts	Current	Circuit	Color	Resistance
1.2	120	-	Primary	White	50 ohms
5-7	670	$70 \mathrm{M}. \mathrm{A}$.	High Voltage Sec.	Yellow	145 ohms 155 ohms
3-4	5.0	2.0 A	Fil. Rect.	Blue	. 1 ohms
8-9	6.7	2.1 A	Fil.	Black	. 1 ohms
6	- -	-	Center 'Tap of 5-7	Yellow Green Tr	-

Fig. 2-Dial Calibration

Fig. 3-Locations of I. F. Compensators Top of Chassis

Fig. 4-Locations of
R. F. Compensators Underside of Chassis

Adjustment of Compensators

The accurate adjustment of the various compensating condensers is vital to the proper functioning of this receiver. There are four compensating condensers in the 1 . F. Circuit, three in the Oscillator Circuit, and two in the Antenna Circuit. Incorrect adjustment will cause loss of sensitivity, unsatisfactory tone and poor selectivity.

To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILCO MODEL, 088 SIGNAL GENERATOR, covering from 110 to $20,000 \mathrm{~K} . \mathrm{C}$. is recommended to adjust the compensators at the various frequencies specified. A visual indication of the receiver output is also necessary to obtain correct adjustment of the compensators. PHILCO MODEL. 025 CIRCUIT TESTER contains a very sensitive output meter and is recommended for these adjustments.

Philco Fibre Wrench No. 3164 and Fibre Handle Screw-driver No. 27-7059 complete the necessary equipment for these adjustments. The locations of the various compensators are shown in Figs. 3 and 4.

The following procedure must be observed in adjusting the compensators

DIAL ADJUSTMENT-The Tuning condenser is set at the maximum capacity position, by turning the tuming knob counterclockwise. Loosen the set screw of dial hub and set dial, (see Fig. 2) with Glowing Indicator centered between the index lines at the low frequency end of scale.

OUTPUT METER-The Output Meter is attached to the Flate and Cathode terminals of the (6 F 6 G tube) and adjusted to use the ($0-30$) volt scale. When adjusting each circuit, care should be taken to have the signal generator attenuator set to give approximately $1 / 4$ scale reading on output meter

INTERMEDIATE FREQUENCY CIRCUIT

1 Turn wave band switch to Range 1. Rotate the tuning control to approximately $600 \mathrm{~K} . \mathrm{C}$. Connect the 088 Signal Generator output lead through a .1 mfl . condenser to the grid of the 6A8G tube, and the ground lead of Signal Generator to the chassis.
2 Set Signal Generator indicator for 470 K. C., adjust attenuator for approximately $1 / 4$ scale reading on output meter. Then adjust compensators (26) a 2nd I. F. Sec., (36) 2nd I. F. Pri., (11) a 1st I. F. Sec., (14) 1 st I. l°. Pri., for maximum reading on output meter.

RADIO FREQUENCY CIRCUIT-Range 2: 2.3 to 7.4 M . C.
1 Turn Range switch to Range 2. Remove signal generator output lead from the grid of 6A8G tube.
2 Attach signal generator output lead through a 0.1 mfd . condenser to the ANT. TERMINAL No. 1, on aerial panel, and the generator ground to chassis. Connect TERMINAL No. 2, to CROUND TERMINAL No. 3, with connector link provided on the panel.

3 Set Signal Generator and receiver dials for 7.0 M . C. Now adjust compensator (7) for maximum reading on output meter. Then turn Signal Generator and Receiver to 6.0 M . C., and adjust compensator (3) for maximum output.

RANGE 1:530 to $\mathbf{1 7 2 0}$ K. C.
1 Turn range switch to Range 1. Turn the Receiver dial to 1600 K. C. Then adjust compensators (8) and (3) for maximum reading on output meter.

The 088 Signal Generator dial is set at 800 K . C. and the second harmonic of this frequency $(1600 \mathrm{~K}$. C. $)$ is used in making the above adjustment.
2 The low frequency end of the band is now tuned by turning Signal Generator and Receiver dials to 600 K . C. and adjusting compensator (8)-sce note (a) below-for maximum output.
(a) When compensator (8)a osc. series is being adjusted, the Tuning Condenser must be rolled for maximum output. This is accomplished as follows: First tune compensator (8) a for maximum output. Then vary the Tuning Condenser for maximum output at $600 \mathrm{~K} . \mathrm{C}$. Now retune Compensator (8)a, and again vary the tuming condenser back and forth about $600 \mathrm{IN} . \mathrm{C}$., for maximum output. This operation of first tuning the Compensator, then the Tuning Condenser is continued until maximum oulput is obtained at the 600 K . C. frequency.

3 Set the Signal Generator and Receiver dials for 1600 K . C. and re-adjust Compensator (8) for maximum output. Then turn the dials to $1500 \mathrm{~K} . \mathrm{C}$. and re-adjust compensator (3) for maximum reading on output meter.

 *NOILISOd 1SVJOVOY8 NI NMOHS SJHJIIMS T7V-:
u!poIng oอ!nxos

Fig. 6-Base View of Chassis
Replacement Parts-Model 37-60

Schem. Description	Part No.	Price List		Nem. Description	Part No.	Price List
(1) Antenna Transformer (Broadcast)	32-2108	\$0.80	(12)	Tone Control \& Power Switch.	42-1180	\$0.75
(a) Antenna Transformer (Police)...	32-2119	65	(1)	Hilot Lamp.	34-2039	. 15
(2) Compersator ANT $1600 \mathrm{~K} . \mathrm{C}$.	31-6093	. 40	(1)	Waye Switch	42-1195	1.50
(a) A ANT. Compensatur 6 mep.	Part of (3)			Dial.	27-5196	. 30
(4) Condenser (05 mfd. Tubular)	30-4444	20		Dial Hub	28-7152 FA-3	. 10
(3) Condenser (1650 mfd . Scmi-fxed)	31-6096	40		Dial Hub Clamp	28-2837 FA-3	. 10
(3) Tuning Condenser.	31-1824	3.00		Set screw	N-1506	Per C 2.00
(7) Oscillator Compensator (Police 7 M.C.)	31-6101	. 20		Scruen Bracket \& Sereen Assembly	31-1878	. 25
(8) Orcillator Compensator (Broadcast) $1600 \mathrm{~K} . \mathrm{C}$. Screw	$31-6100$	40		Pilot Lamp Sucket Assembly	38-7706	. 35
(8) A Compensator ($600 \mathrm{K.C}$. Nut)	Part of 8			Tube Sucket 7 Prong	27-6057	. 11
(9) Oscillator Transformer (Broadeast)	32-2120	. 65		Tube Socket 8 Prong	27-6058	. 11
(60) (sillator Transformer (Pulice) . . .	32-2121	. 40		Tube Shield.	28-2720	. 10
(1) Condenser (. 250 mmfd . Mica)	30-1032	. 25		Tube Shield Base	28-3898	. 03
(12) Reaistor (32000 ohms $1 / 2$ watt)	33-332339	. 20		1. F. Coil Shield.	38-7763	. 20
(6) Resistor ($10000{ }^{1 / 2}$ natt) \ldots...	33-310339	. 20		R.F. Trans. Mtg Plate.	28-3808	. 02
(6) Compensator (I'ri. 1st I.F.)	Part of (13)			R.F. Trans. Mtg. Spacer	27-8228	Per ${ }^{.01}$
(9) A Compenbitor (Sec.1st I.F.)	Part of (6)			R.F. Trans. Mty Screw	W-1635	Per C . 30
(9) 1stI.F. Transformer.......	32-2100	1.50		R.F. Mtg Grommet...	27-4317	. 04
69 Condenser (11 mfd . Tubular)	30.4170	. 25		R.F. Mtg. Sleeve	28-2257 FA-3	. 01
(7) Resistor (1 meg. $1 / 2 \mathrm{watt}$)	33-510344	. 20		R.F. Mtg. Bushing	27-8339	Per C . 40
(6) Resistor (20000 ohms 1 watt)	33-320439	20		Screw	W-729	
(20) Resistor (9000 ohms 2 watts)	33-290539	. 30		Vernier Drive Issem.	31-1879	
t9) Electrolytic Condenser (16 mfJ .)	$30-2118$	1.65		B.C. Resistor Mig. Screw	W-512	Per C . 90
(61) Resistor (51000 ohins 1 watt)	33-351439	. 20		B.C. Resistor Mtg. Nut	W-317A	Per C . 40
(2) Volime Contivi.	33-5157	1.00		Volume Control Shaft.	28-6498	
6) Condenser (mica 110 mmfd)	30-1031	20		Volume Control Shaft Sprine.	$28-4117$	Per C . 40
69) Condenser (mica 110 mmfd)	30-1031	20		Wisher Volume Control Shaft	28-4180	
(23) Resistor (51000 ohms $1 / 2$ watt)	33-351339	20		Washer Volume Control Shaft	4436	Per C 1.50
(6) Compeusator 2nd I F. Pri.....	Part of (27)			Volume Control Shaft Retaining Clip	28-8810	
Gea Compersator 2nd 1 F. Sec.	Part of (a)			Volume Control Mth. Nut...........	W-684 FA-3	Per C 1.25
6) 2nd I.F. Transformer Unit	$32-2102$	1.50		Tone Control Mtg. Nut.	W-684 FA-3	Per C 1.25
693) Condenser (mica 110 mmifd)	30-1031	. 20		Insi lat or	27.8320	Per C ${ }^{\text {. } 40}$
(20) Condenser (Tubular . 015 mfd.)	30-4358	20		IF. Ierminal Panel	38-7703	. 25
(69) Resistor ($1 \mathrm{mek} .1 / 2$ wati)	33-510339	20		I.F. Terminal Spacer	4122	. 01
(12) Condenser (Tubular 1 mid.).	30-4122	. 20		Knob Tuning	27-4321	. 10
(2) Resistor (1 megohin $1 / 2$ watt)	33-510339	20		Knob Volume Tone	27-4332	.10
230) Resistor (490600 ohm 1/2 watt)	33-449339	20		Knol, Selector Switch	27-4332	. 10
69 Rcsistor ($700000 \mathrm{hm} 1 / 2$ watt)	33-370339	20		Chassis Mttg. Screw		
(19) Contenser (Tubular . 015 mfd)	30-4226	20		Turing Condenser Grommet	$27-4325$	Per C ${ }^{.02}$
(6) Rexistor (1 meg. $1 / 2$ watt) \ldots.	33-510339	20		Screw	W-650 FA-3	Per C . 40
(6) Field Coil Assembly.	36-3039	2.15		Baffle Assembly B Cabinet	$40-5935$	
- Uutput Transformer	32-7019			A.C. Cord...........	$\mathrm{L}-2183$. 40
(6) Cone \& Yoice Coil Assembly	36-3157	. 80		Spuaker Cible	L-2181	. 25
(90) Condenser (Tubular 03 mfd .)	30-4380	. 20		Clamp Electrolytic Condenser.	6440	. 05
(1) Condenser (Tubular 008 mfd)	30-4112	20		Insilator Electrolytic Condenser	$27-7194$. 01
(62) Eleetrolytic Condenser (8mfd)	30-2024	1.10		(irid Cap	38-3888	. 01
(1) Bias Resistor.	33-3277	$\therefore 0$		Spacer (Comurnsting Condenser)	29-6032	PerC ${ }^{.04}$
(6) Electrolytic Condenser (12 mfil.)	30-2117	1.20		Screw.	1)-1653 FA-3	Per C ${ }_{5} .30$
(a) Power Transfurmer ($50-60$ cyele, 115 volts)	32-7583	4.25		thssmaker $\mathrm{S}-7$		Per $\mathrm{C}_{1}^{5.75}$
*Power Transformer (25-40 cycle, 115 volts)	32-7584			Nut Mtg. Speaker	W-124 A	Per C 1.35
(4) Condenser (Bakelite Twin 015 mfd) $\ldots .$.	3793)(. 40		Baffle Assem. F Cabinet	40-5933	

Special Data for Members of RADIO MANUFACTURERS SERVICE
 RADIO MANUFACTURERS $\underset{\text { A PHILCO SERVICE PLAN }}{\text { SERVICE }}$

SERVICE BULLETIN
 No. 246

Model 37-61

General Description

Model $37-61$ is a 5 tube superheterodyne receive- for operation on alternating current and has two tuning ranges, covering standard broadcast and short wave reception. It, also, uses the new Philco High Efficiency self-centering glass tubes.

The circuit includes the Philco Foreign Tuning System-controlled by the range switch-providing maximum sensitivity and noise reduction when used with the New Philco High-Efficiency Aerial, supplied with the receiver

The red and black leads of the High-Efficiency Aerial "transmission line"' are connected to terminals 1 and 2 respectively, of the terminal panel provided at the rear of the chassis. Connect the jumper of the terminal panel across terminal 3 and 4. A good ground connection is required in all installations. Make the ground connection to terminal 3 on the terminal panel.

If a temporary aerial is used, the jumper should be across terminal 2 and 3 . The aerial connects to terminal 1 and the ground to terminal 3.

CONSTRUCTION

The chassis is constructed in three basic assembly units.
The Radio Frequency unit contains a 6 A 8 G tube which functions as a Detector-Oscillator, tuning condenser, antenna and oscillator coils for each tuning range, selector switch-compensating condensers for all coils and other parts necessary for the associated circuits. The unit is separately mounted on rubber grommets, cushioning it from the main chassis

The Intermediate Frequency unit, mounted on the right-hand side of the chassis facing the front, consists of the Intermediate

Frequency coils, compensating condensers, a 6 K 7 G tube for I. F. Amplifier stage, and a 6Q7G tube as the second detector-automatic volume control and first audio stage. All voltages supplied to the I. F. and R.F. units are furnished from a terminal strip mounted in this unit.
The Power Pack and audio output circuits, together with the required Voltage dividers and filter condensers are mounted in the power unit. All high Voltage A. C. Wiring is housed in the power transformer assembly which includes the rectifier socket.
Although unit construction has changed the appearance of this model, the service bulletin will be of great assistance in checking through all stages of the receiver. The Wiring Diagram, as usual, is numbered, indicating all important parts. These numbers correspond with the parts layout shown in Fig. 6. In addition, the range switch wafers are shown on the schematic diagram. The contacts on each wafer are lettered and numbered to indicate their connection points in the schematic diagram, which are also lettered and numbered. The physical drawings of each coil used in the receiver are also shown on schematic diagram Fig. 5. The connections of these coils are numbered on the coil itself and on the schematic diagram.

Fig. 1 shows the Voltage measurements taken from the bottom of the socket at each contact. In Fig, 2, the correct position of the dial indicator, for proper adjustment of the compensators is shown. Figs. 3 and 4 show the location of the I. F. and R. F. compensators respectively.
This receiver will be supplied in two model cabinets type B, and F. These instructions, however, will cover both type cabinets.

Electrical Description

Voltage Rating: 115 Volts. A. C.
Frequency Rating: 50-60 Cycle.
For 25 to 40 cycle operation use Power Transformer, marked with asterisks in Parts List.
Power Consumption : 60 Watts.
Type and Number of Philco Tubes: 1 type 6A8G First Detector-oscillator; 1 type 6K7G I. F. Amplifier; 1 type 6Q7G

2nd Detector, A. V. C., and 1st Audio; 1 type 6F6G Pentode Output and 1 type 5 Y 4 G , Rectifier.
Speaker: S7.
Type of Circuit: Superheterodyne with Pentode Power Output. Intermediate Frequency: 470 K . C.
Undistorted Power Output: 3 Watts
Tuning Ranges: Two-(1): 530 to 1720 K. C.; (2): 5.7 to 18.2 M. C.

POWER TRANSFORMER DATA

Lead No. Shown on Schematic	A. C. Volts	Current	Circuit	Color	Resist ance
1-2	120	-	Pri.	White	5 ohms
3-4	5.0	2.0 A	Fil. Rect.	Blue	. 1 ohm
5-7	670	$70 \mathrm{M}. \mathrm{A}$.	High Voltage Sec.	Yellow	145 ohm 155 ohm
6	-	-	Center Tap of 5-7	Yellow Green Tr.	-
8-9	6.7	2.1 A	Fil.	Black	1 ohm

Fig. 2-Dial Calibration

Fig. 3-Locations of I. F. Compensators Top of Chassis

Fig. 4-Locations of R. F. Compensators Underside of Chassis

Adjustment of Compensators

The accurate adjustment of the various compensating condensers is vital to the proper functioning of this receiver. There are four compensating condensers in the I. F. Circuit; three in the Oscillator Circuit; and two in the Antenna Circuit. Incorrect adjustment will cause loss of sensitivity, unsatisfactory tone, and poor selectivity.

To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILCO MODEL 088 SIGNAL GENERATOR, covering from 110 to 20000 K . C is recommended to adjust the compensators at the various frequencies specified. A visual indication of the receiver output is also necessary to obtain correct adjustment of the compensators. PHILCO MODEL 025 CIRCUIT TESTER contains a very sensitive output meter and is recommended for these adjustments.

Philco Fibre Wrench No. 3164 and Fibre Handle Screw-driver No. 27-7059 complete the necessary equipment for these adjustments. The locations of the various compensators are shown in Figs. 3 and 4 .

The following procedure must be observed in adjusting the compensators:-

DIAL ADJUSTMENT-The Tuning Condenser is set at the maximum capacity position, by turning the tuning knob counterclockwise. Loosen the set screw of dial hub and set dial, (see Fig. 2) with Glowing Indicator centered between the index lines at the low frequency end of scale.

OUTPUT METER-The Output Meter is connected to the Plate and Cathode terminals of the (6 F 6 G) tube and adjusted to use the ($0-30$) Volt scale. When adjusting each circuit, care should be taken to have the Signal Generator attenuator set to give approximately $1 / 4$ scale reading on output meter.

INTERMEDIATE FREQUENCY CIRCUIT

1 Turn range switch to Range 1. Rotate the tuning control to approximately $600 \mathrm{~K} . \mathrm{C}$. Connect the 088 Signal Generator output lead through a .1 mfd . condenser to the grid of the 6A8G tube.
2 Set Signal Generator indicator for 470 K. C. adjust attenuator for approximately $1 / 4$ scale reading on output meter. Then adjust compensators (28)a 2nd I. F. Sec., (26) 2nd I. F. Pri., (14)a 1st I. F. Sec., (14) 1st I. F. Pri., for maximum reading on output meter.

RADIO FREQUENCY CIRCUIT

Range 2. - 5.7 to 18 M. C.

1 Remove the signal generator output lead and series condenser from the 6A8G tube and connect them to the ANT. TERMINAL No. 1, on aerial input panel (rear of chassis) and the
generator ground lead to GND. TERMINAL No. 3, rear of chassis. Connect TERMINAL No. 2 to GROUND TERMINAL No. 3 with connector link provided on the panel.
2 Set range switch in position No. 2 (S. W.). Turn signal generator and receiver dials to 18 M . C. and adjust compensator (7) Osc. for maximum output.
3 The adjustment of the antenna compensator on the high frequency range causes a slight detuning of the oscillator circuit. In order to overcome this detuning effect, connect a variable condenser of approximately 350 mfd ., having a good vernier drive, across the oscillator section of the tuning condenser. Leaving the signal generator and receiver dials at 18 M . C., tune the added condenser so that the second harmonic of the receiver oscillator will beat against the signal from the signal generator. The antenna compensator (3)a should then be adjusted to give maximum output.
4 Now remove the external condenser from the tuning condenser of receiver and turn compensator (7) osc. to the maximum capacity position (clockwise), then without moving signal generator or receiver tuning condenser, turn compensator (7) (counter-clockwise) until a second peak is reached on the output meter. The first peak is caused by tuning to the image frequency signal and must be neglected. Compensator (7) is adjusted on the second peak to give maximum output.

RANGE 1: 530 to 1720 K. C.
Turn range switch to Range No. 1. Turn the Receiver dial to 1600 K . C. Then adjust compensators (8) and (3) for maximum reading on output meter
The 088 Signal Generator dial is set at 800 K. C. and the second harmonic of this frequency (1600 K . C.) is used in making the above adjustment.
2 The low frequency end of the band is now tuned by turning Signal Generator and Receiver dials to 600 K . C. and adjusting compensator (8)a-see note (a) below-for maximum output.
(a) When compensator (8)a osc. series is being adjusted, the Tuning Condenser must be rolled for maximum output. This is accomplished as follows: First tune compensator (8) a for maximum output. Then vary the Tuning Condenser for maximum output at 600 K . C. Now retune Compensator (8)a and again vary the tuning condenser back and forth at 600 K . C., for maximum output. This operation of first tuning the Compensator, then the Tuning Condenser is continued until maximum output is obtained at the 600 K . C. frequency.
3 Set the Signal Generator and Receiver Dials for 1600 K. C. and re-adjust Compensator (8) for maximum output. Then turn the dials to $1500 \mathrm{~K} . \mathrm{C}$. and re-adijust compensator (3) for maximum reading on output meter.

Fig. 6-Base View of Chassis
Replacement Parts-Model 37-61

Schem. Description No.	Part No.	Price List	Schem. No.	Part No.	Price List
(1) Antenna Trans. Broadcast	32-2108	\$0.80	(13) Wave Switch Assembly	42-1195	\$1.50
(3) Antenna Trans. S.W......	32-2142	. 50	Dial.	27-5205	
(3) Compensator Twin Ant. 1500 K.C.	31-6093	. 40	Dial Hub	28-7152 FA-3	10
(1) A Compensator Ant. 18 M.C......	Part of (1)		Dial Hub Clamp	$28.2837 \mathrm{FA}-3$. 10
(1) Condenser (Tubulsr . 05 mfd)	30-4444	20	Set Screw	N-1506	Per C 2.00
(1) Condenser Semi-fixed 3500 mfd .	31-6103	60	Sereen Bracket \& Screen Assembly	31-1878	. 25
(6) Tuning Condenser.	31-1851	3.25	Pilot Lamp Socket Assembly	28-7706	. 35
(7) Compensator Osc., 18 M.C.	31-6101	. 20	Tube Socket (7-prong)	27-6057	.11
(8) Compensator Ose., 1600 K.C. "Serew".	31-6100	. 40	Tube Socket (8-prong)	27-6058	. 11
©A Compensator Osc., 600 K.C. "Nut".	Part of (8)		Tube Shield..........	28-2726	. 10
(9) Transformer Osc. Broadcast	32-2120	. 65	Tube Shield Base	28-3808	. 08
(1) Transformer Osc. S.W.	32-2143	. 60	I.F. Coil Shield.	38-7763	. 20
(1) Condenser (Tubular 250 mfd)	30-1032	. 25	R.F. Transformer Mtg. Plate	28-3808	. 02
(1) Refistor (32000 ohms $1 / 2$ watt)	33-332339	20	R.F. Transformer Mtg. Spacer	27-8228	. 01
(4) Reeistor (10000 ohms $1 / 3$ watt)	33-310339	20	R.F. Transformer Mtg. Screw.	W-1635	Per C $\quad .30$
(4) Compensator (1st I.F. Pri. 470 K.C.)	Part of 6		R.F. Unit Mtg. Grommet	${ }_{2}^{27-4317}$. 04
Q4 Compensator (1st I.F. Sec. $470 \mathrm{~K} . \mathrm{C}$.)	Part of 6		R.F. Unit Mtg. Sleeve...	28-2257 FA-3	. 01
(1) 18t I.F. Transformer..............	$32-2100$	1.50	R.F. Unit M tg. Washer	W-425A	
(1) Condenser (Tubular 0.1 mfd .)	30-4170	. 25	Screw.	W-729 FA-3	Per C . 25
(1) Resistor (1 megohm $1 / 2$ watt).	33-510339	. 20	Tuning Condenser Mtg. Grommet	27-4325	Per C ${ }^{.02}$
(4) Resistor ($20000 \mathrm{ohm}, 1$ watt)	33-320439	20	Tuning Condenger Mtg. Screw....	W-650 FA-3	Per C ${ }^{-40}$
(13) Resistor (9000 ohme, 2 watt).	33-290539	. 30	B.C. Resistor Mtg. Serew	W-512	Per C 90
(3) Electrolytic condenser, 16 mfd .	30-2118	1.65	B.C. Resistor Mtg. Nut.	W-317A	Per C .40
(6i) Resistor (51000 ohms 1 watt).	33-351439	. 20	Volume Control Shaft.	28-6498	. 10
(3) Volume Control.	33-5157	1.00	Volume Control Shaft Washer	28-4186	
6 Condenser (110 mmfd . Mics)	30-1031	. 20	Volume Control Shaft Washer	4436	Per C 1.50
6) Condenser (110 mmfd . Mica)	30-1031	20	Volume Control Shaft Spring	28-4117	Per C ${ }^{40}$
2) Resistor (51000 obms $3 / 2$ watt)	33-351339	. 20	Volume Control Shaft Retaining Clip	28-8610	. 03
(6) Compensator (2nd I.F. Pri.) $470 \mathrm{K.C}$.	Part of (2)		Volume Control Mtg. Nut...........	W-684 FA-3	Per C 1.35
(9) A Compensator (2nd I.F. Sec.) 470 K.C.	Part of (2)		Tone Control M tg. Nut . .	W-684 FA-3	Per C 1.25
(i) 2nd I.F. Transformer...............	32-2102	1.50	Tone Control Insulator.	27-8320	Per C . 40
(6) Condenser (110 mmfd . Mica)	30-1031	. 20	I.F. Terminal Panel .-	38-7703	. 25
(6) Condenser (. 015 mfd . Tubular)	30-4358	20	Vernier Tuning Assembly	31-1870	
(6) Resistor (1 megohm $1 / 2$ watt)	33-510339	. 20	Vernier Tuning Screws.	W-1599 FA-3	
(11) Condenser (0.1 mfd . Tubular)	30-4122	. 20	I.F. Terminal Spacer..	28-4001	Per C . 25
(1) Resistor (1.0 megohm $1 / 2$ watt)	33-510339	. 20	Knob Tuning	27-4330	. 10
(9) Resistor (490,000 ohm 1/2 watt)	33-449339	20	Knob Tuning Vernier.	27-4331	. 10
(2) Resistor (70000 ohm $1 / 2$ watt).	33-370339	20	Knob Volume, Tone Controls.	27-4332	. 10
(1) Condenser (.015 mfd. Tubular)	30-4226	20	Knob Wave-Switch	27-4332	. 10
6 Recistor (1 megohm $1 / 2$ watt).	33-510339	. 20	Chassis Mtg. Screw		
(1) Field Ccil Assembly	36-3039	2.75	Bafte Assembly B cabinet	40-5935	
(1) Output Transformer	32-7019	. 85	Baffle Assembly F Cabinet	40-5933	
(1) Cone and Voice Cuil Assembly	36-3157	. 80	A.C. Cord	L-2183	. 40
(3) Condenser (. 03 mfd . Tubular)	30-4380	20	Speaker Cable	L-2181	. 25
(1) Condenser (. 008 mfd . Tubular)	30-4112	. 20	Clamp Electrolytic Condenser	6440	. 05
(4) Electrolytic Condenser (8 mfd.)	30-2024	1.10	Insulator Electrolytic Condenser.	27-7194	. 01
4. Bias Recistor (245 ohm)	33-3277	. 20	Grid Cap	38-3888	. 01
(4) Electrolytic Condenser 12 mfd .	30-2117	1.20	Spacer Compensating Condenser	29-8032	Per C $\begin{array}{r}.04 \\ 30\end{array}$
(4) Power Transformer (50-80 cycle 105-120 volt)	32-7583	4.25	Screw		Per C $\begin{array}{r}\text { r } \\ \\ 8.75\end{array}$
*Power Transformer (25 cycle 115 volt)	32-7584		Speaker S7.	36-1009	Per C $\begin{array}{r}5.75 \\ \hline .35\end{array}$
(3) Condenser Bakelite Twin (.015-.015 mfd.)	3793 DG	. 40	Nut Speaker Mtg.	W-12	${ }^{\text {Per Cr }} \mathrm{C}$
(3) Tone Control \& AC Switch	42-1180	. 75	Screw Speaker Mtg.	W-1604 FA-3	Per C . 50
(1) Pilot Lamp......	34-2039	. 15	Bottom Shield Plate (F Cabinet)	28-3895 FA-3	

[^5]Prices Subject to Change Without Notice

PHILCO

RADIO MANUFACTURERS SERVICE

SERVICE BULLETIN
 No. 244

Model 37-84, Code-122

General Specifications

TYPE CIRCLIT: Superheterodyne with Pentode output
POWER SUPPLY: 115 V., 60 cycle A.C.
TUBES USED: 1 type 6J7G, Det Osc., 1 type 6J7G 2nd detector-first andio, 1 type 6 F6G output, 1 type 5 I 4 G Rectifier.

FREQUENCY RANGE: $540-1700 \mathrm{~K} . \mathrm{C}$.
INTERMEDIATE FREQUENCY: 470 K.C.
POWER CONSUMPTION: 45 watts.
SPEAKER: SB.
POWER OUTPUT: $1 / 2$ watt.

Adjusting Compensating Condensers

To accurately adjust the compensating condensers in the Model 37.84 receiver, it is necessary to use a signal generator of high stability on all frequencies, such as the PHILCO MODEL 088 Signal Generator This instrument has a continuous frequency range from 110 to $20,000 \mathrm{~K} . \mathrm{C}$., and is designed to meet every requirement of the serviceman.

An output meter is also needed,-PHILCO Model 025 Circuis Tester includes a very sensitive output meter.

Convenient tools to use in adjusting the compensators are the PHILCO No. 3164 Fibre Wrench and No. 27.7059 Fibre Handled Screw-driver.

The locations of the various compensating condensers are shown in Fig. 1. Connect the output meter to the plate and cathode contacts of the 6F6G power tube, and adjust it to use the 0.30 volt range.

When adjusting each circuit, care should be taken to have the signal generator attenuator set to approximately $1 / 4$ scale reading on output meter.

Intermediate Trequency Circuit

1. Turn gang condenser to maximum capacity (counter clockwise) and set the volume control of the receiver in the maximum position (clockwise).
2. Connect the 088 signal generator output lead through a .1 mfd . con denser, to the grid of the $6 / 7 \mathrm{G}$ Detector-oscillator tube and the generator ground to the chassis.
3. Turn the sensitivity control (1) to maximum capacity position (clock wise), and then release $11 / 2$ turns (counter clockwise).
4. Set signal generator at $470 \mathrm{~K} . \mathrm{C}$. and adjust compensators (1) and (1) for maximum reading on the output meter. Then turn sensitivity control clockwise mutil a hiss (oscillation) is heard. Now turn sensitivity control is counter clockwise until the hiss ceases, then continue for $1 / 4$ turn more.

TUBE SOCKET VOLTAGES
(Measured from Tube Contact to Chassis)

Fig. 2. Tubes as viewed from underside of Chassis
The voltages at the points indicated by the arrows above were oltainer with a Philco type 025 Circuit Tester which contains a high resistance (1000 ohms per volt) voltmeter.

Fig. 1. Locations of Compensating Condensers

Radio Frequency Circuit

1. Turn the gang condenser to the minimum capacity position (extreme clockwise) and place a $006^{\prime \prime}$ (six-thousand:hs inch) gauge between the stator and rotor plates Now turn the gang counter-clockwise until stator and rotor plates toucl gauge.
2. Remove gauge from gang condenser. Now place signal generator output lead through a 100 mmfl . condenser to the aerial post of the receiver. Set signal generator at 850 K.C. (using second harmonic. $1700 \mathrm{~K} . \mathrm{C}$.). Adjust compensators (3) osc.. and (3) ant, for maximum reading on output meter.
3. Turn signal generator to $1400 \mathrm{~K} . \mathrm{C}$. and adjust gang condenser for maximum output. Then adjust compensator (3) for maximum reading on output meter.
4. After the above adjustments are completed, the dial pointer is checked for calibration by turning signal generator to 1000 K.C. Then tune receiver for maximum signal The dial pointer should then indicate 1000 K.C.

Fig. 3. Base view of Chassis

Replacement Parts for Model 37-84

	On ${ }_{\text {On }}$ Description	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\underset{\text { Liat }}{\text { Price }}$		On ${ }_{\text {Ons. }}$ Deacription	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\underset{\text { Liat }}{\text { Lice }}$
(1)	Volume Control and On-off Switch.	33.5055	1.45	(23)	Condenser (Electrolytic 4.8. mfd.)	30-2013	1.95
(3)	Antenna Transformer	32.1310	.4)	(3)	Resistor (Wire Wound 325 ohms)	7465	. 15
(3)	Condenser-Capacity obtained by twisting end of two leads together			(11)	Power Transformer (50-60 cycle 115) Power Transformer (25 cycle 115)..	$\begin{aligned} & 32.7180 \\ & 7422 \end{aligned}$	3.60
(1)	Tuning Condenser Assembly	31-1122	4.00	(3)	Pilot Lamp	6608	. 09
(3)	Compensator (Antema)	Part of (4)			Eight Prong Socket Rectifier	27.6053	. 11
(Resistor (6000 ohms, $1 / 2$ watt)	33.260339	. 20		Seien Prong Socket.	27.6057	. 11
(3)	Condenser (.0014 mfd . Mica).	7007	. 30		Tube Shield	28-2726	10
(3)	Resistor (13,000 ohms. $1 / 2$ watt).	33-313439	9.20		Tube Shield Cap	28.2727	. 02
(a)	Condenser (Double .09.09 mfd. Bakelite)	4989-DG	. 40		Knob	27-428?	. 10
(10)	Oscillator Transformer	32-1311	. 40		Pointer	27.7933	. 01
(1)	Compensator (I. F. Primary)	04000A	. 15		IC Cord and Plug	L. 2183	. 00
(1)	Resistor (16.000 ohms. 3 watt)	33-316639	. 30		$S_{\text {peaker Cord }}$ Cor	L-1774	. 15
(1)	Compensator (Osc. $1700 \mathrm{K.C}$.)	Part of (1)			Base Shield Plate.	27.7452	10
(1)	I.F. Transformer	32.1313	1.05		Chassis Mounting Screw	W. $490 \cdot \mathrm{~A}$	2.75 C
(1)	Compensator (I.F. Sec.).	$0-4000{ }^{\text {Y }}$. 15		Chassis Mounting Washer.	W-315-A	. 50 C
(10)	Resistor (4 meg.) inside (14)	35-540339	. 20		Output Transformer Shield	36.3025	. 08
(14)	Sensitivity Control	0.4000			Dial	27-5210	1.50 C
(18)	Resistor (1 meg., $1 / 2$ watt).	33-510339	. 20		R.F. Shield Assembly	38.548 .3	. 50
(II)	Resistor (10,000 ohms. $1 / 2$ watt)	33-310339	. 20		Speaker Mounting Screw	$\text { W. } 1604$	
(20) (3)	Condenser ($.015 \cdot 001 \mathrm{mfd}$. Bakelite) Eliminated by Production Changes	7762-EU	. 25		Speaker Mounting Nut.	W-124.A	
(3)	Eliminated by Production Changes Resistor (24,000 ohms, $1 / 2$ watt)	33-424339	. 20		Speaker SB	36.1073	
(2)	Resistor (490.000 ohms. $1 / 2$ watt)	33-449339	. 20		Baffe Silk Assembly.	40-5961	
(3)	Condenser (.006 mifd. Bakelite)..	$7625-\mathrm{SU}$. 25		Spacer Padder Assem.		
(3)	Output Transformer	32-7019	. 85		Screw Padder Assem.	W.614 F	
(36)	Voice Coil and Cone Assembly.	36-3157			Nut Padder Assemb.	W. 95 FA	
(6)	Field Coil and Pot Assembly	36-3243	1.70		Felt Washer Tuning Knob	27.7807	
(3)	Condenser ($015-015 \mathrm{mfd}$. Bakelite)	7762 -EU	. 40		Pilot Lamp Assem.	38.7578	

FOR MEMBERS OF
RADIO MANUFACTURERS SERVICE

SERVICE BULLETIN

No. 247

Electrical Specifications

Type of Circuit: Superheterodyne. Pentode Power Output.
Power Supply: 115 volts A. C. 50 to 60 or 25 to 40 cycles.
Power Consumption: 65 Watts.
Philco Tubes Used: 2 type 6K7G, R. F. and I. F. Circuit; 1 tyne 6A8G, Detector Oscillator; 1 type 6 Q 7 G , 2nd Detector, A. V. C., and 1st Audio; 1 type 6 F 6 G Output and 1 type 5 Y4G, Rectifier.
Intermediate Frequency: 470 K . C.
Tuning Ranges: Two. Range $1-530$ to $1650 \mathrm{~K} . \mathrm{C}$. Range $2-1500$ to $3700 \mathrm{~K} . \mathrm{C}$
Speaker: S-16
Power Output: 3 watts.
Aerial Connectlons: The Philco ALL Wave Aerial is recommended for use with this receiver, to obtain maximum sensitivity and noise reduction. The red and and 2 respectively on the terminal nead provided at the rear of the chassis. Connect the link provided on the terminal panel across terminals 3 and 4 .
If a temporary aerial is used, the link is connected across terminals 2 and 3 , the aerial connects to terminal 1
A good ground connection is desirable in all installations. Make the ground connection from the nearest water or radiator pipe to terminal 3 on the termina panel.

Adjusting Compensator

To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILCO MODEL 088 Signal Generator, covering from 110 to $20,000 \mathrm{~K}$. C . is recommended for use in adjusting the compensators at the various frequencies specified. A visual indication of the receiver output is also necessary to obtain correct adjustment of the compensators. PHILCO MODEL
025 Circuit Tester contains a sensitive output meter and is recommended for these 025 Circuit
adjustments.

Philco Fibre Wrench No. 3164 and Fibre Handle Screw-Driver No. 27-7059 complete the necessary equipment tor these adjustments. The locations of the various compensators are shown in Figs. 2 and 3
The following procedure must be observed in aljusting the compensators:
DIAL ADJUSTMENT-The tuning contlenser is set at the maximum capacity position, by turning the tuning knob clockwise. Loosen the set screw of dial hub nines at the low frequency end of scale.
nes at the lou frequency end of scale.
OUTPUT METER-The 025 Output Meter is connected to the plate and cathode terminals of the 6 F 6 G tube. Adjust the meter to use the $(0-30)$ volt scale.
During the I. F. and R. F. adjustment, the signal generator output should the maintained at the lowest possible level that will give an indication on the output meter.

INTERMEDIATE FREQUENCY CIRCUIT

1. Turn selector switch to range 1 (counter-clockwise). Rotate the tuning control to approximately $600 \mathrm{~K} . \mathrm{C}$. Connect the 088 Signal Generator output lead through a .1 mfd . condenser to the grid of the 6 A 8 G tube and the output ground lead to the receiver chassis.
2. Set signal generator dial indicator for $470 \mathrm{~K} . \mathrm{C}$. Adjust attenuator for approximately $1 / 4$ scale reading on out put meter. Then adjust compensators (20 s) 2nd I. F. Sec., (20p) 2nd I. F. Pri.. (19s) Ist I. F. Sec., and (19p) 1st I. F. Pri for maximum reading on output meter.

RADIO FREQUENCY CIRCUIT

Tuning Range 1-530-1650 K. C.

1. Leave selector switch in range 1. Remove the signal generator output lead and .1 mfd . condenser from the grid of the 6A8G tube.

Fig. 2-I. F. Compensator

Fig. 3-R. F. Compensators

Fig. 1. View of Sockets from Underside Chassis
The voltages indicated by arrows were measured with a Philco 025 Circult Tester which contains a voltmeter having a resistance of 1000 ohms per volt. Volume Control at minimum, range switch in broadcast position, line voltage $115 \mathrm{~A}, \mathrm{C}$
2. Attach the signal generator output lead through the .1 mfd . condenser to he antenna terminal No. 1 on the aerial panel and the generator ground lead to erminal 3 , Connect Terminal No. 2 to ground Terminal No. 3 with connector link provided on the panel.
32. Set signal generator and receiver dials for 1500 K . C. Now adjust compensators (12) Osc. (screw), (10) R. F., and (2) Ant. for maximum reading on output meter. and receiver dials to 600 K . C. and adjusting compensator (13) (see note A below) for maximum output.
(A) When compensator (12)a Osc. series (nut) is being adjusted, the tuning condenser must be rolled for maximum output. This is accomplished as follows First tune compensator (12) for maximum out put at 600 K . C. Then vary the tuning condenser back and forth about the 600 K . C. dial mark for the maximum output point. Now retune compensator (i8) a and again varying the tuning con denser back and forth about 600 K . C. until the maximum output point is reached This operation of first tuning the compensator, then the tuning condenser is continued until the maximum output is obtained at the 600 K . C. frequency. 5. Turn signal generator and receiver tuning dials to 1500 K . C., then readjust compensators (12) Osc; ; (10) R.F.; (2) Ant. for maximum reading on output meter Tuning Range 2:

1. The compensating condenser adjustments of Band 1, takes care of Band 2, therefore no compensating condensers are required on the band.

Fig. 5-Schematic Dlagram-Model 37-89

Schem. No.	Part No.	$\underset{\text { Price }}{\text { List }}$
1 Antenna Transformer.	32-2127	\$0.80
2 Comperisator	31-6100	. 40
3 Tuning Condenser	31-1833	4.00
4 Condenser (05 mm d. tubular)	30-4020	. 20
5 Resistor (51000 ohms $1 / 2$ watt)	33-351339	20
6 Condenser (05 mfd tubular)	30-4020	20
7 Condenser (410 mmfd .)	30-1000	
8 R. F. Transformer	32-2128	60
9 Condenser Two Wires Twisted.		
10 Comperisator	31-6100	40
11 Choke.....	32-2139	35
12 Compensator	31-6101	20
13 Osc. Transformer	32-2120	
14 Comlenser (250 mmfil , miea)	30-1032	
15 Resistor (32,000 ohms $1 / 2$ watt)	33-351339	20
16 Resistor (1000) ohms. $1 / 2$ watt)	33-210339	20
17 Condenser (05 infd , hitular)	30-4123	
18 Resistor (20000 ohmes, /2 watt)	33-32033!	
19 1st I. F. Transformer	32-2100	1.50
20 2nd I. F'. Transformer	32-2102	1.50
21 Condenser (110 mrufd. miea).	30-1031	. 20
22 Condenser (25 mfd tubular)	30-4446	
23 Resistor (51000 ohms, $1 / 2$ watt)	33-351334	
24 Iesistor (700 ohm, $1 / 2$ watt).	33-1220	
25 Condenser (110 mmfd. mica)	30-1031	20
26 Volume Control	33-515:	1.00
27 Condenser (0.1 mfd . tulualar)	30-4455	. 2
28 Resistor (51000 ohms, 1 watt)	33-351439	
29 İesistor (20000 ohms. 2 watt)	33-320539	30
30 Resistor ($1 \mathrm{meg} .1 / 2$ watt)	33-510339	
31 Resistor (1 meg. 1/2 watt)	33-510339	
32 Resistor (490000 ohms $1 / 2$ watt).	33-449339	
-s Condensei (0.1 mfd . tubular)	30-4122	
r (1 megohtm, $1 / \frac{1}{2}$ watt)..	33-510339	. 20
plack type indicate circled figures in base view.		

Replacement Parts - Model 37-89

Schem. No.	Part No.	List Price
Shaft Spring.	28-4117	I'er ($\$ 0.40$
Washer	6717	. 02
Washer	4436	Per C 1.50
Shaft Retaining Clip	28-8610	. 03
Mtg. Grommet.	27-4317	. 04
Mitg. Washer Sleeve	28-2257	. 01
Mtg. Slecve Bushing.	27-8339	Proce 40
Mtg . Screw	W-729	Per C . 45
Mty. Washer	28-392 ${ }^{\text {\% }}$. 01
R. F. Unit Suppert	28-385 ${ }^{5}$. 10
Support Locking Plate	28-3975	. 01
Support Locking Plate	28-3889	. 02
Screw	W-644	Per C 1.50
Knobs Tuning	27-4321	. 10
Krob Volume, Waveswitet, Tone.	27-4332	.10
Batle Silk Assembly B. Cabinet.	40-5935	. 75
Baftle Silk Assembly F, Cabinet	40-5933	
Spazer S-16	36-1225	5.75
Screw Speaker Mig.	W-1604	Per C . 50
Lockwasher Speaker Mttg.	W. 291	Per C . 40
Washer Speaker Mug.	W-410	Fer C 15
Nut Speaker Mis.	W-124	Per (${ }^{\text {a }} 35$
Serew Chassis Mtg		
Washer Chassis Mty.	28-2089	Per C . 30
Bezel Frame \& Plate	40-5938	. 10
Bezel Gasket	27-8311	. 01
Bezel Glass	27-8298	. 05
Bezel Ring	28-3967	. 35
Bezel Screw	W-1644	Per C . 50
Bottom Shield Plate F, Cabinet.....		
I. F. Coil Shield.	38-7763	. 20
Speaker S16 B, F Cabinets....	36-1225	

FOR MEMBERS OF

RADIO MANUFACTURERS SERVICE

Electrical Specifications

Type of Circuit: Superheterodyne. Pentode Power Output
Power Supply: 115 volts A. C. 50 to 60 or 25 to 40 cycles
Power Consumption: 65 Watts.
Philco Tubes Used: 2 tspe 6 K7G, R. F. and I. F. Circuit; 1 type 6A8G, Detector Oscillator; 1 type 6Q7G, 2nd Detector, A. V. C., and 1st Audio; 1 type 6F6G Output and 1 type 5y4G, Rectifier.

Intermediate Frequency: 470 K.

Tuning Ranges: Two. Range 1-530 to 1650 k . C. Range 2-1500 to 3700 K . C Speaker: S-16.
Power Output: 3 watts
Aerial Connections: The Philco ALL Wave Aerial is recommended for use with this receiver, to obtain maximum sensitivity and noise reduction. The red and black leads of the "transmission line" (lead-in) are connected to terminals Connect the link provided on the terminal panel across terminals 3 and 4

If a temporary aerial is used, the link is connected across terminats 2 and 3 , the aerial connects to terminal 1 .
A good ground connection is desirable in all installations. Make the ground connection from the nearest water or radiator pipe to terminall 3 on the termina panel.

Adjusting Compensator

To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILCO MODEL 088 Signal Generator, covering at the various frequencies specified. A visual indication of the receiver output is also necessart to obtain correct adjustment of the compensators. PHILCO MODEL 025 Circuit Tester contains a sensitive output meter and is recommended for these adjustments
Philco Fibre Wrench No. 3164 and Fibre Handle Screw-Driver No. 27-7059 complete the necessary equipment tor these adjustments. The locations of the arious compensators are shown in Fiks. 2 and 3
The following procedure must be observed in adjusting the compensators:
DIAL ADJUSTMENT-The tuning condenser is set at the maximum capacit position, by turning the tuning knob clockwise. Loosen the set screw of dial hub and set dial, with Glowing Indicator centered between the first and second index lines at the low requency end of scale.
OUTPUT METER-The 025 Output Meter is connected to the plate and cathorle terminals of the 6 F 6 G tube. Adjust the meter to use the $(0-30)$ volt scale.

During the I. F. and R. F. adjustment, the signal generator output should be maintained at the lowest possible level that will give an indication on the output meter.

INTERMEDIATE FREQUENCY CIRCUIT

1. Turn selector switch to range 1 (counter-clockwise). Rotate the tuning ontrol to approximately 600 K . C. Connect the 088 Signal Generator output lea hrough a 1 mfd . condenser to the grid of the 6A8G tube and the output ground ead to the receiver chassis.
2. Set signal generator dial indicator for 470 K . C. Adjust attenuator for approximately $1 / 4$ scale reading on output meter. Then adjust compensators (20s) 2nd I. F. Sec., (20p) 2nd I. F. Pri., (19s) 1st I. F. Sec., and (19p) 1st I. F. Pri for maximum reading on output meter.

RADIO FREQUENCY CIRCUIT

Tuning Range 1 - $530-1650 \mathrm{~K}$. C

1. Leave selector switch in range 1. Remove the signal generator output lead and 1 mfd . condenser from the arid of the 6 A 8 G tube

Fig. 2-I. F. Compensator

Fis. 3-R. F. Compensators

Fis. 1. View of Sockets from Underside Chassis
The voltages indicated by arrows were measured with a Philco 025 Circuit Tester which contains a voltmeter having a resistance of 1000 ohms per volt. Volum Control at mininum, range switch in broadcast position, line voltage 115 A . C
2. Attach the signal generator output lead through the .1 mfd condenser to the antenna terminal No. 1 on the aerial panel and the generator ground lead to erminal 3. Connect Terminal No. 2 to ground Terminal No. 3 with connector link provided on the panel.
3. Set signal generator and receiver dials for $1500 \mathrm{~K} . \mathrm{C}$. Now adjust compensators (12) Osc. (screw), (10) R. F., and (3) Ant. for maximum reading on output meter. 4. The low frequency end of the band is now tuned by turning signal generator and receiver dials to $600 \mathrm{~K} . \mathrm{C}$. and adjusting compensator (1)a (see note A below) or maximum output.
(A) When compensator (12) Osc. series (nut) is being adjusted, the tuning condenser must be rolled for maximum output. This is accomplished as follow's First tune compensator (1)a for maximum out put at 600 K . C. Then vary the tuning condenser back and forth about the 600 K . C. dial mark for the maximum denser back and fort retune compersatort il the maximum This operation of first tuning the compensator then the tuning condenser is continued until the maximum output is obtained the $6.00 \mathrm{~F} . \mathrm{C}$ frecuency 5. Turn signal generator and receiver tunink dials to 1500 K . C., then readjust compensators (12) Osc.; (10) R, F.; (2) Ant for maximum reading on output meter Tuning Range 2:

1. The compensating condenser adjustments of Band 1, takes care of Rand 2 therefore no compensating condensers are required on the band.

Fig. 5-Schematic Diagram-Model 37-89

Schem. No.	Part No.
1 Antenna Transformer	32-2127
2 Comperisator	31-6100
3 Tuning Condenser	31-1833
4 Condenser (. 05 mfd . tubular)	30-4020
5 Resistor (51000 ohms $1 / 2$ watt)	33-351339
6 Condenser (. 05 mfd . tubular)	30-4020
7 Condenser (410 mmfd)	30-1000
8 R. F. Transformer.	32-2128
9 Condenser Two Wires Twisted.	
10 Compensator	31-6100
11 Choke	32-2139
12 Compensator	31-6101
13 Ose. Transformer	32-2120
14 Condenser (250 mmfd. mica)	30-1032
15 Resistor (32,000 ohms $1 / 2$ watt)	33-351339
16 Resistor (1000 ohms, 1/2 watt)	33-210339
17 Condenser (. 05 mfd tubular)	3()-4123
18 Resistor (20000 ohrns, 1/2 watt)	33-320339
19 1st. I. F. Transformer	32-2100
20 2nd I. F. Transformer	32-2102
21 Condenser (110 mmfil. mica)	30-1031
22 Condenser (.25 mfd tubular)	30-4446
23 Resistor (51000 ohms, $1 / 2$ watt)	33-351334
24 Resistor (700 ohm, 1/2 watt)	33-1220
25 Condenser (110 mmfd . mica)	30-1031
26 Volume Control	33-5157
27 Condenser (0.1 mfd . tubular)	30-4455
28 IResistor (51000 ohms, 1 watt)	33-351439
29 Hesistor (20000 ohms, 2 watt)	33-320539
30 Resistor (1 meg. 1/2 watt)	33-510339
31 Resistor (1 meg. $1 / 2$ watt)	33-510339
32 Resistor (490000 ohms $\frac{1}{2}$ watt).	33-449339
33 Condenser (0.1 mfd. tubular)	30-4122
34 Resistor (1 megohm, 1/2 watt).	33-510339

For Members of

 RADIO MANUFACTURERS SERVICERADIO MANEACTURERS SERYICE
A PHILCO SERVICE PLAN

SERVICE BULLETIN
 No. 242

Model 37-600

Specifications

TYPE CIRCUIT: Superheterodyne with pentode output.
POWER SUPPLY: 115 V., 60 cycle A.C.
TUBES USED: 1 type 6A8G. Det. Osc., 1 type 6J7G, 2nd Det., 1 type 6 K 6 G , Output, 1 type 5 I 4 G Rectifier.

FREQUENCY RANGE: 530-1800 K.C.
INTERMEDIATE FREQUENCY: $470 \mathrm{~K} . \mathrm{C}$.
CURRENT CONSUMPTION: 45 watts.
SPEAKER: B- 6
POWER OUTPUT: $1 / 2$ watt.

Adjusting Compensating Condensers

To accurately adjust the compensating condensers in the Model $\mathbf{3 7 - 6 0 0}$ receiver, it is necessary to use a signal generator of high stability on all frequencies, such as the PHILCO Model 088 Signal Generator. This instrument has a continuous frequency range from 110 to $20,000 \mathrm{~K} . \mathrm{C}$., and is designed to mect every requirement of the serviceman.
An output meter is also needed.-PHILCO MODEL 025 Cir. cuit Tester includes a very sensitive output meter.
Convenient tools to use in adjusting the compensators are the Philco No. 3164 Fibre Wrench and No. 27-7059 Fibre Handled Screw-driver.

The locations of the various compensating condensers are shown in Fig. 1. Connect the output meter to the plate and cathode contacts of the 6 K 6 G power tube, and adjust it to use the $0-30$ volt range.

When adjusting each circuit, care should be taken to have the signal generator attenuator set for approximately $1 / 4$ scale reading on output meter.

Intermediate Frequency Circuit

1. Connect the 088 signal generator output lead through a . 1 mfd . condenser to the grid of the 6A8G tube and the ground lead to the chassis,
2. Turn the sensitivity compensator (33) to maximum capacity position (clockwise), and then release it ; $11 / 2$ turns (counterclockwise)
3. Turn gang condenser to approximately $600 \mathrm{~K} . \mathrm{C}$. Set the signal generator at $470 \mathrm{~K} . \mathrm{C}$.
4. Adjust the compensator (18) and (31) for maximum reading on the output meter. Then turn the sensitivity compensator (33) clockwise until a hiss, (oscillation) is heard. Now turn the compensator (23) counter-clockwise until hiss ceases, then continue for $1 / 4$ turn more.

Fig. 2. Tube Sockets as Viewed from Underside of Chassis. (Measured from Socket Terminal to Ground Volume Control in Maximum Position)

Fig. 1. Location of Compensators

Radio Frequency Circuit

1. Remove the signal generator output lead from the $6 . \mathrm{ABG}$ tube, and connect it to the aerial lead of the receiver through a 100 mmfd . condenser
2. Turn the gang condenser to minimum capacity position, (counter-clockwise) and place a $006^{\prime \prime}$ (six-thousands inch) gauge between the stator and rotor plates. Now turn the gang clockwise until stator and rotor plates touch gauge
3. Remove gauge from gang condenser. Now set signal generator at 900 K.C., (using second harmonic 1800 K.C.), adjust compensators (i) and (5) for maximum reading on output meter
4. Turn the signal generator and receiver gang condenser to $600 \mathrm{~K} . \mathrm{C}$., and adjust compensator (16.). In doing so the gang condenser must be rolled slightly above and below the $000 \mathrm{K.C}$ signal until the maximum reading is indicated on the output.
5. Turn the gang condenser to 1800 K.C. and signal generator to $900 \mathrm{K.C}$. . (using second harmonic of signal generator 1800 K.C.), readjust compensator (if) for maximum reading on output meter. Set gang as per paragraph 2. for this adjustment
6. Turn the gang condenser and signal generator to 1400 K.C. readjust compensator (5) for maximum reading of output meter After the above adjustments are completed and recesver is placed in the cabimet. the dial pointer is properly placed by turning the signal generator to $1000 \mathrm{~K} . \mathrm{C}$. Then tune receiver for maximum signal. The dial pointer is then placed on gang shaft, so that it

Fig. 3. Base View

Replacement Parts for Model 37-600

Schematic Number Part and Deseription	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	Prlec List
Iower Transformer		
(230 V.. 50-60 Cycle)	32-7554	
Power Transformer		
(110 V: 25 Cycle)	32-7553	5.75
Tube Shield Body	28.2726	.10
Tulse Shield Base.	28.3898	. 03
Tulse Socket (7-prong)	27-6057	. 11
Tube Socket (8-prong)	$27 \cdot 6058$. 11
Tube Socket (5 prong)	27-6053	. 11
Volume Control Mtg. Nu	W-648-A	20 C
Chassis Mtg. Screw.	W. 1656.A	75C
Chassis Mtg. Nut	W.124-A	. 35 C
Chassis Mig. Washer	W.151-A	.15C
Chassis Mig. Washer	W-291-A	. 40 C
Baffle	40-5951	
Dial	27-5193	. 15
Knob (Station Selector)	27-4308	. 10
Knol) (Voltume, On-Off)	27.4309	. 10
Bottom Shield Assy.	29-3795	. 40
13ottom Shield Ins.	27-8122	. 05
Pointer	28.3789	. 03
Pilot Lamp Bracket Assy	38-7529	. 30
A.C. Cord Assy.	L. 2183	40
Speaker. 136	36-1205	6.00
Aerial Lead.	38.5144	. 30

Fig. 4. Schematic Wiring Diagram

For Members of

 RADIO MANUFACTURERS SERVICESERVICE BULLETIN
No. 243

Model 37-602

Specifications

TYPE CIRCUIT: Superheterodyne with pentode output. POWER SUPPLY: 115 V., 25 or (0) cycle, A. C. ; D. C.
TUBES USED: 1 type 6A8G, Osc. Det., 1 type 6K7(i I.F. Amplifier, 1 type 6Q7G, 2nd Det. 1st audio, 1 type 25 A 6 G output, 1 type $25 Z 6$ g rectifier.

FREQUENCY RANGE: 530--1800 K.C.
INTERMEDIATE FREQUENCY: 470 K.C.
CURRENT CONSUMPTION: 55 watts.
SPEAKER: B-4.
POWER OUTPUT: $3 / 4$ watt.

Adjusting Compensating Condensers

To accurately adjust the compensating condensers in the Model $37-602$ receiver, it is necessary to use a signal generator of high stability on all frequencies such as the PHILCO Model 088 Signal Generator. This instrument has a continuous frequency range from 110 to $20,000 \mathrm{~K} . \mathrm{C}$., and is designed to meet every requirement of the servicenan.

An output meter is also needed,-PHILCO Model 025 Circuit Tester includes a very sensitive output meter.

Convenient tools to use in adjusting the compensators are the PHILCO No. 3164 Fibre Wrench and No. 27.7059 Fibre Handled Screw-driver.

The locations of the various compensating condensers are shown in Fig. 1. Connect the output meter to the plate and cathode contacts of the (25A6G) power tube and adjust it to use the $0-30$ volt range.

Intermediate Frequency Circuit

1. Turn the gang condenser to the maximum capacity position (extreme clockwise) and set the Volume Control of the receiver at the maximum position (extreme clockwise).
2. Connect the signal generator output lead through a .1 mfd . condenser to the grid of the 6K7G tube, and the generator ground lead to any proint of chassis.
3. Set the signal generator at 470 K.C. and adjust (27) and (20) for maximum reading on the output meter.
4. Remove signal generator output lead and . 1 mfd . condenser, from the grid of $6 K 7 \mathrm{G}$ and connect it to the grid of 6A8G. Now adjust condensers (31) and (3) for maximum reading on the output meter.

Fig. 2. Tube Sockets as viewed from underside of chassis. (Voltages measured from socket contacts to \mathbf{B}-)

Fig. 1. Location of Compensators

Radio Frequency Circuit

1. Remove the signal generator output lead from the 6 A 8 G tube and comect it to the aerial lead of the receiver through a 100 mmfd , condenser. Turn the gang condenser to the minimum capacity position (extreme counter clockwise) and place a $.006^{\prime \prime}$ (six thousandth inch) gauge leetween the stator and roter plates. Now turn the gang clockwise until stator and rotor plates touch gauge.
2. Remove gauge from gang condenser. Now set signal generator at $900 \mathrm{K.C}$. (using second harmonic ($1800 \mathrm{K.C}$.) adjust compensators (6)A and (3) for maximum reading on the output meter.
3. Turn the signal generator and receiver gang condenser to $600 \mathrm{~K} . \mathrm{C}$., and adjust compensator © 8 . In doing so, the gang condenser nust be rolled slightly above and below the $600 \mathrm{~K} . \mathrm{C}$. signal until the maximum reading is indicated on the output meter.
4. Turn the gang condensor to 1800 K.C. and signal generator to $900 \mathrm{~K} . \mathrm{C}$. . (using second harmonic of signal generator 1800 $\mathrm{K} .($.$) , readjust compensator (i)A for maximum reading on out-$ put meter. Set gang as given in paragraph 1, for this adjustment.
5. Turn the gang condenser and signal generator to $1400 \mathrm{~K} . \mathrm{C}$. , readjust compensator (3) for maximum reading on output meter. After the above adjustments are completed and receiver is placed in the cabinet, the dial pointer is properly placed by turning the signal generator to $1000 \mathrm{KC.C}$. Then tune receiver for maximum signal. The dial pointer is then placed on gang shaft, so that it indicates $1000 \mathrm{~K} . \mathrm{C}$. on dial.

Replacement Parts for Model 37-602

Prices Subject to cllange without notice

Fig. 4. Schematic Wiring Diagram

Special Data for Members of RADIO MANUFACTURERS SERVICE
 A PHILCO SERVICE PLAN

Model 37-610
 Codes, 121-122
 General Description

Model 37-610 is a 5 tube superheterodyne receiver for operation on alternating current, having three tuning ranges, covering standard broadcast and short-wave frequencies and using the New Philco High-Efficiency self-centering glass tubes.

The circuit includes the Philco Foreign Tuning System-controlled by the range switch-providing maximum sensitivity and noise reduction when used with the Philco High Efficiency Aerial, supplied with the receiver.

The red and black leads of the High-Efficiency Aerial "transmission line" are connected to terminals 1 and 2 respectively, of the terminal panel provided at the rear of the chassis. Connect the jumper of the terminal panel across terminal 3 and 4.

If a temporary aerial is used, the jumper should be across terminal 2 and 3 . The aerial connects to terminal 1 and the ground to terminal 3 .

A good ground connection is desirable in all installations-with the Philco High-Efficiency Aerial, a ground lead and ground clamp are provided. Make the ground connection from the nearest water or radiator pipe to terminal 3 on the terminal panel.

CONSTRUCTION

The chassis is constructed in three basic assembly units
The Radio Frequency unit contains a 6 A 8 G tube which functions as a Detector-Oscillator, tuning condenser, antenna and oscillator coils for each tuning range, selector switch-compensating condensers for all coils and other parts necessary for the associated circuits. The unit is separately mounted on rubber grommets, cushioning it from the main chassis.
The Intermediate Frequency unit, mounted on the right-hand side of the chassis, facing front, consists of the Intermediate

Frequency coils, compensating condensers, a 6 K 7 G tube for I. F Amplifier stage, and a 6Q7G tube as the second detector-automatic volume control and first audio stage.
All voltages supplied to the I. F. and R. F. units are furnished from a terminal strip mounted in this unit.

The Power Pack and audio output circuits, together with the required Voltage dividers and filter condensers are mounted in the power unit.

Although unit construction has changed the appearance of this model, the service bulletin will be of great assistance in checking through all stages of the receiver. The Wiring Diagram, as usual, is numbered, indicating all important parts. These numbers correspond with the parts layout shown in Fig. (6). In addition, the range switch wafers are shown on the schematic diagram. The contacts on each wafer are lettered and numbered to indicate their connection points in the schematic diagram, which are also lettered and numbered. The physical drawings of each coil used in the receiver are also shown on scnematic diagran Fig. (5). The connections of these coils are numbered on the coil itself and on the schematic diagram.

Fig. 1 shows the Voltage measurements taken from the bottom of the sockets at each contact. In Fig. 2, the correct position of the dial indicator, for proper adjustment of the compensators is shown. Fig. 3, and 4, are the location of the I. F. and R. F. compensators respectively.

The Model $37-610$ code 121 receiver is used in cabinets type B and J. In code 122 receiver, Type T cabinet is used. This receiver differs from code 121 , only in the rectifier socket mounting and power transformer. The socket is placed adjacent to the 6 F 6 G output tube and power transformer (Part No. 32-7626) is used. Location of rectifier socket is shown in Figs. 1 and 6.

Electrical Specifications

Voltage Rating) 115 Volts. A. C.
Frequency Rating: 50-60 and
For 25 to 40 cycle operation, use Power Transformer marked with asterisk in parts list.
Power Consumption: 60 Watts.
Type and Number of Tubes: 1 type 6A8G, Detector-Oscillator; 1 type $6 \mathrm{~K} 7 \mathrm{G}, \mathrm{I}$. F.; 1 type 6 Q7G; 2nd Detector, A. V. C. and 1 st audio; 1 type 6F6G, Output ; and 1 type $5 Y 4 \mathrm{G}$ Rectifier.

Fig 1-Tube Socket Voltages
Viewed from Underside of Chassis
The Voltages Indicated by Arrows were Measured with a PHILCO 025 CIRThe Voltages Indicated by Arrows were Measured with a PHILCO 025 CIR-
CUIT TESTER which contains a 1000 ohm per volt Voltmeter. Range Switch in Broadcast Position. 115 volt line.

Undistorted Output: 3 Watts.
Type Circuit: Superheterodyne with Pentode Output.
Intermediate Frequency: 470 K . C
Tuning Ranges: 3. Range 1; 530 to 1720 Kilocycles.
Range 2; 2.3 to 7.4 Megacycles. Range 3; 7.35 to 22 Megacycles.
Speaker Code: 121.-HS
Speaker Code: 122.-S7.

POWER TRANSFORMER DATA

Lead No. Shown on Schematic	A C Volts	Currents	Circuit	Color	Resistance
1-2	120	-	Pri.	White	5 ohms
3-4	5.0	2.0A	Fil. Rectifier	Blue	. 1 ohms
5-7	670	70 M.A.	High Voltage Sec.	Yellow	145 ohms 155 ohms
6	-	-	Center Tap of 5-7	-	-
8-9	6.7	2.1A	Fil.	Black	. 1 ohms

The accurate adjustment of the various compensating condensers is vital to the proper functioning of this receiver. There are four compensating condensers in the I. F. Circuit, four in the Oscillator Circuit, and three in the Antenna Circuit. Incorrect adjust ment will cause loss of sensitivity, unsatisfactory tone, and poor selectivity.
To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILCO MODEL 088 SIGNAL GENERATOR, covering from 110 to $20000 \mathrm{~K} . \mathrm{C}$. is recommended to adjust the compensators at the various frequencies specified. A visual indication of the receiver output is also necessary to obtain correct adjust ment of the compensators. PHILCO MODEL 025 CIRCUIT TESTER contains a sensitive output meter and is recommended for these adjustments.

Philco Fibre Wrench No. 3164 and Fibre Handle Screw-driver No. 27-7059 complete the necessary equipment for these adjustments. The locations of the various compensators are shown in Figs. 3 and 4 .

The following procedure must be observed in adjusting the compensators:-
DIAL ADJUSTMENT-In order to adjust this receiver cor rectly, the dial must be aligned to track properly with the tuning condenser. To do this, rotate the tuning condenser control to the extreme counter-clockwise position (maximum capacity). Loosen the set screw of dial hub, then turn dial until the glowing indicator is centered between the index lines of dial scale (see Fig. 2). Now tighten the dial hub set screw in this position

OUTPUT METER-The 025 Output Meter is connected to the plate and cathode terminals of the (6 F 6 G) tube. Adjust the meter to use the ($0-30$) volt scale.

Before adjusting the compensators of each circuit, the signal generator attenuator should be set to give approximately $1 / 4$ scale reading on output meter

INTERMEDIATE FREQUENCY CIRCUIT

Frequency $470 \mathrm{~K} . \mathrm{C}$.

1 Connect the 088 signal generator output lead through a . 1 mifd. condenser to the control grid of the 6A8G and the ground connection of output lead to the chassis.
2 The tuning range switch is set in position No. 1 (Broadcast), Rotate the tuning condenser of receiver to the maximum capa city position (counter-clockwise), and adjust the signal generator for $470 \mathrm{~K} . \mathrm{C}$.
3 Adjust compensators (29) 2nd I. F. Sec., (28) 2nd I. F. Pri., (26) 1 st I. F. Sec. and (25) 1st I. F. Pri. for maximum reading on output meter.

RADIO FREQUENCY CIRCUIT

Tuning Range-7.3 to 22.0 M . C.

1 Remove the signal generator output lead from grid of 6A8G tube and connect it through a 0.1 mf . condenser to terminal No. 1 on aerial input panel, rear of chassis. Connect generator ground lead to chassis. Terminals 2 and 3 of aerial input panel must be connected with connector link provided on the panel.

2 Set tuning range switch in position No. 3. Turn signal generator and receiver dial to 18.0 M . C. and adjust compensators (19) osc., and (B) ant. for maximum output.

The adjustment of the antenna compensator on the high frequency range causes a slight detuning of the oscillator circuit. In order to overcome this detuning effect, connect a variable condenser of approximately 350 mmf., having a good vernier drive, across the oscillator section of the tuning .condenser. Leaving the signal generator and receiver dials at 18.0 M.C., tune the added condenser so that the second harmonic of the receiver oscillator will beat against the signal from the 088 signal generator. The antenna compensator (B) should then be adjusted to give maximum output. Now remove the external condenser and turn compensator (18) to maximum capacity (clockwise) then without moving signal generator or receiver tuning condenser, back off compensator (19) (counterclockwise) until a second peak is reached on the output meter. Note:-The first peak is caused by tuning to the image signal and must be neglected.
Tuning Range: 2.3 to 7.4 Megacycles.
1 Turn range switch to position No. 2 (Police). Rotate signal generator and receiver dials to 7.0 M .C. Then adjust compensator (15) for maximum output. Now turn signal generator and receiver dials to 6.0 M.C. and adjust compensator (5) for maximum reading on output meter.
Tuning Range: 530 to 1720 Kilocycles.
1 Set range switch in position No. 1 (standard broadcast). The 088 signal indicator is set at 800 K . C. and the receiver dial at 1600 K. C
(a) In adjusting the receiver at 1600 K . C., the second harmonic of $800 \mathrm{~K} . \mathrm{C}$., to which the signal generator is tuned, is used.
Now adjust compensator (14) osc., (4) ant. for maximum output.
2 The low frequency end of the band is now tuned by turning signal generator and receiver dials to 600 K . C. and adjust compensator (13) for maximum output. When compensator (13) osc. series is being adjusted, the tuning condenser must be rolled for maximum output. This is accomplished as follows: First tune compensator (13) for maximum output. Then vary the tuning condenser for maximum output about 600 K . C. Now retune compensator (13), and again vary the tuning condenser back and forth at $600 \mathrm{~K} . \mathrm{C}$. for maximum output. This operation of first tuning the compensator, then the tuning condenser is continued until maximum output is obtained at the 600 K . C. frequency.
3 After the low frequency (600 K . C.) end of range 1 is adjusted, the 1600 K . C. end is re-adjusted, as given in Paragraph 1 above, to correct any variation that the low frequency series compensator may have caused in the alignment of the high frequency end.
4 Now turn signal generator and receiver dial to 1500 K . C. and re-adjust compensator (4) for maximum output.

Fig. 6-Base View of Chassis

Replacement Parts-Model 37-610

	No. Description	Part No.	Price List	Schem. Description No.	Part No.		Price List
(1)	Antenna Transformer (Broadcast)	32-2108	$\$ 0.80$	(19) Power Transformer 50-60 cycle 115 volts	32-7583		\$4.25
(2)	Antenna Tranaformer (Police)	32-2119	. 65	Power Transformer 25-40 cycle 115 volts	32-7584		\$4.25
(9)	Antenna Transformer (Short-Wave)	32-2109	.75	*Power Transformer 50-60 cycle 115 volte Code 122	32-7626		
(4)	Compensator (Broadcast)	31-6092	. 60	**Power Transformer 25-40 cycle 115 volts Code 122	32-7627		
(6)	Compensator Ant. (Police).	Part of (1)		(10) Condenser (Twin Bakelite, .015-015 mid.)	3793 DG		. 40
6	Compensator Ant. (Short-Wave)	Part of (4)		(60) Pilot Lamp...........................	34-2039		. 16
(7)	Tuning Condenser	31-1821	3.50	(6) Wave Switch Antenna Section	42-1170		1.10
(8)	Condenser (.05 mfd . Tubular)	30-4020	. 20	(3) Wave Switch Osc. Section.	42-1172		
(8)	Electrolytic Condenser 16 mfd .	30-2118	1.65	(1. F. Wiring Panel.	$42-170$ $38-7703$		1.10
(6)	Resistor (10000 ohm 1/2 watt)	33-310339	. 20	I. F. Wiring Panel Spacer	$38-4001$ 28	Per C	C 25
(1)	Condenser (250 mmfd. Mica)	30-1032	25	Ant Panel	38-7714		
(2)	Oscillator Transformer (Broadcast)	32-2120	65	Tube Socket 7 prong	- ${ }^{38-6057}$. 11
6	Compensator Osc. Series 600 K.C.	31-6056	55	Tube Socket 8 prong.	27-6058		. 11
(6)	Compensator Osc. $1600 \mathrm{~K} . \mathrm{C}$.	31-6092	. 60	Tube Socket Rectifier, Code 122	27-6053		. 11
63	Compensator Osc. 7.0 Meg.	Part of 12		Tube Shield	28-2726		. 110
(6)	Oscillator Transformer (Police)	32-2121	40	I. F. Transformer Shield	38-7763		. 20
(6)	Condenser (Semi-fixed 1650 mfd)	31-6096	40	AC Cable	L-2183		. 40
518	Oscillator Transformer (S.W.)	32-2110	75	Speaker Cable	L-2181		. 25
(59)	Compensator (Osc. 18.0 megacycles)	Part of (19)		Grommet Mtg. Tuning Condenser	27-4325		. 02
52	Condenser (Semi-fixed 3500 mfd). .	31-6097	. 50	Grommet Mtg. R. F. Unit.	27-4317		. 04
(1)	Resistor (32000, $1 / 2$ watt)	33-332339	. 20	Mtg. Sleeve R. F. Unit.	28-2257 FA-3		. 01
(2)	Resistor (51000 , $1 / 2$ watt)	33-351339	. 20	Mtg Screw R. F. Unit	W-729 FA-3	Per C	. 45
(1)A	Condenser (. 1 mfd. Tubular)	30-4170	25	Mtg. Washer R. F. Unit	28-3927		. 01
(2)	Resistor (20000 ohm, $1 / 2$ watt)	33-320439	20	Pilot Lamp Assembly ...	38-7706		. 35
(2)	1st I. F. Transformer.......	32-2100	1.50	Bracket Electrolytic Condenser	6440		. 05
(6)	Compensator lst I. F. Transformer	Part of 3		Bracket Screw Electrolytic Condenser	W-1446 FA-3	Per C	. 40
5	Compensator lst I. F. Transformer	Part of (3)		Bracket Nut Electrolytic Condenser.	W-95 FA-3	Per C	. 30
63	2nd I. F. Transformer	32-2102	1.50	Chassis Mtg. Screw.	W-1358A P	Per C	2.60
62	Compensator 2nd I. F. Transformer	Part of (3)		Wave Switch Indexing Plate \& Shaft	42-1173 Rev-E		. 80
(6)	Compensator 2nd I. F. Transformer	Part of (2)		Dial...............	27-5203		. 50
(6)	Condenser (110 mmid . Mica)	30-1031	. 20	Dial Hub	28-7187 FA-3		. 12
61	Resistor ($51000 \mathrm{ohm}, 1 / 2 \mathrm{watt}$)	33-351339	20	Dial Set Screw	W-1641		. 02
6	Condenser (110 mmid . Mica)	30-1031	. 20	Dial Clamp.	28-2837 FA-3		. 10
(6)	Resistor ($490000 \mathrm{ohm} \mathrm{1/2} \mathrm{watt)}$	33-449339	. 20	Dial Screen Assembly	38-7912		. 10
68	Condenser (01 mfd . Tubular)	30-4124	. 25	Dial Gear..........	28-7185		. 10
(6)	Resistor (1 megohm 1/2 watt)	33-510339	. 20	Drive Gear	31-1884		. 25
6	Resistor (1 megohm $1 / 2$ watt)	33-510339	. 20	Scale Guard	27-8324		. 02
(2)	Condenser (110 mfd . Mica)	30-1031	. 20	Dial Gear Thrust Spring	28-8611		.01
(6)	Resistor (1 megohm $1 / 2$ watt).	33-510339	. 20	Dial Gear C Washer...	28-3904		.01
(2)	Condenser (0.1 mfd . Tubular).	30-4122	. 20	Dial Gear Thrust Washer	28-3976		. 30
(12)	Resistor (4900000 ohms, $1 / 2$ watt)	33-449339	.20	Mask	27-5198		. 30
(1)	Condenser (.015 mfd . Tubular) Volume Control	$30-4359$	20	Mask Washer	27-8318	Per C	. 50
(13)	Volume Control Resistor ($51000,1 / 2$ wati)	33-5158	1.00	Mask Arm and Link Assembly	31-1866		. 35
(19)	Condenser (.008 mfd. Tubular)	33-510339	20	Mask Guide	38-7844		
(4)	Condenser (. 015 mfd . Tubular)	$30-4112$ $30-4226$	20	Lens	$28-8624$ $27-8310$	Per C	.50 02
(4)	Resistor (1 megohm 1/2 watt).	33-510339	20	Knob Tuning Control	27-4330		. 10
(4)	Resistor (70000 ohm 1/2 watt)	33-370339	20	Knob Vernier	27-4331		. 10
95	Output Transformer..........	32-7019	. 85	Knob-Tone \& Volume	27-4332		. 10
(10)	Voice Coil and Cone	36-3157	. 80	Knob-Wave Switch...	27-4326		.10
60	Condenser (. 03 mfd . Tubular)	30-4380	. 20	Yolume Control Shaft	28-6499		. 10
$6{ }^{5}$	Condenser (. 008 mfd . Tubular)	30-4112	20	Volume Control Spring	28-4117	Per C	. 40
62	Tone Control and AC Switch.	42-1182	75	Retaining Clip........	28-8610		.03
${ }^{3}$	Flectrolytic Condenser (8 mfd .)	+30-2024	1.10	Washer......	$28-8186$ $28-418$	Per C	. 75
6	Resistor C-Bias	33-3277	. 20	Washer	4436	Per C	1.50
88	Field Coil Assembly	36-3039	2.75	Nut Tone Volume Controls	W-684 FA-3	Per C	1.25
${ }^{69}$	Electrolytic Condenser (12 mfd)	30-2117	1.20	Speaker S7..............	36-1009		
(b)	Resistor (9000 ohm 2 watt).	33-290539	. 30	Speaker HS	36-1220		

[^6]

FOR MEMBERS OF
RADIO MANUFACTURERS SERVICE

SERVICE BULLETIN No. 250

General Description

Model $37-620$ is a 6 tube superheterodyne receiver for operation on alternating current, having three tuning ranges, covering standard broadcast and short-wave frequencies, and using the new Philco High-Efficiency self-centering glass tubes.

The circuit includes the Philco "Foreign Tuning System" controlled by the tuning range switch-which provides maximum sensitivity and noise reduction, when used with the Philco Hioh Efficiency Aerial supplied with the receiver. One stage of Radio Frequency anplification which greatly increases the signal-tonoise ratio, automatic bass compensation in the volume control circuit, and a separate diode circuit for automatic volume control are also incorporated in this receiver.

The red and black leads of the High-Efficiency Aerial "transmission line" are connected to terminals 1 and 2 respectively, of the terminal panel provided at the rear of the chassis. Connect the jumper on the terminal panel across terminals 3 and 4 .

If a temporary aerial is used, the jumper should be across terminals 2 and 3 . The aerial connects to terminal 1 and the ground to terminal 3.

A good ground connection is desirable in all installations Make the ground connection from the nearest water or radiator pipe to terminal 3 on the terminat panel.

CONSTRUCTION

The chassis is constructed in three basic assembly units, concentrating each circuit in a single unit.
(1) The Radio Frequency unit, located in the center of the chassis, contains a 6 K 7 G tube which functions as a Radio Frequency Amplifier; a 6A8G tube, for the Detector-Oscillator circuit; individual Antenna, R. F. Amplifier and Oscillator coils for each tuning range; selector switch; compensating condensers for
all coils; and other parts necessary for the associated circuits. The unit is separately mounted on rubber grommets, cushioning it from the main chassis
(2) The Intermediate Frequency unit, mounted on the right hand side of the chassis (facing front of set) consists of the Intermediate Frequency transformers, compensating condensers, a 6K7G tube for the I. F. Amplifier stage, and a 6Q7G tube as the second detector-automatic volume control and first audio stage. All voltages supplied to the I. F. and R. F. units are furnished from a terminal strip mounted on this unit.
(3) The Power Pack and Audio Output circuits, together with the required voltage dividers and filter condensers are mounted in the power unit. This unit contains a 6F6G tube and a 5 Y 4 G tube for the Power output and rectifier circuits respectively; and the combined tone control and power switch. The socket for the 5 Y 4 G tube is mounted on the power transformer.
Schematic Diagram Fig. 5 is numbered, indicating all important parts. These numbers correspond with the parts layout shown in Fig. 6. In addition, the range switch wafers are shown on the schematic diagram. The contacts on each wafer are lettered and numbered to indicate their connection points in the schematic diagram, which are also lettered and numbered. The physical drawings of each coil used in the receiver are also shown on schematic diagram Fig. 5. The connections of these coils are numbered on the coil Drawing and on the schematic diagram.

Fig. 1 shows the Voltage measurements taken from the bottom of the sockets at each contact. In Fig. 2, the correct position of the dial indicator, for proper adjustment of the compensator condenser is shown. Fig. 3 and 4 are the locations of the I. F. and R. F. compensators respectively

This receiver is used in cabinets type B and J. These instructions, however, will cover both types.

Electrical Specifications

Voltage Rating: 115 Volts AC.
Frequency Rating: 50 to 60 cycles.
For 25 to 40 cycle operation, the Power Transformer marked with asterisk in the parts list is used.
Power Consumption: 65 Watts
Types and Number of Tubes: 2 type $6 \mathrm{~K} 7 \mathrm{G}, \mathrm{R}$. F. and I. F. Amplifiers: 1 type 6 A 8 G , Detector-Oscillator; 1 type 6 Q 7 G ,

2nd Detector, Automatic Volume Control and 1st Audio; 1 type 6 F 6 G , Output; and 1 type $5 \mathrm{Y}+\mathrm{G}$ Rectifier.
Undistorted Output: 3 watts.
Intermediate Frequency: $470 \mathrm{~K} . \mathrm{C}$.
Tuning Ranges: Three, Range 1.-530 to 1720 Kilocycles; Range 2. -2.3 to 7.4 Megacycles; Range 3. -7.35 to 22 Megacycles. Speakers: B Cabinet-S-7

J Cabinet-HS.

Fig. 1 -Socket Voltages
Measured from Socket Contact to Ground
Underside of Chassis View
The voltages indicated by arrows were measured with a Philco 025 Circuit Tester which contains a voltmeter having a resistance of 1000 ohms per solt. Volume Control at minimum. Range Switch in broadcast position. Line

POWER TRANSFORMER DATA

Lead No. Shown on Schematic	A.C. Volts	Current	Circuit	Color	Resist ance
1-2	120	-	Pri.	White	5 olims
3-4	5.0	2.0 A .	Fil. Rectifier	Blue	. 1 ohm
5-7	670	70 Ma .	High Voltage Sec.	Yellow	145 ohms 155 ohms
6	-	-*	Center Tan of 5-7	-	-
$8-9$	6.7	2.1 A.	Fil.	Black	. 1 ohm

Run 2.
While the circuit arrangement remains the same, the position of the parts is slightly changed in this Run. Bakelite condenser (6) Part No. 3793-DC; is removed from front and placed in the rear of the chassis. Tubular condenser Part No. 30-4380 is replaced with at Part No. 8318-SU bakelite condenser, placed in the position formerly held by 3793-DG.

Fig. 2-Dial Calibration

Fig. 3-Locations of I. F. Compensators
Fig. 3-Locations of R. F. Compensators

Adjustment of Compensators

The accurate adjustment of the various compensating condensers is vital to the proper functioning of this receiver. There are four compensating condensers in the I. F. Circuit, four in the Oscillator Circuit, three in the R. F. Amplifier Circuit and three in the Antenna Circuit. Incorrect adjustment will cause loss of sensitivity, unsatisfactory tone, and poor selectivity.
To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILCO MODEL 088 SIGNAL GENERATOR, covering from 110 to $20,000 \mathrm{~K}$. C. is recommended for adjusting the compensators at the various frequencies specified. A visual indication of the receiver output is also necessary to obtain correct adjustment of the compensators. PHILCO MODEL 025 CIRCUIT TESTER contains a sensitive output meter and is recommended for these adjustments.

Philco Fibre Handle Screw-driver No. 27-7059 completes the necessary equipment for these adjustments. The locations of the various compensators are shown in Figs. 3 and 4.

The following procedure must be observed in adjusting the compensators:-

DIAL CALIBRATION-In order to adjust this receiver correctly, the dial must be aligned to track properly with the tuning condenser. To do this, rotate the tuning condenser control to the extreme counter-clockwise position (maximum capacity). Loosen the screw of dial hub, then turn dial until the glowing indicator is centered on the first index line of dial scale (see Fig. 2). Now tighten the dial hub set screw in this position.

OUTPUT METER-The 025 Output Meter is connected to the plate and cathode terminals of the (6 F 6 G) tube. Adjust the meter to use the ($0-30$) Volt Scale.

During the I. F. and R.F. adjustments, the signal generator output should be maintained at the lowest possible level that will give indication on the output meter.

INTERMEDIATE FREQUENCY CIRCUIT

Frequency $470 \mathrm{~K} . \mathrm{C}$.
1 Connect the 088 Signal Generator nutput lead, through a 1 mfd . condenser, to the control grid of the 6A8G tube; and the ground connection of the output lead to the chassis.
2 Set the range switch in position No. 1 (Broadcast), then rotate the tuning condenser of the receiver to the maximum capacity position (counter-clockwise), and adjust the signal generator for 470 K . C.
3 Adjust compensators (37) 2nd I. F. Sec., (3) 2nd I. F. Pri., (31)a 1st I. F. Sec., and (3) 1st I. F. Pri. for maximum reading on output meter

RADIO FREQUENCY CIRCUIT

Tuning Range 7.3 to 22.0 M . C.
1 Remove the signal generator output lead from the grid of 6A8G tube, and connect it through a .1 mfd . condenser to terminal No. 1 on aerial input panel, and the generator ground lead to terminal No. 3, rear of chassis.
(a) Terminals 2 and 3 of aerial input panel must be connected with connector link provided on the panel, during these adjustments.
2 Set the tuning range switch in position No. 3 (Short Wave). Turn the signal generator and receiver dials to 18. M. C. and
adjust compensators (23)b Osc., (8) B R. F. and (1)b Ant. for maximum output. (See Note (a) below).
(a) The adjustment of the Radio Frequency compensator on the high frequency range causes a slight detuning of the oscillator circuit. In order to overcome this detuning effect, connect a variable condenser of approximately 350 mmfd ., having a good vernier drive, across the oscillator section of the tuning condenser. Leaving the signal generator and receiver dials at 18 M . C., tune the added condenser so that the second harmonic of the receiver oscillator will beat against the signal from the 088 signal generator bringing in the signal. The antenna and R. F. compensator (4)b and (8)b should then be adjusted to give maximum output. Now remove the external condenser and turn compensator (3) b to maximum capacity (clockwise) ther without moving signal generator or receiver tuning condenser, back off compensator (23) (counter-clockwise) until a second peak is reached on the output meter. The first peak is caused by tuning to the image frequency signal and must not be used.

Tuning Range 2.3 to $\mathbf{7 . 4}$ M. C.
1 Turn the range switch to position No. 2 (police). Rotate the signal generator and receiver dials to $7.0 \mathrm{M} . \mathrm{C}$. Then adjust compensator (2)a for maximum output. Now turn the signal generator and receiver dials to 6.0 M . C. and adjust compensators (8)a R. F. and (4)a Ant. for maximum reading on the output meter.

Tuning Range 530 to $\mathbf{1 7 2 0} \mathrm{K}$. C.
1 Set the range switch in position No. 1 (Broadcast). Set the 088 Signal Generator indicator at 800 K . C. and the receiver dial at $1600 \mathrm{~K} . \mathrm{C}$.
(a) In adjusting the receiver at 1600 K . C. the second harmonic of 800 K . C., to which the signal generator is tuned, is used. The second harmonic of 800 K . C. is 1600 K . C. Now adjust compensators (2) Osc., (8) R. F. and (4) Ant. for maximum reading on output meter.
2 The low frequency end of the range is now tuned by turning the signal generator and receiver dials to 600 K . C. and adjusting compensator (21) Osc. Series-(see Note (a) below)-for naximum reading on output meter.
(a) While compensator (21) is being adjusted, the tuning condenser must be rolled for maximum output. This is accomplished as follows:-First tune compensator (21) for maximum output. Then vary the tuning condenser for maximum output at 600 K . C. Now retune compensator (21), and again vary the tuning condenser back and forth at $600 \mathrm{~K} . \mathrm{C}$. for maximum output. This operation of first turning the compensator then the tuning condenser is continued until maximum output is obtained at the 600 K . C. frequency
3 After the low frequency ($600 \mathrm{~K} . \mathrm{C}$.) end of the range is adjusted, the 1600 K . C. end is readjusted, as given in Paragraph (1) above, to correct any variation that the low frequency series compensator may have caused in the alignment of the high frequency end.
4 Now turn the signal generator and receiver dials to 1500 K . C. and readjust compensators (4) ant., and (8) R. F., for maximum output.

 (3yios

Fig. 6-Base View

Replacement Parts-Model 37-620

- 25-40 cycle operation.

Figures In black type Indicate circled figures In Base Viow.

General Description

Model 37-630 is a 6 tube superheterodyne receiver for operation on alternating current, having three tuning ranges, covering standard broadcast and short-wave frequencies, and using the new Philco High-Efficiency self-centering glass tubes.
The circuit includes the Philco "Foreign Tuning System" controlled by the tuning range switch which provides maximum sensitivity and noise reduction, when used with the Philco High Efficiency Aerial supplied with the receiver. One stage of Radio Frequency amplification which greatly increases the signal to noise ratio, automatic bass compensation in the volume control circuit, shadow tuning and a separate diode circuit for automatic volume control are also incorporated in this receiver

The red and black leads of the High-Efficiency Aerial "transmission line"' are connected to terminals 1 and 2 respectively, of the terminal panel provided at the rear of the chassis. Connect the jumper on the terminal panel across terminals 3 and 4 .

If a temporary aerial is used, the jumper should be across terminals 2 and 3 . The aerial connects to terminal 1 and the ground to terminal 3.

A good ground connection is desirable in all installations. Make the ground connection from the nearest water or radiator pipe to terminal 3 on the terminal panel.
The chassis is constructed in three basic assembly units, concentrating each circuit in a single unit.

The Radio Frequency unit, located in the center of the chassis, contains a 6 K 7 G tube which functions as a Radio Frequency Amplifier; a 6A8G tube, for the Detector-Oscillator circuit; individual Antenna, R. F. Amplifier and Oscillator coils for each tuning range; selector switch; compensating condensers for all coils; and other parts necessary for the associated circuits. The
unit is separately mounted on rubber grommets, cushioning it from the main chassis.

The Intermediate Frequency unit, mounted on the right hand side of the chassis (facing front of set) consists of the Intermediate Frequency transformers, compensating condensers, a 6 K 7 G for the I. F. Amplifier stage, and a 6Q7G tube as the second detector -automatic volume control and first audio stage. All voltages supplied to the I. F. and R. F. units are furnished from a terminal strip mounted in this unit.

The Power Pack and Audio Output circuits, together with the required voltage dividers and filter condensers are mounted in the power unit. This unit contains a 6F6G tube and a 5 Y 4 G tube for the Power Output and Rectifier Circuits respectively, and the combined tone control and power switch.

Schematic Diagram, Fig. 5, is numbered, indicating all important parts. These numbers correspond with the parts layout shown in Fig. 6. In addition, the range switch wafers are shown on the schematic diagram. The contacts on each wafer are numbered and lettered to indicate their connection points in the schematic diagram, which are also lettered and numbered. The physical drawings of each coil used in the receiver are also shown on schematic diagram Fig. 5. The connections of these coils are numbered on the coil drawing and on the schematic diagram.

Fig. 1 shows the Voltage measurements taken from the bottom of the socket at each contact. In Fig, 2, the correct position of the dial indicator, for proper adjustment of the compensator condenser is shown. Fig. 3 and 4 are the locations of the I. F. and R. F. compensators respectively.

This receiver is used in cabinets type X code 121 and type T code 122. These instructions, however, will cover both types.

Electrical Specifications

Voltage Rating: 115 Volts A.C.
Frequency Rating: 50 to 60 cycles.
For 25 to 40 cycle operation the Power Transformer marked with asterisk in parts list is used.
Power Consumption: 65 Watts.
Types and Number of Tubes: 2 type 6K7G, R. F. and I. F. Amplifiers; 1 type 6A8G, Detector-Oscillator; 1 type 6Q7G, 2nd

Detector, Automatic Volume Control and 1st Audio; 1 type 6 F 6 G , Output; and 1 type 5 Y 4 G Rectifier.
Undistorted Output: 3 watts.
Intermediate Frequency: $470 \mathrm{~K} . \mathrm{C}$.
Tuning Ranges: Three. Range 1.-530 to 1720 Kilocycles; Range 2. -2.3 to 7.4 Megacycles; Range 3.- 7.35 to 22 Megacycles. Speakers: X Cabinet-H24

T Cabinet-K38

Fig. 1. Socket Voltages
Measured from Socket Contact to Ground Underside of Chassis View

The voltages indicated by arrows were measured with a Philco 025 Circuit Tester which contains a voltmeter having a resist ance of 1000 ohms per volt. Volume Control at minimum. Range Switch in broadcast position. Line

POWER TRANSFORMER DATA

Lead No. Shown on Schematic	A.C. Voits	Current	Circult	Color	$\begin{aligned} & \text { Resist- } \\ & \text { ance } \end{aligned}$
1-2	120	-	Pri.	White	5 ohnes
34	5.0	2.0 A.	Fil. Rectifier	Blue	. 1 olim
5-7	670	70 Ma .	High Voltage Sec.	Yellow	145 ohms 155 ohms
6	-	-	Center Tap of 5-7	-	-
8-9	6.7	2.1 A .	Fil.	Black	.1 olim

Run 2.

While the circuit arrangement remains the same, the locations of the parts are slightly changed in this Run. Bakelite condenser (of) Part No. 3793-DG is removed from front and placed in the rear of the chassis. Tubular condenser Part No. $30-4380$ is replaced with a Part No. 8318-SU bakelite condenser placed in the position formerly held by $3793-\mathrm{DG}$.

Fig. 2-Dial Callbration

Fig. 4 Locations of R. F. Compensators

Alignment of the Compensators

The accurate adjustment of the various compensating condensers is vital to the proper functioning of this receiver. There are four compensati ig condensers in the I. F. Circuit, four in the Oscillater Circuit, three in the R.F. Amplifier Circuit and three in the Antenna Circuit. Incorrect adjustment will cause loss of sensitivity, unsatisfactory tone, and poor selectivity
To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILCO MODEL 088 SIGNAL GENERATOR, covering from 110 to $20,000 \mathrm{~K}$. C. is recommended for adjusting the compensators at the various frequencies specified. A visual indication of the receiver output is also necessary to obtain correct adjustment of the compensators. PHILCO MODEL 025 CIRCUIT TESTER contains a sensitive output meter and is recommended for these adjustments.

Philco Fibre Handle Screw-driver No. 27-7059 completes the necessary equipment for these adjustments. The locations of the various compensators are shown in Figs. 3 and 4.

The following procedure must be observed in adjusting the compensators:-
Dial Calibration-In order to adjust this receiver correctly, the dial must be aligned to track properly with the tuning condenser. To do this, rotate the tuning condenser control to the extreme counter-clockwise position (maximum capacity). Loosen the screw of dial hub, then turn dial until the glowing indicator is centered on the first index line of dial scale (see Fig. 2). Now tighten the dial hub set screw in this position.

Shadow Meter Adjustment-Remove aerial and allow tubes to warm up. Then adjust shadow meter as follows:
1 Move the Shadow meter coil backwards and forwards, until the shadow is within one-eighth of an inch of each side of the screen.
2 Remove the Rectifier tube from its socket, and rotate the shadow meter coil for minimum shadow width.
3 Replace the Rectifier tube. The shadow should then return to maximum width or within one-eighth of an inch of each side of the screen. If the shadow does not return to maximum width, operations 1 and 2 should be continued until it does.
Output Meter-The (025 Output Meter is connected to the plate and cathode terminals of the (6 F 6 G) tube. Adjust the meter to use the (0-30) Volt Scale.

During the I. F. and R. F. adjustments, the signal generator output should be maintained at the lowest possible level that will give an indication on the output meter.

INTERMEDIATE FREQUENCY CIRCUIT

Frequency 470 K. C.
1 Connect the 088 Signal Generator output lead, through a . 1 mfd. condenser to the control grid of the 6A8G' tube; and the ground connection of the output lead to the chassis.
2 Set the range switch in position No. 1 (Broadcast), then rotate the tuning condenser of the receiver to the maximum capacity position (counter-clockwise), and adjust the signal generator for 470 K . C.
3 Adjust compensators (37) a 2nd I. F. Sec., (37) 2nd I. F. Pri., (37)a 1st I. F. Sec., and (3) 1st I. F. Pri. for maximum reading on output meter.

RADIO FREQUENCY CIRCUIT

Tuning Range -7.3 to $22.0 \mathrm{M} . \mathrm{C}$.

1 Remove the signal generator output lead from the grid of 6A8G tube, and connect it through a .1 mfd . condenser to terminal No. 1 on aerial input panel, and the generator ground lead to terminal No. 3, rear of chassis.
(a) Terminals 2 and 3 of aerial input panel must be connected with connector link provided on the panel, during these adjustments.
2 Set the tuning range switch in position No. 3 (Short Wave). Turn the signal generator and receiver dials to 18 M . C. and adjust compensators (23)b Osc., (8)b R. F. and (4)b Ant. for maximum output. (See Note (a) below).
(a) The adjustment of the Radio Frequency compensator on the high frequency range causes a slight detuniag of the oscillator circuit. In order to overcome this detuning effect, connect a variable condenser of approximately 350 mmfd ., having a good vernier drive, across the oscillator section of the tuning condenser. Leaving the signal generator and receiver dials at $18 \mathrm{M} . \mathrm{C}$., tune the added condenser so that the second harmonic of the receiver oscillator will beat against the signal from the 088 signal generator bringing in the signal. The antenna and R.F. compensators (4) b and (8)b should then be adjusted to give maximum output. Now remove the external condenser and turn compensator (23)b to maximum capacity (clockwise) then without moving signal generator or receiver tuning condenser, back off compensator (23) b (counter-clockwise) until a second peak is reached on the output meter. The first peak is caused by tuning to the image frequency signal and must not be used.
Tuning Range 2.3 to 7.4 M. C.
1 Turn the range switch to position No. 2 (police). Rotate the signal generator and receiver dials to 7.0 M . C. Then adjust compensator (23) for maximum output. Now turn the signal generator and receiver dials to 6.0 M . C . and adjust compensators (8)a R. F. and (4)a Ant. for maximum reading on the output meter.

Tuning Range 530 to 1720 K . C.

1 Set the range switch in position No. 1 (Broadcast). Set the 088 Signal Generator indicator at 800 K . C. and the receiver dial at 1600 K . C.
(a) In adjusting the receiver at 1600 K . C. the second harmonic of 800 K . C., to which the signal generator is tuned, is used. The second harmonic of 800 K . C. is 1600 K . C. Now adjust compensators (23) Osc., (8) R. F. and (4) Ant. for maximum reading on output meter.
2 The low frequency end of the range is now tuned by turning the signal generator and receiver dials to 600 K . C. and adjusting compensator (21) Osc. Series-(see Note (a) below) -for maximum reading on output meter
(a) While compensator (21) is being adjusted, the tuning condenser must be rolled for maxinum output. This is accomplished as follows:-First tune compensator (21) for maximum output. Then vary the tuning condenser for maximum output at $600 \mathrm{~K} . \mathrm{C}$. Now retune compensator (21), and again vary the tuning condenser back and forth at 600 K . C. for maximum output. This operation of first turning the compensator then the tuning condenser is continued until maximum output is obtained at the 600 K . C. frequency.
3 After the low frequency ($600 \mathrm{~K} . \mathrm{C}$.) end of the range is adjusted, the $1600 \mathrm{~K} . \mathrm{C}$. end is readjusted, as given in Paragraph (1) above, to correct any variation that the low frequency series compensator may have caused in the alignment of the high frequency end.
4 Now turn the signal generator and receiver dials to 1500 K . C. and readjust compensators (4) Ant., and (8) R.F., for maximum output.
0\&9-28 TOTOT

 4)

Use...

PHILCO MODEL 088
 SIGNAL GENERATOR

The Instrument Designed and Specified by Philco Engineers for Adjusting Philco Radios

Parts List-Model 37-630

	ematic Description
	Antenna Transformer (Broadeast)
A	Antenna Transformer (Police)
A	Antenna Transformer (S, W))
C	Compensator Ant. $1500 \mathrm{~K} . \mathrm{C}$.
C	Condenser (05 mfd . Tubular)
R	Resistor (51000 ohme $1 / 2$ watt)
T	Tuning Condenser
C	Compensator (R. F. 1500 K.C.)
R	R. F. Transformer (Broadcast)
10 R	R. F. Transformer (Police)
11 C	Condenser (1.0 mmfd)
12 C	Condenser (14 mmfd . Mica)
131	12. F. Transformer (S. W)
14	Condenser (05 mfd . Tubular)
15	Condenser (05 mfd . Tubular)
16	Resistor (51000 ohms 1 watt)
17 R	Resistor (20000 ohms 1 watt)
18 E	Electrolytic Condenser (16 mfd)
19 H	Resistor (10000 ohms $1 / 2$ watt)
20	Condenser (.1 mfd . Tubular)
21	Compersator (Osc. $600 \mathrm{~K} . \mathrm{C}$)
22	Ose. Transformer (Broadcast)
23 C	Compensator (Ose. $1600 \mathrm{K.C}$.)
	Osc. Transformer (Police)
25	Condenser (1650 mmfd . Semi-fixed)
	Ose. Transformer (S.W.)
27	Condenser (250 mmfd . Mica)
	Condenser (3500 mmfd . Semi-fixed)
29	Resistor ($700000 \mathrm{ohms} 1 / 2$ watt)
	Resistor (32000 ohims $1 / 2$ watt)
31	Compensator (1st I. F. Pri. 470 K.C.)
321	1st I. F. Transformer
33 S	Shadowmeter
34 R	Resistor (400 ohm Bakelite)
35	Condenser (.05 mfd . Tubular)
362	2nd 1. F. Trangformer
37 C	Compensator (2nd 1. F. Pri. 470 K.C.
38	Condenser (110 mmfd Mica)
39 R	Resistor (51000 ohms $1 / 2$ watt)
40	Condenser (01 mfd . Tutular)
41 H	Resistor (490000 ohms 1/2, watt)
42 C	Condenser (110 mmfd Mica)
43	Condenser (110 mmfd . Mica)
44 R	Resistor (1 megohm $1 / 2$ watt)
45	Condenser (015 mfd . Tubular)
46	Resistor (51000 ohms. $1 / 2$ watt)
47	Condenser (0006 mfd . Tubular)
48	Condenser (015 mfd . Tubular)
49	Volume Control
50	Resistor (1 meghom $1 / 2$ watt)
51	Yoice Coil and Cone, H 24 Speaker
	Voice Coil and Cone, K38 Speaker
52	Output Transformer, H24.
	Output Transformer, K38
	Resistor (1 megohin $1 / 2$ watt)
54	Condenser (0.1 mfd. Tubular)
55	Resistor (490000 ohms $1 / 2$ watt)
56	Condenser (.008 mfd . T'ubular)
57	Condenser (03 mfd T Tubular)
58	Resistor (1 megohm $1 / 2$ watt)
${ }^{69}$	Tone Control and A. C. Switch
60	Electrolytic Condenser (8mfd)
61	Bias Resistor
62	Flectrolytic Condenser (12 mfd .)
63 F	Field Coil Assembly, H 24 Speaker
	Field Coil Assembly, K 38 Speaker
	Resistor (9000 onms. 2 watt)
65	Power Transformer (115 Volt 50-60 cycle)
	Power Transformer (115 Volt $25-40$ eycle)
	Power Transformer (115 Volt $50-60$ cycle)
	Power Transformer (115 Volt 50-60 cycle)

Fig. 6-Base View

Figures in black type Indlcate circled flgures in Base View

SERVICE DATA

Model 37-640 is a 7 tube superheterodyne receiver for operation on alternating current, having three tuning ranges, covering standard broadcast and short-wave frequencies. The chassis is constructed in three basic assembly units, concentrating the R. F., I. F. and Audio Output circuits in individual units.

The circuit consists of the "PHILCO FOREIGN TUNING SYSTEM"-controlled by the range switch-providing maximum sensitivity and noise reduction, when used with the PHILCO HIGH EFFICIENCY AERIAL. One stage of radio frequency amplification which increases the signal to noise ratio, Automatic Bass Compensation in the volume control circuit, Shadow Tuning, a separate diode circuit for the Automatic Volume Control and a push-pull pentode audio output circuit are also incorporated in this receiver.

Aerial Connections

The Phileo High Efficiency Aerial is recommended, for use with this receiver, to obtain maximum performance. A terminal panel is provided at the rear of the chassis for connecting the acrial. This panel contains four screw terminals and a connecting link.

When using the PHILCO HIGH EFFICIENCYAERIAL connect the red and black leads of the Aerial transmission line (lead-in) to terminals 1 and 2 respectively and the ground lead to terminal 3. The connector link should be across terminals 3 and 4 .

If a temporary aerial and ground is used shift the connecting link to rest across terminals 2 and 3 and connect the aerial and ground to terminals 1 and 3 respectively.

REMOVING SWITCH AND COIL ASSEMBLIES FROM R. F. UNIT

Remove the center mounting screw on the rear of the R. F. unit. Then lift the rear of the unit and push forward until the rubber mounting grommet, on each side of the unit, clear the mounting slots. The unit is then lifted far enough from the chassis for removal of the two screws holding the selector switch indexing plate and shaft (front of the unit) then pull shaft straight out. Removal of the volume control shaft is also necessary.

IMPORTANT-When selector switch shaft is replaced, care should be taken to have all wafer rotors in the sante position so that index projection on the end of shaft will slide freely into notched hole in wafer rotors. Never force sliaft into rotors.

AERIAL SWITCH AND COIL ASSEMBLY FIRST SECTION FROM REAR OF UNIT

a. Remove screw holding shield plate to unit base. This screw is located in the right hand corner of shield plate, facing rear underside of chassis.
b. Unsolder the leads connecting the range switch to the aerial panel and I. F. terminal panel; tubular condenser (5) to the tuning condenser stator plate and ground lead from assembly shield to unit frame-lift assembly straight out of unit

R. F. AMPLIFIER ASSEMBLY, CENTER SECTION

a. Remove screw holding shield plate to unit base.
b. Unsolder the leads connecting the range switch to I. F. terminal panel and 6 K 7 G plate socket contact, tubular condenser (15) to the tuning condenser housing, selector switch contact (D2) to the tuning condenser stator plates. tubular condenser (14) to shield ground lug and shield to R. F. unit base. The amplifier assembly may then be removed.

OSCILLATOR SWITCH AND COIL ASSEMBLY. THIRD SECTION FROM REAR OF UNIT

a. The oscillator assembly may now be removed by unscrewing the four screws holding shield to R.F. base. These screws are located on each side of the R. F. base
b. Unsolder the leads connecting range switch to the 6K7G socket contacts and terminal panel in the I. F. unit, condenser (17) learl from tuning condenser housing and lead connecting selector switch to the tuning condenser stator plates. Then unsolder wires connecting selector switch to electrolytic condenser (16) and 6A8G socket contacts.

Parts are replaced by following the above procedure in the reverse order.

Electrical Specifications

Voltage Rating: $115 \mathrm{~A} . \mathrm{C}$.
Frequency Rating: 50 to 60 cycle.
For 25 to 40 cycle operation use Power Transformer marked with asterisk in parts list.
Power Consumption: 80 watts.
Type and Number of Tubes: 2 type $6 K 7 G-R$. F. and I. F Amplifier; 1 type 6A8G-Det. Oscillator; 1 type 6Q7 - 2nd Det., 1st Audio, A. V. C.; 2 type 6F6G-Push-pull Output; 1 type $5 \mathrm{Y}+\mathrm{G}$-Rectifier.
Undistorted Output: 5 watts.
Intermediate Frequency: $470 \mathrm{~K} . \mathrm{C}$.
Tuning Ranges: Three. Kange $1-530$ to 1720 K . C. Range 22.3 to $7 .+\mathrm{M}$. C. Range $3-7.35$ to 22 M . C .

Speakers: K-3\&13 Cabinet.
H-2.5 X-MX Cabinet

Fig. 4-Base View
Replacement Parts-Model 37-640

	em. Description	Part No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$		em. Description	Part No.	List Price	Schem. No.	Part No.	List Price
1	Antenma Transformer (Broadcast)	32-2108	80.80	49	Resistor (490000 ohms $1 / 2 \mathrm{watt}$)	33-449339	\$0.20	Indicator Bracket \& Lens Assem.	38-7912	$\$ 0.30$
2	Antenna Transformer (Police) ...	32-2119	. 65	50	Resistor (70000 ohms $1 / 2$ watt)	33-370339	20	Suring	$28-8624 \mathrm{~F}$	$\text { C. } 50$
3	Antenna Transformer (S, W.)	32-2109	75	51	Resistor (70000 ohms 1/2 watt)	33-370339	20	Lens.	27.8310	
4	Compensatimg Condensers Ant	$31-6042$. 60	52	Condenser (.003 mfd , tubular)	$30-4042$	20	Volume Control Shaft	28	
5	Condenser (.05 mfd tubular)	30-4020	20	53	Output Transformer B. X. MX	$32-7634$	1.50	Volume Control Shaft Spring		
6	Risistor (51000 ohms 1/2 watt)	33-351339	20	54	Resistor (190000 ohms $\frac{1}{2}$ watt)	33-419339	20	Retaining Clips	28-8610	
7	Tuning Condenser	31-1820	5.00	55	Resistor (51000 ohims 1/2 watt)	33-35133!	. 20	Washer	28-4186 P	
8	Comprensating Condensers R	31-6092	. 60	56	Resistor (99000 ohms ${ }^{12}$ watt)	33-399339	20	Washer		50
9	R. F. Transfermer (Broadeast)	32-105	75	57	Resistor (490600 ohms 1_{2} watt)	33-449339	20	Socket Power Trans		
10	it. Transformer (Police)	32-2106	. 65	58	Condenser (1 mid tubular)	30-4122	20	Socker 8 prong.	-	
11	Condeuser			59	Cone d Voice (oil $\mathrm{K}-34$ Speaket	36-3174	80	Socket 7 proniz	\%	
12	Condenser (14 mmfd. mica)	30-1073	20		Cone \& Voice Coil H-25 Speaker	02625	1.20	Tube Shield	26	0
13	R. F. Transformer (S. W.)	32-2126	55	60	Comdenser (. 003 mfd . tubular)	30-4042	. 20	Tube Shicld Base	28-3898	03
14	Condeaser (05 mfd (Iubular)	30-4123	20	61	Conterser (05 mfd (ubular)	30-4123	. 20	1. F. Shield.	38-7763	
15	Condenser (05 mfd qubular)	30-4020	20	62	Resistor (3500 ohms ! ${ }^{\text {a }}$ wati)	33-235339	20	Terminal I'anel I. F. Unit	38-7703	
16	Electrolytic Condenser (16 mfd)	$30-2118$	1.65	63	Resistor (330000 chms $1 / 2$ watt)	33-4333:39	20	Spacer	28-4001 P	C. 25
17	(Ondenser (3500 mmfd semi-fixed)	31-6097	. 50	64	Condenser (05 mdd . tubular)	30-4454	25	Grommet Mity, Tuning Condenser.	27-4325	
18	Resistor (10000 ohms $1 / 2$ watt) ...	33-310339	2	65	Resistor (130060 ohms 2 watt)	33-313539		Grommet R. F. Luit	27-4317	04
19	Condenser (250 mund. mica)	30-1032	25	66	Filectrolytic Condenser .	30-2045	1.80	Sleere M1g. R. F. Unit	28-2257	01
20	Condenser (11 mfd . tubular)	30-4170	25	67	Fipld Coil Assembly $\mathrm{K}-34$ Sueaker	36-323 ${ }^{4}$	3.75	Spacer M1tg. R. F lnit	2-7807 P	. 50
21	Compensator (Osc- Neries Broadeist)	31-6056	55		Field Coil Assembly H-25 speaker	36-3218	3.50	Screw Mta. R. F Linit.	W-729 P'	(.45
22	Ose. Transformer (Broadeast)	32-2120	65	68	13ias Resistor	33-3276	. 20	Washer Mts. R. F. Cuit	28-3927	. 01
23	Compensating C'ondensers Osc.	$31-6092$	60	69	IVictrolytic Condenser (12 mfd)	30-2117	1.20	Insulator Mtg. Fijectrolytic Condenser	27-7194	. 01
24	Osc. Transfurmer (Police)	3\%-212]	40	70	Ponver Transformer $115 \mathrm{Y} ., 50-60$ eycles	32-7597	5.25	Bracket Mta. Flectrolytic Condenser	1.440	05
25	Condenser (1650 mmfd, semi-fixed)	31-6096	40		Power Transformer 115 V ., 25-40 eycles	32-7598		Nut Mite. Volume \& Tone Control	W-688	1.25
26	Osc. Transformer (S. W.)	32-2110	. 75	71	(endenser (.015-.015 mfd. double)	$3793-\mathrm{D})($. 40	Antenma Panel	38-714	15
27	Resistor (32000 chms $1 / 2$ watt)	33-332339	20	72	Pitot lamp	34-2034	. 15	Speaker Cable	41-3201	
28	Resistor (40000 ohms $1 / 2$ Walt)	33-340339	20	73	Tone Control A A C. Switch	42-1182	. 75	A. C. Cord	1-2183	40
29	Resistor (15000 ohms 1 watt)	33-315439	20	74	Ant switch.	42-1170	1.10	Knob Tuning	$27+4330$. 10
30	Conderser (25 mfd tububar)	30-4446	20	75	R. F. Range Suysh	42-1171	1.00	Knols Tuning Vernier	27-4331	. 10
31	Shadow meter	45-2189	2.50	76	Ose. Ranke Switch	42-1172	1.10	Knob Wave Ewiteh..	27-4326	10
32	Resistor, 700 ohms, Violet, Miack, Brown.	33-1220	20		Selector Switch Indexing Pate \& Shaft	42-1173	. 50	Knob Tone \& Volume	27-4332	10
33	1st I. F. Transformer	32-2100	1.50		Pilot Lamp Assembly.	38-770t	35	Shadow Meter Mty. Suring	28-862, P	. 80
34	2nd I. F. Transformer	32-2102	1.50		Dial	27-5214	. 40	Stpeaker K-34, 13 Cathinet.	36-1224	7.25
35	Condenser (110 mufi. mica)	30-1031	20		Dial Hub	28-7187	. 12	Sueaker H-25	36-1236	8.25
36	Resistor (51000 ohms. 1/2 watt)	3:3-351339	20		Dial Clamp	28-2837	. 10	Model B Cabinet		
37	Condenser (110 mmfil mica)	30-1031	20		Set kerew.	W-1641	. 02	Bezel Frame \& Plate Assembly	40-5927	30
38	Condenser (110 mmid. mica)	30-1031	. 20		Dial Guard	27-8324	. 02	Glass	27-8298	. 0.5
39	R(sistor (490000 ohmis ${ }^{1 / 2}$ watt)	33-449339	$\therefore 0$		Dial Gear	28-7185	. 10	Bezel İing	28-3967	35
40	('ondenser (. 008 mfid tubular)	30-4112	. 20		Tirust Spring	28-8611	. 01	Gasket.	27-8311	.01
41	('ondenser (01 mfd. tubular)	30-4124	25		C Washer	28-3904	. 01	Gasket. Model \times \& MX Cabinets		
42	Volume Control	33-5158	1.00		Thrust Washer	28-3976 Per	C. 30	Model X \& MX Cabinets		
43	Condeaker (015 mfd tubular)	30-4358	20		brive liear	31-1884	. 25	Bottom Shield Plate	28-3395	
44	Condenser (02 mtd tubular)	30-4113	$\therefore 0$		Vernier Drive	31-1871	75	Bezel Frame \& Plate Assembly	40-5945	
45	Resistor (1 meruhn $1 / 2$ watt)	33-510:339	20		Mask	27-5198	30	Gasket	$\xrightarrow{27-8312}$	
46	Resistor (1 megohme ${ }^{\text {a }}$ wat!)	33-510339	. 20		Mask Arm Assembly	31-1866	.35	sicrews	${ }_{\text {N164 }}$	
47	lesistor (1 merohm $1 / 2$ watt).	33-510339	. 20		Mask Guide Lamp Bracket Support	38-7844	. 15	Glass	27-8299	
48	('ondenser (11 mfil, tubular)	30-4122	20		Missk Washer.............	27-8318 Per	C. 50	Ring	28 -398	

[^7]

Fig. 5-Dtal Calibration

Fig. 6- Location of I. F. Compensatory

Fig. 7-Locations of R. F. Compensator

Alignment of Compensator

The accurate adjustment of the various compensating condensers is vital to the proper functioning of this receiver. There are four compensating condensers in the 1. 1. . ircuit, four in the Oscillator Circuit, three in the R. F, Amplifier Circuit and three in the Antenna Circuit. Incorrect adjustment will cause loss of sensitivity unsatisfactory tone, and poor selectivity
To accurately adjust this receiver, precision test equipment is necessary signal generator such as the PHILCO NODEL 088 SIGNAL GENERATOR, covering from 110 to $20.0 n 0 \mathrm{~h}$. (15 recommended for adjusting the compensator at he various frequencies specked. Abs ut out is also necessary to divan correct adjustment of the compensatory. PFILCO mended for these adjust mints.
Philo Fibre Handle Screwdriver No. $27-70.59$ completes the necessary equipment for these adjustments. The locations of the various compensator are shown in Firs 6 and
The following procedure must be observed in adjusting the compensator
DIAL CALIBRATION -In order to adjust this receiver correctly, the that must be aligned to track properly with the tuning condenser. Ton do this, rotate the tuning condenser control to the extreme counterclockwise position (maximum capacity tui) set screw in this position.
SHADOW METER ADJUSTMENT -Remove aerial and allow tubes to warm up. Then adjust shadow meter as follows
1-Move the Shadow meter coil backwards and forwards, until the shadow is within one-eighth of an inch of each sidle of the screen
2-Remove the Rectifier tube from its socket, and rotate the shadow meter coil for minimum shadow width.
3 -Replace the Rectifier tube. The shadow should then return to maximum width or within one-eightion at moth of side of the screen. If the shadow does not return to maximum width, operations I and 2 should be continued until it sloes.
OUTPUT METER - The 02.5 Output Meter is connected to the plate and cathorle terminals of one (6 F 6 G) tube. Adust the meter to use the ($0-30$) Volt Scale
During the 1. F. and R. F adjustments, the signal generator out put should be maintaned at the lowest possible level that will give an indication on the output meter

INTERMEDIATE FREQUENCY CIRCUIT

Frequency 470 K . O
1 - Connect the noise Signal Generator output lead. through a i mid. condenser, to the control gid of the 6A8G tube; and the ground connection of the output ad to the chassis
2 -Set the range switch in position No. 1 (Broadcast), then rotate the tuning condenser of the recewer to the maximum capacity position (counter-clockwise), and adjust the signal generator for 470 K . C
3-Adjust compensators iss 2nrl I. F. Sec., sup Ind I. F. Mri., Bis 1 st I. F. Sec., and as) I st I. F. Def. for maximum reading on rut put meter.

RADIO FREQUENCY CIRCUIT
Tuning Range -7.3 to 22.0 M . C
1 -Remove the signal generator output lead from the grid of GA8G tube am e connect it through the 1 mfr . condenser to terminal so. i un aerial input panel, and the generator ground lead to terminal No. 3. rear of chassis. (a) Terminals ? and 3 of aerial input panel must be connected with connector link provided on the panel, during these adjustments.
2 -Set the tuning range switch in position No. 3 (Short Wave). Turn the signal generator ant receiver dials to 18 M . C. and adjust compensatory mb Oc. (1) R F and , is Ant for maximum output (see note (a) below).
(a) The adjust meat of the Radio Frequency compensator on the high frequency range causes a slight detuning of the oscillator circisit. In order to overcome this detuning effect, connect a variable condensed of approximately 350 mmfd . having a good vernier drive, across the oscillator section of the tuning condenser. Leaving the signal generator and receiver dials at 18 M . C., tune the added condenser so that he secomi harmonic of the receiver oscillator will beat against and R F but put Vow remove the external condenser and tut compensator 24 bo maximum capacity y (clockwise) then without moving signal generator or receiver tuning condenser, back off compensator ab (counterclockwise) until a second peak is reached on the output meter. The first peak is caused by tuning to the image frequency signal and must not be used
Tuning Range- 2.3 to 7.4 M . C.
1 - Turn the range switch to position No. 2 (police). Rotate the signal generator and receiver dials to io M . C Then adjust compensator a for maximum adjust compensator a R F: and a A at for maximum reading on the output meter on in
Tuning Range -530 to $1720 \mathrm{~K} . \mathrm{C}$.
1 - Set the range switch in position No. 1 (Broadcast). Set the 088 Signal Generator indicator at 800 k . C . and the receiver dial at $16,100 \mathrm{k}$. C (a) In adjusting the receiver at 1600 K . C. the second harmonic of 800 k . C . to which the signal generator is tuned, is used. The second harmonic of 800 for . for maximum reading on output meter
2-The low frequency end of the range is now tuned by turning the signal generator and receiver dials to $600 \mathrm{~K}^{\circ}$. C. and adjusting compensator in Oc. series (see Note (a) below) for maximum reading on output meter. (a) Wine compensator ${ }^{23}$ is being adjusted. the tuning condenser must be pend or maximum ont on. This is accomplished as follows: First tune combensat or 2 for maximum out mut. Then vary the tuning condenser for maximum condenser back and forth at 600 K . C. for maximum output. This operation of first turning the compensator then the tuning condenser is continued until maximum output is obtained at the 600 K . C . frequency: After the low frequency $(600 \mathrm{~K} . \mathrm{C}$.) end of the range is adjusted the 1600 \mathfrak{k}. C. end is readjusted, as given in Paragraph (1) above, to correct an alignom that the low frequency series compensator mas have caused in the alignment Now turn the signal generator and receiver dial's to 1.500 K . C. and readjust compensator is int., and \& R. F., for maximum output

SERVICE DATA

Model $37-640$ is a 7 tube superheterodyne receiver for operation on alternating current, having three tuning ranges, covering standard broadcast and short-wave frequencies. The chassis is constructed in three basic assembly units, concentrating the R. F., I. F. and Audio Output circuits in individual units.
The circuit consists of the "PHILCO FOREIGN TUNING SYSTEM'-controlled by the range switch-providing maximum sensitivity and noise reduction, when used with the PHILCO HIGH EFFICIENCY AERIAL. One stage of radio frequency amplification which increases the signal to noise ratio, Automatic Bass Compensation in the volume control circuit, Shadow Tuning, a separate diode circuit for the Automatic Volume Control and a push-pull pentode audio output circuit are also incorporated in this receiver.

Aerial Connections

The Philco High Efficiency Aerial is recommended, for use with this receiver, to obtain maximum performance. A terminal panel is provided at the rear of the chassis for connecting the aerial. This panel contains four screw terminals and a connecting link.
When using the PHILCO HIGH EFFICIENCY AERIAL connect the red and black leads of the Aerial transmission line (lead-in) to terminals 1 and 2 respectively and the ground lead to terminal 3 The connector link should be across terminals 3 and 4.

If a temporary aerial and ground is used shift the connecting link to rest across terminals 2 and 3 and connect the aerial and ground to terminals 1 and 3 respectively.

REMOVING SWITCH AND COIL ASSEMBLIES FROM R. F. UNIT

Remove the center mounting screw on the rear of the R. F. unit. Then lift the rear of the unit and push forward until the rubber mounting grommet, on each side of the unit, clear the mounting slots. The unit is then lifted far enough from the chassis for removal of the two screws holding the selector switch indexing plate and shaft (front of the unit) then pull shaft straight out. Removal of the volume control shaft is also necessary.

IMPORTANT-When selector switch shaft is replaced, care should be taken to have all wafer rotors in the same position so that index projection on the end of shaft will slide freely into notched hole in wafer rotors. Never force shaft into rotors.

No. 253

Fig. 4-Base View
Replacement Parts-Model 37-640

Figures in black type indicate circled figures in Base View.

Part No. List Price	
$32-2108$	$\$ 0.80$
$32-2119$.65
$32-2109$.75
$31-6092$.60
$30-4020$.20
$33-351339$.20
$31-1820$	5.00
$31-6092$.60
$32-2105$.75
$32-2106$.65
$30-1073$.20
$32-2126$.55
$30-4123$.20
$30-4020$.20
$30-2118$	1.65
$31-6097$.50
$33-310339$.20
$30-1032$.25
$30-4170$.25
$31-6056$.55
$32-2120$.65
$31-6092$.60
$32-2121$.40
$31-6096$.40
$32-2110$.75
$33-332339$.20
$33-340339$.20
$33-315439$.20
$30-4446$.20
$45-2189$	2.50
$33-1220$.20
$32-2100$	1.50
$32-2102$	1.50
$30-1031$.20
$33-351339$.20
$30-1031$.20
$30-1031$.20
$33-449339$.20
$30-4112$.20
$30-4124$.25
$33-5158$	1.00
$30-4358$.20
$30-4113$.20
$33-510339$.20
$33-510339$.20
$33-510339$.20
$30-4122$.20
in Base Viow.	

Fig. 5-Dtai Calibration

Fig. 6-Location of I. F. Compensators

Fig. 7 -Locations of R. F. Compensators

Alignment of Compensators

The accurate adjustment of the various compensating condensers is vital to the proper functioning of this receiver. There are four compensating condensers in he I.F. Circuit, four in the Oscillator Circuit. three in the R. F. Amplifier Circuit nd three in the. Antenna Circuit. Incorrect adjustment will cause loss of sensitivity satisfactory cone, and poor sele
To accurately adjust this receiver, precision test equipment is necessary, A signal generator such as the PHLCO MODEL O88 SIGNAL GENERATOR, covering from 10 to $20,000 \mathrm{~K}$. C. is recommended for adjusting the compensator at the various frequencies specified. A sisual indication of the receiver outpu s aiso necessar to obtain correct adjustment of the compensators. mended for these adjust ments.
Philco Fibre Handle Screw-driver No. 27-7059 completes the necessary equipment or these adjustments. The locations of the various compensators are shown in Figs. 6 and -

The following procedure must be observed in adjusting the compensators
DIAL CALIBRATION-In order to adjust this receiver correctly, the cial must be aligned to track properly with the tuning condenser. To do this, rotate he tuning condenser control to the extreme counter-clockwise position (maximum a centered on the first index line of dial scale (see Fig. 5). Now tighten the dia hub set screw in this position.

SHADOW METER ADJUSTMENT-Remove aerial and allow tubes to warm up. Then adjust shadow meter as follows
1 -Move the Shadow meter coil backwards and forwards, until the shadow is within one-eightly of an inch of each side of the screen.
2 - Remove the Rectifier tube from its socket, and rotate the shadow meter coil for minimum shadow width
3 -Replace the Rectifier tube. The shadow should then return to maximum width or within one-eighth of an moh of each side of the screen. If the shadow does not return to maximum width, operations 1 and 2 should be continued until it does
OUTPUT METER-The 025 Output Meter is connected to the plate and cathode terminals of one (6 F 6 G) tube. Adjust the meter to use the (0 - 30) Volt Scale.
During the I. F. and R. $\mathrm{F}^{\text {, adjustments, the signal generator output should be }}$ maintained at the lowest possible level that will give an indication on the output meter.

INTERMEDIATE FREQUENCY CIRCUIT

Frequency 470 K . C
-Connect the 088 Signal Generator output lead, through a 1 mfd . condenser to the control grid of the 6.18G tube; and the ground connection of the output lead to the chassis.
2 -Set the range switch in position No. 1 (Broadcast). then rotate the tuning condenser of the receiver to the maximum capacity position (colnter-clockwise). and adjust the signal senerator for 470 k . C
3 - Adjust compensators (is 2nd I. F. Sec., sip 2nd I. F. Pri., (a)s 1st I. F. Sec., and (33) 1 st I. F. Pri for maximum reading on out put meter

RADIO FREQUENCY CIRCUIT
Tuning Range- 7.3 to $22.0 \mathrm{M} . \mathrm{C}$.
1 - Remove the signal generator output lead from the grid of 6A8G tube, and connect it through the .1 mfd . condenser to termmal No. 1 on aerial input panel, and the generator ground lead to terminal No. 3. rear of chassis.
(a) Terminals 2 and 3 of aerial input panel must be connected with connector link provided on the panel, during these adjustments
2 -Set the tuning range switch in position No. 3 (Short Wave). Turn the signal generator and receiver dials to $18 \mathrm{M} . \mathrm{C}$. and adjust compensators (3s) Osc., (h)t R. F. and (9) Ant. for maximum output (see note (a) below).
(a) The adjustment of the Radio Frequency compensator on the high frequency range causes a slight detuning of the oscillator circuit. In order to overcome this detuning effect, connect, a variable condenser of apjroximately 350 mmfd . having a good vernier drive, across the oscillator section of the tuning condenser. condenser so that the second harmonic of a coiver oscillat will the signal from the 088 signal generator bringing in and R.F compensator 6 and 8 b should then be adjusted to give maximum output. Now remove the external condenser and turn compensator (2) bo maximum capacity (clockwise) then without moving signal generator or receiver tuning condenser, back off compensator (20) b) (counter-clockwise) until a second peak is reached on the output meter. The first peak is caused by tuning to the image frequency signal and must not be used.
Tuning Range-2.3 to 7.4 M. C.
1 -Turn the range switch to position No. 2 (nolice). Rotate the signal generator and receiver dials to 7.0 M . C . Then arljust compensator for maximum adjust comensators R R F and (1) Ant for moximum reading on the adjust compe meter
Funing Range- 530 to 1720 K . C.
1 -Set the range switch in position No. 1 (Broadcast). Set the 088 Signal Generator indicator at 800 K . C. and the receiver dial at 1600 K . C.
(a) In adjusting the receiver at 1600 K . C. the second harmonic of 800 k . C ., to which the signal generator is tuned, is used. The second harmonic of 800 K. C. is 1600 k. Now adjust compensa for maximum reading on output meter.
2-The low frequency end of the range is now tuned by turning the signal generator and receiver dials to $600 \mathrm{~K}, \mathrm{C}$. and adjusting compensator (ai) Osc. series (see (a) (a) helow) for maximum reading on output meter
(a) whe thing condenser must be rolled for maximum outpult. This is accomplished as follows: First tune comoutput at 600 K . C. Now retune compensator and again vary the tuning condenser back and forth at 600 K . C. for maximum output. This operation of first turning the compensator then the tuning condenser is continued unt maximum output is obtained at the 600 K . C. frequency
3- After the low frequency (600 K . C.) end of the range is adjusted. the 1600 k C end is readjusted as given in Paragraph (1) above, to correct any variation that the low frequency series compensator may have caused in the alignment of the high frequency end.
4 -Now turn the signal generator and receiver dials to 1500 K . C. and readjust compensators Ant., and (8) R. F.. for maximum output.

PHILCO

NEW PROFITABLE BUSINESS for ALL SERVICEMEN

FOR MEMBERS OF
RADIO MANUFACTURERS SERVICE

SERVICE BULLETIN No. 257

SERVICE DATA

Model 37-660 is a 9 tube superheterodyme receiver designed for operation on alternating current. It has four tuning ranges, covering standard broadcast and short-wave frequencies. The chassis is constructed in four basic assembly units, concentrating the R.F., I.F., Audio and Power circuits in individual units.

The circuit includes the PHILCO Foreign Tuning Systemcontrolled by the range switch-providing maximum sensitivity and noise-reduction, when used with the I'hilco High-Efficiency Aerial; automatic bass compensation in the volume control circuit; shadow tuning; automatic volume control, and a push-pull pentode output circuit.

AERIAL CONNECTIONS

The red and black leads of the High-Efficiency Aerial "transmission line" are connected to terminals 1 and 2 respectively, of the terminal panel provided on the rear of the chassis. Connect the jumper on the terminal panel across terminals 3 and 4.

If a temporary aerial is used, the jumper should be across terminals 2 and 3. The aerial connects to terminal 1 and the ground lead to terminal 3. A good ground connection is desirable in all installations.

REPLACING DIAL

To replace the dial, remove the clamp holding the dial to the hub, by turning clamp counter-clockwise, using the two holes provided on the clamp for this purpose.

REMOVING MASK ARM \& LINK ASSEMBLY

First remove dial, then loosen set screw of dial hub and remove the hub and felt washer from the shaft. Now loosen screws holding indicator bracket and lens assembly, and move bracket forward about $1 / 2$ inch. The assembly may now be removed by loosening set screw of range switch arm, then pull arm off of range switch shaft.

REMOVING SWITCH \& COIL ASSEMBLIES OF R.F. UNIT
To replace any part in the switch and coil assemblies of the R.F. Unit, each assembly can be removed separately as follows:

First remove the tuning dial, mask and arm assembly. Remove the center mounting screw on the rear of the R.F. Unit. Then lift the rear of the unit and push forward until the rubber mounting grommets, on each side of the unit, clear the mounting slots. The unit is then lifted far enough from the chassis for removal of the two screws holding the selector switch indexing plate and shaft (front of unit). Then pull shaft straight out from the unit. Also, remove the volume control shaft by releasing the retaining clip, inside the chassis, from the shaft.

IMPORTANT-When selector switch shaft is replaced, care should be taken to have all wafer rotors in the same position, so that the key on the switch shaft will slide freely into the notched hole in each wafer rotor. NEVER force shaft into rotors.

Servicing Stages-It is necessary to unsolder some connecting leads in order to release the stage for servicing. If all the following connections are unfastened the stage will be entirely released. Ordinatily only one or two leads need be loosened in order to change coils, replace coupling condensers, or replace switch sections.

ANTENNA ASSEMBLY-Rear Section

1. Unsolder the wires which connect the antenna panel and I,F . Unit to the range switch and assembly shield plate ground leads.
2. Unsolder the two leads from the gang condenser terminal panel which connect to the range switch. Also lead of tubular condenser (7) at the ground lug on the R.F. Unit.
3. Remove screw holding shield plate to the unit base. This screw is located in the right hand corner of the shield plate, facing the rear underside of the chassis. The assembly can then be removed.

R.F. ASSEMBLY-Middle Section

1. Unsolder the wires from the I.F. Unit and the 6 K 7 G plate contact in R.F. Unit which connects to the range switch: Then remove ground leads of shield plate.
2. Unsolder the leads from the gang condenser terminal panels and the lead of tubular condenser (18) at the ground lug on R.F. Unit base.
3. Remove the screw holding shield plate to the unit base. This screw is located in the right hand corner of the shield plate facing the rear underside of the chassis. Then pull assembly straight out.

OSCILLATOR ASSEMBL Y-Front Section

1. The oscillator assembly can be removed by unscrewing the two screws located on each side of the R.F. Unit
2. Unsolder the wires connecting range switch to bakelite condenser (78) in the power unit. electrolytic condenser (21) in the R.F. Unit and OSC plate contact on the 6A8G socket
3. Remove the leads from the gang condenser terminal panels and the lead of Mica condenser (24) at the ground lug on R.F. Unit base

Electrical Specifications

Power Supply: 115 V .
Frequency: 50-60 cycle
For 25 to 40 cycle operation, use the Power transformer marked with asterisk in the parts list.
Consumption: 130 Watts.
Intermediate Frequency: $470 \mathrm{~K} . \mathrm{C}$.
Output: 10 Watts.
Philco Tubes: $6 \mathrm{~K} 7 \mathrm{G}-\mathrm{R} . \mathrm{F}$. Amplifier: 6 A 8 G -Oscillator and first detector: 6 K 7 G -I.F. Amplifier: $655 \mathrm{G}-2$ nd detector, A.V.C.; $6 \mathrm{~K} 5 \mathrm{G}-1$ st Audio; 6 J 5 G Phase Inverter; $2-6 \mathrm{~F} 6 \mathrm{G}$-Output; 5 Y 4 G -Rectifier.
Tuning Ranges: Range 1-530 to 1720 K . C.; Range $2-2.3$ to 7.4 M . C.; Range $3-7.35$ to 11.6 M . C.; Range $4-11.5$ to 18.2 M . C.
Speakers: X cabinet-H-27; B cabinet-K-36.

Speaker Wiring for Types K-36 and 1H-27

Fig. 1-Socket Voltages-Underside of Chassis View
The voltages indicated by arrows were measured with a Philco 025 Circuit Tester which contains a voltmeter having a resistance of 1000 ohms per volt. Volume Control at minimum, range switch in broadcast position, line voltage 115.A.C.
No. 257
Page 2

Replacement Parts-Model 37-660

Schem.No.		$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	List Price	Schem. Descriptio		$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Schem. $\mathbf{N o}$.	Part No.	List Price
,	Antenna Transformer (530 to 1720			45	Condenser (110 mmfd twin lakelite	$8035-\mathrm{DG}$. 25	Screw Set	W-1641	
		32-2108	\$0.80	46	Resistor (99000 ohms, $1 / 2$ watt).	32-399339	\$0.20	Dial Gear	28-7185	\$0.10
2	Antenna Transformer (2.3 to 7.4 M.C.)	32-2119	. 65	47	2nd I.F. Transformer	32-2171		Drive Gear	31-1884	25
3	Antenna Transformer (7.35 to 11.6			48	Condenser (110 mmfd . micia)	30-1031	. 20	Thrust Spring	28-8611	01
	M.C.)	32-2185	70	49	Resistor (99000 ohms. $1 / 2$ watt)	33-399339	. 20	Thrust Washer	28-3976	${ }^{30} \mathrm{C}$
4	Antenna Transformer (11.5 to 18.2			50	Resistor (1 megohm. $1 / 2$ watt)	33-510339	. 30	C Washer	28-3904	
		32-2175	. 80	51	Condenser (1 mid bakelite)	4989-5G	. 35	Vernier Drive Assen	31-1871	
5	Compensator (Two sections) brown dot	31-6120		52	Resistor (490000 oh ms. $1 / 2$ watt)	33-449339	. 20	Mask	27-5240	
6	Compensitor (Four sections) brown dot	31-5105		53	Resistor (1 merohm, $1 / 2$ watt)	33-510339	. 30	Mark Arm ${ }^{\text {d L Link Assembly }}$	31-1887	
7	Condenser (05 mfd tubular)	30-4020	. 20	54	Resistor ($45000 \mathrm{ohm}, 1 / 2$ watt)	33-345339	20	Mask Washer	27-8318	50 C
8	Resistor (51000 ohms, $1 / 2$ watt)	33-351339	. 20	55	Condenser (03 mfd . tubular)	30-4380	20	Mask Guide Bracket	38-7876	
9	Tuning Condenser	31-1855	4.50	56	Resistor (50000 ohms, $1 / 2$ watt)	33-250339	. 20	Screen \& Lens Holder Assembly	31-1900	
10	Condenser (40 mmfd mica)	30-1076	20	57	Resistor (490000 ohms, $1 / 2$ wit	33-449339	. 20	Pilot Lamp Assembly	38-7706	35
11	Condenser twisted wire \& li			58	Condenser (03 mfd . bakelite)	8318 -st	.35	Shadow Meter Lamp Shield	${ }^{28-2917}$	
12	R.F. Transformer (530 to $1720 \mathrm{K.C}$)	32-2105	. 75	59	Condenser (03 mfd . tubular)	30-4380	. 20	Shadow Meter Mtg. Spring	${ }^{28-8623}$.70 C
13	R.F. Transformer (2.3 to $7.4 \mathrm{M.C}$)	32-2106	65	60	Condenser (003 mfd mubular)	30-4469		Socket. 7 Prong.	${ }^{27-6057}$	
14	1.F. Transformer (7.3 to $11.6 \mathrm{M.C}$)	32-2178	60	61	Cone \& Yoice Coil ($\mathrm{H}-27$)	02625	1.20	Socket. 8 Prong	27-6052	
15	R.F. Transforiner (11.5 to $18.2 \mathrm{M} . \mathrm{C}$.)	32-2176	. 70		Cone \& Voice Coil (k-36)	36-3020		Tube Shield	${ }^{28-2726}$	10
16	Compensator (Two sections) brown dot	$31-6120$		62	Output Transformer (H-27, K-36)	32-7634	1.50	Tube Shield Base	${ }^{28-3898}$	
17	Compensator (Four sections) red dot	31-6106		63	Resistor ($330000 \mathrm{ohms}, 1 / 2$ watt).	33-433339	20	Volume Control Shaft	28-6500	12
18	Condenser (0.5 mfd . tubular)	30-4020	. 20	64	Resistor (330060 ohms. 1/2 watt)	33-433339	20	Retaining Clips.	${ }^{28-8610}$	
19	Condenser (05 mfd tubular)	30-4123	. 20	65	Resistor (51000 ohms, $1 / 2$ watt)	33-351339	. 20	Washer (Volume Control)	28-4186	
20	Ressistor (10000 ohms, $1 / 2$ watt)	33-310339	20	${ }_{6}^{66}$	Resistor (490000 ohms. $1 / 2$ watt)	33-449339	. 20	Wastier Volume Control (Spring	4436	.50 C
21	Flectrolytic Condenser (three sections			67	Condenser (05 mfd . tubular)	30-4444	. 20	Spring	${ }_{27}^{28-4117}$	
	1, 2, 3 mfd)	30-2122	1.85	68	Condenser (003 mfd tubular)	30-4469		Grommet Mtz. R.F. Un		
22	Condenser (250 mmfd . mica)	30-1032	. 25	69	Field Coil (H-27, K-36).	36-3673		Sleeve Mtg. R.F. Unit	${ }_{\text {W }} \times 289$	
23	leesistor (32000 ohms, $\frac{1}{2}$ watt)	33-332339	. 20	70	Resistor (7750 ohms, wirewound)	33-3279		Serew Mtg. R.F. Unit		
24	Condenser (.0013 mfd. mica)	30-1028	45	71	Resistor (32000 ohms, 2 watts)	33-332539		Washer	28-3927	
25	Condenser (05 mfd tubular)	30-4123	. 20	72	Resistor (40000 ohms, 1 watt).	33-340339		Mtg. Rubber Tuning Condens	27-4325	02
26	Oscillator Transformer (530 to 1720			73	Resistor (70000 ohms, 1 watt)	33-370439	. 20	Speaker Cable	41-3202	
	$\mathrm{K} . \mathrm{C}$)	32-2120	. 65	74	Resistor (20000 ohms, 2 watt)	33-320539		A. C. Cord	L-2183	
	Oscilla tor Transformer (2.3 to $7.4 \mathrm{M} . \mathrm{C}$.)	32-2121	40	75	Bias Resistor (Wirewound)	33-3278		Terminal Panel Ant	38-7714	
28	Oscillitor Transformer (7.3 to 11.6			76	Resistor (1 megohm, $1 / 2$ watt)	33-510339	20	Knob Assembly	27-4330	
	M.C.)	32-2186	. 70	77	Condenser (. 008 mfd d tubular)	30-4112	. 20	Knob Assembly	27-4331	.10
29	Oscillator Transformer (11.5 to 18.2			79	Condenser (. 006 mfd , baktlite)	$76.25-\mathrm{SU}$. 25	Knob Assembly	27-4332	
	M.C.)	32-2182	. 70	79	Filter Choke	32-7115	1.80	Knob Assembly	27-4326	
	Compensator (Four sections) yellow dot	31-6108		80	Electrolytic Condenser 8 uf.	30-2026	1.05	'B' CABINET		
318		30-1081		818	Condenser (3 mfd. tubular)	${ }^{30-4465}$	1.05	Speaker K-36 CABINET	36-1233	
32	1st I. F. Transformer	-		83	Power Tranformer (115 (1) V., $50-60$			Bezel Frame \& Plate Assembly	40-5946	
33	Pilot Lamp Shadowmeter	34-2039	15		Cycles)	32-7615		Gasket....................	27-8312	. 01
34	Shadowmeter	45-2189	2.50	*	Power Transformer (115 V., 25-40			Glass.	27-8299	
35	Condenser (75 mmfd mica)	30-1053	. 20		Cycles)	32-7616		Ring	28-3987	
36	Resistor (510000 ohms, $1 / 2$ watt)	33-311339	. 20	84	Tone Control \& AC Switch.	${ }^{42-1184}$. 75			
37	Conderser (006 mfd tubular)	30-4125	. 20	85	Condenser (015 Twin Bakelite)	3793-DG	40	- CABINET		
38	Volume Conitrol	33-5158	1.00	ع6	Antenna Range Switch	42-1202	1.50	Speaker H-27	36-1240	
39	Condenser (. 015 mfd tubular)	30-4358	. 20	87	R.F. Range Switch	42-1203	1.50	Screw Mty. Speaker	W-709	
40	Resistor (1 mecohnı, $1 / 2$ watt)	33-510339	. 30	88	Oscillator Range Switch	42-1204	1.50	Bezel Frame \& Ilate Assembly	40-5948	
41	Resistor (1000 ohmis, $1 / 2$ watt)	33-210339	20		Switch Indexing Plate \& Shaft	42-1188		Glass.	27-8300	${ }_{45}$
42	Condenser (1 mifid. tubular)	30-4170	25		Dial....................	27-5209	. 55	Ring		
43	Condenser (01 mfd tubular)	30-4124	25		Hub.	28-7187	. 12	Gasket	27-8.313	. 01
44	Resistor (490000 ohms, 1/2 watt)	33-449339	. 20		Clamy,	28-2837	10	Bottom Shield Plate	28-4031	

[^8]

Fig. 4-Dial Calibration

Fig. 5-locations of I.F

Fig. 6-Locations of R.F. Compensators
Underside of Chassis

Alignment of Compensators

To accurately adjust this receiver, precision test equipment is necessary. A signal generator such as the PHILC MODEL 088 SGAAL GENERATOR. covering from 110 to the various frequencies specified. As visual indication of the receiver output is also necessary to obtain correct adjustment of the complensators. PHILCO MODEL 025 CIRCUIT TESTER contains a sensitive output meter and is recommended
for these adjustments.
Philco Fibre Handle Screw-driver No. $27-7059$ completes the necessary equipment for these adjustments. The locations of the various compensators are shown
in Figs.
The foliowing procedure must be observed in adjusting the compensators:
DIAL CALIBRATION-In order to adjust this receiver correctly, the dial must be aligned to track properly with the tuning condenser. To do this rotate the tuning control to the extreme counter-clockwise position (maximum capacity). Loosen the set screw of the dial hub, then turn diat until the glowing indicator is centered between the first and second index lines of dial scale (see Fig. 4). Now SHADOW METER ADJUSTMENT-R.
SHADOW METER ADJUSTMENT-Remove aerial and allow tubes to warm up. Then adjust shadow meter as follows:

1. No the shadow meter coll backwards and forwards, until the opposite edges of the shadow are $1 / 8$ of an inch from each end of the shadow screen, measuring bracket may be necessary for reerfect centering.
2. Remove the rectifier tube from its socket and rotate coil until slaadow reaches minimum width. This width must not exceed ${ }^{3}{ }_{32}$ of an inch
3. Replace the 5 X 4 G rectifier tube in its socket. The shadow should then widen to not more than ${ }^{3}{ }_{16}$ inch or less than 1_{16} inch from each side of the scieen measuring along the bottom edge. If these limits are not obtained readjust the shadow meter as given in paragraphs 1 and 2 until they are reached.
OUTPUT METER - The 025 Output Meter is connected between the plate and cathode prongs of one of the 6 F 6 G tules. The meter is adjusted to use the ($0-30$) volt scale. INTERMEDIATE FREQUENCY CIRCUII
Frequency 470 K . C
4. Connect the 088 Signal Generator out put lead through a 1 mfd . condenser to the control grid of the 6.8 G tube and the ground connection of the output lead to the chassis. Turn the Volume Control to maximum volume position.
5. Set the range switch in position No. 1 (Broadcast). then rotate the tuning condenser of the receiver to approximately 580 K . C. and adjust the signal generator for 470 K . C
 (खे) 1st I IF. Pri. for maximum reading on the output meter

RADIO FREQUENCY CIRCUIT

Tuning Rande-11.5 to $\mathbf{1 8 . 2}$ M. C.

1. Remove the signal generator output lead from the grid of the 6.18G tube and connect it with the 1 mfd . condenser to terminal No. 1 on aerial input panel and the generator ground lead to terminal No. 3, rear of chassis.
2. Set the range switch in position 4. Turn the receiver and signal generator dials to $18 \mathrm{M} . \mathrm{C}$. Now adjust compensator (yb) by turning the screw (clockwise) to the maximum capacity position, then slowly turning it (counter-clockwise) until a second peak signal is reached on the output meter. The first peak from maximum capacity is the image signal and must not be used. NOTE-In adjusting some receivers only one peak will be observed, therefore, tune the compensator to maximum on this peak. If the above procedure is correctly performed. the image signal will be found at 17.06 M . C., by advancing signal generator attenuator and turning receiver dial to this frequency mark on the dial.
 necine-across the condenser of approximately $350 \mathrm{~mm} / \mathrm{d}$.-having a good vernier of the receiver facing rear underside view of chassis) and ground Leaving the
signal generator and receiver dials at $18 \mathrm{M} . \mathrm{C}$. , tune the added condenser from the maximum capacity point until the second harmonic of the receiver oscillator beats against the slgnal from the generator thereby bringing in the signal. The
antenna and R.F. compensators (6) put. Now remove the external condenser and readjust compensator aibl as given
 sator (il) for maximum output. Then adjust compensators (ib) and (8)c for maximum output
3. Now turn signal generator and receiver dials to 18 M . C and readjust compensators (0)b Osc, ©b Ant. and (10) R.F. as given in paragraphs 2 and 3 above. Tuning Range ($\mathbf{7 . 3 5}$) to (11.6) M. C
4. Set range switch in position 3. Rotate signal generator and receiver dials to 11 M . C. Now adjust compensator (ai) by turning the screw (clockwise) to the maximum canacity position, then slowly turn it (counter-clockwise) until a second peak signal is reached on the output meter. The first peak from maximum capacty is the image signal ant must not be used. NOTE-In adjusting some receivers only one peak if be onserver. herefore. tune lie anvenstor to maxil will he found 1006 M , and turning receiver dial to this frequency mark on the dial. and turning receiver dial to thas frequency mark on the and (6) Ant. are adjusted by using the procedure siven in paragrapl 3, under tuning range (11.5) to (18.2) Nensator (6i) contact to ground. This contact is the third one from left side of pensator (b) contact to ground. This contact is the third one from left side of
5. Readjust compensator dil Osc. as given in parakrapll 1 above. sators (J)a Osc. series (1)a R.1: and (B) Ant. for maximum out put
6. Due to the slight interaction of the high and low frequency compensators of this range, compensators (3) osc., (17) R.F. and (8) Ant. are readjusted using procedure in paragraths 1 and 2 above
Tuning Range 2.3 to 7.4 Pange switch in Position 2. Turn signal generator and receiver dials to 7.0 M . C. Now adjust compensators ©ol, Osc., (14) R.F. and (3) Ant. for maximum 2. Turn signal generator and receiver dials to 2.35 M . C. Compensator enc is now adjusted for maximum as follows:
First tune compensator for maximum output. Then vary the tuning condenser for maximum output about the 2.35 ial mark, Now retune compensator ooc, and again vary the tunlme condensers back and forth about the 2.35 dial the tunimg condenser is continued until maximum output is obtained at or about the 2.35 dial mark
If the signal generator is not accurately calibrated the maximum point on the dial of the receiver may fall slightly above or helow the dial mark.
7. Turn the signal generator and receiver dials to 7.0 M . C. and readjust compensator (30) b for maximum output. Then turn signal generator and receiver dials to 6.0 M . C. and adjust compensators (itia R.F. and (3)a Ant. for maximum output
Tuning Range 530 to 1720 K . C.
8. Set range switch in position No. 1 (Broadcast). Rotate signal generator and receiver dials to 1600 K . C. Now adjust conpensators (9s) Os., (1t) R.F. and (6) Ant. for maximum output
9. Tune signal generator and receiver dials to 580 k . C. Compensator 60 a Osc. series is then adjusted for maximum output as given in paragraph 2 under tuning rance 2.3 to 7.4 M . C., the only difference in the procedure being in the frequency used
10. Readjust compensator for maximum output, by turning signal generator and receiver dials to $1600 \mathrm{~K} . \mathrm{C}$
and receiver dials to 1500 k . C. and adjust compensators (16) R.F. and (3) Ant. for maximum output

PHILCO HEADPHONE KITS

You can sell one to almost any Radio owner An Easy source of Profit to Servicemen

THREE TYPES NOW AVAILABLE

1. For octal base tubes (Part No. 45-2227)
2. For plain base fubes (Part No. 45-1167)
3. Universal type (Part No. 45-2225)
(With separate use of speaker)

CHANGES IN MODELS

Since Publication of Each Service Bulletin

Grouped under ench model and arranged according to Ran No.-Carrent models included.-Dec. 15, 1936, to July 1, 193z.
The following pages contain complete listings of all major changes-involving changes in circuit, part numbers or anything of interest to the serviceman in Philco recelvers current at the time of printing. These changes date back to the date of publication of the last printing of the Philco Service Bulletin on each model; the number of the Bulletin is given in each case for reference.
thus he will not be inconvenienced at finding, when servicing gives the serviceman a complete record on each model; thus he will not be inconvenienced at finding, when servicing a current set, that it differs from that shown in the original Service Bulletin

The Run Number on models prior to March, 1937, is stamped on the top of the chassis with a rubber atamp and the Code Number of the set is given on the chassis name plate or name label (at rear of chassis).

Beginning on March 1, 1937, the Model, Code and RunNumbers are stamped in one location on the rear of the chassis.

Model 37-9
(Code 121) Service Bulletin 269

Run 2

Old Part

New Par
(35) Elect. Cond. (16 mfd.). 30-2118 30-2194-18 mfd.

To improve the I. F. Circuit operation, a Part No. 30$4455, .1 \mathrm{mfd}$. condenser is connected from the red primary lead of I. F. Transformer (53) to ground.
To prevent distortion at minimum volume, the green and white wire connecting the volume control (67) center lug to the automatic tuning dial audio switch (93), must be kept clear of compensator (54) and the diode circuit of the 6Q7G.

Run 3 CIRCUIT C	ANGES	
Electrolytic Condenser Cha	ge-	
	Old Part	New Part
(70) Elect. Cond. (10, 20 mfd)	30-2183	30-2201 8, 10 mfd .
8 mfd . section replaces (70)		
10 mfd section replaces (70) a	-	
(72) Elect. Cond. (8) mfd.	30-2024	30-2200 18 mfd .
Range Switch changed		
	Old Part	New Part
(39) Range Switch R. F.	42-1283	42-1314

DIAL CALIBRATION
The dial calibration of this recelver is the same as that given for model 37-10 and 37-11 Bulletin 268 .

Models 37-10-37-11

(Code 121) Service Bulletin 268
14unz
2nd I. F. and Discriminator Transformer Change:
Old Part New Part
(48) Transformer \qquad 32-2335 32-2362
This change is shown on Service Bulletin.

Runs

To improve the operation of the discriminator circuit. the transformer (48) wiring to the 6H6G is changed as follows:

Use Fig. 1, 6 H 6 G socket, of Bulletin 268 for reference. Interchange. \qquad .P_{1} and K 1
Also interchange the wires of resistors (65) and (66) on the terminal panel which is attached to condenser (63).

Run 4

The 6A8G tube is changed to self blasing as follows:
A resiator, 100 ohms. Part No. 33-1219 is connected in series with the 6 A 8 G tube cathode and a condenser . 01 meries with the $30-4479$ is used to bypass the resistor.
mid. Part No. $30-4479$ is used to bypass the resistor. white wire of audio switch (37) from the volume control center contact and connect it to the high side of Volume control; that is, the contact which is connected to condenser (58).

Old Part NevPart

Remove

Model 37-10 (81) condenser . 05 mfd......... Model 37-11 (81) condenser .03, $05 \mathrm{mfd} . .$. Model 37-11 (81A) condenser .03 part of 81 ..
$3615 \mathrm{SU} \quad 8326 \mathrm{SU} .05 \mathrm{mfd} ., 600 \mathrm{v}$.
3615 YU 8326 SU .05 mfd .600 v .

CORRECTION

Schematic Diagram, Fig. 4
The A. V. C. bias contacts of the R. F. transformers, shown as connected to D4 should be D3.

Lead No. 4 of R. F. transformer (33) is connected to the three contacts at D11 Instead of one.

Models 37-10-37-11

(Code 125) Service Bulletin 268-A
Run 2
Elect. Condenser Change-
(31) Elect. Cond. (16 mfd.) $\ldots \quad 30-2118 \quad 30-2194$ (18 mfd.)
Ran 3
Bleeder Resistor change to correct voltages of screens

Bleeder Resistor change to correct voltages of screens and oscillator.

37-10
Old Part New Part
(80) Resistor (10,000 ohms,

3 watt)33-310639
(83) Resistor (15,000 ohms,

3 watt)33-315639
(86) Resistor (51,000 ohms,
86) Resistor (51,000 ohms,
1 watt) $\cdots \cdots \cdots \cdots \cdots \cdots 33-351439$
(9000 ohms, 2 watt)

37-11
Old Part
(80) Resistor $(10,000$ ohms,
3 watt $) \ldots \ldots \ldots \ldots .33-310639$
$(32000 \mathrm{ohms}, 1 / 2 \mathrm{watt})$

New Part
3 watt)33-310639
33-275639
(83) Resistor (15,000 ohms,

3 watt)33-315639 33-310539
(86) Resistor (51,000 ohms,

1 watt)33-351439
(10000 ohms, 2 watt)
33-332439

Run 4

Base Compensation change-

	Old Part	New Part
(41) Condenser . 015 mfd. Bakelite..	3793 SU	$\begin{gathered} 36158 U \\ .05 \mathrm{mfd} . \end{gathered}$
R. F. Range Switch change-	Old Part	New Part
R. F. Range Switch.	42-1283	42-1314

Model 37-33
Rnn 4 Change
(12) 1 st I. F. Transformer.
(13) 2nd I. F. Transformer.
 ine second 1 . F. Transformer (13) has a tertiary winding which is connected in series with the 1D5G screen círcuit.

Model 37-34

Service Bulletin 262
Ran 2
(17) 1 st I. F_{F} Transformer........... The Ing which is connected in series with the 1D5G screen circuit.

Model 37-38

Service Bulletin 256
To prevent oscillation in the I. F. Circuit a tubular condenser, Part No. 30-4020 is connected from the screens of the 1C7G Det. Osc. and 1D5GI. F. tubes to ground

Part Changes

	Old Part	New Part
(15) 1st I. F. Transformer	32-2100	32-2296
(28) 2nd I. F. Transformer	32-2102	32-2298
The 2nd I. F. Transforme	a tertia	winding
which is connected in serie	D5G scr	n circuit.

Model 37-60
Tone Control Circuit Changea

Model 37-61

Service Bulletin 246
Tone Control Circuit Changes
(40) Bakelite Condenser OldPart NewPart (See Change No. 1) (41) Tubular Condenser .008 mfd.400 volt 8318SU

30-4112 8328 SU 00 volt $30-4317$ 600 volt

Model 37-62

Service Bulletin 274
Run 2
Screen resistor change to eliminate oscillation. Schematic No.

New Part
(11) Resistor 25,000 ohms, 1 watt 33-325439

33-332439
(32,000 ohms)

Model 37-89

Service Bulletin 247
Rnn 5
The I. F. Transformers were changed beginning with Run 5 as follows
Schematic

	No. Part	Old Part	New Part
	19) 1st I. F. Transformer.	32-2100	32-2274
	(20) 2nd I. F. Transformer	32-2102	32-2276
	24) Resistor 700 ohm	33-1220	33-1211
	The first I. F. Transform	No. 32	${ }^{400} \mathrm{Ohms}$
	abilizing winding which	in serie	with the
	suppressor grid of the 6 K	tube. Th	short or
	ellow colored lead is conn	the grou	dug and
	he long lead to the suppre		
	tun 6		
	To improve oscillator a	ge the	win
	istor:		
	15) Resistor 32000 ohms.	351339	33-370339
	one control conde	to hig	
	44) Condenser . 03 mfd .		8S
	45) Condenser . 008 mfd		ak
			d. Tubular

Model 37-116

(Codes 121, 122, 126) Service Bulletin 258
The following paragraph should be added to the IN TERMEDIATE FREQUENCY CIRCUIT adjustments Paragraph 4, after the last word equalize. Also, change the padder adjustment from 71S to 71P
differences betweent is used to compensate for slight differences between peaks. If the padder must be turned more than 9% of a turn in either direction to equalize the peaks, all I. F. padders should be carefully readjusted as given in paragraph 2 and 3 above."

Code 121-12:

Speaker Change

Speaker change from "W"-Part No. 37-1219 to "W4"Part No. 36-1284

W4-Part NOA

CIRCUIT DIFFERENCEA
Code 12: and 126 Antomatic Tuning Models
Code 126 Receiver differs from Code 122 only in the pushpuil audio output circuit.

In Code 126 the audio output circuit uses 6A5G cathode
type tubes.
A5G ${ }^{\text {A }}$ (128) is removed and the cathodes of the 6 A5G tubes grounded.

CONVERSION FOR 25 CYCLE OPERATION

 Code 125, 126See information on differences between Codes 121, 122 and 125,126 as given in Change Notice No. 5 , for Bulletin 258.

Model 37-610

Schematic No.
(51) Condenser .008 mfd .400
(Code 122) Service Bulletin 249 Old Part New Part
volt 30-4112

30-4317
.008 mpd., 1,000 volt

Model 37-610

(Codes 125, 126) Service Bulletin 249-B
Incorrect Part Numbera

(58) Power Trans. (115) volts, 50 to	-	Correet
60 eycles, Code 126)..............	32-7526	32-7626
Power Trans. (115 volts, 25 to 40 cy -		
cles, Code 126) ..	32-7527	32-7627

This correction is shown in Service Bulletin.

Model 37-611

(Code 121) Service Bulletin 252
Run 2
Filament voltage dropping resistor change. This change is shown on the service bulletin

Old Part New Purt
 33-3292

Kun 3
Tone control change. The correct Part No. 42-1224 is listed on the service bulletin.
Run 4
The following parts are changed, beginning with Run 4:
Schematic No. OldPart New Part
(18) Electrolytic Condenser $\left.\ldots . . . \begin{array}{c}30-2157 \\ (4-8 \mathrm{mfd}) \\ (10-10-2173 \\ \mathrm{mf}\end{array}\right)$
(19) Condenser . 01 mfd tubular... $\left.\begin{array}{r}(4-8 \mathrm{mfd}) \\ 30-4122 \\ (10-10 \mathrm{mfd} \\ 4989-\mathrm{DU}\end{array}\right)$
(44) Elec. Cond. ($10-20 \mathrm{mfd}$) $30-2166 \quad(.09 \mathrm{mfd}$ Dual $)$

Resistor (43), 33-3122 is now wired in the R. F. unit.

Run 5
To eliminate oscillation below 550 K . C., connect a resistor, Part No. 33-210339, 1000 ohms, in series with the red primary lead of the 2nd I. F. transformer (23) ; also connect a condenser 30-4123.05 mfd. irom the red wire contact to ground.
I. F. transformer changes are as follows:

Schematic No.
Old Part New Part
(20) 1st I. F. Trans. 32-2100 32-2296

This change can be identified by a small dab of orange paint on the under side of the I. F. unit.
The 2nd I. F. Transformer, Part No. 32-2298 has a tertiary winding which is connected in series with the screen grid of the 6 K 7 G I. F. tube. The short or colored rubber lead is connected to the screen of the 6 K 7 G and the long yellow lead to the screen supply. The primary and secondary leads are connected as shown on the schematic diagram.
CORRECTION
(30) Volume Control. $\begin{array}{ccc}\text { Incorrect } & 33-5158 & \text { Correct } \\ 33-5166\end{array}$

Models 37-620-37-630

(Codes 125, 126) Service Bulletin 251-A

Incorrect Part No.
(29) Resistor (700 ohms, 1/2 watt) Part No, 38-7834 should be 400 ohms $1 / 2$ watt, Part No. $33-1211$ Bakelite. $\begin{array}{ccc} & \text { Bulletin Correct } \quad \text { New Switch } \\ \text { Schenatle No. Incorrect Early inn Beginning } 2 / 15 / 3 \%\end{array}$ (69) R. F. Range

Switch ... 42-1245
42-1283
White an
Green Dot
Yellow and
Green Dot
The difference between the old range switch and new one is an additional contact and lug. A condenger Part No. $30-1044,35 \mathrm{mmfd}$ is wired from the lug to ground This places the condenser across the R. F. Transformer (24) primary

Model 37-623

Service Bulletin 259
Run 4
(28) 1st I. F. Transformer

Old Part New Part 30) 2nd \dot{H} Transformer...........32-2100 $\quad 32-2102 \quad 32-2296$ The 2nd I. F. Transformer (30) has a tertiary winding which is connected in series with the screen of the 1D5G tube.

Model 37-624

(40) 1 st I. F. Transformer 41) 2 nd 1 . Transformer

Service Bulletin 263 Old Part New Part 32-2100 32-2296 The 2nd I. F. Transformer (41) has a tertiary winding Which is connected in series with the screen circuit of the D5G I. F. tube.

Model 37-640

(Codes 121, 125) Service Bulletin 253 CIRCUIT DIFFERENCES
Code 125 differs from Code 121 in the R. F. unit only The same R. F. unit used in the $37-630$, Code 125 -Servic Bulletin 251A-is also used for Model 37-640, Code 125 Therefore, the schematic diagram and parts used in the R. F. unit shown in Service Bulletin 251 A apply to the
$37-640$, code 125 .

Model 37-641

(Code 121) Service Bulletin 265 Run 4

Shadowmeter changed to plug-in type Part No. 45-2308. Run 4-4
old Part New Part Condenser .25 mid. tubular.... $30-4446 \quad 30-4191$
(38) Transformer change-

This change can be identified by a small dab of orange paint on the under side of the I. F. unit
The 2nd I. F. Transformer, Part No. 32-2298 has a tertiary winding in series with the screen grid of its 6 K 76 I. F. tube. The short or colored lead is connected to the screen of the 6 K 7 G tube. The long yellow lead connects to the screen supply. The primary and secondary leads are connected as shown on the schematic diagram,
To improve operation of receiver at 18 megs, the following condensers are added:
30-1032 $\quad 250$ mmfd. from screen of det-osc. to ground. .1 mfd. condenser connects from B negative to

Model 37-641
See Supplement to

Run 1-2
To improve operation of Receiver at 18 megs., the following condensers are added 30-1032 250 mmfd . condenser from screen of det. osc. to 30-4455 . 1 mfd. Run 3 ground in the I. F. Unit.
Run 3
Resistor Part No. 33-1228, 33 ohms, 2 watts, shunted across pilot lamp to decrease voltage.

Range Switch changed and condenser added to improve performance on the broadcast range. See replacement

Shown on List

Incorrect Correct New Switch
(76) Range Switch (R. F.) 42-1245 42-1283 42-1314 A condenser, Part No. 30-1044, 35 mmfd. is connected condenser is wired from the additional lug on this new range switch to ground.

Model 37-650

Service Bulletin 254

Run 4

Beginning with Run 4, the following tone control condensers are changed to a higher voltage rating to prevent break down.

Schematic

Model 37-660
Service Bulletin 257
CORRECTION
The rectifler tube is shown on Fig. 1 and under the Electrical Specifications as 5 Y 4 G is incorrect. The correct Rectifier is 5X4G as shown on the Schematic Diagram Fig. 2.

Model 37-665

Service Bulletin 264

Run 3

Tone control condenser change to a higher voltage rating.

	Old Part	New Part
(65) Condenser (.05, . 03 mfd . dual bakelite)	3615 YU	$30-4380$
		-40-480.03 mid
part of 65)		8326 SU .05

Model 37-670

Service Bulletin 260
Range Switch Change to increase sensitivity.

> Early
> Production Production
(94) Range Switch (R. F.). 42-1212 42-1255
The difference in these switches is Red Orange Green ment of " D " wafer. In 42-1212 switches, condenser (11) is wired from D2 to D4 as shown on the schematic diagram. Condenser (11) on 42-1255 switches is wired from D10 to E10 and E10 is wired to F2. Lug D2 and D4 have been eliminated on $42-1225$ to separate the plate circuit of the 6 K 7 G and the grid of the 6 A 8 G tube.
The color markings of each switch is located on the sleeve holding the wafers together.

Model 37-675

Service Bulletin 261
Schematic No. Part Oid Part New Part (84) Magnetic Tuning Transformer 32-2217 32-2361

Model 37-690

(Code 121) Service Bulletin 267 Bias resistor (177) changed to eliminate noisy operation.
(177) Resistor three taps.

See Change No 1 tars. 33-3302 33-3311 two taps section of Part No. $33-3302$. The new resistor Part No $33-3311$ replaces the 3000 and 2240 ohm sections of Part No. 33-3302.
To reduce rumble caused by extreme low frequency station response, the following condenser and resistor is changed.
Schematic No. Gld Part New Part
(100) $\quad 490.000$ ohm $33-449339$ 33-399339

12 m . 13 mfd . 33-3302, which were changed to fesistor (177), Part No. Change Notice No 1 , are now replaced with bakelite resistors as follows

Old Part

New Part
33-3027, 75 ohms-flexible $33-1229,75$ ohms-bakelite 33-3121, 300 ohms-flexible $33-1214,300$ ohms-bakelite Schematic No.
(197) Field Coil CBz

Shown on Bulletin as
37-3739

New PHILCO Model 905 PORTABLE SOUND AMPLIFIER

High-Power

Two Speakers

3-Purpose

Crystal
Microphone

Every radio dealer and service organization should have one of these new portable amplifiers, (1) For demonstrating its many valuable and practical uses to prospective purchasers, (2) For advertising his own business, and (3) For rental purposes to business, charitable, social, and religious organizations. A splendidly engineered, ruggedly-built, high performance unit. . . . Philco quality and dependability throughout.

High-gain high-power amplifier conservatively rated at 10 watts undistorted output. Two eight-inch special perma-dynamic speakers covering full frequency range-one in each half of case -each supplied with 35^{\prime} of flexible two-conductor rubber covered cable.

High-quality crystal microphone with collapsible chromeplated extension stand, usable in any one of the three standard positions. Microphone is supplied with 25^{\prime} of special high-impedance microphone cable.

Control switch and receptacles for speaker and microphone plugs conveniently located on front panel of amplifier case. Separate positions for "voice" and "music" permit best reproduction of any type program.

Additional "phono" position provides for reproducing records.

REAR VIEW COMPLETELY ASSEMBLED

Philco Radio \& Television Corporation PIHLADELPHIA, PA.

PHITLCO Uniwersal Bakelite Condensers

SERVICE BULLETIN No. 289 for members of RADIO MANUFACTURERS SERVICE A PHILCO Service Plan

HIMS bulletin contains the complete list of Philco Black Bakelite "By Pass condensers, New Universal types, disconinued types wist
The method of identifying the lugs to which he sections are wired in the New Universal and original type bakelite condensers differs. Two diagrams, Figs. 1 and 2, show these lug Trangements and are referred to in the columns listing the various condensers.

UNIVERSAL LUG ARRANGEMENT

The Universal Condenser part mimbers ar composed of four numerals and two or thre letters following the mbmerals. This coiding system indicates whether the contenser is a single or twin section; contains two condensers of different values; grounded or ungrounded to the metal mounting hole lug or contains high or low melting point wax.

Using Fig. 1 for reference all part nos. with the same four numerals have the same capacity between lugs 1 and 3. The first letter following the numerals indicates the capacity between lugs " 1 " and " 2 ", and the second letter whethe: the mounting hole lug is grounded ("G") or ungrounded ("U'). If the first letter is ("D") two condensers of the same value are connected between " 1 " and ", 2 " and " 1 " and ' 3 '". If the first letter is "S ${ }^{\text {" " a single condenser is used }}$ between lugs " 1 " and " 3 ". If the first letter is other than " S " or " D "; example " E ", two sections of different capacities are used. The lug connections of each section are shown under the "Capacity Wiring Lugs" column opposite the gart number.

Conclensers using higit melting point wax have an additional letter " O " placed between the mumerals and the last two letters of the above code exmple ${ }^{-3165-O D G " \text { If the }}$ wax is of the standard type, the " O " is onitted.

Discontinued condensers with the new anversal replucements and standard tybe condenser still carried in stock are listed on flatge two.

Fig. 1. Universal Wiriag

Philco Universal Black Bakelite Condensers

Use Fig. 1 for Wiring Lug Identification

PART No. 3615
Working Voltage 400

Part No.	No. Sections	Capacity Wiring Lugs	
		$1 \& 3$	$1 \& 2$
3615-ODG	2	05	. 05
3615-ODU	2	05	. 05
3615-OSG	,	.05	
$3615-\mathrm{OSU}$,	.05	
- $\begin{aligned} & \text { 3615-XG } \\ & 3615 \text {-YU }\end{aligned}$	${ }_{2}^{2}$.05	. 03

PART No. 3793
Working Voltage 600

3793-ODG	2	.015	.015
$3793-\mathrm{ODU}$	2	.015	.015
373-OSU	1	.015	\cdots
3793-SG	1	.015	\cdots

PART No. 3903
Working voltage 600

3903-DG	2	.01	.01
3903-DU	2	.01	.01
3903-LU	2	.01	.006
3903-ODU	2	.01	.01
$3903-\mathrm{OSG}$	1	.01	\cdots
3900-OSU	1	.01	\cdots

PAR'T No. 4989
Working Voltage 200

4989-CU	2	10	. 05
4989-FG	2	.10	. 01
$4989-\mathrm{OFU}$	2	10	. 01
4989-HG	2	10	. 15
4989-OIJG	2	. 10	10
$4989-\mathrm{ODU}$	2	. 10	. 10
4989-OSG	1	. 10	\ldots
4989-SU	1	. 10	

PART No. 6287
Working Voltage 200

$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { No. } \\ \text { Cab. } \\ \text { Sections. } \end{gathered}$	Capacity Wiring Lugs	
		183	$1 \& 2$
6287-CU	2	. 15	. 05
$6287-\mathrm{ODG}$	2	. 15	. 15
$6287-0 D U$	2	15	. 15
6287-SG	1	. 15	
6287-SU	1	. 15	

PART No. 7296
Working Voltage 1000

$7296-\mathrm{DG}$	2	.002	.002
$7296-\mathrm{ODU}$	2	.002	.002
7296 SG	1	.002	\cdots
$7296-\mathrm{SU}$	1	.002	\cdots

PART No. 7442
Working Voltage 1000

$7+42-1) \mathrm{G}$ $7442-\mathrm{SG}$	2	.005	.005

PAR'T No. 7625
Working Voltage 1000

$7625-\mathrm{DG}$	2	.006	.006
$7625-\mathrm{DU}$	2	.006	.006
$7625--\mathrm{GG}$	1	.006	\cdots
$7625-\mathrm{SU}$	1	.006	\cdots

PAR'1 No. 7653
Working Voltage 600 Volts

$7653-\mathrm{DG}$	2	.025	.025
$7653-\mathrm{IV}$	2	.025	.025
$7653-\mathrm{SG}$	1	.025	\cdots
$7653-\mathrm{OS}$	1	.025	\cdots

PART No. 7762
Working Voltage 1200

$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { No. } \\ \text { Cap. } \\ \text { Sections } \end{gathered}$	Capacity Wiring Lugs	
		1*3	$1 \& 2$
7762-DG	2	001	001
$7762-\mathrm{I}) \mathrm{U}$	2	(0)1	. 001
7762-FiU	$\frac{2}{2}$. 011	. 011
7762-OEU	2	(6)1	015
$7762-\mathrm{OSU}$	1	. 001	

PART No. 8035
Working Voltage 1200

$8035-\mathrm{EL}$	2	.00011	.015
$8035-\mathrm{ODG}$	2	.00011	.00011
$803-\mathrm{ODOU}$	2	.00011	.00011
8035 SG	1	.00011	\cdots
$8035-\mathrm{SU}$	1	.00011	\cdots

PART No. 8174
Working Voltage 1200

$817+1 \mathrm{I}$ $817+1) \mathrm{U}$ $817+\mathrm{I}$	2	.007	.007
$8174-\mathrm{SG}$	1	.007	.007

PART No. 8317
Working Voltage 1000

PART No. 8318
Working Voltage 400

8318 -DG	2	03	.03
$8318-101$	2	.03	0.3
$8318.05 G$	1	.03	\cdots
$8318-\mathrm{SU}$	1	.03	\cdots

Universal Bakelite

Condensers

Continued

PART No. 8320
Working Voltage 600

Part No.	No. Sections	Capacity Wiring Lugs	
	$1 \& 3$	$1 \& 2$	
$8320-\mathrm{DG}$	2	.003	.003
$8320-\mathrm{DU}$			
$8320-\mathrm{SG}$	1	.003	.003

PART No. 8325
Working Voltage 600

PAR'T No. 8326
Working Voltage 600

PART No. 8327
Working Voltage 200

Fig. 2

Miscellaneous Condensers

Condensers Using the Lug Arrangement
Shown in Fig 2

Condensers With Internal

 ResistorsLug Arrangements shown in Fig. 2

Part No.	Cap. Mfd.	Wire Kesis. Ohms	Resis. Wiring Lugs	Cond. Wiring Lugs
3615-K	05	250	3-5	5-8
3615-X	. 05	150	1-7	1-5
3615-Z	. 05	250	5-7	1-5
3615-AS	05	250	3-6	$1-6$
4989-E	. 09	250	5-7	1-5
4989-L	. 09	200	3-8	$4-8$
4989-K	. 09	200	3-8	4-8
4989-S	Twin. 09	200	2-3	3-6
4989-W	. 09	200	1-7	1-6
4989-\%	. 04	200	5-7	$1-5$
4989-A1	09	200	7-8	6 6-8
4989-1G	. 09	300	1-7	1-6
6287-D	. 15	200	2-3	3-6
6287-E	. 15	200	1-4	$1-3$

Part No.	$\begin{gathered} \text { Capacity } \\ \text { Mfd. } \\ \text { Each } \\ \text { Section } \end{gathered}$	Cond. Wiring Lugs	Part No.	Capacity Mfd. Each Section	Cond. Wiring Lugs
6287-G	$\begin{aligned} & .05 \\ & .15 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 7-8 \end{aligned}$	8035-D	$\begin{aligned} & .015 \\ & .0001 \end{aligned}$	$\begin{aligned} & 3-4 \\ & 1-4 \end{aligned}$
6287-K	15 .09	$\begin{aligned} & 1-3 \\ & 1-5 \end{aligned}$	8035-H	$\begin{aligned} & .015 \\ & .0001 \end{aligned}$	3-5 $1-3$
6287-M	.05 .15	1-4	8174-B	$.0007$	$\begin{aligned} & 1-6 \\ & 1-3 \end{aligned}$
6287-N	.09 .15	2-4	8206- B	10	2-6
6287-P	.09 .15	2-4	8317-13	. 000025	1-6
6287-S	$\begin{array}{r} .09 \\ .15 \end{array}$	2-6	8317 -C	$\begin{aligned} & .00025 \\ & .00025 \end{aligned}$	$\begin{aligned} & 6-8 \\ & 7-8 \end{aligned}$
7296-G	$\begin{aligned} & .05 \\ & .002 \end{aligned}$	$\begin{aligned} & 1-3 \\ & 1-5 \end{aligned}$	8318-E	.03 .05	1-6
729t-H	$\begin{aligned} & .01 \\ & .002 \end{aligned}$	$\begin{aligned} & 1-3 \\ & 1-5 \end{aligned}$	8320-B	. 003	2-6
7442-B	. 005	2-6	8320-C	$\begin{aligned} & .003 \\ & .003 \end{aligned}$	$\begin{aligned} & 1-5 \\ & 1-7 \end{aligned}$
7625-D	$.015$	$\begin{aligned} & 3-4 \\ & 1-4 \end{aligned}$	8322-B	$.0014$	$\begin{aligned} & 1-3 \\ & 1-6 \end{aligned}$
7625-F	$\begin{aligned} & .001 \\ & .006 \end{aligned}$	$\left[\begin{array}{l} 2-7 \\ 2-6 \end{array}\right.$	8323-B	$\begin{aligned} & .07 \\ & .03 \end{aligned}$	1-7

Discontinued Bakelite Condensers with Replacements

Original Part ${ }^{N}$ No.	Replacement	Original Part No.	Replacement	Original Part No.	Keplacenent	Original Part No.	Replacement
3615-B	3615-AS	3615-BH	3015-OSG	3903-S	3903-DG	4989-A ${ }^{\text {] }}$	
3615-C	3615-AS	3615-B]	3615-OSU	3903-T	3903-OSU	4989-AK	4989-ODG
3615-D	${ }^{3615-O S G}$	3615-BK	3615-OSG	3903-U	3903-SG		
3615-F	3615 -OSU	3615-BL	3615-OSG	3903-W	3903-OSU	6287-B	6287 -SU
3615-G	3615-OSU	3615-BN	3615-ODG	3903--	3903-OSU	6287-C	6287-1)
3615-Hi	3615-OSU	3615-BP	$3015-\mathrm{OSU}$	$3903-\mathrm{Z}$	3903-OSU	6287-1.	6287-ODU
3615-J	3615-OSG	3615-BR	3615-OSU	3903-AA	3903-SG	${ }_{6}^{6287-5}$	6287-ODG
3615-L	3615-OSG			$3903-\mathrm{AB}$	3903-OSU	6287-i	6287.00 Cu
3615-M	3615-OSU	3793-B	3793-OSU	3903-AC	3903-DG	6287 -R	6287.0 ODU
$3615-\mathrm{N}$	3615-OSG	3793-C	3793-OSU	$3903-\mathrm{AD}$	3903-OSU	6287-T	6287-ODU
3615-P	3615-AS	3793-D	3793-OSU	$3903-\mathrm{AE}$	3903-SG		628-0DU
3615-R	3615-AS	3793-E	3793-ODG	3903-AF	3903-SG	7625-B	7625-SU
3615-S	3615-OSG	${ }^{3793-\mathrm{F}}$	3793-OSU	3903-AG	3903-SG	7625-C	7625-SU
3615-T	${ }_{\text {3615-X }}^{\text {3615 }}$-OSG	3793-G	3793-OSU	3903-AH	3903-SG	7625-E	7625-SU
3615-W	3615-OSG	3793-J	3793-OSU	$3903-\mathrm{AJ}$ $3903-\mathrm{L}$	3903-DU	7625-G	7625-SG
3615-Y	3615-X	3793-k	3793-ODG	3903-AL	3903-OSU	7625-H	$7625-\mathrm{SU}$
3615-AA	3615-OSG	3793-L	3793-ODU	$3903-\mathrm{AM}$	3903-OSU	7625-J	7625-SU
3615-AB	3615-OSG	3793-M	3793-ODU	3903-AN	3903-OSU	7296-B	7296-SU
3615-AC	${ }^{3615-O S G}$	$3793-\mathrm{N}$ $3793-\mathrm{P}$	3793-OSU	$3903-\mathrm{AP}$	${ }^{3903-O S U}$	$7296-\mathrm{C}$	7296-SU
3615-AE	3615-OSG	3793-R	3793-ODG	3903-AR	3903-OS	7296-D	7296-SG
$3615-\mathrm{AF}$	3615-ODU	3793-S	$3793-\mathrm{OSU}$	4989-B	4989-ODG	7296-F	7296-DG
3615-AG	3615-OSG	3793-T	3793-OSU	4989-C	4989-ODG		
3615-AH $3615-\mathrm{AJ}$	3615-OSG	$3793-\mathrm{U}$	3793-OSU	4989-D	4989-SG	7762-B	7762-OEU
$3615-A)$ 36	3615-OSG	3793-W	${ }^{3793-S G}$	4989-F	4989-SG	7762-C	7762-SU
3615-AL	3615-AS	$3793-\mathrm{Y}$	3793-OSU	- 4989 - ${ }^{\text {4989-G }}$	4989-ODGG	7762-D	${ }^{77182-S U}$
3615-AM	3615-ODG	3793-Z	3793-SG	4989-J	$4989-\mathrm{SU}$	${ }_{8318-\mathrm{C}}^{8318-\mathrm{C}}$	318-SU
3615-AN	3615-OSG	$3793-\mathrm{AB}$	3793-OSU	4989-K	4989-ODU	7653-B	7653 -SU
3615-AP	3615-ODG	$3793-\mathrm{AC}$	3793-OSU	4989-M	4989-ODU	7653-C	7653-DG
3615-AU	3615-OSG	3793-AD	3793-ODG	4989-N	4989-SG		
3615-AW	3615-OSG		373-ODG	${ }^{4989-\mathrm{P}}$	$4989-\mathrm{ODU}$	$8035-\mathrm{B}$ $8035-\mathrm{C}$	8035-ODG
3615-A ${ }^{\text {d }}$	3615-OSU	3903-F	3903-OSU	4989-U	4989-SU	8035-E	8035-ODU
3615-AY	3615-OSG	3903-G	3903-OSU	4989-X	4989-W	8035-F	$8035-\mathrm{EU}$
3615 - BA	3615-ODU	${ }_{\text {3 }} 3903$-J	3903-OSU	$4989-Z$ $4989-\mathrm{AB}$	4989-ODG	8035-G	8035-ODU
3615-8B	3615 -OSU	$3903-\mathrm{K}$	3903 3-SG	$4{ }^{4989-A C}$	4989-ODG	8035-M	8035-ODG
3615-BC	3615-OSG	3903-L	3903-OSU	4989-AD	4989-ODG	$8035-\mathrm{N}$	$8035-\mathrm{ODG}$
3615-BD	${ }^{3615-O S U}$	3903 -M	3903 -OSU	$4989-\mathrm{AE}$	4989-ODG	8035-L	8035-ODG
$3615-\mathrm{BF}$	3615-OSU	${ }_{3}{ }^{3903-\mathrm{N}}$	3903-OSU	+ $498989-\mathrm{AF}$	4989-ODU	$8035-\mathrm{R}$	$8035-\mathrm{ODU}$
3615-BG	3615-ODU	3903-R	3903-OSU	+		8035-T	8035-ODU

PHILCO RADIO AND TELEVISION CORPORATION

Parts and Service Division

PHILCO TRANSITONE
 SERVICE BROADCAST

MODEL 816 RECEIVER

T
The Philco Transitone Model 816 is Philco's newest automobile radio. It is a highly developed superheterodyne single-unit type Receiver with all the outstanding features required in such a fine instrument. THE NEW RECEIVER IS EQUIPPED WITH AN ADJUSTABLF, ANTENNA STAGE, WHICII MAKFS IT POSSIBLE TO OPERA'TE THE RECEIVER AT MAXIMUM EFFICIENCY ON ANY ROOF-TYPE OR UNDER-CAR TYPE ANTENNA
The Receiver, speaker and full-wave Pinnco Vibrator are housed in a rugged, compact, fully shielded container, which is designed for quick and easy installation on the dash of all automobiles. When installed in the car, the loud speaker faces the front seat, so that the extremely powerful l'maco electro dynamic speaker, concealed behind an artistic grille, delivers its fuil-toned reproduction toward the occupants of the car with utmost fidelity.

All tubes used are the latest Philco high-efficiency tubes, designed especially for automobile radio.
Phinco's system of automalic volunie control used in this Receiver not only gives that smooth, elastic control which counteracts fading while driving along and prevents blasting of local stations, but also subdues the harsh interference usually present between stations.

The new Receiver is ALI-EIECIRIC, operating entirely from the car battery systeni. The full-wave Philco Vibrator is built in as an integral part of the Receiver

Interference filters to cut out the motor interference set up by the car ignition system and specially designed shielding make the lieceivers especially easy to install.

The Model 816 Receiver is furnished with the new streamine "wide vision" control which can be installed on the edge of the instrument board. 'This control unit is exceptionally att ractive and is designed to blend harmoniously with the instrument boards of practically all cars. 'The circuit and layout of the Models $816 \mathrm{~B}-816 \mathrm{C}$ and 816 P Receivers are the same as the Model 816 lowever, these Receivers are equipped with a special "customed" control unit which matches the instrument board fittings, and is designed for installation in the space provided for radio control in the instrunent board of the 1936 Buick, Chevrolet and Pontiac cars

I. F. TRANSFORMERS AND PADDERS

The I. F. transformers are assembled complete with padding condensers.

Both the primary and the secondary padders are placed side by side in the top of the transformer shield can. The adjusting serews are accessible thru the holes in the top of the shield. (See ligure 2)

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Figure 1

figure 1
If replacements are ever necessary, replace the entire coil assembly, :32-1928 for the tirst 1. F. stage and 32-1929 for the second i. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

MODEL 816 ADJUSTMENTS

All padding adjustments are carefully made at the factory and ordinarily no readjustments are necessary. However, when readjustments are required, the procedure given below must be followed in detail.

Equipment

Fully charged heavy duty storage battery or 6-volt power pack, 0i8. 1 Plileo Set Tester, 3Itit Padding wrench, 27-7159 Paclding screw driver.

General

OUTPU'T ME'TER-The output neter must be connected by means of an allapter to the plate of the type 41 output tube and to the Receiver chassis.

SIGNAL GENERATOR-With the Receiver and signal gencrator set up for operation at the prescribed frequency, tum the Receiver volume control on full and set the signal generator attenuator so that a half scale reading is obtained on the output meter. The signal in the speaker should be audible but not loud.

The shielding on the signal generator output lead must be connected to the Receiver housing.

Procedure

1. F.-Set the signal generator at exactly $260 \mathrm{~K} . \mathrm{C}$. Connect the generator lead to the grid cap of the 78 I. F.

Figure 2
tube in series with a .I infd. condenser (without removing the grid cap)

Adjust the secondary screw padder (27) on the second I. F transformer for maximum reading on the output meter. Then adjust the primary screw padder (25) for maximum reading. (See Figure 2 for location of padders).

Remove the gencrator lead from the 78 tube.
Connect the generator lead to the grid cap of the 6A7 tube in series with a 1 mfd. condenser (without removing the grid cap). Adjust the secondary screw padder (24) on the first I. F. transformer for maximum reading on the output meter. 'Then adjust the primary screw padder (22) for maximum reading. (See Figure? for location of padders).

HIGIl FREQUENCY AND R. F.-After padding the first I. F. stage remove the generator lead from the $6 A 7$ tube. Set the signal qenerator at 1550 K . C. and then connect the generator lead to the grid cap of the 78 R . F. tube in series with a 1 mfd . condenser (without removing the grid cap)
'Iurn the tuning condenser plates out of mesh as far as they will gro. With the tuning condenser in this position, adjust the high frequency padder (16) and the K. F. padder (11) until

NOTE: When the Receiver is installed in a car having a top antenna, under-car antenna, spare wheel antenna or antenma baving a sumilarly low relative capacitance ($50 \mathrm{~mm} \mathrm{~m}^{2}$. to 450 mmf .) use connector plug in "A."

When the Receiver is installed in a car having a metal insert top antenna. insulated door antenna, insulated trunk cover antenna or antenna having similarly high relative catacitance (450 mmf . to 2500 mmf .) use condenser plug in " B "

Figure 4
the maximum reading is obtained on the output meter. 'This is the true setting for $1550 \mathrm{~K} . \mathrm{C}$., 155 on the dial scale.

LOW FREQUENCY-Turn the tuning condenser plates in mesh to approximately 580 K . C., 58 on the dial scale and set the signal generator at 580 K . C. Roll the tuning condenser and adjust the low frequency padder screw (20) for maximum reading on the output meter.

HIGI FREQUENCY RE-ADJUSTMENT-Turn the tuning condenser plates out of mesh as far as they will go and set the signal generator at 1550 K . C. Then adjust the high frequency padder (16) again for maximum reading on the output meter.

ANTENNA-Connect the generator lead to the antenna cable assembly (made up of Part No. L1915 loom, 1-27-713:3 terminal and 40 inches of 16 strand No. 30 wire), using a 200 monfd. condenser in series between the two leads. Place the connector plug in the antenna socket on the Recejver. Plug the cable into the antenna socket.

Turn the tuning condenser in mesh to 580 K . C., and adjust the signal generator for 580 K . C. Adjust the Antenna coupling condenser (4) for maximum reading

Turn the tuming condenser to 1400 K . C. and set the generator for 1400 K . C. Adjust the padders (11) and (6) for the maximum reading on the output meter.

When the antenna slage adjustment is made with the Receiver installed in the car, the Receiver antenna lead must be connected to the car antema in the usual manner. The signal generator output lead should be connected to a wire placed near the car antenna but not connected to it.

When installing the radio in a car, follow the installation instructions carefully. The correct connector must be used in the antenna lead comnector in the Receiver and the antenna coupling condenser must be adjusted to the car antenna.

MODEL 816 PARTS LIST

	No. Description Part No.	No. Description	Part No
	Antenna Choke 38 - 515	(49) On-0ff-Switch (816)	0
	Condenser (6000 mmft) . . . 30-4445	(13) Pilot Lamp	
	Antenna Transformer32-1984	(5i) Condenser (450 mmid .)	35
	Antenna Coupling Condenser .31-6082	(51) Condenser (.25 mifd.)	
	Tuning Conderser31-1767	(52) "A" Choke	
	First Padder (on 'tun. Cond.)	(33) Condenser (250 mmid.)	3-1032
	Resistor (70,000 ohms) . .33-370334	(54) Filament Choke	2-1930
	Coudenser	(55) Yibralor Choke	
	(.1-.25-.25-.5 mtd.) ...30-4374	(36) Condenser (.5 mfil.)	047
) liesistor (400 ohmis)33-1211	(3i) Vibrator	36
	(1) F. Transtomer 32-1985	(38) Condenser (.02 mfd.)	9
	1) Sicond Parder (on Tun. Cond.)	(99) Resistor (300 ohms)	33-3130
) Resistor (70,000 ohms) . 33-370334	(60) Hesistor (200 ohms)	-1210
	(Condenser (765 mmfd) . . . 30-1069	(61) Condenser (.05 mitd.)	30-444
	Condenser (.05 mitd.) $30-1144$	(10) Power Transformer	
	Resistor (1,000,000 ohmis) 33-510344	(133) Condenser (. 01 mfd)	0-4381
) Third Padder (on Tun. Cond.)	(84) Filter Choke	
	(Oscillator Transformer32-19R6	(155) Pilter Courtenser (4-4	38-7684
	Condenser (950 mmfd.)30-103)	(69) R. F. Choke	32-1932
	(9) Resistor (51,000 ohms) . .33-3513+4	(6i6) Condenser (250 mmfd)	032
	(0) Low Frequency Padder31-6083	Four Prong Socket	-60.4
	1) Resistor (45,000 ohms) . $33-3-5344$	Fire Prong Socket	27-6035
	27) Padder (Pri. 1st I. F. lrans.)	Six Prong Socket	7-6036
	First 1. F. Transiormer $32-$	Seven Prong Socket	7
	Padder (Sec. 1st I. F. Trans.)	Clamns (Spuaker Mig.	131
	Padder (Pri. 2nd I. F. Trans.)	Speater ('able	
	(4) Socond I. F. Transtormer32-1929	Control Assembly (816)	1
	Padder (Sec. and J. F. Trans.)	Scale Assembly	
	8 Condenser (250 mmid.) 30-1032	Interferenee Condenser	
	(9) Resistor (25,000 ohms) . 33-325344	(1/2 mifd.)	
	(9) Condenser (110 mmid) 30-1031	Distrihut or Resistor	196
	(1) Volume Control	Tuning and Volume Shaft	5
	(350,600 ohms) $33-5148$	Te, [solt (Receiser Mtg.)	28-6161
	Condenser (. 01 mfd) $30-412 \mathrm{t}$	Nuts (Receiver Mtg.)	518A
	(3) Resisior (32,000 olims) ..33-332 133	Brackel (Control Mtg.)	9-3111
	9) Resisior (20,000 ohms) . 33-32033 \ddagger	Fuse	
	5 Condenser (01 mfd) $30-4124$	Fuse Insulator	
	(4) Resislor (600 ohmis)33-1212	Antrnna Loom Assembly	
	()Resistor ($1.000,000$ ohms) 33-510344	(816)	1
	88) Resistor (250,000 ohms) .33-421344	Connector Plag	123
	9) Condenser (250 mmifi.)30-1032	Connector Plug Insulator	27-8199
	(0) Condenser (01 mtd .) ...30-4145	Condenser Connector	30-4112
	(1) Resistor (500.000 ohms) .33-449344	Control Assembly (816B-	42-5561
	2) Condonser (250 mmfd.)30-1032	Control Assembly (816P)	42-5562
	(3) Resistor (250,000 ohms) .33-12 1314	Scale Assembly (816B-C)	12-5570
	4. Condenser (1000 mmifl) . . $30-4185$	Scale Assembly (816P)	42-5540
	5 Output Transformer32-i495	Kınob (816P)	27-4299
	(10nt ${ }^{4}$ and Voice Coil 36-3526	Knoh (816B-C)	27-4288
	(i) Field Coil Assembly32-9236	Knob (816)	27-4289
	(46) On-0ff-Switch (BCP)42-1159	Knob Base	2S-3698

PHILCO TRANSITONE SERVICE BROADCAST

FEBRUARY 20, 1937

NOTE: When the Receiver is installed in a car having a top antenna, under-car antenna, spare wheel antenna or antenna having a similarly low relative capacitance (50 mmf . to 450 mmf .) use connector plug in " A "
When the Receiver is installed in a cal" having a metal insert to 1 , antenna. insulater door antenna, insulated trunk cover antenna or
artenna having similarly high relative capacitance (450 mmf . to 2500 mmf . use condenser plag in " B ".

MODEL 827 PARTS LIST

Descrip:ion

Anternat Choke .

 antrenser (. 05 mid.Papt No. No. Description Tumina Transtormet Tuning Condelises

38-8651 (41) Output Transionmer $32-2516$
$: 1-1930$.) Firsi l'adder (on tum. cond.) . Int (m)

Compensating Condense. Condense

(.1-25-2.25-5 mica.).

 Resistor (t.50 ohus)R. \&r. Tansformer -608.)

$.30-4415$

$30-4415$
$33-1218$ Recond l'alder (on tun. cond.) Resision (70,000 ohms) ..33-3-0344
 Condenser (.0.5 mfil.) ...3615-08 lhthitd l'adder (on tun. cond.) Oscillator Transtormer32-2308 Condenser (2.50 manfi.) (.30-1032
Lov Rerqumey J'idder Resistor (99,000 ohnis) $\quad .33-3493+\frac{1}{4}$ Resisior ($1,000.000$ ohms) 33-z103!4 Resistor (45,000 ohms) ..33-3453+4 Padder (J'ri. IS1 I.F. Crans.) 1'adder (Sec. 1st 1. F. Trants.)
 Padder (Sec 2nd I.F. Thans. Condense: (250 mmidd) ...30-1032 Resistor (25.000 nhmis) -33-32.53:4 Condenser (. 01 mfl) $\quad 39013-0 \mathrm{SU}$ Resistor ($1,000,000$ ohms) $33-5103+4$) Volume Control

$$
(350,000 \text { ohms) }
$$

$$
\text { (350,000 ohms) Condenser }(110 \mathrm{mmfd}) \text {) }
$$

$33-5148$
$30-1031$ Resist or (6100 ohms)30-1031 Condenser (.01 mfd.) $\cdots 3903-0 \mathrm{sg}$
 Resis:or (250,000 ohms) (3.3-332 331 (1) Resistor (250,000 ohms) $\quad .33-42+344$ Resistor (500,000 ohms) $33-4+4344$ Condenser (.01 mad. ...3903-0s Condenser (4000 mmfd.) $\quad 30-4185$

Condernser (.025 mid.)

 Condenser (250 mmid (51) Tone Control Switeh Complete Speraker (CD) Compiete Speatiol (38) Ond Oilot Latmp

(35) Condenser (250 mmid.)

 Condenser (.5 mfit.) " N "' Choke" Condenser Che Filament Cholie Contenser (.5 mutd.) (2) Condenst (.05 mid Resist or (20 ohms) Condensel $(\mathbf{7}, 500$ mimfl.) Filter Choke Fille Condensu ($4-8$ mfle. $32-7.5+5$ Condensen (250 mmid.) - B' Choke Foul Prong socket Fiue l'ront socket Six Prong swehet sewen Irong socket. Tuming d Volume Fnob On \& Of Knub. l'ilo1 Lamp Assembly Scate dssembly Tuning \& Volume Shaft Tone Contrul Shat Conirol Assembly Distribut Rer Resistor
lnterfirence Condenser linterference Condens Antend Condenser Antema Fuse.

Part No.

Part No.
32.7815

32-1:154

$\begin{array}{r}31-1032 \\ 3+2086 \\ \hline\end{array}$ $\begin{array}{r}3+3.3586 \\ 63-104 \mathrm{c} \\ \hline\end{array}$ 6.73-11su $\underbrace{32-1+64}$ $\begin{array}{r}33-10102 \\ 42-12,5 \\ \hline\end{array}$ $\begin{array}{r}42-124.5 \\ 36-3.397 \\ \hline\end{array}$ | $36-1206$ |
| :---: |
| $4-1218$ | + $+2-1318$

$31-3040$
$311-1032$
3 30-1015 $.33-160^{3}$ ${ }_{30}-1032$ $32-2585$ 32-2039 $30-4015$ $30-4+4$ 33-0203+1
$3-7550$ $30-4+20$
$.32-75+5$ $30-2150$ $.30-1032$
$32-1281$ 41-3170-2 $11-3170-3$
$27-5011$. $27-601$! $.27-51835$ $.27-611310$ $.27-6018$. $27-4-521$ 3×-734 $42-511$
$28-81+1$ $28-8 i+0$
$1-25157$ $1-261$
49.113 $43-113$
$33-1196$ $30-11007$
$.30-400$ $.30-4007$
$.30-4112$ $.28-6123$ No

No,
(61) RECTIFFER, (68) (38) (B) TBTU日E R.A.TTU日E (B) (3) (17) (2)ANTENALEAD (64) (65) (57) (64)(56) (55) (69) (35)(3) (34) (20)(14)(13) (12) (21) (10) (32) (1) (7)
 Fuse Insulator Fuse Insulat
Tee Bolt

Figure 2
Pari No. No. 23-iT39 Nu1 $21-1729$
$28-6161$

Description receiver llousing

Part No. W-518

I. F. TRANSFORMERS AND PADDERS

The I. F. Transformers are assembled complete with padding condensers.

Both the primary and the secondary padders are placed side by side in the top of the transformer shield can. The adjusting screws are accessible thru the holes in the top of the shield. (See Figure 4).

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Figure 3.

If replacements are ever necessary, replace the entire coil assembly, $32-2026$ for the first 1. F. stage and $32-202$ for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

MODEL 827 ADJUSTMENTS

All padding adjustments are carefully nade at the factory and ordinarily no readjustments are necessary. However, when readjustments are required, the procedure given below must be followed in detail.

Equipment

Fully charged heavy duty storage battery or ti-volt power pack, 048 A or 099 Philco Set 'lester, 3164 Padding wrench, 27-7159 Padding screw driver.

General

OUTPUT METER - The output meter must be connected by means of an adapter to the plate of the type 41 output tube and to the Receiver chassis.

SIGNAI, GENERATOR - With the Receiver and signal generator set up for operation at the prescribed frequency, turn the Receiver volume control on full and set the signal generator attenuator so that a half scale reading is obtained on the oulput incter. The signal in the speaker should be audible but not loud.

The shielding on the signal generator output lead mus! be connected to the Receiver housing.

Procedure

I. F. - Set the signal generator at exactly $260 \mathrm{ki} . \mathrm{C}$. Connect the generator lead to the grid cap of the is 1. F. tuhe in series with a 1 mfd. condenser (without romoviny the grid (ap).

Adjust the secondary screw padder (27) on the second 1. F. transfimmer for naximum reading on the output meter. Then adjust the primary serew padder (25) for masimmom reading. (See Figure 4 for location of padders).

Remove the generator lead from the 78 tube.
Connect the generator lead to the grid cap of the $6 A 7$ tube in series with a 1 nifd. condenser (without removing the grid cap). Adjust the secondary screw patder (24) on the first 1. F. transfomer for maximum reading on the output meter. 'Then adiust the primary screw padder (22) for maximum reading. Readjus! padders (25) and (27) with the generator lead connected to the type 6A7 tuhe. (See Figure 4 for location of padders).

HIGH FREQUENC' AND R. F^{*}. - After padding the first I. F. stage remove the generator lead from the 6A7 tube.

Set the signal generator at 1550 K . C. and then connect the wenerator lead to the grip cap of the 78 K . F . tube in series with a .1 mfd . condenser (without removing the grid cap).

Turm the tuning condenser plates out of mesh as far as they will go.

With the funing condenser in this position, adjust the high frequency padder (15) and the R. F. padder (11) until the maximum reading is obtained on the output meter. This is the true setting for 1550 K . C., 155 on the dial seale.

LOW FREQUENCY' - Turn the tuning condenser plates in mesh to approximately 580 K . C., 58 on the dial scale and set the signal generator at 580 K . C. Roll the tuning condenser and adjust the low frequency padder screw (18) for maximum reading on the output meter.

HIGII FREQUENCY READJUS'IMEN'I - 'Turn the tuning condenser plates out of mesh to $1550 \mathrm{~K} . \mathrm{C}$. and set the signal generator at 1550 K . C. Then adjust the high frequency padder (15) again for maxinum reading on the output meter.

Remose the generator lead from the 78 R . F. tube.
ANTFNNA UHEN PADDING THE ANTENNA STAGE IT IS EXTREMELY IMPORTANT THAT THE PROPER DUMAY ANTENNA BE CONSTRUC'ED AND USED.

Connect the signal wenerator lead to the antenna lear assembly (made up of Part No. 41-3191 lead and a 200 numfl. condenser, Part No. 30-1013), in series between the lead and the signal qenerator. Plug the lend into the antennal lead connector on the end of the Receiver.

Turn the tuning condenser to $1+00 \mathrm{~K}$. C. and set the generator at 1400 K . C. Adiust the padders (11) and (5) for the maxinum reading on the output meter.

When the antenna stage adjustment is made with the Receiver installed in the car, the Receiver antenna lead must be connecled to the car antenna in the usual manner. Connoct the signal generator output lead to a wire placed near the car antenna but not connected to it.

Abstract

元

PHILCO TRANSITONE SERVICE BROADCAST

MARCH 15, 1937

NOTE: When the Receiver is installed in a car having a top antenna, under-car antenna, spare wheel antenna or antenna having a similarly relative capacitance (50 mmf . to 450 mmf .) use connector plug in " A '

When the Receiver is installed in a car having a metal insert top antenna, insulated door antenna, insulated trunk cover antenna or antenna having similarly hish relative capacitance (450 mml . to 2500 mm

MODEL 827K PARTS LIST

Description Intenna Choke

 Condenser (. 05 iot Condenser (. 05 mitAntenna Transforme riuning Condenser Padder (on Tha............ Cond Hesistur (70,000 ohms) .33-3703t Antenna

Compensating Condenser31-6082

 Condenser (. $1-.25-.25-.5 \mathrm{mfd}.) 30-1 / 15$ Resistor (450 obms)33-1218 R. F Transtomer …......32-230 Recond Padder (on Tun. Cond.) 34 Condenser ($70,000 \mathrm{ohms}$) $\quad .33-37034$ Conlense: (.05 mid.) $\ldots 365$-0SG Thisd Padder (on Tun. Coml.) Oscillator Thansformer32-2308 Condenser (250 mmatd.) ...30-1013s Low Frequency l'adder31-6102 Resistor (99.000 (0) ohms) $33-39934$ Resistor ($1,000,000$ ohms) 33-5103 11 Resistor (4 '5, 000 ohms) $\cdot 33-3+5344$ Padder (I'ti. 1st I.F. Trans.) First 1. F 'Transformer … 32ladder (Sec 1st I.F. Thans.) Fadder (Sec. 1st I.F. 'lTans.) Padder (Pri. 2nd I.F. Trarts.) Second 1. F Transformer . . 32 Padcer (Sec. 2nd 1.F. Trans.) rondenser (250 mmid.) ...30-1032 Resistor $(25,000$ ohms $) \quad 33-325341$
Condenser $(.01$ mfd. $) \quad .3903-0 \mathrm{SU}$ Condenser (.01 mis an Resistor (1,000,
Volume Control (35t),000 ohms)
\qquad Condenser (110 mmfd.$)$ Resistor (600 ohms) Condenser (.01 mifd.) . Resistor ($20,000 \mathrm{ohms}$) Resistor (32,000 ohms)
Resistor $(250,000$ ohms) Resistor (250,000 ohms)

Resistor (250,000 ohms) Resistor (250,000 ohms) $33-4243+$ Resist or (inn,000 ohms) 33-44934 | Condenser | $(.01$ | mfd.$)$ |
| :--- | :--- | :--- |
| Condenser | $(250$ | mmfd.$)$ |
| | $\ldots .3903-0 \mathrm{SU}$ | |
| $.30-1032$ | | | $\left.\begin{array}{l}\text { Condenser }(250 \mathrm{mmfd}) \\ \text { Condenser } \\ (4000 \mathrm{mmfd})\end{array}\right) . .30-1032$ Output Transformer Choke

33-5148
$.33-6148$
$.30-1031$ $.33-1218$
$3903-050$ 903-05G 320344 33243 24344 $.30-4182$
$.32-7816$.32-1374

Part No. No Descripsion

No.	Descrip\&ion Condenspr (250 mmfil.)
(17)	Clroke
(48)	Condenser (250 mmfd.)
(49)	Cone \& Voice Coil
(6)	Condenser (.025 mid.)
(11)	Choke
(32)	Condenser (250 mmid.)
(3)	Tone Control Switch
(3)	Fiela Coil Assembly
	Complete Speaker (A4i)
(3)	Choke
(5)	Condenser (250 mmfd.)
(57)	On d Off Switch
(56)	Pilot Lamp
(3)	Condmener (250 mmfd.)
(61)	Condenser (.5 mid.)
(81)	" A "' Chole
(22)	Conlenser (250 mmid.)
(63)	Filament Clioke
(4)	Vibrator Choke
(6)	Condenser (.5 mfal)
(10)	Condenser (05 mfd)
(a)	Resistor (20 ohms)
(8)	Power 'franstomer
(69)	Condenser (7500 mmfd.)
(3)	Filter Choke
(11)	Filter Condenser (1-8 mfd
	"13"' (hoke
(13)	Condenser (250 mmid.)
(4)	Vibrator (OPTIONAL)
	Four Prong Socket
	Five Prong Socket
	Six Prong Socket
	Seven Prong Socket
	Thning \& Volume Knob,
	On \& 0ll Knob)
	Pilot Lamp Assembly
	Scale Assemily
	Tuning \& Volume Shaft
	Tone Control Shaft
	Distributor Resistor
	Interference Condenser
	Antenna Condenser
	Antenna Connector
	Insulator
	Fuse

CONNELTOR

Part No. Part No
$30-103$ $30-1032$
$32-2535$ $32-2.103$
$30-1032$.36-3159 $36-3159$
$65: 3-0 \mathrm{~s}$ 65:3-10SU $32-1464$
$30-1032$ $30-1032$
$42-1225$ $\begin{array}{r}.42-1225 \\ .36-3513 \\ \hline\end{array}$ $.36-3513$
$.36-1331$
$32-1930$ $.32-1930$
$.30-1032$ $3-1030$
$30-1032$ 12-1318 $.34-2040$ $30-1032$
$30-1015$ $30-1032$
$30-4015$
$30-1001$ $30-4015$
$.32-1604$ $.30-1032$
$.30-255$ $32-2535$
$32-2039$ $.32-2035$
$.32-2039$. $30-1015$ $30-4444$
-0203.41 33-0203.44 $32-7550$
$30-4120$ $.30-4420$
$.32-754$ d. $\begin{array}{r}32-7545 \\ 30-2150\end{array}$. $32-1281$.30-1032 $41-3170-2$
$41-31-0-3$ $.27-6044$ $27-6035$
$27-6036$ $27-6036$
$27-6037$ $27-6037$
$27-4521$ $.27-4521$
$.27-4525$.27-4525 .38-7 734 $.42-5714$
$.28-8740$
$.28-8140$
.1 .2765 $1,-2466$
$.33-1196$ $33-1196$
$30-4007$ $.30-4412 \quad$ No. $.30-4412$
$.28-6423$
$.27-8199$ $722{ }^{7}$

I. F. TRANSFORMERS AND PADDERS

The I. F. Transformers are assembled complete with padding condensers.

Both the primary and the secondary padders are placed side by side in the top of the transformer shield can. The adjusting screws are accessible thru the holes in the top of the shield. (See Figure 4).

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Figure 3.

If replacements are ever necessary, replace the entire coil assembly, $32-2026$ for the first I. F. stage and $32-2027$ for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

MODEL 827-K ADJUSTMENTS

All padding adjustments are carefully made at the factory and ordinarily no readjustments are neeessary. Ilowever, when readjustments are required, the procedure given below must be followed in detail.

Equipment

Fully charged heavy duty storage battery or 6 b-volt power pack, 048A or 099 Philco Set 'Tester, 3164' Padding wrench, 27-7159 Padding screw driver.

General

OU'TPU'I MFIER - The ontput meter must be connected by means of an adapter to the plate of the type 41 output tube and to the Receiver chassis.

SIGNAL GENERATOR - With the Receiver and signal generator set up for operation at the prescribed frequency, turn the Receiver volume control on full and set the signal generator attenuator so that a half scale reading is obtained on the output meter. The signal in the speaker should be audible but not loud.

The shielding on the signal generator output lead must he connected to the lieceiver housing:

Procedure

I. F. - Set the signal generator at exactly $260 \mathrm{~K} . \mathrm{C}$. Connect the generator lead to the grid cap of the 78 I . 1 . tube in series with a 11 mifd. condenser (without removing the grid cap).

Adjust the secondary screw padder (27) on the second 1 . F. transformer for maximum reading on the output meter. 'Then adjust the primary screw padder (25) for maximmm reading (See Figure 4 for location of padders).

Remove the generator lead from the $\% s$ tube.
Connect the generator lead to the grid cap of the 6A7 tube in series with a 11 mfd. condenser (without remoring the grid cap). Adjust the secondary screw padder (24) on the first I. F. transformer for maximium reading on the output meter Then adjust the primary screw padder (22) for maximum read ing. Readjust padders (25) and (27) with the generator lead connected to the type 6A7 tube. (See Figure 4 for location of padders).

HIGH FREQUENCY AND R. F. - After padding the first l. F. stage renowe the generator lead from the $6 A 7$ tube.

Set the signal generator at 1550 K . C. and then connect the generator lead to the grip cap of the 78 R . F. tube in series with a .1 mfd . condenser (without removing the grid cap)
'Iurn the tuning condenser plates out of niesh as far as they will go

With the tuning condenser in this position, adjust the high frequency padder (15) and the R. F. padder (11) until the maxiumm reading is obtained on the output meter. This is the true setting for $1550 \mathrm{~K} . \mathrm{C}$., 155 on the dial scale.

LOW FREQUENCY - Timn the tuning condenser plates in mesh to approxinately $580 \mathrm{~K} . \mathrm{C} ., 58$ on the dial scale and set the signal generator at 580 K . C. Roll the tuning condenser and adjust the low freguency padder screw (18) for maximum reading on the output meter.

IlIGII FREQUENCY READJUSTMENT - 'Purn the tuning condenser plates out of mesh to 1550 K . C. and set He signal generator at $1550 \mathrm{~K} . \mathrm{C}$. Then adjust the high frefuency padder (15) again for maximum reading on the output meter.

Remove the generator lead from the 78 R . F. tube.
ANTENNA - WHEN PADIING THE INTENNA SIAGE I'T IS FXTREMEI, IMPORTANT THAT THE PIROPER DUMMY ANTENNA BE CONSTRUCTED AND USED.

Comect the signal generator lead to the antenna lead assembly (made up of Part No. 41-3191 lear and a 200 minfd. condenser, Part No. 30-1013). in scries between the lead and the signal generator. Plug the lead into the antenna lead connector on the end of the Receiver.
'Torn the tuning condenser to 1400 K . C . and set the generator at 1400 K . C. Adjust the parlders (11) and (5) for the maximum reading on the output meter.

When the antenna stage adjustment is made with the Receiver installed in the car, the Receiver antema lead must be connected to the car antenna in the usual mamer. Connect the signal generator output lead to a wire placed near the car antenna but not connected to it.

PHILCO TRANSITONE SERVICE BROADCAST

MARCH $5,193 \boldsymbol{\gamma}$
NASH - PHILCO MODEL N-1434-H, TWO UNIT RECEIVER

I. F. TRANSFORMERS AND PADDERS

The I. F. transformers are assembled complete with padding condensers.

Both the primary and secondary padders are placed side by side in the top of the transformer shield can. The adjusting screws are accessible thru the holes in the top of the shield. (See Figure 4).

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Figure 3.

If replacements are ever necessary, replace the entire coil assembly, $32-2286$ for the first 1 . F. stage and $32-2167$ for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

MODEL N-1434 ADJUSTMENTS

All padding adjustments are carefully made at the factory and ordinarily no readjustments are necessary. However, when readjustments are required, the procedure given below must be followed in detail.

Equipment

Fully charged heavy duty slorage battery or 6-volt power pack, 048A or 099 Philco Set Tester, 3161. Padding wrench, 27-7159 l'adding screw driver.

General

OUTPUT METER-'Ihe output meter must be connected by means of an adapter to the plate of the type 41 output tube and to the Receiver chassis.

SIGNAL GENERATOR-With the Receiver and signal generator set up for operation at the prescribed frequency, turn the Receiver volume control on full and set the signal generator attenuator so that a half scale reading is obtained on the output meter. The signal in the speaker should be audible but not loud.

The shielding on the signal gencrator ontput lead must be connected to the Receiver housing.

Procedure

I. F.-Set the signal generator at exactly 260 K . C. Connect the generator lead to the grid cap of the 88 I . F. tube in series with a .1 mfcl . condenser (without removing the grid cap).

Adjust the secondary serew padder (27) on the second I. F. transformer for maximum reading on the output meter. Then adjust the primary screw padder (26) for maximm rading. (See Figure for location of padders).

Remove the generator lead from the is tube.
Connect the generator lead to the grid cap of the 6.15 tube in series with a .1 mfd. condenser (without removing the grid cap.) Adjust the secondary serew padder (23) on the first I. F. transformer for maximum reading on the output meter. Then adjust the primary screw padeler (21) for manimum reading. Readjust padders (25) and (27) with the generator lead connected to the type 6.17 tube. (See Figure $\&$ for location of padders).

HIGH FREQUENCY AND R. F--After padding the first I. F. stage remove the generator lead from the 6 A r tube

Set the signal generator at 1550 K . C. and then connect the generator lead to the grid cap of the is R. F. tube in series with a .1 mfd. condenser (without removing the grid cap).

Using a piece of paper approximately $.006^{\prime \prime}$ thick as a gauge between the heel of the rotor plates and the stator plates, turn the rotor plates in mesh until they strike against the paper.

With the tuning condenser in this position, adjust the high frecuency paclder (15) and the R. F. padder (11) until the maximun reading is obtained on the output meter. This is the true setting for 1550 K . C., 155 on the dial scale

Figure 4
LOW FREQUENCY-Turn the tuning condenser plates in mesh to approximately 600 K . C., 60 on the dial scale and set the signal generator at 600 K . C. Roll the tuning condenser and adjust the low frequency padder screw (18) for maximum reading on the output meter.

HIGH FREQUENCY READJUSTMENT-T'urn the tuning condenser plates out of mesh to 1550 K . C. and set the signal gencrator at 1550 K . C. Then adjust the high frequency padder (15) again for maximum reading on the output meter.

Remove the generator lead from the 78 R. F. tube.
ANTENNA-IVHEN DADDING THE ANTENNA STAGE IT IS EXTREMELY IMPORTANT THAT THE lRORER DUMMY ANTENNA BE CONSTRUCTED AND USED.

Connect the signal gencrator lead to the antenna cable assembty, made up of l'art No. L, 2650 lead, and a 22 mmfd. condenser (Part No. 30-1067) in series between the lead and the signal gencrator. Plug the cable into the COWL ANTENNA CONNECTOR on the end of the Receiver.

Follow this padding procedure regardless of whether the Receiver is used with the Cowl or Under-car antema.

I'urn the tuning condenser to 1400 K . C. and set the generator at 1400 K . C. Adjust the padders (11) and (5) for the maximun reading on the output meter.

When the antenna stage adjustment is made with the Receiver installed in the car, the lieceiver antenna lead must be connected to the car antenna in the usual manner. Connect the signal generator output lead to a wire placed near the car antenna but not connected to it.

PHILCO TRANSITONE SERVICE BROADCAST

MARCH 1, 1937
STUDEBAKER - PHILCO MODEL S-1437, TWO UNIT RECEIVER

Note: The itens marked with an asterisk are rarely required for service and in many cases will not be carried in stock by the local service station. In such cases it will be necessary to order these parts from Philco Transitone, Philadelphia or Chicago.

PHILCO TRANSITONE SERVICE BROADCAST

I. F. TRANSFORMERS AND PADDERS

The I. F. transformers are assembled complete with padding condensers.

Both the primary and the secondary padders are placed side by side in the top of the transformer shield can. The adjusting screws are accessible thru the holes in the top of the shield. (See Figure 4).

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Figure 3.

Fiotre 3
If replacements are ever necessary, replace the entire coil assembly, $32-2286$ for the first 1 . F. stage and $32-216$ for the second I. F. stage. Neither the cuil nor the padders will be furnished separately. Order only by the above numbers.

MODEL S-1437 ADJUSTMENTS

All padding adjustments are carefully made at the factory and ordinarily no readjustments are necessary. However, when readjustments are required, the procedure given below must be followed in detail.

Equipment

Fully charged heavy duty storage battery or 6 -volt power pack, 048 A or 099 Phileo Set Tester, 3164 Padding wrench, 27-7159 Padding screw driver.

General

OUTPU'T METER-The output meter must be connected by means of an adapter to the plate of the type 41 output tube and to the Receiver chassis.

SIGNAL GENERATOR-With the Receiver and signal generator set up for operation at the prescribed frequency, turn the Receiver volume control on full and set the signal generator attenuator so that a half scale reading is obtained on the output meter. The signal in the speaker should be audible but not lond.

The shielding on the signal generator output lead must be connected to the Receiver housing.

Procedure

I. F.-Set the signal generator at cxactly 260 K . C. Connect the generator lead to the grid cap of the 78 I. F. tube in series with a .1 mfd . condenser (without renoving the grid cap).

Adjust the secondary serew padder (27) on the second I. F. transformer for maximum reading on the output meter. 'Then adjust the primary serew padder (20) for maximum reading. (See Figure 4 for location of padders).

Remove the generator lead from the 78 tube.
Connect the gencrator lead to the grid cap of the $6 A \%$ tube in series with a .1 mfd condenser (without removing the grid cap). Adjust the scoondary screw padder (23) on the first I. F. transformer for maximum reading on the output meter. 'Then adjust the primary serew padder (21) for maximum reading. Readjust padders (26) and (27) with the generator lead connected to the type $6 A 7$ tube (See Figure 4 for location of padders).

HIGH FREQUENCY AN゙I) IR. F.-After paclding the first I. F. stage remove the gencrator lead from the 6.17 tube.

Set the signal generator at 1550 K . C. and then connect the gencrator lead to the grid cap of the $78 \mathrm{R} . \mathrm{F}$. tube in series with a .1 mfl . condenser (without removing the grid cap).

Using a piece of paper approximately $.006^{\prime \prime}$ thick as a gauge between the heel of the rotor plates and the stator plates, turn the rotor plates in mesh until they strike against the paper

With the tuning condenser in this position, adjust the high frequency padder (15) and the R. F. padder (11) until the maximum reading is obtained on the output meter. This is the true setting for $1550 \mathrm{~K} . \mathrm{C}$., 155 on the dial scale.

Figure 4

LOW FREQUENCY-Turn the tuning condenser plates in mesh to approximately $600 \mathrm{~K} . \mathrm{C}, 60$ on the dial scale and set the signall generator at 600 K . C. Roll the tuning condenser and adjust the low frequency padder serew (18) for maximum reading on the output meter.

HIGH FREQUENCY READJUSTMENT-Turn the tuning conclenser plates out of mesh to 1550 K . C. and set the signal generator at 1550 K . C. Then adjust the high frequency padder (5) again for maximum reading on the output meter.

Remove the generator lead frum the 78 R. F. tube.
ANTENNA-WHEN PADDING THE ANTENNA STAGE IT IS EXTREMELY IMPOR'IAN'T THA'Y THE PROPER DUMMY ANTENNA IBE CONSTRUCTED AND USEI).

Connect the signal generator lead to the antenna cable assembly, made up of Part No. L- 2650 lead, and a 22 mmfd . condenser (Part No. 30-1067) in series between the lead and the signal generator. Plag the cable into the COWL INTENNA CONNECTOR on the end of the Receiver.

Follow this padding procedure regardless of whether the Recciver is used with the Cowl or Under-car antenna.

Turn the tuning condenser to 14.00 K . C. and set the generator at 1400 K. C. Adjust the padders (11) and (5) for the maximum reading on the output meter.

When the antenna stage adjustment is made with the Receiver installed in the car, the Receiver antenna lead must be connected to the car antenna in the usual manner. Connect the signal generator output lead to a wire placed near the car antenna but not connected to it.

SERVICE BULLETIN No. 293 for members of RADIO MANUFACTURERS SERVICE A PHILCO Service Plan

Electrical Specifications

Model 38-1, Code 121 is a twelve-tube, A.C. operated superheterodyne receiver with three tuning ranges covering the frequencies listed below and employs the Philco Automatic Tuning Dial Mechanism. Additional design features incorporated in this receiver are: Magnetic Tuning Control on the broadcast tuning range; Automatic Volume Control; bass compensation; special push-pull pentode audio output circuit designed for the reduction of harmonic distortion; Adjustable Iron Core I. F. Transformers; Four Point Tone Control; R. F. Circuit completely shielded and contained in one unit; all aligning compensators accessible from the top of the chassis.

POWER SUPPLY: Voltage

	Cycles
115	50 to 60
115	25 to 40
115 or 230	50 to 60

Consumption 150 Watts 150 Watts 150 Watts

Different transformers are required for operation on the voltages and frequencies listed above. The part numbers for these transformers are listed on page 3. A special transformer for operation on either 115 or 230 volt -50 to 60 cycle A.C. power circuit can be obtained. This transformer is provided with a plug and socket for selection of either voltage rating. Place the plug with arrow pointing toward voltage being used.

FREQUENCY RANGES: Three.
Range one- 530 to $1720 \mathrm{~K} . \mathrm{C}$.
Range two -2.3 to $7.4 \mathrm{M} . \mathrm{C}$.
Range three- 7.35 to $22.0 \mathrm{M} . \mathrm{C}$.
INTERMEDIATE FREQUENCY: $470 \mathrm{~K} . \mathrm{C}$.
AUDIO OUTPUT: 10 watts.
PHILCO TUBES USED: 6U7G, R. F. amplifier; 6A8G, Det. Osc.; 6N7G, Osc. Control; 6K7G, I. F. amplifier: 6H6G, Magnetic Tuning Discriminator; $6 \mathrm{R} 7 \mathrm{G}, 2 \mathrm{ncl}$ detector, 1 st Audio; 6 J 5 G , Audio Phase inverter; two 6J5G, Driver; two 6F6G, output; and a 5 X 4 G , rectifier.
TONE CONTROL: Four Point
A. Brilliant-for speech.
B. Bright-for normal reception of music.
C. Mellow-first noise-reducing stage.
D. Deep-noise-reducing for distant reception.

PHII,CO SPEAKER: U゙-28.
CABINET: Type XX.

Aerial Connections

To obtain the full advantage of the sensitivity of this receiver the Philco High Efficiency Aerial supplied with the instrument must be used. Connect the aerial as follows:

The aerial terminal panel located on the rear of the chassis, contains three terminals marked "Red," "B1k" and "Gnd". Connect the red and black wires of the aerial lead in (Transmission Line) to the "Red" and "Blk" terminals respectively. Connect the "Gnd" terminal to a good ground source. If a temporary aerial is used, connect it to the "Red" terminal.

Fig. 1. Underside View of Chassis showing Socket Voltages
The voltages indicated by the arrows were measured with a Philco 026 Circuit Teater, which contains a sensitive voltmeter. Line voltage 115 A . C.-Volume control minimum-Dial set at point where no signal is present-Range Switch in broadcast position.

Automatic Tuning Mechanism Service Data

Service data and a complete parts list for the Automatic Tuning Mechanism of this receiver will be found in Service Bulletin 273. When referring to bulletin 273, use the dial parts list for Model 37-10 as the same parts are used on Moclel 38-1. There are four automatic dial parts, however, which differ from those shown in bulletin 273. These parts are marked with an asterisk on page 3 of this bulletin.

Service Notes

For reference between illustrations, Parts L ist, and for replacement of parts, the various diagrams in this bulletin are marked with "circled numbers" indicating a particular part.

Physical views of the R. F. transformers are shown on page 2. Each transformer is marked with the corresponding schematic diagram circled number. The connections of the R. F. transformer are numbered to indicate the connecting points in the circuit diagram which are correspondingly marked.

The colors of the 1. F. transformer leads are marked on the schematic diagram.

Range switch lugs are marked with a letter and number-example (A2)-indicating the connecting point in the circuit diagram. Each range switch section is narked with a letter indicating the position of the section from the rear of the chassis. Section "A" is used in the oscillator circuit. Section "B" the "RF" circuit, and Section " C " the antenna circuit.

The colors of the connections on the power transformer and speaker unit are also marked on the schematic diagran.

 \qquad

－
Wu：世్జ Hipqu
 Hos

 Model 38－1，Code 121

心．	
O	
总：	
¢	

（ ${ }^{(\omega)}$（®）

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, having a fundamental frequency range covering the intermediate and tuning frequencies of the receiver. Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to $36000 \mathrm{~K} . \mathrm{C}$. is the correct instrument for this purpose; (2) Output Meter. Philco Model 026 Circuit Tester incorporates a sensitive output meter and is recommended; (3) Philco Fiber Handle Screw Driver, part number 27-7059 and Fibre Wrench, part number 3164.

OUTPUT METER: The 026 Output Meter is connected to the plate and cathode terminals of one of the 6F6G tubes. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication is noted on the out put meter after signal is applied to stage being adjusted.

DIAL CALIBRATION: In order to adjust the compensators of this receiver correctly, the dial must be aligned to track properly with the tuning condenser. To do this proceed as follows:

1. Loosen the set screws on the shaft coupling of the tuning condenser. Then turn the tuning condenser until the plates are in the maximum capacity position. Now turn the dial until the glowing beam indicator is on the INDEX LINE at the low frequency end of Range 2. See Fig. 4. With dial and tuning condenger in this position tighten set screws.
2. Turn the tuning condenser control until the indicator is on the 2.2 M . C . mark.
3. With the dial in this position, loosen the shaft coupling set screws. Then turn the dial until the indicator is again on the INDEX LINE. Tighten the se screws in this position

NOTE: Be careful when turning the dial that the position of the tuning condenser is not disturbed.

INTERMEDIATE FREQUENCY CIRCUIT
A. Set the receiver and signal generator controls as follows:

1. Range Switch (Broadcast Position)
2. Volume Control (Maximum)
3. Magnetic Tuning Switch "Off"
4. Tone Control First Position
5. Signal Generator Dial 470 K.C.
B. Connect the signal generator output cable through a .1 mfd . condenser to the grid of the 6A8G Det. Osc. tube and connect the cableground to the receiver chassis. Set the generator "attenuator" for maximum output. Adjust the I. F. Compensators as follows:
6. Turn compensator (37C) in until the output meter reading decreases almost to zero.
7. Now adjust the compensators, (37B) and (37A), for maximum output; then readjust (37 C) for maximum output.
8. Turn compensator (38C) in about three turns; then adjust compensators (38 B) and (38 A) for maximum output. The adjustment of compensator 38 C is given in the "Magnetic Tuning Circuit Adjustments' below.

RADIO FREQUENCY CIRCUIT

1. Set the controls as given under "Intermediate Frequency Circuit" 1 to 4 and set the range switch, signal generator and receiver dials as given under the adjust ments of each tuning range in the following procedure.

Connect the Signal Generator output cable into the "Med" jack of the generator panel and connect the other end through a .1 mfd. condenser to the "Red" terminal of the receiver aerial panel (rear of chassis). The ground connection of the cable should be connected to the "Blk" terminal.
2. Adjust the "R. F." compensators for maximum out put as follows:
Tuning Range: 530 to 1720 K. C.

ange Switch

Signal Generator
1 and Recelver Dial
$\begin{array}{lr}1 & 1550 \mathrm{~K} . \mathrm{C} . \\ 1 & 580 \mathrm{~K} . \mathrm{C} .\end{array}$
$11550 \mathrm{~K} . \mathrm{C}$
Compensators
in Order
(18), (8B), and (8A)
(22), Roll Tuning Condenser. See
Note B.
(18), (8B), (8A)

Tuning Range 2.3 to 7.4 M. C.
Range Switch Signal Generator Position and Receiver Dial $6.0 \mathrm{M} . \mathrm{C}$.

Fig. 5. Compensator Locations

Tuning Range:	7.35 to $22.0 \mathrm{M} . \mathrm{C}$.	
Range Switch Position	Signal Generator and Receiver Dial	
3	$18.0 \mathrm{M} . \mathrm{C}$.	Compensators in Order
		(32A), (15), (4) Rolltuning condensers when adjust- ing (15) and (4). See Note B, check
		Image at 17.060. See Note A.

MAGNETIC TUNING CIRCUIT ADJUSTMENTS

1. Set the Magnetic Tuning switch in the "out" position.
2. Turn the signal generator indicator to 1000 K . C. and adjust the "Attenuator" control for a weak signal
3. Adjust volume control for a readable indication on the output meter.
4. Now tune the receiver dial for maximum output at 1000 K . C. The dial must be tuned very accurately to the 1000 K . C. signal in order to make the fol lowing adjustment correctly
5. Turn the Magnetic Tuning Switch "In" and adjust compensator (38C) for maximum output.

The above adjustments are now cnecked for accuracy as follows

FREQUENCY TEST:

With the 1000 K . C. signal tuned for maximum output turn the Magnetic Tuning control back and forth; that is, from the "out" to "in" position. The reading of the output meter should not change in either position. If the output meter reading charges, the above magnetic tuning circuit adjustments should be repeated.

A further check on the magnetic tuning adjustment is to very carefully tune in a broadcasting station and turn the switch from the "out" to the "in" position. With the switch in either position, the tone of the station being received should not change. If a change of tone or hiss develops repeat the above Magnetic Tuning Adjustments.

SENSITIVITY TEST:

1. To check the magnetic tuning circuit for sensitivity, turn the magnetic tuning switch to the "off" position, and tune in the 1000 k . C. signal. Then adjust the "attenuator" control of the signal generator for a good audible signal. Approximately 20 volts on the output meter.
2. Now detune the signal (first above and then below the 1000 k . C. mark to a point at which the signal is weakly heard. At each point turn the magnetic tuning control "on". When the control is turned on the signal should return to normal output strength. If the magnetic tuning circuit does not pull the signal into resonance, the compensator ($\mathbf{3 8 C}$) should be carefully readjusted.

NOTE " A "- To accurately adjust the high frequency oscillator compensat or to the fundamental instead of the image signal, turn the oscillator compensator to the maximum capacity position (clockwise). From this position slowly turn the compensator counter-clockwise until a second maximum peak is obtained on the output meter. Adjust the compensator for maximum output using this second peak The first peak from maximum capacity position of the compensator is the image signal and must not be used in adjusting the compensator.

If the above procedure is correctly performed. the image signal will be found (much weaker) by turning the receiver dial 940 k . C. below the frequency being used on any high frequency range.

NOTE "B"-When adjusting the low frequency compensator of Range One (Broadcast) or the antenna and R.F. compensators of the high frequency tuning ranges; the receiver Tuning Condenser must be adjusted (rolled) as follows: First tune the compensator for maximum output, then vary the tuning condenser of the receiver for maximum output about the frequency dial mark. Now turn the compensator slightly to the right or left and vary the receiver tuning condenser for maximum output. If the out reading increases, turn the compensator in the same direction a trifle more, and again vary the tuning condenser for maximum output. If the output decreases, set the compensator in the opposite direction. This procedure of first setting the compensator and then varying the tuning condenser is continued until there is no further gain in output reading.

PHILCO RADIO AND TELEVISION CORPORATION

SERVICE BULLETIN No. 294 for members of
 RADIO MANUFACTURERS SERVICE

Electrical Specifications

Model 38-2, Code 121, is an eleven tube, A. C. operated superheterodyne receiver with three tuning ranges covering the frequencies listed below, and employs the PHILCO AUTOMATIC TUNING, DIAL MECHANISM. Additional design features incorporated in this receiver are: Magnetic Tuning Control on the broadcast tuning range; Automatic Volume Control; Bass Compensation; Special Push-pull Pentode Audio Output circuit designed for the reduction of harmonic distortion; Four Point Tone Control ; R. F. Circuit completely shielded and contained in one unit; all aligning compensators accessible from the top of the chassis.

POWER SUPPLY:

Voltage
115
115
$115 / 230$
Frequency
Cycles
50 to 60
25 to 40
50 to 60
Power
Consumption
140 Watts
140 Watts
140 Watts

Different transformers are required for operation on the voltages and frequencies listed above. The part numbers for these transformers are listed on page 3. A special transformer for operation on either 115 or 230 volt -50 to 60 cycles A. C. power circuit can be obtained. This transformer is provided with a plug and socket for selection of either voltage rating. Place the plug with arrow pointing toward voltage being used.
FREQUENCY RANGES: Three.
Range one -530 to 1720 K . C.
Range two- 2.3 to 7.4 M . C.
Range three- 7.35 to 22.0 M . C.

INTERMEDIATE FREQUENCY: 470 K . C.

AUDIO OUTPUT: 7 Watts.
PHILCO TUBES USED : 6U7G, R. F. Amplifier; 6A8G, Det. Osc.; 6N7G Osc. Control; 6K7G, I. F. Amplifier; 6H6G, Magnetic Tuning Discriminator; 6R7G, 2nd Det., A.V.C., 1st. Audio; 6J5G, Audio Phase Inverter; 6J5G, 2nd Audio; Two 6F6G, Output; and 5X4G, Rectifier.
TONE CONTROL: Four Point.
A. Brilliant-for speech.
B. Bright-for normal reception of music.
C. Mellow-first noise-reducing stage.
D. Deep-Noise-reducing for distant reception.

PHILCO SPEAKER: H32.
CABINET: Type XX.

Aerial Connections

To obtain the full advantage of the sensitivity of this receiver the Philco High Efficiency Aerial supplied with the instrument must be used. Connect the aerial as follows:

The aerial terminal panel located on the rear of the chassis, contains three terminals marked "Red," "Blk" and "Gnd". Connect the red and black wires of the aerial lead in (Transmission Line) to the "Red" and "Blk" terminals respectively. Connect the "Gnd" terminal to a good ground source. If a temporary aerial is used, connect it to the "Red" terminal.

Fig. 1. Underside View of Chassis showing Socket Voltages
The voltages indicated by the arrows were measured with a Philco 026 Circuit Tester, which contains a sensitive voltmeter. Line voltage 115 A . C.-Volume control minimum-Dial set at point where no signal is present-Range Switch in broadcast position.

Automatic Tuning Mechanism Service Data

Service data and a complete parts list for the Automatic Tuning Mechanism of this receiver will be found in Service Bulletin 273. When referring to bulletin 273, use the dial parts list for Model 37-10 as the same parts are used on Model 38-2. There are four automatic dial parts, however, which differ from those shown in bulletin 273. These parts are marked with an asterisk on page 3 of this bulletin.

Service Notes

For reference between illustrations, Parts List, and for replacement of parts, the various diagrams in this bulletin are marked with "circled numbers" indicating a particular part.

Physical views of the R. F. transformers are shown on page 2. Each transformer is marked with the corresponding schematic diagram circled number. The connections of the R. F. transformer are numbered to indicate the connecting points in the circuit diagram which are correspondingly marked.

The colors of the I. F. transformer leads are marked on the schematic diagram.

Range switch lugs are marked with a letter and number-example (A2)-indicating the connecting point in the circuit diagram. Each range switch section is marked with a letter indicating the position of the section from the rear of the chassis. Section " A " is used in the oscillator circuit. Section " B " the "RF" circuit, and Section "C" the antenna circuit.

The colors of the connections on the power transformer and speaker unit are also marked on the schematic diagram.

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, having a fundamental frequency rance covering the intermediate and tuning frequencies of the receiver Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to $36000 \mathrm{~K} . \mathrm{C}$. is the correct instrument for this purpose; (2) Output Meter, Philco Model 026 Circuit Tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, Part No. 27-7059 and Fibre Wrench, Part No. 3164.

OUTPUT METER: The 026 Output Meter is connected to the plate and cathode terminals of one of the 6F6G tubes. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication is noted on the output meter after signal is applied to stage being adjusted.

DIAL CALIBRATION: In order to adjust the compensators of this receiver correctly, the dial must be aligned to track properly with the tuning condenser. To do this proceed as follows:

1. Loosen the set screws on the shaft coupling of the tuning condenser. Then turn the tuning condenser until the plates are in the maximum capacity position. Now turn the dial until the glowing beam indicator is on the INDEX LINE at the low frequency end of Range 2. See Fig. 4. With dial and tuning condenser in this position, tighten set screws.
2. Turn the tuning condenser control until the indicator is on the 2.2 M . C . Mark.
3. With the dial in this position, loosen the shaft coupling set screws. Then turn the dial until the indicator is again on the INDEX LINE. Tighten the set screws in this position. Be careful when turning the dial that the position of the tuning condenser is not disturbed

INTERMEDIATE FREQUENCY CIRCUIT

A. Set the receiver and signal generator controls as follows

1. Range Switch (Broadcast)
2. Volume Control (Maximum)
3. Magnetic Tuning Switch "out"
4. Tone control \& A. C. switch first position.
5. Signal generator dial 470 K C
B. Connect the signal generat or output cable through a .1 mfd . condenser to the grid of the 6A8G Det. Osc. tube and connect the cableground to the receiver chassis. Now adjust the following compensators for maximum output (38A), (39), (37B), and (37A).

RADIO FREQUENCY CIRCUIT

1. Set the controls as given under "Intermediate Frequency Circuit" 1 to 4 and set the range switch, signal generator and receiver dials as given under the adjust ments of each tuning range in the following procedure.

Connect the Signal Generator output cable into the "Med" jack of the generato panel and connect the other end through .1 mfd . condenser to the "Red" terminal of the receiver aerial panel (rear of chassis) The ground connection of the cable should be connected to the "Blk" terminal.
2. Adjust the "R. F." compensators for maximum out put as follows:

Tuning Range: 530 to 1720 K. C.

Range Switch	Signal Generator Position
1	$1550 \mathrm{~K} . \mathrm{C}$.
1	$580 \mathrm{~K} . \mathrm{C}$.
1	$1550 \mathrm{~K} . \mathrm{C}$.

Tuning Range 2.3 to 7.4 M. C

Range Switch	Signal Generator Position Receiver Dial
2	$6.0 \mathrm{M} . \mathrm{C}$.
Tuning Range 7.35 to $22.0 \mathrm{M} . \mathrm{C}$.	

Range Switch Signal Generator
Position and Receiver Dial 3 20.0 M. C.

INDEX LINE
Fig. 4. Dial Calibration

Compensators
 in Order
 (18), (8B) and (8A)
 (22) Roll gang. Note B (18), (8B), (8A)

Compensators in Order

(32)

Compensators

in Order
(32A), (15), (4)
Roll Tuning condensers when adjusting (15) and (4). See Note B. Check image at $\mathbf{1 7 . 0 6 0}$. See Note A. (32A)

Fig. 5. Compensator Locations

MAGNETIC TUNING CIRCUIT ADJUSTMENTS

1. Set the Magnetic Tuning switch in the 'out'" position
2. Turn the signal generator indicator to 1000 K . C. and adjust the "Attenuator" control for a weak signal.
3. Adjust volume control for a readable indication on the out put meter
4. Now tune the receiver dial for maximum output at 1000 K . C. The dial must be tuned very accurately to the 1000 K . C. signal in order to make the following adjustment correctly
5. Turn the Magnetic Tuning switch "in" and adjust compensator (38B) for maximum output

The above adjustments are now checked for accuracy as follows:

FREQUENCY TEST

With the 1000 K . C. signal tuned for maximum output turn the Magnetic Tuning control back and forth; that is, from the "out" to "in" position. The read. ing of the output meter should not change in cither position. If the output meter reading changes, the above magnetic tuning circuit ad justments should be repeated

A further check on the Magnetic Tuning adjustment is to very carefully tune in a broadcasting station and turn the switch from the "out" to the "in" position With the switch in either position, the tone of the station being received should not change. If a change of tone or hiss develops repeat the above Magnetic Tuning Adjustments.

SENSITIVITY TEST

1. To check the magnetic tuning circuit for sensitivity, turn the magnetic uning switch to the "out" position, and tune in the 1000 K . C. signal. Then adjust the "attenuator" control of the signal generator for a good audible signal. Approxmately 20 volts on the out jut meter
2. Now detune the signal (first above and then below) the 1000 K . C. mark to a point at which the signal is weakly heard. At each point turn the magnetic tuning control "on". When the control is turned on the signal should return to normal output strength. If the magnetic tuning circuit does not pull the signal into reson ance, the compensator should be carefully readjusted

NOTE " A "-To accurately adjust the high frequency oscillator compensator to the fundamental instead of the image signal, turn the oscillator compensator to the maximum capacity position (clockwise). From this position slowly turn the compensator counter-clockwise until a second maximum peak is obtained on the output meter. Adjust the compensator for maximum output using this second peak. The first peak from maximum capacity position of the compensator is the image signal and must not be used in adjusting the compensator

If the above procedure is correctly performed, the image signal will be found (much weaker) by turning the receiver dial 940 K . C. below the frequency being used on any high frequency range.

NOTE "B"-When adjusting the low frequency compensator of Range One (Broadcast) or the antenna and R.F. compensators of the high frequency tuning ranges; the receiver Tuning Condenser must be adjusted (rolled) as follows: First tune the compensator for maximum output, then vary the tuning condenser of the receiver for maximum output about the frequency dial mark. Now turn the compensator slighty to the right or left and vary the receiver tuning condenser for maximum output. If the out reading increases, thrn the compensator in the same direction a trifle more, and again vary the tuning condenser for maximum output. If the output decreases, set the compensator in the opposite direction. This procedure of first setting the compensator and then varying the tuning condenser is continued until there is no further gain in output reading

SERVICE BULLETIN No. 271 for members of RADIO MANUFACTURERS SERVICE
 A PHILCO Service Plan

Electrical Specifications

TYPE CIRCUIT: Superheterodyne, with sueh features as: magnetic tuning control on the broadcast range: automatie volume control: Iron core adjusted first I F. transformer; push-pull Pentode audio output. using screen phase inversion; Isass compensation in the Volume Control circuit, and the Philco Automatic Tuning Mechanism.
POWER SUPPLY:

Voltage 115 115

Frequency
Consumption
110 watts
110 watts
Different Transformers are required for operation on the frequencies list above. These are shown on the farts list. INTERMEDIATE FREQUENCY: 470 K . C.
UNDISTORTED OUTPUT: 5 watts.
PHILCO TUBES USED: Nine. One 6UTGRF, one 6K7G I. F. anmifier; one 648G. Det. Osc.; one 6N7G, osc. control; one 6H6G. discrimitator; one 607 G , 2nd det. 1st atudio; two 6F6G output, and ofe 5Y4G rectifice.
TUNING RANGE: Three. Range one- 530 to 1720 K . C. Range two- 2.3 to 7.4 M . C. Range three- 7.35 to 22 M . C. TONE CONTROL: Four positions. SPEAKER: H29.

Alignment of Compensasors

EQUIPMENT REQUIRED: (1) Signal Generator; Philco Model 077 signal generator, using fundamental frequency from 115 to 36000 K . C. is the correct instrument for the purpose; (2) Output meter; Phalco model 026 circuit tester incorporates a sensitive output meter and is recommended; (3) Philco fibre handle serew-driver, part No. 27-7059 and fibre wrench part No. 3164
OUTPUT METER: The 026 output meter is connected to the plate and cathode terminals of one of the 6F6C tubes. Adjust the meter to use the ($0-30$) volt scale and advance volume control of receiver until a readable indication is noted after signal generator is connected in the following adjustments.

Fig. 1. Socket Voltages, Underside of Chassis-The voltages indicated by arrows were measured with a Philco 026 Clrcuit Tester which contains an aceurate voltmeter. Volume Control at ininimum, range suiteh in broadcast position, line voltage 115 .1. C.

DIAL CALIBRATION: In order to adjust this receiver correctly the dial must be aligned to track properly with the tuning condenser. To do this proceed as follows:

1. Lonsen the shaft coupling set screws. Then turn the tuning condenser fully closed and the dial to the first index lime. Now tighten the shaft coupling set screws, and rotate the dis until the 520 K . C. mark is midway between the index line and the glowing beam indicator. 2. Wit h condenser in this position loogen the set serews of the shaft coupling on the tuning condenser.
2. Then turn the tunimg dial until the glowing beam indicator is entered on the index line. NOTE: Be careful when turning the dial that the position of the tuning condenser is not disturbed.
3. Now tighten the shaft coupling set serews. INTERMEDIATE FREQUENCY CIRCUIT
With signal generator output lead connected through a 1 mfd . condenser to the grid of the 0A8G det-ose tube; and controleset as follows, adjust I. F. compersators for maximum output
. Magnetic Tuning Knob (34) off
b. Tone Coutrol (93) normal
c. Volume Control (68) maximum
d. Receiver dial 580 K . C

- Signal generator 470 K. C

Range Switch josition (Broadcast)
g. Compensators in order (53), (51A). (45A), (45B), RADIO FREQUENCY CIRCUIT
Tuning Range 530 to 1720 K. C.

1. Connect the sigmal generator output lead through a 1 mfd. condenser to "RED" terminal of the aerial panel and the generator ground to the chassis of the receiver
2. Other controls set as given under intermediate frequency circuit, with the exception of those as follows: A djust compensators for maximum out put as follows:

Range Switch	Signal Generator	Receiver Dial	Compensators
in Order			

Tuning Range 2.3 to 7.4 M. C. Adjust compensators for maximum output as follows:			
Range Switch	Signal Generator	Receiver Dial	Compensators If Order
2	$6 \mathrm{M} . \mathrm{C}$.	$6 \mathrm{M} . \mathrm{C}$.	(27A)
Tuning Range 7.35 to 22 M . C. Adjust compensators for maximum output as follows:			
Range Switch	Signal Generator	Receiver Dial	Compensators in Order
3	18 M . C.	$18 \mathrm{M} . \mathrm{C}$.	(2713) check image at 1706 M. C. (11) (4) Use shunt conderiser on gang through signal when padd
3	18 M. C.	$18 \mathrm{M.C}$.	(27B)

MAGNETIC TUNING ADJUSTMENT: Set the rangeswitch in position one (530 to $1720 \mathrm{~K} . \mathrm{C}$.) and the magnetic tuning switch in the "out'" position. Now turn the signal generator and receiver dial to any frequency in the Broadcast band. The receiver dial must be adjusted very accurstely for maximum output.
Set the magnetic tuning control in the "on" position (clockwige). Compensator (51B) of the magnetic tuning transformer is now adjusted for maximum output.

The above adjustment is now checked for acouracy, by turning the magnetic tuning control of" and "on." In either josition, there should be no change in the tone of the signal. If a change of tone or hiss develops, it indieates a shift in frequency and the adjustment must be repeated.

NOTE A-To accurately adjust the high frequency oscillator compensator to the fundamental instead of the image signal, turn the oscillator compensator to the maximum capacity position (clockwise). Then slowly turn compensator counter-clock wise until a second maximum peak is obtained on the output meter. This second peak is the fundamental signal, and the compensator must be adjusted for maximum output with it. The first peak from maximum capacity position of the compeneator is the image signal and must not be used in adjusting this compensstor.
If the above procedure is correctly performed, the image signal will be found (much weaker) 940 K . C. below the frequency being used on any high frequency range.
NOTE B-First tune compensator (28) for maximum output, then vary the tuning condenser of the recelver for maximum output about the 580 K . Cial mark. Now tirn compensator (28) singhtly to the right or ler and vary the recelver tuning condenser for maximumn output. if (28) in the same direction a turn compensator (28) in he same drection a ser for maximum output. If the ontput deser for maximum output. set the compensator in the opposite direction. This procedure of first setting the comnensator and then varying the tuning condenser is continued until there is no furt her gain in output reading.
NOTE C-To eliminate the effect of the R. F. compensator detuning the Osc. circuit, a variable tuning condenser of approximately 350 mmfd. is connceted from the oscillator compensator to ground when designated in the compding instruction above. Tune the added condenser until the second harmonic of the receiver oscillator beats aquinst the signal from the gencrator, resulting in a maximum indica-
tion on the out put meter. Then adjust comtion on the output meter. Then adjust com
pensators as noted for maximum output.

Fig. 4. Schematic Diagram Model 38-3

FIg. 2. I. F. Compensators Fig. 3. R. F. Compensators
Top of Chassis
Underside of Chassis

Fig. 5. Part Locations, Underside of Chassis

Sche No	0. Description
	Antenna transformer (range 1)
2	Antenna transformer (range 2)
3	Antenna transformer (range 3)
4	Compensator antenna, single.
5	Condenser (0.05 maf . tubular)
6	Resistor (51,000 ohms, $1 / 2$ wbit)
7	Tuning Condenser
8	Remove prior to production
9	R. F. transformer (range 1).
10	H. F. transformer (range 2)
11	Compensator (single) R.F.
12	R. F. Trandformer (range 3)
13	Condenser (0.05 mf , tubular)
14	Condenser (0.05 mf . tubular)
18	Condenser (0.05 mf . tubular)
16	Resistor (100 ohms, $1 / 2$ watt)
17	Resistor (700 ohms, $1 / 2$ watt)
18	Condenser (0.01 mf . tubular
19	Condenser (110 mmf . mica)
20	Resistor (99.000 ohms, $1 / 2$ watt)
21	Condenser (110 mmf . mica)
22 I	Resistor (99,000 ohms, 1/2 watt)
23	Resistor (10,000 ohms, $1 / 2$ watt)
24	Condenser (250 mmf , mica)
25 P	Resistor (32,000 ohms, 1/2 watt)
26	Osc. transformer (range 1)
27	Compensator (osc. series)
28	Compensator osc.
29	Resistor (85 ohms, $1 / 2$ watt)
30	Osc. transformer (range 2).
31	Condenser (1605 mmf . tracking)
32 (Osc. tranaformer (range 3)
33 C	Condenser (4280 mmf . tracking)
34 S	Switch (magnetic tuning, manual)
35 S	Switch (magnetic tuning, automatic dial)
36	Condensers (0.15 muf. dual bakelite).
37 C	Condenser (0.3 mf . double bakelite)
38 P	Resistor (490,000 ohms, 1/2 watt)
39 F	Resistor (490,000 ohms, $1 / 2$ watt)
40	Condensers (110 mmf . dual bakelite)
41	Resistor (1.0 meg., $1 / 2$ watt).
42 P	Resistor (1.0 meg., $1 / 2$ watt)
43 F	Resistor (2.0 meg., $1 / 2$ watt)
44 R	Resistor (2.0 meg., $1 / 2$ watt)
451	1st I. F. transformer
46 I	Resistor (1000 ohms, $1 / 2$ watt)
47	Resistor (9000 ohms, 2 watts)
48	Condenser (16 mf . electrolytic)
48 F	Resistor (7500 ohms, 3 watts)

Replacement Parts-Model 38-3

Part No.	$\underset{\text { Price }}{\text { List }}$
32-2575	
32-2576	
32-2573	
31-6161	\$0.30
30-4444	. 20
33-351339	20
31-1963	4.00
32-2379	40
32-2382	1.00
31-6160	. 30
32-2385	1.20
30-4123	. 20
30-4020	. 20
30-4020	. 20
33-110339	. 20
33-170339	. 20
30-4479	. 20
30-1031	. 20
33-399339	20
30-1031	. 20
33-399339	. 20
33-310339	. 20
30-1032	. 25
33-82ヘ239	. 20
32-2373	1.60
31-6151	. 40
31-6170	. 75
33-085339	. 20
32-2383	. 70
31-6155	40
32-2386	70
31-6156	. 60
42-1269	. 75
45-2330	1.20
6287 DG	. 40
6287 DU	. 40
33-449339	. 20
33-449339	20
8035 DG	. 25
33-510339	. 20
33-510339	. 20
33-520339	. 20
33-520339	. 20
32-2604	
33-210339	. 20
33-290539	. 30
30-2194	1.60
33-275639	. 30

PHILCO RADIO AND TELEVISION CORPORATION

Parts and Service Division

SERVICE BULLETIN No. 281 for members of RADIO MANUFACTURERS SERVICE A PHILCO Service Plan

Electrical Specifications

TYPE CIRCUIT: An eight tube A.C. operated super-heterodyne circuit is incorporated in these receivers with features, such as Philco foreign tuning system; a high gain R.F. amplifier; two tuning ranges; iron core adjusted I.F. transformers; automatic volume control; bass compensation, and a pentode push-pull audio output circuit.

The same circuit is used in both models. The features, however, such as tuning mechanism; speaker, and cabinets differ in each model.

Mode. 38-4 employs the Philco Cone-Centric Automatic Tuning System; Type "H29" dynamic speaker unit and is assembled in a console cabinet type " XX ".

Model 38-5 differs from the $38-4$ in the tuning mechanism. The tuning mechanism of this receiver is of the manually operated type with vernier control and incorporates a shadowmeter for visual tuning. The receiver is designed for a table model cabinet type " B " and a console cabinet type " X ". The B cabinet utilizes a dynamic speaker type "K39" and the " X " cabinet a dynamic speaker type "H29".

$$
\begin{array}{ccc}
\text { POWER SUPPLY: Voltage } & \text { Frequency } & \text { Consumption } \\
110 & 60 \text { cycle } & 95 \text { watts } \\
110 & 25 \text { to } 40 \text { cycle } & 95 \text { watts } \\
115 / 230 & 50 \text { to } 60 \text { cycle } & 95 \text { watts }
\end{array}
$$

Different transformers are required for operation on the frequencies listed above. The part numbers of these transformers are listed on page 3.

INTERMEDIATE FREQUENCY: 470 K . C.

$$
\begin{aligned}
& \text { TUNING RANGES: Two Range } 1-540 \text { to } 1720 \mathrm{~K} . \mathrm{C} . \\
& \text { Range } 2-5.7 \text { to } 18.2 \mathrm{M} . \mathrm{C} .
\end{aligned}
$$

UNDISTORTED OUTPUT: 5 watts.

PHILCO TUBES USED: Eight-6U7G, R. F. amp.; 6A8G, Det.
Osc.; 6K7G, I. F. amp.; 6J5G, 2nd Det., A.V.C.; 6K5G, 1st audio; two 6 F6G, audio output; and one 5 Y 4 G rectifier.

Fig. 2-Cone-Centric Automatic Tuning Mechanism, Model 4

TONE CONTROL: Four positions.

Fig. 1-Socket Voltages-Underside of Chassis View
The Voltages indicated by arrows were measured with a Philco 026 Circuit Tester which contains a sensitive voltmeter. Volume Control at minimum, range switch in broadcast position, line voltage 115 A . C.

Service Data

FOR CONE-CENTRIC TUNING MECHANISM-MODEL 4

Complete information for setting the stations on the Cone-Centric Tuning mechanism of Model 38-4 will be found in the instruction sheet (Form No. 39-5533) which is supplied with each set.
The locations of a few assemblies of the Cone-Centric Automatic Tuning mechanism is illustrated in Fig. 2. The part numbers and prices of these assemblies are listed on page 3. A complete list of replacement parts and detailed service data for the mechanism will be found in bulletin 282.

Aerial Connections

To obtain the full advantage of the sensitivity of these receivers, the Philco High Efficiency Aerial Part No. 40-6112 must be used.
For attaching the aerial to the receiver a terminal panel is provided at the rear of the chassis. This panel contains three screw terminals marked "Red", "Blk" and "Gnd". Connect the red and black wires of the Philco High Efficiency Aerial transmission line to the "Red" and "Blk" terminals respectively.

If you use a temporary aerial, connect it to the "Red" terminal.
A good ground connection is necessary for best reception. The terminal mark "Gnd" should be connected to a water pipe or any other good ground source.

Fig. 3 -Schematic diagram
Models $38-4,38-5 ;$ Code 121

Fig. 4-Locations of Parts, Underside of Chassis

REPLACEMENT PARTS-Models 38-4, 38-5

	em. Description	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
Antenna transformer (range 2)		32-2558	
2	Antenna transformer (range 1)	32-2629	
3	Condenser (.05 mfd . tubular	30-4444	\$0.20
5	Resistor (51000 ohms, $1 / 2$ watt)	33-351339	. 20
	Tuning Condenser assembly (Model 4)	31-2038	
	Tuning Condenser (Model 5)	31-2052	
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	Condenser (strip of copper foil, 6 mmd)		
	R. F. transformer (range 2)	${ }_{32-2630}^{32-263}$	
	R. F. transformer (range 1)	32-2630	
	Condenser (05 mfd . ${ }^{\text {ctubular }}$ ($30-4444$ $30-1029$. 20
10	Resistor (5000 ohms, $1 / 2$ watt)	33-250339	. 20
12	Resistor (40000 olims, 1 watt)	33-340439	. 20
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	Osc. transformer (range 2).	32-2633	1.25
	Condenser (250 mmfd .) on compensator section. See Note fig. 4		
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	Osc. transformer (range 1)	32-2631	
	Compensators (dual, 1500 and 580 K.C. Model 5)	31-6194	
	Compensators (air type, 1500 K.C.	31-6196	
17	Compensator (580 K.C., Model 5; Part of 16)		
	Compensator (580 K.C. Model 4, condenser 14 is part of this unit		
18	Condenser (3000 mmfd. mica)	30-1028	. 45
19	Resistor (70,000 ohms. $1 / 2$ watt)	33-370339	. 20
20	Resistor (5000 ohms, $1 / 2$ watt)	33-250339	. 20
21	Resistor ($100000 \mathrm{ohms}, 1$ watt)	33-310439	20
22	Resistor (13000 ohms, 2 watt)	33-313539	. 30
23	First 1. F. transformer	32-2643	
24	Condenser (0.1 mfd ., tuhular)	30-4455	. 55
25	Condenser (0.05 mfd ., tubular)	30-4:23	20
26	Condenser (eleetrolytic, 16 mfd .)	30-2212	1.05
27	Shadowmeter (Model 38-5)	45-2307	2.50
27 X	Resistor (1000 ohms, $1 / 2$ watt)	33-210339	20
28	Second I. F. transformer	32-2645	
29	Condenser ($110 \mathrm{mmfd} ., \mathrm{mica}$)	30-1031	20
30	Condenser ($110 \mathrm{mmfd} .$, mica)	30-1031	. 20
31	Resistor (51000 ohms, $1 / 2$ watt)	33-351339	. 20
32	Condenser ($110 \mathrm{mmfd} .$, mica)	30-1031	20
33	Resistor (330000 ohms, $1 / 2$ watt)	33-433339	. 20
34	Resistor (1.0 megohm, $1 / 2$ watt)	33-510339	20
35	Resistor ($1.0 \mathrm{megohm}, 1 / 2$ watt)	33-510339	20
36	Condenser (0.01 mfd ., tubular)	30-4124	25
37	Condenser (50 mmfd ., mica)	30-1029	. 20
38	Resistor (40000 ohms, $1 / 2$ watt)	33-340339	. 20
39	Condenser (0.008 mdd ., tubular)	30-4112	20
40	Tone Control Switch and off-on switch.	42-1341	
41	Resistor (330000 ohms, $1 / 2$ watt)	33-433339	. 20

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, having a fundamental frequency range covering the tuning and intermediate frequencies of the receiver. Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to 36000 K . C. is the correct instrument for this purpose; (2) Output meter, Philco Model 026 circuit tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, part No. 27-7059 and Fibre Wrench, part No. 3164.

OUTPUT METER: The 026 output meter is connected to the plate and cathode terminals of one of the 6 F 6 G tubes. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication is noted on the output meter after signal is applied.

DIAL GALIBRATION: In order to adjust the receiver correctly the dial must be aligned to track properly with the tuning condenser. To adjust the dial of each model procecd as follows:

Model 38-4

1. Loosen the tuning condenser shaft coupling set screws (use wrench Part No. 45-2481), and turn the tuning condenser to the maximum capacity position (Plates fully meshed). Turn the selector knob until the dial pointer is on the small black dot at the low frequency end of the Range One scale. With condenser and pointer set in this position tighten set screws.
2. Now turn the selector knob clockwise until the dial pointer moves $1 / 16$ of an inch to the left of the small dot and the first straight line on the scale (See Fig. 6). Hold pointer and condenser in this position, and carefully loosen shaft coupling set screws.

MOVE POINTER 1/16 TO LEFT OF DOT.

Fig. 6. Dial Calibration Model 4

Fig. 7. Dial Callibration Model 5
3. After set screws are loose, turn the selector knob until dial pointer is again on the small black dot at the low frequency end of Range One scale.
Be careful when turning the selector knob that the position of the tuning condenser is not disturbed.

Tighten shaft coupling set screws with condenser and dial pointer in this position.

Model 38-5

1. Turn the tuning condenser to maximum capacity position (plate fully meshed).
2. Holding the tuning condenser in this position, loosen the dial clamp; then turn the dial until the indicator is centered on the middle index line (See Fig. 7). Tighten clamp in this position.
Before any of the following adjustments are made, the receiver should be turned "on" for at least 5 minutes.

Fig. 5. Locations of Compensators--Top of chassis

INTERMEDIATE FREQUENGY CIRCUIT

Insert the signal generator shielded output lead into the "Med" jack on the panel of the generator. Connect the other end of the output lead through a .1 mfd . condenser to the grid of the 6 A 8 G , det. osc. tube and the ground connection of the signal generator to the chassis. Set the signal generator and receiver controls, and adjust the I. F. compensators as follows:

1. Set Signal Generator at 470 K. C. Turn "Multiplier" Control to 1000 and the "Attenuator" for maximum output.
2. Turn the receiver dial to 580 K . C.
3. Receiver Volume Control maximum.
4. Range Switch Broadcast Position.
5. Adjust compensators (28B), (28A), (23B), and (23A) for maximum output. If the output meter goes off scale when adjusting the compensators retard signal generator at tenuator.

RADIO FREQUENGY CIRCUIT

Tuning Range : 5.7 to $\mathbf{1 8 . 2}$ M. C.

1. With one end of the shielded lead of the signal generator out put lead in the "Med" jack, connect the other end through the . 1 mfd. condenser to the "Red" terminal of the aerial panel of the receiver. The output lead ground must be connected to the black terminal or to the chassis.
2. Set the controls and adjust the R. F. compensators as follows:

Volume	Range Control	Signal Generator Switch and Receiver Dial	Compensators in Order
Max.	2	18 M . C.	(5C) See Note A

Tuning Range: 530 to 1720 K. C.

Range	Signal Generator
Switch	and Recelver DHal

Compensa tors
in Order
$(16),(5 B),(5 A)$
$(17),(5 B),(5 A)$
$(16),(5)$

NOTE A-To accurately adjust the high frequency oscillator compensator to the fundamental instead of the image signal, turn the oscillator compensator to the maximum capacity position (clockwise). From this position slowly turn the compensator counterclockwise until a second maximum peak is obtained on the output meter. Adjust the compensator for maximum output using this second peak. The first peak from maximum capacity position of the compensator is the image signal and must not be used in adjusting the compensator.

If the above procedure is correctly performed, the image signal will be found (much weaker) by turning the receiver dial 940 K . C. below the frequency being used on the high frequency range.

Models 38-7, 38-8, 38-9

SERVICE BULLETIN No. 280 for members of RADIO MANUFACTURERS SERVICE

Models 38-7, Code 121, 124; 38-8, Code 121; 38-9, Code 121

Electrical Specifications

Models 38-7, 38-8 and 38-9 receivers employ a six tube A. C. operated superheterodyne circuit with such features as: Two tuning ranges covering standard and short wave broadcasts; Philco foreign tuning system; automatic volume control; bass compensation; tone control, and pentode audio output circuit.

The same circuit is used for each receiver. The features, however such as, tuning mechanism, speakers and cabinets differ in each model.

Model 38-7 in addition to the features given above employs the Philco automatic tuning mechanism with cone-centric tuning. The chassis of this model is built into a console cabinet type XX, Table Cabinet Type " T " and is designated code 121. The same chassis built into a type "CS" cabinet is identified as code 124.

Model 38-8 differs from the $38-7$ in that a manually operated tuning mechanism with shadowmeter tuning is used. This receiver is built into a type " X " cabinet with a type "HS" dynamic speaker.

Model $38-9$ is identically the same as model $38-8$ with the exception that the shadowneter is not used, and that the speaker and cabinet types differ. This model is assembled in a type " T " cabinet with dynamic speaker type " S 7 " and a " K " type cabinet using a dynamic speaker type "HS".

POWER SUPPLY:

Voltage	Frequency	Consumption
115	50 to 60 cycles	70 Watts
115	25 to 40 cycles	70 Watts
$115 / 220 \mathrm{~V}$	50 to 60 cycles	70 Watts

Different transformers are required for operation on the frequencies listed above. These are shown on the Parts List.

INTERMEDIATE FREQUENCY: 470 K . C.
TUNING RANGES: Two $\begin{aligned} & \text { Range one } 530 \text { to } 1720 \mathrm{~K} . \mathrm{C} . \\ & \\ & \text { Range two } 5.7 \text { to } 18.2 \mathrm{M} . \mathrm{C} .\end{aligned}$

UNDISTORTED OUTPUT: 3 watts.

PHILCO TUBES USED: Six-one 6A8G, det. osc.; one 6K7G, I. F. amp.; one 6J5G, 2nd Det. A. V. C.; one 6K5G 1st audio; one 6 F 6 G , output; one 5 Y 4 G rectifier.

TONE CONTROL: Three positions with A. C. switch attached.

CABINETS AND SPEAKERS:	Cabinet	Speaker
$38-7$ Code 121	XX	H31
$38-7$ Code 121	T	K 41
$38-7$ Code 124	CS	K41
$38-8$ Code 121	X	HS
$38-9$ Code 121	K	HS
$38-9$ Code 121	T	S 7
$38-9$ Code 121	X	HS

Fig. 1 -Socket Voltages-Underside of Chassis View
The Voltages indicated by arrows were measured with a Philco 026 Circuit Tester which contains a sensitive voltmeter. Volume Control at minimum, range switch in broadcast position, line voltage 115 A . C.

SERVICE DATA FOR AUTOMATIC TUNING MECHANISM-MODEL 7

Complete information for setting the stations on the cone-centric tuning mechanism of Model 38-7 is covered in the instruction form no. (39-553,3) which is supplied with each set.

A few major assemblies of the automatic cone-centric tuning mechanism are listed on page 3 of this bulletin. A complete list of replacement parts, however, and detailed service data for the automatic mechanism, will be found in bulletin 282.

SHADOW METER ADJUSTMENT Model 38-8

Apply power to the receiver and allow tubes to warm up. Then adjust shadow meter as follows:

1. Move the shadow meter coil backwards and forwards, until the opposite edges of the shadow are $1 / 8$ of an inch from each end of the shadow screen, measuring along the bottom edge of the screen. Adjustment of the shadow meter light bracket may be necessary for perfect centering.
2. Remove the rectifier tube from its socket, and rotate the shadowmeter coil until shadow reaches minimum width. This width should not exceed $3 / 32$ of an inch.
3. Replace the 5 Y 4 G rectifier tube in its socket. The shadow should then widen to not more than $3 / 16$ inch or less than $1 / 16$ inch from each side of the screen measuring along the bottom edge. If these limits are not obtained readjust the shadow meter as given in paragraphs 1 and 2 again.

Fig. 4. Part Locations, Underside of Chassis.

Schem No.	m. Description	Pari No.	List Price
Antenna Transformer-Short Wave		32-2558	
2	Aritenna Transformer-Broadcast	32-2557	\$1.25
3 C	Condenser 05 mf .	30-4519	. 20
T	Tuning Condenser, Models 8 and 9...	31-2024	
	Tuning Condenser, Model 7...........	$31-2040$	
50	Ose. Transformer-Short Wave.	32-2560	1.25
6	Osc. Transformer-Broadcast	32-2559	
7	Compensator Dual Models 8 and 9	31-6188	
	Compensator, 580 KC . (Model 7)	31-6195	
$7 A$899	Compensator Model 7 (1500 KC .)	31-6196	
	Condenser 3500 mmf . mica.	30-1094	40
	Resistor 70,000 ohms ($1 / 2$ watt)	33-370339	. 20
10 P	Resistor 5000 ohms ($1 / 2$ watt)	33-250339	. 20
11 C	Condenser, Electrolytic Dual (4 and 8 mid.)	30-2217	
12 R	Resistor 10,000 ohms (3 watt)	33-310639	. 30
131	1st I. F. Transformer	32-2580	
14 C	Condenser 11 mf .	30-4455	. 25
15 P	Resistor 1.0 meg ($/$ \% watt)	33-510339	. 20
	Resistor $10,000 \mathrm{~mm}$. (1 watt)	33-310439	. 20
17	Condenser .05 mf . ($38-8$ only)	30-4454	
18	Shadowmeter (38-8 only)...	45-2307	2.50
	2nd I. F. Transformer	32-2582	
20	Resistor $51,000 \mathrm{mmf}$. (mounted in 19)	33-351339	. 20
21 R	Resistor 490,000 ohms ($1 / 2$ watt) $\ldots .$.	33-449339	. 20
22	Resistor 51,000 ohms (1 watt)	33-351439	20
	Condenser, mica, 110 mmf . .	30-1031	20
23 C	Condenser . $01 \mathrm{mf......}$.	30-4479	20
${ }_{25}^{24}$ C	Removed Prior to Production		
26	Volume Control.	33-5216	
${ }_{28}^{27}$	Resistor 1 med. ($1 / 2$ watt)	3.3-510339	20
	Condenser . 015 mf .	30-4358	20
29	Audio Shorting Switch (38-7 only) Part of Selector Crank		
30 C	Condenser .1 mf .	30-4499	. 20
31 R	Resistor 1.0 meg. ($1 / 2$ watt)	33-510339	. 20
32 P	Resistor $51,000 \mathrm{mf}$. (1/2 wat $)$	33-351339	. 20
33 P	Resistor 1.0 meg (($1 / 2$ Hatt)	33-510339	. 20
34	Condenser . 015 mf. . . .	30-4.515	. 20
35 R	Resistor 1.0 mrg ($1 / 2 \mathrm{watt}$)	33-510339	. 20
361	Resistor $09,000 \mathrm{mf}$. ($1 / 2 \mathrm{wat}$ ()	33-399339	. 20
37 (Condenser 03 mf . 0.	30-4447	. 20
38	Condenser 06 mf	30-4467	. 20
39	Tonc Control.	42-1327	

Schem.No.		Part No.	List Price	
40	Condenser 008 mf .	30-4112	$\$ 0.20$	
	Output Transformer (Model 7)	32-7862		
	Output Transformer (Models 8 and 9)	$32-7019$. 85	
42	Cone and Voice Coll Assembly (H31)	3h-3801	1.40	
	Cone and Voice Coil Assembly (K41)	36-3174	1.00	
	Cone and Voice Coil Assembly (HS).	36-3796	1.20	
	Cone and Voice Coil Assembly (\$7)	36-3157	1.00	
43	Bias Resistor.	33-3116		
44	Field Cuil Assembly (H31)	36-33045	4.25	
	Field Coil Assembly (k41)	36-3931		
	Field Coil Assembly (HS).	36-3690	3.50	
	Field Coil Assembly (S7)	$36-3039$	3.50	
45	Electrolytic Condenser.	30-2219		
	Power Transformer, $115 \mathrm{~V}, 50 / 60$ cycle	32-7833		
	Power Transformer, $110 \mathrm{~V}, 25$ to 40 cyele	32-7627		
	Power Transformer, $115 / 230 \mathrm{~V}, 50 / 60$ cycle	32-7835		
47	Condenser 015-. 015 mf , 25 mf	3793DG	. 40	
48	Wave Switch	42-1325		
49	Pilot Lamp, Models 8 and 9	34-2064		
	MODELS 38-7, 8, 9 PARTS			
	Tilot Lamp, Model 7	34-2184		
	Cable (Power)	L -2778	. 40	
	Cable (Speaker)	L-2840		
	Cable (Shadowmeter, Model 8)	41-3225	. 40	
	Dial, Mudels 8 and 9	27-5327		
	Dial Clamp. . . .	27-5089		
	Dial Washer	27-4598		
	kinob.	27-4330	10	
	Knob.	27-4331	10	
	Knoh.	27-4332	10	
	Mig. Corner, Rubher (Chassis)	27-4564	10	
	Mtr. Rubber (Tuning Condenser)	27-4514		
	Screen Brkt. Assembly (Modrls 8 and 9)	31.2047		
	Sucket (7 prong)	$27-1087$		
	Sorket (4 prong)	27-fi08t		
	Socket Ase'y (Pilot lamp) Models 8 \& 9.	38-8844		
	Vernier Drive Ass y, Models 8 and 9.	31-2072		
	MODEL 37-8 PARTS			
	Bracket Assfmbly .	45-2479		
	Brace (Mtg. Unit)	28-5118		

Alignment of Compensator

EQUIPMENT REQUIRED: (1) Signal Generator, using a fundamental frequency covering the intermediate and tuning ranges of the receivers. Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to 36000 K . C. is the correct instrument for this purpose; (2) Output meter, Philco Model 026 circuit tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, part No. 27-7059 and Fibre Wrench No. 3164.

OUTPUT METER: The 026 output meter is connected to the plate and cathode terminals of the 6 F 6 G tube. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication is noted on the output meter.

DIAL CALIBRATION: In order to adjust the receiver correctly the dial must be aligned to track properly with the tuning condenser. To adjust the dial of each model proceed as follows:

Model 38-7: 1. Loosen the shaft coupling set screws, using wrench Part No. 45-2481; then turn the tuning condenser to the maximum capacity position (plate fully meshed). Now turn the selector knob until the dial pointer is on the small black circle at the low frequency end of the Range One scale. With condenser and pointer set in this position tighten set screws. 2. Now turn the selector knob (clockwise) until the dial pointer moves $1 / 16$ of an inch from the smal! circle (clockwise), see Fig. 5. Leave pointer in this position and loosen coupling set screws. 3. After loosening set screws, turn the selector knob until pointer is again on the small black dot at low frequency end of Range One scale. Be careful when turning the selector knob that the position of tuning condenser is not disturbed. Tighten coupling set screws with condenser and dial pointer in this position.

Models 8 and 9: 1. Turn the tuning condenser to maximum capacity position (plates fully meshed). 2. Loosen the clamp of dial, then turn the dial-being careful that position of tuning condenser is not disturbed-until the glowing indicator is centered on the middle index line at the low frequency end of Range One scale. Tighten the dial clamp in this position.

Note-Before the following adjustments are performed, the receiver must be turned on and allowed to heat for 15 minutes.

INTERMEDIATE FREQUENCY CIRCUIT

Insert the signal generator output lead into the "Med" Jack on the panel of the generator. Connect the other end of the output lead through a .1 mfd . condenser to the grid of the 6 A 8 G , det. osc. tube and the ground connection of the signal generator to the chassis. Set the signal generator and receiver controls, and adjust the I. F. compensator as follows:

1. Set Signal Generator at 470 K. C. Turn "Multiplier" Control to 1000 and the "Attenuator" for maximum output.
2. Turn the receiver dial to 580 K . C.
3. Receiver Volume Control maximum.
4. Range Switch Broadcast Position.
5. Adjust compensators (19B), (19A), (13B), and (13A) for maximum output. If the output meter goes off scale when adjusting the compensators retard signal generator attenuator.

Fig. 4-Locations of Compensators-Top of Chassis

RADIO FREQUENCY CIRCUIT

Tuning Range: $\mathbf{5 . 7}$ to $\mathbf{1 8}$ M. C.

1. Insert the Signal Generator output lead in the "Med." jack on the panel, and connect the other end through the .1 mfd . condenser to the "Red" terminal of the aerial panel of the receiver. The output lead ground must be connected to the "Blk" terminal or to the chassis.
2. Leave the receiver volume control at maximum. Then set the controls and adjust the R. F. compensators as follows:

Range Switch	Signal Generator and Receiver Dial 18 MC.	Compensators in Order 4 B See Note A
ning Range: 530 to $\mathbf{1 7 2 0} \mathrm{K} . \mathrm{C}$.		
Range Switch	Signal Generator and Receiver Dial	Compensators in Order
1	1500 KC.	$(7 \mathrm{~A}),(4 \mathrm{~A})$
1	580 KC.	7
1	1500 KC.	7 A

NOTE A-To accurately adjust the high frequency oscillator compensator to the fundamental instead of the image signal, turn the oscillator compensator to the maximum capacity position (clockwise). Now, slowly turn compensator counter-clockwise until a second maximum peak is obtained on the output meter. The second peak is the fundamental signal, and must be used in adjusting the receiver for maximum output. The first peak from maximum capacity position of the compensator is the image signal and must not be used in adjusting this compensator.

If the above procedure is correctly performed, the image signal will be found (much weaker) by turning the receiver dial 940 KC . below the frequency being used on any high frequency range.

Fig. 5 Dial Callbration
April, 1937

The GENUINE PHILCO REPLACEMENTS listed in this bulletin MUST BE USED to obtain the Accurate Balanced Performance BUILT INTO THESE PHILCO MODELS

SERVICE BULLETIN No. 283 for members of RADIO MANUFACTURERS SERVICE
 A PHILCO Service Plan

Electrical Specifications

TYPE OF CIRCUIT: Five tube. A.C. operated superheterodyne circuit with features, such as two tuning ranges covering the trequencies shown under "'Tuning Ranges"; Automatic Volume Control; a Pentode Audio Output Stage.
POWER SUPPLY:

Voltage	Frequency Cycles
115	50 to 60
115	25 to 40
$115 / 230$	50 to 60

Power
Consumption
60 watts
60 watts
60 watts

Different transformers are reguired to operate the receiver on the voltage and frequency ratings listed above. The nart number of these transformers are shown on the Parts List Page 2.
INTERMEDIATE FREOUENCY: $470 \mathrm{~K} . \mathrm{C}$
TUNING RANGES: Two-Range 1,540 to 1720 k . C
Range 2, 5.7 to 18 M . C.
UNDISTORTED OUTPUT: 3 watts.
PHILCO TUBES USED: Five-one 6A8G, Det ose.; one $6 \mathrm{~K} 7 \mathrm{G}, \mathrm{I} . \mathrm{F}$.; one 6Q7G, 2nd Det. 1st audio; one 6F6G, output, and one 5 Y 4 G , Rectifier.
TONE CONTROL: Two position with A.C. switch attached
SPEAKERS: Tyne S 7 in T Cabinet, HS in F Cabinet.

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, using a tundamental frequency range covering the tuning and intermediate frequencies of the receiver. Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to $36,000 \mathrm{~K}$. C. is the correct instrument for this purpose; (2) Output Meter. Philco Model 026 Circuit Tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, part No. 27-7059 and Fibre Wrench, part No. 3164.

OUTPUT METER: The 026 Output Meter is connected to the plate and cathode terminals of the 6F6G tubes. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator util a readable indication is noted on the output meter after signal is applied.

DIAL CALIBRATION: In order to adjust the receiver correctly the dial must be aligned to track properly with the tuning condenser. To adjust the dial proceed as follows:

1. Turn the tuning condenser to maximum capacity position (plate fully meshed).
2. Holding the tuning condenser in this position, loosen the clamp and turn the dial until the indicator is centered on the middle index line (See Fig. 3). Tighten clamp with dial in this position.

Fig. 2. Locations of Compensators-Top of Chassis

Fig. 1. Socket Voltages, Underside of Chassis
The voltages indicated by arrows were measured with a Philco 026 Circuit Tester which contains an accurate voltmeter. Volume Control at minimum, range switch in broadcast position, line voltage 115 A . C.

INTERMEDIATE FREQUENCY CIRCUIT

Insert the signal generator shielded output lead into the "Med" jack on the pancl of the generator. Connect the other end of the output lead through a 1 mfd . condenser to the grid of the 6A8G, det. ose. tube and the ground connection of the signal gencrator to the chassis. Set the Signal Generator and,receiver controls, and adjust the I. F. compensators as follows:

1. Set Signal Generator at 470 K . C. Turn "Multiplier" Control to 1000 and the "Attenuator" for maximum outhut
2. Turn the receiver dial to $580 \mathrm{~K} . \mathrm{C}$.
3. Receiver volume control maximum.
4. Range Switch Broadeast Position.
5. Adjust compensators (20B), (20. $),(13 \mathrm{~B}),(\mathrm{I} .3 \mathrm{~A})$ for maximum output. If the output meter goes off scale when adjusting the compensators retard signal generator attenuator.

RADIO FREQUENCY CIRCUIT

Tuning Range: 5.7 to 18 M , C.

1. With one end of the shielded lead of the signal generator uatsut lead in the "Med" jack, connect the other end through the .1 mfd . condenser to the "Red" terminal of the aerial manel of the receiver. The output lead ground must be connected to the black terminal or to the chassis.
2. Set the controls and adjust the R. F. compensators as follows:
Volume
Control
Max.
$\underset{\text { Range }}{\text { Rwitch }}$
Sisnal Generator
and Receiver Dial $18 \mathrm{M} . \mathrm{C}$.
Compensators
in Order

413
Tuning Range: 530 to $1720 \mathrm{~K} . \mathrm{C}$

Range	Signal Generator
Switch	and Receiver Dial
1	$1500 \mathrm{~K} . \mathrm{C}$
1	$580 \mathrm{~K} . \mathrm{C}$
1	$1500 \mathrm{~K} . \mathrm{C}$.

Compensators
in Order
7. 4.1
(9)
7. 4.1

NOTE A-To accurately adjust the high frequency oscillator compensatur th the fundamental instead of the image signal, turn the oscillator compensator to the maximum capacity position (clockwise). From this position slowly turn the compensator counterclockwise until a second maximum peak is obtained on the output meter. Adjust the compensator for maximum output using this second peak. The first peak from maximum capacity position of the compensator is the image signal, and must not be used in adjusting this compensator.

If the above procedure is correctly performed, the image siunal will be found (much weaker) by turning the receiver dial 940 k . C. below the frequency being used on the high frequency range.

Philadelphia, Pa.

n

ع82 ${ }^{\circ} \mathrm{ON}$

a philco service plan

SERVICE BULLETIN No. 284 for members of RADIO MANUFACTURERS SERVICE A PHILCO Service Plan

Specifications

TYPE OF CIRCUIT: A.C. operated, superheterodyue with automatic volume control, Pentode audio output, and covers the standard broadcast and state police frequencies.

POWER SUPPLY: \begin{tabular}{cccc}

Voltage \& \begin{tabular}{c}
Frequency

Cycles

 \&

Power

Consumption
\end{tabular}

\& 115 \& 50 to 60 \& 40 watts
\end{tabular}

INTERMEDIATE FREQUENCY: 470 K.C.
R.F. TUNING RANGE: 540 to 1720 K.C.

AUDIO OUTPUT: 2 watts.
PHILCO TUBES USED: Five: One 6A7, Det. Osc. ; One 78, I.F.; One 75, 2nd Det., 1st Audio ; One 41, Output, and One 84, Rectifier.

TUNING MECHANISM: 8 to 1 Ratio using Pulley and Cord. CABINET: Type "T" and "C."

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, using a fundamental frequency range covering the tuning and intermediate frequencies of the receiver. Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to $36,000 \mathrm{~K} . \mathrm{C}$. is the correct instrument for this purpose ; (2) Output Meter, Plilco Model 026 Circuit Tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, Part No. 27-7059 and Fibre Wrench, Part No. 3164.

OUTPUT METER: The 026 Output Meter is comected to the plate and cathode terminals of the 41 tube. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication is noted on the output meter after signal is applied.
DIAL CALIBRATION: In order to adjust the receiver correctly the dial must be aligned to track properly with the tuning condenser. To adjust the dial, proceed as follows :

FIG. 2.-Locations of Compensators.

FIG. 1.-Socket Yoltages-Underside of Chassis View.
The Voltages indicated by arrows were measured with a Philco 026 Circuit Tester which contains a sensitive voltmeter. Volume Control at minimum - Tuning condenser set for no signal-line voltage $115 \mathrm{~A} . \mathrm{C}$.

1 Turn the tuning condenser to maximum capacity position (plates fully meshed)
2 Holding the tuning condenser in this position, turn the pointer until it is $1 / 16$ of an inch below the three lines of the scale at the 550 K.C. end. (See Fig. 3.) This is the correct position of pointer at maximum capacity of tuning condenser

pointer setting TUNING CONDENSER CLOSED

FIG. 3.-Dial Pointer Calibration

Intermediate Frequency Circuit

Insert the signal generator shielded output lead into the "Med." jack on the panel of the generator. Connect the other end of the output lead through a .1 mfd. condenser to the grid of the 6A7 Det. Osc. tube, and the ground connection of the signal generator to the chassis. Set the Signal Generator and receiver controls, and adjust the I.F. compensators as follows
1 Set Signal Generator at 470 K.C. Turn "Multiplier" Control to 1000 and the "Attenuator" for maximum output.
2 Turn the receiver dial to $580 \mathrm{~K} . \mathrm{C}$.
3 Receiver volume control maximum.
4 Adjust compensators, (12A), (8B), (8A), for maximum output. If the output meter goes off scale when adjusting the compensators, retard the signal generator attenuator.

Radio Frequency Circuit

TUNING RANGE: 540 to 1720 K.C.

1 With one end of the slielded lead of the signal generator output lead in the "Med." jack, connect the other end through a 100 mmfd. condenser to the white aerial wire (rear of chassis). Connect the signal generator ground to the brown lead or to the chassis of the receiver
2 Set the controls and adjust the R.F. compensators as follows:

Volume Control	Signal Generator and Receiver Dial	R.F. Compensators in Order
Max.	1500 K.C.	(3B) (3A)

.

SERVICE BULLETIN No. 288 for members of RADIO MANUFACTURERS SERVICE

Electrical Specifications

TYPE OF CIRCUIT: A. C. or D. C. operated superheterodyne with automatic volume control, pentode audio output, and covers the standard broadcast, inunicipal and state police frequencies, first class amateur (night) and many night foreign and American short-wave stations.
Code $121 \& 124$ chasses of this Model are identical with the exception of electrolytic condensers, speaker and cabinets. These differences are listed on the part list.
POWER SUPPLY: Voltage Power Consumption
$115 \quad 55$ watts
INTERMEDIATE FREQUENCY: $470 \mathrm{~K} . \mathrm{C}$.
R. F. TUNING RANGES: 540 to $1720 \mathrm{~K} . \mathrm{C}$. 2.3 to $7.4 \mathrm{M} . \mathrm{C}$.

AUDIO OUTPUT: 1 watt
PHILCO TUBES USED: Five: one 6A7, Det. osc.; one 78, I. F.; one 75, 2nd Det., 1st Audio; one 43, Output, and one 2525 Rectifier.
TUNING MECHANISM: 12 to 1 Ratio using Pulley and Cord.
CABINET: Type "T," Code 121

$$
\text { Type "CS," Code } 124
$$

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, using a fundamental frequency range covering the tuning and intermediate frequencies of the receiver. Philco Mode! 077 Signal Generator which has a fundamental frequency range trom 115 to $36,000 \mathrm{~K}$. C. is the correct instrument for this purpose: (2) Output meter, Philco Model 026 circuit tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, Part No, 27-7059 and Fibre Wrench, Part No. 3164.

OUTPUT METER: The 026 Output Meter is connected to the plate and cathode terminals of the 43 tube. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication is noted on the output meter after signal is applied.

DIAL CALIBRATION: In order to adjust the receiver correctly the dial must be aligned to track pronerly with the tuning condenser. To adjust the dial, proceed as follows:

1. Turn the tuning condenser to maximum capacity position (plates fully meshed).
2. Holding the tuning condenser in this position, turn the pointer until it is parallel with the index lines (see Fig. 3). This is the correct position of pointer at maximum capacity of tuning condenser.

INTERMEDIATE FREQUENCY CIRCUIT
When adjusting the following compensators, a Philco Set Transformer Part No. 32-2763 must be connected in the signal generator output circuit as follows: Insert the signal generator output lead into the "Med" jack and the ground lead into the "Gnd" jack of the signal generator.

Fig. 2. Locations of Compensators-Top of Chassis

Fig. 1. Socket Voltage-Underside of Chassis View
The voltages indicated by arrows were measured with a Philco 026 Circuit Tester, which contains a sensitive voltmeter. Volume Control at minimumTuning Condenser set for no signal-line voltage 115 A . C.

[^9]

SET POINTER PARALLEL WITH INDEX LINES
Fig. 3. Dial Pointer Calibration
Set the signal generator and receiver controls and adjust the I. F. compensators as follows:

1. Set Signal Generator at $470 \mathrm{~K} . \mathrm{C}$. Turn "Multiplier" Control to 1000 and the "Attenuator" for maximum output.
2. Turn the receiver dial to 580 K . C.
3. Range Switch Broadcast position.
4. Receiver volume control maximum
5. Adjust compensators, (17 A) , (14B), (14A), for maximum output. If the output meter goes off scale when adjusting the compensators, retard the signal generator attenuator.

RADIO FREQUENCY CIRCUIT

Tuning Range: $\mathbf{2 . 3}$ to $\mathbf{7 . 4}$ M. C.

1. Remove terminal No. 4 lead of set transformer from the $6 A 7$ grid and connect to the aerial wire of the receiver through a 400 ohm resistor. Remove the .1 mfd . condenser when using the 400 ohm resistor.
2. Set the controls and adjust the R. F. compensators as follows:

Range	Volume	Signal Generator	
Switch	Control	and Receiver Dial	R.F.Compensators
Shortwave	Max.	6 M. C.	$(4 B)$

Tuning Range: $\mathbf{5 3 0}$ to 1720 K. C.

1. Remove the 400 ohm resistor from the No. 4 lead and replace with a 100 mmfd. condenser and reconnect to the aerial wire.

Set the controls and adjust the R. F. compensators as follows:

Range Switch	Volume Control	Signal Generator and Receiver Dial	R. F. Compensators in Order
Broadcast	Max.	$1550 \mathrm{~K} . \mathrm{C}$.	(12A), (4A)
	Max.	$580 \mathrm{~K} . \mathrm{C}$.	(12) Roll Tuning Condenser
	Max.	$1550 \mathrm{~K} . \mathrm{C}$.	(12A), (4N)

9068－28	
0088－26	

Insulator Washer（Electrolytic）……．．．．．．．．．．27－8883

 Field Coil and Pot．Assembly（S－18）
－Field Coil and Pot．Assembly（B 0－2）
Condenser（tubular ． 01 mf．）

为

$36-3014$
$36-3981$
$30-2245$
$30-2275$
$33-027339$

屴
孚寅

 Volume Control．．．．．．．．．．．．．．
Resistor（ 4.0 meg． $1 / 2$ watt） Resistor（ 51,000 ohm $1 / 2$ watt）
Cond．（tubular 01 mf ）
 Cond．（mica 1650 mmf ．）
I．F．Trans．（1st） Osc．Trans． Resistor（ 5000 ohm $1 / 2$ watt）

 squed queuranequor

SERVICE BULLETIN No. 291 for members of RADIO MANUFACTURERS SERVICE
 A PHILCO Service Plan

Specifications

TYPE OF CIRCUIT: A.C. operated, Superheterodyne circuit, incorporating two tuning ranges covering standard and short wave broadcasts, automatic volume control, and a pentode audio output circuit. When built into a Type " T " cabinet, the receiver is identified as Code 121. In the Chairside Cabinet, Type "CS", the speaker is removed from the receiver chassis and mounted in the cabinet. The receiver is then identified as Code 124.

POWER SUPPLY:

Voltage	Frequenc Cycles
115	50 to 60

50 to 60
Consumption
40 watts
INTERMEDIATE FREQUENCY: 470 K.C.
R.F. TUNING RANGES: 540 to $1720 \mathrm{~K} . \mathrm{C}$.

$$
5.7 \text { to } 18.0 \text { M.C. }
$$

AUDIO OUTPUT: 2 watts

PHILCO TUBES USED: Five: One 6A7, Det. Osc.; One 78, I.F.; One 75, 2nd Det., 1st Audio; One 41, Output, and One 84, Rectifier.
TUNING MECHANISM : 8 to 1 Ratio using Pulley and Cord.
CABINET: Type "T" and "CS"

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, using a fundamental frequency range covering the tuning and intermediate frequencies of the receiver. Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to $36,000 \mathrm{~K} . \mathrm{C}$. is the correct instrument for this purpose; (2) Output Meter, Philco Model 026 Circuit Tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, Part No. 27-7059 and Fibre Wrench, Part No. 3164

OUTPUT METER: The 026 Output Meter is connected to the plate and cathode terminals of the 41 tube. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication is noted on the output meter after signal is applied.

DIAL GALIBRATION: In order to adjust the receiver correctly the dial must be aligned to track properly with the tuning condenser. To adjust the dial, proceed as follows:

15A

Fig. 1. Socket Voltages, Underside of Chassis View
The Voltages indicated by arrows were measured with a Phico 026 Circuit Tester which contains a sensitive voltmeter. Volume Control at minimum-Tuning condenser set for no signal-line voltage 115 A.C.

1. Turn the tuning condenser to maximum capacity position (plates fully meshed).
2. Holding the tuning condenser in this position, turn the pointer until it is in the position shown in Fig. 3. This is the correct position of pointer at maximum capacity of tuning condenser.

Intermediate Frequency Circuit

Insert the signal generator shielded output lead into the "Med." jack on the panel of the generator. Connect the other end of the output lead through a .1 mfd . condenser to the grid of the 6A7 Dèt. Osc. tube, and the ground connection of the signal generator to the chassis. Set the Signal Generator and receiver controls, and adjust the I.F. compensators as follows:

1. Set Signal Generator at 470 K.C. Turn "Multiplier" Control to 1000 and the "Attentuator" for maximum output.
2. Turn the receiver dial to $580 \mathrm{~K} . \mathrm{C}$.
3. Receiver volume control maximum.
4. Range Switch (Broadcast)
5. Adjust compensators, (15A), (14B), (14A), for maximum output. If the output meter goes off scale when adjusting the compensators, retard the signal generator attenuator.

Radio Frequency Circuit

Tuning Range 5.7 to 18.0 M.C.

1. With one end of the shielded lead of the signal generator output lead in the "Med" jack, connect the other end through a 400 ohm resistor to the white aerial wire (rear of chassis). Connect the signal generator ground to the brown lead or wire (rear of chassis). Conne
to the chassis of the receiver.
2. Set the controls and adjust the R.F. compensators as follows:

Range Switch	Signai Generator	R. F. Compensators
Position	and Receiver Dial	in Order
Short Wave	$18.0 \mathrm{M} . \mathrm{C}$	$(4 \mathrm{~B})$

Tuning Range 530 to $1720 \mathrm{~K} . \mathrm{C}$.

1. Remove the 400 ohm resistor from aerial lead and replace with a 100 mmfd . condenser.
2. Set the controls and adjust the R.F. compensators as follows;

Range Switch	Signal Generator Position	R. F. Compensators
Broadcast	$1.550 \mathrm{~K} . \mathrm{C}$.	in Order
	580 KC	(9). (4A)
	$1550 \mathrm{~K} . \mathrm{C}$.	(9A) Roll tuning condenser

Fig. 2.-Locations of Compensators
Page 2
PHILCO Service Bulletin
No. 291

.

SERVICE BULLETIN No. 279 for members of RADIO MANUFACTURERS SERVICE

Electrical Specifications

TYPE CIRCUIT: Superheterodyne, with Automatic Volume Control and a pentode audio output circuit.

| POWER SUPPLY: Voltage | Frequency | Consumption |
| :---: | :---: | :---: | :---: |
| 115 | 50 to 60 | 60 watts |
| 115 | 25 to 40 | 60 watts |
| $115 / 220$ | 50 to 60 | 60 watts |

INTERMEDIATE FREQUENCY: $470 \mathrm{~K} . \mathrm{C}$.

TUNING RANGE: Two--Range one 530 to $1720 \mathrm{~K} . \mathrm{C}$.
Range two 2.3 to 7.4 M . C.

UNDISTORTED OUTPUT: 3 watts.

PHILCO TUBES USED: One 6A8G, Det. Osc.; one 6K7G, I. F.; one 6Q7G, 2nd Det. audio; one 6F6G, audio output; and one 5 Y 4 G , Rectifier

TONE CONTROL: Two position.

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator using a fundamental frequency range covering the intermediate and tuning ranges of the reroiver. Philco Model 077 Signal Generator which has a fundamental frequency range from 115 to $36,000 \mathrm{~K}$. C., is the correct instrument for this purpose; (2) output meter, Philco Model 026 circuit tester incorporates a sensitive output meter, and is recommended; (3) Philco Fibre Handle Screw Driver, part No. 27-7059 and Fibre Wrench part No. 3164.

OUTPUT METER: The 026 output meter is connected to the plate and cathode terminals of the 6F6G tube. Adjust the meter to use the ($0-30$) volt scale and advance attenuator control of the generator until a readable indication is noted on the output meter after a signal is applied to the receiver in the following adjustments.

DIAL CALIBRATION: In order to adjust this receiver correctly the dial must be aligned to track properly with the tuning condenser. To do this proceed as follows:

1. Turn the tuning condenser to the maximum capacity position, then loosen dial hub, set screws and rotate the dial (condenser at maximum capacity) until the glowing beam indicator is centered between the first and second index lines at the low frequency end of the broadcast scale.
2. With dial in this position, tighten dial hub set screws.

INTERMEDIATE FREQUENCY CIRCUIT

Connect the 077 signal generator output lead through a . 1 mfd . condenser to the control grid of the 6A8G tube and the ground connection of the output lead to the chassis. Then set the controls of the signal generator and receiver as follows:
a. Signal Generator 470 K. C.
b. Receiver dial at 580 K . C.
c. Range switch of receiver at Range One.
d. Volume Control maximum.
e. Adjust I. F. Compensator (18B), (18A), (14B), (14A) for maximum output.

Fig. 1. R. F. Compensators and Voltage Readings, underside of chassis. The voltages indicated by arrow's were measured with a Philco 026 Circuit Tester which contains a sensitive voltmeter. Volume control at minimum, range switch n broadcast position, line voltage 115 A . C .

RADIO FREQUENCY CIRCUIT

Tuning Range 530 to 1720 K. C.

1. Connect the signal generator output lead through a 200 mmfd . condenser from the "med" post of the generator to the aerial terminal; and the output lead ground connection to the chassis.
2. The R. F. Compensators are adjusted as follows for maximum output:

Range Switch Position	Signal Generator and Receiver Dial	Compensators In Order
1	1500 K. C.	$(9)(3)$
1	580 K. C.	$(9 \mathrm{~A})$ Note A
1	1500 K. C.	$(9)(3)$

Tuning Range 2.3 to 7.4 M . C.
Remove the 200 mmfd from the output lead and replace with a 400 ohm carbon resistor and reconnect to the antenna terminal.

Range Switch Position	Signal Generator and Receiver Dial	Compensators In Order
2	$7.0 \mathrm{M} . \mathrm{C}$.	(11)
2	$6.0 \mathrm{M} . \mathrm{C}$.	$(3 \mathrm{~A})$

NOTE A-First tune compensator (9A) for maximum output, then vary the tuning condenser of the receiver for maximum output about the 580 K . C. dial mark. Now turn compensator (9A) slightly to the right or left and vary the receiver tuning condenser for maximum output. If the output reading increases, turn compensator (9A) in the same direction a trifle more, and again vary the tuning condenser for maximum output. If the output decreases, set the compensator in the opposite direction. This procedure of first setting the compensator and then varying the tuning condenser is continued until there is no further gain in output reading.

Fig. 2. I. F. top of chassis

SERVICE BULLETIN No. 278 for members of RADIO MANUFACTURERS SERVICE A PHILCO Service Plan

Electrical Specifications

TYPE OF CIRCUIT: Superheterodyne with automatic volume control and a pentode audio output circuit
POWER SUPPLY:

Voltage	Frequency	Consumption
115	50 to 60 cycles	65 watts
115	25 to 40 cycles	65 watts
$115 / 220$	50 to 60 cycles	

Different transformers are required for oneration on the frequencies listed above. They are shown on the parts list

INTERMEDIATE FREQUENCY: 470 k . C
UNDISTORTED OUTPUT: 3 watts.
PHILCO TUBES USED: Six; one 6U7G, R.F. amp.; one 6A8G. Det. Osc.; one $6 \mathrm{~K} 7 \mathrm{G}, \mathrm{I}$. F. amp.; one 6 Q7G, 2nd Det. 1st audio; one 6F6G, out put, and one 5 Y 4 G , Rectifier.

TUNING RANGES) Two-Range one 530 to $1650 \mathrm{~K} . \mathrm{C}$.
Range two 1500 to 3700 K . C
TONE CONTROL: Two positions
SPEAKERS: Type S in B cabinet
Type HS in K cabinet

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator-Philco Model 077 Signal Generator-using fundamental frequency from 11.5 to 36000 K . C. is the correct instrument for the purpose; (2) Output Meter, Philco Model 026 circuit tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, part No. 27-7059 and Fibre Wrench part No. 3164

OUTPUT METER: The 026 out put meter is connected to the plate and cat hode terminals of the 6F6G tube. Adjust the meter to use the ($0-30$) volt scale and advance attenuator control of the generator until a readable indication is noted.

DIAL CALIBRATION: In order to adjust this receiver correctly the dial must be aligned to track properly with the tuning condenser. To do this proceed as follows:

1. Turn the tuning condenser to the maximum capacity position. Then loosen dial hub, set screws and rotate the dial (condenser at maximum capacity) until the glowing beam indicator is center on second index line at the low frequency end of the broadcast scale.
2. With dial in this position, tighten dial hub set screws.

INTERMEDIATE FREOUENCY CIRCUIT

Insert the signal generator output lead in the med. jack, and connect the other end through a .1 mfd. condenser to the grid of the 6A8G det osc. tube. The ground connection of the signal generator is connected to the chassis. Set the signal generator controls and adjust the I. F. compensators as follows
a. Set 077 Signal Generator indicator at 470 K . C. Turn the multiplier control to 1000 , and set the gain control for maximum output.
b. Receiver Dial $580 \mathrm{~K} . \mathrm{C}$.
c. Receiver volume control full 'on"'
d. Adjust compensator (24 B), (24 A), (16 B) and (16 A) for maximum output. If the output meter goes off scale when adjusting the compensators retard signal generator attentuator

RADIO FREQUENCY CIRCUIT

Tuning Range 530 to 1650 K. C.

1. Insert the signal generator output lead in the "medium jack" on the panel, and connect the other end through the .1 mfd . condenser to the antenna terminal of the receiver. The output lead ground must be connected to the chassis.
2. Leave the receiver volume control full on. Then set the controls and adjust the R. F. compensators as follows

Range Switch	Signal Generator Position	Compensators In Order
1	Receiver Dial	(5C),(5B), (5A)
1	$1500 \mathrm{~K} . \mathrm{C}$.	(10) (See Note A)
1	$580 \mathrm{~K} . \mathrm{C}$.	$(5 \mathrm{C}),(5 \mathrm{~B}) .(5 \mathrm{~A})$

Fig. 1. Socket Voltage under side of chassis
The voltages indicated by arrows were measured with a Philco 026 Circuit Tester which contains an accurate voltmeter. Volume control at minimum, range switch in broadcast position, line voltage 115 A . C

Tuning Range 1500 to 3700 K . C.
The alignment of this tuning range is taken care of by the Range 1 adjustments NOTE A-First tune compensator (10) for maximum output, then vary the tuning condenser of the receiver for maximum out put about the 580 K . C. dial mark Now turn compensator (10) slightly to the right or left and vary the receiver tuning condenser for maximum output. If the out reading increases, turn compensator (10) in the same direction a trifle more, and again vary the tuning condenser for maximum out put. If the out put decreases, set the compensator in the opposite direction This procedure of first setting the compensator and then varying the tuning condenser is continued until there is no further gain in out put reading

Fig. 2. Locations of Compensators. Top of chasels.

흔 훈

羅eplacement Parts \qquad
Part
No．管高

PHILCO RADIO AND TELEVISION CORPORATION Parts and Service Division
Printed in U．S．A．

B. The Philco Model 077 Station Setter is piugged in and turned on.
C. The "Band Switch" is turned to Range B, and the modulation control set to 'Mod off".

Fig. 2-Tuning Hancle and Wrench Engaging stop
D. The output leads of the Station Setter are plugged into the "ground" and "high" posts, and the "multiplier" and "attenuator" controls set to maximum.
E. The clip lead from the Model 077 Station Setter is then clipped to the insulation on the wire that is soldered to the middle section of the tuning condenser gang of Model 4. (See Fig. 1.) In the Model 7-the lead is clipped to the insulation on the wire that is soldered to the rear section (nearest the back of the radio) of the tuning condenser.
F. The other Station Setter lead is connected to the radio chassis.
G. The Station Setter is tuned to 470 K.C.
H. As the tuning indicator of the Station Setter approaches 470 K.C. a hiss will be heard in the radio set. As the tuning indicator passes 470 K.C. there will be iwo pronounced loud peaks of hiss with a minimum position in between.
I. The Model 077 Station Setter must be adjusted to the point of minimum hiss in between the two peaks.
J. Connect a Philco High Efficiency Aerial to the receiver.

III. SETTING STATION-STOPS FOR AUTOMATIC TUNING

A. As shipped by Philco the stops are closely placed together on the right side of the dial.
B. The station nearest 1500 desired on the dial scale must be aligned first. The next stop is then used for the next station lower in frequency, and so on for the rest of the stations.
C. Rotate the tuning handle to the right until it is directly over the first stop

1. Press knob in to engage stop.
2. Holding knob in this position, insert the Philco Wrench, Part No $45-2475$, in the hole of the tuning knob until it engages the stop screw head. (See Fig 2.)
3. Turn wrench counter-clockwise to loosen screw.
4. When screw is loose, rotate tuning handle until Station Finder hand is at the station to be received. Be careful to keep tuning handle and wrench engaged with the station stop, so that the stop is moved along its track to the position it is to occupy for automatically tuning the station.
D. As the Station Finder hand approaches the desired station a whistle will be heard-first very shrill and then gradually getting lower in frequency as the station is tuned in.
5. When the whistle is first heard, tune with slow-speed Station Selector knob
6. At the exact point at which the station is perfectly tuned, this low frequency whistle will no longer be heard. This is the exact point at which the station indexing stop must be locked.
7. When this point is reached, turn the wrench clockwise and lock the stop in position, being careful when tightening screw that the station is not detuned, which would cause whistle to reappear.
8. If the whistle reappears after tightening screw, repeat the above procedure (III D).
E. The procedure given in paragraphs III C and III D is followed in setting th amair ing stations.

, ETTING STATIONS ON CONE-CENTRIC AUTOMATIC TUNING MODELS ...

Using the Philco Station Setter Model 077 and Philco Wrench No. 45-247才

Setting up Automatic Tuning Models is a straightforward operation. In order to make sure that the correct procedure is followed, these detailed instructions have been prepared.

This work requires the use of a Philco Model 077 Station Setter and a Part No. 45-2475 Station-Stop Wrench.

There are three steps

 required in setting up ConeCentric Automatic Tuning ModelsI. Installing the special local dial.
II. Adjusting the Model 077 Station Setter to the receiver.
III. Setting the Station-Stop for each station on the dial.

I. INSTALLING THE SPECIAL LOCAL DIAL.

Fig. 1-Connecting Station Setter Output Lead to Wire on Tuning Condenser
A. Remove the tuning knobs from the Station Selector arm. The knobs are held in position by a special knob screw which has a screw driver slot in the end. To remove the knobs, separate them and grasp the shaft with a pair of pliers. It is important that the pliers hold the shaft in between the two knobs so as not to damage the spring which disengages the slowspeed tuning knob. The knob screw can be removed while holding the shaft with pliers.
B. Remove the small screws on either side of the Station Selector knobs, and take off StationStop cover.
C. Press in the knurled bezel, turn counter-clockwise and remove.
D. Remove the Station Finder hand by drawing it straight out and away from the radio chassis. This hand is keyed in its correct position and is pressed on to the end of its shaft. Be sure to draw it straight away from the set. Do not turn the hand as you take it off.
E. Remove round dial-retaining spring.
F. Remove the dial furnished with the receiver.
G. Place the special local dial in position, which is fixed automatically by an index.
H. Place the round retaining spring over the dial edge.
I. Replace the finder hand and the bezel.
J. Replace knobs but not cover plate.

II. ADJUSTING THE MODEL 077 STATION SETTER TO THE RECEIVER

NOTE: The receiver and station setter must be turned on for 5 minutes before performing the following adjustments.
A. The -eceiver is turned on and set for operathe broadcast band. The receiver -nroximately $540 \mathrm{~K} . \mathrm{C}$. and the
volume control set about half way on. The tone control should be in the "normal" p sition. Model 38-116, Code 121

SERVICE BULLETIN No. 286 for members of RADIO MANUFACTURERS SERVICE

SPECIFICATIONS

TYPE OF CIRCUIT: Model 38-116, code 121 employs a fifteen tube A.C. operated superheterodyne circuit with a spread-band dial having five tuning ranges covering a frequency range from $530 \mathrm{~K} . \mathrm{C}$. to $18.2 \mathrm{M} . \mathrm{C}$.

Incorporated in this mode! are design features such as: magnetic tuning control on each tuning range; automatic volume control; treble-selectivity expander unit in the intermediate frequency circuit; audio bass compensation; acoustic clarifiers to eliminate cabinet resonance; special push-pull audio output circuit using 6L.6G beam tubes, and the Philco autonatic tuning mechanism.

POWER SUPPLY: \quad Voltage \begin{tabular}{ccc}
Frequency

Cycles

\quad

Power

Consumption
\end{tabular}

Different transformers are required for operation on the voltages and frequencies listed above. The part numbers for these transformers are listed on page 4. A special transformer for operation on either 115 or 230 volt- 50 to 60 cycle A.C. power circuit can be obtained. This transformer is provided with a plug and socket for selection of either voltage rating. Place the plug with arrow pointing toward voltage being used.

INTERMEDIATE FREQUENCY: 470 K゙.C.

FREQUENCY RANGES: Range One 530 to 1600 K゙.C.
Two 1.58 to $4.75 \mathrm{M.C}$
Three 4.7 to $7.4 \mathrm{M} . \mathrm{C}$
Four 7.35 to $11.6 \mathrm{M} . \mathrm{C}$.
Five 11.5 to 18.2 M.C.
UNDISTORTED OUTPU'T: 15 watts.
PHILCO TUBES USED: 6K7G R.F.; 6L7C; Mixer; 6A8G OscilIator; 6N7G Oscillator control; two 6K7G I. F.; 6K7G 2nd Detector Magnetic tuning amplifier; two 615G discriminator; 6J5G A. V. C.; 6R7G 1st audio; 6J5G audio driver; two 6L6G audio output, and one 5 X 4 G rectifier.
TONE CONTROLS: Two-1. High audio-frequency tone varied by Treble-Selectivity control.
2. Low audio-frequency tone varied by "Bass Tone Control," in the volume control circuit.
PHILCO SPEAKERS USED: One type " $W 4$ " with three acoustic clarifiers.
CABINET: Type $X X$.

SERVICE NOTES

For reference between ilhustrations, Parts List, and for replace"ment of parts, the various diagrams in this bulletin are marked with "circled numbers" indicating a particular part.

Physical views of the R.F. and I. F. transformers and the range switch sections are shown on pages 2 and 3 . Each part is marked with the corresponding schematic diagram circled number.
The leads and lugs of the R. F. and I. F. transformers are either numbered or the color of the wire marked to indicate the connecting point in the circuit diagram, which is also correspondingly marked.
Range switch lugs are marked with a letter and number-example (A2)-indicating the connecting point in the circuit diagram.
Speaker wiring is shown in Fig. 3 and the power transformer wire colors are marked on the schematic diagram.

Fig. 1. Underside View of Chassis showing Socket Voltages
The voltages indicated by the arrows were measured with a Philco 026 Circuit Tester, which contains a sensitive voltmeter. Line voltage 115 A . C.-Volume control minimum-Dial set at noint where no signal is present-Range Switch in broadcast position.

Automatic Tuning Mechanism Service Data

Service data and a complete parts list for the Automatic Tuning Mechanism of this receiver will be found in Service Bulletin 273. There are four automatic dial parts, however, which differ from those shown in bulletin 273. These parts are marked with an asterisk on page 4 of this bulletin.

Aerial Connections

To obtain the full advantage of the sensitivity of this receiver the Philco High Efficiency Aerial supplied with the instrument must be used. Connect the aerial as follows:
The aerial terminal panel located on the rear of the chassis, contains three terminals marked "Red," "Blk" and "Gnd". Connect the red and black wires of the aerial lead in (Transmission Line) to the "Red" and "Blk" terminals respectively. Connect the "Gnd" terminal to a good ground source. If a temporary aerial is used, connect it to the "Red" terminal.

Fig. 2. Underside View of Chassis

Fig. 4. I. F. Transformer Connections

REPLACEMENT PARTS—Models 38-116, Code 121

$\begin{aligned} & \text { Sehem } \\ & \text { No. } \end{aligned}$	$\begin{array}{lll}\text { m. } & \text { Description } & \text { Part } \\ \text { No. }\end{array}$	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	Schem. No.	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\underset{\text { Price }}{\text { List }}$		O. Description	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	List Price
1	Ant. Trans. (Range 1) 32-3208		65 Resistor ($10,0001 / 2$ watt)	33-310339	\$0.20	144	Power and Tone Sw	6	75
2	Ant. Trans. (Range 2) 32-2146	\$1.20	56 Condenser (. 02 mf . tubular)	30-4481	. 20	145	Condenser (. $015-.015$ Bakelite)	3793DG	40
3	Ant. Trans. (Range 3) 32-2183	1.20	57 Resistor (10 ohms wite wound)	33-1219	. 20	146	Range Switch (Orc.)	42-1217	2.00
${ }_{5}{ }^{4}$	Ant. Trans. (Range 4) 32-2185	1.20	58 Resistor (300 obms, wirc wound)	33-3121	25	147	Range Switch (R.F.)	42-1255	1.60
5		1.20	59 Condenser (. 05 mf . tubular).	30-4123	. 20	148	Range Switch (Ant.)	42-1211	1.60
6	Resistor ($51,000-1 / 2$ wstt) $\ldots{ }^{\text {a }}$ 33-351339	20	60 Condenser (. 05 mf . tubular)	30-4123	. 20	149	Pilot Lamp......	34-2064	
7	Condenser (0.5 mf . tubulsr) ${ }^{\text {a }}$ 30-4444	. 20	61 Resistor (1000 ohms, $1 / 2$ watt)	33-210339	. 20		Acoustic Clarifer	36-1155	1.25
8	Compensator (Range $1 \ell^{\text {c }} 2$ Ant.) 31-6093	. 40	62 Resistor (1000 ohms, $1 / 2$ watt)	33-210339	.20		Automatic Tuning Meeh. Complete	31-2063	
9	Compensator (3, 4 \& 5 Ant.) $\ldots . . .{ }^{\text {a }}$ 31-6112	1.40	63 Resistor (500 ohms, $1 / 2$ watt)	33-150339	. 20		Bezel Assembly (Cabinet)	38-8833	
10	Condenser (05 mf . tubular) $30-4123$. 20	64 Condenser (.1 mf. Bakelite).	4989,5G	. 35		Bezel Gasket	27-8828	. 08
11	Condenser (600 mmf . mica) 30-1049	. 25	65 Condenser (01 mf . tubular)	30-4514	. 20		Brace (Dial Mechanism)	28-4119	. 05
12		. 20	66 Condenser (.01 mf . tubular)	30-4499	. 20		\dagger Cable and Plug (Floodlights)	41-3253	. 25
13	Resigtor (400 ohms 1 watt wire wound). 33-1211	. 20	67 Condenser (110 mmf . mica)	30-1031	. 20		Cable (Power)	L-2183	. 40
14	Condenser (05 mf . tubular)	. 20	68 Condenser (110 mmf ., Part of 82)	30-1031			Cable and Plug (Speaker)	41-3338	
15	Rexistor (10,000 ohms $1 / 2$ watt) 33310339	. 20	69 Resistor (51,000 ohms, $1 / 2$ watt, Part				Clamp (R. F. Unit Rear Mtg.)	28-3900	. 03
16	R. F. Trans. (Range 1) 32-2105	1.00	of 82)	33-351339	.20		Clamp Locking Plate (R.F. unit)	28-3982	. 01
17	R. F. Trans. (Range 2) $\ldots \ldots \ldots \ldots$. ${ }^{32-2147}$. 70	70 Resistor (1 meg., $1 / 2$ watt)	33-510339	. 20		Clamp (I. F. Cord)	28-4147	. 01
18	R. F. Trans. (Range 3) $\ldots \ldots \ldots$.... ${ }^{\text {32-2177 }}$. 70	71 Resistor ($1 \mathrm{meg} .1 / 2$ watt),	33-510339	. 20		Cord (I. F. Expander Drive)	${ }^{27-8411}$. 04
19		. 70	72 Resistor (2000 ohms, $1 / 2$ watt)	33-220339	. 20		Coupling (Range Switch and Mask)	38-8693	
20	R. F. Trans. (Range 5) . ${ }_{\text {32-2176 }}$	1.20	73 Resistor (2000 ohms, $1 / 2$ watt)	33-220339	. 20		Coupling (Tuning Condenser and Dial		
21	Condenser (5 mmf . mica) 30-1077	. 20	74 Condenser (05 mf . tubular)	30-4444	. 20		Mechanism)	31-1961	
22		. 20	75 Condenser (05 mf . tubular)	30-4518	. 20		* Cover (Handle of Automatic Merch.)	28-5092	
23	Compensator (R.F. Range 1 \& 2 R. F.). Compensator (R. F. Range 3, 4, 5) \quad 31-6093 $31-6113$.40 1.40	${ }_{77}^{76}$ Condenser (.05 mf . tubular)	$30-4444$ $33-260439$. 20		* Dial Screen Holder	$27-5340$ $31-2053$. 80
25		. 20	78 Resisistor ($70,0001 \mathrm{lwatt}$)	$\begin{aligned} & 33-260439 \\ & 33-370439 \end{aligned}$.20		- Escutcheon Assembly (Station Tabs)	$31-2053$ $45-2472$	
26	Condenser (05 mf . tubular)......... ${ }^{30-4519}$	20	79 Resistor (14,000 wire wound)	33-3291	40		\dagger Floodlight Socket Assembly, 4 Sockets.	38-8210	
27	Tuning Condenser 31-1892	3.75	80 Condenser (Elec. 8-8-6 mf.)	30-2232	2.50		Knob (Range Switch)	27-4326	. 10
28	Resistor (20 ohms, $1 / 2$ watt) $33-020339$. 20	\$81 1. F. Expander Unit (For 1st and 2nd				Knob (Tuning)	27-4330	10
29	Resistor (20 ohms, $1 / 2$ watt) $33-020339$. 20	I. F. Trans. See Note)	38-8912	10.00		Knob (Vernier)	27-4331	10
30	Resistor (700 ohms , $1 / 2$ watt) $\ldots333170339$.20	82 I. F. Transformer (3rd)	32-2660			Knob (Bass, Yolume, Expander Mag-		
31	Condenser (250 mmm mica) $30-1032$. 25	83 Discriminator Trans.	32-2661			netic)	27-4332	0
32	Condenser (250 mmf. mira) ${ }^{\text {a }}$ 30-1032	.25	84110 mf . Condenser (Part of 83)	-30-1031	.20		Mask Guide (Tuning Mechanism)	${ }^{28-4118}$	25
33	Resistor (99,000 ohms, $1 / 2$ watt) ${ }^{33-399339}$. 20	85 Condenser (004 mf .)	30-4456	. 20		\dagger Pilot Lamp Socket Assembly	38-8051	
34	Resistor (99,000 ohms, $1 / 2$ watt) $\ldots . . \quad 33-389339$. 20	8_{87} Condenser (Part of 82)				Shaft and Index Plate (Range Switeh).	42-1208	. 50
35	Condenser ($\mathbf{7} 02 \mathrm{mf}$. tubular) .1. $30-4481$.20	87 Resistor (180,000 ohm, $1 / 2$ watt)	33-416339	. 20		Shaft (I. F. Expander)	28-6498	30
36	Resistor (8,000 ohms, $1 / 2$ watt) 33-280339	.20	88 Resistor (2 meg ., $1 / 2$ watt)	33-520338	.20		Shaft (Volume Control)	38-8061	. 12
${ }_{38}^{37}$	Resistor (20,000, 1/2 watt) $33-320339$. 20	89 Resistor (2 meg., $1 / 2$ watt)	33-520339	. 20		Shield (Tube, Square)	28-2726	. 10
38	Osc. Trans. (Range 1) ${ }^{32-2191}$	${ }_{1}^{1.00}$	90 Resistor (1 meg., $1 / 2$ watt)	33-510339	.20		Shield (Round 6N7G)	8005	. 10
39	Osc. Trans. (Range 2) ${ }^{32-2194}$	1.00	91 Resistor (1 meg., $1 / 2$ watt)	33-510339	. 20		Shield 3rd (I. F.)	38-1962	
40	Osc. Trans. (Range 3) $32-2197$.70	82 Condenser (110 mmf . mica)	30-1031	. 20		Shield (I. F. Expander)	38-9025	
41	Osc. Trane. (Range 4) $32-2198$	70	93 Condenser (110 mmf . mica)	30-1031	. 20		Shield Base (Square)	28-2725	. 20
42		. 70	94 Resistor (490,000 ohms, $1 / 2$ watt)	33-449339	20		Shield Base (Round 6N7G)	8004	. 03
43	Compensator (Range 1 \& 2 Osc.) $\ldots . . .3$ 31-6124	1.00	95 Resistor (490,000 ohms, $1 / 2$ watt)	33-449339	20		Speaker (W4)	36-1284	
44	Compensator (Range 3, 4 \& 5 Osc.) ... 31-6117	1.20	${ }^{98}$ Condenser (.1-.1-. 7 mf .)	30-4466	1.40		Socket (7 prong, Power tubes)	27-6057	11
45	Condenser (250 mmf . mica) 30-1032	. 25	87 A.F.C. Shorting Switch	42-1216	. 75		Socket (7 prong).	27-6087	11
46	Condenser (600 mmf . mica) 30-1049	.25	68 Flood Lights	34-2064	. 09		Socket (6 prong)	27-6086	11
	Condenser (600 mmf . mica) $30-1049$. 25	09 A.F.C. Shorting Switch (Part of Mech.				Socket (Power Transformer)	27-6052	11
47	Condenser (01 mf , tubular) 30-4169	. 20	Tuner)	45-2330	1.20		Terminal Panel (Ant.)	38-8748	
	Condenser (25 mmf . mica) $30-1067$. 20	100 Condenser (01 mf. tubular)	30-4169	. 20				
49	Condenser (55 mmf . mica) $30-1045$. 20	101 Volume Control	33-5158	1.00				
50	Condenser (200 mmf . mica) ${ }^{30-1078}$.25	102 Audio Shorting Switch (Part of Mech.						
81	Choke (R. F.)	.30	Tuner-See parts (6) and (16) Bulletin				miscellaneous mounting	PARTS	
62	Resistor ($75,0001 / 2$ watt) 33-375339	. 20	273)						
53	Rexistor ($20,0001 / 2$ watt) $33-320339$	20	103 Resistor (70,000 ohms, $1 / 2$ watt)	33-370339	. 20		Bolt (Mtg. Speaker)	W-862	
54	Resistor ($32.0001 / 2$ watt) 33-332339	20	104 Resistor (2 meg., $1 / 2$ watt) . . .	33-520339	. 20		Bushing (Mtg, R. F. Unit)	28-2257	01
			105 Condenser (. 008 mf, tubular)	30-4112	. 20		Clip (Volume Shaft Front Section)	28-4394	
			106 Condenser (0008 mf . tubular)	30-4112	. 20		Cover (Back of Cabinet)	27-8886	
	,		107 Resistor (490,000 ohms, $1 / 2$ watt)	33-449339	. 20		Felt (Mtg. Speaker)	${ }^{27-8498}$	
	ISCRIMIN		108 Resistor (32,000 ohms, $1 / 2$ watt)	33-332339	. 20		Rubber Grommet (Mtg. R. F. Unit)	$27-4317$	
	5G)		109 Condenser (. 004 mf . tubular)	30-4456	. 25		Rubber Bushing (Mtg. Chassis)		
	GJS6) (6us)		110 Condenser (. 01 mff tubular)	30-4455	. 20		Rubber Custion (M)g.		
			112 Resistor ($09,0001 / 2$ watt)	33-399339	. 20		Pin (I. F. Shaft)	3014	
			113 Potentiometer	33-5235			Serew (Mtg. R. F. Unit Rear Section)	W-728	
			114 Resistor (330,000 ohms, $1 / 2$ watt)	33-433339	20		Screw (I. F. Cord Clamp)	W-1324 $\mathrm{W}-1803$	
	(0)		115 Condenser (02 mf . tubular)	30-4481	. 20		Screws (${ }^{\text {Sastener (Rane }}$ (RaseSwitch Coupling)	W-1803	
			117 Input Trans.	${ }_{32-7865}$			Spacer (Mtg. R. F. Unit	27-7807	
	83A-		118 Condenser (05 mf . tubular)	30-4518	. 20		Spring (Retaining I. F. Shaft Front		
			119 Condenser (. 05 mf . tubular)	30-4518	. 20		Section).		
	DIO \square AMPLIFIER		120 Resistor ($39,0001 / 2$ watt)	33-399339	. 20		Spring Clip (I. F. Shaft, Rear Section).		
	G \quad AMPLFIER		121 Resistor ($10,0001 / 2$ watt)	33-310339	. 20		Washer-Flat-(I. F. Shaft)	$\begin{aligned} & -174 \\ & 120 n 7 \end{aligned}$	
			122 Resistor ($10,0001 / 2$ watt) .	$\begin{aligned} & 33-310339 \\ & 33-399339 \end{aligned}$. 20		Washer-Spring-(Mtg. I. F. Shaft)	$28-4186$	$\begin{gathered} .01 \\ \hline .75 \end{gathered}$
			123 Resistor ($99.0001 / 2$ watt)	33-399339 30-448	. 20		Waher Sphig (Mk.		
			125 Condenser (.02 mf . tubular)	30-4189	. 35		1 MC 77 MC	M	
			126 Output Trans...........	32-7751	2.00				
			127 Cone and Voice Coil Assembly	36-3647	2.50		$M C \rightarrow 440448$		
	-		128 Resistor ($4900,0001 / 2$ watt)	33 449339	. 20				
			$133 \mathrm{Resistor}(51,0001 / 2 \mathrm{Watt})$	33351339 33	. 20		$2 \mathrm{MC} \rightarrow 44 \mathrm{44C} 44 \mathrm{~A}$		
	82 82B		131 Condenser (.1-.1 mf. Bakelite)	4899DG	. 40				
			132 Field Coil Assembly.	36-3788	15.00				
			133 Resistor (20 ohms, $1 / 2$ watt)	- $33-020339$	$\stackrel{20}{20}$		MC-5MC		
			135 Resistor (2,000 ohms, $1 / 2$ watt)	- $\begin{array}{r}33-220339 \\ 3322039\end{array}$. 20				
			wound)	33-3289	. 50				
	C		140 Condenser (. 3 mf . tubular)	$\begin{aligned} & 30-4465 \\ & 30-2201 \end{aligned}$	${ }_{1} .75$		MMC $500^{\circ} 248^{80}$		
			141 Elec. Cond. (8 mf.)	30-2026	1.05				
	$\left(\begin{array}{ll} 1 \mathrm{ST} 1 \mathrm{~F} \\ 6 \mathrm{~K} 7 \mathrm{G} \end{array}\right.$		$142 \begin{aligned} & \text { Elec. Cond. (8 mf.) } \\ & 143 \\ & \text { Power Transformer (} 115\end{aligned}$. 05				
	81		cyd	32-7699	7.50				
			$\begin{aligned} & \text { Power Transformer (115 V., } 25 \text { to } 4 \\ & \text { rycle) } \end{aligned}$					F	
			Power Transformer ($115 / 220 \mathrm{~V} ., 50$ to 60 cycle)				$\left.18 M C^{\prime} \rightarrow 90\right)(08)$	$=-14$	OKC
			*These Allomatic Tuning Mechanism Parts shown in Service Bulletin 273. $\ddagger 1$ st I. F. Transiormer Section. 2nd I. F. Transformer Section \dagger Pilot and Floodlight Socket Assembly, 3 Sockets. Used on later type receivers.	differ from those					
				32-2727					
	XPAN			2-2728					
	Fig. 7. I.F. Compensators			87					

[^10]
'NDICATE POSITION OF SWITCH WAFCRS FROM REAR OF CHASSIS. (BOTTOM VIEW,
I.F. $=470$ K.C.

Fig. 5. Schematic Diagra

Alignment of Compensators

EQUIPMENT REQUIRED: (1) Signal Generator, having a fundamental frequency range covering the tuning and intermediate frequencies of the receiver. Philco Model 077 Signal Generator which has a fundamental freguency range from 115 to 36000 K . C is the correct instrument for this purpose; (2) Output Meter, Philco Model 026 Circuit Tester incorporates a sensitive output meter and is recommended; (3) Philco Fibre Handle Screw Driver, Part No. 27-7059 and Fibre Wrench, Part No. 3164.
OUTPUT METER: The 026 Qutput Meter is connected to the plate and cathode terminals of une of the 6L6G tubes. Adjust the meter to use the ($0-30$) volt scale and advance the attenuator control of the generator until a readable indication s noted on the output meter after signal is applied to stage being adjusted
DIAL CALIBRATION: In order to adjust the compensators of this receiver correctig the dial must be aligned to track properly with the tuning condenser
o do this proceed as rollows:
urn the tuning condenser until the plates conpling of the tuning condenser. Then turn the tuning condenser until the plates are in the maximum capacity position.
Now turn the dial until the glowing beam indicator is on the Index Line at the Now turn the dial until the glowitig beam indicator is on the index Line at the
low frequency end of the broadcast band. See Fig. 0 . With dial and tuning condenser in this position tighten set screws.
2. Turn the tuning condenser control until the indicator is on the $520 \mathrm{~K} . \mathrm{C}$ mark. See Fig. 6.
3. With the dial in this position. loosen the shaft coupling set screws. Then turn the dial until the indicator is again on the Index Line. Tighten the set screws in this position.
NOTE: Be careful when turning the dial that the position of the tuning condenser is not disturbed.

INTERMEDIATE FREQUENCY CIRCUIT

1. Viewing each inst rament from the from set the receiver and Signal Generator controls as follows:
a. Selectivity-fidelity control (clockwise)
b. Volume Control at maximum (clockwise)
c. Magnetic Tuning switch (off)
d. Bass Compensation switch first position from "off"
e. Range Switch position one (broadcast)
f. Receiver dial $580 \mathrm{~K} . \mathrm{C}$.
g. Signal Generator indicator set at 470 K. C. and the "Attenuator" control for maximum output
2. Connect the Signal Generator output cable through a .1 mficl . condenser to the grid of the second 6 K 7 G I. F. tube. Then adjust the I. F. compensators as follows:
a. Close compensator (82 B) by turning to the extreme clockwise position, then pad compensat or ($\mathbf{8 2 A}$) for maximum output. Now readjust compensator (82B) for maximum output.
b. Connect the Signal Generator out put lead through the . 1 mfcl . condenser to the gricl of the 6L7G tube, and adjust the following compensators for maximum outp put: ($\mathbf{8 1 D}$), ($\mathbf{8 1 C}$), ($\mathbf{8 1 A}$), ($\mathbf{8 1 B}$).
c. Repad (82 A) - Sce Note A. Check for two equal peaks. Fidel ity control in expanded position (counter-clockwise).

RADIO FREQUENCY CIRCUIT

1. Set the controls as given under "Intermediate F requency Circuit" ($\mathbf{a}-\mathbf{b}-\mathbf{c}-\mathbf{d}$) and set the Range Switch, Signal Generator and Receiver Dials as given under the adjustements of each tuning range in the following procedure.

Connect the Signal Generator output cable to the "Red" and "B1k" terminals on the aerial panel (rear of chassis). The ground connection of the cable should be connected to the "BIk" terminal
mators for maximum out put as follows: Tuning Ranges 530 to $1600 \mathrm{~K} . \mathrm{C}$.

| Range | Signal Generator
 Switch
 and Receiver Dial |
| :---: | :---: | | Compensators |
| :---: |
| in Order |

Switch and Receiver Dial
(43), (8), (23)
$\begin{array}{lr}\text { Position } 1 & 1500 \mathrm{~K} . \mathrm{C} . \\ \text { Position } 1 & 580 \mathrm{~K} . \mathrm{C} .\end{array}$
Position $1 \quad 1500$ K. C.
$\begin{array}{ll}\text { Position } 1 & 1500 \mathrm{~K} . \mathrm{C} \\ \text { Position } 1 & 1+00 \mathrm{C} .\end{array}$ See Note B

Range Signal Generato
Switch and Receiver Dial
Position 3
Position 3
Position
Position 3
Position 3
Position 3

GLOWING BEAM INDICATOR

Fig. 6. Dial Calibration
(43)
(8), (23)

Tuning Range 4.7 to 7.4 M . C.

\quad| Compensators |
| :--- |
| in Order |

(44)
$(44 \mathrm{~A})$
$(44),(9),(24)$
$(44 \mathrm{~A}),(9 \mathrm{~A}),(24 \mathrm{~A})$
$(44),(9),(24)$
(44), (9), (24)

Tuning Range 7.35 to 11.6 M . C.
Range Signal Generator

Switch

 and Receiver DialPosition 4 11.0 M . C.

Position 4
7.5 M . C

Compensators in Order
11.0 M . C.

Position $4 \quad 7.5$ M. C.
Position 4

Position 4
11.0 M. C.

Range Signal Generator
Switch and Receiver Dial
Position $2 \quad 4.5 \mathrm{M} . \mathrm{C}$.
Position 2
1.7 M . C

Position $2 \quad 4.5 \mathrm{M} . \mathrm{C}$.

43B in Order

43B), (8A), (23A)
(43C)
(43B), (8A), (23A)
Tuning Range 11.5 to 18.2 M . C.

Range Signal Generator

Switch and Receiver Dial
Position $5 \quad 18.0 \mathrm{M}$. C.
Position 5
Position 5

Position 5
12.1 M. C

Position 5
18.0 M. C

Compensators

in Order (44D) (44E) (44D), (9D), (24D) Roll Tuning Condenser. See Note B and C. Check image at 17.060 M . C. (44E), (9E), (24E) Roll Tuning Condenser. See Note B (44D), (9D), (24D), Roll Tuning Condenser. See Note B and C. Check image at 17.060

NOTE " A "- Slowly shift signat generator indicator between 460 and $480 \mathrm{~K} . \mathrm{C}$. As the indicator is turned, two peaks will be noted on the Out put Meter; one about 465 K . C. and the ot her about 47.5 K . C. These peaks stould give the same deftect ion or reacling on the out put meter. If the peaks are unequal Compensat or (82A) inust he slighty readjusted to the right or left (not more than $1 / 8$ of a turn) until the peaks are equalizet. This indist thent is used to compensate for slight differences bet ween reaks. It the compensator muct be turned more than $1 / \frac{1}{8}$ of a turn in either direction "Intermediate Frequency Circuit" should he carefully readjusted as given under sator is set in Frather rone rotate the signal semerator throum the 460 a 480 K . C. range and note the reading of each peak.
NOTE "B"-When adjusting the low frequency compensator of Range One (Broadcast) or the antenua and R. F. compensators of the high frequency tuning ranges; the receiver Tuning Condenser must be adjusted (rolled) as follows: First tune the compensator for maximum outnut, then vary the tuning condenser of the receiver for maximum out put ahom the frequency dial mark. Now turn the compensator slighty to the right or left and vary the receiver tuning condenser for maximum ontput. If the out reading increases, turn the compensator in the same direction a trifle more, and again vary the tuning condenser for maximum output. If the outnut decreases, set the combensator ith the opposite direction. This procecture of tirst setting the compensator and then varying the tuning condenser is continued until there is no turt her gain in output readins

NOTE "C"-To accurately adjust the high frequency oscillator compensator to the fundamental instead of the image signal, turn the oscillator compensator to the maximum capacity position (clockwise). From this position slowly turn the compensator counter-clockwise until a second maximum peak is obtained on the output meter. Adjust the compensator for maximum output using this second peak. The first peak from maximum capacity position of the compensator is the image signal and must not be used in adjusting the compensator.
If the above procedure is correctly performed, the image signal will be found (much weaker) hy turning the receiver dial 940 K . C. below the frequency being used on any high frequency range

MAGNETIC TUNING CIRCUIT ADJUSTMENT

a. Set the Magnetic Tuning switch in the "out" position (counterclockwise).
b. Volume control maximum (extreme clockwise).
c. Turn Treble-Selectivity control to the expanded position (ext reme clockwise)
d. Now, adjust the "Attenuator" control of the signal generator for a weak signal, and turn the indicator to 1000 K . C. Then adjust the receiver dial for maximum output at this frequency.

NOTE: The receiver dial MUST be tuned very accurately to the 1000 K . C. signal in order to make the following adjustments correctly.
e. After adjusting the receiver dial, turn the Magnetic Tuning switch "on."
f. Now, turn compensator (83B) slightly to the right or left (about $1 / 4$ turn) and proceed with adjustment "g."
g. Adjust compensator (83 A) primary of the discriminator transformer for minimum output; then readjust compensator (83B) secondary of discriminator transformer for maximum output.

The above adjustments are now checked for accuracy as follows: Frequency Test:

With the 1000 K . C. signal tuned for maximum output turn the Magnetic Tuning control hack and forth; that is, from the "out" to "in" position. The reading of the output meter should not change in either position. If the ontrut meter reading changes, the above magnetic tuning circuit adjustments should be repeater Sensitivity Test

1. To check the magnetic tuning circuit for sensitivity, turn the magnetic tuning switch to the "of"" position, and tune in the 1000 k . C. signal. Then adjust the "attenuator" control of the signal generator for a gool audible signal. Approximately 20 volts on the output meter
2. Now detune the signal (first above and then below the 1500 K . C. mark) to a point at which the signal is weakly heard. At each point turn the magnetic tuning control "on." When the control is turned on the signal should return to normal output strength. If the magnetic tuning circuit does not pull the signal into resonance, the primary compensator (83A) should be carefully readjusted.

Part Number	List Price	Part Number	List Price	Part Number	List Price	Part Number	List Price	Part Number	List Price	Part Number	List Price	Part Number	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	Part Number	List Price
2515	\$1.75	4567	\$0.09	03014	\$0.50	05831	\$0.50	30-2046	\$1.85	32-1000	\$0.50	32-1413	\$0.60	33-5004	\$1.45
2550	1.75	4813	8.00	03015	. 60	05832	. 80	30-2062	2.60	32-1001	. 80	32-1414	1.00	33-5005	1.45
2565	1.80	4818	1.80	03016	. 60	05848	. 65	30-2072	2.50	32-1002	. 80	32-1415	1.00	33-5006	1.45
2580	1.25	4819	1.80	03031	. 75	05849	. 55	30-2073	3.15	32-1023	1.05	32-1420	. 60	33-5007	1.00
2585	1.55	4824	. 85	03038	.90	05885	4.80	30-2078	2.45	32-1030	. 60	32-1421	. 45	33-5009	1.70
2590	2.25	4858A	. 90	03039	1.00	05901	. 90	30-2079	2.40	32-1047	.65	32-1422	. 90	33-5010	1.45 1.45
2598	1.40	4860	5.10	03040	. 90	05902	. 60	30-2080	1.85	32-1048	. 75	32-1423	.45 1.60	33-5011	1.45 1.00
2706	2.00	4862	2.50	03076	6.00	05903 05970	. 51.00	$30-2083$ $30-4000$	1.70 1.20	$32-1049$ $32-1050$. 60	32-1424	1.60 .90	33-5017	1.00 1.45
3047	. 10	4916	1.50	03082	. 75	05970	1.00 .80	$30-4000$ $30-4003$	1.20 .75	32-1050	.70	32-1428	.70	33-5023	1.45
3073 3075	7.75 1.20	4938	8.00 2.75	03083 03084	. 65	05975 05982	.80 5.10	$30-4003$ $30-4004$. 75	$32-1062$ $32-1063$. 70	32-1428	.70 1.40	$33-5023$ $\mathbf{3 3 - 5 0 2 4}$	1.45 1.45
3075 B	1.20	4953	. 70	03091	.90	05983	. 75	30-4008	. 50	32-1069	. 75	32-1462	1.10	33-5025	1.45
3076	1.40	5039	1.80	03092	1.00	05984	. 55	30-4013	. 80	32-1070	. 50	32-1463	1.10	33-5055	1.45
3088 W	2.00	5117	6.50	03143	1.20	05985	. 50	30-4023	1.20	32-1085	. 45	32-1467	2.50	33-5056	1.70
3117	. 75	5125	. 75	03283	. 90	05986	5.00	30-4026	3.60	32-1086	.65	32-1468	2.30 2.40	33-5057	1.45
3232	1.95	5232	1.80	03284	. 90	05987	. 75	$30-4043$ $30-4056$.75 .75	$32-1087$ $32-1115$. 65	32-1469	2.40 1.00	$\begin{array}{r}33-5063 \\ 33-5064 \\ \hline\end{array}$	1.00 1.45
3241	2.75	5266	4.25	03293	5.40	05988	. 65	30-4056	. 85	$32-1115$ $32-1116$. 80	$32-1470$ $32-141$	1.40	33-5066	1.45
3242	2.75	5314	2.10	03320	. 60	05989	. 45	30-4063	. 75	32-1116	1.50		. 75	33-5067	1.70
3246	17.00	5315	2.25 .23	03321 03322	. 60	05992 06088	. 4.50	$30-4069$ $30-4070$. 75	$32-1117$ $32-1118$	1.20	32-1482	1.00	33-5068	1.45
3253	. 4.25	5316 5317	. 2.80	03322	. 1.20	06088 06100	1.50	$30-4070$ $30-4073$. 75	$32-1118$ $32-1120$	1.10	32-1483	1.15	33-5069	1.00
3269 3271	4.25 8.00	5317 5318	1.80	03327 03345	1.20	06100	1.50 5.00	30-4080	. 50	32-1143	1.10	32-1484	1.30	33-5071	1.50
3376D	12.00	5362	6.25	03360	. 65	06146	.45	30-4127	. 75	32-1144	1.00	32-1504	. 70	33-5087	1.00
3376 E	12.00	5365	. 50	03459	1.50	06358	. 40	30-4140	. 80	32-1145	1.00	32-1518	. 60	34-2031	. 12
3398	. 10	5382	. 45	03489	2.10	06359	5.00	30-4142	. 75	32-1152	. 50	32-1519	. 60	34-2038	. 13
3399	1.50	5594	7.00	03751	3.60	06404	1.50	30-4151	1.00	32-1153	. 60	32-7001	. 80	34-2039	. 15
3400	8.00	5643	1.80	03809	5.40	06523	5.50	30-4152	. 50	32-1155	1.20	32-7005	1.40	34-2040	. 14
3401	14.00	5662	3.25	03880	. 90	06574	. 60	30-4168	. 75	32-1168	. 85	32-7018	1.50	36-3029	. 60
3422	3.00	5724	1.00	03881	. 90	06577	4.80	30-4178	.75	32-1170	.85	$32-7019$ $32-7020$	1.25	$36-3039$ $36-3040$	2.75
3463	. 09	5796	1.50	03882	1.05	06581	5.60	$30-4180$ $30-4186$. 75	32-1171	. 95	$32-7026$	1.25	36-3046	2.00
3472	4.25	5930	1.75	03886	1.20	06609	5.10 .55	$30-4186$ $30-4189$. 75	$32-1172$ $32-1173$.90	32-7030	2.25	36-3058	2.32
3480B	10.80	6008	. 50	03887	1.50	06619 06620	. 90	30-4189	. 75	32-1174	.75	32-7036	. 90	36-3061	1.40
3501	. 1.55	6015	1.00 2.25	03890 03915	.60 1.30	06620	. 90	$30-4192$ $30-4196$. 75	$32-1174$ $32-1182$. 55	32-7038	1.15	36-3074	8.75
3506A	1.10	6071	2.50	04031	. 45	06622	1.20	30-4204	. 75	32-1183	. 50	32-7039	1.75	36-3081	1.75
3512	1.50	6072	5.85	04164	6.00	06624	. 90	30-4208	. 85	32-1184	. 35	32-7041	.95	36-3088	8.00
3515	13.50	6109	1.80	04185	. 60	06662	. 55	30-4211	. 75	32-1185	. 60	32-7042	95	36-3104	2.70
3516	9.00	6128	1.20	04186	1.20	06665	. 85	30-4212	. 50	32-1186	. 65	32-7046	3.60	36-3130	2.70
3517	. 70	6129	1.20	04190	. 50	06697	. 55	30-4220	. 80	32-1188	. 65	32-7051	1.50	36-3140	. 50
3518	3.30	6415	1.00	04308	6.30	06698	. 75	31-1000	2.10	32-1195	. 90	32-7052	2.00	36-3157	. 80
3528	1.20	6438	1.50	04309	6.00	06702	4.80	31-1004	4.80	32-1197	. 75	32-7056	2.20	36-3159	. 80
3537	3.15	6451	. 30	04317	. 80	06764	. 50	31-1006	2.35	32-1198	. 55	32-7057	2.75	36-3162	8.00
3744A	1.50	6452	. 20	04319	. 90	06766	. 50	31-1010	4.75	32-1208	. 50	32-7058	6.25	36-3218	3.50
3744 B	1.20	6453	1.50	04320	. 90	06817	. 35	31-1011	5.00	32-1209	. 75	32-7064	3.15	36-3238	. 80
3744C	1.80	6454	3.75	04339	. 90	06887	1.10	31-1013	4.75	32-1220	. 50	32-7078	1.40	36-3239	3.75
3752	9.00	6457	5.00	04348	.90	06888	. 40	31-1014	4.75	32-1221	. 65	32-7080	5.40	36-3243	1.70
3754	7.50	6498	. 45	04352	1.35	06916	. 95	31-1015	5.00	32-1222	. 45	32-7098	2.40	36-3245	4.00
3762	1.15	6499	1.00	04353	1.35	27-5006	.30	31-1017	2.40	32-1236	1.40	32-7102	1.50	36-3298	3.00
3763	. 35	6554	5.20	04354	1.30	27-5022	. 30	31-1019	3.60	32-1237	1.40	32-7104	1.15	36-3306	2.85
3764	. 25	6557	6.00	04357	. 75	27-5027	. 30	31-1031	3.60	32-1251	1.05	32-7110	2.70	36-3321	1.75
3775 B	. 85	6582	2.15	04407	1.20	27-5034	. 25	31-1032	. 35	32-1252	1.05	32-7111	5.75	36-3325	2.80
3790	1.55	6608	. 09	04408	1.20	27-5038	. 30	31-1034	2.10	32-1255	. 55	32-7114	2.00	36-3341	2.75
3794	. 20	6658	1.50	04409	. 80	27-5040	. 30	31-1041	4.50	32-1256	. 55	32-7115	1.80	36-3352	4.00
3864	.75	6672	5.85	04508	1.20	27-5041	. 30	31-1048	4.50	32-1257	. 60	32-7118	2.00	36-3357	3.50
3865	1.20	6700	. 25	04509	. 60	28-8006	1.20	31-1049	2.10	32-1258	. 55	32-7131	2.50	38-5280	1.70
3868	9.00	6702	. 50	04559	1.20	28-8007	1.20	31-1058	1.20	32-1261	. 70	32-7137	3.85	38-5511	1.70
3870	7.50	6706	1.55	04733	5.10	28-8100	. 65	31-1059	5.00	32-1262	. 65	32-7170	4.50	38-5534	1.80
3872	3.00	6707	1.55	04757	. 50	28-8103	. 65	31-1076	2.70	32-1263	. 65	32-7178	1.60	$38-5606$ $38-5851$	1.70
3879	1.00	6712	1.50	04787	. 75	28-8139	1.10	31-1077		32-1264	. 65	32-7180	3.60		
3884A	. 90	6716	. 20	04790	5.10	28-8141	1.10	31-1078	6.00	32-1270	.55	32-7205	1.40 1.80	-38-5935	1.70 .60
3884B	. 65	6804	5.50	04830	. 90	28-8169	1.20	31-1083	4.50	32-1271	.70 .70	32-7206	1.80 2.35	$42-1001$ $42-1002$. 1.00
3884C	1.00	6807	40	04832	. 45	28-8170	1.20	$31-1089$ $31-1099$	2.30 4.75	- $32-1272$. 70	$32-7211$ $32-7213$	2.35 1.60	$42-1002$ $42-1017$	1.00 1.00
3884 P	1.05	6892	1.45	04941	6.60	28-8181	1.10	31-1100	4.75	32-1274	. 55	32-7214	1.00	42-1019	. 85
3884S	. 80	6895	3.00	04959	. 90	28-8182	1.10	31-1103	5.00	32-1288	. 55	32-7215	. 90	42-1027	. 55
3884 T	. 55	7050	1.00	04979	. 55	28-8188	. 80	31-1104	5.85	32-1289	. 60	32-7216	2.60	42-1030	1.00
3884 U	. 90	7074	4.50	04981	. 55	28-8198	. 95	31-1106	5.30	32-1304	. 65	32-7218	4.95	42-1031	1.10
3884 V	1.00	7233	1.80	04982	. 40	28-8201	2.40	31-1110	4.50	32-1305	. 55	32-7223	1.50	42-1035	. 80
3884X	. 80	7239	1.80	04983	. 50	28-8202	2.40	31-1115	1.20	32-1306	. 90	32-7226	4.25	42-1037	3.20
3884 Y	. 65	7283	1.50	05003	4.20	28-8206	1.10	31-1122	4.00	32-1307	. 80	32-7229	5.25	42-1039	. 65
4000 B	12.00	7322	1.80	05033	. 65	28-8214	. 95	31-1126	6.50	32-1310	.40	$32-7232$ $32-723$	2.40 1.00	$42-1040$ $42-1043$. 65
${ }_{4000 \mathrm{D}}$	9.00	7421	3.00 1.35	05093	.45	28-8218	2.25	31-1149	5.50	32-1311 3221313	.40 1.05	32-7233	1.00 4.75	$42-1043$ $42-1045$	$\begin{array}{r}.30 \\ \hline .60\end{array}$
${ }_{4056}{ }^{4000 G}$	12.00 1.00	7464 7465	1.35 .15	05094 05095	. 60	28-8219	2.25	$31-1153$ $31-1164$	6.25 5.50	$32-1313$ $32-1315$	1.05 .55	$32-7234$ $\mathbf{3 2 - 7 2 4 3}$	4.75 1.10	42-1045 $42-1046$	3.60 .80
4057	. 95	7467	1.05	05098	5.10	28-8227	1.00	31-1166	5.00	32-1329	1.40	32-7245	1.20	42-1062	1.10
4067	6.60	7525	1.80	05102	. 65	28-8234	. 80	31-1169	4.40	32-1331	. 60	32-7247	2.10	42-1064	.40
4069E	12.00	7557	1.25	05153	. 50	28-8241	. 80	31-1173	6.25	32-1332	. 70		2.50	42-1066	+.90
4093	1.40	7558	1.25	05154	4.80	28-8242	. 80	31-1175	7.25	32-1333	. 45	32-7254	1.00 180	$42-1079$ $42-1083$	3.50 2.00
4094	1.80	7652	1.80	05174	. 50	30-2000	1.20	$31-1182$ $31-1190$	5.50 2.75	32-1341	1.35 1.35	32-7256	1.80 7.25	42-1083	2.00 .50
4095 4118	.50 .40	7852	. 25	05184 05185	1.45	$30-2001$ $30-2002$	1.25 1.30	$31-1190$ $31-1192$	2.75 4.50	$32-1342$ $32-1360$	1.35 .60	$32-7258$ $\mathbf{3 2 - 7 2 7 5}$	7.25 1.85	42-5122	. 35
4118 4141	1.80	7998 8046	$\begin{array}{r}.20 \\ \hline .45\end{array}$	05185 05189	. 65	$30-2002$ $30-2003$	1.30 .95	$31-1192$ $31-1196$	4.50 6.00	$32-1360$ $32-1361$. 65	$32-7283$ 32	1.85 7.00	42-512	. 50
4182A	. 75	8054	1.50	05239	1.20	30-2007	.90	31-1199	5.50	32-1362	1.50	32-7291	7.00	42-5125	1.40
4132B	1.20	8095	1.30	05324	1.20	30-2008	1.80	31-1202	6.25	32-1363	1.50	33-1120	. 35	42-5130	. 50
4209B	. 50	8166	1.05	05366	. 75	30-2011	1.40	31-1205	. 50	32-1364	1.55	33-1125	. 35	42-5133	
4230	1.00	8255	. 30	05418	. 65	30-2013	1.95	31-1206	1.25	32-1369	1.50	33-3012	. 30	$42-5166$ $42-5173$	
4231	1.80	02625	1.20	05569	1.20	30-2014	1.50	31-1208	. 45	32-1378	1.00	$33-3021$ $33-3033$. 20	42-5173 $42-512$	
4232 4234	2.25	02741	1.70 4.25	05624	1.90 1.20	$30-2015$ $30-2020$	1.00 1.10	$31-1214$ $31-1217$	5.25 8.25	$32-1379$ $32-1380$. 70	$33-3033$ $33-3034$. 20	${ }_{42}^{42-5}$	
4234 4235	7.75 4.50	02745 02767	4.25 2.70	05697	1.20 .90	$30-2020$ $30-2021$	1.10	$31-1217$ $31-1231$	8.25 3.65	$32-1380$ $32-1381$	$\begin{array}{r}.70 \\ \hline 1.50\end{array}$	$33-3034$ $33-3037$. 20	${ }_{4}^{42}{ }^{2}$	
4276	. 25	02794	4.80	05726	. 65	30-2023	1.10	31-1255	. 60	32-1388	. 45	33-3062	. 55		
4372A	6.60	02795	2.70	05727	. 55	30-2024	1.10	31-1334	6.85	32-1389	. 40	33-3069	.25		
4401 A	1.00	02803	2.70	05728	. 80	30-2025	1.35	31-1340	6.25	32-1396	. 60	33-3128	.		
4401 B	. 75	02861	. 65	05740	5.10	30-2026	1.20	31-1350	6.50	32-1397	. 50	+33-3137			
4446	9.00	02996	. 90	05794	3.00	30-2028	2.15	31-1366	5.70	32-1398	. 45	53-3159			
4461	. 45	03001	7.50	05811	. 40	30-2029	1.85	31-1379	8.25	32-1403	1.25	33-5000			
4463	1.80	03009	1.05	05828	.25	30-2030	1.90	31-1401	3.50	32-1404	1.25	33-55			
4507	. 65	03013	. 75	05829	4.80	30-2045	1.80	31-1408	. 30	32-1.42\%	. 85	33			
4532	. 50														

Since Publication of Each Service Bulletin

Grouped under each model and arranged according to Run No. - Current models included.
The following pages contain complete listings of all major changes - involving changes in circuit, part numbers or anything of interest to the serviceman - in Philco models current at the time of printing. These are all the changes which have been made since the date of publication of the last printing of the Philco Service Bulletin on each model; the number of the Bulletin is given in each case for reference.

Ownership of this folder in addition to Service Bulletins, gives the serviceman a complete record on each model ; thus he will not be inconvenienced at finding, when servicing a current set, that it differs from that shown in the original Service Bulletin.

The Run Number on models prior to March, 1937, is stamped on the top of the chassis with a rubber stamp. The Code Number is given on the chassis or cabinet name label.

Beginning on March 1, 1937, the Model, Code and Run Numbers are stamped in one location on the rear of the chassis.

MODEL 680		Bulletin 228
Corraction: (5) Ant. Transformer Brosdcast (3 and 4)) a Ant. Transformer Broadcast(1 and 2)	$\begin{array}{r} \text { Incorrect } \\ 32-1811 \\ 32-1812 \end{array}$	$\begin{aligned} & \text { Correct } \\ & 32-1812 \\ & 32-1811 \\ & \hline \end{aligned}$
MODEL 37.89		Balletin 247
Correction - Darts List		
Schemstic No.	$\begin{gathered} \text { Incorrect No. } \\ 31-6100 \\ 31-6100 \\ 31-6101 \end{gathered}$	$\begin{aligned} & \text { Correct No. } \\ & 31-6101 \\ & 31-6101 \\ & 31-6100 \end{aligned}$
MODEL 37-624 CODE 125	See Supplement	O Bulletin 263
New Part Renge Switch (R.P.) Identification colors on metal supoort	$\begin{gathered} \text { 01d Part } \\ 42-1283 \\ \text { White-Green } \end{gathered}$	$\begin{gathered} \text { New Pa1^t } \\ \text { 42-1314 } \\ \text { Yellow- Brown } \end{gathered}$
MODEL 37-641 CODE 125		Bulletin 265
Correction: Schematic Disgram Fig. 5		
The cathode of the 6K7G, R.F. tube should junction of Resistors 6 and 9, and Conde	be connected at ser 28.	the

Bulletin 293
The following narts nust be changed in addition to the oower transformer for 25 cjcle overation.
Remove (100) resistor, 3,000 ohms, Part No. 33-230337 and (101) conderser , 25 mfds ., Pgrt No. 30-4446. Add condenser Part No. $30-4549$ snd wire the white wires of this condenser across choke (93). The red vire is connected to the junction of condensers (67), cesistor 62)and resistor (66). Ground the housing of the condenser to the chassis. Also, remove electrolytic condenser (102) 8, snd 10 mfd . 30-2183 20, and 10 mfd . The 20 mfd . reolaces the 8 mfd . of $30-2201$. Run 3
A 250 mafd, condenser, Part No. 30-1032, wes connected fron the screan of the 647 G to ground to orevent narssitic osciliations. Run 4
Beginning with Run 4 Recelvers, the 6u7g R.F. tube is replsced with a 6i 7 G tube to eliminate orrasitic oscillations. In addition to the tube change, the green wire connecting the sareen contact of the 6U7G tube and Condenser (6) was increased in length. This wire should circie around the $607 G$ tube socket towards the front of the R. P. unit and then back to condenser (6). Place the wire 8 s close 30-1032, adeed 1n Run 3 Recelvers is removed on this Fun.

MODEL 38.2 CODE 121 Bulletin 294

The following parts must be changed in addition to the power transformer for 25 cycle overstion. Remove (98) condenser .25 mfd .. Part $30-4549.446$ and reolace with condenser, 1 mf . - . 5 mf . Part No.
Connect the white wires of condenser, $30-4549$ across choke (99) and
the red wire to the functions of $(59),(60)$ and (66) Also remove the red wire to the junctions of (59), (60) and (66). Also, remove with electrolytic condenser, Part. No. $30-2200$ 16 med and reolace
Run 2 Intermediate Frequency Circuit Changes
Beginning with run 2, the I. P. circult has been changed to use per of the commensators are shown on the These changes and the locations of the commensators are shown on the Schematic Diagram bei
The wires from each circuit, however, on this diagram have been marked indicating the connecting points in the circuit disgram of Bulletin 294.
The Comensestor adjustments are as follows:
A. Set the receiver and signal generator controls as follows:

1. Range Switch (Brosdesst Position).
2. Volure Control (Maximum).
3. Magnetic 'funing Switch "Off."
4. Tone Control Pirst Position.
5. Signal Generator Disl 470 K.C.
B. Connect the signal generstor output cable through a i mfd. condenser to the grid of the 6ABA Det. Osc. tube and connect the cable ground to the receiver chassis. F . Comen outnut. Adjust the Iors as follows:
6. Turn comensstor (1 XB) In until the outout meter resaing de-- cresses almost to zero.
7. Now adjust the compensator ($1 \times A$) and ($1 \times C$) for maximum outNow adjust the compensator readust (1xB) for maximum outnut.
8. Turn compensstor (2XC) In about three turns; then adsust comoensators (2XA) and (2XB) for meximum outnut. The sijustment the "Megnetic Tuning Circuit Adjustments" of Bulletin 294 .

MODEL 38-2 Con't.

CODE 121

Bulletin 294

Schem. \qquad NO_{2}	$\text { RUN } 8$		
1 X	1st I. P. Transformer	. 32-2741	\$3.50
2 x	2nd I.F. Transformer	. $32-2742$	4.00
$3 \times$	Condenser . 05 mfd. bakelit	. 3615 SG	. 35
$4 x$	Resistor 4.0 meg., $\frac{1}{2}$ watt.	. $33-540339$. 20
5 X	Resistor 4.0 meg., $\frac{1}{8}$ watt	. $33-540337$. 20
6 x	Resistor 1.0 meg., $\frac{\text { wat }}{}$.33-51033?	. 20
7 x	Resistor 1.0 meg., $\frac{1}{2}$ wat	.33-510339	. 20
8 x	Resistor 1.0 meg., wat	.33-510333	. 20
9 x	Resistor 1.0 meg., $\frac{1}{2}$ watt	.33-510337	. 20
10x	Condenser $110 \mathrm{mmfd} . \mathrm{mlcs}$.30-1031	. 20
11 x	Jondenser 110 minfd. mics	.30-1031	. 20
12 x	Resistor 490,000 ohms, $\frac{1}{2}$ ws	. $33-449339$. 20
	Kesistor 490,000.0hms, 合 WBt	. $33-449339$.20
14 X	Resistor 1000 ohms, $\frac{1}{2}$ wett.	.33-210337	. 20
15x	Resistor 51,000 ohms, $\frac{1}{2}$ watt	.33-351333	. 20
168	Condenser 110-110 mmfd. bekell	. 8035 DG	. 25
$17 \times$	Condenser .01 mfd . tubuler	. $30-4479$. 20
18x	Resistor 330,000 ohms, $\frac{i}{c}$ wat	.33-433333	. 20
19X	Volume Control.	.33-5233	1.00
20 X	Resistor 51,000 ohrs, $\frac{1}{2}$ ws	. $33-351339$. 20
21X	Condenser . 015 mfd . tubula	. $30-4226$. 20
22 x	Resistor 1.0 meg., $\frac{1}{2}$ watt.	.33-510337	. 20
23 x	Audio shorting switch.	.See Bul. N	
$24 \times$	Condenser . 006 mfd. tubula	. 30-4467	. 20
$25 \times$	Condenser $.03 \mathrm{mfd} ., 03 \mathrm{mfd}$.	. 3313 DU	. 40
26 x	Resistor 490,000 ohms, 古 watt	. $33-449339$. 20
$27 \times$	Resistor 1.0 meg., $\frac{1}{8}$ matt.	.33-510337	. 20
28 x	Condenser . 1 mfd. tubular.	. $30-4455$. 25
29x	Condenser . 015 mfd . tubuls	. 30-4226	. 20
30 x	Condenser .03 mfd . tubular	.30-4449	. 20
$31 \times$	Resistor 32,000 onms, $\frac{1}{3}$ wat	.33-332337	. 20
32 x	Hesistor 99,000 ohms, $\frac{1}{2}$ wat	.33-393339	. 20
$33 \times$	Condenser Part of 25X		
34 X	Condenser 11 mfd. tubuler.	.30-4455	. 25
35 x 36 x	Resistor 240,000 ohms, $\frac{1}{2}$ we	. $33-424339$. 20
$36 x$ $37 x$	Condenser . 1 mfd . tubular.	. 30-4429	. 20
$37 \times$	Resistor 70,000 ohms, $\frac{1}{2}$ wett	.33-370339	. 20

For Schematic Diagran showirg fun No. 2 Changea in wiodel $38-\hat{c}$ Code 121 , Soe Page 4.

Run 3
250 mmfd . Condenser, Part No. 30-1032, was connected from the screen of the $6 \mathrm{U} 7 \dot{\mathrm{G}}$ to ground to prevent parasitic oscillstions.
Run 4
Beginning with Run 4 Receivers, the 6u7GR. Y. tube is reolaced with a EK70 tube to eliminate narasitic oscilisitions. In addition to the tube change, the green wire connecting the screen contact of the 6U7G tube and Condenser 6 was Incressed in length. This wire should circle around the 6u7a tube socket towards the front of the R. F.
unit and then back to condenser 6. Place the wire as close to the base as is oossible. The 250 mmf . Condenser, part No. 30-1032, added in Run 3 Receivers is removed on this Run.

MODELS $38-4$ and $38-5$
For 25 cycle oderstion, using power transformer $32-7598$, a condenser MODEL 38-4
The following parts were changed in the Bess Compensation Circuit in order to reduce station rumble.

Schematic No.
(36) Condenser
. 01 ufd.)
Original
38) Resistor (40,000 ohras $\frac{1}{2}$ watt)

$$
\begin{array}{ll}
\text { Fart No. } & \text { New Part No. } \\
30-4125 & 30-4555(0015 \mathrm{mfd} .) \\
33-340339 & 33-332339(32,000
\end{array}
$$

Run 3
In order to further reduce frequency drift at the high frequency end of the broadcast tuning range, Compensator (16), 1500 K.C., Part No. 31-6196 was replaced with part No. 31-6206, and two Cond en
No. $30-1097$ connected in parallel with the new condenser.
Range 1 0scillstor Transformer (15 a lso changed from Part No.
$32-2631$ to $32-2894$ in Recelvers of Run 3.
Run 4 MODEL $38-4$
Run 2 MODEL $38-5$
To immrove the Derformance of the Oscillator circuit on the short weve bends. Resistor (19) 70,000 ohms, Part No. 33-370333 was
The pert aumber for the tone oontrol (40)
(40) Tone Control and Off-on Switch $(38-5)$
Tone Control and Off-on Switch $(38-4)$
$42-1341$
$42-134$

Run 2
To provide uniform performance of the oscillator circuit, a 20 ohm resistor, Part No. 33-020339 was connected in series with the cathode of the CABGDAt . osc. tube
The following parts in Code 124 Chassis were changed to reduce bass response.
 Run 3
In order to further recuce frequency drift at the high frequency end or the broadcest tuning rarge, compensator (7A) 1500 K.C., part No. $31-6196$ was replaced with Part No. 31-6206.
In addition to this change a new thermal compensator, part No.
$31-6232$ ws connected in parallel with compensator (7 A) and mounted sdiscent to resistor (12). The resistor is mounted to the chassis with \quad mounting clamp, Part No. $28-5388$ and an asbestog insula tor,
Part No. $27-8977$. The resistor must be mounted in this part No. $27-8977$. The resistor must be mounted in this manner, otherRun 4
The nex Therims 1 Comensator, Fart No. 31-6232 which was added to the Fecelver in fun 3, is reolaced with two fixed Condensers, Part No. $30-1097$ in Run 4 Recelvers.

Fun 5

The 20 ohm Resistor, Part No. 33-020339 Resistor connected in series with the $6 A 80$ Det-Osc. tube cathode in Run 3 Recoiver was removed. The part Numbers for the volume Control (26), Tone Control (39) and Range Switch (43) as 11sted in the bulletin are correct for models 8-9 and 38-9. The correct part numbers, however, for these parts in the Model 38-7, codes 121-124 are as follows

MODEL 38-8

Code 121
Bulletin 280
Run 2
The following parts were changed to increase the sensitivity of the shacowneter:
Schematic No,
(12) Resistor (10,000 ohms, 3 watt) $\left.\begin{array}{lll}\text { OId Part } & \text { New Part } \\ 17 & 33-310639 & 33-713630(13,000 \text { ohms }) \\ \text { Cordenser }(.05 \mathrm{mfd})\end{array}\right)$ Run 3
To nrovide uniform Derformance of the oscillator circuit, a 20 ohm re sistor Part No. $33-020339$ was comected in series with the cathode of

Run 4
senematic
Originsl Part Number New Part Number ($000-4112$ mfd.) frequencies.

MODEL 38-9

Code 121

Bulletin 280
Run 2
To provide uniform performance of the oscillator circuit, a 20 ohra realstor Part No. 3×-020339 was connected in series with the cathode of the 6A 80 Det. Osc. tube.
Run 3 MODEL $38-9$
Fun 5 MODRL $38-3$
The 20 onm Kesistor, Part No. 33-020333, connectec in the 6A80 cathode circuit in Run 2 was removed in the sbove Run Numbers.

MODEL 38-10
 Code 121
 Butletin 283

Run 2
To jrovide uniform performance of the oscillator circuit, a 20 ohm resistor, Part No. 33-020333 was connected in series with the Cathode of the 6ABG, Det. Osc. tube.
When using Power Transformer, Part No. $32-7627$ for 25 cycle oderation, Condenser (35), Part No. $30-4215$, © mfd. should be changed to Part No. $30-4373$,.06 mfd.
Comrection
The location of Compensators 7 and 9 shown in Figure 2 should be reversed.

MODEL 38-12

Code 121
Bulletin 284
Condenser changes for 1 mproved operation:
Schematic No. Originel No. New Part No.

Run 2
New type mounting on Tuning Condenser.
(3) Tuning Condenser Assembly \quad Original Partino. New Part No.

Run 3
IMPORTANT: Wire Dress to Eliminate Hum.

1. Dress the green wire connecting the Diodes of the 75 tube to the 2nd I.F. tranaformer as far as possible away from the filamant prongs of the 75 tube.
2. The brown wire connecting resistor 12 to the high side of the

Volume Control should be dressed under the coil of I.f. iraneformar 12 .
3. The gric lead of the 75 tube should be dressed towsed the back of reooiver and betweon the tube and shield.
The 2nd I.P. Trassformer (12) changed fram Part Wo. 32-2674 to fart No. 32-2944.
Note: Condenser (12B) and (12C) are part of the padder in these transformers.
The wiring of the new transformer $32-2944$ is shown on this change notice. The Wiring of the new transformer $32-294$
For I. F. Trans former $32-2944$ See Page 4.

MODEL 38-12 Con't.
Rum 5
Speaker Unit changed from type "B0-1", Part No. 36-1366 to type B-7 Part No, 36-1390. These speakers are intorchangeeble. The cone sasembly for the "B-7" speaker 1s Part No. $45-1344$ and the
Field Coil. Part No. $32-9473$.

MODEL 38-14
CODE 121, 124
Bulletin 288
Correction:
Schemat1c No.
12 Compens
Incorrect No
$31-6209$
$33-5236$
Correot No.
$31-6100$

Condenser, Part No. 30-1097, 5 mmfa . Wan connected across the econdary of shortwave transformer 2. The condenser is connected to

Run 2
The 2nd I.F. Transformer (17) is changed from Part No. 32-2674 to Part No. 32-2944. The wiring lugs of the compensstor on the new transformer are silghtig rearranged. A drawing of the transformer is shown on this change notice and indicates the correct wiring point of each lug in the ircuit.
For I.F. Trang former 32-2944 see Page 4.
MODEL 38-15

CODE 121, 124

Bulletin 291
Run 2
The wiring of the 2 ad detector olrcuit (75 tube) changed from a single rectifying circuit to a double rectifying circuit. Connect the 110 Remove the shorting wire that connects these two contacts and loeke the wire from the and transformer connected to one diode.
Connect one end of each of the one tedo
One of these one megohm resistors megohm resistors to the other diode. One of these one megohm resistors replaces the 2 megohm resistors 17,
Part No. $33-520339$, snd the other is connected to the cathode of the 75 tube.
Remove the Volume Control lug the is connected to C Negative and connect to ground.
The game diode circuit as is shown in Service Bulletin 283 for Model 18 now incorporated in Model 38-15.
Fun 3
Wiring relocated, no change in the circuit.
Run 4
Sub-base wiring danel ohanged from Prrt No. 38-9226 to Pert No. 38-9007. No change in circuit.
Run 5
The 2nd T. P. Transformer Assembly 15 changed from Part No, $32-267^{\text {th }}$ to Part No, 32-2944. The wiring of the nom transformer, 32-2944, 14 shown on this change notice. Condenser (15B) and (15C) are part of the IT Thes
For I.F. Transformer 32-2944 See Page 4.
Run 6
Speaker undt in code 121 chasais changed from tyoe Bo-1, Part No. , To tyoe B-7, Part No. 36-1390. These soeakers are intercield oll, Part No. $32-9473$.

38-22
Code 12112
Bulletin 285
MODEL 38-23

Code 121

kun 2

Change to prevent hum

To prevent hum when the volume control is on full, the red and brown eads from the 2nd I.F. Transformer (18) must be placed as par as cossible away from the cable and pilot lamp leads at the rear of the chassis.

P1lot lamp resistor added
Fesistor, Part No. $33-3027,75$ onms was shunted acrose pilot lamo (52) to prevent high voltage burning lamo out.

fun 3 MODEL 38-22

Replaced 3 wire speaker cables, Part No. 41-3336 (41-3337 in Code 124) with 5-wire speaker cables, Part No. 41-3366. The extra wires in the 5 wire cable are for shorting the Voice Coll when tuning kecelver sutomatically.
Run 4 MODEL 38-22
Cone-centric tuner insulated from chassis, using tho following insulatiors:
Tuner Insulator, Dert No. 27-8926 Erace Insulator, Dert No. 27-8989 ushing Dert NO 27-3987
fomove the blue audio shorting wiro from the terminal panel (underside of chassis) and connect to the Cone-centric Dial Mounting Frame. Run E MODEL 38-22
In order to further reduce frequency dirift at the high frequency end of the broadcast tuning range, compensator (108) $1500 \mathrm{~K} . \mathrm{C}$., part No. $31-5196$ was replaced with compensator, Part No. $31-6206$. In addition nected in oaralilel with comperisator (105) and mounted in back of the GABG det. osc. tube socket.

Kun 7
Two fixed condensers, Part No. 30-1097, connected in parallelwith. ompensator (10B) in place of the new thermsl compensator, Part No:

Run 8 MODEL 38-22 Run 4 MODEL, 38-23
Heplaced ballagt resistor (51), Part No. 33-3334 with ballast lamp, (52), Dart No. $34-2134$ with Part No. $34-2192$ in the $38-22$ Recelvar The same baliast resistor change is made in the $38-2 x-22$ Receiver lamp, however, is changed from Part No. $34-2064$ to $34-2068$.
The wiring of the socket for the new bellast lamo is as shown in the diagran on Page 4.
The filter choke (46) 11sted as 32-7744 ehould be 32-7544.

$$
\begin{aligned}
& \text { Correct } \mathrm{No} . \\
& 28-5,248
\end{aligned}
$$

The pilot lamp (37) Ilsted as 34-2150 should be 34-2065.

Code 121

Bulletin 296

Wire drass to prevent hum

Eeginning with Run 3 recelvers, the red wire which connects the fllament of the 6२7G tube to the on-off awitch has been lengthened. The wire now follows the resr, side and front channels of the chasis close to the base, instead of being cornected directly from the switch
to the socket contact.

MODEL 38-38

Code 121

Bulfetin 290
The cone assombly part number for the HR2O speaker is 3E-3797. Correction:
The schematic diagram, Figure 3 is correct. The sub title, however, shown as $38-10$, code 121,1 incorrect and should be changed to
$38-38$, code 121 .
Run 3
Beginning with Run 3 resistor (21) 8000 ohros, Part No. $33-280339$ was removed from the 90 volt tan and reconnected to the 135 volt tap of the battery cable. At the sqme time, the value was changed from 8000 ohns to 25000 ohma, part No. 33-3257x9. The battery ceble ass'y
was also chenged from Part No. $41-3138$ to Part No. $41-3394$. was also changed from Part No. $41-3138$ to Part No. $41-3394$. Run 4
Fesistor (38) 900 ohme, Part No. 33-1223 changed to 2000 ohms, Pert NO. ${ }^{33}$ battery. This change made to decrease curreat drain on the

MODEL 38 -39
Code 121
Bulletin 287
In order to reduce maximu volume buzz, the following parts mere clanged:
Schematic No.

In order to increase oscillator atrength the S. W. osc. coll was changed:
(7) Traneformer (Osc. S. K.)

Original
$32-2668$$\quad \begin{gathered}\text { Now Part No. } \\ 32-2891\end{gathered}$
Correction:
(6) Tuning
S Condenser

Incorrect No.
carroct Mo.

MODEL 38-40
Code 121
Bulletin 298
Run 3
The following changes were made to imorove the action of the oscillator
circuit. clrcult.
(5) Oscillator Trans former (Range 2) $\begin{aligned} & \text { Original } \\ & \text { Part No. } \\ & 32-2668 \text { New Part No. }\end{aligned}$

The ilectrolytic Condenser and resistor chanse is shown on the service bulletin.
Run 4
Beginning with Run 4, Condenaer 28.05 mfd. tibular and Condenser
42, 05 mrd, tubular, Part No, $30-4444$ have been reolaced with a dual bakelite condenser of on mfdif Part No. 3615 DG . The now condenser is mounted adjacont to the filter choke 26 . Other parts have been slightiy reerragged in this section of the chassis. The circuit,
however, remains the same as is shown on the service builetin.

MODEL 38-116
Code 121
Bulletin 286
Run 2
To orevent audio leakage when volume control is off. Resistor (25) Ind F. unit (Soe Fig. 2) - beginning with this Run number The audio shorting wire (Oreen wire) or switch (lac) is now wired to the moveble contact of volume control (iol) instesd of the high side as shown on the schemetic diagram.
Correction
The Dial Parl Number 11 sted as $27-5340$ should be $27-5207$.
Correction
Schematic No.
(1) Ant. Transformer (Range 1) \quad Incorrect No. $\begin{gathered} \\ 32-3208\end{gathered} \quad \begin{gathered}\text { Correct No. } \\ 32-2108\end{gathered}$

To improve the holding characteristics of the magnetic tuning circuit (menked No. 2 fart No. $30-1097$, 5 merd. is connected from the grid tube, to ground.
25 Cycle Operation
Whon operating the Receiver on 25 cyele current using Power Transforw ar $32-7700$, Condenser (139), Part No. $30-4465$ is reolaced with two
Condensers, Part No. $30-4227$.

Correction-Schematic J1arram
A ground connection should be added to Al at the point where the No. 2 connection of Ant. Trens. (5) is connected.
The sereen grid of the 6L70 tube should be connected to Resistor (63) instead of the point ss shown on the diagram.
Remove the connection from Resistor (29) and Condenser (46X) and reconnect between Resiator (28) and Condenser ($46 x$).
Remove the connection from Resistor (29) and Condenser (46X). Then reconnect Condenser (46x) between Kesistor (28) and the Range Switch
Connection J9. Connection J9.

MODEL 38-116

Code 125
Bulletin 286 A
Run 3
Bass Compensation parts relocated and ohanged
Resistors (103) and (104) and Condensers (105) and (206) were removed
from the audio unit and mounted in the fower Unit in beck of the from the audio unit and wounted in the Power Unit
Tubular Condens or (118) and (119), Part No. 30-4518, .05 mfd. changed
to bekelite Condensers, Part No. 36153 U . 05 mfd.
Compensator change to improve pedding of antenns short wave section.
(6) Compensator (Ant.)

Run 4
The parts in the oscillator section slightiy rearranged -- no change in circuit.
Lead dress 1 tems to 1 mimrove padding.
The white plate lead of the $648 G$ Det. Osc. tube should be dressed away from the osciliator coll (30).
Orange Load of 1500 K. C. Padder (36) should te separated from 4.5
M.C. Padder $(36 A)$.
5h8G Osc. Gaid and plate leads should be dressed clear of each other and aws from kesistor 19.
Run 5
Bsse Compensator Part relocsted to eliminate hum at 50% rotation of
the Volume Control. the Volume Control.
Resistors (103) and (104) and Condensar (105) and (106) which were removed rrom audio unit and mounted in power (see Run 3 above) have been change in the elrcuit.
All leads coming from the tone control must be dressed clear of the A. C. Switch and Wires.

The following achematic numbers in the Change Notice for Runs 3 and
Resistors (Incorrect
Resistors (103) and (104)
Condensers (105) and (106)
$\begin{aligned} & \text { Condensers (105) and (106) } \\ & \text { rubular Condensers (118) and (119) }\end{aligned} \quad\left\{\begin{array}{l}89 \\ 91\end{array}\right\},\left(\begin{array}{l}95 \\ 92\end{array}\right\}$
Run 6
The Primary Winding of Range 4 osillator transformer, Pert No. 32-2628 has been redesigned to prevent psrasitic oscillations. The revised coll can be identified by a daub of red, yellow and white paint on the
coll tube and will be stocked as $32-262 A_{\text {. }}$.
When this tranaformer is used, a 15,000 ohm resistor, part No.
 Fun 6 is removed. This chande is shown in Bulletin 286 .
Run 7
Condenser sdded and Range 3 witoh changed to 1 mprove performance on Rangea 4 and 5 . Original Part No. New part No.
428 Rarge Switch (R. P. Section)
$42-1355$ The new switch, Part No. 42-1404 hes an additionsl lug which grounds When switch is in Range 5 position. A 250 mufd. condenser, Part No. $30-1032$, When connected from this lug on the switch to compensetor
$(36 \mathrm{~B})$. When connected between these two points, the condenser is shunted acrosa the primary of Range 4 Osc. Tranaformer 33 . When this change was made, Transformer 33 , Part No. $32-2623$ wis changed to $32-2628 \mathrm{~B}$.
The identification color on Oboillator Trensformer 33 , Part No. $32-2628 \mathrm{~B}$ is red, fellow and black. The red, yellow, and black coils must be used when the 250 mmrd. condenser is used.
Run 8
To prevent parasitic oscillations and improve the perrormance Tf the oscillator circuit at 18 M.C., a 200 ohm resistor, Part No. $33-110339$ 1 s connected between the $6 A 3 G$ oscillator anode and the plate of the
The brown wire, which formerly connected these two socket contscts
is removed, the resistor replacing the wire.
is removed, the resistor replacing the wire.

MODEL 38-690 Code 125 Supplement to Wiring Diagram

 Run 1To stab1lize the oscillator circuit, a resistor, 15,000 ohns, Part No. $33-315339$, was shunted across the primary of the Range 4'section of 2 andator Transformer 37 .
Bun 2
The primary winding of Range 4, $080: 11 a t o r$ Transformer 37 , Part No. 32-2628, has beon redesigned to prevent parasitic osolllstions, The revised coll can be ide.
paint on the coll tube.
When the new transformer is used the 25,000 ohm Resistor, Part No When the new transformer is uged the 25,000 ohm Resistor, Part No.
$33-315339$ shunt across Range 4 primary of Iransformer 37 in Run 1 $33-315339$ shunt across Fange 4 primary of Transformer 37 in Run 1
Recelver is removed. This ohange is shown in the Schematic Diagram. Run 3
Condenser added and range awitoh ohanged to 1 mprove the performance of the oscillator circuit on Rangea 4 and 5 as follows:
(182) Fange switch (R.F. Section) $\begin{gathered}\text { Or1gina } 1 \text { Part No. New Part } \\ 42-1355\end{gathered} \underset{42-1404}{\text { No. }}$

The new switch, Part No. $42-1404$ has an additional lug, which grounds when switch is in Range 5 poeition.
A 250 mard. condenser, Part No. 30-1032, 1 s connected from this lug on the switch to Compensstor (408). When connected between these two polats, the condenser is shunted across the primary of Range 4

The 1dentification color on the 0acilla
The identification color on the Osoillator Transformer 37 , Part No. 32-2628, which was changed to red, yellow and White ia now changed to red, yellow and bisck. The red, yellow and black coils must be Run 4
To prevent osolilation and to lmorove the performance of the oscillator oircuit at 18 M.C., a 100 ohra resistor, Part No. 33-110339, 18 connected between the 6 a oscilis tor anode and the plate of the sock contacts is removed - the resistor ren coning the wire two
Seryice Note: To prevent hum, Condenser (123) must be placed as far as
is possible away from the A.C. switch or the audio bass control (122).

MODEL 38-12 - Code 121
Run 3

MODEL $38-14 \underset{\text { Run }}{2}-\operatorname{Code} 121,124$

MODEL 38-15 - Code 121, 124 Run 5

 IN V'ERTED DIAL SCALES ARE (CSED ON ALL MODELS HAVING CABINET INDENTIFICATION AS FOLLOWS: CSX; LZX; IZ; RX; ANI) MODEL GBOL.
Drive Assemblies

For Members of RADIO MANUFACTURERS SERVICE
A PHILCO SERVICE PLAN
Drive Ring
and Hub

Here is complete information on dial drives for all Philco Models. This bulletin also contains a list of other miscellaneous parts such as dials, dial set screws, mounting screws and drive cords.

Illustrations of the various types of drives are provided to facilitate selecting the correct replacement assembly for models on which more than one type drive was used. These illustrations are listed by letters in the third column of the table.

To use this bulletin correctly, first locate the model number of the set being repaired. It will be found in the first column. If the model has more than one type drive, it will be listed more than once. Next, follow across to the third column for the number of the illustration. If no illustration is shown, use the assembly number in the fourth column. If an illustration is indicated, refer to pages 2 and 3 , and use the assembly number of the drive that is identical to the drive assembly being repaired.

We recommend the replacement of the entire drive assembly in all cases if it is defective. This will insure a smooth working dial, plus long life.

Model	Type Drive	Illus.	Complete Drive Assy.	Drive Cord	Drive Cord Spring	Dial	Inverted Dial	Dial $\mathbb{H u b}$ Assy.	Drive Bracket	Drive Ring and Hub
60	Vernier	Types 'O,"	and "T" used	this model	illustration	$\begin{gathered} 31-1090 \\ 31-1472 \mathrm{~A} \end{gathered}$				
65	Cable		3393 A	$348+\mathrm{A}$	3012	3398 (Scale)				
66	Vernier	'l'yes "O,"	and "1" used	this model-	illustration	31.1234				
70	Friction		03011			03031				
71	Friction		04835			0483 2	05992			
76	Cable		3393 A	3484 A	3012	3794 (Scate)				
77	Cable		4016 A	$40 \pm 0 \mathrm{~A}$	3012	4115				
86-87	Cable		4016 A	$3+84 \mathrm{~A}$	7776	3047 (Scale) 9				
89	Cable	"G"	$\begin{aligned} & 06729- \\ & 0680 \geq \ddagger \end{aligned}$	31-1157	7770	0 +6697				
89	Cable	'H'	31-1184	31-1157	3012	31.1590				
90	Friction		03011			0.3031				
91	Cable		04836	04834	7776	04832	31.1026			
95	Cable		3:39.	8484A	3012	3794 (Scale)				
96	Cable		4016A	4020 A	7776	4115				
97	Cable \& Vernier	'R'	31.1280	31.1352	28.8245	31.1513				
111-112	Cable		4016A	4020.A	7776	4276				
116	Ternier	N'	31-156.3			27.5107		28-7129	29-2826	
118	Cable \& Vernier	"J"	45-2152	$31.1+56$	7776	31.1205	$31-12+1$			
118	Cable \& Vernier	" K "	31-1279	$31-1456$	7776	31-1414				
144	Cahle \& Vernier	'R"	31-1280	$31-1352$	$\underline{28-8245}$:31-1206				
200	Cable		31.1065	$31-1456$	7776	31.1255				
201	Cable \& Vernier		31-1382	$31-1451$	7776	31.1205				
610	Vernier	L" or "M'	31-1643			27.5131		. $31-1550$		
611	Vernier	L'or '"M"	31-1643			27.5097		31.1550		
620	Vernier	"L" or "M"	31.1631			27.5098		$31 \cdot 1550$		
62.3	Vernier	"L"or "M"	31.1643			$\underline{27-5097}$		$31-1550$		
624	Vernier	"L" or "M"	31-1643			27-516.3		$31-1724$		
1325	Vernier	'L' or "M"	31.1631			$27-5098$		31.1550		
630-63.35	Vernier	"L" or "M"	$31-1631$			27-5098	27-5121	. 31.1550		
640	Vernier	" ${ }^{\text {" }}$	31.1563			27.5103	27-5122	31.1550	29-2926	28.7120
641	Vernier	"N"	$31-1568$			27.5125		81-1550	-99-2826	28.7120
642	Vernier	"L" or "M"	31-16.31			27-5098		$31-1550$		
643	Vernier	N"	31-1563			27-5124		$81-1550$	29-2826	28.7120
645	Vernier	'N"	.31-1563			27-5165		$31-1724$	29-2826	28.7120
650	Vernier	'N"	31-1563			27.5103	$27 \cdot 5122$	31.1550	29-2826	28.7120
651	Vernier	"N"	31-1563			27.5170		31-1724	29.2826	28.7120
655	Vernier	' ${ }^{\prime \prime}$	31.1563			27.5165		$31-1724$	29.2826	28.7120
$660-665$	Vernier	'N"	.31-1563			$\underline{27-5115}$	27.5123	28-7129	29.2826	28.7120
680	Vernier	"N"	31-1563			27.5127		28-7129	29.2826	28-7120

\ddagger With shadow meter bracket.
\$ Model 87 -Dial scale No. 3398 .

SERVICE BULLETIN No. 231A for members of RADIO MANUFACTURERS SERVICE

 A PHILCO Service PlanA complete list of dial drive parts used in all Philco radio sets is contained in this bulletin. The dial drive parts for sets from 1928 to 1936 are listed on pages 1 and 3 . Drive parts for the 1937 sets are listed on page 5 and those for the 1938 sets on page 6 . The various types of drives are illustrated on jages 2. 3 and 4 .

The different dial parts and assemblies used in each model are listed under separate columns on pages 1,5 and 6 . When the type of dial drive or parts required for a model is desired, locate the model in the first column. Then directly opposite the model number in the second column, the type of drive will be indicated. The third column refers to the illustration appearing on pages 2.3 or 4 -also, whether one or more types are used. The part numbers of the
various assemblies and parts required in the drive mechanism will be found in the other columus.

The dial part numbers listed under the "Inverted Dial" column is used on all models having the following cabinet identifications: CSX, L.ZX, LZ, RX and Model 660L.

Service information and a complete replacement part list for the sets using the Philco Automatic Tuning Dial mechanism will be found in Service Bulletin 273 .

The replacement parts for the Cone-Centric Tuning Dial mechanism, however, are listed on page 6 of this bulletin. Illustrations of the Cone-Centric mechanisms are shown on page 4.

PHILCO DIAL DRIVE ASSEMBLIES - 1928 TO 1936

Type R

Type \mathbf{N}

DRIVE ASSY. 31-1563

(SHORT SHAFT)

Type NA

Type

(SHORTSHAFT)

Type W

DIAL DRIVE ASSEMBLIES - 1938 MODELS

Madel	Type Drive	Illus.	$\begin{gathered} \text { Dial or } \\ \text { Dial and Pointer } \end{gathered}$	Dial Washer and Clamp	Vernier Drive or Tuning Shaft Ass'y	Drive Cord	Drive Spring	Drive Pulley
38-1	Automatle Tuning Dial-See Bulletin 273							
38.2	Automatic Tuning Dial-See Bulietín 273							
38-3	Automatic Tuning Dial-See Bulletin 273							
38-4	Cone-Centric Tuner Type-See Page 6 for Part List							
38*5	Vernier	X	27-5330	Washer 27-4598 Clamp 28-5089	31-2089			
38-7	Cone-Centric Tuner Type-See 1'gige 6 for Part List							
38-8	Vernier	X	27-5327	$\begin{array}{ll} \text { Washer } & 27-4598 \\ \text { Clamp } & 28-5089 \end{array}$	31-2072			
38-8	Vernier	X	27-5327	$\begin{aligned} & \text { Washer 27-4598 } \\ & \text { Clamp 28-5089 } \end{aligned}$	31-2072			
38-10	Vernier	X	27-5327	$\begin{aligned} & \text { Washer 27-4598 } \\ & \text { Clamp 28-5089 } \end{aligned}$	31+2072			
38.12	Cable	Y	$\begin{aligned} & 31-2097 \\ & \text { Pointer } 28-5185 \end{aligned}$		$\begin{gathered} 38-9102 \\ \text { Clip } 28-3904 \\ \hline \end{gathered}$	31-2082	28-8751	$\begin{aligned} & \text { Pulley 28-6662 } \\ & \text { Screw W-1400 } \end{aligned}$
38-14. Codes 121 and 124	Cable	Z	$\begin{gathered} 31-2098 \\ \text { Pointer } 28-5201 \end{gathered}$		$\begin{gathered} \text { 38-9001 } \\ \text { Shaft } \end{gathered}$	$31-2096$	6508	31-1283
38-15, Codes 121 and 124	Cable	z	$\begin{gathered} 31-2137 \\ \text { Pointer } 28-5201 \end{gathered}$		38-8001	31-2096	6508	31-1283
38-22, Codes 121 and 124	Cone-Centric Tuner Type-See Page 6 for Part List						,	
$\begin{gathered} 38-23 \\ \text { Code } 121 \end{gathered}$	Vernier	x	$27-5327$	Washer $27-4598$ Clamp 28-5089	31-2072			
$\begin{gathered} 38-33 \\ \text { Code 121 } \end{gathered}$	Cable	Z	$\begin{gathered} 31-2107 \\ \text { Pointer } 28-5201 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Shaft 38-9107 } \\ & \text { CIIp 28-3904 } \end{aligned}$	31-2086	28-8751	Set Screw W-1400
$\begin{gathered} 38-34 \\ \text { Code } 121 \end{gathered}$	Vernier	V	27-5252	Hub 28-i152 Clanp $28-2837$ Set Screw $W-1506$	31-1863			
$\begin{gathered} 38-34 \\ \text { Code } 125 \\ \hline \end{gathered}$	Cable	Z	$\stackrel{31-2107}{\text { Pointer }} 28-5201$		Shaft 38-9107 Clip 28-3904	31-2086	28-8751	$28-6662$ Set Screw W-1400
$\begin{gathered} 38-35 \\ \text { Code } 121 \end{gathered}$	Cable	Z	$\begin{gathered} 31-2107 \\ \text { Pointer 28-5201 } \\ \hline \end{gathered}$		Shaft 38-9107 Clip 28-3904	31-2086	28-8751	$\text { Set serew } \begin{gathered} 28-6662 \\ \hline \end{gathered}$
$\begin{gathered} 38-38 \\ \text { Code } 121 \\ \hline \end{gathered}$	Vernier	$\overline{\mathrm{X}}$	27-5333	Washer 27-4598 Clamp 28-5089	31-2128			
38-39	Vernier	X	27-5333	Washer 27-4598 Clamp 28-5089	31-2128			
38-40	Vernier	X	27-5333	Washer 27-4598 Clamp 28-5089	31-2128			
$\begin{gathered} 38-60 \\ \text { Codes } \\ 121 \text { and } 125 \end{gathered}$	Vernier	V	27-5196	Hub 28-7152 Clamp 28-2837 Set Screw W-1506	31-1863			
$\begin{gathered} 38-62 \\ \text { Code } 121 \\ \hline \end{gathered}$	Vernier	Long 'T Shaft	$\begin{array}{r} 27-5287 \\ \hline \end{array}$	Hub 28-7152 Clamp 28-2837 Set Screw W-1506	45-2426			
$\begin{gathered} 38-89 \\ \text { Codes } \\ 121 \text { and } 125 \\ \hline \end{gathered}$	Vernier	V	27-5204	$\begin{gathered} \text { Hub 28-7152 } \\ \text { Clamp 28-2837 } \\ \text { Set Nerew } W-1506 \end{gathered}$	31-1844 \bigcirc			
$\begin{gathered} 38-93 \\ \text { Code } 121 \\ \hline \end{gathered}$	Vernter	Q	$\begin{gathered} 27-5280(121) \\ \text { Polnter } 27-7933 \\ \hline \end{gathered}$		45-2171			
$\begin{gathered} 38-93 \\ \text { Code } 125 \end{gathered}$	$\underset{125}{\text { Cable }}$	F	$\begin{array}{r} 31-2108 \text { (125) } \\ \text { Pointer } 28-5201 \end{array}$			31-2086	28-8751	Set Screw W1400
38-116, Codes 121 and 125			$\begin{aligned} & 27-5207(121) \\ & 27-5340(125) \\ & \hline \end{aligned}$		tomatic Tuning-S	ce Bulleti	86 and 286A	
38-620, Codes $121 \text { and } 125$	Gear-Vernier	Same as 37-620. Code 125						
38-623. Codes 121 and 125	Gear-Vernier	Same as 37-623, Corle 125						
$\begin{gathered} 38-624, \text { Codes } \\ 121 \text { and } 125 \end{gathered}$	Gear-Vernier	Sbme as 37-624, Coile 125						
$\begin{gathered} 38-640 \\ \text { Code 121 } \end{gathered}$	Gear-Vernier	Same as 37-640, Code 125						
$\begin{gathered} \text { 38-690, Codes } \\ 121 \text { and } 125 \end{gathered}$			$\begin{aligned} & 27-5207(121) \\ & 27-5340(125) \end{aligned}$	Automatic Tuning-See Bulletin 273				
$\begin{gathered} 38-2620 \text {. Codies } \\ 121,125,325 \end{gathered}$	Same as 37-2620							
$\begin{aligned} & 38-2670 . \text { Codes } \\ & 121,125,325 \end{aligned}$	Same as 37-2670							

(O) Specify whether gear or friction pinion is required.

CONCENTRIC TUNING DIAL - REPLACEMENT PARTS
(See Page 4 for locations of Parts)

```
Fig.
\begin{tabular}{|c|c|}
\hline Fig. No. & - Description \\
\hline 1 & Dlal Retaining ring \\
\hline 2 & Dial Minlels 38-7, 38 \\
\hline & Dial (Model 38-4) \\
\hline & Drive shatt \\
\hline 4 & Pointer \\
\hline 5 & Pilot Lamp (Models 4 an \\
\hline & Pilot Lamp (Model 22) \\
\hline & Hezel Assembly \\
\hline 7 & Heflector Assembly \\
\hline 8 & Main Bearing \\
\hline 9 & Mounting Pracket Assemb \\
\hline 10 & Coupling Assembly \\
\hline 11 & Pawl \\
\hline 12 & Cone \\
\hline 13 & Selector Crank Assembly \\
\hline 14 & Mask and Felt (Selector \\
\hline 15 & Spring \\
\hline 16 & Indexing Plunger \\
\hline
\end{tabular}
```

Part No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Fig. No.	Descriptlon	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Prie } \end{aligned}$
.28-5107	\$0.10	17 X	Knob (Large)	45-2477	\$0.20
.27-53,38	.	18	Screw (Knob)	28-6672	. 10
-27-533		19	Insulating Washers	27-8804	$90 / \mathrm{c}$
.28-16675	. 10	20	Insulating Washers	27-8806	.90/c
.38-892.7	. 25	21	Contact spring	27-8909**	
.34-2064	. 09	22	Pawl Pin...	28-6674	
.34-2192	15	23	Spring (1aw)	2x-8756	
. $40-15134$	1.20		Npring I'in	28-1i¢1;	
.45-2478	75	24	Screw (Aulio Sborting switch)	W-164	
. 28 - 7242	1.0	25	Indexing Plunger	28-5055	
-4.5-2779	1.75	26	Spring (Indexing Plunger)	28-8757	
.31-20.56	1.25	$\stackrel{27}{ }$	Ncrew (Indexing Plunger)	28-6661	
.28-5072		28	Lock Nut -	W-434	
. $31-20.5$. 10	29	Shorting Contact (Selector Arm)	45-2419	
.45-2474	1.7.5	30	Ketaining sicrew	28-6666	
-4.7-25.56	- 0.	31	Spring -	28-8758	
.28-8761	. 04		Selector Crank Assembly	45-2476	1.75
. $38-8812$			Gear (Small) Tuning Condenser.	45-2490	. 60
.27-4572	. 35		Gear (Large) Tuning Condenser	45-2491	. 50

PHILCO RADIO AND TELEVISION CORPORATION
 Parts and Service Division

Type \mathbf{Z}

CONCENTRIC TUNING DIAL

(See Page 6 for Replacement Part Numbers)

Illustrations of the Cone-Centric Automatic Tuning Unit are shown in Figures 1, 2 and 3 below

Figure 1 shows a side cutaway view of the complete unit. Figure 2 is a cross section view of the selector arm showing the audio shorting switch, silent tuning pawl and stator cone.

Figure 3 is a bottom cross section view of the selector arm showing the audio shorting switch (29) and indexing plunger (25)

The parts in each view are numbered. These numbers correspond to those given in the "Fig. No." column of the Parts List, page 6.

Fig. 1

CUTAWAY VIEW OF SELECTOR ARM SHOWING PAWL AND SILENT TUNING SWITCH

Fig. 2

Fig. 3

DIAL DRIVE ASSEMBLIES - 1928 TO 1936 (continued)

Model	Type Drive	Illus.	Complete Drive Assy.	Drive Cord	$\begin{gathered} \text { Drive } \\ \text { Cord Sbring } \\ \hline \end{gathered}$	Dial	$\begin{gathered} \text { Inverted } \\ \text { Dial } \end{gathered}$	$\begin{gathered} \text { Dial Pointer } \\ \text { Assy. } \end{gathered}$	Drive Bracket	Drive Ring and Hub
111-112	Cable		4016A	4020 A	7776	1276				
116	Vernier	"N"	$31-1563$			2 T -5107		28.7129	29-2826	
		"'J"	405-2152	31-1456	7776	31-12035	31-1241			
118	Cable-Two Types	" K "	31-1279	31-1456	7776	31-1414				
	$\begin{gathered} \text { Cathe \& } \\ \text { Vernier } \end{gathered}$	'B"	31-1280	31-1352	28-8245	31-1364				
$1+4$	Friction (Rubluer	"R"	45-2148			31-12066				
200	Catue		$0: 836$	$31-1456$	7776	31-12055				
201	Cable \& Vernier		31-1382	31-1456	${ }^{7776}$	31-1205				
600	Direct Drive No replacement		Condenser	ee replaced		$\begin{array}{r} 27-5179 \\ \text { Pointer } 27.7933 \end{array}$				
602	Vernier Single Speed	$\text { _solit }{ }^{2} \text { Shaft }$	45-2469			$\left\|\begin{array}{c} 27-5188 \\ \text { Pointer } 27-8036 \end{array}\right\|$				
$60 \pm$	Gear-Vernier	U				See More! 3i-604	part numb			
610	Vernter		31-1643			- $27-5131$				
611	Vernier	"L" or "M " ${ }^{\text {c }}$	$31-1643$			27-5097		31-1500		
620	Vernier	"L' ${ }^{\text {" or }}$ " M^{\prime}	31-1613			27-5098		31-1550		
633	Vernier	"L" or " ${ }^{\text {M }}$	31-1643			27-5097	-	- 31.1550		
624	Vernier	"L" or " $\mathrm{M}^{\prime \prime}$	31-1643			27-5163		- -31.1724		
62.5	Vernier	"L' or "M ${ }^{\text {" }}$	31-1643			27.5098		31-1550		
630-635	Vernier	$\frac{L^{\prime \prime} \text { or }{ }^{\text {a }} \mathrm{Mr}^{\prime \prime}}{\text { N' }}$				27-5098	27-5121	- $31-1550$		
6640	Vernier	$\frac{\mathbf{N}^{\prime \prime}}{N}$	$\frac{31-1563}{31-1563}$			$\frac{27-5103}{27-512}$	27-5122	- $\frac{31-1550}{31-150}$	29-2826	31-1600
$\frac{641}{642}$	- Vernier	${ }^{\text {che }}$ ' $\mathrm{N}^{\prime \prime} \mathrm{M}^{\prime \prime}$	$\frac{31-1563}{31-1643}$			$\frac{27-5125}{27-5098}$		$\frac{31-1550}{31-1550}$	29-2826	31-1600
$\underline{643}$	--Vernier	$\frac{\text { L or }}{-2}$	31-1563			27-5098		- $\begin{array}{r}31-1550 \\ \hline 31-1550\end{array}$	29-2826	$31-1600$
845	- Vernier	N"	31-1563			27.5165		31-1724	29-2826	$81-1600$
650	Vernier	"N"	31-1563			27-5103	27-5122	$31-1550$	29-2826	31-1800
651	Vernier	" N "	$31-1563$			$27-5170$		31-1721	29.2824	31-1600
635	Vernier	"N"	$\frac{31-1.563}{31-153}$			27-5165		--31-1724	29-2826	31-1600
$\frac{660-665}{680}$	Vernier	"N" ${ }^{\text {N" }}$	$\frac{31-1563}{31-1563}$			$\frac{27-5115}{27-5127}$	27-5123	$\frac{28.7129}{28.7129}$	29-2886	$\frac{31-1600}{31-1000}$
						27.5127		28.7129	29-2826	31-1800

DIAL DRIVE ASSEMBLIES - 1937 MODELS

[^0]: \ddagger Line Voitage 120. Readings made
 Line Voitage 120. Readings made direct from tube sockets on underside of chassis, using test prods, and.high resistance D. C. Voltmeter for D. C. voltages; A. C. voltmeter for A. C. voltages.

[^1]: - This : tem omitted on later production.

[^2]: 3769
 3768
 $3584-B$
 $3788-A$
 3790
 3542
 2848
 3656
 $3788-A$
 $2814-B$
 2850
 3762
 3766
 3542
 3517
 3752
 3763
 3557
 3422
 3754
 3764
 $3788-A$
 3537
 3773
 3463
 3540
 3809

[^3]: A compact, smoothly operating and beautifully finished instrument. Frequency-range scales and designations of controls are etched in brass have specia! black panel. Top; sides and back handle provides easy portability. Ball-bearing mining condenser provides extremely fine adjustment. Shielded antenna lead with Universal clip included for connection to receiver. spring cap, removable without tools. Entire instrument mounted on special fels feet. At the price oroted, to serviceman can afford to be without one.

[^4]: Flgs. Description
 (1) Resistor (10,000 ohms) (Brown-Black-Orange) (1) Resistor (10,000 ohms) (Brown-Black-Orange (3) Antenna Transformer...
 (5) Compensating Condenser (Ant.) Condenser (. 05 Twin -Bakelite Block)... (7) Resitor (200 ohnis Flexible Wirr-wound
 (11) Resistor (50,000 ohms) (Green-Brown-Orange) (12) Comperisating Condenser (Osc. H. F.)
 (14) Condenser (. 00011 Mid. Mica) (18) Resistor (20.000 ohrns) (Red-Black-Orange) . (17) Resistor (20,000 ohms) (Red-Black-Orange) (19) Resistor (2 Meg.) (Red-Black-Green) (20) Condenser (. 05 Mfd. Bakelite Block).... (22) Compensating Condenser (lat I. F. Tri) (23) 18t I. F. Transformer........ Compensating Condenser (1st I. F. Secondary) (24) Compensating Condenser (1st I. F. Becondary)

[^5]: *Power Transformer used in Model 37-61A

[^6]: *Code 122
 **Code 122,25 cycle operation.

[^7]: Figures in black type indicate circled figures in Base Viow

[^8]: Figures in black type indicate circled figures in Base View.

[^9]: Connect the other end of the output lead to terminal No. 1 on the Set Transformer and the cable ground to Terminal No. 2. No. 3 and 4 terminals of Set Transformer are then connected to the chassis and 6A7 grid respectively of the receiver with short pieces of wire. Insert a 0.1 mfd . in series with the No. 4 lead which connects to the grid.

[^10]: Prices Subject to Change without Notice

